

Handbook of Research on
Open Source Software:
Technological, Economic, and
Social Perspectives

Kirk St.Amant
Texas Tech University, USA

Brian Still
Texas Tech University, USA

Hershey • New York
INFORMATION SCIENCE REFERENCE

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Assistant Managing Editor: Diane Huskinson
Copy Editor: Nicole Dean, Shanelle Ramelb, Ann Shaver, and Sue VanderHook
Typesetter: Diane Huskinson
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.info-sci-ref.com

and in the United Kingdom by
Information Science Reference (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any
means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identifi cation purposes only. Inclusion of the names of the products or companies does not indicate a
claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Handbook of research on open source software : technological, economic and social perspectives / Kirk St.Amant and Brian Still, editors.
 p. cm.
 Summary: "This book examines how use of open source software (OSS) is affecting society, business, government, education, and law,including an
overview of the culture from which OSS emerged and the process though which OSS is created and modifi ed. Readers will gain an understanding of
the complexities and the nuances related to OSS adoption and the range of its applications"--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-59140-999-1 (hardcover) -- ISBN 978-1-59140-892-5 (ebook)
 1. Shareware (Computer software)--Handbooks, manuals, etc. 2. Open source software--Handbooks, manuals, etc. I. St. Amant, Kirk, 1970- II. Still,
Brian, 1968-
 QA76.76.S46H35 2007
 005.3--dc22
 2006039844

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is new, previously-unpublished material. The views expressed in this book are those of the authors, but not neces-
sarily of the publisher.

Muriel Zimmerman
University of California, Santa Barbara, USA

Eduardo Clark
Freescale Semiconductor, USA

Kathryn Riley
Illinois Institute of Technology, USA

Luke Maki
Boeing, USA

Thomas Orr
University of Aizu, USA

Editorial Advisory Board

List of Contributors

Agostinelli, Ray / Kaivo Software Inc., USA ... 340
Al-Nahas, Noor / American University of Sharjah, UAE .. 141
Aviv, Reuven / The Open University of Israel, Israel .. 184
Ballentine, Brian D. / West Virginia University, USA ... 12
Baroody, James / Rochester Institute of Technology, USA .. 555
Boateng, Beatrice A. / Ohio University, USA .. 255
Boateng, Kwasi / University of Arkansas at Little Rock, USA .. 255
Bosin, Andrea / Università degli Studi di Cagliari, Italy .. 68
Braganholo, Vanessa P. / DCC/UFRJ, Brazil ... 211
Brink, Daniel / University of Cape Town, South Africa... 154
Carbon, Ralf / Fraunhofer Institute for Experimental Software Engineering (IESE), Germany;
Software Engineering: Processes and Measurement Research Group, Germany 269
Ciolkowski, Marcus / Fraunhofer Institute for Experimental Software Engineering (IESE),
Germany; Software Engineering: Processes and Measurement Research Group, Germany 269
Comino, Stefano / University of Trento, Italy .. 412
Conklin, Megan / Elon University, USA.. 282
Cunningham, Robert / Southern Cross University, Australia .. 348
da Rimini, Francesca / University of Technology, Sydney, Australia ... 47
de Vuyst, Bruno / Vrije Universiteit Brussel, Belgium .. 328
Dessì, Nicoletta / Università degli Studi di Cagliari, Italy .. 68
du Preez, Jacobus Andries / University of Pretoria, South Africa; Yocto Linux & OSS
Business Solutions, South Africa ... 590
Dudley-Sponaugle, Alfreda / Towson Universtiy, USA .. 102
Erlich, Zippy / The Open University of Israel, Israel ... 184
Evdoridis, Theodoros / University of the Aegean, Greece .. 294
Fairchild, Alea / Vrije Universiteit Brussel, Belgium .. 328
Favier, Laurence / University of Bourgogne (Dijon), France ... 428
Fitzgerald, Robert / University of Canberra, Australia .. 681
Floyd, Ingbert R. / University of Illinois at Urbana-Champaign, USA .. 126
Fugini, Maria Grazia / Politecnico di Milano, Italy ... 68
Gläser, Jochen / Australian National University, Australia .. 168
Hars, Alexander / Inventivio GmbH, Bayreuth, Germany .. 522
Heidrich, Jens / Fraunhofer Institute for Experimental Software Engineering (IESE), Germany;
Software Engineering: Processes and Measurement Research Group, Germany 269
Helander, Nina / Tampere University of Technology, Finland .. 116, 578

Hong, Sungchul / Towson University, USA ... 102
Hoppenbrouwers, Jeroen / Vrije Universiteit Brussel, Belgium .. 510
Humes, Leila Lage / University of São Paulo, Brazil ... 610
Järvensivu, Juha / Tampere University of Technology, Finland ... 116
John, Isabel / Fraunhofer Institute for Experimental Software Engineering (IESE), Germany 269
Jones, M. Cameron / University of Illinois at Urbana-Champaign, USA .. 126
Jungman, Hannu / Tamlink Ltd., Finland ... 532
Kamthan, Pankaj / Concordia University, Canada .. 690
Kelsey, Sigrid / Louisiana State University, USA .. 570
Klang, Mathias / University of Göteborg, Sweden .. 363
Ko, Tung-Mei / OSSF Project, Taiwan .. 382
Laszlo, Gabor / Budapest Tech, Hungary .. 445
Lemyre, Pierre-Paul / Université de Montréal, Canada .. 373
Liberati, Diego / Italian National Research Council, Italy ... 68
Lin, Kwei-Jay / University of California, USA ... 382
Lin, Yi-Hsuan / Creative Commons Taiwan Project, Taiwan .. 382
Lin, Yu-Wei / University of Manchester, UK ... 34
Lively, William / Texas A&M University, USA .. 670
Mäkinen, Saku / Tampere University of Technology, Finland .. 578
Manenti, Fabio M. / University of Padua, Italy .. 412
Mattoso, Marta / COPPE/UFRJ, Brazil ... 211
Mekhantar, Joël / University Jules Verne of Picardie (Amiens), France .. 428
Mikkonen, Tommi / Tampere University of Technology, Finland ... 116
Miranda, Bernardo / COPPE/UFRJ, Brazil ... 211
Mowbray, Andrew / University of Technology, Sydney, Australia .. 373
Moyle, Kathryn / University of Canberra, Australia .. 624
Mulo, Emmanuel / Uganda Martyrs University, Uganda ... 79
Muthig, Dirk / Fraunhofer Institute for Experimental Software Engineering (IESE), Germany 269
Nelson, Chris / IBM Corporation, USA ... 670
Nissilä, Jussi / University of Turku, Finland .. 541
Nuvolari, Alessandro / Eindhoven University of Technology, The Netherlands 227
O’Donnell, Casey / Rensselaer Polytechnic Institute, USA ... 460
Olla, Phillip / Madonna University, USA ... 638
Papin-Ramcharan, Jennifer / The University of the West Indies – St. Augustine Campus,
Trinidad and Tobago ... 93
Peizer, Jonathan / Internaut Consulting, USA .. 468
Pes, Barbara / Università degli Studi di Cagliari, Italy .. 68
Poulin, Daniel / Université de Montréal, Canada ... 373
Puhakka, Mikko / Helsinki University of Technology, Finland .. 532
Rajala, Risto / Helsinki School of Economics, Finland ... 541
Reinhard, Nicolau / University of São Paulo, Brazil .. 610
Roos, Llewellyn / University of Cape Town, South Africa... 154
Rossi, Alessandro / University of Trento, Italy .. 412
Rossi, Bruno / Free University of Bozen-Bolzano, Italy .. 309
Rullani, Francesco / Sant’Anna School of Advanced Studies, Italy .. 227
Russo, Barbara / Free University of Bozen-Bolzano, Italy ... 309

Sahraoui, Sofi ane / American University of Sharjah, UAE ... 141
Schlueter Langdon, Christoph / Center for Telecom Management, University of Southern
California, USA... 522
Seppänen, Marko / Tampere University of Technology, Finland .. 532, 578
Simmons, Dick B. / Texas A&M University, USA ... 670
Skidmore, Darren / Monash University, Australia ... 394
Soares, Marcus Vinicius Brandão / NECSO Research Group – Federal University of
Rio de Janeiro, Brazil ... 240
Solomon, David J. / Michigan State University, USA ... 649
Soodeen, Frank / The University of the West Indies – St. Augustine Campus, Trinidad and
Tobago ... 93
Stam, Wouter / Vrije Universiteit Amsterdam, The Netherlands ... 495
Stephens, R. Todd / BellSouth Corporation, USA ... 480
Succi, Giancarlo / Free University of Bozen-Bolzano, Italy ... 309
Suleiman, Rania / American University of Sharjah, UAE... 141
Terrasse, Marie-Noëlle / University of Bourgogne (Dijon), France ... 428
Tribunella, Thomas / State University of New York at Oswego, USA .. 555
Twidale, Michael B. / University of Illinois at Urbana-Champaign, USA.. 126
Tzouramanis, Theodoros / University of the Aegean, Greece .. 294
Urban, Joseph E. / Arizona State University, USA ... 670
Vadén, Tere / University of Tampere, Finland ... 1
Vainio, Niklas / Unversity of Tampere, Finland... 1
Van Belle, Jean-Paul / University of Cape Town, South Africa .. 154, 659
van den Berg, Karin / FreelancePHP, The Netherlands ... 197
van Reijswoud, Victor / Uganda Martyrs University, Uganda .. 79
van Wendel de Joode, Ruben / Delft University of Technology, The Netherlands; Twynstra
Gudde Management Consultants, The Netherlands ... 495
Wang, Yuanqiong / Towson University, USA .. 102
Weller, James / University of Cape Town, South Africa .. 154, 640
Westerlund, Mika / Helsinki School of Economics, Finland .. 541
Yeats, Dave / Auburn University, USA ... 23

Table of Contents

Foreword ... xxvi

Preface .. xxx

Acknowledgment .. xxxvi

Section I
Culture, Society, and Open Source Software

Chapter I
Free Software Philosophy and Open Source / Niklas Vainio and Tere Vadén .. 1

Chapter II
Greasemonkey and a Challenge to Notions of Authorship / Brian D. Ballentine 12

Chapter III
Morality and Pragmatism in Free Software and Open Source / Dave Yeats ... 23

Chapter IV
Hacker Culture and the FLOSS Innovation / Yu-Wei Lin.. 34

Chapter V
Social Technologies and the Digital Commons / Francesca da Rimini ... 47

Chapter VI
ALBA Architecture as Proposal for OSS Collaborative Science / Andrea Bosin, Nicoletta Dessì,
Maria Grazia Fugini, Diego Liberati, and Barbara Pes .. 68

Chapter VII
Evaluating the Potential of Free and Open Source Software in the Developing World /
Victor van Reijswoud and Emmanuel Mulo .. 79

Chapter VIII
Open Source Software: A Developing Country View / Jennifer Papin-Ramcharan and
Frank Soodeen .. 93

Chapter IX
The Social and Economical Impact of OSS in Developing Countries / Alfreda Dudley-Sponaugle,
Sungchul Hong, and Yuanqiong Wang .. 102

Section II
Development Models and Methods for Open Source Software Production

Chapter X
Dependencies, Networks, and Priorities in an Open Source Project / Juha Järvensivu,
Nina Helander, and Tommi Mikkonen ... 116

Chapter XI
Patchwork Prototyping with Open Source Software / M. Cameron Jones, Ingbert R. Floyd, and
Michael B. Twidale ... 126

Chapter XII
An Agile Perspective on Open Source Software Engineering / Sofi ane Sahraoui, Noor Al-Nahas,
and Rania Suleiman .. 141

Chapter XIII
A Model for the Successful Migration to Desktop OSS / Daniel Brink, Llewellyn Roos,
Jean-Paul Van Belle, and James Weller .. 154

Chapter XIV
The Social Order of Open Source Software Production / Jochen Gläser ... 168

Section III
Evaluating Open Source Software Products and Uses

Chapter XV
Open Source Software: Strengths and Weaknesses / Zippy Erlich and Reuven Aviv 184

Chapter XVI
Open Source Software Evaluation / Karin van den Berg ... 197

Chapter XVII
Open Source Web Portals / Vanessa P. Braganholo, Bernardo Miranda, and Marta Mattoso 211

Chapter XVIII
Curious Exceptions? Open Source Software and “Open” Technology / Alessandro Nuvolari and
Francesco Rullani ... 227

Chapter XIX
Reducing Transaction Costs with GLW Infrastructure / Marcus Vinicius Brandão Soares 240

Chapter XX
Issues to Consider when Choosing Open Source Content Management Systems (CMSs) /
Beatrice A. Boateng and Kwasi Boateng .. 255

Chapter XXI
Evaluating Open Source Software through Prototyping / Ralf Carbon, Marcus Ciolkowski,
Jens Heidrich, Isabel John, and Dirk Muthig ... 269

Chapter XXII
Motives and Methods for Quantitative FLOSS Research / Megan Conklin 282

Chapter XXIII
A Generalized Comparison of Open Source and Commercial Database Management Systems /
Theodoros Evdoridis and Theodoros Tzouramanis .. 294

Chapter XXIV
Evaluation of a Migration to Open Source Software / Bruno Rossi, Barbara Russo, and
Giancarlo Succi .. 309

Section IV
Laws and Licensing Practices Affecting Open Source Software Uses

Chapter XXV
Legal and Economic Justifi cation for Software Protection / Bruno de Vuyst and Alea Fairchild 328

Chapter XXVI
OSS Adoption in the Legal Services Community / Ray Agostinelli ... 340

Chapter XXVII
The Road of Computer Code Featuring the Political Economy of Copyleft and Legal Analysis of
the General Public License / Robert Cunningham .. 348

Chapter XXVIII
The Evolution of Free Software / Mathias Klang ... 363

Chapter XXIX
Free Access to Law and Open Source Software / Daniel Poulin, Andrew Mowbray, and
Pierre-Paul Lemyre ... 373

Chapter XXX
Examining Open Source Software Licenses through the Creative Commons Licensing Model /
Kwei-Jay Lin, Yi-Hsuan Lin, and Tung-Mei Ko .. 382

Chapter XXXI
FLOSS Legal and Engineering Terms and a License Taxonomy / Darren Skidmore 394

Section V
Public Policy, the Public Sector, and Government Perspectives on Open Source Software

Chapter XXXII
On the Role of Public Policies Supporting Free/Open Source Software / Stefano Comino,
Fabio M. Manenti, and Alessandro Rossi ... 412

Chapter XXXIII
Use of OSS by Local E-Administration: The French Situation / Laurence Favier, Joël Mekhantar,
and Marie-Noëlle Terrasse ... 428

Chapter XXXIV
Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector /
Gabor Laszlo ... 445

Chapter XXXV
The Labor Politics of Scratching an Itch / Casey O’Donnell ... 460

Chapter XXXVI
Open Source Technology and Ideology in the Nonprofi t Context / Jonathan Peizer 468

Chapter XXXVII
Governance and the Open Source Repository / R. Todd Stephens .. 480

Section VI
Business Approaches and Applications Involving Open Source Software

Chapter XXXVIII
Analyzing Firm Participation in Open Source Communities / Wouter Stam and
Ruben van Wendel de Joode .. 495

Chapter XXXIX
Community Customers / Jeroen Hoppenbrouwers ... 510

Chapter XL
Open Source Software Business Models and Customer Involvement Economics /
Christoph Schlueter Langdon and Alexander Hars .. 522

Chapter XLI
Investing in Open Source Software Companies: Deal Making from a Venture Capitalist’s
Perspective / Mikko Puhakka, Hannu Jungman, and Marko Seppänen ... 532

Chapter XLII
Revenue Models in the Open Source Software Business / Risto Rajala, Jussi Nissilä, and
Mika Westerlund ... 541

Chapter XLIII
Open Source for Accounting and Enterprise Systems / Thomas Tribunella and James Baroody 555

Chapter XLIV
Open Source Software and the Corporate World / Sigrid Kelsey ... 570

Chapter XLV
Business Models in Open Source Software Value Creation / Marko Seppänen, Nina Helander,
and Saku Mäkinen ... 578

Chapter XLVI
Novell’s Open Source Evolution / Jacobus Andries du Preez .. 590

Section VII
Educational Perspectives and Practices Related to Open Source Software

Chapter XLVII
Communities of Practice for Open Source Software / Leila Lage Humes and Nicolau Reinhard 610

Chapter XLVIII
Selecting Open Source Software for Use in Schools / Kathryn Moyle ... 624

Chapter XLIX
Open Source E-Learning Systems: Evaluation of Features and Functionality / Phillip Olla 638

Chapter L
The Role of Open Source Software in Open Access Publishing / David J. Solomon 649

Chapter LI
An Innovative Desktop OSS Implementation in a School / James Weller and
Jean-Paul Van Belle .. 659

Chapter LII
Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms /
Dick B. Simmons, William Lively, Chris Nelson, and Joseph E. Urban ... 670

Chapter LIII
Wikis as an Exemplary Model of Open Source Learning / Robert Fitzgerald 681

Chapter LIV
A Perspective on Software Engineering Education with Open Source Software /
Pankaj Kamthan .. 690

About the Contributors .. 703

Index ... 720

Detailed Table of Contents

Foreword ... xxvi

Preface .. xxx

Acknowledgment .. xxxvi

Section I
Culture, Society, and Open Source Software

Chapter I
Free Software Philosophy and Open Source / Niklas Vainio and Tere Vadén .. 1

The chapter introduces and explains some of the most relevant features of the free software philosophy
formulated by Richard M. Stallman in the 1980s. The free software philosophy and the free software
movement built on it historically precede the open source movement by a decade and provide some of
the key technological, legal and ideological foundations of the open source movement. Thus, in order to
study the ideology of open source and its differences with regard to other modes of software production,
it is important to understand the reasoning and the presuppositions included in Stallman’s free software
philosophy.

Chapter II
Greasemonkey and a Challenge to Notions of Authorship / Brian D. Ballentine 12

This chapter introduces Greasemonkey, a new extension for the Firefox browser, which enables users to
alter the behavior and appearance of Web pages as the pages load. The chapter claims that Greasemonkey
is forcing a reevaluation of what it means to be an author in digital environments. Using Michel Foucault’s
original question, “What is an author?” the chapter argues that creators of Greasemonkey scripts take
on the additional roles of designer and programmer.

Chapter III
Morality and Pragmatism in Free Software and Open Source / Dave Yeats ... 23

This chapter analyzes the differences between the philosophy of the Free Software Foundation as
described by Richard Stallman and the open source movement as described in the writings of Eric
Raymond. It argues that free software bases its activity on the argument that sharing code is a moral

obligation and open source bases its activity on a pragmatic argument that sharing code produces better
software. By examining the differences between these two related software movements, this chapter
enables readers to consider the implications of these differences and make more informed decisions
about software use and involvement in various software development efforts.

Chapter IV
Hacker Culture and the FLOSS Innovation / Yu-Wei Lin.. 34

This conceptual chapter aims to contribute to our understanding of the FLOSS innovation and how it is
shaped by and also shapes various perceptions on and practices of hacker culture. The author argues that
hacker culture has been continuously defi ned and re-defi ned, situated and re-situated with the ongoing
development and growing implementation of FLOSS. The story on the development of EMACSen
illustrates the consequence of different interpretations and practices of hacker culture clash.

Chapter V
Social Technologies and the Digital Commons / Francesca da Rimini ... 47

This chapter investigates the premise that software is culture. It explores this proposition through
the lens of peer production of knowledge-based goods circulating in the electronic space of a digital
commons, and the material space of free media labs. Computing history reveals that technological
development has typically been infl uenced by external socio-political forces. However, with the
advent of the Internet and the free software movement, such development is no longer solely shaped
by an elite class.

Chapter VI
ALBA Architecture as Proposal for OSS Collaborative Science / Andrea Bosin, Nicoletta Dessì,
Maria Grazia Fugini, Diego Liberati, and Barbara Pes .. 68

A framework is proposed that creates, uses, communicates and distributes information whose organizational
dynamics allow it to perform a distributed cooperative enterprise also in public environments over open
source systems. The approach assumes the Web services as the enacting paradigm, possibly over a
grid, to formalize interaction as cooperative services on various computational nodes of a network. By
discussing a case study, the chapter details how specifi c classes of interactions can be mapped into a
service-oriented model whose implementation is carried out in a prototypical public environment.

Chapter VII
Evaluating the Potential of Free and Open Source Software in the Developing World /
Victor van Reijswoud and Emmanuel Mulo .. 79

Development organizations and international non-governmental organizations have been emphasizing
the high potential of free and open source software for the less developed countries. Cost reduction,
less vendor dependency and increased potential for local capacity development have been their main
arguments. In spite of its advantages, free and open source software is not widely adopted on the African
continent. In this chapter the experiences of one of the largest free and open source software migrations
in Africa is evaluated. The purpose of the evaluation is to make an on-the-ground assessment of the
claims about the development potential of FOSS and draw up a research agenda for FOSS community
concerned with the less developed countries.

Chapter VIII
Open Source Software: A Developing Country View / Jennifer Papin-Ramcharan and
Frank Soodeen .. 93

This chapter presents the benefi ts of FLOSS including its superior quality and stability. Challenges
to FLOSS use particularly for developing countries are described. It indicates that despite the greater
benefi ts to developing countries of technology transfer of software development skills and the fostering
of ICT innovation, the initial cost of acquiring FLOSS has been the key motivation for many developing
countries adopting FLOSS solutions. It illustrates this by looking at the experience of a university in a
developing country, The University of the West Indies, St. Augustine Campus in Trinidad and Tobago.

Chapter IX
The Social and Economical Impact of OSS in Developing Countries / Alfreda Dudley-Sponaugle,
Sungchul Hong, and Yuanqiong Wang .. 102

Computing practices in developing countries can be complex. At the same time, open source software
impacts developing countries in various ways. This chapter examines the social and economic impacts
of open source software (OSS) on three such nations: China, South Korea, and India. In so doing, the
chapter discusses and analyzes benefi ts as well as downsides of the social/political and fi nancial impacts
on these developing countries. Topics covered in this chapter are piracy, software licensing, software
initiatives, social and political components involved in OSS implementation and software compatibility
issues.

Section II
Development Models and Methods for Open Source Software Production

Chapter X
Dependencies, Networks, and Priorities in an Open Source Project / Juha Järvensivu,
Nina Helander, and Tommi Mikkonen ... 116

This chapter discusses the issues of dependencies, distances, and priorities in open source project
networks, from the standpoint of both technological and social networks. Thus, a multidisciplinary
approach to the phenomenon of open source software development is offered. There is a strong empirical
focus maintained, since the aim of the chapter is to analyze open source software network characteristics
through an in-depth, qualitative case study of one specifi c open source community: the Open Source
Eclipse plugin project Laika.

Chapter XI
Patchwork Prototyping with Open Source Software / M. Cameron Jones, Ingbert R. Floyd, and
Michael B. Twidale ... 126

This chapter explores the concept of patchwork prototyping—the combining of open source software applications
to rapidly create a rudimentary but fully functional prototype that can be used and hence evaluated in real life
situations. The use of a working prototype enables the capture of more realistic and informed requirements
than traditional methods that rely on users trying to imagine how they might use the envisaged system in

their work, and even more problematic, how that system in use may change how they work. Experiences
with the use of the method in the development of two different collaborative applications are described.

Chapter XII
An Agile Perspective on Open Source Software Engineering / Sofi ane Sahraoui, Noor Al-Nahas,
and Rania Suleiman .. 141

Open source software (OSS) development has been a trend parallel to that of agile software development,
which is the highly iterative development model following conventional software engineering principles.
Striking similarities exist between the two development processes as they seem to follow the same
generic phases of software development. This chapter expounds on this connection by adopting an
agile perspective on OSS development to emphasize the similarities and dissimilarities between the
two models.

Chapter XIII
A Model for the Successful Migration to Desktop OSS / Daniel Brink, Llewellyn Roos,
Jean-Paul Van Belle, and James Weller .. 154

Although open source software (OSS) has been widely implemented in the server environment, it is
still not as widely adopted on the desktop. This chapter presents a migration model for moving from
an existing proprietary desktop platform (such as MS-Offi ce on a MS-Windows environment) to an
open-source desktop such as OpenOffi ce on Linux using the Gnome graphical desktop. The model was
inspired by an analysis of the critical success factors in three detailed case studies of South African
OSS-on-the-desktop migrations.

Chapter XIV
The Social Order of Open Source Software Production / Jochen Gläser ... 168

This chapter contributes to the sociological understanding of open source software (OSS) production
by identifying the social mechanism that creates social order in OSS communities. OSS communities
are identifi ed as production communities whose mode of production employs autonomous decentralized
decision making on contributions and autonomous production of contributions while maintaining the
necessary order by adjustment to the common subject matter of work. Thu, OSS communities belong
to the same type of collective production system as scientifi c communities.

Section III
Evaluating Open Source Software Products and Uses

Chapter XV
Open Source Software: Strengths and Weaknesses / Zippy Erlich and Reuven Aviv 184

The chapter will present a detailed defi nition of open source software, its philosophy, operating principles
and rules, and strengths and weaknesses in comparison to proprietary software. A better understanding of
the philosophy underlying open source software will motivate programmers to utilize the opportunities
it offers and implement it appropriately.

Chapter XVI
Open Source Software Evaluation / Karin van den Berg ... 197

This chapter provides an insight into open source software and its development to those who wish to
evaluate open source software. Using existing literature on open source software evaluation, a list of nine
evaluation criteria is derived including community, security, license and documentation. In the second
section these criteria and their relevance for open source software evaluation are explained. Finally the
future of open source software evaluation is discussed.

Chapter XVII
Open Source Web Portals / Vanessa P. Braganholo, Bernardo Miranda, and Marta Mattoso 211

Open source software is required to be widely available to the user community. To help developers to
fulfi ll this requirement, Web portals provide a way to make open source projects public, so that the user
community has access to their source code, can contribute to their development and can interact with the
developers team. However, choosing a Web portal is not an easy task. There are several options available,
each of them offering a set of tools and features to its users. The goal of this chapter is to analyze a set
of existing Web portals (SourceForge.net, Apache, Tigris, ObjectWeb and Savannah), hoping that this
will help users to choose a hosting site to their projects.

Chapter XVIII
Curious Exceptions? Open Source Software and “Open” Technology / Alessandro Nuvolari and
Francesco Rullani ... 227

The aim of this chapter is to explore the differences and commonalities between open source software
and other cases of open technology. The concept of open technology is used here to indicate various
models of innovation based on the participation of a wide range of different actors who freely share the
innovations they have produced.

Chapter XIX
Reducing Transaction Costs with GLW Infrastructure / Marcus Vinicius Brandão Soares 240

This chapter introduces the hybrid GLW information infrastructure as an alternative to proprietary-
only information infrastructures with lower costs. The author argues that the use of FLOSS servers in a
client-server infrastructure reduces the transaction costs relative to the data processing and the contract
management that organizations have to support, preserving the investment already made with the installed
base of clients in comparison to the use of proprietary managed servers.

Chapter XX
Issues to Consider when Choosing Open Source Content Management Systems (CMS) /
Beatrice A. Boateng and Kwasi Boateng .. 255

This chapter examines the main issues that have to be considered when selecting an open source content
management system. It involves a discussion of literature and the experiences of the authors after
installing and testing four widely used open source CMSs (Moodle, Drupal, Xoops and Mambo) on a

stand-alone desk-top computer. It takes into consideration Arnold’s (2003) and Han’s (2004) suggestions
for the development of CMSs, and identifi es six criteria that need to be considered when selecting an
open source CMS for use.

Chapter XXI
Evaluating Open Source Software through Prototyping / Ralf Carbon, Marcus Ciolkowski,
Jens Heidrich, Isabel John, and Dirk Muthig ... 269

This chapter introduces a prototyping approach to evaluate OSS components. The prototyping approach
provides decision makers with context-specifi c evaluation results and a prototype for demonstration
purposes. The approach can be used by industrial organizations to decide on the feasibility of OSS
components in their concrete business cases.

Chapter XXII
Motives and Methods for Quantitative FLOSS Research / Megan Conklin 282

This chapter fi rst explores why there is a need for data on free/libre and open source software (FLOSS)
projects. Then the chapter outlines the current state-of-the art in collecting and using quantitative data
about FLOSS project, focusing especially on the three main types of FLOSS data that have been gathered
to date: data from large forges, data from small project sets, and survey data. Finally, the chapter will
describe some possible areas for improvement and recommendations for the future of FLOSS data
collection.

Chapter XXIII
A Generalized Comparison of Open Source and Commercial Database Management Systems /
Theodoros Evdoridis and Theodoros Tzouramanis .. 294

This chapter attempts to bring to light the fi eld of one of the less popular branches of the open source
software family, which is the open source database management systems branch. The main system
representatives of both open source and commercial origins will be compared in relation to this model,
leading the reader to an understanding that the gap between open and closed source database management
systems has been signifi cantly narrowed, thus demystifying the respective commercial products.

Chapter XXIV
Evaluation of a Migration to Open Source Software / Bruno Rossi, Barbara Russo, and
Giancarlo Succi .. 309

The chapter discusses the adoption and assimilation process of open source software as a new form of
information technology. Specifi cally, although it reports a generally positive attitude towards OpenOffi ce.
org, a widely used open source suite, it fi rst shows the diffi culties of the fi rst early adopters to lead the
innovation process and push other users. Different usage patterns, interoperability issues and in general
the reduction in personal productivity typical of the early phases of adoption are also remarked.

Section IV
Laws and Licensing Practices Affecting Open Source Software Uses

Chapter XXV
Legal and Economic Justifi cation for Software Protection / Bruno de Vuyst and Alea Fairchild 328

This chapter discusses legal and economic rationale in regards to open source software protection. It
examines copyright and patent issues with regard to software in the United States and Europe. Ultimately,
it argues that there is a need to rethink approaches to property law so as to allow for viable software
packaging in both models.

Chapter XXVI
OSS Adoption in the Legal Services Community / Ray Agostinelli ... 340

This chapter provides an anecdotal case study of the adoption of open-source software by government-
funded nonprofi t organizations in the legal services community. It focuses on the open source template,
a Website system that provides information to the public on civil legal matters, and collaborative tools
for legal aid providers and pro bono attorneys. It is hoped that this chapter will assist those considering
the adoption of open source software by identifying the specifi c factors that have contributed to the
success within the legal services arena and the real-world benefi ts and challenges experienced by the
members of that community.

Chapter XXVII
The Road of Computer Code Featuring the Political Economy of Copyleft and Legal Analysis of
the General Public License / Robert Cunningham .. 348

This chapter has two distinct objectives. Firstly to survey the political economic foundation of copyleft
as it applies to open source computer software, and secondly, to provide some preliminary legal analysis
in relation to the General Public License (GPL) which legally embodies copyleft principles. The chapter
begins its philosophical exploration by giving a brief overview of copyright as it applies to the language
of computer software, specifi cally source code. This is followed by a discussion that contrasts closed
source and open source software development.

Chapter XXVIII
The Evolution of Free Software / Mathias Klang ... 363

This chapter describes the background and spirit of the GPL and as well as discusses its importance.
The chapter also examines certain socio-technical developments that challenge the effectiveness of
existing licensing practices and describes the process of moving from GPL version 2 to version 3—a
move intended to meet these challenges. This approach helps readers understand the importance of the
GPL and understand how it creates a regulatory instrument to meet new challenges while maintaining
its ability to offer the freedoms the license entails.

Chapter XXIX
Free Access to Law and Open Source Software / Daniel Poulin, Andrew Mowbray, and
Pierre-Paul Lemyre ... 373

This chapter examines the free access to law movement—a set of international projects that share a
common vision to promote and facilitate open access to public legal information. The project creates
synergies between the notion of freeing the law by providing an alternative to commercial systems and
the ideals that underpin open source software. To examine these factors, this chapter outlines the free
access to law movement and examines the philosophies and principles behind it. The chapter also reviews
the role open source software has played in the movement’s development. The chapter then concludes
with an assessment of what has been achieved and of the similarities between the free access to law and
open source software movements.

Chapter XXX
Examining Open Source Software Licenses through the Creative Commons Licensing Model /
Kwei-Jay Lin, Yi-Hsuan Lin, and Tung-Mei Ko .. 382

This chapter presents a novel perspective of using the Creative Commons (CC) licensing model to
compare 10 commonly used OSS licenses. In the chapter, the authors present a license compatibility
table that shows whether it is possible to combine OSS with CC-licensed open content in a creative work.
By presenting this information, the authors hope to help people understand if individuals can re-license
a work under a specifi c CC license. Through such an increased understanding, readers will be able to
make a better decision on license selection related to different projects.

Chapter XXXI
FLOSS Legal and Engineering Terms and a License Taxonomy / Darren Skidmore 394

This chapter examines certain issues related to what users of free/libre open source software (FLOSS)
licenses are attempting to address through such uses. The chapter begins with a discussion of legal
terms applicable to intellectual property and FLOSS. The chapter then examines software terms and
their defi nitions as part of software development and engineering. The author then presents a taxonomy
of FLOSS licenses. The chapter concludes with a brief discussion of how the perspectives of FLOSS
users may change the need for a type of license.

Section V
Public Policy, the Public Sector, and Government Perspectives on Open Source Software

Chapter XXXII
On the Role of Public Policies Supporting Free/Open Source Software / Stefano Comino,
Fabio M. Manenti, and Alessandro Rossi ... 412

This chapter presents a critical review of the main arguments for and against public intervention
supporting F/OS. The authors also provide empirical evidence related to public interventions taking
place in Europe. The authors begin by providing a general analytical framework for examining public
interventions. They then present evidence concerning the main public OSS initiatives in Europe. The
chapter then concludes with a discussion of how to integrate theoretical perspectives with empirical
analysis.

Chapter XXXIII
Use of OSS by Local E-Administration: The French Situation / Laurence Favier, Joël Mekhantar,
and Marie-Noëlle Terrasse ... 428

This chapter examines the integration of OSS in local and territorial e-administration in France. The
policies defi ned in France and promoted by initiatives from the European Union are leading to the
defi nition of a normative framework intended to promote interoperability between information systems,
the use of free software and open standards, public-private partnerships, and the development of certain
abilities. These policies are applicable to state agencies but are not required for local and regional
collectives because of the constitutional principle of administrative freedom. To examine such issues, the
authors of this chapter discuss how the integration of all administrative levels can be achieved through
an e-administration OSS-based framework that coexists with proprietary software use.

Chapter XXXIV
Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector /
Gabor Laszlo ... 445

This chapter introduces the L-PEST model as a tool for better understanding the motivations governments
in their adaptation of FLOSS. The primary objective of this chapter is to identify and describe the actors
associated with the use of FLOSS in the public sector, and in so doing, addresses a gap in the research
on this topic. It is hoped the analytical model proposed in this chapter will help clarify the intricate
relationship between relevant factors affecting FLOSS adoption and use by governments.

Chapter XXXV
The Labor Politics of Scratching an Itch / Casey O’Donnell ... 460

This chapter examines the economic and temporal/labor demands of creating free/libre and open source
software (FLOSS). By examining the symbiotic relationship individuals have with commercial or closed
software development, the author presents a new way to understand such interactions. This perspective is
coupled with an examination of how this economic structure could conceivably be exploited for increased
economic gain at the expense of those individuals actually involved in the creation of the software. The
chapter then concludes with a discussion of possible ways in which FLOSS software could be opened
up more broadly to non-technical software users.

Chapter XXXVI
Open Source Technology and Ideology in the Nonprofi t Context / Jonathan Peizer 468

This chapter contextualizes open source development and deployment in the nonprofi t sector and discusses
issues of ideology that often accompany such development and deployment. The chapter separates and
defi nes the ideologies of application development, selection, and use by describing the different issues
each creates in the nonprofi t context. The author’s purpose in presenting such informaiton is to clearly
articulate the unique dynamics of application development and deployment in the nonprofi t, or social
value, context and where to apply related ideological considerations for best effect.

Chapter XXXVII
Governance and the Open Source Repository / R. Todd Stephens .. 480

This chapter examines the critical task of governing the open source environment with an open source
repository. As organizations move to higher levels of maturity, the ability to manage and understand the
open source environment is one of the most critical aspects of the architecture. Successful open source
governance requires a comprehensive strategy and framework which this chapter presents through
historical, current-state, and future perspectives. By understanding the role of open source metadata
and repositories, researchers will continue to expand the body of knowledge around asset management
and overall architecture governance.

Section VI
Business Approaches and Applications Involving Open Source Software

Chapter XXXVIII
Analyzing Firm Participation in Open Source Communities / Wouter Stam and
Ruben van Wendel de Joode .. 495

Surprisingly little empirical research has been performed to understand fi rms’ participation in OSS
communities. This chapter aims to fi ll this gap in state-of-the-art research on OSS by discussing the
results of a survey involving 125 Dutch high-technology fi rms that are active in the market for OSS
products and services. The results presented in this chapter contribute to research on OSS by providing
a new model for perceiving the concept of community in relation to OSS. The results also suggest that
fi rms view their internal investments in R&D as a complement to their external product-development
activities in OSS communities.

Chapter XXXIX
Community Customers / Jeroen Hoppenbrouwers ... 510

This chapter discusses the role of the project/product community in the open source product life cycle.
The chapter outlines how a community-driven approach affects not only the development process,
but also the marketing/sales process, the deployment, the operation, and the resulting software
product. Participation in the community is essential for any organization using the product, leading
to the concept of a community customer. For this reason, the chapter presents specifi c community
participation guidelines that organizations and individuals can use to further develop OSS products or
to offer lifetime services on those products.

Chapter XL
Open Source Software Business Models and Customer Involvement Economics /
Christoph Schlueter Langdon and Alexander Hars .. 522

This chapter focuses on the economics of open source strategies. From a strategic perspective, the concept
of open source falls into a category of business models that generate advantages based on customer and
user involvement (CUI). While open source has been a novel strategy in the software business, CUI-based
strategies have been used elsewhere before. This chapter presents a review of CUI-based competition,

clearly delineates CUI antecedents and business value consequences, and concludes with a synopsis of
managerial implications and a specifi c focus on open source.

Chapter XLI
Investing in Open Source Software Companies: Deal Making from a Venture Capitalist’s
Perspective / Mikko Puhakka, Hannu Jungman, and Marko Seppänen ... 532

This chapter studies how venture capitalists invest in open source-based companies. The evaluation
of knowledge-intensive companies is a challenge to investors, and the rise of open source companies
with new value propositions brings new complexity to deal-making. This chapter highlights some
experiences some venture capitalists have had with open source companies. The authors hope that the
overview of venture capital processes, the methodology, and the two case examples in this chapter
provide both researchers and entrepreneurs with new insights on how venture capitalists work and
make investments in open source companies.

Chapter XLII
Revenue Models in the Open Source Software Business / Risto Rajala, Jussi Nissilä, and
Mika Westerlund ... 541

Profi t-oriented business behavior has increased within the open source software movement, yet it has
proven to be a challenging and complex issue. This chapter explores considerations in designing profi table
revenue models for businesses based on open source software. The authors approach the issue through
two business cases: Red Hat and MySQL, both of which illustrate the complexity and heterogeneity
of solutions and options in the fi eld of OSS. The authors focus on the managerial implications derived
from the cases and discuss how different business elements should be managed when doing business
with open source software.

Chapter XLIII
Open Source for Accounting and Enterprise Systems / Thomas Tribunella and James Baroody 555

This chapter introduces open source software (OSS) for accounting and enterprise information systems.
It covers the background, functions, maturity models, adoption issues, strategic considerations, and
future trends for small accounting systems as well as large scale enterprise systems. The authors hope
that understanding OSS for fi nancial applications will not only inform readers of how to better analyze
accounting and enterprise information systems, but also assist in the understanding of the relationships
between the different functions of these systems.

Chapter XLIV
Open Source Software and the Corporate World / Sigrid Kelsey ... 570

This chapter discusses different ways the open source software (OSS) methods of software development
interact with the corporate world. The success achieved by many OSS products has produced a range
of effects on the corporate world, and OSS has presented the corporate world with opportunities and
ideas, prompting some companies to implement components from OSS business models. The consumer
of software is sometimes baffl ed by the differences in the two, often lacking understanding about two
models and how they interact. This chapter clarifi es common misconceptions about the relationship

between OSS and the corporate world and explains facets of the business models of software design to
better inform potential consumers.

Chapter XLV
Business Models in Open Source Software Value Creation / Marko Seppänen, Nina Helander,
and Saku Mäkinen ... 578

This chapter explores how use of business models enables value creation in open source software
(OSS) environments. In the chapter, the authors argue that this value can be attained by analyzing the
value creation logic and the elements of potential business models emerging in the OSS environment,
as profi table business is all about creating value and capturing it properly. Open Source offers one
possibility for fi rms that are continuously fi nding new opportunities to organize their business activities
and increase the amount of value they appropriate via their capabilities. Furthermore, the concept of
a business model is considered as a tool for exploring new business ideas and capturing the essential
elements of each alternative. The authors, therefore, propose that a general business model that is also
applicable in the context of OSS, and they provide a list of questions that may help managers with their
uses of OSS in business.

Chapter XLVI
Novell’s Open Source Evolution / Jacobus Andries du Preez .. 590

This chapter presents an open source business strategy that is a feasible and profi table option for
organizations to consider. In examining such a strategy, the author uses a practical case study involving
Novell, Inc.—a company that is successfully implementing a free/libre open source software (FLOSS)
business strategy. In so doing, the author addresses the concern that there is no substantial evidence on
whether OSS processes and practices are effective within the business environment. The author also
taps an emerging interest in fi nding ways to use OSS as an effective part of an organization’s business
strategy.

Section VII
Educational Perspectives and Practices Related to Open Source Software

Chapter XLVII
Communities of Practice for Open Source Software / Leila Lage Humes and Nicolau Reinhard 610

This chapter examines the use of communities of practice in the process of disseminating open source
software (OSS) in the University of São Paulo, Brazil. In this particular case, the change management
process included establishing an OSS support service and developing a skills-building training program
for its professional IT staff that was supplemented by a community of practice supported by an Internet-
based discussion list. After relying on these resources extensively during the early phases of the adoption
process, users changed their participation in this local community by a mostly peripheral involvement
in global OSS communities of practice. As a result of growing knowledge and experience with OSS, in
this context, users’ beliefs and attitudes toward this technology became more favorable. These results,
consistent with the theory of planned behavior constructs, provide a useful guide for managing the
change process.

Chapter XLVIII
Selecting Open Source Software for Use in Schools / Kathryn Moyle ... 624

This chapter examines the use of computing technologies in educational settings. The author explains that
different countries are at different stages in this process, but in general, the deployment of technologies
is moving from individual, stand alone computers to integrated technologies that are networked. Since
models of open source software development are based around contributing to the public good through
online networked activities, the paradigm shift away from personal to networked computers linked to
the Internet makes open source software viable both technically and philosophically for the education
sectorin many regions. To help others better understand such factors, the author explores some of the
technical and philosophical contributions open source software can make to education with the objective
of helping readers develop criteria for identifying suitable open source software for use in schools.

Chapter XLIX
Open Source E-Learning Systems: Evaluation of Features and Functionality / Phillip Olla 638

This is chapter presents evaluation criteria used by a higher education institution to evaluate an open
source e-learning system. The idea the author explores is that e-learning applications are becoming
commonplace in most higher education institutions, and some institutions have implemented open
source applications such as course management systems and electronic portfolios. These e-learning
applications are the fi rst step towards moving away from proprietary software such as Blackboard
and WEBCT and toward open source products. To examine such shifts, the author presents aspects
educators need to consider in relation to such systems.

Chapter L
The Role of Open Source Software in Open Access Publishing / David J. Solomon 649

This chapter discusses the rapid transition from paper to electronic distribution of scholarly journals
and how this has led to open access journals that make their content freely available over the Internet.
The chapter also presents the practical and ethical arguments for providing open access to publicly
funded research and scholarship and outlines a variety of economic models for operating these journals.
In so doing, the chapter examines the practical and ethical arguments for open access to research and
scholarship and explores alternative models for funding the dissemination of scholarship and the key
role open source software can play in facilitating open access to scholarship. The chapter then concludes
with a discussion of future trends in the organization and funding of scholarly publication.

Chapter LI
An Innovative Desktop OSS Implementation in a School / James Weller and
Jean-Paul Van Belle .. 659

This chapter presents a case study of a migration to OSS in a South African school. The innovative
aspect of the case study lies in how the entire implementation was motivated by the collapse of the
school’s public address system. It was found that an OSS-based message provided a more cost-effective
replacement option whereby the speakers in the school were replaced with low-cost workstations (i.e.,
legacy systems) in each classroom. (Interestingly, this OSS implementation happened despite the fact
that in South Africa, Microsoft Windows and MS-Offi ce are available free of charge to schools under

Microsoft’s Academic Alliance initiative.) The chapter also analyzes some critical themes for adoption
of OSS in the educational environment.

Chapter LII
Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms /
Dick B. Simmons, William Lively, Chris Nelson, and Joseph E. Urban ... 670

This chapter examines how leading-edge, industrial-strength software can be introduced into the university
classroom by using open source software, open standards, distance learning, and infrastructure shared
among cooperating universities. In addressing this topic, the authors describe the evolution of software
development during the twentieth century, the paradigm change at the beginning of the twenty-fi rst
century, and the problems with the existing university information technology education. The authors
then describe a shared software infrastructure program (SSIP) to rapidly introduce leading edge industrial
software solutions into university classrooms at no cost to SSIP Member Universities.

Chapter LIII
Wikis as an Exemplary Model of Open Source Learning / Robert Fitzgerald 681

This chapter explores the role of technology in learning in relation to the use of wikis in educational
environments. In examining this topic, the author fi rst overviews the use of technology in educational
environments. The author next examines wikis and their development and then reviews the emerging
literature on the application of wikis to education. Through this approach, the author uses wikis as an
exemplary model of open source learning that has the potential to transform the use of information
communication technologies in education.

Chapter LIV
A Perspective on Software Engineering Education with Open Source Software /
Pankaj Kamthan .. 690

This chapter provides a model for using open source software within engineering education. The author
begins the chapter with an overview of OSS and his position on the use of OSS in educational settings.
The author next presents a treatment of central software engineering practices as they relate to OSS
perspectives and uses. The author next discusses the use of OSS in software engineering education
(SEE). The chapter concludes with a discussion of both the challenges related to the use of OSS in such
educational settings and directions for future research on the topic.

About the Contributors .. 703

Index ... 720

xxvi

Foreword

THE MANY QUESTIONS FROM OPEN SOURCE SOFTWARE…

Open source software has for some years been one of the most hotly debated topics, both in research
and in practice. One reason for this is that several open source products like GNU/Linux or Apache
have now for years been in the spotlight as leaders in their respective application areas, and continue to
be so, while others like MySQL or even ERP packages come to the front in new application areas not
traditionally associated with open source software. This fact has demonstrated one thing, to people from
academia, industry and public organizations: Open source projects can indeed lead to software systems
that exhibit and maintain high functionality and quality.

Nevertheless, there are numerous questions remaining, of interest to different groups. While research-
ers want to uncover the mechanisms and reasons for this development model to work, management
wants to know how to use open source software to its fullest advantage or how to base a business on
it, and public organizations both on the national and international level struggle with the question of
how to deal with this phenomenon. This handbook succeeds in bringing together papers addressing the
whole range of topics in the area of open source software. Given the diversity of this fi eld, this is not an
easy task, but researchers, managers and policy-makers will all fi nd interesting answers and even more
interesting new questions within the pages of this handbook.

Scanning the different entries gives a great impression of what different subjects currently garner
the most attention.

OSS Evaluation and Adoption

Given the amount of different projects, even within a set application area, this is a growing concern,
especially with practitioners. For example, van den Berg gives an overview of approaches to evaluating
open source software in “Open Source Software Evaluation,” while Carbon, Ciolkowski, Heidrich, John,
and Muthig present a new method of evaluation through prototype development in “Evaluating Open
Source Software through Prototype Development.” Also some special cases (the IT in schools by Moyle
in “Selecting Open Source Software for Use in Schools”) and concrete application areas like content
management systems (“Issues to Consider when Choosing Open Source Content Management Systems
(CMSs)” by Boateng and Boateng), database management systems (“A Generalized Comparison of Open
Source and Commercial Database Management Systems” by Evdoridis and Tzouramanis) or business
functions (“Open Source for Accounting and Enterprise Systems” by Tribunella and Baroody) are ex-
plored in detail. But evaluating and choosing an optimal open source software does not end the process,
adoption does not depend on software functionality and quality alone. For example, Rossi, Russo, and
Giancarlo Succi detail migrations in public administrations (“Evaluation of a Migration to Open Source

 xxvii

Software”), and Brink, Roos, Van Belle, and Weller propose a model for desktop migration (“A Model
for the Successful Migration to Desktop OSS”), backed up by a case study (“An Innovative Desktop
OSS Implementation in a School”). Of special interest is the entry by Humes titled “Communities of
Practice for Open Source Software,” in which concepts from theory of planned behavior are used in a
case study showing the positive effects of establishing communities of practice for adoption and diffusion.
Following the increased adoption rates, most IT architectures today tend to become hybrid incorporat-
ing both proprietary and open source software, with Vinicius acknowledging this fact and exploring the
concept of transaction costs in the context of information infrastructures (“Reducing Transaction Costs
with GLW Infrastructure”). Lastly, Stephens takes a look beyond a single adoption or migration project
and proposes establishing a centralized repository for downloading certifi ed open source products to
ensure good governance (“Governance and the Open Source Repository”).

Areas of Special Interest: Science and Education

There are also a few areas that are of special interest regarding the adoption of open source software, for
example the scientifi c process itself, which has often been compared to open source development. Bosin
et al. propose an architecture for cooperative scientifi c experiments (“ALBA Architecture as a Proposal
for OSS Collaborative Science”), and Solomon details “The Role of Open Source Software in Open
Access Publishing.” The other area is education, where beyond the entries already mentioned above,
two more chapters highlight the importance of open source software in this context (“A Perspective
on Software Engineering Education with Open Source Software” by Kamthan and “Rapid Insertion of
Leading Edge Industrial Strength Software into University Classrooms” by Simmons, Lively, Nelson,
and Urban).

OSS in Public or Nonprofi t Organizations

Also of high interest, and in some areas overlapping with choosing and adopting open source software,
is the relationship with public or nonprofi t organizations. The interactions between open source and
public organizations can be broadly grouped as adopting open source software, becoming co-develop-
ers or sponsors in projects and fi nally acting as regulatory authorities, most notably regarding software
patents. The issue of adoption has already been touched on by some entries also in the context of public
organizations; for example Favier, Mekhantar, and Terrasse delve into more detail in “Use of OSS by
Local E-Administration: The French Situation,” or Agostinelli in “OSS Adoption in the Legal Services
Community.” Moving from passive use to development or sponsoring, Laszlo provides an inductive
general conceptual model of various public sector and government initiatives for promoting or using
open source (“Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector”),
while Peizer explicitly contextualizes open source development and deployment in the nonprofi t sector
and discusses issues of ideology that often accompany its use (“Open Source Technology and Ideology
in the Nonprofi t Context”). Public policies in the European context also form the basis for yet another
entry (“On the Role of Public Policies Supporting Free/Open Source Software” by Comino, Manenti,
and Rossi). Finally, the role open source might play for developing countries is the topic of a chapter
by Dudley-Sponaugle, Hong, and Wang, titled “The Social and Economical Impact of Open Source
Software in Developing Countries.”

xxviii

OSS Business Models

These topics relevant for public organizations distinctly differ from private fi rms, which, beyond
adopting open source software, increasingly participate in projects or explore related business model.
In this handbook, business models feature in several entries: Seppänen, Helander, and Makinen give
an introduction to this topic with “Business Models in Open Source Software Value Creation” and the
basic message of this chapter is that the elements of a business model remain the same regardless of
industry. Rajala, Nissilä, and Westerlund also take up this topic, and discuss revenue models, based on
case studies of Red Hat and MySQL (“Revenue Models in the Open Source Software Business”). This
is complemented by yet another famous and successful case study, Novell, by du Preez (“Novell’s Open
Source Evolution”). An interesting new viewpoint is introduced by Puhakka, Jungman, and Seppänen in
their chapter “Investing in Open Source Software Companies: Deal Making from a Venture Capitalist’s
Perspective,” in which they conclude that venture capitalists do not seem to put special value to open
source companies, but some recognize different elements in evaluating those companies. Finally, Stam
and van Wendel de Joode (Analyzing Firm Participation in Open Source Communities”) explore the
participation of fi rms in open source projects based on a survey. They distinguish between technical and
social activities, and highlight factors leading to different types and levels of engagement. One important
result concerns the fi nding that fi rms seem to view their internal investments in R&D as a complement
to their external product-development activities in OSS communities.

OSS Theory

For the researcher, the reasons and workings behind open source software and its development are key
topics. A number of entries in this handbook refl ect this, which deal with the theoretic underpinnings of
this movement. The discussion around the protection of software programs and open source licenses are
manifold, and, for example, de Vuyst and Fairchild highlight this in “Legal and Economic Justifi cation
for Software Protection.” Also related is an entry by Cunningham titled “The Road of Computer Code
Featuring the Political Economy of Copyleft and Legal Analysis of the General Public License.” Both
chapters go beyond a strictly legal discussion as provided by Lin, Lin, and Ko in “Examining Open
Source Software Licenses through the Creative Commons Licensing Model” and incorporate a political,
social and economic perspective. Ballentine in a highly interesting chapter challenges the underlying
notion of authorship itself (“Greasemonkey and Challenges to Authorship”).

But open source software is not only based on its licenses, but also a different ideology or culture.
These are the topics in three different entries: “Free Software Philosophy and Open Source” (Vainio and
Vadén), “Morality and Pragmatism in Free Software and Open Source” (Yeats), and “Hacker Culture
and the FLOSS Innovation” (Lin), a chapter acknowledging the importance of the continuously evolving
hacker culture for open source, while discussing its changing mainstream perception. O’Donnell, in the
chapter, “The Labor Politics of Scratching an Itch” also highlights the base for open source development
by examining the relationships with educational, employment and work compensation and the results
on the overall demographics of this movement.

OSS Development and Community

Lastly, open source software is also about software development and communities. The issue of whether
this constitutes a new or more effi cient way of production is one of the main questions surrounding this

 xxix

phenomenon. Gläser defi nes open source communities as production communities that apply a distinct
mode of production of decentralized task defi nition ordered by the common subject matter of work (“The
Social Order of Open Source Software Production”). Within this process, Hoppenbrouwers identifi es
“Community Customers,” individuals or organizations who want to deploy an open source product, without
having a direct aim to further develop the product, and who actively engage in the community to assure
future suitability of the product, and discusses their role. In research, many theories can be developed
or discussed, but ultimately need to withstand empirical validation. Empirical research into different
aspects of open source software and its production has therefore been performed for some years now,
and Conklin gives an overview of methods and results (“Motives and Methods for Quantitative FLOSS
Research”). As an example, Järvensivu, Helander, and Mikkonen present an empirical case study on an
open source project, where both the underlying technological and social networks, both internal and ex-
ternal, are explored. Finally, the relationships between open source software development and traditional
software engineering techniques have often been discussed. Sahraoui, Al-Nahas, and Suleiman put this
model in the context of agile software development practices, and uncover striking similarities (“An
Agile Perspective on Open Source Software Engineering”), while Jones, Floyd, and Twidale propose a
rapid prototyping-based approach to requirements gathering using open source software (“Patchwork
Prototyping with Open Source Software”).

This comprehensive handbook successfully demonstrates the diversity of subjects surrounding the
deceptively simple term of open source software. This fact alone will ensure that in the future, open
source software will certainly continue to be an issue for researchers and practitioners. We cannot yet
foresee where this trend will go, or where it will take us, but one thing is certain: Open source software
is here to stay.

Stefan Koch
Department of Information Systems and Operations
Vienna University of Economics and Business Administration
Vienna, Austria

Stefan Koch is an associate professor of information business at the Vienna University of Economics
and Business Administration, Austria. He received an MBA in management information systems from
Vienna University and Vienna Technical University, and a PhD from Vienna University of Economics and
Business Administration. Currently, he is involved in the undergraduate and graduate teaching program,
especially in software project management and ERP packages. His research interests include open source
software development, cost estimation for software projects, IT investment analysis and governance,
the evaluation of benefi ts from information systems, applications of data envelopment analysis, and
ERP systems. He has edited a book titled Free/Open Source Software Development for an international
publisher in 2004, and acted as guest editor for Upgrade for a special issue on libre software. He has
published 10 papers in peer-reviewed journals, and over 25 in international conference proceedings and
book collections. He has given talks at more than 20 international and national conferences and events,
acted as program committee member for 8 conferences, including the Second Conference on Open Source
Systems, and served as a reviewer for several journals including Management Science, CACM, Journal
of Systems and Software, IEEE Transactions on Software Engineering, Research Policy, and Journal of
Management Information Systems, as well as numerous conferences including HICSS and ICIS.

xxx

Preface

SOFTWARE IN THE MODERN CONTEXT

In many ways, software has become the life’s blood of the modern world. Software allows businesses to
compile and share data—literally—at the speed of light. Software also permits governments and other
public sector organizations to oversee numerous activities, administer vast territories, and analyze de-
veloping situations. So powerful is the hold software has over the modern world that the fear of a global
software crash in the form of the millennium bug led many to associate widespread software glitches
with the end of civilization as we know it.

While the turn of the millennium passed without major incident, the importance of software in soci-
ety continues to grow. This time, however, individuals and organizations are increasingly turning their
attention from software use in industrialized nations to computing practices and online access in the
developing world. As a result, concerns over the millennium bug have given way to growing interest
in the global digital divide. And public and private organizations alike are increasingly examining how
computers, online access, and software might help developing nations advance economically, politi-
cally, and socially.

The expanding and interlinked nature of global software use presents new situations and raises new
questions for organizations and individuals alike. For example, what kinds of software should be used
when and how? What are the economic, social, and political ramifi cations of deciding to use one kind of
software instead of another? Likewise, choices based on responses to these questions can affect interac-
tion and integration on both local and global scales. For these reasons, it is now more important than
ever that individuals have access to the information needed to make informed choices about software
adoption and use.

This edited collection is an initial step toward providing some of the information needed to make
such informed choices. By presenting readers with a range of perspectives on a particular kind of
software—open source software (OSS)—the editors believe they can shed light on some of the issues
affecting the complex nature of software use in different contexts. Moreover, by bringing together the
ideas and opinions of researchers, scholars, businesspersons, and programmers from six continents and
20 nations, the editors believe this collection can help readers appreciate the effects of software-related
decisions in today’s interconnected global environment.

OPEN SOURCE SOFTWARE (OSS): AN OVERVIEW

Software is essentially programming code—or source code—that provides a computer’s operating sys-
tem with instructions on how to perform certain tasks. The source code of a word processing program,

 xxxi

for example, provides an operating system with information on how to translate certain keystrokes into
specifi c text that appears on digital (and later print) pages. In essence, if a person knows the source
code needed to make a computer perform a particular operation, then that individual can simply enter
such source code into his or her operating system, and the computer will respond as desired. Such a
response, moreover, would be the same one the computer would provide in relation to the original
software product.

Within this framework, if an individual can access the underlying source code for a software product,
then that person can just copy the code and not need to purchase the original program. For this reason,
many software companies close off access to the source coding that allows their programs to work. As
a result, users cannot readily access and copy the mechanism that makes the product work (and thus,
gives it value). Instead, individuals must use an interface that allows them to activate certain commands
indirectly within a software program’s underlying source code. Such closed programs are know as pro-
prietary software, for only the creator/copyright holder of that software is allowed to open or to see and
to copy or manipulate the underlying source code.

Open source software (OSS), however, represents a completely opposite perspective in terms of ac-
cess to source code. OSS products are, in essence, created in such a way that access to the underlying
source code is open and available for others to access and review. A very basic yet common example
of such open access to coding is HTML, which allows browsers to display Web pages. The coding of
these pages is generally open for anyone to review and replicate. All one needs to do is access a page’s
underlying coding by using the “View Source”—or other related option—in his or her browser.

Such openness means individuals do not need to buy open source software in order to use it. Rather,
they can review and copy a program’s underlying source code and thus create a “free” version of the related
software. Such openness also means individuals can modify source code and thus alter or enhance the
related program. So, in theory, the foundational source code of one software product could be modifi ed
to perform different functions—or even become an entirely new program. Updating software, in turn,
becomes a matter of copying new or modifi ed code vs. purchasing the newest version of a product.

From both a local and an international perspective, OSS can provide individuals with access to
affordable software that allows them both to engage in computing activities and to access others via
online media. Moreover, the fl exibility of OSS means individuals can modify the software they use to
perform a wide variety of tasks. Doing so reduces the need for buying different programs in order to
perform different activities. Thus, it is perhaps no surprise that the use of OSS is growing rapidly in
many of the world’s developing nations where the costs of proprietary software is often prohibitive for
many citizens.

LIMITATIONS OF OPEN SOURCE SOFTWARE: A BASIC PERSPECTIVE

The easily accessible and fl exible nature of open source software makes it ideal to use in a variety of
contexts. OSS, however, also brings with it certain limitations that could affect interactions among indi-
viduals. Many of these limitations, in turn, arise from the fact that OSS is often developed and supported
by communities of volunteer programmers who create and modify items in their free time.

First, and perhaps foremost, because OSS is open for the user to modify as desired, it is easy for each
individual to use the same programming foundation/source code to develop different non-compatible
softwares. Such divergence is often referred to as forking code. In such cases, each programmer working
on the development of an OSS item can take a different “fork” in the programming road, and with each
different fork, two programs that were once identical become increasingly different from one another.

xxxii

Such forking code, moreover, has long been considered a major problem in OSS development.
These prospects for divergence mean OSS use is open to a variety of problems involving compat-

ibility. Such problems include:

• Individuals generating software that others cannot use due to compatibility issues
• Software that does not work as desired or work in unexpected ways
• Parts of distributed programming projects not working as intended or not working at all
• Users becoming frustrated with and abandoning software they consider too time-consuming or

cumbersome to operate

Thus, the freedom that allows one individual to operate software might prevent others from making
use of such materials. As a result, access to and exchanges among others—perhaps the central focus of
many of today’s software packages—are impeded by the software itself.

Some companies, such as Linux, have addressed the problem of forking code and compatibility
through focused oversight processes that govern programming practices. The result has been success-
ful and relatively stable software products that work effectively with other systems. The same kind of
management, oversight, and standardization, however, becomes more complicated in most OSS devel-
opment/production situations where the standard approach often involves a group of globally dispersed,
unpaid individuals creating OSS products in their spare time.

A second major problem area for OSS involves the technical support available to users of such soft-
ware. Because it is often the case that no individual or organization really owns an open source software
product, there is often no formal or standard mechanism for providing technical support to OSS users.
Such support instead tends to come from loose networks of OSS developers and afi cionados who interact
informally in online contexts such as chat rooms or listserevs. Within this context, technical support
generally means a user who is experiencing diffi culty posts a query to an online OSS forum and then
waits for a member of that forum to read the posting and reply.

One limitation of such an informal support system is that answers are not readily available. Instead,
individuals could fi nd themselves waiting for anywhere from seconds to days from some random
community member to respond. Such delays could, in turn, have a major effect on the usability and
the desirability of OSS products—not to mention the successes with which individuals can use such
products to interact. Equally problematic is that such technical support systems are open for anyone
to participate in and provide advice or solutions—regardless of the technical skills of the individual.
Thus, the quality of the advice provide by OSS support systems can be haphazard, inconsistent, or
even incorrect.

While these are but two problem areas, they illustrate the complexities bound up in selecting and
using software effectively. Moreover, the use of OSS vs. proprietary software becomes increasingly
intertwined with different social and political perspectives related to computing use. As a result, soft-
ware choices can be as much a matter of socio-political ideology as they can be about using a product
to perform a task.

SOCIAL PERSPECTIVES ON OSS: OWNERSHIP AND ECONOMICS

Much of the software we use today is proprietary. In other words, the source code that makes it work
is not accessible for modifi cation by those that purchase it. Notable opponents of proprietary software,
such as the creator of the GNU operating system, Richard Stallman, led efforts to develop and distribute

 xxxiii

software and its source code freely. These efforts became known as the free software movement (FSF)
and enabled software developers to both use and modify FSF items. The only stipulation these initial
programmers imposed was that individuals who used FSF as a foundation for developing other items
needed to make such modifi ed code freely available. Perhaps the most successful example of FSF is the
GNU/Linux operating system, which continues to increase its market share in direct competition with
Microsoft’s proprietary systems.

As attractive as Stallman’s free software approach was to many, it also alienated others who believed
that such a revolutionary and also intransigent stand—one that insisted all software code be made
freely available—was not feasible. Additionally, this socio-political stand to programming was often
confusing—particularly to individuals from outside of this community of programmers, for many of
them interpreted the word free to mean nothing could be charged for and no profi t could be made from
developing such software. As a result of this perception, many entrepreneurial developers and software
companies refrained from participating more actively in supporting Linux and other FSF products. Be-
cause of this view, a number of FSF developers, including Eric Raymond and Bruce Perens, met in 1998
to put a more business-friendly face on free software. What they eventually developed was the concept
of open source software (OSS). Unlike free software, OSS was more fl exible and even offered additional
licensing possibilities that allow individuals to mix proprietary and open software. One example of this
“hybrid” approach is the Berkeley Distribution License, which allows software developers to modify
source code and then take their modifi cations private, even selling them for a profi t, rather than having
to make them freely available to others, including competitors.

PRAGMATIC APPLICATIONS: EXPLORING OPTIONS FOR OSS USE

For all of the inroads OSS has made in encouraging businesses to adopt it, it still has its detractors who
rightly point out that—as noted earlier—most OSS is produced by volunteer hobbyists with no fi nancial
incentive to contribute to or continue supporting products they’ve produced. OSS also suffers from cus-
tomer service problems since no one company necessarily exists to stand behind a product. In addition,
with developers free to modify source code and generally distribute it however they wish, many different
derivatives of the same basic software (forking code) can exist, leading to confusion and incompatibility.
Finally, because of its ever-increasing popularity, OSS is something more businesses and more developers
are interested in leveraging or contributing to, resulting in a market that some argue supports too many
products and too few developers to go around supporting them all. For example, although there were
only a handful of OSS content management systems just a few years ago, there are now scores of such
systems—a situation that makes it diffi cult for consumers to decide which one to use.

Despite such negatives, OSS is not a passing fancy. In fact, many organizations have followed the lead
of RedHat (a distributor and service supporter of Linux) in exploring ways to develop business models
that maximize the advantages of OSS while maintaining the openness and fl exibility of products. IBM,
for example, commits a large part of its core group of developers to building and/or enhancing OSS. In
addition, organizations and even governmental bodies, ranging from small not-for-profi ts to the Euro-
pean Union, have actually adopted OSS for use, with even more exploring how OSS can contribute to
their core operations. Understanding how to do this, considering that OSS is a relatively new player, is
challenging. It requires knowledge not only of the origins and the operating principles of OSS, but also
knowledge of the social, legal, and economic factors that affect the use of OSS products.

xxxiv

SEARCHING FOR UNDERSTANDING WITHIN THE COMPLEXITY:
OBJECTIVE AND ORGANIZATION OF THIS HANDBOOK

The decision to purchase or to use a particular software product is an important one that can contribute to
the success or the failure of the related organization. For this reason, decision makers at different levels
and in a variety of fi elds need to familiarize themselves with the various factors that contribute to the
successful adoption and use of software products. Similarly, individuals need to make better-informed
choices about what software to select or personal use and why. In the case of open source software, such
decisions are further complicated by the social agendas and economic goals many developers and users
attach to the use of OSS materials.

The objective of this handbook is to provide readers with a foundational understanding of the origins,
operating principles, legalities, social factors, and economic forces that affect the uses of open source
software. To achieve this objective, this handbook is divided into seven major sections, each of which
examines a different factor related to or affecting OSS development, adoption, and use. The topic of each
major section, in turn, is examined by 7-10 authors from different cultures and backgrounds—authors
who provide a broad range of perspectives on the related topic. As a result, each major section provides
readers with both a more holistic treatment of each subject and a broad base of information upon which
more informed decisions can be made.

The seven major sections of this handbook are as follows:

• Section I: Culture, Society, and Open Source Software: The entries in this section overview
the internal culture of the individuals who create OSS products as well as examine both social
perspectives on OSS use ant the potential OSS has to change societies.

• Section II: Development Models and Methods for Open Source Software Production: These
chapters explore different methods for creating OSS products and discuss the benefi ts and the
limitations of such methods as well as consider approaches for maximizing the more successful
elements of such methods.

• Section III: Evaluating Open Source Software Products and Uses: Authors in this section both
present models for assessing the effective uses of various OSS products and provide opinions on
what makes some OSS items successful while others are not.

• Section IV: Laws and Licensing Practices Affecting Open Source Software Uses: In this sec-
tion, chapters examine how legal factors and licensing strategies try to shape OSS development
and use and also explore the new legal situations created by OSS products.

• Section V: Public Policy, the Public Sector, and Government Perspectives on Open Source
Software: The chapters provide both examples of how government agencies and other non-profi t
organizations have adopted or adapted OSS use to meet programming needs; they also present
ideas for how such public-sector entities should view OSS within the context of their activities.

• Section VI: Business Approaches and Applications Involving Open Source Software: This
section’s authors present models and cases for OSS development approaches and uses in for-profi t
endeavors as well as explore how business can address some of the more problematic aspects of
OSS adoption and use.

• Section VII: Educational Perspectives and Practices Related to Open Source Software: En-
tries in this concluding section employ a range of perspectives and approaches to examine how
OSS products can be integrated into educational activities in different contexts within and across
societies.

 xxxv

While this collection of chapters provides readers with a wealth of OSS-related information, this text
only begins to explore the complex environment in which software is operated. The foundation provided
by the essays in this handbook, however, is an essential one for helping readers understand key concepts
and ask the right questions when exploring software adoption and use. By using this information and
building upon these ideas and perspectives, readers can enhance their views of software use in society
while also shaping policies and practices related to software.

Kirk St.Amant and Brian Still
Lubbock, TX, USA
April 2007

xxxvi

Acknowledgment

The editors would like to thank all involved in the creation of this collection including the reviewers,
who dedicated their time and expertise to this project, and the editorial staff at IGI Global, Kristin Roth
in particular, for their assistance and professionalism throughout this project.

Our thanks also go out to all of the individuals who contributed to this collection; their intelligence,
insights, and commitment to examining how open source software affects different aspects of our daily
lives are all greatly appreciated.

Finally, Kirk wishes to thank his daughter, Lily Catherine St.Amant, for being a continual source of
inspiration in all that he does, his wife, Dori St.Amant, for her unwavering patience and understanding
during this project, and his parents, Richard and Joan St.Amant, for encouraging his early interests in
technology and communication. Brian wishes to thank his family—Amy, Jack, and Olivia—for their
love and support during this project.

Kirk St.Amant and Brian Still
Lubbock, TX, USA
April 2007

 xxxvii

Section I
Culture, Society, and
Open Source Software

xxxviii

 1

Chapter I
Free Software Philosophy

and Open Source
Niklas Vainio

University of Tampere, Finland

Tere Vadén
University of Tampere, Finland

INTRODUCTION

The free software (FS) movement is the key
predecessor of the open source (OS) community.
The FS movement, in turn, is based on arguments
developed by Richard M. Stallman. In crucial
ways, Stallman’s social philosophy creates the
background for the co-operation, co-existence
and differences between the two communities.
Stallman started the FS movement and the GNU
project prompted by his experiences of the early
hacker culture and subsequent events at the MIT

ABSTRACT

This chapter introduces and explains some of the most relevant features of the free software philosophy
formulated by Richard M. Stallman in the 1980s. The free software philosophy and the free software
movement built on it historically preceded the open source movement by a decade and provided some
of the key technological, legal and ideological foundations of the open source movement. Thus, in order
to study the ideology of open source and its differences with regard to other modes of software produc-
tion, it is important to understand the reasoning and the presuppositions included in Stallman’s free
software philosophy.

artifi cial intelligence lab in the 1980s. The project
was founded on a philosophy of software freedom,
and the related views on copyright or the concept
of copyleft. After the creation of the open source
movement in 1998, debates between the two move-
ments have erupted at regular intervals. These
debates are grounded in the different ideological
perspectives and sociopsychological motivations
of the movements. The FS movement has laid
technological, legal and ideological cornerstones
that still exist as part of the open source movement.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

2

Free Software Philosophy and Open Source

THE SOCIOHISTORICAL
BACKGROUND OF THE FREE
SOFTWARE PHILOSOPHY

The fi rst computer systems were built in the 1940s
and 1950s mainly for military and scientifi c pur-
poses. One of the earliest research institutes to
use and study computers was the Massachusetts
Institute of Technology (MIT). The artifi cial in-
telligence (AI) lab at MIT was founded in 1958
and became one of the birthplaces of computer
science and computer culture.

In Hackers (1984), Steven Levy describes the
subculture around the AI lab computers in the
1960s. Young male electronics hobbyists devoted
their time to programming and studying these
machines. They called themselves hackers, a word
denoting a person who enjoys exploring computer
systems, being in control of the systems, and fac-
ing the challenges they present. For a hacker, a
computer is not just a tool, it is also an end in itself.
The computer is something to be respected and
programming has an aesthetics of its own (Hafner
& Lyon, 1996; Levy, 1984; Turkle, 1982).

A subculture was created among the MIT
hackers with traditions and social norms of its
own. Important values for the community were
freedom, intelligence, technical skills, and interest
in the possibilities of computers while bureau-
cracy, secrecy, and lack of mathematical skills
were looked down on. The six rules of this hacker
ethic as later codifi ed by Levy were:

1. Access to computers—and anything which
might teach you something about the way
the world works—should be unlimited and
total. Always yield to the hands-on impera-
tive!

2. All information should be free.
3. Mistrust authority—promote decentraliza-

tion.
4. Hackers should be judged by their hacking,

not bogus criteria such as degrees, age,
race, or position.

5. You can create art and beauty on a com-
puter.

6. Computers can change your life for the bet-
ter. (Levy, 1984, pp. 40- 45)1

Computer programs were treated like any
information created by the scientifi c community:
Software was free for everyone to use, study, and
enhance. Building on programs created by other
programmers was not only allowed, but encour-
aged. On one hand, nobody owned the programs,
and on the other, they were common property of
the community.

In the early 1980s, a confl ict arose in the AI
lab when some of the hackers formed a company
called Symbolics to sell computers based on tech-
nology originally developed in the lab. Symbolics
hired most of the hackers, leaving the lab empty.
This, together with the fact that the software on
Symbolics machines was considered a trade secret,
caused a crisis. The community and its way of life
had been destroyed and Stallman later described
himself as “the last survivor of a dead culture”
(Levy, 1984, p. 427; see also Williams, 2002).

Stallman saw an ethical problem in the growing
trend of treating software in terms of property. In
the AI lab, there was a strong spirit of co-opera-
tion and sharing, making the code, in a way, a
medium for social interaction. Thus restrictions
in the access to code were also limitations on how
people could help each other.

In 1984, Stallman published The GNU Mani-
festo announcing his intention to develop a freely
available implementation of the Unix operating
system. He explained his reasons in a section
titled Why I Must Write GNU:

I consider that the golden rule requires that if I like
a program I must share it with other people who
like it. Software sellers want to divide the users
and conquer them, making each user agree not to
share with others. I refuse to break solidarity with
other users in this way. I cannot in good conscience
sign a nondisclosure agreement or a software

 3

Free Software Philosophy and Open Source

license agreement…So that I can continue to use
computers without dishonor, I have decided to put
together a suffi cient body of free software so that
I will be able to get along without any software
that is not free. (Stallman, 2002d, p. 32)

The project gained interest and Stallman
started receiving code contributions from devel-
opers. During the 1980s, major components of
an operating system were developed, including a
system library, shell, C compiler, and a text edi-
tor. However, a core component, the kernel, was
still missing until Linus Torvalds began to work
on the Linux kernel in 1991. During the 1990s,
free software systems based on the Linux kernel
gained in popularity, media hype, and venture
capital investments.

STALLMAN’S ARGUMENTS IN THE
GNU MANIFESTO AND THE FREE
SOFTWARE DEFINITION

Stallman’s main argument in The GNU Manifesto
(1984) is the “golden rule” quoted previously: A
useful program should be shared with others who
need it. Stallman started GNU in order to “give
it away free to everyone who can use it” (Stall-
man, 2002d, p. 31) in the spirit of co-operation,
sharing and solidarity. He criticizes proprietary
software sellers for wanting to “divide the users
and conquer them” (Stallman, 2002d, p. 32).
Stallman’s intention here is not anti-capitalist or
anti-business. He gives suggestions on how soft-
ware businesses can operate with free software.
The fundamental ethical problem Stallman sees
in proprietary software is the effect it has on com-
munity and co-operation. For Stallman, himself
a master programmer, the “fundamental act of
friendship among programmers is the sharing of
programs” (Stallman, 2002d, p. 32). Restrictions
on sharing would require programmers to “feel in
confl ict” with other programmers rather than feel
as “comrades” (Stallman, 2002d, pp. 32-33).

Stallman suggests that software businesses and
users could change the way they produce and use
software. Instead of selling and buying software
like any other commodity, it could be produced
in co-operation between users and companies.
Although the software would be free, users would
need support, modifi cations and other related
services which companies could sell. Stallman
argues this would increase productivity by reduc-
ing wasteful duplication of programming work.
Also it would make operating systems a shared
resource for all businesses. If the business model
of a company is not selling software, this would
benefi t the company. Being able to study source
code and copying parts of it would increase the
productivity of the programmer.

An important goal in the manifesto is increas-
ing the users’ independence from software sellers.
When software is free, users are no longer at the
mercy of one programmer. Because anyone can
modify a free program, a business can hire anyone
to fi x the problem. There can be multiple service
companies to choose from.

For Stallman, the main reason for rejecting
software ownership is good civil spirit, but he
also argues against the concept of copyright and
authorship: “Control over the use of one’s ideas’
really constitutes control over other people’s lives;
and it is usually to make their lives more diffi cult,”
Stallman (2002d, p. 37) notes. He denies the idea
of copyright as a natural, intrinsic right and re-
minds us that the copyright system was created
to encourage literary authorship at a time when
a printing press was needed to make copies of a
book. At the time, copyright restrictions did little
harm, because so few could invest in the equip-
ment required to make a copy. Today, when copies
of digital works can be made at practically zero
cost, copyright restrictions cause harm because
they put limits on the way the works can benefi t
society. Stallman (2002d, p. 37) notes that copy-
right licensing is an easy way to make money but
is “harming society as a whole both materially
and spiritually.” He maintains that even if there

4

Free Software Philosophy and Open Source

was no copyright, creative works would be cre-
ated because people write books and computer
programs on other grounds: fame, self-realization,
and the joy of being creative.

Depending on the context, four different
meanings of the term community can be found
in Stallman’s argument. The fi rst one is that of a
 hacker community like the one at MIT’s AI lab.
The second is the computer-using community
interested in business, wasted resources, and
independence from software sellers. The third
community is the society that will benefi t from
co-operation and face costs from complicated
copyright and licensing mechanisms and enforce-
ment. The fourth level of community Stallman
mentions is humanity. He argues that because of
the copyright restrictions on computer programs,
the “amount of wealth that humanity derives” is
reduced (Stallman, 2002d, p. 36). In these four
meanings of the term, we can see community
grow from a small group of friends to an interest
group, then to society and fi nally to humanity as
a whole. As the communities grow in size, the
temporal perspective is expanded: for hacker
friends, the benefi ts are direct and immediate
whereas in the case of humanity change may
require decades.

In The GNU Manifesto, Stallman mentions
that “everyone will be permitted to modify and
redistribute GNU, but no distributor will be al-
lowed to restrict its further redistribution. That
is to say, proprietary modifi cations will not be
allowed” (Stallman, 2002d, p. 32). In Free Soft-
ware Defi nition (Stallman, 2002a), he lists the four
freedoms which a piece of software must meet in
order to be free software. The freedoms are:

• Freedom 0: The freedom to run the program,
for any purpose

• Freedom 1: The freedom to study how the
program works, and adapt it to your needs;
access to the source code is a precondition
for this

• Freedom 2: The freedom to redistribute
copies so you can help your neighbor

• Freedom 3: The freedom to improve the
program, and release your improvements
to the public, so that the whole community
benefi ts; access to the source code is a pre-
condition for this (Stallman, 2002a, p. 41)

Freedom of software is defi ned by referring
to the rights of the computer user, who may run
the program for any purpose, good or evil, study
and adapt the software, and distribute copies of
the program, modifi ed or original. It should be
noted that the defi nition assumes sharing is always
benefi cial and desired. It does not matter if the
neighbor or the community has any use for the
software or the skills to use it.

For a piece of software to be free, it would
not be enough to abolish the copyright system.
Because a user needs the source code in order to
effectively exercise freedom 3, the author must
actively promote software freedom by releasing
the source code. Therefore, a co-operative com-
munity is already needed for software freedom.

Stallman makes an important distinction be-
tween free as in free speech and free as in zero
price. The concept of free software is not against
selling software, it is against restrictions put on
the users. Free software can be sold but the seller
may not forbid the users to share or modify it.

 COPYLEFT: THE GPL AS LEGAL
AND SOCIAL DEVICE

Because Stallman was the copyright holder of
the GNU programs that he wrote, he could have
handed the programs to the public domain. Thus
the programs would have been free. However, re-
leasing the programs to the public domain would
have meant that people would have been able to
distribute the programs in ways which would
have restricted the freedom of users, for instance,

 5

Free Software Philosophy and Open Source

by distributing them without the source code.
A free program would have become non-free.
Stallman wanted the distribution of his programs
or any other free software to stay free forever,
and together with Free Software Foundation
(FSF) legal counsel Eben Moglen, they devised
the GNU General Public License (GPL) for this
purpose (Stallman, 1989; Stallman, 2002b). The
main idea of the GPL is that anyone is free to
use, modify and redistribute a GPLed program
on the condition that the same freedom of use,
modifi cation, and redistribution is also given
to the modifi ed and redistributed program. The
easiest way to fulfi ll the condition is to release
the redistributed and modifi ed program under the
GPL. The GPL is in this sense “viral”: a GPLed
program can be unifi ed with other code only
if the added code is compatible with the GPL.
The purpose of the GPL is to keep free software
free and to stop it ever becoming a part of pro-
prietary software (Stallman, 2002a, pp. 89- 90;
Stallman, 2002c, pp. 20 -21). The GPL is called
a copyleft license, because in a sense it turns
around the copyright by giving the user, not only
the author, the freedom to use and to continue
to build on the copylefted work. In this sense,
copyright law and the GPL license built on it are
the artifi ces that make the free software move-
ment possible. There is some irony to the fact that
the movement in this sense needs the copyright
law in order to function. This is also the reason
why it is not correct to describe the movement as
being against copyright. Consequently, the GPL
has to function well. The original GPL version 1
has been modifi ed into version 2, under which,
for instance, the Linux kernel is released. Cur-
rently, in 2006, a new version, GPLv3, is being
prepared by Stallman and the FSF. The somewhat
unorthodox twist that GPL gives to copyright law
has sometimes aroused suspicion over whether the
GPL is a valid and enforceable license. As Moglen
(2001) notes, most often GPL violations are settled
without much publicity in negotiations between the
FSF and the violator. As the FSF seeks only the

freedom of software, a violator can easily rectify
the situation by starting to comply with the GPL.
It is sometimes argued that the fact that code under
GPL can not lose the property of being free does
not give the user maximum freedom with the code:
the user is not permitted to “close” the code and
release it under a proprietary software license. For
instance, a typical Berkeley Software Distribution
(BSD) license does not require that modifi cations
or derivative works be free. Proponents of BSD
see this as a good thing, maybe even as a benefi t
over the GPL, because the BSD license gives
the developer more possibilities. However, for
Stallman this is not desired, as closing the source
tramples on the possible future uses of the code:
“It is absurd to speak of the ‘freedom to take away
others’ freedom’” (Stallman cited in Butler, 2005).

FREE SOFTWARE AS A
POLITICAL PHILOSOPHY

As described above, Stallman’s free software
philosophy goes beyond the freedom and needs
of an individual programmer. In Stallman’s work,
we fi nd a political philosophy that has roots both
in the liberalist and the communitarian traditions
but accepts neither as such.

Stallman’s ideas on user’s freedom have roots
in the liberalist political philosophy of Thomas
Hobbes, John Locke, John Stuart Mill and oth-
ers. In the Second Treatise of Government (1690),
Locke argued that societies are built on a social
contract in which people agree to give away some
of their personal liberty to escape the cruel reality
of the “state of nature” and receive protection for
the fundamental rights which are life, liberty, and
property. Locke’s infl uence on political philosophy
can be seen, for example, in the formulation of
the U.S. Declaration of Independence and in the
Constitution.

Stallman describes his relation to the liberalist
tradition as follows:

6

Free Software Philosophy and Open Source

The philosophy of freedom that the United States
is based on has been a major infl uence for me. I
love what my country used to stand for. ... Science
is also an important infl uence. Other campaigns
for freedom, including the French and Russian
revolutions, are also inspiring despite the ways
they went astray. (Stallman, 2004)

The four freedoms of free software were
named after the infl uential speech given by the
U.S. President Franklin D. Roosevelt during
the Second World War in 1941, called The Four
Freedoms (Roosevelt, 1941).

For Locke, freedom means “to be free from
restraint and violence from others” (Locke, 1690,
para. 57). For Stallman, software freedom means
the freedom to run, study, modify, and distribute
the programLocke described the time before orga-
nized society as a natural state where everybody
had complete freedom but had to live in constant
danger. Stallman has described the American
society as a “dog-eat-dog jungle” where antisocial
behavior like competition, greed and exclusion is
rewarded instead of co-operation (Levy, 1984,
p. 416; Stallman, 2002e). Because sharing of
software is forbidden, freedom is restricted in
such a society.

The tension between individualism and com-
munitarianism is constant in Stallman’s philoso-
phy. He started the GNU project because of his
own moral dilemma, but he also argues for it on
a collectivist basis. In the fi rst announcement of
the GNU project (Stallman, 1983), the perspec-
tive was individualist: “So that I can continue to
use computers without violating my principles, I
have decided to put together a suffi cient body of
free software so that I will be able to get along
without any software that is not free.” In The
GNU Manifesto (Stallman, 2002d), the words
“violating my principles” were replaced with the
word “dishonor,” indicating a move towards a
more communal view. The tension also arises if
we ask for what and for whom software freedom
is intended. Isaiah Berlin (1969) has introduced

a distinction between the notions of negative
and positive freedom: negative freedom means
freedom from obstacles and restrictions while
positive freedom means control over one’s life
and positive opportunities to fulfi ll a goal. Both
the liberalist tradition and Stallman mainly use
the negative concept of freedom, but in his em-
phasis on community we can also see aspects of
positive freedom.

Freedom 0, the freedom to run the program,
is a pure example of the negative concept of free-
dom. The user has the right to use the software,
whatever the purpose might be. Freedom 1 has
two components: having permission to study the
program and having the source code. In this sense
freedom 0 is not only about absence of restraints,
it is also about presence of the source code and in
this sense a positive freedom. Likewise, freedom
2 is not only an individualist or negative freedom:
the freedom to redistribute copies is necessary
to help the neighbour. Freedom 3 to improve the
program and release the improvements to the com-
munity is also of a positive nature: It is required
to build a community.

For a programmer, freedom of software is a
fundamental issue related to a way of life, to the
identity of a hacker. Is the freedom relevant only
for programmers? Bradley Kuhn and Richard
Stallman reply:

We formulated our views by looking at what free-
doms are necessary for a good way of life, and
permit useful programs to foster a community of
goodwill, cooperation, and collaboration. Our
criteria for Free Software specify the freedoms
that a program’s users need so that they can
cooperate in a community. We stand for freedom
for programmers as well as for other users. Most
of us are programmers, and we want freedom for
ourselves as well as for you. But each of us uses
software written by others, and we want freedom
when using that software, not just when using
our own code. We stand for freedom for all users,

 7

Free Software Philosophy and Open Source

whether they program often, occasionally, or not
at all. (Kuhn & Stallman, 2001)

This freedom is for everyone, whether they
need it, use it, or not, just like freedom of speech.
But freedom of software is just a means to a
more important end, which is a co-operative,
free society. Stallman wants to contribute to a
society that is built on solidarity and co-opera-
tion, not exclusion and greed. In a communitarian
way, the argument sees morality and the good of
the individual co-dependent on the good of the
community.

POLITICAL MOVEMENT OR
DEVELOPMENT MODEL?
A COMPARISON OF FS
AND OS IDEOLOGIES

One of the motivations for launching the Open
Source Initiative (OSI) was the perception that the
ideology and concepts used by the FS movement,
in general, and Richard Stallman, in particular,
were putting off potential collaborators, especially
business partners. Eric S. Raymond explains his
motivations as tactical, rather than principal:

The real disagreement between the OSI and
the FSF, the real axis of discord between those
who speak of “open source” and “free software,”
is not over principles. It’s over tactics and rhetoric.
The open source movement is largely composed
not of people who reject Stallman’s ideals, but
rather of people who reject his rhetoric. (Ray-
mond, 1999)

Thus, the aim of the term open source is to
emphasize the practical benefi ts of the OS devel-
opment model instead of the moral philosophy
behind the free software ideal. For the actors in
the OS movement, the creation of OS software is
an utilitaristic venture of collaboration, based on
individual needs. According to Eric S. Raymond,
“Every good work of software starts by scratching

a developer’s personal itch” (Raymond, 1999).
This is in clear contrast with the intentional,
systematic, and collective effort described by
Stallman: “essential pieces of GNU software were
developed in order to have a complete free operat-
ing system. They come from a vision and a plan,
not from impulse” (Stallman, 2002c, p. 24).

The main ideological shift was in the professed
motivation for writing code. The software itself
often stayed the same: by defi nition, free soft-
ware is a subset of open source software. For the
outside world this ideological shift may present
itself as relatively minor, so that in the name of
simplifi cation a common name such as FOSS
(free/open source software) or FLOSS (free/libre
and open source software) is often used. Initially
the two communities also overlapped to a large
degree, but lately some polarization has been in
evidence. For instance, in a recent survey a large
majority of Eclipse developers reported that they
identify with the OS movement, while a clear
majority of Debian developers reported identi-
fi cation with the FS movement (see Mikkonen,
Vainio, & Vadén, 2006). This development may
be expected to continue, as companies are increas-
ingly taking part and employing programmers in
OS development.

A crucial difference between OS and FS has
to do with the political economy of software
production. However, this distinction is best
described as the difference between business
friendly open source and ideological/political
free software, or capitalist open source and com-
munist free software. These are not the correct
levels of abstraction. For instance, sometimes
the GPL license is more business friendly than a
given non-GPL-compatible open source license.
The fact that the OS community treats code as
a public good might be perceived as odd in cer-
tain types of market economies, while in others
such public goods are seen as necessary drivers
of capitalism. By making software a non-scarce
resource, OS has an effect on where and how a

8

Free Software Philosophy and Open Source

revenue stream is created. However, this merely
reorganizes production and labour, instead of
changing their mode.

Schematically put, FS is a social movement,
while OS is a method for developing software.
Whatever the defi nitions of systems of economi-
cal production—such as capitalism, communism,
market economy, and so on—may be, OS is non-
committal with regard to the current issues of
political economy, such as copyright, intellectual
property rights and so on. Individual members of
the OS community may or may not have strong
views on the issues, but as a community OS is
mostly interested in the benefi ts of openness as a
development model. This attitude is well exempli-
fi ed in the views expressed by Linus Torvalds: “I
can’t totally avoid all political issues, but I try my
best to minimize them. When I do make a state-
ment, I try to be fairly neutral. Again, that comes
from me caring a lot more about the technology
than about the politics, and that usually means that
my opinions are colored mostly by what I think
is the right thing to do technically rather than for
some nebulous good” (quoted in Diamond, 2003).
This pragmatic or “engineering” view on FOSS is
intended to work better than ideological zealotry
in advancing the quality and quantity of code.
In contrast, in order to change a political system
one needs a social movement. As noted previ-
ously, the FS movement is a social movement
based on shared values. While these values are
close to the loosely interconnected values of the
anti-globalization movement (see Stallman, 2005,
2002f), they are not the defi ning values of socialist
or communist parties or movements. For instance,
the FS movement does not have a stand on class
relations or on how to treat physical property, and
so on. In this sense the FS movement as a social
movement is a specialized, one-cause movement
like many other post-modern social movements.
Again, here lies a crucial distinction: the ethical
principles of FS concern only information, and
only information that is a tool for something.
Typically, a socialist or communist set of values

would emphasize the importance of material (not
immaterial) things and their organization.

Ideologically proximate groups often behave
in a hostile manner towards each other in order to
distinguish themselves; the public controversies
between the FS and OS communities are a good
example. Extra heat is created by the different
perspectives on the politics of freedom. The
Torvaldsian view of “no politics” is tenable only
under the precondition that engineering can be
separated from politics and that focusing on the
engineering part is a non-political act. Stallman,
for one, has consistently rejected this precondi-
tion, and claims that the allegedly non-political
focus on the engineering perspective is, indeed,
a political act that threatens the vigilance needed
for reaching freedom.

A good example of these controversies is the
one over the name (Linux or GNU/Linux) of the
best known FOSS operating system. Since the
mid 1990s, Stallman and the FSF have suggested
that developers use the name GNU/Linux, arguing
that “calling the system GNU/Linux recognizes
the role that our idealism played in building
our community, and helps the public recognize
the practical importance of these ideals” (FSF,
2001). However, true to their pragmatical bent,
OS leaders such as Raymond and Torvalds have
replied that the name Linux has already stuck,
and changing it would create unnecessary in-
convenience. Some of the distributions, such as
Debian, have adopted the naming convention
suggested by the FSF.

CONCLUSION: FS AS A HISTORICAL
BACKDROP OF OS

The FS movement initiated by Stallman predates
the OS movement by over a decade and the lat-
ter was explicitly formed as an offshoot of the
former. Consequently, the defi nition of OS soft-
ware was developed in the context of an ongoing
battle between the FS and proprietary software

 9

Free Software Philosophy and Open Source

models. Arguments presented by Stallman in
the early 1980s still form some of the most lucid
and coherent positions on the social and political
implications of software development. Most im-
portantly, the polarization of the FOSS community
into the FS and OS camps has been only partial.
All of these facts point out how FS has acted as a
necessary background for OS. This background
can roughly be divided in technological, legal
and ideological parts.

On the technological side, FS code often forms
a basis and ancestry for OS projects. The formation
of the operating system Linux or GNU/Linux is
one of the examples where the functions of the FS
movement form an essential cornerstone of exist-
ing OS software. Typically Linux distributions
include major technological components (such as
glibc [the GNU C Library], Coreutils, and gcc)
from the GNU project.2 It is uncontroverted that
without the systematic and prolonged effort by
the FSF the development and adoption of Linux
(the operating system) would not have been as
rapid or widespread as it has been. However, it is
equally clear that several key OS projects, such
as Apache or Eclipse, are not technologically
dependent on GNU.

The legal cornerstone provided to the OS
community by the FSF and Stallman is the GPL
license, under which Linux (the kernel) and several
other key OS projects were developed. The GPL
is concurrently clearly the leading FOSS license,
comprising over 50% of the code in projects main-
tained at SourceForge and of major GNU/Linux
distributions (Wheeler, 2002). The GPL as a
license and the ideal of freedom that it embodies
are the legal lifeblood of both the FS and the OS
communities, even though several other families
of licenses are crucially important.

The ideological foundation provided by the
FS movement is diffi cult to gauge quantitatively.
Suffi ce it to say the OS movement is, accord-
ing to its own self-image, a tactical offshoot of
the FS movement. Many of the sociocultural
arguments (openness for reliability, longevity of

code, and user control) and ways of functioning
(collaborative development based on the GPL)
that the OS community uses were spearheaded
by the FS community. Moreover, now that OS is
moving outside its niche in software production
and gaining ground as a modus operandi in other
fi elds (such as open content, open medicine, open
education, open data, and so on), the OS movement
fi nds itself again in closer proximity to the ideals
expressed by the FS movement. However, there
are also trends that tend to emphasize the neutral,
engineering point of view that created the need
for the separation of OS from FS in the fi rst place:
as OS software becomes more commonplace and
even omnipresent, the ideological underpinnings
are often overlooked with or without purpose.

REFERENCES

Berlin, I. (1969). Two concepts of liberty. In I.
Berlin, Four essays on liberty. Oxford, UK:
Oxford University Press.

Butler, T. (2005, March 31). Stallman on the state
of GNU/Linux. Open for Business. Retrieved Feb-
ruary 20, 2006, from http://www.ofb.biz/modules.
php?name=News&fi le=article&sid=353

Diamond, D. (2003, July 11). The Peacemaker:
How Linus Torvalds, the man behind Linux, keeps
the revolution from becoming a jihad. Wired.
Retrieved February 20, 2006, from http://www.
wired.com/wired/archive/11.07/40torvalds.html

FSF. (2001). GNU/Linux FAQ. Retrieved February
20, 2006, from http://www.gnu.org/gnu/gnu-linux-
faq.html

Hafner, K., & Lyon, M. (1996). Where wizards
stay up late: The origins of the Internet. New York:
Touchstone.

Himanen, P. (2001). The hacker ethic and the
spirit of the information age. New York: Random
House.

10

Free Software Philosophy and Open Source

Kuhn, B., & Stallman, R. (2001). Freedom or
power? Retrieved February 20, 2006, from
http://www.gnu.org/philosophy/freedom-or-
power.html

Levy, S. (1984). Hackers: Heroes of the computer
revolution. London: Penguin.

Locke, J. (1690). Second treatise of government.
Indianapolis: Hackett.

Mikkonen, T., Vainio, N., & Vadén, T. (2006).
Survey on four OSS communities: Description,
analysis and typology. In N. Helander & M.
Mäntymäki (Eds.), Empirical insights on open
source business. Tampere: Tampere Univer-
sity of Technology and University of Tampere.
Retrieved June 27, 2006, from http://ossi.coss.
fi /ossi/fi leadmin/user_upload/Publications/Ossi_
Report_0606.pdf

Moglen, E. (2001). Enforcing the GNU GPL.
Retrieved February 20, 2006, from http://www.
gnu.org/philosophy/enforcing-gpl.html

Raymond, E. S. (1999). Shut up and show them
the code. Retrieved February 20, 2006, from
http://www.catb.org/~esr/writings/shut-up-and-
show-them.html

Raymond, E. S. (2003). The jargon fi le. Retrieved
June 6, 2006, from http://www.catb.org/jargon/

Roosevelt, F. D. (1941). The four freedoms.
Retrieved February 20, 2006, from http://www.
libertynet.org/~edcivic/fdr.html (May 27, 2004)

Stallman, R. (1983, September 27). New UNIX
implementation. Post on the newsgroup net.unix-
wizards. Retrieved February 20, 2006, from http://
groups.google.com/groups?selm=771%40mit-ed-
die.UUCP

Stallman, R. (1989). GNU General Public License
version 1. Retrieved February 20, 2006, from
http://www.gnu.org/copyleft/copying-1.0.html

Stallman, R. (2002a). Free software defi nition. In
J. Gay (Ed.), Free software, free society: Selected

essays of Richard M. Stallman (pp. 41-43). Boston:
GNU Press.

Stallman, R. (2002b). GNU General Public Li-
cense version 2. In J. Gay (Ed.), Free software, free
society: Selected essays of Richard M. Stallman
(pp. 195-202). Boston: GNU Press.

Stallman, R. (2002c). The GNU project. In J.
Gay (Ed.), Free software, free society: Selected
essays of Richard M. Stallman (pp. 15-30). Bos-
ton: GNU Press.

Stallman, R. (2002d). The GNU manifesto. In J.
Gay (Ed.), Free software, free society: Selected
essays of Richard M. Stallman (pp. 31-39). Boston:
GNU Press.

Stallman, R. (2002e). Why software should be
free. In J. Gay (Ed.), Free software, free society:
Selected essays of Richard M. Stallman (pp. 119-
132). Boston: GNU Press.

Stallman, R. (2002f). The hacker community and
ethics: An interview with Richard M. Stallman.
Retrieved February 20, 2006, from http://www.
uta.fi /~fi teva/rms_int_en.html

Stallman, R. (2004, January 23). A Q&A session
with Richard M. Stallman. Retrieved February
20, 2006, from http://puggy.symonds.net/~fsug-
kochi/rms-interview.html

Stallman, R. (2005, December 18). Free software
as a social movement. ZNet. Retrieved February
20, 2006, from http://www.zmag.org/content/sho-
warticle.cfm?SectionID=13&ItemID=9350

Turkle, S. (1982). The subjective computer: A
study in the psychology of personal computation.
Social Studies of Science, 12(2), 173-205.

Wheeler, D. (2001). More than a gigabuck. Es-
timating GNU/Linux’s size. Retrieved February
20, 2006, from http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.html

Wheeler, D. (2002). Make your open source
software GPL-compatible: Or else. Retrieved

 11

Free Software Philosophy and Open Source

February 20, 2006, from http://www.dwheeler.
com/essays/gpl-compatible.html

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly.

KEY TERMS

 Communitarianism: A philosophical view
holding that the primary political goal is the good
life of the community.

 Copyleft: The practice of using copyright law
in order to remove restrictions on the distribution
of copies and modifi ed versions of a work for oth-
ers and require the same freedoms be preserved
in modifi ed versions.

Free Software (FS): Software that can be
used, copied, studied, modifi ed, and redistributed
without restriction.

 General Public License (GPL): A widely
used free software license, originally written by
Richard M. Stallman for the GNU project.

 Hacker Community: A community of more or
less likeminded computer enthusiasts that devel-
oped in the 1960s among programmers working on
early computers in academic institutions, notably
the Massachusetts Institute of Technology. Since
then, the community has spread throughout the
world with the help of personal computers and
the Internet.

 Liberalism: A philosophical view holding
that the primary political goal is (individual)
liberty.

ENDNOTES

1 For alternative formulations of the hacker
ethos, see the entry “hacker ethic” in The
Jargon File, edited by Raymond (2003) and
The Hacker Ethic by Himanen (2001), who
gives the concept a more abstract scope.

2 For a view of the complexity of a GNU/Linux
distribution (see Wheeler, 2001).

12

Chapter II
Greasemonkey and a Challenge

to Notions of Authorship
Brian D. Ballentine

West Virginia University, USA

INTRODUCTION

The question “What is an author?” has been the
source of much scholarship in the humanities at
least since the publication of Michel Foucault’s
(1979) famous essay, and recent developments
in computer generated texts have only made
it more pressing that scholars grapple with
this fundamental question. Currently, there is
increased recognition that the very idea of the
“ author-function” since the rise of print culture
and intellectual property rights cannot be compre-
hensively understood without taking into account
the complementary idea of a “designer,” especially
with respect to the production of digital texts. Con-
sequently, hypertextual and digital theorists have

ABSTRACT

This chapter introduces Greasemonkey, a new extension for the Firefox browser, which enables users
to alter the behavior and appearance of Web pages as the pages load. The chapter claims that Grease-
monkey is forcing a reevaluation of what it means to be an author in digital environments. Using Michel
Foucault’s (1979) original question, “What is an author?” the chapter argues that creators of Grease-
monkey scripts take on the additional roles of designer and programmer. Also, the chapter cautions that
since Greasemonkey scripts have the ability to alter the layout, navigation, and advertising on a Web
page, there may be legal ramifi cations in the future for this open source project.

adopted the twin notions of author and designer
to account for the assembly of interactive texts.
While the addition of a designer has certainly
deepened our understanding of how text gets
produced, assembled, and disseminated, and thus
represents a signifi cant advance in the study of
authorship and digital writing, current scholarship
has yet to account for the role of the programmer
as a distinct aspect of the author-function. The
open source community and the technologies the
community produces, present the opportunity
to examine and question a programmer’s status
as an author. This chapter will assess hypertext
and digital theories as they pertain to authors and
designers and then show how the addition of the
programmer to the theoretical nomenclature will

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 13

Greasemonkey and a Challenge to Notions of Authorship

advance our understanding of the author-function
in digital environments. While there are many
innovative projects under development within
the open source community, this chapter focuses
on a new technology called Greasemonkey and
the freedoms (and risks) it provides an author/de-
signer/programmer.

GREASEMONKEY BACKGROUND

Greasemonkey is an extension for the Firefox
browser that enables users to install client-side
“ user scripts” that alter the behavior and ap-
pearance of Web pages. The alterations occur
as a Web page is downloaded and rendered in a
user’s Web browser. The alterations occur with-
out the consent of the site owners. Traditionally,
Web pages are fi xed offerings developed for
an audience to use but not to alter and use. All
major Web browsers are equipped with the op-
tion to “view source” which reveals the source
code responsible for a particular Web page. The
source code can be copied, saved, and edited by
an end-user. Greasemonkey is vastly different
from simply acquiring the code in that edits oc-
cur as the page loads in Firefox allowing a user to
continue to interact with a company’s Web page
even after edits are complete. Greasemonkey’s
functionality, therefore, enables an examination
of the roles of authors, designers, and program-
mers as these fi gures write scripts that actively
manipulate Web pages.

For example, a Greasemonkey script titled
“Book Burro” enables users to simultaneously see
competitive prices from other bookstores while
searching Amazon.com. The script also searches
for a book’s availability in local and national librar-
ies. Web sites, especially large retail sites such as
Amazon, are strategically designed, programmed,
and “authored” to be effective marketing and sales
tools. Greasemonkey enables users to reclaim the
roles of author, designer, and programmer and
recalibrate, edit, or “remix” Amazon’s strategies.

This phenomenon is known as “ active browsing.”
While anyone may program a Greasemonkey
script on their own, there are hundreds of scripts
posted on sites dedicated to Greasemonkey such
as userscripts.org.1 The example in Figure 1 is
the Book Burro script that displays competitive
prices and library availability for a sought-after
book. The information is displayed in a new menu
in the left-hand corner of the browser window.
Users may add or delete online stores or libraries
from the display.2

MAIN FOCUS OF THE CHAPTER

Author/Designer/Programmer:
The Author-Function

Is using Greasemonkey to create scripts such as
Book Burro “writing” and worthy of the “author”
distinction? Academics have had a relatively short
but complex relationship with digital writing and
digital texts. Throughout the 1990s, scholars tack-
led the complicated similarities between digital
writing and popular critical theory movements
such as post-structuralism and deconstructionism.

Figure 1. Greasemonkey screen capture showing
the Book Burro script

14

Greasemonkey and a Challenge to Notions of Authorship

The importance of the reader’s interpretation of
a text, the text’s relationship to other text, and a
text’s inability to create true closure are theoreti-
cal attributes adopted by hypertext theorists. As
Jay David Bolter made clear: “[E]ven the most
radical theorists (Barthes, de Man, Derrida, and
their American followers) speak a language that
is strikingly appropriate to electronic writing”
(Bolter, 1990, p. 161). Indeed, Jacques Derrida
conveniently broadened the scope of “writing”
in Of Grammatology in terms that are easy to
envision a home for digital writing:

And thus we say “writing” for all that gives rise
to an inscription in general, whether it is literal
or not and even if what it distributes in space is
alien to the order of the voice: cinematography,
choreography, of course, but also pictorial, musi-
cal, sculptural “writing.” (Derrida, 1974, p. 9)

Foucault made similar inclusive adjustments
for his defi nition of the author-function: “Up to
this point I have unjustifi ably limited my subject.
Certainly the author-function in painting, music,
and other arts should have been discussed” (Fou-
cault, 1979, p. 153). Hypertext theorists have felt
compelled to add digital writing to the list. But
to Bolter’s credit, he recognized that the theories
do not line up as neatly as proposed. “Electronic
writing takes us beyond the paradox of decon-
struction, because it accepts as strengths the very
qualities—the play of signs, intertextuality, the
lack of closure—that deconstruction poses as the
ultimate limitations of literature and language”
(Bolter, 1990, p. 166). Ultimately, Bolter deter-
mines that these theories only serve to inform us
“what electronic writing is not. We still need a new
literary theory to achieve a positive understanding
of electronic writing” (Bolter, 1990, p. 166).

In 2001, Bolter offered a vision for a new
theory that might properly encompass writing a
digital space. According to Bolter:

[T]he work of remediation in any medium relies
on two apparently opposite strategies. Sometimes
the artist tries to erase the traces of the prior
medium in her work and seeks to convince us
that her work in the new medium represents the
world directly. At other times, she accepts and
even foregrounds the older medium. We call the
fi rst strategy “transparent immediacy” and the
second “hypermediacy.” In its remediation of
print, hypertext adopts both of these strategies.
When the author elects to leave the reader alone
with an episode of conventional prose, she is
relying on the power of traditional narrative
prose to be transparent. When she emphasizes
the reader’s choice through the process of link-
ing, she is evoking a strategy of hypermediacy.
(Bolter, 2001, p. 185 6)

Bolter’s theory can be transposed to incor-
porate any medium from television to cinema to
software. However, his discussion is an oversim-
plifi cation of the current capabilities of writing
in a digital space. Even if an author has chosen
to “leave the reader alone” with a text in a digi-
tal environment there is much to be considered
in terms of how the author was able to make
that choice. The example Greasemonkey script
demonstrates that authoring in a digital environ-
ment has changed now that a reader can actively
edit and alter an author’s text. Greasemonkey is
complicating digital writing now that the reader
has an option to be left alone or actively engage
with and alter a text.

However, critics have become frustrated with
the prominence of digital writing and rather than
work with the existing theories (or develop new
ones like Bolter) are driven to discredit it alto-
gether. There are those that rail against hypertext’s
“fashionable tale” as Richard Grusin (1996, p. 39)
phrased it. Grusin’s work begins, appropriately
enough, by quoting Foucault and a claim that
proponents of hypertext readily embrace:

 15

Greasemonkey and a Challenge to Notions of Authorship

The author—or what I have called the “author-
function”—is undoubtedly only one of the possible
specifi cations of the subject and, considering
past historical transformations, it appears that
the form, the complexity, and even the existence
of this function are far from immutable. We can
easily imagine a culture where discourse would
circulate without any need for an author. (Grusin,
1996, p. 39)

Grusin used Foucault’s ideas to advance a
theory that hypertext criticism is technologically
determined and in fact supports a larger techno-
logical fallacy. “This fallacy,” according to Grusin
“most often manifests itself in propositional state-
ments that ascribe agency to technology itself,
statements in which the technologies of electronic
writing are described as actors” (Grusin, 1996, p.
41). Grusin examines the work of Bolter, George
Landow, and Richard Lanham fi ltering out evi-
dence including Lanham’s famous remark that
“[t]he electronic word democratizes the world of
arts and letters” (Grusin, 1996, p. 41).

Is Lanham’s remark so problematic now that
we are many years removed from Grusin’s com-
plaint? Recently, Nicholas Rombes described what
technologies such as “personal websites and blogs”
have done for the resurrection of the author:

[T]he author has grown and multiplied in direct
proportion to academic dismissals and denun-
ciations of her presence; the more roundly and
confi dently the author has been dismissed as a
myth, a construction, an act of bad faith, the more
strongly she has emerged. The recent surge in
personal websites and blogs—rather than diluting
the author concept—has helped create a tyrannical
authorship presence … (Rombes, 2005)3

Such a claim for technology is exactly Grusin’s
complaint. What is missing is an examination of
those wielding the technology. To argue instead
that the choices made by the designers and the
programmers in digital spaces have created an

opportunity to reevaluate the author-function
switches the agency from the technology to the
users of that technology.

Author/Designer/Programmer:
The Designer-Function

The Book Burro script succeeds because it meets
the diffi cult task of integrating into a page dense
with information and navigation options. The soft,
light-orange background compliments Amazon’s
color scheme instead of competing with it. The
semi-transparent menu allows the user to see what
the Book Burro script is covering over so there
is no sense that Amazon’s functionality has been
obstructed or lost. The icons at the top of the Book
Burro menu allow the user to hide or “window
shade” the contents of the menu leaving only the
small, thin toolbar. A user may also close Book
Burro altogether. All of this is to say that Book
Burro creates a skillful unity with Amazon’s own
design by adhering to gestalt grouping principles
such as similarity, proximity, closure, and con-
tinuation. To ignore these design principles would
create tension in the remixed Amazon page. “Ten-
sions tend to tear the visual message apart into
separate and competing elements for attracting a
viewer’s attention, conveying sense of chaos not
choreography” (Dake, 2005, p. 26). The design of
the Book Burro script avoids tension by bonding
with the existing design on Amazon’s page.

Even though the term “designer” has made its
way into the work of theorists such as Landow,
Bolter, Slatin, and Hayles, this inclusion has not
produced a universal defi nition or understand-
ing of the term as it relates to the production of
a “text.”4 The rapid advancements of Internet
technologies along with the transitions between
print and digital media contribute to the discrep-
ancies in defi nition. When Landow’s Hypertext
fi rst appeared in 1992, graphically intensive user-
interfaces existed on a much smaller scale due
to hardware, software, and network limitations.
Simply put, the designer was technologically and

16

Greasemonkey and a Challenge to Notions of Authorship

economically limited from playing a central part
in the creation of digital text.

Similarly, cost and technology have been limit-
ing factors for printed text. But, as demonstrated
by Hayles, as those costs decrease there is much
to be gained by taking advantage of a designer’s
skills. Hayles brought the designer function to
the foreground with her book Writing Machines
in which she explored the importance of the
materiality of a text whether that text is print or
electronic. She credits Anne Burdick (who is given
the label “designer” on the title page) for a part
in the success of the project. In a closing section
of the book titled “Designer’s Notes,” Burdick
applauds Hayles for breaking the “usual chain
of command” by having her work on the project
from the beginning and “with words” instead of
“after words” (Hayles, 2002, p. 140). That is, she
took part in the authoring of the text and Hayles
gives her credit for that, stating: “Also important
were Anne Burdick’s insights. More than any of
us, Anne remained alert to the material qualities of
the texts I am discussing and producing, pointing
out places where descriptions needed to be more
concrete, engaging, and specifi c in their attention
to materiality” (Hayles, 2002, p. 143).

Crediting and distinguishing the designer role
as being part and parcel to the authoring of a text
is not common practice. Ironically, early percep-
tions of an author were even less generous than
those afforded to the contemporary designer. In
her essay, The Genius and the Copyright, Martha
Woodmansee (1984) begins by providing an over-
view of the concept of an author up until the mid-
eighteenth century. According to Woodmansee,
the author was “fi rst and foremost a craftsman”
(Woodmansee, 1984, p. 426). She continues by
describing the “craftsman” as a “skilled manipu-
lator of predefi ned strategies for achieving goals
dictated by his audience” (Woodmansee, 1984, p.
427). Likewise, early Web designers worked under
technological constraints that kept their contri-
butions to a text at a minimum. Quite often the
designers of digital text did little more than plug

content into existing templates. It is not surprising
that their contribution was viewed as administra-
tive (“craftsman”) and not in terms of the inspired,
“original genius” that Woodmansee develops in
her essay (Woodmansee, 1984, p. 427).

In Bodies of Type: The Work of Textual Produc-
tion in English Printers’ Manuals, Lisa Maruca
(2003) offers a different perspective by focusing
on the act of making books and claiming that
those responsible for the physical production of a
text share in the author-function. In her analysis
of Joseph Moxon’s 1683 Mechanick Exercises she
fi nds evidence that:

the body of print emerges as a working body, a
laborer whose physical construction of print is
every bit as, if not more, important than the writer
who supplies the text. Indeed, the print worker is
understood as a collaborator in the construction
of the meaning of print text. (Maruca, 2003, p.
324)

It is a bold claim to attach so much weight to
a process often dismissed as mere mechanistic
output. The validation, Maruca insists, is found,
“by looking more closely at the multiple pos-
sible and actual uses of a machine in the hands
of variously ideologically situated owners and
workers” (Maruca, 2003, p. 324). The materials
they produce, their text, should not be considered
separately from “the metaphysical text” (Maruca,
2003, p. 324). Instead, these materials are “in
fact always ultimately textual” (Maruca, 2003,
p. 323).

Over three hundred years later, technological
advancements have put new tools in the hands of
those ready to infl uence a digital text’s physical
form. Tools, such as Greasemonkey, are chal-
lenging the stigma of craftsman and promoting
the type of authorial collaboration discussed by
Maruca. Many of the available Greasemonkey
scripts were developed in response to what an
author/designer/programmer deemed to be poor or
underdeveloped design. The “usability” category

 17

Greasemonkey and a Challenge to Notions of Authorship

on userscripts.org now has 120 scripts that work
to edit and advance functionality for sites such as
Amazon, Gmail, Flickr, and A9.5 Greasemonkey
authors/designers/programmers are experiment-
ing with new concepts in navigation and usability
and making their work available online for anyone
to use, edit, and improve.

But now that technology has advanced to the
degree that design can be implicated in the author-
ing of a text, the task of keeping a text “engaging”
as Hayles required is still vague and open-ended.
Yet it is the bottom-line for anyone involved with
the design of digital texts. Someone interested
in a career in Web design will face this vague
requirement of “engagement” and can expect a
high degree of ambiguity in their job search. A
visit to a major employment site such as Monster.
com or ComputerJobs.com and a search for “Web
designer” will yield not only an abundance of op-
portunities but broadly defi ned job postings.

For example, a company advertising for a
“Web Design Guru” began their job description
with a series of questions: “Would you like the
opportunity to prove that usability need not be
ugly? Do you have an extreme imagination and
the intelligence to back up your great designs?”
(Propeller, 2006). The requirement to produce
“great designs” with “extreme imagination” is
approximately the equivalent of asking an author
to make a story “interesting.” But, the primary
reason these descriptions do not and should not
get more specifi c is because as with any creative
authoring process, engaging material is developed
on an individual case basis. Successful collabora-
tions in the authoring of a digital text require broad
defi nitions for job descriptions to keep the designer
from serving as just a craftsman. If not, the result
is to keep with the “usual chain of command” and
bring in the designer after the fact. While treating
the design role as a secondary function may still
be the norm for the print medium it is no longer
the case for digital text.

However, the “great design” found in a Grease-
monkey script such as Book Burro, is possible

because the author also has the ability to write
code. A successfully “authored” Greasemonkey
script will be a blend of innovative design and
programming. It is this blending of responsibilities
and roles that further complicates what it means
to author a digital text. While notable hypertext
and digital theorists have made use of the term
“designer” in regard to the production of digital
materials, perhaps it is the blending and blurring
that continues to prohibit a solidifi ed agreement
or understanding of the roles the designer and
programmer play.

Author/Designer/Programmer:
The Programmer-Function

Based on Woodmansee’s defi nition of the “crafts-
man,” it is alarming that Bolter remarked: “No
longer an intimidating fi gure, the electronic au-
thor assumes the role of a craftsperson, working
with prescribed materials and goals. She works
within the limitations of a computer system …”
(Bolter, 2001, p. 168). Equally problematic is that
it is diffi cult to discern to what degree, if any, an
electronic author programs. Indeed, substantial
discussion of the programmer is diffi cult to fi nd
in hypertext theory. Slatin (1991) touched on the
designer function and tangentially introduces
the programmer in an early essay on hypertext.
He wrote: “‘Writing,’ in the hypertext environ-
ment, becomes the more comprehensive activity
called ‘authoring’” (Slatin, 1991, p. 160). This
“authoring,” he noted, might involve “a certain
amount of programming” (Slatin, 1991, p. 160).
The reference to “a certain amount of program-
ming” is of course vague and Slatin’s quote only
scratches the surface of the programming as it
relates to the author-function.

Hayles recognized:

an unfortunate divide between computer science
folks, who knew how the programs and hardware
worked but often had little interest in artistic prac-
tices, and literary critics, who too often dealt only

18

Greasemonkey and a Challenge to Notions of Authorship

with surface effects and not with the underlying
processes of the hardware and software. (Hayles,
2002, p. 66)

But whether they are interested or not, critics
will need to begin bridging this divide if their
scholarship is to be applicable. Hayles’ agenda in
Writing Machines was to deal with the materiality
of a text. However, the materiality of a digital text
is dependent on these “computer science folks”
and their skills.

Along with the absence of a substantive dis-
cussion of the programmer, an examination of
early hypertext theory shows a reverence for the
programmer’s ability to network and link docu-
ments. The nonlinear and poly-vocal attributes of
digital writing captivated theorists during much
of the 1990s. The endless potential of links be-
tween sites and pages was treated as a victory for
the reader against the tyranny of the printed line
and the oppression of the author. In From Text
to Hypertext, Silvio Gaggi (1997) explains: “In
electronic networks no single author addresses
any single reader, or, if one does, their exchange
emerges from and immediately reenters a broader
context of multiple speakers and listeners. There
is a polyphony of voices” (Gaggi, 1997, p. 111).
Likewise, design specialist Jakob Nielson (2000)
wrote: “Hypertext basically destroys the authority
of the author to determine how readers should be
introduced to a topic” (Nielson, 2000, p. 171). In
Nielson’s section, The Authority of the Author,
he explains: “Authoring takes on an entirely new
dimension when your job is changed to one of
providing opportunities for readers rather than
ordering them around” (Nielson, 2000, p. 171).
These critics were clearly taken by what they
perceived to be “transference of authorial power”
(Landow, 1997, p. 90).

However, those so-called choices and links
have an author, or rather, a programmer. Prior to
the introduction of Greasemonkey, a reader could
not create and follow a link that was not there. Of

course, closing a browser is no more empowering
than closing one book and picking up another and
this option does not uniquely strengthen the reader
position in a digital environment. The reader is
only using avenues put in place by the “electronic
author.” Greasemonkey, on the contrary, has
the potential to fulfi ll the early promises of the
Internet to re-empower the reader and return the
authoring capabilities to the audience.

The question then becomes whether or not
writing code necessitates the same “extreme
imagination” required of designer and authors?
Fortunately, scholars have begun studying the
parallels between “writing” and “code.” This
research provides some insight for determining
whether or not the programmer should be relieved
of the craftsman label. Such an examination re-
quires a defi nition, or at least an attempt to defi ne
“code.” In his introduction to Codework, Alan
Sondheim writes:

In a narrower sense, code refers to a translation
from natural language to an artifi cial, strictly
defi ned one; the syntax of Morse code, for ex-
ample, has no room for anomalies or fuzziness.
Computer code generally requires strictly defi ned
codes that stand in for operations that occur
“deeper” in the machine. Most users work on
or within graphic surfaces that are intricately
connected to the programming “beneath”; they
have little idea how or why their machines work.
(Sondheim, 2001)

While Sondheim could easily backup his claim
about “most users” and their levels of engage-
ment with what goes on below the surface of a
user-interface, the open source community and
programs such as Greasemonkey are changing
the level of engagement users have with code
“‘deeper’ in the machine.”

In this instance, it will be demonstrated that
with the advancements of code, programmers
have choices that require not just craftsman-like

 19

Greasemonkey and a Challenge to Notions of Authorship

skill but imagination. These choices challenge
programmers to create and “author” because
intentionality and predetermined outcomes are
not built into their computer languages. The argu-
ment posed here is that computer languages have
become so robust and complex that programmers
are using code to author pages in ways that were
never conceived of when the languages were
developed. Perhaps the best way to prove that
imagination is required of programmers is to
examine programmers discussing code.6

The following discussion is taken from a
 JavaScript message board involving myself and
two other programmers. The programmer post-
ing the problem wishes to allow images on his
Web site to overlap at will. His fi rst instinct is to
use the HTML <LAYER> tag which, among its
properties, does allow overlapping. Unfortunately,
his code fails.

Subject: [javascript] I need to share a Layer
between two Frames.

I have a web site wich I use Frames. But I need
to display an image qich its gone take an area
biguer than the original Frame. Now when I try
to do this part of the Layer its hide under the
other frame. I want to open this layer and need
to be displayed between two frames. Some Ideas.
Thank You.7

Another programmer responded to the mes-
sage with bad news. After explaining the limita-
tion of frames as a means to construct a site, he
recommends that the programmer either recreate
his entire site without frames or deal with the
limitations of the <LAYER> tag.

You can’t share a layer between two frames.

Each frame consists of a single page. This means
for your two frames you must have two separate
pages being viewed in them. A layer, though it can

be positioned anywhere on a page, can’t go any
further than the constraints of this page, which
means it can’t be on two pages at once.

Either change the way your sites set up and don’t
use frames or compromise on what you want to
achieve with this layer—sorry.

Even though the <LAYER> tag was the un-
derstood tactic for stacking or layering images,
if another solution could be found there was no
reason to implement the <LAYER> tag. The so-
lution involved the use of a newer tag called an
in-line frame or <IFRAME>. This tag is gener-
ally used for an easy means to format menus and
other navigational systems on Web sites. In-line
frames are thought of as “useful for sidebar and
other information of interest that isn’t directly
relevant to the main body of content” (Tuck, 2003).
However, a closer examination of the tag’s proper-
ties shows that with imaginative manipulation, it
does allow layering. It is an unconventional use
of a tag beyond its designated and pre-concieved
task that solves the problem.

… Start by creating a new page that will serve
as your new index page. In it, place 2 IFrames in
the BODY tag. Set the source of the fi rst IFrame
to your old index page. Make sure you set the
STYLE to something like this {z-index:1; position:
static; top:0; left:0; width:100%; height:100%}
Set the source of the second IFrame to the page
that has your Layer and image in it. Make sure
“AllowTransparency” is set to TRUE and then set
the IFrame’s STYLE to something like {z-index:0;
position:absolute; top:0; left:0; width:100%;
height:100%} Note that the second IFrame’s z-
Index is lower than the fi rst. Give each IFrame an
ID and using JavaScripts you can control when
you want the lower or second IFrame to show
up over the fi rst. I would call the second IFrame
something like ID=”glassIFrame” because that
is essentially what it is. A clear layer that you will

20

Greasemonkey and a Challenge to Notions of Authorship

use to overlay images but will allow your original
frames to show through.

Hope this helps,

Brian

Shortly after this was posted, the programmer
responded simply: “Thank You. This its working
to me [sic].” This example serves to demonstrate
that the boundaries of code can be pushed and
stretched by the imagination of the programmer.
Such creative practice can directly affect “writing”
or “authoring” in a digital environment. That is,
the programmer must be included in the theoreti-
cal nomenclature for analyzing and discussing
digital text. The “computer science folks” often
dismissed as craftspeople, are not outliers in the
production of these works. Greasemonkey is an
excellent example of the designer and program-
mer roles working in the creation of scripts such
as Book Burro.

FUTURE TRENDS AND THE
POTENTIAL “CATASTROPHE”
OF GREASEMONKEY

In his The Code is not the Text (Unless It is the
Text), John Cayley is concerned with, among
other things, the relationship between code and
literature. Literature, as Cayley writes, is subject
to the transformative forces inherent in electronic
spaces:

[M]utation is indeed a generative catastrophe
for “literature’ in the sense of immutable, au-
thoritative corpus. As writing in networked and
programmable media, language and literature
mutate over time and as time-based art, according
to programs of coded texts which are embedded
and concealed in their structures of fl ickering
signifi cation. (Cayley, 2002)

Greasemonkey enables, even promotes, the
mutation of the otherwise unalterable offerings of
companies such as Amazon. The previous section
demonstrated the importance of the programmer
role or the creative possibilities for the person
who controls these “structures.” Greasemonkey
is perhaps one of the most innovative open source
technologies that effectively enables readers to
assume the multi-faceted roles of a digital author
including designer and programmer. However, as
the popularity of Greasemonkey grows, many au-
thors/designers/programmers are turning their at-
tention to undoing or mutating corporate business
strategies. Book Burro does facilitate the purchase
of a competitor’s book while a user researches
materials with Amazon. Other scripts simply
eliminate advertising. For example, Slashdot is a
Web site that supports open source projects. It is
subtitled, News for Nerds and Stuff that Matters.8
At the top of Slashdot’s homepage is a prominent
advertisement section. The advertisers are often
major computer or software companies that are
well-aware of Slashdot’s readership. With the in-
stallation of the Greasemonkey script Slashdot Ad
Removal, Firefox users no longer have to view the
advertisements.9 Who will continue to advertise
on sites that have known Greasemonkey scripts?
Perhaps more alarming is the understanding that
technology that can be demonstrated to have a
negative effect on fi nancial gains may be subject
to litigation. The Napster case demonstrated what
happens if a company was found to willfully fa-
cilitate the sharing of copyrighted material. It is
not stretching the imagination to see a day when
lawsuits are fi led to prevent the willful defacement
of paid advertising. Consequently, as we add the
programmer to the theoretical nomenclature for
authorship studies, we see not just the roles the
programmer plays but the power and signifi cance
of this role.

 21

Greasemonkey and a Challenge to Notions of Authorship

REFERENCES

Bolter, J. D. (1990). Writing space: The computer
in the history of literacy. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Bolter, J. D. (2001). Writing space: Computers,
hypertext, and the remediation of print (2nd ed.).
NJ: Lawrence Erlbaum Associates.

Cayley, J. (2002). The code is not the text (unless
it is the text). Electronic Book Review. Retrieved
January 25, 2006, from http://www.electronic-
bookreview.com/thread/electropoetics/literal

Dake, D. (2005). Creative visualization. In K.
Smith, S. Moriarty, G. Barbatsis, & K. Kenny
(Eds.), Handbook of visual communication:
Theory, methods, and media (pp. 23- 42). Mahwah,
NJ: Lawrence Erlbaum Associates.

Derrida, J. (1974). Of grammatology (G. Spivak,
Trans.). Baltimore: The Johns Hopkins University
Press.

Foucault, M. (1979). What is an author? In J. V.
Harari (Ed.), Textual strategies: Perspectives in
post-structuralist criticism (pp. 141 -160). Ithaca:
Cornell University Press.

Gaggi, S. (1997). From text to hypertext: Decen-
tering the subject in fi ction, fi lm, the visual arts
and electronic media. Philadelphia: University
of Pennsylvania Press.

Grusin, R. (1996). What is an electronic author?
In R. Markley (Ed.), Virtual realities and their
discontents (pp. 39 53). Baltimore: The Johns
Hopkins University Press.

Hayles, N. K. (2002). Writing machines. Cam-
bridge, MA: MIT Press.

Landow, G. (1997). Hypertext 2.0: The con-
vergence of contemporary critical theory and
technology. Baltimore: The Johns Hopkins Uni-
versity Press.

Maruca, L. (2003). Bodies of type: The work of
textual production in English printers’ manuals.
Eighteenth-Century Studies, 36(3), 321 343.

Nielson, J. (2000). Designing web usability: The
practice of simplicity. NewYork: New Riders
Publishing.

Propeller. (2006). Web Design Guru. Monster.
com. Retrieved February 4, 2006, from http://job-
search.monster.com/getjob.asp?JobID=39246359
&AVSDM=2006%2D02 %2D03+13%3A21%3 A
54&Logo=1&q=Web+design&fn=554&cy=us

Rombes, N. (2005). The rebirth of the author.
In A. Kroker & M. Kroker (Eds.), CTHEORY.
Retrieved January 25, 2006, from http://www.
ctheory.net/articles.aspx?id=480

Slatin, R. (1991). Reading hypertext: Order and
coherence in a new medium. In P. Delany & G.
Landow (Eds.), Hypermedia and literary studies
(pp. 153- 169). Cambridge, MA: The MIT Press.

Sondheim, A. (2001). Introduction: Codework.
American Book Review, 22(6). Retrieved January
25, 2006, from http://www.litline.org/ABR/is-
sues/Volume22/Issue6/abr226.html

Tuck, M. (2003). Practical Web design: Frames and
frame usage explained. SitePointe.com. Retrieved
February 6, 2006, from http://www.sitepoint.
com/article/frames-frame-usage-explained/5

Woodmansee, M. (1984). The genius and the
copyright: Economic and legal conditions of the
emergence of the “author.” Eighteenth-Century
Studies, 17(4), 425 -448.

KEY TERMS

 Active Browsing: Using Greasemonkey
scripts allows individuals browsing a Web site to
take control and alter that site’s appearance and
even functionality. The term active browsing is
used in contrast to what Greasemonkey users

22

Greasemonkey and a Challenge to Notions of Authorship

deem the traditional, passive approach to Web
browsing.

 Author-Function: Michel Foucault devel-
oped this term to call into question our ideas
about what it means currently to create a work
or a text. His defi nition of a text extends beyond
traditional printed works and into other media.
The author-function is not a direct analog for the
person or individual we call the author. Rather,
it is our understanding of how text is produced,
distributed, and consumed. Foucault states that
the idea of an author has not always existed and
that there may be a time when a text is produced,
distributed, and consumed without the individual
we call the author.

 Book Burro: A Greasemonkey script that
works with Amazon.com’s Web site. The script
displays competing pricing as well as library
availability of a book found on Amazon’s site.

 Greasemonkey: An extension for the Mozilla
Firefox browser that enables users to install cli-
ent-side user scripts that alter the behavior and
appearance of Web pages. The alterations occur
as a Web page is downloaded and rendered in a
user’s Web browser. The alterations occur without
the consent of the site owners.

 JavaScript: An object-oriented, cross-plat-
form, Web scripting language originally devel-
oped by Netscape Communications, JavaScript
is most commonly used for client side applica-
tions.

 Napster: The fi rst peer-to-peer fi le-sharing
service that by the middle of 2000 had millions of
users. Record industries sued Napster for facilitat-
ing the free exchange of copyrighted material. By
July of 2001, Napster was shut down.

 User Scripts: Computer programming that
can be activated in order to alter the appearance
of a Web page.

ENDNOTES

1 For more information on Greasemonkey or
to download and use it, please see: http://
greasemonkey.mozdev.org/

2 See http://userscripts.org/scripts/show/1859
to download and install the Book Burro
script

3 I would add the growth of “wikis” to Rombes’
discussion of technologies that push the
author-function.

4 Here digital writing and media - even Grease-
monkey scripts are treated as “text.”

5 See http://userscripts.org/tag/usability for a
list of usability scripts

6 There are examples of scholars debating the
roles code and computers play in sharing
knowledge and facilitating invention. Doug-
las Hofstadter contemplated a similar issue
back in 1979 in a section from his Gödel,
Escher, Bach: An Eternal Braid titled “Are
Computers Super-Flexible or Super-Rigid?”
Code is also associated with control in digi-
tal environments. More recently, Lawrence
Lessig published Code and other Laws of
Cyberspace. Likewise, John Cayley’s The
Code is not the Text (unless it is the Text) has
been infl uential for academics working with
unraveling the relationships among writers,
digital media, and code. The example that
follows is more practical than theoretical.
That is, it was necessary instead to show real
programmers working with a real issue.

7 Rather than edit for spelling and grammar,
the original posting has been preserved.

8 See http://slashdot.org
9 See http://userscripts.org/scripts/show/604

 23

Chapter III
Morality and Pragmatism in

Free Software and Open Source
Dave Yeats

Auburn University, USA

INTRODUCTION

As governments around the world search for an
alternative to Microsoft software, the open source
operating system Linux fi nds itself in a perfect
position to take market share from Microsoft
Windows. Governments in France, Germany, The
Netherlands, Italy, Spain, and the United Kingdom
use Linux to encourage open standards, promote
decentralized software development, provide
improved security, and reduce software costs
(Bloor, 2003). The Chinese government strongly
supports Linux as its operating system of choice
because Chinese experts have complete access to
the source code and can examine it for security
fl aws (Andrews, 2003). In Brazil, leftist activ-

ists gathered to promote the use of open source
software (OSS) (Clendenning, 2005).

There is a connection between the technologi-
cal reasons for choosing open source software and
the political ones. Many governments see open
source as a way to promote a socialistic agenda
in their choices of technology. Open source ad-
vocates, however, do not necessarily make these
connections between the software development
methods involved in open source and political
movements of governments. There is evidence,
however, that leaders in the open source move-
ment have expressed their rationale for advocating
opening the source code of software.

The open source movement can trace its roots
back to an alternate, still very active, software

ABSTRACT

This chapter analyzes the differences between the philosophy of the Free Software Foundation (FSF)
as described by Richard Stallman and the open source movement as described in the writings of Eric
Raymond. It argues that free software bases its activity on the argument that sharing code is a moral
obligation and open source bases its activity on a pragmatic argument that sharing code produces bet-
ter software. By examining the differences between these two related software movements, this chapter
enables readers to consider the implications of these differences and make more informed decisions
about software use and involvement in various software development efforts.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

24

Morality and Pragmatism in Free Software and Open Source

movement known as free software. While open
source and free software can (and do) coexist in
many ways, there are some essential differences
that distinguish the two groups from one another.
Perhaps most notably, the free software movement
is based on a belief in a moral or ethical approach
to software development, while open source takes
a much more pragmatic view. While both groups
argue for the open sharing of source code, each
has its own reason for doing so. Understanding
the differences between open source and free
software can help open source researchers use
more precise terminology and preserve the intent
of each of these groups rather than assuming that
they are interchangeable.

The following chapter begins with a brief
historical overview of the free software and
open source movements and highlights some of
the main beliefs of each. The chapter then offers
an examination of both the moral and pragmatic
aspects of open source software. The conclusion
invites readers to consider the implications of the
differences between the two viewpoints and sug-
gests ways for readers to apply this information
when making choices about software.

BACKGROUND

The open source movement grew out of the soft-
ware development practices in academic settings
during the 1970s. During those early years of soft-
ware development, computer scientists at colleges
and universities worked on corporate-sponsored
projects. The software developed for these projects
was freely shared between universities, fostering
an open, collaborative environment in which many
developers were involved in creating, maintaining,
and evaluating code (Raymond, 1999).

In his A Brief History of Open Source article,
Charlie Lowe (2001) describes the end of open
and collaborative methods of developing computer
software in the 1980s when the corporate sponsors
of academic software projects began to copyright

the code developed for them. Corporations claimed
that the university-run projects created valuable
intellectual property that should be protected un-
der law. This, of course, was just one of the signs
of the shift from the commodity-based economy
in the U.S. to a knowledge-based one. The wave
of copyrights threatened to end the collaboration
between computer scientists and slow the evolution
of important projects. It looked as if the computer
scientists would be required to work in smaller
groups on proprietary projects.

Richard Stallman (1999) reports that he cre-
ated the GNU General Public License (GPL) to
maintain the ability to collaborate with other
computer scientists on software projects, without
restriction. The name GNU is a self-refl exive
acronym meaning “GNU’s Not UNIX,” a play
on words that pays homage to and differentiates
itself from the UNIX legacy.1 Stallman was con-
cerned that the UNIX operating system, created
during the collaborative era of the 1970s, would
no longer be supported by new programs that used
its stable and robust architecture when access to
the source code was cut off. Stallman started the
GNU initiative (which enabled the establishment
of the Free Software Foundation [FSF]) to ensure
that new software would be freely available.

The GNU GPL gave programmers the free-
dom to create new applications and license them
to be freely distributable. Specifi cally, the GNU
GPL gives anyone the right to modify, copy, and
redistribute source code with one important re-
striction: Any new version or copy must also be
published under the GNU GPL to insure that the
improved code continues to be freely available.
Many programmers (both those accustomed to the
academic practices of the 1970s and new computer
enthusiasts) adopted the GNU GPL and continued
to work in open, collaborative systems.

Arguably the most important piece of software
developed under the GNU GPL is the Linux
operating system. Linus Torvalds, while still a
student at the University of Helsinki in 1991,
created a new operating system based on the

 25

Morality and Pragmatism in Free Software and Open Source

ideas found in the UNIX operating system. This
new piece of software, Linux, not only proved
the success of GNU GPL, but it also represented
a further shift toward a widely cooperative ef-
fort in software development. According to Eric
Raymond, Linux debunked the myth that there
were software projects with an inherent “critical
complexity” that necessitated a “centralized, a
priori approach” (Raymond, 2001, p. 21). With
wide adoption among software developers and
computer scientists, Linux proved to be a stable
and powerful system despite its complexity and
rapid development schedule.

In 1998, when Netscape decided to make its
source code public as part of the Mozilla proj-
ect, Eric Raymond and Bruce Perens suggested
the use of the term “open source” in response
to confusion over the term “free.” Stallman, in
many cases, found himself explaining that he was
using the term “free” in the sense of “freedom”
or “liberty” rather than “without monetary cost.”
Raymond and Perens founded the Open Source
Initiative (OSI) to differentiate the new group
from the FSF.

While there are many other active voices in
the free software and open source movements
such as Linus Torvalds (originator of the Linux
operating system) and Robert Young (co-founder
and CEO of Red Hat), Richard Stallman and Eric
Raymond continue to be the most infl uential and
widely cited. While Stallman and Raymond do
agree at some level that software development
benefi ts from the free distribution of source code,
they see this free distribution in two completely
different ways.

THE DEBATE

Many people have written about the debate be-
tween Eric Raymond and Richard Stallman. It is
widely reported (Williams, 2002) that Stallman
disagrees with Raymond’s pragmatic reasons
for promoting the term “open source” over “free

software.” In fact, Raymond’s Shut Up and Show
Them the Code and Stallman’s Why “Free Soft-
ware” is Better Than “Open Source” are two
examples of the heated exchange between the
two writers, each defending his own position on
the issue of freely available source code. Bruce
Perens reports that it is “popular to type-case
the two as adversaries” (Perens, 1999, p. 174).
While most studies emphasize that the term “open
source” was adopted simply to avoid confusing
the word “free” in “software” (DiBona, Ockman,
& Stone, 1999; Feller & Fitzgerald, 2002; Fink,
2003), others are careful to point out that the shift
in terminology really signaled a shift in strategy
for open source advocates.

Perhaps the best work done on the differences
between these groups is David M. Berry’s (2004)
work, The Contestation of Code: A Preliminary
Investigation into the Discourse of the Free/Libre
and Open Source Movements. By analyzing the
discourse of the two movements (in the words of
Stallman and Raymond), Berry concludes that the
discourse of the free software movement more
closely identifi es with the user, is more utopian,
and advocates a communal, socialist approach.
The discourse of the open source movement, on
the other hand, advocates a more individualistic
approach that identifi es with the “owners” or
creators of software, resulting in a more libertar-
ian emphasis.

In any case, the rift between those who choose
to use the term free software and those who choose
to use the term open source has resulted in some
scholars choosing sides on the issue. Lawrence
Lessig (2004), an important scholar in the area of
intellectual property law, discusses open source at
great length in his work, Free Culture. However, he
quotes only Stallman’s writings, not Raymond’s.
To Lessig, at least, the open source movement
is more about Stallman’s rhetoric of freedom
than Raymond’s pragmatism. Understanding
the rationale behind such choices is important in
understanding the impact of open source software
outside of the software industry.

26

Morality and Pragmatism in Free Software and Open Source

OPEN SOURCE AND
FREE SOFTWARE

In The GNU Operating System and the Free
Software Movement, Stallman suggests that the
two terms “describe the same category of software
… but say different things about the software,
and about values” (Stallman, 1999, p. 70). The
following sections examine the work of Richard
Stallman and Eric Raymond to investigate the
different philosophical approaches to software
development espoused by each.

Free Software: The Works
of Richard Stallman

Stallman’s (Stallman, 2002c) theorizing about
software rests on what he identifi es as the four
main “freedoms” of his “Free Software Defi ni-
tion.” According to Stallman (2002c, p. 18), these
freedoms are:

• Freedom 0: The freedom to run the program,
for any purpose

• Freedom 1: The freedom to study how the
program works, and adapt it to your needs
(access to the source code is a precondition
to this)

• Freedom 2: The freedom to redistribute
copies so you can help your neighbor

• Freedom 3: The freedom to improve the
program, and release your improvements
to the public, so that the whole community
benefi ts (access to the source code is a pre-
condition to this)

In other words, Stallman directly relates his
views about software development to a set of
freedoms for users of that software. In the rheto-
ric of these main “freedoms,” at least, Stallman
is concerned more with the users of a software
program than with the program itself.

In The GNU Manifesto, Richard Stallman
makes impassioned arguments about his stance

toward software development. “I consider that
the golden rule requires that if I like a program
I must share it with other people who like it”
(Stallman, 2002a, p. 32), he writes. “So that I
can continue to use computers without dishonor,
I have decided to put together a suffi cient body
of free software so that I will be able to get along
without any software that is not free” (Stallman,
2002a, p. 32). He constructs his call for radical
change in the way software development occurs
with several ideological claims. Specifi cally, Stall-
man claims that sharing is fundamental and that
free software offers the only ethical alternative
for software programmers.

Stallman’s rationale for calling programmers
to work on an alternative to proprietary software
is based on what he calls the “fundamental act
of friendship of programmers”: the “sharing of
programs” (Stallman, 2002a, p. 33). Stallman sug-
gests that “[m]any programmers are unhappy about
the commercialization of system software. It may
enable them to make more money, but it requires
them to feel in confl ict with other programmers in
general rather than feel as comrades” (Stallman,
2002a, p. 32- 33). More than simply suggesting
that the sharing of programs is ideal or simply
important, Stallman argues that it is a fundamental
imperative and a source of confl ict. He goes so
far as to suggest that programmers “must choose
between friendship and obeying the law” (Stall-
man, 2002a, p. 33), implying that the law, on the
issue of software availability, is in error.

The metaphors Stallman uses to expand on the
idea of the centrality of sharing among develop-
ers makes it sound as if restricting software use
is against nature itself. He writes: “Copying …
is as natural to a programmer as breathing, and
as productive. It ought to be as free” (Stallman,
2002a, p. 34). He goes on to equate software with
air itself: “Once GNU is written, everyone will
be able to obtain good system software free, just
like air” (Stallman, 2002a, p. 34). Denying people
the right to free software, in other words, would
be like trying to regulate and restrict breathing

 27

Morality and Pragmatism in Free Software and Open Source

itself. According to Stallman, restricting software
use results in a kind of “police state” employing
“cumbersome mechanisms” (Stallman, 2002a, p.
34) in the enforcement of copyright law.

While Stallman characterizes a software
development community that shares all of its re-
sources as a utopian society, he harshly criticizes
proprietary software. He claims that restricting
use of a program through intellectual property
law constitutes “deliberate destruction” (Stall-
man, 2002a, p. 36) and a failure to be a good
citizen. Stallman’s rhetoric sets a scene with
only two alternatives: free software based on
the ideas of camaraderie, friendship, freedom,
good citizenship, community spirit, and sharing
of proprietary software based on the ideas of
restriction, destruction, commercialization, and
materialism. Clearly, Stallman’s purpose is to set
up a binary in which the only good is free software
and the only evil is proprietary software. Any
programmer who chooses to develop software in
the capitalist proprietary software environment
is choosing to be less moral than his or her free
software counterparts.

Open Source Software: Raymond’s
Cathedral and Bazaar

Eric Raymond’s The Cathedral and the Bazaar
(2001), promotes open source software using two
pragmatic claims that compliment each other: the
promotion of the individual and the conscription
of others. Unlike Stallman’s emphasis on sharing
and morality, Raymond emphasizes the practical
aspects of open source that leads to its technical
superiority. Specifi cally, Raymond describes the
importance of the lead developers of projects
while at the same time emphasizing the necessity
of using others to complete work on projects. In
neither case does Raymond express a belief in
the moral superiority of open source develop-
ment. Instead, all of the benefi ts of open source
are described in terms of the development of a
superior technological artifact.

Throughout The Cathedral and the Bazaar,
Raymond (2001) promotes an egocentric view
of technological development that emphasizes
the role of the individual in the process. This
egoistic approach is revealed in many ways—
from Raymond’s own self-congratulation, to his
description of how developers fi nd incentive to
volunteer to participate in projects. Raymond’s
tendency to promote individuals over the group
begins with his own tendency to describe himself
as a gifted individual. While some of his claims
may be true, it is unusual for a person to sing their
own praises quite as blatantly as Raymond does.
Usually, modesty does not allow for such open
self-congratulation. In describing the personality
traits common to good leaders for open source
software projects, Raymond points to his own
abilities. “It’s no coincidence that I’m an energetic
extrovert who enjoys working a crowd and has
some of the delivery and instincts of a stand-up
comic” (Raymond, 2001, p. 49). His infatuation
with his own charming personality illustrates how
much he values the individual over the group.
More than once, Raymond cites instances where
his superior programming skills enabled him to
make extraordinarily wise decisions that a lesser
programmer might miss. For his programming
and writing skills, Raymond mentions that he got
“fan mail” (Raymond, 2001, p. 38) and “help[ed]
make history” (Raymond, 2001, p. 61). Clearly,
Raymond’s focus on the individual begins with
himself.

Raymond goes beyond his own egoism, how-
ever, when he generalizes about what constitutes
a good open source software project. According
to Raymond, “every good software project starts
by scratching a developer’s personal itch” (Ray-
mond, 2001, p. 23). This aphorism is the fi rst of
the 19 rules of open source software development.
It is interesting that Raymond recognizes that
the motivation behind good software comes not
from a need in the community but rather from a
personal interest or desire. Raymond reiterates
this emphasis on the individual developer’s pri-

28

Morality and Pragmatism in Free Software and Open Source

macy in starting a project in tenet 18: “To solve
an interesting problem, start by fi nding a problem
that is interesting to you.”(Raymond, 2001, p. 49)
Again, nowhere in Raymond’s writing does he
refer to moral behavior or developers and a need
to share. Instead, he believes that the curiosity of
an individual developer is enough to justify work
in the open source model.

The natural conclusion to a system that en-
courages individuals to involve themselves in
only those projects which they fi nd personally
interesting is a hierarchical system that promotes
these individuals. Open source developers who
choose to take on a particular software problem
promote themselves to the role that Raymond
calls the “core developer” (Raymond, 2001, p.
34). This role bestows the leadership upon a single
individual who is, in turn, supported by a “halo
of beta-testers” who exist to serve the needs of
the leader (Raymond, 2001, p. 34). Naturally, this
leader wields considerable power over his or her
user community. And, according to Raymond,
not every developer possesses the skills to be a
good project leader. Raymond presupposes that
any good project leader has superior technical
abilities that are generally recognized in the open
source community. Further, he suggests that the
core developers have skills “not normally associ-
ated with software development”—people skills
(Raymond, 2001, p. 48).

What Raymond calls people skills is actually
an ability to provide incentive to other develop-
ers to enlist their help with a project. Raymond
posits that the success of the Linux project came
largely from core developer Linus Torvalds’ abil-
ity to keep his volunteer developers “stimulated
and rewarded” by giving them “an ego-satisfying
piece of the action” (Raymond, 2001, p. 30). In his
own fetchmail project, Raymond says he made a
habit of “stroking [users] whenever they sent in
patches and feedback” (Raymond, 2001, p. 38).
In his analysis of how to encourage participa-
tion in members of the open source community,
Raymond asserts that hackers fi nd rewards in

“the intangible of their own ego satisfaction and
reputation among other hackers” (Raymond,
2001, p. 53). A project leader must “connect the
selfi shness of individual hackers as fi rmly as pos-
sible to the diffi cult ends” involved in software
development (Raymond, 2001, p. 53). Rather than
provide monetary incentive, then, Raymond en-
courages an approach that enables project leaders
to conscript users’ assistance through a coercive
appeal to their egoistic, selfi sh desire for glory.
This approach simultaneously reinforces the
leader’s domination over other developers and
de-emphasizes any development practice based
on goals related to benefi t to the community.

Raymond discusses how the paradigm of
encouraging egoistic behavior of volunteer de-
velopers affects the individual reputation in the
leader in the following passage:

Interestingly enough, you will quickly fi nd that if
you are completely and self-deprecatingly truthful
about how much you owe other people, the world
at large will treat you as though you did every
bit of the invention yourself and are just being
becomingly modest about your innate genius.
(Raymond, 2001, p. 40)

It is diffi cult to believe that Raymond would
ever be mistaken as “becomingly modest.” Even
when he encourages leaders to give credit to those
that assist with the project, he reveals the underly-
ing motive of additional glory and recognition in
the open source community.

The dominating force that goes hand-in-hand
with Raymond’s suggestion that project lead-
ers should appeal to a volunteers’ selfi shness is
the idea that these users must be recruited and
conscripted in order to create a successful open
source project. Raymond quotes Linus Torvalds
as saying, “I’m basically a very lazy person who
likes to take credit for things that other people
actually do” (Raymond, 2001, p. 27). While
Torvalds is obviously speaking tongue-in-cheek
here, it reveals a common theme that Raymond

 29

Morality and Pragmatism in Free Software and Open Source

continues to espouse. Two of the 19 development
practices include, “If you treat your beta-testers
as if they’re your most valuable resource, they
will respond by becoming your most valuable
resource” (Raymond, 2001, p. 38), and “The next
best thing to having good ideas is recognizing
good ideas from your users” (Raymond, 2001,
p. 40). Both of these statements imply that the
volunteer developers belong to and work for the
project leader. In addition, the project leader can
use these volunteers for his or her own purposes
like a natural resource.

The idea of individual ownership extends
beyond the volunteers on a particular project to
the software itself. Despite the fact that projects
are “co-developed” by many individual develop-
ers, the lead project coordinator actually “owns”
the technology. This idea is present in another
one of Raymond’s main tenets: “When you lose
interest in a program, your last duty to it is to
hand it off to a competent successor” (Raymond,
2001, p. 26). Therefore, the technology can be
bequeathed and inherited much like a traditional
patriarchal succession of ownership. And when
a software project is passed down to the next
generation of leadership, the volunteer user base
comes with it.

Speaking of this volunteer user base, Ray-
mond suggests that “[p]roperly cultivated, they
can become co-developers” (Raymond, 2001, p.
26). In addition to cultivating, Raymond suggests
that users can be “harnessed” (Raymond, 2001, p.
50) to do work for the lead developer. Essentially,
Raymond espouses conscripting volunteers to do
the work of the lead developer. Tenet 6 summarizes
his position: “Treating your users as co-developers
is your least-hassle route to rapid code improve-
ment and effective debugging” (Raymond, 2001,
p. 27). The implication of that statement is not that
users really are co-developers but rather that users
should be treated as if they were co-developers
in order to ensure that they will do work for the
improvement of the system. Raymond seems to
believe that core developers could build open

source software projects on their own, but enlist-
ing the help of users provides a less diffi cult way
to achieve the goal of creating a powerful system.
Conspicuously absent in this method of project
management is the idea that these volunteer users
are better served by participating in the develop-
ment process. Instead, Raymond’s main concern
is with the system itself.

According to Raymond, the true benefi t of
this conscription model of development comes
from the advantages of using a large body of
volunteers to detect and fi x bugs in the system.
Tenet 7 is, “Release early. Release often. And
listen to your customers” (Raymond, 2001, p. 29).
However, Raymond’s description of the value of
this rule does not include a plea for technology
that is sensitive to users’ needs. Instead, he as-
serts that this innovation is simply an effective
way to test the software for technological bugs,
not usability problems. The goal is to “maximize
the number of person-hours thrown at debug-
ging and development, even at the possible cost
of instability in the code” (Raymond, 2001, p.
30). Raymond suggests that a “program doesn’t
have to work particularly well. It can be crude,
buggy, incomplete, and poorly documented” (p.
47). Therefore, he promotes systems exposed to
“a thousand eager co-developers pounding on
every single new release. Accordingly you release
often in order to get more corrections, and as a
benefi cial side effect you have less to lose if an
occasional botch gets out the door” (Raymond,
2001, p. 31).

His suggestion that less-than-usable software
can be released shows that his interest is not in
the value of the software to users. His interest is
in the value of the users to the software.

MORALITY AND PRAGMATISM

While Stallman’s emphasis in advocating for the
free software movement is clearly one of moral
behavior and obligation, Raymond’s characteriza-

30

Morality and Pragmatism in Free Software and Open Source

tion of the open source movement emphasizes
the technological superiority of a decentralized
development process. Stallman’s argument sets
up free software as a superior and more ethical
alternative to proprietary software development
that focuses on the rights and freedoms of users
and developers. Nowhere in Raymond’s writings
does he suggest that proprietary software is less
ethical. That is not to say Raymond isn’t critical
of proprietary software. However, his main con-
cern is always the technological implications of
software rather than the moral.

Table 1 outlines a few of the more important
differences between the two movements:

Faced with two very different value systems
surrounding these related movements, open source
software users should pay careful attention to the
software they choose to use or the software com-
munities in which they participate. While the two
approaches to software development adopt similar
practices, they represent two different viewpoints
that are often at odds with one another. If a user
is making a choice to use open source software
because of a belief that it is more moral to sup-
port open intellectual property policies, they may
want to seek out like-minded projects that use the
Stallman approach. If a user is more concerned
about the technological superiority of open source
software even if that superiority comes at the cost
of an emphasis on equality among users, then
they may want to seek out projects that are run
by maintainers that use the Raymond style.

In either case, users should be aware that
the choices they make in their affi liations also
signal to others that they adopt the worldview
represented in those choices. While there may
be many instances of individual developers and
software projects that blend the ideas and beliefs
of both Raymond and Stallman, it is still impor-
tant to understand that these philosophies often
result in development approaches at odds with
each other. Though the practices are admittedly
similar, a difference in why one would choose to
develop open source software can affect how one
carries out that choice.

Perhaps the most important thing to realize,
however, is that neither the Raymond nor the Stall-
man approach is inherently superior for all users.
Instead, the choice to adopt one of the approaches
over the other rests entirely upon the needs and
situation of the individual user. While the rhetoric
of both Stallman and Raymond suggest that their
understanding of software development represents
a truly enlightened and superior approach, neither
one can be said to offer the fi nal word.

FUTURE TRENDS

The most inclusive and technically accurate de-
scription of software with freely available source
code is free/libre open source software (F/LOSS or
FLOSS) because it accurately maintains portions
of each of the various movements in the software

Table 1. The morality and pragmatism of the free software and open source movements

Morality

Free Software/Stallman

Pragmatism

Open Source/Raymond

Defi nes the benefi t of free software as a superior moral choice. Defi nes the benefi t of open source as a pragmatic way to develop
superior software.

Emphasizes developers’ moral obligation to share with others. Emphasizes satisfying developers’ personal and individual
desires.

Understands the development process as a shared, communal,
group effort based on socialistic principles.

Understands the development process as one driven by one or a
small group of leaders who conscript volunteers to assist with the
project.

 31

Morality and Pragmatism in Free Software and Open Source

community. However, the term open source has
proven to be the most popular, partly because of
the deliberate attempt by open source advocates
to make the licensing structures more business-
friendly. Apart from its popularity, many choose
the term open source almost exclusively due to its
infl uence on the broader culture; open source has
been used as a descriptor for everything from yoga
to t-shirt designs.2 When these non-technological
instances of open source are used, the suggestion
is that the development of these particular creative
endeavors is open to many. More than FLOSS,
open source represents both a software develop-
ment phenomenon and a cultural one.

However, when popular culture adopts open
source to mean an open, sharing community of
creative invention, it misses the main emphasis
of the movement. According to Raymond, the
movement is less about the moral imperative to
share with others and more about the benefi t of
harnessing the creative energy of individuals
who are free to choose their own work. Rather
than seeing open source as good for the public,
Raymond emphasizes the benefi t of the process
for the technology. In other words, Raymond is
more interested in product than people.

Unfortunately, it is likely too late to correct
the trend in popular culture to equate the term
open source with “sharing intellectual property”
even though open source refers to a process and
value system much more complicated than simply
sharing. While the term open source government”
certainly carries with it a grandiose image of
participatory, shared government in which each
member of a community has a voice, but it is
unclear how open source government is different
from a healthy democracy.

Members of the open source community can
contribute to the increased use of the term open
source by helping others understand where new
uses of the term open source resonate with simi-
larities in the software movement and where they
miss the mark. Very few creative endeavors have

anything akin to the source code found in software
development, so making the source code freely
available, the essential meaning of the phrase open
source, cannot be replicated in other fi elds. How-
ever, the idea that creative work should be shared
and that sharing can be protected with creative
licensing is a contribution from the open source
movement that can be adopted by others. Rather
than adopting open source, other communities
may benefi t by using more precise and applicable
language such as Creative Commons to refer to
the sharing of intellectual property.

CONCLUSION

While many researchers and developers of open
source software (myself included) typically lump
free software and open source software together,
both Stallman and Raymond adamantly insist that
there are fundamental differences between the
two groups. In his essay Why “Free Software” is
Better than “Open Source,” Stallman explains that
the two groups “disagree on the basic principles,
but agree more or less on the practical recom-
mendations” (Stallman, 2002b, p. 55). In other
words, free software and open source software
are essentially the same in practice, but not in
principle.

Because open source and free software appear
to operate the same way to outside observers, there
is very little insight into when a piece of software
should be labeled open source and when it should
be labeled free software. Often, both use the same
licensing structures. The essential difference is
not a technological one; it is one of philosophies.
Only the developers themselves can attest to the
reasons they choose to develop software with
freely available source code. However, it is useful
for outside observers to be more precise in their
allegiances. It could mean the difference between
freedom and pragmatism.

32

Morality and Pragmatism in Free Software and Open Source

REFERENCES

Andrews, P. (2003, November 24). Courting
China. U. S. News and World Report, p. 44 -45.

Berry, D. M. (2004). The contestation of code: A
preliminary investigation into the discourse of the
free/libre and open source movements. Critical
Discourse Studies, 1, 65 -89.

Bloor, R. (2003, June 16). Linux in Eu-
rope. IT-Director.com. Retrieved February 7,
2005, from http://www.it-director.com/article.
php?articleid=10929

Clendenning, A. (2005, January 30). Activists urge
free open-source software. World Social Forum.
Retrieved February 7, 2005, from http://www.
commondreams.org/headlines05/0130-03.htm

DiBona, C., Ockman, S., & Stone, M. (1999).
Introduction. In C. DiBona, S. Ockman, & M.
Stone (Eds.), Open sources: Voices from the open
source revolution (pp. 1-17). Sebastopol, CA:
O’Reilly & Associates.

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison-Wesley.

Fink, M. (2003). The business and economics of
Linux and open source. Upper Saddle River, NJ:
Prentice Hall PTR.

Lessig, L. (2004). Free culture: How big media
uses technology and the law to lock down cul-
ture and control creativity. New York: Penguin
Press.

Lowe, C. (2001). A brief history of open source:
Working to make knowledge free. Kairos: A
Journal for Teachers of Writing and Webbed
Environments, 6(2). Retrieved October 25, 2005,
from http://english.ttu.edu/KAIROS/6.2/news/
opensource.htm

Luman, S. (2005, June). Open source softwear.
Wired 13.06.

Pallatto, J. (2005, May 13). Yoga suit settlement
beggars open source ideals. eWeek. Retrieved
October 25, 2005, from http://www.eweek.com/
article2/0,1759,181,5971,00.asp

Perens, B. (1999). The open source defi nition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171- 188). Sebastopol, CA: O’Reilly & As-
sociates.

Raymond, E. (1999). A brief history of hackerdom.
In C. DiBona, S. Ockman, & M. Stone (Eds.),
Open sources: Voices from the open source
revolution (pp. 19 -30). Sebastopol, CA: O’Reilly
& Associates.

Raymond, E. (2001). The cathedral and the bazaar.
The cathedral and the bazaar: Musings on Linux
and open source by an accidental revolutionary
(rev. ed., pp. 19 -64). Sebastopol, CA: O’Reilly
& Associates.

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution (pp. 53 -
70). Sebastopol, CA: O’Reilly & Associates.

Stallman, R. (2002a). The GNU Manifesto. In J.
Gay (Ed.), Free software free society: Selected
essays of Richard M. Stallman (pp. 31-39). Boston:
Free Software Foundation.

Stallman, R. (2002b). Why “free software” is
better than “open source.” In J. Gay (Ed.), Free
software free society: Selected essays of Richard
M. Stallman (pp. 55-60). Boston: Free Software
Foundation.

Stallman, R. (2002c). The GNU Project. In J. Gay
(Ed.), Free software free society: Selected essays
of Richard M. Stallman (pp. 15-30). Boston: Free
Software Foundation.

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

 33

Morality and Pragmatism in Free Software and Open Source

KEY TERMS

 Free/Libre and Open Source Software
(FLOSS): A more inclusive term for all software
with freely available source code.

 Free Software (FS): Software with freely
available source code developed in the tradition
of the Free Software Foundation and infl uenced
by the writings of Richard Stallman.

 Morality: An appeal to the fundamental good-
ness of an act; primary rationale behind the free
software movement.

 Open Source Software (OSS): Software
with freely available source code developed in
the tradition of the Open Source Initiative (OSI)
and infl uenced by the ideas of Eric Raymond and
Bruce Perens.

 Proprietary Software (PS): Software without
publicly available source code, commonly seen as
the opposite of free and open source software.

 Pragmatism: An appeal to the usefulness of
an act; primary rationale behind the open source
movement.

ENDNOTES

1 It is common for developers to use refl ex-
ive acronyms, partly as a tongue-in-cheek
recognition of the overuse of acronyms in
technology. Other examples include PHP
(PHP hypertext protocol) and WINE (WINE
Is Not an Emulator).

2 For more information about some of the
ways open source is being used outside of
software, see Stuart Luman’s article “Open
Source Softwear” (2005, Wired 13[06]) and
John Pallatto’s article “Yoga Suit Settlement
Beggars Open Source Ideals” (2005, eWeek,
May 13).

34

Chapter IV
Hacker Culture and the

FLOSS Innovation
Yu-Wei Lin

University of Manchester, UK

INTRODUCTION

Free/libre open source software (FLOSS) has
emerged as an important phenomenon in the in-
formation and communication technology (ICT)
sector as well as in the wider public domain. A
new research strand has attracted scholars and
practitioners to analyse the development of FLOSS
from many perspectives. While the FLOSS
community continues to grow, diverse actors
(e.g., developers, fi rms, end-users, organisations,
governments, etc., just to name a few) are brought

into play. Meanwhile, a variety of apparatus and
inscriptions (e.g., technical ones such as software
and hardware tools, socioeconomic ones such as
licences, educational ones such as certifi cates,
and sociocultural ones such as online/off line
discussion forums) are developed and employed
to maintain the practice. The complex composi-
tion of the FLOSS community entails a heteroge-
neous fi eld where innovation is sociotechnically
constructed. Practices and values in the FLOSS
community are interpreted differently in sup-
port of individual and organisational demands

ABSTRACT

This chapter aims to contribute to our understanding of the free/libre open source software (FLOSS) in-
novation and how it is shaped by and also shapes various perceptions on and practices of hacker culture.
Unlike existing literature that usually normalises, radicalises, marginalises, or criminalises hacker culture,
I confront such deterministic views that ignore the contingency and heterogeneity of hacker culture, which
evolve over time in correspondence with different settings where diverse actors locate. I argue that hacker
culture has been continuously defi ned and redefi ned, situated and resituated with the ongoing develop-
ment and growing implementation of FLOSS. The story on the development of EMACSen (plural form of
EMACS—Editing MACroS) illustrates the consequence when different interpretations and practices of
hacker culture clash. I conclude that stepping away from a fi xed and rigid typology of hackers will allow
us to view the FLOSS innovation from a more ecological view. This will also help us to value and embrace
different contributions from diverse actors including end-users and minority groups.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 35

Hacker Culture and the FLOSS Innovation

(social, economic, political, and technical) of the
actors. Such a heterogeneous world resembles an
ecological system that contains diversity while
resources (information, knowledge, and tools)
are commonly shared amongst actors.

Technically speaking, current research on
FLOSS, across academic disciplines and industry
fi elds, mainly focuses on measuring the effi ciency
and productivity in terms of code reuse, density
of bugs, and complexity of code or frequency
of release, usage, and adoption in the software
engineering approach of productivity cycles. A
prominent example with regard to determining
the benefi ts of the FLOSS development model is
improving security. Given the nature of software
technologies, it is generally agreed that “given
enough eyeballs, all bugs are shallow” (Raymond,
1999). Moreover, FLOSS also contributes to open
standards and interoperability because the avail-
ability of source code increases the transparency of
software and eases the development of compatible
complementary software (DiBona, Ockman, &
Stone, 1999; Feller & Fitzgerald, 2001).

While these studies focus on a technologically
deterministic perspective of the FLOSS innova-
tion, the intense interactions between people all
over the globe in the FLOSS community indicate
the importance of mutual shaping between all
economic, sociocultural, and technical factors in
the FLOSS innovation process. One of the key
factors that shape the FLOSS innovation is said
to be the hacker culture (Himanen, 2001; Levy,
1984; Moody, 2001; Raymond, 1999; Williams,
2002). Much of the existing literature dedicated to
understanding the motivations of those participat-
ing in the FLOSS development have treated hacker
culture as an incentive that drives programmers
to compete or collaborate with each other. A
collaboration-oriented argument highlights the
features of gift culture, community-forming,
knowledge-sharing, and social networking in the
FLOSS innovation, whilst a competition-oriented
argument emphasises the mutual challenging
and self-exploring aspects in a reputation-reward

system. Either account, nonetheless, repeatedly
overstates “the hackers” as such a homogeneous
group that “fails to account for the plasticity of
human motivations and ethical perceptions” (Cole-
man, 2005, chap. 5). As MacKenzie comments
on Himanen’s work:

Its focus on hacker heroes and their individual
ethical values as the core of hacker culture
largely ignores the complicated practices of
software development for the sake of what I can
only read as an uncritical individualism cen-
tred on passion: “hackers want to realize their
passions.”(MacKenzie, 2001, p. 544)

In line with MacKenzie, I argue that sociologi-
cal research on FLOSS communities should go
beyond the idealised and self-serving versions
of FLOSS projects towards understanding the
FLOSS development as a sociological phenom-
enon. It is important to analyse material practices
and mechanisms as well as social practices that
“developers commit themselves to an ethical vi-
sion through, rather than prior, to their participa-
tion in a FLOSS project” (Coleman, 2005, chap.
5). That said, hacker culture shall not be seen as
a preexisting norm in the FLOSS social world; it
is negotiated semantically and contextually prac-
tised to embody different voices towards hacker
culture. Thereby, FLOSS should be better treated
as socially-informed algorithms where hacker
culture is defi ned, annotated, practised, situated,
and redefi ned by a diverse range of actors.

BACKGROUND

As said, a hacker-driven innovation has been
proposed to denote the FLOSS development
and this idea has been appropriated widely by
researchers and practitioners in this fi eld. It is
generally recognised that FLOSS was originated
from the hacker culture of the 1960s and 1970s,
when hackers defi ned themselves as “clever

36

Hacker Culture and the FLOSS Innovation

software programmers who push the limits of
the doable” (Rosenberg, 2000, p. 6). Existing
studies on participants’ motivations of sharing
source code usually presume a fi rm open source
“hacker” culture that is widely shared amongst
members in FLOSS communities and drives them
to voluntarily participate in the FLOSS develop-
ment and share their work (e.g., Hannemyr, 1999;
Himanen, 2001; von Hippel & von Krogh, 2003;
Weber, 2004).

 But the defi nition of hackers is so ambiguous
that it is very diffi cult to identify the object even
if a variety of writings have been dedicated to
this goal.

The first text systematically introducing
computer hackers appeared in 1984 when Levy
compiled a detailed chronology of hackers in his
book entitled Hackers: Heroes of the Computer
Revolution. This book revealed an unknown world
where technical innovation was developing at a
high speed. Levy described how the activities
of hackers infl uenced and pushed the computer
revolution forward. In Levy’s account, the era of
hacking had commenced in the 1960s in univer-
sity computer science departments where highly
skilled students worked and shared information
through computer networks. Members of this
world tried to mobilise the power of computing
in entirely novel ways. They communicated with
each other through computer networks in source
code. Because this world was so different from
wider social life, its members were regarded
with suspicion and often seen as deviant. Levy
classifi ed hackers into three generations from the
1950s to 1980s according to their various actions
and beliefs “associated with hacking’s original
connotation of playful ingenuity” (Taylor 1999,
p. 36). According to Levy, the earliest hackers,
the pioneering computer enthusiasts at MIT’s
laboratories in the 1950s and 1960s, were the
fi rst generation of hackers, who were involved
in the development of the earliest computer
programming techniques. Then there was the
second generation of hackers who were engaged

in computer hardware production and the advent
of the PC; the third generation of hackers (who
were also fanatic game players), devoted their
time to writing scripts and programmes for game
architecture.

Not surprisingly, perhaps, with the popularisa-
tion of PCs, some hackers from the 1980s gained
great success in computer businesses such as
Apple and Hewlett Packard. Apart from work-
ing on making hardware, some hackers created
software applications and programs for PCs. Bill
Gates’ Microsoft was started at this time. It seemed
that their business success was so marked that
their identity as “hackers” per se was downplayed.
To add to Levy’s categories, I have also observed
that with the growth of Internet technologies, an
unbalanced global software market dominated
by Microsoft, and a wider political milieu suf-
fering from all sorts of anti-terrorist discourses,
the contemporary hacker generation is engaging
with new “.net” issues such as licensing, patents,
security, and privacy. In addition to developing
software technologies, hackers at the age of Web
2.0 also have to deal with more social and political
issues than before.

Levy’s chronological categories of hackers was
soon overtaken by scholarly studies in the 1990s
investigating the hacker world and understanding
the key role that computer hackers play in the ICT
network society. However, a thorough picture has
never been mapped. Researchers invariably situate
hackers in the fi eld of computer network security
and can hardly avoid dichotomizing hackers into
black hat or white hat. The sensational coverage
of computer crime in mainstream media leads
many scholars to place hackers in the context of
deviance, crime or the expression of an obsessed
user subculture with a gang mentality. Chantler
(1996) observed hackers since 1989 and fi nally
brought all the materials together in a thesis in
1996 titled Risk: The Profi le of the Computer
Hacker, which mainly introduces the biographical
life of hackers and their activities. Meyer (1989),
a criminologist, studied the social organization of

 37

Hacker Culture and the FLOSS Innovation

the computer underground from a postmodernist
view. Taylor’s (1999) book titled Hackers: Crime
in the Digital Sublime, which tries to explore the
hacker subculture from a more open perspective,
nevertheless, still locates it in the context of digital
crime, as the book title suggests. Thomas (2002)
discusses the relationship between hackers and
technology and portrays hacker culture in terms
of their perception of technology, and human re-
lationships (Thomas, 2002). In this sense, hacker
culture was seen as being formed through inter-
action with technology, culture, and subculture.
Thomas concludes his analysis of hacker culture
with an account of the two controversial hacker
fi gures, Kevin Mitnick and Chris Lamprecht, both
used to conducting unlawful network penetration
activities. Skibell’s work that demonstrates that
“the computer hacker that society assumes is the
principal threat is nothing more than a mirage,
and that a revaluation of the dangers to computer
security needs to be undertaken before sensible
policy can emerge” (Skibell, 2002, p. 337). He
comes to the conclusion that “the majority of
computer intruders are neither dangerous nor
highly skilled, and thus nothing like the mythical
hacker” (Skibell, 2002, p. 336). In stating that “the
hacker only exists in the social consciousness,”
(Skibell, 2002). Skibell’s work points out that
perceptions of hackers are socially constructed.
This association with computer network security
has been widely represented by mass media and
internalised by the public. Whenever there is an
incident involving computer network security,
“hackers” are blamed.

In contrast to the aforementioned literature,
which was largely inspired by the sensational
media coverage about the huge damage to com-
panies from the attacks of malicious “hackers,”
and their portrayal as negative factors in the
development of ICT, a hacker, in the tradition of
FLOSS literature, is regarded as a creative and
enthusiastic programmer for some groups of ac-
tors (e.g., Raymond, 1999). These hackers more
or less resonate Levy’s fi rst second-generation

hackers. The difference lies in their understand-
ing of hacker ethics, a manifesto of freedom of
information. Their acts, no matter if they are
coding, writing, or other performances, pursue a
meaning of liberating information and challenging
authority. Even in the context of a system attack,
hacking is seen as a technical activity deploying
arbitrary codes to free information, to challenge
the weakness of software, database, or fi rewall.
Such codes include viruses and scripts that are
both programmes. The operation of these codes
might raise people’s vigilance towards network
security. Under these circumstances, codes are
written to improve software quality or reliability
in a way. Most of the time, these hacking tools
are available on the Internet. Whilst this situation
is said to allow “script kiddies” to perform mali-
cious acts on the Web (e.g., to deface Web pages
or send viruses), their activities can be seen as
an alternative form of self-expression as well that
demonstrates trial-and-error mindset. It is possible
that the existing tools can be improved or a new
tool can be created to conduct these actions. In
light of this, Ross (1991) summarises a variety of
narratives found within the hacker community
that express their behaviour:

• Hacking performs a benign industrial ser-
vice of uncovering security defi ciencies and
design fl aws.

• Hacking, as an experimental, free-form
research activity, has been responsible for
many of the most progressive developments
in software development.

• Hacking, when not purely recreational, is
[a sophisticated] educational practice that
refl ects the ways in which the development
of high technology has outpaced orthodox
forms of institutional education.

• Hacking is an important form of watchdog[,
countering] to the use of surveillance tech-
nology and data-gathering by the state, and
to the increasingly monolithic communica-
tions power of giant corporations.

38

Hacker Culture and the FLOSS Innovation

• Hacking, as guerrilla know-how, is essential
to the task of maintaining fronts of cultural
resistance and stocks of oppositional knowl-
edge as a hedge against a technofascist
future. (pp. 81-82)

Hannemyr (1999) shares a similar view with
Ross and sees hacking as a positive method
adopted by hackers for creating information
systems and software artifacts that offer higher
fl exibility, tailorability, modularity, and open-
endedness compared with methods used by
industrial programmers. Their interpretations
of hacking echoes the hacker ethics defi ned in
the New Hacker’s Dictionary or The Jargon File
(Raymond & Steele, 1991). While the majority of
the public still regards the hacker as hostile, for
Raymond and Steele, in the hacker community,
being a hacker does not necessarily mean being
exactly good or bad; rather, being a hacker means
being creative and innovative. Their intention of
differentiating hackers from “crackers” nonethe-
less prescribes an elite hacker class. Instead of
criminalising hackers, they normalise hacker
culture and expect people to follow the already
determined ethics.

Although a good number of practitioners do
refer their hacker identity to this version of hackers,
a single and stable defi nition of the “hacker” is hard
to give. “Hacker” remains an obscure term. Hav-
ing read these writings that mainly assign hackers
into either the fi eld of computer network security
or the UNIX programming world, my point is that
instead of seeking a universal defi nition of hacker,
we should treat hacker as an umbrella concept that
is defi ned and redefi ned by different people, situ-
ated and resituated in different contexts. There are
so many different expressions of hacker identity.
It is inadequate to focus the analysis on either
stigmatised hacking or UNIX geek program-
ming life alone. It appears to me that previous
literature, few of which express the diversity of
the hacker in modern society, is of limited value
in understanding the hacking practices and their

relationship with the ICT innovation system. It
presents a reductionist notion, which appears to be,
from my point of view, very problematic. In this
chapter, I do not wish to begin with a proposition
that categorises hackers as deviant or marginal
actors, nor do I wish to portray hackers simply
in a positive light.

A motivation for doing so has to do with a
methodological challenge. As Taylor (1999) ex-
plains, the reason for such an ambiguous hacker
identity is because of loose social ties, and an
attempt to analyse the computer underground is
therefore “inherently diffi cult” (Taylor, 1999).
When Taylor studies the relationship between
the computer underground and the computer
security industry, it turned out to be diffi cult to
pursue because:

Both groups are far from being coherent and well-
established given the relative youth of computing
and its hectic evolutionary pace. [Moreover,]
the boundaries between groups are unusually
fl uid and there is no established notion of expert
knowledge. … It is thus at times problematic, in
choosing interview subjects and source materi-
als, to fall back on conventional notions of what
constitutes an expert or even a member of a
subculture. (Taylor, 1999)

Ross (1991) also gives a similar explanation:

While only a small number of computer users
would categorise themselves as “hackers,”
there are defensible reasons for extending the
restricted defi nition of hacking down and across
the caste hierarchy of systems analysts, design-
ers, programmers, and operators to include all
high-tech workers—no matter how inexpert—who
can interrupt, upset, and redirect the smooth fl ow
of structured communications that dictates their
position in the social networks of exchange and
determines the pace of their work schedules. To
put it in these terms, however, is not to offer any
universal defi nition of hacker agency. There are

 39

Hacker Culture and the FLOSS Innovation

many social agents. … All [these social agents],
then, fall under a broad understanding of the
politics involved in any extended description of
hacker activities. (pp. 92- 93)

Given these methodological and ontological
challenges, it is unwise then to characterise hack-
ers as a homogeneous community and hierarchy
akin to a gang organisation. There is no clearly
bounded constituency of hackers. As Nissenbaum
(2004) argues, the transformation in our concep-
tion of hacking over the past few decades is more
a function of contextual shifts than of changes in
hacking itself. This has been achieved not through
direct public debate over confl icting ideals and
interests, but through an ontological shift mediated
by supportive agents of key societal institutions:
legislative bodies, the courts, and the popular me-
dia. In a similar vein, my PhD dissertation (Lin,
2004) employed the social worlds theory (e.g.,
Clarke 1991) and other methodologies inspired
in the fi eld of science and technology studies
(STS) (e.g., Jasanoff, Petersen, Pinch, & Markle,
1995; Sismondo, 2004) is to pursue this end. The
thesis, instead of presuming hackers as a specifi c
and relatively closed social group, treats the term
“hacker” as fl exibly as possible. The notion “hack-
er” is interpreted differently to demonstrate one’s
identity and self-expression. Since the notion is
not predefi ned, it allows heterogeneous readings
and performances. I also suggest to contextualise
hacker culture in everyday computing practices.
A defi nition of hacker is identifi ed and situated
in a local context where an individual or a group
of actors practise what and how they understand
hacker culture. A hacker identity is constructed
through performing some tasks in everyday com-
puting. These tasks, usually pertaining to coding
and programming, defi ne and situate a stream of
the FLOSS innovation in a local context where
the performers inhabit.

To overcome the methodological and onto-
logical challenges, in the following, I will take a
practice-based perspective to look at how hacker

culture is embodied and embedded in everyday
computing world and performed by individuals
or groups who either share collective ideas and/or
practices of hacking or demonstrate their unique
understanding and performances of hacker cul-
ture. As a consequence, a hacker-driven product,
an editor programme, forks into various versions
whose developments differ in contexts. When one
version derived from one sense of hacking gets
more apparent, it would drift away from others and
fi nd another stage of performing their understand-
ing of hacker culture. Thereby, I will conclude that
a practice-based perspective is needed in order to
capture the emerging, contingent, and dynamic
hacker culture and its relationship with the FLOSS
innovation system and the wider computing world.
If there existed a universal defi nition of “hacker,”
the FLOSS innovation would not be as burgeon-
ing as it is now.

MAIN FOCUS OF THE CHAPTER

Hacker Culture and the
FLOSS Innovation

Given the critical review of existing literature on
hackers and hacker culture, it is obvious that one
should stay away from simplicity and stereotypes
of hackers. Parallel to Coleman’s anthropological
research on hacker groups that contributes to our
understanding of “how hacker valuations, motiva-
tions and commitments are transformed by the
lived experiences that unfold in FLOSS projects
and institutional that are mediated through project
charters and organizational procedures,” I suggest
to take a practice-based perspective on the FLOSS
development to strengthen the heterogeneity and
diversity in the hacker “social world,” where lo-
cal culture and situated knowledge derive from
identities and commitments largely developed
through prolonged interaction toward shared, yet
continually emergent, goals (Lin, 2004). In other
words, I highlight multiple visions and means of

40

Hacker Culture and the FLOSS Innovation

achieving them by attempting empirically to view
the world in the actors’ own terms. In so doing, I
show that hacker culture is embedded and embod-
ied in everyday software engineering practices
linked with the FLOSS development.

The development of EMACSen (plural form
of EMACS— editing macros) can serve as a
good illustration here. EMACS is one of the fi rst
programmes written by Richard Stallman, the
founder of the Free Software Foundation (FSF)
and released under the General Public License
(GPL), the most popular FLOSS license. Its his-
torical position as a classic programme allows
us to see how the development of a project was
mutually shaped by the act of hacking which is
situated in everyday practices (e.g., programming
for programmers) and by different understandings
of hacker culture in various contexts.

EMACSen

According to the document GNU EMACS FAQ,
EMACS refers to a class of text editors, possess-
ing an extensive set of features, that are popular
with computer programmers and other technically
profi cient computer users. The original EMACS
was a set of macros written by Richard Stallman
in 1976 for the TECO (Text Editor and COrrector)
editor under Incompatible Timesharing System
(ITS) on a PDP-10 machine. EMACS was initi-
ated by Guy Steele as a project to unify the many
divergent TECO command sets and key bindings
at MIT, and completed by Stallman. It was inspired
by the ideas of TECMAC and TMACS, a pair of
TECO-macro editors written by Guy Steele, Dave
Moon, Richard Greenblatt, Charles Frankston,
and others. Many versions of EMACS have ap-
peared over the years, but now there are two that
are commonly used: GNU EMACS, started by
Richard Stallman in 1984 and still maintained by
him, and XEmacs, a fork of GNU EMACS which
was started in 1991 and has remained mostly com-
patible. Both use a powerful extension language,
EMACS Lisp, that allows them to handle tasks

ranging from writing and compiling computer
programs to browsing the Web.

Being a popular editor programme, EMACS
was able to meet the requirements of many us-
ers by being fl exible (allowing users to defi ne
their own control keys). This feature of fl ex-
ibility refl ects EMACS’s affordance and enables
more actors to move into the innovation process
through adopting, using, testing, and improving
the software. Unlike its predecessors TECMAC
and TMACS which took programmers a long
time to understand each other’s defi nitions of
commands before they could bring new order to
the programme, EMACS won the hearts of its
users with a standard set of commands. For the
sake of durable effi ciency, one of the developers,
Stallman, came up with an idea of sharing newly
defi ned commands for the sake of doubling. Hence,
he wrote the terms of use for EMACS to request
reports of new modifi cations to him. He released
the EMACS source code with a condition of use
that requested feedback about any modifi cation
to the source code, while also allowing its redis-
tribution at the same time. In so doing, Stallman
actually redefi ned and broadened the boundary
of the developing team and made the EMACS
innovation more accessible. In issuing this social
contract, on the one hand Stallman drew users’
attention to the extensibility of EMACS, and on
the other hand fulfi lled his belief in the freedom
of information, and his understanding of hacker
culture. The condition he put on source code dis-
tribution therefore acted equally to engage users
with a practical attitude as well as to promote his
philosophy and to sustain the culture that he was
used to living within the MIT AI lab, a locale that
shaped his perception and behaviour.

The development of EMACS and the initiative
of Stallman’s social contract (which inspires the
advent of the infamous GPL) both show the co-
production of sociocultural milieu and technical
artifacts. The technical tools such as different
programming languages, the work atmosphere at
the MIT AI lab in the 1970s and 1980s, and the

 41

Hacker Culture and the FLOSS Innovation

culture of sharing knowledge embedded in the
programming practice in the 1970s, all contribute
to the innovation of EMACS. The original version
of EMACS was created under a condition situated
in a specifi c physical and social space (i.e., the MIT
AI lab), and programmed by a specifi c language
(i.e., Lisp). That said, the daily environment and
programming tool co-construct the development
of EMACS. If “culture” is defi ned as a way of liv-
ing, which is invisible and embedded in our daily
lives, the original version of EMACS that was
created in a specifi c environment and program-
ming culture that Stallman and others located
is undoubtedly a socially-informed algorithm.
It is also an embodiment of a version of hacker
culture situated in the above mentioned envi-
ronment, embedded in everyday programming
practices. Stallman’s understanding of hacker
culture constantly appears in his writings and
speeches, and this serves to explain the situation
in which he designed and maintained EMACS
and other software.

Nevertheless, while the social norm established
in the original version of EMACS linked to in-
novation gained greater political weight, given
Stallman’s later act of advocating “free software,”
some users were reluctant to conform to the so-
cial obligations. This is one of the reasons why
Stallman’s GNU EMACS is labelled as a moral
product regardless of its technical utility. People
who did not share Stallman’s vision went on
creating other editor programmes. Furthermore,
new versions of EMACS were created through
yet other problem-solving process (e.g., EINE,
ZWEI, Xemacs, etc., are derived from the need
of porting EMACS with other programming lan-
guages). These forked versions of EMACS were
created because their creators situated their hack-
ing in different programming tools that they used
everyday. In fact, as documented (e.g., Moody,
2001), the reasons for the divergences vary in
social scope (e.g., disagreement with Stallman’s
social contract), and technical scope (e.g., the
original version of EMACS did not run on other

programming languages or support certain type
of machines). For instance, the versions EINE and
ZWEI for Lisp, developed by Weinreb, could be
considered as some hacked version of EMACS
situated in some specifi c programming environ-
ments. While these motivations of forking all
link with programmers’ mundane and situated
practices and infl uenced by complicated socio-
technical factors, the forked products represent
as disagreements on Stallman’s interpretation and
articulation of hacker culture.

An Evolving Hacker Culture and
the EMACS Development

The development of EMACS leads to several major
the FLOSS innovations in roughly three aspects:
technical, sociocultural, and legal. The technical
innovation refers to various versions of software
programmes based on the original version of
EMACS initiated by Steele. The sociocultural
innovation refers to a community-based type of
collaboration to develop software motivated by
Stallman’s social contract. The legal innovation
refers to the advent of GPL, which inspires the
emergences of many different software licences.
The hacker culture defi ned by the early developers
such as Stallman and Steele at the time and space
they were situated in has been embodied and
embedded in the early development of EMACS.

However, over time, Stallman’s way of hack-
ing has been challenged, negotiated, refi ned, and
resituated with the emergence of other versions of
EMACS. Rather than being a question of which
version of EMACS is technically better, which
way of hacking is more effi cient, which way of
licensing is more politically correct, the question
from a sociological perspective would be how
different understandings of an intermingling
of social, technical, economic, and legal factors
were taken into account and taken actual form in
the EMACS development. The story above thus
shows that there is no one dominant or homoge-
neous notion of hacker culture. If a universally

42

Hacker Culture and the FLOSS Innovation

defi ned hacker culture (say, Stallman’s version of
hacker culture) existed and mandated all hackers’
behaviours, there would not be so many versions of
EMACS, different editors, and software licences
to date. This also echoes my view that hacker
culture needs to be understood in a practice-based
sense concerning how actors perform their un-
derstandings of hacker culture, and how various
the FLOSS innovations are initiated, developed,
and accepted in different contexts.

Parallel to EMACS, many other FLOSS
projects have been witnessing similar technical,
sociocultural, and legal innovations. In terms of
a practice-based view, each project and forked
subproject is an embodiment of a defi nition and
performance of hacker culture, whether practitio-
ners explicitly or implicitly identify themselves as
hackers. Some practices emerging from Stallman’s
way of defi ning and performing hacker culture
have been institutionalised in ways such as open
sourcing software under GPL-like licences and
sharing information across various medias (e.g.,
mailing lists, IRC channels, Wikis, blogs, and
Web sites). Although many FLOSS communities
are conducting these collective practices derived
from Stallman’s hacker culture, it does not neces-
sarily mean that there is a single philosophy and
ontology of hacker culture indifferently shared
amongst all members. A hacker social world (Lin,
2004) de facto accommodates heterogeneous
“hacker groups” and hackers who assign differ-
ent meanings to the umbrella concept “hacker.”
These social groups mutually engage in, interact,
communicate, and negotiate with one another. In
other words, if there were a hacker community, it
is a social world that incorporates heterogeneity
through engaging actors on a constellation of col-
lective practices, the practices of experimenting
or challenging existing knowledge paradigms
and of sharing information and knowledge. Over
time software technologies, the orbit within which
hacking practices are found has been extended,
and is much wider than was the case for those stud-

ies conducted, notably in relation to the FLOSS
development. For instance, the innovation based
on a community-based collaborative culture is
recognised in the wider computing world such
as blogging and the Wiki phenomenon.

The collective hacking practices appear to be
important factors in the emergence of FLOSS. If
there is a norm existing in “the hacker commu-
nity,” it should be in the sense of Robert Cover
(cited in Coleman, 2005) who argues that “the
production and stabilization of inhabited norma-
tive meanings requires ongoing and sometimes
confl icting interpretation of codifi ed textual
norms.” Such continual acts of reinterpretation
and commitment are exactly because of the het-
erogeneity in the hacker social world. Heterogene-
ity, on the one hand, becomes the resource that
helps mobilise the FLOSS innovation, and on the
other hand, drives diverse actors to redefi ne and
practise the hacker culture they perceive differ-
ently. Analysing hacker culture and understanding
how collective (hacking) norms and practices are
interpreted, articulated, and performed differently
by different people, in this regard, provides a
culturally contextualised understanding of the
FLOSS innovation.

FUTURE TRENDS

Apart from valuing contributions from minor-
ity hacker groups and their contributions to the
FLOSS development, future studies should also
center on how different hacker groups defi ne their
territory, how different hacker groups interact with
each other? In what way? Do they cooperate, or
do they draw a line between each other? These
sociological issues are critical to our understand-
ing of the dynamics both in the hacker social world
and the FLOSS innovation system where geeks
and activist cultures are brought together.

 43

Hacker Culture and the FLOSS Innovation

CONCLUSION

This chapter begins with a review on the existing
research into hacker culture and its relationship
with the FLOSS development, and discusses
different articulations and interpretations on the
concepts of hackers and hacker culture. Looking at
such a variety of materials, I argue that the evolu-
tion of FLOSS involves continuous negotiations
of meanings and consequently a practice-based
and sociological perspective is needed to help
us better understand the dynamics in FLOSS
evolution: the changing roles and work practices
of FLOSS developers and how their cultures
and identities are formed through interacting
with each other and with the artefacts in their
everyday environments through committing to
the collective open source practices. Based on the
story of the evolution of EMACS and a plurality
of forked versions, I delineate how this diversity
of EMACSen embodies and symbolises differ-
ent practices and articulations towards “hacker
culture.” Unlike most of the previous research
on hacker movement, I take a practice-based
perspective to document the various voices on
hacker movement and the evolution of FLOSS, and
their interactions (confl icts and negotiations) and
consequent impact. A shift from a rigid and fi xed
typology of hacker culture to a practice-based
perspective on hacker culture would allow us to
look at how the collective production of FLOSS
skills and practices emerge from negotiating the
meanings and interpretations of hackers. It also
offers a holistic but critical view to study various
performances of hacker culture and their rela-
tionships with the FLOSS development, such as
the hacktivism referred to by Jordan and Taylor
(2004), different hacker ethics (Coleman, 2005),
Indymedia and Wikipedia’s mediactivism, and
other forms of digital struggles and geek fi ghts
(e.g., software patents, repression of peer to
peer fi le-sharing, IP and data retention laws are
attacking digital freedom daily). It implicates

that the FLOSS innovation system serves as a
sociotechnically effi cient platform to enroll wider
sociotechnical resources from the public as well
as the private sectors to provide for greater inno-
vation capacity in software development because
this platform allows a free evolution of hacker
culture that is constantly redefi ned, reinterpreted,
and resituated (Lin, 2004).

Having said that, once a static and normative
defi nition of hacker culture is tackled, and the
emphasis is placed on different understandings
and performances of the concept, it indicates
the importance of integrating end-users and
minorities in this dynamic world (e.g., women,
the vision-impaired, and people from develop-
ing countries) groups in the FLOSS innovation
process (e.g., Lin, 2006a, 2006b). So far, the
term “hacker” is either claimed by advantaged
groups in software engineering (e.g., male, white)
and acclaimed in their networks, or declaimed
by more mainstream media as deviants. Both
discourses are voiced from the positions of the
advantaged that ignores other ways and interpreta-
tions of hacking. They also contributed to many
of the inequalities in the FLOSS social world.
These minority groups do not usually fi t into
the mainstream hacker culture loudly advocated
by mainly an advantaged group in software en-
gineering or stigmatised by mainstream media.
A practice-based view on hacking is to distribute
the right of interpreting and performing hacker
culture to a wider and more diverse range of
actors involved in the FLOSS development. It
is less interesting for me to group who are the
hackers. It is more important for me to make
sure that people are equally entitled to the title
“hacker” and equally allowed to practise what they
believe is hacking. In so doing, I value everyday
technologies, tacit knowledge, and local culture
in hacking and in the FLOSS innovation. What
I would like to present here is a contextualised
perspective on hacking.

44

Hacker Culture and the FLOSS Innovation

REFERENCES

Chantler, N. (1996). Risk: The profi le of the
computer hacker. Doctorol dissertation, Curtin
University of Technology, Perth, Western Aus-
tralia.

Clarke, A. E. (1991). Social worlds/arenas theory
as organizational theory. In D. Maines (Ed.),
Social organization and social processes: Es-
says in honour of Andelm L. Strauss. NY: Aldine
Gruyter.

Coleman, E. G. (2005). The social construction
of freedom in free and open source software:
Hackers, ethics and the liberal tradition. Doc-
toral dissertation, Department of Anthropology,
University of Chicago.

Cover, R. (1992). Nomos and narrative. In M.
Minow, M. Ryan, & A. Sarat (Eds.), Narrative,
violence, and the law: The essays of Robert Cover.
Ann Arbor: The University of Michigan Press.

DiBona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open sources: Voices from the open source
revolution. Sebastopol, CA: O’Reilly.

Feller, J., & Fitzgerald, B. (2001). Understand-
ing open source software development. London:
Addison-Wesley.

GNU EMACS FAQ. (n.d.) Retrieved from http://
www.gnu.org/software/emacs/emacs-faq.text

Hannemyr, G. (1999). Technology and pleasure:
Considering hacking constructive. First Monday
4(2). Retrieved July 11, 2006, from http://www.
fi rstmonday.org/issues/issue4_2/gisle/

Himanen, P. (2001). The hacker ethic and the
spirit of the information age. London: Secker &
Warburg.

Jasanoff, S., Petersen, J. C., Pinch, T., & Markle,
G. E. (1995). Handbook of science and technology
studies. London: Sage.

Levy, S. (1984). Hackers: Heroes of the com-
puter revolution. Garden City, NY: Anchor
Press/Doubleday.

Jordan, T., & Taylor, P. (2004). Hacktivism and
cyberwars: Rebels with a cause? Routledge.

Lin, Y.-W. (2004). Hacking practices and software
development: A social worlds analysis of ICT in-
novation and the role of open source software.
Unpublished doctoral dissertation, SATSU, Uni-
versity of York, UK.

Lin, Y.-W. (2006a). Women in the free/libre open
source software development. In E. M. Trauth
(Ed.), Encyclopedia of gender and information
technology (pp. 1286-1291). Hershey, PA: Idea
Group Reference.

Lin, Y.-W. (2006b). Techno-feminist view on the
open source software development. In E. M. Trauth
(Ed.), Encyclopedia of gender and information
technology (pp. 1148-1153). Hershey, PA: Idea
Group Reference.

Mackenzie, A. (2001). Open source software:
When is a tool? What is a commodity? Science
as Culture, 10(4), 541- 552.

Meyer, G. R. (1989). The social organization
of the computer underground. Master’s thesis,
Northern Illinois University.

Moody, G. (2001). Rebel code: Inside Linux and
the open source revolution. Cambridge, MA:
Perseus Publishing.

Nissenbaum, H. (2004). Hackers and the contested
ontology of cyberspace. New Media & Society,
6(2), 195-217.

Raymond, E. (1999). The cathedral & the cazaar:
Musing on Linux and open source by an acci-
dental revolutionary. Sebastopol, CA: O’Reilly.
Retrieved July 7, 2006, from http://www.catb.
org/~esr/writings/cathedral-bazaar/

 45

Hacker Culture and the FLOSS Innovation

Raymond, E. S., & Steele, G. L. (1991). The
new hacker’s dictionary. Cambridge, MA: MIT
Press.

Rosenberg, D. K. (2000). Open source: The
unauthorized white papers. Hoboken, NJ: John
Wiley & Sons.

Ross, A. (1991). Strange weather: Culture, sci-
ence and technology in the age of limits. London:
Verso.

Sismondo, S. (2004). Introduction to science and
technology studies. Oxford: Blackwell.

Skibell, R. (2002). The myth of the computer
hacker. Information, Communication & Society,
5(3), 336 356.

Taylor, P. A. (1999). Hackers: Crime in the digital
sublime. London: Routledge.

Thomas, D. (2002). Hacker culture. University
of Minnesota Press.

von Hippel, E., & von Krogh, G. F. (2003). Open
source software and the “private-collective” in-
novation model: Issues for organization science.
Organization Science, 14, 209 -223.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Williams, S. 2002. Free as in freedom: Richard
Stallman’s crusade for free software. Retrieved
July 10, 2006, from http://www.oreill.com/open-
book/freedom/index.html

KEY TERMS

 Editing Macros (EMACS): EMACS refers
to a class of text editors, possessing an extensive
set of features, that are popular with computer
programmers and other technically profi cient
computer users. The original EMACS, a set of
Editor MACroS for the TECO editor, was writ-
ten in 1975 by Richard Stallman, and initially

put together with Guy Steele. Many versions of
EMACS have appeared over the years, but now
there are two that are commonly used: GNU
EMACS, started by Richard Stallman in 1984
and still maintained by him, and XEmacs, a fork
of GNU EMACS which was started in 1991 and
has remained mostly compatible. In this chapter,
the development of EMACS is used to illustrate
how hacker culture and the FLOSS innovation
co-evolved over the development process.

 Forks: In software engineering, a project fork
or branch happens when a developer (or a group
of them) takes a copy of source code from one
software package and starts to independently
develop a new package. The term is also used
more loosely to represent a similar branching of
any work, particularly with FLOSS. Associated
with hacker culture, this chapter argues that
forking usually happens because people improve
the software based on their local needs which
implicitly entails different interpretations and
practices of what a hacker is and how to become
a hacker alternatively.

 Free/Libre Open Source Software (FLOSS):
Generically indicates non-proprietary software
that allows users to have freedom to run, copy,
distribute, study, change, and improve the soft-
ware.

 General Public License (GPL): A free soft-
ware licence that guarantees the freedom of users
to share and change free software. It has been
the most popular free software license since its
creation in 1991 by Richard Stallman.

 Hacker: According to Wikipedia, a hacker
is a person who creates and modifi es computer
software and computer hardware including
computer programming, administration, and
security-related items. The term usually bears
strong connotations, but may be either positive or
negative depending on cultural context. However,
this chapter challenges a fi xed defi nition of hacker

46

Hacker Culture and the FLOSS Innovation

and suggests a look at different interpretations of
hackers and practices of becoming hacker.

 Hacker Culture: According to Wikipedia,
hacker culture is a subculture established around
hackers (see Hacker). Wikipedia lists two main-
stream subcultures within the larger hacker sub-
culture: the academic hacker and the hobby and
network hacker. However, this chapter suggests
that hacker culture evolves over time and new
defi nitions always emerge through the negotia-
tions of different interpretations of a hacker and
practices of becoming a hacker in spatiality and
temporariness.

 Socially-Informed Algorithm: A socially-
informed algorithm is a piece of algorithm that
is designed and developed dependent of social,
cultural, and organisational contexts. Broadly
speaking, each written algorithm is both techni-
cally and socially informed because it is always
shaped by the social environment where the de-
velopers situate and the technical tools are known
and made available to the developers and users.

 47

Chapter V
Social Technologies and the

 Digital Commons
Francesca da Rimini

University of Technology, Sydney, Australia

INTRODUCTION

Software―sets of programmed instructions
which calculate, control, manipulate, model, and
display data on computing machines and over
digital networks―is culturally loaded. Whenever
we load programs, we also load messy clusters of
cultural norms and economic imperatives, social

ABSTRACT

This chapter investigates the premise that software is culture. It explores this proposition through the
lens of peer production, of knowledge-based goods circulating in the electronic space of a digital
commons, and the material space of free media labs. Computing history reveals that technological
development has typically been infl uenced by external sociopolitical forces. However, with the advent
of the Internet and the free software movement, such development is no longer solely shaped by an
elite class. Dyne:bolic, Streamtime and the Container Project are three autonomously-managed proj-
ects that combine social technologies and cooperative labour with cultural activism. Innovative digital
staging platforms enable creative expression by marginalised communities, and assist movements for
social change. The author fl ags new social relations and shared social imaginaries generated in the
nexus between open code and democratic media. In so doing the author aims to contribute tangible,
inspiring examples to the emerging interdisciplinary fi eld of software studies.“Humanity’s capacity to
generate new ideas and knowledge is its greatest asset. It is the source of art, science, innovation and
economic development. Without it, individuals and societies stagnate. This creative imagination requires
access to the ideas, learning and culture of others, past and present” (Boyle, Brindley, Cornish, Correa,
Cuplinskas, Deere, et al., 2005)

biases and aesthetic choices, into machines and
networks whose own histories are linked to larger
sociopolitical forces. Increasingly instrumental
in facilitating new forms of cultural expression
and social activism, software is used to con-
nect and mobilise diverse communities, interest
groups, and audiences; spanning local, regional
and global levels.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

48

Social Technologies and the Digital Commons

New social assemblages, and new social rela-
tions, are thus arising out of software-assisted
communication, collaborative production and
the exchange of creative, intellectual artifacts.1
This model of autonomously-managed gen-
erative activity is termed “ peer production.” The
knowledge-based outcomes of peer production
are framed as contributing to a global “Digital
Commons.”2 Just as the concept of the earthly
commons centres around communally shared
and managed material resources—land, trees,
water, air, and so on—the Digital Commons can
be imagined as shared immaterial resources.
These are wildly proliferating nodes of electronic
spaces, social technologies, intellectual goods,
and cooperative labour processes enabled by, and
manifested through, the Internet. The voluntary
labour driving this phenomenon is occurring on
an unprecedented scale, generating demonstrable
effects on both knowledge generation and social
organisation.

Chronicles of software as corporate culture
abound, revealing the light and shadow of the
giants, from IBM to Amazon to Google. Simi-
larly, the rise of the free software movement,
the open source software (OSS) participatory
programming model, and the evolution of the
Internet and then the World Wide Web, are well
documented.3 Less visible are the histories of the
pixies, those nimble social technologies arising
from the nexus of the free software movement,
cultural activism, and new hybrid forms of peer
production. Where documentation does exist, it is
more likely to be within the fi elds of new media
art, tactical media, and the emerging academic
interdisciplinary fi eld of software studies, or in
project Wikis and blogs.4

This chapter places collaborative software
development within the context of software as
culture. Specifi cally, I examine some instances
of software-assisted peer production in the
cultural expression of social activism. The fi rst
part of the chapter draws attention to some so-
ciopolitical factors that shaped the development

of computing, giving an historical context to my
proposition that software and culture are intrinsi-
cally interconnected. This is followed by a brief
sketch of current theoretical propositions about
some relationships between capitalism, comput-
ing technologies, knowledge-based labour, and
network society.

In the second part of this chapter, I will identify
distinguishing features of the Digital Commons,
outlining the cooperative processes which enliven
it. Moving from theory to practice, I will highlight
three exemplary projects to illustrate the kinds of
content, processes, and social relations contrib-
uting to the Digital Commons. I will introduce
the Dyne:bolic distribution of the GNU/Linux
operating system, and the Streamtime network
for producing content in crisis areas. The Con-
tainer Project, an open access digital media hub
in Jamaica, will then be introduced. Speculation
on future trends will signpost efforts to contain
the circulation of knowledge and cultural mate-
rial via systems of “digital enclosures.” I will
conclude by speculating on possible directions
for social technologies, as network nodes prolifer-
ate globally, thereby increasing public spaces for
creative cooperation. Increased peer participation
and cultural diversifi cation give rise to a concept
of a multitude of interlinked Digital Commons.
Such networked imaginative productive spaces
not only could meet the challenges thrown down
by the socially elite proponents of the new digital
enclosures, but also prefi gure possibilities for new
global democratic sociopolitical forms.

BACKGROUND

The evolution of computing is woven through with
histories of power, capital, and social control. Each
major innovation benefi ted from a rich accretion
of ideas and inventions, sometimes spanning cen-
turies, cultures, and continents. Specifi c political
imperatives (serving national or imperial interests)
and wider societal forces shaped the develop-

 49

Social Technologies and the Digital Commons

ment pathways of computing. From cog to code,
information technologies have never been neutral.

The Politics of Invention

Joseph-Marie Jacquard’s construction of the
automated punch card loom, a proto-information
technology, illustrates both strategic govern-
ment patronage, and the collective, cumulative
processes of invention.5 The loom benefi ted from
government intervention and fi nancial support,
as Napoleon recognised that the new loom could
play a crucial role in achieving post-revolution-
ary France’s economic goal to rival the industrial
giant Britain. This same Jacquard loom directly
inspired the English inventor Charles Babbage
(himself assisted by the visionary mathematician
Ada Lovelace), who made a series of conceptual
and engineering breakthroughs in two mechani-
cal systems for automated arithmetic calculation,
the difference engine and the analytical engine.6
Babbage was infl uenced by the ideas of the 18th
century moral philosopher Adam Smith, the
Scottish anti-mercantile proponent of laissez-faire
economic liberalism, who proposed the idea of
the systematic division of labour. Babbage envis-
aged his mechanical cog-and-card machines as
furthering Britain’s national economic interests,
as trade and taxation would benefi t from math-
ematical precision and reduced labour costs.
Punch cards reappeared in the electro-mechani-
cal binary punch card calculating machines
developed by engineer Herman Hollerith in the
late nineteenth century in the United States. The
role of IBM in the programming of punch cards
for customised demographic data collection by
the Nazi regime throughout the 1930s -1940s,
demonstrates what Christian Parenti (2003) terms
the “informatics of genocide.”7 In the twentieth
century, information technology played a domi-
nant role in determining material and ideological
power, within and between nations.

On the eve of World War II both Axis and Al-
lies were thirsting for new mathematical engines.

The English and French needed information to
decrypt the codes of Germany’s Enigma machine;8
the Americans needed information in the form
of ballistic fi ring tables in order to accurately
instruct their gunners which way to point their
guns in their new generation of fast war planes;9
and the Germans needed a machine which could
rapidly process stacks of simultaneous equations
to ensure that the frameworks of their new planes
could withstand the stress of increased speed.10
Each of these national objectives was answered
by the injection of substantial government and
corporate support for the boffi ns in the engine
rooms; technological innovation in computing
was sculpted by powerful external infl uences.

Network Society and
Immaterial Labour

How did humanity reach what historian Paul
Ceruzzi (2003) describes as “an age transformed
by computing”?11 Attempts to commercialise
computers were made in the late 1940s; later the
creation of small systems in the 1960s was fol-
lowed by personal computing in the 1970s, and
the rise of networked systems in the mid 1980s.
The “deep recession” of the 1970s consolidated
socioindustrial changes in the West so profound
that they constituted a new regime of accumula-
tion, termed late capitalism.12 The markers were
privatisation, deregulation, the growing power of
transnational corporations, and globalisation―of
markets, labour, fi nance, and communications.
Globalisation itself required specifi c techno-
logical developments, including automation and
computerisation of production processes, and the
growth of networked communications (Castells,
2000; Webster, 2000).

In his three-volume opus The Information Age:
Economy, Society and Culture, Manuel Castells
(2000) describes the emergence of a network
society around the end of the 20th century, char-
acterised by the centrality of information and
knowledge to the economy, and the rise of com-

50

Social Technologies and the Digital Commons

munication networks.13 The Rise of the Network
Society proposes that a “new social order” arises
from a global system of “informational capitalism”
(Castells, 2000, pp. 409, 508). The “revolution-
ary” era’s distinguishing feature is the “action
of knowledge upon knowledge itself as the main
source of productivity” (Castells, 2000, p. 17),
creating a “cumulative feedback loop between
innovation and the uses of innovation,” with
“the human mind [as] a direct productive force”
(Castells, 2000, p. 31). “Critical cultural battles
for the new society” are played out in this “new
historical environment” (Castells, 2000, p. 405).
The central role played by “ immaterial labour”
within this network society was fi rst articulated by
Italian theorists.14 In the essay Immaterial Labour,
sociologist Maurizio Lazzarato (1996) describes a
“great transformation” (Lazzarato, 1996) starting
in the 1970s, which blurred the manual and mental
binary framing of labour. He defi nes immaterial la-
bour as “the labour that produces the informational
and cultural content of the commodity” (Lazzarato,
1996). The commodity’s informational content in-
dicates “the changes taking place in workers’ labour
processes ..., where the skills [increasingly] involve
... cybernetics and computer control (and horizontal
and vertical communication)” (Lazzarato, 1996).
For “the activity that produces the ‘cultural con-
tent’ of the commodity, immaterial labour involves
activities ... not normally recognized as ‘work’ [...]
activities involved in defi ning and fi xing cultural
and artistic standards, fashions, tastes, consumer
norms, and, more strategically, public opinion”
(Lazzarato, 1996). No longer the privilege of a
social elite, these activities have “become the
domain of what we have come to defi ne as ‘mass
intellectuality’” (Lazzarato, 1996). Immaterial la-
bour is constituted “in forms that are immediately
collective,” (Lazzarato, 1996) existing “only in the
form of networks and fl ows” (Lazzarato, 1996).
In Network Culture: Politics for the Information
Age, Tiziana Terranova (2004) takes the idea of
fl ows to examine the productive relations fl owing
between the “thriving and hyperactive” Internet,

an “outernet” of social, cultural and economic
networks, the “digital economy,” and “free” labour.
Terranova focuses on the critical role of the Internet,
arguing that it “functions as a channel through
which ‘human intelligence’ renews its capacity to
produce” (Terranova, 2004, pp. 73 -79). The Internet
“highlights the existence of networks of immaterial
labour and speeds up their accretion into a collec-
tive entity.” Commodities become “increasingly
ephemeral” and turn into “translucent objects,” a
transparency which reveals their “reliance on the
labour which produces and sustains them”; it is
this “spectacle of labour”—“creative, continuous,
innovative”—that attracts users/consumers of these
commodities (Terranova, 2004, p. 90).

MAIN FOCUS OF THE CHAPTER:
KNOWLEDGE, CREATIVITY, AND
SOCIAL CHANGE ON THE DIGITAL
COMMONS

The fi elds of sociology and cultural theory
are not alone in advancing theories about the
social relations of information technology.
Perspectives from the free software movement,
media arts, the sciences, and the law are also
contributing to new notions of the commons.15
In his essay Three Proposals for a Real De-
mocracy: Information-Sharing to a Different
Tune, Brian Holmes (2005, p. 218) proposes:

the constitution of a cultural and informational
commons, whose contents are freely usable and
protected from privatization, using forms such as
the General Public License for software (copyleft),
the Creative Commons license for artistic and
literary works, and the open-access journals for
scientifi c and scholarly publications. This cultural
and informational commons would run directly
counter to WIPO/WTO treaties on intellectual
property and would represent a clear alternative to
the paradigm of cognitive capitalism, by conceiv-
ing human knowledge and expression as something

 51

Social Technologies and the Digital Commons

essentially common, to be shared and made avail-
able as a virtual resource for future creation, both
semiotic and embodied, material and immaterial.

In Piratology: The Deep Seas of Open Code
and Free Culture, theorist Armin Medosch
(2003) unpicks the labour processes creating the
commons. He explains that the point-to-point
communications principle on which the Internet
is based “aids the creation of new transversal
structures—communities, movements, interest
groups, campaigns, discussion boards, fi le-shar-
ing communities ... ” (Medosch, 2003, p. 13).
These autonomous groupings produce a “social
dynamism, based on new types of technologically-
supported collectivisations” (Medosch, 2003, p.
13). Medosch describes “commons-based peer
production,” which he defi nes as as “the produc-
tion of goods and services based on resources
that are held in a commons and organised by
peers,” as now having reached a “critical mass”
(Medosch, 2003, p. 15).

Crucially, this has occurred “right in the centre
of Western societies, within the most advanced
areas of production” (Medosch, 2003, p. 15). As
evidenced by pan-continental gatherings; the
activity on free software lists in Latin America,
India, Asia, and Africa; the blogging move-
ments in Iran and Iraq; and the adoption of free
software by various governments, I would argue
that concurrent swells of participatory media are
also forming in non-Western societies spanning
various stages of industrialisation.16 Medosch
proposes that “without explicitly formulating itself
as oppositional, this nondescript movement of
movements slowly but inevitably changes society
from within” (Medosch, 2003, p. 15).

The historical importance of this trend is
echoed by other commentators. James Boyle
(2002) describes the Internet as “one big experi-
ment in distributed cultural production.” For Free
Software Foundation legal counsel Eben Moglen
(2003), “the movement for free information an-
nounces the arrival of a new social structure,

born of the transformation of bourgeois industrial
society by the digital technology of its own in-
vention.” Castells (2000) views the technological
transformation of media participation as being
of “historic dimensions,” likening it to the “new
alphabetic order” of the ancient Greeks, which
“provided the mental infrastructure for cumula-
tive, knowledge-based communication.” Hyper-
text and a “meta-language” integrate oral, textual,
aural and visual modalities into one system of
communication, which reunites the human spirit
in “a new interaction between the two sides of the
brain, machines, and social contexts” (Castells,
2000, pp. 355- 356).

Knowledge work “is inherently collective,
it is always the result of a collective and social
production of knowledge,” according to Ter-
ranova (2004, p. 80). The General Public License
(GPL) conceived by Richard Stallman17 and taken
up widely by free/libre open source software
(FLOSS) developers, is a legal mechanism en-
suring that information about software source
codes remains open and unprivatised. The Free
Software Foundation explains that:

The GPL builds upon the ethical and scientifi c
principle of free, open and collaborative improve-
ment of human knowledge, which was central to
the rapid evolution of areas like mathematics,
physics, or biology, and adapts it to the area of
information technology.18

The GPL was later applied to other kinds of
cultural goods, providing a framework for discus-
sions around the role of knowledge in information
society. It also inspired the open content licensing
system, Creative Commons (CC).19 Creative Com-
mons offers a spectrum of copyright or copyleft
protections which can be assigned to a wide range
of content types such as fi lm, music, and texts
before they enter the public realm.20

Internet-assisted systems of knowledge
exchange recall the ideas of educator Ivan Il-
lich (1971) in his prescient book Deschooling

52

Social Technologies and the Digital Commons

Society. Decades before the Internet became a
popular medium, Illich proposed that the “un-
hampered participation” of individual active
subjects informing and empowering themselves
“in a meaningful setting” via mechanisms such
as autonomously organised learning webs, skill
exchanges and networks of peers was fundamental
to societal transformation (Illich, 1996, p. 39, pp.
76- 97). Twenty years later, by conceiving and
then crafting the ingenious marriage of hyper-
text and computer networks, Tim Berners-Lee
created the World Wide Web, thereby gifting
the Internet with a user-friendly means of cre-
ating self-managed electronic learning webs.21

Scalability—the virtually infi nite capacity of
the Internet to add interconnected nodes of
communicable content to itself—means that the
Digital Commons is potentially boundless. It is
constrained mainly by technical issues, such as
bandwidth availability, and economic factors such
as access costs. Limits to the constitution of the
commons are more likely to be social in nature.
Common land is bounded by hedges, fences, or
historical memory, and its resources cooperatively
accessed and managed by agreed upon rules.
Similarly, the Digital Commons is a self-managed
web of systems that follows protocols “defi ned by
the shared values of the community sharing these
resources” (Kluitenberg, 2003).22

Kluitenberg (2003, p. 50) stresses the hybrid
and fl uid qualities of the democratic media sys-
tems created by “artistic and subversive media
producers.” According to him, the:

Successful mediator needs to be platform inde-
pendent, ... able to switch between media forms,
cross-connect and rewire all platforms to fi nd new
communication spaces ... they become tools to
break out of the marginalised ghetto of seldomly
visited websites and unnoticeable live streams.

An example of this approach is the Media Shed
project by the acclaimed art group Mongrel.23
Operating from a light industrial shed in the

economically impoverished city of Southend, Eng-
land, Mongrel collaborated with the local Linux
Users Group to run software training sessions,
assist community-generated digital art projects,
and establish an Internet radio station. All projects
used recycled electronic hardware, free and artist-
made multimedia, and social softwares. The Me-
dia Shed charter refl ects Mongrel’s long history of
making “socially engaged culture,” and resonates
with the ideals expressed by similar hybridised
collaborations on the Digital Commons. It aims:

To research, create and promote communica-
tion through free-media technologies outside the
monetary and licensing control of proprietary
systems, to assist the free fl ow of information, self
education and opinions, to encourage creative
expression and to contribute to and explore the
issues that are important to the everyday lives of
individuals, communities and diverse cultures in
a pluralist society. (Mongrel 2006)

Some discourses foreground the radical cul-
tural potential of the Digital Commons, and the
social agency of its “immaterial labourers.” The
Delhi Declaration of a New Context for New
Media (World Information Cities, 2005) speaks
of a “vigorous cluster of practices of ongoing
cultural transaction within and outside formal
commodity relations” which guarantees cultural
diversity. Medosch (2003a) depicts artist/coders
as being “at the heart of a cultural struggle” be-
cause they “carry forward the cultural politics
of code by supporting the foundations for the
preservation and renewal of culture” (Medosch,
2003a, p. 16). With the digital tools they make,
“the artist/coders liberate culture from the grips
of the culture industries … creat[ing] platforms
for social experimentation” (Medosch, 2003a, p.
16). A related set of practices can be grouped un-
der the umbrella of electronic civil disobedience.
Jordan and Taylor (2004) describe practitioners of
“hacktivism” as seeking to “re-engineer systems
in order to ... confront the overarching institu-

 53

Social Technologies and the Digital Commons

tions of twenty-fi rst-century societies” (Jordan
& Taylor, 2004, p. 29).24

Brian Holmes (2003) identifi es the progressive
re-engineering of public knowledge and the social
imaginary in his text Cartography of Excess, ref-
erencing Internet-based mapping projects such as
TheyRule, a detailed investigation into American
corporate boardroom power relations.25 Holmes
opines that:

Far beyond the computer logic of open source,
the great alternative project of the last decade has
been mapping the transnational space invested
primarily by corporations, and distributing that
knowledge for free. This is the real power of
“spontaneous cooperation” in a global informa-
tion project like Indymedia. (p. 65)

Such projects are valuable because they make
the rules of the neoliberal economy visible to a
point where “we can start imagining—or explor-
ing—a radically different map of the planet again.”
(Holmes, 2003, p. 65)

Social Softwares as Social
Technologies: Dyne:bolic,
Streamtime, and the Container Project

Creating the material circumstances to enable
the democratic exchange of imagination and
information is a driving factor in numerous
projects on the Digital Commons. Dyne:bolic,
Streamtime and the Container Project are three
such examples, employing free and social soft-
wares as tools for creative expression, social
activism, and cultural transformation. If we
consider the Digital Commons to be the macro-
structure, then social software can be thought of
a set of microsystems within this framework.26
Matthew Fuller describes social software as:

Primarily ... built by and for those of us locked out
of the narrowly engineered subjectivity of main-
stream software. It is software which asks itself

what kind of currents, what kinds of machine, nu-
merical, social, and other dynamics, it feeds in and
out of, and what others can be brought into being.
… It is ... directly born, changed, and developed as
the result of an ongoing sociability between users
and programmers in which demands are made on
the practices of coding that exceed their easy fi t into
standardised social relations. (Fuller, 2003, p. 24)

Dyne:bolic, a live bootable distribution of the
GNU/Linux operating system, is a good example
of Fuller’s model of social software. Released
under the GPL, it has the bonus of “a vast range
of software for multimedia production […] ready
for being employed at home, in classrooms and
in media centers” which have been made by
“hundreds of programmers all around the world”
(Jaromil 2006).27 In order to ensure the widest
spectrum of people and machines can access
Dyne:bolic, it has been optimised to run on older
machines. Compare this with the OS releases
from the proprietary vendors—could an Apple
SE circa 1995 run OS10 for example? Completely
rewritten in 2005 as the “DHORUBA” release,
lead developer Jaromil (2006) announces that the
project is already planning its next stage, which
will be “a cross-platform build environment to
cover all kinds of hardware around.”

In an undated text entitled This is Rasta
Software, Jaromil links Dyne:bolic with
revolutionary social movements, proclaiming:

This software is for all those who cannot afford to
have the latest expensive hardware to speak out
their words of consciousness and good will. This
software has a full range of applications for the
production and not only the fruition of information,
it’s a full multimedia studio ... because freedom
and shar[ing] of knowledge are solid principles
for evolution and that’s where this software comes
from ... This software is free as of speech and
is one step in the struggle for Redemption and
Freedom. ... (Jaromil, 2005)

54

Social Technologies and the Digital Commons

Dyne:bolic and many other free software has
arisen out of the Italian autonomous hackmeeting
and hack labs scene.28 Whilst “trying to recover
the essence of the fi rst hackers from MIT,” these
are outcomes of a signifi cantly different cultural
context to that of the liberal and libertarian inter-
pretations of freedom characterised by American
discourse (Nmada & Boix, 2003). The social and
communal end uses and empowering possibili-
ties of the software are valorised, more than the
individual’s right to examine and share source
code. This is cooperatively-made software to “let
people be Free to Create” (Jaromil 2006).29

The Streamtime project, a collaboration be-
tween Radio Reedfl ute and Rastasoft, applies
this principle, gathering up free software such as
Dyne:bolic from the Digital Commons, to assist
the building of “autonomous networks in extreme
conditions.”30 Streamtime describes itself as “a
handshake in cyberspace, a hanging garden for
dialogue and cooperation, generated by a sense of
solidarity, hospitality and a desire to communicate
and relate.” An initiative of Dutch media activist Jo
van der Spek, the communication platform enables
self-production of media, such as low-tech wireless
radio networks to stream local content. It hosts a
meta-blog linking to multi-lingual chronicles of
life in wartime situations in Iraq and Lebanon,
audio archives (poetry and interviews), and links
to other DIY media resources. Streamtime’s Mis-
sion Statement explains:

Streamtime uses old and new media for the pro-
duction of content and networks in the fi elds of
media, arts, culture and activism in crisis areas,
like Iraq. Streamtime offers a diffuse environment
for developing do-it-yourself media. We focus on
a cultural sense of fi nding your own way in the
quagmire that is Iraq, and its representation in
the global media. We should not try to change
politics in order to foster cultural change; we
should support cultural manifestation in order
to force political change.

The Container Project, initiated by Jamaican
artist Mervin Jarman, is a more localised example
of cultural intervention using social technologies.31
Mervin wanted to take “creative computer technol-
ogy to ghetto people and deep rural communities
in the Caribbean,” so that “kids growing up in the
ghettos of Jamaica [could] realize they can ‘fulfi ll
their wildest dreams’” (de Silva). The project
of “technological repatriation” was inspired by
Mervin’s own youthful experiences of poverty,
his later journeys into video making, and his par-
ticipation in a digital media training program for
the socially disadvantaged at ARTEC in London.
He sees the Container as a “revolutionary proj-
ect” that challenges the existing social order of
endemic poverty, by using under-recognised rich
local cultural traditions and talent to generate new
entrepreneurial systems of reciprocal exchange
and opportunity (Fuller, 1999).

In 2003 a volunteer team came to the Jamaican
village of Palmers Cross to help realise Mervin’s
vision. The group converted a shipping container
into a media lab housing sixteen networked comput-
ers running three operating systems (GNU/Linux,
Mac, and Windows), all connected to a Linux server.
The lab included a purpose-designed dedicated
multimedia suite, and machines hosting a mix of
proprietary and free software programs, includ-
ing artist-made social softwares. Mervin used his
intimate knowledge of his community’s dynam-
ics when designing the Container’s architecture.
The bright yellow structure was opened up with
large kiosk-style windows, inviting people to get
to know what was happening at their own pace.
The Container Project fulfi lled a community need
for a social hub. Originally envisaged as a mobile
lab, the local people have been reluctant to let it leave
their village. Its educational and cultural exchange
programs addressed a range of needs, from general
computer skills to the sharing of creative talents with
a world audience. Mervin views this community
empowerment as a global issue, explaining:

 55

Social Technologies and the Digital Commons

That’s why I think the Container is such an incred-
ible and revolutionary project because it allows
street-level emergence into what would be an
otherwise unchallenged consortium of global
culturalisation and then where would we be?
What would happen to our dynamics as it relates
to production, be that in the Music, Art and Craft,
in the way we conduct businesses, and develop our
own customized software to satisfy our specifi cs?
... No system should impose its will and/or cultural
identity on another, the only way for software and
technology to be truly dynamic is to decentralize
the decision making process, open up the formats
to customization on a more trans-culture and
gender context. (Fuller, 1999)

In 2004, a broadband connection linked the
Container Project to the wider world, and its elec-
tronic Post Offi ce Box (e-POB) was an immediate
success, tapping into fundamental communication
needs. In June 2005 the young musicians and sing-
ers of the village participated in the SkintStream
project, a network connecting “audiences and
cultural spaces previously separated by economic,
geographical, and political factors.” A temporary
“Poor-to-Poor” streaming radio channel was
established, linking creative communities in
Palmers Cross, a shanty town in Johannesburg,
a diaspora Congolese community in London,
a public housing community in Toronto, and
young musicians in Southend.32 It was the fi rst
time that most of the participants had performed
their creative works to outside audiences, and
the level of excitement with the experience was
reportedly very high. SkintStream embodies one
of the goals around cultural empowerment stated
on the Container Project Web site―to demonstrate
to people in remote and isolated communities that
they too “can contribute to the future, that they
will have a place in the millennium.”

In March 2006, the Container Project hosted
a Community Multimedia Centre Management
Workshop.33 The three week event included a
Digital Storytelling Workshop, and the creation of a

temporary recording studio. Based on a knowledge-
sharing model, guest artists and teachers passed on
technical, creative, leadership, and training skills
to ten workshop participants, giving the students
the ability to replicate the program themselves in
other communities. The Container Project team are
now working closely with local organisation ICT4D
Jamaica to deliver workshops under the “community
without borders” concept.34 As Mervin explained,
this “fulfi lls the Container mobility needs, only
we move people into Palmers Cross so they get the
whole ambient of what it feels like to be part of the
Container family.”35 Two projects in the planning
stage are the creation of a community Internet
radio portal for the region, and mongrelStreet lab,
a portable lab made out of wheelie bins.

Like Dyne:bolic and Streamtime, the Container
Project harnesses social technologies with creative
expertise to create a platform for cultural expression
and exchange for disenfranchised communities.
These are just three of a multitude of similar projects
occurring around the world. Visible social change
is happening on grassroots local levels, and ideas
and project-generated content are feeding back
into a multiplicity of interconnected Digital Com-
mons. This emergent phenomenon could herald
widespread social change based on the new shared
social imaginaries which are being generated.

FUTURE TRENDS

Mongrel (2004) proposes that when “new com-
mon cultural spaces open up in the public domain
as they did with the Internet in the 1990s, those
with the proprietary right or economic might,
usually attempt enclosure.” Commodifi cation
and privatisation of natural and public resources
and spaces present a signifi cant challenge to the
commons, earthly and electronic.36 The various
processes through which attempts are made to
privatise the Digital Commons are termed the
“digital enclosures.” In response, new alliances
of free software developers, legal and cultural

56

Social Technologies and the Digital Commons

activists are gathering to protect, and extend, the
freedom of the commons. Two recent examples
of the digital enclosures include the failed legis-
lative bid by the European Parliament to impose
software patents,37 and the impositions of the
United States’ Digital Millennium Copyright
Act (DMCA).38 Battles on the contested ground
of intellectual property are intensifying as the
United States pressures its trading partners to
“adopt laws modelled on the DMCA as part of
bilateral and multilateral trade agreements” (von
Lohmann, 2004).

James Boyle (2002) warns that intellectual
property rights (IPR) threaten the “commons of
mind,” stating that “things ... formerly thought
to be uncommodifi able, essentially common, or
outside the market altogether are being turned into
private possessions under a new kind of property
regime. But this time the property ... is intangible,
existing in databases, business methods, and gene
sequences.” He notes that, unlike a common tract
of land which can be overexploited,39 the “digitized
and networked commons of the mind” is not de-
pleted or destroyed by being mutually shared. Due
to the fragmentary nature of information products,
all fragments “can function as raw material for
future innovation” (Boyle, 2002).

Despite the threat of the enclosures the Digital
Commons is expanding, as peer production of
democratic media projects, cultural activism, and
art proliferate. The Internet is the key enabling
technology underpinning the commons, and all
fi gures point to the exponential growth of the
net, especially in the global South.40 This creates
a more culturally-diverse, socially inclusive, and
globalised network society, and it is unlikely that
the new swarms of activity will recede or wither.
These nonlinear clusters of social technologies and
projects resonate with fundamental human desires
to communicate, to create, to work cooperatively
and collectively, and to exchange elements of
ourselves and our cultures.

Empirical research is needed to analyse these
new phenomena. Comprehensive documentation

of a spectrum of projects energising the Digital
Commons will contribute to an understanding
of what is common (and different) about these
projects’ cooperative labour processes, their tech-
nological innovation, the new systems of cultural
and social exchange developing, and the chal-
lenges faced by participants. Multiple-language
translations of project documentation and case
studies would offer important cross-cultural per-
spectives. Qualitative research would ground more
speculative work, such as considerations about the
shifts in social imaginaries resulting from these
experiments in production and social relations.
Indeed, learning how such imaginative shifts are
being played out in material projects and networks
could reveal unfolding global patterns and fl ows.

CONCLUSION

The idea that all humanity is living in a global
age of advanced neoliberal capitalism, with its
interconnected communicative fl ows of data,
fi nances and labour is no longer new; Marshall
McLuhan and others were channelling the in-
formation revolution spirits some 40 years ago.41
In contrast, discourses around network society,
knowledge work, immaterial labour, and soft-
ware as culture, are still in their infancy, and
the language is sometimes esoteric, or opaque.
Fortunately practice outstrips theory on the
Digital Commons, as new hybrid collaborations
of peer production and social activism are creat-
ing democratic public spaces for communication
and creativity, and generating new systems of
exchange. In these contexts, far away from the
Google campus, cooperation displaces competi-
tion, and the creation of shared frameworks of
knowledge and action provides traction for local,
regional, and transnational social change.

There is no unitary or abstract Digital Com-
mons, but rather a multiplicity of Digital Commons
across the North-South power axis. In this new
millennium voices from the “Fourth World” or

 57

Social Technologies and the Digital Commons

“Global South” are entering the network fl ows,
forming new autonomous networks and creative
laboratories, further transforming the praxis.
Their discourses emphasise software freedom
as being intrinsically related to free culture,42
community empowerment, traditional indigenous
knowledge43 and social rights. The decision by the
Brazilian government to use only open source
software, and to establish 1,000 free software
and free culture centres in the poorest parts of
the country, is directly linked to a radical social
vision which is challenging knowledge ownership
laws from pharmaceutical patents to fi le sharing.
In the words of Brazilian Minister of Culture and
acclaimed musician Gilberto Gil, “if law doesn’t fi t
reality anymore, law has to be changed. ... That’s
civilisation as usual” (Burkeman, 2005).

And just beneath civilisation lies the unknown,
the realm of spectres and magic and transforma-
tion. What is a spell if not a set of programmed
instructions to create change? Open code is trans-
forming society subtly, as social technologies are
being cooperatively built, shared, and used in a
deeply networked, informatised, immaterial, cul-
tural space—the “collective subjectivity” of the
Digital Commons (Dafermos, 2005).44 The Free
Software Movement has provided the impetus for
the evolution of numerous thriving ecosystems,
and rich hybridised sites of cultural production.
The enthusiastic embrace by the “Fourth World”
of free software is one sign, amongst many
others, that social change on an unprecedented
scale is afoot. The immaterial spaces created by
networked imaginations could offer us all vital
keys to comprehending such change.

REFERENCES

Agar, J. (2001). Turing and the universal machine:
The making of the modern computer. Cambridge:
Icon Books UK.

Berners-Lee, T., & Fischetti, M. (1999). Weaving
the Web. London: Orion Business Books.

Black, E. (2001). IBM and the holocaust: The
strategic alliance between Nazi Germany and
America’s most Powerful corporation. New York:
Crown Publishers.

Bollier, D. (2002). Silent theft: The private plunder
of our common wealth. New York: Routledge.

Bosma, J., Van Mourik Broekman, P., Byfi eld,
T., Fuller, M., Lovink, G., McCarty, D., et al.
(Eds.), (1999). Readme! fi ltered by Nettime: ASCII
culture and the revenge of knowledge. New York:
Autonomedia.

Boyle, J. (2002). Fencing off ideas: Enclosure
and the disappearance of the public domain.
Retrieved August 18, 2005, from http://centomag.
org/essays/boyle

Boyle, J., Brindley, L., Cornish, W., Correa, C.,
Cuplinskas, D., Deere, C., et al. (2005). Adelphi
Charter on creativity, innovation and intellectual
property. Retrieved November 8, 2005, from
http://www. adelphicharter.org

Burkeman, O. (2005, October 14). Minister of
counterculture. The Guardian. Retrieved March
28, 2007, from http://technology.guardian.co.uk/
news/story/0,16559,00.html

Castells, M. (1998). End of millenium (2nd ed., Vol.
3). Oxford: Blackwell.

Castells, M. (2000). The rise of the network society
(2nd ed., Vol. 1). Oxford: Blackwell.

Ceruzzi, P. E. (2003). A history of modern comput-
ing (2nd ed.). Cambridge, MA: MIT Press.

Critical Art Ensemble. (1994). The electronic
disturbance. New York: Autonomedia.

da Rimini, F. (2005). Grazing the Digital Com-
mons: Artist-made social softwares, politicised
technologies and the creation of new generative
realms. Unpublished master’s thesis, University
of Technology, Sydney, Australia.

Dafermos, G. N. (2005). Five theses on informa-
tional—Cognitive capitalism. Retrieved Novem-

58

Social Technologies and the Digital Commons

ber 28, 2005, from http://www.nettime.org/Lists-
Archives/nettime-l-0511/msg00103.html

Davis, M. (2000). The universal computer: The
road from Leibniz to Turing. New York: W. W.
Norton.

de Silva, S. (n.d.). Desperately seeking Mervin.
Retrieved March 14, 2005, from http://www.the-
paper.org.au/024/024desperatelyseekingmervin.
html

Essinger, J. (2004). Jacquard’s Web: How a hand
loom led to the birth of the information age. Ox-
ford, UK: Oxford University Press.

Fitzpatrick, A. (1998). Teller’s technical nemeses:
The American hydrogen bomb and its develop-
ment within a technological infrastructure. Soci-
ety for Philosophy and Technology, 3(3).

Fuller, M. (1999). Mervin Jarman - The Container.
Retrieved January 2005, from http://www.nettime.
org/Lists-Archives/nettime-l-9906/msg00138.
html

Fuller, M. (2003). Behind the blip: Essays on the
culture of software. New York: Autonomedia.

Grattan-Guinness, I. (1990). Work for the hair-
dressers: The production of de Prony’s logarithmic
and trigonometric tables. Annals of the History
of Computing, 12(3), 177 -185.

Hauben, R. (n.d.). History of UNIX: On the evo-
lution of Unix and the automation of telephone
support operations (i.e., of computer automation).
Retrieved November 7, 2005, from http://www.
dei.isep.ipp.pt/docs/unix.html

Hauben, M., & Hauben, R. (1995). Netizens:
On the history and impact of the Net. Retrieved
November 7, 2005, from http://www.columbia.
edu/~hauben/netbook/

Holmes, B. (2003). Cartography of excess. In T. Co-
miotto, E. Kluitenberg, D. Garcia, & M. Grootveld
(Eds.), Reader of the 4th edition of next 5 minutes
(pp. 63- 68). Amsterdam: Next 5 Minutes.

Holmes, B. (2005). Three proposals for a real
democracy: Information-sharing to a different
tune. In M. Narula, S. Sengupta, J. Bagchi, &
G. Lovink (Eds.), Sarai Reader 2005: Bare acts.
Delhi: Sarai.

Illich, I. (1971, 1996). Deschooling society. Lon-
don: Marion Boyars.

Jaromil. (2005) This is rasta software. Retrieved
November 13, 2005, from http://dynebolic.org/
manual-in-development/dynebolic-x44.en.html

Jaromil. (2006). Dyne:bolic 2.1 codename DHO-
RUBA. Retrieved July 13, 2006, from http://net-
time.org

Jordan, T., & Taylor, P. A. (2004). Hacktivism
and cyberwars: Rebels with a cause? London:
Routledge.

Kluitenberg, E. (2003). Constructing the Digital
Commons. In T. Comiotto, E. Kluitenberg, D.
Garcia, & M. Grootveld (Eds.), Reader of the 4th
edition of next 5 minutes (pp. 46 -53). Amsterdam:
Next 5 Minutes.

Lazzarato, M. (1996). Immaterial labor. Retrieved
August 11, 2005, from http://www.generation-
online.org/c/fcimmateriallabour3.htm

Lessig, L. (2004). Free culture: How big media
uses technology and the law to lock down culture
and control creativity. London: Penguin.

Liang, L. (2004). Guide to open content licenses.
Rotterdam: Piet Zwart Institute.

Linebaugh, P., & Rediker, M. (2001). The many-
headed hydra: Sailors, slaves, commoners, and
the hidden history of the revolutionary Atlantic.
Boston: Beacon Press.

Lovink, G. (2002). Dark fi ber. Cambridge, MA:
The MIT Press.

Mantoux, P. (1905, 1983). The industrial revo-
lution in the eighteenth century: An outline of
the beginning of the modern factory system in

 59

Social Technologies and the Digital Commons

England (rev. ed.). Chicago; London: University
of Chicago Press.

Medosch, A. (2003). Piratology: The deep seas of
open code and free culture. In A. Medosch (Ed.),
Dive. London: Fact.

Medosch, A. (2005). Roots culture: Free software
vibrations “inna Babylon.” In M. Narula, S.
Sengupta, J. Bagchi, & G. Lovink (Eds.), Sarai
Reader 2005: Bare acts. Delhi: Sarai.

Meikle, G. (2002). Future active: Media activism
and the Internet. Sydney, Australia: Pluto Press.

Midnight Notes Collective. (1990). The new en-
closures. Midnight Notes, 10.

Moglen, E. (1999). Anarchism triumphant: Free
software and the death of copyright. First Mon-
day, 4(8).

Moglen, E. (2003). The dotCommunist Manifesto.
Retrieved June, 2005, from http://moglen.law.
columbia.edu/

Mongrel. (2004a). BIT_COMMON <=> CODE_
OF_WAR. Retrieved November 30, 2005,
from http://www.scotoma.org/notes/index.
cgi?MonsterUpdate3

Mongrel. (2004b). About Mongrel. Retrieved
August 15, 2005, from http://www.mongrelx.
org/home/index.cgi?About

Mongrel. (2006). Free-media. Retrieved July 22,
2006, from http://dev.mediashed.org/?q=freemedia

Moody, G. (2001). Rebel code: Linux and the
open source revolution. London: Allen Lane,
The Penguin Press.

Nmada, & Boix, M. (2003). Hacklabs, from
digital to analog. Retrieved February 2, 2006,
from http://wiki.hacklab.org.uk/index.php/Hack-
labs_from_digital_to_analog

Parenti, C. (2003). The soft cage: Surveillance in
America from slave passes to the war on terror.
New York: Basic Books.

Plant, S. (1997). Zeroes + Ones: Digital women +
the new technoculture. London: Fourth Estate.

Rheingold, H. (2000). Tools for thought: The his-
tory and future of mind-expanding technology (2nd
ed.). Cambridge, MA: The MIT Press.

Stallman, R. (2005, June 20). Patent absurdity.
The Guardian.

Swade, D. (2000). The cogwheel brain: Charles
Babbage and the quest to build the fi rst computer.
London: Little, Brown and Company.

Terranova, T. (2004). Network culture: Politics for
the information age. London: Pluto Press.

Toner, A. (2003). The problem with WSIS. Re-
trieved November 8, 2005, from http://world-infor-
mation.org/wio/readme/992006691/1078414568/
print

Toole, B. A. (Ed.). (1992). Ada, the enchantress
of numbers: A selection from the letters of Lord
Byron’s daughter and her description of the fi rst
computer. Mill Valley, CA: Strawberry Press.

von Lohmann, F. (2004). Measuring the Digital
Millennium Copyright Act against the Darknet:
Implications for the regulation of technological
protection measures. Loyola of Los Angeles En-
tertainment Law Review, 24, 635 -650.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Webster, F. (2002). Theories of the information
society (2nd ed.). London: Routledge.

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

World Information Cities. (2005). The Delhi
declaration of a new context for new media. In
IP and the City: Restricted Lifescapes and the
Wealth of the Commons (p. 15). Vienna: World-
Information City.

60

Social Technologies and the Digital Commons

KEY TERMS

 Digital Commons: A conceptual framework
for considering the common wealth of intellectual
goods, knowledge products, creative works, free
software tools, shared ideas, information, and so
on which are freely and democratically shared,
and possibly further developed, via the Internet

 Free/Libre Open Source Software (FLOSS):
A convenient acronym for “free libre open source
software.” It neatly bundles the revolutionary as-
sociations of “free (libré) as in freedom” together
with the more technical and neutral connotations
of “open source.” The term implicitly acknowl-
edges that differences between the two camps
exist, but they are operational in the same fi eld.

 Free Software (FS): Software in which the
underlying code is available to be inspected,
modifi ed, shared, with the proviso that it remains
open, even following modifi cation. To ensure it
remains open, free software is distributed under
the General Public License (GPL) or similar legal
agreements.

 Free Software Movement: The philosophical
and political context underpinning the creation of
free software, and the subjective sense of com-
munity shared by developers and users.

 Immaterial Labour: A theoretical framing of
knowledge work, labour processes, and social rela-
tions in information society, initially articulated
by Italian theorists including Maurizio Lazzarato
and Christian Marazzi.

 Open Source Software (OSS): A strategic
business-friendly “rebranding” of free software
emphasising the practical benefi ts of the model
of participatory software development and open
code, and downplaying the original ideological
and philosophical positions.

 Peer Production: A horizontal, distributed
method of cooperative, creative labour, gener-

ally facilitated by high levels of communication,
information, and fi le sharing via the Internet.

 Social Software: The term came out of the
nexus between cultural and social activism, art
and tactical media, and was originally used to
designate software that came into being through
an extended dialogue between programmers and
communities of users, ensuring that the software
was responsive to user needs. The phrase no longer
carries the same import, as it is now applied to
software-assisted social networking platforms
such as MySpace.

 Social Technologies: An umbrella term which
could include free software, social software, re-
cycled electronic equipment in free media labs,
and so on. Technology put to use by the people,
for the people.

ENDNOTES

1 In his seminal book Behind the Blip: Essays
on the Culture of Software, Matthew Fuller
(2003) proposed that computers are “assem-
blages,” combining technical, mathematical,
conceptual and social layers. Through a
process of critical examination we can better
understand “the wider assemblages which
they form and are formed by” (Fuller, 2003,
p. 21). According to Fuller, software creates
sensoriums, “ways of seeing, knowing and
doing in the world that at once contain a
model of that part of the world it ostensibly
pertains to, and that also shape it every time
it is used” (Fuller, 2003, p. 19).

2 The Digital Commons is often discussed with
reference to the changing of common land
usage since medieval times. For example,
eighteenth century England was “marked
by the co-existence and close association
between small agricultural production
and small industrial production,” and “the
commons” referred to bounded parcels of

 61

Social Technologies and the Digital Commons

land which were available to be used by the
local yeomanry and tenants (gleaned and
gathered, cultivated, hunted, and traversed
for reaching other destinations) under agreed
upon protocols (Mantoux, 1983, pp. 137-1 39;
Linebaugh & Rediker, 2000, pp. 22 -26).
Collective ownership and usage rights of
land underlies “the clachan, the sept, the
rundale, the West African village, and the
indigenous tradition of long-fallow agricul-
ture of Native Americans—in other words,
it encompassed all those parts of the Earth
that remained unprivatised, unenclosed, a
noncommodity, a support for the manifold
human values of mutuality” (Linebaugh &
Rediker, 2000, p. 26).

3 The emergence of unwelcome proprieto-
rial directives at MIT in the early 1980s
inspired hacker Richard Stallman to begin
work on a system enabling the free circula-
tion of technical knowledge in the fi eld of
software. Thus began the GNU (a recursive
shortening of “Gnu’s Not Unix”) project,
which eventually resulted in the GNU/Linux
operating system. The subjective sense of
belonging to a global programming commu-
nity which grew up around the various free
software projects was fostered by an early
social software—the newsgroup medium,
a free, bandwidth-light, subject-based com-
munication environment. The participatory
programming method that benefi ted the
GNU/Linux development model was en-
abled by the Internet, a medium in which
everyone could communicate, and exchange
software modules, with no geographical or
timezone barriers. A comprehensive history
of FLOSS (free, libré open sourcesoftware)
has been documented by Glyn Moody (2001)
in Rebel Code: Linux and the Open Source
Revolution. Sam Williams (2002) provides
a detailed account the birth of the Free
Software Movement in Free as in Freedom:
Richard Stallman’s Crusade for Free Soft-

ware. Steven Weber’s (2005). The Success
of Open Source posits open source as a “po-
litical economy,” and provides perspectives
on how the phenomenon functions on micro
and macro levels. The website and commu-
nity around www.slashdot.org is a central
Anglophone forum for technically-focused
discussion. FirstMonday is a refereed online
journal focusing on FLOSS and associated
cultural issues www.fi rstmonday.org.

4 Documentation and critique of more cultur-
ally focused software projects can be found
in anthologies such as Readme! (1999), Dark
Fiber (2002), Anarchitexts: Voices from the
Global Digital Resistance (2003) and the
annual Sarai Reader (2001- 2005); and in
mailing lists such as www.nettime.org. See
also Fuller, 2003; Medosch 2005; da Rimini,
2005.

5 The punch card was the “software,” a self-
feeding set of pattern instructions, which
was fed into, and controlled, the fi xed loom
“hardware.” Different sets of punch cards
could be fed into the same loom, resulting
in different “outputs,” patterned lengths of
material. The automation of weaving pro-
cesses caused the disappearance of certain
jobs; specifi cally, the punch card completely
replaced the work of the draw boy. See
Essinger’s (2004) fascinating account.

6 For various reasons Babbage’s machines
were never built beyond prototype stage in
his lifetime. Illuminating histories of Bab-
bage, Lovelace, and the Engines are to be
found in Toole, 1992; Plant, 1997; Swade,
2000; and Essinger, 2004. Swade also
documents the recent building of a Babbage
engine from original plans.

7 See the authoritative account by Edwin Black
(2004).

8 In 1937, the young English mathematics stu-
dent, Alan Turing, “imagined a machine that
could be used to generate complex numbers
... a symbol-manipulating machine” (Agar,

62

Social Technologies and the Digital Commons

2001, pp. 88 89, italics in original). These
thought experiments generated the concept
of a Universal Turing Machine, that is, “any
stored-program computer [which] can be
programmed to act as if it were another”
(Ceruzzi, 2003, p. 149). See Computing
Machinery and Intelligence (Turing, 1950) at
www.cse.msu.edu/~cse841/papers/Turing.
html. During World War II, Turing worked
as a code-breaker at the Code and Cypher
School at Bletchley Park, the centre of the
Allies’ efforts to decrypt Germany’s Enigma
machines. Later Turing worked with the
fi rst general purpose electronic computer,
the “experimental monster” nicknamed
the “Blue Pig,” built in 1948 at Manchester
University. The Atlas, a later version built in
1962, used a “hierarchy of memories, each
slower but larger than the one below it,” that
“gave the user the illusion of a single-level
fast memory of large capacity.” This beast
was “one of the most infl uential on successive
generations” of computers (Davis, 2000, pp.
177- 197; Agar, 2001, pp. 120 -122; Ceruzzi,
2003, p. 245).

9 In the build-up to the United States’ entry
to World War II, American mathematician
Howard Aitken was funded by the U.S.
Navy, and supported by IBM’s machines
and expertise, to construct a modern ver-
sion of Babbage’s Difference Engine. The
Automatic Sequence Controlled Calculator,
renamed Harvard Mark 1, “churn[ed] out
numbers for naval weapon design.” Simul-
taneously, “a second monster was under
construction ... the Electronic Numerical
Integrator and Computer—the ENIAC ...
also born of speed and confl ict.” ENIAC’s
creators, physicist John W. Mauchly and J.
Presper Eckert, were funded by the U.S.
Army to build a “monster calculator.” The
army “was desperate” for a machine which
would be able to rapidly process the complex
simultaneous equations needed to produce

ballistic tables for the new anti-aircraft
guns. Finished in 1945 the ENIAC missed
the war, but was soon employed for other
military tasks, including thermonuclear
bomb calculations for the nascent science
of nuclear physics (Fitzpatrick, 1998; Agar,
2001, pp. 53- 61).

10 Engineer Konrad Zuse was employed by
the Henschel aircraft company during the
rearmament of Germany in the mid 1930s.
Pressured to hasten production of its new,
fast military planes, Henschel was hampered
by the time needed for vital mathematical
calculations to ensure fuselage and wing
stability. Because there were up to thirty
unknowns in these calculations, they were
best solved by simultaneous equations,
taking a team of mathematicians weeks of
labour. Zuse realised that these complex
processes could be mechanised, if there
was a calculator which could read a “plan”
or script giving the order of the equations
to be sequentially calculated. Zuse’s great
intellectual contribution was to conceive of
using binary numbers for the plan, machinic
memory and calculations. In 1938 Zuse built
a prototype, the Z3, at home with the help
of friends, including Helmut Schreyer, a
Nazi and hobbyist projectionist. The binary
plan was punched into celluloid fi lm reels.
(Rheingold, 2000; Agar, 2001, pp. 41 -52;
Ceruzzi, 2003, pp. 83- 84). See also The Life
and Work of Konrad Zuse, by Professor Horst
Zuse, online at www.epemag.com/zuse.

11 This phrase is borrowed from Paul Ceruzzi’s
meticulous account of computing in the
United States between 1945 2001 in A His-
tory of Modern Computing (2003, p. 2).

12 This phase of capitalism is also framed as
“post-Fordism,” “late capitalism,” and most
commonly, “neoliberalism.” The policies
of the triumvirate of the World Bank, the
International Monetary Fund, and the World
Trade Organisation, are acknowledged as

 63

Social Technologies and the Digital Commons

determining the way this stage of capital-
ism is manifested in the Global North and
Global South.

13 Manuel Castells is a leading theorist on
the relationships between information and
society (Webster, 2001, p. 97). In The Infor-
mation Age: Economy, Society and Culture,
Castells (1998, 2000) combines empirical
evidence with personal cross-cultural re-
search to analyse the material features of
informational societies, social movements
arising out of network society, macropolitical
affairs, and processes of social transforma-
tion.

14 Notable theorists include sociologist
Maurizio Lazzarato, the economist Chris-
tian Marazzi, Paolo Virno, and philosopher
Antonio Negri. With many texts now trans-
lated into English, the concept permeates
debates from free software to “precarious
labour.” Quotations in this paragraph are
drawn from Lazzarato’s 1996 essay, Immate-
rial Labour, using the English translation by
Paul Colilli and Ed Emory at www.genera-
tion-online.org/c/fcimmateriallabour3.htm.
A version of the essay is in Hardt, M. &
Virno, P. (Eds.), Radical Thought in Italy: A
Potential Politics, University of Minnesota
Press, Minneapolis (pp. 133 -147).

15 Interrelated concepts of a knowledge com-
mons, science commons, genetic commons,
and creative commons are emerging from
these dialogues. The Digital Library of the
Commons (DLC) is a portal into an extensive
collection of literature at dlc.dlib.indiana.
edu. Other resources include: onthecom-
mons.org; science.creativecommons.org;
creativecommons.org; www.ukabc.org/ge-
netic_commons_treaty.htm.

16 Some representative examples follow. The
Free Software Foundation Latin America
(FSFLA) was founded in 2005. See http://
mail.fsfeurope.org/mailman/listinfo/fs-
fl a-anuncio. Africa Linux Chix is a lively

Pan-African mailing list launched in 2004,
active in promoting the benefi ts of FLOSS
via conferences, networking and workshops.
Blogging has driven the democratic media
movement in the Middle East. Bloggers
with the nicks of Salaam Pax, Raed, and
Riverbend provided unique perspectives
from Baghdad on the 2003 invasion of Iraq,
with two collections of these chronicles later
published in book form. See Pax, S. (2003),
Baghdad Blogger, Penguin, London, and,
Riverbend (2005), Baghdad Burning: Girl
Blog From Iraq, Marion Boyars, London.
See also Alavi N. (2005), We Are Iran:
The Persian Blogs, Soft Skull Press, New
York. Complementing bloggers’ personal
accounts are two independently-produced
major websites, electroniciraq.net and www.
iraqbodycount.org, providing information
to English-speaking audiences. In East
Asia the Interlocals project formed in 2006
as “a platform for facilitating cross-border
dialogue on critical issues related to culture,
gender, environment, social justice, peace,
global/local politics, media movement,
social movement and transformation, etc.”
Currently hosted by In-Media Hong Kong,
content is created by a community of media
activists around East Asia. See www.inter-
locals.net. In South Asia the Bytes for All
initiative of Frederick Norhona and Parha
Pratim Sarker is a platform showcasing in-
novative “IT for social changes practices.”
The Web site, e-zine, and mailing lists cover
projects ranging from knowledge pipelines
to rural areas to net portals for “slum-kids”
to GNU/Linux rewritten in local languages.
See bytesforall.org.

17 Computing histories generally agree that
the Free Software Movement—as a social
movement—was initiated and steered by one
individual, Richard M. Stallman (Moody,
2001; Williams, 2002; Ceruzzi, 2003). His
achievements include the seminal GNU

64

Social Technologies and the Digital Commons

Project (Gnu’s Not Unix, the heart of what
became the GNU/Linux free operating
system), the GPL (General Public License),
and the establishment of the Free Software
Foundation (FSF).

18 Source: mail.fsfeurope.org/pipermail/press-
release/2005q3/000116.html. The General
Public License (GPL) is online at www.gnu.
org/copyleft/gpl.html

19 The organization was founded in 2001, with
the fi rst set of CC licenses released in De-
cember 2002. See creativecommons.org.

20 In Guide to Open Content Licenses, re-
searcher Lawrence Liang (2004) argues
that the open content paradigm is a serious
alternative to traditional copyright regimes
that typically favour the interests of giant
media conglomerates over both independent
creators and the public.

21 The World Wide Web, or WWW, is a clus-
ter of communication protocols (HTTP),
a programming language (HTML), and a
universal addressing system (URL), that
facilitates the exchange and display of
documents on the Internet (via browser
software), regardless of hardware platforms
and operating systems. Developed by Tim
Berners-Lee, the WWW was launched in
March 1991 at the CERN facility in Swit-
zerland (Berners-Lee & Fischetti, 1999).
Berners-Lee had envisaged a “single, global
information space” in 1980, unaware of key
earlier projects. Vannevar Bush in the 1940s,
and Ted Nelson, and Doug Engelbart, in the
1960s, are visionaries who made conceptual
leaps in software, hardware interface and
connectivity.

22 Such self-management is explicit in the
“softwiring” of collaborative authoring
systems like WIKI. An example of “trust-
based” software, WIKI is an open source
database software for the shared authoring
and “open editing” of Web pages. In the
mid 1990s Ward Cunningham coded “the

simplest online database that could possi-
bly work.” The WIKI developers state that
“allowing everyday users to create and edit
any page in a Web site is exciting in that
it encourages democratic use of the Web
and promotes content composition by non-
technical users” (Source: wiki.org). Content
Management Systems (CMS) like WIKI,
Dada, and Drupal offer features such as
reversion to earlier instances of a document
(useful when social boundaries have been
transgressed by troublemaking “trolls”).
These social softwares are designed with
an awareness of human use (and abuse) of
public space.

23 Mongrel is an art group and a network, which
formed in London in 1995 96. The original
group comprised Graham Harwood, Mat-
suko Yokokoji, Mervin Jarman and Richard
Pierre-Davis. Documentation of Mongrel’s
many acclaimed software art projects can
be found at mongrelx.org. Mongrel describe
themselves as: “... a mixed bunch of people,
machines and intelligences working to
celebrate the methods of a motley culture.
We make socially engaged culture, which
sometimes means making art, sometimes
software, sometimes setting up workshops,
or helping other mongrels to set things up.
We do this by employing any and all techno-
logical advantage that we can lay our hands
on. Some of us have dedicated ourselves to
learning technological methods of engage-
ment, which means we pride ourselves on
our ability to programme, engineer and build
our own software, while others of us have
dedicated ourselves to learning how to work
with people” (Mongrel, 2004b).

24 The neologism “hacktivism” (reportedly
coined by a journalist) denotes “electronic
civil disobedience” or “ECD,” a concept fi rst
enunciated by Critical Art Ensemble (CAE)
in 1994. ECD employs tools developed by
programmers and cultural activists. In their

 65

Social Technologies and the Digital Commons

book Hacktivism and Cyberwars: Rebels
with a Cause? Jordan and Taylor (2004)
describe hacktivism as “the emergence of
popular political action ... in cyberspace [...]
a combination of grassroots political protest
with computer hacking” (Jordan & Taylor,
2004, p. 1). An example is the Floodnet
program which enables non-destructive
virtual sit-ins on government or corporate
websites to draw attention to social issues
(see analyses in Meikle, 2002; Jordan &
Taylor, 2004).

25 TheyRule, an award-winning research
project in the form of a dynamic website
mapping the tangled web of U.S. corporate
power relations, was created by Josh On and
Futurefarmers at www.theyrule.net. Other
projects mentioned by Holmes include the
infl uential diagrammatic work by the late
Mark Lombardi piecing together various
banking and other scandals; and Bureau
d’etudes Planet of the Apes, “a synoptic view
of the world money game.” See related texts
at ut.yt.t0.or.at/site.

26 Due to the enormous take-up of web-based
social networking platforms such as Friend-
ster, MySpace and online dating sites the
term “social software” has lost its original
political edge. However, it remains a useful
way of framing the social relations of soft-
ware created by programmers and cultural
activists.

27 First released in 2001, according to its mak-
ers Dyne:bolic was the fi rst CD distribution
of GNU/Linux operating system which did
not require the user to install it permanently
on their computer. Instead, the user would
load the CD and it would open up into a
user-friendly temporary GNU/Linux sys-
tem, with additional media-making tools.
See: dyne.org and dynebolic.org/manual-in-
development/dynebolic-x44.en.html

28 As Dyne:bolic grew out of the Italian
“Hackmeeting” movement, it is linked

closely to the praxis of auto-gestation, or
radical Do-It-Yourself (DIY). Many socially-
driven cultural projects have arisen from
the large Italian network of centri sociali
or squatted social centres. See a history of
Hackmeetings at wiki.hacklab.org.uk/index.
php/Hacklabs_from_digital_to_analog.

29 Dyne:bolic belongs to a vision of integrated
software and communication systems. For
example, videos made with the free software
tools on Dyne:bolic can then be distributed
via online archives like New Global Vision,
entering the Digital Commons. International
video archives maintained by cultural ac-
tivists include ngvision.org originating in
Italy, and the video syndication network v2v.
cc/ from Germany. The Indymedia video
portal at www.indymedia.org/projects.php3
focuses on documentary material. A mam-
moth cultural archiving project is archive.
org.

30 Quote from the Streamtime portal at stream-
time.org. Interviews with key project facili-
tators online at wiki.whatthehack.org/index.
php/Streamtime_and_Iraqi_Linux.

31 The Container Project Web site is a reposi-
tory of material documenting the history of
the project and links to its current activities.
www.container-project.net/. Photo docu-
mentation of the process of converting the
Container is online at www.container-proj-
ect.net/C-Document/Album/page1.html.

32 Skint Stream was an initiative of ICA Cape
Town, Mongrel and radioqualia. Find de-
tails of Skint Stream, and the participating
communities, at www.jelliedeel.org/skin-
stream.

33 See workshop reports at www.cnh.on.ca/
container.html, www.cyear01.com/con-
tainerproject/archives/blog.html and www.
ict4djamaica.org/content/home/detail.
asp?iData=504&iCat=292&iChannel=2&
nChannel=Articles.

66

Social Technologies and the Digital Commons

34 See www.ict4djamaica.org/content/home/
index.htm.

35 Mervin Jarman, personal communication,
September 12, 2006.

36 The “Old Enclosures” in England were car-
ried out by thousands of Acts of Parliament
between 1702 and 1810. Hunger and terror for
the dispossessed multitudes accompanied
the old enclosures, as capital wealth piled up
for a minority. Expropriated peasants, day-
labourers, and artisans throughout Europe
did not capitulate meekly to the new rule of
waged work, with fi erce resistance during
feudal times and throughout the Middle Ages
(Federici 2004, pp. 133 138). Silvia Federici
argues that a new set of “enclosures”—from
thefts of agricultural land through govern-
ment expropriation, to the creation of vast
masses of criminalised poor from the newly
or generationally dispossessed—are ac-
companying “the new global expansion of
capitalist relations” (Federici, 2004, p. 11).
David Bollier (2002) documents the enclo-
sures of various contemporary commons,
including the Internet, in Silent Theft: The
Private Plunder of Our Common Wealth.

37 See www.nosoftwarepatents.com/en/m/
intro/index.html and www.ffii.org/ for
summaries of this battle, and lpf.ai.mit.
edu/Patents/patents.html for historical back-
ground on earlier bids to impose patents on
software.

38 The controversial and “questionably con-
stitutional” Digital Millennium Copyright
Act (DMCA) was signed into United States
law on October 28, 1998. The main objec-
tions to this law are that it is unreasonably
weighted in favour of the top end of town
in terms of copyright holders (the record,
fi lm, and publishing industries), criminalises
very widespread social applications of
communications technologies, and stifl es
innovation by small players. It also holds
Internet Service Providers liable for the

actions of their clients, which is similar
to holding the postal service liable for the
contents of a private letter. The law focuses
on technological aspects of copy protection
instead of the actual works themselves. For
example, the law “creates two new prohibi-
tions in Title 17 of the U.S. Code—one on
circumvention of technological measures
used by copyright owners to protect their
works and one on tampering with copyright
management information—and adds civil
remedies and criminal penalties for violating
the prohibitions” www.copyright.gov/legis-
lation/dmca.pdf. A number of prosecutions
have ensued, often targeting young users
of peer-to-peer fi le sharing programs. Also
prosecuted was the developer of a program
that can “crack” video compression software
(making it easier for people to potentially
watch downloaded movies). Under this law
even makers of DVD copying software
have been prosecuted. The Electronic
Frontier Foundation’s Digital Millennium
Copyright Act (DMCA) Archive contains a
listing of many of the cases brought to trial
or underway, and counter suits by lobby
groups challenging the validity of the law.
See www.eff.org/IP/DMCA/ and www.eff.
org/IP/DMCA/DMCA_against_the_dark-
net.pdf.

39 Over-exploitation supposedly leads to what
ecologist Garrett Hardin depicted as the
“tragedy of the commons” in his classic text
of the same name published in Science in
1968. One of the arguments supporting pri-
vatisation proposes that the “commons-ers”
will always ruin the land through over use.
See essay and responses online at www.sci-
encemag.org/sciext/sotp/commons.shtml.
Paul Ceruzzi asserts that by “strict technical
measures, the Internet has not come close to
approaching this point of overpopulation ...
[passing through] challenges like the 1988
worm, viruses, the Y2K crisis, the dot.com

 67

Social Technologies and the Digital Commons

collapse, and the terrorists’ attacks of Sep-
tember 11, 2001, with hardly a hiccup. It is
based on robust design. As for the content
and quality of information that the Internet
conveys, however, it has indeed been tragic”
(Ceruzzi, 2003, p. 330).

40 Statistics breaking down internet usage on a
continental basis at www.internetworldstats.
com/stats.html point to the enormous take
up on the net in Africa (424%), the Middle
East (454%), and Latin America (353%), in
the period 2000 -2005. In contrast, North
America had the lowest take up (110%).
Detailed internet statistics are available
at leading research Nielson Net Ratings at
www.nielson-netratings.com.

41 See McLuhan, M. (1967). The Medium is
the Massage. London: Penguin Books.

42 See, for example, Lawrence Lessig’s
blog describing the poetry slam on free
culture by Brazilian Minister of Culture,
Gilberto Gil. Lessig also notes the vision-
ary “Thousand points of culture proj-
ect—to build a thousand places around
Brazil where free software tools exist
for people to make, and remix, culture”
(Source: www.lessig.org/blog/archives/2005_
01.shtml).

43 In The Problem with WSIS, Alan Toner
(2003) critiques the colonial relations be-
tween “information society” and “intellec-
tual property” with reference to the World
Intellectual Property Organisation (WIPO).
It could be argued that this new form of
colonial domination is strengthening the
political resolve in Latin America, the Ca-
ribbean and Africa to use free software as
a central platform for social transformation.
“Where once corpses accumulated to the
advance of colonialism or the indifference
of commodity capital, now they hang in the
profi t and loss scales of Big Pharma, actu-
arially accounted for and calculated against

licensing and royalty revenue. With the aid
of stringent IP law, companies are able to
exercise a biopolitical control that takes to
new extremes the tendency to liberate capi-
tal by restricting individual and collective
freedoms and rights even the right to life
itself” (Toner, 2003, para. 1). “In 1986, with
the Uruguay Round of the GATT negotia-
tions on the horizonthe Intellectual Property
Committee (IPC) determined to ensure that
corporate IP concerns be inserted into the
negotiation agenda and fully integrated into
any ultimate agreement. It was the IPC’s
efforts to orchestrate business lobbying
efforts on a global basis which culminated
in TRIPS, now administered by the WTO.
TRIPS will transfer an estimated 40 billion
dollars from the poorest states over the next
ten years, according to the World Bank, via
patented medicines and seeds, and net rent
transfers through royalties and licenses”
(Toner, 2003, para. 10).

44 In Five Theses on Informational-Cognitive
Capitalism, George N. Dafermos (2005)
states: “The realm of such networks of co-
operative development is underpinned by
the pleasure principle ... they re-discover
the joy ... that accompanies creative work
... collective subjectivity is impregnated
with the sperm of radicality, as people are
suddenly becoming aware of the reversal
of perspective that lies in the shadows: a
production setting ... [which] exposes the
poverty of production effectuated for the
sake of profi t. A direct confrontation stretch-
ing from the terrain of ideas to the very
institutional nucleus of capitalist society is
underway. On the one side stands the beast
of living labour organised independently of
the capitalist demand, and, [on the other],
the imaginary of intellectual property law
...”

68

Chapter VI
ALBA Architecture as Proposal
for OSS Collaborative Science

Andrea Bosin
Università degli Studi di Cagliari, Italy

Nicoletta Dessì
Università degli Studi di Cagliari, Italy

Maria Grazia Fugini
Politecnico di Milano, Italy

Diego Liberati
Italian National Research Council, Italy

Barbara Pes
Università degli Studi di Cagliari, Italy

ABSTRACT

A framework is proposed that would create, use, communicate, and distribute information whose orga-
nizational dynamics allow it to perform a distributed cooperative enterprise also in public environments
over open source systems. The approach assumes the Web services as the enacting paradigm, possibly
over a grid, to formalize interaction as cooperative services on various computational nodes of a net-
work. A framework is thus proposed that defi nes the responsibility of e-nodes in offering services and
the set of rules under which each service can be accessed by e-nodes through service invocation. By
discussing a case study, this chapter details how specifi c classes of interactions can be mapped into a
service-oriented model whose implementation is carried out in a prototypical public environment.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 69

ALBA Architecture as Proposal for OSS Collaborative Science

INTRODUCTION

 Open source software (OSS) for e- e-science should
make reference to the paradigm of a distributed
infrastructure over a multi-system grid, allowing
data exchange through services, according to
standard proposals in the areas of grid computing
(Pollock & Hodgson, 2004) and service-oriented
computing (SOC). In fact, biologists, medical doc-
tors, and scientists in general are often involved
in time consuming experiments and are aware of
the degree of diffi culty in validating or rejecting
a given hypothesis by lab experiments.

Lab experiments are often still developed in
isolation and tend to be small scale and specialized
for ad hoc applications; there is limited potential
for integration with broader reuse. One of the
reasons for this lack of integration capability is
that researchers need to be inter-networked in a co-
operative enterprise style, although sharing data,
programs, and resources in a nonprofi t network
of collaboration. Cooperative OSS environments
can be a feasible solution for interconnection,
integration, and large information sources shar-
ing during experiment planning and execution.
It is a common situation that information source
owners, even members of a coalition, are not
keen to delegate control over their resources to
any common server. However, as long as ICT
models, techniques, and tools are rapidly devel-
oping, there is a true hope to move towards the
realisation of effective distributed and coopera-
tive scientifi c laboratories. In fact, the concept of
“what an experiment is” is rapidly changing in an
ICT-oriented environment, moving from the idea
of local laboratory activity towards a computer
and network supported application including the
integration of:

• A variety of information and data sources
• The interaction with physical devices
• The use of existing software systems allowing

the potential deviation from a predetermined

sequence of actions as well as the verifi ability
of research work and accomplishments

• The peculiar and distributed expertise of
the involved scientists

In general, scientifi c experiments are sup-
ported by activities that create, use, communicate,
and distribute information whose organizational
dynamics are similar to processes performed by
distributed cooperative enterprise units.

According to the frame discussed in Bosin,
Dessi, Fugini, Liberati, and Pes (2005), in this
chapter we stress the benefi ts of OSS for e-sci-
ence considering that as many operating nodes
as possible can work cooperatively sharing data,
resources, and software, thus avoiding the bottle-
neck of licences for distributed use of tools needed
to perform cooperative scientifi c experiments. In
particular, this chapter presents an architecture
based on nodes equipped with a grid and with
 Web services in order to access OSS, showing
how scientifi c experiments can be enacted through
the use of cooperation among OSS sites. Such a
choice, besides reducing the cost of the experi-
ments, would support distributed introduction
of OSS among other actors of the dynamical
networks, thus supporting awareness of OSS and
their diffusion.

Specifi cally, this chapter describes the ALBA
(Advanced Labs for Bioinformatics Agencies) en-
vironment aimed at developing cooperative OSS
models and processes for executing cooperative
scientifi c experiments (e-experiments). Coopera-
tive processes, e-services, and grid computing are
the basic paradigms used in ALBA, which can
effectively support, through OSS, the distributed
execution of different classes of experiments, from
visualization to model identifi cation through clus-
tering and rules generation, in various application
fi elds, such as bioinformatics, neuro-informatics,
telemonitoring, or drug discovery. By applying
Web services (Alonso, Casati, Kuno, & Machi-
raju, 2004) and grid computing, an experiment
or a simulation can be executed in a cooperative

70

ALBA Architecture as Proposal for OSS Collaborative Science

way on various computation nodes of a network
equipped with OSS, allowing data exchange
among researchers.

This approach allows for a correct design and
set up of the experiment workfl ow, methods, and
tools that are essential for cooperating organiza-
tions which perform joint experiments requiring
specialized tools or computational power only
available at specifi c nodes. In this sense, the overall
structure is presented as an OSS environment, in
that each node resource becomes an OSS ALBA
site available for the inter-networked nodes.

The ALBA environment uses the SOC
paradigm and the GRID structure to formalize
experiments as cooperative services on various
computational nodes of a grid network. Specifi -
cally, basic elements of the ALBA environment are
models, languages, and support tools for realizing
a virtual network that defi nes the organisational
responsibility of the global experiments accord-
ing to a set of rules under which each node can
execute local services to be accessed by other
nodes in order to achieve the whole experiment’s
results. From the researcher viewpoint, the ALBA
environment is a knowledge network enabling
data and service sharing, as well as expertise
and competences to allow a team of scientists to
discuss representative cases or data. The environ-
ment allows specifi c classes of experiments, such
as drug discovery, micro array data analysis, or
molecular docking, to be mapped into a service-
oriented model whose implementation is carried
out in a prototypical scientifi c environment.

As a case study, this chapter proposes a refer-
ence model for cooperative experiments, executed
as e-applications, including a grid infrastructure,
distributed workfl ows, and experimental knowl-
edge repositories.

BACKGROUND

A key factor to promoting research intensive
products is the vision of a large scale scientifi c

exploration carried out in a networked coop-
erative environment in the style of cooperative
information systems (COOPIS, 2005), with a
high performance computing infrastructure, for
example, of grid type (Berman, Fox, & Hey, 2003),
that supports fl exible collaborations (Hendler
& De Roure, 2004), OSS, and computation on
a global scale. The availability of such an open
virtual cooperative environment should lower
barriers among researchers taking advantage of
individual innovation and allowing the devel-
opment of collaborative scientifi c experiments
(Gentleman, Carey, Bates, Bolstad, Dettling,
Dudoit, et al., 2004). Up to now, however, rarely
are technologies developed specifi cally for the
research community, and ICT developments
are harnessed to support scientifi c applications
varying in scale and purpose and encompassing
a full range of engagement points, from single
purpose built experiments to complex software
environments.

The range of accessible technologies and
services useful to scientifi c experiments can be
classifi ed broadly into three categories:

• Toolkits specifi cally aimed at supporting
experiments

• General purpose software tools still essen-
tial in enabling the experiments of interest
(e.g., computation, data mining tools, data
warehousing)

• More widely deployed infrastructures that
may be useful in scientifi c experiments, such
as Web services or grid computing

This scenario is similar to that of enterprise
environments, whose progress requires large
scale collaboration and effi cient access to very
large data collections and computing resources.
Although sustainable interoperability models
are emerging for market players (such as serv-
ice providers, stakeholders, policy makers, and
market regulators), they are currently deployed
mostly in areas where high computing power and

 71

ALBA Architecture as Proposal for OSS Collaborative Science

storage capabilities, usually needed by scientifi c
environments, are not mission-critical.

Recently, emerging technologies, such as
Web services (W3C, 2004) and the grid (Fos-
ter, Kesselman, Nick, & Tuecke, 2003), have
enabled new types of scientifi c applications
consisting of a set of services to be invoked by
researchers. E-science is the term usually applied
to the use of advanced computing technologies
to support scientists. Because of their need for
high-performance computing resources, as well
as cooperative ICT technologies, for example,
of Web style, many scientists are drawn to grid
computing and the Web as the infrastructure to
support data management and analysis across
organizations. High-performance computing
and communication technologies are enabling
computational scientists, or e-scientists, to study
and better understand complex systems. These
technologies allow for new forms of collabora-
tion over large distances together with the ability
to process, disseminate, and share information.
Global-scale experimental networking initiatives
have been developed in the last few years: the
aim is to advance cyber infrastructure for e-sci-
entists through the collaborative development
of networking tools and advanced grid services.
Grids provide basic facilities for robust computa-
tion, effi cient resource management, transfer, and
sharing, and they support distributed computation.
Moreover, coming from a different direction,
the Semantic Web vision also was motivated by
the need to support scientifi c collaboration. By
enabling transparent document sharing, metadata
annotations, and semantic integration, it addresses
multidisciplinary distributed science research at
the end-user level. Since both grid computing and
Semantic Web deal with interoperability, from
the e-science perspective they would both be
necessary. Neither technology on its own would
be able to achieve the full e-science vision. This
integration, called Semantic Grid, would serve
as the infrastructure for this vision.

MAIN FOCUS OF THE CHAPTER

OSS for Virtual Laboratories

An enabling factor of the ALBA environment
for researchers is the possibility to remotely
access shared resources and catalogues on an
open source basis, in order to execute their own
experiments and also to have continuous educa-
tion on protocols, experiments, and discoveries
in advance and with the possibility to consult
other colleagues with limited need to travel and
quick and effective access to online experiment
documentation.

Thus, the ALBA environment is envisioned
as an OSS-based environment supporting the
execution of cooperative scientifi c experiments.
E-services and the grid are the enabling tech-
nologies considered by the project to support the
simulation/execution of different classes of experi-
ments, in bioinformatics such as drug discovery,
microarray data analysis, or molecular docking
. Each experiment ranges from visualization
(browsing and search interfaces), to model iden-
tifi cation through clustering and rules generation,
and requires tools for correct design and set up
of the experiment workfl ow and for information
retrieval (e.g., for searching similar protocols, or
descriptive datasheets for chemical reactors). In
addition, cooperating scientists who perform joint
experiments may require specialized tools (e.g.,
data mining, or database tools) or computational
power (e.g., long calculi for protein analysis based
on their forms, or for discarding the irrelevant
experiments in drug study) available only at
specifi c nodes. The visualization part is given
special attention, considering friendly interfaces
and graphical simulations enabling an improved
comprehension of currently textual explana-
tions. Also privacy and data security are a major
concern in the ALBA environment, considering
both methods to select trusted nodes within the
cooperation network, and/or to obscure or encrypt

72

ALBA Architecture as Proposal for OSS Collaborative Science

the transmitted and stored data, to preserve their
sensitivity, according to user-formulated security
requirements.

The ALBA environment aims to go beyond the
existing virtual laboratory platforms that essen-
tially enable information sharing and distributed
computations—by offering to the researchers
more complex and, possibly, semi-automated
ways of conducting experiments, by exploiting
and composing services offered by different in-
stitutions. For the ICT infrastructure, the ALBA
environment assumes experiments formalization
in terms of sets of tasks to be executed on various
computational nodes of a network of labs. The
environment allows developers to specify models,
languages, and support tools enabling a public
community of research centres, labs, and nonprofi t
organizations to realize a network infrastructure
that defi nes the organisational responsibility of
the global experiments, the framework of nodes,
and the set of rules under which each node can
execute local services to be accessed by other
nodes in order to achieve the whole experiments’
results. A knowledge network enables data and
service sharing, as well as expertise and compe-
tences to allow the team of scientists to discuss
representative cases or data. The outcome of the
environment provides information regarding, for
example, the effi ciency of the machine learning
techniques in discovering patterns related to
genetic disorders, and also allow the identifi ca-
tion of relevant types of gene expressions. These
could possibly be abnormal expression rates for
a particular gene, the presence or the absence of
a particular gene or sequence of genes, or a pat-
tern of unusual expression across a gene subset.
It is envisioned that this would thereby provide
help to guide physicians in determining the best
treatment for a patient, for example, regarding the
aggressiveness of a course of treatment on which
to place a patient.

The ALBA environment only supports experi-
ments defi ned as numerical evaluations carried
out on selected data sets according to available

methodological approaches. The experiment ex-
ecution platform is composed of: (1) a workfl ow;
(2) the distribution thereof; (3) the involved nodes
and their relative roles in the experiment; (4) the
set of involved resources, such as data areas, data
repositories and e-services. Four main classes of
methodological approaches to the experiments
are supported:

1. Process simulation and visualization on the
already available information sources

2. Supervised or unsupervised classifi cation of
observed events without inferring any cor-
relation nor causality, such as in clustering,
and neural networks (Liberati, Bittanti, &
Garatti, 2005)

3. Machine learning: rule generation (Muselli
& Liberati, 2002) and Bayesian networks
(Bosin, Dessì, Liberati, & Pes, 2006) able to
select and to link salient involved variables
in order to understand relationships and to
extract knowledge on the reliability and
possibly causal relationships among related
co-factors via tools like logical networks and
Cart-models

4. Identifi cation of the process dynamics (Ferrari-
Trecate, Muselli, Liberati, & Morari, 2003)

Such classes, listed in increasing order of logi-
cal complexity, might have an impact on the design
of the experiment and of its execution modality
in terms of execution resources either on a single
specialized node or in a grid structure.

Experiments of these classes have some por-
tions, both of processes and of data or knowledge,
that can be shared in a collaborative environment.
One of the reasons for executing an experiment
in a distributed way might be that one organiza-
tion would need to process data under a specifi c
costly product available on a node because of its
lack of skill for developing or using open source
equivalent; rather than acquiring the product,
the organization might invoke a remote service
as OSS available on the remote node. Another

 73

ALBA Architecture as Proposal for OSS Collaborative Science

reason is that some cooperating organizations
might want to inspect data dispersed on their
databases, with no changes to their local com-
putational environment.

In ALBA, according to the current laboratory
practice, a researcher begins with the assertion
of a high level goal needed to test a scientifi c hy-
pothesis or to obtain some additional knowledge
on a previous experiment. This goal has to be
decomposed into a set of tasks (the experiment
life cycle) each accomplished by an appropriate
class of freely available services published in a
UDDI registry exposing the public services avail-
able to the community. ALBA operates under the
closed world assumption, that is, considering that
all the nodes agree on OSS on the basis of pre-
negotiation and software exchange contracts, for
example, according to standard languages-based
negotiation and contracting as described in (Cal-
lea, Campagna, Fugini, & Plebani, 2004).

From a methodological point of view, hetero-
geneous services can provide similar capabilities,
but the researcher is in charge of choosing the
most suitable methods to accomplish each task,
that is, the researcher is in charge of designing
the workfl ow of the scientifi c experiment. In
particular, if the researcher wants to rerun an
experiment, the workfl ow must take into account
the changes in the choice of methods as well as
in the availability of services and tools.

In ALBA the researcher interacts and chooses
services, workfl ows, and data within an experi-
mental environment whose cooperative frame-
work has been defi ned to extend the integration
of scientifi c experiments to a level of scenario-
based interaction. This scenario is profi table for
many reasons, like exchanging scientifi c data and
processing tools which results in a reduced number
of software acquisitions, load balancing work
between specialized researchers, and so on.

Specifi cally, the researcher defi nes the experi-
ment life cycle that consists in two basic processes:
the modelling process and the implementation
process.

The modeling process is organized in three
steps:

1. The experiment is decomposed into a set
of basic tasks orchestrated in a workfl ow
of Web services.

2. A choreography model is defi ned that speci-
fi es the interactions among the tasks, ac-
cording to the template of the experiment.

The implementation is based on the J2EE
(Armstrong, 2004) and Oracle (Oracle, Oracle2)
platforms, but the use of standard technologies
(HTTP, XML, SOAP, WSDL) and languages (Java,
SQL) makes it fl exible and easily expandable.

Services are organized according to the multi-
tier architecture shown in Figure 1, whose abstract
layers are: exposed (public) Web services (WS),
experiment workfl ows, service orchestration
engines, data mining, database infrastructures,
data repository, and result visualization tools. This
last layer interacts with the researcher’s ALBA
client, which can also interact with experiment
workfl ow defi nition tools and with the scientifi c
tool selector, allowing one to declare which tools
need to be used within an experiment.

ALBA nodes contain both proprietary software
and specifi c OSS packages that the node decides to
make public and expose as a Web service through
the WS layer. While the tier separation can be
purely logical, our prototype allows the physical
separation of tiers, where each one is located on
a separated and networked hardware resource.

A client tier represents the consumers of serv-
ices. Scientists located across the scientifi c net (i.e.,
on the nodes that have contracted to share OSS
tools for experiments based on service invocation)
invoke the services provided by the service layer
and orchestrated by the orchestration engine.1

The ALBA node is endowed with an infra-
structure which varies in the number and type of
tools. Accordingly, the ALBA nodes can mount
different layers, depending on their availability
to execute distributed experiments. For example,

74

ALBA Architecture as Proposal for OSS Collaborative Science

some of them can be equipped with various Ex-
periment components (also reused from previous
experiments) to be composed and orchestrated
for an experiment.

Other nodes are equipped with data mining
tools, others with database tools. The scientifi c
tool selector is the (visual) layer in charge of
deciding what tools of the node infrastructure
should be invoked to perform a given part of
the experiment, according to the specifi cations
provided by the scientist. Outside the Scientifi c
Net, other nodes can be accessed cooperatively,
however under specifi c software access policies,
that might include OSS.

A Sample Experiment

A sample scenario of an experiment has been
implemented using the Grid OSS Taverna2 tool
to defi ne and execute a distributed experiment
sharing services, data, and computation power.

The experiment is the execution of two classi-
fi cation techniques of leukaemia through analysis
of data from DNA-microarrays. DNA-microarrays
are a powerful tool to explore biology, to make
the diagnosis of a disease, to develop drugs and
therapies ad hoc for patients. On the basis of such
data it is then possible to classify the pathology
for diagnosis purposes (e.g., to distinguish acute
myeloid leukaemia from lymphatic leukaemia)
or for prognostic purposes.

The analysis of the huge quantity of available
data may offer a highly precise classifi cation of
the disease and is performed using methodologies
that group the examined subjects into sub-groups
(clusters) sharing similar values of expressions of
the most relevant genes.

Classifi cation techniques belong to two cat-
egories:

• Supervised: Classifi cation is given as known
for a data subset; based on such information,

Figure 1. Overall ALBA architectural scenario

WS
WS

Service Tier
Orchestration

Engine

Scientific Tool
Selector

Experiment
Components

 ALBA node

Scientific
Intranet

Non ALBA node

WS

Non ALBA node

WS

Database
Infrastructure

WS

Data Mining Tier
Database

Infrastructure

WS

Service Tier
Orchestration
Engine

ALBA node

Data Repository

ALBA node

Alba node

Network

Data mining Tier

Experiment
Workflow

Result
Visualization

Researcher

ALBA
client

 75

ALBA Architecture as Proposal for OSS Collaborative Science

one searches a priori to train a classifi cation
algorithm

• Unsupervised: No information is a priori
available and classifi cation is performed based
only on some notion of sample distance.

The experiment uses both techniques, starting
in parallel an unsupervised technique based on
principal component divisive partitioning and
k-means (Liberati et al., 2005), and a supervised
technique based on Bayesian networks and
minimum description length (Bosin et al., 2006).
Results can thus be compared, also evaluating
similarities and differences between the two
complementary approaches.

The architecture of the experiment is shown
in Figure 2, where the use of the Taverna tool is
exemplifi ed.

• On the site of Organization A: The work-
fl ow is defi ned specifying the distributed
experiment in terms of selection and cho-
reography of resources that are available
on the network. The employed tool is Tav-
erna. The actor defi ning the experiment is
a researcher or bio-informatic expert. On
this site, the global results coming from

the experiment are loaded. The results are
accessible both to a human and a system;
both have to perform an authentication
and storage of credentials for subsequent
(re)use on a local or on a remote system.

• The site of Organization B: Offers an
Unsupervised Clustering service of micro-
arrays data. The service was originally a
Matlab3 elaboration non-usable from remote.
Hence, a service has been designed and
executed allowing one to use it from remote
and from whatever platform. The services
can be loaded with local data and with data
residing on external sites and belonging to
other organizations. This service has been
implemented as a Java WebService (exposed
as WSDL), developed under Apache Axis.4

• The site of Organization C: Offers a Super-
vised Clustering service based on Bayesian
networks made available on the network.

• The site of Organization D: Offers data
feeding the two Clustering services. Op-
tionally, data can also be taken from more
sites of different organizations, so that, for
example, multiple instances of an experi-
ment can be launched in parallel.

Figure 2. Sample cooperative e-experiment

Data

Unsupervised
Clustering

Supervised
Clustering

TAVERNA

Researcher

Organization C

Organization A

Organization B

Organization D

Other Organizations

Data

Organizzazione D

Data

Other Organizations

76

ALBA Architecture as Proposal for OSS Collaborative Science

The experiment is exposed as a service and
can be invoked as a whole from external orga-
nizations.

Figure 3 shows a screenshot of the use of Tav-
erna, with reference to the phases of defi nition of
the experiment.

FUTURE TRENDS

In future works, it will be straightforward to
extend the classes of experiments of interest, to
implement the proposed structure in specifi c ap-
plication fi elds with needs of primary relevance,
and of course to detail the sequences of interaction
among actors in the specifi c use cases.

What remains open are many questions about
the evaluation of such an approach and the actual
design and implementation of the Semantic Grid
panorama. Since the realisation of a distributed
general purpose scientifi c environment is not
immediate, the evaluation effort described here
involves a prototypical environment based upon
emerging Web service technology and applied to
the previously mentioned four classes of experi-
ments.

CONCLUSION

We have illustrated how e-science can benefi t from
OSS for modelling and executing scientifi c experi-
ments as cooperative services executed on a grid
of OSS tools. The proposed ALBA cooperative
framework for distributed experiments is quite
general and fl exible, being adaptable to different
contexts. Given the challenge of evaluating the
effects of applying Web service technology to the
scientifi c community, the evaluation performed up
to now takes a fl exible and multi-faceted approach:
It aims at assessing task-user-system functionality
and can be extended incrementally according to
the continuous evolution of the scientifi c coopera-
tive environment.

The fi rst outcomes of ALBA are in terms of
designed e-services supporting the simulation/ex-
ecution of different classes of experiments, from
visualization (browsing and search interfaces), to
model identifi cation through clustering and rules
generation, in application fi elds, such as drug
discover, microarray data analysis, or molecular
docking. By applying e-services and the grid and
experiment or a simulation can be executed in a
cooperative way on various computation nodes
of a network, also allowing knowledge exchange
among researchers. A correct design and set up of
the experiment workfl ow, visualization methods,
and information retrieval tools (e.g., for searching
similar protocols, or descriptive datasheets for
chemical reactors) is studied to support cooper-
ating scientists who perform joint experiments,
for example requiring specialized tools (e.g., data
mining or database tools) or computational power
(e.g., long calculi for protein analysis based on their
forms, or for discarding the irrelevant experiments
in drug studies) available only at specifi c nodes.
The visualization part is considered with special
care, taking into account friendly interfaces and
graphical simulations enabling an improved com-
prehension of currently textual explanations. Also
privacy and data security are a major concern in
the project, considering both methods to select

Figure 3. Snapshot of Taverna grid support tools

 77

ALBA Architecture as Proposal for OSS Collaborative Science

trusted nodes within the cooperation network and
to obscure or encrypt the transmitted and stored
data, to preserve their sensitivity, according to
user-formulated security requirements. Specifi c
aims and expected results of the ALBA project
aims at going beyond the existing virtual labora-
tory platforms that essentially enable information
sharing and distributed computations by offering
to the researchers more complex and, possibly,
semi-automated ways of conducting experiments,
by exploiting and composing services offered
by different institutions. One of the interesting
properties of the ALBA platform is that it is, in
principle, technically open to every other actor
even beyond the core of the founding institutions,
in both senses of contributing to the distributed
team and/or to simply exploit growing knowl-
edge. It will be easy to implement an access
policy stating, for instance, both free reading
access to nonprofi t institutions about the already
consolidated results and an involvement subject
to mutual agreement by third bodies willing to
enter the platform.

REFERENCES

Alonso, G., Casati, F., Kuno, H., & Machiraju, V.
(2004). Web services—Concepts, architectures,
and applications. Springer Verlag.

Armstrong, E., Ball, J., Bodoff, S., Bode Carson,
D., et al. (2004). The J2EE 1.4 Tutorial, Decem-
ber 16.

Berman, F., Fox, G., & Hey, T., (Eds.). (2003). Grid
computing: Making the global infrastructure a
reality. New York: John Wiley and Sons, Inc.

Bosin, A., Dessì, N., Fugini, M. G., Liberati, D., &
Pes, B. (2005, September 5). Applying enterprise
models to design cooperative scientifi c environ-
ments. International Workshop on Enterprise and
Networked Enterprises Interoperability, Nancy
(LNCS), Springer.

Bosin, A., Dessì, N., Liberati, D., & Pes, B. (2006).
Learning Bayesian Classifi ers from gene-expres-
sion microarray data. In I. Bloch, A. Petrosino, &
A. G. B. Tettamanzi (Eds.), WILF 2005 (LNAI
3849, pp. 297-304). Berlin; Heidelberg: Springer-
Verlag.

Callea, M., Campagna, L., Fugini, M. G., & Ple-
bani, P. (2004, September). Contracts for defi ning
QoS levels in a multichannel adaptive information
systems. In Proceedings ofIFIP Workshop on
Mobile Systems, Oslo.

COOPIS. (2005, October). Proceedings 6th Inter-
national Conference on Cooperative Information
Systems (CoopIS), Larnaca, Cyprus (pp. 25 -29).
Springer Verlag.

Hendler, J. & De Roure, D. (2004). E-science:
The grid and the Semantic Web. IEEE Intelligent
Systems, 19(1), 65-71.

Ferrari–Trecate, G., Muselli, M., Liberati, D., &
Morari, M. (2003). A clustering technique for
the identifi cation of piecewise affi ne systems.
Automatica, 39, 205 -217.

Foster, I., Kesselman, C., Nick, J. M. & Tuecke,
S. (2003). The physiology of the grid; An open
grid service architecture for distributed system
integration. The Globus Project.

Gentleman, R. C., Carey, V. J., Bates, D. M.,
Bolstad, B., Dettling, M., Dudoit, S., et al. (2004,
September 15). Bioconductor: Open software
development for computational biology and bio-
informatics. Genome Biology, 5(10), R80.

Liberati, D., Bittanti, S., & Garatti, S. (2005).
Unsupervised mining of genes classifying Leu-
kemia. In J. Wang (Ed.), Encyclopedia of data
warehousing and data mining. Hershey, PA: Idea
Group Publishing.

Muselli, M., & Liberati, D. (2002). Binary rule
generation via hamming clustering. IEEE Trans-
actions on Knowledge and Data Engineering,
14(6) 1258- 1268.

78

ALBA Architecture as Proposal for OSS Collaborative Science

Pollock, J. T., & Hodgson, R. (2004). Adaptive in-
formation: Improving business through semantic
interoperability, grid computing, and enterprise
integration. Wiley Series in Systems Engineering
and Management. Wiley-Interscience.

Oracle. (n.d.). Retrieved from http://www.oracle.
com

Oracle2 (n.d.). http://www.oracle.com/database/
Enterprise_Edition.html

W3C. (2004). W3C Working Draft March 24,
2004, http://www.w3.org/TR/2004/WD-ws-chor-
model-20040324/

KEY TERMS

 Bioinformatics: The application of the ICT
tools to advanced biological problems, like
transcriptomics and proteomic, involving huge
amounts of data.

 Cooperative Information Systems: Inde-
pendent, federated information systems that can
either autonomously execute locally or cooperate
for some tasks towards a common organizational
goal.

 E-Experiment: Scientifi c experiment execut-
ed on an ICT distributed environment centered
on cooperative tools and methods.

 E-Science: Modality of performing experi-
ments in silico in a cooperative way by resorting

to information and communication technology
(ICT).

 Drug Discovery: Forecasting of the proper-
ties of a candidate new drug on the basis of a
computed combination of the known properties
of its main constituents.

 Grid Computing: Distributed computation
over a grid of nodes dynamically allocated to the
process in execution.

 Interoperability: Possibility of performing
computation in a distributed heterogeneous en-
vironment without altering the technological and
specifi cation structure at each involved node.

 Web Services: Software paradigm enabling
peer-to-peer computation in distributed envi-
ronments based on the concept of “service” as
an autonomous piece of code published in the
network.

ENDNOTES

1 Clients are implemented by standalone Java
applications that make use of existing librar-
ies (J2EE application client container) in
charge of the low-level data preparation and
communication (HTTP, SOAP, WSDL).

2 http://www.mygrid.org.uk
3 http://www.mathworks.com
4 http://ws.apache.org/axis

 79

Chapter VII
Evaluating the Potential of Free
and Open Source Software in

the Developing World
Victor van Reijswoud

Uganda Martyrs University, Uganda

Emmanuel Mulo
Uganda Martyrs University, Uganda

INTRODUCTION

Over the past years the issue of free and open
source software (FOSS)1 for development in LDCs
is receiving more and more attention. Where
in the beginning the benefi ts of FOSS for less
developed countries (LDCs) was only stressed
by small groups of idealists like Richard Stall-
man (Williams, 2002), now it is moving into the
hands of the large international organizations like
the World Bank (Dravis, 2003) and the United

ABSTRACT

Development organizations and international nongovernmental organizations (NGOs) have been em-
phasizing the high potential of free and open source software (FOSS) for the less developed countries
(LDCs). Cost reduction, less vendor dependency, and increased potential for local capacity development
have been their main arguments. In spite of its advantages, FOSS is not widely adopted on the African
continent. In this chapter the experiences of one of the largest FOSS migrations in Africa is evaluated. The
purpose of the evaluation is to make an on-the-ground assessment of the claims about the development
potential of FOSS and draw up a research agenda for a FOSS community concerned with the LDCs.

Nations. In the E-Commerce and Development
Report that was released at the end of 2003, it
was stated that FOSS is expected to dramatically
affect the evolving information and communi-
cation technology (ICT) landscape for LDCs.
UNCTAD believes that FOSS is here to stay and
LDCs should benefi t from this trend and start to
recognize the importance of FOSS for their ICT
policies (UNCTAD, 2003).

Leading organizations in the software and
ICT consulting industry have embraced FOSS at

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

80

Evaluating the Potential of Free and Open Source Software in the Developing World

a rapid speed. IBM is now the major champion of
FOSS, and in 2002 IBM announced the receipt
of approximately US$1 billion in revenue from
the sale of Linux-based software, hardware, and
services. Other technology leaders, including
Hewlett-Packard, Motorola, Dell, Oracle, Intel,
and Sun Microsystems, have also made major
commitments to FOSS (UNCTAD, 2003). The
major player objecting the FOSS paradigm at the
moment is Microsoft Corporation.

For a brief understanding of what FOSS means,
we shall adopt David Wheeler’s defi nition stated
in the FOSS primer (Wong & Sayo, 2003) as:

FOSS programs are programs whose licenses
give users the freedom to run the program for
any purpose, to study and modify the program,
and to redistribute copies of either the original or
modifi ed program (without having to pay royalties
to previous developers).

The terms “free” and “open,” in this defi nition,
are representative of the two major philosophies in
the FOSS world. Free implies a user should have
certain freedoms to do as they please with a piece
of software. It should be noted that free does not
necessarily imply freedom of cost, even though
most software available as FOSS is usually acces-
sible without one having to directly pay software
or license fees. Open implies that software source
code should be available to whoever is interested
in viewing, modifying, and redistributing a par-
ticular piece of software.

The advantages of FOSS are diverse, but the
most often quoted benefi t in relation to LDCs is
the reduction of purchase and license costs of
the software. Software and licenses are paid for
in hard currency and put an extra burden on the,
often dismal, fi nancial situation of LDCs. Other
advantages are; reduction of vendor lock-in, adher-
ence to open standards, increased transparency,
minimizing security risks, increasing technical
self reliance, and provision of a good starting point
for local capacity development (Dravis, 2003).

The last advantage is probably the most impor-
tant benefi t of FOSS. Local capacity is needed to
understand the technical foundation of the digital
divide and start initiatives to bridge it.

Despite the obvious advantages mentioned, the
adoption of FOSS, in LDCs, has been low (Brug-
gink, 2003; Van Reijswoud, 2003; Van Reijswoud
& Topi, 2004). In Africa, no country other than
South Africa, has explicitly mentioned FOSS in
their ICT policy. On the contrary, governments of
several of the richer countries on the continent are
considering large deals with proprietary software
vendors (see: www.fossfa.net). At present it seems
that FOSS is on the agenda of the donor organiza-
tions and international NGOs but not on the agenda
of the decision makers in LDCs. Although there
are a growing number of initiatives to promote
FOSS for LDCs in general and Africa in particular
like Free and Open Source Software Foundation
for Africa (www.fossfa.net) and the East African
Center for Open Source Software (www.eacoss.
org), there are very few organizations that consider
and actually implement FOSS.

In this chapter we evaluate the experiences
of an organization in Uganda, East Africa, that
has decided to migrate its ICT infrastructure to
FOSS. The purpose of the evaluation is to make
an on-the-ground assessment of the claims about
the development potential of FOSS. We, therefore,
start the chapter with an overview of FOSS and
the role it can play in the development of LDCs.
Against this background we describe the case study,
the progress the organization has made and the
problems that were encountered. Finally, we will
draw some conclusions on the experiences in the
case study and set out an agenda for a successful
rollout of FOSS in LDCs, especially in Africa.

FOSS FOR DEVELOPMENT:
AN OVERVIEW

When we consider the role of FOSS for develop-
ment, we have to distinguish multiple levels in

 81

Evaluating the Potential of Free and Open Source Software in the Developing World

order to get a good understanding of the impact
of the different initiatives. The implementation
and the propagation of FOSS can be performed
at micro, meso, and macro levels. At the micro
level we like to think about individual users and/or
developers that opt for FOSS. At the meso level
we consider organizations that take actions to
integrate FOSS into their software infrastructure.
Finally, the macro level where IT policies and ac-
tions at a national level are considered. We will
start with the macro level.

FOSS from a Macro Perspective

Governments provide a huge potential for FOSS,
not only as a site for implementation of the soft-
ware, but, more importantly, as propagators of the
philosophy behind the FOSS movement.

Over the past 5 years, a growing number
of countries are starting to consider FOSS as a
serious alternative (APC, 2003). Brazil has been
one of the countries that has actively pursued
initiatives along this line. It was in Brazil that the
fi rst law, in the world, regarding the use of FOSS,
was passed in March 2000. Brazil is one of the
countries where policies regarding adoption of
FOSS have been successful, notably in the states
of Rio Grande do Sul and Pernambuco. Also, the
Brazilian Navy has been using FOSS since 2002
(see http://www.pernambuco.com/tecnologia/ar-
quivo/softlivre1.html).

In Africa, the South African government is in
the forefront. In September 2002, a policy frame-
work document was developed by the Open Source
Software Work Group of the South African Gov-
ernment Information Offi cers’ Council (GITOC)
(see details about FOSS in South Africa—www.
oss.gov.za). The GITOC policy document (GITOC,
2002) recommends that government “explicitly”
support the adoption of open source software
(OSS) as part of its e-government strategy after a
comprehensive study of the advantages and pitfalls
of FOSS for government requirements.

Next to adopting FOSS software, GITOC also
recommends that the government promotes the
further development of FOSS in South Africa. This
can be through the involvement of South Africa’s
SME industry that has the potential to play a role
in the production and implementation of FOSS as
well as setting up of user training facilities. Some
success factors need to be considered in order to
ensure that this potential is tapped:

• OSS implementations should produce
value: Value can either be economic value,
for example, reduction of costs and saving
of foreign currency; or social value, for
example, a wider access to information and
computer training.

• Adequate capacity to implement, use,
and maintain: There is a need for trained
people to support and use the FOSS solution.
Training of users and developers should be
a high priority.

• Policy support for a FOSS strategy: Sup-
port for FOSS needs to expand to all key play-
ers at a governmental level, departmental
level, IT professionals and computer users
in general.

The FOSS approach represents a powerful
opportunity for South Africa companies and
government to bridge the technological gap at
an acceptable cost. With these success factors
driving FOSS initiatives, the development impact
can quickly become evident. The South African
government’s Department of Communication has
already begun the move to FOSS by adopting
Linux as their operating system. The government
plans to save 3 billion Rand a year (approximately
€383 million), increase spending on software
developed locally, and increase programming
skills inside the country. South Africa reports
that its small-scale introductions have already
saved the country 10 million Rand (approximately
€1.27 million).

82

Evaluating the Potential of Free and Open Source Software in the Developing World

Other countries are following. Worldwide,
similar moves are being discussed in Taiwan,
China, Peru, the UK, France, and Germany.2

FOSS from a Meso Perspective

The International Institute for Communication
and Development (IICD), a Dutch NGO promoting
the use of ICTs in LDCs, investigated the use of
FOSS in organizations in three countries in Africa:
Uganda, Tanzania, and Burkina Faso (Bruggink,
2003). The objective of the research was to fi nd out
how, where, and why organizations from all kind
of sectors use FOSS, the problems they encounter,
and possible opportunities for development. The
fi ndings of the research show that the use of FOSS
is not yet very widespread. FOSS is mostly found
at the server side of Internet service providers
(ISPs) and is sometimes used by government and
educational institutions. This means that FOSS
(operating systems, mainly Linux and derivatives,
Web servers, e-mail servers, and fi le servers)
is not visible to the day to day computer users.
Large and hierarchical organizations that have
migrated completely from proprietary software
to FOSS (server side and user side) have not been
found. Most of the organizations that are using
FOSS are relatively small organizations. When
the three countries are compared, it is concluded
that Tanzanian organizations show the most initia-
tive, while, in Burkina Faso, organizations do not
show interest in moving away from proprietary
software.

The research of the IICD highlighted several
reasons why organizations do not take up the
challenge of FOSS. In the fi rst place, there are
some false perceptions. Many organizations take
FOSS and Linux to be synonymous and consider
it suitable only for the ICT specialist. Secondly,
there is limited access to FOSS due to the fact
that it (FOSS) is mostly distributed through the
Internet and yet the countries under consider-
ation have scarce and/or low bandwidth Internet
connections. Software companies (FOSS based

companies included) see little market potential
in Africa (outside South Africa) and so the avail-
ability of software is low. This is also refl ected in
the amount of resellers of FOSS. Finally, there is
little expertise available to provide training and
support for FOSS and consultancy in migration
processes.

With steps taken to increase the awareness
of FOSS along with more documentation of case
studies where FOSS has been successfully imple-
mented in organizations, adoption at this level
could greatly increase. In the next section we will
elaborate on an example of an implementation of
FOSS in Uganda.

FOSS from a Micro Perspective

Most FOSS initiatives start out as small scale
projects of individuals or small organizations.
A growing number of individuals throughout
the African continent are becoming aware of
the potential of FOSS from a strategic point of
view. Together with relevant advantages from
an economic and technical point of view, FOSS
represents an excellent opportunity for chang-
ing the position of African countries within the
information society.

At user level, and for many individuals, the
challenges of FOSS provide new opportunities
for development, both at personal and community
levels. Now that most countries in Africa are con-
nected to the Internet, individual FOSS initiatives,
which rely on it, are fi nally thriving. An initiative
with good potential that tries to bring together
the scattered FOSS society is the Free and Open
Source Foundation for Africa (FOSSFA—www.
fossfa.net). The initiative started as the offspring
of an ICT policy and civil society workshop in
Addis Ababa, Ethiopia, in February 2003. During
the workshop the participants agreed that FOSS is
paramount to Africa’s progress in the ICT arena.
The mission of FOSSFA is to promote the use and
implementation of FOSS in Africa. Herewith it
began to work on a coordinated approach to unite

 83

Evaluating the Potential of Free and Open Source Software in the Developing World

interested individuals and to support FOSS de-
velopment, distribution, and integration. FOSSFA
envisions a future in which governments and the
private sector embrace FOSS and enlist local
experts in adapting and developing appropriate
tools, applications, and infrastructure for an Af-
rican technology renaissance. A South-to-South
cooperation, is predicted, in which students from
Ghana to Egypt, and Kenya to Namibia develop
programs that are then adopted by software gurus
in Nigeria, South Africa, and Uganda.

On a similar line a number of Internet mailing
lists and user groups are emerging, that focus on
bringing together FOSS developers and users in
Africa. At the moment there are active groups
working in Burkina Faso, Ghana, Kenya, South
Africa, Tanzania, Uganda, Zambia, and Zanzibar.
Internet portals that aim at being a starting point
for knowledge on FOSS in Africa are emerging
as well.

At the commercial level, an initiative has
been launched by DireqLearn (www.direqlearn.
org). DireqLearn promotes FOSS as an alterna-
tive for the education sector. By adopting FOSS,
the company can offer new solutions to the
educational sector at low costs. Finally, even
if only to a limited extent, some African FOSS
development projects have been launched. Most
of these are situated in South Africa, for reasons
connected to the presence of adequate infra-
structure. Outside South Africa, a project that
is worthy of mention is RULE (Run Up to-date
Linux Everywhere—www.rule-project.org). The
aim of this project is to enable the running of
modern free software on old computer hardware.
In order to achieve the goal, the developers are
modifying a standard Red Hat Linux distribution,
trying to allow the greatest real functionality
with the smallest consumption of CPU and RAM
resources. The modifi ed distribution is mainly
intended for schools and other organizations in
LDCs. At present, the RULE project provides a
FOSS solution with GPL license that is able to
transform 5 year old computer models (Pentium

75MHz, 16 MB RAM, 810 MB Hard disk) into
useful machines.

The increasing interest in FOSS is also driving
the emergence of FOSS-specifi c organizations. In
several African countries, like Nigeria, Ghana,
Uganda, and South Africa, specialized software
and consulting companies have started up. Mean-
while, young professionals with a background in
computing are embracing the FOSS approach and
trying to reform the accepted practice of buying
pirated proprietary software. At present, the mar-
ket share of FOSS is still small and it is a struggle
for these specialized companies to survive. How-
ever, when the benefi ts become clear and FOSS
is implemented on a larger scale, the capacity to
implement the systems shall be ready.

IMPLEMENTING FOSS:
A CASE STUDY

There are hardly any documented, large scale
organizational implementations of FOSS in LDCs.
FOSS is mostly implemented in small donor
funded projects or relatively simple organizations.
See, for example, the projects described in Dravis
(2003). The case study presented here describes
a relatively large organization, Uganda Martyrs
University (UMU), that made the strategic deci-
sion to move away from proprietary software to
FOSS.

The decision to migrate to FOSS was, pri-
marily, an ideological one rather than fi nancial.
Through the use of FOSS, the university hoped to
offer an alternative to the use of pirated software
and showcase the benefi ts. The fi nancial benefi ts
were specifi ed in general terms, like “no software
license fees in the future” and “perhaps we can
buy more hardware if we save on software.”
Costs of the migration were mainly specifi ed in
social terms, like “will we still be able to com-
municate and share information with the rest of
the world?” and “will the new software have the
same functionality as the old one?”

84

Evaluating the Potential of Free and Open Source Software in the Developing World

The goal of the case study is to evaluate whether
the high expectations of the use of FOSS for devel-
opment translate well in a practical situation.

The case study is based on documentation
and interviews with the main stakeholders at the
university. Since both researchers are employed
at the university and participated in the migration
project, their views and experiences are also in-
cluded. We have tried to avoid being subjective.

Uganda Martyrs University

Uganda Martyrs University is a private, catho-
lic-founded university in the central province of
Uganda. The university opened its doors in 1993
after the government, in a bid to improve the
quality and the capacity of higher education in
Uganda, allowed private universities to exist next
to the government-owned universities.

At the time of writing (February, 2005) the
university had 2,200 students enrolled in full time
and part time programs at diploma and degree
levels. The university’s main campus is located in
Nkozi village, 80 km outside the Ugandan capital
city, Kampala. This location (Nkozi) can be char-
acterised as rural. When the university started,
there were no telephone connections, no steady
water supply and electricity was unreliable. This
has changed over the years and now the university
is recognized for its good and reliable facilities.
The university has a smaller campus in Kampala,
where some postgraduate programs are offered
on a part time basis, and several outreach offi ces
are available for students who cannot easily travel
to the main campus.

The university employed 86 full time aca-
demic staff and 117 administrative and support
staff. With this size Uganda Martyrs University
qualifi es as a large organization in the private
sector of Uganda.

The case study mainly focuses on the Nkozi
campus of the university.

FOSS at Uganda Martyrs University:
The Initial Stages

The FOSS project at Uganda Martyrs University
had an informal start in 2001 when foreign as-
sistance was offered to set up a mail server at the
main campus. Since there was only money in the
budget available for hardware and no provision
for software, it was decided to equip the server
with FOSS. The mail server was confi gured with
Red Hat Linux, Sendmail as the mail transfer
agent (MTA), and Neomail as the web based mail
client. A Web server, to host the local intranet,
was confi gured with SuSE Linux and Apache
Web server software. When the new systems
administrator was hired, he was trained to use
and maintain the implemented confi gurations. The
new systems administrator picked up interest in
FOSS and later extended other parts of the system
with available alternatives. In the beginning of
2002, the systems administrator incorporated
FOSS for the proxy server (Squid) and the fi rewall
(SuSEFirewall) for Internet access and some other
minor applications.

In mid-2002, the project got a new impulse
when several guest lecturers from universities and
other organizations in Europe started to visit the
university for lectures in a newly started Master of
Science in Information Systems program. These
lecturers encountered installations of pirated
software on most computers of the university
and raised questions about the institution’s ICT
policy. The university administration did not have
an ICT policy formulated but realized that there
was need to take action. This is when the FOSS
project started formally.

In the course of the 2002 -2003 academic
year the ICT Department, the Offi ce of the Vice
Chancellor, and the Department of Computer Sci-
ence and Information Systems (CSIS), outlined
a software policy based on FOSS. The policy
was designed with two underlying principles in
mind:

 85

Evaluating the Potential of Free and Open Source Software in the Developing World

1. To optimize access to ICT for students and
staff within the limited funds available

2. To stop supporting the use of pirated software
on university property.

This was derived from the Christian values on
which the university is based, that is, one shall
not steal (not even software).

FOSS was considered a good alternative to
work within these two principles, therefore, in
May, 2003, the university senate offi cially agreed
on the FOSS policy and preparations started for a
full migration of both the server-side and desktop
applications.

Migrating the Desktops

The major challenge for the university was the
migration of the desktop applications. Literature
review revealed very little reference material and
few success stories. Documented experiences with
similar migration projects in other LDCs were not
available. The university received help from the
FOSS Group of the University of Huddersfi eld, in
the United Kingdom, as a response to a message
sent to one of the Linux mailing lists. Other than
that, the university ICT staff was on their own
to plan and execute the most diffi cult part of the
migration project.

At the start of the project, all computers in
the university were using Microsoft Windows
(98, 2000, and XP), Microsoft Offi ce Suite, and
other proprietary software applications. One of
the fi rst steps in the project was to identify the
main applications and their usage, in order to
select FOSS alternatives. It was observed that
the university staff and students used very few
“exotic” applications. This made the selection
of alternatives relatively straightforward. Table
1 shows the alternatives that were selected to
replace proprietary software.

Since the operating system would also be
migrated, a decision needed to be made on which
Linux distribution would be the standard at the
university. Several distributions were evalu-
ated and fi nally the Knoppix distribution was
selected. The main reasons for this decision was
that Knoppix is a one-disk, bootable distribution
that can also be installed easily. The distribution
could be handed out to the students and used as
a CD-ROM-bootable program on any available
computer (regardless of whether another operat-
ing system was already installed). Research on
the Internet showed that the Knoppix distribution
would work well on older machines, of which the
university had quite a lot (Pentium II’s). Finally,
the Knoppix distribution came already bundled
with most of the packages that would provide

Table 1. Main proprietary software used and open source software alternatives selected

Task Proprietary Software Open Source Alternative

Operating system Windows 9x, 2000, XP GNU/Linux

Offi ce productivity suite Microsoft Offi ce Open Offi ce

Mail client Microsoft Outlook Express Kmail, Mozilla Mail

Internet browser Internet Explorer Konqueror, Mozilla

Database Microsoft Access MySQL/phpMyAdmin

Programming
Wordpad

Borland Builder

Kate

Eclipse

Statistical analysis SPSS Open Offi ce Calc

Webdesign Microsoft Front Page Bluefi sh / NVU

86

Evaluating the Potential of Free and Open Source Software in the Developing World

alternatives for the proprietary software being
used at the university.

It was decided that the implementation strategy
for the migration would be staged. First, all the
public access computers (library and computer
labs) would be migrated. Once this was com-
pleted, the academic staff would be migrated and
fi nally, the administration (fi nancial and student
affairs administration units) of the university.
This strategy was chosen to avoid endangering
the university’s critical operations in case of any
setbacks.

The fi rst phase was scheduled to take place
during the absence of the students (June- August,
2003). This phase would then be evaluated be-
fore starting the second. The second phase was
scheduled for the long vacation (June August,
2004). A time frame for the third phase was not
determined.

Problems Encountered
during the Migration

The project encountered unexpected technical
and organizational problems in the fi rst phase that
delayed the time frame for the further implementa-
tion. The major problems are listed as follows:

• Installation: Although several claims were
made about the installation of Linux on
older machines (Pentium II/Dell), it was not
as smooth as these descriptions seemed to
suggest. Many of the machines did not have
CD-ROM drives or were not able to boot
from the CD for the installation. Bootable
fl oppy disks had to be created to solve this
but for about 20% of the older computers
the installation failed. There were also
problems of maintenance at a later stage for
the computers without CD-ROM drives.

• Performance: Limited disk space and
RAM handicapped the performance of the
machines. The machines installed with
Linux did not perform much better than

similar hardware confi gurations with Mi-
crosoft Windows installed on them. The
users, therefore, did not consider this an
improvement and, as a result, there was a
negative impact on their acceptance of the
new software.

• Usability: Although it was anticipated that
the GUI (KDE 3.2) would not cause problems
for the more experienced Windows users,
the slight differences became bigger hurdles
than expected. The most common problem
was that the Knoppix distribution requires
users to mount and unmount their fl oppy
disks. Windows does not require this. After
losing information due to (un)mounting
improperly, the users started to question
and resist the user friendliness of the new
systems.

• External factors: A special problem was
caused by the frequent power cuts in Uganda
resulting in improper (hard) shutdown of
the computers. When this happened, a fi le
system failure was created with the result
that the operating system no longer started up
properly. In order to boot the computer, a root
password was needed and the fi le systems
needed to be checked and/or repaired. This
procedure always took a long time since the
repair program was checking the entire hard
disk. In the newsgroups it was explained that
the problem was caused by the default use of
the ext2 fi le system. When the fi le systems
were converted to more robust alternatives,
the problem was solved.

• Lack of alternative software: There were
some cases where there were no available
alternatives for the software being used.
Computers had to be installed with a dual
boot system (two different operating sys-
tems installed on the same computer) set-
ting Linux as the default option. The same
FOSS applications had to be installed on
both operating systems which meant twice
the work per computer for the ICT staff.

 87

Evaluating the Potential of Free and Open Source Software in the Developing World

Students were still working in Microsoft
Windows a lot and so in order to discourage
them from choosing Linux, Internet (and
as a result Web-based e-mail) access was
restricted to the Linux operating system.

• Compatibility: Finally, differences between
the fi le formats of the offi ce applications
(Microsoft Offi ce and Open Offi ce) caused
a problem. Students were able to read Mi-
crosoft Word documents, however, since
the staff and the administration had not yet
migrated, the fi les sent by the students could
not be read. Moreover, when the students
converted the documents, the format was
changed from that originally intended by
the students. Also, when attempting to save
fi les into Microsoft Offi ce suite formats,
the following worrying message appeared:
“Saving in external formats may have caused
information loss. Do you still want to close?”
The message was confusing to the users.

Evaluation of Phase I

Although solutions to most of the technical
problems with the installation of the new FOSS
system were found, the evaluation showed that
the acceptance of the new systems was not as
high as expected.

The mounting and unmounting of fl oppy disks
was a major cause for resistance, especially since
forgetting to unmount the disk caused the loss or
corruption of fi les. This problem was overcome
by adopting the SuSE Linux 9.1 distribution that
had an auto-mount and unmount feature.

Students, especially the freshers (fi rst-year
students), responded very positively to the new
systems. Although they had a choice between
Windows and Linux (dual boot system), observa-
tions in the labs showed that most of them decided
to use the Linux side. Among students that had
already had some experience with computing
in Microsoft Windows, the resistance to the
new software was extremely high. Some of the

postgraduate students wrote complaint letters to
university management about the use of “infe-
rior” software. The resistance to the use of FOSS
remained until that class of students graduated.
For the incoming students, a compulsory FOSS
computer literacy course was introduced based
on a manual (Easy Linux Introductory Guide to
Computers) developed by the university. This
greatly reduced the resistance.

On the technical side, the problem of main-
taining computers without CD-ROM drives was
solved by adopting SuSE Linux 9.1. It provided the
option to perform installation and upgrading of
software over a network. One only had to ensure
the computers had a network interface card and a
connection point. This saved the technical staff
having to carry around and/or keep copies of many
installation CDs and external CD-ROM units.

Overall, we underestimated the importance
of awareness creation of the underlying motives
of the university to move to FOSS. The explana-
tion of these reasons needs to be taken extremely
seriously to secure commitment of the users. We
also underestimated the need to have existing,
continuous, and constantly available support to
ease the users into the new system. This meant
that even with the introduction of the improved
system that performed the auto (un)mounting for
the users, they already had a negative impression
and were still somewhat reluctant to trust the
system. The university has embarked on an active
promotion of the ideas behind FOSS.

Phase II: The Staff

The second phase, the migration of the staff com-
puters, was planned for the period June -August,
2004 but was delayed due to the problems in the
fi rst phase. In order to keep the migration on
track it was decided to concentrate on the newly
purchased computers. FOSS was installed on all
new computers. Since almost all computers that
the university was purchasing came pre-installed
with Microsoft Windows operating system, a

88

Evaluating the Potential of Free and Open Source Software in the Developing World

dual boot system was installed with Linux as the
default option of the two.

Some of the computers needed to continue to
operate on Microsoft Windows because certain
applications (see Table 2) were being used that
have no satisfactory FOSS alternative yet.

The staff of the ICT department went around
the university to install FOSS applications for
Microsoft Windows platform on the staff com-
puters. This was needed to support the format of
documents that the students were sending to the
staff. The staff was also informed that no support
would be given to illegal proprietary software.
Unfortunately, no member of staff, other than
those in the CSIS and ICT departments, allowed
their “personal computer” to be migrated to Linux.
Only offi cial work computers were migrated.

For the installations that were done on the
university property being used by the staff, it was
rare to fi nd them using the FOSS alternatives that
were provided for them. The few who tried using
these alternatives had lots of complaints about
the software not being able to perform the kind
of tasks that they wanted.

Evaluation of Phase II

The second phase turned out to be even more
diffi cult than the fi rst phase. Although there were
relatively few technical problems, the high level
of resistance of the staff at the university virtually
stalled the project.

The biggest hindrance in the whole project and
especially in the second phase, is the acceptance
of the new software by the staff. The users of

Microsoft Windows fi nd it diffi cult to switch to
the new system. They feel that they are migrat-
ing to an inferior system and, as a result, small
differences are capitalized upon, for example, the
fact that the settings for the page layout are in a
different location for Open Offi ce makes them
feel that the new package is inferior to the well-
known Microsoft Offi ce Suite. Arguments that the
location of the page characteristics in Open Offi ce
display a more logical user-interface design are
not accepted. The migration team concluded that
the differences in the user interface were under-
estimated and too little information was provided
on the reasons and consequences of the migration
to get full user commitment. When introducing a
new software environment—even when the dif-
ferences are small—several training workshops
highlighting the reasons and consequences of the
changes should be planned.

The project also underestimated the number
of Corel Word Perfect users and the problem of
migrating their documents. Open Offi ce can read
and display Microsoft Offi ce fi le formats rela-
tively well, but there is no facility for doing the
same with Word Perfect fi les. The fact that these
fi les could not be displayed makes users hesitant
to migrate regardless of the varying number of
documents they have available in Word Perfect
format. The ICT department is looking at ways
to handle this problem. Some considerations at
the moment include encouraging the staff to use
Corel Word Perfect as a document reader only
and to adopt Open Offi ce for creating and edit-
ing new documents. The other consideration is
to get document converters that can create PDF

Task Proprietary Software Open Source Alternative

Financial application Tally -

Architectural design Vector Works -

Wordprocessing Corel Word Perfect -

Table 2. Applications without satisfactory or compatible FOSS alternatives

 89

Evaluating the Potential of Free and Open Source Software in the Developing World

versions of older documents that the staff may
need to keep as archives.

At the moment we observe a growing divide
between the staff and the students in terms of
the software used. Staff tends to continue to use
proprietary software while students move more
on the FOSS side.

LESSONS LEARNED:
CRITICAL ANALYSIS

The migration at Uganda Martyrs University al-
lowed us to draw some important lessons about
a large scale migration to FOSS.

Installation of FOSS on the server-side proved
to be a big technical challenge. There was little
hands-on guidance and support available to help
the system administrators in the university. In a
country where the university was the fi rst organi-
zation to migrate, there was no possibility to hire
local technical experts to assist the staff on-site.
Hiring support on the international market was
not considered feasible due to fi nancial limita-
tions (the daily fee of international consultants
is, in most cases, higher than the monthly salary
of the local staff). Online support by the FOSS
community proved to be too unreliable and often
not applicable for the situation at the university.
Therefore, the staff of the ICT department had to
rely on their own research and much of the imple-
mentation was done through trial-and-error. The
speed of the migration was, therefore, slow and
demanded a lot of patience from the users.

Whereas Microsoft software applications
provide a standard environment for the desktops,
FOSS leaves more room for choice. Advantages
and disadvantages of the different FOSS desktop
applications are not well documented. At the
university, this led to changing standards. Where
Konqueror was the fi rst choice for web browser,
Mozilla was later chosen when it became clear
that Konqueror had problems with viewing some

commonly visited pages on the intranet and In-
ternet that contained javascripts. We also observe
a change from Bluefi sh to NVU for editing Web
pages. These changing standards were confusing
for most users. As far as end-users go, therefore,
it would be helpful to pick standard well-devel-
oped packages taking into consideration the us-
ers possible future needs. End-users would want
to spend most of their time being productive
rather than learning the computer environment.
However, there are no guarantees because new
FOSS projects start up all the time and a better
alternative might be developed.

The introduction and roll-out of the migration
project at the university revealed that continuous
information to users is needed. Their commitment
and support of the project is essential for success.
The approach at the university was a top-down
approach with a presentation for management and
senate, an initiation workshop, a mid-semester
workshop for all staff and individual support for
all users. This approach was not enough. Although
the resistance to the changes seemed to diminish
after the workshop and presentations, it proved
to come back quickly, and stronger than before.
The fact that the migration team was composed
of technical personnel, but with strong support
from the top management of the university and
the vice chancellor as champion did not guarantee
complete success.

The migration of the students before the migra-
tion of the staff seems to have been disadvanta-
geous. The expectation that the staff would support
new software and request for installation of FOSS
on their machines turned out to be a miscalcula-
tion. Instead, several staff pushed students into
using proprietary software formats, for example,
when handing in assignments. Documents saved
in Open Offi ce format were not accepted. From
our experiences it may be a wise option to get
staff acceptance and migrate them before any
attempts to migrate the students.

90

Evaluating the Potential of Free and Open Source Software in the Developing World

CONCLUSION AND
RESEARCH AGENDA

In spite of the high expectations of the policy
makers about the development potential of FOSS,
the reality of implementing FOSS in an LDC is
diffi cult. The route to the implementation of FOSS
is one with a lot of hurdles. Some of these hurdles
are general and some are specifi c to LDCs.

At a general level we observe that there is a
strong resistance to changing to FOSS applica-
tions. Many users start a migration with the idea
that they are confronted by an imperative of the
“technical people” to use “inferior software.”
Their judgment is solely based on the experiences
that they have with the desktop applications. It
is prudent to gain user commitment and under-
standing before and during the migration phases.
On the server-side where the migration is driven
by the technical staff, the clear advantages are a
strong motivator for the change to FOSS.

On the desktop the portability of fi les between
FOSS and proprietary software is still a problem.
Until this issue is solved, desktop migration will
remain diffi cult. It is high time that proprietary
software producers are coerced to adhere to in-
ternationally certifi ed standards or to completely
open up their own standards.

The need for education material for FOSS is
high. The material currently available is mostly
very technical and not understandable for the
general users. Availability of student material,
for example on Linux, Open Offi ce, MySQL/php-
MyAdmin, GIMP, and Bluefi sh, as replacements
for the proprietary tools, may greatly improve the
use of FOSS tools.

In the context of the LDCs the need for ap-
propriate support in implementing FOSS is high.
Experiences at Uganda Martyrs University show
that the help received from the international
mailing list community was insuffi cient since the
questions posted were considered basic and not
challenging to members on the list. On the other
side, the discussions in the mailing lists were too

diffi cult and not (yet) applicable to the situation at
hand. It seemed diffi cult to bridge the knowledge
gap, and implementers felt isolated in their prob-
lems. In order to support the migration in LDCs
international organizations like the World Bank
or UNCTAD need to consider setting up a support
center that deals with the questions of the system
administrators and users in these countries.

Another specifi c problem in the context of the
LDCs is the feeling that the access to the “good”
tools from the West is denied. A question that
was often asked was: “Why are the people in the
West not using these (FOSS) programs when you
are saying they are so good?” This argument is
diffi cult to counter until there are success sto-
ries available from Western organizations. The
situation gets even worse when the international
organizations that promote the use of FOSS in
LDCs only accept fi les in proprietary software
formats (.doc, .xls, .ppt), have webservers that
run on proprietary software and Web sites that
can only be browsed optimally with Microsoft
Internet Explorer.

Finally, pirated software is commonplace in
LDCs. Pirated software is readily available at very
low prices, and low cost support for installation
often accompanies the sales. Many of the new
computers that are bought in Uganda, for example,
have full installations of pirated software. The
computers that have valid licenses cost more than
the individual is willing to part with. This applies
to both servers as well as desktops. From a purely
economic point of view, an individual is more
likely to choose the “cheaper” option.

At present the development potential of FOSS
for LDCs is still a theoretical potential. At the
practical level more research, more support and
a changed attitude of the organizations in devel-
oped countries is needed. Research should focus
on the development of better tools to bridge the
compatibility issues. More support is paramount
to the success of the acceptance of FOSS in
LDCs. Support should focus on practical help
with the implementation of FOSS, but also for

 91

Evaluating the Potential of Free and Open Source Software in the Developing World

lecturers who want to use FOSS applications in
their courses. More educational material, prefer-
ably published under the Open Content license,
could act as a catalyst in an environment where
the need for textbooks is extremely high. Finally,
organizations working with LDCs should set
an example by adopting FOSS as a standard in
their organization. As long as organizations in
the developing world need to communicate with
their counterparts in the developed world by pro-
prietary software standards and proprietary tools,
the development potential of FOSS will remain a
myth and never a real possibility.

REFERENCES

Association for Progressive Communications
(APC). (2003). ICT policy, A beginners handbook.
Johannesburg: Author.

Bruggink, M. (2003). Open source in Africa: A
global reality; take it or leave it? IICD Research
Brief (No UICT01). International Institute for
Communication and Development. Retrieved
from http://www.iicd.org

Dravis, P. (2003). Open source software: perspec-
tives for development. Washington, DC: World
Bank infoDev.

Government Information Offi cers’ Council (GI-
TOC). (2002). Using open source software in the
South African Government. A Proposed Strategy
Compiled by the Government Information Tech-
nology Offi cer’ Council.

UNCTAD. (2003). E-Commerce and develop-
ment report 2003. New York; Geneva: United
Nations.

Van Reijswoud, V. (2003). Open source software:
the alternative for Africa (Working Paper). Uganda
Martyrs University, Nkozi.

Van Reijswoud, V., & Topi, C. (2004). Alternative
routes in the digital world: Open source software

in Africa. In P. Kanyandago & L. Mugumya (Eds.),
Mtafi ti Mwafrika (African Researcher) (pp. 76 -
94). Nkozi: Uganda Martyrs University Press.

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly.

Wong, K., & Sayo, P. (2003). Free/open source
software: A general introduction. United Nations
Development Program—Asia Pacifi c Develop-
ment Information Programme (UNDP-APDIP).
New Delhi: Elsevier.

KEY TERMS

Africa: Africa is the world’s second-larg-
est and second-most populous continent, after
Asia.

 Desktop: In graphical computing, a desktop
environment (DE, sometimes desktop manager)
offers a graphical user interface (GUI) to the
computer. The name is derived from the desk-
top metaphor used by most of these interfaces,
as opposed to the earlier, textual command line
interfaces (CLI). A DE typically provides icons,
windows, toolbars, folders, wallpapers, and abili-
ties like drag and drop.

 Case Study: A case study is a particular
method of qualitative research. Rather than us-
ing large samples and following a rigid protocol
to examine a limited number of variables, case
study methods involve an in-depth, longitudinal
examination of a single instance or event: a case.
They provide a systematic way of looking at
events, collecting data, analyzing information, and
reporting the results. As a result the researcher
may gain a sharpened understanding of why
the instance happened as it did, and what might
become important to look at more extensively in
future research.

 Free and Open Source Software (FOSS):
Free software is the term introduced by Richard

92

Evaluating the Potential of Free and Open Source Software in the Developing World

Stallman in 1983 for software which the user can
use for any purpose, study the source code of,
adapt to their needs, and redistribute—modifi ed
or unmodifi ed.

 Less Developed Countries (LDC): A devel-
oping country is a country with a relatively low
standard of living, undeveloped industrial base,
and moderate to low Human Development Index
(HDI). The term has tended to edge out earlier
ones, including the Cold War-defi ned “Third
World,” which has come to have negative con-
notations associated with it.

 Productivity Software: Consumer software
that enhances the productivity of the computer
user. Examples are word processor, spreadsheet,
software development environments and personal
database software.

 Software Migration: The managed process
where a situation is changed into another situa-
tion. Migrating software means that the installed
software is replaced by a newer or changed version
with similar or extended functionality.

Uganda: Uganda, offi cially the Republic of
Uganda, is a country in East Africa, bordered
in the east by Kenya, in the north by Sudan, by
the Democratic Republic of Congo in the west,
Rwanda in the southwest and Tanzania in the
south. The southern part of the country includes
a substantial portion of Lake Victoria, within
which it shares borders with Kenya and Tanzania.
Uganda takes its name from the Buganda kingdom,
which encompasses a portion of the south of the
country, including the capital Kampala.

ENDNOTES

1 The authors are well aware of the paradig-
matic differences between free software
and open source software. However, it is
often diffi cult to clearly distinguish these
differences. We, therefore, prefer to use the
term free and open source software (FOSS)
to capture both paradigms.

2 Bundesrechnungshof fordert Einsatz von
Open Source, 25.02.2002, http://www.heise.
de/newsticker/data/anw-25.02.02-004

 93

Chapter VIII
Open Source Software:
A Developing Country View

Jennifer Papin-Ramcharan
The University of the West Indies – St. Augustine Campus, Trinidad and Tobago

Frank Soodeen
The University of the West Indies – St. Augustine Campus, Trinidad and Tobago

ABSTRACT

This chapter presents issues that relate to developing countries’ use of open source software (OSS) and
the experience of these countries with OSS. Here the terms open source software (OSS), free/libre and
open source software (FLOSS) and free software (FS) are used interchangeably. It describes the benefi ts of
FLOSS including its superior quality and stability. Challenges to FLOSS use particularly for developing
countries are described. It indicates that despite the greater benefi ts to developing countries of technology
transfer of software development skills and the fostering of information and communication technology
(ICT) innovation, the initial cost of acquiring FLOSS has been the key motivation for many developing
countries adopting FLOSS solutions. It illustrates this by looking at the experience of a university in a
developing country, The University of the West Indies, St. Augustine Campus in Trinidad and Tobago.
Strategies for developing countries to benefi t “fully” from FLOSS are presented including the implemen-
tation of formal organized programmes to educate and build awareness of FLOSS. The authors hope
that by understanding some of the developing country issues that relate to OSS, solutions can be found.
These countries could then fully benefi t from OSS use, resulting in an increase in size of the global FLOSS
development community that could potentially improve the quality of FLOSS and indeed all software.

INTRODUCTION

 Open source software (OSS) is understood by
many to mean software or computer programs
where the source code is distributed and can be
modifi ed without payment of any fee by other
programmers. The term OSS fi rst came into use

in 1998 and is attributed to Eric Raymond (Feller
& Fitzgerald, 2002). The Open Source Initiative
(OSI) has been formed to promote the use of OSS in
the commercial world (www.opensource.org/).

The terminology related to software that is
released with its source code and is modifi able
and distributable without payment and then de-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

94

Open Source Software: A Developing Country View

the OSS or free software movement and so are
content to use the all encompassing term of
FLOSS (see e.g., www.fl oscaribbean.org/). For
the purposes of this discussion the terms Free
Software, Open Source Software and FLOSS are
used interchangeably2.

The development of FLOSS has often been
contrasted to that of proprietary software. FLOSS
has primarily been developed by individuals who
volunteer their time to work on FLOSS projects.
Normally, modifi ed versions of the source code
are posted on the Internet and are available for
free to anyone who wants to use or modify it
further. Thus a community of developers is cre-
ated all working on modifi cations, bug fi xing, and
customizations of the initial code. An extensive
explanation and analysis of OSS development can
be found in Feller and Fitzgerald (2002).

The number of open source software projects
can be gleaned by visiting http://sourceforge.
net/index.php where there are over a hundred
thousand such projects registered to date. Thus,
FLOSS is not a fad or fringe phenomenon. It is
important to note that FLOSS has penetrated major
markets in countries worldwide. Indeed, some
open source products like Linux and Apache are
market leaders globally, and major ICT companies
like IBM, Sun, and Oracle have adopted the open
source model (Bruggink, 2003). In some coun-
tries, governments have even made the decision
to support the use of FLOSS (Brod, 2003; Evans
& Reddy, 2003).

Because of its free cost and its freedoms,
FLOSS should be an obvious choice for wide-
spread use in developing countries. In fact, these
countries should be virgin territory for FLOSS
deployment. What do the developing countries
themselves say and what has been their experi-
ence? This chapter presents the point of view
and experience of developing countries with
FLOSS.

veloped by a group of users or community can be
confusing. For example the literal meaning of open
source implies access to the source code, without
necessarily implying permission to modify and
distribute. Also, the Free Software Foundation
(FSF) (founded in 1985) which predates the OSI
refers to these programs not as OSS but as free
software (www.fsf.org/). The term free software
was created by Richard Stallman where free refers
to the freedoms to use, modify, and distribute the
programs and does not have anything to do with
the cost of acquiring the software. Therefore,
free software does not necessarily mean zero
cost, and open source does not just mean access
to the source code.

The differences between free software and
OSS have been well documented (Fuggetta,
2003). Stallman (2002) gives details about these
differences at www.gnu.org/philosophy/free-soft-
ware-for-freedom.html. What really then defi nes
software as OSS? Generally, OSS is a software
product distributed by license, which conforms to
the Open Source Defi nition1. The best known of
these licenses are the GNU General Public License
(GPL) and the Berkeley Software Distribution
(BSD) license. Unlike traditional commercial
or proprietary software (e.g., Microsoft Word,
Windows XP, or Internet Explorer), these licenses
permit OSS to be freely used, modifi ed, and re-
distributed. The source code for these programs
must also be freely accessible.

The term free/libre open source software
(FLOSS) is used to refer to both free and open
source software and was fi rst coined in 2002
by Rihab Ghosh in a study undertaken for the
University of Maastricht (Ghosh, Glott, Kreiger,
& Robles, 2002). Libre here is the French word
for liberty making clear the free as in freedom
and not free as in “no cost.” It is also common to
use the term FOSS (free/open source software)
for such programs.

Many countries do not have the luxury of
debating the philosophical differences between

 95

Open Source Software: A Developing Country View

BACKGROUND

Developing Countries

As is well-known, the term developing country ap-
plies to most African, Latin American, Caribbean,
and Asian countries, as well as some countries in
the Middle East and Eastern Europe. The defi ni-
tion of a developing country is generally based on
that country’s annual per capita income. Indeed,
developing countries are most often defi ned
following the World Bank classifi cation (World
Bank, 2006). According to the World Bank, the
developing country’s annual per capita Gross
National Income (GNI) can range from:

• US$875 or less (low income)
• US$ 876 -3,465 (middle income)
• US$ 3,466- 10,725 (upper middle income)

Thus developing countries are not as homo-
geneous a group as some may think. Yet there

are some common problems in all developing
countries. For example, many such countries have
unreliable electricity supplies (Ringel, 2004). Ad-
ditionally, ownership of computers and access to
the Internet is low when compared to developed
countries (Table 1).

In simple terms, how useful is FLOSS with-
out hardware or electricity or trained and skilled
personnel? The vision of developing countries
being able to leapfrog from the use of propri-
etary software into using FLOSS and benefi ting
from all its “freedoms” must be tempered with
these realities (Steinmueller, 2001). This chapter
presents many of these realities as they relate to
FLOSS in developing countries. If the problems
with FLOSS in developing countries could be
solved, then such countries could fully participate
in FLOSS development. This would increase the
size of the global FLOSS development community
thereby creating the potential for an increase in
the quality of FLOSS and software in general.

Table 1. Telecommunications infrastructure for Internet access; comparison of selected countries for 2002
(Source: United Nations Statistics Division-Millennium Indicators [ITU estimates] from http://unstats.
un.org/unsd/mi/mi_series_list.asp rounded to the nearest whole number)

Countries Telephone Lines and Cellular
Subscribers/100 Population

Personal
Computers/100

Internet
Users/100

Trinidad and Tobago 53 8 11

United Kingdom 143 41 42

United States 114 66 55

Singapore 126 62 50

Sweden 163 62 57

Venezuela 37 6 5

Brazil 42 8 8

Chile 66 12 27

China 33 3 6

Guyana 19 3 14

India 5 1 2

Nigeria 2 1 0

96

Open Source Software: A Developing Country View

Benefi ts of FLOSS

The benefi ts of FLOSS are well-documented in
the literature particularly by Raymond (2002).
These benefi ts include:

• Free or small cost of acquisition; future
upgrades are free

• Flexibility of its license vs. restrictive li-
censes of proprietary software; the General
Public License (GPL) used to license most
open source software is much more fl ex-
ible than the End-User License Agreement
(EULA) of proprietary counterparts, giving
more freedom to users to customize and
to install on as many computers as needed
without incurring added costs

• Superior quality and stability of FLOSS;
because the source code is open to full and
extensive peer review, open source software is
known for its superior quality and stability

• Effectiveness as a teaching tool vs. closed
proprietary software; users of FLOSS learn
team work; importance of intellectual prop-
erty protection and ethical use of software
in addition to programming skills (Rajani,
Rekola, & Mielonen, 2003)

• Potential as a solution to the software crisis;
the “software crisis” refers to “software tak-
ing too long to develop, costing too much,
and not working very well when delivered”
(Feller & Fitzgerald, 2000, p. 58)

• Reduces the dependence of public admin-
istration and international governments in
particular on specifi c software providers
(Fuggetta, 2003); according to Nolle (2004),
internationally, where Microsoft is viewed
with more alarm than it is in the United
States, FLOSS is seen as a defense against
U.S. and Microsoft domination

• Stimulates innovation; FLOSS encourages
the mastering of the technology of software
by enabling the development and expres-

sion of creativity in the modifi cation of the
software by its users

• Improves commercial software
• Develops and enables applications that lever-

age local knowledge; because it can be freely
modifi ed, FLOSS is easier to translate, or
localize (Bruggink, 2003)

• Fosters the creation of local software in-
dustry and entrepreneurs; the potential
exists for the creation of local companies
and small businesses supplying services
associated with FLOSS in training, support,
customization, and maintenance (Ghosh,
2003; Rajani, et al., 2003)

FLOSS Challenges

There are those who question most of the stated
benefi ts of FLOSS particularly its claim to be in-
novative (Boulanger, 2005; Evans & Reddy, 2003;
Fuggetta, 2003). Those on the side of proprietary
software suggest that FLOSS is less secure, not
as high in quality, stable, or dependable as its
advocates insist. The very model of development
of FLOSS that results in its best qualities can also
lead to concerns about lack of support (Lai, 2006),
security, and possible intellectual property viola-
tions by incorporating FLOSS into proprietary
software (Kramer, 2006).

 Compatibility concerns are also common.
For example, although most FLOSS runs on both
Microsoft Windows and Mac OSX, some run only
on the Linux operating system. FLOSS may not
come with as complete documentation and ready
support as proprietary alternatives. Fees may have
to be paid for substantial technical support. It
should also be noted that there are fewer trained
people available to provide technical support
since most ICT training programmes prepare
students to work with the most commonly used
proprietary software packages, such as those from
Microsoft (Bruggink, 2003). Additionally, FLOSS
may require more learning and training time as

 97

Open Source Software: A Developing Country View

well as skill to deploy and maintain. Large scale
migration from proprietary software installations
to FLOSS can be problematic, particularly if there
is a lack of practical experience and support and
ready information on migration issues (Bruggink,
2003; Van Reijswoud & Mulo, 2005).

Cost as the main driver for the adoption of
FLOSS in developing countries cannot be ig-
nored. Ghosh (2003) demonstrates this vividly by
comparing license fees for proprietary software
with the income per capita of selected countries.
He concludes that in developing countries, “even
after software price discounts, the price tag for
proprietary software is enormous in purchasing
power terms.” This is further supported by the
Free and Open Source Software Foundation for
Africa (FOSSFA) (as cited in May, 2006) who
report that countries in sub-Saharan Africa each
year pay around US$24 billion to (mainly U.S.-
based) software companies for the rights to use
proprietary software.

Thus FLOSS provides an opportunity for de-
veloping country institutions to fi nd cost effective
solutions in many areas that could include elec-
tronic governance to online health and learning.
But there is an even greater benefi t of FLOSS to
these countries. Following the old adage that it is
better to teach a man to fi sh than to give him fi sh,
there is some appreciation that OSS can be even
more benefi cial to developing countries because it
can be a vehicle for technology transfer of software
development skills, thus building local IT capacity
and stimulating innovation (Camara & Fonseca,
2006; Ghosh, 2003). Yet, for many end-users and
even institutions in these countries, the choice
is not between FLOSS and proprietary software
but between FLOSS and cheap pirated software.
When faced with this choice there is very little
incentive to consider FLOSS (Heavens, 2006).

Furthermore, limited Internet access and
bandwidth may not allow regular interacting
with FLOSS online communities for updates,
documentation and help with problems (Heavens,
2006). In addition, jobs in the IT industry in these

countries are often confi ned to large companies
that place a high premium on skills in traditional
proprietary software (e.g., Microsoft Certifi ca-
tion and experience). Also for those uninformed
about FLOSS in developing countries, there is
much skepticism about its use since “free” is
often equated with poor quality and expensive
software with high quality and reliability. This is
confi rmed by Gregg Zachary (as cited in Fitzgerald
& Agerfalk, 2005) in his personal communication
about unsuccessful attempts to introduce FLOSS
projects in Ghana.

Are these diffi culties peculiar to some devel-
oping countries? As a contribution to the FLOSS
debate it may be useful to present the experience
of a major university in a developing country.

EXPERIENCE IN THE WEST INDIES

The University of the
West Indies (UWI)

The University of the West Indies (UWI) was fi rst
established in 1948, as a college with a special
relationship with the University of London to
serve the British territories in the Caribbean area.
There are three UWI Campuses, in three differ-
ent West Indian islands: Mona in Jamaica, Cave
Hill in Barbados and St. Augustine in Trinidad
and Tobago.

FLOSS at the University of the West
Indies – St. Augustine Campus

The St. Augustine campus of the UWI is located
in the middle income developing country of
Trinidad and Tobago. Rampersad (2003) gives a
succinct description of FLOSS in Trinidad and
Tobago and reports that “Proprietary software is
used most in Trinidad and Tobago, and as such,
Microsoft and its many applications have a strong
grip on the IT market.” The University of the West
Indies just like other employers of IT personnel

98

Open Source Software: A Developing Country View

in Trinidad and Tobago places high value on
proprietary software certifi cation (e.g., MCSE).
Additionally, agreements have been made with
computer manufacturers like Dell for the supply
of computers campus wide and these are naturally
shipped with proprietary software.

It is therefore not surprising that, like many
similar developing country institutions, the UWI,
St. Augustine campus has no formal institutional
policy for the use or deployment of FLOSS. In-
dividual IT personnel and other staff members
at UWI who become aware of FLOSS solutions
have tried using these in their various departments
or units. The main motivation for this has been
the cost of FLOSS versus proprietary software
particularly when licensing per-seat costs are
considered in deploying software in large com-
puter labs. The FLOSS software used so far at
the university is shown in Table 2.

Were the other vaulted outcomes of FLOSS use
in developing countries experienced at the UWI?
Modifi cation of source code, customization, and
so forth, implies that there exists a certain level
of programming skills locally. In Trinidad and
Tobago, practical computer programming skills
are in very short supply and so FLOSS is some-
times seen as just a cheap alternative to the high
cost of proprietary software, nothing more.

Also, as is the case with most developing
countries, UWI has a small IT staff fully engaged
at any time on a multiplicity of projects. There is

often no time to invest in modifying source code.
A good example of how limited resources can af-
fect the progress of FLOSS projects in particular
is UWI, St. Augustine’s Institutional Repository
Project which is based on the open source DSpace
software (www.dspace.org). The initial impetus
for the implementation of an institutional reposi-
tory at the UWI, St. Augustine campus was a need
to expose the unique Caribbean resources housed
in the West Indian collection of the library to the
world via digitization.

DSpace was acquired in 2004 and was installed
fi rst on a test server at the UWI Main Library in
early 2005. Yet the installation is still “ongoing”
since it involves a steep learning curve for the
staff charged with the technical implementation.
Knowledge and skills in Linux, Apache, Tomcat,
and Java programming required for a successful
DSpace repository deployment are not readily
available. Thus, progress on implementation of
the repository has been slow (Papin-Ramcharan
& Dawe, 2006). Like most developing countries
which do not have in place a well developed IT
infrastructure and highly skilled IT personnel, it
has been found that the true total cost of owner-
ship (TCO) of DSpace as a FLOSS institutional
repository solution has been high.

FUTURE TRENDS

It seems clear that the initial cost of acquiring
FLOSS has been the key motivation for many
developing countries adopting FLOSS solutions. It
is also clear that there are greater benefi ts that can
be derived from FLOSS in terms of encouraging
the development of local IT skills, the creation of
jobs locally to support FLOSS, and the eradication
of piracy of proprietary software. Independence
from being hostage to a single proprietary vendor
is also benefi cial to such countries.

The benefi ts to a country and its citizens from
FLOSS adoption can possibly be viewed along
a spectrum. Some countries which are relatively

Table 2. FLOSS used at UWI St. Augustine

FLOSS Type

Linux Operating System

Open Offi ce/Star Offi ce Productivity Software

PHP, PERL Middleware

MySQL Database

Moodle Courseware

DSpace Institutional Repository

Apache Web Server

 99

Open Source Software: A Developing Country View

new to FLOSS will take time to fully exploit its
potential, whereas those that are farther along
will work on higher value FLOSS activities like
customization. Eventually, developing country
users could move from being just consumers of
FLOSS to being equal participants in the global
community by becoming initiators and creators
of FLOSS projects (i.e., FLOSS developers).
Further along the spectrum, local jobs and small
businesses could be created to sell FLOSS support
and maintenance services.

It also seems likely that for developing coun-
tries and others, there probably will never be a
FLOSS-only or proprietary-only market. The
future will be about choice, where both FLOSS
and proprietary software will co-exist and deci-
sions to acquire software will not be based on
philosophy alone but follow the standard criteria
used to select any software package.

CONCLUSION

The literature while emphasizing that FLOSS
is obviously a cost effective solution for devel-
oping countries also extols its higher benefi ts.
These include: its technology transfer potential,
the creation of jobs, fostering of innovation and
creativity, the reduction in piracy of proprietary
software, the independence achieved from be-
ing hostage to a single proprietary vendor, and
the ability to localize software products to local
languages and conditions. These outcomes will
not be achieved for most developing countries
unless there are enhanced supporting mechanisms
to foster FLOSS use. These can emanate from
international agencies like those of the UN and
World Bank whose interest lie (for example) in the
sustainable development of developing countries.
The mechanisms could include:

• Formal organized programmes to educate
and build awareness of FLOSS in developing
countries; this should not just be targeted to

IT personnel but to common users, govern-
ments, and other decision makers

• International agencies working presently
to upgrade ICT skills and infrastructure in
developing countries should work closely
with the FLOSS “movers and shakers” to
ensure that training is provided in these
countries on commonly used FLOSS with
emphasis on programming skills.

• Sponsoring agencies that support nongov-
ernmental organizations (NGO) or other
community organizations should require
that FLOSS be considered for use in their
operations and projects.

• Procurement agencies of governments and
other bodies should be educated about FLOSS
so that it can be seen as a viable alternative
when procurement decisions are made.

• Examination and other education bodies
must be encouraged in an organized and tar-
geted manner to change the computer studies
and science programmes in these countries
from being mostly Microsoft-centric to
include the study and use of FLOSS.

REFERENCES

Boulanger, A. (2005). Open-source versus
proprietary software: Is one more reliable and
secure than the other? IBM Systems Journal,
44(2), 239 -248.

Brod, C. (2003). Free software in Latin America:
Version 1.2. Retrieved August 18, 2006, from
http://www.brod.com.br/fi le_brod//helsinki.pdf

Bruggink, M. (2003). Open source software:
Take it or leave it? International Institute for
Communication and Development (IICD) Report.
Retrieved July 6, 2006, from http://www.ftpiicd.
org/fi les/research/reports/report16.pdf

Camara, G., & Fonseca, F. (2006). Information
policies and open source software in developing

100

Open Source Software: A Developing Country View

countries. Journal of the American Society for
Information Science and Technology (JASIST)
(pre-print version). Retrieved August 26, 2006,
from http://www.dpi.inpe.br/gilberto/papers/ca-
mara_fonseca_jasist.pdf

Evans, D. S., & Reddy, B. J. (2003). Government
preferences for promoting open-source software:
A solution in search of a problem. Michigan Tele-
communications and Technology Law Review,
9(2). Retrieved August 22, 2006, from http://www.
mttlr.org/volnine/evans.pdf

Feller, J., & Fitzgerald, B. (2000). A framework
analysis of the open source development paradigm.
In Proceedings of the 21st ACM International
Conference on Information Systems, Brisbane,
Queensland, Australia (pp. 58 -69). Atlanta, GA:
Association for Information Systems .

Feller, J., & Fitzgerald, B. (2002).Understanding
open source software development. Reading, PA:
Addison Wesley.

Fitzgerald, B., & Agerfalk, P. J. (2005, January 3-
6). The mysteries of open source software: Black
and white and red all over? In R. H. Sprague (Ed.),
Proceedings of the 38th Hawaii International Con-
ference on System Sciences, Big Island, Hawaii
[CD-ROM]. Los Alamitos, CA: IEEE Computer
Society Press.

Fuggetta, A. (2003). Open source software––An
evaluation. The Journal of Systems and Software,
66, 77-90.

Ghosh, R. A. (2003, December). Licence
fees and GDP per capita: The case for open
source in developing countries. First Mon-
day, 8(12). Retrieved August 20, 2006, from
http://fi rstmonday.org/issues/issue8_12/ghosh/
index.html

Ghosh, R. A., Glott, R., Kreiger, B., & Robles,
G. (2002). Free/libre and open source software
study: FLOSS fi nal report. International Institute
of Infonomics, University of Maastricht. Retrieved

August 16, 2006, from http://www.fl ossproject.
org/report/

Heavens, A. (2006, July 10). Ubuntu in Ethiopia: Is
free such a good deal? [Blog post]. Meskel square.
Retrieved August 13, 2006, from http://www.
meskelsquare.com/archives/2006/07/ubuntu_in_
ethiopia_is_free_such_a_good_deal.html

Kramer, L. (2006, April). The dark side of open
source. Wall Street & Technology, 43- 44.

Lai, E. (2006). Lack of support slowing spread
of open-source applications. Computerworld,
40(8), 20.

May, C. (2006). The FLOSS alternative: TRIPs,
non-proprietary software and development.
Knowledge, Technology & Policy, 18(4), 142 -
163.

Nolle, T. (2004). Time to take open source seri-
ously. Network Magazine, 19(4), 82 -83.

Papin-Ramcharan, J., & Dawe, R. A. (2006). The
other side of the coin for open access publish-
ing—A developing country view. Libri, 56(1),
16-27.

Rajani, N., Rekola, J., & Mielonen, T. (2003). Free
as in education: Signifi cance of the free/libre and
open source software for developing countries:
Version 1.0. Retrieved August 6, 2006, from
http://www.itu.int/wsis/docs/background/themes/
access/free_as_in_education_niranjan.pdf

Rampersad, T. (2003). Free- and open-source
software in Trinidad and Tobago. Linux Journal.
Retrieved August 22, 2006, from http://www.
linuxjournal.com/article/6619

Raymond, E. S. (2002). The cathedral and the
bazaar. In The cathedral and the bazaar, 23.
Retrieved July 18, 2006, from http://catb.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar/

Ringel, M. (2004). The interlinkage of energy
and poverty: evidence from India. International
Journal of Global Energy Issues, 21(1 2), 27 46.

 101

Open Source Software: A Developing Country View

Stallman, R. (2002). Free software, free society:
Selected essays of Richard M. Stallman (J. Gay,
Ed.). Boston: Free Software Foundation.

Steinmueller, W. E. (2001). ICTs and the possi-
bilities for leapfrogging by developing countries.
International Labour Review, 140(2),193-210.

Van Reijswoud, V., & Mulo, E. (2005, March 14-
15). Free and open source software for develop-
ment myth or reality? Case study of a university
in Uganda. Paper presented at a seminar on Policy
Options and Models For Bridging Digital Divides
Freedom, Sharing and Sustainability in the Global
Network Society, University of Tampere, Finland.
Retrieved August 22, 2006, from http://www.
globaledevelopment.org/papers/Artikel%20OSS-
UMUv2%5B1%5D.1.pdf

World Bank. (2006). Data and statistics:
Country classif ication. Retrieved August
24, 2006, from http://web.worldbank.org/
WBSITE/EXTERNAL/DATASTATISTICS/
0,,contentMDK:20420458~ menuPK:64133156
~pagePK:64133150~piPK:64133175~theSitePK
:239419,00.html

KEY TERMS

 Developing Countries: Developing countries
are those that have an annual per capita income
(Gross National Income [GNI]) between US$875
and US$10,725.

 Free/Libre Open Source Software (FLOSS):
Used to refer to both free and open source software
making no distinction between them.

 Free Software (FS): Computer programs that
are not necessarily free of charge but give access
to the source code and permit users the freedom
to freely use, copy, modify, and redistribute.

 Open Source Software (OSS): Software that
meets the terms of the Open Source Defi nition
(www.opensource.org/docs/defi nition.php). To
be open source, the software must be distributed
under a license that guarantees users the right to
read, redistribute, modify, and use freely.

 Proprietary Software (PS): Software that
is normally owned by a company that typically
restricts access to the source code to protect the
company’s intellectual property. The software
is distributed as the “compiled” source code or
executable code (the binary form of the program).
Its use, redistribution, or modifi cation is prohib-
ited or severely restricted (e.g., Microsoft Word,
Norton Antivirus).

 Source Code: The list of instructions that make
up a computer program written in a high level
programming language (like C, Java or PHP) that
humans can read, understand and modify.

 Total Cost of Ownership (TCO): The full cost
of deploying, maintaining and using a system (or
software) over the course of its lifespan.

ENDNOTES

1 Open Source Defi nition, Version 1.9. Re-
trieved July 15, 2006, from http://www.
opensource.org/docs/defi nition.php

2 It is important that FLOSS is not confused
with terms like freeware and shareware.
These terms are usually used to describe
software which is available at no cost, but
its source code usually is closed. Internet
Explorer is one example of freeware that is
proprietary.

102

Chapter IX
The Social and Economical Impact
of OSS in Developing Countries

Alfreda Dudley-Sponaugle
Towson University, USA

Sungchul Hong
Towson University, USA

Yuanqiong Wang
Towson University, USA

INTRODUCTION

 Some countries, particularly the economically
challenged, are still behind regarding hardware
and software technologies. This chapter looks
at the social and economic impacts of OSS on
three technologically developing countries:
China, South Korea, and India. The focus of the
chapter is on how OSS is changing the social and

ABSTRACT

Computing practices in developing countries can be complex. At the same time, open source software
(OSS) impacts developing countries in various ways. This chapter examines the social and economic
impacts of OSS on three such nations: China, South Korea, and India. In so doing, the chapter discusses
and analyzes benefi ts as well as downsides of the social, political, and fi nancial impacts on these devel-
oping countries. Topics covered in this chapter are piracy, software licensing, software initiatives, social
and political components involved in OSS implementation, and software compatibility issues.

economical structures in each of these countries.
This chapter discusses and analyzes benefi ts as
well as downsides of the social, political, and
fi nancial impacts on these developing countries.
Topics covered in this chapter are piracy, software
licensing, software initiatives, social and political
components involved in OSS implementation, and
software compatibility issues.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 103

The Social and Economical Impact of OSS in Developing Countries

BACKGROUND

OSS in Developing Countries

Open source software impacts developing coun-
tries in various ways. Some impacts are positive
for example, cost savings, fl exibility of software,
obtaining negotiation power against big software
companies, fi ghting piracy, building its own soft-
ware industry, and even increase national security
by less dependence on a few foreign companies.
The negative impacts would be maintaining the
software quality and providing updating or service
when the software environment is changed.

Many international governments are increas-
ingly supportive of the use of OSS. “Open source
software is often touted to be ideal for accelerating
the growth of low-income countries’ IT sectors,
with the expectation that it will increase their
propensity to innovate” (Kshetri, 2004, p. 75).
In countries like China, Japan, South Korea,
and India, there is political incentive toward the
use of OSS. To insure commitment in the use of
OSS, these governments have enacted policies
and laws. In June 2002, the European Union’s
position on this issue was that governments (or
public administrations) are not promoting OSS
over proprietary software, but are optimizing
investments in sharing developed software
(Drakos, Di Maio, & Simpson, 2003). Whereas
each government has its own political motivation
toward the adoption of OSS, the decision must be
carefully examined. Governments, specifi cally in
developing countries, that are quick to implement
OSS over commercial software for development
must take into consideration whether the choice
will bring about the required end results.

The popularity of OSS is driving vendors
to meet the high demands, especially from the
developing countries. For example, Sun Micro-
systems’ executives have suggested that they are
considering making their entire software stack
open source over time (Galli, 2005). However,
future changes in the way OSS is distributed

(i.e., different types of licensing fees for support
and maintenance, compatibility issues with other
software and hardware technologies, licensing
issues in software development) will bring about
major changes in structure and costs.

Most open-source companies have long offered
their software free and built business around
value-added services and support. A much smaller
number have been selling open-source software
with premium-level add-on components for years;
that model is not new. But the number of compa-
nies falling into the latter category appears to be
increasing, which could eventually change the un-
derlying structure of the open-source community,
as we know it. (Preimesberger, 2005, p. 1)

With possible changes in the marketing and
applications of open source software, the need
for reassessment of policies will be eminent for
developing countries in order to stay in the com-
petitive technological global market.

MAIN FOCUS OF THE CHAPTER

Open Source Software and China

IT Status in China

China has presented a constant GDP growth of
8% over the past decade. China’s GDP was more
than $1.7 trillion in 2005. In addition, China’s
information technology industry has increased.
Information technology (IT) in China has been
moving forward as planed in their tenth Five-Year
Plan (2001- 2005) for economic development. The
plan states “Information technology should be
used extensively in all circles of society and the use
of computers and Internet should be wide spread”
(http://news.xinhuanet.com/zhengfu/2001-10/30/
content_82961.htm). The tenth Five-Year Plan
earmarks 1.7 trillion yuan (about $200 billion)
for spending on information and communica-

104

The Social and Economical Impact of OSS in Developing Countries

tions technologies (ICT). According to a report
published by IDC (2005), China’s spending on IT
exceeded $30 billion in 2005, will reach $35.08
billion in 2006 (a 13.7% increase over 2005), and
is expected to be over $51 billion by 2009.

The Ministry of Information Industry of
the People’s Republic of China (www.mii.gov.
cn/art/2005/12/18/art_942_1970.html) reported
that sales revenue has surpassed 2063.15 billion
yuan (about $250.7 billion) during the fi rst nine
months of 2005, a 21.3% increase compared to
previous years. Meanwhile, the China Internet
Information Center (CNNIC) has reported an
increase in China’s Internet population and
broadband users with over 100 million new users
by the end of 2005. This Internet population is
the second largest in the world. Among Internet
users in China, the number of broadband users
has reached 64.3 million (www.cnnic.net.cn/html/
Dir/2006/01/17/3508.htm).

China’s domestic fi rms have been working hard
to take over the personal computer market, which
was once dominated by foreign fi rms. Currently,
Legend, a Chinese computer company, has taken
control of over 30% of the market share.

In China’s software market, Microsoft, IBM,
Oracle, Sybase, and China-based UFSoft and
Kingsoft have all been big players, in which Mi-
crosoft has been dominating the market for quite
a while. The domestic Chinese software market
was $800 million in 2002 and was predicted to
grow 25% a year. In 2005, the software market
and IT services experienced a growth rate of
19% and 22% respectively. IDC (2005) predicted
that China’s software market and IT services op-
portunity will reach $7 billion and $10.6 billion
respectively.

OSS Adoption in China

As part of a 5 year economic development plan,
China has identifi ed software as a strategic sec-
tor for development. One of the projects involves
promotion of Linux applications.

CCIDNET.com, a popular Chinese Web site
for technology news, reported that by year 2000,
there were already over 2 million Chinese com-
puter users taking up Linux (about 10% of the
number using Windows). Recent statistics released
by the Chinese government’s Beijing Software
Industry Productivity Center (BSTC) have shown
Linux sales in China growing at more than 40%
a year—increasing from $6.3 million in 2002 to
$38.7 million by 2007 (GridToday, 2004). Most
of this growth will come from the server environ-
ment. As more and more OSS is being adopted
by Chinese businesses and government agencies,
the exploration of the adoption of OSS in China
shows various benefi ts why company and govern-
ment agencies are willing to adopt OSS as well
as problems associated with its adoption.

Benefi ts of Using OSS in China

Social and Political

 Piracy

The problems of software piracy have plagued
China for years. As part of their commitment in
joining the World Trade Organization (WTO),
China has promised to protect intellectual prop-
erty. However, converting all pirated software into
licensed software still presents a big challenge for
the government. Because of its low cost, freedom
to access, and fl exibility to modify, open source
software presents major opportunities to China’s
social and economic growth and development.
As result, IDC (2006) reported “China, with one
of the fastest growing IT markets in the world,
dropped four points between 2004 and 2005”
while worldwide piracy rate remains stable. This
has been “the second year in a row where there
has been a decrease in the PC software piracy
rate in China. This is particularly signifi cant,
considering the vast PC growth taking place in
the Chinese IT market” (IDC, 2006).

 105

The Social and Economical Impact of OSS in Developing Countries

Building Its Own Software Industry

Moreover, OSS offers the opportunity for devel-
oping countries like China to get their software
industry off the ground. By promoting OSS,
China has developed its own operating system,
database system, middleware, offi ce automation
software, and embedded systems. In addition,
China has started exporting software to other
countries. China has exported over 7,000 sets of
the Chinese Linux product to 8 countries during
its tenth fi ve-year period.

Improving National Security

Microsoft signed a contract with the Chinese
government to allow controlled access to source
code and technical information (following similar
agreements with India, Russia, NATO, and UK
governments) in 2003 (Sina, 2003). However,
the Chinese government may still be concerned
with Microsoft’s true intention to “get Chinese
customers addicted to Microsoft software and
then fi gure out how to charge them for it later”
(Dedrick & Kraemer, 2001). Like other countries
that emphasize the preference of open source soft-
ware, such as Linux, China believes the adoption
of OSS will reduce the dependency on Microsoft
while keeping control of their systems.

Financial

 Cost Savings

As previously discussed, proprietary software
companies, especially Microsoft, have dominated
China’s software market. However, only small por-
tions of these products are actually legally purchased.
Microsoft has been known to request high licensing
fees and force their users to upgrade or risk losing
support. With over 59,000 PCs sold in year the 2003
alone, a tremendous amount of money will be needed
to upgrade the system to a later version. This obvi-
ously poses a big threat to business in China.

Unlike the huge cost involved in buying and
maintaining a proprietary system, OSS has built
an image of “free” software—free to install while
getting the fl exibility to customize. Although there
are costs associated with the software support
and maintenance of OSS, it is still expected to
have much lower costs than proprietary software.
For example, Linux has been expected to cost up
to 70% less than Windows (Einhorn & Greene,
2004). Not only China, other developing countries
in the region have also presented their preference
for OSS, such as Linux.

 Flexibility

Unlike proprietary software, OSS such as Linux,
developed with a GNU General Public License
(GPL), usually allows people to copy, study,
modify, and redistribute software. Migrating
to this kind of system gives companies the op-
portunity to look inside and make changes to
fi t their special requirements. With the Chinese
governments encouragement, Red Flag, a Chinese
version of Linux, has been created by the Institute
of Software at the Chinese Academy of Science
in 1999. Since then, Red Flag has been gaining
ground in the server operating environment (SOE),
PC and handheld computers.

According to the China Ministry of Informa-
tion Industry (MII), almost 70% of all software
purchases in 2004 were of open source based
products. Linux was adopted on about 45,000
systems in provincial government institutions.

For example, the China Ministry of Railways
has deployed Turbolinux operating systems in
14 railway bureaus, 230 railway stations and
more than 440 package processing stations, to
encourage standardization for package delivery
operation and management. This initiative was
the fi rst large-scale Linux implementation by the
ministry (Trombly, 2005).

One of the branches under the China Construc-
tion Bank (CCB) has adopted Linux system on over
3,600 computers. The Industrial and Commercial

106

The Social and Economical Impact of OSS in Developing Countries

Bank of China (ICBC), China’s largest bank, also
announced its plan to switch to Linux for all of
its front-end banking operations over a 3 year
period. The reason behind this decision was the
better performance and vendor support (Lemon
& Nystedt, 2005). IDC reported that Linux server
shipments in China rose to $9.3 million last year,
up 20% from 2003. By 2008, it is expected that
the Chinese Linux server and client-end operating
system market will reach $41.9 million.

Obtaining Negotiation Power

The availability of OSS brings another benefi t for
government and business institutions: increased
negotiation power. By adopting OSS in a small
scale, users can reduce their dependency on a
single vendor. When customers present the pos-
sibility of adopting OSS, their negotiation position
increases in a vendor-driven market.

Drawbacks of Using OSS in China

Social and Political

 Security and Stability

Although the government has been encouraging
the adoption of OSS in China, compared to the
business model Microsoft adopted, most end users
are not familiar with OSS. People are suspicious
about the stability and security of the OSS.

Financial

 Maintenance Cost

Although one of the biggest perceived benefi ts
of OSS is the cost savings, lack of qualifi ed
personnel to handle the system development and
maintenance has contributed to the higher cost
in system maintenance. Based on the discussion
with fi ve companies that tracked their total cost,
Forrester research (2004) reported that Linux

could be between 5% and 20% more expensive
than Windows unless the company is migrating
from UNIX to Linux or is deploying Linux from
the beginning.

Support and Application

Lack of Available Device

Another problem associated with OSS adoption
is the availability of device support and applica-
tion.

What happens quite often is that a vendor provides
a Linux solution to a company, but the printer
the company is using is not supported on Linux.
Also many companies have already developed
Web sites that are not following W3C standards
or are tailored to (Microsoft’s) Internet Explorer.
If companies use Firefox, they cannot read these
Web sites properly. (Marson, 2006)

This lack of support is also illustrated by the
weak support of the Chinese interface. A survey
conducted by Beijing Software Industrial Park
shows that Chinese interface in Linux still does
not work well. For example, it is diffi cult to input
Chinese on Linux although it can display Chinese
characters; only few Chinese fonts were sup-
ported; it cannot even display the whole Goggle
China homepage correctly on a Linux supported
computer (Han, 2006).

Summary of OSS and China

With the benefi t of governmental support, OSS,
represented by Linux, has been the basis of much
of China’s information technology growth. Hence,
OSS has pushed Chinese software industry to
move forward with its own technological inno-
vations. Moreover, the introduction of OSS has
created a more competitive environment in the
software industry, which helps reduce domination

 107

The Social and Economical Impact of OSS in Developing Countries

by a single vendor, increases cost savings, and
opportunities in training software personnel.

Open Source Software
and South Korea

IT Status in South Korea

Open source software is considered an alternative
to proprietary software, for example, Microsoft
in South Korea. According to a news report in
2003, the South Korean government encourages
the use of OSS (ZDnet, 2003). Specifi cally, the
South Korean government is very interested in
using OSS in various government branches and
government-supported systems. According to
South Korea’s OSS recommendation, OSS will
have higher priority in government supported
software projects (www.partner.microsoft.
co.kr/Partner_Portal/newsclipping/Uploaded_
Files/050120.htm).

One of the government branches that support
OSS is South Korea’s IT Industry Promotion
Agency (KIPA). Among teams in KIPA, the OSS
support team is leading the way in South Korea’s
technological advancements. The practices of the
OSS support team in KIPA are acquiring OSS and
supporting the software industry by creating the
OSS markets such as Linux-based systems.

Stimulated by the South Korean government’s
recommendation, many software companies in
South Korea, for example, IBM, HP, SUN, and
Samsung are preparing open source applications.
Companies like Samsung SDI, KT, Postdata,
and SK C&C show great interest in the OSS
market.

“The South Korean government has announced
that by 2007 it plans to replace proprietary software
with open-source alternatives on a substantial
number of its PCs and servers” (ZDnet, 2003).
The authors assert that thousands of computers
in ministries, government-based organizations,
and universities in South Korea will replace
Microsoft’s Windows operating system and

Offi ce products with open source alternatives.
Kim and Song (2003) further state that if change
is successful then the South Korean government
may save $300 million a year. Despite skepticism,
from Microsoft, the South Korean government’s
main impetus will be to promote competition in
the software market. South Korea is not alone
in this endeavor. The countries of Japan, China,
and South Korea met in the Cambodian capital
of Phnom Penh to sign an agreement to jointly
research and develop non-Windows, open source
operating systems (ZDnet, 2003).

OSS Adoption in South Korea

The most dominant OSS is Linux. Linux sales
have increased sharply in recent years. The num-
ber of Linux server sales in 2002 is 2,216 and it
increased to 4,878 in 2003 as shown in Table 1.
The total OS sales in 2003 are 1,703,904,000,000
Won, which is around US$1,725,000,000. The
Linux sales fi gure is 38,368,000,000 Won, which
is around US$39,000,000.

Moreover, the market share of Linux (shipment
base) has increased from 12.1% in 2003 to 18.5%
in 2004 with the expectation to reach 21.2% in
2007 (IDC, 2006; KIPA, 2003).

Another adoption example is the PDA market.
The picture for the use of OSS in the Korean
PDA market does not look promising. Only one
company, Gmate sells PDAs which uses Linupy
as its operating system. Linupy is a Linux-based
operating system. Gmate sold 4,520 units of
PDAs in 2003 and its Korean market share is
2.1% (IDC, 2006; KIPA, 2003). The market
share demonstrates that OSS in the Korean PDA
market is low. However, unlike other companies
that use licensed operating systems, Gmate does
pay licensing fees and its operating system can
be modifi ed and expanded freely. Because of the
fl exibility and low costs associated with this open
source operating system, it can be an advantage
to other companies (KIPA, 2003).

108

The Social and Economical Impact of OSS in Developing Countries

Benefi ts of Using OSS in South Korea

Social and Political

One of the South Korean government’s priorities
is to obtain advanced software technologies for
their software industry market. The South Korean
government recognizes that there is a technology
gap between developing countries and advanced
countries. However, the government perceives
OSS as a vehicle to minimizing this technological
gap for their country. Additionally, OSS is a good
resource to create markets for other information
technology developments.

Financial

The biggest benefi t of OSS is saving money. This
fact is well demonstrated in the survey results
shown below. Companies in South Korea do not
need to pay the royalty to proprietary software
companies. In addition to the price, upgradeability,
stability, and availability of special software are
also important issues.

Although the previous section indicates that
Linux growth and sales have increased, businesses
in South Korea have been slow to adopt Linux. In
previous years, the acceptance of Linux among
South Korean companies was pretty low. Kim
and Song (2003) conducted a survey to measure
the use of Linux in South Korea. There were 124
South Korean IT professionals respondenting to
this survey.

The results of the survey indicated the fol-
lowing:

• Eighty-Five percent of surveyed companies

do not use Linux.
• Only 3% of companies use Linux all the

time.

The major reasons for this low acceptance of
desktop Linux were:

• Not familiar (54.9%)
• Diffi cult to use (17.6%)
• Limited number of applications (13.7%)

Table 1. Server OS Sales in Korea, 2001- 2003 (Source: IDC, KIPA)

OS Data
Year

Total
2001 2002 2003

Linux
Unit 2,235 2,216 4,878 9,329

Revenue 29,619 28,406 38,368 96,393

Others
Unit 3,478 2,260 1,968 7,701

Revenue 397,263 324,005 271,588 992,856

Unix
Unit 12,796 12,034 15,861 40,691

Revenue 1,179,445 1,231,500 1,101,065 3,512,010

Windows
Unit 27,477 20,479 28,915 76,868

Revenue 377,424 273,502 292,883 943,810

Unit Total 45,982 36,986 51,622 134,589

Revenue Total 1,983,751 1,857,413 1,703,904 5,545,068

Revenue Unit: 1,000,000 (Won)

Note: 1 $ = 987.80 Won (Jan. 13, 2006)

 109

The Social and Economical Impact of OSS in Developing Countries

The major reasons why companies select
desktop Linux were:

• Price (33.3%),
• Stability (26.7%)
• Educational purposes (26.7%)

The major reasons for selecting Linux serv-
ers were:

• Safety (72.2%)
• Stability (61.1%)

Drawbacks of Using OSS
in South Korea

Social and Political

The biggest factor for resisting the use of OSS
in South Korea is low confi dence. Customers do
not trust the quality of the software especially
interoperability and security. Moreover, the
diffi culties of software installation, lack of offi ce
productivity, type of software, lack of various
tools, data compatibility, and unfamiliarity of
UNIX commands are considered weak points
(Kim, Yea, & Kim, 2003).

Financial

Even though OSS does not require royalty for its us-
age, maintaining and upgrading require monetary
investment. However, countries like South Korea
can use domestic manpower to solve this problem
by establishing government-backed technical insti-
tutions devoted to OSS support and training.

Summary of OSS in South Korea

South Korea’s OSS market is in the early stages
and its market share is small. However, various
data shows that the gains in the market share will
increase. In the future, OSS will gain its market

share rapidly because of governmental incentives
and low costs of OSS. The South Korean gov-
ernment will continue to promote OSS because
of its price and chance of acquiring developing
software technology. In addition, the South Ko-
rean government hopes that an increase in OSS
competition will alleviate Microsoft’s domination
in the software market.

Open Source Software and India

IT Status in India

India is one of the largest democratic governments
and the most impoverished country in the world.
The 2001 World Development Report indicated
that “the average GNP per capita in India was
only US$450 per year, 45% of adults were il-
literate, and about one out of twelve children die
before the age of fi ve” (as cited in Warschauer,
2004). The status of India’s poor economy has
remained constant.

Interestingly, India is also becoming a country
known for information technology. “India has one
of the largest and most developed information
technology industries in the world. This industry
has created a tiny group of multimillionaires and
a small middle class of network and software
engineers, computer programmers, and computer-
assisted design specialists” (Warschauer, 2004,
p. 23). Table 2 shows the size and growth rates
for India’s ICT markets:

India has shaped the model for global market-
ing of information and communication technology
for companies in Europe and the United States.
India has become one of the United States’ larg-
est outsourcing countries for information and
communications technology services. To indicate
this trend, the following are examples of India’s
dominance in the outsourcing markets:

• India already accounts for the largest num-
ber of IBMers outside of the U.S. (it recently
surpassed Japan).

110

The Social and Economical Impact of OSS in Developing Countries

• In 2004, Big Blue acquired India’s Daksh
e-Services, whose 6,000 employees operate
call centers for companies like Amazon.com
and Citicorp.

• Goldman Sachs calculates that by the end
of next year, IBM Services’ headcount in
India will top 52,000. That would be more
than one-fourth of all its services personnel
and about one-sixth of IBMers worldwide. It
would put IBM in India on a par with Wipro,
the largest local software company, and make
it bigger than Infosys and Tata Consultancy
Services. (Kirkpatrick, 2005, p, 129)

Only China has surpassed India in economic
and technological areas. However, India surpasses
China in commercial software development. This
gap is substantial. “India’s software exports ex-
ceeded $12 billion in 2003, compared to China $2
billion” (Kshetri, 2004, p. 86). Globalization is an
aspect in which choosing the type of software is a
critical decision for businesses and governments.
Globalization can affect decisions at every level
of software development (Kshetri, 2005).

OSS Adoption in India

Open source software use has proliferated
throughout the India IT culture. OSS is highly

supported by the government and businesses in
India. An example of adoption of OSS in India is
the following: OSS groups are distributing free
copies of desktop productivity software with the
assistance of the Indian government. The software
package contains an open source version of e-
mail, word processing applications, and optical
character recognition that can be run on Linux
or Windows. By developing localized versions of
these products for several regions of the country,
this distribution would be easy, fast, and most im-
portantly, free. There are some proprietary issues
associated with the distribution of this software.
However, open source advocates believe that
this creates an “opportunity to proliferate free
software” (Bucken, 2005).

Benefi ts of Using OSS in India

Social and Political

Piracy

The Indian government looks to OSS to assist in
solving concerns such as software piracy and digi-
tal divide issues. The perception is that software
piracy is practiced in these countries primarily
due to high costs associated with commercial or
proprietary software. It is the Indian government’s
assessment that the increased use of OSS will
decrease piracy. It is believed that because OSS
is free it has no limitations and/or contractual
restrictions. This is not the case because OSS, like
commercial software, has solid copyright protec-
tions (i.e., Open Source Initiative, GNU GPL,
etc.). Piracy is the lack of respect for intellectual
property. Piracy practices with OSS are evident
in a different manner. Just like piracy is practiced
with commercial software by illegal copying and
distribution, combining open source code within
proprietary source code and distributing it as new
code is pirating. This practice is contrary and il-
legal to OSS and commercial software copyright
licenses. In this regards, OSS is not the solution

Table 2. Indian domestic enterprise ICT mar-
ket size and growth (excluding the offshore IT
outsourcing and business process outsourcing
markets) (Source: Iyengar, 2005)

$ In billions 2003 2004 2005

Total $16.73 $19.61 $22.88

By Segment:

Hardware 2.40 2.75 3.34

Software 0.40 0.44 0.52

Telecommunications 12.22 14.46 16.70

IT Services 1.71 1.96 2.32

 111

The Social and Economical Impact of OSS in Developing Countries

to combat piracy. The change in piracy practices
would be more benefi cial by education and en-
forcement of intellectual property laws. “Without
a fundamental appreciation of the importance
of intellectual property to a nation’s economic
growth, the mere promotion and adoption of open
source solutions may not, in and of itself, lower
piracy levels in a particular country, nor neces-
sarily create an environment that its conducive
to the growth of a domestic software industry”
(Business Software Alliance, 2005, p. 18).

Digital Divide

India employs OSS as a strategy to combat the
digital divide by providing access to informa-
tion technology. Many developing countries are
adopting policies to make low cost technology
available to low-income populations. OSS is seen
as way to limit costs and increase productivity to
the main populace. However, the digital divide
problem is multi-layered and cannot be solved
without looking at all variables involved. Open
source can be one approach to the solution of the
digital divide, but it cannot be the only approach
to this problem.

In most poor developing countries, there are
no infrastructures in place to support informa-
tion and communication technology. Substantial
portions of India’s population live in rural areas.
To address this problem, India’s government has
implemented Simputer (simple, inexpensive, mo-
bile computer) to carry out its initiatives to provide
low-cost information technology. The Simputer
project was introduced at an international con-
ference on information technology in Bangalore,
October, 1998 (Warschauer, 2004). Simputer
uses convergent and collaborative technologies,
which are adaptable to India’s rural infrastructure
and fi t the needs of the lower class. The cost of
the technology is still too high for the poor and
lower classes; however, the technology is created
so that several users can share it. India has used

OSS to create a citizen access project called the
Simputer personal digital assistant www.simputer.
org/simputer/faq (cited in Drakos, Di Maio, &
Simpson, 2003).

Education

Another important need for developing countries
to close the digital divide gap is to increase in-
formation literary skills. OSS has the fl exibility
to be adapted in educational projects and public
assistance projects.

OSS companies are assisting in providing
software and training to poor counties. As an
incentive to equip classrooms in Goa, a colony
on the west coast of India, Red Hat provided
software and training in GNU/Linux. The India
Linux User’s Group supports the project.

Financial

India has adopted OSS as an alternative to using
commercial software products. OSS allows India
to compete in the software industry, which has
been subjugated by proprietary software products.
The fl exibility of open source gives India the free-
dom to participate in the software development
market, as well as the services industry.

The fi nancial aspects in using proprietary or
OSS are of the utmost importance to the Indian
government. In regards to OSS use in developing
regions, such as India, the frequent premise is that
it is free. However, there are costs associated with
some types of OSS, such as Linux. Embedded in
these costs are the support and maintenance fees
of this type of open source software. The expec-
tation of these costs is still lower than the cost
of proprietary software. Countries in developing
regions (i.e., China, South Korea, and India) have
“publicly stated a preference for the lower costs
and higher security” that Linux provides (Wahl,
2004, p. 15). The common practices in India with
the use of proprietary software are “also free due

112

The Social and Economical Impact of OSS in Developing Countries

to piracy and the legitimacy of software [which]
becomes an issue only when the funding source
requires it” (Brewer, Demmer, Du, Ho, Kam,
Nedevschi, et. al, 2005, p. 36). Even though the
costs associated with licensing fees are only a
part of the total price, it seems like a signifi cant
factor in countries where labor and support costs
are lower.

Drawbacks of Using OSS in India

There are still economic and social inequalities
within India. While India’s information technol-
ogy growth has been benefi cial to some segments
of the country, it has had little economical and
social impact on the country’s overall poor and
lower class populations.

Outsourcing information technology, espe-
cially software development, to countries like
India has proven to be fi nancially benefi cial to
businesses and governments. However, outsourc-
ing software development can be a two-edged
sword. India has lax or non-existent laws and
policies regarding software piracy and privacy.
This can be potentially dangerous to entities that
deal with the processing of critical information.
Trying to enforce laws to rectify these problems
are still problematic.

Summary of OSS in India

The utilization of OSS will continue to be a promi-
nent factor in the growth of India’s economy and
society. India has invested in the OSS industry.
OSS gives India the ability to compete with and
benefi t from wealthy countries. OSS provides
India, as well as other developing counties, with
options in software use and development. It is the
authors’ positions that India’s government and
private businesses’ estimation of OSS is that the
benefi ts outweigh any associated negatives.

CONCLUSION

From a fi nancial point of view, the benefi ts of the
perceived cost savings and fl exibility associated
with the adoption of OSS are common to countries
discussed in this chapter. These benefi ts have been
the very reasons for governments in developing
countries to encourage the adoption of OSS. Some
developing countries have also used OSS as a kind
of negotiation tool to get better technology deals
in the global community. However, the possible
increase of costs associated with considerable
maintenance costs, lack of qualifi ed personnel
as well as the shortage of supporting applications
and devices, and language support have presented
problems for OSS adoption.

The adoption of the OSS in developing coun-
tries discussed in this chapter has also presented
some social and political benefi ts and drawbacks.
Because of the nature of these developing coun-
tries, they are facing a bigger technology gap
as compared to more technology-developed
countries. The OSS adoption has been regarded
as one of the possible ways for these countries to
train their own personnel and to build their own
IT industry.

Developing countries are using the adoption
of OSS to combat the proliferation of software
piracy. Although the adoption of OSS alone can-
not eliminate piracy, it certainly has contributed
to the decrease in the number of piracy cases in
these developing countries (e.g., China).

Overall, cost savings in OSS initialization,
personnel training, the promising future of de-
veloping a software industry, and fi ghting piracy
issues are impetus of OSS adoption in developing
countries. However, before successfully adopting
OSS, consideration should be taken on the issues
of training and obtaining qualifi ed personnel,
seeking more applications, device and language
support to break the barrier of adopting OSS.

 113

The Social and Economical Impact of OSS in Developing Countries

REFERENCES

2005 Information Industry Economic Report.
(2005). Retrieved December 10, 2005, from http://
www.mii.gov.cn/art/2005/12/18/art_942_1970.
html

Brewer, E., Demmer, M., Du, B., Ho, M., Kam,
M., Nedevschi, S., et al. (2005, June). The case for
technology in developing regions. IEEE Computer
Society, 25 -36.

Buckin, M. (2005, November 28). Paris Gov-
ernment plots next open-source move. Com-
puterworld. Retrieved from http://itreports.
computerworld.com/action/article.do?command=
viewArticleBasic&taxonomyName=&articled=1
06527&taxonomyId=015&intsrc-kc_li_story

Business Software Alliance. (2005). Open source
and commercial software: An in-depth analysis
of the issues. Washington, DC. Retrieved from
http://www.bsa.org/usa/report

CCIDNET.com. (2005). Retrieved September 14,
2005, from http://www.ccidnet.com

Dedrick, J., & Kraemer, K. (2001). China IT Re-
port: 2001. Center for Research on Information
Technology and Organizations. Globalization
of I.T. (Paper 252). Retrieved January 3, 2006,
from http://repositories.cdlib.org/crito/globaliza-
tion/252

Drakos, N., Di Maio, A., & Simpson, R. (2003,
April 24). Open-source software running for
public offi ce. (Gartner Research ID. No. AV-19-
5251).

Einhorn, B., & Greene, J. (2004, January 19). Asia
is falling in love with Linux; as more IT managers
and state agencies ditch Windows, Microsoft is
scrambling. Business Week, 3866, 42. Retrieved
September 14, 2005, from http://proquest.umi.
com/pqweb?index=O+did=526134651+srchmo
de=l+sid=l+fmt.3+vinst=prod+vtype=PQD+R

QT=309+VName=PQD+TS=1174921439+clien-
tID=41150

Galli, P. (2005, November 30). Sun gives away
Java Enterprise system, other software. eWeek.
Retrieved July 10, 2006, from http://www.eweek.
com/article2/0,1895,1894747,00.asp

Giera, J. (2004, April 12). The costs and risks of
open source: Debunking the myths. Forrester Re-
search Best Practices Excerpt. Retrieved January
3, 2006, from http://www.forrester.com/Research/
Document/Excerpt/0,7211,34146,00.html

GridToday. (2004, March 29). Beijing software
testing center joins OSDL. Daily News and In-
formation for the Global Grid Community, 3(13).
Retrieved January 3, 2006, from http://www.
gridtoday.com/04/0329/102947.html

Han, Z. (2006). Market war between Linux and
Windows. Retrieved June 20, 2006, from http://
www.bsw.net.cn/data/news/f8eWb64F0Lp/index.
htm (Chinese Version).

IDC. (2006, May 23). Study fi nds PC software
piracy declining in emerging markets while
worldwide piracy rate remains stable. IDC Press
Release. Retrieved June 3, 2006, from http://www.
idc.com/getdoc.jsp?containerId=prUS20178406

Iyengar, P. (2005, March 28). State of the informa-
tion and communication technology industry in
India. (Gartner Research ID. No. G00126192).

Kirkpatrick, D. (2005). IBM shares its secrets.
Fortune, 152(5), 128- 136.

Kim, S. G., Yea, H. Y., & Kim, J. (2003, August).
Survey on usage, and obstacles to introduction
of open source software. KIPA Report. Retrieved
from http://kipa.re.kr/eng%20site/publication/re-
port.asp

Kim, I. W., & Song, Y. (2003, December). A study
on the structure of TCO for the open source soft-
ware. Internal Report for KIPA. Retrieved from

114

The Social and Economical Impact of OSS in Developing Countries

http://kipa.re.kr/eng%20site/publication/report.
asp

KIPA. (2003). PDA market trend. Retrieved from
http://kipa.re.kr/eng%20site/publication/report.
asp

Kshetri, N. (2004, Winter). Economics of Linux
adoption in developing countries. IEEE Software,
74 -80.

Lemon, S., & Nystedt, D. (2005, July 18). Global
Linux: Asia. Computerworld. Retrieved Septem-
ber 22, 2005, from http://www.computerworld.
com/printthis/2005/0,4814,103185,00.html

Marson, I. (2006). The business of Linux in
China. ZDNet UK. Retrieved May 10, 2006,
from http://www.zdnetasia.com/insight/soft-
ware/0,39044822,39351644,00.htm

Partner Portal. (n.d.). Retrieved January 30, 2006,
partner.microsoft.co.kr/Partner_Portal/newsclip-
ping/Uploaded_Files/050120.htm

Preimesberger, C. (2005, September 23). Will
profi t motives fragment open-source community?
eWeek.

Prothero, E., Farish, R., & Yang, D. (2005). ICT
market outlook in four emerging markets: Bra-
zil, Russia, India, and China (IDC #LA3617).
Retrieved January 3, 2006, from http://www.idc.
com/getdoc.jsp?containerID=LA3617

Sina news report. (2003). Retrieved from http://
tech.sina.com.cn/s/n/2003-02-28/1420168775.
shtml

Trombly, M. (2005). Chinese companies pick
Linux to boost their own skills. CIO Central.
Retrieved December 10, 2005, from http://www.
cioinsight.com/print_article2/0,1217,a=161108,00.
asp

Wahl, A. (2004). The Linux gambit. Canadian
Business, 77(7), 15.

Warschauer, M. (2004). Technology and social
inclusion: Rethinking the digital divide. Cam-
bridge, MA: TMIT Press.

ZDNet News. (2003, October 1, 8:05am PT). Ko-
rea launches a switch to open source. Retrieved
September 15, 2005, from http://news.zdnet.
com/2100-3513_22-5084811.html

KEY TERMS

 CCIDNET: An online service provider,
China’s IT portal.

 Convergent Technologies: The combination
of several industries, (i.e., communications, en-
tertainment, and mass media) to exchange data
in a computerized format.

 Collaborative Technologies: Combination
of hardware and communications technologies
that allow linkage among thousands of people
and businesses to form or dissolve anytime,
anywhere.

GDP: Gross domestic product.

 GNU: Free licensing software initiative (i.e.,
operating systems software, OSS, etc.).

ICT: Information and communication tech-
nology.

IDC: International Data Corporation.

 Linupy: Linux-based OSS.

 115

Section II
Development Models and
Methods for Open Source

Software Production

116

Chapter X
Dependencies, Networks,

and Priorities in an
Open Source Project

Juha Järvensivu
Tampere University of Technology, Finland

Nina Helander
Tampere University of Technology, Finland

Tommi Mikkonen
Tampere University of Technology, Finland

ABSTRACT

Dependencies between modern software projects are common. Jointly, such dependencies form a project
network, where changes in one project cause changes to the others belonging to the same project network.
This chapter discusses the issues of dependencies, distances, and priorities in open source project networks,
from the standpoint of both technological and social networks. Thus, a multidisciplinary approach to the phe-
nomenon of open source software (OSS) development is offered. There is a strong empirical focus maintained,
since the aim of the chapter is to analyze OSS network characteristics through an in-depth, qualitative case
study of one specifi c open source community: the Open Source Eclipse plug-in project Laika. In our analysis,
we will introduce both internal and external networks associated with Laika, together with a discussion of
how tightly they are intertwined. We will analyze both the internal and the external networks through the
elements of mutuality, interdependence, distance, priorities, different power relations, and investments made
in the relationships—elements chosen on the basis of analysis of the network studies literature.

INTRODUCTION

Dependencies between modern software projects
are commonplace. Jointly, such dependencies form

a network, where changes in one project, or part
thereof, cause changes in others. In using formal
contracts applicable in the traditional industrial
setting, these dependencies are defi ned by legali-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 117

Dependencies, Networks, and Priorities in an Open Source Project

ties and customer/subcontractor relations, which
can be easily managed. However, in an open
source project, dependencies are based not on
some explicitly defi ned formalization but instead
on how the different developer communities view
and use each other and themselves. Furthermore,
the issue of project priorities requires similar
consideration.

In this chapter, we discuss dependencies,
networks, and priorities in OSS development.
As an example community we use Laika, an
 Open Source Eclipse plugin project that eases
code creation for the Maemo platform. We
discuss both external networks, consisting of
communities that relate to (or are related to by)
Laika, and internal networks that include the
developers of the system. The contribution of
the chapter and its underlying research ques-
tion lie in establishing a connection between
established network theory and practices in OSS
development, on the one hand, and in discussing
the organization, evolution, and values leading
to the priority selection established in the Laika
community, on the other. More precisely, we
address the rationale of establishing a mode of
cooperation between different developer com-
munities as well as internal networking within
a single community where several organizations
are involved. This supplies a context in which
to study the approach taken to work allocation,
which will also be addressed. This chapter is
inspired by the background in which two of the
authors were directly associated with Laika,
with the other having the role of an external
observer.

The rest of the chapter is structured as fol-
lows. Next we introduce a related theory of
networks that we use as a guide in analyzing the
 properties of Laika. We then discuss Laika and
its internal and external networks, and provide
a discussion of the goals of the chapter. Finally,
we discusses future avenues of research, and
offer fi nal remarks.

BACKGROUND

Network Approach as
Theoretical Framework

Networks are a contemporary topic that has been
studied from several different perspectives and
under various scientifi c disciplines. The term “net-
work” can refer to, for example, an information
network in the form of interconnection of layers of
computer systems (Macdonald & Williams, 1992;
Meleis, 1996); a social network in the form of a
social structure among actors, mostly individu-
als or organizations (Baker, 1994; Barnes, 1972;
Hill & Dunbar, 2002; Scott, 2000; Wasserman &
Faust, 1994); or a business network in the form
of a set of exchange relationships between orga-
nizations (Achrol & Kotler, 1999; Easton, 1992;
Håkansson & Snehota, 1995; Möller & Halinen,
1999; Möller, Rajala, & Svahn, 2002). In this
chapter, we use the term network theory to refer
to the so-called network approach introduced by a
group of scholars basing their work on theories of
social exchange coupled with more economically
oriented industrial insights (Möller & Wilson,
1995). The network approach discussed in this
chapter aims at providing conceptual tools for
analyzing both structural and process character-
istics of networks formed among different open
source projects and within a single specifi c open
source project, Laika.

Early developers of the network approach,
Håkansson and Snehota (1989) point out that the
network approach takes into consideration the
relationships among various actors. All of the
actors, their activities, and their resources are
bonded, linked, and tied up together, and in this
way they build up a wide network. A basic as-
sumption with the network approach involves the
relationship as a fundamental unit, from which
proceeds understanding of the network as a sort
of cluster of relationships.

118

Dependencies, Networks, and Priorities in an Open Source Project

Easton (1992) illustrates the basic elements of
the network approach from four different angles:
networks as relationships, positions, structures,
and processes. These basic elements are useful
tools for analysis of network dependencies. Here,
these elements are considered in the context of
open source projects.

Relationships are characterized by four basic
elements: mutuality, interdependence, power rela-
tions, and investments made in the relationship
(Easton, 1992). Mutuality, interdependence, and
power relations may vary a great deal from one
open source project to the next. Dependencies
between two projects can be two-way, leading
toward mutuality and usually more balanced
power relations between the projects. However,
one-way dependencies are also commonplace (i.e.,
an open source project is dependent on another
open source project but not vice versa). This usu-
ally leads to unbalanced power relations between
the two projects since only one of the parties of
the dyad is dependent on the other. Additionally,
such asymmetrical power can be present even
within a single open source project. In fact, it is
more common for there to be, at the heart of the
project, a few central developers with more power
in the community than the peripheral developers
have. These powerful actors can then infl uence
the future direction of the system developed, work
allocation, and equally important decisions made
within the project.

Another important issue in considering net-
works as relationships is the nature of the effects
of the relationships on the functionality of the
whole network; the effects of a relationship can
be both positive and negative. Additionally, both
primary and secondary functions can be found
in relationships. Primary functions refer to the
relationship’s effects on the members of the dyad,
whereas secondary functions refer to the effects
that the relationship has on other actors in the
network (Anderson, Håkansson, & Johanson,
1994). The latter can be seen in the open source
environment in the form of, for example, confl ict

between two central actors in a project creating
diffi culties for the functionality of the whole
community.

Networks as structures are concretized through
the interdependencies of the actors. If there are
no interdependencies between actors, neither will
there be any network structure. The greater the
interdependence of the actors, the clearer the struc-
ture of the network. Thus, there can be tight and
loose networks. Tight networks are characterized
by a great number of bonds between the actors,
along with well-defi ned roles and functions for
actors. Loose networks, on the other hand, mani-
fest the opposite characteristics (Easton, 1992).
Also, the structures of projects within the open
source environment can vary rather a lot in their
level of tightness or looseness, as is discussed by
Eric Raymond (1999).

Analysis of networks as positions mainly
involves examination of the network from the
viewpoint of a single actor. Within one open source
project, the position analysis is performed mainly
at the level of individuals. But when we leverage
the analysis from one project to several, the level
of analysis changes to that of entire communi-
ties; that is, we analyze the positions of different
open source projects against the background of
each other. The level used in network analysis
is an interesting issue that has been discussed a
great deal by network researchers in general, also
outside the open source context (see Tikkanen,
1998; Möller et al., 2002). In our study, we dif-
ferentiate between two levels of network analysis,
examination within the context of a single open
source project and consideration involving several
open source projects.

Consideration of networks as processes mirrors
the nature of the networks themselves: Networks
are stable but not static. Due to the interrelation-
ships among actors in the network, evolutionary
changes are more characteristic of networks than
radical changes are (Easton, 1992). Thus, from
a network perspective, all changes take place
gradually.

 119

Dependencies, Networks, and Priorities in an Open Source Project

This also means that stability and development
are intimately linked to each other in the network;
in certain areas, development is based on stabil-
ity, while in others stability rests on development
(Håkansson & Johanson, 1992). In addition to the
other network analysis tools we have discussed,
the issue of stable and radical change is going
to be addressed in the empirical analysis of the
Laika project and its network.

MAIN FOCUS OF THE CHAPTER

Laika: Eclipse Plugin Project

Laika is an open source development project aimed
at the creation of an integrated development envi-
ronment for developing applications for embedded
Linux devices that run on the Maemo platform
(Laika, 2006). The main idea of the project is to
integrate the work of several open source projects
in a single software tool. The communities related
to Laika and their roles are listed in.

Maemo, which acts as a software platform
for the Nokia 770 Internet Tablet, is composed of
popular OSS components that are widely deployed
in today’s leading desktop Linux distributions
(Maemo, 2006). It consists of a precompiled
Linux kernel, platform libraries, and Hildon user

interface framework. The Hildon UI framework is
based on GTK+, and the whole platform is binary
compatible with GTK+ binaries (GTK, 2005).
In the Maemo environment, applications can be
compiled by using cross-compilation techniques.
The basic idea of cross-compilation is to use some
processor (“host”) to compile software for some
other processor (“target”) that uses a different
architecture. Maemo applications can be compiled
using Scratchbox, a cross-compilation toolkit
designed to make embedded Linux application
development easier (Scratchbox, 2005).

The Eclipse platform was chosen for the base
platform of Laika because of its fl exible plugin
architecture, even if other alternatives like Anjuta
(2005) were available. The Eclipse platform is a
vendor-neutral open development platform that
provides tools for managing workspaces and
building, debugging, and launching applications
for building integrated development environ-
ments (IDEs) (Eclipse, 2005). In general terms,
the Eclipse platform is a framework and toolkit
that provides a foundation for running third-
party development tools. Eclipse supports plugin
architecture, which means that all development
tools are implemented as pluggable components.
The basic mechanism of extensibility in Eclipse
is adding new plugins, which can add new pro-
cessing elements to existing plugins. The Laika

Table 1. Communities related to Laika

Community Role Description

CDT The Laika IDE uses CDT source code in its
implementation

C/C++ development environment for the
Eclipse platform

Eclipse Laika is implemented as an Eclipse plug-in Vendor-neutral open development platform

Gazpacho Laika supports Gazpacho for visual design of
user interfaces

Graphical user interface builder for the
GTK+ toolkit

Maemo Maemo provides the application framework
and platform libraries used in the Laika IDE

Development platform to create applications
for the Nokia 770

PyDev Laika Python integration is based on the
PyDev project

Python development environment for the
Eclipse platform

Scratchbox Laika is utilizing Scratchbox to cross-compile
software for embedded Linux devices

A cross-compilation toolkit used by the
Maemo platform

120

Dependencies, Networks, and Priorities in an Open Source Project

plugin is based on the C/C++ development tools
(CDT) plugin, which is a subproject of the Eclipse
community (CDT, 2005).

 External Network

As already discussed, the Laika project is depen-
dent on many other open source communities
and projects. Together, Laika, Maemo, Scratch-
box, Eclipse, and CDT form a network in which
changes in one project create changes in others.
For example, the CDT project is dependent on
the changes in the Eclipse IDE, and Maemo
and Scratchbox are closely related in that sense.
Changes in the projects are especially important
from Laika’s point of view. Laika acts as a glue
between Eclipse, Scratchbox, and Maemo and
thus is even more sensitive to the changes in each.
Moreover, with Laika acting as the glue, it would
not seem practical to expect changes in Laika to
lead to rapid changes in other tools that can also
be used independently; this implies a one-way
dependency. Figure 1 illustrates the network
formed by communities related to Laika.

Laika, Maemo, and Scratchbox form the core
of the external network. However, communica-
tion between actors that involves admitting that
communities are dependent on each other has pro-
ceeded without any formal agreements. The basic
principle for this cooperation is voluntary partici-
pation, and communication has been handled via

mailing lists, interactive relay chat (IRC) channels,
discussion boards, and e-mail, for the most part.
This type of collaboration is suitable only if actors
see that the partners’ actions yield some benefi t
for them, too. If a partner’s achievements are
deemed useless, it is not worth participating in the
partnership. In this case, all core actors have the
same goal: making embedded Linux application
development faster and easier.

Close cooperation may also cause changes
in priorities. At the same time, projects utilize
more and more of each other’s features, and con-
nections between actors are becoming more and
more complex. Therefore, an actor’s own project
is not always the project with the highest priority.
Sometimes it is more important to give support to
another, related project than to continue to develop
one’s own project. One such example was seen
when Maemo released a new version of its software
development kit (SDK). The Laika project was
interrupted for a couple of weeks while the whole
team tested the new SDK. At the same time, the
team was able to get familiar with the new version
of Maemo and thus was able to quickly prepare
a new version of Laika that supported this latest
version of Maemo. In addition, the Maemo team
offered help when testing a new version of Laika
a few weeks after the new Maemo was released.
As a result, both Laika and Maemo were released
sooner than could have been possible with the
traditional approach.

Although several actors helped the Laika
project in many ways, there is no such thing as a
free lunch. A great deal of extra work has been
invested to ensure compatibility among applica-
tions. This matter is particularly challenging in
the case of open source projects. Typically, new
versions are released more often and without
an exact release time available in advance. For
example, Eclipse issued fi ve release versions
between June, 2004 and December, 2005. If we
assume that all actors release a new version, on
average, two times per year, as an effect of that
a new version of Laika has to be released almost

Figure 1. External network originally formed by
communities

SCRATCHBOX

MAEMO

Core network

CDT

ECLIPSE

LAIKA

 121

Dependencies, Networks, and Priorities in an Open Source Project

every month. Given that the number of actors
is very likely to increase in the near future, this
could cause unexpected problems.

 Internal Network

The Laika community was established in April,
2005 by the Tampere University of Technology
and a participating company sharing the same
goals. In the beginning, the community was
composed of three developers and coordinated
by the university. Two developers were working
for the university, and one was sponsored by the
company. All of the developers were working on
university premises. After some advertisement,
other companies expressed an interest in taking
part in the project. Companies were willing to
add some new features to Laika and thus make
it more appropriate for their use.

The fi rst release of Laika was published in
August, 2005. This fi rst version offered very basic
features needed in every project, such as building
and debugging applications. At the same time,
one company, with a focus on OSS development,
tested the beta version of Laika and announced that
it wished to take part in the development of the
plugin. It was willing to add localization support
and a Gazpacho tool (for graphical user interface
design) integration to Laika. From Laika’s point
of view, the new partner was welcome; conse-
quently, the roadmap for the second release was
rewritten. The deadline for the second phase was
agreed on at the end of the year. In addition to the
new resources for Laika’s development, the new
partner brought some new knowledge of embed-
ded Linux application development.

The network comprising the original Laika
team and the new partner can be considered a tight
network, where both actors are strongly dependent
on each other but on the other hand do their job
in a very independent way. In other words, every
time new code is written or existing source code
modifi ed, there is a risk of losing compatibility
with features created by other actors. However,

the development work of an actor is not depen-
dent on what features other actors have already
implemented. The most important problem in this
situation for Laika lay in deciding how to keep
the compatibility level and the quality of program
code as high as possible. To ensure compatibility,
it was decided to do integration once a week. In
practice, all code was merged every Friday, which
ensured that all possible incompatibilities were
found quickly.

Until the point described above, all cooperation
had been carried out without any legal agree-
ments, and no money moved between the parties.
However, when the second phase of Laika was to
be fi nished, another company contacted the com-
munity and offered money for implementation of
new features such as Python scripting language
support for the plugin. The third version of Laika
contains features paid for by a sponsor but also
some other “nice to have” features and fi xes to
bugs reported by users. For the development team,
accepting the monetary reward resulted in an ap-
proach wherein the paid features were committed
to fi rst and therefore their priority was increased
over that of voluntary ones developed by the same
team. At the time of writing, the second version
of Laika is soon to be published, and the project
team is researching how to add Python support to
the plugin. Also, some course material on Laika
will be produced in the near future.

Changes in the internal network and new
requirements have caused some extensions to
the structure of the external network, too. For ex-
ample, Python support is based on an open source
plugin called PyDev. New dependencies extend
the external network, and the whole network is
going to be more complicated than before. Figure
2 illustrates the network formed for Laika-related
communities’ future. However, the core of Laika
remains unchanged, and it would probably survive
even if the new extensions were outdated, since
they play an ancillary role only.

122

Dependencies, Networks, and Priorities in an Open Source Project

DISCUSSION

We have introduced general network theory as
an analytical framework for explaining how
open source communities work and organize
themselves. As a practical example we used
the community developing Laika, an integrated
development environment for Maemo, a Linux
platform for mobile devices used in, for example,
the Nokia 770 Internet Tablet.

The lessons learned from the experimenta-
tion of the community are many. To begin with,
it seems obvious that network theory is a key to
understanding how communities work. In fact,
sometimes communities can share responsibili-
ties and create tightly coupled entities that aim
at development toward a common goal. In our
example, the development of an open source
mobile device platform benefi ts from the work of
all software developers involved. We can consider
this kind of establishment a supercommunity, or
a community of communities that share sched-
ules, goals, and interests. From this perspective,
Laika can be seen as a member of the Maemo
supercommunity. In network theory terms, it
seems in the case of Laika that networks of single
communities will broaden into macro networks
that have some rather loose network structures
but also some very tight ones.

Another interesting discovery is that it is the
communities that set their priorities themselves to
best benefi t the network to which they belong. In
the case of the Maemo supercommunity, various
communities have sometimes adopted supporting
roles to benefi t some key community. In exchange,
these communities have then received mutual
assistance in some other phase of development.
This mutuality element has been part of the foci
of the network theory literature, and, through the
research on OSS communities and networks, we
can add new insights to the theoretical debate on
networks. In Table 2, a summary of the applica-
tion of network theory to the Laika context in the
form of network elements is presented.

FUTURE TRENDS

We believe there is much work that we can carry
out in the fi eld described in this chapter. We have
provided an outline for future activities concerning
Laika, the community maintaining it, and research
into the progress of Laika’s development.

Concerning Laika, our best prediction is that
it will become more and more entangled in the
network of Maemo development. Furthermore,
while one could assume that actions should be

Figure 2. Future network formed by communities

SCRATCHBOX

MAEMO

Paid by a sponsor

LAIKA

CDT

ECLIPSE

PYTHONPLUGIN

GLAD /
GAZPACHO

Developed by a
partner company

LAIKA

 123

Dependencies, Networks, and Priorities in an Open Source Project

taken to extend the scope of the community to
other mobile and embedded Linux environments,
we believe that Laika is directly associated with
Maemo and that no support is being considered
for alternative environments, even if they could
benefi t from Scratchbox development support.
Therefore, assuming that more and more Maemo-
based devices are placed on the market, we expect
other developers to join Laika, either directly or
via plugin technologies that can be integrated
into Laika. In a fi nancially oriented environment,
such a commitment to a single seminal platform
could be considered strategically unwise, which
clearly separates community-oriented develop-
ment from traditional frameworks. At the same
time, however, it is conceivable for some develop-
ment platform other than Eclipse to be supported
as well, since this would not alter the mission of
the community.

In terms of network theory, we plan to con-
tinue monitoring the evolution of the Laika com-
munity, as well as the actors participating in the
development work. We also wish to study, in the
long term, how companies can participate in the
development, as well as to observe how funding
issues affect the community, potentially leading
to the establishment of a company that can take
responsibility for some aspects of the community’s

work, such as helping developers who use the
tool. Then, it would be interesting to observe
whether the introduction of fi nancial responsibili-
ties changes the manner in which development is
organized and how priorities are chosen.

Another direction for further research arises
from the network theory perspective. To begin
with, we wish to study networks of other com-
munities as well. This will give us a better un-
derstanding of how communities are born and
evolve, which in turn enables the creation of
long-lived open source communities fostering
growth at other levels. Furthermore, the relation-
ship of communities and companies building on
the community contributions is considered an
important subject for future study.

CONCLUSION

In this chapter, we have addressed networking as-
sociated with OSS development practices. We feel
that network theory fi ts well as the foundation in
explaining the way open source projects function
and cooperate. This theory can be applied both at
the level of communities and at that of individual
contributors. As a practical example we considered
Laika, a small community with a well-defi ned

Table 2. Network elements in Laika

Network Element Laika-External Network Laika-Internal Network

Relationship mutuality
and interdependence

Mutual relationship and high interdependency
between Maemo and Laika; one-way depen-
dency between Laika and the other projects (e.g.,
Eclipse)

Mutually oriented, close relationships; highly
interdependent

Relationship investments
Shared goals as drivers of fruitful cooperation—
for example, sometimes priority has been given to
the work of another project instead of one’s own

Mostly non-monetary (voluntary SW devel-
opment), though some actors have made mon-
etary investments; no legal commitments

Network position and
power relations

Laika: critical position as glue between other
projects but has no power in the other projects Equal actors

Network structure Mostly loose networks Tight network consisting of individuals and
organizations

Network processes Evolution—radical when the supercommunity
experiences major changes, static otherwise Constant change and rapid evolution

124

Dependencies, Networks, and Priorities in an Open Source Project

mission of supporting some more major com-
munities and associated software development.
The chapter explained how the different networks
involved with Laika have evolved and how various
external stimuli have affected the community. We
have considered the internal and external net-
works of Laika in terms of relationship mutuality
and interdependency, relationship investments,
network position and power relations, network
structures, and network processes—which are
the main elements of network theory.

Toward the end of the chapter, we also outlined
some directions for future research that we hope
to perform to improve understanding of how open
source communities work. In our future work,
we wish to further develop understanding of the
managerial implications of open source involve-
ment on the basis of the lessons learned from the
Laika case as well as to pay special attention to
what kind of theoretical contribution the open
source phenomenon can bring to the industrial
network literature.

REFERENCES

Achrol, R. S., & Kotler, P. (1999). Marketing in
the network economy. Journal of Marketing, 63
(Special Issue), 146-163.

Anderson, J. C., Håkansson, H., & Johanson, J.
(1994). Dyadic business relationships within a
business network context. Journal of Marketing,
58(4), 1-15.

Anjuta. (2005). Anjuta DevStudio. Retrieved June
15, 2006, from http://anjuta.sourceforge.net/

Baker, W. (1994). Networking smart: How to build
relationships for personal and organizational
success. New York: McGraw Hill.

Barnes, J. (1972). Social networks In Addison-
Wesley Module in Anthropology (Vol. 26, pp.
1-29). Boston: Addison-Wesley.

CDT. (2005). C/C++ development tool. Retrieved
February 6, 2006, from http://www.eclipse.
org/cdt/

Easton, G. (1992). Industrial networks: A review.
In B. Axelsson & G. Easton (Eds.), Industrial
networks: A new view of reality (pp. 3-34). Lon-
don: Routledge.

Eclipse. (2005). Eclipse. Retrieved February 6,
2006, from http://www.eclipse.org/

GTK. (2005). GTK+ toolkit. Retrieved June 31,
2006, from http://www.gtk.org/

Hill, R., & Dunbar, R. (2002). Social network size
in humans. Human Nature, 14(1), 53-72.

Håkansson, H., & Johanson, J. (1992). A model of
industrial networks. In B. Axelsson & G. Easton
(Eds.), Industrial networks: A new view of reality
(pp. 28-34). London: Routledge.

Håkansson, H., & Snehota, I. (1989). No business
is an island: The network concept of business
strategy. Scandinavian Journal of Management,
4(3), 187-200.

Håkansson, H., & Snehota, I. (1995). Develop-
ing relationships in business networks. London:
Routledge.

Laika. (2006). Laika—Scratchbox Eclipse-plugin
project. Retrieved February 6, 2006, from http://
www.cs.tut.fi /~laika/

Macdonald, S., & Williams, C. (1992). The infor-
mal information network in an age of advanced
telecommunications. Human Systems Manage-
ment, 11(2), 77-87.

Maemo. (2006). Maemo.org. Retrieved February
6, 2006, from http://www.maemo.org/

Meleis, H. (1996). Toward the information net-
work. Computer, 29(10), 59-67.

Möller, K., & Halinen, A. (1999). Business rela-
tionships and networks: Managerial challenge of

 125

Dependencies, Networks, and Priorities in an Open Source Project

network era. Industrial Marketing Management,
28, 413-427.

Möller, K., Rajala, A., & Svahn, S. (2002).
Strategic business nets—Their types and man-
agement. Journal of Business Research, 58(9),
1274 -1284.

Möller, K., & Wilson, D. T. (Eds.). (1995). Business
marketing: An interaction and network perspec-
tive. Kluwer Academic Publishers.

Raymond, E. (1999). The bazaar and the cathe-
dral. Sebastopol, CA: O’Reilly.

Scott, J. (2000). Social network analysis: A hand-
book (2nd ed.). Newberry Park, CA: Sage.

Scratchbox. (2005). Scratchbox—Cross-compila-
tion toolkit project. Retrieved February 6, 2006,
from http://www.scratchbox.org/

Tikkanen, H. (1998). The network approach in
analyzing international marketing and purchasing
operations: A case study of a European SME’s fo-
cal net 1992–95. Journal of Business & Industrial
Marketing, 13(2), 109-131.

Wasserman, S., & Faust, K. (1994). Social network
analysis: Methods and applications. Cambridge,
UK: Cambridge University Press.

KEY TERMS

 External Observer: Member of the research
team; this member generally does not participate in
the process being studied, but rather assumes the
role of an “objective” outsider who is unfamiliar
with the nuances of a given process.

 Framework: A perspective or context for
viewing, observing, and understanding a par-
ticular situation or set of events.

 Network Studies: Academic review of how
connected communities of individuals work to-
gether to achieve certain objectives.

 Open Source Community: Group of indi-
viduals who (often voluntarily) work together to
develop, test, or modify open source software
products.

 Open Source Project: Undertaking generally
involving the development of a piece of open
source software.

 Properties: Attribute or characteristics of a
software package; such attributes often relate to
performing a particular function and the degree of
success users experience when using that software
to perform that function.

 System: Software or network of software
packages used to perform a variety of tasks.

126

Chapter XI
Patchwork Prototyping with

Open Source Software
M. Cameron Jones

University of Illinois at Urbana-Champaign, USA

Ingbert R. Floyd
University of Illinois at Urbana-Champaign, USA

Michael B. Twidale
University of Illinois at Urbana-Champaign, USA

INTRODUCTION

The potential for innovation with open source
software (OSS) is unlimited. Like any entity
in the world, OSS will inevitably be affected
by its context in the world. As it migrates from
one context to another, it will be appropriated
by different users in different ways, possibly in
ways in which the original stakeholders never
expected. Thus, innovation is not only present

ABSTRACT

This chapter explores the concept of patchwork prototyping: the combining of open source software
applications to rapidly create a rudimentary but fully functional prototype that can be used and hence
evaluated in real-life situations. The use of a working prototype enables the capture of more realistic
and informed requirements than traditional methods that rely on users trying to imagine how they might
use the envisaged system in their work, and even more problematic, how that system in use may change
how they work. Experiences with the use of the method in the development of two different collaborative
applications are described. Patchwork prototyping is compared and contrasted with other prototyping
methods including paper prototyping and the use of commercial off-the-shelf software.

during design and development, but also during
use (Thomke & von Hippel, 2002). In this chapter,
we explore an emerging innovation through use:
a rapid prototyping-based approach to require-
ments gathering using OSS. We call this approach
 patchwork prototyping because it involves patch-
ing together open source applications as a means
of creating high-fi delity prototypes. Patchwork
prototyping combines the speed and low cost
of paper prototypes, the breadth of horizontal

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 127

Patchwork Prototyping with Open Source Software

prototypes, and the depth and high functional-
ity of vertical, high-fi delity prototypes. Such a
prototype is necessarily crude as it is composed
of stand-alone applications stitched together with
visible seams. However, it is still extremely use-
ful in eliciting requirements in ill-defi ned design
contexts because of the robust and feature-rich
nature of the component OSS applications.

One such design context is the development
of systems for collaborative interaction, like
“ cybercollaboratories.” The authors have been
involved in several such research projects, de-
veloping cyberinfrastructure to support various
communities, including communities of learners,
educators, humanists, scientists, and engineers.
Designing and developing such systems, however,
is a signifi cant challenge; as Finholt (2002) noted,
collaboratory development must overcome the
“enormous diffi culties of supporting complex
group work in virtual settings” (p. 93). Despite
many past attempts to build collaborative envi-
ronments for scientists (see Finholt for a list of
collaboratory projects), little seems to have been
learned about their effective design, and such en-
vironments are notorious for their failure (Grudin,
1988; Star & Ruhleder, 1996). Thus, the focus of
this chapter is on a method of effective design
through a form of rapid, iterative prototyping
and evaluation.

Patchwork prototyping was developed from
our experiences working on cybercollaboratory
projects. It is an emergent practice we found being
independently redeveloped in several projects;
thus, we see it as an effective ad hoc behavior
worthy of study, documentation, and formaliza-
tion. Patchwork prototyping is fundamentally a
user-driven process. In all of the cases where we
saw it emerge, the projects were driven by user
groups and communities eager to harness com-
putational power to enhance their current activi-
ties or enable future activities. Additionally, the
developers of the prototypes had no pretence of
knowing what the users might need a priori. As

a result, patchwork prototyping’s success hinges
on three critical components:

1. Rapid iteration of high-fi delity prototypes
2. Incorporation of the prototypes by the end

users into their daily work activities
3. Extensive collection of feedback facilitated

by an insider to the user community

In this chapter, we focus on how the method
worked from the developers’ point of view. It is
from this perspective that the advantages of us-
ing OSS are most striking. However, one should
bear in mind that the method is not just a software
development method, but also a sociotechnical
systems (Trist, 1981) development method: The
social structures, workfl ows, and culture of the
groups will be coevolving in concert with the
software prototype.

REQUIREMENTS GATHERING
IN COLLABORATIVE SOFTWARE
DESIGN

Software engineering methods attempt to make
software development resemble other engineer-
ing and manufacturing processes by making the
process more predictable and consistent. However,
software cannot always be engineered, especially
Web-based applications (Pressman et al., 1998).
Even when application development follows the
practices of software engineering, it is possible
to produce applications that fail to be used or
adopted (Grudin, 1988; Star & Ruhleder, 1996).
A major source of these problems is undetected
failure in the initial step in building the system:
the requirements-gathering phase. This is the
most diffi cult and important process in the entire
engineering life cycle (Brooks, 1995).

In designing systems to support collaborative
interaction, developers are faced with several com-
plex challenges. First, the community of users for

128

Patchwork Prototyping with Open Source Software

which the cyberinfrastructure is being developed
may not yet exist and cannot be observed for one
to see how the users interact. In fact, there is often
a technological deterministic expectation that
the computational infrastructure being created
will cause a community to come into existence.
Even in the case where there is a community to
study, many of the activities expected to occur as
part of the collaboration are not currently being
practiced because the tools to support the activi-
ties do not yet exist. As a result, developers gain
little understanding about how the users will be
interacting with each other or what they will be
accomplishing, aside from some general expecta-
tions that are often unrealistic.

Gathering requirements in such an environment
is a highly equivocal task. While uncertainty is
characterized by a lack of information, which can
be remedied by researching an answer, collecting
data, or asking an expert, equivocal tasks are
those in which “an information stimulus may have
several interpretations. New data may be confus-
ing, and may even increase uncertainty” (Daft &
Lengel, 1986, p. 554). Requirements gathering is
one such situation in which the developers cannot
articulate what information is missing, let alone
how to set about obtaining it. The only resolution in
equivocal situations is for the developers to “enact
a solution. [Developers] reduce equivocality by de-
fi ning or creating an answer rather than by learning
the answer from the collection of additional data”
(Daft & Lengel, p. 554). As Daft and Macintosh
(1981) demonstrate, tasks with high equivocality
are unanalyzable (or rather, have low analyzability;
Lim & Benbasat, 2000), which means that people
involved in the task have diffi culty determining
such things as alternative courses of action, costs,
benefi ts, and outcomes.

 RAPID PROTOTYPING

Rapid prototyping is a method for requirements
gathering that has been designed both to improve

communication between developers and users,
and to help developers fi gure out the usefulness or
consequences of particular designs before having
built the entire system. The goal of rapid proto-
typing is to create a series of iterative mock-ups
to explore the design space, facilitate creativity,
and get feedback regarding the value of design
ideas before spending signifi cant time and money
implementing a fully functional system (Nielsen,
1993). There are several dimensions to prototypes.
One dimension is the range from low-fi delity to
high-fi delity prototypes (see Table 1; Rudd, Stern,
& Isensee, 1996). Low-fi delity prototypes have the
advantages of being fast and cheap to develop and
iterate. However, they are only able to garner a
narrow range of insights. Perhaps the most popular
 low-fi delity prototyping technique is paper proto-
typing (Rettig, 1994). Paper prototypes are very
fast and very cheap to produce. They can also
generate a lot of information about how a system
should be designed, what features would be help-
ful, and how those features should be presented
to the users. However, paper prototypes do not
allow developers to observe any real-world uses
of the system, or understand complex interactions
between various components and between the user
and the system. Also, they do not help develop-
ers understand the details of the code needed to
realize the system being prototyped.

High-fi delity prototypes, on the other hand,
can simulate real functionality. They are usu-
ally computer programs themselves that are
developed in rapid development environments
(Visual Basic, Smalltalk, etc.) or with prototyp-
ing tool kits (CASE, I-CASE, etc). In either case,
these prototypes, while allowing programmers
to observe more complex interactions with users
and to gain understanding about the underlying
implementation of the system, are comparatively
slow and expensive to produce and iterate (Rudd
et al., 1996). These costs can be offset somewhat
by incorporating these prototypes into the devel-
opment of the fi nal system itself as advocated by
RAD (rapid application development; Martin,

 129

Patchwork Prototyping with Open Source Software

1991). However, critics of RAD methods are
quick to point out the limited scalability of soft-
ware built using source code from prototypes
(Beynon-Davies, Carne, Mackay, & Tudhope,
1999). Typically low-fi delity and high-fi delity
prototypes are used in succession, with developers
increasing the fi delity of the prototypes as they
develop the specifi cations. Due to their high cost,
high-fi delity prototypes may only be built for a
select number of designs generated by low-fi del-
ity prototyping, which precludes the generation
of a series of disposable high-fi delity proofs of
concepts to test out alternative design ideas.

Another dimension to be considered in the
prototyping discussion is scope. Software can
be viewed as consisting of a number of layers,
from the user interface to the base layer, which
interacts with the underlying operating system
or platform. Horizontal prototypes encompass a
wide scope, spanning the breadth of a system but
only within a particular layer (usually the user
interface). Users can get a sense of the range of
the system’s available functions; however, the
functionality is extremely limited. This can help
both the user and the programmer understand
the breadth of the system without plumbing its

depths. Vertical prototypes, on the other hand,
take a narrow slice of the system’s functionality
and explore it in depth through all layers. This
allows users to interact with a particular piece of
the system, and gives the programmer a detailed
understanding of the subtle issues involved in its
implementation (Floyd, 1984; Nielsen, 1993).

The high equivocality present when design-
ing collaborative systems makes it diffi cult to
apply rapid prototyping techniques effectively.
Because users may not be able to articulate what
they want or need, it helps to be able to collab-
oratively interact with high-fi delity systems in
order to test them in real-world situations and
see what requirements emerge. Without such an
experience, it is unlikely that any feedback the
developers get from the users, either through
direct communication or observation, will be
useful. Thus, low-fi delity prototypes are limited
in their power to elicit requirements as the users
have diffi culty imagining how the system the
prototypes represent will work, what it could do
for them, or how they might use it. Also, since
the majority of tasks involved in collaboration
are quite complex and require multiple kinds of
functionality to complete, the users need to be

Table 1. Advantages and disadvantages of low- and high-fi delity prototyping (Source: Rudd et al., 1996,
p. 80)

Advantages Disadvantages
L

ow
-F

id
el

ity

Pr
ot

ot
yp

es
• Lower development cost
• Can create many alternatives quickly
• Evaluate multiple design concepts
• Useful communication device
• Address screen layout issues
• Useful for identifying market

requirements
• Proof of concept

• Limited error checking
• Poor detailed specifi cation to code to
• Facilitator driven
• Limited utility after requirements

established
• Limited usefulness for usability tests
• Navigational and fl ow limitations
• Weak at uncovering functionality- and

integration-related issues

H
ig

h-
Fi

de
lit

y
Pr

ot
ot

yp
es

• Complete functionality
• Fully interactive
• User driven
• Clearly defi nes navigational scheme
• Use for exploration and tests
• Look and feel of fi nal product
• Serves as a living specifi cation
• Marketing and sales tool

• More expensive to develop
• Time consuming to create
• Ineffi cient for proof of concept designs
• Not effective for requirements gathering

130

Patchwork Prototyping with Open Source Software

able to interact with the system as a whole and
with considerable depth of implementation, thus
requiring a prototype that is both horizontal and
vertical.

The economics of developing high-fi delity
prototypes that are both horizontal and vertical
in scope, however, are problematic. Even if the
developers were to build a series of high-fi delity,
vertical prototypes, they would end up having
built the equivalent of an entire system from
scratch just to have a functionally suffi cient pro-
totype. Not only would it be expensive and time
consuming, but the functionality and robustness
would be minimal at best. Also, it is likely that
the work would need to be discarded and replaced
with something new since it is unlikely that the
design would be correct on the fi rst, second,
or even third try. Thus, the typical methods of
prototyping are not suffi cient, either because
developing all the code would be too expensive,
or the prototypes that are developed do not have
high enough fi delity.

The proliferation of production-scale OSS
systems has created a vast fi eld of growing, reli-
able, usable, and feature-rich programs, a large
number of which support aspects of Web-based
collaboration. These programs can be easily
stitched together because the code is open and
modifi able. Furthermore, they can be treated

as disposable since one application can easily
be discarded and replaced with another. This
presents an opportunity for developers to rapidly
build and evaluate a high-fi delity prototype of a
collaborative environment comprising a patch-
work of multiple open source applications. Such
a prototype spans the breadth of a horizontal
prototype and the depth of a vertical prototype
within a single system.

ORIGINS AND EXAMPLES OF
PATCHWORK PROTOTYPING

Patchwork prototyping is a rapid prototyping ap-
proach to requirements gathering that was emer-
gent from practice rather than designed a priori.
We have been involved with several groups that
were developing cyberinfrastructure to support
collaboration, and in each group we observed
ad hoc prototyping and development strategies
that were remarkably similar and that developed
entirely independent of each other. Upon making
these observations, we realized that there was a
core process at work in each of these projects that
could be abstracted out and described as a general
approach to requirements gathering for devel-
oping cyberinfrastructure. Because patchwork
prototyping evolved from practice, however, we
believe that it will be much easier to understand
our formal description of the approach after we
describe some of the relevant details of our expe-
riences. In this section, we describe two projects
with which we were involved and the relevant
dynamics of each project; in the following section,
we describe the patchwork prototyping approach
more abstractly.

Project Alpha: Building a
Cybercollaboratory for
Environmental Engineers

Project Alpha (a pseudonym used to preserve
anonymity) was devoted to building a cybercol-

Figure 1. Horizontal and vertical prototypes
(Source: Nielsen, 1993, p. 94)

Horizontal Prototype

Full System

Ve
rt

ic
al

 P
ro

to
ty

pe

Breadth of system (features

D
ep

th
 o

f s
ys

te
m

(fu

nc
tio

na
lit

y)

 131

Patchwork Prototyping with Open Source Software

laboratory for environmental engineers. At the
beginning, the project was intended to be a require-
ments-gathering project, and the goal was to build
a functional prototype of the cyberinfrastructure
that would be presented to the granting agency
as part of a larger proposal. The effort was a suc-
cess and now, more than a year after the project
began, the prototype is being converted into a
production-scale system. The cybercollaboratory
prototypes were largely designed and built over a
period of six months by a team of two developers,
with signifi cant contribution to the design by a
team of around 12 to 13 other researchers (these
researchers, plus the two developers, we call the
design team), and some minor programming
contributions by undergraduates employed by
the project. By the end of the prototyping phase,
there was a community of users that included
60 to 70 active users out of approximately 200
registered users, 10 of which comprised a core
group of vocal users who provided signifi cant
feedback on the design.

The Project Alpha prototype was constructed
on the Liferay portal server framework. In ad-
dition to using existing portlets, the developers
also wrapped other OSS applications in portlet
interfaces, enabling their rapid integration into the
prototype. A number of different OSS applications
were used, including the Heritrix Web crawler, the
Lucene search engine, and the MediaWiki wiki
system. Other applications were similarly inte-
grated but were not necessarily publicly available
OSS. Some were in-house applications developed
by other projects for which the developers had
source code. These applications were used to pro-
totype data mining and knowledge management
functionality in the cybercollaboratory.

The general process by which these tools were
incorporated was very ad hoc. The development
team might decide on prototyping a particular
function, or the programmers might get some
idea for a “cool” feature and would set about
integrating the feature into the system. This ap-
proach had several unexpected benefi ts. First,

minimal time was spent building portlets so that
when a version of the prototype was presented to
the design team, minimal effort was lost when
particular features or portlets were rejected as
being unsuitable. Second, it allowed the design
team to choose between several different portlets
that had essentially the same function but differ-
ent interfaces (i.e., were optimized for different
types of use). Third, it allowed the developers to
easily switch features off when the interface for
a portlet was too complex, or turn them back on
if they were requested by either the design team
or the active users. Fourth, the development com-
munity and the associated forums, mailing lists,
and Web sites surrounding the OSS applications
that were integrated into the prototype served
as excellent technical support (Lakhani & von
Hippel, 2002).

The fact that the prototype was fully functional
was critical to its success in eliciting requirements.
By using the prototypes over a period of 6 months,
the users were able to incorporate them into their
day-to-day work practices. This allowed them to
evaluate the utility of the tool in various contexts
of actual use. Without functionality, the developers
feel that it would have been impossible to effec-
tively gather requirements. However, it was also
vital that the users communicate their experiences
to the developers, both formally and informally. To
this end, the developers conducted several surveys
of the users, asking them about the prototype and
features they found useful. The developers also
used the prototype itself to solicit feedback. On
the front page of the prototype was a poll asking
users to vote for the features they liked the most.
Additionally, on every page of the prototype was
a feedback form that allowed users to send quick
notes about the system as they experienced it. The
users also communicated with the developers via
informal means such as e-mail and face-to-face
meetings. However, the most important method
of obtaining feedback was that one of the PIs in
the project acted as an intermediary, actively so-
liciting feedback from users as an insider to the

132

Patchwork Prototyping with Open Source Software

community of environmental engineers. The PI
position allowed the individual to receive more
feedback of higher quality and honesty than the
developers would have been able to collect on
their own.

To illustrate the process in more detail, we
describe how one particular piece of OSS was
integrated with the cybercollaboratory. The
developers wanted to allow users to be able to
collaboratively edit documents in the system. The
Liferay suite had a wiki system available that the
programmers enabled; however, users found that
tool to be too diffi cult to use, partly because of
the unintuitive markup syntax of the particular
wiki used, and partly because they had no tasks
that clearly lent themselves to the use of such a
tool. Later during the prototyping phase, some
members of the design team wanted to demon-
strate the usefulness of scenarios and personas
in facilitating requirements gathering, and from
prior experience suggested the use of a wiki. In
response to this request and the prior diffi culties
in using the bundled tool, the developers installed
MediaWiki on the server and added a link from
the cybercollaboratory’s menu next to the existing
wiki tool pointing to the MediaWiki installation.
No time was spent trying to integrate the Liferay
and MediaWiki systems; each application had
separate interfaces and user accounts.

One benefi t of using the MediaWiki system
was that it allows people to use the system without
logging in, thereby mitigating the need to inte-
grate authentication mechanisms. Users found
the MediaWiki system easier to learn and use,
and began using it exclusively over the in-built
Liferay wiki. The developers then decided to
embed the MediaWiki interface in the rest of the
cybercollaboratory and wrote a simple portlet that
generates an HTML (hypertext markup language)
IFRAME to wrap the MediaWiki interface. Each
step of integrating the MediaWiki installation took
only minimal effort on the part of the developers
(sometimes literally only a matter of minutes) and
generated insights about the role and design of a

collaborative editing tool in the cybercollabora-
tory. Among the design insights gained by the
developers is that the tool should be easy to use
with a simple syntax for editing. Also, the tool
should support alternate views of the data, offering
a unifi ed view of all documents either uploaded
to the site’s document repository or created and
edited on the wiki. The users were able to see
how this tool could benefi t their jobs, and that
shaped the requirements of the tool. As a result of
this process, the project is currently implement-
ing a new collaborative editing component. This
component will have features like integrated
authentication, group- and project-based access
control, and integration with other features (e.g.,
project views and wiki linking). Additionally,
the new collaborative writing component will
deprecate redundant and confusing features like
in-wiki fi le uploads.

Project Beta: Building
Collaborative Tools to
Support Inquiry-Based Learning

Project Beta is an ongoing research project aimed
at designing and building Web-based tools to sup-
port processes of inquiry as described by John
Dewey (Bishop et al., 2004). Initiated in 1997,
the project has embraced a long-term perspective
on the design process and produced a series of
prototypes that support inquiry-based teaching
and learning. In 2003 the project began exploring
the development of tools to support collaborative
inquiry within groups and communities. The cur-
rent prototype is the third major revision of the
collaborative cyberinfrastructure, with countless
minor revisions on going. Throughout the project’s
life span, several generations of programmers have
joined and left the development team. For a 30-
month stretch, the majority of programming was
sustained by a single graduate-student program-
mer. Between four and eight other researchers
fi lled out the design team.

 133

Patchwork Prototyping with Open Source Software

The prototypes are available for anyone to use,
and the source code is also distributed under a
Creative Commons license. To date, the proto-
types have been used to support a large number
of communities of users ranging from water-
quality engineers to volunteers in a Puerto Rican
community library in Chicago, from researchers
studying the honeybee genome to undergradu-
ates in the social sciences. There are numerous
other groups using the system for any number
of purposes. Given this scenario, it is practically
impossible to design for the user community or
any intended use.

The prototypes were developed in the PHP pro-
gramming language on an open source platform
consisting of Apache, MySQL, and RedHat Linux.
In contrast to Project Alpha where the developers
initially did very little programming and primar-
ily used readily available tools, the developers of
Project Beta spent considerable effort building an
infrastructure from scratch, in part because the
developers were initially unaware of relevant OSS.
However, as the project progressed, several open
source tools were incorporated into the prototypes
including the JavaScript-based rich-text editors
FCKEditor and TinyMCE, the phpBB bulletin
board system, and MediaWiki.

To demonstrate the process in more detail, we
describe how one particular piece of OSS was
integrated with the prototypes. In the earliest ver-
sion of the cyberinfrastructure, users expressed
an interest in having a bulletin board system.
The developers selected the phpBB system and
manually installed copies of phpBB for each
community that wanted a bulletin board; the
bulletin board was simply hyperlinked from the
community’s home page. In the next iteration of
the prototype, the phpBB system was modifi ed
to be more integrated with the rest of the proto-
type. Users could now install a bulletin board
themselves, without involving the developers, by
clicking a button on the interface. Furthermore,
the authentication and account management of
the bulletin board was integrated with the rest of

the prototype, eliminating the need for users to
log in twice. However, the full features of phpBB
were more than the users needed. They primarily
made use of the basic post and reply functions
and the threaded-conversation structure. Users
indicated that the overall organization of the board
system into topics, threads, and posts made sense
to them. In the most recent major revision of the
prototype, the phpBB system was replaced by a
simpler, more integrated homemade bulletin board
prototype that supported these basic features.
Had the development progressed in the opposite
order (i.e., building the simple prototype fi rst,
then adding features), it is possible that develop-
ers could have wasted valuable time and energy
prototyping features that would only be discarded
later for lack of use.

GENERALIZED APPROACH TO
PATCHWORK PROTOTYPING

Based on the experiences described above, we have
outlined a general approach to building patchwork
prototypes using OSS. While our experience
has been primarily with Web-based tools, and
this process has been defi ned with such tools in
mind, it is likely that a similar approach could
be taken with prototyping any kind of software.
Like other prototyping methods, this is designed
to be iterated, with the knowledge and experience
gained from one step feeding into the next. The
approach entails the following fi ve stages:

1. Make an educated guess about what the
target system might look like.

2. Select tools that support some aspect of the
desired functionality.

3. Integrate the tools into a rough composite
4. Deploy the prototype and solicit feedback

from users.
5. Refl ect on the experience of building the

prototype and the feedback given by users,
and repeat.

134

Patchwork Prototyping with Open Source Software

For the most part, these steps are relatively
straightforward. Making the fi rst educated guess
about what the target system might look like
can be the hardest step in this process because
it requires the design team to synthesize their
collective knowledge and understanding of the
problem into a coherent design. In this fi rst itera-
tion of the process, it is often helpful to use paper
prototypes and scenarios, but their function is
primarily to serve as communications devices
and brainstorming aids. The high equivocality
of the situation almost guarantees, however, that
whatever design they produce will be insuffi cient.
This is not a failure. It is an expected part of the
process, and the design will be improved on
subsequent iterations. The important thing is to
have a starting point that can be made concrete,
and not to spend too much time brainstorming
ideas. It is essential not to become bogged down
in controversies about how the software “ought”
to look, but rather to put together a prototype and
test it out with users in their everyday environ-
ments and let the users fi gure out what works,
what does not, and what is missing.

Selection and Integration of Tools:
The Benefi ts of Using Open Source
Software

There are several important considerations to
keep in mind when selecting the tools. On fi rst
glance, patchwork prototyping as a method does
not require OSS; the same general process could
theoretically be followed by using software that
provides APIs, or by creating prototypes through
adapting methodologies for creating production-
scale software systems such as COTS (commercial
off-the-shelf) integration (Boehm & Abts, 1999).
However, using OSS confers several important
advantages; in fact, we believe that patchwork
prototyping is only now emerging as a design
practice because of the recent availability of a
signifi cant number of mature, production-scale
OSS systems.

Without access to source code, developers
are limited in how well they can patch together
different modules, the features they can enable
or disable, their ability to visually integrate the
module with the rest of the system, and their
ability to understand the underlying complexity
of the code needed to construct such systems on
a production scale. High-profi le OSS is often of
high quality, which means that diffi cult design
decisions have already been made. Given that it
is built from the collective experiences of many
programmers, less effective designs have already
been tried and discarded. In fact, by using and
delving into human-readable (compared to that
generated by CASE tools, e.g.), open source code,
the developers can get a grounded understanding
of how particular features can be implemented,
which can enable them to better estimate develop-
ment time and costs.

The Web-based nature of patchwork proto-
types affords several ways of integrating the
selected software into the prototype, ranging
from shallow to deep. Shallow integration con-
sists of either wrapping the tools in an HTML
frame to provide a consistent navigation menu
between the tools, or customizing the HTML
interfaces of the tools themselves to add hy-
perlinks. Most open source Web applications
use HTML templates, cascading style sheets,
and other interface customization features,
which make adding or removing hyperlinks
and changing the look and feel very easy. The
advantage of shallow integration is the ease and
speed with which the developer is able to cobble
together a prototype. A signifi cant drawback
to shallow integration is that each application
remains independent.

Deeper integration usually requires writing
some code or modifying existing source code.
This may include using components or modules
written for the extension mechanisms designed
into the application or other modifi cations made
to the application’s source code. If the developers
cannot fi nd precisely what they are looking for,

 135

Patchwork Prototyping with Open Source Software

they can fashion the code they need by copying
and modifying similar extension code, or, in the
worst case, the developers will need to write new
code to facilitate the integration. However, the
amount of code needed is very little in compari-
son to the amount of code that would have been
required of the developers building a prototype
from scratch.

For any prototyping effort to be worthwhile,
the costs of creating the prototypes must be mini-
mal. OSS systems tend to be fully implemented,
stand-alone applications with many features and
capabilities that provide a wealth of options to play
with when prototyping to elicit requirements. The
minimal effort required to add features allows the
programmers to treat the features as disposable:
Because little effort was needed to implement
them, little effort is wasted when they are switched
off or discarded. That most OSS are free is also
important, both for budgetary reasons and because
the developers can avoid complicated licensing
negotiations. Additionally, most OSS have very
active development communities behind them
with members who are often eager to answer
the developer’s questions in considerable depth,
and do so for free, unlike the expensive technical
support that is available for commercial products.
All of this facilitates the requirements-gathering
process because iterations of the prototype can be
rapidly created with high functionality at mini-
mal cost, and with minimal effort and emotional
investment by the developers.

Deployment, Refl ection,
and Iteration

During the deployment of the prototype, future
users integrate the cyberinfrastructure into their
work practices for an extended period of time and
explore what they can do with it collaboratively.
The collection of feedback on user experiences
allows requirements gathering that is not purely
need based, but also opportunity and creativity
based. By seeing a high-fi delity prototype of the

entire system, users can develop new ideas of how
to utilize features that go beyond their intended
use, and conceptualize new ways of accomplishing
their work. In addition, users will become aware
of gaps in functionality that need to be fi lled, and
can explain them in a manner that is more concrete
and accessible to the developers.

When refl ecting on the collected feedback,
however, the design team must realize that
the prototype does not simply elicit technical
requirements; it elicits requirements for the col-
laborative sociotechnical system as a whole. The
existence of the prototype creates a technological
infrastructure that infl uences the negotiation of
the social practices being developed by the us-
ers via the activities the infrastructure affords
and constrains (Kling, 2000). The design team
must be aware of how various features affect the
development of social practice, and must make
explicit the type of interactions that are required
but are not currently realized. By allowing the
users to interact with the prototypes for extended
periods, collecting feedback on their experiences,
and paying attention to the social consequences
of the cyberinfrastructure, a richer understand-
ing of the sociotechnical system as a whole can
emerge. Thus, refl ection is a process of attending
to the consequences of the design for the broader
sociotechnical system, and integrating those con-
sequences into a holistic understanding of how
the system is evolving.

Iteration is essential to the rapid prototyping
approach. First, iteration allows for the exploration
of more features and alternatives. This can uncover
overlooked aspects of the system that might be
of use. This can also reinforce the importance or
necessity of particular features or requirements.
Furthermore, iteration provides the users with a
constant fl ow of new design possibilities, which
prevents them from becoming overly attached
to any single design, giving them the freedom
to criticize particular instances of the prototype.
Ultimately, it is impossible to reach complete
understanding of the system given its evolving

136

Patchwork Prototyping with Open Source Software

nature. However, by iterating the prototyping
process, the design space may narrow, identify-
ing a set of key requirements. At this point the
design is not complete, but work on a fl exible
production-scale system can begin, and further
exploration of the design space can be continued
within that system.

STRENGTHS AND LIMITATIONS

Patchwork prototyping addresses two major
problems that designers face when building new
sociotechnical systems. First, it allows the design
team to get feedback on the prototype’s use in
real-world situations. Users interact with the sys-

Paper Prototyping Patchwork Prototyping COTS/API Prototyping

Speed

Can iterate a prototype
multiple times in an afternoon

Can iterate a prototype in less
than a week

Can take weeks or months to
iterate a prototype

Monetary Costs

Cost of offi ce supplies Free, or minimal cost of
licenses if in business setting

Purchasing and licensing
software can be expensive

Availability of Materials

Usually already lying around
Large number of high-quality
OSS available for free
download

Not all commercial systems
have APIs

Functionality

Nonfunctional High High

Accessibility

Anyone can prototype
systems using paper,
including nontechnical end
users

Requires skilled programmers
to create patchwork
prototypes

Requires skilled programmers
to integrate commercial
software

Interface

Not polished, but can provide
a consistent and/or innovative
interface concept for
consideration

Not renowned for excellent
usability; assembled
components may be
inconsistent

Individual elements may be
high quality and familiar;
assembled components may
be inconsistent

Flexibility

High: can do anything with
paper

High: can modify source
to create any desired
functionality

Low: restricted to what the
API allows, which may be
limited

Disposability

High: little investment of
time, money, emotions

High: little investment of
time, money, emotions

Low: signifi cant effort and
money can result in high
emotional investment

User Attachment

Low: users can see it is rough
and nonfunctional

Med. to High: upon using it,
can get attached to the system
unless iterated rapidly

High: cannot be iterated fast
enough to avoid attachment

Table 2. Comparison of patchwork prototyping with other methods

 137

Patchwork Prototyping with Open Source Software

tem in their daily activities, which focuses their
feedback around task-related problems. In Project
Alpha, when members of the design team started
using the prototype, the feedback changed from
general praise or criticism of the appearance of
the interface to more detailed explanations of how
particular functionality aided or inhibited task
performance. Second, it reduces the equivocal-
ity of the design space. By creating a functional
prototype, discussions change from being highly
suppositional to being about concrete actions, or
concrete functionality.

Integration into the real-world context is
markedly different from other prototyping and
requirements-capture methods. Paper prototypes
are typically given to users in a laboratory setting
(Nielsen, 1993), thus all the tasks are artifi cial.
While this can give developers important design
insights, the drawback is that prototypes can
end up optimized for artifi cial tasks and not for
real-world use. More expensive methods such
as participatory design (Ehn & Kyng, 1991) and
ethnography (Crabtree, Nichols, O’Brien, Rounce-
fi eld, & Twidale, 2000) try to incorporate real-
world use into the design process, the former by
bringing users into the design team, the latter by
observing users in their natural work environment.
However, when the technology that these methods
were used to design is introduced, it inevitably
changes the practices and social structures present
in the work environment, often in a way that cannot
be predicted. Patchwork prototyping overcomes
these limitations by being cheap and by provid-
ing real-time feedback on both users’ problems
with the software and the effects the software is
having on the broader work context.

The advantages of patchwork prototyping
can be seen when comparing it to other pro-
totyping techniques. In Table 2 we compare it
to paper prototyping and to prototyping using
COTS software. The advantages of patchwork
prototyping are that it has many of the benefi ts
of paper prototyping, including low cost and
ready availability of materials, yet provides the

high functionality of COTS/API prototyping; the
effort needed to create the prototypes and the
length of the iteration cycles lies somewhere in
between. Thus, while we see the method as being
yet another tool for developers and designers to
have in their toolbox, in many ways, it combines
the best of both worlds.

The patchwork prototyping approach is not
without limitations, however. Despite our hope
that the visibility of the seams between the ap-
plications would be interpreted by the users as an
indication that the prototype is a work in progress,
our experiences seem to indicate that the users
still view it as a fi nished product due to the fact
that it has real functionality. It is possible that such
interpretations can be overcome through social
means by emphasizing the fact that the system
is a prototype to all users who are encouraged
to test it. However, since none of the projects we
participated in did this, we have no idea whether
or not that would be suffi cient. One thing that is
clear, however, is that visual coherence between
applications greatly facilitates the ease of use and
positive perceptions of the system as a whole. In
fact, in Project Alpha, it was realized that users
need different views of the component modules
and features depending on the context in which
they access the applications, and in some of those
views the distinctions between modules must be
totally erased.

Patchwork prototyping requires highly skilled
programmers to be implemented effectively.
Programmers must have signifi cant experience
within the development environment in which the
OSS applications are coded; otherwise, they will
spend too much time reading code and learning
the environment, and the speed of implementation
will not be as fast. Also, OSS can have security
vulnerabilities that can compromise the server on
which they are hosted. Project Beta ran into this
problem when multiple installations of phpBB
succumbed to an Internet worm, bringing down
the prototype for several days. Third, patchwork
prototyping requires a long-term commitment

138

Patchwork Prototyping with Open Source Software

by users, and a motivated facilitator who is able
to convince the users to adopt the prototype
and incorporate it into their work practices. The
facilitator must collect feedback about the us-
ers’ experiences. Without willing users and the
collection of feedback, the prototyping process
will likely fail.

FUTURE TRENDS

The use of patchwork prototyping is still in its
infancy. The relative ease with which patchwork
prototypes can be constructed means that the
method itself affords appropriation into new con-
texts of use. For example, one of the biggest costs
to organizations is buying software systems such
as enterprise management systems. Patchwork
prototyping offers a cheap and effective method for
exploring a design space and evaluating features.
Consequently, through prototyping, managers can
be more informed when shopping for software
vendors and can more effectively evaluate how
effective a particular vendor’s solution will be for
their company (Boehm & Abts, 1999).

Because users have to integrate the prototype
into their daily work practices, transitioning from
the patchwork prototype to the production-scale
system can be highly disruptive. One method of
avoiding this is having a gradual transition from
the prototype to the production-scale system by
replacing prototype modules with production-
scale modules. To do this, however, the prototypes
must be built on a robust, extensible, modular
framework because the latter component is not
easily replaced. If this model is used, the system
development process need never end. Prototypes
of new features can constantly be introduced as
new modules, and, as they mature, be transi-
tioned into production-scale systems. As more
developers and organizations support open source
development, the number and availability of OSS
applications will increase. As more modules are
written for particular open source, component-

based systems, the costs of doing patchwork
prototyping will further decrease, as will the
threshold for programming ability—perhaps to
the point where users could prototype systems
for themselves that embody specifi cations for
software programmers to implement.

CONCLUSION

Patchwork prototyping is a rapid prototyping
approach to requirements gathering that shares
the advantages of speed and low cost with paper
prototypes, breadth of scope with horizontal
prototypes, and depth and high functionality with
vertical, high-fi delity prototypes. This makes it
particularly useful for requirements gathering
in highly equivocal situations such as designing
cyberinfrastructure where there is no existing
practice to support because it allows future users
to integrate the cyberinfrastructure into their work
practices for an extended period of time and ex-
plore what they can do with it collaboratively. It has
the benefi t of allowing the design team to monitor
the sociotechnical effects of the prototype as it is
happening, and gives users the ability to provide
detailed, concrete, task-relevant feedback.

Patchwork prototyping is an excellent example
of how OSS can foster innovation. The affordances
of open-source code and a devoted development
team create opportunities to utilize OSS in ways
that go beyond the functionality of any particular
application’s design. The cases presented here
merely scratch the surface of a new paradigm of
OSS use. Further research is needed to understand
the specifi c features of technologies that afford
such innovative integration.

REFERENCES

Beynon-Davies, P., Carne, C., Mackay, H., & Tud-
hope, D. (1999). Rapid application development

 139

Patchwork Prototyping with Open Source Software

(RAD): An empirical review. European Journal
of Information Systems, 8(3), 211-223.

Bishop, A. P., Bruce, B. C., Lunsford, K. J.,
Jones, M. C., Nazarova, M., Linderman, D., et
al. (2004). Supporting community inquiry with
digital resources. Journal of Digital Information,
5(3). Retrieved from http://joko.tanu.edu/Articles/
v05/i03/Bishop

Boehm, B. W., & Abts, C. (1999). COTS inte-
gration: Plug and pray? IEEE Computer, 32(1),
135-138.

Brooks, F. P. (1995). The mythical man-mouth:
Essays on software engineering (Anniversary
ed.). Boston: Addison-Wesley.

Crabtree, A., Nichols, D. M., O’Brien, J., Rounce-
fi eld, M., & Twidale, M. B. (2000). Ethnomethod-
ologically-informed ethnography and information
systems design. JASIS, 51(7), 666-682.

Daft, R. L., & Lengel, R. H. (1986). Organizational
information requirements, media richness and
structural design. Management Science, 32(5),
554-571.

Daft, R. L., & Macintosh, N. B. (1981). A tentative
exploration into the amount and equivocality of
information processing in organizational work
units. Administrative Sciences Quarterly, 26(2),
207-224.

Ehn, P., & Kyng, M. (1991). Cardboard comput-
ers: Mocking-it-up or hands-on the future. In J.
Greenbaum & M. Kyng (Eds.), Design at work
(pp. 169-196). Hillsdale, NJ: Laurence Erlbaum
Associates.

Finholt, T. A. (2002). Collaboratories. Annual
Review of Information Science and Technology,
36(1), 73-107.

Floyd, C. (1984). A systematic look at prototyping.
In R. Budde, K. Kuhlenkamp, L. Mathiassen, &
H. Zullighoven (Eds.), Approaches to prototyping
(pp. 1-18). Berlin, Germany: Springer-Verlag.

Grudin, J. (1988). Why CSCW applications fail:
Problems in the design and evaluation of organiza-
tional interfaces. In CSCW 88: Proceedings of the
Conference on Computer-Supported Cooperative
Work (pp. 85-93).

Kling, R. (2000). Learning about information
technologies and social change: The contribution
of social informatics. The Information Society,
16, 217-232.

Lakhani, K. R., & von Hippel, E. (2002). How
open source software works: “Free” user-to-user
assistance. Research Policy, 1451, 1-21.

Lim, K. H., & Benbasat, I. (2000). The effect of
multimedia on perceived equivocality and per-
ceived usefulness of information systems. MIS
Quarterly, 24(3), 449-471.

Martin, J. (1991). Rapid application development.
New York: Macmillan Publishing Co.

Nielsen, J. (1993). Usability engineering. San
Diego, CA: Morgan Kaufman.

Pressman, R. S., Lewis, T., Adida, B., Ullman,
E., DeMarco, T., Gilb, T., et al. (1998). Can In-
ternet-based applications be engineered? IEEE
Software, 15(5), 104-110.

Rettig, M. (1994). Prototyping for tiny fi ngers.
Communications of the ACM, 37(4), 21-27.

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs.
high-fi delity prototyping debate. Interactions,
3(1), 76-85.

Star, S. L., & Ruhleder, K. (1996). Steps toward
an ecology of infrastructure: Design and access
for large information spaces. Information Systems
Research, 7(1), 111-134.

Thomke, S., & von Hippel, E. (2002). Customers
as innovators: New ways to create value. Harvard
Business Review, 80(4), 74-81.

Trist, E. L. (1981). The sociotechnical perspec-
tive: The evolution of sociotechnical systems as a

140

Patchwork Prototyping with Open Source Software

conceptual framework and as an action research
program. In A. H. van de Ven & W. F. Joyce (Eds.),
Perspectives on organization design and behavior
(pp. 19-75). New York: John Wiley & Sons.

KEY TERMS

 COTS Integration: The process by which
most businesses integrate commercial off-the-
shelf software systems in order to create a com-
puting environment to support their business
activities.

 Equivocality: The name for a lack of knowl-
edge that cannot be mitigated simply by doing
research or gathering more information. In an
equivocal situation, decisions often need to be
made, defi nitions created, and procedures negoti-
ated by various (often competing) stakeholders.

 Paper Prototyping: A rapid prototyping
method for creating low-fi delity prototypes using
pencils, paper, sticky notes, and other low-tech
materials that can be quickly iterated in order to
explore a design space. It is often used in inter-
face design.

 Patchwork Prototyping: A rapid prototyping
method for creating high-fi delity prototypes out
of open source software that can be integrated by
users into their everyday activities. This gives us-

ers something concrete to play with and facilitates
a collaborative process of sociotechnical systems
development. It is ideal for highly equivocal de-
sign situations.

 Rapid Prototyping: Rapid prototyping is
a method that involves creating a series of pro-
totypes in rapid, iterative cycles. Normally, a
prototype is created quickly, presented to users in
order to obtain feedback on the design, and then
a new prototype is created that incorporates that
feedback. This cycle is continued until a fairly
stable, satisfactory design emerges, which informs
the design of a production-scale system.

 Sociotechnical System: Refers to the concept
that one cannot understand how a technology will
be used in a particular environment without un-
derstanding the social aspects of the environment,
and that one cannot understand the social aspects
of the environment without understanding how
the technology being used shapes and constrains
social interaction. Thus, one can only understand
what is going on in an environment by looking at
it through a holistic lens of analysis.

 Uncertainty: The name for a lack of knowl-
edge that can be addressed by obtaining more
information, such as by researching an answer,
looking it up in reference materials, or collect-
ing data.

 141

Chapter XII
An Agile Perspective on Open
Source Software Engineering

Sofi ane Sahraoui
American University of Sharjah, UAE

Noor Al-Nahas
American University of Sharjah, UAE

Rania Suleiman
American University of Sharjah, UAE

ABSTRACT

Open source software (OSS) development has been a trend parallel to that of agile software development,
which is the highly iterative development model following conventional software engineering principles.
Striking similarities exist between the two development processes as they seem to follow the same ge-
neric phases of software development. Both modes of development have less emphasis on planning and
design and a more prominent role for implementation during the software engineering process. This
chapter expounds on this connection by adopting an agile perspective on OSS development to emphasize
the similarities and dissimilarities between the two models. An attempt is fi rst made to show how OSS
development fi ts into the generic agile development framework. Then, the chapter demonstrates how the
development process of Mozilla and Apache as two of the most famous OSS projects can be recast within
this framework. The similarity discussed and illustrated between agile and OSS development modes is
rather limited to the mechanics of the development processes and do not include the philosophies and
motivations behind development.

INTRODUCTION

As conventional software development meth-
odologies struggle to produce software within
budget limits and set deadlines, and that fully
satisfi es user requirements, alternative develop-

ment models are being considered as potentially
more effective. One such model comes under
the general umbrella of agile software develop-
ment, which prescribes a highly iterative and
adaptive development process that adapts not
only to the changing software requirements and

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

142

An Agile Perspective on Open Source Software Engineering

operating environments, but also to the “collec-
tive experience and skills” of people working in
the development teams (Turk, France, & Rumpe,
2005). Proponents of agile methods advocate the
superiority of their model in delivering quality
software, produced at an economic cost within
a fast development period and meeting evolving
customer requirements.

A parallel trend to agile software development
has been that of open source software (OSS)
development, which looks a priori as a random
and chaotic process harnessing the abundance of
programmers on the Internet to produce software
that is deemed of very high quality. However, upon
a closer look at both processes, agile and open
source, striking similarities exist in terms of the
development process itself. Indeed some research
has already pointed out that OSS development,
although driven by different motivations and eco-
nomic considerations than agile methods, follows
the same generic phases of agile methodologies
(Warsta & Abrahamsson, 2003). In this chapter,
we expound on this connection by adopting an
agile perspective on OSS development. This is
not to confuse the two paradigms, which remain
distinct, but to emphasize the similarities and
dissimilarities between the two approaches to
software engineering.

In the fi rst part of the chapter, we attempt to
retrofi t OSS development within a generic agile
software development framework. In the second
part, we demonstrate through the example of two
landmark open source projects, Mozilla and Apache,
how OSS development processes can be recast
within the generic agile development model.

BACKGROUND

An Agile Perspective
on OSS Development

Agile development implies developing simple de-
signs and starting the coding process immediately.

Frequent stops are made to assess the coding process
and gather any new set of features or capabilities
from clients in view of incorporating them into the
software through iterations rather than following a
single formal requirements document (Lindquist,
2005). Some of the most prominent agile software
development methods are extreme programming
(XP), Scrum, feature-driven development (FDD),
and adaptive systems development (ASD; Ambler,
2002). Through plotting these agile software de-
velopment methods into a generic framework for
software development (see Table 1), we identifi ed
four common phases to all agile processes, which
we termed the generic agile development model (see
Figure 1). These phases are outlined as follows:

1. Problem exploration: Includes overall
planning, requirements determination, and
scheduling

2. Iterative development: Repeated cycles
of simple design, coding, testing, a small
release, and refi ning requirements

3. Version control: At the end of one iteration
or a few concurrent or consecutive iterations,
changes are committed to the fi nal program
and documented, probably delivering a
working version to the customer (possibly in-
stalled for use until development ceases).

4. Final release: When changes can no longer
be introduced to the requirements or operat-
ing conditions

 Open Source Development
from an Agile Perspective

In general, the fundamental difference between
open source and conventional software devel-
opment is that the extremely emphasized and
revisited steps of planning, analysis, and design
in software engineering are not part of the general
open source life cycle; the “initial project founder”
is the one who conducts these steps in a brief and
oversimplifi ed manner (O’Gara, 2002).

 143

An Agile Perspective on Open Source Software Engineering

OSS development consists of seven visible
phases: problem discovery, volunteer fi nding,
solution identifi cation, code development and
testing, code change review, code commit and
documentation, and release management (Sharma,
Sugurmaran, & Rajagopalan, 2002). Problem
exploration in agile development corresponds to
open source problem discovery, volunteer fi nd-
ing, and solution identifi cation combined. Agile
iterative development corresponds to code devel-
opment and testing, and code change review in

OSS development. This is where the two processes
fully meet. Version control in agile methods cor-
responds to code commit and documentation in
open source, and fi nally the fi nal release stage in
agile development corresponds to release manage-
ment in open source. The mapping between the
two models will be illustrated later through two
prominent open source projects.

A question that has been raised many times is
whether OSS development could be considered
under the umbrella of agile development (Goldman

Conventional Software Development Phases

Agile Method 1. Planning 2. Requirements Specifi cation 3. Design 4. Coding 5. Testing 6. Maintenance

XP

The fi rst activity takes place. “Story cards” are developed to convey
the features required by customers. The architectural design is
determined.

Development iterations include implementing story cards. Each iteration is
planned. Tests run after each iteration constitute detailed design.

Once the system is released, maintenance iterations proceed
to incorporate postponed features, and the design is updated.
Once all functionalities are incorporated, documentation is
done, and the project is closed.

Scrum

It entails determining and prioritizing software requirements in a
backlog list and estimating an implementation schedule. High-level
design is done.

The development phase includes iterative increments called “sprints.”

The postgame phase includes integration,
system testing, and documentation.

FDD

An overall system model and object models are developed.

A feature list is built and planning is done by feature.

The project is designed by feature and built by feature, and
then is delivered to the end user.

ASD

Project initiation includes setting the mission,
schedules, and requirements.

Collaboration is carried out concerning concurrent component development.

Quality assurance is carried
out, and then the product is
released.

Table 1. Synthesis of agile methodologies’ development phases

144

An Agile Perspective on Open Source Software Engineering

& Gabriel, 2005; Knoernschild, 2006; Rothfuss,
2003; Warsta & Abrahamsson, 2003). Goldman and
Gabriel in the most extensive treatment of the matter
draw a parallel between the principles underlying
the two development approaches and conclude that
they are strikingly similar (see Appendix):

Both the agile and open-source methodologies
embrace a number of principles and values, which
share the ideas of trying to build software suited
especially to a class of users, interacting with
those users during the design and implementa-
tion phases, blending design and implementation,
working in groups, respecting technical excel-
lence, doing the job with motivated people, and
generally engaging in continuous redesign.

Simmons and Dillon (2003) also argue that
the OSS development process is a special type
of agile method. This chapter adopts a similar
perspective by retrofi tting the mechanics of OSS
development within those of agile development.
There is no attempt, however, to foray into the OSS
and agile-development debate and venture either
way. Rather, we will adopt an empirical approach
to illustrate how landmark OSS projects could
be construed as agile development projects. The
following cases are an illustration thereof.

MAIN FOCUS OF THE CHAPTER

Case Illustration through
Mozilla and Apache

The generic agile development model is applied
to two open source projects, namely Apache and
Mozilla. Data about the two projects were available
on the projects’ Web sites and in various other
sources on the Web and elsewhere. We attempt
hereby to plot the specifi cs of the two projects
against the four-stage process for agile software
development, which we outlined earlier. We fi rst
give a brief overview of each project, and then
illustrate how the development process in each
case could be recast as an agile process.

The Mozilla Project

The Mozilla project is an OSS project started in
February 1998 after Netscape released most of
its code base for the Netscape Communicator
browser suite to the open source community; it
was done under a license that requires the devel-
opment of an application called Mozilla, which
is coordinated by the then newly created Mozilla
Organization.

Figure 1. The generic agile development model

 145

An Agile Perspective on Open Source Software Engineering

Since 1998, the Mozilla Organization has
succeeded in producing an Internet suite that is
not only of high quality, but is also much better
than Communicator in both features and stability
(Wikipedia, 2004c). The Mozilla Organization
(http://www.mozilla.org) is responsible for man-
aging, planning, and supporting the development
and maintenance environment for the Mozilla proj-
ect. Each member of the organization undertakes
a different task, such as Web site maintenance,
documentation, architecture design, and release
management. Meanwhile, a different set of people,
the Mozilla community, performs coding, testing,
and debugging (http://www.mozilla.org).

The Apache Project

For the last 10 years, Apache has been the most
popular Web server software on the Internet,
running the majority of Web servers (Wikipedia,
2004a). The goal of the Apache project was to
provide an open source Web server that is adapt-
able to existing and emerging operating systems
in order to be usable by anybody on the Internet.
The work on the new server started in 1994 by
a group of eight people that came to be known
as the Apache Group. During the fi rst release of
Apache in 1995, members of the Apache Group
formed the Apache Software Foundation (ASF) to
provide support for the Apache HTTP (hypertext
transfer protocol) server (Wikipedia, 2004b).

The Apache project, like any other open
source project, depends on collaboration within
communities of practice. Each project is managed
by a self-selected team of technical experts who
are active contributors to the project (Wikipedia,
2004b). Major decisions regarding the software
developed are taken based on consensus from an
inner circle of members.

In the following sections, we attempt to ret-
rofi t the development processes of Mozilla and
Apache into the generic agile development model
outlined earlier.

Problem Exploration in
Mozilla and Apache

As mentioned earlier, in agile software develop-
ment, the problem exploration phase includes
overall planning, requirements determination,
and scheduling. In open source development,
planning, though not formal or comprehensive,
takes the form of a central authority setting the
overall direction of the project in the form of a
to-do list. No resource allocation takes place as
contributors are free to either choose the tasks
they wish to perform or choose from the to-do list
(Stark, 2001). Requirements usually evolve rapidly
over time (Norin & Stockel, 1999; Scacchi, 2002;
Venugopalan, 2002). Users and developers discuss
and negotiate the requirements on mailing lists,
newsgroups, or Web sites. If users and develop-
ers do not agree on specifi c requirements, each
contributor develops his or her own code resulting
in different versions of the software (Raymond,
1999). No fi xed design is maintained as the soft-
ware is more fl exible and adaptable to any changes
done in requirements (Venugopalan).

Mozilla

On Mozilla.org, the general direction of the
Mozilla project is set by defi ning the objectives
of the initiative and any changes to the scope of
the project with appropriate justifi cations. How-
ever, no description exists to process the data and
control, functions, performance criteria, interface
layout, or reliability issues. The Mozilla plan,
simply put, is

a quarterly milestone plan that emphasizes regular
delivery of stable new-feature releases, ideally
with risky changes pushed into an “alpha” mi-
nor milestone, followed by stabilization during
a “beta” period, then a shorter freeze during
which only “stop-ship” bugs are found and fi xed.
(http://www.mozilla.org/roadmap.html)

146

An Agile Perspective on Open Source Software Engineering

The general architecture of the software is
also described as a to-do list provided along with
a cautionary statement that the “detailed plan of
attack should be developed in the newsgroups and
via Bugzilla” (Mozilla Organization, 2004). As
for scheduling, the Mozilla project only provides
the expected dates of releases.

Regarding requirements engineering, high-
level requirements are laid down by Mozilla.org
management and are generally “few and very
abstract” (Reis & Fortes, 2002). This hasty initial
requirements specifi cation in Mozilla logically
leads to major decisions on including functional-
ities and implementing changes being discussed
piecemeal by the community and major develop-
ers, also known as module owners. This ownership
implies responsibility for the quality of the overall
module as well as for decisions on what gets inte-
grated into the Mozilla release. Mozilla developers
maintain some documentation on user-interface
requirements and specifi cations, but most of the
other requirements evolve incrementally without
any limitations (Reis & Fortes).

Discussion lists for public newsgroups are
used to refi ne requirements. The discussion, in
general, acquires a technical fl avor, and eventu-
ally results in either dropping the requirement or
fi ling a bug for contributors to resolve (a bug in
Mozilla does not necessarily refer to an error; it
is any change that is incorporated to the browser
source code). Yet, those requirements might never
be implemented even if they are consensually
agreed upon.

Last, design specifi cations in the Mozilla
project for any new contributor take the form
of narrative descriptions of what the module is
supposed to do, the functionalities the software
is supposed to have, as well as previous code
developed by other programmers. Similar to the
requirements specifi cation phase, most design
considerations are taken care of as they occur.
Hence, bugs are fi led to change the design of a
certain component, and the negotiation process
takes place over discussion groups (Reis & Fortes,

2002). After changes to design have been intro-
duced and implemented, the only location where
contributors can view the evolution of design is in
the bug list, which contains a forum for discussion.
They can search the bug fi les by keyword to view
all relevant discussions (Wikipedia, 2004b).

 Apache

Problem exploration for Apache is the respon-
sibility of the Apache Software Foundation
(http://www.apache.org/). There is no evidence
that the foundation sets any comprehensive plan
as with Mozilla. It simply hosts the project, offers
support, and provides a “framework for limiting
the legal exposure of individual volunteers while
they work on behalf of one of the ASF projects”
(ASF, 2004). Members set the overall direction of
the foundation and leave ad hoc planning to the
project initiators or central fi gures, who acquire
their importance based on the complexity and
signifi cance of the portions of Apache that they
handle. In other words, when a new user wants to
join the ASF to work on a favorite project, only
the project description is provided with a list
of features for developers to start coding right
away. Scoping for Apache is a matter of stating
the objective of the project.

Regarding requirements engineering, each
developer is responsible for identifying an exist-
ing problem or a new required functionality and
deciding which volunteer will work on a related
solution. However, not all contributors will have
equal rights. There is a difference between who
implements new requirements and who can create
a new requirement specifi cation. However, in order
to contribute to the specifi cations of the Apache
HTTP project in the fi rst place, the person should
be a member of the dev@httpd.apache.org mail-
ing list, which signals that he or she is always up
to date on the latest Apache developments. The
added specifi cation takes the form of a patch that
should be clearly described and attached to the
message (ASF, 2004).

 147

An Agile Perspective on Open Source Software Engineering

Developers, who have a “committed” status,
meaning they have committed good code to the
server, share in the decision of what specifi cations
get implemented (ASF, 2004). Developers may
use a “minimal quorum” (or select group) voting
system for resolving any confl icts that might occur
(Mockus, Fielding, & Herbsleb, 2000). However,
similar to Mozilla, these specifi cations are not
compiled anywhere, and neither are they required
to be fi xed by a certain date (ASF, 2004).

On the ASF Web site, each major project is
divided into subprojects, each of which is sup-
ported with basic descriptions of the pseudo code
expected for each module (http://www.apache.
org). This information is generally found under
documentation of previous releases. However, no
particular location for current design description
or specifi cations is indicated. For instance, the
“Designing Components” location would mention
general descriptions of the required functionality
or design objectives as opposed to making avail-
able design modules. The design of the Apache
server software is managed through task lists
available on the project’s Web site.

 Iterative Development in
Mozilla and Apache

Iterative development in the generic agile devel-
opment model entails repeated, and sometimes
concurrent, cycles of simple design, coding, and
testing, eventually leading to a small release.
This is followed by reviews with customers to
refi ne requirements and provide an action plan
for the next cycle.

The open source life cycle is argued to be
located in the implementation phase (i.e., coding,
testing, and maintenance) of the conventional
software development life cycle (SDLC). The high
level of iteration ensures that planning, speci-
fi cation, and design are performed extensively
within the framework of coding, relying on the
overabundance of development resources and
most notably programmers who develop high-

quality code. This phase constitutes the primary
reason why developers join open source projects
in the fi rst place (Raymond, 1999). Project “gods,”
the highly regarded developers in charge of the
project under consideration, place no restrictions
or specifi c instructions as to how coding should
be implemented (Stark, 2001).

The process also scores very high on external
testing (Stark, 2001; Venugopalan, 2002). This
is true because it is not developers who conduct
exhaustive testing; it is rather huge dispersed com-
munities of good programmers who do it (Stark).
This mode of testing is generally described as the
best system testing in the industry (Raymond,
1999; Stark), and as Raymond puts it, “given
enough eyeballs, all bugs are shallow.” Once a
module is coded and tested, it is uploaded onto
the mailing list or the joint development tool for
review by other developers and acceptance into
the core distribution. If refi nements are required,
the module enters another development cycle
before it is accepted and integrated.

 Mozilla

As is typical of agile development, Mozilla’s de-
velopment is a series of changes that are integrated
in successive software releases following intensive
and objective peer review (Feller & Fitzgerald,
2002). Before new code is integrated into the
fi nal release, it is subjected to a thorough review.
Tools such as Bugzilla, Tinderbox, and Bonsai
are used for reviewing code in the Mozilla project
and as a way to avoid delays and keep incorrect
code from entering the repository (Mockus et
al., 2000). Moreover, “super reviews” made by a
senior engineer who is familiar with the code are
included later to provide important design evalu-
ations (Raymond, 1999). Hence, when reviewing
the code changes, developers provide either a
description of the changes required to improve
the quality of the former code (known as “bug
comments”), questions about an unclear section, or
recommendations on different aspects of the patch.

148

An Agile Perspective on Open Source Software Engineering

Hence, most attention is directed toward the quality
of coding by enforcing heavy peer review through
developers’ fear of submitting substandard code to
the “supremely talented” open source code gods
(Feller & Fitzgerald, 2002). We will not, however,
explore all the factors that contribute to the higher
quality and the dynamics of coding in the Mozilla
project, because it is beyond the scope of this chap-
ter. We should note, though, that in Mozilla, it is
in the implementation phase that we actually see
the highest level of documentation and iteration
(Reis & Fortes, 2002). This has been pointed out
as a feature of most agile methods.

Apache

In the implementation (coding and testing) phase
of the Apache server development, developers
are given the mere freedom to apply changes to
the code directly without the need to review the
changes before submission. This contributes to an
extraordinarily fast development combined with a
high sense of autonomy on the part of developers.
Yet, if these changes are not acceptable, they will
be detected during peer review and eliminated
while still being recognized in the documenta-
tion of the actual software release (ASF, 2004).
Meanwhile, major developers who opt to handle
the most critical parts of the server source code
tend to have an implicit code ownership on the
components they contribute. Consequently, other
developers respect the opinions of code owners,
creating some sort of a central authority for con-
sultation and guided discussion.

The contribution process takes the form of
developers making changes to a local copy of the
source code and testing it on their private servers.
After changes are done, the developer either saves
the changes directly if he or she has a committal
status, or posts a patch on the Apache CVS (Con-
current Version System) mailing list for review
and acceptance (ASF, 2004). Finally, since all
core developers are responsible for checking the
Apache CVS mailing list, they generally make sure

that the patch posted is appropriate and changes
are valid. Additionally, since the mailing list can
be accessed by many people who are not from the
core development community, additional useful
feedback is provided when reviewing the changes
and before the software is formally released.

 Version Control in
Mozilla and Apache

Since both agile and OSS development involve
many developers working simultaneously on
various modules in iterations over a relatively
long period of time, it is important that changes,
resulting from each iteration, be tracked and
merged into the overall outcome and documented.
Thus, version control is an essential phase for both
processes. Version control as a term refers to the
ongoing process of

keeping track of the changing states of fi les over
time, and merging contributions of multiple devel-
opers by storing a history of changes made over
time by different people … so that it is possible to
roll back the changes and see what the [system]
looked like [at any previous point in time] before
changes were applied. (Nagel, 2005, p. 4)

This process is normally supported by a version
control system such as CVS, Subversion (SVN),
and Arc (Nagel).

In agile development, the term version control
refers to the phase that follows iterative develop-
ment in order to commit and integrate the changes
made during iterations to the overall software in
the form of a released version for customer review.
This release is either accepted by the customer as
fi nalized and complete, hence the initiation of the
fi nal release phase, or requires further refi nement,
hence triggering the problem exploration phase
and the subsequent iterative cycles. In the latter
case, the released version might be installed and
maintained for the customer to use by the time
enhancements are completed.

 149

An Agile Perspective on Open Source Software Engineering

In OSS development, whenever a module has
been developed in a single iteration or multiple
concurrent iterations, changes are submitted for
review by project leaders and developers who in
turn act as users or customers. The result is either
acceptance of the module for integration into the
core distribution, or a request for refi nements,
which triggers a series of further development
efforts or iterations. Many versions of the soft-
ware may be developed before an acceptable fi nal
release is uploaded on the offi cial project Web site.
While there seems to be a difference in version
control for OSS as the software is not released
to the fi nal customer while the control system
is put in place, in reality, many of the volunteer
developers are the fi nal users of the software
themselves. Both agile and OSS development
rely on quick cycles of version releases contrary
to conventional software development where
quality assurance is mostly performed before the
software is released.

Mozilla

Mozilla developers use CVS for the version control
of the Mozilla project. There are three classifi ca-
tions of releases produced in CVS. First are the
alpha releases, which are testing patches that may
have many missing features or numerous bugs.
The project maintainer or the “sheriff” works on
each of these test versions along with the testing
community to provide early feedback on the ma-
jor changes that the developer should fi x before
the fi nal release. The second classifi cation is the
beta releases. All features are added to the patch
in order to give a general idea of what the fi nal
release will look like. It is mainly provided for
early adopters and testing audiences to provide
some feedback on the most important needed
changes. Last, before announcing the fi nal re-
lease, the sheriff presents release candidates that
are duplicates of alphas or betas days or weeks
before the actual release. Developers viewing
these release candidates may then identify any

new bugs to be fi xed. If there are no changes to
be made, the release candidate is set as the fi nal
release (Mozilla Project, 2006).

Apache

The Apache project utilizes the Internet-accessible
version control system called Subversion. Develop-
ers have read access to the code repositories from
which they can download the most up-to-date ver-
sion of the server, work on it, and submit their work
for review by Apache committers, who have write
access to the SVN repository (ASF, 2005b).

After a number of iterations and concurrent de-
velopment efforts from project initiation, Apache
committers, with the aid of Subversion, are able
to put together a working version; however, it is
unusable due to the presence of serious problems,
and is labeled an alpha version. Alpha versions
are intended for further development work after
review by committers and major programmers.
Further refi nements are specifi ed to guide future
iterations to ultimately arrive at a better version
labeled beta, which compiles and fulfi lls basic
functionalities. Once the version is reviewed
and refi nements are specifi ed, coding and testing
cycles resume until a fi nal version is arrived at and
designated as ready for general availability (GA),
in other words, available for use by the public.
It might take many alpha versions before a beta
version can be reached, and many beta versions
before a GA version is approved and uploaded on
the project’s Web site for production use (ASF,
2005a). This pattern of controlling the versions
resulting from iterative development follows the
generic agile development model.

FUTURE TRENDS

 Final Release in Mozilla and Apache

With regard to fi nal release, in agile development,
the fi nal release phase involves closing the project

150

An Agile Perspective on Open Source Software Engineering

and ceasing all development efforts; it is when all
requirements have been included, reliability and
performance have been accepted by the customer,
and no changes in the operating environment can
be anticipated. Documentation is completed, and
any future requirements or changes the customer
wants would be done as a maintenance service
under a separate agreement (Warsta, Abrahams-
son, Salo, & Ronkainen, 2002). This is more in
line with conventional software development than
with OSS development, where projects never reach
a fi nal release in the strict sense of the word, at
least from a theoretical point of view. Production
versions of the software (e.g., fi nal releases of
Mozilla and GA for Apache) are always open to
updates and enhancements as long as there is an
interest in the developers’ community to work on
them, and areas for enhancement exist in the fi rst
place. Therefore, iterations resulting in patches or
bug fi xes may still occur in the fi nal release phase
and can be thought of as ongoing maintenance to
the post-beta versions of the software. However,
one would normally expect that once the program
matures and reaches good stability, developers
might as well direct their efforts into other more
challenging projects. That would amount in some
way to the fi nal release of agile methods.

CONCLUSION

OSS development has led many to reconsider
their old beliefs and conceptions about software,
a critical aspect of which is its development pro-
cess. While proprietary software seems to cling
onto its paradigm of intellectual property rights,
through agile methods, it seems to be edging closer
to open source as both development processes
seem to converge toward less emphasis on plan-
ning and design and more on a prominent role for
implementation during the software engineering
process. It should be emphasized, however, that the
similarities between the two and the consideration

of OSS development as yet another agile method
is limited to the mechanics of the two processes.
Indeed, the philosophies driving both processes
remain quite different as agile methods are gener-
ally used for proprietary software development.
Moreover, it is also unlikely that agile methods
achieve the agility of OSS development. Indeed,
the abundance of programmers and reviewers of
program code in open source projects cannot be
offset by the fl exibility of a proprietary develop-
ment process, no matter how agile it is.

With agile methods becoming even more agile
as a result of the increasing fl uidity of proprietary
development and the integration of open source
components into proprietary software (exp. Ma-
cOS) on one hand, and the increasing pressure
being put on OSS development to recognize the
individual property rights of contributors, hence
reducing the pool of participant programmers, on
the other hand, it is likely that the gap in agility
between both processes will be further bridged,
irremediably bringing OSS development within
the fold of agile methods as could be inferred
from earlier developments in this chapter. In
the meantime, both approaches can come closer
by standardizing common tools and developing
similar quality assurance.

REFERENCES

Ambler, S. (2002). Agile development best dealt with
in small groups. Computing Canada, 28(9), 9.

Apache Software Foundation (ASF). (2004).
Frequently asked questions. Retrieved from http://
www.apache.org/foundation/faq.html#how

Apache Software Foundation (ASF). (2005a).
Release notes. Retrieved from http://httpd.apache.
org/dev/release.html

Apache Software Foundation (ASF). (2005b).
Source code repository. Retrieved from http://
www.apache.org/dev/version-control.html

 151

An Agile Perspective on Open Source Software Engineering

Feller, J., & Fitzgerland, B. (2002). Understand-
ing open source software development. London:
Addison Wesley.

Goldman, R., & Gabriel, R. (2005). Innovation hap-
pens elsewhere: Open source as business strategy.
San Francisco: Morgan Kaufmann Publishers.

Knoernschild, K. (2006). Open source tools for
the agile developer. Agile Journal. Retrieved
from http://www.agilejournal.com/component/
option,com_magazine/func,show_article/id,36/

Lindquist, C. (2005). Required: Fixing the require-
ments mess. CIO, 19(4), 1.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A
case study of open source software development:
The Apache server. Retrieved from http://open-
source.mit.edu/papers/mockusapache.pdf

Mozilla Organization. (2004). Mozilla develop-
ment roadmap. Retrieved from http://www.mozil-
la.org/roadmap/roadmap-02-Apr-2003.html

Mozilla Project. (2006). Firefox 2 roadmap.
Retrieved from http://www.mozilla.org/projects/
fi refox/roadmap.html

Nagel, W. (2005). Subversion version control:
Using the subversion version control in develop-
ment projects. Upper Saddle River, NJ: Pearson
Education, Inc.

Norin, L., & Stockel, F. (1999). Open source soft-
ware development methodology. Retrieved from
http://www.ludd.luth.se/users/no/os_meth.pdf

O’Gara, M. (2002). The OSS development life
cycle: Part 4 of 4. Linuxworld. Retrieved from
http://www.linuxworld.com/story/34356.htm

Raymond, E. S. (1999). The cathedral and the
bazaar: Musings on Linux and open source by an
accidental revolutionary (Rev. ed.). Sebastopol,
CA: O’Reilly Associates, Inc.

Reis, C., & Fortes, R. (2002). An overview of
the software engineering process and tools in

the Mozilla project. Retrieved from http://www.
async.com.br/~kiko/papers/mozse.pdf

Rothfuss, G. (2003). Open source software engi-
neering: Beyond agile? Retrieved from http://greg.
abstrakt.ch/docs/wyona_oss_development.pdf/

Scacchi, W. (2002). Understanding the require-
ments for developing open source software
systems. IEE Proceedings—Software, 149(1),
24-39.

Sharma, S., Sugurmaran, V., & Rajagopalan, B.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12(1), 7-25.

Simmons, G. L., & Dillon, T. (2003). Open source
development and agile methods. In Proceedings
of the Conference on Software Engineering and
Applications.

Stark, J. (2001). Peer reviews in open-source soft-
ware development. Retrieved from http://ecom-
merce.cit.gu.edu.au/cit/docs/theses/JStark_Dis-
sertation_OSS.pdf

Turk, D., France, R., & Rumpe, B. (2005). As-
sumptions underlying agile software-development
processes. Journal of Database Management,
16(4), 62-84.

Venugopalan, V. (2002). FAQ about open source
projects. Retrieved from http://www.magic-caul-
dron.com/opensource/faq-on-osp.html

Warsta, J., & Abrahamsson, P. (2003). Is open
source software development essentially an agile
method? In Proceedings of the Third Workshop
on Open Source Software Engineering, Portland,
OR (pp. 143-147).

Warsta, J., Abrahamsson, P., Salo, O., & Ronkain-
en, J. (2002). Agile software development meth-
ods: Review and analysis. Espoo 2002, 18-81.

Wikipedia. (2004a). The Apache HTTP server.
Retrieved from http://www.factbook.org/wiki-
pedia/en/a/ap/apache_http_server.html

152

An Agile Perspective on Open Source Software Engineering

Wikipedia. (2004b). The Apache Software Foun-
dation. Retrieved from http://www.factbook.
org/wikipedia/en/a/ap/apache_software_founda-
tion.html

Wikipedia. (2004c). Reference library. Ency-
clopedia: Mozilla. Retrieved from http://www.
campusprogram.com/reference/en/wikipedia/m/
mo/mozilla.html

KEY TERMS

 Agile Software Development: A software
development methodology characterized by
continuous adaptation to changes in software
requirements, operating environments, and the
growing skill set of developers throughout the
project.

 Apache HTTP Server: An open source Web
server for almost all platforms. It is the most
widely used Web server on the Internet. Apache
is developed and maintained by the Apache Soft-
ware Foundation.

 Final Release: The fourth (last) phase in
agile development when changes can no longer
be introduced to the requirements or operating
conditions.

Iterative Development: The second phase in
agile development consisting of repeated cycles
of simple design, coding, testing, a small release,
and requirements refi nement.

 Mozilla: Generally refers to the open source
software project founded to create Netscape’s next-
generation Internet suite. The name also refers to
the foundation responsible for overseeing develop-
ment efforts in this project. The term is often used
to refer to all Mozilla-based browsers.

 Open Source Software (OSS): Software
whose source code is freely available on the In-
ternet. Users can download the software and use
it. Unlike proprietary software, users can see the
software’s source code, modify it, and redistribute
it under an open source license, acknowledging
their specifi c contribution to the original.

 Problem Exploration: The fi rst phase in the
agile development model that includes overall
planning, requirements determination, and
scheduling.

 Version Control: The third phase in agile
development wherein at the end of one iteration
or a few concurrent or consecutive iterations,
changes are committed to the fi nal program and
documented, delivering a working version to the
customer (possibly installed for use until develop-
ment ceases).

APPENDIX

Principles of Agile Methods and Open-Source Development (Adapted from Goldman & Gabriel,
2005):

• “Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.”

 { Open source does not address the customer, but in general, open source projects include
nightly builds and frequent named releases, mostly for the purpose of in situ testing.

• “Welcome changing requirements, even late in development. Agile processes harness change for
the customer’s competitive advantage.”

 { Open source projects resist major changes as time goes on, but there is always the possibility
of forking a project if such changes strike enough developers as worthwhile.

 153

An Agile Perspective on Open Source Software Engineering

• “Deliver working software frequently, from a couple of weeks to a couple of months, with a prefer-
ence to the shorter time scale.”

 { Open source usually delivers working code every night, and an open source motto is “release
early, release often.”

• “Business people and developers must work together daily throughout the project.”
 { Open source projects do not have a concept of a businessperson with whom the team must

work, but users who participate in the project serve the same role.
• “Build projects around motivated individuals. Give them the environment and support they need,

and trust them to get the job done.”
 { All open source projects involve this, almost by defi nition. If there is no motivation to work

on a project, a developer will not. That is, open source projects are purely voluntary, which
means that motivation is guaranteed. Open source projects use a set of agreed-on tools for
version control, compilation, debugging, bug and issue tracking, and discussion.

• “The most effi cient and effective method of conveying information to and within a development
team is face-to-face conversation.”

 { Open source differs most from agile methodologies here. Open source projects value written
communication over face-to-face communication. On the other hand, open source projects
can be widely distributed and do not require collocation.

• “Working software is the primary measure of progress.”
 { This is in perfect agreement with open source.
• “Agile processes promote sustainable development. The sponsors, developers, and users should

be able to maintain a constant pace indefi nitely.”
 { Although this uses vocabulary that open source developers would not use, the spirit of the

principle is embraced by open source.
• “Continuous attention to technical excellence and good design enhances agility.”
 { Open source is predicated on technical excellence and good design.
• “Simplicity—the art of maximizing the amount of work not done—is essential.”
 { Open source developers would agree that simplicity is essential, but they also do not have to

worry quite as much about scarcity as agile project developers do. There are rarely contractu-
ally committed people on open source projects—certainly not the purely voluntary ones—so
the amount of work to be done depends on the beliefs of the individual developers.

• “The best architectures, requirements, and designs emerge from self-organizing teams.”
 { Open source developers would probably not state things this way, but the nature of open

source projects depends on this being true.
• “At regular intervals, the team refl ects on how to become more effective, and then tunes and adjusts

its behavior accordingly.”
 { This is probably not done much in open source projects, although as open source projects

mature, they tend to develop a richer set of governance mechanisms. For example, Apache
started with a very simple governance structure similar to that of Linux and now there is the
Apache Software Foundation with management, directors, and offi cers. This represents a sort
of refl ection, and almost all community projects evolve their mechanisms over time.

154

Chapter XIII
A Model for the Successful
Migration to Desktop OSS

Daniel Brink
University of Cape Town, South Africa

Llewellyn Roos
University of Cape Town, South Africa

Jean-Paul Van Belle
University of Cape Town, South Africa

James Weller
University of Cape Town, South Africa

INTRODUCTION

The growing market share of open source soft-
ware (OSS) can be attributed to the rising prices
of Microsoft products, the increased availability
of OSS, the increased quality and effectiveness

ABSTRACT

Although open source software (OSS) has been widely implemented in the server environment, it is still
not as widely adopted on the desktop. This chapter presents a migration model for moving from an exist-
ing proprietary desktop platform (such as MS Offi ce on an MS Windows environment) to an open source
desktop such as OpenOffi ce on Linux using the Gnome graphical desktop. The model was inspired by
an analysis of the critical success factors in three detailed case studies of South African OSS-on-the-
desktop migrations. It provides a high-level plan for migration and is illustrated with an example. This
chapter thus provides a practical guide to assist professionals or decision makers with the migration of
all or some of their desktops from a proprietary platform to an OSS environment.

of desktop OSS software, and the drive for open
standards in organisations and governments
(Wheeler, 2005). However, though OSS has
been widely accepted as a viable alternative to
 proprietary software (PS) in the network server
market for some time, desktop usage of OSS still

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 155

A Model for the Successful Migration to Desktop OSS

remains fairly limited (Prentice & Gammage,
2005). Unlike many server OSS installations
where the organisational impacts are relatively
minor due to their isolation in the server room,
moving to an OSS desktop generally requires an
organisation-wide migration involving a large
number of users. Correspondingly, there has been
an increased interest and awareness in guidelines
to assist with the migration from proprietary
desktop platforms to OSS. (Bruggink, 2003;
Government Information Technology Offi cers
Council [GITOC], 2003).

This need for migration guidelines was the
inspiration for our research. This chapter thus
proposes a practical model to assist with the mi-
gration to desktop OSS. The model is based on
an in-depth analysis of the critical success factors
(CSFs) in three migration case studies in South
Africa. However, the model that emerged from
this research should prove useful in other contexts,
specifi cally so—but not only, it is hoped—in other
developing-country contexts.

For clarity, the term desktop OSS (or OSS on
the desktop) will be used to refer to those OSS
applications that are utilised by everyday users to
perform daily work tasks. This must be contrasted
to server-side OSS, which comprises those OSS
applications that traditionally reside on a server
as opposed to a client (or workstation) and are
used primarily by technical staff such as systems
administrators to fulfi ll back-offi ce functions
such as e-mail routing and Web hosting. Typical
desktop OSS applications include productivity
software (e.g., OpenOffi ce), e-mail clients (e.g.,
Mozilla Thunderbird), Internet browsers (e.g.,
Mozilla Firefox), and a variety of other utilities.
Although many PC (personal computer) users
use one or several OSS applications, the proposed
model deals with situations where fairly signifi cant
desktop OSS migrations are implemented, that
is, those that include at least an OSS operating
system (Linux) as well as at least a full productiv-
ity software suite.

BACKGROUND

For many organisations, the decision to migrate
to OSS from a proprietary platform is a strategic
one (Wiggins, 2002). Potential advantages as-
sociated with the use of OSS are summarized
by Gardiner, Healey, Johnston, and Prestedge
(2003), but include lower cost or free licenses,
lower total cost of ownership (TCO), access to
source code, reliability and stability, support by
a broad development community, scalability,
and security. The authors also list the following
potential disadvantages: lack of vendor support,
diffi cult installation, lack of integration, hardware
compatibility problems, security, insuffi cient
technical skills, user resistance, and warranty or
liability issues.

 Migration requires analysis of the expected
 return on investment (ROI) in terms of the current
and expected TCO and the associated migration
costs (Fiering, Silver, Simpson, & Smith, 2003).
One of the bigger costs of migrating to a business
OSS desktop, such as Novell Linux Desktop, is
that proprietary business applications have to be
rewritten to run on Linux.

Migration does not have to be an all-or-none
decision. For some users, Linux desktops are more
appropriate, while for others, there are too many
proprietary, non-Linux-compatible applications in
use for a migration to make sense. Companies must
decide which user groups to migrate and may have
to provide support for both the proprietary and
OSS products simultaneously (Goode, 2004).

An illustrative ROI analysis by Gartner (Pren-
tice & Gammage, 2005) shows that migration
costs are signifi cant when compared to savings.
It is possible to reach a breakeven in 1.3 years in
the best-case scenario of migrating users from
Microsoft Windows 95 to locked Linux desktops,
while payback for knowledge workers may still be
unattainable in many circumstances. Structured-
task users are more likely to take to a locked
desktop without impacting their productivity

156

A Model for the Successful Migration to Desktop OSS

and use signifi cantly fewer applications. These
calculations led Gartner to claim that OSS (Linux)
on the desktop for data-entry (or structured-task)
workers has reached the plateau of productivity
on the Gartner hype cycle, while Linux on the
desktop for mainstream business users is only
reaching the peak of infl ated expectations. Gartner
predicts that business use of Linux for the knowl-
edge worker will only mature in the next 3 to 5
years (Prentice & Gammage, 2005).

Some Typical Obstacles in
Migrating to Desktop OSS

Bruggink (2003) highlights some of the typical
obstacles that need to be overcome when migrating
to OSS on the desktop. Most appear to be even
more pronounced in developing countries:

• There is little published guidance available
as to how to go about migrating from pro-
prietary software to OSS.

• Desktop OSS is not widely used in many
countries. This leads to a huge problem in
fi nding qualifi ed staff to support and main-
tain the desktop OSS.

• There are few resellers of desktop OSS,
especially in some developing countries.
Although most, if not all, desktop OSS can
be downloaded from the Internet, it is not
always an option as reliable, fast Internet
connections are not always available in
developing countries, and bandwidth tends
to be very expensive.

• Few OSS certifi cation programmes exist
for computer and network support profes-
sionals, which leads to the lack of technical
support available. However, this situation is
currently improving.

• Many countries have a very risk-averse
corporate culture, which is slowing down
the OSS migration process.

• There is also a widespread perception that
Linux is the only OSS product and that it

is not very user friendly, requiring in-depth
technical skill to operate it.

OSS Migration Guidelines

A number of researchers have proposed meth-
odologies or guidelines to implement desktop
OSS. Lachniet (2004) published a framework for
migration to OSS on the desktop. The Lachniet
framework focuses on the prework that needs
to be done before migrating to desktop OSS in
a corporate environment. Another framework
is suggested by Wild Open Source Inc. (2004)
consultants. Their methodology consists of
three phases: the planning phase, design phase,
and implementation phase. Finally, NetProject
(2003) proposes an OSS migration methodology
that divides the migration into the following fi ve
exercises: the data gathering and project defi ni-
tion phase, justifi cation for the migration and
estimation of migration costs, the piloting phase,
complete rollout, and implementation monitoring
against the project plan. These are discussed in
more detail below.

Lachniet Framework for Migrating
to OSS on the Desktop

Lachniet (2004) published a fairly detailed frame-
work or set of guidelines for migration to OSS
on the desktop. The focus is on the prework that
needs to be done before migrating to desktop
OSS in a corporate environment. The framework
divides the premigration tasks into three sections:
administrative tasks, application development
tasks, and information technology tasks:

• Administrative tasks are primarily focused
on creating support from top management
levels for the migration to desktop OSS:

 { Develop a high-level policy of support
by upper management; upper manage-
ment supporting the migration to OSS
will serve as added incentive.

 157

A Model for the Successful Migration to Desktop OSS

 { Implement purchasing requirements,
and consider OSS when making new
software purchases.

 { Implement hiring requirements, favour-
ing employees with Linux skills.

 { Develop a Linux team to continue the
analysis and implementation of OSS.

 { Hire an expert open source project
manager.

 { Establish a budget.
• Application development tasks aim to ensure

that future OSS migrations are made pos-
sible as most diffi culties experienced during
such a migration are related to internally
developed software:

 { Identify a portable development plat-
form for future development, and iden-
tify and standardise on a development
platform and language that is portable to
multiple architectures, such as Java.

 { Cease and desist all nonportable devel-
opment.

 { Obtain training for application devel-
opers.

 { Identify a migration strategy for previ-
ously developed applications.

• Information technology tasks ensure that
the back-end servers and network services
are in place before implementation of the
desktop OSS commences. In addition, the
information technology tasks ensure com-
patibility and functionality through testing
programmes:

 { Identify and migrate back-end applica-
tions.

 { Obtain training for IT staff.
 { Pilot open source software with willing

user communities.

The Lachniet (2004) framework for the migra-
tion to OSS in a corporate environment is very
comprehensive in the tasks that need to be done
before migration to OSS in general, but it does not
specify the tasks to be performed or the sequence

of events that needs to take place to effect the
actual migration.

Wild Open Source
Migration Methodology

The following methodology is for the migration
to OSS in general, as used by Wild Open Source
Inc. (2004). Its methodology consists of three
phases: the planning phase, design phase, and
implementation phase (see Figure 1):

1. Planning phase: Here the client’s mission,
strategy, and objectives for the migration
to OSS are identifi ed. This is followed by a
detailed assessment of the client’s functional
and architectural requirements. The phase is
completed by the generation of a high-level
solution.

2. Design phase: This involves the creation of
a detailed systems design and engineering
specifi cation. All hardware and software
needed for the migration is also specifi ed
at this time.

3. Implementation phase: Before implement-
ing the OSS, a detailed implementation strat-

Figure 1. Wild Open Source Inc. methodology
(2004)

PLAN
Defi ne

and
Assess

Identify
Alternatives

Porting
and

Migration

Test
and

Validation
Deployment

Support
and

Enhancements

Concept
and

Strategy

IMPLEMENT DESIGN

Wild Open Source
Inc.

Methodology

158

A Model for the Successful Migration to Desktop OSS

egy and plan is formulated. Following the
implementation, the results are documented
and a postimplementation audit is done.
The purpose of the audit is to identify work
done, lessons learned during the migration,
and what remains to be fi nished. After the
implementation is completed, the users are
trained in the operation of the OSS.

When examining the methodology, two clear
problems become apparent. First, the users are
not involved in the migration process and only
receive training at the very end of the migration.
Second, the methodology does not specify how
the migration should be performed, merely stating
that it should be planned and documented.

NetProject IDA OSS
Migration Methodology

The NetProject (2003) IDA OSS migration meth-
odology is primarily focused on the migration
prework, dividing the migration into the following
fi ve exercises:

• Create a description of the existing software
and hardware in use, the required functional-
ity, and the implementation plan in the data
gathering and project defi nition phase.

• Defi ne the justifi cation for the migration
and estimate migration costs.

• Test the implementation and project plan in
the piloting phase.

• Roll out the OSS to all users and servers.
• Monitor the actual results against the imple-

mentation and project plan.

This OSS migration methodology is fairly
high level and focuses on the technical tasks. It
does not detail management or user acceptance
and training issues.

THE PROPOSED MODEL FOR
DESKTOP OSS MIGRATION

The authors analysed three case studies of desk-
top OSS in South Africa: one in the educational
sector, one in a governmental sector, and one in
a commercial organisation. A number of com-
mon themes were identifi ed (Van Belle, Brink,
Roos, & Weller, 2006). The following lists some
of the more salient themes and compares them
with the general literature on the benefi ts and
pitfalls of OSS.

Consistent with the literature, the main driver
for deciding to migrate to desktop OSS was the
promise of fi nancial benefi ts, such as decreased
license costs and the ability to redistribute funds
that would have been spent on software licenses to
other areas. No evidence of any of the migrations
being motivated by political or social responsibil-
ity factors could be found.

Benefi ts encountered as a result of the migra-
tion were primarily described as fi nancial. There
was also mention of intangible benefi ts, such as
the freedom from vendor lock-in and the ability to
customise the software should one wish to do so.
Other supposed benefi ts identifi ed in the literature,
such as improved security, did not appear to be
important to the organisations studied.

Consistent with the literature fi ndings, the po-
tential savings on hardware costs, due to the ability
of desktop OSS to run on older hardware, were
only identifi ed in the education-sector case study.
In fact, hardware upgrades were required in the
government-sector case study in order to run the
desktop OSS effi ciently. Similarly, user resistance
was fairly low in the education sector.

The problems of user resistance and legacy
applications preventing total migration were
identifi ed in all of the case studies (although re-
solving these problems was reasonably successful
in the Novell case). This adds to the fi ndings of
the literature review, which did not specifi cally
identify the commonality of these problems across

 159

A Model for the Successful Migration to Desktop OSS

all three sectors studied. The problems of high
support costs and availability of support were
common across all three case studies, which is
again consistent with the literature.

A new set of problems related to training, spe-
cifi cally the general perception of nonusefulness
of training and the lack of a hands-on, practical
approach to training, was identifi ed. This was
not covered in the literature and is therefore an
important element of the proposed model.

Based on these common themes, critical
success factors could be identifi ed for migration
to desktop OSS (Table 1; listed in the typical
sequence that a migration to desktop OSS would
follow).

It is clear that some of these are not addressed
in the migration guidelines and frameworks
identifi ed earlier. Thus, the following empirically
inspired model was created to assist organisations
in successfully migrating to desktop OSS. The
model is given in the form of a diagram. A detailed
explanation of its components and an example of
its usage will be given next.

The BRW migration model is focused on the
implementation of desktop OSS where desktop
PS has been the standard, but the model should
not be viewed as cast in stone; it can easily be
adapted to any type (environment and situation)
of migration to desktop OSS. As mentioned, the
tasks that make up the BRW migration model are
primarily based on the critical success factors
for migration to desktop OSS identifi ed in the

previous section, but the model also incorporates
elements from the migration frameworks found
in the literature. A detailed description of each
task follows.

Obtain Organisational Commitment
to the Migration

For any project that will result in a signifi cant
change, it is vital to have support and commitment
from the top management levels. This commit-
ment from the top management level to a change
forces the lower levels of the organisation to
conform to the decision and is eased through the
use of a project champion. The role of the project
champion is to promote the change and ensure it is
completed. By nature, most humans are resistant
to change, and if there is no commitment to the
change from the top management levels, the lower
level employees and users will know that they can
get away with not migrating to the desktop OSS
and will most likely opt to stay with the PS that
they know and are used to.

During this initial migration task, it is also
important to acquire the necessary resources
needed for the migration. These should include
a fi nancial budget and staff with project-manage-
ment and technical OSS skills. It is also vital to
document the way forward through the creation
a project plan that includes the reasoning for the
migration to desktop OSS, the goals of the project,
a project timeline, and estimated costs.

Table 1. Critical success factors for desktop OSS migration

1. Obtain top-level management support for the migration project.
2. Practice change management, specifi cally the following.

1.1. Create user awareness.
1.2. Conduct proper user training.
1.3. Communicate constantly with target users.

2. Conduct a detailed analysis of application, business, and technical requirements.
3. Ensure that the systems architecture hardware and software are prepared and tested before users

start using the system.
4. Conduct a pilot project and/or perform a phased migration.
5. Provide ongoing user support and training.

160

A Model for the Successful Migration to Desktop OSS

Figure 2. OSS-on–the-desktop BRW migration model

9. Provide Ongoing User Support and Training
- do postimplementation training (active or passive)
- provide ongoing support (help desk, Web site, etc.)

- make systems enhancements
- ensure ongoing commitment to change

1. Obtain Organisational Commitment to Migration
- top-level support and project champion

- project budget
- expert project manager (skills)

- support /implementation staff (skills)
- detailed migration planning (objectives , time frame , costs, justification)

4. Conduct Thorough Analysis
- identify functional, strategic, technological,

business requirements
- identify users for migration
- create system design and
engineering specification

- ensure capability to support selected OSS
- ensure selected OSS will add /create value

- ensure capacity to implement selected OSS
- identify alternative OSS products

- define implementation strategy (big bang, parallel,
phased)

5. Setup/Install the Systems Architecture and
Trial Desktops

- purchase and install required hardware and
software

7. Implement OSS on the Desktops
- install and setup the OSS for selected users

according to implementation strategy (big bang,
parallel, phased)

BRW Migration Model for Desktop OSS

Beginning
Phase

Refitting
Phase

Working
Phase

Er
ro

r F
ou

nd

2. Create User
Awareness

- communicate reasoning
for change

- address user concerns
- create excitement to

motivate change
- build user knowledge /
understanding of OSS
- build active two-way
communication culture

with users and top
management

3. Perform User Training
- build user skills

(confidence)
- create culture of

experimentation (users
learn new techniques /

functions for themselves)
- interactive / hands- on

training
- keep communication

active

Change Management

Project
Life-Span

(O
pt

io
na

l)
Ite

ra
te

 M
ig

ra
tio

n
Pr

oc
es

s
(N

ex
t D

es
kt

op
 O

SS
 P

ro
du

ct
)

6. Perform Testing
- pilot OSS on trial desktops

- ensure software/hardware /legacy systems
compatibility

- ensure functionality and efficiency

References:

-The BRW Migration Model was derived from data collected from 3 case studies (included in this chapter); Novell SA, Mossel Bay Municipality and Pinelands High School , and the following key references:
- GITOC (Government Information Technology Officers’ Council). (2003). Using Open Source Software in the South African Government: A Proposed Strategy compiled by the Government Information
 Technology Officers’ Council, [Online], Version 3.3, Available: http://www.oss.gov.za/OSS_Strategy_v3.pdf [25 August 2005]
- Lachniet, M. (2004). Desktop Linux Feasibility Study Overview , [Online], Version August 20 2004, Available: http://lachniet.com.desktoplinux [25 August 2005]
- Wild Open Source Inc. (2004). Steps to Take when Considering a Linux Migration, [Online], Available: http://www.wildopensource.com/technology_center/steps_linux_migration.php [21 August 2005]
- NetProject. (2003). IDA OSS Migration Guidelines, [Online], Version 1.0, Available: http://www.netproject.com/docs/migoss/v1.0/methodology.html [29 August 2005]

8. Post Implementation
Review

- document the migration
- review lessons learned

References

The BRW migration model was derived from data collected from three case studies (included in this chapter), Novell SA, Mossel Bay Municipality, and
Pinelands High School, as well as the following key references: GITOC (2003), Lachniet (2004), NetProject (2003), and Wild Open Source Inc. (2004).

 161

A Model for the Successful Migration to Desktop OSS

Create User Awareness

In order to create user buy-in for the migration
and reduce resistance, users need to be included in
the whole migration process. This is done through
plenty of two-way communication, making the
users understand why the migration is neces-
sary, what they can expect to happen during the
migration, and what will change. It is very likely
that the users will have concerns regarding the
migration; it is important that these concerns be
addressed as early in the migration as possible
and that excitement about the migration is created
in order expedite the migration process.

Perform User Training

Adequate training is vital to ensure that the users
are capable of effi ciently using the new desktop
OSS products. More importantly, the training,
by building the users’ computer skill levels, also
increases their confi dence. The best way for users
to learn how to use the new software is through
experimentation and helping each other, as formal
training is often found to be tedious, boring, and
compulsory, thus not very effective.

Conduct Thorough Analysis

By far the biggest task of the entire migration,
analysis is the key to success. The role of the
analysis task is to ensure that the OSS is imple-
mented only where it can promote effi ciency and
meet the needs of the users as well as the organi-
sation. It is not possible to state the subtasks that
need to be performed during analysis as the tasks
will vary according to the situation. There are,
however, some general tasks that should always
be performed. These are as follows:

• Perform an audit of all existing software
and hardware in use.

• Identify the functional requirements.

• Identify the technical requirements.
• Identify the organisation’s business strategy.
• Identify users who could be migrated to

OSS.
• Identify possible OSS products and select the

best option according to the above require-
ments.

• Create a system design and engineering
specifi cation.

• Defi ne the best suitable implementation strat-
egy (big bang, parallel, or phased) depending
on the size and scope of the migration.

Setup and Install the Systems
Architecture and Trial Desktops

Before a desktop migration to OSS can be under-
taken, the back end of the systems architecture,
such as fi le servers, needs to be set up, installed,
and updated in preparation for the change to
desktop OSS on the user side. This is important
as network problems during the actual desktop
implementation could cause extensive delays.
Often, new hardware and/or software will also
have to be purchased and installed (server side,
back end) at this stage.

Perform Testing

Proper testing is crucial to ensure that the se-
lected desktop OSS meets the users’ functional
needs. Testing should be done through piloting
the selected product(s) on a suitable number of
desktops. This pilot testing could be done in a
laboratory environment, but it is preferable to
pilot the selected software in a real-world sce-
nario by having the end users attempt to use it
to perform their day-to-day jobs. Any hardware,
software, or legacy system incompatibilities; lack
of functionality; or ineffi ciencies will become
apparent during testing and should be resolved
before the desktop OSS is deployed to all of the
fi nal end users.

162

A Model for the Successful Migration to Desktop OSS

Implement OSS on the Desktop

Implementing the OSS on the desktops of the
fi nal users should only be done after all possible
problems with the use of the OSS have been
resolved. The implementation should be done in
accordance with the implementation strategy as
defi ned during the analysis tasks.

Postimplementation Review

The postimplementation review is not actually
part of the physical migration, but assists the or-
ganisation in learning from the implementation,
preventing the same problems from occurring in
future desktop OSS implementations. The review
is somewhat tedious and often ignored, but can
yield great rewards in the future through the build-
ing of organisational knowledge and wisdom. This
is of particular importance if only one functional
area or regional branch of a larger organisation
has migrated. The review is performed by docu-
menting the entire migration process and should
include how the change management was done
(including training), what analysis was done and
what the fi ndings where, what changes were made
to the systems architecture, the problems that were
identifi ed during testing, and most importantly,
how these problems were resolved.

Provide Ongoing User
Support and Training

It is vital that support and training are continued
after the implementation of the OSS on the desk-
tops of the earmarked users is completed. This
is because it is often the case that not all of the
problems related to the use of the desktop OSS
are identifi ed during testing. Also, at this stage in
the migration, the users are expected to use the
OSS to do their jobs and will fi nd it frustrating if
they can no longer perform a certain function. The
main purpose of the ongoing support and training

is to prevent a relapse back to the original software
and maintain commitment to the change.

APPLYING THE MODEL
TO A CASE STUDY

The following looks at how the model would have
applied in the context of one of the three case
studies on which the migration model was based
(Van Belle et al., 2006). The case study concerns
a relatively small municipality along the south
coast of South Africa. This municipality was
underlicensed in terms of its Microsoft Windows
98 licenses (150 against 60 legal licenses) with a
similar situation for their Microsoft Offi ce produc-
tivity software. The Business Software Alliance
(BSA) threatened legal action unless the situation
was regularised. The following looks at the dif-
ferent actions that were taken to effect a partial
migration and, from an ex post perspective, how
they would have fi t into the model.

Obtain Organisational
Commitment to Migration

In response to the letters from the BSA and the
threat of possible legal issues, the municipality’s
IT manager arranged a meeting with the Mossel
Bay management team, consisting of all the heads
of the various municipality departments, in which
they discussed the current licensing situation.

As a solution to the licensing issues and lim-
ited funds available, the IT manager presented a
cost comparison of buying the needed Microsoft
product licenses vs. migrating selected users to
Linux and related OSS products. RPC Data (an
external IT-support contractor) advised the IT
manager that a complete migration to Linux is not
always feasible due to the application limitations,
user resistance, and training budget constraints.
Therefore, a mixed IT environment of Novell
Linux, related OSS, Microsoft products, and other

 163

A Model for the Successful Migration to Desktop OSS

proprietary products would be more suitable to
Mossel Bay Municipality’s needs.

The management team provisionally gave their
approval for the partial migration to OSS as the
regional government is supporting migration to
OSS and Mossel Bay Municipality wants to align
their IT environment to this strategy. It was found
that the majority of the PCs in the fi nancial de-
partment could be migrated to Linux as the users
use primarily network-based fi nancial systems,
e-mail, and spreadsheets. Thus, the number of
Microsoft product licenses required in order to
meet software licensing requirements could be
reduced. In total, 55 computers were identifi ed
for migration to OSS.

Given the identifi cation of the PCs to be
migrated and the potential reduction in licens-
ing costs, the management team presented their
proposal to migrate to OSS to the Mossel Bay
Council, who gave permission for the migration
to proceed.

Create User Awareness

In this case, a special introduction session was
included in the initial training session to make
the users aware of the plans to migrate to OSS
and explain what they could expect and the
reasoning behind the migration: the reduction
of license costs and the legalisation of software
products in use. During these sessions, the end
users expressed several concerns about migrat-
ing to Linux, fearing that which is new and
unfamiliar. The personnel from Creative Minds
handled all resistance to the migration through
the dissemination of information, informing the
staff members of the actions taken by the BSA
and the need to reduce license costs. The users
were also reassured that they would still have
the same functionality and would still be able
to perform their jobs.

Initiate Training while Migration
is Still in Early Stages

The Mossel Bay Municipality contracted Creative
Minds, a local computer training fi rm, to give
training sessions to the Mossel Bay end-user
staff before migration. The training was done in
the form of a seminar, which all staff members
who would be migrated to OSS were required to
attend. Creative Minds, through the seminars,
introduced the staff to Linux, using an overhead
projector linked to a PC running SUSE Linux 8.2.
The seminar covered the SUSE Linux functional-
ity the staff members would be required to use
and how it differed form the other proprietary
products that they had been using in the past. This
seminar also included an introduction session on
the rationale and reasons behind the decision to
move to OSS.

Conduct Thorough Analysis

This step was not fully executed in the case study.
Exploratory but fairly high-level analysis of sys-
tem and user requirements was done to motivate
the proposal in Step 1. A concrete result from
this was the identifi ed need to replace an aging
Novell server (they did not have Novell licenses
for all 150 end-user PCs, either). The new Linux
server’s primary role would be a central fi le server,
sharing fi les between Novell SUSE Linux and
Microsoft-based PCs.

However, the implications of moving the desk-
tops was not fully investigated and last-minute
hardware upgrades for a number of worksta-
tions were required to cope with the graphical
interface requirements. Also, it was found that
users experienced incompatible fi le formats
and/or documents appearing different in differ-
ent computer environments (OSS vs. Microsoft).
This problem was specifi cally experienced with
Corel WordPerfect documents and Quattro-Pro

164

A Model for the Successful Migration to Desktop OSS

spreadsheets, as initially the SUSE Linux PCs
had K-Word and K-Spread installed for word
processing and spreadsheets. The KOffi ce suite
was not capable of opening the aforementioned
fi le formats at the time, nor could KOffi ce save
fi les in Microsoft Word or Excel fi le formats, as
required by the other departments. In order to
solve this problem, Star-Offi ce was installed on
all the SUSE Linux 8.2 PCs, but this proved to
be too system-resource intensive. A more thor-
ough analysis of the software in use before (i.e.,
user requirements) might have prevented these
mishaps.

Setup Systems Architecture
and Trial Desktops

Before handing over the desktop-OSS-based
PCs to all staff, four to fi ve staff members were
selected to be the fi rst trial recipients. Mossel Bay
again contracted Creative Minds, who supplied a
Linux expert to assist the initial users. The Linux
expert’s responsibilities included assisting the
trial staff in performing their daily jobs using the
OSS and noting where problems occurred. After
several critical errors in the setup and the installed
software on the OSS-based PCs were observed,
the PCs were temporarily removed and rebuilt to
have all the settings and software needed for the
users on the desktop.

Testing

During testing it was discovered that the initial
confi guration of Star-Offi ce on SUSE Linux 8.2
ran very slowly on the old PCs still in use at Mos-
sel Bay Municipality. Star-Offi ce was eventually
replaced with OpenOffi ce.org, which has proven
to meet Mossel Bay Municipality’s fi le format-
ting requirements and is running smoothly on the
low-specifi cation PCs. In addition, the original
SUSE Linux 8.2 was replaced with Novell SUSE
Linux 9.2 in order to solve some of the fi ner issues
identifi ed by the IT staff and end users.

Implement OSS on Desktops

The total physical migration only took about 2
weeks, and during this time, all training was
completed. The expert from Creative Minds
(outside contractor) assisted the individual users,
and RPC Data (outside contractor) performed the
installation of the Novell SUSE Linux PCs and
handled technical problems. The overall cutover
phase took about 4 to 5 weeks while users grew
accustomed to the new Novell SUSE Linux 9.2.
Most of the issues that users experienced surround-
ing the use of the new OSS were systematically
resolved.

Perform a Postimplementation Review

The total duration of the migration to OSS was
about 3 months. The IT manager classifi es the
migration as a success, but admits that it “did not
solve all the problems; at this point in time [the
municipality is] still underlicensed.”

No formal postimplementation review was
held by the municipality. However, different users
were polled about their experience as part of this
research project and there was a wide difference
in opinion between various users on the success
of the project.

The clerk of the debt collections department
experienced some initial problems with the fi rst
Linux implementation, which were solved with
the second Linux implementation (Novell SUSE
Linux 9.2). The clerk commented on the fact
that she did not receive as much training as she
would like to have had before the migration, but
due to the intuitive nature of SUSE Linux 9.2,
she was capable of using it productively within a
few days, learning for herself. She was initially
hesitant about migrating to Linux, but had no
choice in the matter. Her reason for resisting the
migration was primarily due to the fact that the
desktop OSS was new and unfamiliar. She would
recommend that others migrate to Linux, but that
they should make sure that they would still be

 165

A Model for the Successful Migration to Desktop OSS

able to perform their jobs effi ciently before doing
so. On the other hand, the senior data operator,
whose primary job involves capturing fi nancial
data into the Promon Financial system (networked
based), is very much against the move to OSS.
She still insists that Linux cannot do everything
Microsoft Windows could. She complained that
she is no longer capable of changing dates in the
payment-detail fi les she works with and has to go
and use another Microsoft Windows machine to
perform some of her job requirements. In addition,
she is experiencing problems opening Microsoft
Word documents with OpenOffi ce.org. She is
experiencing a variety of usability issues with
the OSS and attributes it to lack of training; she
only received a 2-hour introduction session to
Linux and had a Linux expert who showed her
how to use Linux. She was, however, one of the
staff members who did not attend the additional
training sessions.

Provide Ongoing User
Support and Training

It appears that most of the support is done by
approaching the IT manager directly. This is cer-
tainly possible in a small organisation. However, a
number of problems cannot be solved easily since
they are built into the software. Confi guration
problems are normally addressed fairly quickly.
The balance of the issues generally relates to
training, which is often outsourced.

The IT support and maintenance staff raised the
argument that Novell SUSE is doing exactly what
the OSS community accuse Microsoft of doing,
namely, adding “bloatware” to their products. All
the extra software (bloatware) is good, but most of
it is unnecessary and simply slows the PC down
by using up the system resources, such as RAM
(random-access memory). A strong grievance
they have with Novell is the problem of having
to pay for support, which may offset the cost of
the Microsoft licenses. They also claimed that the
support offered by Novell is very limited and not

meeting their needs. In addition, the default Linux
distribution does not have WINE (a Microsoft
Windows emulator) installed, which they need to
run legacy applications on Linux PCs. On the plus
side, Mossel Bay looked at other Linux distribu-
tions, such as Ubuntu Linux, but they found that
these Linux distributions were not at the same
level of maturity as SUSE Linux.

FUTURE TRENDS

The model proposed above is applicable to small-
scale migration. Its post hoc illustration to one of
the initial case studies shows its real-world, albeit
high-level, applicability. However, the model has
not yet been validated in larger organisations or
outside South Africa. It is anticipated that such
application of the model will result in further
refi nements.

It is also envisaged that the model will have
to be specifi ed in much more detail to cater for a
more structured and specifi c approach, especially
where migration affects larger organisations and
requires longer term and more elaborate plans.

CONCLUSION

This chapter looked at a number of publicised mod-
els or frameworks that aim to assist organisations
with migrating proprietary desktop platforms to
desktop OSS environments. However, research
by the authors revealed that a number of critical
success factors for desktop OSS migration were
not at all addressed in these frameworks. Thus, an
alternative yet practical model for a proposed full
or partial desktop OSS migration was proposed
and illustrated by means of a practical example.
In particular, the need for project champions, an
adequate system architecture, and pilot testing,
but especially the involvement and training of us-
ers throughout the migration process, are critical
elements of the proposed model.

166

A Model for the Successful Migration to Desktop OSS

It is hoped that a number of practitioners will
adopt (and possibly adapt or extend) the model.
This would provide very useful validation in-
formation.

REFERENCES

Bruggink, M. (2003). Open source software: Take
it or leave it? The status of open source software
in Africa (Research Rep. No. 16). International
Institute for Communication and Development
(IICD). Retrieved April 16, 2005, from http://www.
ftpiicd.org/fi les/research/reports/report16.doc

Fiering, L., Silver, M., Simpson, R., & Smith, D.
(2003). Linux on the desktop: The whole story
(Gartner Research ID AV-20-6574). Retrieved
April 15, 2005, from http://www.gartner.com/
DisplayDocument?id=406459

Gardiner, J., Healey, P., Johnston, K., & Prestedge,
A. (2003). The state of open source software
(OSS) in South Africa. Cape Town, South Africa:
University of Cape Town, Department of Infor-
mation Systems.

Goode, S. (2004). Something for nothing: Man-
agement rejection of open source software in
Australia’s top fi rms. Information & Management,
42, 669-681.

Government Information Technology Offi cers
Council (GITOC). (2003). Using open source soft-
ware in the South African government: A proposed
strategy compiled by the Government Information
Technology Offi cers Council, 16 January 2003,
version 3.3. Retrieved from http://www.oss.gov.
za/OSS_Strategy_v3.pdf

Lachniet, M. (2004). Desktop Linux feasibility
study overview. Retrieved from http://lachniet.
com.desktoplinux

NetProject. (2003). IDA OSS migration guidelines,
version 1.0. Retrieved August 29, 2005, from

http://www.netproject.com/docs/migoss/v1.0/
methodology.html

Prentice, S., & Gammage, B. (2005). Enterprise
Linux: Will adolescence yield to maturity? Paper
presented at Gartner Symposium/ITxpo 2005.

Rockart, J. F. (1979). Chief executives defi ne
their own data needs. Harvard Business Review,
57, 81-93.

Van Belle, J. P., Brink, D., Roos, L., & Weller, J.
(2006, June). Critical success factors for migrating
to OSS-on-the-desktop: Common themes across
three South African case studies. In Proceedings
of the Second International Conference in Open
Source Software, Como, Italy.

Wheeler, D. (2005). How to evaluate open source
software/free software (OSS/FS) programs. Re-
trieved April 16, 2005, from http://www.dwheeler.
com/oss_fs_eval.html

Wiggins, A. (2002). Open source on the business
desktop: A real world analysis. Retrieved April
15, 2005, from http://desktoplinux.com/articles/
AT9664091996.html

Wild Open Source Inc. (2004). Steps to take when
considering a Linux migration. Retrieved August
25, 2005, from http://www.wildopensource.com/
technology_center/steps_linux_migration.php

KEY TERMS

 Business Software Alliance (BSA): A trade
group representing the interests of the largest soft-
ware companies operating internationally. One of
their main aims appears to be the combating of
software piracy through educational campaigns,
software legalisation processes, and legal action.
Its funding comes from members and settlements
from successful legal actions.

 Critical Success Factor (CSF): This term was
coined in 1979 by Rockart, who defi ned critical

 167

A Model for the Successful Migration to Desktop OSS

success factors as “the limited number of areas
in which results, if they are satisfactory, will en-
sure successful competitive performance for the
organization” (Rockart, 1979, p. 85). Generally,
it is used in an organisational context to refer to
those factors that need to be in place for a proj-
ect to succeed, that is, for the project to achieve
its stated objective or goal. Factors can relate to
business processes, key resources, products, or
any other dependency.

 Desktop OSS (OSS on the Desktop): This
is comprised of those OSS applications that are
utilised by everyday users to perform daily work
tasks. This stands in contrast to server-side OSS,
which are those OSS applications that tradition-
ally reside on a server as opposed to a client (or
workstation) and are used primarily by technical
staff such as systems administrators to fulfi ll
back-offi ce functions such as e-mail routing and
Web hosting. Typical desktop OSS applications

include productivity software (e.g., OpenOffi ce),
e-mail clients (e.g., Mozilla Thunderbird), Internet
browsers (e.g., Mozilla Firefox), and a variety of
other utilities. Although many PC users use one
or several OSS applications, generally only fairly
signifi cant desktop OSS implementations are
considered, that is, those that include at least an
OSS operating system (Linux) as well as at least
a full-productivity software suite.

 Total Cost of Ownership (TCO): A fi nancial
measure (in monetary terms) that aims to capture
the sum of all the costs relating to a business (usu-
ally IT related) investment over its entire lifetime.
For an information system, this includes costs such
as hardware, software, training, maintenance,
upgrades, and management. It is typically used
to make potential buyers aware of longer term
fi nancial implications when using the initial pur-
chase price as the main criterion when deciding
between two or more alternatives.

168

Chapter XIV
The Social Order of Open

Source Software Production
Jochen Gläser

Australian National University, Australia

INTRODUCTION

This chapter contributes to the sociological
understanding of open source software (OSS)
production by identifying the social mechanism
that creates social order in OSS communities. The
concept of social order is used here in its most
basic sense as describing a situation in which
actors have adjusted their actions to each other.
This order is indeed very high in OSS commu-
nities, who produce large and highly complex

ABSTRACT

This chapter contributes to the sociological understanding of open source software (OSS) production
by identifying the social mechanism that creates social order in OSS communities. OSS communities
are identifi ed as production communities whose mode of production employs autonomous decentralized
decision making on contributions and autonomous production of contributions while maintaining the
necessary order by adjustment to the common subject matter of work. Thus, OSS communities belong
to the same type of collective production system as scientifi c communities. Both consist of members who
not only work on a common product, but are also aware of this collective work and adjust their actions
accordingly. Membership is based on the self-perception of working with the community’s subject mat-
ter (software or respectively scientifi c knowledge). The major differences between the two are due to
the different subject matters of work. Production communities are compared to the previously known
collective production systems, namely, markets, organizations, and networks. They have a competitive
advantage in the production under complete uncertainty, that is, when neither the nature of a problem,
nor the way in which it can be solved, nor the skills required for its solution are known in advance.

software from many independent contributions.
It is even astonishingly high when we take into
account how few of the most common tools for
creating order—rules, commands, and negotia-
tions—are used. Therefore, most analysts agree
that OSS is produced in a distinct “new” mode
that is qualitatively different from the “corporate
way” of software production.

However, none of the four strands of literature
on OSS production has produced a consistent ex-
planation of the way in which this amazing order is

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 169

The Social Order of Open Source Software Production

achieved. The participant-observer literature has
proposed metaphors that emphasize the decentral-
ized, democratic, open, and communal nature of
OSS, notably the “cooking pot market” (Ghosh,
1998) and the “bazaar” (Raymond, 1999). These
metaphors, while suggestive, are not grounded in
social theory. Economics is still fascinated by the
voluntary contributions to a public good, and has
consequently focused on motivations to contribute
to OSS (Dalle & Jullien, 2003; Lerner & Tirole,
2002; von Hippel & von Krogh, 2003). However,
neither these investigations nor the generalized
questions about transaction costs (Demil & Lecocq,
2003) or about the allocation of efforts to modules
(Dalle, David, Ghosh, & Steinmueller, 2004) cap-
ture the specifi c ways in which an ill-defi ned group
of people manages to produce a complex good.
These ways have been looked at primarily in the
context of management and software engineering
analyses, which produced interesting case studies
of the coordination of individual OSS projects
such as Linux, Apache, Perl, Sendmail, Mozilla,
and others (Holck & Jørgensen, 2005; Iannacci,
2003; Jørgensen, 2001; Koch & Schneider, 2002;
Lanzara & Morner, 2003; Mockus, Fielding, &
Herbsleb, 2002). Some analysts tried to compare
OSS communities to “traditional organizations”
(Sharma, Sugumeran, & Rajagopalan, 2002) or to
catch the specifi c mode of OSS production with
generalized concepts such as “virtual organiza-
tion” (Gallivan, 2001) or “distributed collective
practice” (Gasser & Ripoche, 2003). However, these
concepts are similar to the metaphors in the ob-
server-participant literature in that they are ad hoc
generalizations that are not embedded in theories
of social order or of collective production. Finally,
sociological analyses have contributed the idea
of a gift economy (Bergquist & Ljungberg, 2001;
Zeitlyn, 2003), various concepts of community
(Edwards, 2001), social movements (Hess, 2005;
Holtgrewe & Werle, 2001), the hacker culture (Lin,
in this volume), and applications of actor-network
theory (Tuomi, 2001). These sociological accounts
focus on the specifi city of social relations in OSS

communities and more or less entirely disregard
the specifi c mode of production employed by these
communities.

Missing from the numerous case studies on OSS
production is a description of the social mecha-
nisms that create order by enabling the adjustment
of actions. Following Mayntz (2004, p. 241), we
defi ne a social mechanism as a sequence of caus-
ally linked events that occur repeatedly in reality
if certain conditions are given and link specifi ed
initial conditions to a specifi c outcome (for a similar
defi nition, see Hedström, 2005, p. 11). Heroically
simplifying, we can think of social mechanisms
as subroutines of the social that are activated
under certain conditions and produce specifi c
results. Only by describing the social mechanism
at work can we explain how a specifi c outcome is
produced under certain conditions (Hedström).
In order to explain how a well-ordered collective
production of OSS is achieved under conditions
of shifting membership, incomplete information,
and autonomous decision making by contributors,
we need to fi nd the social mechanisms that create
order under these conditions.

Theoretical analyses of this kind are still rare.
Only Benkler’s (2002) proposal to regard OSS
production as an instance of commons-based
peer production comes close to describing a
social mechanism of OSS production. Accord-
ing to Benkler, commons-based peer production
“relies on decentralized information gathering
and exchange to reduce the uncertainty of par-
ticipants,” and “depends on very large aggrega-
tions of individuals independently scouring their
information environment in search of opportuni-
ties to be creative in small or large increments.
These individuals then self-identify for tasks
and perform them for a variety of motivational
reasons” (pp. 375-376).

The focus on information processes contrib-
utes an important insight in the process of OSS
production. However, Benkler (2002) applies an
extremely diffuse notion of production, which
makes him subsume every personal communica-

170

The Social Order of Open Source Software Production

tion, every electronic mailing list, and every online
computer game to his model of commons-based
peer production. Consequently, he is not able to
describe the specifi c way in which the individual
contributions are integrated into a common prod-
uct. The distinctiveness of OSS production gets
lost in his very general model.

Thus, while some important elements of
the social mechanism that leads to OSS have
been identifi ed, we still do not have a consistent
theoretical model of OSS production. Sociology
can provide such a model if it supplements its
analyses of social relations and cultures of OSS
communities with an analysis of the social order
of collective production. In this chapter, I provide
a description of the distinct mechanism of collec-
tive production underlying OSS and compare it to
the known mechanisms of markets, organizations,
and networks.

Analyzing the social order of a collective
production system requires delineating the pro-
ducing collective and establishing how the actions
of members are adjusted to each other. I will do
this for OSS production by establishing how tasks
for members of the producing collective emerge,
how requirements of later integration affect the
conduct of tasks, and how the integration of
individual contributions into a common product
is achieved. Thus, I will aim not at providing a
complete description of OSS production, but rather
at identifying the select social phenomena that
enable the adjustment of actions in a dispersed
collective whose members are only incompletely
informed about each other but nevertheless man-
age to jointly produce a complex good. The “thin
description” of OSS production that is provided
in the following section enables the identifi cation
of features that make it a distinct type of col-
lective production.1 The description is based on
published studies of OSS production from which
I extracted the important elements of the social
mechanism. I then use this description for two
comparisons. First, I compare OSS production
to its archetype, namely, the mode of production

employed by scientifi c communities, and intro-
duce the concept production community for this
mode of production. In the subsequent section,
I compare production communities to markets,
organizations, and networks, and tentatively
discuss the specifi c effi ciency of each mode. As
a conclusion, I argue that OSS production is both
a role model for much creative work of the future
and a promising subject matter for studying pro-
duction communities.

BACKGROUND

How Do Open Source Software
Communities Produce?

The Emergence of Tasks

A crucial problem of all production processes is
the defi nition of tasks for members of the produc-
ing collective. Each of these tasks must describe
utilizable contributions, that is, contributions that
are useful additions to the common product, can
later be integrated into this product, and can be
produced by the specifi c member of the collective.
How is this achieved in OSS production?

One of the characteristic features of OSS
production is that individual producers defi ne
their own tasks. Nobody is forced to produce a
specifi c contribution. Instead, an individual pro-
ducer perceives that something needs to be done,
believes he or she is able to do it, and defi nes it
as a task to do personally. Thus, individuals de-
cide for themselves to produce the contributions
they think are necessary, and offer them to the
community. Necessary tasks are also publicly
announced in a variety of ways. However, no
mechanism exists that could force community
members to solve one of these tasks (Bonaccorsi
& Rossi, 2003; Mockus et al., 2002; Sharma et
al., 2002). The creation of tasks for individual
producers is essentially a decentralized, local
activity by autonomous contributors. This has

 171

The Social Order of Open Source Software Production

been expressed by characterizing OSS production
as a “distributed collective practice” (Gasser &
Ripoche, 2003).

The decentralized autonomous decision
making about tasks makes it likely that tasks
match the abilities of producers. However, the
autonomously defi ned contributions must also fi t
together and be integrated in a common product,
which requires a mutual adjustment of individual
actions. Since direct mutual adjustment between
producers requires extensive information about
participants, their current actions, and their plans,
it is obviously impossible in OSS communities.
OSS communities solve this problem by mediated
adjustment, that is, by all producers adjusting to
the common subject matter of work, which they
observe and from which they derive their tasks.
The common subject matter of work is a complex
body of knowledge; at its core we fi nd the cur-
rent version of the source code, which often has
a modular design in order to enable independent
parallel work by many developers (Lanzara &
Morner, 2003; Lerner & Tirole, 2002). This core
is surrounded by a variety of corollary informa-
tion that refers to the source code, such as bug
reports or, more generally, “pending work tasks”
(Holck & Jørgensen, 2005, pp. 7-8), documenta-
tion, other documents describing the software,2
and discussions in mailing lists. Members of the
producing collective draw on this knowledge
when they formulate tasks for themselves. Based
on these observations and their tests of the pro-
gram, they perceive that additional code, a change
in the existing code, or corollary work (e.g., on
documentation) is needed for the software to
function as planned.

Thus, the shared subject matter of work me-
diates the adjustment of producers’ actions by
providing them with a common point of reference.
This effect is implicitly described in numerous
case studies, and has been explicitly discussed for
the code (de Souza, Froehlich, & Dourish, 2005;
Lanzara & Morner, 2003), and for the explicit and
implicit descriptions of software requirements in

Web-based descriptions of the software (Scacchi,
2002). Since the subject matter of work orders
the decentralized autonomous defi nition of tasks,
OSS projects need to start with a signifi cant ini-
tial submission of code, as has been observed by
Raymond (1999) and by Lerner and Tirole (2002,
p. 220): “The initial leader must also assemble a
critical mass of code to which the programming
community can react. Enough work must be done
to show that the project is doable and has merit.”
West and O’Mahony (2005) consider the amount
of structured code initially available as a major
advantage of the “spinout model,” where previ-
ously internally developed software is released
under an open source software license, inviting
the community to join the project.

Conduct of Work

While the production of code is the core task of
OSS production, it is accompanied by a variety
of other activities that are necessary for the pro-
duction to succeed. Existing code must be tested
and evaluated, which leads to information about
bugs and suggestions for fi xing them (new or
changed code). Even the mere report of problems
with the software is an important contribution. A
documentation of the software must be produced,
and users must be advised.

The conduct of these tasks is ordered in basi-
cally the same way as their emergence. Members
of the producing collective are guided by the
subject matter of work, that is, by the existing
code and corollary information. The structure
of the code that is used in the conduct of work
poses highly specifi c requirements (de Souza et
al., 2005; Mockus et al., 2002). Apart from these
requirements inherent to the code, standards and
general rules of good programming govern the
conduct of work. Core developers of OSS projects
set up guidelines, which are sometimes formalized
(put in writing) and distributed (Bonaccorsi &
Rossi, 2003). The fi t of contributions is ensured
by standard protocols, standardized interfaces,

172

The Social Order of Open Source Software Production

guidelines for problem reports, and so forth
(Bonaccorsi & Rossi; Iannacci, 2003; Jørgensen,
2001; Lanzara & Morner, 2003).

Integration of Contributions

The decentralized task defi nition leads to a sig-
nifi cant redundancy. Many producers carry out
the same pending task simultaneously, and thus
submit reports of or solutions to the same problem
(Bonaccorsi & Rossi, 2003; Holck & Jørgensen,
2005). It is important to notice that this is a redun-
dancy only insofar as many offered contributions
are solutions to the same problem. The solutions
themselves differ from each other, and the best
solution can be chosen from what is offered.

The integration of contributions is subject to
an explicit decision process. Proposed code is
published by submitting it to a mailing list, test-
ing and evaluation by peers (other developers of
code), and thereafter having it submitted to the
software by one of the maintainers. The testing
continues after submission because the members
of the community who download the code and use
it locally are testing it at the same time.

The quality of contributions to the common
product is thus maintained by two different
mechanisms. The fi rst mechanism is a peer review
procedure that is explicitly directed at establish-
ing the quality of a proposed contribution. In
the peer review process, a few authorized peers
(some of the core developers) analyze the code,
judge it explicitly, and decide on its integration
into the software. The second mechanism is an
implicit one, namely, quality control by use in a
potentially infi nite variety of different settings.
It is possible because of the partial overlap of
and close contact between the producer and user
collectives. The common product is downloaded,
used, and tested at every stage of its development
by a potentially large audience. Since the local
conditions (hardware and software environments)
vary, the software is submitted to tests under a
variety of conditions. The people who use the code,

encounter problems, and report these problems
contribute to the production process.

Whenever the maintainers are of the opinion
that a suffi ciently advanced, comprehensive, and
error-free code has been produced, they decide to
release the code by assigning a version number to it
and treating it as a product. These offi cial releases
are addressed to a wider audience of users and
thus create a distinct user community that might
not take part in any production activities.

Membership, Roles, and
Social Structure

Students of OSS communities usually deal im-
plicitly with the question of membership by ap-
plying a specifi c empirical method for identifying
members. Depending on the method applied, a
member is someone who has been identifi ed as
such by having an ID at source forge, being sub-
scribed to a mailing list, having posted a message
or a bug report, or having contributed code. For
a theoretical model of OSS production, however,
we need a theoretical answer to the membership
question. What social phenomenon establishes
membership in an OSS community? The obvi-
ous answer to that question is that a member is
someone who participates in the collective pro-
duction. However, this answer merely transforms
the question. What constitutes participation in the
production process?

While a variety of actions can be considered
as participation in OSS production, none of them
provides the opportunity of a clear-cut delinea-
tion that is both theoretically and empirically
satisfying. Thus, while contributing code obvi-
ously constitutes participation in the production
process, much of the offered code is not used, and
the corollary work (testing, documentation, and
other contributions) must be taken into account.
Furthermore, some users report bugs but do not
fi x them, test the software but do not fi nd bugs, or
discuss the software but do not offer code. Some

 173

The Social Order of Open Source Software Production

of these activities are invisible to both the OSS
community and the sociological observer.

From a theoretical point of view, the weakest
form of participation is the conscious test of the
software in its current version, which can be either
an offi cial release or a version in between releases.
A conscious test means using the software while
being aware of the existence of a community out
there to whom problems can be communicated
and from which advice could be received. While
this description does not apply to all users of OSS,
it includes the large number of them who never
turn into active contributors of any sort because
they never encounter problems with the software.
In the communal production of OSS, successful
tests of the software are rarely reported, the only
systematic exception being the classifi cation
of reported bugs as invalid or “works for me”
(Holck & Jørgensen, 2005, p. 11). Conducting
tests, however, is a contribution to the communal
production regardless of their outcome.

Thus, membership in OSS production com-
munities is constituted by perception-based self-
selection. One is a member of an OSS community if
one perceives oneself as contributing, and the least
possible contribution is a test of the software. This
concept of membership is signifi cantly wider than
those that have been applied so far. It is consistent
with empirical investigations of membership and
social structure. Figure 1 provides an overview
of the composition of an OSS community and
the various roles in the production process. The
major formalized distinction between work roles
is that between the people who have permission
to change the code and to release versions of the
software (maintainers), and all other members of
the community who may propose code but are
not able to integrate it into the current version of
the software themselves. OSS communities are
basically meritocratic because membership to
the core group of an OSS community depends
on programming abilities as demonstrated in
submitted code. However, the current activities of
members need not coincide with the formalized

roles. Crowston, Wei, Li, and Howison (2006, p.
6) found that “the formal list of developers is not
an accurate representation of contribution to the
teams, at least as regards interactions around bug
fi xing” (see also de Souza et al., 2005, for transi-
tions between positions in OSS communities).

The distribution of activities in OSS communi-
ties is highly skewed, with a very small proportion
of members making most of the contributions.
For example, a case study on the Apache project
found that 3,060 people reported problems, 249
submitted new code, and 182 changed existing
code (Mockus et al., 2002). This pattern repeats
itself with regard to the lines of code submitted,
number of problems reported, number of messages
posted, and so forth (Crowston et al., 2006; Ghosh
& Prakash, 2000; Koch & Schneider, 2002; Lerner
& Tirole, 2002; von Krogh, Spaeth, & Lakhani,
2003). Furthermore, advanced projects appear
to be surrounded by a larger user community
whose members observe the production process,
download and use the software, but become visible
(turn into an active user) only if they choose to
take part in discussions or report problems.

The perception-based membership is respon-
sible for the fuzzy and fl uid boundaries of OSS
communities. In larger communities, no mem-
ber knows all other members. One can easily
become a member or fade out of a community.
Simultaneous memberships in more than one
OSS community are frequent (Robles, Scheider,
Tretkowski, & Weber, 2001). Another important
feature of OSS communities that is linked to the
perception-based membership is the decoupling
of subsistence and contributions. Even in the
signifi cant number of cases where producers are
paid for participating in OSS production, payment
is not received as a reward for a specifi c contri-
bution (a problem report, code, etc.), but for the
time that is devoted to the project. The payment
is exogenous to the community, which creates
its own nonmaterial reward (reputation). OSS
communities are therefore based on a principal
decoupling of offered and accepted contributions

174

The Social Order of Open Source Software Production

on the one hand, and the producers’ subsistence
on the other hand. This is in perfect agreement
with the great variety of motives to contribute to
OSS that has been empirically observed (Dalle &
Jullien, 2003; Lerner & Tirole, 2002; von Hippel
& von Krogh, 2003). The functioning of produc-
tion communities is not affected by the specifi c
motives of its members as long as enough people
choose to contribute.

MAIN FOCUS OF THE CHAPTER

Production Communities

OSS is produced by collectivities whose mem-
bers are incompletely informed about each other,

decide autonomously about what task they are
going to solve in which way, and propose contri-
butions that are rarely ever used. Social order in
the sense of adjusted individual actions emerges
primarily because people adjust their actions to
the community’s common subject matter of work,
that is, to the shared code and to the knowledge
about that code. I have proposed the concept of
production community for these identity-based
producing collectivities, and communal produc-
tion for the mode of production that employs
autonomous decentralized decision making on
contributions and the autonomous production of
contributions while maintaining the necessary
order by adjustment to the common subject mat-
ter of work (Gläser, 2001, 2006). The concept of
a production community challenges traditional

Figure 1. Work roles and contributions in OSS communities (Source: Combination of information from
Crowston et al., 2006, p. 1; Gacek & Arief, 2004, p. 36)

Passive Users

Active Users (Contributors)

Co-Developers

Core Developers
Making Decisions

Reviewing and Modifying Code
Reporting Bugs and Suggesting New Features

Transition

Transition

Transition

 175

The Social Order of Open Source Software Production

community theory, which assigns communities
features such as multiplex relationships, shared
values, frequent face-to-face interactions, and
emotional bonds (Brint, 2001). However, recent
studies on interest communities suggest that it is
useful to make theoretical room for communities
that are based on quite specifi c identities and do
not necessarily feature shared lives and emo-
tional bonds (Gläser, 2001, 2006). The numerous
relatively small collectivities that produce OSS
without much communication in open forums
(Healy & Schussman, 2003) are groups rather
than communities. Whether an OSS project is
conducted by a group appears to be due to chance
or the attractiveness of the proposed software. The
differences between community and group OSS
projects have not yet been explored.

OSS development indeed appears to be a
unique mode of production. However, it is not. It
has been repeatedly mentioned in the literature
that OSS communities are similar to scientifi c
communities (Benkler, 2002; Bezroukov, 1999;
Dalle et al., 2004; Dalle & Jullien, 2003; Seiferth,
1999). However, these comparisons have been
metaphorical rather than analytical because they
lack suitable theoretical frameworks and exact
descriptions of both modes of production. The
following comparison of OSS production com-
munities and scientifi c communities is based on a
larger study that identifi ed scientifi c communities
as production communities (Gläser, 2006).

Both OSS and scientifi c communities produce
new knowledge and consist of members who not
only work on a common product, but are also
aware of this collective work and adjust their ac-
tions accordingly. Membership is based on the
self-perception of working with the community’s
subject matter (software, respectively scientifi c
knowledge). That is why both communities also
have in common the fuzziness of their boundar-
ies and incomplete information about members.
Another similarity is the decoupling of contribu-
tions from contributors’ subsistence. Research has
been professionalized for a long time. However,

the organizations that employ scientists and pay
them salaries are not the social contexts in which
tasks are defi ned and contributions are used. The
production of scientifi c knowledge takes place
in the scientifi c communities that do not provide
material rewards for offered or accepted contribu-
tions. Thus, payments to scientists are exogenous
to the production community, as are payments for
OSS developers.

In both OSS production and research, task
creation is a decentralized and autonomous pro-
cess. Both communities are similar in that the
elite may (and indeed do) defi ne tasks of special
importance or urgency, but has no means to force
other members to work on these tasks. The ad-
justment of individual, dispersed, local activities
is achieved by individuals’ reference to the joint
subject matter of work. In order to become such
a reference point for an open and unknown audi-
ence, the common subject matter of work must
be available to all potential members of a produc-
tion community. Since membership is unknown,
the only way to guarantee availability to all is
publication, which is realized by scientifi c books
and journals (and increasingly via the Internet) in
scientifi c communities, and by Internet publica-
tion in OSS communities.3 The common subject
matter also guides the conduct of work, which is
additionally informed by standards and rules of
conduct. In scientifi c communities, standards and
rules for experimentation have functions similar
to the rules of conduct for OSS production.

Both OSS production and the production of
scientifi c knowledge apply the same mechanism
of quality control, namely, peer review as a fi rst,
explicit preliminary check, and a subsequent
implicit and possibly infi nite series of checks in
a variety of settings.

The important differences between scientifi c
and OSS communities can be summarized by
stating that structures and processes that remain
implicit and informal in science are explicit and
partly formalized in OSS communities. Thus,
while both scientifi c and OSS communities have

176

The Social Order of Open Source Software Production

been described as meritocracies, the elite of a sci-
entifi c community do not have a formal status and
no formal right to decide on the current true state
of a community’s knowledge. While scientifi c
elites exert signifi cant infl uence on the opinions
of their communities, they cannot make binding
decisions or establish binding rules of conduct.
In OSS production, there are offi cial versions of
the common product, and only formally recog-
nized elite members have both the right and the
opportunity to change these versions.

A similar difference exists between the ways
in which contributions are integrated into the
common product, which are more explicit in
OSS communities. Peer review of contribu-
tions is ubiquitous but relatively unimportant
for the integration of new contributions into the
knowledge of scientifi c communities. The main
way of integrating new contributions is implicit
integration by using each others’ results. When
members of a scientifi c community use a contri-
bution in their further production of knowledge,
they implicitly accept it and integrate it into the
community’s common body of knowledge, which
is the basis of further knowledge production. In
the case of OSS production, members of the elite
must decide explicitly about the integration of
contributions.

Thus, we observe an explicitly defi ned elite
who makes decisions by adhering to explicit and
partly formalized procedures and creates formal-
ized rules and standards in OSS communities,
while the analogous processes in scientifi c com-
munities remain more informal and implicit. This
difference is due to the fact that OSS is not only
knowledge, but also a technical product. While
scientists can proceed regardless of gaps, incon-
sistencies, and contradictions in their shared body
of knowledge, a computer program’s functioning
would be endangered. Garzarelli and Galoppini
(2003) have argued that in OSS production, hi-
erarchy is necessary to manage the interaction
of modules in large OSS projects. The analogous
process in science—the interaction of knowledge

from different fi elds—is left to the self-organiza-
tion of research. Moreover, the OSS production is
intended to lead to a standardized mass product
at some stage, namely, when a new version of the
software is released. The overlap of the produc-
tion and use of OSS, albeit considerable, is not
complete, and an unproblematic output must be
created for users who are not able to change the
product. Therefore, consistency and reliability
are much more important in OSS production than
in science, where the only further use is by the
producers themselves in the very same activity
of knowledge production.

The Competitive Advantage of
Production Communities

If the production community is a distinct type
of collective production system, it must be both
comparable to and qualitatively different from
the three known systems of collective production.
Table 1 applies the questions answered for produc-
tion communities to the other three types.4

It becomes apparent that the collective pro-
duction systems can be grouped according to a
distinction introduced by Hayek (1945, 1991), who
observed that social order can be either made or
spontaneous. Organizations and networks are
made orders because they both employ dedicated
actions (coordination) to create order. The char-
acteristic forms of coordination in organizations
and networks are hierarchical decisions and ne-
gotiations, respectively. Markets and production
communities both rely on decentralized task
defi nition and ex post selection of contributions.
They are spontaneous orders and rely on “para-
metric adjustment” (Lindblom, 1965) to a situation
rather than coordination. However, production
communities differ from markets in their use
of concrete information about the production
system’s subject matter of work rather than ex-
tremely reduced abstract information as provided
by market prices. Another signifi cant difference
that is not shown in Table 1 is that markets are

 177

The Social Order of Open Source Software Production

characterized by feedback between contributions
and producers’ subsistence, feedback that does
not exist in production communities.

While this comparison does indeed prove that
production communities can be introduced as a
fourth distinct collective production system, it
does not answer an important question. Which
production system is the most effi cient under
which conditions? We have not yet a taxonomy
that links types of production tasks to types of
collective production systems. Therefore, only
a few exploratory comments on this topic are
possible.

One of production communities’ striking fea-
tures is their apparent waste of effort. In both OSS
and scientifi c communities, many contributions
are offered that will never be used. The decentral-
ized task defi nition is liable to both mispercep-
tions, that is, the production of contributions no
one is interested in, and solutions of roughly the
same problem by a multitude of contributors.

However, this apparent waste of effort and
resources has major advantages for a collective
production system that operates under complete
uncertainty, which is the case for both OSS pro-
duction communities and scientifi c communities.
Complete uncertainty means that at any stage
of the production process, the following are not
clear:

• What exactly is the problem that needs solv-
ing (how should it be formulated)?

• Is there a solution to the problem at the cur-
rent stage of knowledge?

• How could the problem be solved?
• What knowledge can be regarded as valid

and reliable and should therefore be used
for solving the problem?

• Who can solve the problem?

This is the case in science where each re-
searcher formulates a problem in a particular
way based on prior research and the current work
environment, and in OSS production where the
software informalisms are subject to idiosyn-
cratic interpretations, and where the hardware and
software environments of an OSS are constantly
changing. Under these conditions, the apparent
waste of effort is actually a very effective and
probably even effi cient use of resources. First,
when nobody can say for sure what the problem is,
decentralized task creation appears to be feasible
because members of the concept of production
community make as many independent attempts
to formulate and solve problems as possible.
While many (and sometimes most) of the at-
tempts are bound to fail or to become redundant,
the decentralized approach provides the highest
likelihood that the problem is solved as quickly
as possible.

The second advantage of production com-
munities is that under the conditions of complete
uncertainty, tasks are assigned to producers by
“self-identifi cation” (Benkler, 2002, pp. 414-415).

Organization Network Market Community

Membership constituted by Formal rules Negotiation Exchange offer Perception

Tasks created by
Ex ante division of labor

Decentralized autonomous decisions
Hierarchical Negotiated

Actions adjusted primarily by
Coordination by Parametric adjustment to

Hierarchical decisions Negotiations Price Subject matter of work

Integration of contributions
based on Preproduction decisions Postproduction

exchange
Postproduction peer

review and use

Table 1. Comparison of collective production systems

178

The Social Order of Open Source Software Production

The problem of who should do what, which would
be impossible to solve by centralized decision
making, is decided by every individual producer
autonomously. The decentralized decision mak-
ing on tasks guarantees the best possible fi t of
tasks and producers. Naturally, misperceptions
and therefore a misallocation of tasks are still
possible.

The third advantage of production communi-
ties that can outweigh the waste of effort is their
mechanism of quality control. While it is often
the case that peer review is seen as the major
mechanism of quality control and an advantage
of production communities, the quality control by
use is much more important because it is more
thorough in the long run. In production communi-
ties, contributions (code, respectively knowledge
claims) are used in the further production process.
Since production occurs in local settings, which
vary from each other, each producer’s work en-
vironment constitutes a specifi c test site for the
community’s common subject matter of work. The
numerous tests of the common product that are
permanently performed at these sites signifi cantly
enhance the quality of the product. In the case of
scientifi c knowledge, this aspect of quality can be
described without reference to truth as robustness,
that is, as stability across different environments
(Star, 1993). In the case of software, the major
concern is the quality of the code. While there is
still limited empirical evidence to back the claim
that OSS is superior to proprietary software in
terms of bug detection and fi xing, one comparative
study indicates that this advantage might indeed
exist (Mockus et al., 2002).

FUTURE TRENDS AND
CONCLUSION

OSS communities are production communities
that apply a distinct mode of production that has
so far been neglected by the literature. Production
communities rely on decentralized task defi nition

that is ordered by the common subject matter of
work, which is observed by all members. Deci-
sions about the integration of contributions are
made ex post by peer review and subsequent
use. The use of contributions in a variety of local
work environments is also the major mechanism
of quality control.

The analysis has also revealed gaps in our
knowledge about systems of collective production
in general and about production communities in
particular. Since OSS and scientifi c communities
belong to the same type of collective production
system, ideas and research questions could be
exchanged. For example, strategies used in science
studies for analysing knowledge structures and
knowledge fl ows could be adopted for the inves-
tigation of OSS. In science, relationships between
contributions are refl ected in citations, which in
turn enable the study of structures and fl ows of
knowledge. Citation analyses have demonstrated
that all scientifi c knowledge is interconnected
and can be thought of as one body of knowledge,
which is internally structured (Small & Griffi th,
1974) and has fractal characteristics (Van Raan,
1990). The pendant to citation in science appears
to be coupling, which refl ects connections between
modules. The analysis of coupling with techniques
such as cross-referencing tools (Yu, Schach,
Chen, & Offutt, 2004), design structure matrices
(MacCormack, Rusnak, & Baldwin, 2004), and
call-graph analysis (de Souza et al., 2005) should
provide opportunities to study structures in OSS
in a way similar to citation analysis.

Studies of production communities could
benefi t from the fact that OSS communities oper-
ate more explicitly than scientifi c communities.
The explicit negotiations, decisions, and rules
that characterize the production processes of
OSS communities make them a suitable research
object for studying the organizing functions of a
production community’s shared subject matter of
work. For example, the social mechanisms that
are at work in the branching out of knowledge
production into different directions (forking) and

 179

The Social Order of Open Source Software Production

in the dying of a line of knowledge production
(of an OSS project) can be assumed to be at least
similar to those occurring in scientifi c communi-
ties, where they are less easy to identify and to
observe because of the implicitness of knowledge
structures and cognitive developments.

The introduction of the production community
also challenges the theory of collective production
systems. While the superiority of the communal
mode of production for some types of software
development tasks is felt by many observers,
this point must also be made theoretically in the
comparison of collective production systems. We
need a generalized approach that relates types
of production problems to types of collective
production systems and enables a comparison
of their advantages and disadvantages. Thus, in
order to get more out of the many case studies
on OSS production, we need more abstract and
more comparative theory.

REFERENCES

Benkler, Y. (2002). Coase’s penguin, or, Linux
and the nature of the fi rm. Yale Law Journal,
112, 369-446.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11, 305-320.

Bezroukov, N. (1999). Open source software de-
velopment as a special type of academic research
(critique of vulgar Raymondism). First Monday,
4. Retrieved from http://www.fi rstmonday.dk/is-
sues/issue4_10/bezroukov/index.html

Bonaccorsi, A., & Rossi, C. (2003). Why open
source software can succeed. Research Policy,
32, 1243-1258.

Brint, S. (2001). Gemeinschaft revisited: A critique
and reconstruction of the community concept.
Sociological Theory, 19, 1-23.

Crowston, K., Wei, K., Li, Q., & Howison, J.
(2006). Core and periphery in free/libre and open
source software team communications. Paper
presented at the 39th Annual Hawaii International
Conference on System Sciences, Waikoloa, HI.

Dalle, J.-M., David, P. A., Ghosh, R. A., &
Steinmueller, W. E. (2004). Advancing economic
research on the free and open source software
mode of production (SIEPR Discussion Paper
04-03). Stanford: Stanford Institute for Economic
Policy Research.

Dalle, J.-M., & Jullien, N. (2003). “Libre” soft-
ware: Turning fads into institutions? Research
Policy, 32, 1-11.

Demil, B., & Lecocq, X. (2003). Neither market
nor hierarchy or network: The emerging bazaar
governance. Retrieved from http://opensource.
mit.edu/papers/demillecocq.pdf

De Souza, C., Froehlich, J., & Dourish, P. (2005).
Seeking the source: Software source code as a
social and technical artifact. In Proceedings of
the ACM International Conference on Supporting
Group Work (GROUP 2005) (pp. 197-206).

Edwards, K. (2001). Epistemic communities,
situated learning and open source software de-
velopment. Retrieved from http://opensource.mit.
edu/papers/kasperedwards-ec.pdf

Gacek, C., & Arief, B. (2004). The many meanings
of open source. IEEE Software, 21, 34-40.

Gallivan, M. J. (2001). Striking the balance between
trust and control in a virtual organization: A con-
tent analysis of open source software case studies.
Information Systems Journal, 11, 277-304.

Garzarelli, G., & Galoppini, R. (2003). Capability
coordination in modular organization: Volun-
tary FS/OSS production and the case of Debian
GNU/Linux. In Economics Working Paper Archive
at WUST, Industrial Organization. Retrieved
February 23, 2006, from http://opensource.mit.
edu/papers/garzarelligaloppini.pdf

180

The Social Order of Open Source Software Production

Gasser, L., & Ripoche, G. (2003). Distributed
collective practices and free/open-source soft-
ware problem management: Perspectives and
methods. Paper presented at the 2003 Confer-
ence on Cooperation, Innovation & Technologies
(CITE2003). Retrieved from http://www.isrl.uiuc.
edu/~gasser/papers/cite-gasser.pdf

Ghosh, R. A. (1998). Cooking pot markets: An
economic model for the trade in free goods
and services on the Internet. First Monday, 3.
Retrieved from http://www.fi rstmonday.org/is-
sues/issue3_3/ghosh/index.html

Ghosh, R. A., & Prakash, V. V. (2000). The Orbiten
free software survey. Retrieved from http://www.
orbiten.org/ofss/01.html

Gläser, J. (2001, December). “Producing com-
munities” as a theoretical challenge. Paper pre-
sented at the TASA 2001 Conference, Sydney,
Australia.

Gläser, J. (2006). Wissenschaftlich produktion-
sgemeinschaften: Die soziale ordnung der forsc-
hung. Frankfurt am Main, Germany: Campus,
im Erscheinen.

Hayek, F. A. (1945). The use of knowledge in
society. The American Economic Review, 35,
519-530.

Hayek, F. A. (1991). Spontaneous (“grown”) order
and organized (“made”) order. In G. Thompson, J.
Frances, R. Levacic, & J. Mitchell (Eds.), Markets,
hierarchies and networks: The coordination of
social life (pp. 293-301). London: SAGE Publica-
tions Ltd.

Healy, K., & Schussman, A. (2003). The ecology
of open-source software development. Retrieved
from http://opensource.mit.edu/papers/healy-
schussman.pdf

Hedström, P. (2005). Dissecting the social: On
the principles of analytical sociology. Cambridge,
UK: Cambridge University Press.

Hess, D. J. (2005). Technology- and product-
oriented movements: Approximating social
movement studies and science and technology
studies. Science, Technology, and Human Values,
30, 515-535.

Holck, J., & Jørgensen, N. (2005). Do not check
in on red: Control meets anarchy in two open
source projects. In S. Koch (Ed.), Free/open source
software development (pp. 1-25). Hershey, PA:
Idea Group Publishing.

Hollingsworth, J. R., & Boyer, R. (1997). Coor-
dination of economic actors and social systems
of production. In J. R. Hollingsworth & R. Boyer
(Eds.), Contemporary capitalism: The embedded-
ness of institutions (pp. 1-47). Cambridge, UK:
Cambridge University Press.

Holtgrewe, U., & Werle, R. (2001). De-commodi-
fying software? Open source software between
business strategy and social movement. Science
Studies, 14, 43-65.

Iannacci, F. (2003). The Linux management
model. Retrieved from http://opensource.mit.
edu/papers/iannacci2.pdf

Jørgensen, N. (2001). Putting it all in the trunk:
Incremental software development in the Free-
BSD open source project. Information Systems
Journal, 11, 321-336.

Knorr-Cetina, K., & Merz, M. (1997). Flounder-
ing or frolicking: How does ethnography fare in
theoretical physics? (And what sort of ethnogra-
phy?) A reply to Gale and Pinnick. Social Studies
of Science, 27, 123-131.

Koch, S., & Schneider, G. (2002). Effort, co-
operation and co-ordination in an open source
software project: GNOME. Information Systems
Journal, 12, 27-42.

Lanzara, G. F., & Morner, M. (2003). The knowl-
edge ecology of open-source software projects.
Paper presented at the 19th EGOS Colloquium,
Copenhagen, Denmark.

 181

The Social Order of Open Source Software Production

Lerner, J., & Tirole, J. (2002). Some simple eco-
nomics of open source. The Journal of Industrial
Economics, 50, 197-234.

Lindblom, C. E. (1965). The intelligence of
democracy: Decision making through mutual
adjustment. New York: The Free Press.

MacCormack, A., Rusnak, J., & Baldwin, C.
(2004). Exploring the structure of complex soft-
ware designs: An empirical study of open source
and proprietary code. Unpublished manuscript.

Mayntz, R. (1993). Policy-netzwerke und die logik
von verhandlungssystemen. In A. Héritier (Ed.),
Policy-analyse: Kritik und neuorientierung (pp.
39-56). Opladen: Westdeutscher Verlag.

Mayntz, R. (2004). Mechanisms in the analysis
of social macro-phenomena. Philosophy of the
Social Sciences, 34, 237-259.

Merz, M., & Knorr-Cetina, K. (1997). Deconstruc-
tion in a “thinking” science: Theoretical physicists
at work. Social Studies of Science, 27, 73-111.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11, 309-346.

Powell, W. W. (1990). Neither market nor hierar-
chy: Network forms of organization. Research in
Organizational Behavior, 12, 295-336.

Raymond, E. (1999). The cathedral and the bazaar.
Knowledge, Technology & Policy, 12, 23-49.

Robles, G., Scheider, H., Tretkowski, I., & Weber,
N. (2001). Who is doing it? A research on Libre
software developers. Retrieved from http://widi.
berlios.de/paper/study.html

Scacchi, W. (2002). Understanding the require-
ments for developing open source software sys-
tems. IEE Proceedings: Software, 149, 24-39.

Scharpf, F. W. (1997). Games real actors play: Ac-
tor-centered institutionalism in policy research.
Boulder, CO: Westview Press.

Scott, W. R. (1992). Organizations: Rational,
natural, and open systems. Englewood Cliffs,
NJ: Prentice-Hall.

Seiferth, C. J. (1999). Open source and these
United States. Knowledge, Technology & Policy,
12, 50-79.

Sharma, S., Sugumeran, V., & Rajagopalan, B.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12, 7-25.

Simon, H. A. (1991). Organizations and markets.
Journal of Economic Perspectives, 5, 25-44.

Small, H., & Griffi th, B. C. (1974). The structure
of scientifi c literatures I: Identifying and graphing
specialities. Science Studies, 4, 17-40.

Star, S. L. (1993). Cooperation without consen-
sus in scientifi c problem solving: Dynamics of
closure in open systems. S. Easterbrook (Ed.),
CSCW: Cooperation or confl ict? (pp. 93-106).
London: Springer.

Tuomi, I. (2001). Internet, innovation, and open
source: Actors in the network. First Monday, 6.
Retrieved from http://fi rstmonday.org/issues/is-
sue6_1/tuomi/index.html

Van Raan, A. F. J. (1990). Fractal dimension of
co-citations. Nature, 347, 626.

Von Hippel, E., & von Krogh, G. (2003). Open
source software and the “private-collective” in-
novation model: Issues for organization science.
Organization Science, 14, 209-223.

Von Krogh, G., Spaeth, S., & Lakhani, K. R.
(2003). Community, joining, and specialization
in open source software innovation: A case study.
Research Policy, 32, 1217-1241.

182

The Social Order of Open Source Software Production

Von Krogh, G., & von Hippel, E. (2003). Editorial:
Special issue on open source software develop-
ment. Research Policy, 32, 1149-1157.

West, J., & O’Mahony, S. (2005). Contrasting
community building in sponsored and community
founded open source projects. In Proceedings of
the 38th Annual Hawaii International Conference
on System Sciences, Waikoloa, HI. Retrieved from
http://opensource.mit.edu/papers/westomahony.
pdf

Yu, L., Schach, S. R., Chen, K., & Offutt, J.
(2004). Categorization of common coupling and
its application to the maintainability of the Linux
kernel. IEEE Transactions on Software Engineer-
ing, 30, 694-706.

Zeitlyn, D. (2003). Gift economies in the develop-
ment of open source software: Anthropological
refl ections. Research Policy, 32, 1287-1291.

KEY TERMS

 Community: A group of actors who share a
collective identity that is based on the perception
of having something in common, and who adjust
some of their actions because of this identity.

 Peer Review: Process in which people engaged
in the same kind of work judge the quality of
one’s work, comment on it, and make decisions
on these judgements.

 Production Community: A community
whose members jointly produce a good by au-
tonomously deciding about their contributions by
adjusting their decisions to the common subject
matter of work.

 Social Mechanism: A sequence of causally
linked events that occur repeatedly in reality if
certain conditions are given and link specifi ed
initial conditions to a specifi c outcome (Mayntz,
2004, p. 241).

 Social Order: A state of a group of actors that is
characterized by a mutual adjustment of actions.

ENDNOTES

1 The concept of “thin description” has
been developed by Merz and Knorr-Cetina
(Knorr-Cetina & Merz, 1997; Merz & Knorr-
Cetina, 1997) in their analysis of the work
of theoretical physicists.

2 Each open source software is accompanied
by a variety of Web-based descriptions that
contain requirements for the software (the
so-called “software informalisms,” Scacchi,
2002; see also Gasser & Ripoche, 2003).

3 While the openness of source may be an
ideology that is rooted in the Hacker move-
ment (Holtgrewe & Werle, 2001, pp. 52-53;
von Krogh & von Hippel, 2003, pp. 1150-
1151), it is also a logistic prerequisite for the
communal production of software.

4 As is the case with OSS production,
the description of the other systems of
collective production needs to be synthesized
from a dispersed literature (Gläser,
2006). Key publications that support the
interpretation applied here are Hayek (1945)
for markets, Simon (1991) and Scott (1992)
for organisations, Powell (1990) and Mayntz
(1993) for networks, and Hollingsworth and
Boyer (1997) and Scharpf (1997) for the
comparative approach.

 183

Section III
Evaluating Open Source

Software Products and Uses

184

Chapter XV
Open Source Software:
Strengths and Weaknesses

Zippy Erlich
The Open University of Israel, Israel

Reuven Aviv
The Open University of Israel, Israel

INTRODUCTION

Open source software (OSS) has attracted sub-
stantial attention in recent years and continues
to grow and evolve. The philosophy underlying
OSS is to allow users free access to, and use of,
software source code, which can then be adapted,

ABSTRACT

The philosophy underlying open source software (OSS) is enabling programmers to freely access the
software source by distributing the software source code, thus allowing them to use the software for
any purpose, to adapt and modify it, and redistribute the original or the modifi ed source for further
use, modifi cation, and redistribution. The modifi cations, which include fi xing bugs and improving the
source, evolve the software. This evolutionary process can produce better software than the traditional
proprietary software, in which the source is open only to a very few programmers and is closed to
everybody else who blindly use it but cannot change or modify it. The idea of open source software
arose about 20 years ago and in recent years is breaking out into the educational, commercial, and
governmental world. It offers many opportunities when implemented appropriately. The chapter will
present a detailed defi nition of open source software, its philosophy, its operating principles and rules,
and its strengths and weaknesses in comparison to proprietary software. A better understanding of the
philosophy underlying open source software will motivate programmers to utilize the opportunities it
offers and implement it appropriately.

modifi ed, and redistributed in its original or
modifi ed form for further use, modifi cation, and
redistribution. OSS is a revolutionary software
development methodology (Eunice, 1998) that
involves developers in many locations throughout
the world who share code in order to develop and
refi ne programs. They fi x bugs, adapt and improve

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 185

Open Source Software: Strengths and Weaknesses

the program, and then redistribute the software,
which thus evolves. Advocates of OSS are quick
to point to the superiority of this approach to
software development. Some well-established
software development companies, however, view
OSS as a threat (AlMarzouq, Zheng, Rong, &
Grover, 2005).

Both the quality and scope of OSS are grow-
ing at an increasing rate. There are already free
alternatives to many of the basic software tools,
utilities, and applications, for example, the free
Linux operating system (Linux Online, 2006), the
Apache Web server (Apache Software Founda-
tion, 2006; Mockus, Fielding, & Herbsleb, 2000),
and the Sendmail mail server (Sendmail Consor-
tium, 2006). With the constant improvement of
OSS packages, there are research projects, even
complex ones, that entirely rely on OSS (Zaritski,
2003). This opens new research and educational
opportunities for installations and organizations
with low software budgets.

Incremental development and the continuity
of projects over long periods of time are distinc-
tive features of OSS development. The software
development processes of large OSS projects are
diverse in their form and practice. Some OSS
begins with releasing a minimal functional code
that is distributed for further additions, modifi -
cation, and improvement by other developers, as
well as by its original authors, based on feedback
from other developers and users. However, open
source projects do not usually start from scratch
(Lerner & Tirole, 2001). The most successful OSS
projects, like Linux and Apache, are largely based
on software provided by academic and research
institutions. In recent years, more and more OSS
has been derived from original software provided
by for-profi t companies.

A large potential-user community is not
enough to make an OSS project successful. It
requires dedicated developers. In Raymond’s
(1998) words, “The best OSS projects are those
that scratch the itch of those who know how to
code.” For example, the very successful Linux

project attracted developers who had a direct
interest in improving an operating system for
their own use. Similarly, webmaster developers
contributed to the development of the Apache
Web server project.

Despite the characterization of the OSS ap-
proach as ad hoc and chaotic, OSS projects appear,
in many cases, to be highly organized, with tool
support that focuses on enhancing human col-
laboration, creativity, skill, and learning (Lawrie
& Gacek, 2002). The good initial structural de-
sign of an OSS project is the key to its success.
A well-modularized design allows contributors
to carve off chunks on which they can work. In
addition, the adoption of utility tools and the use
of already existing OSS components are neces-
sary if an OSS project is to succeed.

The growing interest of commercial organiza-
tions in developing and exploiting OSS has led
to an increased research focus on the business-
model aspects of the OSS phenomenon. There
are a number of business models for OSS, all of
which assume the absence of traditional software
licensing fees (Hecker, 2000). The economics of
OSS projects is different from that of proprietary
projects (Lerner & Tirole, 2002). Models of effort
and cost estimation in the development of projects
involving OSS are needed (Asundi, 2005).

In the past, most OSS applications were not
suffi ciently user friendly and intuitive, and only
very knowledgeable users could adapt the soft-
ware to their needs. Although the use of OSS is
growing, OSS is still mainly used by technically
sophisticated users, and the majority of aver-
age computer users use standard commercial
 proprietary software (Lerner & Tirole, 2002).
The characteristics of open source development
infl uence OSS usability (Behlendorf, 1999; Nich-
ols, Thomson, & Yeates, 2001; Raymond, 1999),
which is often regarded as one of the reasons for
its limited use. In recent years, the open source
community has shown increased awareness of
usability issues (Frishberg, Dirks, Benson, Nick-
ell, & Smith, 2002). Existing human-computer

186

Open Source Software: Strengths and Weaknesses

interface (HCI) techniques and usability improve-
ment methods appropriate for community-based
software development on the Internet can be used
to leverage distributed networked communities to
address issues of usability (Nichols & Twidale,
2003). Some OSS applications, such as the Mozilla
Web browser (Mozilla, 2006; Reis & Fortes, 2002)
and OpenOffi ce (OpenOffi ce, 2006), have made
important advances in usability and have become
available for both Windows and Linux users.

As the stability and security of open source
products increase, more organizations seem to
be adopting OSS at a faster rate. There are many
open source community resources and services
online. When implemented appropriately, OSS
offers extensive opportunities for government,
private-sector, and educational institutions. OSS
appears to be playing a signifi cant role in the
acquisition and development plans of the U.S.
Department of Defense and of industry (Hissam,
Weinstock, Plakosh, & Asundi, 2001).

For many organizations, integrating the
revolutionary OSS developmental process into
traditional software development methods may
have a profound effect on existing software de-
velopment and management methodologies and
activities.

The remainder of this chapter will review the
history of OSS and defi ne some key terms and
concepts. It will discuss the incentives to engage
in OSS and its strengths and weakness. Finally, it
will review some OSS business models.

BACKGROUND

Software source code that is open has been
around in academic and research institute settings
from the earliest days of computing. Feller and
Fitzgerald (2002) provide a detailed historical
background to open source since the 1940s. The
source code of programs developed in universi-
ties, mainly as learning and research tools, was
freely passed around. Many of the key aspects

of computer operating systems were developed
as open source during the 1960s and 1970s in
academic settings, such as Berkeley and MIT, as
well as in research institutes, such as Bell Labs
and Xerox’s Palo Alto Research Center, at a time
when sharing source code was widespread (Lerner
& Tirole, 2002).

The free software (FS) movement began in
the 1980s in academic and research institutes.
The Free Software Foundation (FSF) was estab-
lished by Richard Stallman of the MIT Artifi cial
Intelligence Laboratory in 1984. The basic idea
underlying the foundation was to facilitate the
development and free dissemination of software.
It is important to note that free in this case relates
not to price, but to freedom of use. The developers
of the Linux operating system bought in to the
FS concept. Linux, initiated by Linus Tovalds in
1991, was the fi rst tangible achievement of the
FS movement (Stallman, 1999). This successful
operating system has, through the collaboration of
the global FS community, grown into the second
most widely used server operating system.

The OSS movement evolved from the FSF
during the 1990s. OSS has more fl exible licensing
criteria than the FSF. The widespread use of the
Internet led to acceleration in open source activi-
ties. Numerous open source projects emerged,
and interaction between commercial companies
and the open source community became com-
monplace. Unlike the FS community, the OSS
movement does not view itself as a solution for
proprietary software, but rather as an alternative
to it (Asiri, 2003). This has led to the acceptance of
selective open sourcing, in which companies may
elect to make specifi c components of the source
code, rather than the entire code, publicly avail-
able, an approach which appeals to the business
community. This allows companies to package
available OSS products with other applications
and extensions, and sell these to customers. Profi t
can also be made on the exclusive support pro-
vided with the retail packages, which may include
manuals, software utilities, and support help lines.

 187

Open Source Software: Strengths and Weaknesses

For example, Red Hat Software (Red Hat, 2006),
the leading provider of the Linux-based operat-
ing system, founded in 1995, based its business
model on providing Linux software for free and
selling extras such as support, documentation,
and utilities, making it easy for users to install
and use the software.

Defi nitions: FS and OSS

According to the FSF, FS involves users’ free-
dom to run, copy, distribute, study, change, and
improve software. The FSF defi ned four kinds
of freedom for software users (Free Software
Foundation, 2006).

1. The freedom to run the program for any
purpose

2. The freedom to study how the program
works, and adapt it to one’s needs; access to
the source code is a precondition for this

3. The freedom to redistribute copies so one
can help a neighbor

4. The freedom to improve the program and
release improvements to the public so that
the whole community benefi ts; access to the
source code is a precondition for this

The FSF recommends the GNU (a Unix-com-
patible operating system developed by the FSF)
 General Public License (GPL; Free Software
Foundation, 1991) to prevent the GNU operating
system software from being turned into propri-
etary software. This involves the use of “ copyleft,”
which Stallman (1999) defi nes as follows:

The central idea of copyleft is that we give everyone
permission to run the program, copy the program,
modify the program, and distribute modifi ed ver-
sions—but not permission to add restrictions of
their own. Thus, the crucial freedoms that defi ne
“free software” are guaranteed to everyone who
has a copy; they become inalienable rights.

The GPL permits the redistribution and reuse
of source code for unfettered use and access as
long as any modifi cations are also available in the
source code and subject to the same license.

The term OSS was adopted in large part
because of the ambiguous nature of the term FS
(Johnson, 2001). On the most basic level, OSS
simply means software for which the source code
is open and available (Hissam et al., 2001), and
that anyone can freely redistribute, analyze, and
modify while complying with certain criteria
(AlMarzouq et al., 2005). However, OSS does not
just mean access to source code. For a program to
be OSS, a set of distribution terms must apply.

A comprehensive Open Source Defi nition
(OSD) was published by the Open Source Initia-
tive (OSI). The OSD differentiates itself from
FS by allowing the use of licenses that do not
necessarily provide all the freedoms granted by
the GPL. According to the updated version of the
OSD (1.9), the distribution terms of OSS must
comply with all 10 of the following criteria (Open
Source Initiative, 2005).

1. Free redistribution: The license shall not
restrict any party from selling or giving away
the software as a component of an aggregate
software distribution containing programs
from several different sources. The license
shall not require a royalty or other fee for
such sale.

2. Source code: The program must include
source code, and must allow distribution
in source code as well as compiled form.
Where some form of a product is not dis-
tributed with source code, there must be
a well-publicized means of obtaining the
source code for no more than a reasonable
reproduction cost—preferably, downloading
via the Internet without charge. The source
code must be the preferred form in which
a programmer would modify the program.
Deliberately obfuscated source code is not
allowed. Intermediate forms such as the

188

Open Source Software: Strengths and Weaknesses

output of a preprocessor or translator are
not allowed.

3. Derived works: The license must allow
modifi cations and derived works, and must
allow them to be distributed under the
same terms as the license of the original
software.

4. Integrity of the author’s source code:
The license may restrict source code from
being distributed in modifi ed form only if
the license allows the distribution of patch
fi les with the source code for the purpose of
modifying the program at build time. The
license must explicitly permit distribution of
software built from modifi ed source code.
The license may require derived works to
carry a different name or version number
from the original software.

5. No discrimination against persons or
groups: The license must not discriminate
against any person or group of persons.

6. No discrimination against fi elds of en-
deavor: The license must not restrict anyone
from making use of the program in a specifi c
fi eld of endeavor. For example, it may not
restrict the program from being used in a
business, or from being used for genetic
research.

7. Distribution of license: The rights attached
to the program must apply to all to whom
the program is redistributed without the
need for execution of an additional license
by those parties.

8. License must not be specifi c to a product:
The rights attached to the program must
not depend on the program’s being part of
a particular software distribution. If the
program is extracted from that distribution
and used or distributed within the terms of
the program’s license, all parties to whom
the program is redistributed should have
the same rights as those that are granted
in conjunction with the original software
distribution.

9. License must not restrict other software:
The license must not place restrictions on
other software that is distributed along with
the licensed software. For example, the li-
cense must not insist that all other programs
distributed on the same medium must be
open source software.

10. License must be technology neutral: No
provision of the license may be predicated
on any individual technology or style of
interface.

Although there are some differences in the
defi nitions of OSS and FS, the terms are often used
interchangeably. Neither OSS nor FS pertains to
the source code and its quality, but rather to the
rights that a software license must grant. Vari-
ous licensing agreements have been developed
to formalize distribution terms (Hecker, 2000).
Open source licenses defi ne the privileges and
restrictions a licensor must follow in order to use,
modify, or redistribute the open source software.
OSS includes software with source code in the
public domain and software distributed under an
open source license. Examples of open source
licenses include the Apache license, Berkeley
Source Distribution (BSD) License, GNU GPL,
 GNU Lesser General Public License (LGPL), MIT
License, Eclipse Public License (EPL), Mozilla
Public License (MPL), and Netscape Public Li-
cense (NPL).

Table 1 provides a comparison of several
common licensing practices described in Perens
(1999).

The OSI has established a legal certifi cation
for OSS, called the OSI certifi cation mark (Open
Source Initiative, 2006b). Software that is dis-
tributed under an OSI-approved license can be
labeled “OSI Certifi ed.”

Incentives to Engage in OSS

A growing body of literature addresses the motives
for participation in OSS projects. Lerner and Tirole

 189

Open Source Software: Strengths and Weaknesses

(2001) describe incentives for programmers and
software vendors to engage in such projects:

Programmers’ Incentives

• Programmers are motivated by a desire for
peer recognition. Open source program-
mers’ contributions are publicly recognized.
By participating in an OSS project, program-
mers signal their professional abilities to the
public.

• Programmers feel a duty to contribute to a
community that has provided a useful piece
of code.

• Some programmers are motivated by pure
altruism.

• Some sophisticated OSS programmers
enjoy fi xing bugs, working on challenging
problems, and enhancing programs.

• OSS is attractive to computer science
students who wish to enter the market as
programmers in higher positions.

Software Vendors’ Incentives

• Vendors make money on OSS comple-
mentary services such as documentation,
installation software, and utilities.

• By allowing their programmers to get in-
volved in OSS projects, vendors keep abreast

of open source developments, which allows
them to better know the competition.

• Vendors benefi t from effi cient use of global
knowledge. Many companies can collabo-
rate on a product that none of them could
achieve alone.

MAIN FOCUS OF THE CHAPTER

OSS Strengths and Weaknesses

OSS has a number of strengths and weaknesses
compared to traditional proprietary software.

Strengths

The strengths of OSS can be classifi ed into
fi ve main categories: freedom of use; evolu-
tion of software; time, cost, and effort; quality
of software; and advantages to companies and
programmers.

Freedom of Use

• It allows free access to the software source
code for use, modifi cation, and redistribution
in its original or modifi ed form for further
use, modifi cation, and redistribution.

Table 1. Comparison of licensing practices (Source: Perens, 1999)

License
Can be mixed
with non-free

software

Modifi cations can
be made private
and not returned

Can be
relicensed
by anyone

Contains special
privileges for the original

copyright holder over
others’ modifi cations

GPL

LGPL X

BSD X X

NPL X X X

MPL X X

Public Domain X X X

190

Open Source Software: Strengths and Weaknesses

• OSS users have fundamental control and
fl exibility advantages by being able to
modify and maintain their own software to
their liking (Wheeler, 2005).

• OSS allows independence from a sole source
company or vendor. It provides users with the
fl exibility and freedom to change between
different software packages, platforms, and
vendors, while secret proprietary standards
lock users into using software from only
one vendor and leave them at the mercy of
the vendor at a later stage (Wong & Sayo,
2004).

• It eliminates support and other problems if
a software vendor goes out of business.

• It prevents a situation in which certain com-
panies dominate the computer industry.

• Users can get free upgrade versions of the
software, switch software versions, and fi x
and improve software (Perens, 1999).

Evolution of Software

• OSS contributes to software evolution due
to the parallel process of many developers
being simultaneously involved rather than
a single software team in a commercial
proprietary software company (Feller &
Fitzgerald, 2002).

• It enables programmers all over the world
to fi x bugs.

• It evolves continuously over time as opposed
to proprietary software whose development
takes place in a series of discrete releases
under the control of the authors.

• OSS represents a viable source of compo-
nents for reuse and to build systems.

Time, Cost, and Effort

• It involves a joint effort by contributors from
countries all over the world, collaborating
via the Internet.

• There is a lower cost of software development
in comparison to proprietary software.

• Open source initiatives allow software to
be developed far more quickly and permits
bugs to be identifi ed sooner.

• The OSS approach is not subject to the same
level of negative external process constraints
of time and budget that can often undermine
the development of dependable systems
within an organizational setting (Lawrie &
Gacek, 2002).

• OSS reduces the cost of using the software
as the licensing is not limited compared to
the limited licensing of proprietary software.
The licensing cost, if any, is low, and most
OSS distributions can be obtained at no
charge. On a licensing cost basis, OSS ap-
plications are almost always much cheaper
than proprietary software (Wong & Sayo,
2004). Open source products can save not-
for-profi t organizations, such as universities
and libraries, a lot of money.

• It reduces development time, cost, and effort
by reusing and building on existing open
source code.

• It reduces maintenance and enhancement
costs by sharing maintenance and enhance-
ments among potential users of the same
software application.

Quality of Software

• OSS reduces the number of bugs and en-
hances software quality by using the feed-
back of many users around the world and
other qualifi ed developers who examine the
source code and fi x the bugs.

• OSS is under constant peer review by de-
velopers around the world. Linus’ law states
the following: “Given enough eyeballs, all
bugs are shallow” (Raymond, 1998).

• Programmers, knowing in advance that
others will see the code they write, will be

 191

Open Source Software: Strengths and Weaknesses

more likely to write the best code they can
possibly write (Raymond, 1998).

• Security vulnerabilities are more quickly
solved when found in OSS than in propri-
etary software (Reinke & Saiedian, 2003).

• OSS represents an alternative approach to
distributed software development able to
offer useful information about common
problems as well as possible solutions
(Johnson, 2001).

Advantages to Companies
and Programmers

• There is an effi cient use of global knowl-
edge.

• Programmers learn from existing source
code how to solve similar problems.

• Students, especially computer science
students, can gain excellent programming
experience and make contributions to open
source software by becoming involved in
open source projects (Zaritski, 2003).

• OSS allows groups of companies to col-
laborate in solving the same problem.

• Companies gain leverage from developers
who contribute free improvements to their
software.

• Companies using OSS benefi t from its
very rapid development, often by several
collaborating companies, much of it con-
tributed by individuals who simply need
an improvement to serve their own needs
(Perens, 1999).

Weaknesses

OSS weaknesses are mainly related to manage-
ment, quality, and security.

Management

• Given the diffi culty in managing resources in
closed source proprietary software projects,

planning and delivering projects based on
an open source community can be a much
bigger challenge (Asundi, 2005). The separa-
tion between distributed developers creates
diffi culties in coordination and collabora-
tion (Belanger & Collins, 1998; Carmel &
Agarwal, 2001).

• Some OSS projects are developed without
concern for the process of accepting or
rejecting changes to the software.

• Resource allocation and budgeting are more
complex than in proprietary software proj-
ects.

• There is higher fl uidity in the membership
of the development team. OSS developers
are not bound to projects by employment
relationships and therefore may come and
go more often (Stewart, Darcy, & Daniel,
2005).

• Existing effort and cost models for pro-
prietary projects are inadequate for OSS
projects, and there is a need to develop new
models.

• Commercial proprietary projects generate
income and thus enable companies to hire
high-quality and motivated programmers.
This is not the case in open source proj-
ects.

Quality and Security

• OSS programmers are not always enthusias-
tic about providing and writing documenta-
tion, therefore some OSS have inadequate
documentation, far below commercial
standards.

• Some OSS applications are not suffi ciently
intuitive and user friendly, and are thus ac-
cessible only to very knowledgeable users.

• It appears that there is sometimes a race
among many current OSS projects, which
often results in rapid releases with the soft-
ware consequently containing many bugs
(Hissam et al., 2001).

192

Open Source Software: Strengths and Weaknesses

• The OSS movement has made the life of
cyberterrorists somewhat easier. Since the
source code is open and available, cyberter-
rorists can learn about vulnerabilities in both
OSS and proprietary closed source software
(CSS) products. The knowledge that some
components of CSS are descendants of
similar OSS components, or share the same
root code base or the same architecture,
design, or specifi cation provides clues as to
what attacks could be possible against such
software (Hissam et al., 2001).

• There is less variety of applications as com-
pared to proprietary applications.

OSS Business Models

The open source model has a lot to offer the busi-
ness world. For a company considering adopting
an open source strategy, open source needs to be
evaluated from a business point of view. It requires
being clear on the advantages and disadvantages of
open source relative to the traditional proprietary
model. There are a number of business models for
OSS, all of which assume the absence of traditional
software licensing fees. As published by the Open
Source Initiative (2006a), there are at least four
known business models based on OSS.

1. Support sellers: In this model, the software
product is effectively given away, but dis-
tribution, branding, and after-sales service
are sold. This is the model followed by, for
example, Red Hat (2006).

2. Loss leader: The open source is given away
as a loss leader and market positioner for
closed software. This is the model followed
by Netscape.

3. Widget frosting: In this model, a hardware
company (for which software is a necessary
adjunct but strictly a cost rather than profi t
center) goes open source in order to get better
drivers and cheaper interface tools. Silicon

Graphics, for example, supports and ships
Samba (2006).

4. Accessorizing: This involves selling acces-
sories such as books, compatible hardware,
and complete systems with open source
software preinstalled. It is easy to trivial-
ize this (open source T-shirts, coffee mugs,
Linux penguin dolls), but at least the books
and hardware underlie some clear suc-
cesses: O’Reilly Associates, SSC, and VA
Research are among the companies using
this model.

So far, the exemplars of commercial success
have been service sellers or loss leaders. Never-
theless, there is good reason to believe that the
clearest near-term gains in open source will be
in widget frosting. For widget makers (such as
semiconductor or peripheral-card manufacturers),
interface software is not even potentially a revenue
source. Therefore, the downside of moving to open
source is minimal. (Hecker, 2000, proposes more
models potentially usable by companies creating
or leveraging OSS products.)

CONCLUSION

OSS is an alternative method of development that
makes effi cient use of global knowledge. It has
captured the attention of academics, software
practitioners, and the entire software community.
Some OSS products have proven to be as reliable
and secure as similar commercial products, and
are a viable source of components from which
to build OSS and CSS systems. Unfortunately,
through OSS products, cyberterrorists also gain
additional information about these components
and discover vulnerabilities in products based
on them.

There are a number of business models for OSS.
Software development companies are beginning
to support OSS-style development. They tend to

 193

Open Source Software: Strengths and Weaknesses

try to profi t through providing additional value
to OSS products, such as value-added software,
professional documentation, packaging, and
support.

Both the quality and scope of OSS are growing
at an increasing rate and there are already free
alternatives to many of the fundamental software
tools, utilities, and applications that are able to
compete with traditional proprietary software.
However, there is still controversy about whether
OSS is faster, better, and cheaper than proprietary
software. Adopters of OSS should not enter
the realm blindly and should know its benefi ts
and pitfalls. Further empirical and theoretical
research is needed on developing and managing
OSS projects. Identifying and explicitly modeling
OSS development processes in forms that can be
shared, modifi ed, and redistributed appears to be
an important topic for future investigation (Jensen
& Scacchi, 2005). The open development process
can provide a suitable environment for investiga-
tion of software development processes.

LIST OF ACRONYMS

BSD: Berkeley Source Distribution

CSS: Closed source software

FS: Free software

FSF: Free Software Foundation

GNU: GNU Not Unix (recursive acronym)

GPL: General Public License

LGPL: Lesser General Public License

MPL: Mozilla Public License

NPL: Netscape Public License

OSD: Open Source Defi nition

OSI: Open Source Initiative

OSS: Open source software

REFERENCES

AlMarzouq, M., Zheng, L., Rong, G., & Grover,
V. (2005). Open source: Concepts, benefi ts, and
challenges. Communications of the Association
for Information Systems (CAIS), 16, 756-784.

Apache Software Foundation. (2006). Apache
HTTP server project. Retrieved January 8, 2006,
from http://httpd.apache.org/

Asiri, S. (2003). Open source software. ACM
SIGCAS Computers and Society, 33(1), 2.

Asundi, J. (2005). The need for effort estimation
models for open source software projects. In Pro-
ceedings of the Fifth Workshop on Open Source
Software Engineering (5-WOSSE), 1-3.

Behlendorf, B. (1999). Open source as a business
strategy. In M. Stone, S. Ockman, & C. DiBona
(Eds.), Open sources: Voices from the open source
revolution (pp. 149-170). Sebastopol, CA: O’Reilly
& Associates.

Belanger, F., & Collins, R. W. (1998). Distributed
work arrangements: A research framework. The
Information Society, 14(2), 137-152.

Carmel, E., & Agarwal, R. (2001). Tactical ap-
proaches for alleviating distance in global software
development. IEEE Software, 18(2), 22-29.

DiBona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open sources: Voices from the open
source revolution. Sebastapol, CA: O’Reilly and
Associates.

Eunice, J. (1998). Beyond the cathedral, beyond
the bazaar. Retrieved January 10, 2006, from
http://www.illuminata.com/public/all/catalog.
cgi/cathedral

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison Wesley.

Free Software Foundation. (1991). GNU general
public license, version 2. Retrieved January 8,

194

Open Source Software: Strengths and Weaknesses

2006, from http://www.gnu.org/licenses/gpl.
html

Free Software Foundation. (2006). Defi nition of
free software. Retrieved January 8, 2006, from
http://www.fsf.org

Frishberg, N., Dirks, A. M., Benson, C., Nickell,
S., & Smith, S. (2002). Getting to know you: Open
source development meets usability. In Extended
Abstracts of the Conference on Human Factors in
Computer Systems (CHI 2002) (pp. 932-933).

Hecker, F. (2000). Setting up shop: The business
of open source software. Retrieved May 31, 2006,
from http://www.hecker.org/writings/setting-up-
shop.html

Hissam, S., Weinstock, C. B., Plakosh, D., &
Asundi, J. (2001). Perspectives on open source
software (Tech. Rep. No. CMU/SEI-2001-TR-
019). Retrieved January 10, 2006, from http://
www.sei.cmu.edu/publications/documents/01.
reports/01tr019.html

Jensen, C., & Scacchi, W. (2005, May 27). Experi-
ences in discovering, modeling, and reenacting
open source software development processes. In
M. Li, B. W. Boehm, & L. J. Osterweil (Eds.),
Unifying the software process spectrum, ISPW
2005, Beijing, China (LNCS Vol. 3840, pp. 449-
462). Berlin, Germany: Springer-Verlag.

Johnson, K. (2001). Open source software de-
velopment. Retrieved January 8, 2006, from
http://chinese-school.netfirms.com/computer-
article-open source.html

Lawrie, T., & Gacek, C. (2002). Issues of depend-
ability in open source software development.
Software Engineering Notes (SIGSOFT), 27(3),
34-37.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key research questions. European
Economic Review, 45(4-6), 819-826.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 46(2), 125-156.

Linux Online. (2006). Linux. Retrieved January
8, 2006, from http://www.linux.org/

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache server. In Proceedings of
the 22nd International Conference on Software
Engineering (pp. 263-272).

Mozilla. (2006). Mozilla. Retrieved January 8,
2006, from http://www.mozilla.org/

Nichols, D. M., Thomson, K., & Yeates, S. A.
(2001). Usability and open source software de-
velopment. In Proceedings of the Symposium on
Computer Human Interaction (pp. 49-54).

Nichols, D. M., & Twidale, M. B. (2003). The
usability of open source software. First Monday,
8(1). Retrieved from http://fi rstmonday.org/is-
sues/issue8_1/nichols/index.html

OpenOffi ce. (2006). OpenOffi ce. Retrieved Janu-
ary 10, 2006, from http://www.openoffi ce.org/

Open Source Initiative. (2005). The open source
defi nition. Retrieved January 8, 2006, from http://
www.opensource.org/docs/defi nition.php

Open Source Initiative. (2006a). Open source
case for business. Retrieved May 31, 2006, from
http://www.opensource.org/advocacy/case_for_
business.php

Open Source Initiative. (2006b). OSI certifi cation
mark and program. Retrieved January 8, 2006,
from http://www.opensource.org/docs/certifi ca-
tion_mark.php

Perens, B. (1999). The open source defi nition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(1st ed., pp. 171-188). Sebastopol, CA: O’Reilly
and Associates.

 195

Open Source Software: Strengths and Weaknesses

Raymond, E. S. (1998). The cathedral and the
bazaar. Retrieved January 8, 2006, from http://
www.catb.org/~esr/writings/cathedral-bazaar/ca-
thedral-bazaar/

Raymond, E. S. (1999). The revenge of the hack-
ers. In M. Stone, S. Ockman, & C. DiBona (Eds.),
Open sources: Voices from the open source revo-
lution (pp. 207-219). Sebastopol, CA: O’Reilly &
Associates.

Red Hat. (2006). Red Hat. Retrieved May 31,
2006, from http://www.redhat.com/

Reinke, J., & Saiedian, H. (2003). The availability
of source code in relation to timely response to
security vulnerabilities. Computers & Security,
22(8), 707-724.

Reis, C. R., & Fortes, R. P. d. M. (2002). An over-
view of the software engineering process and tools
in the Mozilla project. In C. Gacek & B. Arief
(Eds.), Proceedings of the Open Source Software
Development Workshop (pp. 155-175).

Samba. (2006). Samba. Retrieved May 31, 2006,
from http://www.sgi.com/products/software/
samba/

Sendmail Consortium. (2006). SendmailTM.
Retrieved January 10, 2006, from http://www.
sendmail.org/

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution (pp. 53-
70). Sebastopol, CA: O’Reilly & Associates.

Stewart, K. J., Darcy, D. P., & Daniel, S. L. (2005).
Observations on patterns of development in open
source software projects. In Proceedings of the
Fifth Workshop on Open Source Software Engi-
neering (5-WOSSE) (pp. 1-5).

Wheeler, D. A. (2005). Why open source software/
free software (OSS/FS, FLOSS, or FOSS)? Look

at the numbers! Retrieved January 10, 2006, from
http://www.dwheeler.com/oss_fs_why.html

Wong, K., & Sayo, P. (2004). Free/open source
software: A general introduction. UNDP, Asia-
Pacifi c Development Information Programme.
Retrieved January 10, 2006, from http://www.iosn.
net/downloads/foss_primer_print_covers.pdf

Zaritski, R. M. (2003). Using open source software
for scientifi c simulations, data visualization, and
publishing. Journal of Computing Sciences in
Colleges, 19(2), 218-222.

KEY TERMS

 Closed Source Software (CSS): Non-OSS
for which the source code is not available and not
open. It is closed to modifi cation and distribution
by licenses that explicitly forbid it. The term CSS
is typically used to contrast OSS with proprietary
software.

 Copyleft: Permission for everyone to run,
copy, and modify the program, and to distribute
modifi ed versions, but no permission to add re-
strictions of one’s own.

 Free Software (FS): Free relates to liberty and
not to price. It is similar to OSS but differs in the
scope of the license. FS does not accept selective
open sourcing in which companies may elect to
make publicly available specifi c components of
the source code instead of the entire code.

 General Public License (GPL): License that
permits the redistribution and reuse of source
code for unfettered use and access as long as any
modifi cations are also available in the source code
and subject to the same license.

 Open Source Software (OSS): Software for
which the source code is open and available. Its
licenses give users the freedom to access and use
the source code for any purpose, to adapt and

196

Open Source Software: Strengths and Weaknesses

modify it, and to redistribute the original or the
modifi ed source code for further use, modifi ca-
tion, and redistribution.

 Proprietary Software (PS): Software pro-
duced and owned by individuals or companies,
usually with no provision to users to access to
the source code, and licensed to users under
restricted licenses in which the software cannot
be redistributed to other users. Some proprietary

software comes with source code—users are free
to use and modify the software, but are restricted
by licenses to redistribute modifi cations or simply
share the software.

 Source Code: The original human-readable
version of a program, written in a particular pro-
gramming language. In order to run the program,
the source code is compiled into object code, a
machine-readable binary form.

 197

Chapter XVI
 Open Source

Software Evaluation
Karin van den Berg

FreelancePHP, The Netherlands

INTRODUCTION

The open source software market is growing.
Corporations large and small are investing in
open source software. With this growth comes a
need to evaluate this software. Enterprises need
something substantial to base their decisions on
when selecting a product. More and more literature
is being written on the subject, and more will be
written in the near future.

This chapter gives an overview of the available
open source evaluation models and articles, which
is compounded in a list of unique characteristics
of open source. These characteristics can be
used when evaluating this type of software. For

ABSTRACT

If a person or corporation decides to use open source software for a certain purpose, nowadays the
choice in software is large and still growing. In order to choose the right software package for the in-
tended purpose, one will need to have insight and evaluate the software package choices. This chapter
provides an insight into open source software and its development to those who wish to evaluate it. Us-
ing existing literature on open source software evaluation, a list of nine evaluation criteria is derived
including community, security, license, and documentation. In the second section, these criteria and
their relevance for open source software evaluation are explained. Finally, the future of open source
software evaluation is discussed.

a more in-depth review of this literature and the
characteristics, as well as a case study using this
information, see van den Berg (2005).

 OPEN SOURCE SOFTWARE
EVALUATION LITERATURE

The name already tells us something. Open source
software is open—not only free to use but free to
change. Developers are encouraged to participate
in the software’s community. Because of this
unique process, the openness of it all, there is
far more information available on an open source
software package and its development process.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

198

Open Source Software Evaluation

This information can be used to get a well-rounded
impression of the software. In this chapter we will
see how this can be done.

Though the concept of open source (or free
software) is hardly new, the software has only
in recent years reached the general commercial
and private user. The concept of open source
evaluation is therefore still rather new. There are
a few articles and models on the subject, however,
which we will introduce here and discuss more
thoroughly in the next section.

 Open Source Maturity Models

Two maturity models have been developed spe-
cifi cally for open source software.

The fi rst is the Capgemini Expert Letter open
source maturity model (Duijnhouwer & Widdows,
2003). The model “allows you to determine if or
which open source product is suitable using just
seven clear steps.” Duijnhouwer and Widdows fi rst
explain the usefulness of a maturity model, then
discuss open source product indicators and use these
in the model. The model steps start with product
research and rough selection, then uses the product
indicators to score the product and determine the
importance of the indicators, combining these to
make scorecards. Finally it ends with evaluation.

Second, there is the Navica open source matu-
rity model, which is used in the book Succeeding
with Open Source (Golden, 2005). This model uses
six product elements in three phases: assessing
element maturity, assigning weight factors, and
calculating the product maturity score.

Open Source Software
Evaluation Articles

Aside from the two models, a number of articles on
open source software evaluation have been written.

Crowston et al. (2003) and Crowston, Annabi,
Howison, and Masango (2004) have published
articles in the process of researching open source
software success factors. In these articles, they

attempt to determine which factors contribute to
the success of open source software packages.

Wheeler’s (n.d.) How to Evaluate Open
Source/Free Software (OSS/FS) Programs defi nes
a number of criteria to use in the evaluation of
open source software, as well as a description of
the recommended process of evaluation. Wheeler
continues to update this online article to include
relevant new information.

Another article defi ning evaluation criteria for
open source software is Ten Rules for Evaluating
Open Source Software (Donham, 2004). This is a
point-of-view paper from Collaborative Consult-
ing, providing 10 guidelines for evaluating open
source software.

Finally, Nijdam (2003), in a Dutch article
entitled “Vijf Adviezen voor Selectie van OSS-
Componenten” (“Five Recommendations for
Selection of OSS Components”), gives recom-
mendations based on his own experience with
selecting an open source system.

Literature Summary

Table 1 summarizes the criteria derived from the
literature mentioned in the previous two sections
and how they are discussed.

EVALUATING OPEN
SOURCE SOFTWARE

The open source software market is in some
ways very different from the traditional software
market. One of the differences is that there is an
abundance of information available concerning
the software and its development process that
is in most cases not available for traditional
software.

The evaluation of traditional software is usu-
ally focused on the functionality and license cost
of the software. In the open source world, the
evaluation includes information from a number
of other resources, giving a well-rounded picture

 199

Open Source Software Evaluation

of the software, its development, and its future
prospects.

Using the existing evaluation models and arti-
cles discussed in the previous section, an overview
is given here of the characteristics of open source
software relevant to software evaluation and the
information available on an open source software
project concerning these characteristics.

 Community

According to Golden (2005, p. 21), “One of the
most important aspects of open source is the
community.”

The user community for most open source
projects is the largest resource available. The
community provides developers, user feedback,
and ideas, and drives the project team. An active
community helps the project move forward. It also
shows the level of interest in the project, which can
provide a measurement of quality and compliance
with user requirements. A well-provided-for com-
munity also shows the team’s interest in the user,
allows the user to participate, and gives voice to
the user’s wishes and requirements.

The user community of an open source project
consists of the people that use the software and
participate in some way, from answering user
questions to reporting bugs and feature requests.
Users in the community sometimes cross the line
into the developer community, which is often a
line made very thin by encouraging participation
and making the developer community accessible
to anyone who is interested. In some cases, the
user and developer community interact fully in
the same discussion areas.

The community of an open source project is
very important because it is the community that
does most of the testing and provides quality
feedback. Instead of using fi nancial resources
to put the software through extensive testing
and quality assurance (QA), like a proprietary
vendor will do, the open source projects have
the community as a resource. The more people
that are interested in a project, the more likely it
is that it will be active and keep going. A large
and active community says something about the
acceptance of the software. If the software was
not good enough to use, there would not be so
many people who cared about its development
(Duijnhouwer & Widdows, 2003).

Table 1.

Criterion Duijnhouwer and
Widdows (2003)

Golden
(2005)

Crowston et
al. (2004)

Wheeler,
(2005)

Donham
(2004) Nijdam (2003)

Community Y Y Team size and
activity level In support - Active groups

Release Activity - Activity level Activity level Maintenance - Active groups

Longevity Age Y - Y Maturity Version

License Y In risk - Y Y Y

Support Y Y - Y Y -

Documentation In ease of
deployment Y - In support Y -

Security Y In risk - Y Y -

Functionality Features in time Y - Y Y Y

Integration Y Y - In functionality In
infrastructure -

200

Open Source Software Evaluation

The community is mostly visible in terms of the
following (Crowston et al., 2004; Duijnhouwer &
Widdows, 2003; Golden, 2005; Nijdam, 2003):

• Posts: Number of posts per period and
number of topics

• Users: Number of users and the user-devel-
oper ratio in terms of the number of people
and number of posts; if only users post, the
developers are not as involved as they should
be

• Response time: If and how soon user ques-
tions are answered

• Quality: The quality of posts and replies;
are questions answered to the point, and are
the answers very short or more elaborate?
Is there much discussion about changes and
feature additions?

• Friendliness: How friendly members are
toward each other, especially to newcomers,
also known as “newbies”; the community
should have an open feel to it, encouraging
people to participate

The depth of conversations, as mentioned
in the fourth item, gives a good impression of
how involved the community is with the ongo-
ing development of the project. Much discussion
about the software, in a friendly and constructive
manner, encourages the developers to enhance
the software further. The community activity is
also refl ected in other areas such as support and
documentation.

 Release Activity

The activity level of a project consists of the com-
munity activity and the development activity. The
community was discussed above. The develop-
ment activity is refl ected in two parts:

• The developer’s participation in the com-
munity

• The development itself—writing or changing
the source code

The latter activity is visible mostly in the re-
lease activity. All software projects release new
versions after a period of time. The number of
releases per period and their signifi cance, meaning
how large the changes are per release (i.e., are there
feature additions or just bug fi xes in the release),
illustrates the progress made by the developers.
This gives a good indication of how seriously the
developers are working on the software.

The open source repositories SourceForge1 and
FreshMeat2, where project members can

share fi les with the public, provide informa-
tion that could be useful to evaluate the release
activity (Wheeler, n.d.).

An open source project often has different
types of releases:

• Stable releases: These are the most im-
portant type for the end user. They are the
versions of software that are deemed suit-
able for production use with minimal risk
of failure.

• Development versions: These can have
different forms, such as beta, daily builds,
or CVS (Concurrent Version System) ver-
sions, each more up to date with the latest
changes. These versions are usually said to
be used “at your own risk” and are not meant
for production use because there is a higher
possibility of errors. A project that releases
new versions of software usually publishes
release notes along with the download that
list all the changes made in the software
since the previous release. Other than the
release notes, the project might also have a
road map, which usually shows what goals
the developers have, how much of these
goals are completed, and when the deadline
or estimated delivery date is for each goal.
Checking how the developers keep up with
this road map shows something about how

 201

Open Source Software Evaluation

well the development team can keep to a
schedule.

Though a project might stabilise over time as
it is completed, no project should be completely
static. It is important that it is maintained and
will remain maintained in the future (Wheeler,
n.d.).

The project’s change log can give the following
information (Chavan, 2005):

• The number of releases made per period
of time: Most projects will make several
releases in a year, sometimes once or twice
a month. A year is usually a good period in
which to count the releases.

• The signifi cance of each release: The
change log or release notes explain what has
changed in the release. These descriptions
are sometimes very elaborate, where every
little detail is described, and sometimes very
short, where just large changes are listed.
A good distinction to make is whether the
release only contains bug fi xes or also con-
tains enhancements to features or completely
new features. One thing to keep in mind
here is that fewer, more signifi cant releases
is in most cases better than a large number
of less signifi cant releases leading to the
same amount of change over time since the
users will have to upgrade to new versions
each time a release is made, which is not
very user friendly. There should be a good
balance between the number of releases and
the releases’ signifi cance. If the project is
listed on SourceForge and/or FreshMeat,
some of the release activity information is
available there.

Longevity

The longevity of a product is a measure of how
long it has been around. It says something about
a project’s stability and chance of survival. A

project that is just starting is usually still full of
bugs (Golden, 2005). The older a project, the less
likely the developers will suddenly stop (Duijn-
houwer & Widdows, 2003). However, age is not
always a guarantee of survival. First of all, very
old software may be stuck on old technologies
and methods, from which the only escape is to
completely start over. Some software has already
successfully gone through such a cycle, which is
a good sign in terms of maturity. One thing that
needs to be taken into account when products are
not very young is whether or not there is still an
active community around it.

The age and activity level of a project are often
related. Young projects often have a higher activ-
ity level than older ones because once a project
has stabilised and is satisfactory to most users,
the discussions are less frequent and releases are
smaller, containing mostly bug and security fi xes.
This does not mean that the activity should ever
be slim to none. As mentioned before, no project
is ever static (Wheeler, n.d.). There is always
something that still needs to be done.

Longevity is checked using the following
criteria (Golden, 2005; Nijdam, 2003):

• Age of the product: The date of the fi rst
release

• Version number: A 0.x number usually
means the developers do not think the soft-
ware is complete or ready for production use
at this time.

If the project is very old, it is worthwhile to
check if it has gone through a cycle of redesign,
or if it is currently having problems with new
technology.

Keep in mind that the version number does
not always tell the whole story. Some projects
might go from 1.0 to 2.0 with the same amount
of change that another project has to go from 1.0
to 1.1. The fast progression of the version number
might be used to create a false sense of progress.
Other software products are still in a 0.x version

202

Open Source Software Evaluation

even after a long time and after they are proved
suitable for production use (Nijdam, 2003).

 License

The licenses in the open source world refl ect
something of the culture. The most important
term in this context is “copyleft,” introduced by
Richard Stallman, which means that the copyright
is used to ensure free software and free deriva-
tive works based on the software (Weber, 2004).
In essence, a copyleft license obligates anyone
who redistributes software under that license in
any way or form to also keep the code and any
derivative code under the license, thus making
any derivatives open source as well.

The most well-known example of a copyleft
license is the GNU GPL (General Public License;
Weber, 2004). This is also one of the most used
licenses. On SourceForge, a large open source
public repository where over 62,000 projects
reside, almost 70%3 of projects use the GNU
GPL as their license. There are some large and
well-known products that do not use SourceForge,
and some of these have their own license, such as
Apache, PHP, and Mozilla (Open Source Initia-
tive [OSI], 2005).

Because copyleft in the GNU GPL is very
strong, an additional version was made called the
LGPL (library GPL, also known as lesser GPL),
which is less restrictive in its copyleft statements,
allowing libraries to be used in other applications
without the need to distribute the source code
(Weber).

A non-copyleft license that is much heard of
is the BSD (Berkeley source distribution) license.
It has been the subject of much controversy and
has had different versions because of that. Com-
ponents that are licensed under the BSD are used
in several commercial software applications,
among which are Microsoft products and Mac
OS X (Wikipedia, 2005a). The license of the
software in use can have unwanted consequences
depending on the goal of the use. If the user plans

to alter and redistribute the software in some way
but does not want to distribute the source code,
a copyleft license is not suitable. In most cases,
however, the user will probably just want to use
the software, perhaps alter it to the environment
somewhat, but not sell it. In that case, the license
itself should at least be OSI approved and prefer-
ably well known. The license should fi t with the
intended software use.

As just mentioned, the license should prefer-
ably be an OSI-approved license. If it uses one of
the public licenses, the better known the license,
the more can be found on its use and potential
issues (Wheeler, n.d.).

 Support

There are two types of support for a software
product:

• Usage support: The answering of questions
on the installation and use of the software

• Failure support or maintenance: The
solving of problems in the software

Often, the two get mixed at some level because
users do not always know the right way to use
the product. Their support request will start as a
problem report and later becomes part of usage
support (Golden, 2005).

The way support is handled is a measure of
how seriously the developers work on the soft-
ware (Duijnhouwer & Widdows, 2003). One way
to check this is to see if there is a separate bug
tracker4 for the software and how actively it is
being used by both the developers and the users.
When the developers use it but hardly any users
seem to participate, the users may not be pointed
in the right direction to report problems. Aside
from community support, larger or more popu-
lar projects may have paid support options. The
software is free to use, but the user has the option
to get professional support for a fee, either on a
service-agreement basis where a subscription fee

 203

Open Source Software Evaluation

is paid for a certain period of time, or a per-incident
fee for each time the user calls on support. The
project leaders themselves may offer something
like this, which is the case for the very popular
open source database server MySQL (2005).

There are companies that offer specialised
support for certain open source software. This
is called third-party support. For example, at the
Mozilla support Web page, it can be seen that
DecisionOne offers paid support for Mozilla’s
popular Web browser FireFox, the e-mail client
Thunderbird, and the Mozilla Suite (Mozilla,
2005). The fact that paid support exists for an
open source product, especially third-party sup-
port, is a sign of maturity and a sign the product
is taken seriously.

Support for open source software is in most cas-
es handled by the community. The community’s
support areas are invaluable resources for solving
problems (Golden, 2005). Mature products often
have paid support options as well if more help or
the security of a support contract is required.

 Community Support

The usage support is usually found in the com-
munity. Things to look for include the following
(Golden, 2005):

• Does the program have a separate forum

or group for asking installation- and usage-
related questions?

• How active is this forum?
• Are developers participating?
• Are questions answered adequately?
• Is there adequate documentation (see the

documentation section)?

Responses to questions should be to the point
and the responders friendly and helpful. In the
process of evaluating software, the evaluator will
probably be able to post a question. Try to keep to
the etiquette, where the most important rule is to

search for a possible answer on the forum before
posting a question and to given enough relevant
information for others to reproduce the problem
(Golden, 2005; Wheeler, n.d.).

The way the community is organised infl u-
ences the community support’s effectiveness. A
large project should have multiple areas for each
part of the project, but the areas should not be
spread to thin. That way, the developers that are
responsible for a certain part of the project are
able to focus on the relevant area without getting
overwhelmed with a large amount of other ques-
tions. If the areas are too specialised and little
activity takes place in each, not enough people
will show interest and questions are more likely
to remain unanswered.

Failure support within the project is often
handled by a bug tracker by which problems are
reported and tracked. Statistical studies have
shown that in successful projects, the number of
developers that fi x bugs in open source software
is usually much higher than the number of devel-
opers creating new code (Mockus, Rielding, &
Herbsleb, 2000).

 Paid Support

Paid support might be available from the project
team itself (Golden, 2005). There may have been
people who have given their opinion about the
quality of this support.

One of the strong signs of the maturity of open
source software is the availability of third-party
support: companies that offer commercial support
services for open source products (Duijnhouwer
& Widdows, 2003). Some companies offer service
contracts, others offer only phone support on a
per-incident basis. Check for paid support options
whether they will be used or not (Duijnhouwer
& Widdows). How the situation may be during
actual use of the software is not always clear and
it can give a better impression of the maturity of
the software.

204

Open Source Software Evaluation

 Documentation

There are two main types of documentation
(Erenkratz & Taylor, 2003):

• User documentation
• Developer documentation

User documentation contains all documents
that describe how to use the system. For certain ap-
plications, there can be different levels in the user
documentation, corresponding with different user
levels and rights. For example, many applications
that have an administrator role have a separate
piece of documentation for administrators. Ad-
ditionally, there can be various user-contributed
tutorials and how-tos, be it on the project’s Web
site or elsewhere. The available documentation
should be adequate for your needs. The more
complex the software, the more you may need
to rely on the user documentation.

The other main type of documentation, which
plays a much larger role in open source software
than in proprietary applications, is developer
documentation. A voluntary decentralised distri-
bution of labour could not work without it (Weber,
2004). The developer documentation concerns
separate documents on how to add or change the
code, as well as documentation within the source
code by way of comments. The comments usu-
ally explain what a section of code does, how to
use and change it, and why it works like it does.
Though this type of documentation may exist for
proprietary software, it is usually not public.

If it is possible that you may want to change
or add to the source code, this documentation is
very valuable. A programmer or at least someone
with some experience in programming will be
better able to evaluate whether this documenta-
tion is set up well, especially by the comments in
the source code. It is a good idea to let someone
with experience take a look at this documentation
(n.d., 2005).

A third type of documentation that is often
available for larger server-based applications is
maintainer documentation, which includes the
install and upgrade instructions. These need to be
clear, with the required infrastructure and the steps
for installing the software properly explained. This
documentation is needed to set up the application.
For this type, again, the complexity of the applica-
tion and its deployment determines the level of
documentation that is needed. Documentation is
often lagging behind the status of the application
since it is often written only after functionality
is created, especially user documentation (Scac-
chi, 2002). It is a good idea to check how often
the documentation is updated, and how much the
documentation is behind compared to the current
status of the software itself.

The documentation for larger projects is often
handled by a documentation team. A discussion
area may exist about the documentation, giving
an indication of the activity level of that team.

 Security

Security in software, especially when discussing
open source software, has two sides to it. There
are people who believe security by obscurity is
better, meaning that the inner workings of the
software are hidden by keeping it closed source,
something that open source obviously does not
do. The advocates of security by obscurity see the
openness of open source software as a security
hazard. Others argue that the openness of open
source actually makes it safer because vulner-
abilities in the code are found sooner. Open source
software gives both attackers and defenders great
power over system security (Cowan, 2003; Hoep-
man & Jacobs, 2005).

Security depends strongly on how much at-
tention the developers give to it. The quality of
the code has much to do with it, and that goes
for both proprietary and open source software.
If the code of proprietary software is not secure,

 205

Open Source Software Evaluation

the vulnerabilities may still be found. There are
plenty of examples where this occurs, such as the
Microsoft Windows operating system (OS). The
vulnerabilities are often found by hackers who try
to break the software, sometimes by blunt force or
simple trial and error. In this case, a vulnerability
might get exploited before the vendor knows about
it. The attack is the fi rst clue in that case. The
open source software’s vulnerabilities, however,
could be found by one of the developers or users
just by reviewing the code; he or she can report
the problem so it can be fi xed (Payne, 2002). It
is important that the developers take the security
of their software seriously and respond swiftly to
any reported vulnerabilities.

There are various security advisories to check
for bugs in all types of software that make it
vulnerable to attacks. A couple of well-known
advisories are http://www.securityfocus.com and
http://www.secunia.com. Keep in mind that more
popular software will have a higher chance of
having vulnerability reports, so the mere lack of
reports is no proof of its security. On the project’s
Web site, it can be seen, for instance in the release
notes, how serious the project is about security.

 Functionality

Though functionality comparison is not specifi c
to open source software evaluation and is properly
covered in most traditional software evaluation
models, there are some points to take into con-
sideration. Open source software often uses the
method described by the phrase “release early and
often” (Raymond, 1998). This method enables
faster error correction (Weber, 2004) by keeping
the software up to date as much as possible. It also
encourages people to contribute because they see
the result of their work in the next release much
sooner (Raymond). However, this often means that
the software is incomplete during the fi rst releases,
at least more so than is customary with proprietary
software. Where vendors of proprietary software
will offer full functionality descriptions for their

software, open source projects might not have the
complete information on the Web site (Golden,
2005). Just like with documentation, the informa-
tion on the Web site might be lagging behind the
actual functionality. Other means of checking
the current functionality set might be needed.
Fortunately, open source software that is freely
available gives the added option of installing the
software to enable the full testing of the func-
tionality, an option that is mostly not available
with proprietary software, for which at most only
limited versions, in terms of functionality or time,
are given freely for trying it out.

One problem with open source projects is that
the documentation is not always up to date with
the latest software. Look beyond the feature list on
the Web site to fi nd out what features the software
has. Two options are to query the developers and
ask the user community (Golden, 2005). Eventu-
ally the software itself should be investigated. If
it is a Web-based application, an online demo
might be available, though installing it on a test
environment could be useful because it also gives
insight on how well the software installs.

A list of functional requirements for the goal
of the software can be used to check if the needed
functionality is available. If such a list is not
given, there may be one available from technology
analyst organisations (Golden, 2005). It is wise
to make a distinction in the list between features
that are absolutely necessary, where the absence
would lead to elimination, and those that would
be a plus, which results in a higher score. If there
is something missing, there is always the option
to build it or have it built.

When comparing functionality, those features
that are part of the functional requirements should
take priority, but additional features may prove
useful later. The features used or requested by
the users in the future are not really predictable.
While evaluating the software, features may be
found in some of the candidates that are very
useful for the goal. These can be added to the
functional requirements.

206

Open Source Software Evaluation

Part of the functionality is localisation. The
languages to which the interface and documenta-
tion are translated are a sign of the global interest
taken in the software.

 Integration

Duijnhouwer and Widdows (2003) mention three
integration criteria. These are most important
for software that is being used in collaboration
with other software, and for people who are plan-
ning on adapting the software to their use, such
as adding functionality or customising certain
aspects so that it fi ts better in the organisation’s
environment. The three criteria are discussed in
the next three subsections.

 Modularity

Modularity of software means that the software
or part of the software is broken into separate
pieces, each with its own function. This type of
structure has the following advantages:

• Modular software is easier to manage (Gar-
zarelli, 2002; Mockus, Fielding, & Herbsleb,
2002).

• With a base structure that handles the modules
well, people can easily add customised func-
tionality without touching the core software.

• Modular software enables the selection of
the needed functionality, leaving out those
that are not necessary for the intended use.
This way, the software can be customised
without the need for a programmer.

• Modular software can be used in commercial
applications. By making software modular,
not everything needs to be given away as
open source. It is can be used to give away
only parts of software as open source while
the add-on modules are sold as proprietary
software (Duijnhouwer & Widdows, 2003).
This is also called the razor model, as in

giving away the razor for free and charging
for the blade (Golden, 2005).

Evidence of a modular structure can often be
found in several places, such as the source code,
the developer documentation, or the download
section, where modules might be available for
download separate from the core software.

 Standards

In the software market, more and more open
standards emerge to make cooperation between
software easier (Golden, 2005). If the software
vendors use these standards in their software, it
makes it easier to communicate between differ-
ent software packages, and to switch between
software packages. In some industries, standards
are far more important than in others. For some
software, there may not even be an applicable
standard.

The use of current and open standards in open
source software is a sign of the software’s maturity
(Duijnhouwer & Widdows, 2003). The feature list
of the software usually lists what standards are
used and with which the software complies.

Collaboration with Other Products

Closely connected to standards is the collabora-
tion with other products. As mentioned before, not
every software type has applicable standards, and
sometimes the formal standards are not used as
much as other formats. Examples of such formats
are the Microsoft Word document format, and
Adobe’s PDF (portable document format). The
offi ce suite OpenOffi ce.org (2005) has built-in
compatibility for both formats.

 Software Requirements

Most software is written for a specifi c OS, for
example, Microsoft Windows or Linux (Wheeler,

 207

Open Source Software Evaluation

n.d.). Certain types of software also rely on other
software, such as a Web server or a database. The
requirements of the software will state which
software and which versions of that software are
compatible. If these requirements are very specifi c,
it could lead to problems if they are incompatible
with the organisation’s current environment.

THE FUTURE OF OPEN SOURCE
SOFTWARE EVALUATION

Open Source Software
Evaluation Literature

More is being written on open source software
evaluation at the time of writing. For example,
another model called the business readiness rating
(OpenBRR, 2005), aimed at open source software,
was released recently. The research of Crowston
and others is still ongoing, so there will be more
results in the near future to include in the open
source software evaluation process. Given how
recent the rest of the literature discussed in this
chapter is, it is likely that more will be published
on the subject in the next few years.

The Future of Open Source Software

Open source software is being used increasingly
by corporations worldwide. There is now some
literature available to help with the evaluation of
open source software, and the number of articles
and models is increasing. With this growth in
the fi eld comes more attention from companies,
especially on the enterprise level, which will
cause more demand for solid evaluation models.
Because open source software and the process
around it provide much more information than
traditional software, there is certainly a need for
such models.

This literature will help justify and solidify
the position of open source software evaluation

in a corporate setting, giving more incentive
to use open source software. Most likely, more
companies will be investing time and money in its
development, like we are seeing today in examples
such as Oracle investing in PHP and incorporating
this open source Web development language in
its products (Oracle, 2005), and Novell’s acqui-
sition of SUSE Linux (Novell, 2003). The open
source software evaluation literature can help IT
managers in adopting open source.

CONCLUSION

The fi eld of open source software evaluation is
growing, and with that growth more attention
is gained from the large enterprises. With this
attention comes more demand for evaluation
models that can be performed for these corpora-
tions, which will give more growth to the open
source software market as well. In this chapter,
an overview is given of the current literature and
the criteria derived from that literature that can
be used in open source software evaluation. For
each of the criteria—community, release activ-
ity, longevity, license, support, documentation,
security, and functionality—this chapter explains
why it is important in the market and what to do
to evaluate it. This information can be used on
its own or in conjunction with more traditional
evaluation models and additional information
referenced here by companies and individuals
that wish to evaluate and select an open source
software package. It helps to give insight into the
open source software sector.

REFERENCES

Chavan, A. (2005). Seven criteria for evaluating
open source content management systems. Linux
Journal. Retrieved August 9, 2005, from http://
www.linuxjournal.com/node/8301/

208

Open Source Software Evaluation

Cowan, C. (2003). Software security for open
source systems. Security & Privacy Magazine,
1(1), 38-45.

Crowston, K., Annabi, H., & Howison, J. (2003).
Defi ning open source software project success.
In Twenty-Fourth International Conference on
Information Systems, International Conference
on Software Engineering (ICIS 2003) (pp. 29-33).
Retrieved March 30, 2005, from http://opensource.
mit.edu/papers/crowstonannabihowison.pdf

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2004). Towards a portfolio of FLOSS
project success measures. Collaboration, Confl ict
and Control: The Fourth Workshop on Open
Source Software Engineering, International
Conference on Software Engineering (ICSE
2004), 29-33. Retrieved March 30, 2005, from
http://opensource.ucc.ie/icse2004/Workshop_on_
OSS_Engineering_2004.pdf

Donham, P. (2004). Ten rules for evaluating
open source software. Collaborative Consulting.
Retrieved August 8, 2005, from http://www.col-
laborative.ws/leadership.php?subsection=27

Duijnhouwer, F., & Widdows, C. (2003). Cap-
gemini open source maturity model. Retrieved
February 12, 2006, from http://www.seriouslyo-
pen.org/nuke/html/modules/Downloads/osmm/
GB_Expert_Letter_Open_Source_Maturity_
Model_1.5.3.pdf

Erenkratz, J. R., & Taylor, R. N. (2003). Supporting
distributed and decentralized projects: Drawing
lessons from the open source community (Tech.
Rep.). Institute for Software Research. Retrieved
August 9, 2005, from http://www.erenkrantz.
com/Geeks/Research/Publications/Open-Source-
Process-OSIC.pdf

Garzarelli, G. (2002, June 6-8). The pure con-
vergence of knowledge and rights in economic
organization: The case of open source software
development. Paper presented at the DRUID
Summer Conference 2002 on Industrial dynam-

ics of the new and old economy—Who embraces
whom?, Copenhagen.

Golden, G. (2005). Succeeding with open source.
Boston: Addison-Wesley Pearson Education.

Hoepman, J., & Jacobs, B. (2005). Software secu-
rity through open source (Tech. Rep.). Institute for
Computing and Information Sciences, Radboud
University Nijmegen. Retrieved August 9, 2005,
from http://www.cs.ru.nl/~jhh/publications/oss-
acm.pdf

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache Server. In Proceedings of
the 22nd International Conference on Software
Engineering (ICSE 2000). Retrieved on March
30, 2005, from http://opensource.mit.edu/papers/
mockusapache.pdf

Mockus, A., Fielding, R. T., & Herbsleb, J. (2002).
Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3),
309-346.

Mozilla. (2005). Mozilla.org support. Retrieved
February 16, 2005, from http://www.mozilla.
org/support/

MySQL. (2005). MySQL support Web site. Re-
trieved February 16, 2005, from http://www.
mysql.com/support/premier.html

Nijdam, M. (2003). Vijf adviezen voor selectie van
oss-compontenten. Informatie: Maandbladvoor
Informatieverwerking, 45(7), 28-30.

Novell. (2003). Novell announces agreement to
acquire leading enterprise Linux technology
company SUSE LINUX. Retrieved August 8,
2005, from http://www.novell.com/news/press/
archive/2003/11/pr03069.html

OpenBRR. (2005). Business readiness rating
for open source: A proposed open standard to
facilitate assessment and adoption of open source

 209

Open Source Software Evaluation

software (RFC1). Retrieved August 10, 2005,
from http://www.openbrr.org/docs/BRR_white-
paper_2005RFC1.pdf

OpenOffi ce.org. (2005). OpenOffi ce.org writer
product information. Retrieved August 10, 2005,
from http://www.openoffi ce.org/product/writer.
html

Open Source Initiative (OSI). (2005). Open Source
Initiative: Open source licenses. Retrieved August
9, 2005, from http://opensource.org/licenses/

Oracle. (2005). Oracle and Zend partner on
development and deployment foundation for
PHP-based applications. Retrieved February
12, 2006, from http://www.oracle.com/corporate/
press/2005_may/05.16.05_oracle_zend_part-
ner_fi nalsite.html

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12(1),
61-78.

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3). Retrieved March 30,
2005, from http://www.fi rstmonday.org/issues/is-
sue3_3/raymond/

Scacchi, W. (2002). Understanding the require-
ments for developing open source software sys-
tems. In IEEE Proceedings: Software, 149, 24-29.
Retrieved March 30, 2005, from http://www1.ics.
uci.edu/wscacchi/Papers/New/Understanding-
OS-Requirements.pdf

Van den Berg, K. (2005). Finding open options: An
open source software evaluation model with a case
study on course management system. Unpublished
master’s thesis, Tilburg University, Tilburg, The
Netherlands. Retrieved August 30, 2005, from
http://www.karinvandenberg.nl/Thesis.pdf

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Wheeler, W. (n.d.). How to evaluate open source/
free software (OSS/FS) programs. Retrieved

February 17, 2005, from http://www.dwheeler.
com/oss_fs_eval.html

KEY TERMS

 Community: A group of people with shared
interests that interact. In case of open source soft-
ware, the community is the group of developers
and users that come together, mostly on a Web site,
to discuss, debug, and develop the software.

 Documentation: The documents that are
associated with a piece of software. There is
usually user documentation, in the form of help
fi les, tutorials, and manuals, and there can be
developer documentation, such as programming
guidelines and documents explaining the structure
and workings of the software (source code). In
some cases there is administrator documentation,
which explains how to install and confi gure the
software. The latter is more important for large
pieces of software, where one installation will be
used by many users, such as Web applications.

 License: An agreement that is attached to
the use of a product. In case of software, the
software license agreement defi nes the terms
under which you are allowed to use the software.
For open source software, there are a number of
common licenses, not bound to a specifi c piece
of software, that can be used for almost any type
of open source software. These licenses are well
known so users and developers usually know the
conditions of these licenses.

 Maturity Model: Not to be confused with
the capability maturity model (CMM), a maturity
model as discussed in this chapter is a model that
can be used to assess the maturity of a software
package, evaluating the software using several
criteria.

 Software Longevity: The life expectancy of
software, measured by various factors among
which is its age.

210

Open Source Software Evaluation

 Software Release Activity: The number and
signifi cance of releases that are made for a cer-
tain software package. A release can be a minor
change such as a bug fi x, or a major change such
as added functionality.

 Software Security: How well a piece of soft-
ware is built in terms of vulnerabilities and defense
against them. Any software will have some type of
security hole in it that allows a person, often with
hostile intentions, to break into the software and
use it for purposes that are unwanted. It is neces-
sary for developers to minimize these holes and fi x
them if they are discovered. In case of open source
software, because the source is public, the users
may help in discovery by examining the source
code. This, however, also means that a person
with hostile intentions can also fi nd these holes
by examining the source code. Thus, it is always
important to keep a close eye on security.

ENDNOTES

1 http://www.sourceforge.net
2 http://www.freshmeat.net
3 Established using the SourceForge Software

Map on April 20, 2005, at http://sourceforge.
net/softwaremap/trove_list.php?form_
cat=13

4 A bug tracker is an application, often Web
based, through which the users can report
problems with the software, the developers
can assign the bug to someone who will
handle it, and the status of the bug can be
maintained. Bugzilla is one such package
that is often used for this purpose.

 211

Chapter XVII
 Open Source Web Portals

Vanessa P. Braganholo
DCC/UFRJ, Brazil

Bernardo Miranda
COPPE/UFRJ, Brazil

Marta Mattoso
COPPE/UFRJ, Brazil

INTRODUCTION

One of the main sustaining pillars of the open
source (Perens, 1997) philosophy is that software
must be widely available to the user community.
In order to mature, open source projects need
collaboration from the user community, and this
is hard to achieve just by publishing a project on
a developer’s personal home page. An effi cient
way of reaching these requirements of availability
and collaboration is by hosting the software on
an open source Web portal. There are several

ABSTRACT

 Open source software is required to be widely available to the user community. To help developers fulfi ll
this requirement, Web portals provide a way to make open source projects public so that the user com-
munity has access to their source code, can contribute to their development, and can interact with the
developer team. However, choosing a Web portal is not an easy task. There are several options available,
each of them offering a set of tools and features to its users. The goal of this chapter is to analyze a set
of existing Web portals (SourceForge.net, Apache, Tigris, ObjectWeb, and Savannah) in the hopes that
this will help users to choose a hosting site for their projects.

portals that address these requirements, offering
free hosting to open source projects.

Besides giving access to a project’s source
code, these portals also offer tools to help the
development of the projects they host. Among such
tools, we can cite task management tools, issue
trackers, forums, mailing lists, tools to support
feature requests, and version control servers.

The different portals offer different advan-
tages to the projects they host. It is diffi cult for
a developer who is not used to contributing to
open source projects to choose the one that best

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

212

Open Source Web Portals

fi ts his or her needs. This is because there are
many portal features that are only visible to
those who actively contribute to an open source
project. Additionally, a portal may have particular
requirements that the developer must be aware of.
For example, some portals require that the project
be under the protection of a specifi c open source
license. The goal of this chapter is to help such
users in choosing a portal to host their projects.
We analyze fi ve Web portals and compare them
in terms of the services they offer. The analyzed
portals are as follows:

• SourceForge.Net (Open Source Technology
Group, 2005),

• Apache (Apache Software Foundation,
1999)

• Tigris (Tigris, 2005)
• ObjectWeb (Object Web Consortium,

2005)
• Savannah (Free Software Foundation,

2000b)

They were chosen for several reasons. First,
they host projects for free. Second, they are general
in the sense that they host general free or open
source software (Savannah hosts even nonsoft-
ware projects). Third, they have been online for
enough time for one to assume that they probably
will not disappear and leave users helpless.

It is important to emphasize that this kind of
analysis is new in literature. To the best of our
knowledge, there is no work in the literature
that provides similar analysis (DiBona, Stone,
& Cooper, 2005).

 It is also important to state that some of the
portals may be focused on free software (Free
Software Foundation, 1996) while others focus
on open source software (Perens, 1997). Although
their way of looking at the world is different (Stall-
man, 2002), the philosophies are similar. In this
chapter, we do not intend to make any distinction
between them. Thus, we use the term FOSS (free

and open source software) as synonymous of free
software and open source software.

The subsequent section describes briefl y the
way most Web portals work. Then we discuss
the methodology of our study and the features
of each portal. Next we discuss future trends
and conclude with a tabular comparison of the
Web portals.

BACKGROUND: HOSTING
SOFTWARE ON WEB PORTALS

In this section, we describe how portals work in
essence, hoping this will give readers a better
understanding of our proposal in this chapter.

Web portals dedicated to hosting software
projects are basically Web pages that offer a set of
functionalities to its users. Usually, the entrance
page explains the purpose of the portal and provides
links to documentation, instructions to users who
want to host a project, a news section, and links to
the hosted projects. Such links are usually presented
within categories. Figure 1 shows a cut of the main
page of the SourceForge.Net portal. Notice the
news section and the links to software categories
(at the bottom of the fi gure). Such categories link
to hosted projects classifi ed under them.

Each hosted project has its own page within
the portal with a URL (uniform resource locator)
similar to http://www.portal.org/project, where
portal is the portal name, and project is the proj-
ect name. It is through this page that the portal
provides tools and services to developers. Also,
such pages play the role of advertising the project.
Users will fi nd projects they may be interested in
through such pages.

The main page of a project within any portal
has basic information about the project, news, and
a list of links to source-code downloads and mail-
ing lists, among other features. As we will discuss
later on, it is a choice of the project’s administrator
what will appear on the main page.

 213

Open Source Web Portals

Figure 1. A cut of the main page of SourceForge.Net

Another important aspect of hosted project
pages is that they have public and private areas.
Public areas can be seen by any person. The public
area is basically the project’s main page. This
way, any user may read about a specifi c project
and download its source code. The private area
of a project is exclusively for the project’s con-
tributors. The list of people that may contribute
to it is maintained by the project administrators.
In order to contribute to a project or even to cre-
ate one, you must have a user account with the
portal. All of the portals we analyzed allow you
to create a user account for free. Once logged in,
you are in your private area. In this area, you can
create a new project, or see all the projects you
contribute to.

If you are not part of a project, then your private
area may include several links, including one to
create a new project. Figure 2 shows a private
area at SourceForge.Net. Notice the “Register a
new project” link on the left-hand side.

If you have access to the private area of a given
project, you can solve bugs, write documentation,
check in modifi cations to the source code, and so
forth. In other words, the private area gives you
ways to contribute to software projects.

Project administrators may include you as a
developer, as a documentation writer, as a project
administrator, and so forth. Each role you assume
grants you access to certain parts of the project’s
private area. The project administrator has full
power in choosing what you may or may not edit
or develop in his or her project.

An important point that needs to be made here
is on how a user can contact the project adminis-
trator and ask to be included in the project. This
is usually made through the help-wanted section.
Administrators can explicitly ask for the help of
other developers through a specifi c section on the
project’s Web page. Interested developers (users)
respond to such requests by clicking on the offer
he or she is interested in. This opens a Web form

214

Open Source Web Portals

Figure 2. Private area of a user at SourceForge.Net

that sends an e-mail do the project’s administrator.
We will return to this point later on.

METHODOLOGY

We have studied the documentation of each of the
fi ve Web portals trying to answer 13 questions:

1. What are the requirements for the registra-
tion of a new project on the portal?

2. Does the portal offer version control sys-
tems?

3. Does it offer forums?
4. Does it offer mailing lists?
5. Does the portal supply a Web page for the

project?
6. Does it offer issue tracking?
7. Does it have tools to support the documenta-

tion of the project?
8. Does the portal preserve the intellectual

property of the project’s owner?

9. Does it require the developers to provide
support even after the project is fi nished?

10. Does it have tools to support task manage-
ment?

11. Does it provide automatic backups of the
repositories in the version control system?

12. Does it allow the developer to customize the
public area (remove unwanted items from
the public view)?

13. Does it have any license restrictions?

To answer these questions, we used two ap-
proaches. The fi rst approach was the analysis of
the requirements of a new project. Were there any
categories the project should fi t in? Were there any
license restrictions? We analyzed the submission
process of a new project using fi ctitious data in
order to know what the requirements were for
registering a new project. We fi rst created a user
in each of the portals and followed the submission
process until the last step. We did not actually sub-
mit the project since we did not have a real project

 215

Open Source Web Portals

to submit at that time. We could not have used a
fake project because, in all of the portals, submit-
ted projects fi rst go through an evaluation step
where it is approved or rejected by the Web portal
managers. Only approved projects are hosted. Our
fake project would probably be rejected.

The second approach was the analysis of the
features of the Web portal. Since most of the
features are on private areas, we mainly used
the Web portal documentation to fi nd out their
features. We collected all the answers we could
fi nd about all the portals we were evaluating, and
contacted the Web portal administrators, asking
for confi rmation. This way, we would be sure we
were not making any misjudgment. Most portals
(SourceForge.Net, Savannah, and ObjectWeb)
replied to us promptly with feedback. In the next
section, we present our evaluation in detail.

MAIN FOCUS OF THE CHAPTER:
WEB PORTALS

In this section, we describe each of the fi ve portals
in detail. First, however, we focus on the features
we found in all of the portals we analyzed:

• Registered users: Only registered users
may submit projects to be hosted on the
Web portals.

• Projects must be approved: One of the
common features among the portals is the
requirement of submitted projects to be ap-
proved by the portal. No project is hosted
without being approved. This is done to
avoid fake projects (spam), but mainly to
avoid projects that are not FOSS.

• Formal submission procedure: Due to the
necessity of approval, the portals require a
series of information about the project that
is being submitted. The amount and type of
required information may vary from a simple
description to a detailed document analyzing

similar projects, planned features, compo-
nents that will be used, and so forth.

• Distribution license: During project sub-
mission, the portals require the defi nition of
the license under which the project results
are to be distributed. In all cases, there is
a list of licenses you may choose. It is usu-
ally possible to choose one of the standard
licenses approved by the Open Source Initia-
tive (OSI, 2006) such as GPL (General Public
License), LGPL (Lesser General Public Li-
cense), BSD (Berkeley Source Distribution),
MIT, and MPL (Mozilla Public License),
among others. It is also possible to specify
a new license, but this usually increases the
evaluation time of the submitted project. A
license needs to be studied by Web portal
administrators to check if it violates the
FOSS defi nition. For example, the Savannah
administrators check for compatibility with
GPL Version 2 (Savannah-help-private@
gnu.org, 2006). ObjectWeb is an exception.
It requires you to choose a given license
(LGPL, in this case); another license may be
chosen if you explain the reasoning (Object
Web Consortium, 1999).

• Source code publication: No portal requires
that there be source code available at project
submission time. The goal of these portals
is to support the development of FOSS, so
it is understandable that projects start with
no source code at all.

• Software development support: All of the
portals offer tools to support the develop-
ment of software projects. All of the portals
we analyzed offer version control systems,
mailing lists, Web pages for the project, bug
tracking, and task management. Some of the
portals offer additional tools. We will refer
to them in the sections that follow.

• Help from external users: All of the por-
tals allow you to request help from the user
community. This is usually done by opening

216

Open Source Web Portals

a help-wanted section in your project (only
project administrators have permission to
do so). After that, you may inform about the
kind of help you want (interface designer,
developer, tester, and support manager,
among others) and wait for people holding
that skill to contact you. We must warn,
however, that user help is usually restricted
to those projects that already provide features
that may attract new developers’ attention.
Please do not count on external help to de-
velop your project at the beginning.

 Now we are ready to look at each portal in
detail.

SourceForge.Net

SourceForge.Net (http://www.sourceforge.net) is
the world biggest FOSS development site. It hosts
thousands of projects developed by people from
several different countries. The main goal of this
portal (and also of the other portals) is to offer a
centralized place where developers can control
and manage the development of FOSS (Open
Source Technology Group, 2005).

 The philosophy of SourceForge.Net is cen-
tered on the FOSS ideas:

• Facilitate the maintenance of projects:
The user community has the right to use
and give support to a FOSS project, even
after its activities have ceased.

• Help to achieve the license requirements:
Some FOSS licenses require the source code
to be available for a certain amount of time
(usually longer than the development time
period). SourceForge.Net keeps the fi les of
fi nished projects to help developers to ac-
complish this requirement.

• Promote reuse: The rights of use, modifi ca-
tion, and redistribution are guaranteed by all
FOSS licenses. These rights help to promote
the reuse of source code. An old project that

is available at SourceForge.Net may help
other developers to avoid reimplementing
and testing pieces of software that other
people have already implemented.

• Allow the continuation of orphan projects:
When a project is fi nished, there are usually
users who are interested in continuing its
development. SourceForge.Net allows this
to happen. Notice, however, that the project
owner has to agree with this.

• Allow project alternatives: A project fork
with alternative features may be created from
a preexisting project. Both can be maintained
in parallel.

To register a new project at the portal (Open
Source Technology Group, 2002), it is necessary
to determine the type of the project (i.e., software,
documentation, Web site, peer-to-peer software,
game, content management system, operational
system distribution, precompiled package of
existing software, software internationalization).
After this, it is necessary to go through a term
agreement step, and then provide a description of
the project and choose the project name (which
cannot be changed later). The registration process
is quite simple and fast. Once registered, Source-
Forge.Net will take about 2 days to approve or
reject the request.

After approval, the project can start taking
advantage of the benefi ts offered by SourceForge.
Net: forums, CVS (Concurrent Version System),
mailing lists (public or private), the project Web
page, documentation (DocManager), task man-
agement, automatic backup of the version control
repository, a donation system, news and trackers
for bugs, support requests, features requests,
and patches (Open Source Technology Group,
2001b).

All of these tools are straightforward except
for the donation system, which deserves a more
detailed explanation. The donation system al-
lows site users and projects to receive donations
from other projects or site users (Open Source

 217

Open Source Web Portals

Technology Group, 2001a). The purpose of these
donations is to help projects to survive. Specifi c
projects and users may justify why they need
donations. Donations are processed by the PayPal
(1999) system. Both PayPal and SourceForge.Net
charge fees for the donations that go through their
system. The PayPal fee may vary from country
to country, while SourceForge.Net charges 5%
for each donation, with a minimum fee of $1.
However, one cannot donate arbitrary quantities.
The allowed donation values are $5, $10, $20,
$50, $100, and $250 (Open Source Technology
Group, 2001a).

Initially, all of these tools are visible to ex-
ternal users (the ones that are not registered as
developers in the project). In fact, the default
configuration allows even anonymous CVS
checkout. However, all of this can be confi gured
by the project administrator. This means that if
necessary, some tools can be completely removed
from public view. Some developers, for example,
prefer to grant anonymous access to the CVS
repository together with the fi rst release, but not

before that. Figure 3 shows a project for which
tools are visible to external users, and Figure 4
shows a project for which every tool has been
hidden from external view (only developers from
that project can access the tools).

 Apache

 Apache Software Foundation (1999) also keeps a
portal to host FOSS projects. However, Apache’s
stance on intellectual property is unique. Projects
hosted at Apache must be donated to the Apache
Software Foundation. The foundation is then
responsible for deciding the project road map
(Apache Software Foundation, 2005). We think
this is not a disadvantage. It is just a different way
of looking at things. By assuming the intellectual
property, Apache takes the responsibility for the
project. It can legally answer for the project and
fi ght for the project’s and the FOSS community’s
interests. Additionally, the project certainly gains
visibility. There are cases where projects became

Figure 3. Project at SourceForge.Net with public tools

218

Open Source Web Portals

de facto industrial standards, like Apache Web
server, Tomcat, and Ant. It is also worth mention-
ing that the original project owner can still be
involved in the development of the project.

Every project hosted by Apache must be
submitted through the Apache Incubator Project
(Apache Software Foundation, 2002a). The In-
cubator Project is responsible for informing how
the Apache Foundation works, and what paths
the project will go through until it is transformed
into an offi cial Apache Foundation project (or die
before that). Projects currently incubated (together
with unsuccessful projects) are listed in Apache
Software Foundation (2006).

The registration process of a new project is
quite complex. To incubate, the new project must
meet the following criteria (Apache Software
Foundation, 2002b):

• Be indicated by a member of the Apache
Foundation

• Be approved by a sponsor

The sponsor can be one of the following:

• The board of the Apache Software Foundation
• A top-level project (TLP) within the Apache

Foundation, where the TLP considers the can-
didate project to be a suitable subproject

• The Incubator Project management com-
mittee

To initiate the hosting request process, it is
necessary to submit a proposal that describes
the project to the sponsor. There are no fi xed
items that need to be provided since the Apache
Incubator documentation does not specify the
level of the project detailing in the proposal or
what it must contain.

 After being accepted, the Incubator Project
management committee is responsible for all
decisions regarding the new project. Only after
this point does the project receive a CVS account
and a Web page under the Incubator Project.

The Apache portal offers a version control
system (CVS or Subversion), mailing lists (which

Figure 4. Project at SourceForge.Net with no public tools

 219

Open Source Web Portals

can be exclusively for the project or in conjunc-
tion with the Incubator Project), a Web page,
documentation (Apache Forrest), bug tracking,
and task management.

 Figure 5 shows a project incubated at
Apache.

 Tigris

Tigris (2005) is a FOSS community focused on
building tools for collaborative software develop-
ment that only hosts projects related to that mis-
sion. Tigris is hosted at Collabnet (Collabnet Inc.,
2006), which is a provider of solutions in software
development. Collabnet is currently responsible
for hosting OpenOffi ce and Subversion, two very
popular FOSS projects. It is important to notice
that hosting a project at Tigris is free while it is
not when hosted directly under Collabnet. As
Collabnet charges a fee for this service, we do
not analyze it here.

Projects hosted at Tigris must fi t in one of the
following categories:

• Construction: Tools for coding, testing,
and debugging

• Deployment: Tools for software deployment
and update

• Design
• Issue tracking
• Libraries: Reusable components
• Personal use: Personal projects of Tigris

collaborators
• Processes: Projects related to software

development processes
• Professional use: Professional software

engineering (courses, certifi cates, profes-
sional practices)

• Requirements: Software requirement man-
agement tools

• Software confi guration management
• Student use: Student class projects
• Technical communication
• Testing

The only requirements for the registration of

a new project are that it falls into one of the listed

Figure 5. Project incubated at Apache

220

Open Source Web Portals

categories and that it is a collaborative software
development tool. To register, users must log in
and then access the link “start new project.”

 Tigris offers the following features: mail-
ing lists, task management, bug tracking, a Web
page for the project, news, CVS or Subversion,
and forums. Figure 6 shows a project hosted at
Tigris.

ObjectWeb

 ObjectWeb (Object Web Consortium, 2005) is a
consortium created in 1999 to promote the devel-
opment of FOSS. It is maintained by the French
National Institute for Research in Computer Sci-
ence and Control (INRIA) and hosts projects such
as Active XML (extensible markup language), C-
JDBC, and JoNaS (Java Open Application Server),
among others. The consortium is composed of a
hierarchy (Cecchet & Hall, 2004):

• The board is comprised of representatives,
both individuals and from companies, who
are members of the consortium. The board
is responsible for the policies, strategies, and
direction of the consortium. The executive
committee is in charge of the daily opera-
tions.

• The College of Architects is comprised
of individuals chosen for their expertise
and abilities. It is responsible for techni-
cally orienting the consortium, leading the
development of the ObjectWeb code base,
overseeing the evolution and architectural
integrity of the code base, and approving
new projects.

Projects on ObjectWeb, in the same way as
Tigris, must be categorized. The available catego-
ries are communications, databases, desktop en-
vironments, education, games and entertainment,

Figure 6. Project hosted at Tigris

 221

Open Source Web Portals

Internet, multimedia, offi ce and business use,
other unlisted topics, printing, religion, science
and engineering, security, software development,
systems, terminals, and text editors.

In order to be hosted at ObjectWeb, the result
of the project must be a middleware component
that can be reused by a great variety of software
platforms and application domains. Besides
this, the project members must participate in the
discussions of the evolution of the code base of
ObjectWeb, participate in the defi nition of this
evolution, and apply the architectural principles
and frameworks provided by ObjectWeb to maxi-
mize the reuse of the project’s source code. The
discussions are made through the Web portal
mailing list (Object Web Consortium, 2006).

The registration process of new projects in
ObjectWeb involves several project descrip-
tions. Detailed information about the project is
required, including synergies with the projects

already hosted by ObjectWeb, internationaliza-
tion issues, a description of similar projects, the
project team and support, the user community,
and the technologies and standards implemented,
among others. The list of requirements is much
like a formal project submission. Additionally,
the LGPL is the recommended license, but a dif-
ferent license may be accepted if you can justify
the use of another.

ObjectWeb offers several advantages to the
projects it hosts. Among them, we can cite CVS,
a Web page, a forum, a mailing list, task man-
agement, backup and trackers for bugs, support
requests, patches, and feature requests. Figure 7
shows a project hosted at ObjectWeb. In addition,
they promote annual events to gather its College
of Architects and a demonstration conference that
aims at approximating potential users or develop-
ers to the projects hosted at ObjectWeb.

Figure 7. A project hosted at ObjectWeb

222

Open Source Web Portals

As with SourceForge.Net, ObjectWeb also
allows projects to request help from external
developers.

Savannah

Different from the other portals we analyzed here,
the Savannah portal (Free Software Foundation,
2000b) is focused on free software projects. It
hosts projects that fall into one of the following
four categories:

• Software project: A software project that
runs over a free operational system without
depending on any non-FOSS; versions to
non-free operational systems can be pro-
vided as long as there is also a (possibly
more complete) version for free systems.

• Documentation project: A FOSS docu-
mentation project distributed under a free

documentation license (Free Software
Foundation, 2000a)

• Free educational book: A project to create
free educational textbooks distributed under
a free documentation license

• Free Software Foundation/GNU project:
A project approved by the GNU project
coordinator, Richard Stallman

Non-GNU projects are hosted at http://savan-
nah.nongnu.org, but the functionalities of both
portals are the same.

 The registration process of a new project
requires a detailed description of the project. If
you already have existing source code, you must
include a URL to it and a list of libraries used in
the source code. This is done to make sure no
non-free library is used. However, the existence
of source code is not an obligation.

Figure 8. Project hosted at Savannah

 223

Open Source Web Portals

 Savannah offers a smaller list of advantages to
its users when compared with other portals: CVS,
a Web page, a mailing list, bug tracking, support
request management, and task management. As
with the other portals, it is also possible to hide
some of these functionalities from external users.
Figure 8 shows the public area of a project hosted
at Savannah.

 Help from external developers can be achieved
by a process similar to the ones at SourceForge.
Net and ObjectWeb.

FUTURE TRENDS

Web portals play a major role in the success of
free and open source software. Considering the
service business around FOSS, we believe that
portals will tend to follow ObjectWeb’s line of

FOSS promotion. We believe portals will increas-
ingly offer more services to users in addition to
hosting projects. Such services will probably
include dissemination of the FOSS they host and
promotion of the approximation of potential users
or developers. ObjectWeb nowadays promotes
this by organizing architectural meetings with
its associates, where people are encouraged to
approximate and collaborate. These meetings usu-
ally include presentations of newcomer projects
so that the community knows what is happening
and what the new projects are.

CONCLUSION

In this section, we present a comparison of the
analyzed portals. The criteria for this comparison
were specifi ed previously. Table 1 summarizes

Table 1. Comparisons of the portals

SourceForge.Net Apache Tigris ObjectWeb Savannah

Project registration Depends on approval Approved by
Apache Incubator

Depends on
approval

Depends on
approval

Depends on
approval

Version control V V V V V

Customization of tools to
avoid external access V V V V V

Forum V -- V V --

Mailing list V V V V V

Project Web page V V V V V

Issue tracking V V V V V

Documentation V
(DocManager)

V
(Forrest) -- V --

Intellectual property owner Apache Foundation owner owner owner

No need to support
project after termination V -- V V ?

Task management V V V V V

Backup V ? ? V --

Restrictions regarding the
project Categories Find a sponsor

Collaborative
software

development tool

Formal
submission

process
Categories

Restrictions regarding
license OSI-approved license Apache Software

License (ASL)
OSI-approved

license LGPL GNU GPL
compatible

224

Open Source Web Portals

the comparison. A question mark (?) indicates
that there was not enough information to evalu-
ate the item.

 Regarding support, FOSS development is
voluntary. This means that you are not (and should
not be) obligated to maintain your code. Some
of the portals we have analyzed make this point
clear by explicitly saying that you need not offer
support for your project, and will not be penalized
if or when you discontinue your project. Among
these portals are SourceForge.Net, Savannah, and
ObjectWeb. The remaining portals do not clearly
state this, but they probably follow this criterion
since they allow projects to be removed from the
portal. The removal is not complete though. All the
public information of the project prior to removal
remains at the portal (existing fi le releases, CVS
history, forums, etc.).

 Intellectual property is another important is-
sue. All of the portals (except for Apache) preserve
the intellectual property of the project owner.

 Portals that offer the major number of advan-
tages are SourceForge.Net and ObjectWeb. If you
pretend to host your project on ObjectWeb, you
would have to consider using LGPL. Another is-
sue to be considered in ObjectWeb is the complex
registration process. Nevertheless, ObjectWeb has
good reputation in academia because of the strong
collaboration of INRIA. ObjectWeb requires that
a new project have fi nancial supporters in order to
guarantee the continuation of the project develop-
ment. As result, we found at this portal a group of
well-known projects, for example, JOnAS (1999),
C-JDBC (2002), and eXo Platform (2005).

 Regarding automatic backup, Savannah does
not have a formal backup policy. However, it does
back up the data (including CVS repositories) on
a nonregular basis (Savannah-help-private@gnu.
org, 2006).

We hope this analysis will be useful for de-
velopers who need to choose a Web portal for
their projects. We have done this study to fi nd
a Web portal to host ParGRES (http://pargres.
nacad.ufrj.br/), a free software project supported

by FINEP and Itautec (Brazil). After conducting
a careful analysis of the hosting options (having
also analyzed a Brazilian Web portal), we came
to the decision of hosting ParGRES at ObjectWeb.
Despite all of the advantages it offers to users,
there are mainly two reasons for our decision.
First, ObjectWeb opens the possibility of col-
laboration with a similar project (C-JDBC) that
is already hosted there; second, since ParGRES
is an academic project, we took the good reputa-
tion of ObjectWeb in academia as an important
plus to our case. ParGRES has been available at
ObjectWeb since November 2005 (http://forge.
objectweb.org/projects/pargres/).

ACKNOWLEDGMENT

This research was partially supported by FINEP,
Itautec, and CNPq.

REFERENCES

Apache Software Foundation. (1999). The Apache
Software Foundation. Retrieved January 23, 2006,
from http://www.apache.org/

Apache Software Foundation. (2002a). Apache
incubator project. Retrieved January 28, 2005,
from http://incubator.apache.org/

Apache Software Foundation. (2002b). Incuba-
tion policy. Retrieved January 23, 2006, from
http://incubator.apache.org/incubation/Incuba-
tion_Policy.html

Apache Software Foundation. (2005). How the
Apache Software Foundation works. Retrieved
January 28, 2005, from http://apache.org/founda-
tion/how-it-works.html#management

Apache Software Foundation. (2006). Incubated
projects. Retrieved January 23, 2006, from http://
incubator.apache.org/projects/

 225

Open Source Web Portals

Cecchet, E., & Hall, R. S. (2004). Objectweb
projects life cycle: A practical guide for Object-
web projects. Retrieved February 2, 2005, from
https://forge.objectweb.org/register/ObjectWeb-
project-lifecycle-v0.3.pdf

C-JDBC. (2002). Clustered JDBC. Retrieved June
26, 2006, from http://c-jdbc.objectweb.org/

Collabnet Inc. (2006). Collabnet: Distributed
development on demand. Retrieved January 23,
2006, from http://www.collab.net/

DiBona, C., Stone, M., & Cooper, D. (2005). Open
sources 2.0: The continuing evolution. Sebastopol,
CA: O’Reilly.

eXo Platform. (2005). eXo platform. Retrieved
June 26, 2006, from http://c-jdbc.objectweb.org/

Free Software Foundation. (1996). GNU project.
Retrieved January 5, 2005, from http://www.
gnu.org/

Free Software Foundation. (2000a). Free software
and free manuals. Retrieved February 14, 2006,
from http://www.gnu.org/philosophy/free-doc.
html

Free Software Foundation. (2000b). Savannah.
Retrieved February 1, 2005, from http://savan-
nah.gnu.org/

Java Open Application Server (JOnAS). (1999).
Java open application server. Retrieved June 26,
2006, from http://jonas.objectweb.org/

Object Web Consortium. (1999). Objectweb
forge: Project information. Retrieved January
17, 2006, from http://forge.objectweb.org/regis-
ter/projectinfo.php

Object Web Consortium. (2005). Objectweb open
source middleware. Retrieved January 31, 2005,
from http://www.objectweb.org/

Object Web Consortium. (2006). Projects life cy-
cle. Retrieved June 29, 2006, from https://wiki.ob-
jectweb.org/Wiki.jsp?page=ProjectsLifeCycle

Open Source Initiative. (2006). The approved
licenses. Retrieved January 17, 2006, from http://
opensource.org/licenses/

Open Source Technology Group. (2001a). Source-
forge.Net: Donation system (Document d02). Re-
trieved January 23, 2006, from http://sourceforge.
net/docs/D02/en/

Open Source Technology Group. (2001b). Source-
forge.Net: Service listing (Document b02). Re-
trieved January 23, 2006, from http://sourceforge.
net/docs/B02/en/

Open Source Technology Group. (2002). Source-
forge.Net project hosting requirements and the
project registration process. Retrieved January
21, 2006, from http://sourceforge.net/docman/dis-
play_doc.php?docid=14027&group_id=1

Open Source Technology Group. (2005). Source-
forge.Net. Retrieved January 5, 2005, from http://
www.sourceforge.net

PayPal. (1999). Paypal. Retrieved January 23,
2006, from http://www.paypal.com/us/

Perens, B. (1997). The open source defi nition.
Retrieved January 17, 2006, from http://www.
opensource.org/docs/defi nition.php

Savannah-help-private@gnu.org. (2006). Com-
parison of open source Web portals.

Stallman, R. M. (2002). Why free software is better
than open source. In J. Gay (Ed.), Free software,
free society: Selected essays of Richard M. Stall-
man (chap. 6, pp. 55-60). Boston: GNU Press.

Tigris. (2005). Tigris open source software
engineering. Retrieved January 31, 2005, from
http://www.tigris.org/

Wikipedia. (2006). Retrieved from http://www.
wikipedia.org

226

Open Source Web Portals

KEY TERMS

 Forum: A discussion board on the Internet
(Wikipedia, 2006).

 Intellectual Property: Umbrella term used to
refer to the object of a variety of laws, including
patent law, copyright law, trademark law, trade-
secret law, industrial design law, and potentially
others (Wikipedia, 2006).

 Issue Tracking: Also known as bug track-
ing, it is a system designed to manage change
requests of a software. It can also be used to
manage bugs.

 Mailing List: A collection of names and ad-
dresses used by an individual or an organization

to send material to multiple recipients. The term is
often extended to include the people subscribed to
such a list, so the group of subscribers is referred
to as the mailing list (Wikipedia, 2006).

 Task Management: Software capable of
managing lists of pending tasks.

 Version Control System: A system that tracks
and stores changes on fi les (source code, binary
fi les, and text fi les, among others). Such systems
are able to retrieve old versions of a given artifact
as long as such version has been stored some time
before in the system.

 Web Portal: A site on the World Wide Web
that typically provides personalized capabilities
to visitors (Wikipedia, 2006).

 227

Chapter XVIII
Curious Exceptions?
Open Source Software and

“Open” Technology

Alessandro Nuvolari
Eindhoven University of Technology, The Netherlands

Francesco Rullani
Sant’Anna School of Advanced Studies, Italy

INTRODUCTION

Over the last 10 years, open source software
development has increasingly attracted the at-
tention of scholars in the fi elds of economics,
management, and social sciences in general
(for sociological contributions, see Himanen,
Torvalds, & Castells, 2001; Weber, 2004; see
Maurer & Scotchmer, 2006, for an account of the
phenomenon from the economist’s perspective).

ABSTRACT

The aim of this chapter is to explore the differences and commonalities between open source software
and other cases of open technology. The concept of open technology is used here to indicate various
models of innovation based on the participation of a wide range of different actors who freely share
the innovations they have produced. The chapter begins with a review of the problems connected to the
production of public goods and explains why open source software seems to be a “curious exception”
for traditional economic reasoning. Then it describes the successful operation of similar models of in-
novation (open technology) in other technological fi elds. The third section investigates the literature in
relation to three fundamental issues in the current open source research agenda, namely, developers’
motivations, performance, and sustainability of the model. Finally, the fourth section provides a fi nal
comparison between open source software and the other cases of open technology.

Although the signifi cance of the software industry
in modern economic systems can partially explain
the increasing number of research contributions
in this area, it is clear that the chief reason behind
this growing interest is the fact that open source
software development seems to represent a form
of innovation process that challenges many facets
of the current conventional wisdom concerning
the generation of innovations in market economies
(Lerner & Tirole, 2001).

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

228

Curious Exceptions?

Traditionally, economists have considered
technological knowledge as a public good, that is,
a good endowed with two fundamental features:
(a) nonrivalry and (b) nonexcludability. Nonrivalry
states that when one actor consumes or uses the
good, this does not prevent other actors from con-
suming or using it. Obviously, this does not hold for
standard economic goods: If Paul eats the apple, it
is clear that Nathan cannot eat the same apple. On
the other hand, both Paul and Nathan can breathe
the fresh air of the park. Nonexcludability refers
to the fact that when technological knowledge is
in the public domain, it is no longer possible to
prevent other actors from using it. Again, while
Paul may force Nathan to pay for the apple, he
cannot (legally) prevent Nathan from breathing the
fresh air of the park. The traditional economist’s
viewpoint contends that market economies are
characterized by a systematic underprovision of
public goods as their production is, due to the
two properties described above, not profi table
for private fi rms. In these circumstances, the
standard prescription is that governments should
intervene, using tax revenues to supply directly
the appropriate quantity of public goods. This
reasoning is at the heart of the argument that is
commonly used in making the case for the public
support of scientifi c research (Nelson, 1959). It is
worth noting that, historically, the allocation of
public resources for the production of scientifi c
knowledge has been organized around a rather
particular institutional arrangement (“open sci-
ence”) capable of producing both incentives to
create new knowledge and the public disclosure
of scientifi c fi nding (Dasgupta & David, 1994).

Public funding, however, is not the only answer.
Another solution put forward by the literature is
based on the idea of inducing private fi rms to invest
in the production of technological knowledge by
means of an artifi cial system of property rights
(Arrow, 1962). The most common example, in
this respect, is the patent system. A patent assigns
temporarily to its inventor the complete control
of the new technological knowledge discovered.

The rationale for this institutional device is
straightforward: The prospect of the commercial
exploitation of this temporary monopoly right will
induce private fi rms to invest resources in inven-
tive activities, that is, in the production of new
technological knowledge.

In this context, open source software represents
a case of the production of new technological
knowledge (high-quality computer programs) car-
ried out by individuals without any direct attempt
of “appropriating” the related economic returns.
Clearly, all this is at odds with the conventional
wisdom summarized above.

Recent research has, however, shown that the
innovation process characterizing open source
software is not an isolated case. Instead, at least
since the industrial revolution, similar types of
innovation processes have been adopted in other
industries in different periods. Following Foray
(2004), we will refer to these episodes as cases of
“open technology” in order to stress their similar-
ity with open source software. It is worth warning
the reader that in the literature, a variety of other
terms and defi nitions such as “ collective invention”
or “community based innovation” are frequently
used.1 There is a growing awareness that these cases
do not represent just “curious exceptions” to the
traditional models of innovation based on public
funding or on commercial exploitation by means of
exclusive property rights. The aim of this chapter
is to provide a compact overview of this literature
and to compare these cases of open technology
with open source software. Our belief is that this
broader perspective can enrich our understanding
of open source software.

BACKGROUND

 Open Technology: A Neglected
Model of Innovation

In a seminal paper, Robert C. Allen (1983) pre-
sented a detailed case study of technical change in

 229

Curious Exceptions?

the iron industry of Cleveland (United Kingdom)
during the period of 1850 to 1870. According to
Allen, the Cleveland iron industry was character-
ized by a particular model of innovation, which
he labeled collective invention. In the Cleveland
district, iron producers freely disclosed to their
competitors technical information concerning the
construction details and performance of the blast
furnaces they had installed. Information was nor-
mally shared both through formal (presentations
at meetings of engineering societies, publication
of design details in engineering journals, etc.) and
informal channels (visits to plants, conversations,
etc.). Additionally, new technical knowledge was
not protected using patents so that competing fi rms
could freely make use of the released information
when they had to construct a new blast furnace.
The consequence of this process of information
sharing was that the blast furnaces of the district
increased their performance very rapidly. Allen
noted three essential conditions at the basis of
the emergence of the collective-invention regime.
The fi rst condition refers to the nature of the
technology. In the period considered, there was
no consolidated understanding of the working
of a blast furnace. The best engineers could do
when designing a new blast furnace was to come
up with some design guidelines on the basis of
previous experiences. Obviously, the sharing of
information related to the performance of a large
number of furnaces allowed engineers to rely on
a wider pool of information in their extrapola-
tions, leading to a more rapid rate of technological
progress. Second, blast furnaces were designed
by independent consulting engineers who were
normally employed on a one-off basis. In this
context, the most talented engineers had a strong
incentive to disseminate the successful design
novelties they had introduced in order to enhance
their professional reputation and improve their
career prospects. Third, iron producers were often
also owners of iron mines. As a consequence,
improvements in the effi ciency of blast furnaces
would have led to an enhancement in the value of

the iron deposits of the region. Thus, there was a
keen interest in the improvement of the average
performance of blast furnaces, as only improve-
ments in the average performance would have
infl uenced the value of iron deposits.

Following Allen’s work, other scholars have
pointed out the existence of a collective-inven-
tion regime in other industries. In a recent study,
Nuvolari (2004) has shown that the three condi-
tions of Allen’s model of collective invention
were also at work in the Cornish community of
steam engineers during the fi rst half of the 19th
century. This case is particularly interesting be-
cause some evidence suggests that the emergence
of the collective-invention regime was triggered
by a widespread dissatisfaction toward the tradi-
tional model of innovation based on patents (in
particular, James Watt’s patent of 1769).

Other cases of collective invention have been
noted in the historical literature, for example,
the Western steamboat (Hunter, 1949) and the
Lyon silk industry in the 19th century (Foray &
Hilaire-Perez, 2000). Scholars have also noted
similar knowledge-sharing episodes in several
contemporary high-technology districts (most
prominently in Silicon Valley; see Saxenian,
1994). However, it is worth noting that in these
cases, the very dense knowledge fl ows between
fi rms may be due to user-producer interactions
(Lundvall, 1988) or episodes of know-how trade
between engineers (von Hippel, 1987) rather than
to the existence of a collective-invention regime
in Allen’s sense.2

A related stream of literature has highlighted
the growing importance of user communities
as sources of innovation (Franke & Shah, 2003;
Shah, 2005). The starting point of these investi-
gations is the observation that in many fi elds, a
sizable share of inventions is due to the users of a
specifi c product and not to its manufacturers (von
Hippel, 1988, 2005). One interesting feature of
the innovation processes centered on users is that
they are often based on very intense knowledge
exchanges in the context of specifi c communities.

230

Curious Exceptions?

Again, within these communities, inventions are
normally released in the public domain, and there
are no attempts of exploiting them by means of
exclusive property rights. Research in this fi eld
(see Franke & Shah, 2003, for a detailed study of
four user communities in sport equipment) has
noted a variety of motivations for the emergence
of this type of behavior. First, users belonging
to these communities have a keen interest in the
performance level of the product. Hence, as in
the case of collective invention, the community
seems to be characterized by a widespread belief
that a mutual cooperative attitude toward inven-
tive activities will enhance the rate of innovation.
Second, the social structure of these communities
seems to favor the emergence of an ethos prescrib-
ing reciprocity and mutual aid.

Apart from the fi eld of sports equipment, in
which this type of (user) community-based in-
novation seems to be prominent, research has
identifi ed the existence of this particular model
in other industries, such as geographic informa-
tion systems, astronomic instruments, and early
computer and automobile users (see Maurer &
Scotchmer, 2006; Shah, 2005).

MAIN FOCUS OF THE CHAPTER

Open Source Software: A Synthesis
of Recent Research

One of the main issues to be explored in order to
understand the existence and the success of open
source software can be stated as follows: Why are
developers willing to develop open source soft-
ware if the typical licenses of this regime3 prevent
them to extract any direct monetary gain from the
diffusion of their work? In other words, a study of
the open source software phenomenon requires an
understanding of developers’ motivations.

In order to describe the structure of the land-
scape of developers’ motivations, a fi rst useful
distinction has been put forward by Lakhani and

Wolf (2005). In this chapter, the authors, following
the work by Deci and Ryan (1985), Amabile (1996),
and Lindenberg (2001), classify the motivations
driving developers’ participation into two main
groups: intrinsic and extrinsic motivations. When
the development activity is undertaken because it
enhances developers’ utility directly, providing a
gain in terms of fun or creativity fulfi llment, or a
feeling of identity and belongingness to a group,
the underlying incentives are said to be intrinsic
because the actions they trigger have an intrinsic
value for the agent. On the contrary, when the
production of code is undertaken instrumentally
to reach other goals, such as increasing wages,
enhancing the agent’s reputation on the job market,
or fulfi lling specifi c needs the existing software
cannot satisfy, the motivations behind the action
are defi ned as extrinsic because the increase in
the individual utility is not due to action itself,
but to its consequences.

Each one of the two regions of the devel-
opers’ motivational landscape can be further
structured to isolate the different mechanisms at
work in each fi eld. The FLOSS (free/libre open
source software) surveys developed by Ghosh,
Krieger, Glott, and Robles (2002; answered by
2,784 developers) and by David, Waterman, and
Arora (2003; answered by 1,588 developers) offer
a fi ner grain point of view on the motivational
landscape. In both the surveys, the most popular
answers to questions related to developers’ incen-
tives span from “I thought we should all be free
to modify the software we use” to “As a user of
free software, I wanted to give something back
to the community,” “I saw it as a way to become
a better programmer,” “to participate in a new
form of cooperation,” “to improve OS/FS [open
source/free software] products of other develop-
ers,” and “to improve my job opportunities.”
Thus, a series of different intrinsic and extrinsic
motivations emerges.

Lakhani and Wolf (2005; see also Lakhani,
Wolf, Bates, & DiBona, 2002), using survey
data collected from 684 developers working on

 231

Curious Exceptions?

287 open source projects, were able, by means of
a cluster analysis exercise, to identify a number
of archetypical cases of open source software
developers. They fi nd four clusters, each one ap-
proximately the same size as the others. For the
members of the largest cluster, a personal sense
of creativity and fun are crucial determinants of
their contribution to the open source movement.
Two other elements emerge as important in this
group: the learning opportunities the community
offers them, and the possibility to enhance their
career through the diffusion of the code they
produce. The population of the second cluster
resembles the user communities described in
the previous section: Skilled developers with
specifi c needs the existing software cannot ful-
fi ll are pushed to create the program answering
their needs (i.e., lead users). The third cluster is
instead composed of paid developers who receive
a wage connected to their production of open
source products. Eventually, the fourth cluster
gathers together individuals strongly committed
to the community, moved by the willingness to
reciprocate the received help and code, and hav-
ing a strong ideological position in favor of the
open source movement (e.g., believing that code
should be open and participating in order to beat
proprietary software).

From the empirical studies just described, some
subsets of the two main motivation sets emerge.
On the one hand, intrinsic motivation can have a
psychological nature when it takes the form of fun
or creativity fulfi llment (Lakhani & Wolf, 2005;
Torvalds & Diamond, 2001), or a social nature
when it is a product of the interaction between
community members and between them and the
whole social body of the community, that is, its
culture, its shared rules, its ideology, its debate,
and so on. In such a thick social environment,
developers are willing to participate because they
identify with the community, they belong to the
hacker culture and feel the need to follow its rules,
they believe in the common enterprise they are

undertaking, or simply because they care about
their status or reputation in the community and are
sensitive to peers’ regard (Bagozzi & Dholakia,
2006; Dalle & David, 2005; Dalle, David, Ghosh,
& Wolak, 2004; Hertel, Niedner, & Hermann,
2003; Himanen et al., 2001; Raymond, 1998;
Weber, 2000, 2004; Zeitlyn, 2003). On the other
hand, extrinsic motivations can be diversifi ed into
subcategories such as career concerns (Lerner &
Tirole, 2002), when developers’ production of code
and diffusion is determined by the willingness
to be recognized in the job market as valuable
programmers; own use, when the open source
community is conceived as a user community
à la von Hippel (Hertel et al., 2003; Jeppesen &
Frederiksen, 2006; Lakhani & von Hippel, 2003;
von Hippel, 2001); and paid contributions (Rob-
erts, Hann, & Slaughter, 2006), when developers
are employees of fi rms active in the open source
software environment.

A further element emerged from the cluster
analysis by Lakhani and Wolf (2005): learning
(von Hippel & von Krogh, 2003). Developers
are often driven by the desire to improve their
skills and perceive the community as a social
environment where they can get help in solving
problems by studying collectively new solutions
and fi nding new challenges. Learning can be
considered both an intrinsic and an extrinsic
incentive, and it cannot be placed easily in one
of the subsets defi ned above. It certainly has an
individual and psychological nature, but since
it develops alongside the agents’ interaction, its
nature is much broader. Once the open source
community is conceived as a “ community of
practice” or an “ epistemic community” (Cohen-
det, Creplet, & Dupouët, 2001; Lin, 2004), where
the body of knowledge of the whole community
interacts and coevolves with each individual’s
knowledge, learning can be clearly identifi ed as
a social process. The same blurred result can be
found when conceiving learning as an extrinsic
incentive: It can be an instrument for most of the

232

Curious Exceptions?

goals typical of the extrinsic motivations described
above. Thus, it should be considered as a third
group, intersecting all the previous sets. Figure
1 shows the structure of the motivations set as
drawn from the quoted literature.

The description of the community proposed
above is mainly focused on developers as indi-
viduals. However, other subjects are active in
the open source environment: fi rms. Even in an
open environment as open source, it is possible
for fi rms to generate profi ts. The most famous
example is given by fi rms assembling and distribu-
tion a ready-to-install version of the GNU/Linux
operating system, like Red Hat or Novell. The
literature has highlighted several ways by which
fi rms can create value from their participation in
the open source movement, but has also shown
the instrumental use of their adherence to the
community norms and ideology (Rossi & Bonac-
corsi, 2005). In other words, as long as incentives
are concerned, fi rms have a much narrower set of
incentives, being motivated, as expected, by profi t
maximization. However, even if the participation
of the fi rms in the open source community is only

instrumental, they play an increasingly important
role in the open source scene. As we will see in
the following sections, they can be fundamental
sources of code or related services the community
is not willing to produce.

So far, we have given a brief account of the
motivations sustaining developers’ production of
open source software. However, even if developers
can decide to dedicate a high amount of effort and
time to the production of code, this does not mean
that open source represents a successful model
of innovation. Thus, our next step is to focus on
the performance of open source software as an
innovation model.

The fi rst thing to be noticed is that the dis-
tribution of open source projects in terms of the
main performance indicators—the number of
developers and forum or mailing-list discussions
(Krishnamurthy, 2002), downloads (Healy &
Schussman, 2003), and CVS (Concurrent Ver-
sion System) commits and fi le releases (Giuri,
Ploner, Rullani, & Torrisi, 2005)—is extremely
skewed. Most of the projects remain small indi-
vidual enterprises without a serious impact on the

Figure 1. Structure of developers’ motivational landscape

Intrinsic motivations

Lakhani and Wolf (2005)

Social incentives: Identity, social norms,
hacker culture, reciprocity (Bagozzi &
Dholakia, 2006; Dalle & David, 2005; Dalle
et al., 2004; Hertel et al., 2003; Himanen,
2001; Lindenberg, 2001; Raymond,
1998; Weber, 2000, 2004; Zeitlyn, 2003)

Career concern (Lerner & Tirole, 2002)

Paid contribution (Roberts et al., 2006)

Own use (Hertel et al., 2003; Jeppesen &
Frederiksen, 2006; von Hippel, 2003)

Extrinsic motivations

Psychological incentives: Fun, creativity
(Amabile, 1996; Lakhani & Wolf, 2005;
Torvalds & Diamond, 2001) Learning:

(Cohendet et al.,
2001; Lin, 2004;
von Hippel & von
Krogh, 2003)

 233

Curious Exceptions?

landscape of the software industry. However, as
argued by David and Rullani (2006), open source
software should be regarded as a “dissipative”
system, burning more resources than those used
to produce the actual results. This characteristic is
typical of self-organized social structures, where
individuals choose on a voluntary basis how much
effort to devote to what task and when. In order
for the whole system to produce an outcome,
several combinations of the available resources
have to be worked out before the valuable ones
can be selected by the environment.

Thus, on the one hand, the disproportion be-
tween the inactive projects and the successful ones
characterizes the open source model as dissipative
rather than an unsuccessful model of innovation.
On the other hand, the same argument calls for a
defi nition of the drivers of open source projects
performance in order to be able to reduce the gap
between the mobilized resources and those that
are actually used.

A fi rst result along this line of inquiry states
that projects adopting a restrictive license like the
GPL (General Public License) tend to have lower
performance (Comino, Manenti, & Parisi, 2005;
Fershtman & Gandal, 2004; see also Lerner &
Tirole, 2005). This result could be due to a det-
rimental impact of the excessive openness of the
GPL projects, which may be unable, for example,
to attract fi rms and sponsored developers. A hybrid
model of innovation, where the adopted license
scheme is able to create a synergy between the
community and other economic actors, should be
then considered as a valuable confi guration (Bo-
naccorsi, Giannangeli, & Rossi, 2006). A second
result is that the division of labor has a signifi cant
positive impact on project performance. However,
the variety and the level of members’ skill sets
(Giuri et al., 2005) and the costs connected to
the coordination of many developers (Comino et
al., 2005) have to be taken into account in order
to avoid a net negative effect. Modularity at the
level of the code structure has been analyzed by
Baldwin and Clark (2006), who fi nd that a modular

architecture is able to attract more voluntary effort
and reduce free riding. Applying an ecological
perspective, Grewal, Lilien, and Mallapragada
(2006) look at the developers’ membership in
different projects to draw a network of relation-
ships between projects and developers. They
show that projects with a central position in the
network are more likely to exhibit high technical
performance, but the network is not so crucial in
determining the commercial success (i.e., number
of downloads) of the produced software.

Having established what moves developers
and what the drivers of the open source software
innovative performance are, a last question regards
the possibility to sustain such a structure over time.
The contributions moving in this direction are
scarce, and there is need for further research. A fi rst
contribution has been given by Gambardella and
Hall (in press). The authors show that a coordina-
tion device is needed to assure the stability of col-
laboration. The adoption of the GPL can be thought
of as such a mechanism, preventing any developer
joining the project after the founder to adopt op-
portunistic behavior. This argument points out
an interesting trade-off between performance
and sustainability: Less restrictive licenses can
induce higher performance, but can undermine
the sustainability of the community. A second
point has been made by David and Rullani (2006),
showing that developers undertaking their activity
on the SourceForge.net (http://sourceforge.net/)
platform during the period of 2001 to 2002 exhibit
a robust, nontransient tendency to participate in
existing projects and also to create new projects.
Sustainability, then, can be conceived at least as
a valuable working hypothesis.

Open Technology and Open Source
Software: A Comparison

Various researchers have noted the existence of
important parallels between the model of open
technology discussed previously and the fi nd-
ings emerging from ongoing studies of the open

234

Curious Exceptions?

source communities (see, among others, Foray,
2004; Nuvolari, 2005). In a nutshell, these are the
main points of interest:

a. Both collective-invention regimes and the
open source movement seem to emerge
thanks to a perceived dissatisfaction toward
the innovative performance delivered by tra-
ditional regimes based on exclusive property
rights.

b. Case studies of collective invention and user
communities seem generally characterized
by remarkable performances in terms of
rates of innovation. The same remarkable
innovative performance has characterized
some open source software projects, at least
since the 1990s, when GNU/Linux was
born.

c. However, only a restricted number of open
source software projects are successful.
Similarly, only few innovations coming from
the users are really valuable, as well as only
few contributions added to the common pool
of collective inventions are really improv-
ing the performance of the sector. Thus,
the models share the dissipative property
described for the open source model of in-
novation.

d. Both collective invention and a number of
open source software projects are charac-
terized by high levels of complexity and
uncertainty. In these conditions, a model
of innovation based on knowledge shar-
ing, cooperation, and continuous feedback
permits the timely identifi cation of the most
promising lines of development.

e. Cases of collective invention, user-based in-
novation models, and open source software
are forms of innovation processes involving
heterogeneous sets of actors (in particular,
engineers, lead users, and developers with
different skills and talents, and fi rms) orga-
nized into communities.

f. Collective invention, open source software,
and user communities rely on a complex
set of motivational drivers, spanning from
economic incentives, dissatisfaction toward
tight intellectual property-rights regimes,
psychological and social motives, and so
on. Even if the open source software and
the other examples of open innovation
seem to rely on different compositions of
the aforementioned motivational factors, it
might well be that this plurality of motives
represents one of the fundamental ingre-
dients for sustaining both open source and
open-technology regimes.

CONCLUSION

The Core of the Difference and the
Challenges to Sustainability

The main difference between the three regimes
of innovation can be found in the relationship
between the communities of innovative agents
and the involved fi rms. In a collective-invention
regime, fi rms strategically suspend appropriation
of the produced knowledge in order to deal with
technological problems that an individual fi rm
could not handle. In this sense, fi rms are the fun-
damental actors of collective-invention regimes.
Accordingly, these regimes usually disappear
when the collective effort to overcome the radical
uncertainty in the technological space is not neces-
sary anymore (i.e., when a specifi c technological
trajectory or paradigm emerges; Dosi, 1982), and
each fi rm is willing to return to the proprietary
regime that will assure higher individual profi ts.
On the contrary, the nexus between manufacturers
and users is much tighter in user communities.
Users innovate around the products of the fi rms,
which in turn try to sustain users’ involvement.
Sometimes, these communities are originated
directly by the fi rms, and other times they emerge

 235

Curious Exceptions?

spontaneously through users’ interaction. In the
open source software case, the leading role is
instead played by users and developers, and fi rms
are mainly active in those spaces that the com-
munity does not or cannot reach. Firms have to
adapt to the rules of the community and do not
directly control on the product (Dahlander &
Magnusson, 2005; Shah, 2006). Thus, the basic
difference between the three models of innovation
is in the balance between the roles of fi rms and
of users and developers.

These considerations shed new light on the
relative sustainability of these regimes. Collec-
tive inventions can exist only as long as fi rms do
not profi t enough from a traditional proprietary
regime; this happens mostly in conditions of radi-
cal technological uncertainty (emerging phases
of a novel technological paradigm). Instead, user
communities and open source software seem to
be characterized by different sustainability condi-
tions (Osterloh & Rota, 2005). The sustainability
of the former depends directly on the ability of
communities and fi rms to involve individual us-
ers and keep their participation at a certain level;
in the case of the latter, several factors, still to
be fully identifi ed, can induce a decay of the
phenomenon or strengthen its sustainability. The
foregoing discussion on the trade-offs between
open source sustainability, performance, and level
of openness (as defi ned by the license) clearly
bears out this point.

REFERENCES

Allen, R. C. (1983). Collective invention. Jour-
nal of Economic Behaviour and Organization,
4, 1-24.

Amabile, T. M. (1996). Creativity in context.
Boulder, CO: Westview Press.

Arrow, K. (1962). Economic welfare and the al-
location of resources for invention. In R. Nelson

(Ed.), The rate and direction of inventive activ-
ity: Economic and social factors. Princeton, NJ:
Princeton University Press.

Bagozzi, R. P., & Dholakia, U. M. (2006). Open
source software user communities: A study of
participation in Linux user groups. Management
Science, 52(7), 1099-1115.

Baldwin, C. Y., & Clark, K. B. (2006). The
architecture of participation: Does code archi-
tecture mitigate free riding in the open source
development model? Management Science, 52(7),
1116-1127.

Bonaccorsi, A., Giannangeli, S., & Rossi, C.
(2006). Entry strategies under competing stan-
dards: Hybrid business models in the open source
software industry. Management Science, 52(7),
1085-1098.

Chesbrough, H., Vanhaverbake, W., & West, J.
(Eds.). (2006). Open innovation: Researching a
new paradigm. Oxford, UK: Oxford University
Press.

Cohendet, P., Creplet, F., & Dupouët, O. (2001,
June). Communities of practice and epistemic
communities: A renewed approach of organiza-
tional learning within the fi rm. Paper presented at
the Workshop on Economics and Heterogeneous
Interacting Agents, Marseille, France.

Comino, S., Manenti, F. M., & Parisi, M. L. (2005).
From planning to mature: On the determinants of
open source take off (Discussion Paper 2005-17).
Trento, Italy: Trento University.

Dahlander, L., & Magnusson, M. (2005). Relation-
ships between open source software companies
and communities: Observations from Nordic
fi rms. Research Policy, 34(4), 481-493.

Dalle, J.-M., & David, P. A. (2005). The alloca-
tion of software development resources in “open
source” production mode. In J. Feller et al. (Eds.),
Making sense of the bazaar: Perspectives on

236

Curious Exceptions?

open source and free software. Cambridge, MA:
MIT Press.

Dalle, J.-M., David, P. A., Ghosh, R. A., & Wolak,
F. A. (2004, June). Free & open source software
developers and “the economy of regard”: Par-
ticipation and code-signing in the modules of
the Linux kernel. Paper presented at the Oxford
Workshop on Libre Source, Oxford, UK.

Dasgupta, P., & David, P. A. (1994). Towards a
new economics of science. Research Policy, 23,
487-521.

David, P. A., & Rullani, F. (2006, June). Open
source software development dynamics: Project
joining and new project generation on Source-
Forge. Paper presented at the Meetings of the
International Schumpeter Society (ISS), Sophia-
Antipolis, France.

David, P. A., Waterman, A., & Arora, S. (2003).
The free/libre/open source software survey for
2003 (Preliminary draft). Unpublished manu-
script.

Deci, E. L, & Ryan, R. M. (1985). Intrinsic moti-
vation and self-determination in human behavior.
New York: Plenum Press.

Dosi, G. (1982). Technological paradigms and
technological trajectories: A suggested interpreta-
tion of the determinants and directions of technical
change. Research Policy, 11(3), 147-162.

Fershtman, C., & Gandal, N. (2004). The deter-
minants of output per contributor in open source
projects: An empirical examination (Discussion
Paper 4329). London: CEPR.

Foray, D. (2004). The economics of knowledge.
Cambridge, MA: MIT Press.

Foray, D., & Hilaire-Perez, L. (2000, May). The
economics of open technology: Collective in-
vention and individual claims in the “ fabrique
lyonnaise” during the old regime. Paper presented

at the conference in honour of Paul A. David,
Turin, Italy.

Franke, N., & Shah, S. (2003). How communities
support inventive activities: An exploration of as-
sistance and sharing among end-users. Research
Policy, 32, 157-178.

Gambardella, A., & Hall, B. (in press). Propri-
etary vs public domain licensing of software and
research products. Research Policy.

Ghosh, R. A. (1998). Cooking pot markets: An
economic model for the trade in free goods and
services on the Internet. First Monday, 3(3).
Retrieved March 22, 2007, from http://www.
fi rstmonday.org/issues/issue3_3/ghosh

Ghosh, R. A., Krieger, B., Glott, R., & Robles, G.
(2002). Free/libre and open source software. Part
IV: Survey of developers. International Institute
of Infonomics, Berlecom Research GmbH.

Giuri, P., Ploner, M., Rullani, F., & Torrisi, S.
(2005, September). Skills, division of labor and
performance in collective inventions: Evidence
from the open source software. Paper presented
at the EARIE Conference, Porto, Portugal.

Grewal, R., Lilien, G. L., & Mallapragada, G.
(2006). Location, location, location: How network
embeddedness affects project success in open
source systems. Management Science, 52(7),
1043-1056.

Healy, K., & Schussman, A. (2003). The ecology
of open source software development (Working
Paper). AZ: Department of Sociology, University
of Arizona.

Hertel, G., Niedner, S., & Hermann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159-1177.

 237

Curious Exceptions?

Himanen, P., Torvalds, L., & Castells, M. (2001).
The hacker ethic and the spirit of the information
age. London: Secker & Warburg.

Hunter, L. (1949). Steamboats on the Western
rivers: An economic and technological history.
Cambridge, MA: Harvard University Press.

Jeppesen, L. B., & Frederiksen, L. (2006). Why
fi rm-established user communities work for inno-
vation? The personal attributes of innovative users
in the case of computer-controlled music instru-
ments. Organization Science, 17(1), 45-64.

Krishnamurthy, S. (2002). Cave or community?
An empirical examination of 100 mature open
source projects. First Monday, 7(6). Retrieved
March 22, 2007, from http://www.fi rstmonday.
dk/issues/issue7_6/krishnamurthy

Lakhani, K. R., & von Hippel, E. (2003). How
open source software works: “Free” developer-
to-developer assistance. Research Policy, 32.

Lakhani, K. R., & Wolf. (2005). Why hackers
do what they do: Understanding motivations and
effort in free/open source software projects. In J.
Feller, B. Fitzgerald, S. Hissam, & K. R. Lakhani
(Eds.), Perspectives on free and open source
software. Cambridge, MA: MIT Press.

Lakhani, K. R., Wolf, R. G., Bates, J., & DiBona,
C. (2002). The Boston Consulting Group hacker
survey (Release 0.73). Author.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key-research question. European
Economic Review, 45, 819-826.

Lerner, J., & Tirole, J. (2002). Some simple eco-
nomics of open source. The Journal of Industrial
Economics, L(2), 197-234.

Lerner, J., & Tirole, J. (2005). The scope of open
source licensing. Journal of Law, Economics, and
Organization, 21, 20-56.

Lin, Y. (2004). Contextualising knowledge-mak-
ing in Linux user groups. First Monday, 9(11).

Retrieved March 22, 2007, from http://www.
fi rstmonday.org/issues/issue9_11/lin/index.html

Lindenberg, S. (2001). Intrinsic motivation in a
new light. Kyklos, 54(2/3), 317-342.

Lundvall, B.-Å. (1988). Innovation as an interac-
tive process: From user-producer interaction to
the national system of innovation. In G. Dosi, C.
Freeman, R. Nelson, G. Silverberg, & L. Soete
(Eds.), Technical change and economic theory.
London: Pinter.

Maurer, S. M., & Scotchmer, S. (2006). Open
source software: The new intellectual property
paradigm (NBER Working Paper 12148).

Nelson, R. (1959). The simple economics of basic
scientifi c research. Journal of Political Economy,
67, 297-306.

Nuvolari, A. (2004). Collective invention during
the British industrial revolution: The case of the
Cornish pumping engine. Cambridge Journal of
Economics, 28, 347-363.

Nuvolari, A. (2005). Open source software de-
velopment: Some historical perspectives. First
Monday, 10(10). Retrieved March 22, 2007, from
http://www.fi rstmonday.org/issues/issue10_10/
nuvolari/index.html

Osterloh, M., & Rota, S. G. (2005). Open source
software development—Just another case of
collective invention? (CREMA Working Paper
2005-08).

Raymond, E. (1998). Homesteading the Noo-
sphere. First Monday, 3(10). Retrieved March 22,
2007, from http://www.fi rstmonday.org/issues/is-
sue3_10/raymond/index.html

Roberts, J. A., Hann, I., & Slaughter, S. A. (2006).
Understanding the motivations, participation, and
performance of open source software develop-
ers: A longitudinal study of the Apache projects.
Management Science, 52(7), 984-999.

238

Curious Exceptions?

Rossi, C., & Bonaccorsi, A. (2005). Intrinsic vs.
extrinsic incentives in profi t-oriented fi rms sup-
plying open source products and services. First
Monday, 10(5). Retrieved March 22, 2007, from
http://www.firstmonday.org/issues/issue10_5/
rossi

Saxenian, A. (1994). Regional advantage: Culture
and competition in Silicon Valley and in Route 128.
Cambridge, MA: Harvard University Press.

Shah, S. (2005). Open beyond software. In C.
DiBona, D. Cooper, & M. Stone (Eds.), Open
sources 2.0: The continuing evolution. Sebastopol,
CA: O’Reilly.

Shah, S. (2006). Motivation, governance, and
the viability of hybrid forms in open source
software development. Management Science,
52(7), 1000-1014.

Torvalds, L., & Diamond, D. (2001). Just for fun:
The story of an accidental revolutionary. New
York: Texere.

Von Hippel, E. (1987). Cooperation between
rivals: Informal “know how” trading. Research
Policy, 16, 291-302.

Von Hippel, E. (1988). The sources of innovation.
Oxford, UK: Oxford University Press.

Von Hippel, E. (2001). Innovation by user com-
munities: Learning from open source software.
MIT Sloan Management Review, 42(4), 82-86.

Von Hippel, E. (2005). Democratizing innovation.
Cambridge, MA: MIT Press.

Von Hippel, E., & von Krogh, G. (2003). Open
source software and the “private-collective” in-
novation model: Issues for organization science.
Organization Science, 14(2), 209-223.

Weber, S. (2000). The political economy of open
source software (BRIE Working Paper 140).

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Zeitlyn, D. (2003). Gift economies in the develop-
ment of open source software: Anthropological
refl ections. Research Policy, 32, 1287-1291.

KEY TERMS

 Collective Invention: An innovation model
in which private fi rms engaged in the produc-
tion or use of a specifi c good freely share one
another’s inventions and other pertinent technical
information.

 Dissipation: We call dissipation an innovation
model that mobilizes (or “burns”) more resources
than those actually used to produce the outcome.
Dissipation is typical of self-organizing and ex-
plorative organizations.

 Intrinsic/ Extrinsic Motivations: When an
activity is undertaken because it enhances agents’
utility directly, the underlying incentives are in-
trinsic because the actions they trigger have an
intrinsic value for the agent. On the contrary, when
an action is undertaken instrumentally to reach
other goals, the motivations behind the action are
defi ned as extrinsic because the increase of the
individual’s utility is not due to action itself, but
to its consequences.

 Sustainability: We call sustainable an innova-
tion model that re-creates over time the premises
for its own reproduction, that is, if it is endowed
with a mechanism able to re-create incentives for
the participants to continually invest in innova-
tion. In this sense, the patent system as well as the
public-funded research system can be conceived
as sustainable.

 User Community: An innovation model
where a community of users of a particular prod-
uct are the main source of innovation and where
innovations are normally freely shared within
the community.

 239

Curious Exceptions?

ENDNOTES

1 Another term that is becoming increasingly
popular in the management literature is
“open innovation” (see Chesbrough, Van-
haverbeke, & West, 2006). The concept of
open innovation refers to the fact that fi rms
are increasingly making use of external
sources of knowledge in their innovation
processes. Clearly, this is somewhat related
to the phenomenon of open technology
sketched above as fi rms, in order to gain
access to these external sources, are fre-
quently required to adopt a more relaxed
attitude toward the appropriation of their

inventions. In this chapter, we will not deal
with the literature on open innovation.

2 In know-how trading, information is typi-
cally exchanged by engineers belonging
to competing fi rms on a bilateral basis. In
collective-invention regimes, all the compet-
ing fi rms have free access to the potentially
proprietary know-how.

3 The possibility for subsequent developers
to change the open regime established by
the initial choice of an open source license
depends on the terms of each specifi c li-
cense. We refer the reader to Lerner and
Tirole (2005) for a futher discussion on the
different types of licenses.

240

Chapter XIX
Reducing Transaction Costs

with GLW Infrastructure
Marcus Vinicius Brandão Soares

NECSO Research Group – Federal University of Rio de Janeiro, Brazil

INTRODUCTION

Firms, or more generally, organizations, develop
and become larger over time, using more and more
computers. Information systems of an organiza-
tion turn into an information infrastructure, and
the growth of the number of computers leads
to a growth of software use (operating systems
and their applications, e.g.), resulting in the
growth of the number of software use and ac-
cess licenses.

When all of the software used by the organiza-
tion is proprietary, this growth leads to a greater
supervision of users to regulate lawful access to
software for the owners of software intellectual
property rights since these rights are regulated by

ABSTRACT

This chapter introduces the hybrid GLW information infrastructure as an alternative to proprietary-only
information infrastructures with lower costs. The author argues that the use of FLOSS servers in a cli-
ent-server infrastructure reduces the transaction costs relative to the data processing and the contract
management that organizations have to support, preserving the investment already made with the installed
base of clients in comparison to the use of proprietary managed servers. Transaction costs of two real-
world proprietary infrastructures, Netware 5.0 and Windows NT 4.0, and of GLW, all with Windows 98
clients, are described and compared to give elements for the reader to analyze and decide.

 contracts, in this case, license agreements. This
results in some costs associated with contract-
ing—transaction costs—that are not usually taken
into account by administrators and managers.
They are used to paying much more attention
to the costs of software licenses. However, what
happens if FLOSS1 is used?

This chapter aims to show a hybrid2 informa-
tion infrastructure named GLW3 as a lower cost
alternative to proprietary information infrastruc-
tures. GLW reduces the transaction costs of the
organization in two ways: (a) by eliminating the
access control mechanisms that are embedded in
 proprietary software, which reduces transaction
costs in terms of computational costs, and (b) by
reducing the number of managed contracts by

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 241

Reducing Transaction Costs with GLW Infrastructure

half in comparison with some other proprietary
information infrastructures.

BACKGROUND

What is an Information
Infrastructure?

Once upon a time, computers existed as stand-
alone devices. There was no (or very little)
communication between computers within an
organization. All work was truly local, based on
local needs and standards. As organizations grew,
personnel and computers multiplied. Method-
ologies were developed to all individuals within
organizations to communicate to reduce the du-
plication of data and work, including models such
as structured systems analysis (Gane & Sarson,
1983), modern structured analysis (Yourdan,
1990), structured systems design (Page-Jones,
1988), and, most recently, RUP (rational unifi ed
process) and UML (unifi ed modeling language;
Booch, Rumbaugh, & Jacobson, 1999).

All these methodologies (and many others)
have been used for at least 20 years to model work
and data to a certain size, time, and place. In the
words of Hanseth (2002), “in short: IS method-
ologies aim at developing a closed system by a
closed project organization for a closed customer
organization within a closed time frame.”

Planning information systems by scratch-
ing, designing, specifying, implementing, and
“big-banging” becomes harder because it is not
possible to change the installed base of hardware
and software immediately. The solutions are
(a) to improve the installed base by adding new
functionalities, or (b) to extend the installed base
by adding new elements to it (Hanseth, 2002).

An information system evolves into an in-
formation infrastructure, which is defi ned as
“a shared, evolving, open, standardized, and
heterogeneous installed base” (Hanseth, 2002).
Its extension or improvement depends strongly

on the existing information infrastructure, that is,
the installed base. One can notice that the work-
ing defi nitions of information infrastructure and
installed base depend on each other. Hanseth does
not ignore information systems; they are treated
in another way: as local phenomena.

Hanseth (2002) splits information infrastruc-
tures into two levels: application infrastructures
and support infrastructures, with the fi rst at the
top of the second. The support infrastructure is
split into two categories: transport and service
infrastructures. These levels are depicted in
Figure 1.

For example, Web browsers are part of the
application infrastructure, TCP/IP (transmission-
control protocol/Internet protocol) is part of the
transport infrastructure, and DNS4 is part of the
service infrastructure.

 Gateways are elements that “link different
infrastructures which provide the same kind of
service based on different protocols/standards.
The infrastructures that are linked this way are
called neighboring infrastructures” (Hanseth,
2002) and are used to escape from certain situa-
tions where an organization is locked into a certain
software or hardware platform (Shapiro & Varian,
1999). This situation is depicted in Figure 2. One
example of a gateway is Samba, software that
connects Microsoft Windows and GNU/Linux
infrastructures. This will be discussed later in
the chapter.

This chapter will focus on infrastructures
with up to 2505 users and in which the installed
base depends strongly on proprietary software,
contracts, license agreements, and associated
costs.

Modes of Interaction
in Infrastructures

We can describe two main models of compu-
tational interaction found in computer science
literature: peer to peer (collaborative, with de-

242

Reducing Transaction Costs with GLW Infrastructure

centralized control) and client-server (service
oriented, with centralized control).

In a peer-to-peer infrastructure, all compo-
nents of this infrastructure work together coop-
eratively so that there is no centralized processing
unit. All elements work together without hierarchy.
The cost of adding one more component to the
infrastructure involves the cost of hardware, plus
the cost of the software license, plus the cost of
support.

In a client-server infrastructure, servers handle
requests for computational processing, acting as a
locus for specifi c programs and data, and acting
as a gateway to other infrastructures. Clients send
requests to the server for specifi c tasks; servers
treat these requests in a centralized manner. The
cost of adding one more component to this infra-

structure involves not only the additional cost of
hardware plus the cost of the software license, but
also the server access license as well as a support
professional to make everything work.

This chapter will focus on the client-server
approach because it is a hierarchical, fi rm-like
structure, with someone who is responsible for
decision making. Firms, as stated by Zylbesztajn
(1995, p. 49),

almost always achieve the creation of a control
structure, under their inner contracts, that mini-
mizes the demand of support by third party or
arbitration for the solution of their problems. The
area of labor contracts presents a grand demand
to the Courts. Anyway, what is intended is that the
existence of a centralized control which permits

Figure 1. Information infrastructures (Source: Hanseth, 2002)

Figure 2. Ecologies of infrastructures (Source: Hanseth, 2002)

application infrastructure

service infrastructure transport infrastructure

application infrastructure neighboring infrastructure

support infrastructure

gateway

 243

Reducing Transaction Costs with GLW Infrastructure

the accomplishment of productive activity seems
as a result of a series of sequential contracts in
a lower cost then if each of these contracts was
made outside the fi rm. There is no other reason
for the existence and the advantages of the power
of decision of the fi rm (FIAT).6

The server, in this case, plays the role of the
structure controller, deciding which clients can
have access to the infrastructure as well as which
requisitions from the clients will be rejected or
accepted and executed.

The infrastructure of an imaginary organiza-
tion called ACME will serve as the installed base.
ACME has a single server and 247 clients; the
server offers fi le sharing, shared access to print-
ers, and access to the Internet. The hypothesis
for server and client software will be exposed
further in this chapter.

Transactions and Transaction Costs

Williamson (1985) explains that a transaction oc-
curs “when a good or service is transferred across
a technologically separable interface. One stage
of processing or assembly activity terminates
and another begins” (p. 1). We rarely observe
the boundaries of a transaction. We think of a
transaction as an isolated operation and we do
not think about the details that make a transaction
possible and sustainable.

Coase (1960) exposes the fact that

in order to carry out a transaction, it is necessary
to discover who it is that one wishes to deal with,
to inform people that one wishes to deal and on
what terms, to conduct negotiations leading up to
a bargain to draw up the contract, to undertake the
inspection needed to make sure that the terms of
the contract are being observed and so on. These
operations are often extremely costly, suffi ciently
costly at any rate to prevent many transactions
that would be carried out in which the price system
worked without costs. (p. 7)

These costs are called transaction costs.
Prochnik (2003) classifi es transaction costs:

as pre- and post-costs to a transaction. Pre-costs
include searching and contractual costs while the
post-costs include management and legal costs.
Searching costs include those costs for locating
and evaluating another party. ... Contractual costs
include those costs for negotiating and writing a
contract. ... Management costs include those for
supervising the terms of the contract. ... If these
terms are not met, then there are legal costs ...7
(p. 12)

We may view most transactions as involving
tangible goods. However, computationally, we
can also look at transaction costs for information
goods (Shapiro & Varian, 1999). For example,
Demil and Lecocq (2003) note that “downloading
Linux constitutes a transaction” (p. 10). Hence,
any communication mediated by an infrastructure
constitutes a transaction.

Kenneth Arrows defi ned transaction costs
as the “costs of running the economic system”
(cited in Williamson, 1985, p. 8). So, transaction
costs of infrastructures are the costs of running
the infrastructure. This chapter will address the
transaction costs of running the transport infra-
structure between the client side and server side,
which are the communication transaction costs
and the management costs of the contracts that
regulate these transactions.

MAIN FOCUS OF THE CHAPTER

Communication: The Connection
Transaction

Torvalds and Diamond (2001) explain that:

in your brain, each component is very simple, but
the interactions between all of these components
generate a very complex system. It is akin to the

244

Reducing Transaction Costs with GLW Infrastructure

problem that notes that a given set is bigger than
its parts. If you take a problem, divide it in half
to solve it, you will ignore the need to commu-
nicate the solutions in order to solve the whole
problem.8 (p. 126)

There are two communication transactions in
the infrastructure of ACME: the connection trans-
action, which begins with the user’s authentication
(log-in) and is maintained until the user leaves the
infrastructure (log-out), and the printing transac-
tion, which starts when any connected user sends
data to a printer. For the purposes of this chapter,
only the connection transaction will be studied.

There are four possibilities of software
specifi cation in a client-server approach: free
or proprietary for the client-side software, and
free or proprietary for the server-side software.
This work compares client-side and server-side
proprietary software (which is called proprietary
infrastructure) with client-side proprietary soft-
ware and server-side FLOSS (which is called
 hybrid infrastructure). In both cases, the client-
side software remains proprietary.

The main reasons for this choice are (a) the
most divulged operating system for client-side
software (or desktop software) is Microsoft Win-
dows, which is a proprietary software, making this
operating system’s installed base considerable,
and (b) according to the defi nitions of profes-
sor Hanseth (2002), the existent installed base
serves as the basis for the next installed base. In
the case of this chapter, Windows 98 will be the
client-side software.

Since the client-side installed base is chosen,
another choice must be made for the server side
of the proprietary-only infrastructure. Novell Net-
ware 5.0 server software and Microsoft Windows
NT 4.0 server software were chosen because (a)
once more, their existent installed base is consider-
able, (b) there is considerable material for research
and study on their end-user license agreements,
and (c) most of the material mentioned before
can be found on the Internet, which reduces the

transaction costs of search for the researcher (the
material can be found with a search of the sites of
the enterprises or by using Google, http://www.
google.com, or AltaVista, http://www.altavista.
com, e.g.9). These two infrastructures will be
compared to GLW.

Connection Transaction in
Proprietary Infrastructures:
Novell Netware 5.0

The Netware 5.0 server works with one or more
Netware clients and runs on a dedicated computer.
A Netware client operates on each computer running
Windows 98. Netware literally only talks to Netware,
and the Netware server does not work stand-alone.
Netware is a network operating system. L. F. Soares,
Colcher, and Souza (1995) explain that:

when networks appeared, computers, that worked
in an isolated manner before, already had their
local operating systems—LOS. Hence, a basic
starting point of the software introduced was the
possibility of offering new services as to disturbing
the local environment as little as possible, mainly
the interface that this environment offered to the
users. In this context the network operating sys-
tems (NOS) broke up as an extension of the local
operating systems, complementing them with the
set of basic functions, and of general use, neces-
sary to the operation of the stations, to make the
use of shared resources seem transparent to the
user. ... Among the functions of the network oper-
ating system one can accentuate the management
of the access to the communication system and,
consequently, to the use of hardware and software
of the remote stations ...10 (p. 423)

When a user enters his or her user name and
password, the Windows 98 interface is already
modifi ed by Netware (Starlin, 1999). It is impor-
tant to notice that the system that receives the
request is Windows 98, not the Novell Netware
client. The Windows interface sends the request

 245

Reducing Transaction Costs with GLW Infrastructure

to the Novell Netware client, which in turn sends
a request to the Novell Netware server. A posi-
tive response from the server means essentially
that the user has access to a given infrastructure.
This process of user identifi cation for accessing
the infrastructure is referred to by the term au-
thentication (Tanenbaum, 1992).

For authentication to be approved, Novell
(1998b) explains that a connection to the server
will happen only if the number of active concurrent
connections to it is lower than the “the number of
user licenses that you have lawfully purchased or
acquired” (p. 1). The network management soft-
ware monitors the number of active connections.
The license agreement of Novell (1998b) describes
this management software as follows:

Connection Management Software means com-
puter programs provided as part of the Software
that monitor the number of connections permitted
under this License and that are designed to prevent
more connections than the number of licensed
connections specifi ed by the User Count. (p. 1)

If there is any attempt to connect over the user
count, the server rejects it. For example, the 251st
request for a network with 250 computers run-
ning Windows 98 and Netware clients based on
the lawful acquisition of 250 user licenses will be
rejected. Netware clients can be installed without
limitation, but the number of connections to the
server is limited. A disk contains the software
that informs the server software of the number of
lawfully purchased licenses provided by Novell
(Starlin, 1999).

Each time communication between a client
and the server takes place, the server management
software will be activated to monitor the connec-
tion. The CPU11 of the server is used for the benefi t
of the user, but also to monitor the connection.
Hence, the user’s hardware is spending time and
effort in terms of transaction costs. Attempting to
reduce these costs by deactivating the management

software in any way is expressly forbidden by the
licensing agreement of Novell (1998a):

Ownership: No title to or ownership of the Soft-
ware is transferred to you. Novell, or the licen-
sor through which Novell obtained the rights to
distribute the Software, owns and retains all title
and ownership of intellectual property rights in
the Software; including any adaptations or copies
of the Softwares. Only the License is purchased
to you. ... License Restrictions: Novell reserves
all rights not expressly granted to you. Without
limiting generality of the foregoing, You may not
modify the Connection Management Software to
increase the number of connections supported by
the Software; use any device, process or computer
program in conjunction of the Host Software that
increases, either directly or indirectly, the num-
ber of connections of the Host Software; reverse
engineer, decompile or disassemble the Software,
except and only to the extent it is expressly per-
mitted by applicable law; or rent, timeshare or
lease the Software unless expressly authorized by
Novell in writing. (pp. 1-2)

Novell provides licenses of Netware 5.0 in
multiples of fi ve in the case of enterprises similar
to ACME.12 ACME needs only 247 licenses, but
it will have to purchase 250 licenses, and even
though the number of licenses is greater than the
number of possible active connections, the server
will continue monitoring all connections.

Microsoft Windows NT 4.0

Unlike Novell Netware 5.0, Windows NT 4.0 is not
a network operating system, so there is no need
for clients because the system can work stand-
alone. Clients are only needed when working in
a client-server infrastructure. When it occurs,
Windows NT 4.0 server receives requests for
authentication from Windows clients, in this case,
Windows 98 clients. It is clear that the Windows

246

Reducing Transaction Costs with GLW Infrastructure

98 client and the Windows NT 4.0 server work
on different computers and that there is a single
server working with multiple clients.

The Windows infrastructure requires three
kinds of licenses to work lawfully: a license for the
Windows NT 4.0 server, a license for the Windows
98 client, and a license for the client to access the
server, known as the Client Access License (CAL).
There are two means of purchasing licenses for a
Microsoft Windows NT 4.0 server: per seat or per
server. According to Microsoft (2004a):

With per server licensing, each client access li-
cense is assigned to a particular server and allows
one connection to that server for the use of that
product. With Per Seat licensing, a client access
license is assigned to each specifi c computer that
accesses the server.

In our ACME example, the fi rm has only one
server and 247 clients. In this case, Microsoft (2004a)
would recommend the use of per server licensing:

The licensing mode you select depends on which
applications you will be using. For example, if
you use a Windows NT Server mainly for fi le and
print sharing and on multiple servers, you may
be better off with the Per Seat option. However,
if you use it as a dedicated Remote Access Server
computer, you can select the Per Server concurrent
connections option. Use the following guidelines
for selecting a licensing mode: - If you have only
one server, select the Per Server option because
you can change later to the Per Seat mode; - If
you have multiple servers and the total number of
Client Access Licenses across all servers to sup-
port the Per Server mode is equal to or greater
than the number of computers or workstations,
select or convert to the Per Seat option.

A CAL must be assigned to each computer that
is running a client and connecting with the server:

Client Access Licenses are separate from the desk-
top operating system software you use to connect to
Microsoft server products. Purchasing Microsoft
Windows 95, Windows NT Workstation, or any
other desktop operating system (such as Macin-
tosh) that connects to Microsoft server products
does not constitute a legal license to connect to
those Microsoft server products. In addition to the
desktop operating system, Client Access Licenses
must also be purchased. (Microsoft, 2004a)

Hence, it is necessary to purchase CALs
equivalent to the number of potential connections
to the server at the same time; in the ACME case,
it would be 247 CALs. But what happens if a 248th
computer attempts a connection? A mechanism
monitoring the number of concurrent connections
comes into action and locks out connections to
the server, obliging the administrator to interfere
and select which connections will be aborted to
maintain the integrity of the infrastructure:

With Per Server licensing, once the specifi ed
limit for concurrent connections is reached, the
server returns an error to the client’s computer
and does not allow more computer connections to
that server. Connections made by administrators
are also considered as part of the total number of
concurrent connections. When the limit is reached,
though, administrators are still allowed to con-
nect to manage the lockout situation. New users,
however, cannot connect again until enough users
(including administrators) have disconnected to
get below the specifi ed limit. (Microsoft, 2004a)

The license manager is the mechanism that
monitors and manages connections to the server
(Jennings, 1997). It is clear that each time com-
munication between a client and the server takes
place, the license manager is activated to moni-
tor the connection. Again, transaction costs are
being absorbed by the user in a variety of ways,

 247

Reducing Transaction Costs with GLW Infrastructure

with server CPU time and effort for monitoring
functions. As might be expected, deactivating the
license manager in any way is expressly forbidden
by the license:

DESCRIPTION OF OTHER RIGHTS AND LIMI-
TATIONS. ... Limitation on Reverse Engineering,
Decompilation, and Disassembly. You may not
reverse engineer, decompile, or disassemble the
SOFTWARE PRODUCT, except and only to the
extent that such activity is expressly permitted by
applicable law notwithstanding this limitation.
(Microsoft, 2004b)

Connection Transaction in a
Hybrid Infrastructure: GLW

A hybrid infrastructure, or GLW, performs a
transaction using GNU/Linux operating system
software at the server side, as well as a piece of
software called Samba, which allows the use of
Microsoft Windows 98 at the client side. Col-
lier-Brown, Eckstein, and Jay (2003) explain
that Samba

is a suite of Unix applications that speak the Server
Message Block (SMB) protocol. Microsoft Win-
dows operating systems and the OS/2 operating
system use SMB to perform client-server network-
ing for fi le and printer sharing and associated
operations. By supporting this protocol, Samba
enables computers running Unix to get in on the
action, communicating with the same networking
protocol as Microsoft Windows and appearing as
another Windows system on the network from the
perspective of a Windows client. (p. 3)

Some considerations must be made on Samba,
exposed by Collier-Brown et al. (2003):

Samba can help Windows and Unix computers
coexist in the same network. However, there are
some specifi c reasons why you might want to set up
a Samba server on your network: You don’t want to

pay for—or can’t afford—a full-fl edged Windows
server, yet you still need the functionality that one
provides; the Client Access Licenses (CALs) that
Microsoft requires for each Windows client to
access a Windows server are unaffordable. (p. 3)

So, once using Samba, there is no need for CALs.

Comparing Connection
Transaction Costs

From now on, connection transaction costs in
proprietary and hybrid infrastructures will be
described separately and compared. It will be
shown that GLW (a) preserves most of the existent
installed base, (b) performs tasks similar to the
proprietary infrastructure, (c) produces minimal
impact on the routines of the fi rm, and (d) works
with lower transaction costs in comparison with
the proprietary installed base.

Netware 5.0 and Windows 4.0

In both cases, the server will monitor operations
at all times, with incurred connection transactions
costs for all parties involved. Law, economics,
and technology interfere with each other in such
a way that contractual obligations do not allow
technological modifi cations (Law, 2000). The
software obliges the customer to fulfi ll the agree-
ment; using the words of Lessig (1999, p. 3), “code
is law.” See Figure 3.

It is important to notice the proprietary soft-
ware is written with the network management
software embedded. This piece of software works
to avoid opportunistic behavior (Williamson,
1985) by a customer who tries to connect beyond
the number of connections permitted.

For the customer who did not read the end-
user license agreement (EULA; or, at least, did
not pay attention to such technical details), the
connection monitoring software may be acting
in an opportunistic way, overloading the CPU of
the customer with its work; however, it plays the

248

Reducing Transaction Costs with GLW Infrastructure

role agreed upon with the customer, who pays the
transaction cost of monitoring.

In respect to the management of contracts,
Netware 5.0 and Windows NT 4.0 cases have to
be analyzed separately.

In the case of Netware 5.0, it would be neces-
sary to license 247 copies of Windows 98 client
software, plus one copy of the Netware 5.0 server
software, along with 250 licenses for Netware
client software. Additionally, there should be a
Netware support professional to manage it all,
which introduces one more contract for support.
So, there are 497 (247 + 250) contracts to be man-
aged by a Novell-trained support professional,
plus one more contract to be managed by the
fi rm, which results in 498 contracts.

In the case of Windows NT 4.0, it would be
necessary to license 247 copies of Windows 98
client software, plus one copy of the Windows NT
4.0 server software, plus 247 CALs. A Windows
support professional is needed to manage it all.

So, there are 495 (247 + 1 + 247) contracts to be
managed by a Microsoft-trained support profes-
sional, plus one more contract to be managed by
the fi rm, which results in 496 contracts.

The responsibilities of managing the licenses,
either for Netware 5.0 client connections or Win-
dows 98 client connections, are shared between
the server CPU and the support professional. The
server CPU pays the transaction cost of monitor-
ing the connections performed by the embedded
software, and the support professional pays, if
needed, the search costs to fi nd a license vendor
in the market for this proprietary software, as
well as the contracting costs with this vendor.
In these two cases, there will always exist costs
associated with the process of linking a new cli-
ent to the installed base. These costs are the cost
of an additional client license, plus the time and
effort of the professional to confi gure the client,
plus the time and effort of the server to monitor
the link.

Figure 3. Proprietary infrastructure

Internet

Proprietary
Software
Support

Professional

Proprietary
Software
Server

Windows 98
+

Proprietary
Communicator

Communication Request

Communication Response

Technology:
Connection

made by
software

Law:
Contract

(EULA) Clause
Forbids

Disassembly

Economics:
Monitoring

means
CPU Overload

Cost

 249

Reducing Transaction Costs with GLW Infrastructure

GLW

GLW allows the preservation of all Windows
98 clients of the existent installed base. These
clients will interact with the GNU/Linux server
as if it were a Windows NT 4.0 operating system
software at the server side. Windows 98 clients
will experience few alterations in the migration
to this hybrid environment. The alterations are
concentrated at the administration level. Hence,
training costs are minimal.

The reduction of transaction costs is achieved
in two ways: through the use of CPU computing
capacity and through the management of contracts,
in this case, license agreements.

In respect to the CPU computing capacity,
Samba is licensed under a GPL (general public
license; Free Software Foundation, 1991), which
obliges source code to be totally accessible and
open to modifi cation. GPL eliminates the prob-
lems with proprietary software exposed before, in
which there is embedded software using the CPU
to monitor connections with unaffordable source

code. Since there are no more connection monitors
and the source code is affordable to be audited, the
transaction costs of connection monitoring can be
completely eliminated. Software limitations on
the number of connections with Samba become
merely an issue of CPU computing capacity.

Thus, it would be necessary to license 247
copies of Windows 98 client software, plus a copy
of GNU/Linux. There should be a GNU/Linux
support professional to manage it all. Using the
initial hypothesis on the Windows 98 client op-
erating system installed base, the GNU/Linux
support professional will turn into a GLW support
professional and manage the Windows 98 installed
base, too. So, there are 248 (247 + 1) contracts
to be managed by the GLW support professional,
plus one more contract to be managed by the fi rm,
which results in 249 contracts. See Figure 4.

This occurs because the costs of adding cli-
ents to the installed base are limited to costs of
the hardware needed plus the effort of the GLW
support professional to confi gure the Windows
98 client. No additional connection licenses are

Figure 4. GLW infrastructure

Internet

GLW
Support

Professional

Free
Software

Server with
Samba

Gateway

Windows 98

Communication Request

Communication Response

Law:
No

Forbidding
Contract (GPL)

Clause

Technology:
No

Monitoring
Software

Economics:
No

CPU Overload
Cost

250

Reducing Transaction Costs with GLW Infrastructure

necessary because Samba does not need to moni-
tor the connections, freeing the server to actually
work for the fi rm and not bother with network
policing. Hence, GLW supports the growth of
the infrastructure without spending unnecessary
communication transaction costs.

The responsibility of managing the licenses for
GLW becomes a task restricted only to the GLW
support professional and, as long as the software
is free, this task can be summarized to fi nding the
sites on the Internet from which the software can
be downloaded using a search engine, navigating
to the site, and downloading the software.

Another point to be observed is that as free
projects rarely fork,13 once the support professional
has visited the main site that hosts the project and
its source codes,14 this professional does not have
to search for it again. The search costs are lowered
and the contracting costs with vendors are elimi-
nated. Additional benefi ts obtained from using free
software are the addition of the maintainability of
FLOSS by its community of users, collaborators,
and supporters to the overall infrastructure and
the benefi ts of peer-to-peer computing (Benkler,
2003). Table 1 summarizes the connection trans-
action costs of the three infrastructures presented
in this chapter related to ACME.

FUTURE TRENDS AND CONCLUSION

Information system costs are largely based on the
acquisition of software and hardware and on the

training of personnel to operate the system. Often,
transaction costs are not completely considered.
As information systems grow into information
infrastructures, these transaction costs, which
involve interferences among technology, econom-
ics, and law, can no longer be ignored.

These transaction costs can vary greatly
depending on the kind of software used and its
impact on hardware and personnel. The study of
transaction costs cannot be restricted to the costs
of the management of formal contracts: There
must be special attention paid to mechanisms
embedded in software, like the ones that were
analyzed in this chapter. We have indicated that
there are some considerable savings in transac-
tion costs in using a GLW infrastructure where
FLOSS is applied, either in the case of software
use or in the case of the management of licenses
and other contracts.

Future topics of research may be the modi-
fi cation of the transaction costs exposed in this
chapter that come with the next versions of the
server software; transaction costs in infrastruc-
tures with more than two proprietary servers,
or even with two or more different proprietary
servers; opportunistic behaviors that can come
from the emerging GLW support professional
and infrastructure bilateral monopoly constituted
over time; demanding transaction costs in either
proprietary-only or GLW infrastructures in case
of software malfunction; and more detailed quan-
titative descriptions of the impacts of FLOSS on
transaction costs.

Transaction Costs ►

Infrastructures with
▼

Connection
Monitoring

CPU
Overloading

Number of Client
Access Licenses

Total Number of
Contracts Managed

Netware 5.0 Server YES YES Implicit - 250 498

Windows NT 4.0 Server YES YES Explicit – 247 496

GNU/Linux Server (GLW) NO NO NO CALs - 0 249

Table 1. Infrastructures and their connection transaction costs

 251

Reducing Transaction Costs with GLW Infrastructure

ACKNOWLEDGMENT

The author would like to thank Professor Ivan da
Costa Marques, PhD, who introduced him to the
New Institutional Economics and who advised
him in his MSc course in COPPE-UFRJ in the
computation and systems engineering program.

REFERENCES

Benkler, Y. (2002). Coase’s penguin, or, Linux
and the nature of the fi rm. Yale Law Journal,
3, 112.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The unifi ed modeling language user guide. Read-
ing, MA: Addison-Wesley.

Coase, R. H. (1937). The nature of the fi rm. Eco-
nomica, 4, 386-405.

Coase, R. H. (1960). The problem of social cost.
Journal of Law and Economics, 3, 1-44.

Collier-Brown, D., Eckstein, R., & Jay, T.
(2003). Using Samba (2nd ed.). Sebastopol, CA:
O’Reilly.

Demil, B., & Lecocq, X. (2003). Neither market
nor hierarchy or network: The emerging bazaar
governance. Retrieved June 12, 2006, from http://
opensource.mit.edu/papers/demillecocq.pdf

Diamond, D., & Torvalds, L. (2001). Só por prazer.
Linux: Os bastidores da sua criação (F. B. Rössler,
Trans.). Rio de Janeiro, Brazil: Campus.

Free Software Foundation. (1991). GNU general
public license, version 2 (June). Retrieved June 12,
2006, from http://www.gnu.org/licenses/gpl.txt

Gane, C., & Sarson, T. (1983). Análise estruturada
de sistemas. Rio de Janeiro, Brazil: LTC.

Hanseth, O. (2002). From systems and tools to
networks and infrastructures: From design to

cultivation. Towards a theory of ICT solutions
and its design methodology implications. Re-
trieved June 12, 2006, from http://heim.ifi .uio.
no/~oleha/Publications/ib_ISR_3rd_resubm2.
html

Jennings, R. (1997). Usando Windows NT Server
4: O guia de referência mais completo (4th ed.).
Rio de Janeiro, Brazil: Campus.

Latour, B. (1994). Jamais fomos modernos (C.
Irineu da Costa, Trans.). Rio de Janeiro, Brazil.

Law, J. (2000). Economics as interference. Re-
trieved June 12, 2006, from http://www.lancs.
ac.uk/fss/sociology/papers/law-economics-as-
inteference.pdf

Lessig, L. (1999). Code and other laws of cyber-
space. New York: Basic Books.

Microsoft. (2006a). Licensing and license man-
ager. Retrieved June 12, 2006, from http://www.
microsoft.com/resources/documentation/win-
dowsnt/4/server/proddocs/en-us/concept/xcp12.
mspx?mfr=true

Microsoft. (2006b). NT server end user license
agreement. Retrieved June 12, 2006, from http://
proprietary.clendons.co.nz/licenses/eula/win-
dowsntserver-eula.htm

Novell. (1998a). Netware 5.0 Server Communica-
tion Version 5 manual. Provo, Utah: Author.

Novell. (1998b). Netware 5.0 software license
and limited warranty. Provo, Utah: Author. Re-
trieved June 12, 2006, from http://www.novell.
com/licensing/eula/nw_5.pdf

Page-Jones, M. (1988). Projeto estruturado de
sistemas. São Paulo, Brazil: McGraw–Hill.

Prochnik, V. (2003). Economia dos contratos:
Princípios da teoria dos custos de transação
(classroom notes). Rio de Janeiro, Brazil: Fed-
eral University of Rio de Janeiro, Institute for
Economics.

252

Reducing Transaction Costs with GLW Infrastructure

Raymond, E. S. (2003). The new Hacker’s diction-
ary. Retrieved June 12, 2006, from http://www.
catb.org/~esr/jargon/html/F/fork.html

Shapiro, C., & Varian, H. R. (1999). Economia
da informação: Como os princípios econômicos
de aplicam à era da Internet (6th ed., R. Inojosa,
Trans.). Rio de Janeiro, Brazil: Campus.

Soares, L. F., Colcher, S., & Souza, G. (1995). Re-
des de computadores: Das LANs, MANs e WANs
às redes ATM. Rio de Janeiro, Brazil: Campus.

Soares, M. V. B. (2001). Concepção e adoção da
metodologia GNU/Linux: O caso WirelessNet.
Paper presented at the First Meeting of Produc-
tion Engineering of North Rio de Janeiro State
University, Rio de Janeiro, Brazil.

Starlin, G. (1999). Netware 5 completo: Manual
do administrador CNE (2nd ed.). Rio de Janeiro,
Brazil: Book Express.

Tanenbaum, A. S. (1992). Modern operating sys-
tems. Upper Saddle River, NJ: Prentice-Hall.

Williamson, O. E. (1985). The economic institu-
tions of capitalism. New York: Free Press.

Zylbesztajn, D. (1995). Estruturas de governança
e coordenação do agribusiness: Uma aplicação
da Nova Economia das Instituições. Tese (Livre-
Docência), Universidade de São Paulo. Retrieved
June 14, 2006, from http://www.pensa.org.br/pdf/
teses/Tese_Livre_Docência.pdf

KEY TERMS

 Client Access Licenses (CALs): Licenses
required by Microsoft to connect each Microsoft
client software to a Microsoft Windows NT 4.0
server software.

 Connection Manager: A Novell Netware
server embedded software that monitors the con-
current connections from Netware client software
to the Netware server software to make sure that

there will be no more concurrent connections than
those that were lawfully acquired.

 Contracts: Agreements signed by two parties
in which it is described what they may, can, or
have to do and what they may not or cannot do
in order to accomplish their objectives. Contracts
make laws between parties.

 Gateways: Elements that “link different
infrastructures which provide the same kind of
service based on different protocols/standards”
(Hanseth, 2002).

GLW: The initials of the expression GNU/
Linux-Windows, meaning a mixing of them.

 Infrastructure: As in an information infra-
structure, which, in the words of Hanseth (2002),
is “a shared, evolving, open, standardized, and
heterogeneous installed base.”

 License Manager: A Microsoft Windows
NT 4.0 server embedded software that monitors
the concurrent connections from Microsoft cli-
ent software to the Microsoft Windows NT 4.0
server software to make sure that there will be
no more concurrent connections than those that
were lawfully acquired.

 Rights: Prerogatives that can be exercised by
persons under the observation of the laws.

 Samba: Software that connects Microsoft
Windows and GNU/Linux infrastructures.

Transaction Costs: The costs of accomplish-
ing a transaction. A transaction occurs “when a
good or service is transferred across a technologi-
cally separable interface. One stage of process-
ing or assembly activity terminates and another
begins” (Williamson, 1981, p. 552).

ENDNOTES

1 FLOSS stands for free/libre open sorce
software.

 253

Reducing Transaction Costs with GLW Infrastructure

2 Latour (1994) explains that a hybrid results
from the composition of heterogeneous
elements. This work focuses in the pieces
of software.

3 GLW stands for GNU/Linux-Windows.
4 DNS stands for dynamic naming system.
5 The number 250 for users was chosen becau-

se this is the number of PCs that Microsoft
considers a medium size business (from 50
to 250). For more information, look at http://
www.microsoft.com/technet/itsolutions/
midsizebusiness/default.mspx retrieved 12
2006.

6 The Latin word FIAT means, in English,
the power of decision.

7 It is translation of the following: “[...] Os
custos de transação podem classifi cados em
anteriores e posteriores (ex–ante e ex–post)
à realização da transação propriamente dita.
Os custos anteriores são os custos de busca
e de contratação e os posteriores são os de
monitoração e de fazer cumprir o contrato.
Os custos de busca abrangem o custo de en-
contrar e avaliar um parceiro. [...] Os custos
de contratação incluem negociar e escrever
o contrato. [...] Os custos de monitoração
são os custos de fi scalizar o contrato, ob-
servando seu cumprimento pelo parceiro.
[...] Por último, os custos de fazer cumprir
o contrato são os custos de implantar uma
solução quando o contrato não está sendo
seguido. [...] Ao nível da economia nacional,
entre os custos de transações, estão todos
os gastos com advogados, contadores, ban-
cos, mensuração da qualidade, comércio e
seguros. [...]”.

8 It is translation of the following: “Pense no
seu cérebro. Cada peça é simples, porém as
interações entre as peças geram um sistema
muito mais complexo. É aquele problema que
diz que o conjunto é maior do que as partes.
Se você pegar um problema, dividi–lo pelo
meio e disser que as partes são complicadas
pela metade, estará ignorando o fato de que

é preciso acrescentar a comunicação entre
as duas metades.”

9 The Internet address (URL) of the Web sites
where public material can be found is in the
references at the end of the chapter.

10 It is translation of the following: “[...] quando
surgiram as redes, os computadores, antes
funcionando isoladamente, já possu’am
seus respectivos sistemas operacionais lo-
cais—SOL. Portanto, uma premissa básica
do software introduzido para fornecer os
novos serviços foi perturbar o menos
poss’vel o ambiente local, principalmente
a interface que esse ambiente ofereceria a
seus usuários. Neste contexto surgiram os
sistemas operacionais de redes (SOR) como
uma extensão dos sistemas operacionais lo-
cais complementando–os com o conjunto de
funções básicas, e de uso geral, necessárias
à operação das estações, de forma a tornar
transparente o uso dos recursos compar-
tilhados [...]. Dentre as funções do sistema
operacional de redes destaca–se, assim,
o gerenciamento do acesso ao sistema de
comunicações e, conseqüentemente, as
estações remotas para utilização de recursos
de hardware e software remotos. [...]”.

11 CPU stands for central processing unit.
12 Novell provides other licensing agreements

over specifi c periods of time and with other
conditions. These sorts of agreements are
outside the scope of this chapter. For more
details, see http://www.novell.com.

13 Raymond (2003) exposes that “In the open-
source community, a fork is what occurs
when two (or more) versions of a software
package’s source code are being developed
in parallel which once shared a common
code base, and these multiple versions of the
source code have irreconcilable differences
between them. This should not be confused
with a development branch, which may later
be folded back into the original source code
base. Nor should it be confused with what

254

Reducing Transaction Costs with GLW Infrastructure

happens when a new distribution of Linux or
some other distribution is created, because
that largely assembles pieces than can and
will be used in other distributions without
confl ict. Forking is uncommon; in fact, it
is so uncommon that individual instances
loom large in hacker folklore. Notable in
this class were the Emacs/XEmacs fork, the
GCC/EGCS fork (later healed by a merger)
and the forks among the FreeBSD, NetBSD,
and OpenBSD operating systems.

 Soares (2001) explains that this process is
avoided by free softwares development com-

munities because there is a loss of time and
effort in a competition that does not favor
the development of the software.

14 The expression “main site“ was used to
distinguish this site from the sites that are
known as “mirror sites,” that is, sites that
contain a copy of the main sites. For ex-
ample: http://www.kernel.org is the main site
from which Linux kernel source code can
be downloaded and http://www.br.kernel.
org/pub/linux/ is a mirror site from which
Linux kernel source code can be downloaded
too.

 255

Chapter XX
Issues to Consider when

Choosing Open Source Content
Management Systems (CMSs)

Beatrice A. Boateng
Ohio University, USA

Kwasi Boateng
University of Arkansas at Little Rock, USA

INTRODUCTION

Content management systems (CMSs) have gained
prominence and are used for database-driven
Web sites for all kinds of electronic communi-
cation activities.1 A content management system
is a nonstatic, dynamic, database-driven system
that is used for electronic management and the
publishing of information and resources in an
organized manner. The features of a CMS-run
Web site permit Web site administrators and
authorized users to log into an electronic system

ABSTRACT

This chapter examines the main issues that have to be considered when selecting an open source con-
tent management system. It involves a discussion of literature and the experiences of the authors after
installing and testing four widely used open source CMSs (Moodle, Drupal, Xoops, and Mambo) on a
stand-alone desktop computer. It takes into consideration Arnold’s (2003) and Han’s (2004) suggestions
for the development of CMSs, and identifies six criteria that need to be considered when selecting an
open source CMS for use.

to author or approve posted materials. Similarly,
they can facilitate access to archival, confidential,
or password-protected materials that are hosted
on the Internet.

The emergence of open source software
(OSS) applications and the culture of making
source code available for all to use is causing a
stir in the software development industry and
among software users. According to the Open
Source Definition (OSD) Web site (http://www.
opensource.org/docs/definition.php), an OSS ap-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

256

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

plication generally complies with a set of criteria
that include the following:

• Source code should be available to users.
• Software is available for free download and

distribution.
• Users should be able to modify source code

and possibly create new applications.
• Software is available under the “copyleft”

licensing agreement (http://www.debian.
org/social_contract).

In this chapter, we examine the main issues
that have to be considered when selecting an open
source content management system. We draw
upon the literature and our experiences after the
installation and testing of four widely used open
source CMSs, namely, Moodle,2 Drupal, Xoops,
and Mambo, on a stand-alone desktop computer.
Through our installation, we were able to verify
the installation processes, and understand how
the back end of the select CMSs work in order
to address issues that a potential adopter of open
source CMS should consider. We chose Mambo,
Xoops, Drupal, and Moodle based on the fact that
these CMSs come up often in discussions and
the literature on open source CMSs. Also, from
our observation, these CMSs have well-orga-
nized product software, support, documentation,
training, integration, and professional services.
These are standards considered necessary for
determining the maturity of OSS as determined
by Golden (2005). Also, information available on
the CMSMatrix Web site, a site for the discussion,
rating, and comparison of content management
systems, prominently feature Mambo, Xoops,
Drupal, and Moodle among the frequently used
and efficient systems based on system require-
ments, security, support, ease of use, performance,
management, interoperability, flexibility, built-in
application, and commerce (http://cmsmatrix.org).
Our examination of information on CMSMatrix
on the four CMS candidates indicates that on the
average, Drupal and Xoops are rated higher on all

the criteria. Similarly, Mambo, Xoops, Drupal, and
Moodle are listed on the site http://opensourcecms.
com, a Web site that displays a comprehensive
list of open source CMSs, and provides a free
administrative platform for real-time testing of
various open source systems.

BACKGROUND: WHAT ARE CMSs
AND HOW DID THEY EMERGE?

The need for online platforms ideal for the dis-
semination of information, document delivery, and
electronic archiving of materials has necessitated
the development of content management systems
that support the publishing of materials in different
and easily accessible electronic formats. Discuss-
ing CMSs as tools for such online organization
of materials, Arnold (2003) opined that “when
the needs and requirements [for the electronic
delivery of materials] are understood, a system to
manage the creation, approval, and dissemination
of text, images, and even streaming video can
make life in today’s fluid environment somewhat
more orderly” (pp. 36-37). The development of
CMSs is relatively new in the software industry
(Arnold; Han, 2004). The origins of CMSs lie in
(a) the records management field and (b) the need
to move content from the desk of the creator to
an organization’s Web site (Arnold). Performing
these two tasks effectively in a 21st century online
environment could be daunting. CMSs usually
comprise of modules and/or components as add-
ons of an application that allow a programmer or
an adopter of such software to build an electronic
system that could be used to perform various func-
tions electronically. The functionality of a CMS
is dependent on the structure of the CMS and the
processes that occur within the CMS (Friedlein,
2003). For instance, the CMS could be configured
to allow a system administrator and users to
manage, compile, and publish resources, as well
as to facilitate online interaction among users as
illustrated in the process part of Figure 1. Figure

 257

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

Open Source CMS
Application

Web Server: Apache Database: MySQL

Operating System: Linux,
Windows, Mac, Unix

• Programming Language: e.g.,
PHP, PERL, PYTHON

• Modules
• Themes

Input/Output Input/Output

(RE) AUTHORING
• Create original content
• Add metadata
• Documentation
• Localization

PUBLISH
• Post content

MANAGEMENT
• Archive materials
• Store content in database
• Templates
• Modules
• Versioning

RETRIEVE/REVIEW
• Retrieve and view content
• Customization and

personalization
• Syndication (RSS feeds)

STRUCTURE

PROCESS

1 captures the basic architectural configuration
and the structural functions of a CMS.

To understand how to choose an open source
CMS, we explain the process of installing the
CMSs we tested, what we observed, and the
technical installation approaches that can be used
to try a CMS before installing online. A CMS
can be set up on a desktop or even a laptop on
a trial basis. This could help the installer learn
and understand how a particular CMS candidate
functions. This approach requires a full download
of a CMS candidate for installation. This allows
for testing and evaluation before making a final
decision to adopt a candidate. Alternatively, such
software can be tested by using the online platform
created by the Web site http://opensourcecms.com.
The platform allows the testing of diverse CMSs
created to perform specialized functions.

Should a prospective adopter of an open source
CMS decide to do an in-house testing of some
CMS candidates on a personal computer (PC), it
will require downloading Easy PHP (a program
that packages the Apache Web server and MySQL
database application together) and a copy of the
CMS candidate to be tested, as shown by the
structure part of Figure 1. We undertook that task
to install the CMS candidates under discussion
on our PC as “hand-holding” (Stallman, 2003)
for prospective adopters of OS CMSs.

We installed Moodle, Drupal, Xoops, and
Mambo and documented the steps for configura-
tion. We downloaded and installed Easy PHP 1.7.
EasyPHP runs a Web interface for the MySQL
database application called PHPMyAdmin. This
feature of EasyPHP renders unnecessary the
knowledge of MySQL coding or programming

Figure 1. The basic architectural configuration and structural functions of a CMS

258

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

used in deploying a database-driven Web portal.
The downloaded CMS software were unzipped in
order to gain access to the CMS files for instal-
lations using the Web interface of EasyPHP to
mount the CMSs onto a computer. At this point,
the Web interface of EasyPHP walked us through
the installation steps and the creation of the CMS
database. After the installation, the rest of the
development of these CMSs involved identifying a
specific design theme and modules or components
needed for customizing the functions and user
interface of the CMS. The process of adding on
modules to a Drupal, Xoops, and Mambo CMS
are similar with minor variations (Boateng &
Boateng, in press). In Drupal, Xoops, and Mambo,
it requires identifying and downloading zipped
modules or component files, and uploading such
files for installation and activation on a Web site.
On the other hand, Moodle installation files are
packaged with all interactive features that can be
further developed through coding:

• Xoops module add-ons require unzipping
the files and saving them into a specific
modules folder.

• Mambo has an inbuilt function that unzips
the modules and installs them on the CMS
platform.

• The installation of modules in the Drupal
CMS environment is done using the Web
interface of the PHPMyAdmin.

The processes of installing Drupal, Xoops,
Mambo, and Moodle are user friendly. Files could
be uploaded onto a site using FTP (file transfer
protocol) for configuration. The installation and
customization on a PC and online can be done
without knowing any programming language.
Various open source CMSs have been developed
for specific services, for instance, osCommerce
and Zen Cart are for e-commerce; bBlog, BLOG:
CMS, Simplog, and WordPress are for blogging;
Moodle and Atutor are noted for e-learning; and
Greenstone and Koha are for digital libraries.

Table 1 offers a list of Web sites where open source
CMS downloads are available. Having installed a
select number of CMSs, we identified six criteria
to be considered when selecting an open source
CMS for adoption.

CRITERIA FOR SELECTING
AN OSS CMS

Choosing a CMS candidate for use requires an
assessment of the resources for such an initia-
tive, what Han (2004) describes as the functional
or nonfunctional requirements for developing
CMSs. The functional requirements refer the
need for a content management system, and the
nonfunctional requirements are related to costs
and skill sets (p. 357). The cost of managing a
content management system could be enormous.
Arnold (2003) found that Jupiter Research in
June 2002 indicated that some companies spend
$25,000 per nontechnical employee per year to
manage simple content on a Web site. Accord-
ing to Arnold, “a company with 5-people in the
customer support chain would translate to $1.25
million, excluding software license fee” (p. 38).
He explained that an April 2002 Jupiter executive
survey indicated that “53 percent of companies
will have deployed a new documents, content,
or media asset management system by the end
of 2002.” The survey indicated that one tenth or
19% of Web site managers stated “they will be
involved in content management consolidation
projects” that “unify systems to manage multiple
web properties.” The case made by Arnold is
that “the pay-off from content management can
be a savings of 20 percent or more compared to
pre-content management system [online resource
management].” The license fees for a proprietary
content management system could cost between a
few hundred dollars per month to about a $1 million
for a license (Arnold). Lerner and Tirole (2004)
indicated that “the importance of open source
software can be illustrated by considering a few

 259

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

Resources

Try CMSs before you install: http://www.opensourcecms.com/

OSS CMS list: http://www.la-grange.net/cms

OSS CMS management directory: http://www.cmsreview.com/OpenSource/directory.html

Content management comparison tool: http://www.cmsmatrix.org/

International association for OSS
CMS management: http://www.oscom.org/

CMS info: http://www.cmsinfo.org/index.php

Different types of CMSs Portals

Drupal: http://drupal.org/
Exponent: http://www.exponentcms.org/
Joomla: http://www.joomla.org/
Mambo: http://www.mamboserver.com/
Xoops: http://www.xoops.org/
Plone: http://plone.org/

Blogs

bBlog: http://www.bblog.com/
BLOG:CMS: http://blogcms.com/
Simplog: http://www.simplog.org/
WordPress: http://wordpress.org/

Forums MyBB: http://www.mybboard.com/
phpBB: http://www.phpbb.com/

Wiki DokuWiki: http://wiki.splitbrain.org/wiki:dokuwiki
MediaWiki: http://www.mediawiki.org/wiki/MediaWiki

Image Galleries Coppermine: http://coppermine-gallery.net/index.php
Plogger: http://www.plogger.org/

Groupware

eGroupWare: http://www.egroupware.org/
NetOffice: http://netoffice.sourceforge.net/
phpGroupWare: http://www.phpgroupware.org/
WebCollab: http://webcollab.sourceforge.net/

E-Commerce osCommerce: http://www.oscommerce.com/
Zen Cart: http://www.zen-cart.com

E-Learning

Moodle: http://moodle.org/
ATutor: http://www.atutor.ca/
Claroline: http://www.claroline.net/
OLAT: http://www.olat.org/public/index.html

Digital Libraries Greenstone: http://www.greenstone.org/cgi-bin/library
Koha: http://www.koha.org/

Table 1. OSS CMS resources

examples.” Taking into consideration Arnold’s and
Han’s suggestions, and after installing and testing
four content management systems on a PC, we
identified six criteria that need to be considered
when selecting an open source CMS for use. They
are interoperability; software licenses; user com-
munity; documentation; versatility, stability, and
availability of source code; and security.

Interoperability

The interoperability of a content management
system is its ability to support content from dif-
ferent hardware and software vendors. According
to Lagoze and Van de Sompel (2001), interoper-
ability facilitates the dissemination of content
efficiently and the “construction of innovative

260

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

services” (p. 2). All the CMSs we installed
can be deployed in Windows, Mac, Linux, and
Unix environments. The nature of most open
source CMS configurations on servers makes
their interoperability quick to determine at the
deployment stage. However, what a prospective
adopter needs to know is that specific OS CMSs
have specific modules and components that can
be appended onto the system. The possibility
of installing add-ons or modules is one of the
features that indicate the interoperability of such
CMS. Xoops, Drupal, Mambo, and Moodle allow
developers or users to create their own themes,
modules, or components using Web authoring
software or programming code that can be read
in a Web browser. The ability to adopt different
versions of modules, components, or add-ons
depends on the compatibility of a specific add-on
with the version of the main application engine.
We realized that specific Xoops, Drupal, and
Mambo versions are compatible with specific
modules, components, or add-ons. For example,
Mambo modules and components are designed
and tested on specific core applications. A mod-
ule developed and tested for Mambo 4.5.4 may
not be compatible with Mambo 4.5.1 as was
determined during our testing and evaluation
of the CMSs.

Software Licenses

Software licenses are conceived within the no-
tion of ownership and rights to use. OSS licens-
ing issues are fundamentally different from the
traditional software licensing rules and legalities.
Weber (2004) noted that

the conventional notion of property is, of course,
the right to exclude [a person] from using some-
thing that belongs to [somebody else] ... property
in the open source [movement] is [conceived]
fundamentally around the right to distribute, not
the right to exclude. (p. 1)

Not only does the OS public license guarantee
the right to distribute OSS, it also guarantees ac-
cess to the code and the right to alter it to meet spe-
cific needs of the administrator of such software.
This is an unprecedented approach to licensing,
one that promotes easy access and software inno-
vation in an unconventional and public manner. A
significance of such a licensing approach supports
the notions of do-it-yourself and creative prin-
ciples that drive the current practice of electronic
communication. This practice is inherent in the
operations of the open source movement, which
attempts to reduce the communication process to
the level where software creation and availability
is increasingly decentralized, giving more people
the opportunity to become creators, publishers,
and users of electronic content and software.

This egalitarian value of OSS is expressed in
the GNU (GNU is not Unix) manifesto, which
was declared at the release of the kernel of the
GNU operating software, an initiative that set
the open source movement in motion. Stallman
(2003) declared:

once GNU is written, everyone will be able to
obtain good system software free, just like air
... .Complete system sources will be available to
everyone. As a result, a user who needs changes
in the system will always be free to make them
himself, or hire any available programmer or
company to make them for him. Users will no
longer be at the mercy of one programmer or
company which owns the sources and is in sole
position to make changes. (p. 547)

Xoops, Drupal, Mambo, and Moodle all fall
under the broad GNU license agreements. Dis-
cussing the OS approach to software licensing,
Lerner and Tirole (2004) found the following:

• Restrictive licenses are more common for
applications geared toward end users and
system administrators, like desktop tools
and games.

 261

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

• Restrictive licenses are significantly less
common for those applications aimed toward
software developers.

• Restrictive licenses are also less common for
projects operating in commercial environ-
ments or that run on proprietary operating
systems.

• Projects whose natural language is not
English, whose community appeal may
be presumed to be much smaller, are more
likely to employ restrictive licenses.

• Projects with less restrictive licenses tend
to attract more contributors.

Generally, OS copyleft law is more liberat-
ing than restrictive. It is the attractive side of
such software. OS CMSs offer an accessible and
convenient way to run a sophisticated electronic
communication system with room for innovation
in the delivery of electronic materials. All the
CMSs we tested are available for free download
and for further development. Most of the add-
ons, themes, and the like are available for free
download and require acknowledgment of the
original developers when used.

User Community

A major concern raised regarding the wisdom in
using OSS is related to continuity and longevity
in terms of the development of various OSS. The
usual contention is whether the community that
develops specific OSS will survive the test of
time and continue to work on its development as
the years go by. There are no guarantees to this
problem. However, there are indications that OS-
driven projects cannot and will not be wished away
overnight. The OS user-developer communities
for successful and widely adopted software have
stood the test of time. Having said that, there is the
likelihood that some existing communities could
break up and, in fact, others have disbanded. As
a result, it is now more important than ever for
users of such software to learn how to master

the programming languages used in developing
such software. Based on our online research of
the four applications, we found the four CMSs
have very wide user and developer communities.
There is usually a core development team that
works on the core engine, while add-ons and
template themes are often developed and shared
by numerous volunteers across the world on dif-
ferent Web sites.

To the issue of sustenance with respect to
longevity and continuity, Stallman (2003) stated
that “even allowing for Murphy to create a few
unexpected problems, assembling these [software]
components will be a feasible task ... The kernel
will require closer communication and will be
worked on by a small, tight group” (p. 546).
Similarly Weber (2004) noted:

[c]ollaborative open source software projects such
as Linux and Apache have demonstrated that a
large and complex system of software code can
be built, maintained, developed, and extended
in a nonproprietary setting in which many work
in a highly parallel, relatively unstructured way.
(p. 2)

The extensive adoption of OSS is dependent
on the awareness of the existence of such soft-
ware among the public, and the availability of
information about how to access and deploy them.
Awareness about CMSs and OSS is minimal. Even
among societies that have easy access to and high
use of the Internet, knowledge about OSS is still
minimal. Although the knowledge about OS and
OS CMSs is growing, the tendency for it to be
known among tech-savvy and highly motivated
users of computer software is higher than among
average users of software. As OS CMSs and OSS
become mainstream, more publicity is needed in
educational institutions and among teachers in
colleges and in high schools. There is the need to
educate teachers about OSS and encourage them
to use OSS as alternatives to proprietary software
in their schools.

262

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

Documentation

Moodle, Drupal, Mambo, and Xoops all have
extensive documentation on how to install the
applications that can be downloaded online.
Documentation on Moodle, Drupal, Mambo,
and Xoops are fragmented in comparison to their
proprietary alternatives. However, there is un-
doubtedly a huge catalog of documentation online
on all four. Lerner and Tirole (2002) are of the
conviction that the nature of incentives available
to open source programmers could be a reason
for the fragmented nature of documentation and
user interfaces in open source software.

The nature of Xoops, Mambo, Drupal, and
Moodle documentation suggests an approach
to support that says, “Good products need no
publicity.” There appears to be a suggestion that
the economic and technical values of Xoops,
Mambo, Drupal, and Moodle and similar OS
CMS will make them popular and lead to their
extensive adoption as alternatives to proprietary
software. Among programmers and many avid
users of computer software, this maxim could be
true, but among the larger population of software
users, Xoops, Mambo, Drupal, and Moodle and
similar OSS have yet to make major impact as
alternatives to existing proprietary software. What
appears to be helping in popularizing Xoops,
Mambo, Drupal, and Moodle is the promotion
of OSS adoption by some governments around
the world. For instance, Brazil has declared an
open source country status, and all government
establishments are adopting and installing OSS.
Also, well-established Web sites like http://source-
forge.org, http://cmsmatrix.org, and http://open-
sourcecms.com have valuable information about
OSS for adopters and prospective adopters of
OSS. The Web sites of Xoops, Mambo, Drupal,
and Moodle have cataloged developer discussions
and documented how to deploy such applications.
Robertson (2004) speaks for the need for better
documentation for CMS applications. He com-
mented that “most community-based open source

CMS products provide only a small amount of
documentation, and other support information...it
remains to be seen how this work can be funded
within the open source business model” (p. 4).

The documentation on OS CMSs and indeed
OSS falls under the user support services. The
user support service offered by OSS developer
communities are in three forms: on-demand
help, forum contributions, and online published
materials. These support services suggest that
the developer communities and providers of such
support services assume that prospective adopters
of Xoops, Mambo, Drupal, and Moodle and other
OSS need just the bare minimum of information
on how to deploy such software in order to install
and execute complete configuration.

Versatility, Stability,
and Availability of Code

Weber (2004) described software source code as
“the list of instructions that make up the ‘recipe’
for a software package” (p. 4). Robertson (2004)
indicated that “having access to all the code
of [a] content management system provides an
unparalleled degree of flexibility” (p. 2) and
invaluable access to resources sold under other
license agreements. Access to open source code
allows for easier integration of such software with
other software. For example, with Web authoring
software like NVu (open source), we were able to
adapt some portions of Xoops, Mambo, Drupal,
and Moodle for our needs. Although we are not
programmers, having but a fair understanding
of PHP, CSS, and HTML (hypertext markup
language) coding, we were able to create our
own templates, modify existing templates made
available online, and adjust some functionalities
on the core engine and add-ons of Xoops, Mambo,
Drupal, and Moodle. For people who are not tech
savvy, there is a large community of programmers
and discussion groups online that people can tap
into. Also, there is an emergence of resources and
services in the form of books, consultants, and

 263

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

companies that offer suggestions for customiza-
tion. Although some users and adopters of OS
CMS may customize certain functions, the ap-
plications we reviewed can be used as is with a
theme of the user’s or adopter’s choice.

The administrator back ends of Xoops,
Mambo, Drupal, and Moodle are simple to ma-
neuver. Other functions of the candidates can be
activated or deactivated mainly through clicks,
especially in the case of Moodle. Xoops, Mambo,
and Drupal requires uploading modules and com-
ponents for installation after the main engine has
been installed. This could be a bit tricky since it
requires that the site developer ensure the mod-
ule or component he or she intends to deploy is
compatible with the version of the engine that has
been installed as was discussed under interoper-
ability. Therefore, prior to selecting a CMS for
use, it would be beneficial if an adopter makes a
functional analysis on what the CMS-driven site
will be used for, and search for a stable and non-
beta version of the core engine of the CMS to be
adopted. It will also require finding compatible
add-ons with the version of the adopted CMS. In
order to populate the Xoops, Mambo, Drupal, and
Moodle CMSs with content, the back-end facili-
ties provide uploading and publishing functions
that allow for the publishing of digital images
and documents, specifying terms for meta tags,
composing disclaimer notices, updating user and
administrator profiles, and specifying user access
parameters. The basic administrator maintenance
could be done using buttons that facilitate the
submission, reviewing, updating, uploading,
installing, and uninstalling of modules, and the
editing and deleting of content. Depending on the
user privileges, users could be granted the same
access as the administrator or limited access that
allows them to perform specific functions. These
back-end features are indicative of the fact that
most electronic content managed through CMSs
require the creation and packaging of content
outside of the CMSs.

Security

The security of content management systems
centers on issues of dependability, that is, the in-
ability of unauthorized individuals to gain access
to the back-end operations of the application, and
the ability to control the content that flows within
the system to ensure integrity and credibility.
However, accessibility to the source code of OSS
is often cited as a weakness to such software (Ray-
mond, 1999; Stallman, 2003). Such assertions are
refuted on the grounds that the openness of the
system should not have any real significance on
software’s security (Anderson, 2002; Raymond;
Stallman). Xoops, Drupal, Mambo, and Moodle
provide unlimited access to back-end operations
to system administrators, and also provide log-in
access to registered users in order to give them
access to materials available on a site, or to upload,
download, or post materials into the system. In
the same manner, Xoops, Drupal, Mambo, and
Moodle allow the site administrator to ensure the
credibility of content on the site and in the system
by regulating access to content online, and by
providing secure access to features of the system.
Han (2004) affirms that security issues in a CMS
environment “generally [consist] of authentica-
tion and authorization. Authentication means
the process of a system validating a user logon
information, while authorization [involves] the
right granted a user to use a system” (p. 356).

Advocates for open source like Payne (2002)
contend that open source software is more secure
than proprietary software due to the perceived
strength of the peer review process. Program-
mers continuously work together to find bugs
and develop patches to make OSS more robust
and secure. Also, OS project development Web
sites have concurrent versioning system (CVS)
programs that track the development and changes
of the software. A CVS works by allowing
programmers to make available bugs and fixes
to the CMS on the CMS documentation site or

264

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

directly to the user community through other
online resources.

Regarding the dependability or reliability of
Xoops, Drupal, Mambo, and Moodle, the nature
of open source projects is such that at any point of
the development of the product, there are several
volunteers working on them. Fuggetta (2003)
asserts that the fact that open source codes are
in the public domain ensures extreme scrutiny
that leads to bug fixing and the discovery of
code errors. Similarly, Hansen, Köhntopp, and
Pfitzman (2002) contend that open source pro-
motes software transparency that facilitates the
quick detection of bugs and the development of
patches as remedial measures through Internet
access. They emphasized that “the availability or
disclosure of source code is a necessary condi-
tion for security” (p. 467). In the same way, the
flexibility of OS products makes it possible for
security flaws to be determined by anyone who
has access. For instance, Payne (2002) noted that
“when the FTP site containing Wietse Venema’s
TCP wrapper software was broken into and the
attackers modified the source code to contain
a backdoor, the malicious code was discovered
and corrected within a day”3 (p. 64). Studies
conducted by Kuan (2001), Bessen (2002), and
Johnson (2004) at least point to the strengths of
the OS approach to software development and
maintenance. Bessen’s claim of good security
in open source software is premised on the fact
that heterogeneous users have the opportunity to
customize the OSS. This was confirmed by Kuan’s
study on a comparison between three open source
software and their proprietary alternatives. She
determined that in two of the three applications
she studied, the rate of bug fixing was signifi-
cantly faster in the open source projects than in
their proprietary counterparts. Johnson argued
that the open source process is more likely to
lead to improvement in software development
because the process and reward system makes
the development communities less susceptible
to cover-ups and connivance to conceal software

defects and programming errors. In spite of the
fact that open source products have proved to be
secure, Lerner and Tirole (2004) cautioned that
much research into the superiority of OS in com-
parison to proprietary software has not yielded any
conclusive evidence in favor of either approach to
software development and maintenance. Xoops,
Mambo, Drupal, and Moodle are doing well as
CMSs. Activities on their project Web sites are
indicative of their strengths and prospects. These
software are under consistent periodic reviews for
improvement and new releases. Having installed
and tested Xoops, Mambo, Drupal, and Moodle,
we recommend that prospective adopters of open
source CMS should consider the strengths of CMS
candidates based on the following issues:

• Interoperability: Can OSS CMSs be used
across platforms? What are the database
server requirements?

• Software licenses: What is the nature of
the legal obligation for using the CMS? Is
it GNU?

• User community: How popularity is its use?
Is there a community frequently developing
and using it?

• Documentation: Are there user guides?
What support systems exist for users?

• Versatility, stability, and availability of
code, and security: How resourceful are the
CMSs for users and launchers for online use?
Are they multipurpose in terms of usage and
adaptation for specific services and online
interaction? How robust are the back-end and
front-end infrastructure? Is the source code
available and what are the implications in
terms of long-term support, the ability to add
new features and fix bugs, and the ability to
understand how the components work? The
CMS must be able to limit access to certain
content online and/or provide secure access
to certain features.

 265

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

FUTURE TRENDS

OS CMSs, specifically Drupal, gained promi-
nence and was used significantly during the 2004
presidential elections. Howard Dean’s presidential
campaign team and the Deaniacs used Drupal
extensively. Xoops, Mambo, Drupal, and Moodle
are being used for interactive Web sites for vari-
ous activities. They are popular for blogs used
by journalists, and for online social interaction
services and business activities. The Xoops,
Mambo, Drupal, and Moodle Web sites have links
to sites that are run on such software. For instance,
sites that have adopted Moodle are obtainable at
http://moodle.org/sites. They have proved to be
functional for managing commercial sites similar
to trends started by successful e-commerce sites
like E-bay and Amazon. Trends in the development
of OSS indicate that OS activities are on the rise.
Data available on http://cmsmatrix.org indicate
that Xoops, Mambo, Drupal, and Moodle are
among the preferred CMSs. The site has statisti-
cal information generated from user responses to
questions related to system requirements, security,
support, ease of use, performance, management,
interoperability, flexibility, built-in application,
and commerce (including statistical information
on Xoops, Mambo, Drupal, and Moodle). It also
contains comparative information on various
CMSs. Information generated from the site could
be helpful in understanding the strengths and
weakness of Xoops, Mambo, Drupal, Moodle,
and many CMSs.

OS is championing the drive for more access
to software technology, more participation in the
development of software, and the localization
and customization of software and content. For
instance, Drupal and Moodle are noted for their
multilingual functions that allow almost everyone
to access it to create, edit, or publish content in
their own languages. This approach to electronic
publishing is a complete overhaul of conventional
publishing, and allows for the localization of
content and the use of culture-specific and sensi-

tive approaches to content creation. Such OS ap-
proaches to knowledge creation and dissemination
are very radical and are considered subversive.
However, they are generating dynamic politi-
cal and economic responses among individuals
and governments. There are countless numbers
of online projects that run on OSS CMSs, and
governments of countries like Brazil, Venezuela,
and Argentina have declared their countries open
source and are adopting OSS in government
institutions. Arnold Schwarzenegger, governor
of California, has expressed interest in OSS and
advocates OSS as alternatives to proprietary
software, a choice that could help deal with the
budgetary woes of his state. Clearly, OSS has huge
economic prospects, ones that can be explored only
if investment is channeled into OSS development
initiatives alongside a drive to increase the use of
CMSs like Xoops, Drupal, Mambo, and Moodle.
Although, OS may promise cuts in cost in terms
of software purchasing, their adoption requires
doing what it takes to install and configure such
software for use. Not all configurations of OSS
need programming experts, and our installation of
Xoops, Mambo, Drupal, and Moodle is symbolic
of this fact. OSS only seeks to promote self-help
and do-it-yourself opportunities for everyone
motivated enough to take up an electronic project.
The OS movement has unleashed a digital produc-
tion dragon that promotes alternative licensing
rights that render software piracy useless and
encourage collaboration. It has declared a new
order of social and economic organization, and
the creation and use of software that promise to
give the proprietary software industry a good run
for its money. Weber (2004) explained that the
emergence of OSS is part of an almost epochal
battle over who will control what is in the midst
of a technological revolution.

Stallman’s (2003) rebuttals to the objections to
GNU goals as listed and explained in “The GNU
Manifesto” capture the prospects of open source
software in general. He emphasized:

266

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

If people would rather pay for GNU [OSS] plus
service than get GNU [OSS] free without ser-
vice, a company to provide just service to people
who have obtained GNU [OSS] free ought to be
profitable. ... Such services could be provided by
companies that sell just hand-holding and repair
service. If it is true that users would rather spend
money and get a product with service, they will
also be willing to buy the service having got the
product free ... The sale of teaching, hand-hold-
ing and maintenance services could also employ
programmers. (pp. 547-550)

Regarding the future of OSS, Lerner and Tirole
(2004) refer to a rise of corporate investment into
open source projects. (IBM is reported to have
spent over $1 billion in 2001 alone on such proj-
ects; Microsoft, Adobe, Google, Hewlett-Packard,
and many more have expressed interest in and
supported open source projects.) Also, there is an
upsurge of political interest around the world in
OSS by governments including the United States,
the European Union, China, Brazil, Mexico, South
Africa, Uganda, India, and many more. However,
there is the need to improve the documentation
and publicity of OSS. The sale of programming
and customization services could and should be on
the rise. Also, the forking of OS projects give rise
to concern about the future of OSS. Forking refers
to splits that can and does happen among OSS
development groups that lead to the concurrent
development of new applications that are deriva-
tives of older ones, for instance, the creation of
Joomla, an emerging CMS based on the Mambo
core engine. The nature of OS applications is
such that the availability of source code makes
it possible for the emergence of new applications
from existing ones. The outcomes of forking are
twofold: It could disrupt the development of the
initial application due to the splitting up of core
developers, or it could lead to the emergence of
better applications.

CONCLUSION

We examined four open source content manage-
ment systems to determine a set of criteria that
an adopter could consider when selecting an
open source CMS for use. We noted that, in us-
ing open source content management systems,
it is important to identify the purpose of the
dynamic site before embarking on installing and
implementing the application. Having adequate
documentation and a supportive user community
are highly important. Although the application
may be obtained at no cost, deploying it may
require dedication and know-how to ensure
success. Having knowledge about the security;
versatility, stability, and availability of the source
code; documentation; user community; software
licenses; and interoperability of a CMS candidate
are essential for success.

REFERENCES

Anderson, R. (2003). Security in open source
versus closed systems: The dance of Boltzman,
Coase and Moore. Unpublished manuscript.

Arnold, S. E. (2003). Content management’s new
realities. Onlinemag.

Bessen, J. (2002). Open sources software: Free
provision of complex public goods. Unpublished
manuscript.

Boateng, K., & Boateng, B. A. (2006). Open
source community portals for e-government. In
M. Khosrow-Pour (Ed.), Encyclopedia of e-com-
merce, e-government and mobile commerce (pp.
884-889). Hershey, PA: Idea Group Reference.

Friedlein, A. (2003). Maintaining and evolving
successful commercial Web sites: Managing
change, content, customer relationships and site
measurement. San Francisco: Morgan Kaufmann
Publishers.

 267

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

Fuggetta, A. (2003). Open source software: An
evaluation. The Journal of Systems and Software,
66, 77-90.

Gambardella, A., & Hall, B. H. (2005). Propri-
etary vs. public domain licensing of software and
research products (NBER Working Papers Series
No. 11120). Cambridge, MA: National Bureau of
Economic Research. Retrieved from http://www.
nber.org/papers/w11120

Garfinkel, S. (1999). Open source: How secure?
Retrieved from http://www.wideopen.com/sto-
ry/101.html

Golden, B. (2005). Making open source ready for
the enterprise: The open source maturity model.
Retrieved May 10, 2006, from http://www.navi-
casoft.com/Newsletters/OSMMWhitepaper.pdf

Han, Y. (2004). Digital content management: The
search for a content management system. Library
Hi Tech, 22(4), 355-365.

Hansen, M., Köhntopp, K., & Pfitzman, A. (2002).
The open source approach: Opportunities and
limitations with respect to security and privacy.
Computers and Security, 21(5), 461-471.

Johnson, J. P. (2004). Collaboration, peer re-
view and open source software. Unpublished
manuscript.

Kuan, J. (2001). Open source software as con-
sumer integration into production. Unpublished
manuscript.

Lagoze, C., & Van de Sompel, H. (2001). The
open archives initiative: Building a low-barrier
interoperability framework. First ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL’01),
54-62.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 52, 197-234.

Lerner, J., & Tirole, J. (2004). The economics of
technology sharing: Open source and beyond

(NBER Working Papers Series No. 10956).
Cambridge, MA: National Bureau of Economic
Research. Retrieved from http://www.nber.org/
papers/w10956

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12, 61-78.

Raymond, E. (1999). The cathedral and the ba-
zaar: Musing on Linux and open source by an
accidental revolutionary. O’Reilly.

Robertson, J. (2004). Open source content man-
agement systems. Retrieved February 10, 2006,
from http://www.steptow.com.au

Schneier, B. (1999). Crypto-gram. Retrieved from
http://www.counterpane.com/crypto-gram9909.
html#OpenSourceandSecurity

Stallman, R. (2003). The GNU manifesto. In N.
Wardrip-Furin & N. Montfort (Eds.), The new me-
dia reader. Cambridge, MA: The MIT Press.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

KEY TERMS

Back Door: A code that can be attached to
an application or software to enable the bypass
of security mechanisms.

Beta Version: An application or software at
the testing stage.

Concurrent Versioning System (CVS): A
control system used by open source developers to
record the history of source files and documents.

Engine: Codes and files that form the heart
of an application.

Forking: The emergence of new software
from other applications.

GNU: GNU is not UNIX. It primarily stands
for ideas for free software.

268

Issues to Consider when Choosing Open Source Content Management Systems (CMSs)

Modules or Components: A CMS element
that is already available within an OS CMS or can
be appended to enable specific functionalities.

ENDNOTES

1 E-learning, e-library, e-commerce, e-news,
e-government

2 Moodle is primarily considered a learning
management system. It is used mostly for
managing online education activities. How-
ever, it is multipurpose software that could
be used for most online activities. It could be
used for managing Web sites in general.

 269

Chapter XXI
Evaluating Open Source

Software through Prototyping
Ralf Carbon

Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Software Engineering: Processes and Measurement Research Group, Germany

Marcus Ciolkowski
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Software Engineering: Processes and Measurement Research Group, Germany

Jens Heidrich
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Software Engineering: Processes and Measurement Research Group, Germany

Isabel John
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Dirk Muthig
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

ABSTRACT

The increasing number of high quality open source software (OSS) components lets industrial organiza-
tions seriously consider integrating them into their software solutions for critical business cases. But
thorough considerations have to be undertaken to choose the “right” OSS component for a specifi c busi-
ness case. OSS components need to fulfi ll specifi c functional and non-functional requirements, must fi t
into a planned architecture, and must comply with context factors in a specifi c environment. This chapter
introduces a prototyping approach to evaluate OSS components. The prototyping approach provides
decision makers with context-specifi c evaluation results and a prototype for demonstration purposes.
The approach can be used by industrial organizations to decide on the feasibility of OSS components in
their concrete business cases. We present one of the industrial case studies we conducted in a practical
course at the University of Kaiserslautern to demonstrate the application of our approach in practice.
This case study shows that even inexperienced developers like students can produce valuable evaluation
results for an industrial customer that wants to use open source components.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

270

Evaluating Open Source Software through Prototyping

EVALUATING OPEN SOURCE
SOFTWARE THROUGH
PROTOTYPING

There is an increasing number of open source
software (OSS) projects that release software
components which provide almost complete sets
of functionality required in particular domains.
These components are often also of such high
quality that in more and more cases industry is
seriously considering to use them as part of their
commercial products. In such scenarios, OSS
components must certainly compete with any
similar component on the market including other
OSS projects and commercial solutions.

The model behind OSS is generally more at-
tractive to companies than commercial business
models, especially for small and medium-sized
companies, due to the free distribution of OSS,
the full access to sources and documentation, as
well as quick responses and support by the com-
munity consisting of developers and other users.
The implementation of this OSS model and the
quality of the software, however, varies signifi -
cantly from one OSS project to another. Hence,
it is crucial for an organization to systematically
investigate the implementation of the OSS model
for the particular OSS projects whose software it
considers to reuse.

Reusability of any type of software (including
OSS, in particular) depends on the quality of the
software itself as well as that of its documenta-
tion. Code quality is affected, for example, by
code comments, structuring, coding style, and
so forth. The quality of available documentation
is defi ned by its readability, comprehensibility,
or technical quality, and by its suitability for
the intended reuse scenarios involving OSS.
Besides documentation, the community support-
ing particular OSS projects is a crucial element,
too. Response time and quality of community
feedback depend on the overall size of the user
group and the skill level of its members. All these
aspects should be explicitly evaluated before an

OSS is reused in real projects, let alone in critical
projects. Note that all of these aspects may not
only vary signifi cantly from one OSS project to
another, but also heavily depend on the concrete
context and reuse scenarios of the OSS.

This chapter reports on a way to evaluate OSS
in a holistic way. That is, OSS components are
fi rstly evaluated like any other potential COTS
(commercial off-the-shelf) component; and sec-
ondly they are used in a prototype project similar
to, but smaller than the intended product develop-
ments, including an evaluation of the product in
the context of the projected architecture to avoid
architectural mismatches, as well as an evaluation
of the support provided by the related community.
To minimize the costs of such a pre-project evalu-
ation, an evaluation team consisting of a group
of graduate computer science students may be
deployed. A prototyping approach can also be
used to gather more detailed information on the
adequacy of COTS components for a specifi c
context. But especially for the selection of OSS
components a prototyping approach pays off. The
quality of the source code and the development
documentation can be evaluated, for instance. This
increases trust in the quality of the component.
Furthermore, it is even possible to evaluate if the
OSS component can be easily adapted by oneself
to better fulfi ll the specifi c requirements.

The chapter presents experience from several
OSS evaluation projects performed during the
last few years in the context of a one-semester
practical course on software engineering at the
University of Kaiserslautern. The systematic and
sound evaluation was supported by researchers
of the Fraunhofer Institute for Experimental
Software Engineering (IESE).

Each evaluation employed a temporary team
of students to conduct a feasibility study, that is,
realizing a prototypical solution based on OSS to
be evaluated as specifi ed by industrial stakehold-
ers. The industrial stakeholder always provided
a set of functional and quality requirements and
a projected architecture for the envisioned prod-

 271

Evaluating Open Source Software through Prototyping

ucts; optionally, it already referred to an initially
selected OSS component potentially suitable for
the given task.

The question to be answered eventually
by each evaluation project is whether the OSS
component(s) under consideration is (or are) usable
as a basis for the kind of products the industry
stakeholder envisions.

The chapter fi rst provides an overview of
evaluation approaches relevant to the evaluation
projects presented, then the approach itself is
presented and its application is shown exemplar-
ily by means of an evaluation project performed
in 2004/2005 in cooperation with an industrial
stakeholder. Finally, an overview of open issues
and future trends is given.

BACKGROUND

The background and work related to our work
described here can be seen in two areas:

• COTS evaluation
• Open source evaluation

As we describe the evaluation of software in
this chapter, related contributions can be found
in the area of COTS evaluation. Current research
does no longer strongly distinguish between
evaluation frameworks for COTS and for open
source software components (di Giacomo, 2005;
Li, Conradi, Slyngstad, Bunse, Torchiano, &
Morisio, 2006; Paulson, Succi, & Eberlein, 2004).
A range of COTS-based evaluation methods has
been proposed, the most widely used ones being
 off-the-shelf option (OTSO) and procurement-
oriented requirements engineering (PORE). The
OTSO method (Kontio, 1995) provides differ-
ent techniques for defi ning evaluation criteria,
comparing the costs and benefi ts of alternative
products, and consolidating the evaluation results
for decision-making. OTSO assumes that clear
requirements already exist, since it uses a require-

ments specifi cation for interpretation. The PORE
method (Ncube & Maiden, 1999) is a template-
based approach to support requirements based
COTS acquisition. The method uses an iterative
process of requirements acquisition and product
evaluation. The method proposed by Ochs, Pfahl,
Chrobok-Diening, and Nothelfer-Kolb (2001)
uses a risk analysis approach for COTS selection
and explicitly takes risks into account but has no
means for dealing with unclear requirements. A
method that focuses on requirements in COTS is
the social-technical approach to COTS evaluation
(STACE) framework (Kunda & Brooks, 1999).
It emphasizes social and organizational issues
in the COTS selection process, but has no clear
requirements integration process.

Some seminal work focusing on the evaluation
and selection of OSS for an industrial context can
be found in the literature. First thoughts on the
parallel evaluation of COTS and open source can
be found in (Sciortino, 2001), where the author
identifi es strategic decisions when selecting a
certain software component. Kawaguchi, Garg,
Matsushita, and Inoue (2003) propose a method
for the categorization of open source components
from their code basis. This can be seen as the
fi rst step towards an evaluation framework, but
their work aims in a different direction. Wang
and Wang (2001) emphasize the importance of
requirements when selecting an open source
component. They identifi ed several open source
software characteristics, but leave the process for
evaluation open (Ruffi n & Ebert, 2004) also defi ne
characteristics specifi c to open source software,
but do not focus on evaluation in their work. A
more elaborate approach is the business readiness
rating (BRR) (Business Readiness Rating for
Open Source, 2006). Here a process is presented
to assess open source software for industrial use.
The four phase assessment and fi ltering process
results in a fi nal business readiness rating for
all selected open source software packages and
also takes into account soft factors like quality
and community. Different from the approach we

272

Evaluating Open Source Software through Prototyping

propose here, the requirements and the metrics
have to be clear from the beginning of the assess-
ment. With our prototyping-based approach it is
possible to gain knowledge step by step and to try
the open source software package in the context of
the intended use. Nevertheless, it is imaginable to
combine both approaches and to use our prototyp-
ing-based approach during step three of the BRR
for data collection and processing.

Most of these approaches mainly focus on
functional, hard characteristics that have to be
clear from the beginning of the evaluation process.
They disregard non-functional and contextual
factors like performance of the components and
development community aspects and do not con-
sider changing requirements. Those aspects can
only be captured and evaluated in a prototyping
approach where the open source software is actu-
ally used to realize functionality in the context
of the user and developer.

MAIN FOCUS OF THE CHAPTER

In this section, we present an approach to evaluate
OSS components in an industrial context. Users
and developers are often concerned whether OSS
candidates provide adequate functionality and
enough quality to be integrated into the products
they use or sell. We propose an approach where
OSS candidates are applied in a practical context
by means of prototyping, in other words, a proto-
type of the system an OSS candidate is supposed
to be integrated into is developed. Based on the
results, fi nal decision support can be provided.
Our approach is goal- and feedback-oriented
according to the goal-question-metric (GQM)
approach (Basili, Caldiera, & Rombach, 1994a)
and the quality improvement paradigm (QIP)
(Basili, Caldiera, & Rombach, 1994b). Figure 1
gives an overview of the approach. It takes into
account functional and non-functional require-
ments of the software system to be developed,
architectural constraints, context factors, OSS

candidates, and OSS specifi cs as input products.
In the preparation phase, an initial requirements
analysis is done, OSS candidates are selected,
and evaluation teams are set up.

The prototyping phase follows an iterative
approach, in other words, the prototypes are
developed in several iterations. At the end of
each iteration, an evaluation step is performed. If
several OSS candidates are available, one proto-
type per OSS candidate is developed in parallel.
The prototyping phase is followed by the fi nal
evaluation, where all evaluation results from the
prototyping phase are consolidated and integrated
into an evaluation report.

The approach has been applied and validated
fi ve times so far by request of different industrial
customers, namely Maxess Systemhaus GmbH
(Ciolkowski, Heidrich, John, Mahnke, Pryzbilla,
& Trottenberg, 2002), BOND Bibliothekssysteme,
market maker Software AG (two times), and the
city council of Kaiserslautern.

The input for the evaluation process was
provided by the customers, the prototyping was
done by students, who were typically in their 3rd
year of computer science study. Researchers of
the University of Kaiserslautern and Fraunhofer
IESE managed the evaluation projects.

In the following, our evaluation approach is
presented in detail and we describe the input and
output products and the evaluation process itself
in detail. After that, we demonstrate the feasibil-
ity of our approach by means of one of the fi ve
evaluation projects mentioned previously.

Input Products

• Functional requirements: The functional
requirements specify the software system
that is supposed to incorporate OSS candi-
dates. The functional requirements of the
prototype to be developed can be a subset
of them, for example, only including the
mandatory requirements. The required
functionality is the primary indicator for

 273

Evaluating Open Source Software through Prototyping

the applicability of an OSS candidate in
the customer’s context. If the OSS candi-
date does not cover the functionality that
is requested by it, it will be rejected.

• Non-functional requirements: The non-
functional requirements specifi cation de-
fi nes the quality required of the software
system to be developed. Such quality
characteristics are, for instance, reliability,
performance, usability, or fl exibility. The
non-functional requirements already need
to be fulfi lled by the prototype. In our case,
the contribution of the OSS candidates to
the quality of the whole system has to be
evaluated carefully. If the OSS candidates
are not capable of providing the required
quality level, they will be rejected.

• Architectural constraints: The architec-
ture describes the planned architecture of the
software system to be developed. The archi-
tecture of a software system provides several
views on a software system and describes,
for instance, its structure, in other words,
how it is composed of logical components,
and how these interact with each other. By
means of an appropriate architecture, several
non-functional requirements can be guaran-
teed right from the beginning of a project.
In the context of the evaluation process of
OSS candidates, at least the architectural
constraints need to be defi ned up-front.
They provide valuable information on where
and how OSS candidates can be plugged
into the planned system. The architectural

Figure 1. Overview of the OSS evaluation approach

Evaluation
reportPrototype

Prototype

…

Functional
requirements

Context
factors

Architectural
constraints

Non-functional
requirements

OSS candidates

OSS specifics

…

…

Iteration 1

…

Iteration 2

Evaluation
step

Evaluation
step

Initial Requirements
Analysis

OSS candidate
selection

Evaluation team
creation

Preparation
phase

Prototyping
phase

Final Evaluation

Input
products

Evaluation
process

Output
products

Iteration
planning

274

Evaluating Open Source Software through Prototyping

constraints help to refi ne the requirements
for the OSS candidates, for instance, which
interfaces an OSS candidate has to provide.
Furthermore, it can be determined whether
the OSS candidate is critical to the fulfi ll-
ment of important non-functional require-
ments in the actual context.

• Context factors: Every OSS component
is used in a specifi c context. The context
is characterized by a set of context factors.
Examples of context factors are the applica-
tion domain a software system is developed
for, the experience of the developers of the
software system, or the technologies that
are supposed to be used for the realization
of the software system. For instance, if the
OSS candidates were to be used in a domain
with high security requirements for the fi rst
time, for instance, this should be taken into
account during evaluation. If the developers
have no experience with a specifi c technol-
ogy used in an OSS candidate, this could
even be a reason to reject the OSS candidate
at once, because they would not be able to
adapt it without spending an unreasonable
amount of effort.

• OSS candidates: The OSS candidates are of
central interest in our evaluation approach.
Sometimes the customer, for instance, has
already done a preliminary selection of OSS
candidates. Such a set of OSS candidates is
then input to our evaluation process. If no
preliminary selection has been performed,
the evaluation process itself has to start with
the search for OSS candidates.

• OSS specifi c issues: OSS components are
concerned with recurring issues. Usually,
components have to be adapted before
they can be integrated into a new system.
Crucial questions are, therefore, whether an
OSS component is documented adequately
or whether competent support is provided.
Our evaluation process explicitly takes such
OSS-specifi c issues into account.

Output Products

• Prototype: The outputs of the prototyping
phase are executable prototypes of the sys-
tem to be developed. These prototypes can
be used to demonstrate whether the specifi ed
functional and non-functional requirements
can be fulfi lled by means of the used OSS
candidates. The customer, for example, can
gain confi dence that an OSS candidate is
applicable in the respective context.

• Evaluation report: The evaluation report
gives a detailed summary of the results of
the evaluation process. The evaluation report
is handed over to the customer and gives
comprehensive support for the fi nal decision
on the selection of an OSS candidate.

Evaluation Process

The evaluation process is organized in an iterative
manner. If more than one consistent set of OSS
components has to be evaluated, several evaluation
teams are created, who perform the development
process in parallel with certain synchronization
points. We call a consistent set of OSS components
an OSS candidate; that is, this combination of OSS
products is a possible candidate for creating the
fi nal product the customer is interested in. After
each iteration, the prototype, which is based on
a consistent set of OSS components, is evaluated
with respect to the functional and non-functional
requirements as well as OSS-specifi c issues. Based
on this evaluation, the customer has the possibility
to adapt his requirements (e.g., stop evaluation of
an OSS candidate; perform a deeper evaluation of a
certain OSS candidate). The adapted requirements
are the starting point for the next iteration. At the
end, a fi nal evaluation report is created. You can
fi nd an overview of the whole evaluation process
in Figure 1. In detail, we distinguish between the
following activities:

 275

Evaluating Open Source Software through Prototyping

• Initial requirements analysis: During
 initial requirements analysis, the students
identify a list of functional and non-func-
tional requirements by performing struc-
tured interviews with the customer. In some
cases, the customer provides an initial list
of requirements and even architectural con-
straints that have to be incorporated into a
requirements document. It is important to
list all requirements that are important for
making a decision about using a certain OSS
candidate. For the prototypes, it is not neces-
sarily useful to list all requirements a fi nal
product should have, which is created out
of the positively evaluated OSS candidates
later on. Quite on the contrary, it is impor-
tant to fi rst focus on essential requirements
the fi nal product must have. To support this
focus, we also prioritize all requirements.
The fi nal requirements document, which is
the starting point for all evaluation teams,
must also contain a specifi cation of all non-
functional requirements (preferably in a
quantitative form by means of, for instance,
the GQM approach) that are important for
evaluating the OSS candidates (such as data
throughput and latency). These requirements
must be assessed after each iteration of the
development process later on.

• OSS candidate selection: During this ac-
tivity, a survey of possible OSS candidates
is conducted in order to fi nd suitable OSS
components based on customer require-
ments. The students perform a Web-based
search for OSS components that match the
functional customer requirements and cre-
ate an overview of components found. In
doing this, especially OSS-specifi c issues
are addressed, such as community size and
support. This overview is discussed with
the customer and a set of components is
identifi ed. For practical reasons, the num-
ber of candidates is limited by the number

of evaluation teams that can be grouped
out of the students later on. Usually, two
candidates are evaluated and compared
against each other. If the customer already
has a predefi ned set of OSS components
that should be evaluated, this step can be
skipped.

• Evaluation team creation: When the ba-
sic requirements have been analyzed and
the components to be evaluated have been
defi ned, the evaluation teams are created.
Each evaluation team consists of about four
to seven students. One student assumes the
role of the project manager and coordinates
all others. Usually, a quality assurance man-
ager is also determined, who is responsible
for all verifi cation and validation activities
performed as well as for checking that the
prototype satisfi es the non-functional re-
quirements.

• Iteration planning: Based on the actual
requirements document, the development
iterations are planned accordingly. The
requirements to be implemented in certain
iterations are determined based upon the
assigned priority. Usually, two to three
iterations are planned.

• Iterative prototype development: When
the evaluation teams have been created and
iterations have been planned, the actual
development work starts. Based upon the
requirements document, each evaluation
team starts to create a prototype for the
corresponding set of requirements to be
implemented for the current iteration. This
includes application design based upon ap-
plication constraints by the customer, imple-
mentation, and, fi nally, testing. Usually, each
document created is reviewed with respect
to its correctness, completeness, and con-
sistency. Therefore, checklist-based inspec-
tions are performed. During the development
process, the customer is involved in project

276

Evaluating Open Source Software through Prototyping

meetings in a previously defi ned manner
(usually, once a week) in order to keep track
of the development and to answer open
questions. The project meetings are usually
conducted together with all evaluation teams
in order to discuss problems which a candi-
date may have during development. During
each iteration, a specifi c role, the quality as-
surance (QA) manager, continuously checks
all non-functional customer requirements
and OSS-specifi c issues (such as response
time of support requests in news groups or
email lists). At the end of each development
iteration, the QA manager of each evaluation
team prepares a small presentation in order
to give an overview of the pros and cons of
the OSS candidates evaluated. The end of
one individual development iteration marks
a synchronization point for each evaluation
team. Based upon the QA presentation, the
project managers and the customer discuss
which requirements to implement next and,
in extreme cases, whether a certain candi-
date or components of a candidate should
be replaced in future development.

• Final evaluation: After the last iteration
is done, a fi nal evaluation report is created.
This report contains a detailed discussion
of all OSS-specifi c issues in the form of a
lessons-learned table for each issue. For each
quantitatively expressed non-functional
requirement, test results are included. In
general, the pros and cons of the OSS candi-
dates are addressed, as is a recommendation
on how to overcome the limitations found
and which candidate to use. So, the fi nal as-
sessment evaluates the OSS candidates with
respect to their applicability for the intended
software product, based on joint analyses
of all relevant characteristics (comprising
functionality and quality) of the resulting
prototype, as well as on the experience
gained during implementation.

CASE STUDY

In this section, we present in detail one of the
fi ve projects where we applied our OSS evalu-
ation approach in practice. We conducted this
project during the winter semester 2004/2005 at
the University of Kaiserslautern, Germany, as a
practical course. Sixteen students conducted an
OSS evaluation project according to our approach
for the market maker Software AG, a provider of
Web-based stock market information systems.
The company demanded a test tool for Web ap-
plications and wanted to evaluate the feasibility of
two OSS components in this context. The focus in
this chapter is on the presentation of our approach
and not on the discussion of the pros and cons
of two concrete OSS components. Thus, we call
the two components pointed out by the customer
component A and component B.

The students worked full-time on this OSS
evaluation project for 8 weeks. The prototyping
phase usually consumes most of the time of an
evaluation project. In this case, the preparation
phase consumed one week, the prototyping phase
six weeks, and the fi nal evaluation again one week.
The project was managed by two researchers. In
the beginning, the customer provided them with a
detailed problem statement. A short summary of
the information included in the problem statement
according to our classifi cation of the input products
of our approach can be found in Table 1.

The project started with a preparation phase.
In this case, a half-day requirements workshop
was conducted together with the students, the
customer, and the researchers in order to detail
and prioritize the requirements and consolidate a
common understanding of all stakeholders. The
selection of OSS candidates had already been
done by the customer. Two OSS candidates had
been selected and thus two prototypes needed to
be built according to our approach. The students
were split into two teams of 8 students each, who
then performed the prototyping concurrently.

 277

Evaluating Open Source Software through Prototyping

One team developed a prototype of the test tool
based on component A, the other team developed
a prototype based on component B. It was decided
to perform two iterations.

In the fi rst iteration, the two teams mainly
evaluated functional aspects and the extensibility
of the OSS candidates. First, they developed a
solution for generalizing/parameterizing test case
building blocks and then they evaluated whether
their solution can be supported by component
A/component B. The main evaluation results after
the fi rst iteration were:

1. Both of the OSS candidates provide the
expected functionality to trace user interac-
tion and perform load tests, but additional
functionality is necessary to satisfy all cus-
tomer-specifi c requirements, for instance,
regression test functionality.

2. The tool-specifi c scripting language used
by component B for the specifi cation of
test plans and the test output needed to be

mapped to an XML format as specifi ed by
the customer. Component A already uses
an XML format for the specifi cation of test
plans and outputs, which is a key advantage
of component A over component B.

3. Both of the OSS candidates are documented
insuffi ciently from a developer’s point of
view; for instance, the documentation of the
code is incomplete and neither architecture
nor design documentation is available. A
modifi cation of the existing functionality of
the OSS candidates seemed to be too risky.
Thus, the OSS candidates would be plugged
into the prototype without modifi cation of
the existing functionality.

4. The two components differ in their exten-
sion mechanisms. Component A explicitly
provides several extension points that can
be used to add additional functionality. In
the case of component B, the only way to
extend the functionality seemed to be to add
new functionality to additional components.

Functional
requirements

• Traces of the user interaction with the system via a Web browser can be
captured.

• Traces can be divided into semantically cohesive, generic/parameterized
building blocks of test suites, for example, user login.

• Test suites can be derived from the generic/parameterized building blocks.
• Test suites can be executed:

{ Load and performance tests
{ Regression tests

• Test results are documented.

Non-functional
requirements

• Extensibility: The OSS components must be easily extendable.
• Performance: The OSS components must be capable of hitting the test

candidate with a large amount of requests per time unit.

Architectural
constraints

• Traces of the user interaction must be captured by the OSS component.
• The execution of test cases must be performed by the OSS component.
• Test candidates must be accessed via http.
• The data format of the test building blocks must be XML based.
• The test tool must be integrable into the customer’s build environment.

Context factors

Domain: Web-based stock-market information systems
Programming language: Java
Experience of student developers: Low
Experience of the customer’s developers: High

OSS candidates Component A, component B

OSS specifi cs OSS under GNU license may not be used in this case.

Table 1. Short summary of the project inputs

278

Evaluating Open Source Software through Prototyping

This has to be evaluated in more detail in
iteration 2.

In the second iteration, the teams detailed their
solutions, developing additional customer-specifi c
functionality not supported by the OSS candidates
so far, for instance, regression test functionality.
Another evaluation of the extensibility of the two
OSS candidates was conducted and the perfor-
mance of the prototypes was investigated. The
main results of iteration 2 were:

1. The extensibility of component A was evalu-
ated to be higher than that of component B.
As already assumed after the fi rst iteration,
it turned out that one crucial problem with
component B was the usage of its tool-spe-
cifi c scripting language. The mapping of
the test building blocks specifi ed in XML
to a test script could be realized much easier
for the XML-based format of component A.
This led to a signifi cant gap in productiv-
ity between the two teams in iteration two.
The team using component A was capable
of providing much more functionality. In
addition, the team using component A also
benefi ted from the predefi ned extension
points of this component.

2. A signifi cant difference in performance
could not be observed between the two
prototypes. Both OSS candidates provide
a clustering functionality for load testing,
in other words, the tested Web page can be
queried with requests from several clients
distributed across several machines. Thus,
a high load can be produced effi ciently.

In the end, the results of the prototyping phase
were consolidated and integrated during a fi nal
evaluation. The prototypes and the evaluation
results were presented to the customer. Based on
this presentation, the customer decided to elabo-
rate a solution based on component A. Because
the OSS candidates differ only little in function-

ality and performance, the main reason for the
decision of the customer was the extensibility of
component A, which was enabled by the XML-
based format for test plans and the predefi ned
extension points.

This case study demonstrates the application
of our approach for evaluating OSS through pro-
totype development. It shows that the application
of the OSS candidates leads to a comprehensible
decision on choosing one of them for further
elaboration.

FUTURE TRENDS

In addition to writing code, evaluation of OSS
components will grow in importance and be
considered a valuable contribution to the OSS
community. With the growing widespread usage
of OSS, the evaluation of OSS components will
become ever more crucial to fostering the adop-
tion of OSS by society. Therefore, it lies within
the interest of the OSS community to provide
evaluations of the applicability of their OSS com-
ponents. Consequently, systematic evaluations of
OSS components present a valuable contribution
to OSS projects.

In addition, empirical evaluation and its
systematic documentation will continue to gain
importance in the area of OSS (Virtuelles Soft-
ware Engineering Kompetenzzentrum, 2006;
CeBASE—NSF Centre for Empirically Based
Software Engineering, 2006). This includes sys-
tematic case studies, as presented in this chapter, as
well as controlled experiments (Boehm, Rombach,
& Zelkowitz, 2005) to investigate certain aspects
in a laboratory setting; for example, a controlled
experiment could investigate the importance of
documentation for the maintenance of a particu-
lar OSS component (Endres & Rombach, 2003).
Another aspect of empirical evaluation is the
installation of testbeds (Lindvall et al., 2005).
Testbeds are environments or platforms that
allow carrying out case studies in a more con-

 279

Evaluating Open Source Software through Prototyping

trolled and comparable way. For example, such
a platform could be confi gured to run projects
on CMMI level 3-5, while integrating teams of
students and practitioners. Such a setting would
allow evaluating more detailed aspects of OSS
components under more reproducible and more
realistic industrial settings than the approach
presented in this chapter. Currently, Fraunhofer
IESE is setting up such a platform.

CONCLUSION

The approach presented has proven to produce
real-life experience, which is significant to
industry organizations when deciding on seri-
ous usage of OSS components. Especially the
short time period required and the deployment
of a non-expert team led to well-grounded and
thus better decisions. The selected set-up thus
provides a great return-on-investment. Hence,
we recommend for any organization to perform
such a systematic evaluation of OSS through
prototyping projects before using OSS in their
mission-critical projects.

REFERENCES

Basili, V.R., Caldiera, G., & Rombach, H.D.
(1994a). The goal question metric approach. In
J. J. Marciniak (Ed.), Encyclopedia of software
engineering (2nd ed., Vol. 1, pp. 578-583). New
York: John Wiley & Sons.

Basili, V. R., Caldiera, G., & Rombach, H. D.
(1994b). The experience factory. In J. J. Marciniak
(Ed.), Encyclopedia of software engineering (2nd
ed., Vol. 1, pp. 511-519). New York: John Wiley
& Sons.

Boehm, B., Rombach, D., & Zelkowitz, M. (Eds.).
(2005). Foundations of empirical software engi-
neering: The legacy of Victor R. Basili. Berlin:
Springer-Verlag.

Business Readiness Rating for Open Source
(n.d.). Retrieved June 29, 2006, from http://www.
openbrr.org

CeBASE—NSF Centre for Empirically Based
Software Engineering (n.d.). Received June 29,
2006, from http://www.cebase.org

Ciolkowski, M., Heidrich, J., John, I., Mahnke,
W., Pryzbilla, F., & Trottenberg, K. (2002).
MShop—Das Open Source Praktikum (IESE-
Report, 035.02/D). Germany: Fraunhofer Institute
for Experimental Software Engineering.

Demming, E. (1986). Out of the crisis. Cambridge,
MA: MIT Press.

Endres, A., & Rombach, D. (2003). A handbook
of software and systems engineering: Empirical
observations, laws and theories. Amsterdam:
Addison-Wesley.

di Giacomo, P. (2005). COTS and open source
software components: Are they really different
on the battlefi eld? In Proceedings of the Fourth
International Conference on COTS-Based Soft-
ware Systems, Bilbao, Spain (pp. 301-310).

Kawaguchi, S., Garg, P. K., Matsushita, M., & In-
oue, K. (2003). On automatic categorization of open
source software. In Proceedings of the Third WS
on Open Source SE (pp. 79-83). Portland, OR.

Kontio, J. (1995). A COTS selection method and
experiences of its use. In Proceedings of the
20th Annual Software Engineering Workshop,
Maryland, USA.

Kunda, D., & Brooks, L. (1999). Applying so-
cial-technical approach for COTS selection. In
Proceedings of the Fourth UKAIS Conference
(pp. 552-565). UK: University of York.

Li, J., Conradi, R., Slyngstad, O., Bunse, C.,
Torchiano, M., & Morisio, M. (2006). An em-
pirical study on off-the-shelf component usage in
industrial projects. In R. Conradi (Ed.) Software
process improvement: Results and experience in

280

Evaluating Open Source Software through Prototyping

Norway (pp. 54-68). Berlin, Germany: Springer
LNCS.

Lindvall, M., Rus, I., Shull, F., Zelkowitz, M.,
Donzelli, P., Memon, A., Basili, V., Costa, P.,
Hochstein, A., Asgari, S., Ackermann, C., & Pech,
B. (2005). An evolutionary testbed for software
technology evaluation. Innovations in Systems
and Software Engineering, 1(1), 3-11.

Ncube, C., & Maiden, N. A. M. (1999). PORE:
Procurement-oriented requirements engineering
method for the component-based systems engi-
neering development paradigm. In Proceedings of
the International Workshop on Component-Based
Software Engineering, Los Angeles (pp. 1-12).

Ochs, M., Pfahl, D., Chrobok-Diening, G., &
Nothhelfer-Kolb, B. (2001). A method for ef-
fi cient measurement-based COTS assessment
and selection-method description and evaluation
results. In Proceedings of the Seventh IEEE Inter-
national Software Metrics Symposium, London
(pp. 285-290).

Paulson, J. W., Succi, G., & Eberlein, A. (2004).
An empirical study of open-source and closed
source software products. IEEE Transactions on
Software Engineering, 30(4), 246-256.

Ruffi n, M., & Ebert, C. (2004). Using open source
software in product development: A primer. IEEE
Software, 21(1), 82-86.

Sciortino, M. A. (2001). COTS, open source, and
custom software: Which path to follow COTS,
open source, and custom software. Retrieved
June 29, 2006, from http://www.acsu.buffalo.
edu/~ms62/papers/softwarepath.htm

Virtuelles Software Engineering Kompetenz-
zentrum (n.d.). Retrieved June 29, 2006, from
http://www.softwarekompetenz.de

Wang, H., & Wang, C. (2001). Open source soft-
ware adoption: A status report. IEEE Software,
18(2), 90-95.

KEY TERMS

 Case Study: An observational empirical study,
which is done by observation of an on-going proj-
ect or activity. A case study typically monitors a
project or assignment. Case studies are normally
aimed at tracking a specifi c attribute or establish-
ing relationships between different attributes.

 Context (Factor): The context is the environ-
ment in which an empirical study is run. Context
factors are infl uences in the context (such as the
experience of developers) that may have an impact
on the phenomenon under observation.

 Empirical Evaluation: A study where the
research ends are based on evidence and not just
theory. This is done to comply with the scientifi c
method that asserts the objective discovery of
knowledge based on verifi able facts of evidence.
This includes observing a phenomenon under
laboratory conditions (e.g., in a controlled experi-
ment) or in the fi eld (e.g., in a case study).

Goal-Question-Metric Paradigm (GQM):
The goal-question-metric (GQM) paradigm has
been proposed to support the defi nition of quan-
tifi able goals and the interpretation of collected
measurement data. It is a goal-oriented approach
to derive metrics from measurement goals to
ensure that collected data is usable and serves
a purpose.

 Iterative Software Development: Denotes a
software development process that splits system
development into several parts (or iterations).
The basic idea behind iterative development is to
develop a software system incrementally, allow-
ing the developer to take advantage of what was
being learned during the development of earlier,
incremental, deliverable versions of the system.

 Open Source Software (OSS): Software
whose code is developed collaboratively, and
is freely available to the public under specifi c
license conditions.

 281

Evaluating Open Source Software through Prototyping

 Prototyping: Denotes the process of quickly
putting together a working model (a prototype) in
order to test various aspects of a design, illustrate
ideas or features and gather early user feedback.
Prototyping is often treated as an integral part of
the system design process, where it is believed to
reduce project risk and cost. Its characteristic is
that prototypes are typically developed without
adhering to software engineering principles,
which typically results in products that are not
maintainable.

Quality Improvement Paradigm (QIP):
The quality improvement paradigm is a general
improvement scheme tailored for the software
business. It is a goal-driven feedback-oriented
improvement paradigm for software engineering
based on total quality management principles,
and on the plan/do/check/act cycle (Demming,
1986).

282

Chapter XXII
Motives and Methods for

Quantitative FLOSS Research
Megan Conklin

Elon University, USA

INTRODUCTION

Numbers, statistics, and quantitative measures
underpin most studies of free/libre open source
(FLOSS) software development. Studies of
FLOSS development usually require the research-
ers to have answered questions like: How many
FLOSS projects are there? How many developers?
How many users? Which projects are dead, which
are fl ourishing? What languages are popular for
development? How large are development teams,
and how are these teams structured?

These questions are fun to answer in the context
of FLOSS development because project teams are
self-organized, widely-distributed geographically,
and use many different programming languages

ABSTRACT

This chapter explores the motivations and methods for mining (collecting, aggregating, distributing,
and analyzing) data about free/libre open source software (FLOSS) projects. It fi rst explores why there
is a need for this type of data. Then the chapter outlines the current state-of-the art in collecting and
using quantitative data about FLOSS project, focusing especially on the three main types of FLOSS
data that have been gathered to date: data from large forges, data from small project sets, and survey
data. Finally, the chapter will describe some possible areas for improvement and recommendations for
the future of FLOSS data collection.

and software development methodologies. Teams
are organized in an ad hoc, decentralized fashion.
Projects can be very hard to track, and changes
can be diffi cult to follow. Developers primarily
use the Internet for communication, and teams
are organized around the idea that anyone can
contribute. Since the organization of the teams is
done via the Internet and since the source code is
open for anyone to view, it may seem as though
data about these projects is as open as the projects
themselves.

This is in direct contrast to the way proprietary
projects are most often structured, and conse-
quently, data about proprietary projects are col-
lected and analyzed in a different way. Empirical
 software engineering researchers have, in the past,

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 283

Motives and Methods for Quantitative FLOSS Research

typically used metrics from a single company or
a single proprietary project. This data was col-
lected systematically and distributed in a tightly
controlled manner, consistent with the proprietary
nature of the software being developed. Whereas
 data analysis about proprietary software practices
was primarily a problem of scarcity (getting ac-
cess and permissions to use the data), collecting
and analyzing FLOSS data becomes a problem
of abundance and reliability (storage, sharing,
aggregation, and fi ltering of the data).

Thus, this chapter will explore the motivations
and methods surrounding the mining of FLOSS
data, specifi cally how and why the collection,
aggregation, distribution, and analysis of this
data takes place. We will fi rst discuss motives:
why does software engineering research rely on
metrics at all, and why do we need FLOSS metrics
in particular? We will then study methods: what
is the current state-of-the-art in FLOSS data min-
ing? Finally, we note some possible future trends,
and propose some general recommendations for
measuring FLOSS projects quantitatively.

BACKGROUND

Importance of Metrics to
Software Engineering

The collection and aggregation of real-world and
historical data points are critical to the task of
measurement in software engineering. Quantita-
tive and empirical approaches to software engi-
neering require real-world data; for example, the
branch of software engineering concerned with
estimation will use empirical or historical data to
seed the estimate calculation. More generally, the
four reasons for measuring software creation pro-
cesses are commonly listed as a characterization,
evaluation, prediction, or improvement on these
processes (Park, Goethert, & Florac, 1996). All
of these goals require useful data (measurements)
in order to be carried out effectively. Interest-

ing measures of the software process can vary
depending on the goals of the research, but they
could include things like the number of errors in
a particular module, the number of developers
working in a particular language or development
environment, or the length of time spent fi xing a
particular code defect (Yourdon, 1993). The col-
lection domain of a research project will differ
as well; measures can be collected for a group of
products, a group of developers, a single software
product, a single release of a software project, or
even for a single developer.

The empirical software engineering literature
is replete with examples of how gathering metrics
about projects can lead to important insights.
Software engineering metrics can be used to avoid
costly disasters, effi ciently allocate human and
fi nancial capital, and to understand and improve
business processes. One famous example of a
software error that caused signifi cant fi nancial and
property damage was the European Ariane 5 fl ight
501 disaster of 1996 (Jezequel & Meyer, 1997).
The European rocket crashed 40 seconds after
liftoff, reportedly due to an error in the way soft-
ware components were reused within the system.
This was a US$500 million software engineering
error. In 1975, Fred Brooks made famous another
software engineering debacle: the management
of the IBM OS/360 project (Brooks, 1975). His
conclusions about the ineffi ciencies in the way
programmers were added to the development team
became known as Brooks’ Law, and this remains
one of the tenets of software engineering practice
to this day. Using metrics about team composi-
tion, communication, and productivity, Brooks
concluded that work done by a set of programmers
will increase linearly as programmers are added
to a project, but communication and coordination
costs will rise exponentially. Brooks’ Law is most
often remembered as: “adding manpower to a late
project makes it later.”

There are hundreds of these examples in the
software engineering literature about metrics in
proprietary projects, but where are the metrics

284

Motives and Methods for Quantitative FLOSS Research

and measurements for studying FLOSS develop-
ment practices? We know that FLOSS projects
are fundamentally different from proprietary
projects in several important ways: they are
primarily user-driven as opposed to driven by a
hierarchically-organized for-profi t corporation
(von Hippel, 2001). These user-programmers
work in loosely defi ned teams, rarely meet face-
to-face, and coordinate their efforts via electronic
media such as mailing lists and message boards
(Raymond, 1999). These are all fundamentally
different arrangements than the way proprietary
software is traditionally developed.

Importance of FLOSS Metrics

Recognizing this unique separation between
proprietary and FLOSS software engineering
traditions, and building on a strong foundation of
measurement in software engineering literature,
there are then several compelling reasons to col-
lect, aggregate, and share data about the practice
of FLOSS software development. First, the relative
novelty of the FLOSS movement means that there
is a high degree of unfamiliarity with development
processes and practices, even within the larger
software engineering domain. Studying FLOSS
development practices can be useful in its own
right, in order to educate the larger research and
practitioner communities about an important
new direction in the creation and maintenance
of software (Feller, 2001). FLOSS researchers
have noticed that many of the practices of FLOSS
teams are not well-understood (Scacchi, 2002;
von Hippel 2003) or, when they are, they seem
to directly oppose traditional wisdom about how
to build software (Herbsleb & Grinter, 1999). At
the very least, this situation indicates something
interesting is afoot, and in the best case will
foreshadow an important methodological shift
for software development.

Additionally, the lessons learned through
studying the organizational characteristics and
motivations of FLOSS development teams are

applicable to many other fi elds. Much research
has been conducted on the economic (Lerner &
Tirole, 2002; Raymond, 1999) and policy aspects
of FLOSS development, especially as the reason
for various licensing choices (Rosen, 2004) or
about their implications for intellectual prop-
erty (Dibona, Ockman, & Stone, 1999; Kogut &
Meitu, 2001; Lerner & Tirole, 2001; Weber, 2004).
Additional research has been conducted on the
motivations of FLOSS developers (Raymond,
1999; Torvalds, 1998; Ye & Kishida, 2003), which
is an interesting question to consider since these
developers are working without pay. There are also
implications for other types of distributed teams
and computer-mediated group work (Crowston,
Annabi, Howison, & Masango, 2004a, 2005;
Crowston & Howison, 2005; Annabi, Crowston,
& Heckman, 2006; Crowston & Scozzi, 2006),
such as gaining a better understanding of the role
of face-to-face meetings in highly distributed work
teams, or analyzing the leadership hierarchies
that work best for distributed teams. Studying
development team dynamics in the context of
social networking continues to be a popular ap-
plication for FLOSS data also (Howison, Inoue,
& Crowston, 2006).

One recent signifi cant development in the
practical application of FLOSS software metrics
is the use of metrics in software package evalu-
ation frameworks for business, such as the busi-
ness readiness rating (BRR) (Wasserman, Pal,
& Chan, 2006). Evaluation frameworks like the
BRR are designed to give businesses unfamiliar
with FLOSS products a technical rationale for
choosing particular products. For example, the
BRR attempts to assign an overall quality rating
to various products based on each product’s score
on various factors that may predict success. This
attempt to quantify FLOSS product quality has
resulted in a fl urry of publications that either sup-
port or extend the BRR (Cau, Concas, & Marchesi,
2006; Monga & Trentini, 2006), or which urge
caution in assessing quality in this way (German,
2006; Robles & Gonzalez-Barahona, 2006).

 285

Motives and Methods for Quantitative FLOSS Research

With this in mind, many of the questions that
have been asked about FLOSS development re-
quire quantitative data in order to be answered:
What are the programming languages being used
for FLOSS development? Are these the same lan-
guages being used to create proprietary software?
Are bugs fi xed faster or slower on FLOSS teams or
on a proprietary team? What is the most common
size of a FLOSS team, and how does this relate
to the ideal size for a FLOSS team? How, and at
what rate, do new developers join a team? How
do workers on a FLOSS team divide the work?
What computer-mediated discussion activities
are being used to manage workfl ow, and are they
effective? As researchers gather the answers to
these questions, they can begin to answer even
bigger questions: Why does this particular team
structure work better? Can we learn anything
from FLOSS methods that can be applied to the
construction of proprietary software?

MAIN FOCUS OF THE CHAPTER

Methods: The State of the
Art in FLOSS Data

Quantitative FLOSS data appears to be highly
available, and appears easier to access for research
than proprietary data. Researchers who wish to
study FLOSS development issues (for example,
the adoption rates of various programming lan-
guages or the speed of bug-fi xing) know that, in
theory, they probably should have access to this
information. The perception is that since the
code is free and open to everyone, and because
the general attitude of FLOSS developers tends
toward openness, therefore the data should be
straightforward to fi nd and gather. For research-
ers, then, studying FLOSS development teams
can have advantages over studying proprietary
teams; specifi cally, with FLOSS, it is no longer
necessary to fi nd a corporation willing to provide
researchers access to their in-house development

databases and source code control systems. How
then do researchers go about getting this FLOSS
data, and what are some of the problems with these
methods? This section outlines the current state-
of-the-art in FLOSS data gathering. It is divided
into three sections: tools and studies which focus
on the traversal of large forges, tools and studies
which focus on a single project or a few projects,
and survey-based studies.

Studying Large Forges

For a researcher who needs a large sample size
of FLOSS projects or developers, the large code
repositories, or forges, may seem like a good place
to collect data. The researcher might know that
there are over 100,000 FLOSS projects hosted on
Sourceforge1, a large Web-based project reposi-
tory and suite of developer tools2. Each project
hosted on Sourceforge has a general information
Web page which holds basic information about the
project: its license type, programming language,
database environment, date it was registered,
number of downloads, list of developers working
on the project and their roles and skills, and so
forth. As convenient as it may seem to use this
forge data, the realities of gathering FLOSS data
from a forge can make this a very unappealing
exercise (Howison & Crowston, 2004). First,
there are the obvious practical issues about how
to traverse (or spider) the repositories effi ciently
without violating spidering rules (robots.txt) or
the terms of service (TOS) of the Web sites being
spidered, and where to store the massive amount
of data that such an exercise generates. But the
biggest limitation of spidering data like this is that
the data model is always open to being changed
by whoever is in control of the repository and
there is no way to know of changes in advance.
Thus, maintaining control over this free and open
data is actually a hugely ineffi cient process for
a researcher.

Nonetheless, numerous research papers have
been written using data collected from forges

286

Motives and Methods for Quantitative FLOSS Research

(some early examples are: Crowston, Annabi,
Howison, & Masango, 2004b; Ghosh & Prakash,
2000; Krishnamurthy, 2004; Weiss 2005a; Weiss,
2005b; Xu, Gao, Christley, & Madey, 2005), and
tools have been developed to assist researchers in
spidering these large forges (Conklin, Howison, &
Crowston, 2005; Howison, Conklin, & Crowston,
2005). One early example of a forge-based tool
is the Orbiten project (Ghosh & Prakash, 2000),
undertaken in 1999 to “provide a body of empirical
data and analysis to explain and describe this [free
and open source] community.” This automated
source code review was designed to accumulate
statistics on open source software development, in-
cluding number of projects, number of developers,
how often code is being changed and by whom, etc.
Unfortunately, the Orbiten project is now defunct.
This fact introduces a serious problem with rely-
ing on published-but-proprietary data sources for
research: data can disappear. Though the original
article links to a Web site that is supposed to
provide both the software and the data, this site
is no longer operational. A researcher wishing
to duplicate, validate, or extend the methods of
Orbiten would be at a loss to do so. Using FLOSS
development methodologies, such as the tradition
of “passing the baton” (Raymond, 1999), would
have reduced the likelihood of this information
becoming extinct. A subsequent section discusses
additional recommendations for making forge-
based data collection work well.

Studying Single Projects

Despite the vast quantities of information available
inside FLOSS code forges, much of the FLOSS
research to date requires a different approach. In
some cases, FLOSS researchers take a similar
approach to proprietary software researchers:
they analyze some feature of a single software
project (or a few related projects), such as the
source code or the bug databases, and extrapolates
some lesson or advancement which can then be

applied to other projects. For example, Koch and
Schneider (2000) look at the source code reposi-
tory and mailing lists for the Gnome project and
attempt to extract traditional software engineering
metrics (function points) from this data. Mockus,
Fielding, and Herbsleb (2000) study the change
logs for two projects: Apache and Mozilla. In fact,
the Apache Web server continues to be a single
project very heavily used by researchers (Weiss,
Moroiu, & Zhao, 2006; Annabi et al., 2006). Ye
and Kishida (2003) study the social structure of
programmers working on the GIMP graphics
package. German (2004a) investigates the way
the GNOME team has structured itself, and what
lessons other project teams can learn based on
the GNOME experience. The study by deGroot,
Kugler, Adams, and Gouisos (2006) uses KDE as
a test case for a general quality metric they call
the SQO, or software quality observatory.

The study by Nakakoji, Yamamoto, Nishinaka,
Kishida, and Ye (2002) looks at four open source
projects all related to the same company. Lerner
and Tirole (2002) studied four different open
source projects, some of which also appear in
other studies (Koch & Schneider, 2000; Mockus
et al., 2000). Recent work by den Besten, Dalle,
and Galia (2006) studies the artifacts of code
maintenance in 10 large projects.

Recognizing that serious ineffi ciencies occur
when every FLOSS research team writes a new
tool for analyzing source code or bug reports,
several research teams have also developed tools
that are designed to be used generically with
any given project that uses a particular source
code versioning system or bug-tracking system.
Examples include CVSAnalY (Robles, Koch,
& Gonzalez-Barahona, 2004) and SoftChange
(German, 2004b) for analyzing CVS repositories
and GlueTheos (Robles, Koch, & Ghosh, 2004)
for retrieving and analyzing code artifacts. The
biggest benefi t to these general-purpose tools is
that they can be used to gather metrics on any
project that uses the underlying source-control

 287

Motives and Methods for Quantitative FLOSS Research

or bug-tracking system being studied. This is a
great advantage to researchers who may have an
idea for a study, but would not be able to obtain
the metrics they need to begin the study without
spending time to write their own retrieval or
analysis system. Indeed, Robles and Gonzalez-
Barahona (2006) study the contributor turnover of
21 projects using their own CVSAnalY system.

Studies Based on Survey Data

Finally, it is clear that not every research question
requiring quantitative data can be answered using
purely electronic artifacts. Research on intrinsic
developer motivations, for example, will rely on
metrics perhaps better gleaned from personal
interviews or surveys. For example, the Lakhani
and Wolf study (2003) was based on a survey of
684 developers on 287 FLOSS projects, while the
Hars and Ou paper (2001) describes a survey of
81 developers working on an unspecifi ed num-
ber of open source projects. Gosain and Stewart
(2001) interview project administrators to show
how developer ideologies impact team effective-
ness. Another survey (Scacchi, 2002) intended
to fi nd out how project requirements were set,
involved a dozen software projects in four dif-
ferent research areas. Elliot and Scacchi (2004)
followed this survey with an in-depth analysis of
the social artifacts (IRC logs and email discus-
sions) of the GNUe project. Crowston and Scozzi
(2006) surveyd teams with more than seven core
developers as part of a study of mental models.
Berdou (2006) interviewed paid and volunteer
KDE and Gnome contributors.

The largest surveys of this kind to date are
the 2700-person survey done by Ghosh, Glott,
Krieger, and Robles (2002) and the 1500-person
survey done by David, Waterman, and Arora
(2003). In both of these surveys, developers
answered questions about their motivations for
working on FLOSS software, as well as basic
demographic information.

FUTURE TRENDS

Impacts of Continued Growth in Size
and Complexity of Data Sets

It becomes clear from reading the preceding sec-
tion that over time, studies of FLOSS projects have
enjoyed an upward trajectory in the amount of data
surveyed, frequency of the surveys, and depth of
the surveys. While the occasional single-project
study is still common (Apache Web server is a
very popular topic, e.g.), it is increasingly common
for research teams to structure studies around a
dozen or more projects, and to study these proj-
ects from every possible angle: communication
artifacts, bug databases, code quality, as well as
public metadata. Studies of individual developers
are now expected to contain results for hundreds,
if not thousands of participants, and surveys can
ask questions about every possible aspect of a
developer’s life.

What are the impacts on the project leaders,
developers, and the project infrastructure of this
increased research interest? Do project leaders
enjoy being studied? Do the project leaders enjoy
the benefi ts of the results of the studies in which
their projects are used? Is there any developer
backlash against research surveys? There is some
vigorous debate in the research community about
breaching developer privacy in a large system
of aggregated data like FLOSSmole (Robles,
2005). For example, if we aggregate several code
repositories and are now able to show in a color-
ful graph that Suzy Developer is ten times more
productive than Bob Coder, does this violate Bob’s
privacy? If we can show that Suzy’s code changes
are fi ve times more likely to cause errors than
Bob’s, does that violate Suzy’s privacy? Robles
suggests that the next generation of community
data repositories should have the ability to hash
the unique keys indicating a developer’s identity.
Do project leaders and developers demand this
level of privacy? Do they have other concerns

288

Motives and Methods for Quantitative FLOSS Research

about the research in which they are (often unwit-
ting) participants? These answers will have to be
researched, implemented, and documented for
our community.

Increased Emphasis on Sharing
within the Community

One of the biggest challenges for new FLOSS
researchers is to fi gure out what data is already
available and how to fi nd it so that time is not
wasted on duplicative efforts. This is especially
true in light of the previous discussion about the
increases in the amount of data expected and
available, as well as the increased frequency of
data collection efforts. Multiple research teams
have already worked on analyzing the data in
large forges, gathering and massaging data
from individual project artifacts such as CVS,
and collecting data through surveys. How can
researchers leverage each other’s work to reduce
redundancy?

In the interests of actively promoting data shar-
ing among research teams, one group (for which
the author is a principal developer) has developed
the FLOSSmole project (Conklin, Howison, &
Crowston, 2005; Howison, Conklin, & Crowston,
2005). The founding principle of the FLOSSmole
project is that its data, code, and database schemas
should be made accessible to other researchers
(http://ossmole.sf.net). This reduces redundant
efforts for the research community as a whole.
Since the data about FLOSS teams and projects is
public to begin with, it makes sense that the data
remain public after being collected from forges or
from project repositories. (Presumably, some data
taken from surveys or survey results can also be
made public, assuming that dissemination of the
results is part of the survey protocol.) Research-
ers or practitioners who wish to use FLOSS data
should be able to look at our system and quickly
procure the data they need, rather than having to
go through the complicated process of gathering
their own—oftentimes redundant—data. This

stance refl ects the principles behind open source
software itself; if a user wants to look at the code or
data, she is free to do so. Having the FLOSSmole
system open and easily accessible also lowers the
barriers to collegial comment and critique. Be-
cause our code and data are easily accessible by
anyone at any time, and because we use a source
code control system and a public mailing list for
discussing code and schema changes, this means
that we are accountable to the public for what
we create. Papers written using our data have a
verifi able paper trail on which to rest.

Bridging the Gap between
Disparate Data Sources

A second challenge for FLOSS research teams
dealing with quantitative data is integrating
disparate data sources. For example, we occa-
sionally have access to data from now-defunct
projects and from published FLOSS research
studies, and we know these are valuable for his-
torical analyses. Can these be integrated into an
existing (and active) community database (such
as FLOSSmole, or another project)? Even if this
donated or historical data were complete, clean,
and well-labeled, such as the data scraped from a
large forge, integrating it could still be problematic
because different repositories store different data
elements. Different forges can have projects with
the same names; different developers can have
the same name across multiple forges; the same
developer can go by multiple names in multiple
forges. In addition, forges have different terminol-
ogy for things like developer roles, project topics,
and even programming languages.

For example, there has been some effort to
coordinate the work of the CVSAnalY (Robles,
Koch, & Ghosh, 2004) efforts with FLOSSmole
when analyzing Sourceforge projects. Specifi cally,
Sourceforge projects are identifi ed by a value
called the project unixname, which is unique
among all Sourceforge projects. This unique
identifi er helps unify these two disparate data

 289

Motives and Methods for Quantitative FLOSS Research

sources. The job of joining disparate data sources
becomes more complex when there are multiple
forges involved, however.

Current data collection and integration efforts
have also not begun to address the best way to
extract knowledge from published research. Is
this possible, ethical, or desirable? What is the
best way to express the quantitative knowledge
in a domain and integrate multiple sources of
this knowledge? How will we create suffi cient
metadata about each data source so that the
results can be used together? Can any of this be
done in an automated fashion? What query tools
should be used so that the user can fully explore
both data sets? These are big questions with no
easy answers.

CONCLUSION

This chapter fi rst reviews why quantitative data is
useful in software engineering, the outlines some
of the reasons why researchers are particularly
interested in getting metrics and quantitative data
about FLOSS development projects and prac-
tices. Next, we point out the three main types of
quantitative data available for FLOSS projects:
data gleaned from large code forges, data based
on quantitative analyses done on single projects
or a few similar projects, and data gathered
from surveys. Finally, we outline what the next
steps should be for creating a truly valuable and
transformative community data repository: the
data (and the tools used to collect and analyze the
data) should be shared, and multiple data sources
should be integrated.

REFERENCES

Annabi, H., Crowston, K., & Heckman, R. (2006).
From individual contribution to group learning:
the early years of Apache Web server. In E. Da-
miani, B. Fitzgerald, W. Scacchi, M. Scotto, & G.

Scucci (Eds.), Open source systems (pp. 77-90).
New York: Springer.

Berdou, E. (2006). Insiders and outsiders: paid
contributors and the dynamics of cooperation in
community led F/OS projects. In E. Damiani, B.
Fitzgerald, W. Scacchi, M. Scotto, & G. Scucci
(Eds.), Open source systems (pp. 201-208). New
York: Springer.

Brooks, F. (1975). The mythical man-month.
Reading, MA: Addison-Wesley.

Cau, A., Concas, G., & Marchesi, M. (2006, June
10). Extending OpenBRR with automated metrics
to measure object-oriented open source project
success. In A. I. Wasserman (Ed.), Proceedings
of the Workshop on Evaluation Frameworks for
Open Source Software (EFOSS) at the Second
International Conference on Open Source Sys-
tems, Lake Como, Italy (pp. 6-9).

Conklin, M., Howison, J., & Crowston, K. (2005).
Collaboration using OSSmole: A repository of
FLOSS data and analyses. In Proceedings of
the Workshop on Mining Software Repositories
(MSR 2005) at the 27th International Conference
on Software Engineering (ICSE2005), St. Louis,
Missouri, USA (pp. 1-5).

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2004a). Effective work practices for
software engineering: Free/libre/open source
software development. In WISER Workshop on
Interdisciplinary Software Engineering Research
(SIGSOFT 04), Newport Beach, California,
USA.

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2004b). Towards a portfolio of FLOSS
project success metrics. In Proceedings of the
Open Source Workshop of the 26th International
Conference on Software Engineering (ICSE2004),
Edinburgh, Scotland.

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2005). Effective work practices for

290

Motives and Methods for Quantitative FLOSS Research

FLOSS development: A model and propositions.
Paper presented at the Hawaii International
Conference on System Science (HICSS 2005),
Hawaii, USA.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software devel-
opment. First Monday, 10(2). Retrieved March
20, 2007, from hppt://www.fi rstmonday.org/is-
sues/issue10_2/crowston

Crowston, K., & Scozzi, B. (2006). The role of
mental models in FLOSS development work
processes. In E. Damiani, B. Fitzgerald, W. Scac-
chi, M. Scotto, & G. Scucci (Eds.), Open source
systems (pp. 91-98). New York: Springer.

David, P. A., Waterman, A., & Arora, S. (2003).
Free/libre/open source software survey for 2003.
Stanford, CA: Stanford Project on the Economics
of Open Source Software, Stanford University.
Retrieved from http://www.stanford.edu/group/
fl oss-us

de Groot, A., Kugler, S., Adams, P. J., & Gou-
sios, G. (2006). Call for quality: Open source
software quality observation. In E. Damiani, B.
Fitzgerald, W. Scacchi, M. Scotto, & G. Scucci
(Eds.), Open source systems (pp. 35-46). New
York: Springer.

den Besten, M., Dalle, J-M., Galia, F. (2006).
Collaborative maintenance in large open-source
projects. In E. Damiani, B. Fitzgerald, W. Scac-
chi, M. Scotto, & G. Scucci (Eds.), Open source
systems (pp. 233-241). New York: Springer.

DiBona, C., Ockman, S., & Stone, M. (1999). Open
sources: Voices from the open source revolution.
Sebastopol, CA: O’Reilly & Associates.

Elliott, M. S., & Scacchi, W. (2004). Commu-
nicating and mitigating confl ict in open source
software development projects. Projects and
Profi ts, 10(4), 25-41.

Feller, J. (2001). Thoughts on studying open
source software communities. In N. L. Russo
et al. (Eds.), Realigning research and practice
in information systems development: The social
and organizational perspective (pp. 379-288).
Dordrecht, The Netherlands: Kluwer Academic
Publishers.

German, D. M. (2004a). Decentralized open
source global software development, the GNOME
experience. Journal of Software, Process: Im-
provement and Practice, 8(4), 201-215.

German, D. M. (2004b). Mining CVS repositories:
The Softchange experience. In Proceedings of
the Workshop on Mining Software Repositories
(MSR 2004) at the 26th International Conference
on Software Engineering (ICSE 2004), Edinburgh,
Scotland (pp. 17-21).

German, D. M., (2006, June 10). The challeng-
ers of automated quantitative analyses of open
source software projects. In A. I. Wasserman
(Ed.), Proceedings of the Workshop on Evaluation
Frameworks for Open Source Software (EFOSS)
at the Second International Conference on Open
Source Systems, Lake Como, Italy (pp. 10-14).

Ghosh, R. A., & Prakash, P. P. (2000). The Or-
biten free software survey. First Monday, 5(7).
Retrieved March 20, 2007, from hppt://www.
fi rstmonday.org/issues/isse5_7/ghosh

Ghosh, R. A., Glott, R., Krieger, B., & Robles,
G. (2002). Free/libre and open source software:
Survey and study. International Institute for
Infonomics, University of Maastricht, The Neth-
erlands. Retrieved from http://www.infonomics.
nl/FLOSS/report/

Gosain, S., & Stewart, K. (2001). An exploratory
study of ideology and trust in open source develop-
ment groups. In Proceedings of the International
Conference on Information Systems (ICIS) (pp.
507-512).

 291

Motives and Methods for Quantitative FLOSS Research

Hars, A., & Ou, S. (2001). Working for free? Mo-
tivations of participating in open source projects.
Paper presented at the Thirty-Fourth Annual
Hawaii International Conference on System Sci-
ences (HICSS 2001), Hawaii, USA.

Herbsleb, J. D., & Grinter, R. E. (1999). Split-
ting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the
International Conference on Software Engineer-
ing (ICSE 1999), Toronto, Canada (pp. 85-95).

Howison, J., & Crowston, K. (2004). The perils
and pitfalls of mining Sourceforge. In Proceedings
of the Workshop on Mining Software Repositories
(MSR 2004) at the 26th International Conference
on Software Engineering (ICSE 2004), Edinburgh,
Scotland (pp. 7-11).

Howison, J., Conklin, M., & Crowston, K. (2005).
OSSmole: A collaborative repository for FLOSS
research data and analyses. In Proceedings of the
First International Conference on Open Source
Systems (OSS 2005), Genova, Italy (pp. 54-59).

Howison, J., Inoue, K., & Crowston, K. (2006).
Social dynamics of free and open source team
communications. In E. Damiani, B. Fitzgerald,
W. Scacchi, M. Scotto, & G. Scucci (Eds.),
Open source systems (pp. 319-332). New York:
Springer.

Jezequel, J.-M., & Meyer, B. (1997). Design by
contract: The lessons of Ariane. Computer, 30(1),
129-130.

Koch, S., & Schneider, G. (2000, August 2-6).
Results from software engineering research into
open source development projects using public
data. In H. R. Hansen & W. H. Janko (Eds.),
Diskussionspapiere zum Tät igkeitsfeld Infor-
mationsverarbeitung und Informationswirtschaft
(Discussion Paper No. 22). Vienna: Vienna Uni-
versity of Economics and BA. Retrieved March 20,
2007, from http://epub.wu-wien.ac.at/dyn/virlib/
wp/eng/mediate/epub-wu--01_c3.pdf?ID=epub-
wu-01_c3

Kogut, B., & Meitu, A. (2001). Open-source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248-264.

Krishnamurthy, S. (2004). Cave or community?
An empirical examination of 100 mature open
source projects. First Monday, 7(6). Retrieved
March 20, 2007, from http://www.fi rstmonday.
org/issues/issue7_6/krishnamurthy

Lakhani, K., & Wolf, R. G. (2003). Why hackers
do what they do: Understanding motivation effort
in free/open source software projects (Working
Paper 4425-03). Cambridge, MA: Sloan School
of Management, Massachusetts Institute of
Technology.

Lerner, J., & Tirole, J. (2001). The open source
movementL Key research questions. European
Economic Review, 45, 819-826.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 50(2), 197 234.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache server. In Proceedings of the
22nd International Conference on Software En-
gineering (ICSE 2000), Los Angeles, California
(pp. 263-272).

Monga, M., & Tentini, A. (2006, June 10). Weigh-
ing the value of changeability in open source
software. In A. I. Wasserman (Ed.), Proceedings
of the Workshop on Evaluation Frameworks for
Open Source Software (EFOSS) at the Second
International Conference on Open Source Sys-
tems, Lake Como, Italy (pp. 15-18).

Nakakoji, K., Yamamoto, Y., Nishinaka, Y.,
Kishida, K., & Ye, Y. (2002). Evolution patterns of
open-source software systems and communities.
In Proceedings of the International Workshop
on Software Evolution (IWPSE 2002), Orlando,
Florida (pp. 76-85).

292

Motives and Methods for Quantitative FLOSS Research

Park, R. E., Goethert, W. B., & Florac, W. A. (1996,
August) Goal Driven Software Measurement—A
Guidebook (CMU/SEI-96-BH-002). Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University.

Raymond, E. (1999). The Cathedral and the
Bazaar. O’Reilly and Associates: Sebastopol,
California.

Robles, G. (2005). Developer identifi cation meth-
ods for integrated data from various sources. In
Proceedings of the International Workshop on
Mining Software Repositories (MSR2005) at the 27th
International Conference on Software Engineering
(ICSE2005), St. Louis, Missouri (pp. 1-5).

Robles, G., & Gonzalez-Barahona, J. (2006).
Contributor turnover in libre software projects.
In E. Damiani, B. Fitzgerald, W. Scacchi, M.
Scotto, & G. Scucci (Eds.), Open source systems
(pp. 273-286). New York: Springer.

Robles, G., Koch, S., & Gonzalez-Barahona, J. M.
(2004). Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool.
In Proceedings of the Second ICSE Workshop on
Remote Analysis and Measurement of Software
Systems (RAMSS’04) at the 26th International
Conference on Software Engineering (ICSE2004),
Edinburgh, Scotland (pp. 51-55).

Robles, G., Koch, S., & Ghosh, R. A. (2004). Glu-
eTheos: Automating the Retrieval and Analysis
of Data from Publicly Available Repositories. In
Proceedings of the Mining Software Repositories
Workshop (MSR’04) at the 26th International
Conference on Software Engineering (ICSE2004),
Edinburgh, Scotland (pp. 28-31).

Rosen, L. (2004). Open source licensing: Software
freedom and intellectual property law. Englewood
Cliffs, NJ: Prentice Hall.

Scacchi, W. (2002). Understanding the requirements
for developing Open Source Software systems. IEE
Proceedings on Software, 149(1), 24-39.

Torvalds, L. (1998). FM interview with Linus Tor-
valds: What motivates free software developers?
First Monday, 3(3). Retrieved http://fi rstmonday.
org/issues/issue3_3/torvalds

von Hippel, E. (2001, Summer). Innovation by
user communities: Learning from open-source
software. Sloan Management Review, 42(4),
82-86.

von Hippel, E. (2003). Exploring the open source
software phenomenon: Issues for organization
science. Organization Science, 14(2), 209-223.

Wasserman, A. I., Pal, M., & Chan, C. (2006, June
10). The business readiness rating: A framework
for evaluating open source. In A. I. Wasserman
(Ed.). Proceedings of the Workshop on Evaluation
Frameworks for Open Source Software (EFOSS)
at the Second International Conference on Open
Source Systems, Lake Como, Italy (pp. 1-5).

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Weiss, D. (2005a). Quantitative analysis of open
source projects on Sourceforge. In Proceedings
of the First International Conference on Open
Source Systems (OSS 2005), Genova, Italy (pp.
140-147).

Weiss, D. (2005b). Measuring success of open
source projects using Web search engines. In
Proceedings of the First International Conference
on Open Source Systems (OSS 2005), Genova,
Italy (pp. 93-99).

Weiss, M., Moroiu, G., & Zhao, P. (2006). Evolu-
tion of open source communities. In E. Damiani,
B. Fitzgerald, W. Scacchi, M. Scotto, & G. Scucci
(Eds.), Open source systems (pp. 21-34). New
York: Springer.

Xu, J., Gao, Y., Christley, S., & Madey, G. (2005).
A topological analysis of the open source software
development community, In Proceedings of the
38th Hawaii International Conference on Systems
Science (HICSS 2005), Hawaii, USA.

 293

Motives and Methods for Quantitative FLOSS Research

Ye, Y., & Kishida, K. (2003). Toward an un-
derstanding of the motivation of open source
software developers. In Proceedings of the 25th
International Conference on Software Engineer-
ing (ICSE 2003), Portland, Oregon.

Yourdon, E. (1993). Decline and fall of the
American programmer. Englewood Cliffs, NJ:
Prentice-Hall.

KEY TERMS

 Data Analysis: Reviewing collected informa-
tion to identify trends or patterns.

 Data Mining: Collecting information in order
to use that collected information for a specifi c
purpose.

 Development Practices: Systems for creating
a software product.

 Free Software (FS): Software that others are
open to use, copy, or modify.

 Open Source Software (OSS): Software de-
signed in such a way that users can access/review
the underlying operating code that allows that
software to perform certain processes.

 Quantitative Methods: Research based on
the collection of numeric data.

 Software Engineering: Creating/developing
software products.

ENDNOTES

1 Sourceforge (http://sf.net) describes itself as
the “world’s largest software development
Web site.” It is a centralized repository for
thousands of open source projects. The site
includes source code control features (CVS),
community building features (forums and
mailing lists), and facilities for bug tracking,
feature requests, and downloading packages
of the software projects hosted on the site.

2 Some examples of other repositories include
Tigris for software engineering tools (http://
tigris.org), CPAN for programs written in the
perl language (http://cpan.org), RubyForge
for projects written in the Ruby language
(http://rubyforge.net), Freshmeat for popular
open source projects (http://freshmeat.net),
and Savannah for free software projects
(http://savannah.gnu.org).

294

Chapter XXIII
A Generalized Comparison of
Open Source and Commercial

Database Management Systems
Theodoros Evdoridis

University of the Aegean, Greece

Theodoros Tzouramanis
University of the Aegean, Greece

INTRODUCTION

The issue of data storage, organization, protection,
and distribution has grown in importance over
the years. This is justifi ed by the fact that data,
in increasing quantities and of multiple origins,
serving possibly different operational divisions,
were required to be processed by companies and
organizations in order to be viable and, if that

ABSTRACT

This chapter attempts to bring to light the fi eld of one of the less popular branches of the open source
software family, which is the open source database management systems branch. In view of the objective,
the background of these systems will fi rst be briefl y described followed by presentation of a fair generic
database model. Subsequently and in order to present these systems under all their possible features, the
main system representatives of both open source and commercial origins will be compared in relation to
this model, and evaluated appropriately. By adopting such an approach, the chapter’s initial concern is
to ensure that the nature of database management systems in general can be apprehended. The overall
orientation leads to an understanding that the gap between open and closed source database manage-
ment systems has been signifi cantly narrowed, thus demystifying the respective commercial products.

was achieved, to fl ourish appropriately (Loney
& Bryla, 2005).

This chapter will initially examine the fi eld of
database software, while pinpointing and briefl y
examining the most important representatives of
both open source and commercial origins. Sub-
sequently, a generalized structure of the database
model will be deployed and the most signifi cant
database system software will be evaluated ac-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 295

A Generalized Comparison of Open Source and Commercial Database Management Systems

cording to the model’s component specifi cations.
The chapter will conclude by presenting the results
of the comparison along with our views on the
future of open source database software.

BACKGROUND

The open source vs. closed source (alternatively
called proprietary development) debate has been
a topic of continuous quarrel between experts
affi liated to either of the two camps.

The notion of making money through tradi-
tional methods, such as the selling of individual
copies is incompatible with the open source
philosophy. Some proprietary source advocates
perceive open source software as damaging to
the market of commercial software. However,
this complaint is countered by a large number of
alternative funding streams such as (Wikipedia.
org, 2006a):

• Giving away the software for free and, in
return, charging for installation and support
as in many Linux distributions

• Making the software available as open
source so that people will be more likely to
purchase a related product or service you do
sell (e.g., OpenOffi ce.org vs StarOffi ce)

• Cost avoidance/ cost sharing: Many devel-
opers need a product, so it makes sense to
share development costs (this is the genesis
of the X-Window System and the Apache
Web server).

Moreover, advocates of closed source argue
that since no one is responsible for open source
software, there is no incentive and no guarantee
that a software product will be developed or that
a bug in such a product will be fi xed. At the same
time, and in all circumstances, there is no specifi c
entity either of individual or organizational status
to take responsibility for such negligence.

However, studies about security in open source
software vs. closed source software (Winslow,
2004) claim that not only each signifi cant com-
mercial product has its counterpart in the open
source arsenal but also that open source software
usually provides less time for fl aw discovery and,
consequently, for a relative patch or fi x.

Besides, open source advocates argue that
since the source code of closed source software
is not available, there is no way to know what
security vulnerabilities or bugs may exist.

The database system software twig of the open
source software family has been highly criticized
especially during the last 10 years. This is due to
the fact that the early versions of such products
included relatively few standard relational data-
base management system (RDBMS) features.
This has led some database experts, such as Chris
Date (Wikipedia.org, 2006b), a database technol-
ogy specialist, who was involved in the technical
planning of DB2, to criticize one of the major
representatives of the fi eld, MySQL, as falling
short of being a RDBMS. Open source RDBMSs
advocates reply (BusinessWeek.com, 2006) that
their products serve their purposes for the users,
who are willing to accept some limitations (which
are fewer with every major revision) in exchange
for speed, simplicity, and rapid development.
Developers and end-users alike have been using
more and more open source database management
systems (DBMSs). Such experimentation has laid
the groundwork for open source DBMSs to follow
in the footsteps of Apache and Linux, two open
source code products that have already penetrated
the enterprise wall. Nonetheless, analysts Scott
Lundstrom, Laura Carrillo and David O’Brien are
of the opinion that open source DBMSs are not
going to get the boost from IBM and Oracle that
Linux and Apache did (Informationweek.com,
2004) due to the apparent competitive adversity of
the former with the database commercial products
published by these two companies.

Another group of experts (Wikipedia.org,
2006b) claims that another, perhaps simpler,

296

A Generalized Comparison of Open Source and Commercial Database Management Systems

explanation for open source DBMSs popular-
ity is that it they are often included as a default
component in low-end commercial Web hosting
plans along side with PHP or Perl.

MAIN THRUST OF THE CHAPTER

The Competitors

DB2

DB2 is IBM’s family of information management
software products. Most often, though, when peo-
ple say DB2, they are referring to IBM’s fl agship
RDBMS, DB2 Universal Database (DB2 UDB).
The software is available on many hardware
and operating system platforms, ranging from
mainframes and servers to workstations and even
small hand-held devices. It runs on a variety of
IBM and non-IBM operating systems. Besides the
core database engine, the DB2 family consists of
several other products that provide supplemen-
tary support to the DBMS’s functionality such as
administration and replication tools, distributed
data access, online analytical processing (OLAP)
and many others. The origin of DB2 can be traced
back to the System R project at the IBM’s Almaden
Research Centre. The fi rst offi cial release took
place in 1984 and was designed to operate on
IBM’s mainframe platform (Silberschatz, Korth,
& Sundarsham, 2002).

DB2 is available in several editions, in other
words, licensing arrangements. By opting for a
reduced-feature edition, IBM allows customers
to avoid paying for DBMS features which they do
not need. Sample editions include the Workgroup,
Workgroup Unlimited, and Enterprise Server
Edition. A high-end edition is called DB2 UDB
Data Warehouse Enterprise Edition, or DWE
for short. This edition includes several business
intelligence features such as data mining, OLAP,
and in line-analysis.

On January 30, 2006, (IBM.com, 2006) IBM
released a “community” edition of DB2 called
DB2 Universal Database Express-C. This was an
expected response to the recently announced free
versions of Oracle 10g and Microsoft SQL Server.
Express-C has no limit on number of users or
database size. It’s deployable on machines with up
to two processors and up to 4GB of memory.

DB2 can be administered from either the com-
mand-line or a graphical user interface (GUI).

Oracle

Oracle Corporation founded in 1977 produces
and markets the Oracle RDBMS, which many
database applications use extensively on many
popular computing platforms.

Larry Ellison, Bob Miner, and Ed Oates—of
Software Developer Laboratories (SDL)—devel-
oped the original Oracle DBMS software. They
called their product Oracle after the code name
of a CIA-funded project they had worked on
while previously employed by Ampex Company.
Their product was the fi rst to reach the market,
and, since then, has held a leading position in the
relational database market (Silberschatz, Korth,
& Sundarsham, 2002).

In 2003, the Oracle Corporation released
Oracle Database 10g. The g stands for grid, em-
phasizing a marketing thrust of presenting 10g
as “grid computer ready.”

As of June 2005, the Oracle Corporation
has been supporting a wide array of operating
systems including Windows and the majority of
Unix-based operating systems.

The Database distribution includes many
built-in tools, including a Java-based utility
(Figure 1) and a Web-based tool serving the
same purpose.

In addition, the company sells a set of added
value add-on products (Loney & Bryla 2005)
that expand the DBMS capabilities, providing
specialized tools such as query and analysis tools,

 297

A Generalized Comparison of Open Source and Commercial Database Management Systems

data mining and sophisticated security tools, and
so forth.

The development of applications utilizing the
Oracle RDBMS commonly takes place in Java,
which is inherently supported by the database.
Oracle Corporation has started a drive toward wiz-
ard-driven environments with a view to enabling
non-programmers to produce simple data-driven
applications. Oracle, as of January 2006, offers
Database 10g Express Edition (Oracle Database
XE) an entry-level, small-footprint database-
based on the Oracle Database 10g Release 2 code
base that is free to develop, deploy, and distribute;
and is fast to download; and simple to administer.
Furthermore, Oracle’s fl agship the Enterprise
edition is also a free download, but its use is, as
with express edition, restricted to development
and prototyping purposes.

Commercial usage must be accompanied with
an appropriate license from the Corporation.
However, Oracle database software is considered
to be one of the most expensive. As of January
2006, the list price for the Enterprise Edition is
$40,000 per processor. Additional features and
maintenance costs may add to the price substan-
tially. As computers running Oracle often have

eight or more processors, the software price can
be in the hundreds of thousands of dollars. The
total cost of ownership is much more, as Oracle
databases usually require highly trained admin-
istrators to operate.

 SQL Server

Microsoft SQL Server is a RDBMS produced by
Microsoft. It is commonly used by businesses
for small- to medium-sized databases, and—in
the past fi ve years—some large enterprise da-
tabases.

The code base for Microsoft SQL Server (prior
to version 7.0) originated in Sybase SQL Server,
and was Microsoft’s entry to the enterprise-level
database market, competing against Oracle and
IBM. About the time Windows NT operating
system was coming out, Sybase and Microsoft
parted ways and pursued their own design and
marketing schemes. Several revisions have been
done independently since, with improvements
for the SQL Server. The SQL Server 7.0 was the
fi rst true GUI-based DBMS server (Spenik &d
Sledge 2002).

The Microsoft SQL Server product is not just
a DBMS, it also contains (as part of the product)
an enterprise ETL tool (Integration Services),
Reporting Server, OLAP and messaging tech-
nologies specifi cally Service Broker.

Microsoft released the SQL Server Express
product (Microsoft.com 2006), which included
all the core functionality of the SQL Server, but
places restrictions on the scale of databases. It will
only utilize a single CPU, 1 GB of RAM, and im-
poses a maximum size of 4 GB per database. SQL
Express also does not include enterprise features
such as Analysis Services, Data Transformation
Services, and Notifi cation Services.

Microsoft’s primary competition includes
Oracle and DB2. The SQL Server, as of January
2006, has been ranked third in revenue share
among these big three DBMSs’ vendors. A sig-

Figure 1. The Oracle Java-based administration
console

298

A Generalized Comparison of Open Source and Commercial Database Management Systems

nifi cant drawback of the SQL Server is that it runs
only on the Windows Operating System.

 Firebird

Firebird (sometimes called FirebirdSQL) is a RD-
BMS offering many ANSI SQL-99 and SQL-2003
features. It runs on Linux, Windows, and a variety
of Unix platforms. Firebird was programmed and
is maintained by Firebird Foundation (formerly
known as FirebirdSQL Foundation). It was forked
from the open sources of InterBase from Borland.
Firebird’s fi rst release took place back in 1984
and, as of January 2006, the product has evolved
to being a very mature DBMS requiring minimal
administration, providing advanced features,
and compliant database engine that implements
most of the SQL-2003 standard (The Inquirer.
net, 2005, Firebirdsql.org, 2006a). Firebird is
expandable, utilizing specialized modules that
are licensed under the Initial Public Developers
License (IDPL). The original modules released
by Inprise are licensed under the Interbase Public
License. Both licences are modifi ed versions of
the Mozilla Public License.

In April 2003, Mozilla decided to rename
their Web browser from Phoenix to Firebird.
This decision caused concern within the Firebird
DBMS project because of the assumption that a
DBMS and Web browser using the Firebird name
would confuse users. The dispute continued until
the Mozilla developers, on February of 2004,
renamed their product as Firefox thus clearing
up confusion (Wikipedia, 2006b).

 MySQL

MySQL is considered the most popular open
source RDBMS with an estimated six million
installations (BusinessWeek.com, 2006). Its fi rst
release took place unoffi cially in 1995. Swedish
company MySQL AB is responsible for MySQL
making their product available as free software
under the GPL License. At the same time they

also dually license it under traditional propri-
etary licensing arrangements for cases where
the intended use is incompatible with the GPL
(MySQL.com, 2005). A license of this type might
for example be suitable for companies that do not
want to release the source code of their MySQL-
based application.

The company MySQL AB also develops and
maintains the system, selling support and service
contacts as well as proprietary licensed copies of
MySQL, and employing people all over the world
who collaborate via the Internet. Among its strong
points are its speed, ease of installation, and as
of January 2006 MySQL’s version 5 included for
the fi rst time many new enterprise level features.
MySQL is also highly popular for Web applica-
tions and acts as the DBMS component of the
LAMP platform (Linux/Apache-MySQL-PHP/
Perl/Python). Its popularity as a Web application
is closely tied to the popularity of PHP, which is
often combined with MySQL and nicknamed the
Dynamic Duo.

To administer MySQL one can use the in-
cluded command-line tool and free downloadable
separate GUI administration tools. One of them,
MysqlAdministrator, is depicted in Figure 2.

MySQL works on many different platforms,
including Windows, Linux, and UNIX based op-

Figure 2. The MySQL Administration Console

 299

A Generalized Comparison of Open Source and Commercial Database Management Systems

erating systems. MySQL features have attracted a
set of distinguished customers including Yahoo!,
CNET networks, Amazon, Cox Communications,
and others. These fi rms have adopted MySQL
as a reliable solution to support some of their
internal operations.

 PostgreSQL

PostgreSQL is a free object-relational database
management system (ORDBMS) released under
fl exible BSD License. It offers an alternative to
other open source database systems as well as to
commercial systems. Similar to other open source
projects such as Apache and Linux, PostgreSQL
is not controlled by any single company, but
relies on a community of global developers and
companies to develop it.

PostgreSQL is based on POSTGRES Version
4.2 1, developed at the University of California
in the Berkeley Computer Science Department.
POSTGRES pioneered many concepts, such as
functions, inheritance, and other object-oriented
features that only became available in some com-
mercial database systems much later. PostgreSQL is
an open source descendant of this original Berkeley
code. It supports a large part of the SQL standard
and offers many advanced features. Furthermore

PostgreSQL supports a number of add-on modules
and packages such as geographic objects, full text
search, replication packages and XML/XSLT sup-
port that greatly enhance the products’ capabilities
(PostgreSQL.com, 2005a).

Moreover, PostgreSQL has provided the base
for the development of EnterpriseDB (EDB). The
latter is a most promising enterprise-class RDBMS
compatible with Oracle—and costing as a base
product only a minor fraction, varying from 10%
to 20%, of the price of a commercial system.

On the down side, the product suffers from
an image problem (The Inquirer.net 2005).This is
on account of the fact that PostgreSQL remains a
project and there is no company accountable for
offering respective services and support. More-
over, even though it is regarded by many as the
most advanced open source DBMS, and despite
commercial support by many smaller companies,
it has a relatively small base of installations.

A Fair DBMS Model

As seen above, all the competitors have been on
track for years and this justifi es the popularity
and recognition that these DBMSs enjoy. Some
useful information regarding these systems is
summarized in Table 1.

Table 1. Generic Information regarding DBMSs

RDBMS Maintainer Supported Platforms First
release Licence URL

DB2 IBM Windows,Linux, Unix 1982 Proprietary http://www-306.ibm.com/software/data/db2/

Firebird Firebird
Corporation

Windows,Linux, Mac
OS X, Unix BSD 2000 IDP http://www.fi rebirdsql.org/

MySQL MYSQL AB Windows,Linux, Mac
OS X, Unix BSD 1996 GPL or

Proprietary http://www.mysql.com/

Oracle Oracle Corporation Windows,Linux, Mac
OS X, Unix 1977 Proprietary http://www.oracle.com/technology/software

/products/database/oracle10g/index.html

PostgreSQL
PostgreSQL Global
Development
Group

Windows,Linux, Mac
OS X, Unix BSD 1989 BSD http://www.postgresql.org/

SQL Server Microsoft Windows 1989 Proprietary http://www.microsoft.com/sql/default.asp

300

A Generalized Comparison of Open Source and Commercial Database Management Systems

Over the years, vendors kept improving their
software by adding new features and increas-
ing performance and stability (Fermi National
Accelerator Laboratory, 2005). Unfortunately,
this furthermore obscures the situation, as no
database software can prove to be better than
the others. Taking into account marketing and
software promotion, the situation becomes even
more complicated as vendors attempt to prove the
dominance of a product. In an attempt to resolve
the issue, a fi ve-component DBMS comparison
model was conceived and used as a protractor
in order to produce fair, accurate and valuable
results, setting open source against commercial
in the scientifi c fi eld of database software. The
model’s architecture was infl uenced by all time
classic DBMS standards (Johnson, 1997) as well
as by the requirements (BusinessWeek.com, 2006)
of low to high-populated organizations from
database software.

The fi rst component includes the fundamental
features that modern database system software
should provide. Among these are elementary
data type support, SQL standard compliance
data constraint, index, and transaction protocols
support.

The second component is made up of advanced
DBMS features such as special data types, stored
procedures, triggers, cursors, sequences, user-de-
fi ned data types, OLAP and inherent support for
object oriented, spatial, and XML databases.

The third component is related to database
administration robustness and optimization.
Evaluation on this component is based on provi-
sion of the appropriate access control, backup, and
data migration mechanisms as well as replication
support and recovery capabilities of the software
products.

The fourth component consists of customiz-
ability criteria like scalability, reliability, and da-
tabase performance according to data set size.

The fi fth component features DBMS support
and acceptance. Software training, operation,

administration and maintenance manuals, as well
as programming interfaces, external libraries and
product popularity around the world are consid-
ered to belong to this evaluation component.

Following are comparisons and evaluations,
mapping every DBMS model’s components to
respective tiers. The results of this appraisal are
presented in the fi nal part of the section.

The Comparison

Tier 1

All DBMSs perform, with respect to these particu-
lar component standards, within very high levels
(Devx.com, 2005). They fully support the latest,
as of January 2006, SQL—2003 Standard, and
their transactions comply with the ACID protocol.
MySQL could be taken as an exception, as both
transactions and, as a result, ACID, along with
referential integrity constraints, are supported on
Tables utilizing the INODB storage engine and
not on the other available ones like MYISAM
(PostgreSQL.org, 2005b). Additionally, MySQL,
PostgreSQL and Firebird support the 2-phase
commit protocol to achieve concurrency control
while commercial systems offer more options.
Furthermore, commercial DBMSs alongside with
PostgreSQL and MySQL support save points dur-
ing transactions. Finally, with respect to indexes
Oracle is known for the amount of tweaking it
allows for databases, especially when it comes to
indexing. Other systems support single column,
multi-column, unique, full text and primary key
indexes.

The results from the comparison at the fi rst
tier are summarized in Table 2.

Tier 2

All commercial systems support advanced data
types like large objects, which have become
increasingly popular over the years. Proprietary

 301

A Generalized Comparison of Open Source and Commercial Database Management Systems

DBMSs and PostgreSQL have network-aware data
types that recognize Ipv4 and Ipv6 data types.
Moreover, MySQL and PostgreSQL also both
support the storing of geographic features, data
types and operations of the Open Geodata Inter-
change Standard (OpenGIS). All systems support
enterprise level features such as triggers, views,
stored procedures, cursors while PostgreSQL and
Commercial systems additionally support inherit-
ance, sequences, and user-defi ned data types as
well as. Additionally all systems use a procedural
extension to the SQL query language to allow
developers to implement routines that transfer
some application logic to the database. Examples
of using these routines are stored procedures that
are written in a respective database procedural
language. Among them, Oracle Database’s choice,
named PL/SQL although considered most diffi cult

to use, is also thought of as the most powerful one.
Firebird Database, using the Compiere module
(Firebirdsql.org, 2006b) is capable of executing
natively Oracle PL/SQL code, while MySQL and
PostgreSQL use their own versions of procedural
language in their DBMSs.

On the other hand, MySQL alone in the open
source camp supports the advanced feature of
data partitioning within a DBMS. All open source
DBMSs, save PostgreSQL, fall short when it comes
to XML support. This consistutes an issue that
will certainly be addressed in future releases of
these systems. Finally, all open source systems
lack OLAP support to perform high demanding
large enterprise business intelligence opera-
tions. On the commercial base, IBM, Microsoft
and Oracle supply their products with in-house
OLAP modules that expand the capabilities of

RDBMS SQL Standard
Compliance

ACID
Compliance

Constraint
Support

Transaction and
Lock Support Indexes

DB2 VERY HIGH YES YES VERY HIGH VERY HIGH

Firebird VERY HIGH YES YES HIGH HIGH

MySQL VERY HIGH YES/NO YES/NO HIGH HIGH

Oracle VERY HIGH YES YES VERY HIGH VERY HIGH

PostgreSQL VERY HIGH YES YES HIGH HIGH

SQL Server VERY HIGH YES YES VERY HIGH VERY HIGH

Table 2. Tier 1 comparison results

RDBMS Advanced
Data types

Advanced
Features

OpenGIS
Support

XML
Support

OLAP
Support

Object-Oriented
Features

DB2 VERY HIGH VERY HIGH YES YES YES YES

Firebird HIGH HIGH NO NO NO NO

MySQL HIGH VERY HIGH YES NO NO NO

Oracle VERY HIGH VERY HIGH YES YES YES YES

PostgreSQL VERY HIGH VERY HIGH YES YES NO YES

SQL Server VERY HIGH VERY HIGH NO YES YES YES

Table 3. Tier 2 comparison results

302

A Generalized Comparison of Open Source and Commercial Database Management Systems

their software to serve organizations that require
such services.

The results from the comparison at this tier
are summarized in Table 3.

Tier 3

This specifi c tier shows some of the features that
should be addressed at the open source DBMSs
in order for it to become more competitive. With
respect to security, open source DBMSs support
access control mechanisms data encryption,
views, roles and other security methods that can
undoubtedly constitute a reliable backbone for
any organization. On the other hand they lack
the sophisticated security mechanisms offered by
commercial products such as Oracle’s added value
add on “Oracle Advanced security” (Oracle.com,
2006) which offers more options and supports
some industry standard authentication methods
such as PKI. The SQL Server, on the other hand,
even though it often uses Windows authentication
and is subject to OS-based vulnerabilities that
can compromise its operation, has received a C2
certifi cate from the U.S. government’s National
Security Agency that recommend it for use in
government projects. When it comes to backup,
open source DBMSs come with appropriate scripts
to facilitate a simple text dump of database data
and its schema like Firebird’s NBackup module.
At the same time all products provide methods for
doing a hot-database backup or, in other words,
backing up the database without shutting it down.

However, they still lack the array of options during
a backup procedure that commercial systems of-
fer, allowing the generation of automatic selective
and customisable backups.

On the contrary, open source DBMSs prove to
offer high data migration capabilities, allowing
data hosted in their system to be formatted appro-
priately for usage in another database. Commercial
systems support data migration, often via com-
mercial third party tools. Another major feature
of enterprise-level DBMSs is support for replica-
tion. Both MySQL and PostgreSQL have support
(Devx.com, 2005) for single-master, multi-slave
replication scenarios. Commercial systems offer
more replication methods, although these meth-
ods are not considered of outmost necessity for
the majority of users and organizations. Finally,
with respect to recovery in MySQL, only InnoDB
tables have automatic crash recovery of a running
database in background, without setting any locks
or using replication methods. PostgreSQL uses a
system called Write Ahead Logging to provide
database consistency checking and point-in-time
recovery (PiTR) that allows recovery either to
the point of failure or to some other in the past
(PostgreSQL.com, 2005a). Firebird uses third
party tools (FreeDownloadsCenter, 2006) that
can be used for automatically diagnosing and
repairing corrupted data due to failures during
normal operation. Commercial DBMSs provide
automated and manual recovery capabilities that
allow the database to return to any chosen state,

RDBMS Security Features Backup Data Migration Replication Recovery

DB2 VERY HIGH VERY HIGH HIGH VERY HIGH VERY HIGH

Firebird HIGH HIGH HIGH MEDIUM HIGH

MySQL HIGH HIGH VERY HIGH HIGH HIGH

Oracle VERY HIGH VERY HIGH HIGH VERY HIGH VERY HIGH

PostgreSQL HIGH HIGH VERY HIGH HIGH VERY HIGH

SQL Server VERY HIGH VERY HIGH HIGH VERY HIGH VERY HIGH

Table 4. Tier 3 comparison results

 303

A Generalized Comparison of Open Source and Commercial Database Management Systems

according to specifi c log fi les, like the REDO
LOGS in Oracle Database. The results from the
comparison at tier 3 are summarized in Table 4.

Tier 4

The fourth component consists of quality crite-
ria such as scalability, reliability, and database
performance.

DB2, Oracle and SQL Server can scale to
terabytes of data storage fairly easily supporting
millions of users. This is achieved (Microsoft.
com, 2006) by supporting scale up on symmetric
multiprocessor (SMP) systems, allowing users to
add processors, memory, disks and networking to
build a large single node, as well as scale out on
multinode clusters. Thus, it makes possible for a
huge database to be partitioned into a cluster of
servers, each server storing part of the whole data-
base, and each doing a portion of the work, while
the database remains accessible as a single entity.
Various sources (IBM.com, 2006), (Oracle.com,
2006) give an edge on one commercial system
over the other, but these systems are considered
by many to belong to the same high quality class
(Wikipedia.org, 2006b).

MySQL using the MySQL Cluster option
(MySQL.com, 2006) and PostgreSQL are known
to run very fast, managing up to more than 500
transactions per second when dealing with data-
bases hosting gigabytes of data and can perform
adequately enough even when the size of the
databases exceeds that threshold.

Firebird, as of January 2006, offers some
baseline multiprocessor support although it uses
a standard process-based architecture. This de-
creases signifi cantly its performance when the
hosted data become of terabyte magnitude.

With respect to reliability, MySQL, because of
a large installed base and as a result of the knowl-
edge and experience surrounding it, is perceived
to be a highly reliable system. Looking in the same
direction, PostgreSQL, although less popular, has
proved to be a very dependable system, a fact that

can be credited to the rich set of features and the
maturity of this software product (BusinessWeek.
com, 2006). Firebird on the other hand, although
with smallest installed base, has demonstrated a
remarkable stability and consistency.

Commercial systems then again, are accompa-
nied by industry standard verifi cation certifi cates
that ensure the product’s reliability and quality
of service. An example of this is the Common
Criteria Certifi cation awarded to SQL Server
2005 (Microsoft.com, 2006).

The TPC (Transaction Processing Council)
is an independent organization that specifi es the
typical transactions and some general rules these
transactions should satisfy. The TPC produces
benchmarks that measure transaction processing
and database performance in terms of how many
transactions a given system and database can
perform per unit of time, for example, transac-
tions per second or transactions per minute.As
of June 2006, Oracle is the fastest commercial
DBMS around, outperforming DB2 and SQL
Server (Transaction Processing Performance
Council, 2006) and maintaining the place that
it had the previous years (Eweek.com, 2002;
Burlseon Consulting, 2003; Promoteware.com,
2004). Open source DBMSs did not participate
in this comparison: according to the party who
benchmarked (Promoteware.com, 2004) this was
because of their limitations when dealing with
large data sets. However, at the level of data sizes
of small to medium enterprises, several gigabytes,
it has been shown that the open source DBMSs
perform equivalently to proprietary ones. Among
open source DBMSs, MySQL is believed to be the
fastest (Eweek.com, 2002). The results from the
comparison at tier 4 are summarized in Table 5.

Tier 5

On the whole, commercial products enjoy high
support from their respective owners varying from
initial training to real-time diagnostic and moni-
toring capabilities that serve optimization ends.

304

A Generalized Comparison of Open Source and Commercial Database Management Systems

Additionally many third-party affi liate consultants
can be easily located all around the world.

The issue of support faces mitigated point of
views for open source software in the enterprise.
Many do not realize that support is available for
many open source products—beyond Web sites
and mailing lists. MySQL AB provides support for
MySQL, and several companies and PostgreSQL
Inc. provide support for PostgreSQL. These of-
fers include support levels that rival commercial
DBMSs, many providing 365x24 support.

Training is an important issue in commercial
DBMSs. IBM, Microsoft and Oracle set up courses
and issue the relevant exams for approval and
qualifi cations to administer the database (Dba-
zine.com, 2005). MySQL AB provides training
in cities around the world and, in some cases,
provides in-house education. PostgreSQL training
is also available from third parties.

Administration is an additional issue, where
open source DBMSs shine. The use of smart
graphical administration tools facilitates the man-
agement of the database. These tools can either
be applications that run natively on the operating
system or Web-based tools. Many of these tools are
modelled closely on tools available to commercial
DBMSs with the appropriate modifi cations. Out
of the latter, Oracle is believed to run on the most
complex administration, requiring signifi cant
knowledge on the part of the administrator of the
system’s internal structure.

With respect to external library and API sup-
port, all systems enjoy the privilege of having
implementations of all major programming inter-
faces such as ODBC, JDBC, C and C++ libraries
and others (PostgreSQL.org, 2005b). This allows
developers to select their programming language
and database of choice when creating applications
that utilize a database server.

In conclusion, the cost of acquiring a license
to use database software should not be omitted.
PostgreSQL and Firebird can offer their services
for free even though third party commercial mod-
ules may change that. MySQL AB dual licenses
their DBMS, while the commercial version of
MySQL consists of a small fraction of the costs
of even the cheapest commercial DBMS.

In the commercial camp, DB2 is the most
expensive product (Microsoft.com, 2006), when
considering base product, maintainability, and
additional enterprise level capabilities reaching
in July 2006 a total of $329.00. Oracle is also an
expensive product as the enterprise edition ver-
sion bundled with the enterprise level add-ons
sells at approximately $266.00. On the other hand
Microsoft offers SQL Server accompanied by
their respective business intelligence support at
a signifi cantly lower price of $25.00. The results
from the comparison at tier 5 are summarized
in Table 6.

RDBMS Scalability Reliability Performance

DB2 VERY HIGH VERY HIGH VERY HIGH

Firebird HIGH HIGH HIGH

MySQL VERY HIGH VERY HIGH VERY HIGH

Oracle VERY HIGH VERY HIGH VERY HIGH

PostgreSQL MEDIUM VERY HIGH HIGH

SQL Server VERY HIGH VERY HIGH VERY HIGH

Table 5. Tier 4 comparison results

 305

A Generalized Comparison of Open Source and Commercial Database Management Systems

Assumptions

Open source DBMSs have evolved to a consider-
able degree. The gap between these systems and
their proprietary rivals has been narrowed but
not totally closed. Currently, the leading open
source database engines, considering all possible
aspects, are still inferior in terms of performance
and features to DB2, Oracle and SQL Server.
However, their capabilities may certainly offer
enough to meet the needs of most small and me-
dium sized companies or even large ones, serving
supplementary purposes. A living example of
this practice is encountered at NASA that uses
MySQL to store information about public con-
tracts, and the American Chemical Society that
uses PostgreSQL to store specifi c documents. It is
important to note that most users and companies
do not require some of the state of the art advanced
features, and scalability options found exclusively
on commercial DBMSs. Moreover, as with all open
source software, Firebird, MySQL, PostgreSQL
and other open source DBMSs are free, easy to
try out and have lots of freely available online
documentation to help each individual to learn
how to use them. While these DBMSs may not
be optimal for every possible project, they could
prove to be acceptable and satisfying to others.

FUTURE TRENDS

It is strongly believed that the open source move-
ment will transform the software business in the
next fi ve to ten years, according to top industry
executives speaking at the AO 2005 Innovation
Summit at Stanford University (Wheeler, 2005).
A group of analysts claims that the reasons for
such an adoption are not entirely of an ideological
nature. Stability, performance and security will be
other drivers of open source software, according
to BusinessWeek.com 2006. Sun Microsystems
President Jonathan Schwartz claimed that the
software industry must adopt open standards for it
to thrive. “Open standards mean more than open
source” (CNET NEWS.COM, 2005).

This stream will inevitably infl uence the sci-
entifi c sector of database software. As DBMSs
built from open source code are gaining in capa-
bilities with every new release and enjoying rapid
adoption by various users of new technology, it
is almost certain that open source DBMSs will
eventually level with commercial ones with re-
spect to all possible aspects. As a result, many
companies will adopt these systems instead of
commercial ones allowing them to save money
and reduce their operational costs while forming
at the same time a current that will defi nitely
threaten commercial DBMS vendors. When

RDBMS Training Administration Technical
Support Interfaces Cost

DB2 HIGH HIGH VERY HIGH VERY HIGH VERY HIGH

Firebird MEDIUM VERY HIGH LOW VERY HIGH -

MySQL HIGH HIGH HIGH VERY HIGH -/MEDIUM

Oracle VERY HIGH HIGH VERY HIGH VERY HIGH VERY HIGH

PostgreSQL LOW HIGH MEDIUM VERY HIGH -

SQL Server HIGH HIGH VERY HIGH VERY HIGH HIGH

Table 6. Tier 5 comparison results

306

A Generalized Comparison of Open Source and Commercial Database Management Systems

Oracle Corporation announced its acquisition of
Innobase (The Inquirer.net, 2005) it gave notice
that MySQL’s license to use the InnoDB storage
mechanism would be renegotiated when it comes
up for renewal next year. Some in the industry
see this purchase as a way for Oracle to align
MySQL AB towards their politic and infl uence
their future direction. Furthermore, Sun Micro-
systems announced that they will add support for
the PostgreSQL Database and that it would add
it to the Solaris operating system.

What is sure is that the open source boat
that carries along the database system software
as one of its open source passengers is sailing
fast, towards its growing recognition and adop-
tion. Commercial fi rms that once neglected the
presence of open source projects are now on the
move to approach and somehow contain open
source initiatives, either by embracing them or
trying to tame them. Many fi eld experts believe
(BusinessWeek.com, 2006) that open source
databases software has a bright future, not as
standalone products but as fundamental blocks in
commercial database software, that also includes
proprietary elements.

CONCLUSION

Many could question the interest surrounding
open source DBMSs. And this is due to the fact
that, in many ways, the open source label is at-
tached to initiatives such as Linux and Apache.
Unfortunately for many commercial fi rms and
fortunately for the rest, pen source is much more
than these two representatives.

After many years of hard work and little atten-
tion, these open source DBMSs are starting to have
a noticeable impact on the largest DBMS com-
panies. Long criticized for not having advanced
enterprise features, reliability and customer
support, open source DBMS kept on becoming
more and more competitive with the release of
each new version. Taking into consideration,

this criticism, these products strived to improve
and include the so-far lacking features, while
maintaining their strong aspects. As a result, it is
only a matter of time before open source DBMSs
could stand against their proprietary software
counterparts as equals and even perform better in
some sectors. This has alarmed many commercial
organizations that, in one way or another, laid
their hands on these open source products. Even
though the results cannot be absolutely foreseen,
its can be asserted without any doubt that open
source DBMSs will scale up from the status of
attracting intellectual curiosity that led them in
2003 to become widespread. Either as standalone
products or as subsystems of commercial DBMSs,
open source DBMSs will continue to support the
IT community for the years to come, as they have
always done.

REFERENCES

Burlseon Consulting. (2003). Oracle vs. SQL Serv-
er. Retrieved from http://www.dba-oracle.com/
oracle_tips_oracle_v_sql_server.htm#jambu

BusinessWeek.com. (2006). Taking on the
database giants. Retrieved from http://www.
businessweek.com/technology/content/feb2006/
tc20060206_918648.htm

CNET NEWS.COM. (2005). Tech VIPs say future
belongs to open source. Retrieved from http://
news.com.com/Tech+VIPs+say+future+belong
s+to+open+source/2100-7344_3-5798964.html

Dbazine.com. (2005). DBA certifi cations com-
pared: Oracle vs. DB2 vs. SQL Server. Retrieved
from http://www.dbazine.com/ofi nterest/oi-ar-
ticles/fosdick2

Devx.com. (2005). PostgreSQL vs. MySQL vs.
commercial databases: It’s all about what you
need. Retrieved from http://www.devx.com/db-
zone/Article/20743/1954?pf=true

 307

A Generalized Comparison of Open Source and Commercial Database Management Systems

Europa.eu.int. (2005). A big step forward. Re-
trieved from http://europa.eu.int/idabc/en/docu-
ment/5220/469

Eweek.com. (2002). Server databases clash.
Retrieved from http://www.eweek.com/ar-
ticle2/0,4149,293,00.asp

Fermi National Accelerator Laboratory. (2005).
Comparison of Oracle, MySQL and PostgreSQL
DBMS. Retrieved from http://www-css.fnal.gov/
dsg/external/freeware/mysql-vs-pgsql.html

Firebirdsql.org. (2006a). Firebird—Relational
database for the new millennium. Retrieved from
http://www.fi rebirdsql.org/

Firebirdsql.org. (2006b). Firebird user documen-
tation. Retrieved from http://www.fi rebirdsql.
org/manual/index.html

FreeDownloadsCenter. (2006). Free InterBase
downloads. Retrieved from http://www.freedown-
loadscenter.com/Search/interbase.html

IBM.com. (2006). IBM software—DB2 product
family. Retrieved from http://www-306.ibm.
com/software/data/db2/

Informationweek.com. (2004). Popularity grow-
ing for open source databases. Retrieved from
http://www.informationweek.com/story/show-
Article.jhtml?articleID=18312009

Johnson J. (1997). Database: Models, languages,
design. Oxford, UK: Oxford University Press.

Loney K., & Bryla B. (2005). Oracle Database
10g DBA Handbook. Oracle Press.

Microsoft.com. (2006). Microsoft SQL server
home. Retrieved from http://www.microsoft.
com/sql/default.mspx

MySQL.com. (2005). MySQL manual. Retrieved
from http://dev.mysql.com/doc/mysql/en/index.
html

Oracle.com. (2006). Oracle database security.
Retrieved from http://www.oracle.com/technol-
ogy/deploy/security/db_security/index.html

PostgreSQL.com. (2005a). PostgreSQL manu-
al. Retrieved from http://www.postgresql.org/
docs/8.0/interactive/index.html

PostgreSQL.org. (2005b). Open source database
software comparison. Retrieved from http://jdbc.
postgresql.org/

Promoteware.com. (2004). SQL server compari-
son chart (SQL vs MySQL vs Oracle). Retrieved
from http://www.promoteware.com/Module/Ar-
ticle/ArticleView.aspx?id=23

Silberschatz A., Korth H. F., & Sundarsham
S. (2002). Database System Concepts (4th ed.).
McGraw Hill.

Spenik M., & Sledge O. (2002), Microsoft SQL
Server 2000 DBA Survival Guide (2nd ed.). Sams
Press.

The Inquirer.net. (2005). Open source data-
bases rounded up. Retrieved from http://www.
theinquirer.net/?article=28201

Transaction Processing Performance Council.
(2006). Retrieved from http://www.tpc.org/

Wheeler, D. (2005). How to evaluate open source
software/free software (OSS/FS) programs.
Retrieved from http://www.dwheeler.com/oss_
fs_eval.html

Wikipedia.org. (2006a). Open source software.
Retrieved from http://en.wikipedia.org/wiki/
Open_source_software

Wikipedia.org. (2006b). Comparison of relational
database management systems. Retrieved from
http://en.wikipedia.org/wiki/Comparison_of_re-
lational_database_management_systems

Winslow, M. (2004). The practical manager’s
guide to open source. Lulu Press.

308

A Generalized Comparison of Open Source and Commercial Database Management Systems

KEY TERMS

 Atomicity, Consistency, Isolation, and
Durability (ACID): Considered to be the key
transaction processing features/properties of a
database system. Without them, the integrity of
the database cannot be guaranteed.

 Database: An organized collection of data
(records) that is stored in a computer in a systematic
way, so that computer software might consult it
to answer questions. The database model in most
common use today is the relational model.

 Grid Computing: A computing model that
provides the ability to perform higher throughput
computing by taking advantage of many net-
worked computers to model a virtual computer
architecture that is able to distribute process
execution across a parallel infrastructure. Grids
use the resources of many separate computers
connected by a network to solve large-scale
computation problems.

 GNU General Public License (GPL): It is
the most popular free software license originally
written by Richard Stallman for the GNU proj-
ect. The GPL grants the recipients of computer
software the following rights:

• Freedom to run the program, for any purpose
• Freedom to study how the program works,

and modify it. (Access to the source code
is a precondition for this)

• Freedom to redistribute copies
• Freedom to improve the program, and release

the improvements to the public (access to
the source code is a precondition for this)

 Graphical User Interface (GUI): It refers to
computer software that offers direct manipula-
tion of graphical images and widgets in addition
to text.

 Object-Relational Database Management
System (ORDBMS): It is a database manage-
ment system that allows developers to integrate
the database with their own custom data types
and methods.

 Online Analytical Processing (OLAP): It
is an approach to quickly provide the answer to
complex analytical queries. It is part of the broader
business intelligence category that also includes
data mining. The typical applications of OLAP
are in business reporting for sales, marketing,
management reporting business performance
management (BPM), budgeting and forecasting,
fi nancial reporting, and similar areas.

 Open Source Software (OSS): Computer
software available with its source code under an
open source license to study, change and improve
its design. The open source philosophy further
defi nes a boundary on the usage, modifi cation,
and redistribution of open source software. Soft-
ware licenses grant rights to users, which would
otherwise be prohibited by copyright. These
include rights on usage, modifi cation, and redis-
tribution. Several open source software licenses
have qualifi ed within the boundary of the Open
Source Defi nition.

 Relational Database Management System
(RDBMS): It is a database management system
that is based on the relational model as introduced
by Edgar F. Codd. The model represents all in-
formation in the form of multiple related tables,
every one consisting of rows and columns.

 Structured Query Language (SQL): It is the
most popular computer language used to create,
modify and retrieve data from relational database
management systems. The language has evolved
beyond its original purpose to support object-re-
lational database management systems. It is an
ANSI/ISO standard.

 309

Chapter XXIV
Evaluation of a Migration to

Open Source Software
Bruno Rossi

Free University of Bozen-Bolzano, Italy

Barbara Russo
Free University of Bozen-Bolzano, Italy

Giancarlo Succi
Free University of Bozen-Bolzano, Italy

INTRODUCTION

Open source software (OSS) and open data stan-
dards (ODS) have emerged in recent years as a
viable alternative to proprietary solutions. There
are many cases in which the adoption of OSS has
proved advantageous for companies deciding to
adopt it in replacement or in conjunction with

ABSTRACT

The chapter discusses the adoption and assimilation process of open source software as a new form
of information technology. Specifi cally, the case reports a general positive attitude towards the widely
used technology, the OpenOffi ce.org suite for offi ce automation. Nevertheless, it shows the diffi culties
of the fi rst early adopters to lead the innovation process and push other users. Different usage patterns,
interoperability issues, and, in general, the reduction in personal productivity typical of the early phases
of adoption are also remarked. The aim of this chapter is to give the reader an overview of the adop-
tion process by means of the analysis of quantitative and qualitative data gathered during real world
experimentation, and to shed some light on how empirical data can corroborate or challenge the existing
literature about open source software and technology adoption.

 closed source software (CSS). Unfortunately, at
our knowledge, these studies often report only
about server-side migrations or give very little
empirical evidence of the benefi ts of the new
solution. Among case studies that report success-
ful transitions on the desktop side we can surely
mention as pioneers the Extremadura, Munich,
and Vienna case studies (Marson, 2005; Lande-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

310

Evaluation of a Migration to Open Source Software

shauptstadt München, 2003; Stadt Wien, 2004).
All these cases have in common the intention of a
large migration inside a single public administra-
tion (PA). Furthermore, the migration to OSS in
all these cases has been already performed or is
in the process of being deployed. We summarise
the most famous deployments in Table 1, three
are European, while one is U.S.-based.

One of the most remarkable deployments of
OSS on the desktop side is surely the one of the
Extremadura region in Spain, recently installing
80,000 Linux systems, 66,000 for the educational
system and 14,000 for administrative worksta-
tions. The local administration even created their
Linux distribution called gnuLinex1. According to
their IT department, the savings have been of the
order of €18M (Marson, 2005). Another case of
success is the one of the city of Largo, FL (USA)
where the migration has involved 900 clients;
the savings have been estimated in $300,000-
$400,000 (Miller, 2002). The migration of the city
of Munich and the one of the city of Vienna are
currently underway (Landeshauptstadt München,
2003; Stadt Wien, 2004). As the delay of the Mu-
nich migration seems to demonstrate, a transition
to OSS is not a process to underestimate. There
are also cases where the proprietary solution has
been considered more convenient, like the city of
Nürnberg, where according to their own migration
study, the transition from Windows 2000/Offi ce
2000 to Windows XP/Offi ce XP was considered
as €4.5M cheaper than the transition to Linux/
OpenOffi ce.org (Stadt Nürnberg, 2004).

Another case of interest that emerged recently
is the decision of the state of Massachusetts to
abandon closed data standards (CDS) in favour
of ODS, in particular to adopt the open docu-
ment format for offi ce automation documents
exchange activities starting from January 2007
(Massachusetts State, 2005). According to the
 Organization for the Advancement of Structured
Information Standards (OASIS) the purpose of
the format is “to create an open, XML-based
fi le format specifi cation for offi ce applications”
(OASIS, 2005). Following this case and the in-
creasingly requests coming from the European
Commission to reduce e-government barriers,
Microsoft decided to open the formats supported
by its offi ce automation suite in the upcoming
months (Palmer, 2005).

The goal of this chapter is to provide an in-
sight on two different experimental migrations to
OSS inside European PAs. In particular, we don’t
consider a full migration, but the introduction of
OSS in the offi ce automation fi eld. Throughout
a constant monitoring of the software employed,
we derive some indications on software usage that
can be useful to provide more information on the
migration process and the adoption of OSS.

In the next sections, we will provide fi rst an
overview of the existing literature about tech-
nology adoption and then start reviewing the
experimentation details providing background
information about the two Public Administra-
tions involved. The last part will be devoted to
the discussion of the results.

Region Clients to
migrate Side Distribution

Extremadura 80000 Desktop/Servers gnuLinex

Munich 14000 Desktop Debian

Vienna 7500 Desktop Wienux (Debian/KDE)

Largo, FL 900 Desktop/Servers Linux KDE 2.1.1

Table 1. Large deployments of OSS inside public administrations

 311

Evaluation of a Migration to Open Source Software

 Technology Adoption
and Assimilation

Before entering the discussion about the experi-
mentation and the migration performed, an over-
view of the existing literature about technology
adoption and assimilation will be useful. This will
also provide a framework in which the results of
the experimentation will be inserted.

Technology adoption, diffusion and accep-
tance research bases its foundation on the early
work of Everitt Rogers, in the book titled Diffu-
sion of Innovations. Rogers (1995) interest lies
in studying the diffusion process that character-
ises technology adoption. In his seminal work,
technology adopters are categorised according
to the phase in which they make the adoption
decision. The main distinction is among innova-
tors, early adopters, early majority, late majority,
and laggards. In particular, the author models the
diffusion as an S-shaped curve characterised by
an initial adoption speed and a later growth rate.
The claim is that different technologies will lead
to different adoption patterns.

Interesting for our study are various factors
that affect the level of technology adoption inside
organisations, like the organisational age (Chat-
terjee, Grewal, & Sambamurthy, 2002), organisa-
tional size (Fichman, & Kemerer, 1997), industry
type (Chatterjee, Grewal, & Sambamurthy, 2002;
Fichman, & Kemerer, 1997), and sophistication of
the IT infrastructure (Armstrong, 1999; Chau &
Tam, 1997). To some extent, the evidence seems
to report that organisations that are younger, larger
and belong to certain industry types are more
willing to invest and adopt new technology. The
existence of a sophisticated IT infrastructure will
also lead to an easier adoption path.

Fur thermore, Fichman and Kemer-
er (1999) report two critical factors that in-
fluence the technology assimilation process:
knowledge barriers and increasing returns.
The fi rst effect relates to the effort necessary to ac-
quire the necessary knowledge and skills to properly

adopt a certain technology. This effect leads to what
are known as knowledge barriers (Attewell, 1992;
Fichman & Kemerer, 1999). Being a new and still
somewhat unexplored fi eld, we think that OSS is
subject heavily to knowledge acquisition barriers
that can in some way hinder its adoption.

As a second macro-level phenomenon, the
adoption of certain technologies is subject not
only to supply-side benefi ts due to economies of
scale (Shapiro & Varian, 1999) but also to a de-
mand-side effect called increasing returns effect
(Arthur, 1989). The effect leads to an increase of
utility in adoption for each successive adopter,
based on the number of previous adopters. Arthur
(1989) goes further in this analysis, claiming that
“[e]conomy, over time, can become locked-in
by ‘random’ historical events to a technological
path that is not necessarily effi cient, not possible
to predict from usual knowledge of supply and
demand functions, and not easy to change by
standard tax or subsidy policies” (p. 2). In this
sense, it may not be possible to easily switch from
a certain technology once a certain critical level
of adoption has been reached.

Open source software and software in general
is one of the goods that are particularly sensible to
economies of scale, increasing returns and knowl-
edge barriers. To understand fully the adoption
process, all these effects have to be considered.

BACKGROUND INFORMATION

Experimentation on the migration to OSS in the
offi ce automation fi eld has been performed in
two different European public administrations
(PAs). We will discuss briefl y the background
details of the two public administrations involved
and for simplifi cation purposes, we will refer to
the fi rst public administration as PA1 and the
second as PA2.

PA1 is a large public administration, counting
globally over 5,000 employees. The budget allo-
cated for the ICT (information and communication

312

Evaluation of a Migration to Open Source Software

technology) services is high, but the experience
with OSS is still limited. The reason for the interest
in a possible migration to OpenOffi ce.org and in
general to other OS applications is threefold:

• Spare the money spent yearly to cover the
license costs.

• Reduce the effort needed to handle the
licenses.

• Provide a benefi t to the local economy, by
means of the adoption of OSS.

PA2 is composed by a large number of municipal-
ities spread across the territory of its region. Nearly
all the municipalities in the consortium are small
and count on the average 50 desktop machines. The
maintenance is performed remotely by the central
IT (information technology) department. In this
case, the budget available for ICT services in such
small municipalities is low, but a great experience
in OSS has been built in recent years, mostly based
on server-side solutions. The objectives of a possible
migration to OSS are the following:

• Reduce the costs of ICT services in the long
term.

• Ensure the accessibility of generated docu-
ments also in the future, not relying on pro-
prietary data standards.

To summarise the characteristics of the the
PAs that took part to the experimentation, both
share a similar organisational size, while differ-
ences exist in prior OSS experience and budget
allocated for ICT services.

FOCUS OF CHAPTER

Experiment Design

The experimentation performed has involved the
market leader Microsoft Offi ce2 and OpenOffi ce.
org3, an OSS suite offering ODS support. The

decision to use these applications has been done in
accordance with the relevance of offi ce automation
inside PAs (Drakos, Di Maio, & Simpson, 2003)
and the guidelines given by IDABC (Interoperable
Delivery of European eGovernment Services to
public Administrations, Businesses and Citizens)
for a gradual transition to OSS. One of the main
suggestions is to “introduce applications in a
familiar environment” (IDBAC Report, 2003, p.
23). The introduction of OpenOffi ce.org is seen
as a necessary step for a successive complete
migration to OSS.

To monitor the behaviour of users with both
solutions, we adopted the PRO Metrics (PROM)
software as a mean to collect and analyse software
metrics and personal software process data (Sil-
litti, Janes, Succi, & Vernazza, 2003), software
that permits to collect metrics on software usage in
a non-invasive manner. It allows the collection of
the measures of time spent on documents, name of
the document and other useful information about
the general software usage. To protect the privacy
of the users several measures were taken in ac-
cordance with the local union representatives:

• Data collected has been encrypted by means
of the strong AES algorithm (Pfl eeger &
Pfl eeger, 2002).

• Usernames were randomly generated.
• Data of single users were not given to single

PAs, the analysis presented has been only
given in aggregated form and with the aim
to provide an evaluation of the migration.

In Table 2, a comparison of both experimenta-
tions is performed.

The number of users involved in the experi-
mentation has been equivalent, both PAs decided
to install OpenOffi ce.org in order to evaluate the
possible future migration. The suite has been in-
stalled on a large number of workstations in both
PAs; however our study has been performed on a
smaller subset of users. The total events that are
reported in table refer to the smallest unit that the

 313

Evaluation of a Migration to Open Source Software

data collection software details; a single event refers
to the application’s window release of focus.

This number details the amount of data that
have been collected during the experimentation.
The maturity row refers to the situation in which
the experimentation has been performed; PA2 was
already in a more advanced state of technology
adoption, offering the open solution for several
months prior to the experimentation. As a last
annotation, the details of username generation
have been slightly different between the two
installations, in PA2 the usernames have been
generated on a per machine basis, different users
working on a single workstation are mapped as
a single entity. This will result in higher docu-
ments per day or time per day per single username
compared to PA1, where the usernames map
directly to a single user. Nevertheless, the results
have not been infl uenced by this approach, since
the common practice in PA2 is to have a single
workstation per user.

The experimentation protocol followed the
same schema in both experimentations:

• Installation of OpenOffi ce.org; the version of
the suite installed is OpenOffi ce.org 1.1.3 in
both PAs; various versions of the Microsoft
Offi ce suite were available on the target
systems

• Installation of the PROM agent to monitor
the software adoption level

• Training on the OpenOffi ce.org suite, mostly
performed to show how to perform the same task
in the new offi ce automation environment

• A questionnaire on the attitude towards
Open Source Software submitted to users

• Support provided to users by means of
forums and hot-lines

Methodology and Limitations

The methodology applied is mainly empirical;
the analysis is based on quantitative data col-
lected through a non-invasive software agent
and on qualitative data collected by means of
questionnaires. A full controlled experiment
could not be performed, as it would not have
been possible to control all exogenous factors
that could affect the fi nal results (Campbell &
Stanley, 1990). For a controlled experiment,
but on a more limited number of users during a
migration to OSS (see Rossi, Scotto, Sillitti, &
Succi, 2005). A comparison of the functionalities
of Sun StarOffi ce Writer and Microsoft Offi ce
Word4 can be found in (Everitt & Lederer, 2001).
Also in this case the comparison is on a limited
number of users, focusing on the functionalities
offered by both solutions and how users could
perform the same task. Researchers found that
“[w]hile overall ratings for both products were
comparable, participants were more comfortable
and satisfi ed with Microsoft Word and found it

Table 2. Comparison of both experimentations

PA1 PA2

Users experimenting 1486 1475

Total OOo installations ~4000 ~2000

Total MSO installations ~4000 ~2000

Days 30 40

Total events 1518150 1435553

Maturity Starting Ooo introduction Already using Ooo

ID generation Per user Per machine

314

Evaluation of a Migration to Open Source Software

easier to use than StarOffi ce Writer” (Everitt &
Lederer, 2001, p. 2).

In the following sections we will perform
fi rst a comparison of the initial attitude of users
towards OSS, the comparison of the two solutions
by means of the quantitative data collected and in
the end evaluate possible interoperability issues
that can raise in case of a full migration.

Initial Attitudes Toward OSS

The experimentation has been supported by
qualitative data coming from one questionnaire
submitted to users; the aim of the questionnaire
was to evaluate the attitude of the users towards
OSS, as it can have a great impact on the successive
acceptance of OSS. The questionnaire has been
submitted in electronic format. We report here the
results that may be interesting to evaluate the at-
titude of users before entering the experimentation.
Data in this section refers to 282 users of PA1.

The fi rst two questions related to the knowl-
edge of OSS, in particular the familiarity with the

concept and the general users’ perception. The
answers are represented in Figure 1.

 Surprisingly, more than 60% of the users that
fi lled the questionnaire depict themselves either as
very familiar or fairly familiar with the concept.
One of the reasons can be that users with more
attitude towards OSS were the ones that fi lled the
questionnaire earlier. The second question about
the perception of OSS leads to a group of users
neutral or positive towards the new concept; after
the experimentation it is possible that users acquire
a more sharp view on the subject; in this sense,
we should expect at that point, neutral users to
represent the minority.

The third question in Figure 2 further investi-
gates the knowledge of users in the fi eld, we asked
whether users know OS products and whether
they can name at least one.
 Not surprisingly, the majority of users report no
application. The most known products are Ope-
nOffi ce.org and the Linux operating system.

In showing the results of the remaining ques-
tions, we divided the users in two categories, users

Figure 1. PA1—Results of Question A

continued on the following page

Very familiar Fairly familiar Sufficiently
familiar

Barely
familiar

Not familiar
at all

0,00%
2,50%
5,00%
7,50%

10,00%
12,50%
15,00%
17,50%
20,00%
22,50%
25,00%
27,50%
30,00%
32,50%
35,00%
37,50%

A. Are you familiar with the expression "Open Source Software"?

 315

Evaluation of a Migration to Open Source Software

Figure 2. PA1—Results of Question C and Question D

Figure 1. continued

Negative Neutral Positive

0,00%
5,00%

10,00%

15,00%
20,00%
25,00%
30,00%
35,00%

40,00%
45,00%
50,00%
55,00%

60,00%
65,00%
70,00%

B. What is your perception of the expression "Open Source Software" ?

that had already an opinion on OSS and users that
don’t know the phenomenon. In this sense the
fi rst category consisted of all users considering
themselves either as familiar or very familiar with
OSS (see Figure 1, Question A) and naming at least

one application (see Figure 2, Question C). For the
reader’s convenience, in the upcoming tables we
named these groups OSS and non-OSS users. In
Figure 3, the experimenters are questioned about

Yes No
0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

C. Do you know Open Source products?

OpenOffice Linux Mozilla Firefox Others

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

D. Could you mention at least one product?

316

Evaluation of a Migration to Open Source Software

the purchasing criteria of software in general,
without particular reference to OSS.

In this case, users already with knowledge of
OSS seem to be more aware of the customisation
requirements of software inside PAs. The next
two questions are related to a full migration to
OSS. In Figure 4 users are posed in a situation of
a generalized introduction of OSS and its effects
on the organizational aspects of the PA.

The results of Figure 4 are comparable across
both groups: the majority of users consider the
introduction of OSS as a chance of reorganization
of the IT department of the PA. Furthermore, 15%
of users consider the introduction as non important
in terms of organizational impact. The last ques-
tion in Figure 5 is very similar to the previous
one, but this time is related to the impact of the
migration on the single user.

The results also in this case do not report a
large difference between the two groups, more

than half of the users are convinced that the
substitution will have a negative impact on the
workload in the short period, the advantages will
be evident only in the long period. Users of the
OSS group seem more conscious about the effort
that a migration causes.

Overall the results of the questionnaires report
users in general positive towards OSS. It would
be interesting as an additional study to evaluate
the impact of the experimentation on the users’
attitude, to see how the perception of users changes
after the infl uence of a full migration.

Comparison of the Solutions

Both softwares for offi ce automation have been
running during the whole experimentation, users
were free to choose the solution more appropri-
ate for the task to perform. A limitation on this
decision was given by the large number of fi les

Figure 3. PA1—Results of Question E

Note: Possible answers are (a) No, they should follow the same criteria; (b) Yes, they should take into account the peculiar needs of
the PA; (c) I don’t know.

A B C

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

65,00%

70,00%

75,00%

Non OSS
OSS

E. Do you think that purchase criteria regarding software in the PA should
differ from those of the private companies?

 317

Evaluation of a Migration to Open Source Software

Figure 4. PA1—Results of Question K

Figure 5. PA1—Results of Question L

A B C D

0,00%
2,50%
5,00%
7,50%

10,00%
12,50%
15,00%
17,50%
20,00%
22,50%
25,00%
27,50%
30,00%
32,50%
35,00%
37,50%
40,00%
42,50%
45,00%
47,50%

K. The generalized introduction of Open Source
 software in your PA represents:

Non OSS
OSS

K. The generalized introduction of open source software in your PA
represents:

Note: Possible answers are (a) A chance for the reorganization of the IT structure; (b)A chance for the redefi nition of the organizational
structure in a wide perspective; (c) A further load of work for the single units; (d) The introduction will not be important.

A B C D

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

L. The substitution of the daily used software with OSS
will cause for you:

Non OSS
OSS

L. The substitution of the daily used software with OSS will cause
for you:

Note: Possible answers: (a) More work in the short run, but advantages in the long run; (b) More work in the short run and no advantages
in the long run; (c) Less work; (d) More work.

318

Evaluation of a Migration to Open Source Software

already available in the original data format. More
of these interoperability details will be analyzed
in the apposite section.

From the analysis performed, we observed
that the average time spent with the new solution
tends to be minimal in PA1, where the software
has been introduced with the experimentation. In
PA2 instead, where the solution has been installed
for several months, daily average minutes per day
tend to be above 50 minutes per user.

The events generated have been aggregated
in two different kinds of measures, the average

number of documents worked per day by each user
during the whole period and the average time in
minutes spent on the documents. In Figures 6 and
7 we see the mapping of each user for PA1 and
workstation for PA2 in this space. In each fi gure
on the left the mapping is for Microsoft Offi ce,
while on the right the mapping is for OpenOffi ce.
org. Each point represents a user.

In PA1, 90% of all users lie in the space between
20 documents per day and 200 minutes per day spent
using Microsoft Offi ce. In PA2 90% of all clients
lie between 24 documents and 240 minutes.

Figure 6. PA1—Distribution of users across average documents (x-axis) and average time (y-axis)

(a) Microsoft Offi ce documents handling

(b) OpenOffi ce.org documents

0 5 10 15 20 25 30 35 40

0

50

100

150

200

250

300

350

400

450

MSO Users distribution

Avg docs

Av
g

tim
e

m
in

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

OOo Users distribution

Avg docs

Av
g

tim
e

m
in

 319

Evaluation of a Migration to Open Source Software

Figure 7. PA2—Distribution of users across average documents (x-axis) and average time (y-axis)

(b) OpenOffi ce.org documents

(a) Microsoft Offi ce documents handling

Regarding OpenOffi ce.org, 90% of PA1’s us-
ers lie between four documents and less than 60
minutes of usage. In PA2, as we should expect,
the usage is stabilized at higher levels, with the
limit of eight documents and 135 minutes that
encompasses 90% of the users.

From the temporal evolution of the software
usage, we note that the software usage is constant
in both PAs during the whole experimentation.
This is due to the short time frame we are ana-
lysing. At this stage of the experimentation, the

difference in usage of OpenOffi ce.org between
the two PAs is clearly evident.

Furthermore, the distribution of users across
time and documents gives a better idea of the
grouping of users. As a further step, the application
of clustering techniques in order to group users
according to further variables and in accordance
to their attitude, might also shed some lights on
the usage pattern of the different applications
(Duda, Hart, & Stork, 2001).

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5 30 32,5 35 37,5 4042,5 45 47,5 50 52,5 55 57,5

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425

Avg docs

Av
g

tim
e

m
in

0 5 10 15 20 25 30 35 40 45

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

Avg docs

Av
g t

im
e

m
in

320

Evaluation of a Migration to Open Source Software

Functionalities

A further study on the functionalities5 has been
performed in both PAs, the goal was to gather
information on how users evaluate the offi ce
automation application’s features. Indeed, one of
the major critics to OSS on the desktop-side, is
its supposed lack of usability compared to CSS
(Nichols & Twidale, 2003). The aim of this sec-
tion is to evaluate the difference in functionalities
usage between the two applications and whether
from this distinction we can derive some indica-
tions about the usability.

In Figure 8, a fi rst representation of the situation
in PA1 is plotted. Users are mapped according to
the average Microsoft Offi ce functions per day
(x-axis) and average OpenOffi ce.org functions
per day (y-axis).

From the distribution of users in Figure 8, we can
notice that users tend to use daily more functions
in Microsoft Offi ce. To further investigate this is-
sue, we then compared both situations normalizing
the functions used per time unit. To perform this
operation, we set-up the following metric:

1 []∑∑i
f

n t

where f is a single function, t is the time spent on
documents and n is the total number of users. By
using the time we can compare the results among
the two solutions. As a result of this formula, we
get the distribution results shown in Table 3.

The number of normalised functionalities used
is in general lower with Microsoft Offi ce than
with OpenOffi ce.org; an explanation can be the
fact that users are more acquainted to shortcuts
in order to perform certain operations. On the
other side newcomers to OpenOffi ce.org have
yet to acquire the necessary confi dence in the
functionalities offered.

These considerations cannot alone denote a
possible usability problem of OpenOffi ce.org.
However, they can indicate the difference in usage
of the new technology introduced, a difference

Table 3. PA1—Results of functions calling between
Microsoft Offi ce and OpenOffi ce.org

MSO OOo

Min 0,03 0.08

Max 5,45 5,45

Mean 0,41 1,71

Std. Dev 0,45 1,26

Figure 8. PA1—Functions per offi ce automation software

0 100 200 300 400 500 600 700 800 900

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

Avg MSO functions per day

Av
g

O
O

o
fu

nc
tio

ns
 p

er
 d

ay

 321

Evaluation of a Migration to Open Source Software

Figure 9. PA—Representation of the Microsoft Offi ce documents opened by using OpenOffi ce.org

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Documents
Users
Total Time

Note: For each day the fi gure reports number of documents (in white), users adopting this feature at least once in that day (grey) and the total
time for the day spent in minutes on the documents after the opening (black). Extensions considered are .doc and .rtf (Microsoft Word), .ppt
(Microsoft Powerpoint) and .xls (Microsoft Excel).

that will obviously refl ect on users’ productivity
during the early phases of a migration.

FUTURE TRENDS

 Interoperability Considerations

One of the strategies that a software vendor enter-
ing a market can exploit to emerge in a situation
where users are in a situation of lock-in, is to
provide higher compatibility with the standards
already offered on the market. This strategy has
its drawback in the fact that some performance
of the application has to be sacrifi ced in favour
of the compatibility, entering a mechanism of
trade-off (Shapiro & Varian, 1999).

In this sense, OpenOffi ce.org offers compat-
ibility also with the closed data standards of
the Microsoft Offi ce suite. It is interesting in
the study proposed to see how users adopted
this compatibility feature. To gain a measure
of this interoperability issue, we computed as a
fi rst step the number of Microsoft Offi ce propri-
etary formats documents opened by means of

OpenOffi ce.org. Further data, as the time spent
with the documents opened with this method
and the number of users adopting the feature
also add detail to this analysis.

In Figure 9, data are reported for each day:
the number of foreign documents opened per day
(in white), the total time in minutes spent on the
documents opened (in black) and the number of
users adopting this solution at least once per day
(in grey). The Microsoft Offi ce formats considered
are the ones handled by Microsoft Word, Excel
and Powerpoint, namely fi les with doc, rtf, xls,
and ppt extensions.

The results of this kind of analysis are not
encouraging; probably one of the reasons is that
users are not aware of this possibility. A mini-
mal number of users is adopting this feature in
his everyday work, to be precise only 10.90% of
OpenOffi ce.org users (17 out of 156) with 6.76%
of the global time spent in OpenOffi ce.org (nearly
nine hours out of 138 hours). This last aspect seems
to justify also that users tend to open documents
of the foreign format for viewing purposes only;
editing is seen as dangerous due to the different
application used.

322

Evaluation of a Migration to Open Source Software

The same analysis is represented in Figure 10
also for the second PA. In this case we see that
users more trained and adopting OpenOffi ce.
org for a longer time have a clearer idea of the
functionalities offered.

The same considerations of the previous group
report that 57.46% of OpenOffi ce.org users (447 out
of 778) used this feature, but only 2.26% of the time
spent in OpenOffi ce.org (nearly 78 hour over 3.594
hours). In this case the result confi rms that users are
more aware of the interoperability features.

Figure 11. PA1—Representation of the Microsoft Access documents handled by users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

450

500

550

600

Documents
Users
Total time (h)

Note: For each day the fi gure reports number of documents (in white), users opening such a document at least once in that day (in grey) and
the total time for the day spent in hours on the documents after the opening (in black).

Figure 10. PA2—Representation of the Microsoft Offi ce documents opened by using OpenOffi ce.org

Note: For each day the fi gure reports number of documents (in white), users adopting this feature at least once in that day (in grey) and the
total time for the day spent in minutes on the documents after the opening (in black). Extensions considered are .doc and .rtf (Microsoft Word),
.ppt (Microsoft Powerpoint) and .xls (Microsoft Excel.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

50

100
150

200

250

300

350

400

450

500

550

600

Total docs
Users
Total Time

 323

Evaluation of a Migration to Open Source Software

Another important interoperability issue in the
migration in the offi ce automation fi eld is due to
the different applications available in both suites.
While Microsoft Offi ce offers a small personal
database application called Access, OpenOffi ce.
org in the version available to experimenters
doesn’t offer a comparable alternative6. In Figure
11 the use of Microsoft Access is reported, with
number of documents (in white), number of users
using the application in that particular day (in
grey) and total time spent by all users in hours
(in black). Time has been reported in hours to
facilitate the reading.

What can be seen is that the software is still
very used; nearly 30% of all Microsoft Offi ce
users used at least once the application during
the experimentation period. If we consider only
users employing it for a period greater than fi ve
days, the percentage drops to 15%. In this kind
of analysis we cannot perform a comparison
with PA2 as the software for data collection
installed was not confi gured to collect this kind
of information.

The results of this section report that a more
focused training on the interoperability features
offered by the OpenOffi ce.org suite can lead
to a broader diffusion of the suite. It is still to
understand the reasons of the lack of confi dence
in editing documents in the other application
source format.

CONCLUSION

The results of both experimentations show that
open source software (OSS) can represent a viable
alternative to closed source software (CSS) even
on the desktop side. The analysis was focused on
four different levels of technology adoption, the
level of the users’ attitude towards OSS, level of
adoption and usage of both solutions during the
period, functionalities adopted and the interop-
erability issues. Where possible, all levels have

been considered for both PAs that participated to
the experimentation:

• The attitude was in general positive; us-
ers had a positive attitude before starting
the experimentation. However, we should
expect a change of the attitude at the end
of the experimentation. Neutral users will
probably join the groups of enthusiastic or
sceptics about OSS.

• The adoption and usage of both solutions
has seen the predominance of the market-
dominant Microsoft Offi ce, although in the
experimentation where OpenOffi ce.org was
already introduced users started to use it in
everyday work. This is due also to network
effects in IT markets that have been exploited
by the early adopter PA of our study (Katz
& Shapiro, 1985). Implementing a strategy
of documents exchange in the new format
is a key decision to widen the diffusion of
the new application. The results obtained
show that the migration path will be more
diffi cult in absence of a proper strategy of
documents exchange.

• The analysis of the functionalities used
has shown that there are different patterns
between the groups of the two suites. The
group of Microsoft Offi ce users has more
confi dence in the software, performing
their task mainly through shortcuts. Such a
confi dence is not present in OpenOffi ce.org
users. The results cannot be used to evaluate
the usability of OSS, however they do report
the reduction in productivity that is typical
of the early phases of software migration.

• The analysis on interoperability shows that
there are still interoperability issues, mainly
in the form of personal databases creation.
Furthermore, users don’t seem to evaluate
positively the compatibility with the foreign
format offered by OpenOffi ce.org. The strat-
egy to increase the diffusion of the software

324

Evaluation of a Migration to Open Source Software

by providing a greater level of compatibility
with the existing data standards doesn’t seem
to provide the results expected.

Overall, the data collected have granted the
possibility to evaluate the adoption levels of OSS
inside two different PAs. In the cases reported,
the initial levels of adoption are low and interop-
erability issues exist that can potentially hinder
OSS adoption.

NOTE

This work has been partially supported by COSPA
(Consortium for Open Source Software in the
Public Administration), EU IST FP6 project nr.
2002-2164

REFERENCES

Armstrong, C. P., & Sambamurthy, V. (1999).
Information technology assimilation in fi rms:
The infl uence of senior leadership and IT infra-
structure. Information Systems Research, 10(4),
304-327.

Arthur, W. B. (1989). Competing technologies,
increasing returns, and lock-in by historical events.
Economic Journal, 99, 116-131.

Attewell, P. (1992). Technology diffusion and
organizational learning. The Case of Business
Computing. Organization Science, 3(1), 1-19.

Campbell, D. T., & Stanley, T. D. (1990). Experi-
mental and quasi-experimental design. Boston:
Houghton Miffl in Company.

Chatterjee, D., Grewal, R., & Sambamurthy, V.
(2002). Shaping up for e-commerce: Institutional
enablers of the organizational assimilation of web
technologies. MIS Quarterly, 26(2), 65-89.

Chau, P., & Tam, K. (1997). Factors affecting the
adoption of open systems: An exploratory study.
MIS Quarterly, 21(1), 1-24.

Drakos, N., Di Maio, A., & Simpson, R. (2003).
Open source software running for public offi ce
(Gartner Research Report AV-19-5251). Retrieved
December 2005, from www4.gartner.com/re-
sources/114500/114562/114562.pdf

Duda, R. O., Hart, P. E., & Stork, D. G. (2001).
Pattern classifi cation. New York: John Wiley
& Sons.

Everitt, K., & Lederer, S. (2001). A usability com-
parison of Sun StarOffi ce Writer 5.2 vs. Microsoft
Word 2000. Retrieved November 2, 2005, from
http://www.sims.berkeley.edu/courses/is271/f01/
projects/WordStar/

Fichman, R. G., & Kemerer, C. F. (1997). The
assimilation of software process innovations: An
organizational learning perspective. Management
Science, 43(10), 1345-1363.

Fichman, R. G., & Kemerer, C. F. (1999). The
illusory diffusion of innovation: An examina-
tion of assimilation gaps. Information Systems
Research, 10(3), 255-275.

IDABC. (2003). The IDA open source migration
guidelines. Retrieved February 15, 2006, from
http://ec.europa.eu/idabc/servlets/Doc?id=1983

Katz, M. L., & Shapiro,C. (1985). Network ex-
ternalities, competition, and compatibility. The
American Economic Review, 75(3), 424-440.

Landeshauptstadt München. (2003). Clientstudie
der Landeshauptstadt München. Retrieved
February 2, 2006, from http://www.muenchen.
de/aktuell/clientstudie_kurz.pdf

Marson, I. (2005). Linux brings hope to Spain’s
poorest region. Retrieved January 10, 2006, from
ZDNetUK Web site: http://insight.zdnet.co.uk/
software/linuxunix/0,39020472,39197928,00.
htm

 325

Evaluation of a Migration to Open Source Software

Massachussets State. (2005). Enterprise tech-
nical reference model. Retrieved on February
2, 2006, from http://www.mass.gov/portal/site/
massgovportal/menuitem.769ad13bebd831c/
14db4a11030468a0c?pageID=itdsubtopic&L
=4&L0=Home&L1=Policies%2c+Standards+
%26+Legal&L2=Enterprise+Architecture&L
3=Enterprise+Technical+Reference+Model+-
+Version+3.5&sid=Aitd

Miller, R. (2002). Largo loves Linux more than
ever. Retrieved February 2, 2006, from News-
forge Web site: http://www.newsforge.com/print.
pl?sid=02/12/04/2346215

Nichols , M., & Twidale, M. B. (2003). The usabil-
ity of open source software. First Monday, 8(1),
Retrieved July 6, 2006, from http://fi rstmonday.
org/issues/issue8_l/nichols/

Palmer, M. (2005). Microsoft to give Offi ce
access to rivals. Retrieved February 2, 2006,
from Financial Times Online Web site: http://
news.ft.com/cms/s/e9f5c0f8-5ab7-11da-8628-
0000779e2340.html

OASIS—Organization for the Advancement of
Structured Information Standards. (2005). OASIS
Open Document Format for Offi ce Applications
(OpenDocument). Retrieved December 5, 2005,
from http://www.oasis-open.org/home/index.php

Pfl eeger, C. P., & Pfl eeger, S. L. (2002). Security
in computing (3rd ed.). Upper Saddle River, NJ:
Prentice Hall.

Rogers, E. (1995). Diffusion of innovations. New
York: The Free Press.

Rossi, B., Scotto M., Sillitti, A., & Succi, G.
(2005). Criteria for the non invasive transition
to OpenOffi ce. In Proceedings of OSS2005,
Genova, Italy.

Shapiro, C., & Varian H. R. (1999). Information
rules: A strategic guide to the network economy.
Cambridge, MA: Harvard Business School
Press.

Sillitti, A., Janes, A., Succi, G., & Vernazza, T.
(2003, September 1-6). Collecting, integrating and
analyzing software metrics and personal software
process data. In Proceedings of EUROMICRO
2003, Belek-Antalya, Turkey.

Stadt Nürnberg. (2004). Strategische Ausrichtung
im Hinblick auf Systemunabhängigkeit und Open
Source Software. Retrieved February 2, 2006,
from http://online-service.nuernberg.de/eris/
agendaItem.do?id=49681

Stadt Wien. (2004). Open Source Software am
Arbeitsplatz im Magistrat Wien. Retrieved Febru-
ary 15, 2006, from http://www.wien.gv.at/ma14/
pdf/oss-studie-deutsch-langfassung.pdf.

KEY TERMS

 Assimilation: Passive adoption of a new
practice or behaviour, generally resulting from
participating in activities where such behaviour
is used or is expected.

 Data Standard: Denotes a standard to store
data in information science. The most impor-
tant classifi cation is between open/closed data
standards according to the publishing of the
specifi cation, although the exact classifi cation is
still controversial.

 Deployment: Use of an item on a relatively
large scale.

 Lock-In: In economics, denotes a situation in
which a consumer cannot change his buying deci-
sion without incurring in high switching costs. For
example, a user may be bound to a certain software
provider for the services offered, by switching to
another provider he may incur in high switching
costs to change his system infrastructure.

 Network Effect: In economics, denotes a
demand-side effect, by which the utility given
to a certain good increases with the number of
successive users adopting it. Information goods

326

Evaluation of a Migration to Open Source Software

are a typical example of good that manifest this
behaviour.

 Migration: Transitioning from one particular
software package to another.

 Offi ce Automation: The set of software
necessary to provide the necessary integration
between the information system and the standard
offi ce activities. The minimal set of instruments
includes a word-processor, a spreadsheet, software
for presentations, and a small personal database
application.

ENDNOTES

1 GnuLinex, http://www.linex.org/
2 Microsoft Offi ce, http://www.microsoft.

com/offi ce/editions/prodinfo/default.mspx

3 OpenOffice.org, http://www.openoffice.
org

4 The study is dated November-December
2001 and refers in particular to the com-
parison between Sun StarOffi ce Writer 5.2
and Microsoft Word 2000.

5 As functionalities we intend the opening
of one window inside an application, as for
example—to remain in the offi ce automation
fi eld—the paragraph options or the Save As
screen. At the time of both experimentations
we could not collect more fi ne-grained data,
like the invocation of keyboard shortcuts that
gives us the exact correspondence with the
functions used in a program.

6 Starting from version 2.0 OpenOffi ce.org
offers also the Base component to provide
simple database functionalities.

 327

Section IV
Laws and Licensing

Practices Affecting Open
Source Software Uses

328

Chapter XXV
Legal and Economic

Justifi cation for
 Software Protection

Bruno de Vuyst
Vrije Universiteit Brussel, Belgium

Alea Fairchild
Vrije Universiteit Brussel, Belgium

ABSTRACT

This chapter discusses legal and economic rationale in regards to open source software protection.
Software programs are, under TRIPS1, protected by copyright (reference is made to the Berne Conven-
tion2). The issue with this protection is that, due to the dichotomy idea/expression that is typical for
copyright protection, reverse engineering of software is not excluded, and copyright is hence found to
be an insuffi cient protection. Hence, in the U.S., software makers have increasingly turned to patent
protection. In Europe, there is an exclusion of computer programs in Article 52 (2) c) EPC (EPO, 1973),
but this exclusion is increasingly narrowed and some call for abandoning the exclusion altogether. A
proposal by the European Commission, made in 2002, called for a directive to allow national patent
authorities to patent software in a broader way, so as to ensure further against reverse engineering;
this proposal, however, was shelved in 2005 over active opposition within and outside the European
parliament. In summary, open source software does not fi t in any proprietary model; rather, it creates a
freedom to operate. Ultimately, there is a need to rethink approaches to property law so as to allow for
viable software packaging in both models.

INTRODUCTION

 Copyright Protection of Software

A software program is foremost a sequence of
orders and mathematical algorithms emerging

from the mind of the innovator, hence creating
a link with copyright law as a prime source of
intellectual property protection.

According to Article 10 TRIPS, computer
programs, whether in source or object code, shall
be protected as literary works under the Berne

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 329

Legal and Economic Justifi cation for Software Protection

Convention provided that they are (1) original and
(2) tangible. In light of Article 9 TRIPS, which
states that copyright protection shall extend to
expressions, but not to ideas, procedures, methods
of operation or mathematical concepts as such,
copyright protects the actual code of the computer
program itself, and the way the instructions have
been drawn up, but not the underlying idea thereof
(Overdijk, 1999).

Hence, an author can protect his original work
against unauthorized copying. Consequently,
an independent creation from another person
would not automatically be seen as a copyright
infringement (Kirsch, 2000a; Leijnse, 2003).
With respect to software programs this could
have as consequence that a person disassembles
and decompiles an existing software program to
determine the underlying idea and uses this idea
to build his own program (reverse engineering).
As he only uses the idea, which is not copyright-
able, no infringement will result.

BACKGROUND

 Patent Law Protection of Software

Software is a novel form in the technology world,
and may make a claim to patent protection from
that angle. The conditions to be met to enjoy patent
protection are more stringent than those to enjoy
copyright protection. In Europe3, for example, an
invention will enjoy protection from patent law
provided that the invention (1) is new (i.e., never
been produced before), (2) is based on inventor
activity (i.e., not have been before part of prior
art), and (3) makes a technical contribution (i.e.,
contribute to the state of the art). In the U.S., the
patent requirements to be met are (1) novelty,
(2) non-obviousness, and (3) the innovations
must fall within the statutory class of patentable
inventions.

Pursuant to patent law, a patent holder can
invoke the protection of his patent to exclude

others from making, using or selling the patented
invention. As opposed to copyright protection, the
inventor’s patent is protected regardless whether
the software code of the patented program was
copied or not.

The Evolution of the Legal
Protection of Software

Prior to the 1980s, U.S. courts unanimously
held that software was not patentable and that
its only protection could be found in copyright.
Indeed, the U.S. Supreme Court ruled in two
landmark decisions, Gottschalk vs. Benson (1972)
and Parker vs. Flook (1978), that software was
similar to mathematics and laws of nature (both
excluded from being patented) and, therefore,
was unpatentable.

In Diamond vs. Diehr (1981), however, the
court reversed course, deciding that an invention
was not necessarily unpatentable simply because
it utilized software. Since this decision, U.S.
courts as well as the US Patent Offi ce gradually
broadened the scope of protection available for
software-related inventions (Kirsch, 2000). The
situation evolved to the current status in which it
is expected to obtain a patent for software-related
inventions. Since the State Street Bank and Trust
Co. vs. Signature Financial Group Inc. (1996)
case even mathematical algorithms and business
methods have been found to be patentable (see
also the Amazon One-click case IPXL Holding,
plc vs. Amazon.com, Inc., 2005; Bakels , 2003).
As from this decision, the U.S. focus, for patent-
ability, is “utility based,” which is defi ned as “the
essential characteristics of the subject matter”
and the key to patentability is the production of
a “useful, concrete and tangible result” (Hart,
Holmes, & Reid, 1999). The evolution resulted in
a rush of patent applications for software-related
inventions and business methodologies.

Contrary to the U.S., Europe has been unwill-
ing to grant patents for ideas, business processes
and software programs. The most important rea-

330

Legal and Economic Justifi cation for Software Protection

sons are their (in-) direct exclusion from patent
protection, as stated in Article 52 (2)(c) European
Patent Convention (EPC)4. Nevertheless, the Eu-
ropean Patent Offi ce (EPO) also reversed course.
Its view on patentability of software programs
and, more particularly, the interpretation of the
“as such” limitation as described below, has been
under revision, especially driven by the context
of computer programs (the so-called computer-
implemented inventions).

Following three landmark cases, Vicom/Com-
puter Related Invention (1987), Koch & Sterzel/X-
ray apparatus (1988), and SOHEI/General purpose
management system (1995), the European Patent
Offi ce concluded:

a claim directed to a technical process is carried
out under the control of a program (whether
implemented in hardware or software) cannot
be regarded as relating to a computer program
as such within the meaning of Article 52 EPC,
(emphasis added)

and

an invention must be assessed as a whole. If it
makes use of both technical and non-technical
means, the use of non-technical means does not
detract from the technical character of the overall
teaching.

Notwithstanding this enlargement in Euro-
pean patent law, patens have, contrary to the
U.S., never been granted for software programs
“as such,” the main reason being that in Europe
an invention has to be technical in nature. This
requirement of technicality is not explicitly stated
in the EPC, but can be deduced from Article 52
(2) EPC. Indeed, this provision contains a list of
subject matters that are not patentable “as such”
(among them programs for computers). The list is
not meant to be exclusive, as it only gives examples
of materials that are non-technical and abstract

in nature and, thus, cannot be patented (Sarvas
& Soininen, 2002).

In the U.S. on the other hand, a patentable
invention must simply be within the techno-
logical arts. No specifi c technical contribution
is required. The mere fact that an invention uses
a computer or software makes it become part of
the technological arts if it also provides a “useful,
concrete and tangible result” (Hart et al., 1999;
Meijboom, 2002).

In Europe, a number of software developers
desire patent protection to be enlarged in such a
way that software programs become eligible. One
of the arguments of supporters of the patentability
of software is that patent law provides inventors
with an exclusive right to a new technology in
return for publication of the technology. Thus,
patent law rewards innovators for the investment
and encourages continued investment of time and
money. Opponents of patent protection argue that
such protection is not needed, indeed appropriate
in an industry such as software development, in
which innovations occur rapidly, can be made
without a substantial capital investment and tend
to be creative combinations of previously-known
techniques (Pilsch, 2005).

The opponents of software patents also in-
dicate practical problems in administering the
patent system, as software is voluminous and
incremental. Indeed, an invention can only enjoy
patent protection provided that it is not part of
the prior art. To verify whether this condition is
met or not, it is required to know the prior art.
However, knowledge about software is widespread
and unbundled (very often either tacit or embed-
ded) and may thus be insuffi ciently explicit for
the patent system to work well. In other words,
there is too much software, not enough informa-
tion about it, and what there is, is hard to fi nd
(Kahin, 2003). As transaction costs are high, a
patent system will favor those with enough re-
sources to verify whether their software can be
patented and, afterwards, to search for and deal
with possible infringers.

 331

Legal and Economic Justifi cation for Software Protection

Next to these fi nancial impediments, there are
some theoretical issues that concern the install-
ing of a system of software patents. These have
to do, fi rst, with the basic, global instrument for
intellectual property protection, in other words,
TRIPS, and second with the specifi c legislation
in Europe and the U.S.

Although according to Article 10 TRIPS,
computer programs are protected by copyright,
it is the intention of TRIPS not to exclude from
patentability any inventions, whether products
or processes, in all fi elds of technology, provided
that they are new, involve an inventive step, and
are capable of industrial application (Article 27
TRIPS) (Janssens, 1998). Consequently, TRIPS
states, implicitly, that computer programs may
also be the subjects of patent protection.

From what is stated previously, it is clear
that the U.S. legislation allows patentability of
software. In Europe, however, Article 52 (2) EPC
remains an obstacle for such a protection, however
regretted by even EPO. Indeed, in its decision of
February 4, 1999, the Board of Appeals of EPO
(hereafter the “Board”) stated5:

The fact that Article 10 is the only provision in
TRIPS which expressly mentions programs for
computers and that copyright is the means of
protection provided for by said provisions, does
not give rise to any confl ict between Articles 10
and 27 TRIPS. Copyright and protection by patents
constitute two different means of legal protection,
which may, however, also cover the same subject
matter (e.g., programs for computers), since each
of them serves its own purpose. (…) The Board
has taken due notice of the developments in the
U.S. (and Japanese) patent offi ces, but wishes to
emphasize, that the situation under these two legal
systems differs greatly form that under the EPC in
that it is only the EPC which contains an exclusion
as the one in Article 52 (2) and (3). Nevertheless,
these developments represent a useful indication
of modern trends. In the Board’s opinion they may

contribute to the further highly desirable (world-
wide) harmonization of patent law.

This decision makes it clear that if software
“as such” must be protected on the basis of pat-
ents, the exclusion under Article 52 (2)c EPC
shall have to be deleted. Which brings one to the
question of whether one should want this to hap-
pen and whether one perceives its consequences
favorably.

Supporters of software patents would like to
win a fi rst battle in the race for software patentabil-
ity by endorsing the proposal for a directive on the
protection by patents of computer-implemented
inventions currently being discussed within the
European Union. They are aware that approving
this directive will not immediately result in pat-
entability of software “as such,” however, it will
form “a new development that may contribute
to the further highly desirable (world-wide) har-
monization of patent law,” which can end up in
a deletion of the exclusion now stated in Article
52 EPC. Obviously, opponents will do anything
to avoid this evolution, however oblique, from
taking place.

Currently the latter have the wining hand: a
proposal to allow patents for computer-imple-
mented inventions was rejected on July 6, 2005 by
the European Parliament, and any new proposal
will take time to develop, if ever again (Perens,
2005)6.

MAIN FOCUS OF THE CHAPTER

Economic Justifi cations for Software
Protection as Part of Intellectual
Property (IP) Protection?

If the European Union may want to strike a bal-
ance, it must on the one hand take into account
societal needs, and on the other hand the reward
of the inventor.

332

Legal and Economic Justifi cation for Software Protection

The theoretical foundations of intellectual
property rights are debatable, to say the least.
Classical philosophy has attempted to explain
why intellectual property rights exist, but neither
Hegel—the Germanic, idealistic school—nor
Locke—the English, empirical school—has been
able to provide a coherent, suitable philosophical
basis for intellectual property rights—not for
lack of trying by themselves or their more recent
adherents (Radin, 1982; Schnably, 1993; Het-
tinger, 1989; Gordon, 1993). The explanation
may ultimately occur, not out of law, which is in
any event but a mechanic’s framework, and not
out philosophical theory, but out of the theory of
economic pragmatism. Indeed, it may be argued
that intellectual property rights, among them
software protection, are what they are because
they are based on, and fundamentally about,
incentives to create and invest.

The United States Supreme Court summed it
up in Marer vs. Stein (1954):

“The copyright law, like the patent statutes, makes
reward to the owner a secondary consideration.”
United States v. Paramount Pictures, 334 U.S. 131,
158 . However, it is “intended defi nitely to grant
valuable, enforceable rights to authors, publish-
ers, etc., without burden-some requirements; ‘to
afford greater encouragement to the production
of literary [or artistic] works of lasting benefi t
to the world.’” Washingtonian Co. v. Pearson,
306 U.S. 30, 36 .

The economic philosophy behind the clause
empowering Congress to grant patents and
copyrights is the conviction that encouragement
of individual effort by personal gain is the best
way to advance public welfare through the talents
of authors and inventors in “Science and useful
Arts.” Sacrifi cial days devoted to such creative
activities deserve rewards commensurate with
the services rendered. (emphasis added)

Hence, it appears that the utilitarian, economic
incentive perspective is the key driver in the grant-
ing of intellectual property laws. But are these
incentives really necessary to ensure and sustain
creation and invention? In the 1970s, professor (and
later justice) Stephen Breyer argued that lead time
advantages and the threat of retaliation reduced
the cost advantages of copiers, hence obviating if
not eliminating the need for copyright protection
of books (Breyer, 1970, 1972; Tyerman, 1971).
Advances in technology may not have strength-
ened Breyer’s argument. George Priest argued
that economic analysis (in his case of patent law)
is “one of the least productive lines of inquiry in
all of economic thought” because of the lack of
adequate empirical bases for the assessment of
theoretical models of innovation (Priest, 1986).
Still, this view does not undo the fact that the
pragmatic utilitarian/economic incentive perspec-
tive may remain if not the only, then at least the
most useful underpinning for IP rights. These
rights inescapably clash with a libertarian view
that “information wants to be free” (Barlow, 1994)
while those arguing against such freedom cry insist
that creation and incentive will be hampered by
the diminishing of intellectual property rights.
Extremism has polarized views on both sides of
the argument, while in the end balanced IP laws
may be what are being sought (Lessig, 2004).

Enter Open Source Software

The open source software approach differs radi-
cally from the IP protection approach stated above
in that it, in the words of Richard Stallman, fl ips
it over to serve the opposite of its usual purpose:
instead of a means of “privatizing” software—as
Stallman puts it—through IP (copyright or pat-
ent) protection, it becomes a means of keeping
software free (Stallman, 1999).

In effect, it is meant to create, at least initially,
what in patent terms would be deemed a freedom
to operate. In other words, open source creates an

 333

Legal and Economic Justifi cation for Software Protection

at least initial space that is open for users. Whether
this is a public domain space or another, similar
form may be debated. If it is a public domain
space, such an approach does not necessarily
keeps open all that it touches (Friedman & Kreft,
2000). Open source software as such does not,
as it does with a General Public License (GPL),
have this “viral” effect.

If open source may mean the creation of a space
to all users, the effect of the different licenses
granted to users limits the grant of freedom to
operate. There may be free software under a GPL.
There may also be Open Source Initiative (OSI)
licenses, which require nine elements to qualify
for approval as an OSI certifi ed license:

1. Free redistribution (no royalties or fees)
2. Access for any party to a source code
3. The license must allow modifi cations and

derived works.
4. The license may restrict a source code,

however, from being distributed in modi-
fi ed form but only if certain conditions are
fulfi lled.

5. There may be no discrimination against
groups or persons.

6. Or against fi elds of endeavour
7. It is prohibited to require any additional

licenses from users to whom a program is
redistributed.

8. The license must not be specifi c to a prod-
uct.

9. The license must not restrict other soft-
ware.

Next to OSI licenses, there are others that
may be copying features of such licenses, but
differ, for example, as to treatment of derivative
work7. In effect, there appear to be over 50 dif-
ferent open source licenses, and no clear guide
(Gormulkiewicz, 1999, 2002, 2004). This is a fi rst
challenge—one that has not yet been overcome by
any centralized system or standardisation.

This fi rst challenge leads to a second one, as the
licensing of open source software poses a number
of legal challenges that are not necessary resolved
at present. First, there is the issue of validity—a
classical one that is also known in the proprietary
would and goes back to the use of shrink wrap and
click wrap agreements to use—assuming accep-
tance of the user when she/he opens the software.
If this constitutes suffi cient an agreement remains
a question (Trompenaars, 2000).

Coupled with validity is the issue of enforce-
ability, which is more pregnant in a open source
model, because the end user may not have, or
even be aware, of any license agreements unless
he downloads the source code and starts using
the software.

Open source software moral rights—rights
related to the inventor’s personality—include in
patent law the right to attribution (also known as
a paternity right) and in copyright include in ad-
dition at least the right to resist deformation and
defamation (de Vuyst & Steuts, 2005; Metger &
Jaeger, 2001). Moral rights being inalienable (i.e.,
non transferable) they may never be put to a user.
If a user were to apply a software package for a
use that the author/inventor did not like, the latter
could, particularly on the European continent,
where the notion of moral rights remains strongest,
enforce an injunction for such use (e.g., in violent
games or pornographic displays).

A third issue that is particular to an open
source software approach, from a legal viewpoint,
is that of representations and warranties. In a
proprietary, particularly a patented would, it is
inherent that the invention has been reduced to
practice—that is works—before patent publica-
tion. No such warranty can necessarily be given
in an open source model. In effect, the GPL does
not state explicitly that the GPL code can be
run—paradoxically, it does state that one may
modify and redistribute. As liability is inherent
in a proprietary atmosphere, it is not so inherent
in an open source model (Kennedy, 2001) where

334

Legal and Economic Justifi cation for Software Protection

limitations of liability and disclaimers of warran-
ties may be more rightfully expected—but many
limit attractiveness to users.

However, open source licensing on the basis
of the principle of “no liability” is paramount to
the success of open source software development.
The fact that a developer of open source code has
the ability to distribute work accompanied by
little or no warranties effectively shifts the risk
from the licensor of the code to the recipient of
the code.

This is important:

Valid reasons underlie this risk-shifting strategy
… . Individual hackers are unwilling to assume
the risk of a multi-million dollar class action law
suit as the consequences of pursuing their passion
for hacking code. “Low Risk” also means low bar-
riers to entry; anyone can contribute code to the
process, not just those that can afford insurance
or lawyers … . (Gormulkiewicz, 2002)

If open source software developers were not
able to disclaim liability on their code, it might
substantially increase development costs on ac-
count of legal risks and greatly discourage open
source development.

It is however questionable whether disclaimers
and limitations of liability work in all jurisdic-
tions. Choice of jurisdiction in business open
source software licenses is therefore essential, but
remains problematic in a consumer atmosphere
and certainly in cross-border licensing.

Last but not least, the issue of derivative
work is, in all cases but in the GPL, an issue.
The GPL’s “viral effect,” in which any modifi ca-
tion to the source code must also be under the
GPL is unique—and hard to enforce: who can
fi nd out but a disgruntled customer faced with
a violation? The explanations given by the Free
Software Foundation8 refer to the judiciary for an
answer to the question as to what constitutes a
contribution of two parts into another program.
But the courts may not be the best, certainly not

the most effi cient means of interpreting open
source model licenses (Costello, 2002). In effect,
a single German case giving effect to the GPL
may not yet be an end to the relative quiet for
GPL infringers (Shankland 2004). The lack of
clarity in GPL licensing (not to speak of other
forms, e.g., BSD or LGPL licensing) makes for
uncertainty in derivative work’s proprietary or
non-proprietary status.

In a proprietary model, the answer, under pat-
ent law, is forthright: any derivative work is an
infringement of the patent owner’s rights. In the
open source model, the question is the reverse:
can derivative work, including interoperable work
as decompiled from the source code, become
proprietary in nature? In other words, can reverse
engineering lead to proprietary software as it
is based only on the idea encompassed in open
source software?

If one reverses this risk, one should acknowl-
edge that open source software may have the abil-
ity to expose software developers to risk if they
use open source licenses improperly. This may
be a disincentive to use open source software as
a base platform for future development.

FUTURE TRENDS

Discussion: Open Source and the
Balance of IP Rights

Free distribution and an open source code propel
the open source software movement. It is a fact
that software patents are expensive to prosecute
and take time to publish, hampering development
effort—even being bypassed by events in a quickly
developing world.

The benefi ts of open source software also
provide it its soft legal underbelly. The plethora of
open source licenses, the lack of clarity and a de-
pendence on court interpretation are a disincentive
to users, but more importantly, to developers.

 335

Legal and Economic Justifi cation for Software Protection

The solution may be in a more formal descrip-
tion—a restatement or standardisation, if one
wants—of open source software terms of use
and licenses. But this appears not to occur yet or
in the near future, although efforts to state best
practices are in the make (Kennedy, 2005).

More fundamentally to the discussion of open
source versus proprietary rights, a restatement of
the debate as one on excessive rent seeking and a
consequent imbalance of rights may point to a way
to set the stage for a meaningful discussion which
may lead to long-term policy framing, likely at
the level of a WTO’s TRIPS—a new one, with a
more globally accepted balance of interest. If one
addresses, in this mindset, software protection
and IP rights in general, in terms of its value as
an economic good to society, one is bound to fi nd
a balanced view. As Judge Posner put it:

granting property rights in intellectual property
increases the incentive to create such property,
but the downside is that those rights can inter-
fere with the creation of subsequent intellectual
property (because of the tracing problem and
because the principal input into most intellectual
property rights is previously created intellectual
property). Property rights can limit the distribution
of intellectual property and can draw excessive
resources into the creation of intellectual property,
and away from other socially valuable activities,
by the phenomenon of rent seeking.

Striking the right balance, which is to say
determining the optimal scope of intellectual
property rights, requires a comparison of these
benefi ts and costs—and really, it seems to me,
nothing more:

The problems are not conceptual; the concepts
are straightforward. The problems are entirely
empirical. They are problems of measurement. In
addition, we do not know how much intellectual
property is in fact socially useful, and therefore
we do not know how extensive a set of intellec-

tual property rights we should create. For all we
know, too many resources are being sucked into
the creation of new biotechnology, computer
software, fi lms, pharmaceuticals, and business
methods because the rights of these different forms
of intellectual property have been too broadly
defi ned. (Posner, 2002)

The socio-economic measurements, in empiri-
cal studies to be undertaken, set a daunting task in
terms of methodology as well as in terms of execu-
tion. But they point to the way forward: a need to
measure the impact of IP rights to determine the
optimally needed scope vis-à-vis society.

For software protection, a know-nothing at-
titude that denies all rights to inventors will be
a disincentive to valorise. As became clear to
the fi rst author during his tenure at the Common
Fund for Commodities, what is put in the public
domain is most often left there, as it is diffi cult to
invest the time and energy to shape a competitive
advantage from an invention known to and ready
to use by all.

That appears to be the case at present: open
source would not exist if it was not out of dissat-
isfaction with an excessively proprietary business
model that ignores societal needs. The balance
is indeed one between rights and societal needs.
Unbalancing in one way or another risks, the
wrong investment, or disinvestments, in software
development or any other form of IP.

It is open source software that pushes towards
this balance by its very existence on alternative
to a proprietary business model.

Indeed, it may in three ways contribute to this
balancing act already: fi rst, though the so-called
Open Patent Review it may involve the citizen in
making sure patents represent progress over prior
art. This is being accomplished by an alerting
system that activates from the USPTO Web site
(front of the AppFT database). It will enhance a
public view, and review, of applications and as-
sists in preserving safeguards against fl ooding
strategies by would-be patent holders.

336

Legal and Economic Justifi cation for Software Protection

Second, open source software Prior Art, an
initiative by IBM, Novell, Red Hat and Source-
Force aims at developing a system that stores
source code in an electronically searchable
format, exposing open source software—mil-
lions of lines of publicly available computer
source code—as prior art to examiners and the
public, so as to assist in ensuring that patents
are issued only for actual software inventions
and not for appropriations—expropriations, if
one wants—of existing open source software
(Noveck, 2004).

Finally, a patent quality index, in other words,
a numeric index in respect of the quality of pat-
ents and patent applications, as a resource for the
patent system9, may be of interest if it proves an
objective and data-driven tool. Patent rights, if
put to the test, might show their true worth—and
there may be a readiness to re-evaluate Euro-
pean and U.S. patent law—if there is a tool
which assists citizens and examiners in fi nding
the necessary balance between property rights
and innovative freedom to operate, through the
application of economic tools, such as a rent-
seeking methodology.

CONCLUSION

While it may not be a panacea, open source
software is clearly a suffi cient counterweight
to excessive IP creation, which in the words of
professor Jeremy Phillips, does to the public do-
main—and to innovation—what men do to the
Amazon forest (Phillips, 1996).

REFERENCES

Bakels, R. B. (2003). Van software tot erger: Op
zoek naar de grenzen van het octrooirecht. IER,
August(4), 214.

Barlow, J. P. (1994). The economy of ideas. 2.03
Wired, 84.

Breyer, S. (1970). The uneasy case for copyright:
A study in copyright of books, photocopies and
computer programs. Harvard Law Review, 281.

Breyer, S. (1972). Copyright: A rejoinder. UCLA
Law Review, 75.

Costello, S. (2002). Settlement nears in open
source GPL suit. Retrieved January, 20 2006,
from http://www.networkworld.com/news/2002/
0305settleGPL.html

Diamond vs. Diehr, 450 US 175. (1981).

De Vuyst, B., & Steuts, L. (2005). De notie morele
rechten in een internationale, vergelijkende en
transactionele context. Intellectuele Rechten—
Droits Intellectuels, 8.

EPO. (1973). Convention on the grant of Euro-
pean patents (European Patent Convention) of
5 October 1973. Retrieved January, 20 2006,
from http://www.european-patent-offi ce.org/le-
gal/EPC/e/ma1.html

Fink, M. (2003). The business of economics of
limited open source. Upper Saddle River, NJ:
Prentice Hall.

Friedman, D., & Kreft, B. M. (2000). Open
source software: Background, licensing and
practical implications. Retrieved May 10, 2000,
from http://www.daviddfriedman.com/Academic/
Course_Pages/21st_century_issues/legal_issues_
21_2000_pprs_web/Kreft_Open_Source.html

Gomulkiewicz, R. W. (1999). How copyleft uses
licence rights to succeed in the open source soft-
ware revolution and the implications for Article
2B. Houston Law Review, 179.

Gormulkiewicz, R. W. (2002). De-bugging open
source software licensing. University of Pittsburg
Law Review, 75.

 337

Legal and Economic Justifi cation for Software Protection

Gormulkiewicz, R. W. (2004). Entrepreneur
open source software hackers: MYSQL and its
dual licensing. Retrieved from http://www.law.
washington.ed/faculty/gomulikiewicz/publica-
ters/entopensources1.pdf

Gordon, W. J. (1993). A property right in self-
expression: Equality and individualism in the
natural law of intellectual property. Yale Law
Journal, 1533.

Gottschalk vs. Benson, 409 US 63 (1972).

Hart, R., Holmes, P., & Reid, J. (1999). The
economic impact of patentability of computer
programs (Report to the European Commission).
Retrieved February 18, 2004, from http://europa.
eu.int/comm/internal_market/en/indprop/comp/
study.pdf (pp. 20-23 of full report)

Hettinger, E. C. (1989). Justifying intellectual
property. Phil. & Publ. Aff.

IPXL Holding, plc vs. Amazon.com, Inc., US Fed.
App. Ct. 05-1009, -1487, November 21, 2005.

Janssens, M. C. (1998). Bescherming van compu-
terprogramma’s: (lang) niet alleen maar auteurs-
recht. T.B.H., 421-422.

Kahin, B. (2003). Information process patents in
the U.S. and Europe: Policy avoidance and policy
divergence. First Monday, 8(3). Retrieved March
6, 2004, from http://www.fi rstmonday.org/issues/
issue8_3/kahin/

Kennedy, D. M. (2001). A primer on open source
licensing legal issues: Copyright, CopyLeft,
copyfuture. Retrieved from http://www.denni-
skennedy.com/opensourcedmk.pdf

Kennedy, D. (2005). Best legal practices for open
source software. Retrieved November 20, 2005,
from http://www.llrx.com/features/opensource.
htm

Kirsch, G. J. (2000a). Software protection: Patents
versus copyrights. Retrieved January 20, 2006,

from http://www.gigalaw.com/articles/2000/
kirsch-2000-03.html

Kirsch, G. J. (2000b). The software and e-com-
merce patent revolution. Retrieved February
18, 2004, from http://www.gigalaw.com/ar-
ticles/2000/kirsch-2000-01.html

Koch & Sterzel/X-ray apparatus T 0026/86, OJ
EPO 1988, 19.

Leijnse, B. (2003, January 16). Een patente oploss-
ing voor uw patentprobleem. Softwarepatenten.
be. Trends. Retrieved February 27, 2004, from
http://www.softwarepatenten.be/pers/trends_
20030116.html

Lessig, L. (2004). Be wary of IP extremists.
Computerworld. Retrieved March 26, 2004,
from http://www.computerworld.com.au/index.
php?id=43841790&fp=16&fpid=0

Marer vs. Stein 347 U.S. 201 (1954).

Meijboom, A. P. (2002). Bang voor software-oc-
trooien. Computerrecht, 2002(2), 66.

Metger, T., & Jaeger, A. (2001). Open source soft-
ware and German copyright law. Int’l Journal of
Industrial Property and Copyright Law, 32(1).

Noveck, B. (2004). Unchat: Democratic solutions
for a wired world. In P.M. Shane (Ed.), The pros-
pects of political renewal through the Internet.
Oxford, UK: Routledge.

Overdijk, T. F. W. (1999). Europees Octrooibu-
reau verruimt mogelijkheden voor octrooiering
van computersoftware. Computerrecht, 1999(3),
158-159.

Parker vs. Flook, 437 US 584 (1978).

Perens, B. (2005, January 31). The open-source
patent comundrum. News.Com.

Phillips, J. (1996). The diminishing domain. Eu-
ropean Intellectual Property Review, 429.

338

Legal and Economic Justifi cation for Software Protection

Pilch, H. (2005). Quotations on software patents.
Logical Patent Web site. Retrieved February 4,
2006, from http://swpat.ffi i.org/vreji/quotes/in-
dex.en.html

Posner, R. A. (2002). The law & economics of
intellectual property. Daedalus, 5, 12.

Priest, G. (1986). What economists can tell
lawyers about intellectual property. Res. Law &
Econ., 19.

Radin, M. J. (1982). Property and personhood.
Stanford Law Review, 957.

Sarvas, R., & Soininen, A. (2002, October 15-16).
Differences in European and U.S. patent regu-
lation affecting wireless standardization. Paper
presented at the International Technology and
Strategy Forum Workshop on Wireless Strategy
in the Enterprise: An International Research
Perspective, Berkeley, CA. Retrieved on March
9, 2004, from http://www.hiit.fi /de/core/Pat-
entsWirelessStandardization.pdf

Schnably, S. J. (1993). Property and pragmatism:
A critique of Radin’s theory of property and per-
sonhood. Stanford Law Review, 347.

Shankland, S. (2004, April 22). GPL gains clout
in German legal case. News.com.

Sohei/General Purpose Management System T
0796/92, OJ EPO 1995, 525.

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. Dibona
et al. (Eds.), Open sources: Voices from the open
source revolution. O’Reilly. Retrieved from
http://www.oreilly.com/catalog/opensources/
book/stallman.html

State Street Bank and Trust Co. vs. Signature Fi-
nancial Group Inc., 927 F. Supp. 502, 38 USPQ2d
1530 (D. Mass. 1996).

Trompenaars, W. M. B. (2000). Legal support for
online contracts. In B. Hugenholtz (Ed.), Copy-
right and electronic commerce. Legal aspects of

electronic copyright management. Amsterdam,
The Netherlands: Kluwer.

Tyerman, L. (1971). The economic for copyright
protection for published books: A reply to Profes-
sor Breyer. UCLA L. Revs., 1100.

Vicom / Computer Related Invention, T O208/84,
OJ EPO 1987, 1.

WIPO. (1971). The Berne Convention for the
protection of literary and artistic works. Paris.

WTO. (1994). The Agreement on Trade-Related
Aspects of International Property, Annex 1C of
the Marrakech Agreement of April 15, 1994 estab-
lishing the World Trade Organization (“WTO”).
Retrieved January 20, 2006, from http://www.wto.
org/english/docs_e/legal_e/04-wto.pdf

KEY TERMS

 Copyright: A set of exclusive rights regulating
the use of a particular expression of intellectual
property.

 EPC: Convention on the grant of European
patents (European Patent Convention) of October
5, 1973.

 EPO: European Patent Offi ce (München)
established by the EPC.

 Patent: A grant made by a government that
confers upon the creator of an invention the sole
right to make, use, and sell that invention for a
set period of time, through letters patent which
protect an invention by such a grant.

 TRIPS: The Agreement on Trade-Related
Aspects of International Property, Annex 1C of the
Marrakech Agreement of April 15, 1994 establish-
ing the World Trade Organization (“WTO”).

 USPTO: United States Patent and Trademark
Offi ce.

 339

Legal and Economic Justifi cation for Software Protection

 WTO: World Trade Organization, established
on April 15, 1994.

ENDNOTES

1 The Agreement on Trade-Related Aspects
of International Property, Annex 1C of the
Marrakech Agreement of April 15, 1994
establishing the World Trade Organization
(“WTO”).

2 The Berne Convention for the Protection of
Literary and Artistic Works (1971).

3 By Europe, we mean the European national
patent and the system pursuant to the Euro-
pean Patent Convention so that patents can
be applied centrally for all contracting states
of the European Patent Offi ce (EPO).

4 Article 52 (2) (c) EPC states that programs
for computers shall not be regarded as in-
ventions within the meaning of Article 52
(1) EPC and are, therefore, excluded from
patentability. Article 52 (3) EPC establishes,
however, an important limitation to the scope
of this exclusion. According to this provi-

sion, the exclusion applies only to the extent
to which a European patent application or
a European patent relates to programs for
computers “as such.”

5 Technical Chamber of the Board of Appeals
of EPO, February 4, 1999, Computerrecht
1999/6, 306-310 with Note of D.J.B. BOSS-
CHER, 310-312.

6 See also Free Software Foundation, Software
patents in Europe at http://www.fsfeurope.
org/projects/swput/swput.en.htm.

7 See An overview of “Open Source” Soft-
ware License, Report of the Software
Licensing Committee of the American Bar
Association’s Intellectual Property Section,
at http://www.abanet.org/intelprop/open-
source.html.

8 Free Software Foundation, FAQ on the GNU
GPL, at http://www.fsf.org/licenses/GPL-
faq.html.

9 See the work of Prof. Polk at www.law.upenn.
edu/blogs/polk/pqi/documents/2006_1_
presentation.pdf

340

Chapter XXVI
OSS Adoption in the Legal

Services Community
Ray Agostinelli

Kaivo Software, Inc., USA

INTRODUCTION

An instructive case study in OSS adoption is af-
forded by the experience of a number of govern-
ment-funded nonprofi t organizations in the legal
services community. Since 2001, over 20 such
organizations have established community Web
site systems built entirely on OSS technologies.
These Web sites are designed with a twofold pur-
pose: to serve as a portal where individuals who
cannot otherwise afford legal representation can
fi nd information to help with civil legal problems
and questions, and to facilitate collaboration be-

ABSTRACT

This chapter provides an anecdotal case study of the adoption of open source software by government-
funded nonprofi t organizations in the legal services community. It focuses on the Open Source Template,
a Web site system that provides information to the public on civil legal matters, and collaborative tools
for legal aid providers and pro bono attorneys. The successful aspects of the adoption within this com-
munity are traced to the funders’ emphasis on developing re-usable, non-proprietary technology tools,
the strong communitarian ethic which nonprofi ts share with the open source community, and the presence
of an active support network to broadly leverage intellectual capital. It is hoped that this chapter will
assist those considering the adoption of open source software by identifying the specifi c factors that have
contributed to the success within the legal services arena and the real-world benefi ts and challenges
experienced by the members of that community.

tween providers of legal assistance through the
use of online tools.

The subjects of this case study have some
particular characteristics which have shaped
their involvement with the technology and sug-
gest where their experiences are apt to be shared.
Those characteristics include: a small number of
thought leaders motivated to pursue OSS alterna-
tives to existing proprietary solutions; a broader
community receptive to the advice and guidance
of those leaders; a technology stack suffi ciently
mature to minimize the need for technical sup-
port while also suffi ciently open to allow for

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 341

OSS Adoption in the Legal Services Community

fl exible use and customization; continuing sup-
port, fi nancial, and consultative, from govern-
ment funders committed to spreading the use
of the technology and integrating it into wider
initiatives; and the establishment of a robust and
active community of users around the technology
committed to principles of sharing, collaboration,
and self-reliance.

The objectives of this chapter are to examine
the successes and failures associated with OSS
adoption by government-funded nonprofi ts by
exploring:

• The philosophical appeal of OSS to the
nonprofi t legal services community

• The practical application of the OSS develop-
ment methodology within the community,
including re-use and sharing of code

• The cost benefi ts realized by this commu-
nity

• The challenges in adopting OSS, including
the importance of a supportive infrastructure
and quality technical training

• Vendor relations, as they bear upon issues
of control and independence

This case study is meant to provide insight into
the real-world use of OSS within the nonprofi t
community and, by anecdote if not by rigorous
scientifi c analysis, to draw out some important
themes and implications of OSS adoption for those
considering a similar path.

BACKGROUND

The Legal Services Corporation (LSC) is a private,
nonprofi t corporation established by Congress
to provide civil legal assistance in areas such
as family law, housing, and consumer issues to
those who otherwise would be unable to afford
it. Since 2000, as part of its Technology Initiative
Program (TIG), the LSC has awarded grants to
nonprofi t legal services organizations nationwide

to subsidize innovative uses of technology to im-
prove the delivery of legal services to their client
population. A central focus of the TIG program
has involved the development of statewide Web
site portals where clients can obtain legal informa-
tion and where legal aid and pro bono attorneys
throughout the state can collaborate and share
resources.

Recognizing that statewide organizations
across the nation have common needs that can
be served by common tools, the LSC early on
decided to support technology solutions that could
be shared and reused by multiple groups, thereby
minimizing costs for development, training, and
support. In evaluating the merits of grant applica-
tions, replicability and reusability have always
been important criteria.

In 2000, the LSC awarded two grants that
subsidized the development of Web portal systems
for Pine Tree Legal Assistance in Portland, Maine
and Ohio State Legal Services Association in Co-
lumbus, Ohio. The vendor for those projects was
selected via an open RFP process with preference
given to proposals that included the use of OSS
tools. The resulting sites—www.helpmelaw.org
and www.oslsa.org, respectively—incorporate a
wide array of informational resources and col-
laborative tools, including a full-text searchable
document library, offi ce locator, calendaring
system, jobs database, and interest group areas
with discussion forums. Both sites were built
exclusively on OSS technologies, including Zope
(a leading OSS content management system),
MySQL, Apache, Python, and Linux.

In 2001, the components that comprised these
portal systems were re-packaged as a template that
could be easily customized for use by other legal
aid organizations. The Open Source Template
(OST), as it came to be known, was subsequently
endorsed by the LSC as one of two systems that
could be used by recipients of future grants subsi-
dizing statewide Website projects in other states.
(Hereafter in this chapter, the term OST shall be

342

OSS Adoption in the Legal Services Community

used to refer to the combination of Web-based
tools that comprise the template system.)

As of February 2006, the OST had been ad-
opted by over 20 states. Each state organization
employs a Website administrator (typically a part-
time position) to coordinate content on the site.
Depending upon the technical abilities within a
given organization, technical changes and support
are either performed in-house or outsourced to the
vendor who developed the original system, who
remains active within the community.

Traffi c to the Web sites varies fairly dra-
matically by state, ranging in 2005 from just
over 20,000 unique visits for the least popular
sites to 895,000 unique visits for the single most
popular (the Pine Tree Legal Assistance site in
Maine) which has experienced steady increases
in traffi c in each of its fi rst fi ve years, including
a 20% increase from 2004 to 2005.

MAIN FOCUS OF THE CHAPTER

Philosophical Appeal

While fl exibility and cost savings—two tradi-
tional benefi ts of OSS—are important to their
successful adoption in the legal aid arena, it is
interesting to note that its original appeal to mem-
bers of this community were as much philosophi-
cal in nature as purely material or fi nancial. The
non-proprietary ownership model, the emphasis
on collaborative development, and the benefi ts
of re-use and re-purposing are as conspicuous in
the legal aid arena as they are central to the OSS
development model.

Hugh Calkins, the director of research and
development at Pine Tree Legal Assistance, is
a respected leader on technology issues among
legal aid providers. An early champion of OSS
who argued forcefully for its adoption both within
his own organization as well as in the broader
community, Mr. Calkins points to the commu-
nitarian ethic of the OSS development model as

the single most important factor in determining
its applicability for his uses. “I think of legal aid
attorneys as open source lawyers. The ethic of
open source software fi ts perfectly with the way
we try to work in the legal aid community. We
are not proprietary about our work and we try
to build on what other people are doing around
the country.”

In the wide world of open source software
development, some projects seem to accumulate
robust communities of contributors while others
languish and eventually disappear. The power of
Mr. Calkins’ insight is that the universe of legal
aid providers across the nation already formed
a robust community dedicated to sharing intel-
lectual property and working toward common
goals—the network did not need to be grown from
scratch—and so its members were therefore well
positioned to reap the benefi ts of OSS principles
and methodologies.

Practical Application

From its inception, the OST was designed so that
innovations and advances made by one organiza-
tion could be shared with many others. Practically,
this is enabled by a combination of collaborative
technologies and dedicated support personnel.

A portal Web site dedicated to this community
includes an area where programming code can
be posted and downloaded. This portal predomi-
nantly includes code that enhances or extends
the template’s core functionality—a feature that
concatenates existing search routines into a global
search, for example; code to generate new reports
of resources in the document library; code to alter
the user authentication system so that self-regis-
tering users must enter a private identifi er before
gaining access to the site’s restricted content. (The
portal site does not contain major new component
functionality, which is typically beyond the ability
of the individual Web site administrators to inte-
grate without outside assistance.) The community

 343

OSS Adoption in the Legal Services Community

also makes use of a listserv on which questions
are raised and opinions are voiced.

For any technical problem or challenge as-
sociated with their use of the system, commu-
nity members are encouraged to fi rst consult the
shared code library to see if their problem has
been solved by others before them, then to solicit
assistance from the listserv, and fi nally, if those
avenues do not prove fruitful, to obtain support
from the primary vendor of the OST or another
outside technical resource.

In addition to the online collaborative tools,
an important part of the supporting infrastructure
for this community is a dedicated resource with a
national focus—a “circuit rider”—who combines
domain knowledge of the legal aid arena with in-
depth understanding of the OST platform. Her job
is to assist individual organizations in enriching
the content on their Web sites and to expand the
sites’ usage via stakeholder committees and mar-
keting efforts. While her primary purpose is not
to support the technical aspects of the sites, she
plays an important coordinating role in making
members aware of what is happening elsewhere
in the community and to help ensure that time
is not wasted solving problems that have been
solved elsewhere.

One interesting corollary of the application of
OSS development methodology in this commu-
nity has been the increased ability for disparate
organizations to share content in addition to
technology. The common platform has allowed
informational resources to be cross-posted easily
on related, though independent, sites. For example,
in Maine, a sub-section of their Website dealt with
Medicare Part D, the prescription drug plan that
went into effect in January, 2006. That content
was immediately made available to other sites,
including Legal Services for the Elderly, Maine
Equal Justice Partners, and Vermont Law Help,
where local administrators were able to quickly
post that content on their own sites, modify-
ing those portions that were state-specifi c and

retaining the federally focused content that was
generally applicable to all states.

Cost Benefi ts

Earlier, we cited the communitarian ethic as a
primary incentive for adopting OSS in the legal
aid community. As is typical in the world of
nonprofi ts generally, reduced cost has also been
an important factor.

Joyce Raby, a program analyst at the LSC
responsible for overseeing many of the statewide
Web site grants, cites decreased costs for both
initial development and subsequent enhancements
as critical factors in awarding OST grants: “New
Web sites get created very quickly as there is a
basic foundation already in place which is open and
accessible to everyone. No one has to start from
scratch. In addition, enhancements to the Web
sites are much less costly. As we have improved
and refi ned how the Web sites would operate,
each improvement only has to be created once
and is immediately available to all other users.
The incremental cost for replication around the
country is negligible compared to what it would
have been to do custom development for many
individual standalone sites.”

Speaking to the issue of maintenance, Ms.
Raby claims, “Support for the upkeep and admin-
istration of the Web sites is also less costly. We
funded a single circuit rider to provide ongoing
project management assistance to the Web site
implementation teams around the country. Had
each state organization created custom Web site
solutions, we might have been forced to fund mul-
tiple types of assistance to ensure our programs
got the help they needed.”

While it is diffi cult to quantify the cost impacts
directly ascribable to the use of OSS, some general
parameters are worth noting:

• The two original sites which served as the
foundation of the OST were developed at a

344

OSS Adoption in the Legal Services Community

combined cost of approximately $175,000.
(Since the vendor for those projects were
selected via an open RFP/Proposal process,
it is fair to assume this cost accurately re-
fl ects market rates for those development
projects.)

• The resulting template system was thereafter
made available to other organizations at a
cost of $10,000 per site. (This cost was not a
license fee but rather applied to the consult-
ing services associated with the initial setup
and confi guration of the site; the code itself
was available free of charge.)

The cost differential is a result, at least partly,
of the fact that (1) the original systems were
explicitly developed to be as re-usable and as
replicable as possible, and (2) the source code
for those systems was not held proprietarily by
either the vendor, the client organizations or the
LSC, but rather was explicitly made available for
adoption, modifi cation, and expansion by the other
organizations with similar needs.

There are no license fees associated with the
OST. On-going costs associated with the system
scale according to the technical support needs of
a given organization. These typically range from
approximately $1,000 per year (for hosting ser-
vices only) to approximately $10,000 (for hosting
plus signifi cant technical support).

Some additional cost impacts of the OST are
suggested in the following comparison. The al-
ternative Web template system endorsed by the
LSC for funding under TIG grants is a system
built on proprietary technology platforms and
offered according to an application service pro-
vider (ASP) model. The initial start-up cost for
this system, as with the OST, is $10,000 per site,
which includes a use license for the fi rst year.
On-going subscriber fees are $5,000-$15,000 per
year, scaling according to several factors includ-
ing the size of the organization.

This is not to say that the OST is by defi nition
dramatically less expensive than an alternative

ASP model. It is not. The OST model is, however,
more fl exible, allowing individual organizations
to pay only for what they need. The fl exibility is
a direct outgrowth of the non-proprietary nature
of the underlying code.

Challenges

Adoption of the OST has not been without its
challenges, many of which are common to the
broader world of open source software. The sup-
porting infrastructure described above (the shared
code portal; the listserv; the circuit rider) which
are critical to the platform’s success, has taken
several years to develop and mature. In the early
years of the platform’s existence, the user com-
munity was hierarchical and shallow, a few true
experts at the top guiding a much wider range of
less-skilled users at the base. Only in time has
a true peer-to-peer network developed, one in
which a listserv posting might realistically receive
a reply from all quarters, and where innovations
are occurring on multiple fronts, not exclusively
in the laboratories of the early adopters.

Another obstacle has been a direct by-product
of the open nature of the code. The relatively
greater fl exibility of the OST (than, e.g., the
alternative ASP platform) requires greater tech-
nical expertise within the user community. With
access to every level of the programming code,
the platform can be customized to any individual
organization’s needs. However, making custom-
izations does require some level of technical
knowledge, whether that is the CMS’s scripting
language, database/SQL, Python, or Linux shell.
Roughly speaking, about one half of the client
community has technical expertise suffi cient to
perform minor customizations without recourse
to outside vendors, and only about one quarter
can make major changes on their own.

Understanding that, training the OST users
on the CMS scripting language has been a high
priority, and trainings have been conducted at
least once a year since 2002. The effectiveness

 345

OSS Adoption in the Legal Services Community

of the training has been limited by two factors:
fi rstly, many of the Web site administrators for
the OST sites do not possess the requisite techni-
cal backgrounds to become extremely produc-
tive working with the system’s source code, and
secondly (and perhaps more representative of the
nonprofi t world in general) a high degree of staff
turnover has resulted in the need to re-train new
administrators. The result is that the OST’s fl ex-
ibility—a key reason that OSS was embraced—is
not always exploited to its fullest.

A fi nal challenge, also common to the broader
world of OSS, is the perpetual danger of fork-
ing. The community consists of over 20 sites, all
sharing a common code base, each of which can
be customized in signifi cant ways to fi t the local
needs. Enhancements made by one organization,
or by the OST vendor, always rely to some extent
on a certain baseline set of code in order to function
properly. If that baseline code has been altered,
then implementing features developed elsewhere
becomes prohibitively diffi cult, and the site will
have effectively orphaned itself from the com-
munity and lost the benefi ts of code re-use.

For the most part, forking has been kept to
a minimum within this community, largely via
constant consultation with the vendor, but also
because most organizations are either not inclined,
or do not possess the technical capability, to veer
dramatically from the mainstream. Still, the
importance of being attentive to the dangers of
forking and managing the development process
carefully cannot be underestimated, particularly
as the technical expertise level of the community
increases.

Vendor Relations

There is no doubt that the success of the OST
has relied to date on a very close relationship
between the vendor and the client community.
The importance of this relationship has been rec-
ognized by the LSC, and their model for funding
the OST sites has from the start included follow-

on grants that individual state organizations can
use for continued maintenance of the Web sites,
some of which can be applied to technical sup-
port activities.

Since ownership of source code and vendor
independence are important aspects of OSS, it
is worthwhile to consider the OST community’s
relation to the OST vendor. Do the community
members really have control? Are they really
independent? The answers are: yes and almost.

From a control standpoint, the members really
are in full command of their site’s underlying
technology. Every aspect of the application stack
is open and available to them. Individual sites can
be changed according to local needs, priorities,
and schedules. For example, OST administrators
at Legal Action of Wisconsin developed signifi -
cant enhancements to the security model on their
own initiative, according to client confi dentiality
requirements specifi c to their state. This can be
contrasted with the ASP model where any change
to the system, because it affects all users, must
be vetted by the community at large and imple-
mented according to the vendor’s development
schedule.

OST clients are independent, too, to the extent
that they are not contractually bound to the original
vendor beyond the initial cost for implementation.
For subsequent assistance, if they so choose, they
can return to the original vendor or draw from the
worldwide community of developers profi cient in
the underlying OSS technologies.

Practically, many of the client groups do con-
tinue to rely on outside assistance—predominantly
the OST vendor—because their needs for some
level of technical support still outstrip the user
community’s capacity to provide it. It is fair to
say that the “umbilical cord” connecting clients to
vendor is weakening, although it is not yet fully cut.
And while a full severance is not necessarily the
ultimate goal, the ability for these organizations
to maintain their sites without regular recourse
to outside consultation does speak to the sustain-
ability of the platform.

346

OSS Adoption in the Legal Services Community

FUTURE TRENDS

The sustainability of the sites was in fact studied
in 2005 by outside consultants tasked to examine
how the Web sites could be fi nancially supported
in the future in the absence of LSC funding. One
of their conclusions (Melton, 2005, p. 20):

Support networks remain critically important to
maintaining the momentum to sustainability. The
opportunities for sharing strategies, best prac-
tices, and lessons learned that the … networks
provide are invaluable to the ongoing maintenance
and growth of the state Web sites.

The network is key. Without the network—the
surrounding community of like-minded institu-
tional players with common goals invested in
the success of the technology—the long-term
prospects of the system are very much in doubt. In
this way, the OST experience reinforces a truism
of the OSS world, that absent a critical mass of
interest and traction, projects fall by the wayside,
grow outdated and are eventually abandoned.
Openness alone is no guarantee of success.

Technically, the growth path of the OST is
planned to mirror that of the underlying CMS
platform, Zope. In 2003, the OST was upgraded
to work under the then-current major version re-
lease of Zope which allowed the creation of more
powerful search and reporting functions in the
document library. In the future, other enhance-
ments and extensions to the platform that emerge
from the Zope community (which as an open
source project in its own right has thousands of
participants worldwide) including personalization
and workfl ow features, will be integrated into the
template and will be made available only for the
cost of integration, with no associated license or
upgrade fees.

The move toward OSS in the legal services
community is expanding in other ways as well,
independent of the OST platform. LSTech.org, a
major support site for technical advice and collabo-

ration, has fully standardized on OSS technologies
(including the Zope CMS, Sympa mail list and
MediaWiki collaboration platforms). In addition,
LSTech staff members regularly manage an Open
Source CyberCafe at industry conferences and
trade shows where attendees can browse the Web
and check their email using donated PC’s running
Linux and Mozilla Firefox.

CONCLUSION

To the extent that the legal aid arena is representa-
tive of the broader world of government-funded
nonprofi t organizations, the following general
conclusions can be drawn:

• The communitarian ethic of some sectors
of the nonprofi t world has a direct analog
in the shared, non-proprietary character of
OSS.

• Common philosophy makes nonprofi ts par-
ticularly well suited to realize the benefi ts
of reuse and sharing central to the OSS
development model since they are already in-
stitutionally committed to an open exchange
of intellectual property with like-minded
organizations.

• Given that the Web is a marriage of tech-
nology and content, a common technical
infrastructure also facilitates sharing of
information.

• Successful adoption of OSS depends on
the existence of an active support network,
which may take some time to mature. For
government-funded nonprofi ts, a commit-
ment to supporting the community during
that maturation phase is critical.

• Of the benefi ts typically associated with
OSS, the fl exibility that comes with control
over the technology is the most prominent.
Operating off a common code base that
they are free to customize, individual or-
ganizations can reap the benefi ts of others’

 347

OSS Adoption in the Legal Services Community

work while not being tied to an identical
platform.

• From a funder’s perspective, real cost savings
result from an initial strategic decision to
subsidize replicable systems such as tem-
plates with re-usable components. From a
client organization’s perspective, additional
cost savings may result from the greater
granularity in scaling individual needs to
technical support models as opposed to the
more fi xed cost models typically associated
with proprietary licensing structures.

• The benefi ts of the OSS model are most
highly realized when there is some level of
technical expertise available to individual
organizations. This deserves especially close
consideration in an arena like legal services
where full-time technical support staffs are
not the norm.

REFERENCES

Melton, L., Snider, O., & Zorza, R. (2005). En-
suring the long term viability of the statewide
Web site component of the access to justice sys-
tem. Unpublished Final Report of the Web site
Sustainability Project, prepared for the National
Association of IOLTA Programs under a grant
from the Legal Services Corporation.

KEY TERMS

 Adoption: The process of accepting and us-
ing particular software as a standard within an
organization.

 Community: A group of individuals who come
together due to a common interest or a shared
focus on a particular item or idea.

 Open Source Template (OST): A combina-
tion of Web site tools built exclusively on open
source technologies, funded by the Legal Services
Corporation, that allows clients to obtain assis-
tance on civil legal matters and enables collabora-
tion between legal aid providers within a state.

 Legal Services Corporation (LSC): A
private, nonprofi t corporation established by
Congress to provide civil legal assistance in ar-
eas such as family law, housing, and consumer
issues to those who otherwise would be unable
to afford it.

 Nonprofi t: An organization that does not
include the generation of a profi t as a core part of
its overall organizational focus or strategy.

 Technology Initiative Grant (TIG) Pro-
gram: A program within the LSC which directs
funds specifi cally to technology projects. The
program subsidized the development of the Open
Source Template.

 Zope: A leading open source content manage-
ment system, written in the python programming
language. It serves as the underlying platform of
the Open Source Template.

348

Chapter XXVII
The Road of Computer

Code Featuring the
Political Economy of Copyleft

and Legal Analysis of the
General Public License

Robert Cunningham
Sourthern Cross University, Australia

INTRODUCTION

This chapter has two distinct objectives. Firstly
to survey the political economic foundation of
copyleft as it applies to open source computer soft-
ware, and secondly, to provide some preliminary
legal analysis in relation to the General Public
License (GPL) which legally embodies copyleft
principles. The political economic dimension of

ABSTRACT

This chapter examines the development of open source computer software with specifi c reference to the
political economy of copyleft and the legalities associated with the General Public License (GPL). It
will be seen that within the context of computer software development the notion of copyleft provides an
important contrast to more traditional uses of copyright. This contrast symbolizes political, economic,
and social struggles which are contextualized within this chapter. As the GPL is an important legal
embodiment of copyleft, its legalities are preliminarily explored so as to determine its future potential.
While there is some scope to further refi ne the legal strength of the GPL, it will be seen that it remains
a strong and subversive legal instrument which will continue to underlie open source initiatives in the
years to come.

the chapter embraces a philosophical approach on
the basis that “philosophy offers nuance where
there was none” (Lehman, 1999, p. 239). In relation
to the GPL legal analysis, it should be noted by
way of disclaimer that the commentary constitutes
legal analysis, not legal advice.

The chapter begins its philosophical explora-
tion by giving a brief overview of copyright as
it applies to the language of computer software,

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 349

The Road of Computer Code

specifi cally source code. This is followed by a
discussion that contrasts closed source and open
source software development. It will be seen that
this contrast is grounded in a political, economic,
and social struggle which, almost classically, fi ts
into the right/left political divide. This divide is
made explicit by elucidating the anarchist tenden-
cies of open source software development via a
discussion of the “ tragedy of the anticommons”
theory. The political divide is also drawn upon by
way of juxtaposing the traditional notion of copy-
right with the open source notion of copyleft.

Copyleft is an innovative concept derived by
the open source movement which draws upon
traditional copyrights in an unconventional
manner so as to maximize information fl ow. It
is enshrined within Provision 2(b) of the GPL
and remains an important legal mechanism of
the open source movement. Those readers that
are primarily interested in the legal analysis, as
opposed to the political economic dimensions of
copyleft, are encouraged to turn directly to the
second half of this chapter. It will be seen in this
part, and thereafter, that the GPL raises a plethora
of interesting legal issues specifi cally arising from
its duality as a license and as a contract. While
the wholesale enforceability of the GPL escapes
the parameters of this chapter, the license/contract
duality of the license, which has led to it com-
monly being referred to as a contractual license, is
touched upon in order to uncover potential latent
legal issues. It will be seen that implicit within
the GPL discussion is the apparent self-enforc-
ing nature of the license which makes it at once
a strong and subversive legal instrument.

BACKGROUND

 Copyright and Computer Software

Copyright is one of the important pillars of the
international intellectual property right (IPR)
regime. Its practical effect is broad in relation to

both its application and its subject matter. As St.
Laurent (2004) explains, application of copyright
is automatically inferred in a broad manner to
the point that a drawing of a fl ower on a café
napkin is copyrighted simultaneously with its
creation and, generally speaking, becomes the
sole property of its creator. The drawing of the
fl ower cannot be displayed, copied or otherwise
commercially exploited by any person other than
the creator for the life of the copyright. Under
copyright law, no person other than the creator
can create “derivative works,” which are works
that depend upon or develop from the original,
copyrighted work. In many cases there is no need
for registration of the right as it automatically
attaches to every novel expression of an idea,
whether through text, sounds or imagery for the
period of the life of the copyright. In countries
such as the USA and Australia this is the life of
the creator plus 70 years.

Over and beyond the broad application of
copyright, subject matter is also far-reaching
touching upon a wide-range of endeavours; from
the mundane such as timetables and betting cou-
pons; to the truly artistic such as fi lms, literature
and music; to technology-based products such
as television broadcasts and computer software
(Caenegem, 2001). It is the latter form that is the
subject of this chapter. Although computer soft-
ware has escaped a statutory defi nition in many
Anglo-American countries, Justice Gibbs in the
Australian High Court did defi ne the notion of
computer program broadly in Computer Edge
Pty Ltd. Vs. Apple Computer Inc. (1986) 161 CLR
171 at 178-179 as:

a set of instructions designed to cause a computer
to perform a particular function or to produce a
particular result. (emphasis added)

The “instructions” manifest in what is called
computer code which generally exists in three
formats: fl owcharts, source code, and object code
(Carstens, 1994). Programmers initially draft a

350

The Road of Computer Code

new program in fl owchart form which symbol-
izes the idea of the program. Drawing upon the
fl owchart, the programmer then writes the source
code in a high-level programming language, such
as BASIC, C++, or Java, which corresponds with
the spoken English language (Mc John, 2000; Re-
ger, 2004). These high-level languages primarily
use descriptive words, formulas, and mathemati-
cal equations which enable the developer to tell
the computer what to do (Velasco, 1994; Nadan,
2002). Webbink (2003) observes that it is source
code that “links computers and humans” and its
legal protection is found in the form of a literary
text under copyright law at the time which it is
written. Once the source code is complete, a
compiler translates the written source code into
“executable” code, otherwise known as object
code, which is a low-level computer language that
is generally unintelligible as it consists primarily
of binary ones and zeros read by the computer to
run the program (Wilson, 1993; see also Apple
Computer Inc. vs. Franklin Computer Corp., 714
F. 2d 1240. 1243. 219 U.S.P.Q. (BNA) 113 (3d Cir.
1983) at 116).

The fact that computer software, or more
specifi cally source code, has been deemed to be
a literary work under copyright laws suggests
that the creation of source code is indeed a cre-
ative act. While computer software can also be
protected via the industrial intellectual property
instrument of patents, this dimension of protec-
tion lies outside the scope of this chapter (N.B.
readers interested in the patenting of software
issue can turn to literature such as Fitzgerald and
Fitzgerald, 2004, and Lemley, 2003).

The intellectual property ownership or other-
wise of creative output concerning source code is
an issue which will obviously effect the creative
development of computer software, and is an issue
which lies at the heart of this chapter. This owner-
ship issue is of particular signifi cance within the
different software development models, and it is
to this subject that the chapter now turns.

MAIN FOCUS OF THE CHAPTER

From the outset it is important to recognize that
this chapter, in the name of brevity, has adopted the
position of merging the free software movement
with the open source movement, since the focus
is the juxtaposition of the closed and open source
software development models. This position is
adopted in full recognition that it is a simplifi ed
perspective as there are critical nuances between
the free software movement and the open source
movement. While these nuances are beyond the
scope of this chapter, they remain important and
are dealt with elsewhere (see, e.g., Nadan, 2002,
pp. 353-363). In using the term open source, this
chapter is therefore implicitly referring to both
the free software and open source movements
collectively. While this approach is somewhat
simplistic is does allow for the discussion of an
important juxtaposition between closed source
and open source software development which is
an issue to which the chapter now turns.

Closed Source vs.
Open Source (2006)

Moglen (1999a) suggests “there is a myth, like
most myths partially founded on reality, that
computer programmers are all libertarians.”
According to this myth right-wing libertarians
support closed proprietary models of software
development, are avid capitalists who play the
stock-market and scorn unions, civil rights laws
and taxes; the left-wing libertarians support open
source software development, detest the market
and all government, and hate Bill Gates because
he’s rich (Moglen, 1999a, 1999b). While this myth
is a useful starting point for discussion, the analysis
of Vaidhyanathan (2004) provides greater political
and philosophical depth and insight. Vaidhyana-
than (2004) suggests that at the heart of the tussle
between close source and open source software
programming is the clashing ideologies of anarchy

 351

The Road of Computer Code

and oligarchy. As Vaidhyanathan (2004, p. xii)
somewhat playfully puts it:

One side invents a device, method, algorithm or
law that moves our information ecosystem toward
increased freedom of distribution and the other
subsequently deploys a method to force informa-
tion back into its toothpaste tube.

Drawing upon Figure 1 under Vaidhyanathan’s
(2004) analysis, the close source software pro-
gramming tends towards corporate capitalism
or (economic) fascism whereas the open source
software programming tends towards liberal
socialism or anarchism.

This perspective reinforces a generalized no-
tion that the clash between closed and open forms
of software development is real. The clash is based
on a political, social and economic struggle, and
is “between those that wish to commodify and
exploit creative output and those that wish to
be able to access and freely distribute informa-
tion in an act of social discourse” (Fitzgerald
& Fitzgerald, 2004, p. 446). The struggle has
manifested in many ways, one of which is the
development by the open source community of a
“gift culture” which has been built to counteract

Figure 1. (Source: Adapted from Stilwell, 2000)

and mitigate against “worrisome concentrations
of corporate power in the software industry [by
disdaining] those who seek to fi nancially profi t
from the community’s shared body of knowledge”
(Fitzgerald & Bassett, 2003b, p. 16). The chapter
now turns to a juxtaposition of these two different
modes of software development.

 Closed Source Software Development

Closed source software development methods
involve proprietary interests employing a group
of programmers to create, test, and debug code.
The programmers are generally subject to a non-
disclosure agreement, and copyright is claimed
over the resulting code (Suzor, Fitzgerald, &
Bassett, 2004). Under this method of software
development, software is marketed as a copyright
license and defi ned as “any product we make
available for license for a fee” (Microsoft Open
License Agreement v 6.0, 2001, para. 1). Such
proprietary licenses are typically sold under a
 volume license product key (VPK) which gives
the consumer the right to install, copy, access, use
or display the product for the number of copies
authorized. The consumer is held liable for any
unauthorized use of this key.

Authoritarian

Egalitarian Inegalitarian

Libertarian

State
Communism

Corporate
Capitalism

Liberal
Capitalism

Liberal
Capitalism

COMMAND-
ADMINISTRATIVE
SYSTEM

FREE-MARKET
CAPITALISMANARCHISM

Close source

Open source

FASCISM

352

The Road of Computer Code

The closed source software model is exempli-
fi ed by Microsoft software, and is the model used
by most software companies today. Economically,
Bobko (2000) indicates that this model operates on
two assumptions. Firstly, that selling the product
will compensate the company for the developer’s
labour and time, and secondly, that the market
price of the software will be proportionate to
its economic value. Accordingly, under these
assumptions the corporation will theoretically re-
cover its costs of production (Johnston & Grogan,
1994). Under the closed source model it is argued
that distributing the program exclusively in object
code reduces the risk of exposing the source code,
which would allow computer engineers to see the
embodiment of the original programmer’s skill,
effort, creativity, and innovation. The publica-
tion of source code would also allow a computer
programmer to take and reuse the innovative or
labour-intensive aspects of a particular program
and use this innovation in that programmer’s own
competing program (Nadan, 2002). This process
of “reverse-engineering” is considered to be a
threat to closed source software developers, as
they argue that it would diminish the competitive
advantage of their original program (Carstens,
1994). This threat is echoed in the following direct
testimony by Bill Gates in State of New York vs.
Microsoft Corporation (see Suzor, Fitzgerald, &
Bassett, 2002, p. 1):

a … competitor who is free to review Microsoft’s
source code … will see the architecture, data
structures, algorithms and other key aspects of
the relevant Microsoft product. That will make it
much easier to copy Microsoft’s innovations, which
is why commercial software vendors generally do
not provide source code to rivals.

 Open Source Software Development

Frustrated with the monopolization of creativity
and innovation, the computer scientifi c com-
munity evolved an open source software move-

ment which subscribes to the principles of free
modifi cation and distribution of source code
(Gomulkiewicz, 1999). Under the open source
software development model, the typical arrange-
ment is for a community of developers’ to engage
with source code so as to create extensions and
enhancements and improvements, which are in
turn fed back freely into the community so as to
be further enhanced, extended and improved. With
proprietary software, enhancements and the fi xing
of bugs are entirely dependent upon the schedule
and employees of a single corporation such as
Microsoft. On the contrary, under the open source
model a plethora of software development com-
munities, connected via the Internet around the
world, are available to freely and willingly provide
enhancements and bug fi xes, and “if you are not
satisfi ed with their pace or performance, you can
simply do it yourself” (Nadan, 2002, pp. 352-353).
Open source projects are generally facilitated via
the original software developer or a small group
of interested programmers who typically act as
a de facto project manager, by controlling what
new code will be incorporated into the evolving
software program, as well as ensuring that any
new enhancements, extensions, or improvements
are suitably well written to be integrated into the
offi cial code base. The project manager “may act
as an offi cial arbiter of versions, and periodically
release offi cial improved versions of the original
source code to incorporate other programmers’
modifi cations” (Natoli, 1999, p. 2).

One of the leading fi gures of this movement,
Richard Stallman, argues that common propri-
etary software “keeps users helpless and divided
[since] the inner workings are secret” (Stallman,
2001a). The open source movement therefore is
based on the notion that the public should have
“the freedom to study, change and redistribute the
software” it uses or obtains, since “these freedoms
permit citizens to help themselves and help each
other, and thus participate in a community” (Stall-
man, 2001a). Stallman builds upon this point in
the following metaphor (Lessig, 2001, p. 50):

 353

The Road of Computer Code

So imagine what it would be like if recipes were
packaged inside black boxes. You couldn’t see
what ingredients they’re using, let alone change
them, and imagine if you made a copy for a friend,
they would call you a pirate and try to put you
in prison for years. That world would create
tremendous outrage from all the people who are
used to sharing recipes. But that is exactly what
the world of proprietary software is like. A world
in which common decency towards other people
is prohibited or prevented.

The open source software movement is perhaps
best understood in terms of the methods employed
to distribute software code. The open source move-
ment vehemently argues that easy access to source
code can facilitate effi cient detection of bugs and
security problems and enhance the positive evolu-
tion of a product (Fitzgerald & Fitzgerald, 2004).
Presumably on the basis that the “proof is in the
pudding”, the open source movement spawned a
number of free software initiatives in the 1980s as
a direct reaction to AT&T’s propertisation of the
Unix operating system. One such freely available
initiative was the BSD Unix system which was a
largely modifi ed version of Unix launched by the
University of California at Berkeley.

Stallman, in his role as one of the open source
visionaries, also reacted to the propertisation of
Unix by founding the Free Software Foundation
and the GNU project (www.fsf.org). The GNU
project, which stood for “GNU’s Not Unix” by
way of an ironical recursive acronym, was guided
by the principle of freely distributed source code
and collective creation (Moglen, 1999a). Anyone
could freely modify and redistribute such soft-
ware, or sell it, provided they did not attempt to
reduce the rights of others to whom they passed
it on. In this manner open source software has
become a self-organizing project, in which no
innovation can be lost through the proprietary
exercises of rights. It has been through this self-
organising nature of open source that important
software developments have evolved. One such

development is the fore-mentioned GNU/Linux
operating system which was completed when
Finnish student, Linus Torvalds, added the Linux
kernel to the evolving GNU project (Nadan,
2002). While Linux was initially considered little
more than a student joke, it presently makes up a
signifi cant share of the operating systems market,
and is seen as a signifi cant competitor to Microsoft
being successful enough to be used in many com-
mercial and government environments (Dusollier,
2003). Indeed, in recognition of the stability of
open source software programs, the Australian
Capital Territory (ACT) Legislative Assembly,
on December 10, 2003, passed the Government
Procurement (Principles) Guideline Amendment
Act 2003, which ensures the government considers
the use of open source software when procuring
computer software.

Interestingly, the Linux open source operating
system “was created, and is continuously updated,
by a global network of software developers who
contribute their labor for free” (U.S. vs. Microsoft
Corp., 84 F.Supp.2d 9, 23 [D.D.C. 1999]). As the
Open Source Initiative’s Web site states (http://
www.opensource.org/index.html):

The basic idea behind open source is very simple:
When programmers can read, redistribute, and
modify the source code for a piece of software, the
software evolves. People improve it, people adapt
it, people fi x bugs. And this can happen at a speed
that, if one is used to the slow pace of conventional
software development, seems astonishing.

This mode of development raises interesting
questions concerning why people would volun-
tarily give their time to develop software in such
a manner. Perhaps the impetus for such activity is
comparable to Mozart’s desire to make music, and
Monet’s yearning to paint pictures. That is, the
desire to create, to contribute and to perhaps leave
a mark on the world. Raymond (1998) has labeled
the phenomena as it applies to computer software
development as “egoboo,” which he describes as

354

The Road of Computer Code

the enhancement to self-esteem and reputation that
results from successful participation in the group.
Whatever the reason, the development of the Linux
operating system is living proof that computer
software can evolve through such collaboration and
there are more recent examples which prove the
same. For instance, within hours after the Netscape
browser’s source code was released as open source
in 1998, a group of Australian programmers had
created additional code to enable secure Internet
transactions, and within one month the open source
community had completed a new version of the
browser (Cella & Kelly, 1999).

A signifi cant aspect of the self-organising
nature of the free software movement has been
its anarchistic tendencies, as well as its licensing
mechanism which have evolved as a proactive
attempt to diminish the harmful consequences
of the tragedy of the anti-commons. We will now
turn to a discussion of these aspects of the open
source movement.

 Anarchy and the Anticommons

As a political philosophy anarchism is especially
suited to the open source network society, which
has evolved via the Internet, as it represents organi-
zation through disorganization, or in other words,
order through chaos. Such anarchist principles
have been drawn upon in open source software
literature as exemplifi ed in the celebrated article
of The Cathedral and the Bazaar by Raymond
(1998) where he quoted Russian anarchist, Kro-
potkin, when referring to the mode of communal
software distribution:

Having been brought up in a serf-owner’s family, I
entered active life, like all young men of my time,
with a great deal of confi dence in the necessity of
commanding, ordering, scolding, punishing and
the like. But when, at an early stage, I had to man-
age serious enterprises … I began to appreciate
the difference between acting on the principle
of command and discipline and acting on the

principle of common understanding. The former
works admirably in a military parade, but it is
worth nothing where real life is concerned, and
the aim can be achieved only through the severe
effort of many converging wills.

As Vaidhyanathan (2004) indicates, anarchism
is arguably the most misunderstood political phi-
losophy of the 21st century, perhaps because the
big political and philosophical skirmishes have
been among the forces that oppose anarchy such
as capitalism, (state) socialism, and fascism. It is
derived from the Greek word anarchos, which
means “without authority”, and while it is com-
monly associated with bloody violence and rage,
it should be understood that anarchists generally
believe deeply in an ideology of love (Vaidhyana-
than, 2004). As a fact or condition, anarchism is
perhaps the original political philosophy of Homo
sapiens as the world has witnessed many stateless
societies by way of groups of people who have
lived without a dominant institutionalized author-
ity. The cyber world can perhaps be considered as
an extension of this stateless condition, and in this
regard anarchism is embedded within the open
source movement via the principles of voluntary
association, mutual aid, cooperation, consensus,
collaboration, and anti-possessive individualism.
It is the latter principle that has inspired the open
source movement, in an ironical twist, to turn the
liberal notion of property on its head by subver-
sively drawing upon the notion of (intellectual)
property to communalise information.

Heller’s (1998) “tragedy of the anticommons”
theory is insightful when seeking to appreciate
the informational commune aspect of the open
source software movement. Heller’s theory
states that where “too many owners hold rights
of exclusion, the resource is prone to under use.”
This newly emerging discourse can be juxtaposed
against Hardin’s (1968) original “ tragedy of the
commons” discourse which states that when too
many people have a privilege to use a resource and
no one user has a legal right to exclude any other

 355

The Road of Computer Code

user the end result is over consumption and the
depletion of the resource. An important differen-
tiator between Hardin’s “tragedy of the commons”
and Heller’s “tragedy of the anticommons” is the
“right to exclude.” As Aoki (1998) explains, in the
commons situation, part of the problem is that no
one has the right to exclude, thereby giving rise
to over-utilisation and depletion. By contrast,
with the anticommons situation, too many par-
ties independently possess the right to exclude,
which gives rise to under-utilization amounting
to the “tragedy of the anticommons.”

A corollary of the anticommons quandary is
that “rational individuals, acting separately, col-
lectively waste a resource by underconsuming
it compared with the social optimum” (Heller,
1998, p. 677). One of the examples Heller uses
to demonstrate the anticommons phenomena is
the post-1989 Moscow storefronts that remain
empty, while at the same time fl imsy metal kiosks
proliferate. In the context of IPR’s the corollary
of the anticommons is that the demands of many,
paradoxically, go unmet. In this way, the tragedy
of the anticommons reminds us of the limits inher-
ent in this propertising of information (Wagner,
2003). The late U.S. president Jefferson understood
this constraint when he surmised that “inventions
then cannot, in nature, be a subject of property”
(Washington, 1855, p. 181). Thus, despite the
maximalist impulses of the international IPR
regime, the attempts to propertise information
have not been entirely successful because “in-
formation really does want to be free” (Wagner,
2003, p. 1003).

Relevantly, the issue of propertising of infor-
mation and its effect on creativity and innovation
lies at the heart of the struggle between closed
and open source software development models.
On the one hand, the closed source developers
argue that an information commons can expand
even as proprietary information is increased,
since “whereas on Blackacre every square yard
that is propertised diminishes the total left in the
commons, in the information commons, no such

zero-sum game exists” (Wagner, 2003, p. 1002).
On the other side of the coin, the open source
developers believe that to the extent that informa-
tion is both costless and nondiscriminatory the
costs of further creation will be reduced (Landes
& Posner, 1989). In this context, the open source
movement argues that information is nonrival in
that its use by one person does not deny others
from using it (Landes & Posner, 1989; Lemley,
1997). This creates a clear conception within the
open source movement that the maximization of
the informational commons fuels the fi re of human
progress since “creation begets more creation [and]
invention leads to further invention” (Wagner,
2003, pp. 1001-1002).

The open source arguments concerning the
maximization of the informational commons have
the effect of undermining the original utilitarian
foundation of IPR’s. In this way, the anticommons
analysis expands the current debate over the ap-
propriate scope of IPR’s to consider not just the
level of protection, but also the manner in which
those rights are designed and held (Elkin-Koren,
1998). This perspective places the focus on the
effect of the organization of rights with respect
to effi cient use of information. Excitingly, in the
name of subversive anarchism the open source
software movement has redefi ned the public
aspect of IPR’s by ensuring that information and
work disseminated can be drawn upon in future
projects so as to benefi t all of human-kind. One
critical legal mechanism underlying this subver-
sion is open source licensing, and in particular
the General Public License (GPL) which covers a
majority of open source projects. It is to the GPL
that the chapter now turns.

The General Public License

While a number of legal mechanisms have evolved
to accompany the various open source initiatives
which have spawned over the last few decades,
the GNU General Public License (GPL) and its
derivative, the Lesser General Public License

356

The Road of Computer Code

(LGPL), have remained the most popular, cover-
ing approximately 65% of all open source initia-
tives (James, 2003). According to James (2003),
other popular open source licenses include the
MIT Open Source License (9.4%), the Berkeley
Software Distribution License (7.5%), and the
Mozilla Public License (6.8%). This chapter
seeks to focus on the GNU GPL as it remains the
primary legal framework for the distribution of
open source software.

The GPL is a unique licensing instrument that
governs downstream activity of licensed work
(i.e., open source software) creating a strategic
mechanism that ensures that information remains
“free” as in speech (as opposed to “free” as in
beer) (Fitzgerald & Fitzgerald, 2004). It was
fashioned by the Free Software Foundation who
realised that IPR’s could be utilised in a manner
which secured open access to knowledge, rather
than the simple motif of profi teering. The GPL
operates by conditionally granting the user the
right to use, reproduce, distribute, and modify the
software. Under the GPL, users must consent to
supply the source code to anyone they provide the
object code, and each copy of the program must
include a valid notice of copyright and a warranty
exemption (GNU General Public License, 1991,
provisions 3a-c). The license applies automatically
to each new copy of the software as well as to each
derivative work or other variation of the software.
A user who modifi es software developed and
distributed under a GPL cannot impose restric-
tions other than those tolerated by the original
license. This aspect of the GPL disallows software
written and distributed under the license from
being subsequently appropriated by proprietary
interests (Dusollier, 2003). In this manner IPR’s,
specifi cally copyright law, is used to create a
“copyleft” effect as opposed to a copyright effect
by ensuring that code remains accessible (i.e., free
and open) for all to use in the development and
innovation of software (Fitzgerald & Fitzgerald,
2004). As Stallman (2004) states, “Proprietary
software developers use copyright to take away

the users’ freedom; we use copyright to guarantee
their freedom. That’s why we reverse the name,
changing copyright into copyleft.”

The GPL and Copyleft

The principle of copyleft is enshrined in the Pre-
amble of the GPL and is primarily enacted via
Section 2(b) of this license which states:

2. You may modify your copy or copies of the
Program or any portion of it, thus forming a work
based on the Program, and copy and distribute
such modifi cations or work … provided that you
also:

(b) … cause any work that you distribute or
publish, that in whole or in part contains or is
derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third
parties under the terms of this License.

In this manner the copyleft effect is created
because anyone who develops software based on
GPL’d code must give the public free use, modifi ca-
tion, and distribution of the derived work (Horne,
2001). In the words of Stallman (2004):

To copyleft a program, we fi rst state that it is
copyrighted; then we add distribution terms,
which are a legal instrument that gives everyone
the rights to use, modify, and redistribute the
program’s code or any program derived from it
but only if the distribution terms are unchanged.
Thus, the code and the freedoms become legally
inseparable.

Copyleft licenses therefore provide that a user
may distribute the open source code and any modi-
fi cations to it, provided the user does so under the
same open source license which the user received
it. In this way, as the code and modifi cations to
it pass from person to person or entity to entity,
they stay open source. This is in deep contrast to

 357

The Road of Computer Code

the closed distribution model where source code
is not released and can only be obtained through
the complex tasks of reverse-engineering or de-
compilation (Gomulkiewicz, 1999).

In essence, the main objective of the copyleft
provision is therefore to prevent anyone from ap-
propriating the open source code by, for example,
distributing it under a proprietary, non-GPL
license. To take the successful Linux operating
system discussed above, for example, without
copyleft a proprietary interest could obtain the
open source code of Linux, make some modifi -
cations, and then license the modifi ed operating
system under a proprietary model, profi teering
from the sale of this new operating system, but not
revealing the source code. The effect of this situ-
ation is that the proprietary interest has been able
to disproportionately benefi t from a product they
have contributed very little to. Such conduct would
undermine the open source software because the
free labour that contributes to the evolution of
this software would be unwilling to share code
enhancements if someone could take the code
private and not share their enhancements with the
rest of the “community” (Nadan, 2002).

The open source movement argues that the
requirement that any derivative works of GPL
code also be covered by the GPL is reasonable,
because if it was not for the GPL, the user would
in fact have no rights to create the derivative works
in the fi rst place. That is, “the condition on the
abandonment of the restriction of the [GPL] is the
surrender of the rights granted by the license” (St.
Laurent, 2004, p. 152). This self-enforcing nature
of the GPL is indoctrinated in Provision 5 of the
license which states that:

5. You are not required to accept this License,
since you have not signed it. However, nothing
else grants you permission to modify or distribute
the Program or its derivative works. These actions
are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing
the Program (or any work based on the Program),

you indicate your acceptance of this License to do
so, and all its terms and conditions for copying,
distributing or modifying the Program or works
based on it.

In this way, the GPL “actually has the strength
to say no to people who would be parasites on our
community” since the potential licensee is faced
with a choice: either refuse the GPL, which means
they are barred from distributing or modifying
the work (except to the limited extent permit-
ted by fair use), or accept it, and use the work
as permitted by the GPL (Stallman, 2001b; St.
Laurent, 2004, p. 152). Importantly, the GPL is
only triggered if a user attempts to distribute the
software or a derivative work made from GPL’d
code. Since no one can ever redistribute without
a license, it can be safely presumed that anyone
redistributing GPL’d software intended to accept
the license (Moglen, 2001). This is especially
the case because provisions 1 and 2 of the GPL
requires that each copy of GPL’d software include
the license text, so as to ensure that everyone is
fully informed of the license conditions.

FUTURE TRENDS

Thus, implicit within the GPL is a self-enforc-
ing aspect which applies to the license itself, as
well as notice of the license. This is, of course,
provided the GPL is in fact enforceable. While
the resolution of the general enforceability of the
GPL is beyond the scope of this chapter and there-
fore the subject of further research, one relevant
and important consideration that can be touched
upon is whether the GPL is a license, a contract,
or some combination of both (i.e., a contractual
license) as this will presumably have some bear-
ing on GPL enforceability. This chapter puts forth
the view that the future trend of the GPL from a
legal perspective will be the culmination of the
law of license and contract.

358

The Road of Computer Code

The GPL: License or Contract?

The legal classifi cation of the GPL as contract
and/or license is important because contract
law is subject to the vagaries of various national
approaches whereas a copyright license enables
products to come under intellectual property
laws that have been harmonised by international
treaties such as the Berne Convention, WIPO
Copyright Treaty (1996) and TRIPS. The nuance
of the contract/license distinction was drawn upon
in Sun Microsystems Inc vs. Microsoft Corp 188
F. 3d 1115 (9th Circ, 1999) where the court stated
that (p. 1121):

Generally a copyright owner who grants a non-
exclusive license to use her copyrighted material
waives her right to sue the licensee for copyright
infringement and can sue only for breach of
contract: Graham v James 144 F. 3d 229, 236
(2d. Cir. 1998). If however, a license is limited
in scope and the licensee acts outside the scope,
the licensor can bring an action for copyright
infringement: S.O.S. Inc v Payday Inc 886 F. 2d.
1081, 1087 (9th

Cir. 1989).

As the GPL has had limited confrontation with
the courts up until this point, it cannot be stated
with any degree of certainty how the GPL will
actually be classifi ed. Open source commenta-
tors such as Eben Moglen, chief legal adviser
for the Free Software Foundation, suggest the
GPL is not a contract, but a license. As Moglen
(2001) states:

Licenses are not contracts: the work’s user is
obliged to remain within the bounds of the license
not because she voluntarily promised, but because
she doesn’t have any right to act at all except as
the license permits.

Moglen (2002) also made the following dec-
laration in Progress Software Corp vs. MySQL
AB 2002 U.S. Dist. LEXIS 5757:

The GPL is a very simple form of copyright li-
cense, as compared to other current standards
in the software industry, because it involves no
contractual obligations. Most software licenses
begin with the exclusive rights conveyed to authors
under copyright law, and then allow others access
to the copyrighted work only under additional
contractual conditions. The GPL, on the other
hand, actually subtracts from the author’s usual
exclusive rights under copyright law, through the
granting of unilateral permissions.

While the arguments concerning the GPL
as a license are compelling, this chapter argues
that the GPL represents a bundle of license and
contractual obligations. The license occurs, as the
discussion above indicates, because the GPL is
permitting a user to do something that they would
otherwise not be able to do. By way of analogy, if
an owner of real property permits a visitor on to
their land for a specifi c purpose, the visitor has
obtained a license as they are doing something
that they could not have done other than with
the owner’s permission (Fitzgerald & Bassett,
2003b). This requires no counter obligation from
the visitor and the arrangement therefore remains
a unilateral permission not a contract.

The contractual aspect of the GPL arises,
however, because of the positive obligations
placed upon the user by the GPL. As Madison
(2003) suggests, this is compatible with the un-
derstanding that many conventional lawyers’ have
of the software license as simply a contract that
stipulates the obligations of the licensor and the
licensee. The rationale underlying this view is that
software licensing relies on a legitimate but purely
positive legal framework, “drawn wholesale from
the domain of promissory obligation wrapped
around a core of property rights” (Madison, 2003,
p. 295). Contractual considerations arise because
the GPL does not just give rise to permission but
also to positive obligations. For example, the GPL
necessitates agreement of the “no warranty” pro-
visions, and it also requires that the source code

 359

The Road of Computer Code

be published and that the GPL attach itself to this
source code (GNU GPL, 1991, Provisions 1, 2, 11,
and 12). Seemingly, these obligations are positive
obligations in the sense that they require the user
to take positive action, as opposed to permission
for things that could otherwise not be done but for
the GPL. Such arguments strongly suggest that
positive obligations, particularly the limitations
of warranty, are matters of contract and cannot
be enforced except in contract law.

One fi nal consideration—whether or not the
GPL is considered to be a license, a contract, or
a contractual license—is the issue of notice. This
is because the lack of notice of the GPL on behalf
of the user could potentially increase the risk that
no contractual or license agreement has been
formed (see Ticketmaster Corp. vs. Tickets.Com,
Inc. 54 U.S.P.Q.2d [BNA] 1344 [C.D. Cal. 2000];
Specht vs. Netscape Communications Corp. 00
Civs. 4871 [AKS] 2001 WL 755396 [S.D.N.Y.
July 5, 2001]; and GNU GPL Version 2 [June
1991] post terms and conditions for relevant law
concerning computer software licensing assent).
To minimise this risk—which is according to this
chapter, incidentally, the only signifi cant legal risk
of the GPL—a code download site could be set
up so that the user is forced to click “I accept” to
a clickwrap form of the GPL before download-
ing. Commercial entities rely on clickwraps and
shrinkwraps every day, and employing the same
device for the GPL would be a simple, inexpensive
and prudent approach (Nadan, 2002).

Notice requirements aside, however, it is worth
reiterating that when it comes to the GPL some
diligence is required on behalf of the licensee
since if the licensee honestly believed that there
was “no license” applicable to the program, they
should have made no use of the program other
than the very limited uses permitted by copyright
law. It is in this manner that the subversive and
self-enforcing strength of the GPL is yet again
reinforced.

CONCLUSION

This chapter has surveyed the fascinating subject
of copyright as it applies to open source software
development. It was seen that source code as
computer language has become the subject of an
important economic, political, and social struggle
that is ultimately concerned with the ownership
of creative output in the context of computer
software development. The contrast between
closed and open source software development
models made explicit the nature of this political
polarization. It was seen that the experimental
nature of the open source movement creates a
tendency towards theoretical complexity, and for
this reason, the chapter focused on the academic
foundation of the open source movement, rather
than the closed source model. In this regard, the
anarchist tendencies of the open source movement
were confi rmed, as were the arguments supporting
the maximization of the information commons.
The chapter also verifi ed that the General Public
License (GPL) has become an important legal
mechanism to enact the principles and objectives
of the open source movement. While the ultimate
question concerning the enforceability of the
GPL was beyond the scope of this chapter, the
contract/license duality of the GPL did provide
fuel for a fruitful, if not brief, discussion concern-
ing the nature of the GPL as a legal mechanism.
One important dimension of this discussion
was the GPL as a culmination of licensing and
contractual arrangements in its capacity as both
a permit and as a facilitator of the copyleft no-
tion. This perspective provides a useful insight
into the complex nature of the GPL, while at the
same time highlighting the simple self-enforcing
nature of the license. In this way, the GPL was
shown to be at once a strong and subversive legal
instrument that will continue to underlie the open
source movement in the future.

360

The Road of Computer Code

REFERENCES

Aoki, K. (1998). Neo-colonialism, anticommons
property and biopiracy in the (not-so-brave) new
world order of international intellectual property
protection. Indiana Journal of Global Legal
Studies, 6(11).

Apple Computer Inc. vs. Franklin Computer
Corp., 714 F. 2d 1240. 1243. 219 U.S.P.Q. (BNA)
113 (3d Cir. 1983).

Bobko, P. (2000). Open source software and the
demise of copyright. Rutgers Computer & Tech-
nology Law Journal, 27(51).

Caenegem, W. (2001). Intellectual property. Syd-
ney, Australia: Butterworth Tutorial Series.

Carstens, D. (1994). Legal protection of computer
software: Patents, copyrights and trade secrets.
Journal of Contemporary Legal Issues, 20(13).

Cella, C., & Kelly, E. (1999). Considerations for
companies developing software under the open
source model. Cyber Law 9, 4(6).

Computer Edge Pty Ltd. vs. Apple Computer Inc.
(1986) 161 C.L.R. 171.

Dusollier, S. (2003). Open source and copyleft:
Authorship reconsidered. Columbia Journal of
Law and the Arts, 26(281).

Elkin-Koren, N. (1998). Copyrights in cyberspace:
Rights without laws? Chicago Kent Law Review,
73(1155).

Fitzgerald, B., & Bassett, G. (2003a). Leal issues
relating to free and open source software: Essays
in Technology Policy and Law (Vol. 1, QUT).
Retrieved January 11, 2006, from http://www.law.
qut.edu.au/fi les/open_source_book.pdf

Fitzgerald, B., & Bassett, G. (2003b). Legal issues
relating to free and open source software. In B.
Fitzgerald & G. Bassett (Eds.), Leal issues relat-
ing to free and open source software: Essays in

Technology Policy and Law (Vol. 1, QUT, chap.
2). Retrieved January 11, 2006, from http://www.
law.qut.edu.au/fi les/open_source_book.pdf

Fitzgerald, B. & Fitzgerald, A. (2004). Intellectual
property in principle. Sydney, Australia: Lawbook
Co.

Gomulkiewicz, R. W. (1999). How copyleft uses
license rights to succeed in the open source
software revolution and the implications for article
2B. Houston Law Review, 36(179).

GNU General Public License, Version 2. (1991,
June). Free Software Foundation. Retrieved June 6,
2005, from http://www.fsf.org/licenses/gpl.txt

Hardin, G. (1968). The tragedy of the commons.
Science, 162(1243).

Heller, M. (1998). The tragedy of the anticommons:
Property in the transition from Marx to markets.
Harvard Law Review, 11(621).

Horne, N. (2001). Open source software licens-
ing: Using copyright law to encourage free use.
Georgia State University Law Review, 17(863).

James, P. (2003). Open source software: An
Australian perspective. In B. Fitzgerald & G.
Bassett (Eds.), Leal issues relating to free and
open source software: Essays in Technology
Policy and Law (Vol. 1, QUT, chap. 4). Retrieved
January 11, 2006, from http://www.law.qut.edu.
au/fi les/open_source_book.pdf

Johnston, R., & Grogan, A. (1994). Trade secret
protection for mass distributed software. The
Computer Law, November.

Landes, W., & Posner, R. (1989). An economic
analysis of copyright law. Journal of Legal Studies,
18(325).

Lehman, G. (1999). Disclosing new worlds: A
role for social and environmental accounting
and auditing. Accounting, Organizations and
Society, 24(227).

 361

The Road of Computer Code

Lemley, M. (1997). Romantic authorship and
the rhetoric of property. Texas Law Review,
75(873).

Lemley, M. (2003). Software and Internet law
(2nd ed.). New York: Aspen Publishers.

Lessig, L. (2001). The future of ideas: The fate of
the commons in a connected world. New York:
Random House.

Madison, M. (2003). Reconstructing the soft-
ware license. Loyola University of Chicago Law
Journal, 35(275).

Mc John, S. (2000). The paradoxes of free soft-
ware. George Mason Law Review, 9(25).

Microsoft Open License Agreement vs. 6.0 (2001,
October 1).

Moglen, E. (1999a). Anarchism triumphant: Free
software and the death of copyright. Prepared for
delivery at the Buchmann International Confer-
ence on Law, Technology and Information, at
Tel Aviv University, May 1999. Retrieved Janu-
ary 11, 2006, from http://emoglen.law.columbia.
edu/my_pubs/anarchism.html

Moglen, E. (1999b). So much for savages: Navojo
1, Government 0 in fi nal moments of play. Re-
trieved January 11, 2006, from http://emoglen.law.
columbia.edu/my_pubs/yu-encrypt.html

Moglen, E. (2001). Free software matters: En-
forcing the GPL I. Retrieved June 6, 2005, from
http://emoglen.law.columbia.edu/publications/lu-
12.html

Moglen, E. (2002). Declaration of Eben Moglen
in support of defendant’s motion for a preliminary
injunction on its counterclaims in Progress Soft-
ware Corp v MySQL AB 2002 U.S. Dist. LEXIS
5757. Retrieved May 8, 2002, from http://www.
fsf.org/press/mysql-affi davit.html

Nadan, C. (2002). Open source licensing: Virus or
virtue? Texas Intellectual Property Law Journal,
10(349).

Natoli, A. (1999). Open source software, Multi-
media & Web Strategist, 5(2).

Raymond, E. (1998). The cathedral and the ba-
zaar. Retrieved January 11, 2006, from www.
fi rstmonday.org/issues/issue3_3/raymond/

Reger, C. (2004). Let’s swap copyright for code:
The computer software disclosure dichotomy.
Loyola Entertainment Law Journal, 24(215).

Specht vs. Netscape Communications Corp. 00
Civ. 4871 (AKS) 2001 WL 755396 (S.D.N.Y. July
5, 2001).

St. Laurent, A. (2004). Understanding open
source & free software licensing. San Francisco:
O’Reilly.

Stallman, R. (2001a). The GNU GPL and the
American way. Retrieved January 11, 2006, from
http://www.gnu.org/philosophy/gpl-american-
way.html

Stallman, R. (2001b, May). Free Software: Free-
dom and Cooperation. Speech presented at NYU.
Retrieved June 6, 2005, from http://gnu.archive.
hk/events/rms-nyu-2001-summary.txt

Stallman, R. (2004). The GNU operating system,
licenses: What is copyleft? Retrieved January 11,
2006, from http://www.gnu.org/licenses/licenses.
html#WhatIsCopyleft

Stilwell, F. (2000). Changing direction: A new
political economic direction for Australia. Syd-
ney: Pluto Press.

Suzor, N., Fitzgerald, B., & Bassett, G. (2004,
January). Free Software and Government Proceed-
ings of Linux and Open Source in Government
Conference. In The Challenges Conference Pro-
ceedings, Adelaide University, Adelaide, South
Australia, Australia.

Ticketmaster Corp. vs. Tickets.Com, Inc. 54
U.S.P.Q.2d (BNA) 1344 (C.D. Cal. 2000).

362

The Road of Computer Code

U.S. vs. Microsoft Corp., 84 F.Supp.2d 9, 23
(D.D.C. 1999).

Vaidhyanathan, S. (2004). The anarchist in the
library. New York: Basic Books.

Velasco, J. (1994). The copyrightability of nonlit-
eral elements of computer programs. Columbian
Law Review, 94(242).

Wagner, P. (2003). Information wants to be free:
Intellectual property and the mythologies of
control. Columbian Law Review, 103(995).

Washington, H. (Ed.). (1855). The writings of
Thomas Jefferson. New York: Thorne & Co.

Webbink, M. (2003). Licensing and open source.
In B. Fitzgerald & G. Bassett (Eds.), Legal issues
relating to free and open source software: Essays
in Technology Policy and Law (Vol. 1, QUT,
chapter 1). Retrieved from http://www.law.qut.
edu.au/fi les/open_source_book.pdf

Wilson, C., Jr. (1993). Software piracy litigation.
Florida Bar Journal, 67(l 29).

KEY TERMS

 Anarchism: Absence of government.

 Code: A set of instructions designed to cause
a computer to perform a particular function or to
produce a particular result.

 Copyleft: A type of intellectual property
license which uses copyright law to remove
restrictions on the distribution of copies and
modifi ed versions of a work for others and which
also requires the same freedoms be preserved in
modifi ed versions.

 General Public License (GPL): A unique
intellectual property licensing system which
governs downstream activity of licensed work by
conditionally granting the user the right to use,
reproduce, and distribute.

 GNU: An ironical recursive acronym which
stands for “GNU’s not Unix.”

 Open Source: Refers to practices in produc-
tion and development that promote access to the
end product’s sources.

 Tragedy of the Anticommons: Where too
many owners hold rights of exclusion, the resource
is prone to under use.

 Tragedy of the Commons: When too many
people have a privilege to use a resource and no
one user has a legal right to exclude any other
user the result is over consumption and depletion
of the resource.

 363

Chapter XXVIII
The Evolution of Free Software

Mathias Klang
University of Goteborg, Sweden

INTRODUCTION

Most legal documents exist in relative obscurity.
Despite their legal effect and control over our
lives they receive scant attention and are rarely
recognised as unique documents outside the nar-
row group who are responsible for drafting and
interpreting them. On occasion certain documents
rise above this obscurity and achieve an iconic
status where their actual content is overshadowed
by their symbolic value. Arguably the clearest such
example is the American Constitution. Its position
and fame go beyond its content, it is arguably more
important as a symbol than a legal document. The
iconic value of this declaration is enhanced by
the value society attributes to the ideology they
believe to reside within the formulations.

ABSTRACT

The more we rely upon software to mediate the many facets of our lives the more important the ability
to control and adapt that software to our needs becomes. The Free Software Foundation stands at the
forefront for this effort to ensure user empowerment. The main tool of the foundation is the General
Public License that has been a fundamental document in software development since its conception in
1989. At present the Free Software Foundation is in the process of launching a new version of their li-
cense and the process is similar to the development of an existing social contract—the delicate problem
is meeting the new challenges that have appeared since the earlier version while maintaining the spirit
of the original.

The focus of this chapter is the iconic software
license—the GNU General Public License (GPL).
Stated objectively the GPL is a widely used free
software1 license, originally written by Richard
Stallman for the GNU project. The latest version
of the license, version 2, was released in 1991.
While this is an accurate statement it fails to cap-
ture the importance and status of the document.
In a recent statement by the drafters Stallman
and Moglen (2005) the GPL was described as
fulfi lling four important roles: (1) the GPL is a
worldwide copyright license, (2) the GPL is the
code of conduct for free software distributors, (3)
the GPL is the constitution of the free software
movement, and (4) the GPL is the literary work
of Richard M. Stallman.

This list better captures the iconic status of
the GPL and indicates the list of stakeholders that

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

364

The Evolution of Free Software

have an interest in the way in which the license
develops. At present the development of the GPL
is a central issue in the world of software devel-
opment. The reason for the increased interest is
because the organisation in control of the license,
the Free Software Foundation (FSF), is presently
coordinating the move from version 2 to version
3. Their stated goal is to ensure that the spirit
of the license is maintained while the content
is updated to better refl ect the social-technical
developments that have taken place since version
2 was released in 1991.

This chapter will describe the background and
spirit of the GPL and also point to its importance.
The chapter will then explain some specifi c socio-
technical developments that challenge the effec-
tiveness of the existing license and a description
of the process of moving from version 2 to version
3, which is intended to meet these challenges. The
goal of this chapter is to arrive at an understanding
of the importance of the GPL and to observe how
it develops as a regulatory instrument to meet new
challenges while maintaining its ability to offer
the freedoms the license entails.

BACKGROUND

The Spirit of GPL

Writing about the importance of software is dif-
fi cult without resorting to what seems to be empty
hyperbole. It is important to point out that software
is rapidly becoming one of the most fundamental
building blocks of human interaction and activ-
ity. There remains a common misconception
that software is a complex component, which in
some sense “lives” within computer hardware. By
confi ning software to the inner workings of the
traditional computer most non-technical software
users are unaware of the extent to which software
permeates their lives.

Moglen (1999) talks of computers being un-
der our social skin but this seems to imply that

there are computers everywhere. To most people
the computer is still a very specifi c artefact that
only affects their lives in specifi c, controllable
situations. Talking less about the computers and
more about software may help bring about an
understanding of the omnipresence of software.
Also like most other things that surround us this
software belongs to someone. The software that
fi lls our homes and our lives is, in almost all
cases, the property of someone else and therefore
we are dependent upon the property of others for
our everyday lives to a much greater extent that
we may previously have imagined.

It was in part to counteract this that Richard
Stallman wrote the original announcement for
the GNU project in 1983. He wrote, “Starting
this Thanksgiving I am going to write a complete
Unix-compatible software system called GNU (for
Gnu’s Not Unix), and give it away free to everyone
who can use it.” In 1985 Stallman launched the
Free Software Foundation (FSF), an organisation
whose goals it is to promote the computer users’
right to use, study, copy, modify, and redistribute
computer programs.

The spirit of the GPL is commonly condensed
into what has become known as the four freedoms.
From the point of view of the FSF software li-
censes that offer these four freedoms to the user
is free software. Software that does not meet
all four of these freedom criteria is proprietary
software. These freedoms are the freedom: to
run the program, for any purpose (called freedom
0), to study how the program works, and adapt it
to your needs (called freedom 1), to redistribute
copies so you can help your neighbour (called
freedom 2) and to improve the program, and
release your improvements to the public (called
freedom 3). This list has become the mantra of the
free software movement are known collectively
as the four freedoms.

Despite the relatively clear description offered
by the four freedoms and the GPL the term free
software has been the subject of some contro-
versy. The fundamental freedom referred to is the

 365

The Evolution of Free Software

freedom from constraints—it is the language of
rights rather than the economic term in relation
to cost. This understanding of free builds on the
concept of software as a fundamental building
block in the information society. Therefore to be
able to maintain their fundamental freedoms users
need to be able to maintain full control over the
infrastructure. This egalitarian principle demands
that software remains beyond the control of those
who would limit its usage.

Before continuing it is important to provide a
brief clarifi cation on the concept of freedom the
GPL refers to. This is important since the term
has earlier caused some discussion (Klang, 2005).
The English language recognises two separate,
but related, understandings of the term free. The
term can both refer to the absence of cost and to
the absence to restrictions on liberty. Generally
speaking this duality of meaning should not cause
problems. The GPL is concerned with freedom in
other words, the absence of limitations on liberty.
In an attempt to clarify this Stallman (2002) pre-
sented a most original analogy in the discourse
on freedom by recommending that the term free
in GPL should be understood in terms of free
speech rather than in terms of free beer.

Among the critics of the term free software are
the creators of the term open source as an alterna-
tive term. Their argument for this alternative term
was that the ambiguity with the term free will
reduces the acceptance of free software in busi-
ness (Weber, 2004; Williams, 2002). In addition
to this argument there is a philosophical critique
to the freedom granted by free software and the
GPL. This argument is built upon the fact that the
content of the license creates limitations to what
the users may do with their work if this is licensed
under the GPL (Klang, 2005). The most widely
publicised limitations to the freedoms of the user
is the requirement that the user who modify and
then distribute free software must provide the
same freedoms to other users that they themselves
had received (Klang, 2005).

The latter critique of freedom is not a system
fl aw. Freedom without limitations will not ensure
the development and protection of free software.
Only freedom within limitations similar to those
provided by the GPL can ensure that freedom is
maintained for users. Moglen (1999) maintains
that this clause ensures users always have the
best available software. While critics claim that
this means that widespread commercial devel-
opment cannot take place, nor will commercial
companies dare to use any part of GPL software
in their products for fear that small parts of GPL
software may contaminate the whole. The latter
critique has led the GPL to be seen as largely
anti-commercial.

MAIN FOCUS OF THE CHAPTER

Inside the License

Is the GPL a license? On the face of it this may
seem an odd question. Despite this, a great deal of
effort has been spent on this question. However,
this question need not concern us here (for more
on this question see Metzger & Jaeger, 2001;
O’Sullivan, 2002, 2004; Rosen, 2004; St. Laurent
2004). Suffi ce to say that the basis of the GPL is
in copyright law (GPL preamble 5th paragraph &
§0). If there is no contract then what remains is
copyright. Almost all uses of copyright protected
material without the authors’ permission consti-
tute copyright violation. Therefore, the GPL can
then be seen as a unilateral statement from the
programmer not to sue for copyright violation as
long as the terms are followed.

The GPL preamble captures the spirit of the
license. It begins: “The licenses for most software
are designed to take away your freedom to share
and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to
share and change free software—to make sure the
software is free for all its users ...” The purpose of

366

The Evolution of Free Software

the preamble in the GPL is to provide a general
introduction to the license. Generally speaking the
legal status of a preamble is questionable. Since
preamble texts are not actually part of the license
but more a general introduction any court is free to
ignore such texts. However, the courts also have the
option to utilise the preamble if they are attempt to
clarify any ambiguity in interpretation of the license.
Therefore while the preamble may fall outside the
actual contract between the parties it is not without
value since it may be used to clarify the content of
the agreement between the parties.

The preamble places the license in a political
context. The license positions itself as being the
opposite of “most software” (GPL preamble 1st
paragraph) since it does not aim to limit people’s
freedom of use of the software. It is important to
realise that despite its tone of equality for all, the
group this license is aimed at is not the public at
large but a comparatively small group of program-
mers (O’Sullivan, 2004). The concept of freedom
is a naturally ambiguous (Klang, 2005) and in
order to clarify the concept the preamble explains
that the term free software entails (GPL preamble
2nd paragraph) “freedom, not price” and that this
freedom involves “... the freedom to distribute
copies of free software (and charge for this ser-
vice if you wish), that you receive source code or
can get it if you want it, that you can change the
software or use pieces of it in new free programs;
and that you know you can do these things” (GPL
preamble 2nd paragraph).

Copying, Modifi cation, and Distribution

Making verbatim copies of software and distribut-
ing them (GPL 1§) is covered under this license is
permitted under condition that a copy of the GPL
accompanies the copies and that the information
about copyright and warranties remains intact.
Modifi cation of the software is permitted, as
is the distribution of modifi ed copies (GPL 2§).
However these activities are subject to certain
conditions found in GPL 2§a,b & c.

Files, which have been changed, must display
the information of who made the change and
when the change was made (GPL 2§a). Changes
made cannot affect the licensing form. In other
words the original permissions granted by the
GPL must be maintained, at no additional cost,
even after changes have been made (GPL 2§b). If
the program reads commands interactively when
run it must be made in such a way as to display
the copyright notice, warranty disclaimer and
information on how to view the license. There
is a general exception to this rule. If the licensee
wishes to incorporate software protected by the
GPL and distribute the derivative under different
terms this can be done by obtaining permission
from the original copyright holder. If the copyright
holder is the FSF the licensee should contact them
for permission (GPL 10§).

All copying, modifi cation distribution and sub-
licensing of software is permitted only as long as
it falls within the scope of the GPL. Any attempts
to act in a manner which is not expressly provided
in the license is void (GPL 4§) as a result of this
the permissions granted to the licensee are revoked
and copyright law is enforceable (GPL 4§). Those
who have obtained rights through sub-licenses will
not automatically loose their permissions unless
they to act in a manner which is not expressly
permitted by the GPL (GPL 4§).

 Copyleft

This is probably the most controversial, and at
times misunderstood, concept of the GPL. The
term refers to the system by which the GPL in-
tends to create a software commons. From this
commons all programmers are free to take code
and use it as they wish. The condition for this
use is that if the resulting creation has used code
from the commons it too must pass into the com-
mons. The fact that the addition of a small piece
of GPL licensed code forces the whole software
produced to be released under the same terms as
the GPL has been referred to as the viral nature

 367

The Evolution of Free Software

(the term is sometimes attributed to Radin, 2000
but was in use in mailing lists earlier than this
date) of the GPL. The term has a largely negative
association and most pro-copyleft writers prefer
the less infl ammatory (no pun intended) term
vaccinated. The term viral refers to the fact that
GPL software in a sense infects any software to
which it is added. The term vaccination is so called
since the effect of the GPL is to protect software
against being appropriated and made into a form
less free to its users.

Changes made cannot affect the licensing
form. In other words the original permissions
granted by the GPL must be maintained even
after changes have been made. This is true even
if only a small part of the new program contains
code from the original. The content of GPL 2§a
is further developed (GPL 2§2nd paragraph) which
explains that identifi able sections of a program
may be distributed as independent programs under
other licenses. However if they are distributed as
part of the original program or cannot be seen
as independent then they must be distributed
under the GPL. Therefore the same code can be
distributed under different licenses, under the
GPL distributed as a section and an alternative
license if it is distributed as an independent pro-
gram. By doing so the GPL attempts to point out
that it does not make any claim to works written
entirely by individuals but its main interest is to
ensure that work released under the permissions
granted by the GPL are not limited in any way
(GPL 2§3rd paragraph).

While taking code covered by the GPL and
adding it to non-GPL code will require the whole
package to be distributed under the GPL. However
it is important here to point out that storing GPL
and non-GPL code on the same storage medium
will not require the whole content of the storage
medium to be licensed under the GPL.

The principle of copyleft should not be con-
sidered legally controversial. The combination of
copyrighted works creates derivative works as a
result. The creation of a derivative work requires

the permission of the copyright holder. Permission
from the copyright holder may be granted under
certain conditions and the condition referred to
as CopyLeft (GPL §2b) is valid condition.

Socio-Technical Developments

Version 2 of the GPL was released in 1991. The
social and technical changes have impacted on the
license and its ability to provide the four freedoms
to the users who rely upon them. Naturally, too
many developments relevant to the GPL have taken
place to be able to include them all. In an effort to
present an idea of what has been happening this
section will present three developments of vital
impact to the GPL, namely, the legal activity sur-
rounding the GPL, the issue of software patents
and fi nally the effect of TiVo-ization.

GPL in Court

The GPL is fi ghting an uphill battle. Afi cionados
and critics discuss the validity of the license on
Web pages, academics mimic this in journals,
lawyers speculate, and the whole community
waits. An important fact, which works in favour
of the GPL, is the fact that it has never lost in
court. This is important because the longer the
license can survive unchallenged the stronger it
becomes as it works its way towards becoming
a de-facto established trade practice.

The defence of the GPL is not limited to the
courts. The fi rst line of defence is the legal work
being carried out by organisations such as the FSF.
The general council of the FSF receives informa-
tion of GPL violation “dozens of times a year”
(Moglen, 2001). Since there is a strong sense of
community within the FOSS movement most of
these situations are usually rectifi ed voluntarily
by the party violating the GPL. This can be in-
terpreted as misunderstandings being cleared up.
The approach of the FSF has been to build upon
this community and take a non-confrontational
approach to violations.

368

The Evolution of Free Software

Similar work is being carried out by the GPL-
violations.org project. Since 2004 the organisation
has dealt with over 30 GPL violations, which have
resulted in out-of-court settlement agreements.
The project has been the fi rst to test the GPL
in court. The case (District Court of Munich I,
Judgement of 19/05/2004 (21 0 6123/04) involved
a company that distributed GPL licensed soft-
ware without providing the license. The court
found that this was a clear violation of the GPL
(Höppner, 2004).

Software Patents

 Software patents are viewed as a threat to free
software if they are used to limit the freedoms
discussed above. To prevent distributors (or
re-distributors) obtaining patents based upon
free software (in whole or in part) and limiting
the scope of freedom provided originally this
paragraph of the preamble is intended to empha-
sise the fact that this is against the terms of the
license. Software patents are permissible if the
patent is “… licensed for everyone’s free use or
not licensed at all.”

The GPL §7 expands the view presented in
the preamble and states that even if the licensee
is not released from the obligations of the license
even if the licensee is forced by any conditions
(not only patents) to contradict the terms of the
license. “If you cannot distribute so as to satisfy
simultaneously your obligations under this license
and any other pertinent obligations, then as a
consequence you may not distribute the Program
at all.” The solution offered by anyone pressured
into acting contrary to the license is to stop using
the software altogether.

Article §7 of the GPL was intended to prevent
certain detrimental effects caused by software
patents. Version 2 was therefore aware of the
threats posed by software patents. Despite this
awareness this version is not suffi cient to prevent
the numerous ways in which software patents can
be implemented to limit the effi ciency of free

software. It is the goal of the next version to adopt
a more comprehensive approach to combating the
ills of software patents.

TiVo-ization

Digital products such as mobile telephones, DVD
players and televisions all rely on an operating sys-
tem (OS) that manages the hardware and software
resources. The OS performs basic tasks, such as
controlling and allocating memory, prioritizing
the processing of instructions, controlling input
and output devices, facilitating networking, and
managing fi les. Both for reasons of cost and
adaptability many of the OS used in consumer
electronics are based upon free software.

One such application is the TiVo, a digital
product that can automatically fi nd and digitally
record selected television programs. The user
selects what is to be recorded and the TiVo locates
and records the program automatically. From a
programming point of view the TiVo is a device
based upon a free software base with a small layer
of proprietary software. The device has also given
rise to a technological process called TiVo-ization
(Turner, 2006).

The issue that FSF has with the process known
as TiVo-ization is neither that TiVo makes pro-
prietary software nor their proprietary software
runs on a Free Software operating system (Taylor,
2006). Both these practices are common occur-
rences and while the FSF would prefer users to
use free software exclusively this is not a viola-
tion of the letter or the spirit of the GPL. The OS
on the TiVo is a modifi ed GNU/Linux operating
system. It is in compliance with the GPL. TiVo
has released the source code for these modifi ca-
tions and therefore users are able to modify the
code and the operation of their product. To this
extent the TiVo is GPL compliant.

The issue FSF has with TiVo-ization is the
practice of implementing proprietary software in
such a manner as to control the ability of the user
to practice the freedoms granted by free software.

 369

The Evolution of Free Software

Free software on the TiVo is covered by the GPL
and therefore users can modify it to suit their needs.
The same is not so of the proprietary software.
By using digital signatures the proprietary code
will only interact with code that originates from
the TiVo programmers. Therefore when a user
attempts to modify the free software (in accor-
dance with the license) the user discovers that the
product will not function with these modifi cations
since any modifi cations also invalidate the digital
signature. Such systems of interaction between
Free and proprietary software invalidate freedom
1: the freedom to study how the program works,
and adapt it to your needs.

The threat of TiVo-ization is that it will ef-
fectively prevent the user from putting the four
freedoms into practice. Zuck (2006) attempts to
downplay this threat by arguing that TiVo-ization
is simply “… the merging of free and proprietary
software into a single system.” However, in
practice this is an error bordering on misinfor-
mation. TiVo-ization is the building together of
proprietary and free software systems with the
goal of circumventing the spirit of the GPL. It is
a method of systems building that acts in such a
manner as to follow the letter of the license while
making a mockery of the purpose.

The new version of the GPL (version 3) will
prevent the compliance with the letter of the free-
doms without the compliance to the purpose and
spirit of the GPL. Those developers who want to
be able to limit the users’ freedom through TiVo-
ization will in future not be able to build upon a
base of free software.

Renewing the Social Contract

One of the strongest features of the GPL, aside
from its clear ideology, is its stability. The license
has been used on tens of thousands of programs
over the last decade. Its stature has grown to
become more than a copyright—the GPL has,
for better or worse, achieved the iconic features
of a constitution. Despite its clarity, stability,

and widespread acceptance some lawyers insist
on attempting to obfuscate and complicate the
ideology with law and outlandish claims such
as “[the GPL] suffers from drafting errors and
too many revisions” (Guadamuz, 2004). Such a
comment seems uninitiated considering that the
license was launched in 1989, went to version 2
in 1991 and is in the process of moving to version
3 in 2006. Most licenses tend to be changed on a
more regular basis than this.

The widespread popularity and iconic status
of the GPL create a different type of problem for
the FSF. The issue is one of updating the basis
of a social contract to encompass the needs of
all the stakeholders without loosing sight of the
original ideology and clarity. In addition to this
the drafters of the GPLv3 are anxious to receive
the feedback and comments from the community
that they serve. To enable this, a transparent system
that promoted discussion was required.

The formal system can best be seen in the
overview of the process, which begins with the
initial release and presentation of the draft of the
GPLv3 with additional documentation such as the
overview of the review system and the explana-
tory documents. In addition to the more formal
structure the information needs to be communi-
cated out to the users and to ensure an equality of
information transfers was established. The latter
was accomplished primarily through the use of
the Internet as a distribution method of all texts
and additional audio and video material.

The process was formally commenced with the
release of the fi rst discussion draft of version 3 of
the GPL (including additional explanatory mate-
rial) at the fi rst International Public Conference
in January 2006, at the Massachusetts Institute
of Technology (MIT). The two day event at MIT
was recorded and the audio video material was
also made available online.

To ensure that comments on the GPL are col-
lected and dealt with discussion committees have
been formed. The members of the committees
were chosen to represent diverse users groups such

370

The Evolution of Free Software

as “... large and small enterprises, both public and
private; vendors, commercial and noncommercial
redistributors; development projects that use the
GPL as a license for their programs; development
projects that use other free software licenses, but
are invested in the contents of the GPL; and unaf-
fi liated individual developers and people who use
software” (GPL Process Defi nition). The role of
these committees is to organise and analyse the
received comments and propose solutions.

The FSF invited the initial members of the
discussion committees but granted the commit-
tees the power to invite further members and to
autonomously organise their work process. The
committees work to encourage commentary on
the license from the sectors they represent. Once
the comments have been collected, organised and
analysed the committee is responsible for present-
ing its results of the deliberations to the FSF.

Aside from this organisational method of
soliciting and analysing comments from a wider
public the FSF have created an online method
of allowing anyone to comment directly on the
license draft. This is done by creating commenting
system, which allows the user to read the draft
text of the GPLv3 online and if the user wishes
to provide a comment on the text, the users can
mark the section of their choice and add a com-
ment to the section directly online.

Once a user has commented on a section of
text, that section becomes highlighted. If no one
has commented on the text the background co-
lour is white. After a comment the background
is light yellow. The colour of the background
becomes progressively darker for each comment
added. This colour system allows users to see at
a glance which sections of the draft are the most
commented.

By holding the cursor over highlighted text the
user is informed how many comments have been
made on that section. By clicking on highlighted
text the comments that have been made appear
and can be read. The latter feature has the added
benefi t of reducing the amount of duplicated

comments since the commentator can see the
commentary of others.

FUTURE TRENDS

Seen as a social phenomenon, the GPL is much
more than a license—it is a philosophy. Yet despite
its iconic nature it is important not to overlook
the importance of the dry legal text that makes
up the GPL. The purpose of this text is to ensure
that the spirit of the license is maintained and
protected. The spirit of the GPL rests in the four
freedoms intended to ensure that free software
remains free even to future users.

The FSF position on freedom has developed
the concept of free software and ensured the
development of software which allows the user
to control fundamental elements of the necessary
infrastructure. This control is carried out through
the specifi c terms of the license in particular terms
that ensure that the user can adapt and distribute
the software. These terms have been developed
in a specifi c period of time and refl ected an
understanding of the technology at the time of
development.

Since the release of version 2 of the GPL, 15
years have passed. These years have also entailed
developments in technology and society that
affect the way in which the license works to pro-
tect the four freedoms. As this work has shown
some developments strengthen the position of the
license while others undermine it. Therefore, as
with all regulatory documents, the GPL needs to
be updated to be better suited to the social and
technical reality of the day.

Basing regulations on licenses can bring the
concern that licenses may be changed rapidly and
without rooting the changes with the community.
This has been seen here with the comment that the
license suffers from too many revisions (Guad-
amuz, 2004). These types of statements attempt to
create uncertainty were there is none. This article
has shown that the GPL has not been revised often.

 371

The Evolution of Free Software

In addition to this the process to draft and adopt
version 3 is transparent, based on participation
and supported by the user community.

CONCLUSION

Updating regulatory instruments always requires
caution. This is even more so in the case of a
document such as the GPL. The iconic nature of
the GPL makes the development of the license a
sensitive affair. This chapter has shown the way
in which the FSF is working to ensure that the
needs of all the stakeholders are met and that the
fundamental freedoms provided by the license are
not lost either intentionally or inadvertently. The
FSF have chosen to be transparent and open in
their process. They are inviting comments from
all comers. At the same time they are not going
so far as to relinquish control over the drafting
process altogether. This open controlled approach
is in line with the FSF attitude to controlled
freedom that is implemented to ensure that the
freedoms granted are not lost through the desire
of individuals to maximise their position by profi -
teering from free software without contributing
to the community.

REFERENCES

Guadamuz, A. (2004). Viral contracts or unen-
forceable documents? Contractual validity of
Copyleft licenses. European Intellectual Property
Review, 26(8), 331-339.

Höppner, J. (2004). The GPL prevails: An analysis
of the fi rst-ever court decision on the validity and
effectivity of the GPL. Script-ed, 1(4), 662-667.

Klang, M. (2005). Free software & open source:
The freedom debate and its consequences. First
Monday, 10(3).

Metzger, A., & Jaeger, T. (2001). Open source
software and German copyright law. International
Review of Industrial Property and Copyright
Law, 32(1), 52-74.

Molgen, E. (1999). Anarchism triumphant: Free
software and teh death of copyright. First Mon-
day, 4(8).

Moglen, E. (2001, September). Enforcing the
GPL. LinuxUser, 66.

O’Sullivan, M. (2002). Making copyright ambi-
dextrous: An expose of CopyLeft. The Journal of
Information, Law and Technology, 3(2002).

O’Sullivan, M. (2004). The pluralistic, evolu-
tionary, quasi legal role of the GNU general
public licence in free/libre/open source software
(FLOSS). European Intellectual Property Review,
26(8), 340-348.

Radin, M. J. (2000). Humans, computers, and
binding commitment. Indiana Law Journal,
75(1125), 1125-1161.

Rosen, L. (2004). Open source licensing: Software
freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall.

St.Laurent, A. M. (2004). Understanding open
source and free software licensing. Sebastopol,
CA: O’Reilly Associates.

Stallman, R. (2002). The free software defi ni-
tion. In J. Gay (Ed.), Free software, free society:
Selected essays of Richard M. Stallman. Boston:
Free Software Foundation.

Stallman, R., & Moglen, E. (2005). GPL version
3: Background to adoption. Boston: Free Software
Foundation.

Turner, D. (2006). What is TiVo-ization? Welcome
to the GPLv3 Update, #5. Mailing List, Free
Software Foundation.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

372

The Evolution of Free Software

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

Zuck, J. (2006, March 9). Perspective: GPL 3.0:
A bonfi re of the vanities? CNet News. CNET
Networks.

KEY TERMS

 Copyleft: Copyleft is a general method for
making a program or other work free, and re-
quiring all modifi ed and extended versions of
the program to be free as well. Copyleft says that
anyone who redistributes the software, with or
without changes, must pass along the freedom to
further copy and change it. Copyleft guarantees
that every user has freedom.

 Free Software (FS): A term denoting software
which fulfi lls the four freedoms, a set of standards
set by the Free Software Foundation. See more
http://www.gnu.org/philosophy/free-sw.html.

 Free Software Foundation (FSF): An organi-
sation, established in 1985, dedicated to promot-
ing computer users’ rights to use, study, copy,
modify, and redistribute computer programs. The
FSF promotes the development and use of free
software, particularly the GNU operating system,
used widely in its GNU/Linux variant.

 General Public License (GPL): The fun-
damental software license of the free software
movement. It guarantees that the four freedoms
are awarded to the users.

 GNU: GNU is a recursive acronym for “GNU’s
Not UNIX.” The GNU Project was launched in
1984 to develop a complete UNIX-like operating

system which is free software: the GNU system.
Variants of the GNU operating system, which
use the kernel called Linux, are now widely
used; though these systems are often referred
to as “Linux,” they are more accurately called
GNU/Linux systems.

 Linux: Linux is a free Unix-type operating
system. Developed under the GNU General Pub-
lic License, the source code for Linux is freely
available to everyone.

 Software Licenses: A software license is
a license that grants permission to do things
with software. The license can be used to grant
permissions to do things which are not granted
by copyright. The license can also be used to
deny users the right to do things to software to a
much larger degree than those granted by copy-
right.

ENDNOTE

1 The word free in free software in this chapter
refers to freedom not cost. Any software
that grants the user the four freedoms is
free software. The four freedoms are (1) the
freedom to run the program for any purpose,
(2) the freedom to study how the program
works and adapt it to your needs, (3) The
freedom to redistribute copies so you can
help your neighbor, and (4) the freedom to
improve the program and release your im-
provements to the public so that the whole
community benefi ts. Any software that does
not grant the users any of these freedoms is
proprietary software.

 373

Chapter XXIX
 Free Access to Law and
 Open Source Software

Daniel Poulin
Université de Montréal, Canada

Andrew Mowbray
University of Technology, Sydney, Australia

Pierre-Paul Lemyre
Université de Montréal, Canada

INTRODUCTION

The free access to law movement is a set of inter-
national projects that share a common vision to
promote and facilitate open access to public legal
information. There are direct synergies between
the notion of “freeing the law” by providing an
alternative to commercial systems and the ideals

ABSTRACT

Law consists of legislation, judicial decisions, and interpretative material. Public legal information
means legal information produced by public bodies that have a duty to produce law and make it public.
Such information includes the law itself (so-called primary materials) as well as various secondary
(interpretative) public sources such as reports on preparatory work and law reform and resulting from
boards of inquiry and available scholarly writing. The free access to law movement is a set of international
projects that share a common vision to promote and facilitate open access to public legal information.
The objectives of this chapter are to outline the free access to law movement, to set out the philosophies
and principles behind this, and to discuss the role that open source software has played both in terms
of its use and development.

that underpin open source software. In addition,
open source software has been an essential foun-
dation for the work that has been done and new
open source code has been developed.

The objectives of this chapter are to outline
the free access to law movement, to set out the
philosophies and principles behind this, and to
discuss the role that open source software has

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

374

Free Access to Law and Open Source Software

played both in terms of its use and development.
It concludes with an assessment of what has
been achieved and of the similarities between
the free access to law and open source software
movements.

BACKGROUND

 Law consists of legislation, judicial decisions and
interpretative material. Public legal information
means legal information produced by public
bodies that have a duty to produce law and make
it public. This includes the law itself (so-called
 primary materials) as well as various secondary
(interpretative) public sources such as reports on
preparatory work and law reform and resulting
from boards of inquiry and available scholarly
writing. It also includes legal documents created
as a result of public funding.

Lawyers have been interested in the electronic
publication of legal materials and associated in-
formation retrieval systems for a very long time.
The earliest reported experiment is generally said
to have been done by John Horty at the University
of Pittsburgh in the late 1950s (Bing, 2004). The
fi rst major commercial system appeared in 1973
with the launch of Lexis (now LexisNexis). This
was based on an earlier system developed by the
Ohio Bar (OBAR) which had been established in
1969. OBAR was acquired by Mead Data Central
and redesigned to become Lexis. LexisNexis is
now one of the largest commercial text databases
in the world. It is currently owned by the Reid
publishing group. Lexis was followed by Westlaw
in 1976. Westlaw is now owned by Thomson Pub-
lishing and is the major business competitor to
Lexis. Several other commercial and government
based systems also appeared about this time, but
were largely ultimately unsuccessful such as the
now defunct European system EUROLEX and the
Australian system SCALE (Greenleaf, Mowbray,
& Lewis, 1988).

In the 1980s and 1990s, Lexis and WestLaw
expanded the scope of their services to include
international collections and in their original
jurisdiction (the United States) established a near
duopoly (McKnight, 1997; Arewa, 2006). At-
tempts were made in various other places such as
Australia and Canada to create either government
or government sanctioned commercial monopolies
(Greenleaf et al., 1988).

The resulting environment was, and to some
extent still is one that is characterised by limited
access to basic legal materials. Whilst the com-
mercial systems provide a very sophisticated set
of services they are for the most part targeted
at the legal profession, they require signifi cant
training in order to use them. The services are
very expensive and generally are not available
for casual use. Non-lawyers seldom access the
commercial systems and even lawyers can often
not afford to use them.

Why is Free Access to Legal
Information Important?

At the most fundamental level, access to public
legal information supports the rule of law. Citizens
are governed by laws and so have a need and right
for effective access to these laws. Businesses also
generally operate in a regulated environment and
have similar needs. Effective access to basic legal
information is essential both from a social perspec-
tive and also to facilitate the proper operation of
business and commerce.

Apart from being able to access domestic
laws, there is also increasingly a need to access
law from other jurisdictions. Business operates
on an international basis. Corporations need to
be aware of international regulatory requirements
and countries need to make their legal systems
transparent to encourage international investment
and trade. Particularly in the case of developing
countries, there is a major need for access to
international laws to assist with law reform and
development (Poulin, 2004).

 375

Free Access to Law and Open Source Software

The Free Access to Law Movement

The free access to law movement has grown out
of a set of projects that have attempted to address
these issues and to provide alternatives to the com-
mercial legal publishers’ systems. Most of these
projects are called legal information institutes
(or LIIs for short).

The earliest initiatives were in the United
States and Canada. In 1992, Tom Bruce and
Peter Martin established the Cornell Legal In-
formation Institute (Bruce, 2000). This service
was initially based on Gopher and provided free
access to decisions of the United States Supreme
Court and the United States code. It moved to the
Web in 1994. In Canada, Daniel Poulin and his
team at LexUM started publishing the full text
of decisions of the Canadian Supreme Court in
1993 (Poulin, 1995).

Both systems helped to identify a strong
demand for free public access to primary legal
materials. In Australia, Graham Greenleaf and
Andrew Mowbray founded AustLII (the Aus-
tralasian Legal Information Institute) in 1995
(Greenleaf, Mowbray, King, & van Dijk, 1995).
By the end of the year, AustLII was publishing
some 16 databases including the decisions of most
of the major Australian federal courts as well as
federal and state legislation and by 1998 became
the fi rst LII to achieve national coverage. It now
includes over 200 databases covering virtually
all courts and tribunals in the country.

Other systems adopting a similar approach fol-
lowed. These included the British and Irish Legal
Information Institute (BAILII) in 1999, the Pacifi c
Islands Legal Information Institute (PACLII) and
the Canadian Legal Information Institute in 2000,
and the Hong Kong Legal Information Institute
(HKLII) in 2003. Various meta-systems were also
built that drew upon the information contained
in the other LIIs (WorldLII, Droit francophone
and CommonLII).

The free access to law movement was pro-
claimed at the annual Law via the Internet confer-

ence in Montreal in 2002. The current terms of
the Montreal Declaration (as amended in Sydney,
November 29, 2005 and Paris November 5, 2004)
are (in part):

Legal information institutes of the world, meeting
in Montreal, declare that:
• Public legal information from all countries

and international institutions is part of the
common heritage of humanity maximising
access to this information promotes justice
and the rule of law;

• Public legal information is digital common
property and should be accessible to all on
a non-profi t basis and free of charge;

• Independent non-profi t organisations have
the right to publish public legal information
and the government bodies that create or
control that information should provide
access to it so that it can be published.

...
Legal information institutes:
• Publish via the internet public legal informa-

tion originating from more than one public
body;

• Provide free, full and anonymous public
access to that information;

• Do not impede others from publishing public
legal information; and

• Support the objectives set out in this Dec-
laration.

...

Each LII is responsible for publishing legal
materials for a particular country or geographical
region. AustLII, for example, publishes materials
for Australasia (i.e., Australia and New Zealand).
Apart from providing access to the full-text deci-
sions of all major courts (such as the High Court,
Federal Court, and State Supreme Courts), as has
been said, AustLII also publishes decisions of
nearly all Australian tribunals. Access to consoli-
dated (and in some cases, point in time) legislation
and regulations from all nine jurisdictions is also

376

Free Access to Law and Open Source Software

available. Other content includes: Law Reform
Commission reports from most States; access to
most Australian law journals; and a database of
all bilateral and multi-party treaties.

Like most of the other LIIs, AustLII uses auto-
mated processes to add rich hypertext markup to
its materials. In all, the system currently includes
around 40 million internal hypertext links. Free
text searching is available over the entire system or
selected databases. AustLII is the major source of
legal information in Australia and accounts for 25-
30% of all legally related traffi c in the country.

At the time of writing, the various LIIs to-
gether publish around 663 databases containing
legal materials from 86 countries as well as 21
international collections. The total number of
individual documents exceeds 3 million. Total
usage is estimated to be in the vicinity of 3.5 mil-
lion direct hits (or page accesses) per day.

The content of these databases consists mainly
of primary materials—that is, court decisions,
legislation and treaties, but increasingly secondary
materials such as law journals, law reform com-
mission reports, and the like are being added.

The LIIs have changed the way that law is
made available to the public. Whereas in the past,
there was exclusive reliance upon commercial
publishers as conduits for the dissemination of
this information, primary legal information now
fl ows directly from courts and governments to
consumers. The LIIs freely offer a level of value
adding that establishes a new baseline for com-
mercial publishers. Examples of this value adding
include hypertext markup and search capabilities.
The citator created by LexUM for CanLII (Re-
fl ex) provides a further example (Poulin, Paré, &
Mokanov, 2005).

Each LII concentrates on making available
domestic laws, but beyond these local endeavors
all LIIs collaborate to expand the freely accessible
law space internationally. This collaboration takes
many forms. First of all, they all participate in
promoting and supporting free access to the law
by lobbying data providers such as courts, govern-

ments, and other bodies. They also provide, within
their means, technical assistance and advice and
training to other organizations. They hold annual
conferences in order to exchange information and
share knowledge. These conferences are public
and all those interested can register to take part.
Since many LIIs are based in universities, a sig-
nifi cant part of those conferences is set aside for
academic exchange of research results.

This cooperative spirit can be easily illustrated
by the collaboration between the University of
the South Pacifi c and AustLII to establish PacLII.
Robynne Blake had worked for a number of years
to build a substantial collection of South Pacifi c
legal materials. AustLII assisted by provision of
technical know-how and their software. In 2006,
after many years of progress PacLII obtained a
large grant from New Zealand Aid to expand its
reach towards making the laws of the various
states of the area freely accessible on the Internet.
PacLII is now (in terms of the number of staff)
one of the largest of the LIIs.

Similarly, LexUM collaborated with many
interested parties in Burkina Faso to establish
Juriburkina. Today, Juriburkina is operated from
Ouagadougou by the local bar association and
with the support of the higher courts, government
general secretariat and a local Internet startup
called ZCP informatique. A similar approach
is being followed in Senegal and the project has
reached implementation stage.

MAIN FOCUS OF THE CHAPTER

Development of Interest in Open
Source Software

The LII promoters and developers were not always
early adopters of open source software. Although
most of the LIIs were Unix based, the signifi cance
of open source software only started to become
more evident towards the end of the 1990s. Today,
not only is most of the software used by LIIs open

 377

Free Access to Law and Open Source Software

source, but the LIIs have themselves started to
offer elements of their own production software
under open source licences.

Many reasons may be put forward to explain
the initial caution. First of all, in the early 1990s,
open source was not as developed and mature as
it is today. At the time, the LIIs rightly set “mak-
ing the law accessible for free” as their principal
agenda item. To achieve this, the most effective
software, proprietary or otherwise was deployed.
The reluctance towards more generally embrac-
ing open source by the LIIs, was partly based on
the lack of maturity of the available open source
software and partly attributable to the dominant
prevailing prejudice towards conventional cor-
porate approaches.

There was a major reappraisal of the initial at-
titude towards open source software from around
1998. At the time, for example, the operating sys-
tem of choice for the LexUM’s servers was Solaris
from Sun Microsystems (this was also in use at
AustLII and the Cornell LII). However, LexUM’s
programmers were mostly undergraduates and
some of them had Linux installed on their home
computers. These programmers were aware of
the value of open source and argued strongly for
the adoption of GNU/Linux. In the course of this
campaign, they had even installed for demonstra-
tion purposes another open source fl agship of the
time, the already well respected—Apache Web
server to replace the Netscape Enterprise server
that was then in use. But despite the apparent
functioning of Apache, LexUM, was reluctant
to abandon the safety of using a proprietary so-
lution for what appeared to be a more risky free
alternative.

Then as today, LexUM was working with
the Supreme Court of Canada (SCC) to make its
decisions available for free in a timely manner.
A long-awaited SCC judgment was expected on
August 20, 1998 when the court’s decision on the
legality of a unilateral secession of Quebec from
Canada was to be published. The morning the
decision became available, the LexUM Netscape

Enterprise based server went down at the moment
the decision became available. The server was
unable to cope with the rise in demand. After
over an hour of rebooting the server, LexUM’s
student programmers brought up the Apache based
sever. The move saved the day, and Apache kept
running without failure for many weeks. From
then on, LexUM used Apache as its Web server.
In the following years, LexUM switched all of its
servers to Linux and Apache.

The other LIIs had similar experiences. Most
either had already or were soon to adopt Apache.
Many moved to Linux and to generally adopt open
source software as the basis of their production
systems.

Current Use of Open
Source Software

Although the commitment to open source has
never been a religious one, most of the LIIs are
nevertheless strongly reliant upon open source
software. Although this is partly a matter of
simple economics, this is not of itself suffi cient
to drive the adoption of open source as even free
bad software is still obviously a poor choice. The
open source orientation leads to a twofold benefi t:
savings in licence costs, but more importantly it
led to the provision of reliable tools and powerful
products to achieve the vision of freely accessible
law. The current approaches used by the LIIs
closely match open source trends. Open source
developers develop many tools targeted for the
Web that closely meet the needs of LIIs.

As has been said above, most of the LIIs
use GNU/Linux and Apache. In addition some
commonly used open source programs include
database and indexing programs such as Post-
greSQL, Open LDAP, Apache Lucene, and
Nutch; programming languages and tools that
include: perl, python, gcc, Eclipse, mod_perl, and
Mason; and various other tools such as FastCGI
and Mason.

378

Free Access to Law and Open Source Software

Proprietary software is still used but only
where a suitable open source solution cannot be
identifi ed. For example, most LIIs still rely upon
proprietary software for a signifi cant part of basic
document preparation and conversion (such as
Microsoft Word) and for some aspects of network
security (for example, AustLII uses Check Point
and Tripwire).

FUTURE TRENDS

Development of Open Source
Software by LIIs

Prior to the World Wide Web, the publishing of
databases of legal information was essentially
the work of commercial publishers who used
specialised software that had often been developed
in-house. The Web brought with it a number of
generic publishing tools such as conversion tools,
search tools and Web servers. However, tools to
support more specialised legal publishing needs
remained rare. This led a number of the LIIs to
develop the tools they needed.

One of the fi rst of these was Sino (short for
“size is no object”). Sino is a high performance
free text search engine. It was originally written
in 1995 and has been mainly used to provide
production level search facilities for most of the
Legal Information Institutes that form part of
the free access to law movement. Sino went to
a major rewrite in 2006 that makes it even faster
and adds new functionality. Sino from its initial
release has always been a very fast search engine
and its indexing and searching time have been kept
at the level of the fastest proprietary products.

Sino is designed to be easy to interface with
via a simple C/Perl API as well as a ready written
interactive interface for testing or for actual use
on Unix sockets. The tool is relatively small and
easy to understand at about 12K lines of ANSI/
POSIX.1 compliant C code. Sino concordances
(indexes) are portable across platforms with

different architectures. Sino has been in use on
a number of major Web sites answering many
millions of requests for the past 10 years and so
is robust and reliable.

Sino is a tool aimed at improving the access
to the law. It was at the heart of AUSTLII from
the very beginning and has been subsequently
adopted by BAILII, PacLII and HKLII. LexUM
used it for CanLII for many years. From 1995
until 2006, Sino and its source code were made
available for free to anybody wanting to publish
the law openly and for free. With its last rewrite,
Sino became open source and it is now licensed
under the GNU General Public Licence (GPL).

LexUM has also developed a number of pieces
of open source software. LexEDO is a legal pub-
lishing platform aimed at providing a ready-made
and easy to use solution for small-scale publica-
tion projects particularly in the developing world.
LexEDO provides a means to manage legislation,
caselaw, and legal periodicals as simple databases,
to automatically convert documents to PDF and
HTML and to generate a Website accordingly. All
of these tasks can be accomplished by lawyers or
law students acting as editors through Web-based
management interfaces.

LexEDO has been distributed to such organisa-
tions as the Bar of Burkina Faso, the government
general secretariat of Burkina Faso and the Bar
of Senegal. In the context of these projects, the
availability of the source code was critical for
capacity building purposes. In Burkina Faso for
instance, LexEDO has been maintained locally for
a period of over two years by a private host called
ZCP Informatique. To some extent, the fact that
LexEDO source code is available allows ZCP to
develop local solutions to local problems without
requiring LexUM’s assistance. It also provides
them with the means to control the evolution of
their project, or even to replicate it elsewhere thus
spreading free access to law. As is the case for
Sino, LexEDO is distributed under the GPL.

LexUM has also developed a program called
NOME to assist with the anonymisation of

 379

Free Access to Law and Open Source Software

judicial decisions. In many jurisdictions some
or all judgments must not contain the names of
parties or accused. For instance, anonymisation
of judicial decisions involving young offenders
is mandatory in Canada. To effi ciently achieve
this result, LexUM worked with the Computer
Science Department at the University of Montreal
(Plamondon, Lapalme, & Pelletier, 2004). The
result was a small program which is capable of
guessing and initialising proper names in Word
documents. NOME is now distributed for free
with its source code.

In respect to software developed in LIIs, Sino
is certainly the most mature. Sino, LexEDO, and
NOME are distributed under the GPL. Various
other software tools have been developed and
are distributed by the LIIs to various partner
organisations. As other tools become of more
general application, they will become candidates
to become new open source offerings.

CONCLUSION

The use of open source software by the LIIs refl ects
the fact that both movements are well aligned and
in many senses similar. The most evident of these
similarities can be listed as follows:

Avoiding Monopolistic
Control over the Information

Legal information, similarly to source code, wants
to be free (Williams, 2002). Both the free access
to law and the open source software movements
were conceived in reaction to the seizure of in-
formation by entities (state or commercial) not
willing to share it freely with others.

Promote the Reuse of
Information by Third Parties

As is the case for source code, legal informa-
tion is useful only if it can be reused for various

purposes. Users need the possibility to save legal
documents in different formats, to send them to
colleagues and to present them in courts. Some
users might even need the right to reuse documents
in a commercial context (for the publication of a
paper based law report, e.g.).

Promote the Development
of Standards

As for software development, the dissemination
of legal information is improved by the adop-
tion of standards by the players involved. These
standards can take the form of uniform citation
mechanisms, drafting practices or workfl ow
models. Historically, LIIs are at the center of
such initiatives.

Need to Share Tools

Organizations involved in free access to law
all face the same diffi culties. They constitute a
community tied together by the need to edit and
convert large volume of legal documents, to pub-
lish them on the Web and to provide information
retrieval tools to their users. Similarly to every
open source software community, LIIs have in-
centives to share their efforts in the achievement
of common goals.

Proponents do not Derive
Revenue from Selling
Information as a Product

The source of revenue of LIIs and open source
software developers is the same. It fl ows not from
the information they publish but from the expertise
they developed doing so.

Considering all these similarities, the use
of open source software can easily be seen as a
complementary strategy to strengthen free access
to law. It allows the LIIs to achieve near complete
transparency by opening-up not only the legal
information, but also their publication process. By

380

Free Access to Law and Open Source Software

doing so, the LIIs achieve several goals at once:
they guarantee (to a certain degree) the integrity
of their data; they facilitate interactions with the
other players in the fi eld; and fi nally, they help
foster the emergence of additional free access to
law projects.

For people or organisations that would like to
pursue free access to law projects in their own
country or region, the required software is now
available. There are many high quality resources
available from the open source community that
can be used to establish Web services. The major
distributions of Linux (and other open source
operating systems) and the Apache Web server
are of world-class quality. There are a number of
suitable search engines available. The Web and
the availability of open source software means
that it is now relatively straight forward to dis-
seminate information.

For the more specialized requirements involved
in publishing the law such as the conversion of
data, hypertext markup, metadata extraction, and
the like, the LIIs are able to make a contribution.
As a result, it is increasingly the case that for those
who wish to make the law more accessible, there
are available tools.

REFERENCES

Arewa, O. (2006). Open access in a closed uni-
verse, Lexis, Westlaw and the law school. Case Le-
gal Studies Research Paper No. 06-03. Retrieved
from http://ssrn.com/abstract=888321

Bing, J. (Ed.). (1994). Handbook of legal informa-
tion retrieval. Amsterdam: North Holland.

Bruce, T. (2000). Public legal information: Focus
and future. Journal of Information, Law and
Technology, (1).

Greenleaf, G., Mowbray, A., King, G., & van Dijk,
P. (1995). Public access to law via Internet: The

Australasian Legal Information Institute. Journal
of Law & Information Science, 6(1).

Greenleaf, G., Mowbray, A., & Lewis, D. (1988).
Australasian computerised legal information
handbook. Sydney: Butterworths.

McKnight, J. (1997). Wexis versus the Net. Illinois
Bar Journal, 85(4).

Plamondon, L., Lapalme, G., & Pelletier, F. (2004).
Anonymisation de décisions de justice. TALN
Conference Proceedings, Fès. Retrieved from
http://www.lpl.univ-aix.fr/jep-taln04/proceed/ac-
tes/taln2004-Fez/Plamondon-etal.pdf

Poulin, D. (1995). Legal resources for Canadian
lawyers on the Internet. CSALT Review—Ca-
nadian Society for the Advancement of Legal
Technology, 9(1).

Poulin, D. (2004). CanLII: How law societies
and academia can make free access to the law a
reality. Journal of Information, Law and Tech-
nology, (1).

Poulin, D, Paré, E., & Mokanov, I. (2005, Novem-
ber 17-19). Refl ex: Bridging open access with a
legacy legal information system. In Proceedings
of the 7th Law via the Internet International Con-
ference, Port Vila, Vanuatu.

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

KEY TERMS

 Jurisdiction: The geopolitical region in which
the laws of a certain governing body are recog-
nized as legitimate and can be enforced.

 Law: A body of knowledge consisting of
legislation, judicial decisions, and interpretative
material.

 License: Permission needed to use or modify
materials in a way that is recognized as legitimate

 381

Free Access to Law and Open Source Software

by the owner of such materials and by an overall
community familiar that recognized a similar
understanding of legitimate use.

 Primary Materials: Court decisions, legisla-
tion, and treaties.

 Public Access: Making materials available
for all members of the general public to read and
review.

 Public Legal Information: Legal informa-
tion produced by public bodies that have a duty
to produce law and make it public.

 Secondary Materials: Public sources, such as
reports on preparatory work, that report on and
often interpret legal developments.

382

Chapter XXX
Examining Open Source

Software Licenses through
the Creative Commons

Licensing Model
Kwei-Jay Lin

University of California, USA

Yi-Hsuan Lin
Creative Commons Taiwan Project, Taiwan

Tung-Mei Ko
OSSF Project, Taiwan

INTRODUCTION

With the rapid growth of the open source software
(OSS) community in the past decade, many users
now are convinced that OSS is a practical and at-
tractive alternative to proprietary software. Since
almost all OSS licenses allow worldwide, royalty-

ABSTRACT

In this chapter, the authors present a novel perspective by using the Creative Commons (CC) licensing
model to compare 10 commonly used OSS licenses. The authors also propose a license compatibility
table to show that whether it is possible to combine OSS with CC-licensed open content in a creative
work. By using the CC licensing concept to interpret OSS licenses, the authors hope that users can get
a deeper understanding on the ideas and issues behind many of the OSS licenses. In addition, the au-
thors hope that by means of this table, users can make a better decision on the license selection while
combining open source with CC-licensed works.

free usage and encourage users to copy, modify,
and enhance original codes, OSS has attracted
many users and programmers. Some other benefi ts
include signifi cantly lower development and de-
ployment cost, and software quality improvement
due to open inspections and discussions.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 383

Examining Open Source Software Licenses through the Creative Commons Licensing Model

To meet the needs of various authors and users,
different software licenses have been defi ned. The
diversity and complexity of these licenses, on the
other hand, create confusions for many potential
OSS authors and users. It has been a constant
community effort through articles, reviews, and
books to discuss and to elaborate on the subtle
differences among these licenses.

For non-software publications, such as Web
sites, graphics, music, fi lm, photography, literature,
courseware, and so on, that normally fall under the
current copyright law, some authors may want to
open up part of their rights to the public with a spirit
similar to those of OSS licenses. To allow for such
possibilities, Creative Commons (CC) was founded
in 2001 to defi ne the licenses beyond the traditional
“all rights reserved” copyright defi nition. CC licenses,
motivated in part by the GNU General Public License
(GPL) of the Free Software Foundation (FSF), provide
a similar function to OSS licenses for non-software
creative works.

Both OSS and CC licensing models are about
promoting the ideas of free access. Therefore,
it is not a rare case to combine open software
released under OSS licenses with CC-licensed
creative material. Nevertheless, there are differ-
ences between these two models. For users who
combine these two types of materials to create a
new resulting work, some questions are of deep
concern. For example, whether a specifi c OSS
license is compatible with CC licenses? Which
license should the resulting work apply to?
Unfortunately, so far there is hardly any study
discussing these issues in depth.

As participants of the open source movement
in Taiwan, we have witnessed the fl ourishing in-
novation and creativity of OSS activities in Taiwan.
However, the license selection issue has continued
to be an obstacle for many potential local contribu-
tors. Part of the charters of the Open Foundry project
in Taiwan (called OSSF, http://www.openfoundry.
org) is to help people easily capture a basic under-
standing of the licenses that govern OSS, related
documentations and open content.

In this chapter, we present a novel perspective
by using the CC licensing model to compare 10
commonly-used OSS licenses. Specifi cally, we
have defi ned a license compatibility table that
shows whether it is possible to combine OSS with
CC-licensed open content in a creative work. The
idea of comparing the two types of licenses is
partly inspired by Rosen (2004). In Chapter 10 (pp.
244-251) of his book, Rosen takes four commonly
used OSS licenses as examples and discusses the
compatibility of these licenses. Similarly, our study
may help people understand if they can re-license
a resulting work under a specifi c CC license. The
reason for our study on the compatibility table is
from the observation that many new OSS con-
tributors are primarily interested in getting their
software known and accepted by the community,
and circulated as widely as possible. They do not
want to interfere with licensees’ use of the software
nor constraining the licensing of derivative works.
Their goal is to create works that people may share
and enjoy, much like open content. Therefore, by
using the CC licensing concept (such as attribution
and share alike) to interpret OSS licenses, people
may get a deeper understanding on the ideas and
issues behind many of the OSS licenses, and make
a better decision on the license selection.

The rest of the chapter is organized as follows.
The following section reviews the basic elements
of OSS licenses and CC licenses. Subsequently, the
comparison of the two licenses classes is presented.
Next, we discuss two new license concepts, then
the chapter is concluded in the last section.

BACKGROUND: FROM GPL
TO ATTRIBUTION

OSS Licenses and FDL

There are many types of OSS licenses. According
to the statistics from FSF and the Open Source
Initiative (OSI), there are over 60 OSS licenses. In
general, these licenses have three common char-

384

Examining Open Source Software Licenses through the Creative Commons Licensing Model

acteristics (Free Software Foundation, 2005a; The
Open Source Initiative, 2006a):

1. No royalties
2. No geographical restrictions on distribution
3. No specifi c licensees

Among them, we have chosen 10 more com-
monly-used OSS licenses (including GNU Gen-
eral Public License, GNU Library/Lesser General
Public License, BSD license, MIT license, Apache
Software License 1.1, zlib/libpng License, Artistic
License, Common Public License, Qt Public Li-
cense, and Mozilla Public License) plus the GNU
Free Documentation License (FDL) for discussion
in this paper. These licenses, excluding the FDL,
have all been approved by the OSI and conform
to the Open Source Defi nition (OSD) (The Open
Source Initiative, 2006b).

The most well-known OSS license is GPL,
which was drafted by Richard M. Stallman, the
founder of the FSF and the Project GNU. The
GPL is developed on the basis of the copyleft
mechanism. According to the copyleft mecha-
nism, a licensee has to adopt the same license
as that of the licensor for his (or her) program.
Using the copyleft mechanism, source code can
always remain open and royalty free. The GNU
Library/Lesser General Public License 2.1 (LGPL)
is the other OSS license implementing the copyleft
mechanism (Free Software Foundation, 2005b).
The LGPL is designed specifi cally for library
code, and is less strict than the GPL.

On the other hand, the copyleft mechanism
does not limit any right arising from fair use.
Thus, when an author uses GPL-licensed or
LGPL-licensed codes as examples in a book or
as references, he (or she) may not have to apply
the GPL or LGPL to the book as long as the ap-
plication falls within the scope of fair use. Under
this circumstance, the author can choose a license
at his (or her) will, for example, any traditional
proprietary copyright license or any CC license
for the book. Similarly, in accordance with the fair

use doctrine, when the author attaches a whole
copy of the GPL-licensed or LGPL-licensed codes
with the book while published or distributed, the
license adoption of the book will not be restricted
to the GPL or LGPL.

Compared with the GPL, the BSD license,
another popular OSS license, does not impose any
restriction on the licensee in terms of future license
selection. In other words, the licensee is allowed to
use any license (even make it proprietary) for his (or
her) program and is also allowed to collect royalties.
The Apache Software License 1.1 (Apache 1.1), zlib/
libpng License (zlib/libpng), and MIT License have
similar characteristics as that of the BSD license.

The other four licenses discussed in this chapter
are the Mozill Public License 1.1 (MPL), Common
Public License 1.0 (CPL), Qt Public License 1.0
(QPL), and the Artistic License (Artistic). Basi-
cally, the MPL, CPL, and QPL are all designed
for the commercial use of OSS, thus their regula-
tions about licensees’ rights and obligations are
very similar. The MPL employs a partial copyleft
mechanism in that the licensee can only use the
MPL for his (or her) program in principle (Mozilla.
org, 2006). However, the licensee is allowed to
adopt another license for certain parts of the pro-
gram. The CPL adopts the copyleft mechanism
and is the fi rst license to regulate commercial
distribution of OSS with separate terms. Artistic
has its own legal logic, which is different from
the other nine OSS licenses.

Same as the GPL, the FDL is drafted by Stall-
man and also adopts the copyleft mechanism.
However, the FDL is normally used for textbooks
or teaching materials written for some equipment
or software (Free Software Foundation, 2005b).
Wikipedia, a famous online encyclopedia, adopted
the FDL for its text content, is a noted example
(Wikipedia, 2006).

The Inception of Creative Commons

A group of professionals from various fi elds, in-
cluding intellectual property and cyberlaw experts

 385

Examining Open Source Software Licenses through the Creative Commons Licensing Model

James Boyle, Michael Carroll, and Lawrence
Lessig, and MIT science professor Hal Abelson,
founded Creative Commons in 2001 (Lessig, 2005).
CC advocates the “some rights reserved” concept
in contrast to the default “all rights reserved” in
current copyright laws. CC also takes ideas in part
from the FSF and produces a series of copyright
licenses to help creators declare to the world what
freedom they want their works to carry. These free-
doms are composed by four elements: Attribution
(denoted as “by” or BY:), noncommercial (“nc” or

$), no derivatives (“nd” or =) and share alike
(“sa” or). When CC licenses v. 1 were fi rst
released in December 2002, these four elements
were all optional. Later on, CC found that 98% of
the adopters have chosen “attribution” as a requisite;
thus CC sets “attribution” as a default in v. 2, and
offers six licenses (Lessig, 2005).

CC Licenses

 CC licenses are designed to bridge creators
and users in that users have no need to ask for
creators’ prior permission to use the works as
long as they follow the rules the creators set. For
example, if a work is released under the “by-nc”
CC license (i.e., attribution and noncommercial),
a user can freely make use of the work under
the condition that the user uses this work for
noncommercial purposes only and must always
credit the original creator. The six CC licenses
are defi ned as follows:

1. Attribution: It means that a user can freely
use the work, provided that he (or she) credits
the creator.

2. Attribution-share alike: It means that a user
can freely use the work, provided that he (or
she) credits the creator and also licenses any
derivative under the same license as that of
the original work.

3. Attribution-no derivatives: It means that a
user can only make use of verbatim copies
of the work and have to credit the creator.

4. Attribution-noncommercial: It means that a
user can only use the work for noncommercial
purpose, and have to credit the creator.

5. Attribution-noncommercial-no deriva-
tives: It means that a user can only make
use of verbatim copies of the work, for
noncommercial purposes only, and have to
credit the creator.

6. Attribution-noncommercial-sharealike:
It means that a user can only use the work for
noncommercial purposes, credit the creator,
and license any derivative under the same
license as that of the original work.

In addition to the above six licenses, CC also
offers other licenses for more specialized situa-
tions. For example, sampling licenses allow people
to use a part of some creative works and mix with
some original or other parts to create a new work.
One can use founders copyright to free works
from copyright completely, after it has been cre-
ated for 14 or 28 years. In general, CC provides
the vehicle that “does not mean giving up your
copyright. It means offering some of your rights
to any member of the public but only on certain
conditions” (Creative Commons, n.d.).

Reviews of Issues on OSS
and CC Licenses

Since the OSS licensing model appeared in
the 1990s, it has started a lot of discussion, for
example: What is the free/open source software
movement? How does it run? How does it work
with the current legal system? (Hill, 1999).
Many have questioned about the enforceability
of OSS licenses (Nadan, 2002; Ravicher, 2000).
Later, because of the lack of precedents regard-
ing OSS licenses’ enforceability, Gomulkiewicz
(2002) proposes to create an open source license
organization (OSLO) to solve issues relating to
OSS licenses. Gomulkiewicz thinks that the
OSLO could play a role in calling programmers
and lawyers together to built up useful licensing

386

Examining Open Source Software Licenses through the Creative Commons Licensing Model

practices of OSS and further solve related licens-
ing problems.

Among these various OSS licenses, the GPL
receives the most attention. Stoltz (2005) discusses
the scope of derivative works under current US
copyright laws and how the extent of derivative
works affects the GPL. Besides, along with the ris-
ing number of successful open source commercial
cases, the issues about OSS license policies started
to get much attention. For example, Satchwell
(2005) provides users a basic understanding of
OSS; how to choose a suitable OSS license and
how to establish an appropriate OSS policy.

With the increase of OSS licenses, there are
more and more articles discussing issues of OSS
licenses. However, among these articles, only a
few have addressed the OSS license compatibility.
Perens (1999) and Maher (2000) point out that
OSS license compatibility is a noteworthy issue,
but neither offers any concrete solution to the
compatibility problem. Rosen (2004) provides
some discussion on the issue of OSS license com-
patibility but does not come up with any concrete
solution. Therefore, sensing the need of a simple
and clear explanation for various OSS licenses,
we use a relatively intuitive licensing model, CC
licenses, to examine OSS licenses.

Since CC licenses’ release in December 2002,
these licenses spread quickly and dramatically.
There have been more than 50 million Web
pages linked to CC licenses as of August 2005
(Katz, 2006). However, with the rising popular-
ity of CC licenses, many skeptical views have
appeared. Some challenge the compatibilities
between certain CC licenses or between different
free-content contracts (e.g., Elkin-Koren, 2005;
Katz, 2006); while others question that a variety
of CC licenses will cause confusion or increase
the information cost (e.g., Elkin-Koren, 2005;
Katz, 2006). Moreover, license translation and
legal adaptation may undermine the success of
CC licensing (Valimaki, 2005).

Katz (2006) questions that a variety of CC
licenses would puzzle users in that users may

run into diffi culties in determining which CC
license is the most suitable for them. Elkin-Ko-
ren (2005) challenges the consistency of CC’s
strategy over license selection. He argues that
CC attempts to reduce external information cost
by its license choosing platform, but the variety
of CC licenses would on the contrary impose
extra informational burden on authors. He uses
musical works as an example: In addition to six
CC core licenses composed of four elements (i.e.,
attribution, noncommercial, no derivatives, and
share alike), there are the other three sampling
licenses (i.e., sampling, sampling plus, and non-
commercial sampling plus). To fi nd out which
license is the most suitable one for musical works
would unwittingly increase information costs.
Elkin-Koren (2005) further states that the lack
of standardization in CC licenses would increase
the cost of ascertaining the rights and obligation
related to any specifi c work.

In addition, Katz (2006) argues about the in-
compatibilities of CC licenses. He concludes that
the viral effect of the “share alike” element will
result in the incompatibilities problem between
different share alike licenses and would further
restrict the distribution of derivative works.

Some of the above mentioned literatures
discuss the compatibility among different CC
licenses, but none offers a systematic analysis
on the problem of CC license incompatibility or
combining OSS with CC-licensed content. There-
fore, we attempt to illustrate what license a user
may choose when he (or she) combines OSS with
CC-licensed content by a clearly defi ned table to
be discussed next.

MAIN FOCUS OF THE CHAPTER

Examining Compatibility between
OSS and CC Licenses

Our study in this chapter is to defi ne a license
compatibility table that shows whether the com-

 387

Examining Open Source Software Licenses through the Creative Commons Licensing Model

bination of OSS and CC-licensed open content
in a creative work may be properly licensed. The
table (Table 1) may help people understand if they
can continue to re-license a derived work under
a specifi c CC license.

In Table 1, we use “by,” “nd,” “nc,” and “sa”
to denote CC’s four elements “attribution,” “no
derivatives,” “noncommercial,” and “share alike”
respectively. The mark “○” indicates that when a
derivative work incorporates two or more works
under licenses listed in a specifi c column and a
specifi c row, it can be re-licensed under the CC
license shown in the column. The mark “X,” on
the other hand, shows that a derivative work,
incorporating two or more works under licenses
listed in a specifi c column and a specifi c row, can-
not be re-licensed under the license shown in the
column. For example, if one combines a program
A released under the GPL, with an open content
B issued under the CC attribution license, and
produces a new work C. One may not re-license
C under the CC attribution license because the
GPL requires that GPL-applied program or its
derivative work must always be governed by the
GPL.1 Thus, A and C must be licensed similarly,
and C work will not be able to release under any
CC license.

In the following sections, we discuss the table
entries in details.

No Derivatives

The 10 OSS licenses chosen to compare with CC
licenses in this chapter are all approved by the
OSI. An OSI-certifi ed license must conform to
the OSD (The Open Source Initiative, 2006b).
Under criterion 3 of the OSD, the license must
permit making modifi cations and derived works
(The Open Source Initiative, 2006c). Therefore,
these 10 OSS licenses allow modifi cation to the
original program. Thus, any of the six CC licenses
which contains “No Derivative” element (i.e., CC
attribution-no derivatives license, CC attribu-
tion-no derivatives-noncommercial license) is
not compatible with any of the 10 OSS licenses,
and “X” is shown in all cells of the “by-nd” and
“by-nd-nc” columns in the table.

Noncommercial

Criterion 1 of the OSD states that an OSS license
should not “restrict any party from selling or
giving away the software as a component of an
aggregate software distribution containing pro-

Table 1. License compatibility table

by by-nd by-nd-nc by-nc by-nc-sa by-sa FDL

GPL X X X X X X X

LGPL X X X X X X X

MPL X X X X X X X

QPL O X X X X O O

CPL O X X X X O O

Artistic O X X X X O O

Apache O X X X X O O

Zlib/
libpng O X X X X O O

BSD O X X X X O O

MIT O X X X X O O

388

Examining Open Source Software Licenses through the Creative Commons Licensing Model

grams from several different sources” (The Open
Source Initiative, 2006c). It thus implies that any
OSD-compliant license should not restrict any
use of commercial purposes. This results in the
confl ict between 10 OSS licenses and any CC
license with “noncommercial” element (i.e., CC
attribution-noncommercial licenses, CC attribu-
tion-noncommercial-share alike licenses). An “X”
is shown in all cells of “by-nc” and “by-nc-sa” in
the table.

Copyleft

The copyleft mechanism provides that anyone
will be granted the rights to use, copy, modify,
or distribute a program or its derivative works on
the condition that when redistributing a program,
with or without change, all rights he (or she)
gained must be passed on to subsequent users
(Free Software Foundation, 2005b). The GPL,
LGPL, FDL, and CPL are terms to implement
the copyleft mechanism. The implemented result
will be the original work and its derivative works
must be redistributed under the same license as
the original work.

Although not originated from the FSF, the
MPL partially employs a copyleft mechanism.
MPL requires that modifi cations to MPL-licensed
program must be governed by MPL (Mozilla.org,
2006). Because of this viral nature of copyleft, the
GPL, LGP, MPL, and CPL is not compatible with
any of the CC licenses, and thus “X” is shown in
all cells of the top four rows.

Author Credit

The Apache, zlib/libpng, BSD, and MIT explicitly
indicate that the authors of original work must be
credited (Lin, Ko, Chuang, & Lin, 2006). QPL,
CPL, and Artistic have copyright notices related
regulations, and do not exclude the authors’
names of the original work from the copyright
notices.Yet, CPL implements copyleft mechanism.
Therefore, GPL, LGPL, MPL, in addition to CPL

are not compatible with CC attribution licenses.
A work incorporating a program licensed under
the QPL, Artistic, Apache, zlib/libpng, BSD, or
MIT with other works issued under CC attribution
license could be re-licensed under CC attribution
license. Excluding the GPL, LGPL, CPL, and
MPL, “○” is shown in the other cells of the “by”
column in the table.

Share Alike

The compatibility between the 10 OSS licenses
and the CC attribution-share alike license is dis-
cussed next. The GPL, LGPL, CPL, and MPL
implement the copyleft mechanism. But the other
six OSS licenses do not explicitly adopt it and do
not have the viral effect on the resulting derivative
work. Thus, when a work incorporates a program
licensed under the QPL, Artistic, Apache, zlib/
libpng, BSD, or MIT with the other work issued
under the CC attribution-share alike license, this
newly created work may be re-licensed under the
CC attribution-share alike license. Except the top
four cells, the mark “○” is shown in the other cells
of the “by-sa” column in the table.

FDL

Finally, we examine the compatibility between
the 10 OSS licenses and the FDL.

Even though the GPL, LGPL and FDL are
all developed by the FSF, because of copyleft
mechanism’s viral effect, when a work incorpo-
rates a GPL-licensed or LGPL-licensed program
with other FDL-released work, the resulting work
may not be re-licensed under the FDL. The same
result applies to CPL because CPL implements
copyleft as well. The MPL partially employs the
copyleft mechanism; thus, a created derivative
work incorporating a MPL-licensed program
with the other FDL-released work may not be
re-licensed under the FDL, either.

In principle, the FDL enables the same freedom
as the CC attribution-share alike license (Creative

 389

Examining Open Source Software Licenses through the Creative Commons Licensing Model

Commons, 2005). Due to the copyleft mechanism,
when a work incorporates a program licensed
under the GPL, LGPL, CPL, or MPL with the
other FDL-released work, this resulting deriva-
tive work may not be re-licensed under the FDL.
Except the GPL, LGPL, CPL, and MPL, a work
incorporating a program governed by the QPL,
CPL, Artistic, Apache, zlib/libpng, BSD, or MIT
with the other work issued under the FDL, this
new created work could be re-licensed under the
FDL. Except the top four cells, “○” is shown in the
other cells of the “FDL” column in the table.

Using License Compatibility
Table for License Selection

From Table 1, we could identify the following
license selection strategies. If a user would like
a creative work which combines OSS with CC-
licensed open content to be re-licensed under the
CC license or the FDL, he (or she) should avoid
using OSS licensed under GPL, LGPL, or MPL.
In other words, if a creative work is combining
OSS licensed under the GPL, LGPL, CPL, or
MPL with CC-licensed open content, this work
is not possible to be re-licensed under any CC
license.

If a user would like a creative work which
combines OSS with CC-licensed open content
to be re-licensed under some CC licenses, he (or
she) should choose OSS licensed under the QPL,
Artistic, Apache, zlib/libpng, BSD, or MIT. How-
ever, not all CC licenses are compatible with the
QPL, Artistic, Apache, zlib/libpng, BSD, or MIT;
only CC by and by-sa licenses are compatible with
these six licenses. In other words, a creative work
combing an OSS license under QPL, Artistic,
Apache, zlib/libpng, BSD, or MIT with CC by or
by-sa licensed open content, the resulting work
could be re-licensed under CC license identical
to the original open content. Similar to CC by
or by-sa license, FDL is not compatible with the
GPL, LGPL, CPL, or MPL, but is compatible with
QPL, Artistic, Apache, zlib/libpng, BSD, or MIT.

Therefore, if a user would like a creative work
which combines OSS with FDL-licensed open
content to be re-licensed under the FDL, he (or
she) may use OSS licensed under any of these
six OSS licenses.

From the above discussions, we can make two
simple conclusions. Firstly, OSD-compliant OSS
licenses should not restrict any use of commercial
purposes2, and OSD-compliant OSS licenses must
allow modifi cations and derived works.3 There-
fore, CC licenses containing “noncommercial” or
“no derivatives” element are not compatible with
10 OSS licenses discussed in this chapter.

The second conclusion is that the copyleft’s
viral effect requires the original work and its
derivative works to be redistributed under the
same license as the original work. Thus, the GPL,
LGPL, CPL, and FDL, which adopt the copyleft
mechanism completely, plus MPL, which partially
adopts the copyleft mechanism, are not compatible
with any CC license.

For authors that are not combining OSS with
open content, the above discussion may provide
some useful insights as well. The copyleft mecha-
nism is a strong license requirement that may pre-
vent others from producing derivative works mixed
with even the “share alike” element. It is probably
better to select other licenses if such a requirement
may present a problem in the future.

FUTURE TRENDS

 Open Access Publishing

CC licenses are inspired from the GPL. In addition
to OSS and CC licensing models, other models
have been developed in different fi elds sharing
similar notions with that of OSS and CC. Open
access publishing is one of them.

Typically, publishers charge readers a subscrip-
tion fee, and sometimes also charge authors a
page fee. Open access publishing, on the contrary,
allows the author to retain his (or her) article’s

390

Examining Open Source Software Licenses through the Creative Commons Licensing Model

copyright; at the same time, authors or their spon-
sors, not the users, pay the publishers.

Although the open access publishing model
will make authors bear more cost than traditional
publishing models, the charged fees are possible
to be transferred to the authors’ sponsor institutes
or even be waived (Suber, 2004). Moreover, open
access publishing will increase the possibility
that the authors’ articles are searched, and help to
build the authors’ prestige (Harmel, 2005). Recent
studies also show the same result: online articles
are more frequently cited (Lawrence, 2001) and
more often used than offl ine articles (Lawrence,
2001; Walker, 2004). Therefore, more and more
leading publishers, such as the Public Library of
Science (PLoS) and BioMed Central have joined
the open access movement.

Science Commons, a newly launched project
of Creative Commons, was founded to support
the sharing of scientifi c research, such as the fi eld
of biotechnology, medicine, and even law4, with
the same “some rights reserved” spirit Creative
Commons holds.

Studies have found that the open access pub-
lishing model is practicable (Gonzalez, 2005;
Odlyzko, 1998), and there are already publishers
gain profi ts from it (Walker, 2004). It is foresee-
able that with the increasing subscription fees of
academic journals the open access publishing
model will continue to gain more support, espe-
cially on academic content.

New OSS Elements

Compared with numerous OSS licenses, the
CC licensing model built on the basis of four
elements is relatively simple. However, although
these four elements are less complex and easier
to understand, they are not broad enough to cover
all major considerations of OSS licenses. Here we
include two new concepts, “no endorsement” and
“modifi cation record” that should be considered
by OSS users when selecting a license.

No Endorsement

One of the OSS’s common characteristics is that
anyone is free to create derivative works (The
Open Source Initiative, 2006c). Because of this,
the quality of derivatives is hard to control. When
the quality of a derivative is not as good as the
original program, but the name of the original
developer or the copyright holder is still shown
on the derivative, new users may not have enough
acknowledgement of this and relies on the name of
the original developer or the copyright holder to
evaluate the derivatives. Under the circumstance,
it may harm the reputation of the original developer
or the copyright holder. Sometimes, the developer
of the derivatives may intentionally show the name
of the original developer or the copyright holder
on the derivative work to endorse or promote his
(or her) own works.

Therefore, to prevent OSS adopters from using
the authorship to implicitly or explicitly show the
support, association of the initial developers or to
promote their derivative work, and, even more,
to prevent the derivatives from being wrongly
trusted, the original program’s developer should
choose a license which contains “no endorsement”
or disclaimer clause5, such as BSD and Artistic.
The Creative Archive License developed by BBC
adopts the main ideas of CC licenses but injects
such a new element into the license.6

Modifi cation Record

We also notice that many OSS licenses have regu-
lations regarding the modifi cation records.7 Take
the 10 OSS licenses we analyze in this chapter
for example. Only the QPL does not require that
a modifi cation record must be made. Instead, the
QPL forbids users to directly make modifi ca-
tions to the original works and requires that all
modifi cations be in a form that is separate from
the original works (e.g., patches).8 All of the other
nine licenses have modifi cation record related
regulation. These records are very helpful for the

 391

Examining Open Source Software Licenses through the Creative Commons Licensing Model

convenience of follow-up software modifi cations.
Moreover, they are benefi cial to maintain the
original works’ integrity.9

CONCLUSION

OSS licenses have triggered a lot of discussions
in the past few years because of their complicacy.
The OSI even appeals to reduce the number of
approved OSI-licenses to allow programmers and
users to understand OSS licenses more easily. In
contrast with OSS licenses, CC licenses provide
a cleaner licensing model. In this chapter we
investigate the compatibility between the six CC
licenses and 10 commonly-used OSS licenses
including the FDL. OSS authors may use the
table to identify which CC license he (or she) can
use for his (or her) work that combines OSS with
CC-licensed work.

However, CC’s four simple elements do not
capture all major issues of OSS. We thus raise
two new issues, “no endorsement” and “modi-
fi cation record”, to address some main concerns
by OSS. We believe that by employing CC’s four
elements, plus our proposed two new elements,
OSS community, including both authors and us-
ers, will be able to get a more complete picture
of OSS licenses.

REFERENCES

Creative Commons. (n.d.). Choosing a license.
Retrieved March 30, 2006, from http://creative-
commons.org/about/licenses/

Creative Commons. (2005). Discussion draft:
Proposed license amendment to avoid content
ghettos in the commons. Retrieved March 30,
2006, from http://creativecommons.org/Weblog/
entry/5701

Elkin-Koren, N. (2005). What contracts cannot
do: The limits of private ordering in facilitating

a creative commons. Fordham Law Review, 74,
375-422.

Free Software Foundation. (2005a). FSF: Licenses.
Retrieved March 30, 2006, from http://www.fsf.
org/licensing/licenses/index_html

Free Software Foundation. (2005b). What is
copyleft? GNU Project: Free Software Foun-
dation (FSF). Retrieved March 30, 2006, from
http://www.gnu.org/copyleft/copyleft.html

Gomulkiewicz, R. W. (2002). De-bugging open
source software licensing. University of Pittsburg
Law Review, 64, 75-103.

Gonzalez, A. G. (2005). The digital divide: It’s the
content, stupid: Part 2. Computer and Telecom-
munications Law Review, 11(4), 113-118.

Harmel, L. A. (2005). The business and legal ob-
stacles to the open access publishing movement for
science, technical, and medical journals. Loyola
Consumer Law Review, 17, 555-570.

Hill, T. (1999). Fragmenting the copyleft move-
ment: The public will not prevail. Utah Law
Review, 1999, 797-822.

Katz, Z. (2006). Pitfalls of open licensing: An
analysis of Creative Commons licensing. IDEA:
The Intellectual Property Law Review, 46, 391-
413.

Lawrence, S. (2001). Free online availability sub-
stantially increases a paper’s impact. Retrieved
July 10, 2006, from http://www.nature.com/na-
ture/debates/e-access/Articles/lawrence.html

Lessig, L. (2005). CC in review: Lawrence Lessig
on supporting the commons. Retrieved March
30, 2006, from http://creativecommons.org/We-
blog/entry/5661

Lin, Y. H., Ko, T. M., Chuang, T. R., & Lin, K.
J. (2006). Open source licenses and the Creative
Commons framework: License selection and
comparison. Journal of Information Science and
Engineering, 22, 1-17.

392

Examining Open Source Software Licenses through the Creative Commons Licensing Model

Maher, M. (2000). Open source software: The
success of an alternative intellectual property
incentive paradigm. Fordham Intellectual Prop-
erty, Media and Entertainment Law Journal, 10,
619-695.

Mozilla.org. (2006). MPL FAQ. Retrieved March
30, 2006, from http://www.mozilla.org/MPL/mpl-
faq.html

Nadan, C. H. (2002). Open source licensing:
Virus or virtue? Texas Intellectual Property Law
Journal, 10, 349-377.

Odlyzko, A. (1998). The economics of electronic
journals. In R. Ekman & R. Quandt (Eds.), Tech-
nology and scholarly communication. University
of California Press.

Perens, B. (1999). The open source defi nition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171-188). Sebastopol, CA: O’Reilly & As-
sociates.

Ravicher, D. B. (2000). Facilitating collaborative
software development: The enforceability of mass-
market public software licenses. Virginia Journal
of Law & Technology, 115, 1522-1687.

Rosen, L. (2004). Open source licensing: Software
freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall.

Satchwell, M. D. (2005). The tao of open source:
Minimum action for maximum gain. Berkeley
Technology Law Journal, 20, 1757-1798.

Stoltz, M. L. (2005). The penguin paradox: How
the scope of derivative works in copyright af-
fects the effectiveness of the GNU GPL. Boston
University Law Review, 85, 1439-1477.

Suber, P. (2004) Open access overview. Re-
trieved July 10, 2006, from http://www.earlham.
edu/~peters/fos/overview.htm

The Open Source Initiative. (2006a). Open
Source Initiative OSI-licensing. Retrieved

March 30, 2006, from http://www.opensource.
org/licenses/

The Open Source Initiative. (2006b). Open Source
Initiative OSI—Certifi cation Mark and Program.
Retrieved March 30, 2006, from http://www.
opensource.org/docs/certifi cation_mark.php

The Open Source Initiative. (2006c). Open Source
Initiative OSI—The Open Source Defi nition.
Retrieved March 30, 2006, from http://www.
opensource.org/docs/defi nition.php

Valimaki, M. (2005). The rise of open source
licensing: A challenge to the use of intellectual
property in the software industry. Helsinki, Fin-
land: Turre Publishing.

Walker, T. J. (2004). Open access by the article:
An idea whose time has come? Retrieved July 10,
2006, from http://www.nature.com/nature/focus/
accessdebate/13.html

Wikipedia. (2006). Wikipedia: Copyrights—
Wikipwdia, the free encyclopedia. Retrieved
March 30, 2006, from http://en.wikipedia.org/
wiki/Wikipedia:Copyrights

KEY TERMS

 Copyleft: Copyleft is a kind of licensing
mechanism, with which licensees have to apply
the same license the original works adopted to
the derivative works.

 Creative Commons Licenses: Creative
Commons licenses are a kind of licensing model
which applies to open content. Creative Com-
mons licenses are composed by four elements
(attribution, noncommercial, no derivatives, and
share alike). Creative Commons licenses allow the
licensees to make use of CC-licensed works with
no need to get prior permission from the licensors
as long as the licensees follow the conditions the
licensors chose for the works.

 393

Examining Open Source Software Licenses through the Creative Commons Licensing Model

 License: It is a legal permission to commit
some act.

 License Compatibility: It is an abstract idea
to illustrate whether two portions of content regu-
lated by two different licenses can be combined
within a work compatibly and produce the other
resulting work.

 Open Access Publishing: Open access pub-
lishing is a kind of publishing model, under which
journals open access to the public immediate on
publication and usually the authors of the journal
articles do not need to pay the page fee for the
publication.

 Open Content: Open content describes the
creative work which allows copying and modify-
ing with no need to get extra permission from the
licensors, such as works licensed under Creative
Commons licenses.

 Open Source Software Licenses: Open
source software licenses apply to open source
software. Open source software licenses feature
that licensees can use, copy, distribute, and
modify the regulated software on a royalty-free,
worldwide basis.

ENDNOTES

1 Article 2(b) of the GPL stipulates that “You
(licensee) must cause any work that you distrib-
ute or publish, that in whole or in part contains
or is derived from the Program (GPL-applied
program) or any part thereof, to be licensed as
a whole at no charge to all third parties under
the terms of this License (GPL).”

2 OSD # 1 states that an OSS license should
not “restrict any party from selling or giv-
ing away the software as a component of an
aggregate software distribution containing
programs from several different sources.”

3 OSD # 3 states that “The license must al-
low modifi cations and derived works, and

must allow them to be distributed under the
same terms as the license of the original
software.”

4 Open Access Law Project is established
under Science Commons’ publishing project
to promote open access to legal scholarship.
For more detailed information about Open
Access Law Program, please see http://sci-
encecommons.org/literature/oalaw

5 Our “no endorsement” wordings are moti-
vated by BBC’s Creative Archive License.
The detailed terms can be found on http://
creativearchive.bbc.co.uk/licence/nc_sa_
by_ne/uk/prov/.

6 BBC proposes fi ve rules for Creative Archive
Group License, which comprises “non-com-
mercial,” “share alike,” “crediting” (attribu-
tion), “no endorsement and no derogatory
use” and “UK.” The fi rst three rules are
very similar to CC’s; the last two are inno-
vations created by BBC. For more details,
please see http://creativearchive.bbc.co.uk/
archives/2005/03/the_rules_in_br_1.html

7 “Modifi cation record” in this chapter in-
cludes several possible meanings, e.g., the
record about who did the modifi cation; the
record about when the modifi cation was
made; the record about which part of the
original programs has been changed.

8 See article 2,3 of QPL.
9 According to Andrew M. St. Laurent’s

opinion, QPL’s requirement that a licensee
distributes modifi cations separately with
the initial work can protect the reputation
of the initial developers and make clear the
primacy of the initial developers’ works. See
Andrew M. St. Laurent, “Understanding
Open Source & Free Software Licensing”
(2004, p. 87, O’Reilly). In this chapter, we
further extend St. Laurent’s viewpoints and
come up with the new element “modifi cation
record” for OSS’s licenses.

394

Chapter XXXI
FLOSS Legal and Engineering

Terms and a License Taxonomy
Darren Skidmore

Monash University, Australia

INTRODUCTION

The purpose of this chapter is to explain some of
the issues which free/libre open source software
(FLOSS) licenses are attempting to address, al-
though it should be noted at the outset that these
also apply to any type of software license. The
chapter fi rstly discusses the legal terms applicable
in intellectual property with an emphasis on
FLOSS. To complement the legal issues, discus-
sion turns to software terms and their defi nitions
as part of software development and engineering.
Having defi ned the two areas pertaining to the
FLOSS licenses, a brief history is given before
discussing a taxonomy of FLOSS Licenses. The
chapter concludes with a brief discussion on
how the view of user of the FLOSS may change
the need for a type of license. The purpose of

ABSTRACT

This chapter introduces the reader to terms relevant to understanding free/libre and open source licenses,
some of the relevant legal, and relevant software engineering terms that are useful in understanding the
issues in FLOSS. Then a brief history of FLOSS licenses is given before introducing a taxonomy to help
understand the types of licenses which are available in the FLOSS domain. A brief description to think
about differing views of the usage and users of FLOSS is given in conclusion.

explaining the legal and software engineering
terms is because if a person does not have a
background in these areas, then it is unclear as
to why licenses, or debate about the outcome of
licenses, are being made. The taxonomy is given
to help readers understand that there a several
license types, and to assist them in their choice
of a license or in understanding the outcomes
attached to a license.

As more organisations adopt or consider
FLOSS, there is a greater need to understand at
a more generic level the broad aims or outcomes
of the effects of the licenses. The Commonwealth
of Massachusetts compares 52 different licenses
(Commonwealth of Massachusetts, 2004), the
 Open Source Initiative (OSI) compares over 58
(Open Source Initiative, 2004b), while the Free
Software Foundation (FSF) lists and comments

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 395

FLOSS Legal and Engineering Terms and a License Taxonomy

on almost 100 (Free Software Foundation, 2005a),
and the ifrOSS lists over 180 different open source
licenses (ifrOSS, 2005). Each independent license
has different conditions and outcomes; legally it is
important to understand the clauses in a specifi c
license, but before that there is a need to understand
the broad aims of the license, and to match that to
the organisational needs and requirements, of an
application. Certainly in terms of ICT governance
a taxonomy of FLOSS licenses helps to match the
organisational strategic and tactical aims with the
operational choice of the specifi c license. There
has been comment that there are too many open
source licenses (Skidmore, 2006), with the OSI
looking into the proliferation of licenses (Open
Source Initiative, 2005), and comment that it is
not that there should be less licenses, but that
there should be a cleaning up of the terms used
and agreement on how to word specifi c desired
outcomes (Rosen, 2005).

The term FLOSS is used to describe free/li-
bre and open source software. The word libre is
specifi cally included to emphasis the concept is
about freedom, rather than price. Also within
this chapter, when referring to an application,
the term can include a computer program, which
could be a word processor, a Web browser, or an
email program, but also an operating system such
as Linux. Although there is a distinct difference
in terms of what functions these different types
of programs do, the issues in licensing are, in the
main, similar. The term FLOSS means F/LOS-
software, so when taking about the software just
the acronym FLOSS is used.

Before discussing the licenses, it is important
to fi rstly explain some of the legal issues which
are trying to be addressed by the licenses, not all
licenses with each of these issues, some of the
legal issues did not really exist when some were
created, or were not considered by the authors of
the licenses. Complementary to the legal issues
are the software engineering terms which also
infl uence the licenses. Certainly debate about

new or updating FLOSS licenses are aimed at
issues in software engineering or software usage
which are being practiced now. In reading the
chapter readers of course should be aware of the
changes in the last four decades in both software
engineering and in legal jurisprudence which,
because they are constantly changing, do have
implications for the FLOSS licenses.

BACKGROUND: LEGAL TERMS

The legal terms in Table 1 are not an exhaustive
list of either the terms or of the scope of these
terms, nor is the full complexity of the issues
of applying to software treated, however the list
does include the more important terms and states
some of the more critical issues. Table 1 gives an
overview of the terms that will be covered in this
chapter. Although it is possible to sell an entire
program, the most common form of transfer in
software development is that of licensing (von
Krogh & von Hippel, 2003), which is why the
aspects pertaining to licensing are focussed on
in this chapter. There are several works which
are dedicated to the legal issues in software and
explanations in depth of the issues (Rosen, 2004;
St. Laurent, 2004; Välimäki, 2005).

Table 1. List of legal terms discussed

Intellectual Property terms
Author / Owner
Copyright / Patent
Trademark
Derivative Work
License / Contract

Jurisdiction terms
Choice of Forum
Choice of Law

Other Legal terms
Consumer Warranty
Export Control
Distribution
Written Language
Reasonable and Non Discriminatory Licensing (RAND)

396

FLOSS Legal and Engineering Terms and a License Taxonomy

 Intellectual Property Terms

 Author/Owner

Any intellectual property (IP) has both an author(s)
and an owner(s), these can to be the same person,
but often can be separate entities. With intellec-
tual property except in the case of moral rights,
it is the owner of the IP, who has control of that
IP, not the author. Source code is covered under
copyright law as with most written text. Although
there is some jurisprudence specifi c to software,
the same copyright laws apply to software as they
do to the writing of a novel or scientifi c paper, or
to a performance in the theatre.

 Copyright/Patent

There is a vast difference between copyright and
patent; which has important for implications for
any software, no matter how it is licensed (Skid-
more & Skelly, 2003). The critical difference to
understand is that under copyright it is the authors’
specifi c expression of the idea that is applicable and
therefore controllable under copyright, whereas
in patent, it is the idea itself which is controllable.
Under copyright, as long as two or more authors
have independently expressed the same thing, this
is (simplistically) legal, or if an idea is expressed
in one way, it may be possible to express it in a
different way and not to infringe another’s copy-
right. However, in patent law if an idea is held
under a patent, even if the idea is expressed in a
completely different language or even a different
way, there is still infringement.

Copyright applies worldwide (or in any TRIPS
nation [World Trade Organization, 1994]) and ex-
ists at the point of creation, whereas a patent must
be granted in each separate jurisdiction, and the
conditions under which a patent will be granted
varies. In most jurisdictions the term for copyright
is generally 70 years after death of author or 90
years for a corporation, whereas the patent term is
for 20 years. Another difference is that it is possible

for a patent to be granted in the U.S. but not in the
European Union, the patent holder may also be a
different person, in different jurisdictions. This
can lead to a situation where software which is
freely usable in Australia violates a patent in the
United States, and cannot be used freely in the U.S.
A good example on the issue of patents in differ-
ent jurisdictions is that of the Blackberry device,
which is a personal data assistant (PDA) that is
popular with executives to access their calendars
and email while out of the offi ce. The Blackberry
network was under serious threat of being shut
down in the U.S., which is a major market for the
device, because of a patent dispute between RIM
and the holder of a patent which claimed that the
Blackberry infringed their patent, eventually settled
after a long and drawn out legal battle. The patent,
which was only valid for the U.S., meant that RIM
could operate in any other jurisdiction in the world,
but not in the U.S.

The issue of patents in software is becom-
ing more important especially as now patents
can be obtained for both business methods and
for software (American Intellectual Property
Law Association, 2000). Patents are written in a
broad technical and legal manner, with business
method patents can be checked by people without
expertise in technology (Cohen & Lemley, 2001).
It is diffi cult to search out and determine if the
software is infringing a patent, if a search is ever
done. There is also the risk of inadvertent addi-
tions of code which infringes a patent; if the code
infringed copyright, then it could be rewritten,
but when infringing a patent, the either the idea
has to be removed or a royalty negotiated.

There has also been evidence of predatory
actions by patent holders, both with ambit pat-
ent claims, preventing access to ideas or where
companies participate in work on the development
of industry standards, only revealing in the later
stages that a critical patent is held (Kirk, 2002;
Soat, 2002; United States Federal Trade Com-
mission, 2003). To counter this some companies
have declared that open source projects are able

 397

FLOSS Legal and Engineering Terms and a License Taxonomy

to use some of their patents and that they will
also use their patent portfolios to respond to pat-
ent infringement demands (IBM, 2005a, 2005b;
Novell, 2004; Open Invention Network, 2005;
Red Hat, 2004).

 Trademark

A trademark, in simple terms is where there is a
recognisable brand. The protection of a trademark
can be seen as important, in the case of FLOSS,
some licenses, such as the Apache license state
conditions that give the right to use the code base,
for other purposes, but specifi cally disallow people
for using the Apache name or similar branding.

 Derivative Work

A derivative work within the context of software is
a new or modifi ed program, building on or using
part of another work. One issue that arises is that
some jurisdictions there is no legal defi nition of
derivative work, so this defi nition needs to be writ-
ten into the specifi c license or contract, it may in
some cases be implied by the courts, but this is not
certain. When some licenses were written, issues
such as derivative work were not defi ned, because
there was no need for this in that jurisdiction.

 License/Contract

A license is permission by the owner of the intel-
lectual property, for another to use that IP, if the
subsequent user does not follow the conditions of
the license, redress can be taken by the IP owner,
under copyright law. A contract is an agreement
between two parties on the conditions of use and
the governing relationship between the property
of the two parties. Redress can be sort under
contract law. The classic conditions for a contract
to be valid require that there must be an offer, an
acceptance, and consideration. In many jurisdic-
tions, consideration must be exchanged by both
parties, in other words, both parties must give the

other party something of value, for a contract to be
formed, which can be an issue in FLOSS, where
there is not always value exchanged.

Jurisdiction Terms

When considering legal issues the jurisdiction of
the country needs to be considered, especially in
terms of software, which can easily be transferred
from one location to another, which can easily be
in a different legal jurisdiction.

Choice of Forum

Choice of forum, simply means, the jurisdiction
in which the matter will be decided by the courts
and law. This could be under the laws (and prob-
ably the courts) of the European Union, Victoria
Australia, or New York in the U.S. The choice of
forum can be written into the conditions so that
there is legal certainty about which jurisdiction
the case will be brought, or to ensure that the
case is not considered under another forums law.
The European Union discussed the creation of an
EU FLOSS license partially for reasons of forum
(Dusollier, Laurent, & Schmitz, 2004), a license
has been written with governing law as being
French (CeCILL, 2005a, 2005b), and NICTA in
Australia has created a license for that jurisdiction
(National ICT Australia, 2004).

Choice of Law

Choice of law, is a separate issue to choice of
forum. The choice of law states under what type
of law the case will be heard, such as the law of
tort or the law of contract. A choice of law clause
in software may also be used to say what it is not
(Rosen, 2004), describes a FLOSS license, where
the conditions specifi cally state that a law on the
sale of goods is expressly excluded, because of the
desire to treat the FLOSS as intellectual property
rather than as goods.

398

FLOSS Legal and Engineering Terms and a License Taxonomy

Other Legal Terms

Consumer Warranty

In many jurisdictions, the consumer warranty
laws, cannot be contracted away, and any clause
which does this is void (Fitzgerald, 2003; Rosen,
2004; St. Laurent, 2004). Modern license, have
added clauses to the licenses that allow for such
consumer laws and situations.

Rosen (2004) raises several issues to do with
the wordings used in FLOSS licenses. In licenses,
conditions can be express (i.e., spelled out) or im-
plied (i.e., not spelled out, but could be presumed),
the older licenses for example, do not explicitly
deal with the issues of patents, consumer warranty,
and derivatives, which increases the reliance on
implied terms.

Export Control

Export control has occasionally been a major
issue in software. Encryption technology is
considered by some countries, under the Was-
senaar Arrangement1, as munitions or a dual use
good and technology (i.e., a bullet, or tank, or in
this case a technology), which require an export
permit to cross the national boundary. For many
years, in some countries, software applications
which contained encryption algorithms required
a permit to be exported, the permit controlled
what was allowed and what countries the ap-
plication was permitted to be exported. This
was the situation in the U.S., until the year
2000 (Electronic Privacy Information Center,
2000). Therefore some licenses contain clauses
stating the software is required to comply with
U.S. export laws.

Distribution

The term distribution in FLOSS has a specifi c
meaning in that distribution occurs when the
source code or application is given to an entity,

outside the organisation who modifi ed the code.
If the modifi ed application is created for a specifi c
company, then generally that company can use the
application for internal use. Only if the company
gives the application or source code to an outside
entity is the software then seen to have been dis-
tributed, depending on the terms of the license, the
source code may then have to be shared with any
who ask. This has never been tested in a court of
law, nor is it certain if there is distribution when
sharing between large multi-business units in or-
ganisations or with a federal government sharing
with state government agencies.

Written Language

Depending on the jurisdiction there maybe a re-
quirement that the legal documents, be in a specifi c
language or that the parties have to specifi cally
agree that the language of the document shall be
in another language, such as the Squeak License
(Apple Computer Inc., 2005) for the province of
Quebec.

Reasonable and Non-Discriminatory
Licensing (RAND)

Reasonable and non-discriminatory licensing
(RAND) is a term used mainly in standards setting
bodies, such as the W3C, where if an organisation
wishes to have their IP used in a standard then they
must make the IP available under reasonable and
non-discriminatory terms. Although not perfect,
this allows companies to participate in standards
processes and not risk being locked into or out
of the required adherence when a standard has
been set.

Legal Test of Open Source Licenses

There has been one legal case, in Germany2,
which has upheld the FLOSS license conditions
of the GNU GPL, and also an organisation, which

 399

FLOSS Legal and Engineering Terms and a License Taxonomy

tracks and enforces the conditions of the GNU
GPL license, GPL Violations.org3.

BACKGROUND:
SOFTWARE TERMS

Source Code

Source code is the code which is written by pro-
grammers or software developers. The software
developers will create the source code using a
programming language, such as C++, Java, Bash,
.NET, PHP, or SQL. Source code is human read-
able, and by convention contains comments to
explain the code, and relevant variable names.
Source code is complied into byte/object/binary
code so it can be run on a computer. Depending
on the programming language the compilation can
be a completely separate computer fi le (applica-
tion), or the code can be interpreted (compiled)
at run time.

Object/Binary Code

The object code or binary code is the machine
readable code, which has been complied into a
form that can be executed or run by the computer.
The process for converting from source code to
object code is generally one way, although it is
possible to recompile back to source code from
object code, the recompiled source code will not
have meaningful comments, or variable names,

making it harder to maintain and understand the
workings of the program.

CodeBase

A larger software project might contain several
separate applications or sections of code which
have to be maintained. Some of these may be
dependent on other sections or applications to run.
As well in larger projects there might be different
versions of the source code which are at various
stages of testing or completeness this also includes
proposed changes, and modifi cations. The term
CodeBase is used for these collections of source
code generally held in a central repository.

Stack

In software engineering there are many defi ni-
tions of a stack, from the allocation of memory
through to the collection of programs or subsys-
tems required for a solution. In this chapter, it
is the later defi nition which is taken. Many ap-
plications require support from other programs,
applications, or libraries, which fi t into the required
software stack. If these applications or libraries
are not available or the licensing fees make them
uneconomical then this effects the dependent
applications.

Documentation

Documentation does not mean the inText docu-
mentation or comments within the source code,
but the user manuals, technical documentation,
testing data, testing documentation, FAQs, and
other documentation which can accompany soft-
ware. Documentation has intellectual property
considerations separate to those of software.
The licenses applicable to the documentation
of software documentation would generally be
different to that of the software, due to different
issues that need to be addressed.

Source Code
Object / Binary Code
Codebase
Stack
Documentation
Software Bugs
Linking / Software Libraries
Remote Procedure Calls / Web Services
Embedded System

Table 2. List of software terms discussed

400

FLOSS Legal and Engineering Terms and a License Taxonomy

Software Bugs

All software has bugs, some bugs are minor, some
are major, a bug is a fl aw in the program which
prevents it from behaving either as it should, or in
a manner that it should not. Among other reasons,
the CodeBase of an application will change due to
the maintenance to resolve bugs. In actively used
programs thought must be given to the ongoing
management of the CodeBase. In the cases of
inactively used programs, a person or organisa-
tion might need access to the CodeBase to fi x the
errors themselves.

Linking/Software Libraries

Linking to software libraries is a common prac-
tice in software programming. Linking is done
where there is a need to carry out a function or to
return a result. A software library is effi cient for
this for several reasons, one is that the function or
result maybe a commonly needed one, so doing
it once rather than repeating it several times is
worthwhile, this is also an effi cient reuse strat-
egy. Another reason to do this is that if there is a
need to update the function then only one place
needs to be updated. An example of this might
be the calculation of pythagoras theorem, where
rather than the code being separately put into
several applications. The code could be put into
a mathematical library, and then called upon by
the applications, when needed. Linking to soft-
ware libraries is generally done intra-computer,
so the libraries and the application would be on
the local hard drives of the machine running the
application. In FLOSS, software libraries may
have some issues, because if the functions are in
a software library, the requesting application is
using the source code (in the library) to produce
a result but because this is not actually incorpo-
rating the actual source code into the requesting
application and it is not clear what the implica-
tions are both philosophically and legally under
some licenses.

Remote Procedure
Call/Web Services

Similar to linking to a software library, a remote
procedure call is a request by a software applica-
tion for a task to be done, generally made to a
machine or service that is remote to the requesting
machine. Several standards have tried to address
some of the complex issues to make this work, and
make it easier for software programmers to create
such calls, such as RMI, DCOM, and CORBA. A
new protocol Web services is a further refi nement
of these standards and concepts. A Web service
may provide information, for example, a stock
price, or the result of a calculation, but could
also carry out more complex procedures, such
as Income tax calculations. Similar to software
libraries, there may be an issue with some FLOSS
philosophies in that it is possible to write a Web
service application, which uses FLOSS source
code, where the software services are going out-
side of the boundary of the organisation, but where
the application itself is not distributed outside of
the organisation. Therefore since the company
has not distributed the application outside of the
organisation, they are not required to share the
new or improved source code with any who ask
(Marson, 2005).

Embedded System

The defi nition of an embedded system can be
used in different ways, but in general an embed-
ded system, will be a system built for a specifi c
purpose, as opposed to a system that can be used
for many purposes or a general device. Examples
of specifi c purpose devices are traffi c light con-
trollers, printers, routers, and lift controller. The
personal computer is an example of a general
device. The term embedded system is also used
in the PDA and mobile phone devices although
theses devices sometimes have functionality like
PCs. Although in the past an embedded system
used purpose-built components, there is a grow-

 401

FLOSS Legal and Engineering Terms and a License Taxonomy

ing use of building an embedded system from a
combination of hardware and software compo-
nents, but limiting the functionality to that of the
required device. For instance, some printers are
using the operating system Linux (or a distribution
of Linux) to carry out their functions.

BACKGROUND:
HISTORY OF FLOSS

The classic traditional starting text for FLOSS is
Raymond (2001). Another book as an alternative
view, Wayner (2000), describes the personalities
and schisms in the FLOSS community. A DVD,
Moore, Wonderview Productions (Firm), and
Seventh Art Releasing (Firm) (2003), is a docu-
mentary with an historic account of Linux and
open source which includes interviews with many
of the personalities in the FLOSS community.

For some people, open source is a philosophy
and the licenses are merely the technical and le-
gal method by which this philosophy is enacted.
As part of the philosophy, there is a belief that
any person should be able to access the source
code, to learn, modify, and use as they wish.
For others, FLOSS is the best choice in terms of
engineering, and the use of a FLOSS license is a
pragmatic decision.

The Free Software Foundation4 (FSF), was
created by Richard Stallman, who is the author of
the signature open source license, the GNU Gen-
eral Public License5 (GNU GPL) (Free Software
Foundation, 1991). The FSF strongly believes that
software should be free. They created the phrase
“free as in speech, not as in beer.” The FSF phi-
losophy is governed by the four freedoms6:

• The freedom to run the program, for any
purpose (freedom 0).

• The freedom to study how the program
works, and adapt it to your needs (freedom
1). Access to the source code is a precondi-
tion for this.

• The freedom to redistribute copies so you
can help your neighbour (freedom 2).

• The freedom to improve the program, and
release your improvements to the public, so
that the whole community benefi ts (freedom
3). Access to the source code is a precondi-
tion for this. (Free Software Foundation)

The GNU GPL contains a provision mandat-
ing that when source code is either modifi ed or
is taken from code which is licensed under the
GNU GPL, that this new source code must be
licensed under the GNU GPL, and if distributed,
made available to others in source code form,
upon request. This applies, theoretically, even if
a single line of code is used. For this reason the
GNU GPL is referred to by some as being viral or
by others that the license will “propagate” (New
Zealand State Services Commission, 2006). The
term that was coined by the FSF and that is used
to describe the effect of the GNU-GPL is copyleft.
CopyLeft is the condition where a license requires
that subsequent modifi cations and extensions to
the application are made free as well (Free Soft-
ware Foundation, 2005b).

Traditionally there were two licenses used
in open source—the GNU GPL and the BSD
license—although when referring to the BSD
license, what is meant is a BSD style license,
rather than the actual BSD license. The Berkley
Software Distribution (BSD) was an operating
system created at the University of Berkley in
California. A BSD type license does not require
that the modifi ed application or applications that
BSD licensed code is placed into be licensed
under the BSD: the resulting application can
be released under any license, including a CSS
license. The best known example of this is Apple
Mac OS X, which is based upon and borrows
code from Mach, FreeBSD, and NetBSD. Apple
took the code and created Darwin, which was
the basis for OS X (Michaelson, 2004). The only
requirement of the original license was to give
attribution to the authors of the source code. The

402

FLOSS Legal and Engineering Terms and a License Taxonomy

BSD community believe that code should be free,
they view the GNU GPL as a contradiction in
terms, in other words, that the GPL code is free
except of the GPL (Wayner, 2000). There are also
arguments that, because originally, the code was
developed under public funding, that the public
should have access to use the code in anyway they
wish, including the ability to exploit the work for
commercial gain.

The Open Source Initiative (OSI) was formed
in 1998 to market the concept of FLOSS to a wider
community. The founders of the OSI believed that
the attitude of the FSF was preventing organisa-
tions from adopting open source software. FLOSS
was a pragmatic, software engineering view that
was a valuable development methodology, not
just a philosophy. The OSI could not trademark
or control the term open source, therefore they
created a trademark that could be used to certify
that a license was compliant against a series of
conditions. The OSI open source defi nition is
briefl y listed in Table 3 (Open Source Initiative,
2004a). All of the FSF licenses are OSI compatible
licenses, as are the BSD style licenses. The OSI
mark is only a certifi cation of the OSI conditions;
there are many licenses which claim to be open
source that do not have an OSI certifi cation.

In the domain of open source, the FSF is as-
sociated with the term free and the OSI with the
term open source, with open source referring to
licenses certifi ed against the OSD. However, there

are certainly licenses which refer to themselves as
open source which do not conform to the OSD.

Analysing the licenses used in SourceForge,
Weiss (2005) found the GNU GPL was used
for 45% of the projects with 7% using the GNU
LGPL, 5% BSD, with 22 other licenses sharing
the remaining 43%. The GPL is the major FLOSS
license and its aims are well liked, although the
large fi gure can be partially explained because
of the reciprocal obligations of the GNU GPL.
Examining SourceForge project data from April
2006 using the FLOSSmole Query Tool7 gave
results of 66.9% GNU GPL, 10.3% GNU LGPL,
and 7.0% BSD, with the remaining 57 licenses
totalling 15.8% of the licenses used in the projects
hosted on SourceForge.

MAIN FOCUS OF THE CHAPTER:
SOFTWARE LICENSE TAXONOMIES

The term open source software has changed from
what was once a reasonably simple term. Although
FLOSS was used and exploited commercially, this
was generally only in special sophisticated envi-
ronments. However, the term has been appropri-
ated and widened to include other meanings and
agendas. This has been caused by many factors,
including the growth and maturity in FLOSS,
changes in jurisprudence, the need to address
new issues in software engineering, changes in
vendor strategy, and the need for companies to
either protect their intellectual property or to
market product.

The only aspect in common agreement be-
tween the conditions in the various licenses seems
to be the ability to view the source code, after this
the variation is almost endless. Therefore as a way
of understanding the various types of licenses
there is a need to organise them into rough. A tax-
onomy of the types of license has been developed
to distinguish and place the license into various
types, by outcomes of the licenses.

Table 3. Open Source Initiative Open Source
Defi nition (Open Source Initiative, 2004a)

1. Free Redistribution
2. Source Code
3. Derived Works
4. Integrity of the Author’s Source Code
5. No Discrimination Against Persons or Groups
6. No Discrimination Against Fields of Endeavour
7. Distribution of License
8. License Must not be Specifi c to a Product
9. License Must not Restrict Other Software
10. License Must be Technology-Neutral

 403

FLOSS Legal and Engineering Terms and a License Taxonomy

The taxonomy to consider licenses in can be
seen in Table 4, the licenses are considered at two
levels, this is because there is a need to separate the
licenses out into four broad areas before discuss-
ing the classifi cations inside of those areas. The
fi rst broad area is traditional open source, which
includes the licenses approved by the FSF and
the OSI. Dual licenses are also included in the
traditional open source. The next area is that of
quasi open source licenses, which have an open
source component, but generally have restric-
tions on the use or that place obligations on the
consumers of the source code. An area for open
source support licenses has been created because
there is a need to specifi cally address issues and
artefacts associated with FLOSS where the ar-
tefact is not source code. Although strictly not a
FLOSS area, the public domain and closed source
licenses complete the range of licenses.

Traditional Open Source Licenses

In traditional open source software, the source
code is available for use by others. The source
code is both visible and the source code can be
added to, modifi ed, or sections of the source code
can be used in other programs. Limitations on

the resulting source code and application may
exist, for example under the GNU GPL the new
source code must be licensed under the GNU
GPL. There may also be a dual license choice
available, where a choice can be made between
participating in the open source development or
create a closed source application.

Reciprocal Licenses

The reciprocal licenses enforce that any resultant
source code, which either borrows the code from
another codebase, or adds to a CodeBase, must be
licensed under the original source code license.
Examples of these licenses are the GNU-GPL, the
Common Public License8 (CPL), and the European
Union Public License9 (EUPL). A reciprocal li-
cense does not mean that the license is the same
as the GNU GPL or is considered by the FSF as
a free license, but generally they have similar
characteristics to the GNU GPL.

The GNU Lesser General Public License10
(GNU LGPL) is a special license created by the
FSF specifi cally to allow the linking by applica-
tions to software libraries. See the defi nition of
linking licenses for more details on the GNU
LGPL, however simply the GNU LGPL has
characteristics of a reciprocal license for code
that is used from GNU LGPL source, but can be
linked to without creating the reciprocal condi-
tions required by the license.

Not all reciprocal licenses are considered to
be “free” by the FSF. For example, the CPL is not
considered to be compatible with the GNU GPL
license by the FSF because the license has some
requirements, including in the way it deals with
Patents, that make it incompatible with the GNU
GPL. The conditions are not seen as bad by the
FSF, just incompatible with the GNU GPL

Non-Reciprocal Licenses

A non-reciprocal license is similar to the original
BSD license in that there is no requirement in the

Traditional Open Source Licenses
Reciprocal Licenses
Non-Reciprocal Licenses
Linking Licenses
Dual Licenses

Quasi Open Source Licenses
Obligation Licenses
Morality Licenses
Viewable Source Licenses
Membership Licenses

Open Source Support Licenses
Content Licenses
Open Standards Licenses

Public Domain
Closed Source / Proprietary Licenses

Table 4. Taxonomy of FLOSS licenses

404

FLOSS Legal and Engineering Terms and a License Taxonomy

license that any derivative work must be licensed
under the original license. Some other clauses may
exist such as the need to give attribution, protec-
tion of trademark, or governing patent claims.
In the context of this taxonomy a non-reciprocal
license allows for the new source code to be used
in anyway that is wished including making the
software closed source. An example of a non-re-
ciprocal license is the Academic Free License11
(AFL). The AFL and the CPL are almost identical
licenses, in terms of the clauses, the differences
between the two is the conditions which make the
CPL reciprocal and the AFL non-reciprocal.

Linking Licenses

Linking licenses are licenses where the terms of
the license allow for other applications, or code
to link to them, but do not require the linking
application to be licensed under the license of the
linked application. Linking licenses are useful in
that the application licensed under the linking
license can be used in the software application
stack, and a vendor or programmer is able to use
the application with other software applications,
including proprietary licensed software, without
risk of being forced to release their other source
code under the linking license. Currently, the best
example of this is the GNU Lesser GPL, or GNU
LGPL (Free Software Foundation, 1999), and the
license was created specifi cally so that applica-
tions could link to the GNU LGPL12, because of
the concern of some that if the GNU GPL was
used then the linking program would be required
to be then licensed under the GNU GPL.

To explain this better, take for example if Appli-
cation Alpha was licensed under license XYZ and
it linked to Application Beta, which was licensed
under the GNU LGPL. This is perfect in keeping
with the conditions of the GNU LGPL. If, however,
Application Beta incorporated source code from
Application Alpha, then under the conditions of
the GNU LGPL, then Application Alpha would
be required to then be licensed under the GNU

LGPL. This is because of the license conditions of
the GNU LGPL: another type of linking license
might have different conditions.

Dual Licenses

The dual license is not strictly speaking a specifi c
license; this is where the owner of the intellectual
property can license the IP under different licenses
to different people or for different conditions.
Therefore it is possible to give the FLOSS com-
munity a license that applies to FLOSS but also to
license the same application under a commercial
license to others. Some research has been done
on the use of dual licenses (Välimäki, 2003).
This is the case with database MySQL, where
the company MySQL will allow an organisation
that does not wish to use the MySQL database
under the GNU GPL to pay for a separate license.
A license known as the Sleepycat License13 has
similar properties, in that if the new application
is open source, then it is treated as open source.
If it is a commercial product, then a commercial
negotiation must occur. The Mozilla Public
License14 is a reciprocal license but also has the
option to be a dual license, in that the initial de-
veloper can stipulate a second license that may
be used for licensing the application, although
this is typically the GNU-GPL.

It is vitally important to understand that if a
person or company wishes to use a dual licensing
system, they must own the copyright in the source
code, or have control of the intellectual property in
the source and software so that they can create the
dual license arrangement. Governance and manage-
ment of the code base is critically important.

Quasi Open Source Licenses

The quasi open source licenses have taken on some
of the characteristics of the traditional licenses, but
have conditions that modify the levels of control
or distribution of the licensed source code.

 405

FLOSS Legal and Engineering Terms and a License Taxonomy

Obligation Licenses

Obligation licenses either impose restrictions
on the modifi cations of the source code, such as
how the modifi cations may be distributed, or give
special privileges to the licensor. Generally, these
are used by vendors where they may be trying to
control the distributions for compatibility reasons,
the Sun Community Source License15 (SCSL) or
for the vendor to be able to use any resulting in-
novation in their products, such as the Netscape
Public License16. Microsoft has a license which is
actually a copyleft style, but limits the software to
being used only on Microsoft Windows Operat-
ing Systems the Microsoft Limited Permissive
License17 (Ms-LPL), thus creating the obligation,
and also disallowing it from being an OSI certi-
fi ed license. The Ms-LPL is a subversion of the
Ms-PL (Microsoft, 2005), which does not contain
the obligation condition.

Morality Licenses

Morality licenses are licenses which include provi-
sions that preclude users of the software, and/or
those who wish to use sections of the source code,
from using it for certain purposes. The source code
is still available to be viewed, used and modifi ed,
but has limits on the uses. Because these licenses
exclude fi elds of endeavour they are not able to
be certifi ed by the OSI, nor are they considered
to be Free in terms of the FSF. The Hactivismo
Enhanced-Source Software License Agreement
(HESSLA) license specifi cally states that the
program or code cannot be used to violate Human
Rights (Hacktivismo, 2005). The Xineo freeware
license states the program may not be used for
commercial or military purposes (Xineo.net).

Viewable Source Licenses

Some licenses allow little more than the ability
to view the source code, so a section was created
called viewable source. The Microsoft Reference

License18 (MS-RL) permits only the viewing of
the code for reference purposes.

Membership Licenses

Although there are no current examples of mem-
bership licenses in FLOSS, there are examples
of the use of the concept. A membership license
would allow the source code or other IP arte-
facts to be shared amongst a membership set.
Organisations such as the Avalanche Corporate
Technology Cooperative19 and the Government
Open Code Collaborative20 have been setup to
share IP between their members. The concept
behind the collaboration is that these organisa-
tions are consumers of IP and wish to draw upon
others experiences to implement and get value
from ICT.

Open Source Support Licenses

Content Licenses

FLOSS is just source code, however, there is a
need for documentation, and there may also be a
need for the application to implement or comply
to standards, therefore a category of open source
support has been included. Content licenses are
licenses which apply to content, generally to
documentation, but can apply to other forms
of content. The FSF have created a license for
content to match the GNU GPL called the GNU
Free Document License21 (GFDL). There is also
the creative commons license suite of licenses,
which allows a copyright owner to choose how
they share their IP. The creative commons has
also created the infrastructure to support the IP
owner and consumer in easy communication and
control of the IP (Creative Commons, 2005).

Open Standards

Open standards are different to FLOSS in that
standards are created as references so that software

406

FLOSS Legal and Engineering Terms and a License Taxonomy

applications have interoperability when transfer-
ring data, such as EDI, XML, word processor
documents, or even TCP/IP network traffi c. An
open standard is a standard which is accessible
on reasonable and non-discriminatory (RAND)
terms, compared to closed standards, where the
vendor either does not release the details of the
data standard or the information is only available
within a closed consortium.

Public Domain

It is possible to place source code into the public
domain, where anyone can take the source code
and use it as they wish. Although sometimes
confused with open source, the public domain
is different: at the very least the owner may not
place other restrictions as they wish on the code
and still have it free.

Closed Source/Proprietary

Closed source licenses, are considered to be those
which prevent access to the source code, although
this is extremely simplistic, and only for the pur-
poses of comparing in terms of being able to view
the source code. There are many different types
of closed source licenses which have a variety of
conditions, this should not be forgotten or glossed
over in the comparison with FLOSS.

FUTURE TRENDS: VIEWS
OF FLOSS LICENSES

Traditionally, although FLOSS software was
available to anyone, it was programmers and
technically savvy people who participated and
consumed the source code and software. However,
as the number of users of FLOSS licensed software
grows, including developers, vendors, end users,
and applications, there is the need to consider
that some types of FLOSS licenses have different
advantages and disadvantages for different types

of users or business strategies. Consideration
of the type of license used, or adopted changes
depending on the needs of the entity that wishes
to use or develop the application.

There is a conventional view that the GNU GPL
is the most free software license in the choices
available, however if you are a developer who
wishes to use code the best choice may not be the
GNU GPL (Gacek & Arief, 2004; Michaelson,
2004). The developer’s best choice may be to use
BSD licensed source code as they can use the code
for any purpose, with out obligation to contribute
the code back to the community.

Consumers may not care to use the ability to
use modify the code or so it may be irrelevant
as to the type of FLOSS license governing the
application. As a consumer or organisation, they
might not care if others have the same software,
but do require that they be able to continue to use
the software. Rather than placing software into
escrow, there is the choice of using FLOSS. There
are risks in this scenario, in that a consumer maybe
forced to participate in the FLOSS development to
infl uence their software requirements (Edwards,
2005). However similar costs maybe applicable if
the software is required to be maintained in any
case. Software being used in a business process
may require that it is not a copyleft style as they
may not wish to return code to a competitor; al-
ternatively an organisation may wish to gain from
sharing ideas or business risk with the community.
There has also been an increase in the use of open
source software in embedded devices, or the use
of an open source license to distribute the code in
embedded devices, for which reciprocal licenses
would force the disclosure of the code, but also
that non-reciprocal licenses can be used to dis-
seminate source code, ideas, and reputation.

There maybe reasons other than profi t or costs
in the selection of certain types of licenses. A Eu-
ropean Union report discusses that the EU should
use a copyleft style license because EU citizens
or organisations should be allowed to use source
code developed for the EU since their taxes have

 407

FLOSS Legal and Engineering Terms and a License Taxonomy

already paid for the software. This includes that
others should not be able to take the source code
and to create software and then sell it back to EU
citizens as they have already paid for it. Therefore
the EU is considering the use of a reciprocal style
of license (Dusollier et al., 2004).

CONCLUSION

This chapter has listed a brief list of legal issues as
well as an associated list of software engineering
terms, and given a taxonomy which can be used to
describe the broad characteristics of the FLOSS
License. Understanding and consideration of all
three are needed when using FLOSS, either for use
internally, for just the application, or in expanding.
It should also be remembered that non-FLOSS
has similar issues associated with their use, and
that in using any software, that there are licensing
conditions applicable to that software which has
to be taken into account. Just because it is FLOSS
does not mean it is good nor just because it is not
FLOSS does it mean that it is simple to comply
with the license conditions.

Attention has also been drawn to the legal and
software terms that are relevant in discussions
about FLOSS. Some issues such as patents and
linking to remote services will have an ongoing
effect on the development of new licenses or
conditions of licenses. Though the taxonomy only
provides a guide, it is still extremely important
that any specifi c choice be made after considering
in depth the actual conditions of the license, as
well as the business needs of the organisation or
person from the ICT.

REFERENCES

American Intellectual Property Law Association.
(2000). Patenting business methods. Retrieved
2003, from http://www.aipla.org/html/whatsnew/
patentingbusiness2.pdf

Apple Computer Inc. (2005). Squeak license. Re-
trieved September 30, 2005, from http://squeak.
org/download.license.html

CeCILL. (2005a). CeCILL Free Software License
Agreement version 2.0—English. Retrieved No-
vember 11, 2005, from http://www.cecill.info/li-
cences/Licence_CeCILL_V2-en.html

CeCILL. (2005b). Contrat de licence de logiciel
libre CeCILL version 2.0. Retrieved November
11, 2005, from http://www.cecill.info/licences/
Licence_CeCILL_V2-fr.html

Cohen, J. E., & Lemley, M. A. (2001). Patent
scope and innovation in the software industry.
The California Law Review, 90(1).

Commonwealth of Massachusetts. (2004). Open
source licenses: Quick reference chart. In http://
www.mass.gov/itd/legal/quickrefchart.xls (Vol.
44.5 Kb, pp. Chart in Spreadsheet format [.xls] of
~50 Open Source Licenses and their attributes).
Commonwealth of Massachusetts.

Creative Commons. (2005). Licenses explained:
Creative commons. Retrieved September 11,
2005, from http://creativecommons.org/about/
licenses/

Dusollier, S., Laurent, P., & Schmitz, P-E. (2004).
Open source licensing of software developed by
the European Commission (Report). European
Commission.

Edwards, K. (2005). An economic perspective
on software licenses: Open source, maintainers
and user-developers. Telematics and Informatics,
22(1-2), 97-110.

Electronic Privacy Information Center. (2000).
Cryptography and Liberty 2000: An Interna-
tional Survey of Encryption Policy. Retrieved
November 8, 2005, from http://www2.epic.org/
reports/crypto2000/

Fitzgerald, B. (2003). Legal issues relating to
free and open source software (Vol. 1). Brisbane,

408

FLOSS Legal and Engineering Terms and a License Taxonomy

Queesnland, Australia: Queensland University of
Technology School of Law.

Free Software Foundation. (2004). The free soft-
ware defi nition. Retrieved August 1, 2004, from
http://www.gnu.org/philosophy/free-sw.html

Free Software Foundation. (1991). GNU general
public license Version 2. Retrieved August 1,
2004, from http://www.gnu.org/copyleft/gpl.
html#SEC1

Free Software Foundation. (1999). GNU lesser
general public license Version 2.1. Retrieved
August 7, 2006, from http://www.gnu.org/li-
censes/lgpl.txt

Free Software Foundation. (2005a). Licenses.
Retrieved November 7, 2005, from http://www.
fsf.org/licensing/licenses/

Free Software Foundation. (2005b). What is
copyleft? Retrieved August 1, 2004, from https://
www.fsf.org/licensing/essays/copyleft.html

Gacek, C., & Arief, B. (2004). The many meanings
of open source. Software, IEEE, 21(1), 34-40.

Hacktivismo. (2005). The hacktivismo enhanced-
source software license agreement. Retrieved
September 30, 2005, from http://www.hacktiv-
ismo.com/about/hessla.php

IBM. (2005a). IBM statement of non-assertion of
named patents against OSS. Retrieved January
20, 2005, from http://www.ibm.com/ibm/licens-
ing/patents/pledgedpatents.pdf

IBM. (2005b). New IBM initiative advances open
software standards in healthcare and education.
Press Release.

ifrOSS. (2005). License center. Retrieved No-
vember 7, 2005, from http://www.ifross.de/if-
ross_html/lizenzcenter-en.html

Kirk, M. K. (2002). Competing demands on public
policy. Paper presented at the Conference on the
International Patent System.

Marson, I. (2005). GPL 3 may tackle Web loophole.
Retrieved October 1, 2005, from http://www.zdnet.
com.au/news/software/soa/GPL_3_may_tackle_
Web_loophole/0,2000061733,39214742,00.htm

Michaelson, J. (2004). There’s no such thing as a
free (software) lunch. ACM Queue, 2(3).

Microsoft. (2005). Microsoft Permissive License
(Ms-PL). Retrieved November 8, 2005, from http://
www.microsoft.com/resources/sharedsource/li-
censingbasics/permissivelicense.mspx

Moore, J. T. S., Wonderview Productions (Firm), &
Seventh Art Releasing (Firm). (2003). Revolution
OS. [S.l.][Los Angeles, CA]: Wonderview Produc-
tions; Seventh Art Releasing [distributor].

National ICT Australia. (2004). Australian
Public Licence B Version 1-1. Retrieved from
http://nicta.com.au/director/commercialisation/
open_source_licence.cfm

New Zealand State Services Commission. (2006).
Guide to legal issues in using open source software
v2. State Services Commission.

Novell. (2004). Novell statement on patents and
open source software. Retrieved May 25, 2005,
from http://www.novell.com/company/policies/
patent/

Open Invention Network. (2005). Open invention
network formed to promote linux and spur in-
novation globally through access to key patents.
Retrieved November 15, 2005, from http://www.
openinventionnetwork.com/press.html

Open Source Initiative. (2004a). The open source
defi nition. Retrieved August 1, 2004, from http://
www.opensource.org/docs/defi nition_plain.php

Open Source Initiative. (2004b). Open source
initiative OSI—Licensing. Retrieved November
9, 2005, from http://www.opensource.org/li-
censes/

 409

FLOSS Legal and Engineering Terms and a License Taxonomy

Open Source Initiative. (2005). License prolifera-
tion. Retrieved May 10, 2006, from http://open-
source.org/docs/policy/licenseproliferation.php

Raymond, E. S. (2001). The cathedral and the
bazaar: Musings on Linux and open source by
an accidental revolutionary (rev. ed.). Beijing;
Cambridge, MA: O’Reilly.

Red Hat. (2004). Statement of position and our
promise on software patents. Retrieved May 10,
2005, from http://www.redhat.com/legal/pat-
ent_policy.html

Rosen, L. (2004). Open source licensing software
freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall.

Rosen, L. (2005). License proliferation. Open
Source Developers Lab. Retrieved from http://
www.rosenlaw.com/LicenseProliferation.pdf

Skidmore, D. (2006). Too many open source
licenses! But do the existing licenses adequately
encompass the diverse needs and concerns of
particular stakeholders? Paper presented at
the Towards Open Source Software Adoption:
Educational, Public, Legal, and Usability Prac-
tices. OSS 2006 tOSSad workshop proceedings,
Como, Italy.

Skidmore, D., & Skelly, L. (2003). Patents in
information systems: International issues. Paper
presented at the the 4th International We-B Con-
ference, Perth, Australia.

Soat, J. (2002). Small companies say they’re being
sued for employing common practices for doing
business on the Net. InformationWeek.

St. Laurent, A. M. (2004). Understanding open
source and free software licensing. O’Reilly.

United States Federal Trade Commission. (2003).
To promote innovation: The proper balance of
competition and patent law and policy. United
States Federal Trade Commission,.

Välimäki, M. (2003). Dual licensing in open
source software industry. Systèmes d’Information
et Management, 8(1), 63-75.

Välimäki, M. (2005). The rise of open source
licensing: A challenge to the use of intellectual
property in the software industry. Turre Publish-
ing.

von Krogh, G., & von Hippel, E. (2003). Special
issue on open source software development. Re-
search Policy, 32(7), 1149-1157.

Wayner, P. (2000). Free for all: How Linux and the
free software movement undercut the high-tech
titans (1st ed.). New York: Harper Business.

Weiss, D. (2005). Quantitative analysis of open
source projects on SourceForge. Paper presented
at the The First International Conference on Open
Source Systems, Genova, Italy.

World Trade Organization. (1994). TRIPS (trade-
related aspects of intellectual property rights).
Retrieved May 10, 2003, from http://www.wto.
org/english/docs_e/legal_e/27-trips_01_e.htm

Xineo.net.Xineo Freeware License. Retrieved
from http://software.xineo.net/fl ightsim/Licence.
html

KEY TERMS

 Free Software Foundation (FSF): A primary
oganisation in the free/libre and open source space,
created by Richard Stallman, and maintainer of
the GNU software projects and the GNU GPL
software license.

 Open Source Initiative (OSI): Organisation
which created the open source defi nition, a cer-
tifi cation mark for open source software, also a
primary organisation in the open source space.

 GNU GPL: Primary open source license,
GNU means Gnu is Non-Unix. The GNU is a

410

FLOSS Legal and Engineering Terms and a License Taxonomy

recursive software programmers joke. The GPL
is the general public license, which is the legal
means of the FSF’s philosoply of CopyLeft.

 Traditional Open Source Licenses: These
are the reciprocal, non-reciprocal, linking, and
dual licenses.

 Quasi Open Source Licenses: These are
the obligation, morality, viewable source, and
membership licenses.

 Open Source Support Licenes: These are the
content and open standards licenses.

ENDNOTES

1 http://www.wassenaar.org/
2 Unoffi cial English translation of the District

Court of Munich “Harald Welte vs. Deutsch-
land GmbH” 2004. http://www.jbb.de/judg-
ment_dc_munich_gpl.pdf

3 http://www.gpl-violations.org
4 http://www.fsf.org
5 The acronym GNU is “GNU is Not Unix”,

which is a recursive joke, the general public
license is the GPL. Most people refer to the
license as the GPL, but the FSF prefer to use
the fuller term GNU GPL.

6 Computers start counting from zero, this is
why freedom 3 is the fourth freedom, and
the fi rst freedom is freedom zero.

7 FLOSSMole, http://ossmole.sourceforge.net/
Data available at http://f loss.syr.edu/
OssMole/index.jsp. SQL query “SELECT

count(*) as total_records, code FROM
project_licenses group by code”

8 Common public license, http://www-124.
ibm.com/developerworks/oss/CPLv1.0.htm

9 http://europa.eu.int/idabc/en/document/
2623/5585#eupl

10 GNU Lesser General Public License (v. 2.1),
http://www.fsf.org/licensing/licenses/lgpl.
html

11 http://www.rosenlaw.com/AFL3.0.htm
12 Previously to February 1999, the GNU LGPL

was the GNU L[ibrary] GPL. With version
2.1, in February 1999 the name changed to
the L[esser] GPL.

13 http://www.sleepycat.com/company/licen-
sing.html

14 ht tp://www.mozil la .org /MPL/MPL-
1.1.html

15 http://www.sun.com/software/jini/licens-
ing/SCSL3_JiniTSA1.html

16 ht t p://www.mozil la .org /MPL/ NPL-
1.1.html

17 http://www.microsoft.com/resources/
sharedsource/licensingbasics/limitedper-
missivelicense.mspx

18 http://www.microsoft.com/resources/sha-
redsource/licensingbasics/referencelicense.
mspx

19 https://www.avalanchecorporatetechnology.
net/

20 http://www.gocc.gov
21 http://www.fsf.org/licensing/licenses/fdl.

html

 411

Section V
Public Policy, the Public Sector,
and Government Perspectives

on Open Source Software

412

Chapter XXXII
On the Role of Public
Policies Supporting

Free/Open Source Software
Stefano Comino

University of Trento, Italy

Fabio M. Manenti
University of Padua, Italy

Alessandro Rossi
University of Trento, Italy

INTRODUCTION

Governments’ interest in free/open source (F/OS)
software is steadily increasing. In Europe, this
interest has become visible in the Lisbon Strategy
and in the corresponding eEurope Action Plans

ABSTRACT

Governments’ interest in free/open source software is steadily increasing. Several policies aimed at
supporting free/open source software have been taken or are currently under discussion all around the
world. In this chapter, we review the basic (economic) rationales for such policy interventions and we
present some summary statistics on policies taken within the European countries. We claim that in order
to evaluate correctly the consequences of such interventions one has to consider both the role and the
administrative level at which such decisions are taken as well as the typology of software that is involved.
Moreover, we argue that the level playing fi eld cannot be taken for granted in software markets. There-
fore, non-intrusive public policies that currently prevail at the European level in terms, for instance, of
the promotion of open standards or in terms of campaigns aimed at informing IT decision-makers, are
likely to be welfare enhancing.

2002 and 2005 approved by the European Com-
mission where it has been clearly stated the key
role of open source software and open standards
in pursuing the general objective of giving all
citizens the opportunity to participate in the global
information society.1

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 413

On the Role of Public Policies Supporting Free/Open Source Software

All over the world governments are considering
various policies to support F/OS software; these
policies go from the provision of “best practices”
for the usage of open source to information cam-
paigns aimed at making markets participants
aware of all software alternatives, from simple
expressions of preference towards F/OS software
to large scale adoption of open source solutions
in governments’ offi ces and schools.

The role of the public sector in the software
market is of primary importance. Governments
not only set the legal and regulatory framework
where economic agents interact, but they are
also big software purchasers;2 this double role
makes governments key players in determining
the future evolution of software markets and it
is therefore of crucial interest to understand both
the motivations and the effects of governments’
interventions in this sector.

This chapter critically reviews the main ar-
guments in favor or against public intervention
supporting F/OS; we also provide some empirical
evidence about the various public interventions
that are already in place in Europe. The chapter
is structured in three parts: in the fi rst part, we
provide a general analytical framework; public
interventions may occur at different administra-
tive levels (i.e., from municipalities to national or
supra-national level), and they may have different
motivations. These complexities have not received
enough attention in the previous analyses on public
interventions towards F/OS; the aim of this section
is to offer a possible taxonomy for governmental
policies in the software market and to discuss
the many rationales for intervention but also the
counterarguments that often have been put for-
ward. In the following section, we present some
evidence concerning the main public initiatives
in Europe. Rather than focusing on any specifi c
case study, we have collected information from
the European IDABC, the program documenting
the major initiatives supporting F/OS within the
European Union. In this way, we have been able
to draw some general considerations on the mo-

tivations and the characteristics of governments
interventions implemented all across the EU. The
subsequent section concludes by bridging the
theoretical discussion with the empirical analysis.
We claim that, if one considers that the largest
share of the software market is represented by
self-developed or customized products, the exist-
ing literature has placed too much emphasis on
packaged software and arguments against public
support of F/OS might be improperly grounded.
Moreover, we believe that the level playing fi eld
cannot be taken for granted in software markets.
Therefore, non-intrusive public policies that cur-
rently prevail at the European level in terms, for
instance, of the promotion of open standards or in
terms of campaigns aimed at informing IT decision
makers, are likely to be welfare enhancing.

BACKGROUND: A GENERAL
FRAMEWORK

It is useful to start our analysis by providing a
general framework for discriminating the large
heterogeneity of public interventions in the
software market. In particular, we claim that, in
order to judge correctly rationales, motivations,
and consequences of public interventions, it is
important to distinguish between the various
roles played by policy makers and the various
categories of software involved. We argue that
many existing contributions, both in the scholarly
and in the practitioners’ debate, have not clearly
taken into account these distinctions.

Public administrations, institutions, and
governments play a double role in the software
industry. On the one side, being big spenders for
software licenses and software development, their
adoption/use decisions represent a signifi cant
share of the demand thus having a major impact on
market equilibrium. On the other side, by acting as
legislators and regulators, governments do in vari-
ous ways determine the evolution of the market;
for instance, it is quite evident that the legislation

414

On the Role of Public Policies Supporting Free/Open Source Software

towards intellectual property rights, either based
on strong patent protection as in the U.S. or on
weaker copyright legislations as it is within the
EU, has a major infl uence on the functioning of
the market and the diverging experiences on the
two sides of the Atlantic stand as a clear example
of this role. Similarly, as we discuss later in the
chapter, governments frequently intervene man-
dating the adoption of open standards/interfaces;
these policies are usually aimed at promoting
compatibility and interoperability between dif-
ferent software platforms, thus creating a level
playing fi eld between different competitors; this
kind of intervention clearly affects the effi ciency
of the market and therefore suggests a regulatory
intention of the proponents.3

Obviously, it is often diffi cult to disentangle
interventions of public authorities as adopters/us-
ers from those motivated on regulatory scopes;
being large users, the decision to adopt a certain
software package taken by public bodies affects
the dynamic evolution of the industry and the
equilibrium outcome, thus having regulatory
consequences on the overall functioning of the
market.

Irrespectively of the role played by a public
administration, interventions may produce differ-
ent consequences depending on the nature of the
product involved. Software is not a commodity
and the industry is extremely heterogeneous;
indeed, the vast majority of software is either

self-developed or custom while packaged soft-
ware represents a minor share of the market.4
The structure, the players, and the dynamics of
mass-market and custom segments of the software
industry are very different as well as different
are likely to be the effects induced by the various
public interventions.

In Table 1 we provide four examples of inter-
ventions distinguishing among different roles of
public administrations and different typologies
of software: three of these interventions are
directly related to the promotion of F/OS, while
the fourth refers to the well-known Microsoft
European antitrust case. This last example relates
to the F/OS world since, as a consequence of the
antitrust action, Microsoft has recently announced
its decision to allow access to some parts of the
source code of its operating system.5

Rationales for Intervention:
Review of the Literature

The literature on F/OS software in public admin-
istrations is quite substantial. Supporters of F/OS
software have mainly focused on adoption of such
technologies in the public sector and have based
their arguments on technical, cost-effi ciency or
political-idealistic grounds. Regulatory scopes
and therefore those rationales based on the con-
sequences of F/OS public adoption on the overall
functioning of the market have been receiving a

Adoption/Development Market Regulation

Custom

August 2005: the French Ministry of Foreign
Affairs starts developing an open source
architecture in order to integrate its computing
system.6

October 2004: the Belgian administration published its
white book concerning the use of open standards and open
specifi cations for public sector purchased software.7

Packaged

September 2004: the Education Council of
Castilla - La Mancha signed an agreement with
Sun Microsystems to distribute Star Offi ce 6.0
to the region’s schools.8

EU’s 2004 antitrust decision: Microsoft is required to
disclose complete and accurate interface documentation
which would allow non-Microsoft work group servers to
achieve full interoperability with Windows PCs and servers.
This will enable rival vendors to develop products that can
compete on a level playing fi eld in the work group server
operating system market.9

Table 1. Examples of public interventions supporting F/OS or regulating the market10

 415

On the Role of Public Policies Supporting Free/Open Source Software

much more limited attention by this stream of
research.

Conversely, most of the critical voices in this
debate have warned against detrimental conse-
quences of both direct support/intervention and
adoption of F/OS by public administrations on
market performance.

In what follows, we briefl y summarize the
debate on F/OS software in the public sector; we
devote the fi rst subsection to provide a general
overview of the most frequent motivations that
have been proposed to justify public support to-
wards open source. In the second subsection we
look at the issue from a more critical viewpoint and
we present the (often) skeptical view held by some
economists and closed source practitioners.

Why Supporting F/OS?

Advocates of the F/OS movement put forward sev-
eral rationales for public policies in the software
market. Leaving aside pure idealistic-philosophi-
cal motives,11 governments should support F/OS
because of its intrinsic superiority with respect
to closed source software. F/OS is considered to
outperform proprietary software in terms of, for
instance, higher reliability, security, fl exibility,
and maintainability of the code.12 These superior
features stem both from the organizational mode
of F/OS which is characterized by the presence
of a community of developers that continuously
reviews the source code and fi xes possible bugs,
as well as from the fact that the availability of
the source code makes it possible for the user
to adapt the software to her/his own personal
needs and to check every possible defect. Cost-
effi ciency is a second common rationale for policy
interventions which is especially important for
those public administrations that are pressured by
budget concerns. The public sector would benefi t
from F/OS because of a number of reasons: net
savings due to the reduced or non-existing licens-
ing fees, the opportunity of freely contracting
with software developers for subsequent code

maintenance/upgrade without being locked
into the relationship with the initial provider,
or the possibility of profi ting from economies
of reuse/collaborative development.13 Similarly,
a further benefi cial effect would follow from a
more effi cient employment of public resources
that would be shifted from license costs towards
human capital investments.

With respect to the issue of innovation dy-
namics in the software industry, F/OS advocates
also stress the importance and benefi ts of public
intervention. Open source licenses guarantee the
availability of the source code and the same legal
rights as those of the original developer to every
individual who is interested in a certain software
product. This wide availability of the “updated
state-of-art,” within an industry characterized by
cumulative generation of knowledge, is perceived
to be of crucial importance to spur innovation. In
this respect, Varian and Shapiro (2003) argue that,
being typically based on open interfaces, F/OS
encourages third-party innovation in terms of
development of, for instance, adds-on and comple-
mentary products.14 Similarly, Benkler (2002)
considers self-organization in the distributed peer
production model more effi cient in “acquiring
and processing information about human capital
available to contribute to information production
projects” than traditional institutions, such as
markets and hierarchies. Henkel and von Hippel
(2004) push this argument further, claiming that
“user innovation,” a fundamental trait in F/OS
software development, is welfare enhancing.

From the national perspective, those countries,
whose software industry is lagging behind or is
not competitive in the international markets, may
consider public support to F/OS a viable way to
cultivate a domestic software industry, therefore
reducing their dependency from foreign suppli-
ers; this rationale for public intervention seems
to be ranked particularly high in the agenda of
both emerging15 and developed16 countries. Var-
ian and Shapiro (2003) sponsor this opinion and
emphasize that the GNU/Linux operating system

416

On the Role of Public Policies Supporting Free/Open Source Software

is “an open platform on which commercial or
open source applications can be built, thereby
spurring the development of a robust domestic
industry.”17

Another common motivation for intervening
in support of the F/OS movement is the stimulus
of competition in the software market; this motive
seems particularly relevant for those segments
of the market characterized by the presence of
dominant fi rms such as in the packaged software
segment18 and, more generally, in software pro-
curement markets where dominant proprietary
systems tie users to single suppliers, thus restrict-
ing competition.19

A More Critical View

During the last few years, several economists and
other scholars have scrutinized the possible role
of public policies in support of F/OS software.
Apart from some relevant exceptions, the majority
of authors seem to be rather skeptical about the
welfare benefi ts that would accrue from govern-
ments directly stimulating F/OS.20 One leading
argument is that open source has emerged and, in
many cases, has been extremely successful even
without any intervention in place; therefore, there
seems to be no need for public policies in order
for F/OS to fl ourish. On top of that, focusing on
closed source software, many authors claim that
there is no clear evidence of signifi cant failures in
the software market and, consequently, there is no
urge for governments’ intervention. Evans (2002)
and Evans and Reddy (2002) point out that the
software industry is highly competitive21 and also
its performances in terms of growth, productivity,
and R&D expenditures have been impressively
high.22 In other terms, software markets appear to
be an example of well-functioning markets and,
therefore, public funding to stimulate the emer-
gence of alternatives to closed source software
are prone to pick the “wrong winner.” Moreover,
a strong support to F/OS software may seriously
undermine the incentives of commercial fi rms to

innovate or to improve the quality of their software
(Schmidt & Schnitzer, 2003).

One of the main arguments in favor of F/OS
is that it guarantees to public administrations sig-
nifi cant reductions in software expenses; various
authors point out that cost savings obtainable by
adopting F/OS rather than proprietary software
are by far smaller that those expected. The licens-
ing fees represent only a minor part of software
costs and a meaningful comparison between F/OS
and commercial software has to be done in terms
of the total cost of ownership (TCO) which also
includes user training, technical support, main-
tenance, and possible upgrades of the software.
On these grounds, the overall cost advantage of
F/OS is less evident.23

The higher degree of innovativeness that,
according to supporters, characterizes the F/OS
development mode is also a strongly debated
issue. Smith (2002) acknowledges the brilliant
performances of proprietary software companies
in terms of R&D expenditures and resulting in-
novation and declares himself rather skeptical
about F/OS being able to replicate such fi gures.24
Evans (2002) and Evans and Reddy (2002) go even
further and claim that the theoretical argument
according to which open source implies more
innovation completely lacks of solid empirical
evidence, given that many successful F/OS soft-
ware projects draw strong inspiration from already
existing closed source counterparts.

This discussion reveals a widespread skepti-
cism among economists and closed source advo-
cates about direct government policies in favor
of F/OS software; nonetheless, there is a general
consensus on the need of a broader set of inter-
ventions that somehow ensure the level playing
fi eld in the software market. In particular, various
authors are making strong arguments against
the current system of protection of intellectual
property rights. A long series of decisions taken
by U.S. courts during the last twenty years has
extended software patent protection and has made
it easier for applicants to obtain patents even for

 417

On the Role of Public Policies Supporting Free/Open Source Software

obvious inventions. These facts have induced large
fi rms to accumulate sizable numbers of software
patents, the so-called patent thickets, that can be
strategically used in order to block competitors’
innovation. As Bessen (2002, p. 13) points out,
U.S. patent legislation may actually “sabotage
the otherwise healthy open source movement”
therefore potentially undermining competition
from F/OS solutions.25

Finally, an issue that has drawn the atten-
tion of several contributors relates to the public
funding of software R&D based on open source
solutions. In this case, the non-rival and non-ex-
cludable nature of software goods, largely due to
negligible replication costs, may induce policy
makers to sponsor F/OS software projects as a
means to increase social welfare.26 While there
is some consensus on the benefi cial effects of
this kind of interventions, the usage of restrictive
licensing schemes (such as the GPL), is still very
much debated: the software developed within
publicly funded R&D projects should be made
available to the widest possible audience but
such restrictive licensing terms may undermine
private appropriation of publicly funded basic
science efforts.27 In particular, closed source fi rms
may be prevented from adopting and developing
complementary applications for software distrib-
uted under GPL-like licensing schemes. Lessig
(2002) suggests that governments should employ
a non-discriminatory approach: publicly funded
code should be released in the public domain or
employing non-restrictive open source licenses
(such as BSD-like ones).

MAIN FOCUS OF THE CHAPTER

Major Interventions in the EU

All across Europe, governments and public agen-
cies are intervening in the software market in
various ways; since September 2003, the major
initiatives are registered on the Open Source

Observatory, a dedicated Web site compiled by
the European Commission within the IDABC
program.28 For each intervention registered on this
Web site a brief abstract and, usually, a series of
offi cial documents and press releases describing
the content of the policy are available. In order
to derive useful information, we have reviewed
the existing documentation focusing on the most
important interventions registered on the IDABC
site, therefore disregarding public initiatives taken
by very small municipalities. The dataset we have
compiled starting from the IDABC documenta-
tion has been complemented with the information
recovered from an independent investigation by
the Center for Strategic and International Studies
(see Lewis, 2004).

It should be noted that given the methodology
used within the IDABC program, the informa-
tion we have gathered does not represent the
complete set of initiatives taken in the European
public sector. Some typologies of policies or
some countries might be underrepresented in
the sample. However, we believe that our effort
to summarize the existing policies in favor of
F/OS software represents a useful starting point
to analyze the major European initiatives within
a unifi ed setting.

Overall, we have collected information about
105 interventions, distributed across 14 European
countries; France is by large the most active coun-
try with more than 28% of the interventions in our
sample.29 Around 8.5% of the policies have been
taken at the EU level and therefore they should
be common to all European countries.

To summarize the information derived from our
dataset, we have grouped policies according to:

• Type of software involved by the inter-
vention: We have distinguished between
custom, packaged software, and broader
interventions aimed at supporting the use
of open standards/interfaces.

• Political and administrative levels at
which the intervention is taken: We have

418

On the Role of Public Policies Supporting Free/Open Source Software

applied a two-tier classifi cation distinguish-
ing both between government and public
agencies/bureaus (e.g., central government
vs. postal services) and between central and
local/regional level of intervention (e.g., cen-
tral government vs. local municipality).

• Type of intervention: We have grouped
interventions into three broad categories:
adoption when the government/agency has
decided to adopt a certain software, advi-
sory when the policy consists of a general
claim of preference towards open source
and/or encourages the use of F/OS or it is
aimed at informing potential adopters of
the existence and characteristics of open
source and, fi nally, development when the
government actively promotes the creation
of new software.

• Rationale for intervention: We have classi-
fi ed policies into seven non-exclusive broad
categories: cost-effi ciency, that pools to-
gether motivations such as savings in license
fees, economies of reuse of the software,
savings from collaborative development of
projects, and more effi cient employment
of public resources (e.g., shift from license
fees to investment in human capital); code
 availability, combining motivations con-
nected to the technical advantages assured
by transparency, security, robustness, and
quality of the code; interoperability, in which
the rationale for intervention lies in stimulat-
ing the diffusion of open standards and in
promoting interoperability in the software
market; fl exibility, in which motivations are
linked to fl exibility advantages assured by,
for instance, the possibility of tailoring the
code to the user’s needs, to assure integration
and compatibility with existing systems, and
so on; enhanced competition, combining in-
terventions motivated by levelling the play-
ing fi eld, creating alternatives to proprietary
companies, supporting domestic industries,
stimulating technical independence from

dominant vendors, introducing competition
in support, maintenance, and upgrade of
systems and so forth; effi ciency in the public
sector, gathering motivations specifi cally
related to the diffusion of best practices in
public administration bodies; and, fi nally,
 information diffusion, a category represent-
ing those interventions motivated by the aim
of increasing the available information and
of raising consciousness about F/OS in the
general public or, more specifi cally, in public
administrations.

Table 2 shows the sample distribution of the
various policies with respect to their type. F/OS
adoption and advisory are the most common
interventions in Europe: together they represent
more of the 80% of the whole sample.

In Table 3 we go further into the detail and
we present how the three types of policies are
distributed between central and local decisional
levels and between governmental authorities
and public bureaus/agencies. More than 80% of
the interventions in our sample are taken at the
governmental level (both local and central) while
agencies have played a much more limited role.
Advisory policies aimed at suggesting and pro-
moting F/OS prevail in central governments while
at the other levels adoption is the most common
type of intervention. This is not surprising once
considered that central governments often provide
“guidelines” for action while operative decisions
are effectively endorsed at the local level and in
agency bodies.

Intervention Freq. %

Adoption 47 44.8

Advisory 39 37.1

Development 19 18.1

TOTAL 105 100

Table 2. Public policies classifi ed in terms of type
of intervention

 419

On the Role of Public Policies Supporting Free/Open Source Software

Intervention

Level Development Adoption Advisory TOTAL

Central
Gov.

8
(17.8%)

9
(20%)

28
(62.2%)

45
(100%)

Central
Agency

1
(8.3%)

9
(75%)

2
(16.7%)

12
(100%)

Local
Gov.

9
(21.4%)

24
(57.1%)

9
(21.4%)

42
(100%)

Local
Agency

1
(16.7%)

5
(83.3%)

0
(0%)

6
(100%)

TOTAL
19

(18.1%)
47

(44.8%)
39

(37.1%)
105

(100%)

Table 3. Policies classifi ed in terms of type of intervention and administrative level

Software

Level Custom Packaged Open Std.

Central
Gov. 69% 73% 0%

Central
Agencies 33% 66% 17%

Local
Gov. 38% 78% 5%

Local
Agencies 83% 33% 0%

TOTAL 53% 72% 8%

Table 4. Policies classifi ed in terms of software type and administrative level

In Table 4 interventions are grouped accord-
ing to the kind of software they are directed to:
either software custom or packaged or towards
the implementation of open standards. Note that
in many cases, the intervention is not restricted
to a unique type of software but it may involve
two or all of them.30 Table 4 suggests that local
governments are more active towards packaged
software while central governments do not seem
to follow any particular pattern.

Restricting the analysis to central governments
and central agencies, we have looked more closely
at the motivations behind interventions. According
to the available information, only in 37 out of 57

of the cases it was possible to collect offi cial state-
ments explicitly accounting for the rationales for
intervention. The information we have gathered
is presented in Table 5. Clearly, given the small
number of observations, some caution has to be
exerted when interpreting these data; however, it
is worthwhile to highlight the major trends that
characterize European policies.

Total fi gures in Table 5 show that cost-effi -
ciency motivations are the most popular, followed
by interoperability and code availability ones.
Regarding specifi c policies, adoption policies are
largely motivated by interoperability (viewed at
the level of the single adopter) and cost-effi ciency

420

On the Role of Public Policies Supporting Free/Open Source Software

rationales (in particular, savings on license fees)
while rationales regarding technical advantages
of code availability and fl exibility (all subcatego-
ries equally represented) are less cited, therefore
suggesting that short-term advantages might be
more salient than long-term ones in the stated
motivations. On the other hand, pure regulatory
motivations (such as stimulating market competi-
tion) are not explicitly accounted for. As far as
advisory policies are concerned, interoperability
(also considered at the market level) and cost-ef-
fi ciency (all subcategories equally represented) are
still fundamental rationales, but other regulatory
motivations are popular as well (in particular,
enhancing competition and raising awareness in
markets). Finally, technical advantages of code
availability represents the major rationale for R&D
policies, while, surprisingly, motivation regarding
cost-effi ciency are rather infrequent.

FUTURE TRENDS

As we have briefl y discussed in a prior section,
economists are rather critical about intrusive
public policies into the software market and, to
some extent, we adhere to this skepticism.

Just to mention some arguments, the soft-
ware industry has really proved to be extremely
dynamic, characterized by high rates of growth
and, while competition in some software segments
might result in “winner-takes-all” outcomes,
dominant positions have been frequently displaced
by new comers (see Schmalensee, 2000); in a
word, markets have performed reasonably well.
Moreover, it is not yet clear if the production mode
of open source is really more innovative than the
proprietary one and empirical evidence on this
issue is far from being clear-cut.

However, we believe that looking at the F/OS
movement from an economic viewpoint, many
relevant aspects have not received so far the at-
tention that they should have deserved and the

Ty
pe

 o
f M

ot
iv

at
io

n

In
te

rv
en

tio
n

To
ta

l
C

os
t

E
ffi

ci
en

cy
C

od
e

Av
ai

la
bi

lit
y

In
te

ro
pe

ra
bi

lit
y

Fl
ex

ib
ili

ty
E

nh
an

ce
d

C
om

pe
tit

io
n

E
ffi

ci
en

cy
 in

Pu

bl
ic

 S
ec

to
r

In
fo

rm
at

io
n

D
iff

us
io

n

D
ev

el
op

m
en

t
6

(1
00

%
)

1
(1

7%
)

4
(6

7%
)

1
(1

7%
)

1
(1

7%
)

1
(1

7%
)

0
(0

%
)

1
(1

7%
)

A
do

pt
io

n
11

(1
00

%
)

7
(6

4%
)

2
(1

8%
)

6
(5

5%
)

3
(2

7%
)

2
(1

8%
)

1
(9

%
)

1
(9

%
)

A
dv

is
or

y
20

(1
00

%
)

11
(5

5%
)

7
(3

5%
)

11
(5

5%
)

2
(1

0%
)

8
(4

0%
)

5
(2

5%
)

7
(3

5%
)

TO
TA

L
37

(1
00

%
)

19
(5

1%
)

13
(3

5%
)

18
(4

9%
)

6
(1

6%
)

11
(3

0%
)

6
(1

6%
)

9
(2

4%
)

Table 5. Public policies classifi ed in terms of
rationale for intervention (central government
and agencies only)

 421

On the Role of Public Policies Supporting Free/Open Source Software

evidence on the EU experience reported above
suggests some of the directions towards which the
analysis should look at in order to better under-
stand the actual effects of these policies.

For example, we believe that the distinction
between custom and packaged software has not
been properly taken into account in the literature.
One of the main concerns against public support
towards open source is based on the allegation
that such policies would be detrimental for the
incentives to innovate by commercial fi rms. We
have already pointed out that almost two thirds
of the market is represented by software that has
been developed internally or that is customized
and, as shown in Table 4, more than half of the
interventions in our sample relates to this latter
type of software. We are convinced that the above
allegation cannot apply to this kind of software:
customized software is by defi nition software
“on demand” and the incentives to develop new
lines of code arise at the moment of the call for
tender, regardless of the open or close nature of
the source code.

From the evidence presented in a previous
section, it emerges that across the EU, together
with cost saving reasons, public interventions in
support of F/OS founded their motivations primar-
ily on the desire of stimulating an open standard
environment for software applications but also
on the relevance of source code availability and
on the intention to promote more competitive
software markets.

It is recognized that proprietary software is
likely to create important lock-in positions; the
unavailability of the source code renders adopt-
ers dependant on the original software provider
for further maintenance/development/upgrade of
the code. Moreover, the use of closed standards, a
typical solution employed by proprietary vendors,
makes it more diffi cult for adopters to disengage
themselves from software vendors. The absence
of complete and public documentation regarding
fi le and data storage formats and other commu-
nication standards might substantially increase

the switching costs thus rendering unprofi table
the migration to other software packages. Lock-
in is certainly a source of a relevant increase in
life-cycle costs but these costs are extremely
diffi cult to evaluate when one wants to compute
correctly the total cost of ownership of a given
software product.

On the contrary, a relevant feature of both open
source code and open standards is that competition
may be created in the aftermarket, and this may
signifi cantly reduce the cost of service, support,
maintenance and interoperability.31 Moreover,
according to this view, fears of picking “wrong
winners” through governmental advisory or adop-
tion of F/OS solutions should be lessened if one
takes into account that F/OS software is based on
open formats that are commonly available and
that might be employed by closed source vendors
to develop compatible value-added proprietary
solutions or interoperable adds-on and comple-
mentary products.32

While the above arguments apply to cus-
tom software in particular, a regulatory policy
in support of open standards may found solid
justifi cations also in the context of mass-market
software; as a consequence of strong network
effects, these segments of the software industry
are often characterized by the presence of domi-
nant players whose platforms have the typical
features of “essential facilities.” Controlling an
interface (the key input) allows the dominant fi rm
to protect its position and possibly to extend it to
other complementary products. Similarly to the
current practice in other industries, also for the
case of software the provision of open access to the
essential facility should be seriously considered
in order to promote competition and to improve
market effi ciency.

CONCLUSION

The bottom line is to ensure that markets lead to
effi cient outcomes and therefore to exclude, based

422

On the Role of Public Policies Supporting Free/Open Source Software

on economic grounds, that public interventions
might be benefi cial relates to the assumption that
all potential adopters are properly informed about
the alternatives that are available in the market.
A recent empirical study on F/OS in the public
sector shows that this is not necessarily the case.
Ghosh and Glott (2005) show that a large share of
IT administrators in the public sector ignore that
in their agencies F/OS was actually employed.33
More interestingly, the fact of being aware or not
about the current usage of open source software
has a major impact on the evaluation of the po-
tential benefi ts of F/OS adoption. Nearly 70% of
the “aware IT administrators” fi nds it useful to
extend the use of open source in their agencies.
This percentage shrinks to 30% among the IT
administrators that were unaware that F/OS soft-
ware was already employed in their institutions.
Clearly, this evidence provides strong support for
policies aimed at informing potential adopters
about the characteristics and the availability of
open source solutions.34

ACKNOWLEDGMENT

The authors would like to thank Bruno Caprile,
Vincenzo D’Andrea, Sebastian Spaeth, Ruben van
Wendel de Joode and two anonymous referees for
their helpful comments on earlier drafts of this
chapter. The usual disclaimer applies. Financial
supports from Progetto di Ateneo 2006—Uni-
versity of Padua (for Stefano Comino and Fabio
Manenti) and from MIUR under the projects
FIRB03 and PRIN05 (for Alessandro Rossi) are
gratefully acknowledged.

REFERENCES

Benkler, Y. (2002). Coase’s penguin, or, Linux
and the nature of the fi rm. Yale Law Journal,
112(3), 369-446.

Bessen, J. (2002). What good is free software?
In R. Hahn (Ed.), Government policy toward
open source software (pp. 12-33). Washington,
DC: AEI-Brookings Joint Center for Regulatory
Studies.

Bessen, J., & Hunt, R. M. (2004). An empirical
look at software patents (Working Paper 03-17).
Federal Reserve Bank of Philadelphia.

Comino, S., & Manenti, F. M. (2005). Government
policies supporting open source software for the
mass market. Review of Industrial Organization,
26, 217-240.

Danish Board of Technology. (2002). Open
source software in e-government. Retrieved from
http://www.tekno.dk/pdf/projekter/p03_open-
source_paper_english.pdf

DeLong, J. B., & Froomkin, A. M. (2000). Specu-
lative microeconomics for tomorrow’s economy.
First Monday, 5(2).

Evans, D. S. (2002). Politics and programming:
Government preferences for promoting open
source software. In R. Hahn (Ed.), Government
policy toward open source software (pp. 34-49).
Washington, DC: AEI-Brookings Joint Center
for Regulatory Studies.

Evans, D. S., & Layne-Farrar, A. (2004). Software
patents and open source: The battle over intel-
lectual property rights. Virginia journal of law
and technology, 9(10), 1-28.

Evans, D. S., & Reddy, B. (2002, May 21). Gov-
ernment preferences for promoting open-source
software: A solution in search of a problem. NERA
Economic Consulting report. Retrieved from
http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=313202

Finnish Minister of Finance. (2003). Recommen-
dation on the openness of the code and interfaces
of state information systems (Working Paper
29/2003). Retrieved from http://www.vm.fi /vm/

 423

On the Role of Public Policies Supporting Free/Open Source Software

en/04_publications_and_documents/01_pub-
lications/03_working_group_memoranda/
20031015Recomm/65051.pdf

Forge, S. (2005). Towards an EU policy for open-
source software. In M. Wynants & J. Cornelis
(Eds.), How open is the future? (pp. 489-503).
Brussels, Belgium: VUB Brussels University
Press.

Ghosh, R., & Glott, R. (2005). Free/libre and
open source software: policy support. (Results
and policy paper from survey of governments
authorities.) Maastricht, The Netherlands: Uni-
versity of Maastricht, MERIT.

Ghosh, R., Krieger, B., Glott, R., & Robles, G.
(2002, June). Free/libre and open source software:
Survey and study (Deliverable D18, Final report,
Part 2B: Open source software in the public sector:
policy within the European Union). Maastricht,
The Netherlands: University of Maastricht, In-
ternational Institute of Infonomics.

Henkel, J. (2006). Selective revealing in open in-
novation processes: The case of embedded Linux.
Research Policy, 35(7), 953-969.

Henkel, J., & von Hippel (2004). Welfare implica-
tions of user innovation. The Journal of Technol-
ogy Transfer, 30(1-2), 73-87.4

Lessig, L. (2002). Open source baselines: Com-
pare to what? In R. Hahn (Ed.). Government
policy toward open source software (pp. 50-68).
Washington, DC: AEI-Brookings Joint Center
for Regulatory Studies.

Lewis, J. A. (2004, August 1). Global policies
on open source software. Center for Strategic
and International Studies report. Retrieved from
http://www.csis.org/index.php?option+com_
csis_pubs&task_view&id=3046

Schmalensee, R. (2000). Antitrust issues in
schumpeterian industries, American Economic
Review, 90, 192-196.

Schmidt, K., & Schnitzer, M. (2003). Public sub-
sidies for open source? Some economic policy
issues of the software market. Harvard Journal
of Law and Technology, 16(2), 473-505.

Schmitz, P.E. (2001). Use of open source in
Europe, an IDA study. European Commission,
DG Enterprise. Retrieved from http://europa.
eu.int/idabc/servlets/Doc?id=1973

Schmitz, P.E., & Castiaux, S. (2002). Pooling
open source software, An IDA feasibility study.
Interchange of data between administrations.
European Commission, DG Enterprise. Retrieved
from http://europa.eu.int/idabc/en/document/
2623/5585#feasibility

Smith, B.L. (2002). The future of software: Ena-
bling the marketplace to decide? In R. Hahn (Ed.),
Government policy toward open source software
(pp. 69-86). Washington, DC: AEI-Brookings
Joint Center for Regulatory Studies.

U.S. Federal Trade Commission. (2003). To pro-
mote innovation: the proper balance of competi-
tion and patent law and policy. Retrieved from
http://www.ftc.gov/os/2003/10/innovationrpt.
pdf

Varian, H., & Shapiro, C. (2003). Linux adoption
in the public sector: an economic analysis, mimeo.
University of Berkeley, California.

von Hippel, E. (2005). Democratizing innovation.
Cambridge, MA: MIT Press.

Wheeler, D. A. (2005). Why open source software
/ free software (OSS/FS, FLOSS, or FOSS)? Look
at the numbers! Retrieved from http://www.
dwheeler.com/oss_fs_why.html

KEY TERMS

 Customers’ Lock-In: A situation in which a
customer is so dependent on a vendor for products

424

On the Role of Public Policies Supporting Free/Open Source Software

and services that he/she cannot move to another
vendor without substantial switching costs, real
and/or perceived.

Economic Regulation: Set of restrictions pro-
mulgated by government administrative agencies
through rulemaking supported by a threat of sanc-
tion or a fine. The main scope for government’s
regulation is to prevent markets’ failures, in
other words, situations in which markets do not
efficiently organize production or allocate goods
and services to consumers (as in the presence of
a monopoly/dominant firm).

Essential Facility: In a vertically related mar-
ket, it is defined as a facility, function, process, or
service that meets three criteria: it is monopoly
controlled; a potential competitor requires it as an
input to provide services and to compete down-
stream with the monopoly supplier; and it cannot
be economically or technically duplicated. Facili-
ties that meet this definition shall be subject to
mandatory unbundling and mandated pricing.

Intellectual Property Rights (IPRs): Intel-
lectual property is a term used to refer to the
object of a variety of laws, including patent law,
copyright law, trademark law, trade secret law,
and industrial design law. These laws provide
exclusive rights to certain parties over intangible
subject matter or over the product of intellectual
or creative endeavor; many of them implement
government-granted monopolies.

Proprietary Software (PS): Software prod-
ucts that are designed in such a way that others
cannot access or view a product’s source cod-
ing/the programming that allows the software to
perform certain functions.

Source Code: The programming that allows
software programs to perform certain actions or
functions.

Total Cost of Ownership (TCO): Financial
estimate aimed at helping consumers and enter-
prise managers to assess direct and indirect costs

related to the purchase of any capital investment,
such as (but not limited to) computer software or
hardware.

EndnotEs

1 Further details are available at: http://europa.
eu.int/information_society/eeurope/2005/
index_en.htm. All the URLs provided in this
chapter are active at the moment of writing
the chapter (June 2006).

2 Just to give a relevant example, the Dutch
public sector spent around 400 million euros
on software in 1997; see http://www.ososs.
nl.

3 For an example at the transnational level see
the European Interoperability Framework
for pan-European eGovernment services,
mandating a series of policies, standards
and guidelines aimed at “facilitating […]
the interoperability of services and sys-
tems between public administrations, as
well as between administrations and the
public” (http://europa.eu.int/idabc/en/docu-
ment/2319/5644). For an application at the
national level the reader may refer to the
Dutch manual on open standards and open
source software (OSOSS) in the procurement
process, encouraging the adoption of open
standards in the public sector (http://www.
ososs.nl).

4 According to Bessen (2002), packaged soft-
ware has never accounted for more than a
third of software expenses.

5 See, for instance, Microsoft’s Jan. 25, 2006
press release available at http://www.micro-
soft.com/presspass/press/2006/jan06/01-
25EUSourceCodePR.mspx and the com-
ments of Neelie Kroes (European Union’s
antitrust chief), stating that documentation
enabling interoperability, rather than mere
code disclosure, is at issue in order to meet
EU’s requirements (http://today.reuters.

 425

On the Role of Public Policies Supporting Free/Open Source Software

com/business/newsArticle.aspx?type=tec
hnology&storyID=nL26331447).

6 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/4549/469

7 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/3336/469.

8 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/1766/469.

9 ht t p: //eu ropa .eu.int /rapid /pressRe-
lea se sAc t ion .do? refe re nce =I P/0 4/
382&format=HTML&aged=l&language=

 EN&guiLanguage=en.
10 For a brief but comprehensive review of vari-

ous national initiatives and policies on open
source software see the links provided by the
IDABC Open Source Observatory at http://
europa.eu.int/idabc/en/document/1677/471.

11 A notable example of this kind of motiva-
tions can be found in the programs and
activities of the Free Software Foundation,
aimed at affi rming the primacy of freedom
ideals in the development and diffusion of
software.

12 For a comprehensive survey on this topic
see Wheeler (2005).

13 Reuse economies are savings due to recy-
cling previously developed code as a basis
for a new project; collaborative development
economies are strategies of mutualization
consisting in partnerships for joint develop-
ment by the public sector, motivated by the
needs of pooling efforts and sharing costs in
building, maintaining and upgrading large
software projects of common interest. See
Schmitz and Castiaux (2002) for an assess-
ment applied to FO/S software.

14 Bessen (2002) holds a similar view.
15 Support to domestic software industry lies at

the core of the IT national policies of India
and China. See, for instance, the remarks of
the Indian President, A.P.J. Abdul Kalam, on
the future challenges of information technol-
ogy for developing countries (http://news.
com.com/2100-1016-1011255.htmlnews.

com.com/2100-1016-1011255.html) or the
speech of the Ministry of Science and Tech-
nology at the 2004 International Conference
on Strategies for Building Software Indus-
tries in Developing Countries (http://www.
iipi.org/Conferences/Hawaii_SW_Confer-
ence/Li%20Paper.pdf).

16 This occurs both at the national as well
as at the local levels. See the statement
by the Finnish Ministry Kyösti Karjula
(http://www.linuxtoday.com/news_story.
php3?ltsn=2002-06-17-011-26-NW-DP-PB)
as an example of the fi rst type and the delib-
eration of the autonomous province of Trento
on the adoption of open standards and open
source software (http://www.linuxtrent.
it/Members/napo/deliberaPAT_n1492.pdf)
as an instance of the second type.

17 Smith (2002) contrasts this view arguing that
in a large number of countries, not only in the
developed ones, a fl ourishing (proprietary)
software industry already exists.

18 Among others, see the statement made
by Boris Schwartz, deputy leader of the
SPD parliamentary group, during the
debate about the transition towards open
source systems of the city of Munich
(http://www.linuxtoday.com/infrastructure/
2003052600126NWSWPB).

19 See, for instance, the recommendations of
the Danish Board of Technology (2002) on
supporting the emergence of alternatives in
custom built software markets as means to
foster competition and the recommendations
of the Finnish Minister of Finance (2003),
suggesting to include the possession of the
source code in tender drafts in order to assure
competitive bidding in future development
and maintenance.

20 One notable exception is represented by
Lessig (2002) who claims that government
preference towards F/OS is justifi ed by the
presence of externalities that market forces
do not internalize. For instance, software

426

On the Role of Public Policies Supporting Free/Open Source Software

developed for or adopted by some branches
of the government could be employed use-
fully also by other branches if it is free or
open source; the initial development/adop-
tion decision should take into account also
the potential benefi ts for future users.

21 These authors provide several fi gures to
support their argument. In the US the Her-
fi ndahl-Hirschman index (HHI) for the
software industry is smaller that the average
HHI computed for the US manufacturing
industries; furthermore, during the period
1996-2000 there has been a decrease by
27% in the quality-adjusted prices for the
packaged software.

22 According to Evans (2002), in the year 2000
the R&D expenditure of software companies
represented one tenth of the overall R&D
undertaken within the industrial sectors
while fi fteen years before it accounted for
only 1%.

23 The empirical evidence comparing the TCO
of open vs. close software solutions does not
seem to be conclusive. For a comprehen-
sive overview the reader may refer to the
FlossPols report on policy support (Ghosh
& Glott, 2005).

24 Smith, Microsoft’s senior vice president,
also claims that often, in order to bring the
software to the market, additional invest-
ments have to be done and these can not
accrue from the F/OS world but can only
come from the commercial one.

25 For an empirical analysis on software patents
see Bessen and Hunt (2004). According to
these authors, the strategic accumulation of
patent thickets seems to be the most con-
vincing explanation for the large increase
of software patenting in the US. Similarly,
several panelists, according to a recent US
Federal Trade Commission (2003) report,
support the view that the patent protection
system poses threats to innovation in the
software industry. Lessig (2002) and von

Hippel (2005) argue in favor of lessening
the extent of patent protection in the soft-
ware industry. According to Evans (2002)
and Evans and Layne-Farrar (2004), even
though some (minor) reform of the patent
legislation might be benefi cial, software
patents should not be banned altogether.

26 See, for instance DeLong and Froomkin
(2000) for an application to digital goods
markets.

27 Smith (2002) and Lessig (2002) hold the
view that government should finance
R&D activities but the resulting software
should not be distributed under restrictive
licensing schemes. On the contrary, Varian
and Shapiro (2003) focusing on the Linux
case argue that the adoption of GPL does
not necessarily prevents the development
of complementary applications. Henkel
(2006) provides empirical evidence that,
despite GPL’s strict requirements in releas-
ing derived works, fi rms can adopt several
successful strategies in order to protect their
own code enhancements.

28 IDABC stands for Interoperable Delivery
of European eGovernment Services to
public Administrations, Businesses and
Citizens; the information available on the
Open source Observatory is collected by a
special Web-team from staff members of the
European public sector and also by search-
ing the Internet for relevant information.
The documentation we have collected is
available at the following URL http://europa.
eu.int/idabc/en/chapter/491.

29 The large interest of public authorities in
France has been documented also in a previ-
ous IDABC report, see Schmitz (2001).

30 This fact explains why rows sum up to more
than 100%.

31 On these lines, Ghosh, Krieger, Glott, and
Robles (2002) suggest that whenever it is
feasible governments and public institu-
tions should opt for software open source,

 427

On the Role of Public Policies Supporting Free/Open Source Software

for example, by granting unlimited access
to the source code, the right to modify the
software and that to reproduce and distrib-
ute an unlimited amount of copies of the
modifi ed version under the same license
restrictions. Forge (2005, p. 492) argues that
policy-markers should mandate “backward
compatibility, open access to program in-
terfaces, and separation between operating
systems and applications”.

32 Moreover, it is worth mentioning that in
some cases policies supporting F/OS soft-

ware are inspired by neutrality principles,
therefore suggesting joint use rather than
full substitution of closed source software
by migrating to F/OS systems.

33 According to the authors 30% of IT admin-
istrators were unaware of F/OS software
usage and this fi gure increases in the case
of small budget public agencies.

34 A welfare analysis of the impact of various
policies supporting F/OS in the presence of
“unaware” potential adopters can be found
in Comino and Manenti (2005).

428

Chapter XXXIII
Use of OSS by Local
E-Administration:

The French Situation

Laurence Favier
University of Bourgogne (Dijon), France

Joël Mekhantar
University Jules Verne of Picardie (Amiens), France

Marie-Noëlle Terrasse
University of Bourgogne (Dijon), France

ABSTRACT

This chapter deals with the integration of OSS in local and territorial e-administration and its relations
with the state level in France. France includes both many local collectivities: (36,568 local collectivi-
ties) on four levels (local, departmental, regional, and central) and a centralized State. The policies
defi ned in France and promoted by initiatives from the European Union are leading to the defi nition of
a normative framework intended to promote interoperability between information systems, the use of
free software and open standards, public-private partnerships, development of know-how and abilities.
These policies are applicable to State agencies but are not required for local and regional collectives
because of the constitutional principle of administrative freedom. The chapter shows how the integration
of all administrative levels can be operated in an e-administration framework OSS based, often coexist-
ing with proprietary software. The legal, political, and technical (III) frameworks of such integration
are presented.

INTRODUCTION

The last 2005 July 5th European parliament rejects
the attempts of the European Patent Offi ce and
its allies to impose software patentability on

Europe. This vote promoted the diffusion of OSS,
especially in e-government’s applications. In this
background, we will focus on the effective use
of OSS in French local e-administration. France
includes many local and territorial collectivities:

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 429

Use of OSS by Local E-Administration

(36,568 local collectivities) Integration of elec-
tronic administration between the different levels
(local, regional, national, international) has not
yet truly been implemented in France, even less
so has it been theorized. However, a key point in
the success of electronic administration resides at
the most local level, the town hall, where citizens
use it to undertake their administrative requests.
The users, businesses or citizens, wish to have
effi cient service without needing to bother with
the differences in responsibilities or approaches
for each of these levels. Local, uncoordinated
initiatives may result in costly incompatibilities
or redundant work. Furthermore, a paradoxical
situation could occur since the new technologies,
necessary for deployment of services, are a factor
in increase of “digital fracture” (even that of its
spreading in company environment).

The policies defi ned in France and promoted
by initiatives from the European Union (IDABC
networks, Government Online International
Network, International Council for Information
Technology in Government Administration) are
leading to the defi nition of a normative framework
intended to promote interoperability between
information systems, the use of free software
and open standards, public-private partnerships,
development of know-how and abilities. In France,
the ADAE (Agence pour le Développement de
l’Administration électronique—the agency for
development of electronic administration), in the
framework of the ADELE program has performed
this task by creating a strategic plan (PSAE) and a
master plan for electronic administration (SDAE).
These policies are applicable to State agencies
but are not required for local and regional col-
lectives because of the constitutional principle
of administrative freedom.

This chapter deals with the integration of OSS
in local and territorial e-administration and its
relations with the state level. OSS often coexists
with proprietary software: how their integration is
operated? What are the legal (I), political (II), and
technical (III) frameworks of such an integration?

BACKGROUND

The development of e-administrations within public
organizations is a reality that has become progres-
sively prevalent in the legal framework in France
and, more generally, within the European Union (I).
In this development, the problems of interoperability
between the different levels of administration and
the desire to be able to establish relations between
the local, regional, national, and supranational lev-
els, particularly between European nations, have
raised the question of using open source software
(Culnaert, 2004).1 among administration specialists
and decision-makers (I-2).

The Emergence of French and Euro-
pean Law on Local E-Administration

The development of e-administration in general
and local e-administration in particular, with the
transformation of procedures2 and the explosion
of local e-services, is a reality in France3 and in
Europe4. On the legal level, the French consti-
tutional and administrative organization allows
the prime minister to regulate the development of
public services on the Internet5 for the State and
its public administration institutions.

However, the constitutional principle of free
administration of public organizations leaves
public organizations greater freedom in organ-
izing themselves directly within the limits of their
obligatory declaration to the National Commission
for Information Technology and Civil Liberties
(CNIL) in order to ensure the protection of personal
data6 by applying the Law of January 6, 1978. The
CNIL publishes a practical guide, explaining the
requirements it imposes on public organizations
on this subject.7 The Law of January 6, 1978 was
amended by a new Law dated August 6, 2004. That
established a distinction between the two types
of requirements prior to the declarations, based
on the nature and goal of the data processing:
data processing subject to the general declara-
tion procedure and that subject to the exceptional

430

Use of OSS by Local E-Administration

authorization procedure. The declaration system
makes up the general system established by the
new law for data processing which does not risk
extending to privacy and civil liberties. Based
on this, the authorization system concerns very
specifi c situations like data processing likely to
infringe on privacy and civil liberties given its
goals and characteristics as well as certain kinds
of data processing done on behalf of the State.
Very early on, this simple legal framework allowed
pioneering towns to anticipate a digital future.
The experience of the “digital town” Parthenay
was a little like a laboratory. In effect, in this
town, the fi rst refl ections on the subject “IT and
local development” were carried out in 1993 and
emerged from participation in several European
programs: the METASA program, the MIND
program8, and the IMAGINE project, whose goal
was to encourage a social appropriation of infor-
mation and communication technologies.

A series of unpublished studies carried out at
the University of Bourgogne9 showed the abun-
dance of ideas, which were demonstrated by local
e-administrations in the United Kingdom10 and in
France, to offer new services to citizens.

In addition, a French ordinance of Decem-
ber 8, 200511 applicable both to state and local
public organization services aims at simplifying
the administrative requests by using electronic
means. With this ordinance “an administrative
authority can answer all information requests
electronically that a user or another administrative
authority sends to it by this method.” Furthermore
“When a user sends a request or information to
an administrative authority electronically and
receives confi rmation of receipt (electronically),
this administrative authority shall duly input
and process the request or information without
requesting confi rmation from the user or asking
him/her to resend it in another format.”

Most importantly, this ordinance encour-
ages the creation of e-administrations without
restricting them to the single State services by
indicating:

The administrative authorities[12] can create e-
services within the limits of the measures of the
aforementioned Law of January 6, 1978 and the
rules on security and interoperability set forth in
Chapters IV and V of this ordinance. When they
implement such a service, in accordance with
the former, the administrative authorities make
their reason for creating it accessible as well as
its method of use, particularly the possible com-
munication methods. These methods are imposed
on users.

For the development of local e-administration,
despite the creation of the ADAE,13 France is not
yet set up for a true master plan comparable to
that established in the United Kingdom. The e-
Administration Plan of Action (P2AE) 2004-2007
within the framework of ADELE must be content
with indicating:

The local public organizations are special and
indispensable partners in the development of the
e-administration. To this end, they participate in
the study, development and creation of numerous
services. Actors for change, they equally benefi t
from inter-departmental works that will be in-
cluded in the framework for the e-administration
plan of action.

Eventually, this plan only includes several
services for local public organizations.14 Under
the framework of local interest related to their
area of expertise, the former maintain control of
the political options on whether to develop online
services for the concerned citizens or not.

To develop online services, essential factors
in the decision relate both to cost and certainty
that the public organization will not become a
prisoner of technology so that it may evolve its
online public services to meet the needs of users.
Consequently, the use of open source software
seems to offer a satisfactory answer to this dual
concern.

 431

Use of OSS by Local E-Administration

The Problem of Open Source
Software within Local
 E-Administration Law

Before it was replaced by the ADAE (Agency for
the Development of e-Administration), ATICA
(Agency for Information and Communication
Technologies) encouraged the use of open source
software licenses in France for administrations
starting in December 2002 with the publication
of a guide.15 The e-Administration Plan of Ac-
tion 2004-2007 reiterated this approach and, for
France, specifi ed that the Government, through
ADAE, also wishes to open a debate on process-
ing shared add-on “open source” software based
on the normalization model.

This debate will integrate the legal licensing
aspects in order to evaluate the opportunity of
defi ning licenses in accordance with these prin-
ciples and in complete accordance with the law in
European Union countries: The goal is therefore
to bring about the success of a group of legal sug-
gestions, allowing for the constitution of a core
of freely reusable software.

This goal is the subject of a specifi c project fi le16.
In addition, the same slant towards open source
software is also taken to develop the diffusion
of the AGORA tool17 thanks to its licensing by
GPL (general public license), as well as to migrate
workplace software towards solutions based on
open source software.18 Similar suggestions exist
in numerous European countries, like in Germany
or in Spain, even if, in the last case, Parliament
recently rejected the use of open source software.
From a technical point of view, software is open
when its source code is freely available, allow-
ing the software to be duplicated, modifi ed and
redistributed. Access to the source code, and thus
to all the instructions and program lines to modify
the software, allows a community of developers
and users to work together to constantly improve
the software.

However, as ATICA specifi es:

the availability of the source code is not the only
requirement to defi ne software as “open.” In
effect, “from a legal point of view, open source
software is fi rst and foremost software protected
by copyright and subject to a license that regulates
it and limits the rights and obligations related to
it. Often compared with property systems, which
usually only include user rights, open source
software is distinguished by the most important
rights being agreed upon by the software author
and the license benefi ciaries.19

Although it is still subject to copyright and
intellectual property rights, open source software
is of greater interest for local public organizations.
In effect, their licenses not only allow the public
organization-benefi ciary to use the software but
to study its functionality, change it for its own
purposes, and redistribute the changes as well.
License preserves the rights of the software
author who remains free to distribute it under
other licenses.

Legally, recourse to open source software par-
ticularly prevents the administration from having
to pay royalties for software after the expiration
of a contract. However, this risk exists in the case
of using property systems.

The question of cost related to the right to use
property systems which, after the computerization
of the 1970s, was raised in a general fashion for all
e-administration information systems is a major
concern when it is a question of creating online
public services. This is a strategic matter in the
measure where the fi rm that holds the software
rights can become an important limiting factor to
the use of a service developed by the administra-
tion beginning with the said software. In other
terms, from a legal point of view, the management
of the license of use for property systems becomes
more and more complex so that it is useful for
administrations to switch to open source software
if only to maintain control over developments in

432

Use of OSS by Local E-Administration

order to create and continue to develop online pub-
lic services by preserving technical and fi nancial
expertise for future developments.

A dispute brought forth by the Bull Company
against the National Health Insurance Agency
for Wage Earners (CNAMTS) administration
is very instructive in this respect. This agency,
considered an administration, continued to use
a software package for a period that was no
longer covered by a transfer contract and without
regard to the initial contract under which it was
required to destroy the software package at the
end of the transfer. The ruling handed down in
this dispute was

that contrary to that argued by CNAMTS, the
circumstances under which the Bull Company
understood the execution of the initial contract.
essentially, regarding royalties for the use of the
software do not in any way prevent the Bull Com-
pany from requesting damages caused by a lack
of gain; that from the instructions, the damages
claimed by the Bull Company correspond to the
market price amount calculated in proportion to
the number of days in which the services were
used outside of the contracted period, having been
determined based on the amount of useful expenses
shown by the co-contracting party for CNAMTS,
increased, within the limits of the market price,
by an amount corresponding to the recovery of
damages suffered by the co-contracting party due
to the wrongful behavior of the institution.20

This risk does not exist when the administra-
tion uses open source software. It remains free
to continue to use the software and, especially,
to change it to meet online public service needs
without exposing itself to fi nancial and legal
limitations.

However, open source software remains
protected by a license and, admittedly, it must
be pointed out that until recently, French admin-
istrations only used licenses developed in the
Anglophone world.21 For this reason, in France,

to create better legal security while maintaining
the spirit of these licenses, the CEA, CNRS and
INRIA have launched a project to draft open
source code software licenses under French law.
In 2004, the CEA, CNRS and INRIA also drafted
the CeCILL, the fi rst license that defi ned the
use and dissemination for open source software
in accordance with French law, borrowing the
principals of the GNU GPL.22 The English text
of version 2 of the license, which has the same
legal value, is accessible online.23

In addition, it must be observed that, with these
non-property systems developed in the private
sector just like open source code software, there
are fears regarding the use of e-Administration
solutions due to the introduction of DRM (digital
right management) and the development of a law
on technical measures to protect digital contents.
These questions that go above and beyond the
framework of open source software pose spe-
cifi c legal problems regarding the protection of
author’s rights and neighboring rights24 in the
digital environment.25

These questions that go above and beyond
the framework of open source software pose
specifi c legal problems regarding the protection
of author’s rights and neighboring rights26 in the
digital environment.27 To this regard, the Court
of Cassation, with a ruling dated February 28,
2006 (Civ. 1, Appeal no. D 05-15.824 and E 05-
16.2002, Decree no. 549 FS-P+B+R+I) overturned
a ruling from the Paris Court of Appeals (Paris
Court of Appeals, 4th Chamber, Section B, April
22, 2005) which ruled in favor of an individual
on the impossibility of copying a DVD due to
technical protection measures. The Court of Cas-
sation considered

that by ruling thusly, whereas the scope of the
normal use of the work, eliminating the excep-
tion of a private copy, takes into account the risks
inherent to the new digital environment regarding
the protection of author’s rights and the economic
importance whereas the use of the work, in DVD

 433

Use of OSS by Local E-Administration

format, represents the depreciation of cinemato-
graphic production costs, the court of appeals
violated the aforementioned texts,

meaning that Articles L. 122-5 and L. 211-3 of the
Intellectual Property Code were interpreted in
light of the measures of Directive no. 2001/29/CE
of May 22, 2001 on the harmonization of certain
aspects of the author’s right and neighboring rights
for the information company, along with Article
9.2 of the Convention of Berne.

Moreover, the new French project of law
named “DAVDSI”28 could threaten open source
software’s diffusion. It allows for a sentence:
edition, public access, public communication,
knowingly done and whatever the form of such
a publication, of a disposal designed for public
access of non authorized works or protected ob-
jects. The distribution of software which allows
information transfer (Web server, mailing …)
could be concerned.

MAIN FOCUS OF THE CHAPTER

The legal framework for the use of open source
software in the administration attempts to respond
to the growing use of open source software in
the local administration as shown in all surveys
of the past few years (II-1). This use is not only
limited by the legislation on author’s copyright. It
is also limited by the political framework defi ned
by the State: the interoperability of information
systems must allow exchange of dematerialized
information between the local level and the central
administration (II-2). From this point of view, the
use of open source software presents many ad-
vantages since it is based on open standards. But
its effective implementation is accompanied by a
new economic model limiting the independence
of the State: the logic of outsourcing the manage-
ment of information systems and strengthening
the public-private partnerships by replacing or

fi nalizing the economics related to remuneration
for intellectual property software (III).

Surveys’ Results: The Effective Use
of Open Source Software by Local
French E-Governments

Different surveys’ (APRONET 200429, MAZARS
2005, MARKESS 200530, FLOSSPOLS31 2005)
confi rm the European, and specifi cally French,
interest in OSS. Whereas on 12/15/2005 the Span-
ish parliament rejected the proposed law aimed
at imposing the use of open source software
in the central administration under the pretext
of supporting necessary competition between
open source and property systems, the French
State chose to stimulate the use of OSS. National
agencies (ADAE—Agency for the Development
of e-Administration and AIFE—Agency for
State Financial Computerization’s32) formulates
recommendations, associations provide local e-
governments with concrete help like the ADUL-
LACT, the Association of Open Source Software
for Developers and Users for the Administration
and Local Public Organizations (http://www.adul-
lact.org) or AFUL, the Francophone Association
of Linux Users and Open Source Software for
Education. ADULLACT is dedicated to support
and coordinate the action of local public organiza-
tions, public administrations and hospital centers
in order to promote, develop, share and maintain a
common patrimony of useful open source software
for public service missions. In addition, the part
of OSS in the French administration information
technology’s budget is growing.

The information system for local public orga-
nizations today must overcome two diffi culties:
public organizations perform a number of jobs,
60 to 70 different jobs according to the MAZARS
survey and their information system is often made
up of groups of specialized software that do not
communicate.

More over e-administration projects come to
the same time: e-procedures, dematerialization

434

Use of OSS by Local E-Administration

of calls for tender, the new interactive services
aimed at citizens (Internet sites, electronic ad-
ministrative counters) and fi nally the productivity
efforts required from all public functions. Local
IT (information technology) specialists have never
been confronted with as many similar works in
progress.

Government purchasing, fi nances and account-
ing are the special information technology works
in progress according to the MARKESS study.
Then there are the intranets, human resources
management (subject to the double effect of the
“senior citizen boom” and decentralization) and
extranets. Third, there are different work ap-
plications (management of consulting services,
acts, legality audits, grants, social welfare, etc.)
and other things related to citizen relations (Web
sites, portals, online services, or other various
tools) (geographic information system-SIG-,
collaborative work, electronic document man-
agement-GED).

The reasons cited for using OSS are cost control
(thank to the sharing of programs and knowledge)
and the open standards needs in order to ensure the
interoperability and upgradeability of the chosen
solutions. The growing complexity of managing
licenses becomes diffi cult to support in the public
sector, which is characterized by the diversity of
the jobs that it performs, the heterogeneous public
institutions to which its services are aimed and
the complexity of the cases that it handles (each
individual is a peculiar case and can ask specifi c
questions).

The open source alternative becomes a for-
midable tool in business negotiation. Its sole
existence reduces bills from traditional editors by
half. Now the OSS are used throughout the French
Finance Department. The Copernic application for
the general management of taxes is one example.
Open source software is considered to now be the
default choice for all fi scal applications. “Accord-
ing to our evaluations, our new JBoss application
server using J2E cut costs by a fourth compared
with our old property system tool” said Jean-Ma-

rie Lapeyre, technical director of Copernic, the
new program that restructures the fi scal system
(budget of 911 million Euro over nine years). Ac-
cording a report from DGME (Direction for the
Modernization of the State33), the goal is that a
third of the information projects are implemented
with open source software, compared with the
10% from two years ago.

The rise in local public administrations ex-
penses since 1982, following a notable decentral-
ization of the State, budget control is the primary
concern for 55% of respondents.

The French E-Government Scheme:
Protecting the Public Treasury

The state does not limit the technical choices for
local e-governments. It acts in two ways:

• Publication of a standard of interop-
erability named “Référentiel Général
d’Interopérabilité”

• National experiments; these experiments
consist in implementing an e-administration
project in a region before offering it more
generally to the entire nation once tested.
Thus, since January 1, 2005, the e-Bour-
gogne34 project was an experimental e-service
platform for businesses and citizens

Nevertheless, public organizations are not
completely free to choose the information system
that they want to implement for e-administration’s
applications. It’s the case of account which sup-
poses the exchange of dematerialized data between
the local e-government (for those who undertake
the expense) and the public accountants who
implement the budget. If the local e-governments
are free to incur the expenses that they have voted
on, the payment of the expenses is exclusively as-
sumed by a public accountant, the Public Treasury
(le Trésor Public). It ensures the legality of the
account of local e-governments ... The Regional
Accounting Offi ces control the legality of the

 435

Use of OSS by Local E-Administration

operations carried out by public accountants under
the accounting framework. Thus, there must be
agreement between local e-government account
and this of the municipal treasurer, a local agent
of the public treasury.

We can absolutely imagine that more than
36,000 municipalities, nearly 100 departments,
25 regions, and thousands of other various local
structures (township committees, EPCI,35 etc.)
each have their own information system. From
the legal point of view, they have the right to do
so because of the principle of free administration
of local public organizations, a principle granted
by the Constitution of 1958 and reinforced by the
constitutional amendment of March 2003 (on
which the Law of August 13, 2004 is based which
deeply affects the role of Regional Accounting
Offi ces). Some local governments give free rein
their imagination. However, they always follow
the rules of the public treasury accounting.

Today, the information technology applica-
tion’s “Helios” has been implemented to carry
out the dematerialized exchanges between public
organizations and the public treasury. All the ac-
counting positions (3,400) will soon be equipped
with this application. The format adopted by He-
lios will allow users to generate automatically and
quickly accurate data regarding the budgetary and
fi nancial situation of public organizations from
dematerialized budget documents which traced
voted and performed expenses. Local informa-
tion systems must send their dematerialized data
under the framework of the standard exchange
protocol (PES). Likewise, the regulation on proj-
ect exchange “Acts” (help for assistance and safe
electronic transmission) must be adopted by public
organizations. This is available in the ADAE frame
of recommendations: technical architecture, lan-
guage of interoperability, protocols, and standard.
The role and contents of the services requested
for a tierce of e-transmissions36 must be defi ned
in relation with the technical architecture of the
connection and the reception platform for acts
from the Department of the Interior.

The local e-administration architecture is not
determined in France without state protection,
role assumed by the national agency, ADAE. We
also understand why the French e-administration
framework depends on the Finance Department
within the General-Direction of the Moderniza-
tion of the State whereas it was previously dealt
with by the Ministry of Civil Service.

New Public-Private Relations

The need to be independent of property sys-
tem editors often hides another dependency:
that which it exercises in regard to information
technology services’ private companies. Open
source software seems to be a factor promoting
the dependence of the State on the private sector.
The model of tierce maintenance applicative, an
outsourced type of software maintenance for a
company that uses an external service provider, is
generalized with the use of open source software.
Applicative maintenance consists in maintaining
an information program in a state that allows it to
fulfi ll its function: correction of errors, adaptation
of operations to new hypothetical situations, and
maintaining performance despite more and more
users ... When this maintenance is performed with
a third party, an outside service provider, this
is a tierce maintenance applicative. In France,
the Department of Finance (MINEFI: Ministère
des Finances), entrusted a group of companies
“Gemini, Linagora, Bull” with the support,
maintenance, and creation of open source solu-
tions for the tax management information system
COPERNIC. The massive and large scale use of
open source software, within the many MINEFI
departments, since 2000, requires:

• Securing the choice of open source soft-
ware, which has become a strategic axis
in the construction of public information
systems

• Registering the choice as an authentic lever
to control and reduce costs

436

Use of OSS by Local E-Administration

• Guaranteeing the evolution of the infor-
mation system by ensuring an accrued
interoperability, a continuous service and a
high level of project maintenance through
the updated training of public agents

MINEFI also has:

• An authentic and continuous service regard-
ing the availability of used open source
solutions (more than 100 supported and
maintained software solutions)

• Know-how and expertise allowing for the
creation of large migration works aimed at
open source solutions in the following do-
mains: fi le servers, mailing, workstations,
public key infrastructure, and so forth.

This contract between administration and
private sector represents the most important one
in the fi eld of open source software in 2005 in
France, Europe and the world.

Local e-governments also use outsourcing
more and more often. Seventy three percent of
them have used or have planned to use external
service providers, a proportion that is higher in
the EPCI (84%) and General Councils (76%). The
local administrations use a lot of consulting and
support services before launching IT (information
and communication technologies) projects. We
also notice the importance of trusted third parties
(36%) and the ASP37 (25%), mainly for the dema-
terialized public markets, and in the emergence
fi eld of archiving. According to Markess Inter-
national, this market is growing. This advisory’s
company estimated the French software and IT
service market38 for these administrations to be
3.3 billion Euro in 2005. This market should grow
by 12.1% between 2005 and 2007 and reach nearly
4.2 billion Euro.

The new law on public-private partnerships39
has a special fi eld of application in e-administra-
tions, whose development Jean Arthuis recom-
mends.40

A new form of outsourcing, the public-private
partnership, instituted by Ordinance no. 2004-559
of June 17, 2004, introduces a contract type into
French law that is inspired by British law. The
new public-private partnership contracts (PPP)
can be extended over the long term, including an
overall service starting from the inception of a
building and its construction up to its maintenance
and including the legal and fi nancial assembling
of the operations.

ADAE has been skeptical regarding the appli-
cation of PPP to e-administration. According to its
director, the intervention of a private service provider
in a public information system requires both:

• The perennially and stability of businesses
• The independence of the used software

tools
• The non-reuse of personal data for com-

mercial means
• A draconian confi dentiality clauses

We can see that the introduction of open source
software in the administration is not harmless.
Since it leads to a sharing dynamic between
users, a development led by demand and not by
supply, open standards to the detriment of prop-
erty systems, it also generates a new economic
model contributing to strengthening dependence
on the public sector with regard to the private
companies.

FUTURE TRENDS

Technical Integration of Open
Source Software in French
Local Administration

Legacy information systems of local administra-
tions are getting increasingly complex and they
cover increasingly wide and complex domains.
This gives rise to three main issues:

 437

Use of OSS by Local E-Administration

• First, users (administrative staff members)
tend to put high expectations on new infor-
mation systems but, at the same time, they
do not wish to change their working habits.
Such an attitude can lead to a dead end in
defi ning business patterns.

• Second, most administration information
systems need to be considered as cooperat-
ing information systems since they relate
to several business domains—typically
encountered in the French society—which
can be more or less intricate. Furthermore,
it is diffi cult to take in charge the underly-
ing vocabulary of such a cooperation with
classical tools (e.g., thesaurus, ontologies)
since they do not scale up easily.

• Third, in order to provide users with high
quality services, new information systems
use brand-new technologies (e.g., authenti-
fi cation, Web technologies, content-based
information retrieval). This can lead to
some form of digital divide among various
information system users.

As long as information systems do not become
too large and while they address a well-known
domain, these three issues can be considered as
orthogonal. Thus, they can be controlled by en-
gineering staff. Nevertheless, when dealing with
large-scale, complex, or innovative information
systems, it can be diffi cult to separate issues
and to build a meaningful information system
proposal. Platforms for software engineering
appear to be a promising approach in such a
context. In the rest of this section, we argue on
developing such platforms on an open source and
open format basis.

New Services vs. Working Practices

Generally, development of a new information sys-
tem is an opportunity to introduce new services.
Such services can take various forms:

1. Externalized services can be offered to
citizens: Providing e-services (information
to be read, forms to be fi lled in, electronic
requests to be sent) through a Web portal,
providing clusters of services under a uni-
form access, and so forth

2. Services relying on business expertise can
be offered to citizens: Providing external
links to related services (which are offered
by other organizations), offering access to
a part of the business knowledge (technical
explanations, documentations, etc.). Such
externalized and expertise-related services
do not change too much working practices

3. A renewal of information systems can be
an opportunity to interconnect separate
administrations: This can be a real improve-
ment in offered services since citizens no
longer need to repeatedly give basic records in
each administrative offi ce they go to. In such
a case, there are two major tasks to perform:
allow cooperation of services by making their
bases of knowledge compatibles while guar-
anteeing the respect of legal protection.41 A
representative example in France is the DMP42
project which aims at providing citizens with
a unifi ed electronic medical record (to be used
by physicians, pharmacists, and hospitals).
Health services use various identifi ers for their
own records of patients. Thus, it is necessary
to produce a general identifi er (which could
be derived from the French national identi-
fi er since it was forbidden by the CNIL). The
IdeoPass project has been carried out in order
to create servers of patient identifi cations.
Beyond the IdeoPass project, it is necessary
to specify which type of access will be given
to each actor of the healthcare system: physi-
cians, nurses, pharmacists, social security staff
members, and so forth.

4. A new information system generally en-
compasses a workfl ow engine: It is thus
necessary to defi ne precisely in which order
and by whom each document will be treated.

438

Use of OSS by Local E-Administration

In such a case, working practice may have
to change in a signifi cant way in order to
comply with the workfl ow description. It
may be a true challenge to obtain collabo-
ration of administration staffs when such a
workfl ow has to be used.

Open source software could be one of the ways
to introduce more fl exibility into working practices,
in the sense that platforms based on OSS can be
better tuned to users’ requirements since the overall
cost is diminished by license costs. At the same
time, introducing OSS-based platforms in adminis-
tration business implies an effort towards training
of administrative staff members. Thus, acquired
competencies make further evolutions easier.

Towards Shared Knowledge

As stated previously in this paper, the French
administration is composed of a network of insti-
tutions working at various levels of responsibility
and power. Most institutions have a substantial
autonomy in organizing themselves to attain
objectives that are fi xed at the national level. De-
velopment of administration information systems
has been carried out by local initiative of admin-
istration services. Yet, a trend of collaboration and
uniformity is developing in various ways:

• Offer of domain-specifi c information systems
(e.g., AMUE43 is a national agency offering
services for university management).

• Defi nition of national personal identifi cation
numbers which can be used by cooperative
information systems (e.g., IdeoPass44, which
is an open source server of patient identifi ca-
tion numbers which will be used for DMP,
the unifi ed electronic medical record).

• Norms for data collection in order to produce
national statistics (e.g., DADS-U45, which
defi nes data to be used in statistical analyses
for employee management).

As showed by Delmas-Marty46 for national
laws, major attempts to integrate administrative
core businesses cannot be conducted hierarchi-
cally (from international to national and local).
The horizontal integration of domain-related
knowledge and procedures constitutes a much
more reasonable objective. Such a selective in-
tegration must be conducted in such a way that
no additional technical problems arise in sharing
knowledge. Thus, open format bases of integrated
knowledge, usable through open source interfaces
make a lot of sense.

A Risk of Digital Divide

A widely discussed side-effect of computer dis-
semination is the digital divide among citizens
depending on access to the internet world. Such
a digital divide can also occur within adminis-
tration staff members since not every employee
is accustomed to sophisticated computer tools.
An internal digital divide within administrative
staff members can damage the balance between
employees since some of them can be more or less
unable to assure their part of work, and even lead
to an upset of the hierarchical organization. Such
an internal digital divide is a major issue in de-
ploying new information systems or new working
environment and needs to be taken into account
from the very beginning of the project.47

Thus, it is rather important for e-administra-
tion platforms to enable integration of the basic
tools (e.g., offi ce automation tools) to which
administration staff members are used to, while
not propagating requirements for specifi c tools
down to the core of platforms. Once again, open
source and open format based platforms fully
satisfy such requirements.

General Technical Perspectives

We believe that platforms for engineering of local
administration domains should comply with the

 439

Use of OSS by Local E-Administration

following three-fold statement: first, a major part
of any administration platform should be released
under one of the Open Source License and based
on open formats; second, it is necessary to al-
low local administration staff to continue using
tools they are used to; third, it is mandatory to
offer a basic set of functionalities which can be
fine-tuned for specific uses.

As we proposed48, such platforms should
be based on a core business description made
available through open formats and plug-ins
(either proprietary or open source plug-ins). As
an illustration, we describe (Figure 1) a platform
for education and job market surveys which en-
compasses:

•	 Definition of vocabularies and specifi-
cations: An integrated nomenclature49; a
specification of data for statistical analysis
of university teaching activities50, which
falls under the SISE project; a specification
of data for statistical analysis of enterprise
employee staffs51, which is called DADS-
U.

•	 Open formats: Including formats for basic

applications (e.g., RTF, OASIS52), as well
as domain-specific open formats such as an
official format for DADS-U and a format for
SISE as published by the French educational
department

•	 Domain specific plug-ins: Such as an Open
Source DADS-viewer called DADS-U Vue53,
an open source statistical computing tool
from R-Project54, a proprietary software for
student management called Apogee (at the
present time, Apogee which was developed
by the National Agency for Universities,
cannot be plugged into such a platform)

CONCLUSION

The example of the French e-administration that
we have just analysed allows readers to understand
what are the difficulties and the advantages of OSS
dissemination in a nation including both a central-
ized state and very numerous local e-governments.
The promotion of OSS (by national agencies and
associations) is more important than in many other
national e-governments’ master plan but it is also
threatened by two kinds of obstacles:

Figure 1. An example platform for university management (with open source/format components in yel-
low and proprietary ones in green)

Plug-ins
 - For general use:
 Open Office
 R-project (statistical computing)
 - Domain-related
 Apogee (student management)
 DADS-U Vue (DADS-viewer)

Open Formats
 - For general use: OASIS (office automation)
 - For domain-related data:
 SISE (teaching activities)
 DADS-U Vue (employee management)

Domain Knowledge Description
 - Integrated nomenclatura for education (FeDoX)
 - Data specification for statistical analysis:
 of university teaching activity (SISE)
 of university employees (DADS-U)

Specification for Social Data (DADS-U)
Official List of Diploma Codes (SISE)
Integrated Nomenclatura for Education

DADS-U format
SISE format

RTE OASIS formats

Vue

(DADS)

Apogée

(SISE)

R-project

(Statistical
comput-

ing)

Open
Office

440

Use of OSS by Local E-Administration

• The development of copyright law
• The knowledge management required to

take advantage of OSS; human resources of
administration don’t have enough IT skills to
operate the dematerialization of the system
and to support its evolution because of the
staff recruitment method

Copyright and knowledge management are
not just a momentary step of the process of e-
government implementation. They constitute a
trend that central as well as local governments
have to deal with.

REFERENCES

Arthuis, J. (2004, July 21). L’informatisation
de l’Etat. Pour un État en ligne avec tous les
citoyens. (Senate Information Report No. 422,
2003-2004). Retrieved from http://www.senat.
fr/rap/r03-422/r03-422.html

Chantepie, P., Herbel, M., & Tarrier, F. (2003).
Mesures techniques de protection des œuvres et
DRMS, Un état des lieux January 2003 (Report
n° 2003-02, p. 156). Paris: Ministry of Culture
and Communication.

Culnaert, E. (2004). Le logiciel libre dans l’e-ad-
ministration. Retrieved from http://www.aecom.
org/veille/008_libre_240904.htm

Chevallereau, F-X. (2005, June 27). EU: eGov-
ernment in the member states of the European
Union. (Independent Report, p. 555). European
Communities.

DAVDSI (Droit d’Auteur et Droits Voisins dans la
Société de l’Information). (2006). Journal Offi ciel,
178(3). Retrieved from http://assemblee-nationale.
fr/12/dossiers/031206.asp

Delmas-Marty, M. (2006). Le pluralisme ordonné
(Les forces imaginantes du droit - II), Seuil.

IRIS (Initiatives Régionales Innovations et Stra-
tégies). (2005). Les politiques en faveur du e-gou-
vernement en Europe. Retrieved from http://www.
egovinterop.net/Res/4/EGov%20in%20Europe-
VF2.pdf

Eveno, E., & Jaeckle, L. (1998). Parthenay, modèle
de Ville Numérisée? Report issued to DG III,
Mind Project.

UK: The National Strategy for Local e-Gov-
ernment—Two years on. (2005, March 5).
United Kingdom—Regional & Local. Retrieved
from http://www.localegov.gov.uk/images/
2%20years%20on%20-%20Realising%20the%
20benefi ts%20from%20our%20investment%20
in%20e-gov_227.pdf

Chantepie, P., Herube, M., & Tarrier, F. (2004).
Mesures techniques de protection des œuvres et
DRMS, Un état des lieux January 2003 (Report
n° 2003-02, p. 156). Paris : Ministry of Culture
and Communication.

Maillard, T. (2004). La réception des mesures
techniques de protection des œuvres en droit
français: Commentaire du projet de loi relatif au
droit d’auteur et aux droits voisins dans la société
de l’information. Légipresse, 208(II), 8-15.

Maillard, T. (n.d.). Mesures techniques de protec-
tion, logiciels et acquis communautaire: Interfaces
et interférences des directives 91/250/CEE et
2001/29/CE. RLDI 2005/5, 154.

Savonnet, M., Leclercq, E., Terrasse, M.-N., Gri-
son, T., Becker, G., Farizy, A. S., & Denoyelle,
L. (2006). Development platforms as a niche for
software companies in open source software. In
Proceedings of the 2nd Open Source Software
Workshop, OSS’06, Italy.

SISE: Offi cial report of the department of Edu-
cation. (2000, June). Programme des opérations
statistiques et de contrôle de gestion des directions
d’administration centrale des ministères. Bulletin
Offi ciel de l’Education Nationale, 5.

 441

Use of OSS by Local E-Administration

Zuliani, P., & Succi, G. (2004). An experiment
of transition to open source software in local au-
thorities. In Proceedings of the 14th Conference
E-Challenges, Austria.

KEY TERMS

 Copyright: Right to exercise ownership and
control over a particular item.

 Digital Right Management: Protection of
online information.

 French E-Administration: French national
oversight administered through online media.

 Interoperability: Ability for different com-
puter systems at different administrative levels of
government and in different regions to exchange
information effectively.

 Local E-Administration: Local government
oversight administered through online media.

 Public-Private Partnership (PPP): Coop-
erative agreements for public and private sector
organizations to work together to achieve a com-
mon goal.

 Territorial E-Administration: Federal/na-
tional government oversight administered through
online media.

ENDNOTES

1 Éric Culnaërt, “Le logiciel libre dans l’e-
administration,” 2004: http://www.aecom.
org/veille/008_libre_240904.htm

2 The most important example in France of
local management is the transformation of
public works contracts, obligatory since
January 1, 2005.

3 For examples in France, see the site service
public-fr which provides a list of links al-
lowing for online requests on local sites:
http://www.service-public.fr/teleservices/
teleservices-local.html

4 For e-government politics in Europe, we will
report the last summary report of François-
Xavier Chevallerau, EU: e-Government in
the Member States of the European Union,
June 27, 2005, 555 p. as well as the stud-
ies on each member State, which can be
downloaded at: http://europa.eu.int/idabc/
en/document/4370/254. Also see the study
carried out by the Regional Innovation
Strategy Initiative (IRIS), Les politiques en
faveur du e-gouvernement en Europe, June
2005, p. 49 http://iris.oten.fr/

5 This framework must come from the circular
of the Prime Minister. See, for example,
the circular of the Prime Minister dated
March 12, 1993 regarding the protection of
privacy in automatic data processing: Law
no. 78-17 dated January 6, 1978, applied to
the administrations and the entire public
sector, regarding IT, fi les and civil liberties;
the role of ministers and coordination by the
Government commission at the National
Commission for Information Technology
and Civil Liberties (CNIL). Also see the
circular of the Prime Minister dated Oc-
tober 7, 1999, regarding service and public
institutions’ Internet sites.

6 These obligations are shown on the French
legal level with Law no. 78-17, amended
on January 6, 1978 and the texts used for
its application, particularly Decree no.
2005-1309 of October 22, 2005. In addi-
tion, at the level of the Council of Europe,
France ratifi ed the Convention to protect
people with regard to automatic personal
data processing dated January 28, 1981:
http://conventions.coe.int/treaty/Commun/
QueVoulezVous.asp?NT=108&CM=1&DF=
09%2F01%2F01&CL=FRE. In addition, as
regards European Union law, we must also
consider the two directives of the European
Parliament and Council: Directive 95/46/CE
of the European Parliament and Council of
October 24, 1995, regarding the protection

442

Use of OSS by Local E-Administration

of physical people in processing personal
information and the free circulation of data
(Offi cial Gazette no. L 281 dated 11/23/1995,
p. 0031-0050): http://europa.eu.int/smartapi/
cgi/sga_doc?smartapi!celexapi!prod!CEL
EXnumdoc&lg=fr&numdoc=31995L004
6&model=guichett; Directive 2002/58/CE
of July 12, 2002 regarding the treatment of
personal information and the protection of
personal information in the electronic com-
munications sector (personal information
and electronic communication directive),
which can be downloaded at: http://europa.
eu.int/eur-lex/pri/fr/oj/dat/2002/l_201/
l_20120020731fr00370047.pdf

7 http://www.cnil.fr/index.php?id=1263
8 EVENO, Emmanuel and Luc JAECKLE

(1998) “Parthenay, modèle de Ville Nu-
mérisée ?” Report issued to DG III, Mind
Project.

9 Led by J. MEKHANTAR : 17 research fi les
on local e-administration were created in
2004-2005 by Masters students in Local
Public Organization Law at MÂCON and
13 research fi les in French and English were
drafted by the 3rd year LLB students (10 from
Manchester University and 3 from Queen’s
University in BELFAST). These studies
analyzed local e-government in local French
and British public organizations.

10 See: UK: The National Strategy for Lo-
cal e-Government—Two years on. March
05, 2005 – United Kingdom – Regional &
Local http://www.localegov.gov.uk/images/
2%20years%20on%20-%20Realising%20t
he%20benefi ts%20from%20our%20invest
ment%20in%20e-gov_227.pdf

11 Ordinance No. 2005-1516 of December 8,
2005 regarding the electronic exchange be-
tween users and administrative authorities
and between the administrative authori-
ties, Offi cial Gazette of December 9, 2005:
joe_20051209_0286_0009.pdf

12 By applying Article 1 of the aforementioned
ordinance: “Considered as administrative
authorities within this ordinance are the
administrations of the State, the local pub-
lic administration, public institutions that
are administrative in nature, organizations
managing social welfare systems related to
the social security code and the farm laws
listed in Article L. 223-16 and L. 351-21 of
the Labor Laws and other organizations in
charge of managing an administrative public
service.”

13 The Agency for the Development of e-Ad-
ministration, created as an interdepartmen-
tal service available to the minister in charge
of State reform, is currently integrated in the
General-Directorate on State Moderniza-
tion since its reorganization on January 3,
2006.

14 This principally deals with ADELE 69
Deployment of Co-Coverage with service-
public.fr; ADELE 70 Local IT Systems
(SIT); ADELE 71 Transformation of the
Local Public Sector; ADELE 72 Civil Sta-
tus Statistics and mayoral election results
at the INSEE [French National Institution
of Economic and Statistical Information];
ADELE 73 E-Burgundy; ADELE 74 Setting
up an co-fi nancing infrastructure allowing
for the transformation of exchanges between
public organizations and administrations.
See the Plan of Action for e-Administration:
http://www.adae.gouv.fr/article.php3?id_ar-
ticle=314

15 ATICA, Guide to Select and Use Open
Source Software Licenses for Admin-
istrations, Paris, December 2002, p. 39:
http://www.adae.gouv.fr/upload/documents/
guide_LL.pdf

16 ADELE127. Set up of open source software
and collaborative development. Description:
To bring about the success of a group of legal
suggestions, allowing for the constitution of
a core of freely reusable software.

 443

Use of OSS by Local E-Administration

17 ADELE129. AGORA. Description: Func-
tional architecture and techniques allowed
rapid parameterization of Internet, intranet
or extranet sites fulfi lling a wide range of
applications as well as evolved interfaces
allowing for all the architecture to be simply
managed, based on a very non-restrictive
hosting architecture.

18 ADELE130. Workplace migration. Descrip-
tion: Experimenting with alternative open
source software solutions.

19 ATICA, ibid, p. 4
20 CAA Douai, No. 03DA00786, May 3, 2005,

CNAMTS:
 http://www.legifrance.gouv.fr/WAspad/

UnDocument?base=JADE&nod=J7XCX2
005X05X000000300786

21 Particularly: General Public License (GPL),
LGPL (Lesser General Public Licence),
QPL (Q Public Licence) and BSD (Berkeley
Software Distribution).

22 http://www.cecill.info/
23 http://www.cecill.info/licences/Licence_

CeCILL_V2-en.txt
24 See: Philippe Chantepie, Marc Herubel,

Franck Tarrier, Mesures techniques de pro-
tection des œuvres et DRMS, Un état des
lieux January 2003, Report n° 2003-02 – (I)
Ministry of Culture and Communication,
Paris, 2004, 156 p.

25 See the bibliography, accessible online at
www.mtpo.org. Particularly: Thierry Mail-
lard, “La réception des mesures techniques
de protection des œuvres en droit français :
Commentaire du projet de loi relatif au droit
d’auteur et aux droits voisins dans la société
de l’information,” Légipresse 2004, no 208,
II, pp. 8-15 ; Thierry Maillard, “Mesures
techniques de protection, logiciels et acquis
communautaire: Interfaces et interférences
des directives 91/250/CEE et 2001/29/CE,”
RLDI 2005/5, no 154.

26 See: Philippe Chantepie, Marc Herubel,
Franck Tarrier, Mesures techniques de pro-

tection des œuvres et DRMS, Un état des
lieux Janvier 2003, Report n° 2003-02 – (I)
Ministry of Culture and Communication,
Paris, 2004, 156 p.

27 See the bibliography, accessible online at
www.mtpo.org. Particularly: Thierry Mail-
lard, “La réception des mesures techniques
de protection des œuvres en droit français:
Commentaire du projet de loi relatif au droit
d’auteur et aux droits voisins dans la société
de l’information,” Légipresse 2004, no 208,
II, pp. 8-15; Thierry Maillard, “Mesures
techniques de protection, logiciels et acquis
communautaire: Interfaces et interférences
des directives 91/250/CEE et 2001/29/CE,”
RLDI 2005/5, no 154.

28 DAVDSI : (Droit d’Auteur et Droits Voisins
dans la Société de l’Information): http://as-
semblee-nationale.fr/12/dossiers/031206.asp

29 Apronet (Association des profession-
nels de l’Internet des collectivités lo-
cales) www.anetville.com/public/article.
tpl?id=9672&rub=8010

30 http://www.mazars.fr/ http://www.markess.
fr. Markess is going to publish its latest anal-
ysis on “Les Technologies de l’information
en réponse aux enjeux des administrations
publiques locales, 2005-2007,” the results
of a study carried out in mid-2005 on 300
local public administrations and 80 service
providers.

31 http://www.f losspols.org/deliverables/
FLOSSPOLS-D16-Gender_Integrated_Re-
port_of_Findings.pdf

32 ADAE : Agence Nationale pour le Dével-
oppement de l’Administration Electro-
nique- AIFE: Agence pour l’Informatisation
Financière de l’Etat.

33 http://www.modernisation.gouv.fr
34 https://www.e-bourgogne.fr/
35 Public undertakings for intercommunal

cooperation (EPCI) are French administra-
tive structure grouping municipalities that
chose to develop a certain number of com-

444

Use of OSS by Local E-Administration

mon aspects, like, for example, common
transportation.

36 The third of e-transmission ensures the trans-
fer of the fl ow of information between ad-
ministrations and local public organizations
or between administrations by respecting a
language and interoperability regulation.

37 Application service provider.
38 Source ibid. The results of this analysis

have been issued to the elected members
and managers of the administration at the
November 23, 2005 conference organized
by Markess International at the University
of Paris VIII.

39 Ordinance No. 2004-559 of June 17, 2004
on partnership contracts (Offi cial Gazette
of June 19, 2004, p. 10994.

40 Jean Arthuis, on behalf of the Senate Finance
Committee, July 21, 2004, Senate, Paris.
L’informatisation de l’Etat. Pour un État en
ligne avec tous les citoyens. Senate Informa-
tion Report No. 422 (2003-2004). Senate, July
21, 2004. Available online: http://www.senat.
fr/rap/r03-422/r03-422.html.

41 In France, such a legal protection us stated by
specifi cations CNIL (Commission Nationale
de l’Informatique et des Libertés).

42 DMP Dossier Medical Personnel, Personal
medical record. URL http://www.d-m-
p.org/.

43 AMUE National Agency for Universities
Management. Agence de Mutualisation des
Universités et Etablissements de l’Enseigne-
ment Supérieur. URL http://www.amue.fr.

44 IdeoPass. URL http://adullact.net/projects/
ideopass.

45 DADS-U Déclaration automatisée des don-
nées sociales – Unifi ée. http://www.travail.
gouv.fr/dossiers.

46 M Delmas-Marty, Le pluralisme ordonné
(Les forces imaginantes du droit - II), Seuil
2006.

47 P. Zuliani and G. Succi. An Experiment
of Transition to Open Source Software in
Local Authorities, Proceedings of the 14th
Conference E-Challenges, Austria, 2004.

48 M. Savonnet, E. Leclercq, M.-N. Terrasse,
T. Grison, G. Becker, A. S. Farizy, and L.
Denoyelle. Development Platforms as a
Niche for Software Companies in Open
Source Software. Proceedings of the 2th
Open Source Software Workshop, OSS’06,
Italy, 2006.

49 Nomenclatures intégrées dans FeDoX. URL
http://fedox.irisa.fr/Pages/nomenclature2.
htm

50 SISE: Offi cial report of the department of
Education. “Programme des opérations
statistiques et de contrôle de gestion des
directions d’administration centrale des
ministères.” Bulletin Offi ciel de l’Education
Nationale, Special No 5 du 1er juin 2000

51 Examples: Global view of a DADS-U fi le
for a paid vacation fund. Exemples DADS-U
V08R02 : Vue globale d’un fi chier DADS-U
pour une caisse de congés payés. URL www.
cnsbtp.fr/caisses/doc/Exemples DADSU
v08r02 v2.pdf

52 OASIS Open Document Format for Offi ce
Applications. URL http://www.oasis-open.
org

53 DADS-U Vue. On Adullact Web Site, URL
http://www.adullact.org/article.php3?id_ar-
ticle=316

54 The R-Project for Statistical Computing.
The R Foundation for Statistical Computing,
URL http://www.r-project.org//

 445

Chapter XXXIV
Issues and Aspects of Open
Source Software Usage and

Adoption in the Public Sector
Gabor Laszlo

Budapest Tech, Hungary

INTRODUCTION

The digital economy transforms governments and
governments took on new roles in those areas of the
economy most affected by technological changes.
Governments play important roles in creating
the proper environment for ICT development,

ABSTRACT

This chapter introduces L-PEST model as the proposed tool for better understanding the fi elds are
infl uenced by motivations and adaptation policy on FLOSS of public authorities and governments.
Software usage in the public sector is a highly complex topic. In the confi nes of this chapter the selected
case studies will show consideration to the vastly different needs and capacities and the different ap-
proaches and motivations towards the utilization of FLOSS by governments and/or local authorities.
The primary objective of this chapter is to identify and describe the actors associated to the usage of
FLOSS within and by the public sector. This chapter has made an attempt to fi ll this research gap and
place the different actors into one complex model. It is hoped the proposed model assists better clarifying
the intricate relationship between relevant factors. Nevertheless, much more research work is needed
in the years to come. According to Michel Sapin, French Minister in charge of Public Administration
and e-Government (2001), “The next generation e-government has two requirements: interoperability
and transparency. These are the two strengths of open source software. Therefore, I am taking little risk
when I predict that open source software will take a crucial part in the development of e-Government
in the years to come.”

and also have a signifi cant leading role as users
of these technologies by creating new modes of
public’s behavior. Governmental functions and
operations can be managed only by the extensive
use of ICTs and by using software applications
(Lanvin, 2003).

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

446

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

The world’s largest consumers of computer
software are usually governments and they thus
can have considerable infl uence on the software
market. Governmental usage of software can
impact on virtually all aspects of civil life: the
inclusion and participation of citizens in public life,
the transparency and openness of decision making,
and the elimination of the digital divide, digital
persistence, and digital literacy. The question of
which software is utilized by public administra-
tions is, therefore, of fundamental importance.
Free Software advocate Eben Moglen has said,
“Who controls the software, controls life.”1

In the early days of computing the common
software model was based on the open source mod-
el. Software and hardware were often combined in
a single package. The software was usually traded
in the form of source code and computer users
have shared their computer code. Many important
early programs, also with government funding,
were widely shared (Bessen, 2002).

Then, the late 1970s and early 1980s with the
appearance the consumer computing saw the
beginning of the commercialization of software
products based on the proprietary model. The
software that operates the hardware has become
as important as the hardware itself.

A signifi cant difference between open source
and proprietary software is that the open source (as
it is called) software source code is freely available
to the user. In contrast, the proprietary software
vendors release their product only in binary form
and it is illegal for end users to decompile the
binary machine code to usable source code.

Free/libre open source software (or FLOSS as
it is commonly referred to) has gained enormous
momentum all over the world. While this move-
ment has been closely followed with attention
by many advocates and practitioners, academic
research on the subject has only started emerging.
These research projects have focused mainly on
individual motivations, knowledge sharing and
the user communities themselves.

The primary objective of this chapter is to
identify and describe the factors related to the
usage of open source software within and by the
public sector.

To achieve this objective, background is given
on the discussion about government roles and
policies towards open source software, as in the
selected case studies.

One of the strengths of this chapter is that it
presents a theoretical framework, a general model
of software usage at large within the public sec-
tor and the identifi ed factors assigned to global
perspectives.

BACKGROUND

ICTs have the capacity to play a valuable role in
improving the quality of life, particularly in health,
education, agriculture, and the environment. To
take one example, in the healthcare sector ICTs
enable the implementation of tele-health programs
in remote areas, allowing some health care to be
provided remotely, independent of person-to-
person contact. Further, improvements in medical
equipment are also a result of advances in ICTs.
In education, remote access to the knowledge
bases, e-libraries and even e-learning systems
and universities can deliver knowledge to rural
areas, where such opportunities for learning
would be unavailable without ICTs. Agriculture
and environmental issues can be better managed
by, for example, geographic information system
(GIS) and weather forecasts.

However, at the same time, there exists the
so-called digital divide, an umbrella term that is
commonly understood to mean the gap between
ICT haves and have-nots. Generally, the approach
to the question of the capacity of ICT to increase
standards of living and to that of the digital divide
has focused on two main issues.2 One focuses
mainly on actual connectivity—infrastructure
and access. Another approach beyond connec-

 447

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

tivity is to consider the level of the ICT literacy
and skills of a particular population and as well,
consequently take into consideration political and
social cohesion aspects.

An improved economy can not alone eliminate
the gap, so governmental “intervention” is a pre-
requisite for overcoming the digital gap. Today,
governments, businesses, international groups,
and nongovernmental organizations (NGOs) have
undertaken numerous initiatives aimed at elimi-
nating this digital divide (http://www.bridges.
org/digital_divide). These initiatives have targeted
not just the consequences of economic differences
between countries and peoples and the relevant
differences in access to technologies, but also the
cultural capacity and political will necessary to
apply these technologies for effective develop-
ment. A nation’s intellectual capital and capacity
for innovation are based on its human capital,
which is why it is so important for governments
to make steps to strengthen the equality.

Wilson pointed to a four-sided social forma-
tion—a Quad—that has emerged at the heart of the
still-inchoate knowledge society. “Conceptually
‘quad’ refers to persistent four-sided networked
interactions of small groups of elites across four
sectors of the political economy—government,
private sector, research centers, and NGOs”
(Wilson, 2003, p. 6).

The Quad theory predicts causal relationships
between the architecture of the Quad and the
subsequent performance of the ICT sector. The
more robust the architecture of the Quad, the
better performance of the ICT sector as a whole.
The architecture and dynamics of the Quad
relationships are different in every country and
change time to time.

As a member and part of the Quad, the
government has a special obligation to protect
the integrity, confi dentiality and accessibility
of public information, to protect the privacy of
its citizens, to educate the “next generation”, to
create jobs, and to preserve and make available
the national heritage (also in electronic format)

for the public and for the next generation. Other
important roles for the governments are to make
the country competitive in the globalized mar-
ketplace, and to carefully manage the budget
(Stanco, 2003).

METHODOLOGY

This chapter provides an inductive general con-
ceptual model —based on known and publicly
available strategy documentation of various public
sector and government initiatives for promoting
or using FLOSS. The selection of key factors
is grounded in available research literature on
FLOSS and the above mentioned documentation
and case studies.

OPEN GOVERNMENT

The average citizen has limited access to impor-
tant government records, and what is available
is often incomprehensible. An open govern-
ment must be transparent and accountable and
information related to the decisions an open
government makes must be open to the public
and freely available. Access to government and

Figure 1. The Quad (Source: Used with permis-
sion by E. J. Wilson)

Public
Sector

NGO Private

R&D

448

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

public information is regulated by law in many
countries. Perrit states:

Freedom of information issues are centrally im-
portant in countries around the world, and the
Internet’s World Wide Web offers the potential to
provide freedom of information at low cost. Achiev-
ing a sound information policy to promote open
government requires constant vigilance by those
who care about the goal. (Perrit, 1997, p. 397)

In the aftermath of 9/11 the relationship
between IT, governments and their citizens has
dramatically and radically changed. Security
has become the most important factor. Yet, in
the face of increased demands for security, for
many within societies, the demands of privacy
and trust remain paramount, thus giving rise to
confl ict between governments and their citizenry.
Governments make greater efforts based on anti-
terrorism legislation3 to monitor their citizens’
activities, while simultaneously citizens demand
a greater ability to monitor the activities of his or
her government.

INITIATIVES FOR FLOSS IN
GOVERNMENT WORK

E-government work and what is commonly un-
derstood as general government work are now too
closely intertwined to be realistically separated.
At the same time, public administrations have
special functions and operations which cannot
be adequately handled with proprietary software
applications on the market that are developed for
multiple purposes (Stanco, 2003). The moderate
opinions which stress that there is no need to
make a choice between FLOSS and proprietary
software vendors gather ground but the feasible
solution is mixing these software.

It seems likely that all governments use FLOSS
applications on some level, with or without open
source label—though perhaps without deliberate

policy. Whereas many governments have policies
or consideration towards FLOSS usage, the motiva-
tions may vary from cost reduction to security or
dependency issues and within the broader context
of policies to support such issues as equity or edu-
cation. However, FLOSS policies and legislation
as developed by national, regional or local govern-
ments around the World (USA, Canada, Australia,
many countries in Africa or in Europe) are more
often than not inadequate to support the viable
realization of such policy goals.

The Center for Strategic & International
Studies (2004) maintains—Government Open
Source Policies—a list of such initiatives that
were approved or proposed. This section high-
lights different approaches of adaptation and
policy considerations for the implementation of
FLOSS.

European Union

In the recent years many open source-related
programs have been launched by the European
Union. Fields of development of FLOSS within the
EU include security, interoperability and e-par-
ticipation. The software usage and the interaction
between different systems is a complex approach.
Interoperability is one of the key factors. One
early Commission Working paper stressed the
need for interoperability of program for public
administration across the EU. It states that the
proposed interoperability framework “will be
based on open standards and encourage the use
of open source software.” “Interoperability, there-
fore, for both the public and enterprise sectors, is
at the heart of the eEurope 2005 Action Plan and
the achievement of the Lisbon goals” (Linking up
Europe, 2003, p. 5).

In the European Union, the public sector were
advised to avoid proprietary document formats,
known as lock-in. Using the open standards would
assure the desired interoperability and open stan-
dards would more greatly be supported by open
source software. Using interoperable systems

 449

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

would guarantee equality among the citizens using
different kind software applications (Promotion
of Open Document Exchange Format, 2003).

On the other hand, notwithstanding the
above-mentioned initiatives, the relationship
between governments and open source is not
unambiguous.

Extremadura

Extremadura was the poorest region of Spain,
lagging behind the rest of the country in both the
economic and technological fi eld. Though short on
fi nancial resources, the region set very high goals
for itself in its Regional Strategy on Information
Society in 1997. The policy lay “in the application
of technological innovation for the promotion of
freedom and equal opportunities, taking advan-
tage of and putting at the disposal of everyone,
what is nobody’s property: the knowledge gathered
by Humanity all through History.” Two formal
strategic objectives were put forth: “Accessibility
for all—the Internet as a public service” and “The
stimulation of technological literacy.”

Given the combination of Extremadura’s
strategic goals and the limited fi nancial resources
available, the use of FLOSS was a logical choice.
The LinEx project, a combination of “Linux”
and “Extremadura,” was born of these strategic
initiatives. The objective of the Linex project was
to create a fully functional platform, based on
FLOSS, providing universal access of IS tools to
all citizens. While doing so, its aim was to provide
adaptability, economic benefi ts, and security to as
great a degree as possible, without losing sight of
actual feasibility. LinEx is specifi cally designed
for use in regional administration and schools.
Early on in the project, it was decided that LinEx
would not innovate the software itself, but rather
concentrate on localization of the software and
take care of the distribution. To avoid technical
problems during the initial phase of the project,
a Spanish company was hired. The region’s gov-

ernment ships the resulting software for free to
all of its citizens.

Extremadura was also simultaneously funding
a development center whose task was to create
accounting software, hospital applications and
agricultural applications (IDABC, 2003).

Munich

Coming after the switch to Linux in the servers
of the Bundestag in 2002, Germany’s interior
minister signed an agreement with IBM to offer
the German government offi ces deep discounts
on computer systems based on Linux (IBM signs
Linux deal with Germany, 2002). Soon afterward,
Germany’s third largest city government, Munich,
commissioned Client Study for the State Capital
Munich (UNILOG Integrata, 2003) comparing the
alternatives and assigning 6,218 (out of 10,000)
points to a Linux/OpenOffi ce migration, versus
5,293 to an upgrade of Microsoft Windows. Based
on this study the Munich municipal government
made a decision to adopt for their computer sys-
tems open source software. The Council of Munich
voted on May 2003 in favour of the adoption for its
desktop and notebook computers an open source
operating system and offi ce applications. This
move, unprecedented in scale in the European
public sector, has been widely commented upon
and discussed since then.

Following a test phase conducted in coop-
eration with SuSE Linux and IBM, the Council
formally adopted on June 16, 2004 detailed
plans to manage the migration process, which
is expected to last until 2009. According to the
plan the migration was to be gradual, starting in
2004 with offi ce desktop applications (OpenOf-
fi ce.org offi ce suite and Mozilla Web browser
running on the existing Windows NT desktops),
and then moving to operating systems and more
specialized applications over a period of fi ve years.
The municipal government of Munich released a
statement in September 2005 that the completion

450

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

of migration phase one, scheduled to be completed
in 2005, had been pushed back to at least 2006.
The reasons were that Novell Inc. announced in
late 2003 the acquisition of SuSE and meanwhile
legal problems regarding a proposed EU patent
law. The chosen new Linux distribution was the
Debian (Grassmuck, 2005).

USA

The most famous report concerning FLOSS us-
age within the Department of Defense (DOD)
was released in 2003. “The goals of the study
are to develop as complete a listing as possible of
FOSS applications used in the DoD, and to collect
representative examples of how those applica-
tions are being used.” Over a two-week period
the survey identifi ed a total of 115 FLOSS (in
the report named as FOSS) applications and 251
examples of their use. “The main conclusion of
the analysis was that FOSS software plays a more
critical role in the DoD than has generally been
recognized. FOSS applications are most impor-
tant in four broad areas: Infrastructure Support,
Software Development, Security, and Research”
(The MITRE Corporation, 2003, p. 2).

The Commonwealth of Massachusetts launched
a new policy regarding the planning, development,
and implementation of IT systems. “The goal of
the Commonwealth’s open initiatives is to ensure
that investments in information technology result in
systems that are suffi ciently interoperable to meet
the business requirements of its agencies and to
effectively serve its constituencies” (Open Initia-
tives of Massachusetts, n.d.). The Massachusetts
case illustrates the technology based considerations
concerning software usage.

Brazil

The Government National Institute of Information
Technology is charged with implementing open
source software in Brazil. They released the fi rst
strategy planning document in 2003.

On the surface, the decision of the Brazilian
government was a simple cost cutting measure.
According to the National Information Technol-
ogy Institute, Brazilians spend $1.1 billion every
year on software licensing fees, and the federal
government was the nation’s biggest customer. The
government is paying around $500 to Microsoft
for license fees for every workstation. The gov-
ernment accounted for 6% of Microsoft’s 2003
Brazilian revenues of $318 million. Switching
to FLOSS would save millions of dollars (Kim,
2005). The decision to migrate to open source
software on a national scale was not simply a
matter of choosing one product over another.
Although the Brazilian government identifi ed
economic reasons to migrate to open source
software, it was a political decision that validated
open source software as a movement. Through
numerous open source projects, the government
has tried to bridge the technology divide within
the Brazilian population. While in the European
Union the research experts recommend free
software licenses for software deriving from
public funds, Brazil has become the fi rst country
to require any company or research institute that
receives government fi nancing for the develop-
ment of software to license it as open-source,
meaning the underlying software code must be
free to all (Benson, 2005).

Peru

Peru passed a law encouraging the procurement
of free software by the government in September
2005. The bill was originally introduced in 2002.
A Peruvian congressman stated in his letter to
Microsoft: “The basic principles which inspire the
bill are linked to the basic guarantees of a state of
law, such as: the free access to public information
by the citizen; the permanence of public data; the
security of the state and citizens” (Greene, 2002).
This bill has as its aim to establish measures and
policies which will permit the acquisition of soft-
ware licenses by the public administration under

 451

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

conditions of technology neutrality, and the free
concurrence and equal treatment of suppliers. The
technical evaluation of the software and hardware
required by the public administration will be
according regulations dictated by the National
Informatic System governing body. The bill of-
fers an excellent summary of the idea of neutral
software usage: “The entity will ensure that the
procurement answers to the principles of effective-
ness and technological neutrality, transparency,
effi ciency, within the boundaries of austerity and
economizing of public resources” (Peruvian bill
translation, 2005). One essential item included
in the bill also stress the need for the education
of the employees and users of computer and IT
technology.

South Africa

One of the best-known case studies concerns the
South African government’s offi cial strategy for
FLOSS. This was one of the fi rst strategies, that
offi cially recognized the legitimacy of the adop-
tion of FLOSS within the public sector. The South
African strategy highlights that “the government
will implement OSS, where analysis shows it to
be the appropriate option. The primary criteria
for selecting software solutions will remain the
improvement of effi ciency, effectiveness and
economy of service delivered by the government
to its citizens” (Using Open Source Software
in the South African Government, 2003, p. 24).
One of the main strengthens of this strategy is
the appreciation of the social benefi ts that could
include, but are not limited to, better education,
greater governmental transparency, more effec-
tive e-government services, and wider access to
governmental information.

China

China has been very aggressively promoting
Linux. The military has been one of the earliest
adopters of Linux. The Red Flag Linux was de-

signed for use in government offi ces, schools and
on home computers. Red Flag Linux, a Beijing-
based provider of Linux software and services, is
connected to the Chinese Academy of Sciences,
the central government’s top research institute.
The main reasons for the adoption of Linux
were political and the desire for independency
from Microsoft (Einhorn, 2003). Membership
in the World Trade Organization (WTO) and
access to its benefi ts are strongly affected by the
level of protection given to intellectual property
rights in a country (Wong, 2004). According the
Piracy Study (BSA, 2005), in the country there
is a high frequency of pirated software. Since
China became a full member of the World Trade
Organization, the government has been trying to
reduce software piracy within its country. This is
another strong reason why government agencies
and business are currently adopting the Linux
operating system on their desktop workplaces.

L-PEST MODEL

As is shown in the above selected case studies
there are many different approaches around the
world to using FLOSS within the public sector.
In this section a general model is introduced.
The L-PEST model is a theoretical creation. The
idea of the model reaches back to IDABC “The
Many Aspects of Open Source” (n.d.) material.
The original text summarized some of the various
reasons for choosing different organizations of
FLOSS. This idea was then extended, modifi ed,
and put into a model based on the research by
the author. The author’s proposed L-PEST model
can give a broader picture as to the aspects of
software usage in the public sector. With further
and ongoing work, it can be applied to all kinds
of software as a comprehensive tool.

The key factors were derived from motivations
of governments within their environments, which
were revealed in the case studies. The fi ve key
actors of the model—as shown on Figure 2—are:

452

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

political, economic, social, and technical and all
around these fi elds the legal environment can be
founded. This structure maps real life.

Every actor has its own attributes, however
in some cases there are attributes with different
meanings. In this case, when an attribute could
be assigned to more than one fi eld it was put into
the most characteristic actor (e.g., lock-in which
is based on the technical elements may well also
infl uence the economical aspect, or transparency
has quite a different meaning in economics than
in technology).

Legal Environment

The legal environment surrounds the model be-
cause it has an effect on the other four factors. It
has own attributes as well. The constitution deter-
mines the framework activity of the country; the
law determines the operation of society, while the
economy is infl uenced by the law of economics.
Acts regulate and ensure competition, and technol-
ogy is also regulated by industrial law (including,
patents, trademark, and copyright law).

Copyright is the most usual method of pro-
tection for software products. The copyright
automatically and implicitly protects all intel-
lectual creation, including computer software.4

“The copyright laws, by default, do not allow for
redistribution (nor even use) of software. The only
way that redistribution can be done is by granting
specifi c permission in a license (Working group
on Libre Software, 2000, pp. 20-21). A license is
a contract between the user and the licensor. The
licensing model of about FLOSS differs from the
proprietary software, but is based on same idea.
In fact, open source licenses are also enforce-
able because they use, in one form or another,
copyright law. Most open source licenses were
designed according to the United States law. Open
source (OSS) licenses are more permissive than
 free software (FS) licenses.5

One of the main threats for open source may
be software patents—which are not currently
common outside of the USA—but efforts to in-
troduce them are in progress worldwide, usually
lobbied for by large multinational corporations.
The issue of software patents6 divides even the

Figure 2. L-PEST model

 LLegal environment
Licensing
Liability
Piracy
PPolitical
Privacy
Digital persistence
Digital heritage
Open government
Public procurement

EEconomical
Cost reduction
Balance of the software

market and transparency
Innovation
Job creation
Dependency

SSocial
Freedom and equality
Education
Behaviour of software use
Digital divide

TTechnological
Quality
Functionality
Interoperability
Transparency
Support the standards
Lock-in
Security
Localization

 453

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

governments of countries and the parliaments
within them, as can be seen in many cases in
Europe. On the other hand, many companies
which have huge software patent portfolios in the
USA, such as IBM and Novell, open numerous
of their owned patents and put them at the OSS
developing community’s disposal. At the same
time, many companies adopt and encourage OSS
policy and business model.

Liability means that the software producers
are responsible for their own products, warranties,
and indemnifi cations. In reality almost all kinds of
software, even the proprietary kind, are shipped on
an “AS IS” basis, which means that the producer
wriggles out of any kind of responsibility. In many
countries, legislation does not allow the exclusion
or limitation of this kind of liability.

Software piracy is a problem all around the
globe and it can hurt a country in many ways.
A country with poor protection for intellectual
property rights is not as attractive to foreign inves-
tors. This is the reason why China, since joining
the World Trade Organization (which strongly
defends and pursues intellectual property rights
protection), has made enormous efforts to reduce
the prevalence of piracy within its borders. In a
developing country, piracy is much more preva-
lent than in the industrialized nations; however,
the greater dollar losses are incurred in the latter
situation (BSA, 2005).

Political Aspects

The political aspect is related to government’s
function and roles. They may be distinguished
between such roles as promoting social justice
and functions such as tax collection (Lanvin,
2003). The government’s role ensures the viable
environment for ICT development and also the
ICTs for Development. This can be summarized
as a National Information Strategy that was well
defi ned by the Library and Information Associa-
tion of New Zealand:

A National Information Strategy addresses
strategic issues to ensure that all citizens have
the opportunity to access and utilize a nation’s
knowledge wealth in a way that will enhance the
social, political and economic well-being of that
country. It states the government position on the
creation, management and use of information, and
sets direction for government action in support of
the strategic goals. (LIANZA, 2002, p. 7)

A national information strategy can be defi ned
in terms of political planning or political action
planning for development.

Privacy is a key factor in the interaction
between governments and citizens. Whatever
software is utilized by governments to control,
manage and transmit the citizenry’s personal data
must be transparent in order to protect the citizen’s
right to privacy (Stanco, 2003). For example, an
e-voting system without transparency leaves
organizations and governments at the mercy of
software providers.

The preservation of digital heritage and
digital content has become a major challenge
for society.

Digital persistence means continued accessi-
bility to the stored content, even as the technology
is changed—in this case for the governments’
and public administrations’ documentation. (It
also preserves the original documents, in the case
of national heritage.) It is in close relation with
lock-in and dependency that it will be introduced.
The secretary of administration and fi nance of the
Commonwealth of Massachusetts, stated:

Our public policy focus is to insure that public
records remain independent of underlying systems
and applications, insuring their accessibility over
very long periods of time. In the IT business a long
period of time is about 18 months. In government
it’s over 300 years, so we have a slightly different
perspective. (Kriss, 2005)

454

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

Economic Aspects

Within the scope of this chapter only several is-
sues can be highlighted. Governments sometimes
need to undertake intervention into the market on
behalf of common good. A high degree of market
transparency can result in disintermediation due
to the buyer’s increased knowledge of supply
pricing. Transparency is important since it is one
of the theoretical conditions, which reaches back
to Adam Smith’s invisible hands theory, required
for a free market to be effi cient. Consequently,
it may well be true, that the government should
not intervene in the free market except to assure
neutrality and a level playing fi eld for all types of
software. The governments should to be assur-
ing the neutral decision on software and public
procurement and choices on software products
should be made objectively, fl exibly, and with a
focus on a range of factors.

One of the primary economic concerns is the
cost of software usage. Total cost of ownership
(TCO) shows the real cost of software utilization.
The purchased software will usually remain the
property of the supplier; the consumer pays for
the right to use the software. Total costs need be
divided into two main categories, direct and indi-
rect costs. The measurement is diffi cult because
the indirect costs are extremely diffi cult to assess
and measure (Wheeler, 2005). Another approach
to the issue of value and cost can be to focus on
the examination of return on investments (ROI).
Both methods are extremely sensitive to the set
of assumptions made by the individual or group
taking the measure.

 Research and development (R&D) and other
innovation are more important than ever before.
In their role as a member of the Quad (see Figure
1), governments should undertake to stimulate
innovation. The economic benefi ts of such stimu-
lation, as in the case of job creation, for example,
are well known. There are numerous arguments
that R&D that is fi nanced through public funding
should be released under FLOSS license. This

kind of license supports the sharing of scientifi c
results and dissemination of created information
and value—and “there is not need to reinvent
the wheel.” Many FLOSS licenses are business
friendly (Wong, 2004).

One of the major arguments in favor of FLOSS
is concern over the issue of dependency; that is,
the public becomes reliant on software suppliers.
In many instances, there are painfully few op-
tions as to software vendors. Beyond the issue of
economic costs incurred from near monopoly, the
question of dependency also speaks to the issues
of security and privacy protection.

Social Aspects

The ICTs have a huge potential to make life better,
despite the consequences of the so-called digital
divide. The dual societal pursuits of freedom and
equality are furthered via the ability of citizens
to access the information and services of national
and municipal governments. The goal of open,
transparent government is dependent upon ever-
greater access that ICTs offer. Meanwhile, the
choices governments make as regards open or
proprietary software, and the value they place
on either, act as an example to the public, as well
as refl ecting the governments’ position vis-à-vis
issues such as privacy and security.

Education, of course, also greatly impacts
on the economic development and potential of a
country. Governments, of course, play a major role
in creating a proper environment for education.
Digital literacy and elimination the digital divide
are close correlation with education. In educational
systems there are two major expenses related to
software: in using proprietary software, schools
must buy licenses for every single computer that
uses the software, while at the same time, the
school has to ensure the possibility that students
do not abuse its use after the class.

Many NGOs are not able to afford commer-
cial, non-pirated software. This is a compelling
reason to seriously consider FLOSS as a viable

 455

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

option for NGOs. An excellent example of the
benefi ts of open source is the “Human Rights
Tool” open source software named Martus (http://
www.martus.org/). The developer uses the new
model of social entrepreneurship, which combines
market forces with philanthropic capital and en-
trepreneurial drive. Social entrepreneurship as a
focus of academic research has a relatively brief
history and as yet no research has been made on
the connection with FLOSS communities and
businesses.

Technical Aspects

The measurable technical parameters are, among
others, the reliability, performance and scalability
of the systems. These parameters can be compared
using the same technical analyses (Wheeler,
2005). The quality of a software product is a con-
troversial fi eld. Functionality of software means
the software functions fi t the users demand and
requirements.

In technical context interoperability is used
to describe the ability of different software and
hardware form different vendors to exchange
data and utilize the same protocols and to operate
effectively together. If the competitors’ products
are not interoperable, the result may be monopoly.
To avoid the vendor lock-in, it may be prudent for
governments to take steps to encourage interoper-
ability in various situations.

Transparency refers to the fact that, when
software is developed, the original source code
is available (or not) to public (or user) review.
The government is responsible for storing a large
amount of data in name of the public. Lock-in
means that if the data is stored in closed format
using proprietary software, the information will
only with diffi culty be available and retrievable
for many decades to come. Since FLOSS and open
standards make available the source code, the way
in which information is stored is publicly known,
or at least traceable. Lock-in can be only avoided
by using open standards. Moreover, lock-in may

also refer to education where the brand-specifi c
trainings confi ne the students and users.

Security is one of the main issues when
software is used by governments and public ad-
ministrations. Computing is crucial to the infra-
structure of countries. Nowadays the information
environment is extraordinary complex and fragile.
Modern society is increasingly vulnerable in its
technological and economical infrastructure,
in its telecommunications, its energy sources,
and its transportation. The infrastructure and
information systems can be attacked, destroyed,
disrupted, and corrupted by small groups or even
single individuals. It is not necessary to destroy
the infrastructure in its entirety, nor to attack it
physically via traditional means: it can be crippled
electronically, and virtually anonymously (Steele-
Vivas, 1996). This vulnerability is a reason why the
choice of software used is relevant and important.
This refers also to the political actions.

Countries where English is not commonly
spoken face a serious disadvantage when it comes
to the uptake and dissemination of ICTs. However
the translation is one of the major parts of localiza-
tion, moreover, localization involves the task for
adapting and customizing the products for local
users’ specifi c cultural and/or technical needs.

FUTURE TRENDS

The consideration and utilization of FLOSS by
national and municipal governments will con-
tinue to grow in the coming years. One of the
main fi elds where FLOSS can best be utilized
is in the e-government services increasingly in
demand.

A related area where FLOSS can be adopted
is within Public Authorities, which are quite dif-
ferent in the each country and which therefore
require the fl exibility of localization, which
FLOSS affords. Another main issue where FLOSS
is already utilized with success regardless of cost
consideration is in healthcare, which is one of the

456

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

costliest segments within governmental services
around the world. FLOSS can also improve the
performance of healthcare services, whilst ensur-
ing both interoperability and patient privacy.

Around the world, governments are develop-
ing e-voting systems, but the resistance to these
systems by citizens link back to a lack of the
trustworthiness of closed systems, which can be
avoid by using freely available source code.

Countries in the developing world can gain the
possibility to use high-quality free software as
opposed to scaled-down versions of more costly
proprietary software.

CONCLUSION

Information and communication technologies
have drastically changed societies, infl uencing
the everyday activities of both individuals and
governments. The information society has be-
come a reality and acted as a call to action by
governments. Although much research has been
done on the use and consequence of FLOSS in
the public sector, not enough knowledge exists on
public sector and government policy options and
behaviour as regards the adoption of this software.
In addition, there are numerous negative percep-
tions and misunderstanding about FLOSS.

This chapter has made an attempt to give a
comprehensive overview of the different fi elds
and aspects relevant to governments and peoples
that are infl uenced by the choice of software that
governments make. Another aim has been to
delineate the relationship between these related
issues and factors. FLOSS touches upon multiple
areas as it was introduced in the paper, using
the L-PEST model. Beyond a well-known cost
consideration, the case studies and the proposed
model showed the FLOSS and open standards
could afford a workable social-economic-tech-
nological solution.

In using the model, it has become clear that
the utilization of and decisions regarding software
adoption, there are numerous factors that could,
and should have impact on software decisions.
Within networked societies, interconnectivity
was the fi rst step, and nowadays interoperability
has gained emphasis. There are numerous argu-
ments that software application that is fi nanced
through public funding should be released under
FLOSS license. It is not enough that this software
is freely available at no cost. With the freely
available source code there is the opportunity for
improved quality, while simultaneously avoid-
ing lock-in and the development for only one
platform. This can bolster the elimination of the
digital divide and help foster participation and
inclusion programs.

As it was introduced in the Quad theory, the
relationships between the Quad’s elements deter-
mine the performance of the information society
and development as a whole. The members of the
Quad are involved in the different categories of
the L-PEST model.

Much empirical and theoretical work is still
needed in this fi eld and in reference to the presented
model as well as a better graphical representation
of the model. Future research will focus on a
detailed examination of motivations and a more
precisely defi ned analysis of every factor involved.
In reference to Wilson’s Quad model, it might be
interesting to investigate stakeholder analysis in
contrast of the Quad and L-PEST model.

Protagoras, Greek philosopher (c 485- c 410
BC) said: “There are two sides to every question.”
And this case there do exist disadvantages in the
utilization of FLOSS. It should be noted that the
advantages and disadvantages can be measured
and evaluated in relation to those incurred by using
proprietary software. This model has considered
general recommendations focusing on FLOSS
but also makes possible comparison between
proprietary and FLOSS software.

 457

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

ACKNOWLEDGMENT

The author wishes to thank Nora for her encour-
agement and patience throughout the duration of
research and writing process, Matthew Strauss
for his valuable feedback and improvement of
wording of the manuscript, and the anonymous
reviewers for their helpful comments and all
those who provided advice and suggestions on
earlier versions.

REFERENCES

Benson, T. (2005, March 29). Free software’s
biggest and best friend. The New York Times,
p. C1.

Bessen, J. (2003). What good is free software?
In W. R. Hahn (Ed.), Government policy toward
open source software (pp. 12-33). Washington,
DC: AEI-Brookings Joint Center for Regulatory
Studies.

BSA. (2005). Piracy study. Retrieved January 8,
2006, from http://www.bsa.org/globalstudy/up-
load/2005-Global-Study-English.pdf

Einhorn, B. (2003). Why Gates opened windows
in China. Business Week Online. Retrieved De-
cember 12, 2005, from http://www.businessweek.
com/technology/content/mar2003/tc2003033_
6406_tc058.htm?tc

Grassmuck, V. (2005). LiMux: Free software for
Munich. In J. Karaganis & R. Latham (Eds.), The
politics of open source adoption (POSA) Version
1.0 (pp. 14-36). Social Science Research Council
[Electronic document]. Retrieved June 3, 2005,
from http://www.ssrc.org/wiki/POSA/index.
php?title=Main_Page

Greene, T. C. (2002). MS in Peruvian open-
source nightmare. The Register. Retrieved No-
vember 17, 2005, from http://www.theregister.

co.uk/2002/05/19/ms_in_peruvian_opensource_
nightmare/

IBM signs Linux deal with Germany. (2002). BBC
News. Retrieved December 2, 2005, from http://
news.bbc.co.uk/1/hi/business/2023127.stm

IDABC. (2003). FLOSS deployment in Extremad-
ura, Spain. Retrieved December 12, 2005, from
http://europa.eu.int/idabc/en/document/1637

Kim, E. (2005). F/OSS adoption in Brazil: The
growth of a national strategy. In J. Karaganis &
R. Latham (Eds.), The politics of open source
adoption (POSA) version 1.0 (pp. 53-59). Social
Science Research Council [Electronic document].
Retrieved June 3, 2005, from http://www.ssrc.
org/wiki/POSA/index.php?title=Main_Page

Kriss, E. (2005). Informal comments on open
formats. Mass.gov. Retrieved December 21,
2005, from http://www.mass.gov/eoaf/open_for-
mats_comments.html

Lanvin, B. (2003). Leaders and facilitators: The
new roles of governments in digital economies.
In S. Dutta, B. Lanvin, & F. Paua (Eds.), The
global information technology report 2002-
2003—Readiness for the networked world (pp.
74-83.). Oxford: Oxford University Press.

LIANZA (Library and Information Association
of New Zealand). (2002). Towards a national
information strategy. Retrieved October 10,
2004, from http://www.lianza.org.nz/text_fi les/
nis_7nov02.rtf

Linking up Europe: the Importance of Interoper-
ability for eGovernment Services. (2003). Com-
mission Staff Working Paper, Commission of the
European Communities. Retrieved October 22,
2005, from http://europa.eu.int/idabc/en/docu-
ment/2036/5583

Open Initiatives of Massachusetts. (n.d.) Mass.gov.
Retrieved December 6, 2005, from http://www.
mass.gov/open_initiatives

458

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

Perritt, H. H., Jr. (1997). Open government. Gov-
ernment Information Quarterly, 14, 397-406.

Peruvian bill translation. (2005). Retrieved
January 8, 2006, from http://www.apesol.org/
news/199

Promotion of Open Document Exchange Format.
(2003). IDABC European eGovernment Services.
Retrieved November 28, 2005, from http://europa.
eu.int/idabc/en/document/3428/5890

Stanco, T. (2003). US: Testimony. Retrieved
October 1, 2005, from http://www.egovos.org/
Resources/Testimony

Steele-Vivas, R. D. (1996). Creating a smart
nation: Strategy, policy, intelligence, and infor-
mation. Government Information Quarterly, 13,
159-173.

The Center for Strategic & International Stud-
ies. (2004). Government open source policies.
Retrieved September 14, 2005, from http://www.
csis.org/media/csis/pubs/040801_ospolicies.pdf

The Many Aspects of Open Source. (n.d.). IDABC
European eGovernment Services. Retrieved
January 19, 2005, from http://europa.eu.int/id-
abc/en/document/1744

The MITRE Corporation. (2003). Use of free
and open source software (FOSS) in the U.S.
Department of Defense. Retrieved October 22,
2005, from http://www.terrybollinger.com/dod-
foss/dodfoss_pdf.pdf

UNILOG Integrata .(2003). Client study for the
state capital Munich. Retrieved January 5, 2006,
from http://hdl.handle.net/2038/490

Using open source software in the South African
government. (2003). Retrieved September 19,
2005, from http://www.oss.gov.za/docs/OSS_
Strategy_v3.pdf

Wheeler, D. A. (2005, November 14). Why open
source software / free software (OSS/FS, FLOSS,
or FOSS)? Look at the numbers! Retrieved De-

cember 12, 2005, from http://www.dwheeler.
com/oss_fs_why.html

Wilson, E. J., III. (2003). Forms and dynamics of
leadership for a knowledge society: The Quad.
Retrieved June 14, 2005, from http://www.cidcm.
umd.edu/wilson/leadership/quad2.pdf

Wong, K. (2004). Free/open source software.
Government policy. International Open Source
Network, Elsevier. Retrieved October 12, 2005,
from http://www.iosn.net/government/foss-gov-
ernment-primer/foss-govt-policy.pdf

Working group on Libre Software. (2000). Free
software/open source: Information society op-
portunities for Europe? Retrieved November 5,
2005, from http://eu.conecta.it/paper.pdf

KEY TERMS

 Dependency: In this context, dependency
means that the users are dependent on the soft-
ware vendor for products and services so that he
or she cannot move to another vendor without
substantial cost.

 Interoperability: Means the ability of systems
to operate effectively together independently of
different software or hardware vendors.

 Localization: Means more than simply
the translation of software; it refers to the cus-
tomization of the software for local needs and
demands.

 Piracy/Copyright Infringement: The soft-
ware piracy refers to the duplication, distribution,
or use of software without the permission of the
copyright holder.

 Return on Investment (ROI): Generally,
a ratio of the benefi t or profi t received from a
given investment to the cost of the investment
itself. This approach also focuses on the benefi ts
and the measurement of the value of making an
investment, not only the cost savings.

 459

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

 Total Cost of Ownership (TCO): A fi nancial
estimate for such things as (but not limited to)
computer software or hardware. TCO is commonly
used to support acquisition and planning decisions
for a wide range of assets that bring signifi cant
maintenance or operating costs across a usable
life of several years or more. TCO analysis is not a
complete cost-benefi t analysis. It pays no attention
to business benefi ts other than cost savings.

 Transparency: Transparency involves open-
ness, communication, and accountability. In this
context it refers to the fact that, when software is
developed, the original source code is available
(or not) to public (or user) review.

Lock-In, Vendor Lock-In: In technical terms
it means that, if the data is stored in closed format
using proprietary software, the information will
only be available and retrievable with diffi culty.
The term also refers to dependency of differ-
ent types of lock-in, such as when the users are
‘locked-in’ when trained for a specifi c technology
or the dependency of the specifi c vendor.

ENDNOTES

1 “Who controls the software, controls life.
Well, it had better us. That’s the real political
meaning of the free software movement, ”
said Eben Moglen, professor of law, General
Counsel, Free Software Foundation at Open
Source Conference, May 2004, Toronto.

2 The digital divide has a number of defi ni-
tions and approaches. Examples can be found
at: Bridge the Digital Divide (http://www.
bridgethedigitaldivide.com/digital_divide.
htm) Digital Divide Network (http://www.
digitaldivide.net/)

3 Many governments passed anti-terrorism
laws, aimed at enhancing security and facili-
tated the capture of terrorists. Global Policy
Forum Web page (http://www.globalpolicy.

org/empire/terrorwar/liberties/libertindex.
htm) looks at cases where the “War on Terror-
ism” threatens civil liberties. The European
Union ratifi ed controversial data retention
legislation (Directive 2006/24/EC) on the
retention of data generated or processed in
connection with the provision of publicly
available electronic communications ser-
vices or of public communications networks
and amending Directive 2002/58/EC). A
week later on, EU and US representatives
met for an informal high level meeting on
freedom, security, and justice where the US
expressed interest in the future storage of
information.

4 Creative Commons has built upon the
traditional copyright law based on the all-
rights-reserved concept to offer a voluntary
some-rights-reserved approach. The Cre-
ative Commons licenses provide a fl exible
range of protections and freedoms for
authors, artists, and educators. http://www.
creativecommons.org

5 FLOSS licensing approach based on dif-
ferences between FS and OSS movement.
The free software licenses do not allow
closing”the source code while the permis-
sive (OSS) licenses permit the creation of
proprietary development. Philosophy on:
“Why Free Software” is better than “Open
Source” http://www.gnu.org/philosophy/
free-software-for-freedom.html; Free Soft-
ware licenses: http://www.fsf.org/licensing/;
Open Source licenses: http://www.open-
source.org/licenses/

6 More detailed reading on software patents
in the European Union and other involved
issues can be found at: Software Patents in
the EU (http://www.oreillynet.com/pub/a/
network/2005/03/08/softwarepatents.html)
and Software Patents vs. Parliamentary
Democracy (http://swpat.ffi i.org/).

460

Chapter XXXV
The Labor Politics of
Scratching an Itch

Casey O’Donnell
Rensselaer Polytechnic Institute, USA

INTRODUCTION

This chapter will focus on the economic and
temporal/labor demands of creating free/libre
and open source software (FLOSS). It begins by
analyzing the economic and educational founda-
tions of those countries most actively involved in
FLOSS development, and how that affects the
overall demographics of the FLOSS movement.
Through examining the symbiotic relationship
that the community has with commercial or
closed software development, the educational
and employment prerequisites, and overwhelming

ABSTRACT

This chapter will focus on the economic and temporal/labor demands of creating free/libre and open
source software (FLOSS). It begins by analyzing the economic and educational foundations of those
countries most actively involved in FLOSS development, and how that affects the overall demograph-
ics of the FLOSS movement. Through examining the symbiotic relationship that the community has
with commercial or closed software development, the educational and employment prerequisites, and
overwhelming gendered makeup of the movement, we will come to see the movement in new ways. This
is supplemented by an examination of how this economic structure could conceivably be exploited for
increased economic gain at the expense of those individuals actually involved in the creation of the
software. Finally, the chapter concludes by looking at possible ways in which FLOSS software could be
opened up more broadly to non-technical software users.

gendered makeup of the movement, we will come
to see the movement in new ways. Expanding
our understanding of who is actively involved in
developing the software, will enable us to come
to a better comprehension about what sorts of
economic and temporal resources are necessary
for its development and continued growth. This
is supplemented by an examination of how this
economic structure could conceivably be exploited
for increased economic gain at the expense of
those individuals actually involved in the creation
of the software. Finally, the chapter concludes by
looking at possible ways in which FLOSS software

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 461

The Labor Politics of Scratching an Itch

could be opened up more broadly to non-technical
software users.

BACKGROUND

Recent quantitative studies of the FLOSS move-
ment indicate that the overwhelming majority of
FLOSS participants are from the United States
and Western Europe. France and Germany lead
the pack and the U.S. comes in third. When taken
as a whole, Western Europe accounts for nearly
65% of the total number of developers active in
the development of free software. When those
developers from the U.S. are added the numbers
become even more skewed. Nearly three quarters
of FLOSS development occurs in these two regions
(David, Waterman, & Arora, 2003; Ghosh, Glott,
Krieger, & Robles, 2002).

While much has been said about the differing
understandings of what precisely “freedom” refers
to in the context of FLOSS, the focus is often on that
of the source code. When the focus is not directly
on the source code, there is a confl ation between
civil liberties and code liberties (Stallman, 2002).
The freedom of developers typically only extends
to their freedom to learn/modify that source code.
The question of what economic, labor, and political
demands precede this freedom is almost entirely
neglected by leaders of the movement. While
the liberatory promises of FLOSS are indeed
admirable, the inability to see their relationship
to other economic factors is problematic. While
the software is indeed free in both senses of the
word, it is diffi cult to assume that either kinds of
freedom automatically indicate participation. Nor
would this indicate the kind of discrepancies we
see between Western Europe, the U.S., and the
rest of the world. There is also the problematic
extension of “user” status to that of developers
(Karim & von Hippel, 2003). While some would
site FLOSS as an exemplary example of participa-
tory design (Schuler & Namioka, 1993), the fact
remains that for the most part most current FLOSS

users are not typical users. The level of technical
expertise and time required for altering the shape
and direction of FLOSS projects is not typical.
The future trends portion of the chapter looks at
ways in which some FLOSS projects have made
potential steps, and opportunities for continued
pursuit of the more emancipatory claims made
by FLOSS proponents.

If FLOSS is looked at as a social movement,
as opposed to a development methodology or
ideology, there are two important aspects to
examine. While these are not the only aspects or
approaches to understanding a social movement
(Hess, 2005; Hess, Breyman, Campbell, & Martin,
forthcoming), they are the most relevant to this
chapter. Resource mobilization and frame analysis
draw on what is often referred to as new social
movement theory. Resource mobilization looks
at how people and economic resources are drawn
into a movement, it also scrutinizes the strategic
connections which movements make in order to
reach its goals (McAdam, Tarrow, & Tilly, 2001).
Frame analysis on the other hand examines the
kind of rhetoric being used by movement leaders
to attract new followers (Benford & Snow, 2000).
It is possible for there to be competing frames, or
for frames to change over time. What becomes
quickly apparent is that in the case of the FLOSS
movement, by and large the reasons why people
have become involved, and the resources neces-
sary for them to do so departs rather dramatically
from the primary frames being presented by the
more vociferous leaders of the movement, Richard
Stallman being the primary example.

MAIN FOCUS OF THE CHAPTER

The Labor Politics of
the FLOSS Movement

The primary social and political-economic pre-
requisites of the FLOSS movement can be boiled
down into three primary needs: higher education,

462

The Labor Politics of Scratching an Itch

software development employment opportunities,
and a job market which supplies middle class or
better wage rates. While it is certainly possible
for FLOSS participants to have access to none of
these resources, and still make signifi cant contri-
butions, the quantitative analyses of the FLOSS
movement by and large indicate that this is not
the case. While this chapter tends to highlight the
political-economic demands of FLOSS develop-
ment, other barriers to entry also beg further
analysis, language being another reasonable
starting place.

Looking closely at the quantitative data of other
researchers (David et al., 2003; Ghosh et al., 2002),
it quickly becomes apparent that there is a direct
correlation between the three political-economic
elements listed above, and those countries with
the broadest participation in FLOSS development.
All statistical numbers mentioned in the following
section come from the most widely cited demo-
graphic numbers available from these studies.
It is interesting that those countries providing
the majority of FLOSS developers are also the
leading developers and retailers of commercial
software. In part one wonders if the lack of at-
tention to this relationship is in part a denial of
this correlation.

One of the most interesting pieces of the
FLOSS story comes directly from colleges and
universities, which seem to be a core component
for successful involvement in the production of
FLOSS software. Seventy percent of those who
participate in the development of FLOSS software
have at least a bachelor’s degree, and almost half
have graduate degrees. Many FLOSS projects are
even started by academics during undergraduate
or graduate careers. The Linux kernel and the
GNU project itself are particularly good examples
(Raymond, 2001). Many students even become
acquainted with FLOSS projects while taking
undergraduate courses that utilize FLOSS projects
as teaching aids or tools for development. While
students need not acquire degrees directly in IT
related fi elds, a large percentage do. These same

trends would also indicate why by and large the
number of women active in the development of
FLOSS software is also low, because the number
of women actively pursing IT degrees has con-
tinued to drop in recent years (Randall, Price, &
Reichgelt, 2003). Without adequate educational
training, very few people acquire the requisite
technological expertise that enables them to par-
ticipate. In both respects, educational programs
seem to provide a kind of foundational level from
which FLOSS participation comes from.

Directly linked to the involvement of academics
and students in the production of FLOSS software
is an existing buy in to what some would call a
gift economy, but which is known by many other
names such as “symbolic capital” or more simply
“reputation” (Zeitlyn, 2003). These same ideals
are often extend more broadly in speaking about
hacker culture, of which the FLOSS movement is
related to, but different in at least its public fram-
ing (Himanen, 2001). In part the shared history
of FLOSS projects starting in academic institu-
tions reinforces the idea that FLOSS economics
has a great deal to do with reputation and a buy
in to the notions of progressive science found in
these institutions. This would also indicate why
any kind of suggestion that there are barriers to
entry or structural conditions which shape the
landscape of the FLOSS movement to either be
ignored or denied (Kelty, 2001). Others have also
demonstrated that to a large extent FLOSS proj-
ects are in fact highly hierarchical at the level of
practice, and that many projects are one person
strong, while only the most active projects have
fi ve or more people. This suggests that FLOSS has
more to do with itch scratching at a personal level
than freedom (Healy & Schussman, 2003).

The need for IT employment opportunities is
in many ways tightly tied to the fi rst necessary
component. In many respects, the market can
place demands upon educational institutions to
provide it with a labor pool meeting its needs. In
this case however, because many students become
interested in, and even vested into FLOSS during

 463

The Labor Politics of Scratching an Itch

their educational years, it makes sense to leave it
as the fi rst demand. The relationships between the
academy and labor markets aside, nearly 83% of
those individuals working on FLOSS projects are
employed in an IT related fi eld. Put another way,
only 17% of FLOSS developers are not employed
in IT. Of those not actively employed in the IT
sector, almost all of the remaining developers
are actually students. Only 5% of the FLOSS
movement is made up of people outside of the
academy, or not employed in IT jobs. While this
number is not insignifi cant, and perhaps worthy
of more study, it makes it diffi cult to assume
that this number will grow based simply on the
nature of the movement. With this in mind, it
quickly becomes apparent that IT employment
opportunity provides both a motivating factor
for pursing education, but also a demand for the
kinds of expertise which are also required by
FLOSS projects. Indeed, some have argued that
the “reputation” mechanism built into FLOSS,
which is supposed to link it into the meritocracy
of the academic machine, might have more to do
with a desire for economic gain or professional
development (Watson, 2005).

In many contexts, free software work begins
to occupy a kind of professional development
space for software developers. It is a context in
which they can work on larger software projects
than could be done on their own, and begins to
act as a kind of portfolio for job seekers. In places
where commercial IT employment may be more
competitive, FLOSS becomes an arena in which
aspiring employees cut their teeth on real world
projects in the hopes that it makes them more
desirable job candidates. Nearly every survey
respondent for the quantitative studies from which
this chapter pulls its conclusions from noted that
skill development and improved job opportuni-
ties were important motivators for why they were
active in FLOSS development. These two moti-
vators are directly tied to the availability of IT
employment opportunities. This aspect too plugs
into the reputation machine already mentioned;

many employees cite possible improvements in
professional developemnt as a motivating factor
for FLOSS work (Watson, 2005).

More than half of FLOSS developers receive
some kind of compensation for their FLOSS
work. This statistic brings us to our fi nal political-
economic demand which FLOSS development is
based upon. Not only do FLOSS developers have
IT job opportunities, most of the jobs that are
available come with pay structures that place them
fi rmly within a middle class or better lifestyle.
Seventy percent of those involved with FLOSS
development make at least one thousand Euros or
better per month. Almost 50% make 2,000 or more
Euros per month. Also, given the nearly 10% of
those who are students, and likely having little or
no income, this will bring down the average pay
rates. Nearly 7% of FLOSS developers reported
having no income, which means that their involve-
ment is likely supported by other means.

Who is free to work on free software? While
some will answer, “Everyone,” the reality seems
somewhat different based upon the information
contained in survey data. There is a very specifi c
demographic that dominates the development
of FLOSS software. While the focus above has
been on political-economic demands, there are
others worth noting as well. One of the most
under examined demands is temporal. Who is
free to spend time working on FLOSS software?
While some developers are employed to work
on FLOSS projects, many do so on a volunteer
basis. Nearly a quarter of developers spend only
two or fewer hours per week developing FLOSS
software. However, another 45% spend nearly
two to ten hours working on FLOSS projects. It
quickly becomes apparent that there is an implicit
assumption that free time is available to be spent
on software development. Nearly 40% of FLOSS
developers are single. Only 20% are married.
While it is not fair to say that FLOSS developers
are by and large, bored and lonely. It is fair to
say that the time demands of relationships and
family life certainly have an impact on how much

464

The Labor Politics of Scratching an Itch

available time can be spent on the development of
software (Hochschild & Machung, 1989).

Of course there are notable and interesting
outliers for these demands, it is important that
more work be done to better understand the ways
in which these social and political-economic
demands thread themselves through the FLOSS
community. There may also be other means by
which political-economic demands of FLOSS
could be reduced, though one wonders what the
consequence of such a movement would be. IT
work/labor seems to fl ow through the core of
the FLOSS software movement. Many of those
involved in the development of these projects
do so not only to scratch and itch, but also as
a means of professional development, making
money, educating themselves, and many others.
This is done not out of a primary interest in free-
dom, but a knowledge of the market which they
are a resource within, as well as out of a love or
interest in the development of software systems.
While others have attempted to characterize other
motivating factors as “pivots” or forces that shape
communities based upon “attainment” (Stewart,
2004), or the economics of OSS and beyond (Le-
rner & Tirole, 2002, 2004), external structural
considerations are still absent. Can something be
learned from acknowledging all of the motivat-
ing factors both internal and external that drive
the movement?

It would appear based upon this survey data,
that there are indeed prerequisites for participation
in the FLOSS movement. However, these demands
are never examined despite the pervasive use of
the word free in numerous contexts and with dif-
ferent meanings. Even when utilized as a means
of getting at freedom, the questions never probe
any further about what other kinds of freedoms
and opportunities must be operating for such a
freedom to exist in the fi rst place. This is in part
because the FLOSS movement was born out of
countries where these demands and prerequisites
were already in place, there was never a need to
re-examine them. Only now, as the FLOSS move-

ment has become broader and more global do
we begin to see the need for re-examining these
assertions. While in part this chapter is critical of
this inattention, it does so in a spirit of renewed
understanding and broader participation. Without
critically examining these issues, the FLOSS
movement will remain a predominantly the project
of Americans and Western Europeans, when in
so many ways the movement can conceivably
offer so much more.

FUTURE TRENDS

Based upon this information, it seems reasonable
to assume that as other countries fi nd themselves
more able to provide the political-economic
foundations from which FLOSS development can
spring, more global involvement will be found.
However, it is concerning that the U.S., though
recording the largest number of potential IT profes-
sionals, and some of the most well paid, actually
contributes percentage wise the fewest developers
to the FLOSS movement. Simultaneously, U.S.
corporations are shifting operations to make more
effective use of FLOSS software. The potential for
economic exploitation are undeniable. While some
companies are busy shifting software development
operations offshore, others are busy reducing
software teams and refocusing on FLOSS based
initiatives. This kind of movement cuts away at
the foundations, which make FLOSS development
possible in the fi rst place. If the economic founda-
tions of this kind of development are examined
and more widely acknowledged, it is possible
that an improved relationship between free and
commercial software could develop (Lancashire,
2001). If the focus remains simply on free however,
without acknowledging the very real human costs
associated with the development of free software,
the potential for exploitation will remain.

By also taking seriously the demands of FLOSS
involvement, commercial software organizations
could fi nd themselves able to gain more. If many

 465

The Labor Politics of Scratching an Itch

software developers already spend signifi cant
amounts of non-work time involved in the devel-
opment of free software projects, what could be
done to ensure that the involvement was usable by
the parent company? While it is true that others
will stand to benefi t from the same investment,
so too does the company gain the possibility of
earning from the investment of others. Though
it does not translate directly into the language
that guides most corporate organizations, that is
that surprising, given that the FLOSS movement
in many ways was a reaction against broader
practices of software development throughout
the industry.

In many ways the future trends associated with
the politics and economics of the free software
movement are tied up with the future of commer-
cial software development. While IT workplace
practices continue to change and adjust to the
global economy, so too with the FLOSS land-
scape be shaped by these forces. Because of the
demands which FLOSS makes upon education,
employment, and capital, it only make sense that
the future of software development capital, work,
and education will continue to impact and shape
this movement. Simultaneously, FLOSS has also
had a signifi cant impact on these three areas as
well, and will continue to do so.

It is also possible that if the FLOSS commu-
nity were to broadly adopt certain practices that
enable new kinds of interaction with developers
and projects, which even users without the avail-
able resources to contribute code can make new
and innovative alterations to a project. Broadly
speaking, this approach could be thought of as
design for appropriation (Eglash, Crossiant, Di
Chiro, & Fouche, 2004). It has already proven
effective at encouraging new uses and expansive
growth for applications that make the technologi-
cal investment in such mechanisms; the Firefox
Web browser for example currently has more
than 5,000 available add-ins (Multiple, 2006).
These kinds of design decisions could make
signifi cant alterations to the kinds of barriers to

entry that currently exist. This also asks FLOSS
developers to take seriously the idea of a using
user rather than consuming user, an idea, which
pervades the commercial software industry (Gil-
lespie, 2004).

CONCLUSION

The almost symbiotic relationship between com-
mercial software development and the FLOSS
movement needs to be acknowledged. With nearly
50% of FLOSS developers making their income
from the development of other software packages,
it is problematic to continue denying the social
and political-economic factors that make these
projects possible in the fi rst place. The political-
economic foundations of FLOSS software seem
to lie in three primary categories: educational,
employment, and work compensation. Each one of
these is important to the involvement of software
developers in FLOSS projects. Without these,
broad participation in free software development
would not occur. By not acknowledging these
links, we open ourselves up to the possibility of
exploiting IT workers in both established and
emerging economies. While free software may
indeed be free in the broadest senses of the words,
the context in which free software labor occurs
is not free of the realities of social and politi-
cal-economic demands, and we must also keep
those issues in view. It is also possible for FLOSS
developers to make a conscious decision to alter
these structural demands.

REFERENCES

Benford, R., & Snow, D. (2000). Framing process
and social movements: An overview and assess-
ment. Annual Review of Sociology, 26, 611-639.

David, P. A., Waterman, A., & Arora, S. (2003).
The free/libre/open source software survey for

466

The Labor Politics of Scratching an Itch

2003. Stanford, CA: Stanford Institute for Eco-
nomic Policy Research.

Eglash, R., Crossiant, J., Di Chiro, G., & Fouche,
R. (2004). Appropriating technology: Vernacular
science and social power. Minneapolis: University
of Minnesota Press.

Ghosh, R. A., Glott, R., Krieger, B., & Robles,
G. (2002). Free/libre and open source software:
Survey and study. Maastricht, The Netherlands:
International Institute of Infonomics.

Gillespie, T. (2004). Designing against user
agency: A consideration of the FCC ‘broadcast
fl ag’. Paper presented at the Society for the Social
Studies of Science, Paris.

Healy, K., & Schussman, A. (2003). The ecology
of open-source software development. Free/Open
Source Research Community Working Paper.
Retrieved from http://opensource.mit.edu/papers/
healyschussman.pdf

Hess, D. J. (2005). Technology- and product-
oriented movements: Approximating social
movement studies and science and technology
studies. Science, Technology, & Human Values,
30(4), 515-535.

Hess, D. J., Breyman, S., Campbell, N., & Martin,
B. (forthcoming). Science, technology, and social
movements. In E. Hackett & J. Wacjman (Eds.),
The handbook of science and technology (3rd ed.).
Cambridge, MA: MIT Press.

Himanen, P. (2001). The hacker ethic, and the spirit of
the information age. New York: Random House.

Hochschild, A., & Machung, A. (1989). The sec-
ond shift: Working parents and the revolution at
home. New York: Penguin.

Karim, L., & von Hippel, E. (2003). How open
source software works: ‘Free’ user-to-user as-
sistance. Research Policy, 32(6), 923-943.

Kelty, C. (2001). Free software/free science. First
Monday, 6(12). Retrieved from http://www.fi rst-

monday.org/issues/issue6_12/kelty/index.html

Lancashire, D. (2001). Code, culture, and cash:
The fading altruism of open source development.
First Monday, 6(12). Retrieved from http://www.
fi rstmonday.org/issues/issue6_12/lancashire/in-
dex.html

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 52, 197-234.

Lerner, J., & Tirole, J. (2004). The economics of
technology sharing: Open source and beyond.
National Bureau of Economic Research. Retrieved
from http://www.nber.org/papers/w10956

McAdam, D., Tarrow, S., & Tilly, C. (2001). Dy-
namics of contention. Cambridge, UK: Cambridge
University Press.

Multiple. (2006). Firefox add-ons. Retrieved July
7, 2006, from https://addons.mozilla.org/search.
php?app=fi refox&appfi lter=fi refox&type=E

Ong, A. (1991). The gender and labor politics of
postmodernity. Annual Review of Anthropology,
20, 279-309.

Randall, C., Price, B., & Reichgelt, H. (2003).
Women in computing programs: Does the in-
credible shrinking pipeline apply to all comput-
ing programs? Inroads—The SIGCSE Bulletin,
35(4), 55-59.

Raymond, E. S. (2001). The cathedral & the
bazaar: Musings on linux and open source by
an accidental revolutionary. Cambridge, MA:
O’Reilly and Associates.

Schuler, D., & Namioka, A. (1993). Participatory
design: Principles and practices. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Stallman, R. M. (2002). Free software, free so-
ciety: Selected essays of Richard M. Stallman.
Boston: GNU Press.

 467

The Labor Politics of Scratching an Itch

Stewart, D. (2004). Social forces and constraint
in the attainment of community status. Free/Open
Source Research Community Working Paper,
http://opensource.mit.edu/papers/stewart1.pdf

Watson, A. (2005). Reputation in open source
software. Free/Open Source Research Community
Working Paper. Retrieved from http://opensource.
mit.edu/papers/watson.pdf

Zeitlyn, D. (2003). Gift economies in the develop-
ment of open source software: Anthropological
refl ections. Research Policy, 32(7), 1287-1291.

KEY TERMS

 Design for Appropriation: The idea that
systems can be designed in such a way that they
are more open to user manipulation or transfor-
mation.

 Frame Analysis: Examining the rhetoric or
presented meanings of social movement leaders
as an insight into how a movement generates
followers.

 Labor Politics/Economics: The relationship
between labor or work and broader social, politi-
cal and economic aspects. This can also be the
relationship between workers and those they work
for. For more information, see Ong (1991).

 Resource Mobilization: Examining the
means by which social movements generate fol-
lowers, connect with other organizations, and

generate the resources necessary for its longevity
and success.

 Social Movements: “Social movements
enhance public participation in scientifi c and
technical decision-making, encourage inclusion
of popular perspectives even in specialized fi elds,
and contribute to changes in the policymaking
process that favor greater participation from
nongovernmental organizations and citizens
generally” (Hess, Breyman, Campbell, & Martin,
forthcoming, p. 1).

 Structural Demands/Conditions: Refers
to the relationship between different groups or
entities and to a relatively enduring pattern of
behavior or relation. Social systems, institutions,
or norms become embedded in society in such a
way that they are relatively unquestioned.

 Symbiotic: Close relationship between two
organisms, groups, or movements in close rela-
tion. These relationships are typically benefi cial
to both.

 Symbolic Capital: The amount of prestige a
person holds acting within a certain set of social
structures. The use of the word capital implies its
location as part of a system of exchange.

 Users/Consumers: The distinction is made
that there is a difference between users and
consumers, that ones role is seen as more active
and co-producing, and the other as passive and
depleting.

468

Chapter XXXVI
Open Source Technology

and Ideology in the
Nonprofi t Context

Jonathan Peizer
Internaut Consulting, USA

INTRODUCTION

This chapter contextualizes open source develop-
ment and deployment in the nonprofi t sector and
discusses issues of ideology that often accompany
it. Open source has intensifi ed the ideological
debate over what technology to deploy in a given
circumstance. The nonprofi t sector, always price
sensitive to any technology solution, has embraced
the idea of open source as a cheaper alternative
to commercial applications. Open source is also
viewed by some as embodying the humanistic
and cooperative (vs. competitive) philosophy that
defi nes the best practices of the sector.

ABSTRACT

This chapter contextualizes open source development and deployment in the nonprofi t sector and dis-
cusses issues of ideology that often accompany it. The chapter separates and defi nes the ideologies of
application development, selection and use, describing the different issues and impacts each creates in
the nonprofi t context. The purpose of the article is to clearly articulate the unique dynamics of applica-
tion development and deployment in the nonprofi t or social value context and where to apply ideological
considerations for best effect.

Open source refers to a program in which the
source code is available to the general public for
use and/or modifi cation from its original design
free of charge. It is typically created as a collabora-
tive effort in which programmers improve upon
the code and share the changes within the com-
munity (Sacchi, 2002). Open source has come to
mean different things to different constituencies.
To software programmers it refl ects a particular
development methdology and philosophy. The
more legally minded see it as licensing ideol-
ogy that more easily allows sharing intellectual
property. To users, especially nonprofi t institu-
tions with typically limited resources, it means

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 469

Open Source Technology and Ideology in the Nonprofi t Context

free sofware and freedom from dependence on
proprietary technology and related service mod-
els. In addition to these defi nitions, there is also
a strong ideological lobby that sees open source
as the alternative to commercial dominance by
any one player in the software industry and as an
equalizer with the potential of wresting control
away from U.S. predominance in the software
industry (Stewart & Gosain, 2001).

Because open source methodology and ideol-
ogy have become so intertwined it is appropriate
to ask if the right debate is taking place around it,
particularly in the context of nonprofi t implemen-
tations of this technology. Ideology and technol-
ogy cohabit the same plane of existence on three
distinct levels:

• Development ideology: How is the technol-
ogy developed?

• Selection ideology: Why is the technology
chosen?

• Ideology of use: What is the technology
ultimately used for?

The most important and thorniest ideological
consideration is the ideology of use. Unfortunately,
far too much time is spent obsessing about the
ideology of software selection to meet a particular
need and far too little time considering the effects
of its application. How software is deployed, par-
ticularly in a world that is hypersensitive to global
security concerns, has much farther reaching
implications and consequences than the ideologies
used to create and select it (Kling, 1983).

BACKGROUND

Development Ideology: How is the
Technology Developed?

Ideological considerations occur early in the
development process. Is software developed for
free, on a commercial basis or as a hybrid of the

two (Lerner & Tirole, 2002)? Is an application
designed to meet a social mission, a personal
interest or a business requirement? On the legal
front should applications be fully available to the
public for the purposes of modifi cation, or hid-
den behind proprietary legal constructs? From a
standards point of view are considerations purely
technical or are the needs of the disabled and
disadvantaged taken into account when designing
new technology specifi cations?

Developers ultimately decide why they build
applications. They decide if they wish to gener-
ate profi t, simply sustain ongoing development
and maintenance costs or if contributing a piece
of code to the world is payment enough for their
efforts. In the current reality, lower price points,
mass distribution networks, and a proliferation of
useful toolsets have allowed software developers
a far more signifi cant range of ideological deci-
sions to make when they create software. They
have a plethora of commercial and open source
languages, tools, operating systems, and even legal
frameworks to choose from in order to develop
and distribute their creations.

In this new environment it is also far easier
to develop tools for the social sector than it ever
has been. The advent of the PC in the 1980s made
technology affordable for the fi rst time to many
nonprofi ts. The PC created a market for the social
sector that in large part did not exist in the costlier
mainframe context. In the ’90s, the Internet once
again lowered the barriers by providing a tech-
nology that allowed nonprofi ts to reach out and
extend their constituencies at a far lower cost (Lee,
1997). Open source tools have unlocked even more
development opportunities for this market. They
have spurred commercial software developers to
rethink their price structures in order not to lose
this relatively new market consisting of literally
millions of social purpose nonprofi ts, educational
institutions and health facilities globally.

Developers of commercial software maintain
a straightforward profi t-based ideology for any
market they sell to. However, that does not preclude

470

Open Source Technology and Ideology in the Nonprofi t Context

them from doing pro bono work or developing
applications for the social sector that are heavily
discounted or distributed freely. Salesforce.com
has a foundation and distributes discounted and
free licenses of its products to nonprofi ts (Sales-
force, 2005). Techsoup.org provides a variety of
software aggregated from different vendors who
are interested in providing discounted commercial
applications to the nonprofi t sector (Techsoup,
2005). Open source developers operate on a num-
ber of levels as well. Some have strong ideological
convictions that tools should be developed free
of charge for the social sector as well as for any
non-commercial user (Stewart & Ammeter, 2002).
Others are driven by a need to limit the dominance
of a single, perceived commercial player. Still oth-
ers simply wish to demonstrate their creativity to
the world and to build a better mousetrap. There
are even open source developers advocating the
free distribution of source code while allowing
an economic model based on distribution (Ellliott
& Sacchi, 2004).

Both the commercial and open source devel-
oper community may operate on development
ideologies that are purely technical, focusing on
building software tools for other developers that
allow them to in turn build end-user tools (Kuan,
2002). Developers may also choose to build
generic end-user products that meet the needs
of any sector. Word processors and spreadsheet
products for example can be built using either
commercial or open source tools, and following
either commercial or open source principles of
distribution. All sectors including the social sec-
tor have a need for these basic tools in whatever
form they are built. The social sector also requires
specialized mission-focused applications which
are often not available as mass-produced shrink
wrapped applications.

Some suggest that the promise of open source
to the nonprofi t sector lies in the open code base
that allows developers around the world to col-
laborate on projects to produce or enhance new
application (Kogut & Meitu, 2001). There is

an expectation of a whole slew of new mission
critical applications to meet nonprofi t needs at a
reduced cost. This assumes a reasonable number
of developers exist that are willing to devote time
for little pay to work closely with nonprofi ts over
signifi cant periods, measured in years, to develop
and upgrade these applications. It also assumes
the problem has been that nonprofi ts have a hard
time developing applications to meet their needs
in the proprietary marketplace due to a slew of
programmers not having access to code.

Experience indicates that nonprofi ts typically
do not have the resources to implement basic
technology right out of the box let alone support-
ing technical staff to develop and maintain their
applications. Technology support organizations
like NPower and the Circuit Rider movement work
in the nonprofi t context because technology in
this environment requires that it be bundled with
capacity and service (E-Riders, 2005; NPower,
2005). Capacity and service are what for-profi ts
invest in internally so they can absorb and take
advantage of the technology they implement. In the
nonprofi t environment only the largest nonprofi ts,
(typically those with the capacity to generate in-
come) invest in internal technology departments.
The rest require low cost nonprofi t technology
service providers or consultants (McInerney,
2004). Making code accessible though an open
source development ideology does not magically
create a cadre of new and interested programmers
willing to develop and maintain applications for
the nonprofi t environment. There must be an un-
derlying economic model that provides resources
to compensate them over years of development
and maintenance (Lerner & Tirole, 2002).

It is clear why open source application efforts
such as Mysql and Apache work (Kuan, 1999).
These applications are about developers creating
products for other developers in order to enhance
their own effi ciency and productivity (Dempsey,
Weiss, Jones, & Greenberg, 1999). In the end, these
products help anybody implementing a web server
or database including nonprofi ts. The constituency

 471

Open Source Technology and Ideology in the Nonprofi t Context

for these applications is huge—much larger for
example than for an application focused on case
management for battered women. It is also clear
why end user open source applications like Open
Offi ce developed for a mass audience (including
for-profi ts and nonprofi ts) work as well. They have
the benefi t of well-paid technical staff employed
by companies who may wish to work with the
code to enhance internal needs or to experiment
on their off time. Some governments, which are
beginning to mandate open source usage, may
contribute technical support to these endeavors
as well.

Nonprofi ts certainly benefi t from both the hard-
core open source technical products like servers
and databases and the mass-market open-source
end-user products. However, they are not neces-
sarily underwriting their development or enhanc-
ing the code themselves with phantom technical
resources they cannot afford. The fundamental
question an open source development ideology
leaves unanswered is how one underwrites and
sustains the development and continued mainte-
nance of mission sensitive open source applica-
tions for the nonprofi t sector (Franck & Jungwirth,
2001)? In the current environment, many of these
applications are still subsidized by foundation
underwriting—hardly a long-term solution for
sustainability (Saint-Paul, 2003).

Finally there are also destructive software
development ideologies. Some developers cre-
ate viruses, worms, trojans and other harmful
applications for no other purpose but to cause
disruption. These development ideologies are
distinct from using tools that are ideologically
neutral or benefi cial for destructive purposes,
(for example using the ability to imbed hidden
copyright or fi le information in images to pass
terrorist messages along). In the latter case the
technology itself is not designed to be destruc-
tive, but is used for that purpose. In the case
of destructive development ideologies, both
the development and use of the application are
designed to be nefarious. Destructive developer

ideologies aside, commercial, non-commercial,
or socially responsible development ideologies
are all equally valid. They represent the product
of their developer’s creative interests in solving
a particular problem. However, the fact that any
technology, whatever the design intention, can
be used for constructive or destructive puposes,
underscores why the ideology of use often trumps
the ideology of development.

Selection Ideology: Why is
the Technology Chosen?

How should users choose a software application
that best meets their particular requirements?
Unfortunately, the questionable practice of ap-
plying software development ideology as the
primary decision point to the software selection
process is becoming far too common and has cre-
ated an unnecessary complication for nonprofi ts
trying to employ technology to meet their mis-
sion objectives. The idea that software selection
choices should be made based primarily on the
premise of free vs. commercial technology and
open source vs. proprietary technology is entirely
misguided.

Managing systems operations and satisfying
the needs of real users meeting long term organi-
zational objectives often produce professionsal IT
managers that are agnostic pragmatists rather than
ideologs. While it may be fashionable for some
developers and users to equate open source with
open society, most users trying to achieve their
business objectives using IT as a process are inter-
ested in only one thing—that the software satisfi es
their need to get from point A to point B.

It benefi ts everyone when software developers
make decisions to create a variety of free, com-
mercial, proprietary, and open source solutions.
The various ideologies chosen to develop these
products, provides users the freedom to choose
the best solution from a diversity of options to
meet the objectives at hand. The ideology behind
the application’s development may be only one

472

Open Source Technology and Ideology in the Nonprofi t Context

of many factors determining which software to
choose—along with many other variables that
must be prioritized. Solid operational prerequi-
sites most often used to base software selection
decisions on include:

• Do the application’s functions meet the user
specifi cations?

• Do the design considerations meet project
requirements?

• Do the cost considerations meet project
requirements?

• Do the security considerations meet project
requirements?

• Do the networking considerations meet the
project requirements?

• Are the necessary resources there to program
or deploy the application?

• Are the necessary resources there to maintain
the application?

• Are the necessary training and documenta-
tion resources available to satisfy project
requirements?

• Is the hardware available and appropriate
to meet the needs of the software applica-
tion?

• Is there a facility to convert data?
• Are the necessary integration points there

if the application must interface with other
applications?

• What is the evolutionary trajectory of the
software I choose?

Answering these questions may lead to select-
ing applications built on particular development
ideologies. However, the selection process is based
purely on an objective set of operational criteria
to deliver the most effective solution satisfi ng a
stated need.

Price is a very sensitive factor to the nonprofi t
community, often infl uencing the selection of
applications. However, ease of installation and
use and continued high touch support are also
important factors to take into consideration when

satisfying this sector. When applications don’t
work in this environment and there is no support
around to provide basic assistance, users become
very reticent to use the technology again; much
more so than in the commercial context. A good
project manager must weigh all these decisios
before making a selection.

There are at least four reasons why selecting
software based primarily on an ideological prefer-
ence is not recommended:

• Selection methodology should compliment
the risk of any software implementation:
A software implementation is a costly and
complex affair that involves a sophisticated
behavioral interplay between people and
technology. Often it means changing the way
departments or whole institutions do things
as they adapt to often less than intuitive au-
tomated processes. Most people are naturally
resistant to these changes. Technologists who
manage software implementations know that
there are many pitfalls to watch out for even
in the best of circumstances. Choosing an
application for any reason other than how it
meets specifi ed business requirements is a
tremendous gamble (Mosko, Jiang, Samanta,
& Werner, 1999).

• What criteria of selection actually make
sense? When building a house, is it best to
select the tools to use based on the alloys they
are built with? Their craftsmanship? Their
cost? The method that went into forging
them? The most logical and primary con-
sideration would be to select the right tools
necessary to complete the building project.
Craftsmanship, cost, alloys, and method of
creation might all be considerations, but
these factors should be weighted based on
how they contributed to the tool’s success
in helping complete the building project. As
attractive as it might be, using a hammer
forged on Thor’s anvil is innapropriate if

 473

Open Source Technology and Ideology in the Nonprofi t Context

what was really needs is a screwdriver from
The Home Depot.

• Defi ning the real cost of use and tangible
benefi ts of social source for nonprofi ts:
Many organizations fi nd open source vs.
commercial applications more attractive
because they are free to use. Often there is
never any real plan to actually tinker with the
application code to modify how it works—a
major benefi t of open source products. The
limitation on technical resources are already
major limitations in developing a product
further in the nonprofi t environment. If cost
of purchase is the main motivation, let the
buyer beware. The real costs of any applica-
tion deployment outside of initial purchase
relate to installation, training, data conver-
sion, ongoing maintenance, support and new
version upgrades. These must all be taken
into consideration if using commercial or
open source applications. What is free now
may also have a cost later. The once free
open source, the Star Offi ce revision now
has a price attached to it. This often happens
as an application gains signifi cant market
share. The need arises to better support its
continued development and maintenance
for an increasing and more demanding
end-user market in an organized and timely
fashion.

 In this sense, the nonprofi t sector’s use of
open source may not be much different from
their use of commercial applications. True,
they are not paying retrogressive licensing
schemes while the software is still free
(Lerner & Tirole, 2005). However, they are
not necessarily taking full advantage of the
promise of open source either. They must still
pay someone for long-term technical support
for applications ideologically developed to
meet a social good.

• Comparing apples to apples in generating
social value: The “social value” case that
some argue for open source software is not

compelling enough to infl uence a selection
decision (e.g., that because open source is
free and open to redesign, nonprofi ts end up
with access to richer, less costly, and more
reliable applications, freeing themselves up
to spend their limited resources elsewhere).
In fact, there is just as valid an argument to
support and opposite viewpoint. Consider
this:

 The social benefi t of most open source appli-
cations is primarily in their free use and less
so in their extensibility. The benefi t of free,
modifi able code would constitute a far more
signifi cant social benefi t if most nonprofi ts
took advantage of it, but most cannot because
of resource constraints. There are also train-
ing and documentation costs associated with
any new and signifi cant software modifi ca-
tion. Commercial software is typically closed
and de facto has an expense connected with
its purchase. However, it is often deeply
discounted for the nonprofi t and educational
environments, although not all over the world
as it should be. Software that is unaffordable
but necessary is often pirated in developing
countries that cannot afford it, nullfying the
actual cost acquisition arguments of open
source vs. proprietary software.

Commercial software developers that discount
for their nonprofi t customer base may create far
more social value if they also convert some of their
commercial sales revenue directly to philanthropic
purposes. A number of philanthropic institutions
and corporate social responsibility programs are
funded by commercial software profi ts and are
contributing to the global fi ght against aids, the
reform of micro lending and economic develop-
ment, training and education, library support,
children’s programs, media development, and a
plethora of other social value activities. The Gates
Foundation has the largest endowment of any U.S.
foundation dwarfi ng the Ford, Rockefeller, and
MacArthur endowments, and the Open Society

474

Open Source Technology and Ideology in the Nonprofi t Context

Institute’s yearly allocations. It must allocate at
least 5% of that endowment (about one billion
dollars) of grant funding annually. One cannot
separate the direct correlation between revenue
generated from commercial software and the work
of the Gates Foundation, the Microsoft Commu-
nity Affairs Department, the Time-Warner AOL
Foundation, The Real Foundation and Glaser
Family Fund, The Paul Allen Foundation, and so
forth. They do quality work and their people are
just as dedicated as any other foundation staff
to the value proposition of assisting civil society.
It is disingenuous to compare the social value of
both commercial and open source applications
without recognizing this other dimension of social
benefi t that accrues from commercial application
development.

Applying ideology to the selection process
in either a commercial or open source context
is a tricky business. The reality is the current IT
environment is a hybrid technology environment.
This has been for decades for decades. Many orga-
nizations currently support a mixed environment
of proprietary and open source applications as the
need dictates. Walk into many organizations today
and you’ll fi nd internet servers running on open
source linux, apache, and Mysql while the desktop
environment supports Microsoft Windows and
Offi ce applications. While software developers
choose the ideology they are most comfortable
developing applications in, when it comes to
selecting an application to meet a particular user
need, its best to select applications based soley on
operational criteria that best satisfi es the need.

MAIN FOCUS OF THE CHAPTER

Ideology of Use: What is the
Technology Ultimately Used for?

The deployment of any technology is by far the
most interesting ideological concern but often
the one least focused upon. Most software is

built to solve a particular problem or to create a
new functionality. All technology development is
informed by values. However, a technology tool,
once developed, can be applied in many ways
that reinforce the original intention, run counter
to it or spur new possibilities never thought of by
the developer. Ideological debates around tech-
nology development and selection are easier to
have because the issues are far more limited, and
revolve around technology choices and objective
operational requirements. The genie is let out of
the bottle only once a technology is deployed. The
ideology of use poses far more serious ethical is-
sues than the development and selection ideologies
previously discussed. Following are fi ve examples
in the current global context.

Case #1: Ideology and Terms of Use

What if a technology allows encrypting hidden
messages in a digital image to pass along to an
intended recipient who has the key to unlock the
message? This application can be used by the
Otpor Student movement in Serbia in a bid to
change an autocratic regime, or it can be used by
Al Qaeda to communicate its next major terrorist
attacks against a target. Should the usage of such
tools be somehow regulated?

And what if they are regulated? Some years
ago, then-Russian President Yeltsin issued a decree
that the keys to all encryption designed into soft-
ware and distributed in Russia must be provided
to the FSB (the Russian successor of the KGB)
(Anderson, 1995). That would cover the example
above but it would also cover a securely encrypted,
open source human rights application. A Chechen
NGO in Russia using such an application to track
human rights abuses would not necessarily be
as fully protected by the laws in that country as
a similar organization tracking abuses against
Islamic citizens in the U.S. However what if this
application did fall into the wrong hands and was
used by a Chechen terrorist organization?

 475

Open Source Technology and Ideology in the Nonprofi t Context

Here the ethical dilemma takes on an interest-
ing twist. Reporting the encryption keys to the
appropriate authorities could put a legitimate
human rights organization in jeopardy given
the anti-terrorist, anti-Chechen environment.
However, not reporting the keys might allow the
application to fall into the wrong hands, allowing
secure encrypted communications in a country
where it is clearly illegal without the government
having a key. What is the responsibility of the
developer who makes a secure application freely
available in SourceForge (the online open source
software repository)?

 Hacktivismo has taken a crack at this type of
ethical dilemma by developing an ideology-based
licensing regime, the Hacktivismo enhanced-
source software license (Hacktivismo, 2005).

This modifi ed, open source license regime
requires that applications be used for their in-
tended purpose, to support Hacktivismo’s political
agenda: Assertions of liberty in support of an un-
censored Internet. Martus, the secure, open source
human rights monitoring application referred to
above uses strengthened “anti-hacking” clauses in
a standard open source software license to protect
its application and users (Martus, 2005).

Making the application available with a li-
cense for intended use and clear instructions that
it should be used legally in the environment in
which it is deployed represents one viable solu-
tion for the developer to avoid both extremes. It
creates a contract between the developer and the
end user but leaves it up to the user in country
to abide by both pre-requisites. Restricting the
application’s use in Russia altogether might turn
out to be as ineffective as the PGP encryption
software ban was in the United States. On the
other hand providing pre-assigned keys is not re-
ally an option as neither the FSB or the developer
have the processes and resources in place to track
every user that could pull it off an open source
application catalog like SourceForge.

This example is not as extreme as it sounds.
Commercial vendors are making their software

code available to governments in order to meet
their national security concerns in light of the
global terrorist threat. In making the code available
however, trust is being put in the various govern-
ments not to abuse or exploit this information.

Case #2: Ideology and Hacktivism

Denial of service attacks have brought down
major Web sites like Yahoo and eBay causing
millions of dollars in lost business and annoying
service disruptions. They have even precipitated
arrests for criminal mischief. However, the famous
Chiapas denial of service (DoS) attack attributed
to the Electronic Disturbance Theater was an act
of civil disobedience, commonly referred to as
hacktivism. Hacktivism promotes social causes
online, in this case the plight of the indigenous
people of Chiapas Mexico. In the current world
context, what application of technology constitutes
criminal behavior, terrorism or hacktivism/civil
disobedience?

The originator of the Chiapas (DoS) attack
argues that the Chiapas attack was technologi-
cally full of holes. It was acknowledged as easy
to get around and obviously technologically
fl awed as DoS attacks go. It was designed as
an act of civil disobedience to send a message
clearly related to an issue of social importance.
Finally, it was attributed to an organization with
known credibility in the hacktivist community, a
community driven to advocate for social justice
through the creative use of technology. Given the
new threats faced today, can the intent of these
attacks be distinguished by the sophistication of
the software involved, the nature of the cause,
the amount of damage done or the entity from
which it emanates?

Just as it is important to distinguish activism
and civil disobedience from criminal behavior
and environmental terrorism hacktivism must be
distinguishable from cybercrime/ cyberterrorism.
Billions of dollars of national security technology
R&D coupled with a push to standardize privacy

476

Open Source Technology and Ideology in the Nonprofi t Context

and surveillance laws internationally have the
potential to make the Internet a much less open
and democratic place than it has been. It may be
far easier to mislabel hacktivism cyberterrorism
or at least criminal mischief in the future. Yet
activism and civil disobedience are valid forms
of protest and have been protected civil liberties
(off-line). Even as very valid national and global
security concerns are addressed, some provisions
must be made for this form of speech that protects
it online as it does offl ine. There may come a
time when “traditional” hacktivists are included
as arbiters of what constitutes hacktivism and
what does not in a society that is more sensitive
to national security concerns.

Case #3: Ideology and the Technical Fix

The Martus Human Rights application consists
of two core parts that make up a secure client
and server. The latter can sit in a different coun-
try to securely store human rights reports. The
developer wishes to make Martus an open source
application along with a modifi ed open source
license. However, doing so might open Martus up
to dangerous hacking by those who would under-
mine the application and get to the human rights
data it is designed to protect. Is the Hacktivismo
modifi ed licensing agreement the application’s
only protection [or enough] against people who
would violate human rights? Does the nature of
the application disqualify its submission as an
open source product?

In this particular case, the design philosohpy
of the application informs both its use and its
security. The basic application can be modifi ed
as open source software. However, the security it
uses to protect users against access to their records
is the same strong encryption protocol employed
by secure tools such as PGP. This encapsulated
module within the Martus product cannot be modi-
fi ed. On the server side, the application designed
to store information does nothing but authenticate

users and store their data. It cannot even read the
encrypted messages. There is not a whole lot of
sophistication built into the server side outside
of doing very discreet and simple tasks. The
processing decisions are made on the client side.
Hence there is far less reason to release the server
side software as open source because it would not
be particularly useful to build upon. The entire
application speaks to both development and use
ideologies focusing on two objectives: Making it
secure enough for the human rights constituency
to be able to trust it, and freely available as open
source so they can afford to use it.

Case #4: Ideology and
Destructive Technology

We assume viruses are all bad. But what if for
national security purposes a democratic govern-
ment creates a virus that infi ltrates a terrorist’s
PC and captures his keystrokes so that important
information is uncovered that prevents an attack
and saves thousands of innocent lives?

It is technically feasible but how can it be
assured that such a virus does not fall into the
wrong hands or that is not used improperly in
the right hands? Just as a socially responsible
application can be used for destructive purposes,
so can a typically destructive application be used
for benevolent purposes. What is the intrinsic
ideology of a gun for example? Protection or
violence? The ideology of use and the user often
determine the context. Using the gun as a good
example, it is more logical to regulate applications
typically used for destructive purposes than those
purposed for benevolent use whatever the original
design intention.

Case #5: Free Market
Ideology and Technology

What is the responsibility of any commercial
corporation that has developed its technology

 477

Open Source Technology and Ideology in the Nonprofi t Context

in a free and democratic society not to sell this
same technology to repressive governments in
order to censor, secretly monitor, or otherwise
oppress its people? What is its obligation once
in a repressive country not to use its software to
help a government harass or detain its citizens
in contravention on international conventions or
treaties on human rights?

At this crucial intersection between social
welfare and free enterprise we have not found
the appropriate answer in many contexts. The
debate around the publish-what-you-pay move-
ment, confl ict diamonds, generic drugs to the
developing world, and breaking the technology
fi ltering regimes of oppressive countries all have
their roots in better defi ning the traffi c lights for
this intersection. Often governments are left to
regulate business interests as a result of public
outcry after the damage has already been done.

FUTURE TRENDS

Open source software continues to become more
mainstream as greater numbers of developers
contribute to the code base and the applications
get better, more ubiquitous and user friendly. From
the nonprofi t’s perspective it still remains to be
seen how support of open source development
efforts will coalesce around mission focused ap-
plications. Funders typically provide support to
institutions with a offi cial 501c3 nonprofi t status
working on social objectives, and not loose co-
alitions of developers. However, 501c3 entities
like Aspiration (http://aspirationtech.org) and
its Social Source Commons application are
demonstarting alternative approaches by creat-
ing nonprofi t developer and technology support
communities around applications and issue areas.
Unlike most corporations that can afford to employ
technology support, nonprofi ts and funders alike
are increasingly relying on external nonprofi t
technology support entities like E-Riders Npower

to provide both support for nonprofi ts who do
not employ internal expertise (E-Riders, 2005;
NPower, 2005). What this means is that unlike
commercial entities who can afford their own
technicians, nonprofi ts will prioritize solutions as
much for the ability of their third party providers
to support them as for any particular technology
whether open source or proprietary. How these
intermediary technology support organizations
handle the open source and ideology question
will have signifi cant impact on what technology
is actually employed in nonprofi ts.

In this new environment that seeks to strike
a balance between civil liberties and national
security the software ideology debate must fo-
cus on the on the more important issues of what
software is developed and deployed for. At the
same time the high software project failure rates
must be taken into account and selection and
implementation decisions applied realistically
to the nonprofi t context. Software selection must
be based on criteria that allow for a higher prob-
ability of success precisely because of the low
degree of resources and tolerance for failure in
this sector. Software selection should be left to
the same operational criteria that have always led
to increased probability of successful application
deployment—meeting a defi ned user need.

CONCLUSION

Technology is neither an enabler nor a facilitator of
civil society in its own right. Nor is it a decider of
its own ethical or non-ethical use. The mechanism
that ultimately decides the ideology behind any
given technology are the people and institutions
applying it, regardless of the intent defi ned its
original development. It should not be surprising
that software development, an area of computer
science, presents the same range of ethical dilem-
mas that most of the other sciences do.

478

Open Source Technology and Ideology in the Nonprofi t Context

REFERENCES

Anderson, R. J. (1995). Crypto in Europe: Markets,
law and policy. In Proceedings of the Interna-
tional Conference on Cryptography: Policy and
Algorithms (LNCS 1029, pp. 75-89). London:
Springer-Verlag.

Dempsey, B. J., Weiss, D., Jones, P., & Greenberg,
J. (1999). A quantitative profi le of a community
of open source Linux developers. School of In-
formation and Library Science at the University
of North Carolina at Chapel Hill.

Elliott, M., & Scacchi, W. (2004, August). Mobi-
lization of software developers: The free software
movement. Retrieved from http://www.ics.uci.
edu/~wscacchi/Papers/New/Elliott-Scacchi-
Free-Software-Movement.pdf

E-Riders. (2005). A standard defi nition of e-rid-
ing. Eriders.net. Retrieved October 17, 2005, from
http://www.eriders.net/model/whatis/

Franck, E., & Jungwirth, C. (2001). Reconcil-
ing investors and donators: The governance
structure of open source. [University of Zurich
Working Paper]. Zurich, Switzerland: University
of Zurich.

Hacktivismo. (2005). A description of the
enhanced use license software. kottke.org.
Retrieved October 17, 2005, from http://www.
kottke.org/02/11/hacktivismo-enhancedsource-
software-license-agreement

Kling, R. (1983). Value confl icts in the deploy-
ment of computing applications. Telecommun.
Policy, 12-34.

Kogut, B., & Metiu, A. (2001). Open-Source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248-264.

Kuan, J. (1999). Understanding open source
software: A nonprofi t competitive threat. Un-

published manuscript, Haas School of Business,
UC Berkeley.

Kuan, J. (2002). Open source software as lead
user’s make or buy decision: A study of open
and closed source quality. Stanford Institute for
Economic Policy ResearchMimeo.

Lee, E. (1997). The labor movement and the
Internet: The new internationalism. Chicago:
Pluto Press.

Lerner, J., &Tirole, J. (2002). Some simple eco-
nomics of open source. Journal of Industrial
Economics, 52, 197-234.

Lerner, J., & Tirole, J. (2005). The scope of open
source licensing. Journal of Law, Economics and
Organization, 21(1), 20-56.

Martus. (2005). Description of the application.
martus.org. Retrieved October 17, 2005, from
http://martus.org/

McInerney, P-B. (2004). Ideological competition
among organizations: Nonprofi t technology as-
sistance and the rise of a nascent organizational
fi eld. Submission to the 2004 ASA Annual Meet-
ing by the Department of Sociology, Columbia
University.

Mosko, M., Jiang, H., Samanta, A., & Werner,
L. (1999, December). Software acquisiton meta-
model. UCSC-CRL-00-02. Retrieved from ftp://
ftp.cse.ucsc.edu/pub/tr/ucsc-crl-00-02.ps.z

NPower. (2005). Description of its role as a tech-
nology service providers to nonprofi ts. npower.
org. Retrieved October 17, 2005, from http://www.
npower.org/about/index.htm

Saint-Paul G. (2003). Growth effects of nonpropri-
etary innovation source. Journal of the European
Economic Association, 1, 429-439.

Salesforce. (2005). Description of its role founda-
tion giving activities. salesforce.com. Retrieved
October 17, 2005, from http://www.salesforce.
com/foundation/

 479

Open Source Technology and Ideology in the Nonprofi t Context

Scacchi, W. (2002). Understanding the require-
ments for developing open source software
systems. IEEE Proceedings on Software, 149,
24-39.

Stewart, K. J., & Ammeter, T. (2002). An ex-
ploratory study of factors infl uencing the level of
vitality and popularity of open source projects. In
Proceedings of the 23rd International Conference
on Information Systems, Barcelona, Spain.

Stewart, K. J., & Gosain, S. (2001). An explor-
atory study of ideology and trust in open source
development groups. In Proceedings of the 22nd
International Conference on Information Systems,
New Orleans, LA.

Techsoup. (2005). A description of Techsoup’s
Techsoup Stock providing free or discounted
software and hardware to nonprofi ts from a variety
of vendors. techsoup.org. Retrieved October 17,
2005, from http://www.techsoup.org/stock/de-
fault.asp?cg=header&sg=stock&visit=1

KEY TERMS

 Application-Development Ideology: The
context in which a software developer chooses to
develop his application, it can be for gain, glory
or to meet a social good.

 Application-Selection Ideology: The con-
text is which applications are selected for use.
Historically, applications have been chosen to
meet practical business requirements. However,
the introduction of open source has ledd to a
movement of some, particularly in the nonprofi t
community, advocating selection of software
weighted more heavily on open source develop-
ment ideology.

 Application-Use Ideology: The context in
which a user chooses to use a software application.
It can be for constructive or destructive purposes,
to meet a social need, a business requirement or
any other utilitarian purpose.

 Hacktivism: The use of technology in the
context of civil disobedience, potentially break-
ing the law through technical means to protest
perceived injustice.

 Destructive Application Ideologies: Ideol-
ogy that may occur in the process of development,
selection or use creating applications dedicated to
create disruption, or selecting and using applica-
tions specifi cally to cause disruption regardless
of the reason for developing them.

 Mission Sensitive Nonprofi t Open Source
Applications: Applications specifi cally designed
to promote and further the mission objectives of a
nonprofi t such as case management for domestic
violence or human rights monitoring applications.
These applications are typically not mainstream,
with a harder business case for supporting devel-
opers to create and maintain applications.

 Open Source’s Social Value Equation: An
argument that through its collaborative devel-
opment methodology and fee sharing of intel-
lectual property among users, Open Source can
be equated to the best principles of the nonprofi t
sector. While ideologically attractive, the notion
fails to take into account that:

1. Nonprofi ts actually compete with each other
for limited resources.

2. Open source development is often accom-
plished by a relatively small core team.

3. There is a cost of ownership that is somewhat
hidden from nonprofi ts that focus on free
applications without taking into account
that technical support is still required to
maintain it.

4. Revenue generated by major software ven-
dors has been invested back into society (in
the form of new foundations) to achieve high
social value impact projects in a variety of
issue areas.

480

Chapter XXXVII
Governance and the Open

Source Repository
R. Todd Stephens

BellSouth Corporation, USA

INTRODUCTION

Open source continues to make inroads into the
corporate environment where it is now a standard
embraced by most of the top tier corporations in
America (Ferris, 2003). Applications like Apache
and Linux have been phenomenally successful in
providing real business value (Garvert, Gurbani,
& Herbsleb, 2005). However, further research is
needed in how organizations should govern the
open source environment which requires more
than the indemnifi cation of the product. Open
source governance requires the establishment
of architectural standards that each and every
group can adhere to in order to deliver bottom

ABSTRACT

This chapter examines the critical task of governing the open source environment with an open source
repository. As organizations move to higher levels of maturity, the ability to manage and understand the
open source environment is one of the most critical aspects of the architecture. Metadata can be defi ned
as information pertaining to the open source environment that the organization defi nes as critical to the
business. Successful open source governance requires a comprehensive strategy and framework which
will be presented through historical, current-state, and future perspectives. The author expects that by
understanding the role of open source metadata and the repository within, researchers will continue to
expand the body of knowledge around asset management and overall architecture governance.

line business value. A centralized repository
for downloading certifi ed open source products
ensures that the principles of asset management
are implemented and managed effectively.

The driving purpose of the architecture com-
munity is to minimize the unintended effects on
the business due to technology changes. Utilizing
an open source repository for impact analysis
will ensure that proposed changes will not create
catastrophic events within the business itself. The
repository provides the mechanism for inven-
tory management which allows organizations
to see what is already acquired, deployed, and
supported within the environment. In addition,
efforts like domain analysis, reuse, and release

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 481

Governance and the Open Source Repository

management are essential to the implementation
of open source as an enterprise asset. When
organizations embrace open source as a viable
alternative to in-house or outsourced develop-
ment, they must accept the responsibility and
implications of transforming it from code to an
enterprise asset.

BACKGROUND

The background section will review the core
concepts that enable open source governance
within a large scale deployment. Additionally,
the historical precedent for a repository will set
the stage for the introduction of the open source
repository. Architecture governance is the practice
and orientation where the technical architecture
is managed and controlled at an enterprise-wide
level. Maturity models provide a framework by
which organizations can measure their progres-
sion of governance; software and open source
maturity models will be reviewed. The higher
levels of maturity defi ne an environment where
consistency, predictability, and ongoing optimiza-
tion are the keys to success.

 Architecture Governance

 Information technology governance specifi es
accountabilities of technology related business
outcomes and helps companies align their tech-
nology investments with their business priorities
(Ross & Weill, 2005). Enterprise architecture is
a set of frameworks, principles, guidelines, and
standards created to guide the development and
deployment of enterprise systems. The rate of
change in the business is accelerating causing the
cycle times allowed for implementing new systems
to decrease. Existing technology infrastructure
often gets in the way of rapid change and may
inhibit the organization’s ability to respond. By
having an architectural governance program, large
enterprises can respond quickly and effectively

to the demands of the business. One tool that can
be used to determine the road map of governance
is called a maturity model. A maturity model is
a method for judging process maturity of an or-
ganization and for identifying the key practices
required move to the higher levels.

 Software Maturity Models

In 1986, the Software Engineering Institute
(SEI) was asked by the U.S. Air Force to create
a systematic method of evaluating software con-
tractors. In conjunction with the MITRE Corpo-
ration, the study group produced a questionnaire
that enabled the Air Force to judge a software
provider as either successful or unsuccessful in
its capabilities. The questions were divided in a
number of groups (key process areas) and then
assigned to specifi c levels within the model.
The resulting model was called the capability
maturity model (CMM). The levels describe the
path a software provider must follow in order
to move to the higher levels of maturity. These
paths are actually a collection of key practices
that must be mastered before moving to the next
level (Baskerville & Pries-Heje, 1999). Maturity
implies a potential for growth in capability and
indicates both the richness of an organization’s
software process and the consistency with which
it is applied in projects throughout the organiza-
tion. In addition, productivity and quality result-
ing from an organization’s software process can
be improved over time through consistent gains
in the discipline achieved by using its software
process (Chrissis, Curtis, Paulk, & Weber, 1993).
The CMM provides fi ve levels of maturity: initial
level, repeatable level, defi ned level, managed
level, and optimized level.

Level 1: The Initial Level

At this level, the organization has a less stable
software process and management practices. The
process is ad-hoc and changes as work progresses.

482

Governance and the Open Source Repository

All aspects of the process are unpredictable with
no key process areas defi ned within the domain
of the organization. When an organization lacks
sound management practices, the benefi ts of good
software engineering practices are undermined
by ineffective planning and reaction-driven com-
mitment systems.

Level 2: The Repeatable Level

At this level, the focus is on project planning,
management, tracking, and the implementation of
procedures and policies. The objective of this level
is to establish an effective project management
process that allows the organization to “repeat”
successful practices and procedures used on
earlier projects. Key process areas for this level
include: requirements management, software
project planning; software project tracking and
oversight; software subcontract management;
software quality assurance; and software con-
fi guration management.

Level 3: The Defi ned Level

This level focuses on the organization’s defi ned
standard software process, including software en-
gineering and management processes. The activi-
ties are stable and repeatable and are implemented
throughout the organization. Key process areas
include: organization process focus, organization
process defi nition, training programs, integrated
software management, software product engineer-
ing, intergroup coordination, and peer reviews.

Level 4: The Managed Level

This level focuses on productivity, quality and
the assessment of each defi ned process. Measure-
ments are established for quantitative assessment
and evaluation of software processes and prod-
ucts. At this level, the organization is capable
of predicting quality trends within quantitative
bounds. Key process areas include quantitative

process management and software quality man-
agement.

Level 5: The Optimized Level

This level focuses on continuous process im-
provement. At this level the organization has
the ability to identify process weaknesses and
product defects, and to improve both the process
and product. Key process areas include defect
prevention, technology change management, and
process change management. Updates to the model
are reviewed by a body of over 500 practitioners
and approved by an advisory board of 14 senior
software engineering professionals (Marshall
& Mitchell, 2002). The CMM model has been
adapted by several different disciplines including
knowledge management, people capability, project
management, and product development.

Open Source Maturity Models

Based on the success of the CMM, Golden (2005)
defi ned an open source maturity model (OSMM)
as a basic requirement for analyzing open source
products. Each product is evaluated on six basic
elements: product software, support, documenta-
tion, training, product integrations, and profes-
sional services. These six elements are scored
against the basic requirements, ability to locate
available resources, access element maturity, and
the assignment of a maturity factor. The purpose of
the OSMM is to provide a level of maturity for the
open source product. Since there are 80,000 open
source products, organizations will be faced with
multiple options in deploying specifi c solutions.
Additionally, Guliani and Woods (2005) defi ned
an OSMM based on the products age, supported
platforms, momentum, popularity, design quality,
costs, and support associated with the open source
product. The main issue with these models is that
they only concern themselves with evaluating the
product and not matching the level of maturity
of the organization, architecture, and the client

 483

Governance and the Open Source Repository

support required after the product is implemented.
At the core of the long term value-add proposition
for any enterprise asset, like open source, is the
managing repository (Pereira & Sousa, 2004).
The repository handles both the structured and
unstructured information content required at the
higher levels of maturity. Huang and Tilley (2003)
describe the top two levels of maturity and the
base requirement of a knowledge management
system.

Traditional Roles of the
Repository and Registry

A repository is basically a database application
that contains information about an asset with the
ability to attach unstructured documentation. De-
pending upon the object type, the repository may
only store the metadata information or the actual
object itself. Traditionally, metadata focused on
database and the extraction transform and load
(ETL) type metadata. The evolution from physi-
cal data structures to logical models, component
descriptions and system defi nitions extends the
metadata environment to a whole new world of
possibilities. Blecher (2005) defi nes metadata as
any information regarding the characteristics of
any artifact, such as name, location, perceived
importance, quality or value to the enterprise,
and its relationships to the other artifacts that
an enterprise has deemed worth managing. New
technologies such as XML and Web services are
also requiring new forms of repositories than
can manage the asset in a design and production
environment. Today, the vast majority of reposi-
tories are Web enabled which means they should
follow the standards of design, usability, content
management, and user centered design principles.
This allows organizations to defi ne the product,
service, and an information framework in much
of the same fashion that businesses build models
for the online environment.

From the maturity model perspective, the re-
pository plays a key role in several different areas

including governance, establishing information
context, and reuse. A closer look at many of the
maturity models show a distinct migration from a
chaotic model of operation to a defi nable, repeat-
able, and electronic method of doing business
which is the base criteria for level fi ve maturity.
The repository is the central part of this business
model, just as the card catalog is the central point
of information for any library. Organizations that
implement open source repositories and then begin
to expand the business functionality and integration
are moving toward an open source transformation.
Open source can then move away from a chaotic
environment to a centralized point of service
that is built from the business point of view. The
maturity process for the repository begins with
capturing the current inventory of open source
products and then adds the services like version
tracking, impact analysis, subscription services,
information context, and measured reuse.

Producers, Consumers, and
Librarian Responsibilities

Since open source is usually brought into an
organization during the architecture or design
time of a project, most resources do not think
about reuse or change management with these
applications. From the programmer’s point of
view, open source simply provides a starting
point where a base set of functionality can be
implemented fairly easily. With today’s focus
on cost savings and speed to market, develop-
ment organizations will look for best practices,
irregardless if they are formal or stealth. In one
sense, the producer of the open source product
is the collection of experts that worked together
in order to produce the application. However, the
organizational entity (Corporation or Educational
Institute) looks toward a single point of contact for
the product. This subject matter expert will have
responsibility to evaluating, piloting, standard-
izing, and implementing the functionality into
the organization. The open source producer is

484

Governance and the Open Source Repository

the architect, developer or development manager
that decides that open source should be brought
into the organization and integrated into the
application environment. The responsibility of
the producer or integrator is to ensure that the
asset integrates seamlessly into the technology
architecture and does not cause disruption of
service or business functionality. As an asset,
the producer must ensure that both structured
and unstructured information is collected and
loaded into a repository.

The consumer of open source products are
directly related to the internal development com-
munities. In addition, architects, designers, testers,
and ongoing support may also be interested in the
different dimensions of open source as it relates
to the organizational deployment. The consumer
of open source is any person or group that ac-
cess the information describing the asset or the
actual asset itself. Consumers can gain access to
the information in a passive nature by reading
and collecting the information for educational
purposes. Consumers may access the information
through an active delivery method where distinct
consumer services are automated and built on the
actual metadata information. The open source
consumer is responsible for locating and accessing
the reusable information, assessing the ability to
reuse the asset, adapting to the asset environment
and integrating the asset into the framework of
technology. The greatest return on investment
occurs when multiple consumers of open source
work together as a community and ensure the
application supports the business and evolves to
a more agile technology environment.

The role of the librarian is to manage the in-
formation about the open source environment and
act as a third party for the use and functionality
of the asset. A portion of this functionality will
be performed by the repository which provides
the discovery, access and documentation ser-
vices. The librarian is essential to the success
of implementing open source into a large scale
environment since they focus on providing value

to both the producer and the consumer. As infor-
mation about the open source environment fl ows
into the repository, the librarian is responsible for
ensuring the information is accurate and conforms
to the defi ned domain of the meta-model. Data
quality is essential in the long term success of the
repository and the value to the business cannot be
understated. Services offered to the open source
producer include work fl ow, utilization metrics,
content aging, and inventory statistics. The li-
brarian also serves the consumer by ensuring the
information required for implementation decisions
is presented in a clear and concise manner. The
consumer will also be interested in understand-
ing the implementation environment; specifi cally
reviewing the number of other implementations or
capacity information. As a broker of information,
the librarian works to ensure a solid relationship
between the producer and consumer.

 OPEN SOURCE REPOSITORY AND
THE GOVERNANCE MODEL

Overview

Currently, open source components are described
and packaged in environments that focus on the
development community. Open source communi-
ties, like Source Forge, provide metadata elements
such as administrator, developers, installation
instructions, development status, licensing, along
with several others. Like the majority of externally
defi ned repositories, organizations are unable to
add application or business functionality without
replicating the data. Integration, which is essential
in architecture governance, is rarely taken into
account and many sources of open source software
may not be as trustworthy as others.

Issues and Problems

By itself, the open source repository does not
solve the issues around information technology

 485

Governance and the Open Source Repository

governance. However, the repository does enable
the organization to address these concerns from
a maturity point of view and then add additional
functionality as required by the various key pro-
cess areas. As organizations move to the service-
oriented architecture (SOA) and distributed agile
solutions, these issues take on a more global impact
to the organization as a whole. The following is-
sues must be addressed as organizations begin to
govern the open source environment.

 Inventory Management

Perhaps the most important issue that must be dealt
with early on is to understand the environment
and the diverse technology parts that make up the
application portfolio. Open source applications
are only a small part of the infrastructure and
each component must be subject to the rules and
processes of inventory management. The basic
question of what open source products do we have,
who is using them, where are they installed, and
what do they functional do are all important in-
formational elements that must be captured. Even
at the most basic level, executives cannot manage
or govern the architecture without knowing what
is actually in the environment.

 Impact Analysis

While inventory management focuses on the
what, impact analysis focuses on the relation-
ships between the open source application and
the other assets of the organization. Questions
like who is using this product, what systems are
using the open source component, who is the
subject matter expert, what other products work
with this application, if we replace this application
what else is impacted and who will support the
application. The importance of these questions
becomes critical when looking at the technology
environment as a competitive advantage and the
lack of disaster recovery or high availability.
Today’s business environment cannot afford

downtown due to integration or security issues.
Just knowing the impact of a change, an organi-
zation can save millions in revenue by avoiding
a service interruption.

Reuse and Domain Analysis

Domain analysis can be described as the process
of reviewing the business and process environ-
ments looking for commonalities and variability’s
that enable the creation of a domain model. This
domain model is the core requirement for the de-
velopment or use of reusable assets. This process
of matching the business functionality to specifi c
assets allows the architecture governance orga-
nization to ensure that only one version or one
solution for a specifi c problem is implemented.
For example, the domain analyst might take the
Web server functionality and associate the Apache
product which means that any group needing the
basic functionality is required to utilize the same
application. This ensures that reuse becomes a
critical technology imperative and a requirement
for any lifecycle project. Reuse, software reuse,
and code reuse are three terms that are often
misused and confused by the general practitioner.
Reuse has been tossed around since 1994 where
many organizations jumped all over the reuse
bandwagon without much success. Software
reuse goals and practices are not new, but full
scale success has been hard to fi nd. That being
said, effective reuse of knowledge, processes, and
software has been proven to increase productiv-
ity and quality of the IT organization. McIlroy
(1969) published one of the earliest references to
software reuse at the New York NATO Conference
on Software Engineering. Early reuse efforts were
primarily focused on reusing algorithms to ensure
the consistency of calculations. Companies with
scientifi c and engineering computing needs were
early proponents of “function reuse” to ensure that
a specifi c engineer calculation across all of their
systems computed the same value. The initial
goal was not to reduce costs to build systems nor

486

Governance and the Open Source Repository

quicker time-to-market. In 1995, Gamma, Helm,
Johnson, and Vilissides (1995) published their
unique approach to reuse in a book called Design
Patterns: Elements of Reusable Object-Oriented
Software. The result was a recognition that reuse
must include much more than just code. Spanning
from architecture to test-cases, reuse must be
looked at in a holistic fashion in order to produce
economic benefi ts. Organizations spend much
more time on the architecture, design, analysis,
and specifi cation than actual coding.

Procurement and Version Control

How you bring open source into the organization is
also critical for governance to operate effectively.
Freely available software means that there is no
single source for a particular application. Linux
can be downloaded from thousands of sites, each
of which has a wide variety of versions, support,
and documentation. Ideally, the open source
repository has only one version that is matched
to the domain model and every implementation
within the organization utilizes this single source.
In doing so, the organization can manage the en-
vironment in a consistent manner that can deliver
the functionality demanded by the business. In
addition, by tracking who, when and how the
organization downloads and implements open
source, the architecture can ensure a secure and
legal environment.

Metrics and Measurements

In order to move up the maturity model, you
will eventually need to integrate metrics into the
governance process. Some metrics, such as instal-
lations, versions, downloads, document views,
and repository path analysis are inherent in the
prior issues and concerns. As the organization
matures their reuse program, other metrics may
emerge as valuable instruments of governance.
The metrics may include transaction volumes
that pass through the open source application.

Transaction volume is a key determinate of which
open source product should be implemented. Some
products add functionality at a cost of transaction
speed. In other cases, the speed of service is more
important than additional functionality that may
not needed. Jeffrey Poulin (1997) was one of the
fi rst people to take an extensive look at measur-
ing software reuse. In his 1997 book, he covered
the principles, practices, and economic models
for measuring component-based reuse within a
corporation. Open source should implement an
economic based reuse metric program in order
to measure the core reuse of open source applica-
tions. Other metrics that could be implemented
include industry support, return on investment
(ROI), capacity, and performance. Metrics should
be captured on a monthly basis and evaluated by
utilizing trend analysis software which evalu-
ates the information over an extended period of
time. Ideally, the process of collection should be
automated and have the ability to capture at any
point in time. What growth percentage should
be applied to the open source metrics? Again,
long-term success is not defi ned by the explosion
of growth in the fi rst year but by the subsequent
three to fi ve years. The fi rst few years may very
well have triple digit growth but sustaining growth
is the key to success and maturity.

 Open Source Environment

Many people in the information technology fi eld
look at the open source repository as an application
which provides a limited set of value points for
the organization. The reality is that the repository
itself is just one part of a much larger collection of
products, services, tools, processes, and customer
support components. Figure 1 provides one view
of the open source repository environment that
attempts to pull in some of these components into
a single framework. This framework is based on
the experience of the author in a Fortune 500
organization.

 487

Governance and the Open Source Repository

The structure of this diagram includes fi ve
basic components:

1. Open source portal
2. Traditional repository
3. Business processes
4. Application processes
5. Customer support environment

The Open Source Portal

Elena Varon (2002) indicates an enterprise por-
tal gives end users access to multiple types of
information and applications through a standard
interface. The vertical portal addresses one aspect
of a business, such as a human resources site
that lets employees sign up for training classes
and view pay stubs. Others defi ne a portal as an
interface for people to access and exchange in-
formation online. It is usually customizable and
can be designed to provide employees, customers
or trading partners with the information that they

need, when they need it. Aiken and Finkelstein
(2000) indicated that enterprise portals will be the
primary method used by organizations to publish
and access business intelligence and knowledge
management resources. Similarly, the open source
portal provides a single point of access for all
open source products and services within the
enterprise. The main portal page should contain
some of the following functionality:

• Basic overview, user guide and online help
for the repository

• Semantic and advanced Boolean search
• Multiple hierarchal structures for open

source classifi cation
• Usage based classifi cations: Latest additions,

coming soon, top ten
• Key business functions for the repository
• Service provider support
• Personalization of the portal
• Related programs to the open source ef-

fort

Figure 1. The open source portal and corresponding components

488

Governance and the Open Source Repository

Once a user has selected an option on the
open source portal a collection of assets will be
presented. A collection is a method of grouping
assets based on the context of the selection. A
collection may be presented via search engine
or through a taxonomy classifi cation system. In
a large organization, the open source repository
must be able to reduce the source set and place
the components into the context requested by the
end user. The detail page provides the metadata
that describes the open source component itself.
This metadata includes the generic (semantic)
meta-model which is simple and straightfor-
ward metadata such as name, description, or
keywords. The Dublin Core standard is one such
generic meta-model standard. The context specifi c
meta-model describes an asset within a specifi c
context: Object Management Group (OMG), com-
mon warehouse model (CWM), reusable asset
specifi cation (RAS), and Web service defi nition
language (WSDL) are just a few examples. These
standards focus on specifi c types of resources or
assets (structural metadata). Presenting this infor-
mation in a single, usable, and functional page is
critical to the success of the repository. While no
open source metadata standard has been defi ned,
a general meta-model can be used to capture the
classifi cation information.

The Data Loader

Located on the right side of Figure 1 is the data
loader utility which actually loads the metadata
information into the meta-model. Vendors pro-
vide a large collection of utilities that can har-
vest metadata from tools, databases, and a wide
variety asset types. In addition to the automated
loading utility, most applications provide librar-
ian tools for versioning, data quality, integration,
and data entry. Without metadata exchange
standards within the open source community,
the majority of the information will need to be
loaded by hand.

Business Processes

The open source repository can be transformed
from a passive store for open source informa-
tion into an integrated solution for governing the
environment. The key to this transformation are
the business processes.

Asset Submission and Status Tracking

Metadata must be collected on each and every open
source component submitted to the repository.
Even when the majority of metadata is collected
through an automated tool, basic information must
be assembled in order to initiate the process of
cataloging the open source components. An online
form or series of forms can provide self service for
collecting information from the open source pro-
vider. Ideally, this process could be automated with
the use of integrated Web services. The librarian
should have the open source information tagged
as “pending” to indicate that the component still
needs to be reviewed by the governance organi-
zation. Each open source component should be
reviewed and scored based on support, maturity,
functionality, and associated risk to the organiza-
tion. Once the component is approved, then and
only then should the functionality be exposed to
the entire organization.

Asset Consumption

The repository can also provide services for
the utilization of the open source components.
Consumers work on the front end of projects to
integrate reusable open source assets into the
technology environment. One of the biggest
problems with implementing enterprise archi-
tectures is understanding the environment from
a usage point of view. Online forms can trigger
the engagement process for utilizing assets as
well as track the relationship between application
and the asset. One of the challenges of enterprise

 489

Governance and the Open Source Repository

application integration (EAI) is knowing what
systems, applications, and data constructs are
currently being used within the corporation. By
integrating the concepts around consumption
and implementing open source as a governed
technology, the architecture will ensure a stable
and robust environment that complements the
agile organization.

Application Processes

Application processes are products and services
that operate on the metadata information itself.
While the business processes focused on the
specifi c workfl ow of the environment, the appli-
cation processes focuses on value-add from the
repository data. One of the most basic applica-
tion processes is measurement of the amount of
content within the open source repository which
would include components, documentation, and
metadata elements. Another key metric is the
actual usage of the open source information.
Usage metrics can communicate the priority,
reuse, as well as opportunities for the governance
organization. Understanding the complete picture
of open source usage is critical to building a long-
term program. Impact analysis is the process of
identifying or estimating the impact of a change
in the environment. Impact information can be
used when planning changes, making changes, or
tracking the effect of changes implanted within
the open source environment (Apiwattanapong,
Harrold, & Orso, 2003). Other application pro-
cesses include subscription services, reservation
services, failed searches, and user tracking.

Customer Support Environment

The open source components as well as the overall
architecture process needs to have a customer
facing environment. The support group creates
an environment of self-service and community
support within the organization. Support groups
approach the governance process from the service

perspective as opposed to the technology view.
Adding customer support utilities to the product
mix is a positive step in creating a customer ex-
perience. Some of the basic components should
include: user guides, online help, product and
service overviews, frequently asked questions
(FAQs), and training programs. In addition, pro-
ducer and consumer communities can be created
with a wide variety of collaboration tools in order
to add value to the relationship. The open source
repository environment is a complex collection of
communications that are one way, collaborative,
and interactive in nature.

 Open Source Meta-Model

The key to any repository is to have a solid meta-
model that allows the organization to catalog
the open source component as well as provide
services with the metadata information. The
process should start with a basic set of elements
and then begin to expand. Since the metadata will
be stored externally to the open source package,
effort should be made to reduce the complexity in
order to ensure adherence to the standards. Table
1 provides a standard set of elements that should
be associated to the open source package.

These elements provide the foundation of
knowledge management around the open source
asset which will enable basic functionality like
search, taxonomies, and hierarchal classifi cations.
The domain specifi es a controlled set of values
that can be applied to the fi eld. Table 2 provides an
example of the data elements applied to the open
source package from Apache called Lenya.

Organizations should expand this core set
of metadata elements to match the level of gov-
ernance required by the executive community.
Keeping in mind that the more metadata elements
added requires additional investments in data
quality, process management and analytical sup-
port. This meta-model can be expanded to include
unstructured information, relationships with other
components, and packaging information.

490

Governance and the Open Source Repository

Table 1. Basic open source metadata e-elements

Field Name Description Domain

Title Name of the open source package No

Description Detailed description of the package including value-add,
utility and functionality No

Class Fields Classifi cation fi elds like type or topic Yes

Source Source of the original package including URL, description
and owning organization No

Keywords Key words and key phrases used to describe the application Yes

Release Version or release level No

Usage Describe how the application should be used or what busi-
ness need will be addressed with this application No

Technical Dependencies List the technology requirements like operating system,
database application, or Web servers No

Contacts Contacts information for owners, users, and subject matter
experts No

Dates Dates like origination, valid through, release, and so forth. No

License Specifi c type of license Yes

Status Current internal status Yes

Online Reference Any online reference sites for documentation, support, or
best practices No

Table 2. Open source metadata elements for Apache Lenya

Field Name Description

Title Apache Lenya—Open source content management (Java/XML)

Description Apache Lenya enables content management with the following features: content
authoring, workfl ow, internalization, layout, site management and security

Class Fields—Context End user interface

Class Fields—Class Information worker class

Source The Apache Software Foundation

Keywords Content management, open source, apache, workfl ow, check-in, check-out,
publishing, asset management

Release 1.2

Usage Content management

Technical Dependen-
cies Cocoon, Ant

Contacts John.doe@mycompany.com

Dates 06/15/2003

License http://lenya.apache.org/license.html

Status Active

Online Reference http://lenya.apache.org/1_2_x/index.html

 491

Governance and the Open Source Repository

THE FUTURE OF OPEN
SOURCE REPOSITORIES

Overview

Repository frameworks continue to make inroads
into the information technology community.
Advancements in SOA and the Web services are
exposing the repository to a new community of
developers and architects. Infrastructure ma-
turity frameworks like information technology
infrastructure library (ITIL) are also bringing
the repository to the forefront as a central point
of management and governance. The open source
community will need to bring in the concepts of
operational maturity and governance in order to
extend the viability of the overall environment.
This will create an opportunity for the reposi-
tory to become the central point of control for
the enterprise. While smaller organizations that
only implement a few open source components
may not need the repository, larger organizations
will increasingly depend on the functionality as
a competitive advantage. This progression of
value refl ects the maturity of open source within
the corporation which must include the tools
of governance. The convergence of enterprise
architecture and governance will bring about
more vendor support, tools, and standards which
should create an environment for growth for the
open source repository. As companies continue
to out source development, integrate open source
components, and deploy service architectures, the
repository will become much more of a business
requirement. Despite the fact that intangible as-
sets, like open source, have been largely ignored
by accounting, executives, and board of direc-
tors, most companies are increasingly reliant on
them (McFarlan & Nolan, 2005). The controlling
bodies must ensure that management knows
what information or applications is being used,
how it is being used, who is using it, and what
value-add does it bring to the bottom line of the
organization.

Business Trends

The world of business is evolving to a much more
agile environment than in the past. One of the
biggest trends today is the concept of out sourcing
components of the business model to other orga-
nizations. Information technology has enabled
the business to outsource their supply chain to
companies like United Parcel Service (UPS) and
their technology operations to EDS or Accenture.
This trend allows organizations to focus on their
core competencies. The impact of this on the open
source environment is that organizations will
continue to move toward standard technologies
and business processes. While today the challenge
of open source is functionality and support, to-
morrow the challenge will be on integration and
business agility. Business agility enables an orga-
nization to cope with the unpredictable changes, to
survive unprecedented threats from the business
environment, and to take advantage of changes as
opportunities (Goldman, Nagel, & Preiss, 1996).
The open source repository will evolve from
a source of passive information to the point of
integration for the business itself, irregardless if
the open source component is an XML standard,
application program, or open business process.
Business agility will open the door for dynamic
business models that create value only for a short
period of time. Organizations must capitalize on
these opportunities by deploying technologies
that adapt to the changes in the business model;
not in months but in days.

 Another business trend that will impact the
open source environment is the mobile workforce
or information worker. Technology advancements
have created an environment where work can be
done around the world by anyone at anytime. This
requires that information about the technology
environment be available 24 hours a day. The
repository allows mobile workers to access in-
formation and documentation from any location
as long as the resource has access to the Intranet.
New mobile devices, like the cell phone, personal

492

Governance and the Open Source Repository

data assistance (PDA), and laptop computers
are changing the basic defi nition of work and
the creation of value. Having the complete open
environment documented and available online,
the repository will become the single point of
integration and the enabler of business value.

Technology Trends

Technology continues to evolve toward an en-
vironment that will remove all barriers to entry,
barriers of geography, and barriers of time. The
proliferation of computing into the physical world
promises more than the ubiquitous availability of
computing infrastructure; it suggests new para-
digms of interaction inspired by constant access
to information and computational capabilities. For
the past decade, application-driven research in
ubiquitous computing has pushed three interaction
themes: natural interfaces, context-aware applica-
tions, and automated capture and access (Abowd
& Mynatt, 2000). These movements are coming
of age and the impact to the corporation cannot
be understated. All of these advancements can be
directly tied to the infl uence of the open source
environment. Another trend is the move toward
collaborative computing which is exactly how the
open source community thrives. Collaboration
will eventually move away from the development
model to the utilization, standardization, and
governance of the environment components.

Conclusion

In the current environment building an open
source repository is more of a process issue than
a technology one. The adoption of commercial
software can be controlled in a straightforward
manner through the procurement process. Open
source adoption is far more diffi cult to manage
because there is no single gateway to control how
and when open source software is used. Compa-
nies that deploy open source must consider the
same myriad issues they consider in any commer-

cial software deployment: security, governance,
integration and lifecycle management. Central to
this governance theme is the open source reposi-
tory. The long term success of open source within
the organization will be defi ned by the ability to
govern the information technology environment
as a core component of the infrastructure. In
order to move to the highest levels of maturity,
open source governance and the repository must
be integrated into the core architecture.

REFERENCES

Abowd, G., & Mynatt, D. (2000). Charting past,
present, and future research in ubiquitous com-
puting. ACM Transactions on Computer-Human
Interaction, 7(1), 29-58.

Aiken, P., & Finkelstein, C. (2000). Building
corporate portals with XML. New York: Mc-
Graw-Hill.

Apiwattanapong, T., Harrold, M., & Orso, A.
(2003). Leveraging fi eld data for impact analysis
and regression testing. In Proceedings of the 11th
European Software Engineering Conference and
11th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. Helsinki, Finland:
The Association of Computing Machinery.

Baskerville, R., & Pries-Heje, J. (1999). Knowl-
edge capability and maturity in software manage-
ment. The Database for Advances in Information
Systems, 30(2).

Blecher, M. (2005, December). What metadata is
and why you should care. Business Integration
Journal, 12.

Chrissis, M., Curtis, B., Paulk, M., & Weber, C.
(1993). Capability maturity model for Software.
Version 1.1, Software Engineering Institute,
Pittsburgh, PA.

Ferris, P. (2003). The age of corporate open source
enlightenment. Queue, 1(5), 34-44.

 493

Governance and the Open Source Repository

Gamma, E., Helm, R., Johnson, R., & Vilissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Reading, MA: Ad-
dison-Wesley.

Garvert, V., Gurbani, A., & Herbsleb, J. (2005). A
case study of open source tools and practices in a
commercial setting. In Proceedings of the Fifth
Workshop on Open Source Software Engineering. St.
Louis: The Association of Computing Machinery.

Golden, B. (2005). Succeeding with open source.
Reading, MA: Addison-Wesley.

Goldman, S., Nagel, R., & Preiss, K. (1996). Co-
operate to compete: Building agile business rela-
tionships. New York: Van Nostrand Reinhold.

Guliani, G., & Woods, D. (2005). Open source for
the enterprise: Managing risks, reaping rewards.
Cambridge, MA: O’Reilly Media.

Huang, S., & Tilley, S. (2003). Towards a docu-
mentation maturity model. In Proceedings of
the 21st Annual International Conference on
Documentation. San Francisco: The Association
of Computing Machinery.

Marshall, S., & Mitchell, G. (2002). An e-learn-
ing maturity model? In Proceedings of the 19th
Annual Conference of the Australian Society for
Computers in Learning in Tertiary Education,
Auckland, New Zealand.

McFarlan, R., & Nolan, W. (2005). Information
technology and the board of directors. Harvard
Business Review, 83(10).

McIlroy, M. D. (1969). “Mass produced” software
components. In P. Naur & Bl Randell (Eds.),
Software engineering, Brussels (pp. 138-155).
NATO Scientifi c Affairs Division.

Pereira, C., & Sousa, P. (2004). A Method to
Defi ne an Enterprise Architecture using the Zach-
man Framework. In Proceedings of the 2004 ACM
Symposium on Applied Computing, Nicosia, Cyprus.
The Association of Computing Machinery.

Poulin, J. (1997). Measuring software reuse.
Reading, MA: Addison-Wesley.

Ross, J., & Weill, P. (2004). IT governance: How
top performers manage IT decision rights for
superior results. Watertown, MA: Harvard Busi-
ness School Press.

Varon, E. (2002). Portals fi nally get down to busi-
ness. CIO Magazine, 12.

KEY TERMS

 Asset: An asset is any artifact that the organi-
zation defi nes as critical to the business.

 Metadata: Metadata is information that
describes the characteristics of an asset. This
information may be in the form of structured
metadata like title, description, and author; or
unstructured metadata like implementation in-
structions or test cases.

 Maturity Model: A maturity model describes
an evolutionary path where activities/best prac-
tices are introduced in order to create a more stable,
consistent, and defi nable environment.

 Meta-Model: A meta-model defi nes the ba-
sic structure of the information being collected
about an asset.

 Governance: Governance is the act of man-
aging the technical environment as a portfolio
of assets. Managing the portfolio would include
activities like domain analysis, inventory man-
agement, and reuse.

 Repository: A repository is a software applica-
tion that manages the asset information throughout
the lifecycle including the acquisition, storage,
publishing, and security rights of that asset.

 Reuse: Reuse describes the activities of
identifi cation, generalization, development, and
management which support practitioners utilizing
existing assets vs. building from scratch.

494

Section VI
Business Approaches and

Applications Involving Open
Source Software

 495

Chapter XXXVIII
Analyzing Firm Participation in

Open Source Communities
Wouter Stam

Vrije Universiteit Amsterdam, The Netherlands

Ruben van Wendel de Joode
Delft University of Technology, The Netherlands

Twynstra Gudde Management Consultants, The Netherlands

INTRODUCTION

The emergence of open source software (OSS)
communities, in which individual contributors
freely share their innovations, has presented or-
ganizations with new opportunities to sell their
software products and services (Von Hippel & Von
Krogh, 2003). Well-known examples of firms that
use the communal resources of OSS communities
are IBM, SUN, and Red Hat. These and other
organizations hope to benefit from OSS because

ABSTRACT

Increasingly, firms participate in OSS communities. However, surprisingly little empirical research has
been performed to understand firms’ participation in OSS communities. This chapter aims to fill this gap
in state-of-the-art research on OSS. We will discuss and analyze the results from a survey of 90 Dutch
high-technology firms that are active in the market for OSS products and services. In the survey we asked
the firms what activities in OSS communities they perform. One outcome is that firms’ activities can be
grouped into two distinct categories of activities, namely technical and social activities. This outcome
is an important contribution to research on OSS that until now has viewed community participation as
a uni-dimensional construct. The survey results also suggest that firms view their internal investments
in R&D as a complement to their external product-development activities in OSS communities.

they believe it constitutes a low-cost and high-
quality knowledge resource that may spur new
product development. Furthermore, they believe
that characteristics of OSS communities, like the
release of source code, may provide opportunities
that lead to the early adoption of new products and
hence lead to first-mover advantages (Dahlander
& Magnusson, 2005). Engagement of commer-
cial organizations in OSS communities may also
provide various benefits to OSS communities,
since firms may (a) enlarge the user base of the

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

496

Analyzing Firm Participation in Open Source Communities

communities, (b) contribute scarce financial and
human resources, and (c) perform a boundary-
spanning function by linking the communities
to various groups of non-technical users.

Despite the potential mutual benefits of com-
munity participation by firms, recent studies have
suggested that commercial actors may have a
tendency to demonstrate significant free-riding
behavior and contribute little back to the joint ef-
fort that characterizes open source communities
(Bonaccorsi & Rossi, 2004). Firms may focus
only on their own benefits and as a consequence,
exploit the communal resources while keeping
their involvement in the community at a minimum.
Although this behavior can harm both the firm
and the community in the long run (Dahlander &
Magnusson, 2005), surprisingly little empirical
research has been carried out to examine if such
free-ridership actually takes place. Little research
has been performed to analyze the activities firms
actually perform in OSS communities. As a result,
an understanding of the conditions under which
firms contribute to the development of OSS com-
munities remains incomplete.

This chapter extends previous work on partici-
pation in OSS communities by firms. We achieve
this by studying how such firms participate in
OSS communities. Specifically, we are looking
for factors that may explain any variation in the
type and extent of participation across firms.

Based on survey data that was collected from
90 OSS firms in The Netherlands, our first aim
is to show that the engagement of firms in OSS
communities involves more than just technical
activities such as contributing software code. We
will show that organizations also perform social
activities, such as organizing conferences and
workshops that may facilitate knowledge sharing
among community members and spur the wider
adoption of OSS. By making a distinction between
technical and social participation, we offer a more
holistic perspective on the engagement of com-
mercial actors in OSS communities.

Our second purpose is to explain what factors
account for the observed differences between
firms in the ways they participate in OSS com-
munities. By demonstrating that the type and
extent to which companies participate in OSS
communities is logically connected to specific
characteristics of these firms, such as their busi-
ness models, we generate a better understanding
of the conditions under which firms make certain
types of contributions to OSS communities.

Our chapter proceeds as follows. First, an
overview of state-of-art literature is given in
which we will introduce the literature on com-
munity participation by individual developers and
commercial firms. Next, we present our empirical
study of Dutch OSS firms and discuss its main
findings. We conclude with a discussion of future
trends and present our overall conclusions.

BACKGROUND

Economic theory suggests that people only con-
tribute to the production of a good if the benefits
exceed the costs (e.g., Olson, 1965). Yet, people
participate in open source communities without
receiving direct tangible benefits for their efforts.
In other words the efforts, or costs, involved in
writing source code or solving other people’s prob-
lems do not exceed the direct monetary benefits
that can be gained from such activities. The reason
for this lack of direct benefits is that the products
and services created by active participants like
the source code (the human-readable part of soft-
ware) or the answers to questions can simply be
downloaded for free. Thus, in OSS communities
the costs of participation appear to outweigh the
benefits. At the same time, however, research
has shown that a surprisingly large number of
individuals voluntarily participate in the com-
munities (Hertel, Niedner, & Herrmann, 2003).
This paradox has received much attention from
researchers, who wondered: “Why do individuals
participate in OSS communities?”

 497

Analyzing Firm Participation in Open Source Communities

Participation in Open Source
Communities by Individuals

Especially the earlier writings on OSS communi-
ties provide us with a number of potential answers
to the question why individuals voluntarily par-
ticipate in the communities. One of the dominant
answers has been that OSS communities are
gift economies in which individuals like to give
(Bergquist & Ljungberg, 2001; Markus, Manville,
& Agres, 2000; Zeitlyn, 2003). The concept of a
gift economy can be traced back to Mauss (1990)
who described a wide range of communities in
which the giving of gifts laid the foundation for
exchange. A gift economy relies on the principle
of reciprocity and an implicit requirement to give
(Mauss, 1990). In these systems “a gift is not so
much a physical resource as a social and moral
system by which sharing, collaboration, loyalty
and trust are cultivated” (Bollier, 2001, p. 11).

Indeed, there are some indications that the
principle of gift giving is important in OSS com-
munities. “Open-source contributors have told
us that they enjoy the sense of ‘helping others
out’ and ‘giving something back’” (Markus et
al., 2000, p. 15). A respondent we interviewed
argued: “It is nonsense to believe that in OSS
you do not receive anything. If you do what you
are good at, others will do the same. I receive
a lot from others, which I could not have done
myself. In the gift economy everybody is better
off.” As such, participants in the communities are
said to create and sustain dynamic relationships
with one another based on the exchange of gifts
(Zeitlyn, 2003).

In an effort to better understand why individu-
als participate in OSS communities, researchers
have adopted different techniques. One of the most
frequently used techniques is survey research.
One of the first large-scale and internationally-
conducted surveys on OSS developers was by the
University of Maastricht in the Netherlands and
the company Barlecon Research from Germany.
In the study called “Free/Libre and Open Source

Software: Survey and Study,” Ghosh and Glott
(2002) report on important findings regarding the
participation of developers in OSS communities,
which were derived from a large scale survey
among 2,784 OSS developers who answered
various questions about their participation in OSS
communities. The use of surveys has provided
better insight into the reasons why individuals
participate in OSS communities. These motives
can be related to the costs and the benefits of
participation.

Concerning the costs of participation in OSS
communities, researchers have argued that these
costs are relatively low (Lakhani & Von Hippel,
2003). Low costs are important, because “when
the costs of freely revealing an innovation are
low, even a low level of benefit can be adequate
reward” (Von Hippel, 2001, p. 85). Thus, due to
the low costs the barrier for people to participate
in the communities is also relatively low.

Although the costs are low, there must be an
incentive for individuals to incur even such low
costs. Therefore, researchers have focused most of
their efforts to analyze and understand the benefits
individuals enjoy as a result of their participation
in OSS communities. These research efforts have
shown that participation in OSS communities may
offer a large amount of benefits to individuals,
many of which are intangible. Some of the most-
frequently identified benefits of participating in
OSS communities are:

• Building a reputation in a community (e.g.,
Dalle & Jullien, 2003; Lakhani & Von Hip-
pel, 2003)

• Learning and improving one’s programming
skills (e.g., Hertel et al., 2003; Von Hippel &
Von Krogh, 2003; Lakhani & Wolf, 2003)

• Meeting a personal need with a software
program that has a certain functionality
(e.g., Edwards, 2001; Hars & Ou, 2002)

• Having fun (Lakhani & Von Hippel, 2003;
Torvalds & Diamond, 2001)

498

Analyzing Firm Participation in Open Source Communities

A Logical Next Step: Why
Do Firms Participate?

In recent years, open source software has received
a lot of attention. Furthermore, or perhaps as a
result of this attention, OSS is currently used by
many private and public organizations. Good
examples of such organizations are the New York
Stock Exchange, Shell, the French daily Le Figaro,
the U.S. army, national government in Brazil, and
the city of Munich. Each of these organizations
has adopted OSS to support one or more of its
organizational processes.

Organizations do however not only adopt OSS
for their internal processes; they may also partici-
pate in its development by contributing resources
back to OSS communities. Firms like Yahoo and
CNet, for instance, participate in the OSS com-
munity Apache and regularly contribute source
code to the joint effort, solve bugs (mistakes) in
the software and answer other people’s questions
on mailing lists. In light of this increasing par-
ticipation of firms in OSS communities a logical
next question is: “Why do firms participate in
OSS communities?”

The answer to this question may be signifi-
cantly related to the business model of firms, as
firms will only invest their time and effort in
the communities if they believe it will lead to
additional benefits or reduce costs. Researchers
have provided some arguments as to why and how
firms make money or reduce costs from OSS (e.g.,
Goldman & Gabriel, 2005; McKelvey, 2001). Yet,
company motivation has received far less attention
in scientific research than individual motivation
has (see also Bonaccorsi & Rossi, 2004), and
hardly any surveys have been conducted to sup-
port the arguments as to why firms participate in
OSS communities.

There is one notable exception. The exception
is a survey conducted by Bonaccorsi and Rossi
(2004). They conducted a survey among 146 Italian
firms to understand why firms participate in OSS
communities. Their most important conclusion is

that firms participate for different reasons than
individuals do. Whereas individuals have many
social motivations, firms will typically empha-
size more on economic and technical reasons to
participate. Bonaccorsi and Rossi found that the
most important reasons for firms to participate
are: (a) OSS communities allow small firms to be
innovative, (b) contributions and feedback from
the OSS communities are very useful to fix bugs
and improve software, and (c) open source soft-
ware is reliable and has a high quality. Another
important conclusion they draw is that the more
pragmatic motives of firms to participate are ac-
cepted by individual participants, which would
mean that OSS communities are robust and can
deal with differing motivations (Bonaccorsi &
Rossi, 2004).

Another, in light of this chapter, relevant
publication is by Grand, Von Krogh, Leonard,
and Swap (2004). In their paper they propose a
four-level model of company participation based
on the level of resources a firm allocates to OSS.
In level 1 a firm is primarily a user and therefore
allocates a relatively low level of resources to OSS.
This does not mean that open source software
is free of costs to the firm since they do need
to incur costs to install and run the software.
In levels 2 and 3 the allocated resources to OSS
steadily increase and in level 4 a firm’s overall
business model is based on OSS. Examples of
level-4 firms are Red Hat and SuSE. Such firms
will typically make significant contributions to
a variety of OSS communities.

MAIN FOCUS OF The ChAPTeR

The Focus of this Chapter:
Firm Participation

This chapter aims to contribute to the state of
the art on firms’ involvement in OSS commu-
nities. In particular, this chapter will focus on
the question: “How do firms participate in OSS

 499

Analyzing Firm Participation in Open Source Communities

communities?” One of the primary reasons for
focusing on this question is because we believe
that the answer will provide crucial information
about the business models of firms. We believe
it will solve a crucial part of the puzzle as to
how firms earn money from OSS. For instance,
what type of activities do firms focus on? Does
a software vendor perform different activities in
OSS communities as compared to a hardware
vendor? It could very well be that firms, depend-
ing on factors like their size or expertise, perform
different types of activities in the communities.
This observation would suggest (a) that they have
a different business model and (b) that different
activities are logically connected to different
business models. Obviously, such information
would be crucial for any firm that wants to earn
money from OSS.

Our empirical Study

To generate a better understanding of participa-
tion in OSS communities by private firms, we
conducted a survey in 2005 among all Dutch high-
technology firms that sell OSS-related products
and services. The business owners were asked to
fill out survey questions that covered their firms’
business models and participation in open source
communities. Since there were no comprehensive
listings available of all OSS firms active in The
Netherlands, we used several secondary-data
sources to identify the research population. Rel-
evant sources included (1) the membership list
of the Dutch OSS branch organization, called
“Vereniging Open Source Nederland,” (2) the
Web site of the governmental program “Open
Standards and Open Source Software” (OSOSS)
that contains a list of OSS firms, and (3) Internet
searches by means of keywords such as “open
source solutions,” “open source products and
services,” and “Linux solutions.” In total this
resulted in an initial list of 127 firms. Interviews
were then conducted with key informants who
are knowledgeable about the industry (cf. Kumar,

Stern, & Anderson, 1993). Ventures that were not
on the initial list, but were mentioned by more
than one expert, were added to the initial list,
which resulted in nine additional firms. During
the data-collection process we encountered 11
ventures that either ceased operations or whose
founders indicated that their firm was not active
(anymore) in the OSS industry.

To maximize response rates, we followed sev-
eral suggestions by Dillman (2000): firms were
sent a letter stating the purpose and importance
of the research project, followed by a phone call
in which they were requested to participate.
Whenever possible, appointments were made
during which the questionnaires were person-
ally delivered to the business owners. From the
final population of 125 firms, 90 firms eventually
returned a completely filled-out questionnaire,
thereby yielding a response rate of 72%. We
tested for non-response bias by comparing key
attributes of respondents to those of non-respon-
dents. For the variables of both firm size (as total
number of employees) and firm age (as number
of years since firm formation) t-tests indicated no
significant differences.

Characteristics of
Open Source Firms

Table 1 presents the descriptive statistics of the
firms that are active in the Dutch market for OSS-
related products and services. The industry is still
in its infancy, with many young and small firms
that are technically oriented. A typical firm has
been in business only for five years, was founded
by two entrepreneurs, and employs in total about
six persons. These firms are managed by teams
of entrepreneurs who already have more than 12
years of work experience in the IT industry, but
who on the other hand have limited experience
in the area of marketing and sales. Similarly, a
significant share of firms’ staff has a technical
orientation with more than half the staff consist-
ing of product developers. These findings are

500

Analyzing Firm Participation in Open Source Communities

consistent with prior research showing that high-
technology firms generally have a strong technical
background and often lack sufficient marketing
expertise that is necessary to successfully com-
mercialize new products and services (Roberts,
1991). In contrast to a study of Italian OSS firms
by Bonaccorsi and Rossi (2005), which reported
that only very few employees were university
graduates, we find that over 40% of firms’ staff
has in fact a university degree. This result sup-
ports earlier research that demonstrated that OSS
developers are generally highly educated and
confirms studies showing that high-technology
firms generally employ more highly educated
staff compared to less knowledge-intensive firms
(Oakey, 1995). With regard to firms’ engagement
in open source projects, the data show that the
average firm was involved in about three projects
in 2004 of which one project was started by the
firm itself. This finding suggests that firms are
involved in multiple projects simultaneously and
also shows that most firms not only take advantage
of existing projects, but also contribute to the
community by initiating new projects.

Firms’ Business Models

As shown in Table 2, firms that offer OSS-related
products and services in the Dutch market pursue
a variety of business models. Most firms generate
the majority of their revenues from open source
solutions, but generally combine these with more
traditional proprietary offerings. Interviews
with the business founders suggested that many
customers are still unaware of open source or
perceive it as a risky alternative and as a conse-
quence, many firms are more or less “forced” to
also offer proprietary solutions. With regard to
product offerings, we find that most firms sell
little hardware solutions. Sales of a typical firm
are based for about 41% on software development,
while over 52% of revenues come from offering
additional business services such as consultancy,
support, and training. Interestingly, this pattern
mirrors the business models of the more traditional
Dutch IT firms that also predominantly generate
revenues from selling IT services.

With respect to the distribution of firms’ sales
across three main customer groups, our data show

Table 1. Descriptive statistics of OSS firms

Min. Max Mean S.D.

Firm age 0.50 29.25 5.24 4.18

Total sales in 2004 (x €1,000) 0 4,400 372.13 758.41

Number of company founders 1 8 1.94 1.27

Founding team IT industry experience1 0 60 12.18 10.91

Founding team marketing & sales experience1 0 24 2.68 5.00

Total staff (incl. founders) in 2005 1 50 5.87 8.27

Proportion of total staff with university degree 0 100 40.25 37.36

Proportion of total staff developing new products and services 0 100 52.79 39.58

R&D intensity2 0 150 28.00 28.08

Number of OSS projects involved in 2004 0 16 3.28 4.02

Number of OSS projects self-initiated 0 16 1.07 2.39

1 Measured as the team’s total number of years of work experience at time of firm formation
2 Measured as the proportion of sales in 2004 that is invested in the development of new products and services

 501

Analyzing Firm Participation in Open Source Communities

that small and medium-sized enterprises (SMEs)
account for the largest proportion of sales (43%),
followed by large firms (31%), and government
and nonprofit organizations (26%). Given the
fragmented nature of the SME market and the
general tendency for governments and large firms
to be early adopters of OSS, this finding is quite
surprising. Finally, the limited share of sales to
foreign clients (4%) suggests that most firms pre-
dominantly focus on serving the Dutch market.
This finding can be explained by the observation
that most firms rely for a large part on selling
OSS-related services, which are generally more
dependent on geography and more locally oriented
than firms selling software packages that can be
distributed across foreign markets.

Technical and Social Participation
in Open Source Communities

Given our interest in the ways in which firms
participate in open source communities, the busi-
ness owners were asked to indicate the extent to
which their firms performed a variety of activi-
ties in the open source community. We used a
five-point Likert scale with individually labeled
answer categories ranging from “never” to “very

often.” In all cases, very often was coded as 5.0
while never was coded as 1.0 (i.e., larger values
denote greater participation). Eleven items were
included that were identified from previous em-
pirical research (e.g., Ghosh & Glott, 2005; Von
Krogh, Spaeth, & Lakhani, 2003) and conceptual
work (e.g., Feller & Fitzgerald, 2002).

A principal-components analysis was per-
formed to assess any interrelationships among
the different activities and to look if these can
be reduced to a smaller number of dimensions.
A varimax rotation was performed on all factors
satisfying Kaiser’s criterion (i.e., eigenvalues
of 1.0 or greater). This procedure produced two
factors explaining 58.02% of the total variance.
All items showed strong factor loadings of 0.69
or higher and cross-loadings below 0.30. Given
the commonly used cut-off point of 0.30, our fac-
tor loadings demonstrate strong significance and
are representative of the underlying components
(Kim & Mueller, 1978). Our conclusion from
this analysis is that we have empirically isolated
two distinct factors that represent important di-
mensions of community participation by private
firms. The first factor consists of six items and is
labeled “technical participation” (Cronbach α =
0.87), while the second factor is made up of five

Table 2. Business models of OSS firms

Min. Max Mean S.D.

Division of Total Sales over Product Categories1:

OSS-related products and services 0 100 71.62 33.49

Software 0 100 41.31 31.28

Hardware 0 60 5.65 10.63

Services 0 100 52.82 33.12

Division of Total Sales over Customer Groups1:

Government and nonprofit 0 99 25.69 27.68

SMEs 0 100 43.16 35.34

Large firms (> 100 employees) 0 100 31.16 34.42

Foreign customers 0 50 3.81 8.85

1 Measured as the proportion of total sales in 2004

502

Analyzing Firm Participation in Open Source Communities

items and called “social participation” (Cronbach
α = 0.77).

Technical participation by firms in open
source communities refers to the activities firms
undertake to make contributions to software
development across a variety of open source
projects. It involves activities that are directly
or indirectly related to the development of new
software such as contributing source code, writing
software documentation, and participating in e-
mail discussions. Active technical participation in
OSS communities implies that firms not only use
their access to communal resources to create and
appropriate value for their own benefit, but also
contribute to community development by sharing
source code, technical know-how, and knowledge
on end-user requirements with other community
members. Compared to firms that view communal
resources as a public good that is there for the
taking, firms demonstrating extensive technical
participation realize that a sustainable business
model depends on their ability to become actively
involved and deeply integrated in the developer
community (Weber, 2004).

Social participation by firms in open source
communities involves the activities companies
initiate to facilitate knowledge sharing among
developers, firms, end users, and other commu-
nity members and that may promote the wider
acceptance and adoption of open source software
among individuals and organizations outside
the OSS community. Examples of activities that
reflect social participation include organizing
workshops, conferences, and other events related
to OSS, and participating in political activities
to further the interests of the OSS communities.
These events are settings in which representatives
from various organizations and industries come
together to share knowledge and experiences
through face-to-face interactions, construct social
networks, and learn about “best-practices” related
to important technical and organizational aspects
of OSS development and commercialization.

Active social participation by firms may help to
overcome the relatively limited external legiti-
macy of the OSS movement, which refers to the
problem that outsiders to the community may be
reluctant to commit any resources to OSS-related
business activities since they do not understand or
acknowledge them (Aldrich & Fiol, 1994).

Determinants of Firms’ Technical
and Social Participation

The finding that the engagement of firms in open
source communities can be subdivided into two
distinct domains of activity, in other words, techni-
cal and social, generates the question what factors
may explain any variation in the type and extent
of participation across firms. In this part of our
chapter we will analyze two important antecedents
of technical and social community participation
by firms: (1) the human capital characteristics of
a firm’s founding team and (2) the business model
a firm pursues.

Drawing from the entrepreneurship and upper-
echelons literatures that have shown the strong
influence of the demographic characteristics of
a firm’s founding and top-management team on
organizational structure and outcomes (Hambrick
& Mason, 1984), our first prediction is that the
work experience of a firm’s founding team is re-
lated to the kind of activities it performs in OSS
communities. The extent to which entrepreneurs
already have worked in the IT industry and have
experience in marketing and sales functions will
affect their ability and willingness to engage in
technical and/or social activities in OSS com-
munities. Second, based on studies that have
demonstrated the link between organizational
strategy and structure (Miller, 1987), we expect
to find a relationship between the kinds of busi-
ness models that firms pursue and the way they
participate in OSS communities. Variation in
product offerings and customer groups across
firms will influence the benefits that firms may

 503

Analyzing Firm Participation in Open Source Communities

obtain from technical and social community
participation, and hence affect the activities firms
perform in OSS communities.

Table 3 shows the results of OLS regression
analyses that respectively model firms’ technical
and social participation in OSS communities as
a function of their human capital and business
models. For both models, variance inflation factors
(VIF) did not show any signs of multicollinearity
(VIF < 1.67). We also checked for normality by
conducting a Kolmogorov-Smirnov test, which
supported the univariate normality assumption.
Though both models are statistically significant,
the first model with technical community par-
ticipation as the dependent variable is both more
significant (p < .01 vs. p < 0.05) and has a higher
explanatory power (adjusted R2 = .23 vs. .11) than
the second model explaining firms’ social com-
munity participation. Next, we describe our main
findings with regard to the antecedents of technical
and social community participation.

Founding Team Work experience

Our results indicate that variation in the work
experience of a firm’s founding team members
is significantly related to the type and extent of
community participation activities displayed by
that firm. Work experience in the IT industry is—a
result we find highly surprising—significantly
negatively associated with technical commu-
nity participation (ß = -.22, p < .05), yet is sig-
nificantly positively related to social community
participation (ß = .37, p < .01). Firms founded by
entrepreneurs with more years of experience in
marketing and sales positions however, exhibit
significant lower levels of social participation in
open source communities (ß = -.29, p < .05). One
explanation for these findings is that founders
with more industry experience have larger social
networks with other people that work in the same
industry and social community participation may
be a way to maintain these network relationships.

Table 3. Multiple regression analyses predicting technical- and social-community participation

Variables Technical
Community Participation

Social
Community Participation

Firm age -.08 -.11

Firm size .17 .17

Founding team IT industry experience -.22* .37**

Founding team marketing and sales experience .19† -.29*

Staff developing new products and services .22* -.08

R&D intensity .22* -.14

OSS-related sales .06 .22†

Government and nonprofit sales -.04 .23*

Foreign sales .32** .00

Model F 3.49*** 2.06*

R2 .32 .22

Adjusted R2 .23 .11

Note: Standardized coefficients reported: † p < .10, * p < .05, ** p < .01, *** p < .001

504

Analyzing Firm Participation in Open Source Communities

Furthermore, these business owners may share
similar backgrounds making it more likely that
they interact with each other.

The finding that firms with business founders
who have a marketing background engage signifi-
cantly less in social participation is also surprising,
because we expected that these entrepreneurs are
more inclined to undertake promotional activities.
The explanation for this outcome may be that these
business owners do not necessarily engage less
in marketing activities, but that they put more ef-
fort in promoting their business activities outside
the open source community. These firms may be
more customer-oriented and therefore inclined to
connect their business activities to individuals and
organizations from outside OSS communities.

Commitment to Innovation

Our analysis with regard to the relationship be-
tween a firm’s business model and community
participation also produced a number of interest-
ing findings. The results suggest that firms that
demonstrate a commitment toward innovation
engage significantly more in technical participa-
tion in OSS communities than firms that are less
focused on the development of new products and
services. Both R&D intensity (ß = .22, p < .05) and
the proportion of staff that is classified as product
developers (ß = .22, p < .05) have a significant
positive relationship with technical participa-
tion. This suggests that firms in our sample view
technical participation in OSS communities as a
complement to their own R&D activities, rather
than as a substitute to internal expenditures on
innovation (cf. Chesbrough, 2003). It may also
indicate that firms need a certain level of absorp-
tive capacity (Cohen & Levinthal, 1990), which
can be developed through internal R&D activities,
before they can successfully engage in technical
community participation.

Foreign Sales

Our findings indicate that firms that generate
foreign sales also engage significantly more in
technical-community participation than firms
that are not active in foreign markets (ß = .32,
p < .01). Although causality between the two
variables cannot be determined, it is a highly
interesting outcome. It could for instance indicate
that technical participation is necessary to serve
international markets. Developer communities
are by their very nature extremely internation-
ally oriented, such that technical participation by
firms with foreign sales may be required to access
knowledge about world markets. An alternative
explanation could be that technical activities like
contributing source code and answering questions
on mailing lists create international recognition
for the firm. This recognition in turn may cre-
ate international demand and thus foreign sales.
Perhaps social participation does not result in
international demand because this type of par-
ticipation generally involves activities that are
more locally oriented.

Focus on Open Source

Our results show that firms with a stronger focus
on open source, in other words, they generate a
larger percentage of revenues from OSS-related
products and services, engage significantly more
in social participation (ß = .22, p < .10). Yet, no re-
lationship was found with technical participation.
These results indicate that social participation is a
logical activity for firms that truly focus on open
source. It may be that these firms have more to
gain from social participation, as it provides them
with new business opportunities and enhances
their reputation in the community. Surprisingly,
technical participation in OSS communities is
less logically connected to the focus of firms on
OSS. An explanation for this finding may be that

 505

Analyzing Firm Participation in Open Source Communities

even when firms sell many proprietary solutions,
they still want to engage in technical community
participation in order to take advantage of OSS
as a complementary asset that can add value to
internally developed products and services (e.g.,
Grand et al., 2004).

Sales from the Nonprofit Sector

Firms that generate relatively more sales from
government and nonprofit organizations are
significantly more involved in social participation
(ß = .23, p < .05). Important to note here is that
no relationships were found between community
participation and the percentage of revenues a firm
receives from respectively small and large firms.
These results suggest that in particular firms that
target the nonprofit market segments recognize
the importance of social-community participa-
tion, possibly because nonprofit organizations
also engage extensively in social participation
in OSS communities. Alternatively, firms that
invest in social activities may generate additional
revenue from the nonprofit sector. This could
signal a tendency for nonprofit organizations to
focus less on technical expertise of potential sup-
pliers and much more on their reputation in the
community, which is possibly better generated
through social activities.

FUTURe TReNDS

There are a number of limitations to our research.
The most important limitation is that we cannot
explain some of the findings. Why do firms in
which the founding members have experience in
the IT industry perform fewer technical activi-
ties in OSS communities as compared to firms in
which the founding members do have experience
in marketing and sales? We would have expected
a different relationship. The collection of quali-
tative data from interviews may help to further
interpret our results.

Next, this study focused only on the Dutch
market and solely included firms that operate in
the Netherlands. However, many OSS communi-
ties are global in nature with firms from various
parts of the world participating in them. Given
that prior studies have shown that OSS adoption
rates and participation in OSS communities may
differ across countries (Ghosh & Glott, 2002),
additional comparative studies are needed that
contrast how differences in the economic, in-
stitutional, and cultural context in which firms
operate, affect the way and extent to which they
participate in OSS communities.

A third limitation is related to one of the previ-
ous limitations. Our data indicate that social and
technical participation are positively correlated.
Thus, firms that perform more technical activities
are also more likely to perform social activities,
and vice versa. Yet, firms do appear to make a
well-balanced and purposeful choice between
the two types of participation. This observation
is supported by Table 3, which shows that quite
a few variables correlate exactly opposite with
the type of activities. This is most visible for the
experience of the founding members. More IT
experience implies less technical participation
and more social participation. More marketing
and sales experience, however, implies exactly the
opposite. What explains these findings? Again,
further research needs to be conducted to better
understand these findings: Is it true that firms
make a purposeful choice?

Another interesting strand of research would
be to relate the findings of this research with the
framework proposed by Grand et al. (2004). Ac-
cording to Grand et al. (2004) one would expect
that firms in the first level of the framework, in
other words, firms that predominantly use OSS,
display hardly any type of participation except
maybe some forms of social participation. Tech-
nical participation would typically be more ap-
propriate for firms that engage and interact more
frequent with OSS communities. One question we
did not ask is: How long have you been an active

506

Analyzing Firm Participation in Open Source Communities

participant in OSS communities? Neither did we
ask: Do you consider yourself a user or an active
participant? Future research should include such
questions, as it might shed light on the validity of
the framework proposed by Grand et al. (2004).

A final limitation is that we have not related
our findings to the success or failure of firms in
our sample. It would be truly fascinating if we
could relate the types of participation in OSS
communities to the level of innovation or profit
a firm achieves. Future research efforts will need
to research whether we can actually find such
relationships.

CONCLUSION

In this chapter we have uncovered parts of an
important gap that exists in the state-of-the-art
literature on open source software communities.
We have argued that little research, especially
empirical research, has been performed to ad-
dress the question why and how firms participate
in OSS communities. In this chapter we have
focused on the interface between firms and OSS
communities, and in particular we examined ways
in which firms participate in such communities.
We reported important findings from a survey
among 90 Dutch high-technology firms that are
active in the market for OSS products and services.
Based on this dataset we made a number of highly
relevant and interesting observations.

Unquestionably, one of the most important
outcomes of our research concerns the finding
that the activities that firms undertake in OSS
communities can be grouped into two distinct
categories. A first group of activities, referred
to as social participation, includes activities like
organizing workshops and conferences. The
second set of activities, which we label technical
participation, includes actions such as contribut-
ing source code, bug fixes, and participating in
mailing list discussions. Whereas prior work has
conceptualized open source community partici-

pation as a uni-dimensional construct, our study
suggests that it may be valuable to disentangle the
concept into distinct dimensions that may have
unique antecedents and consequences.

Next, based on our analysis of the correlates
of social and technical community participation
we were able to draw some highly interesting
conclusions. One important result concerns the
finding that firms seem to view their internal
investments in R&D as a complement to their
external product-development activities in OSS
communities. This outcome supports the view
that for firms that depend on open source busi-
ness models, both internal as well as external
participation in OSS communities are necessary
conditions for innovation that possibly reinforce
each other.

Our findings also seem to support a popular
assumption about participation in OSS communi-
ties. Many researchers have assumed that users of
open source software will first use the software
and gradually perform more and more activities
(Ye, Kishida, Nakakoji, & Yamamoto, 2002).
Gradually, they will learn from their activities and
will become more active participants. Assuming
that social activities are more typical for users and
technical activities are more typical for knowl-
edgeable users and participants, our finding that
social and technical participation are positively
correlated would provide some first evidence to
support this assumption.

Based on our outcomes we have shed insight
in the differing ways in which firms behave in
open source communities. We hope this insight
helps firms to understand what their options are
to become involved in OSS, and that they under-
stand the ways that are available to them to make
money from open source software. We do realize
however, that further research is necessary to tie
the insights in this chapter to important firm-
level outcomes. It would be highly relevant for
instance, to understand whether different types
of participation have different effects on firms’
innovative and financial performance. We hope

 507

Analyzing Firm Participation in Open Source Communities

this chapter has encouraged scholars to put further
research efforts into this exciting new research
domain.

ReFeReNCeS

Aldrich, H. E., & Fiol, C. M. (1994). Fools rush
in? The institutional context of industry cre-
ation. Academy of Management Review, 19(4),
645-670.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11, 305-320.

Bollier, D. (2001). Public assets, private profits:
Reclaiming the American commons in an age of
market enclosure. Washington: New America
Foundation.

Bonaccorsi, A., & Rossi, C. (2004). Altruistic
individuals, selfish firms? The structure of mo-
tivation in open source software. First Monday.
Peer reviewed journal on the Internet, 9(1).

Bonaccorsi, A., & Rossi, C. (2005). Comparing
motivations of individual programmers and firms
to take part in the open source movement: From
community to business. Knowledge Technology
and Policy, 55-77.

Chesbrough, H. W. (2003). Open innovation: The
new imperative for creating and profiting from
technology. Boston: Harvard Business School
Press.

Cohen, W. M., & Levinthal, D. A. (1990). Absorp-
tive capacity: A new perspective on learning and
innovation. Administrative Science Quarterly,
35(1), 128-152.

Dahlander, L., & Magnusson, M. G. (2005).
Relationships between open source software
companies and communities: Observations from
Nordic firms. Research Policy, 34, 481-493.

Dalle, J.-M., & Jullien, N. (2003). ‘Libre’ software:
Turning fads into institutions? Research Policy,
32(1), 1-11.

Dillman, D. A. (2000). Mail and Internet sur-
veys: The tailored design method. New York:
John Wiley.

Edwards, K. (2001). Epistemic communities, situ-
ated learning and open source software develop-
ment. Paper presented at the ‘Epistemic Cultures
and the Practice of Interdisciplinarity’ Workshop
at NTNU, Trondheim.

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison-Wesley.

Ghosh, R., & Glott, R. (2002). Free/libre and open
source software: Survey and study. Maastricht:
MERIT, University of Maastricht.

Ghosh, R., & Glott, R. (2005). FLOSSPOLS:
Skills survey interim report. Maastricht: MERIT,
University of Maastricht.

Goldman, R., & Gabriel, R. P. (2005). Innovation
happens elsewhere. First edition: Open source
as business strategy. San Francisco: Morgan
Kaufmann.

Grand, S., Von Krogh, G., Leonard, D., & Swap,
W. (2004). Resource allocation beyond firm
boundaries: A multilevel model of open source
innovation. Long Range Planning, 37, 591-610.

Hambrick, D. C., & Mason, P. A. (1984). Upper
echelons: The organization as a reflection of its
top managers. Academy of Management Review,
9, 193-206.

Hars, A., & Ou, S. (2002). Working for free? Mo-
tivations for participating in open-source projects.
International Journal of Electronic Commerce,
6(3), 25-39.

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-

508

Analyzing Firm Participation in Open Source Communities

tors to the Linux kernel. Research Policy, 32(7),
1159-1177.

Kim, J., & Mueller, C. W. (1978). Factor analysis:
Statistical methods and practical issues. Beverly
Hills; London: Sage.

Kumar, N., Stern, L. W., & Anderson, J. C. (1993).
Conducting interorganizational research using key
informants. Academy of Management Journal,
36(6), 1633-1651.

Lakhani, K., & Von Hippel, E. (2003). How open
source software works: Free user-to-user assis-
tance. Research Policy, 32(7), 922-943.

Lakhani, K., & Wolf, R. G. (2003). Why hack-
ers do what they do: Understanding motivation
and effort in free/open source software projects
[Working Paper no.4425-03] Boston: MIT Sloan.
Retrieved November 2004, from freesoftware.
mit.edu/papers/lakhaniwolf.pdf

Markus, M. L., Manville, B., & Agres, C. E. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13-26.

Mauss, M. (1990). The gift: The form and reason
for exchange in archaic societies (Vol. Translation
of Essai sur le Don (1950) Presses Universitaires
de France). London: W. W. Norton.

McKelvey, M. (2001). The economic dynamics
of software: Three competing business models
exemplified through Microsoft, Netscape and
Linux. Economics of Innovation and New Tech-
nology, 10, 199-236.

Miller, D. (1987). Strategy making and structure:
Analysis and implications for performance. Acad-
emy of Management Journal, 30(1), 7-32.

Oakey, R. (1995). High technology new firms.
London: Paul Chapman.

Olson, M. (1965). The logic of collective action:
Public goods and the theory of groups. Cambridge,
MA: Harvard University Press.

Roberts, E. B. (1991). Entrepreneurs in high-
technology: Lessons from MIT and beyond. New
York: Oxford University Press.

Torvalds, L., & Diamond, D. (2001). Gewoon
voor de fun (Just for Fun) (C. Jongeneel, Trans.).
Uithoorn: Karakter Uitgevers.

Von Hippel, E. (2001). Innovation by user com-
munities: Learning from open-source software.
Sloan Management Review, 42(4), 82-86.

Von Krogh, G., Spaeth, S., & Lakhani, K. R.
(2003). Community, joining, and specialization
in open source software innovation: A case study.
Research Policy, 32, 1217-1241.

Von Hippel, E., & Von Krogh, G. (2003). Open
source software and private-collective innovation
model: Issues for organization science. Organiza-
tion Science, 14(2), 209-223.

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Ye, Y., Kishida, K., Nakakoji, K., & Yamamoto,
Y. (2002). Creating and maintaining sustainable
open source software communities. Paper pre-
sented at the International Symposium on Future
Software Technology, Wuhan, China.

Zeitlyn, D. (2003). Gift economies in the develop-
ment of open source software: Anthropological
reflections. Research Policy, 32(7), 1287-1291.

KeY TeRMS

Community Participation: Contributions to
a community. They can be made by organizations
and or individuals.

Firm: An organization that conducts busi-
ness.

Social Participation in OSS Communi-
ties: Activities companies initiate to facilitate
knowledge sharing among developers, firms, end

 509

Analyzing Firm Participation in Open Source Communities

users, and other community members and that
may promote the wider acceptance and adoption
of open source software among individuals and
organizations outside the OSS community.

Technical Participation in OSS Communi-
ties: Activities firms undertake to make contribu-

tions to software development across a variety of
open source projects. It involves activities that are
directly or indirectly related to the development
of new software such as contributing source code,
writing software documentation, and participating
in e-mail discussions.

510

Chapter XXXIX
Community Customers

Jeroen Hoppenbrouwers
Vrije Universiteit Brussel, Belgium

INTRODUCTION

Open source is not only about cost, or freedom to
choose, learn, and modify. A very important aspect
of open source projects is their organisational
freedom. This freedom leads to both challenges
and opportunities for organisations which intend
to merely deploy open source products in their
routine operations, not planning any development.
Open source product procurement, deployment,
and operational maintenance are different from
those of traditional products, largely because of
the organisation of the processes which breed and
raise open source software.

We start from Evers’ defi nition of an open
source project, which is: “Any group of people
developing software and providing their results to
the public under an open source license” (Evers,
2000). However, we immediately want to add

ABSTRACT

This chapter discusses the role of the project/product community in the open source product life cycle. It
outlines how a community-driven approach affects not only the development process, but also (and more
importantly) the marketing/sales process, the deployment, the operation, and in general the resulting
software product. Participation in the community is essential for any organisation using the product,
leading to the concept of a community customer. Specifi c community participation guidelines are given
to organisations and individuals who deploy and use open source software, further develop it, or offer
lifetime services on the product.

that this defi nition, as many others, overempha-
sizes the importance of development. We would
like to extend the defi nition by including users
of the software, as will be argued in the rest of
this section.

Bonaccorsi and Rossi (2003) analyze open
source as a process innovation. Various economic
questions have been raised on why such a process
can produce anything at all, mostly concentrating
on the traditional economic question: “Why do
programmers write open source codes if no one
pays them to do it?” The body of literature about
this economic aspect is huge, and this chapter will
not elaborate on this issue. Instead, we focus on
the observation made by Bonaccorsi and Rossi
that “There is a large group of individuals who are
not capable of developing programmes but only of
using them” (2003, p. 1244). They put this group
next to the hobby developers and the members

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 511

Community Customers

of the hacker culture, traditionally assumed to
be the majority of open source contributors. For
this chapter, we would like to further divide the
fi rst group into individuals and organisations. It is
especially the organisational user participation in
the open source process that is of interest to us.

This chapter focuses on the role of the com-
munity of stakeholders, usually simply called “the
community,” which forms around an open source
product. Observations from various angles and
theoretical background lead to concrete recom-
mendations for organisations and individuals
who consider adding an open source product to
their ICT portfolio. The chapter does not aim at
open source development, but explicitly addresses
“end-using organisations” and explains why and
how they have to consciously play a particular
role in the community. When using open source
products, they become a customer of the com-
munity, not of a vendor—but a customer they are,
with associated real costs to pay and real benefi ts
to enjoy. The term community customer will be
introduced to defi ne the role(s) such an end user,
which may be an organisation, must play.

We can now rephrase our defi nition of an open
source project: “Any group of people developing
or deploying software common to the group and
providing their development results and usage
experiences to the public under an open source
license.”

BACKGROUND

Even after the formal founding of the Free Software
Foundation (Stallman, 1985) and the subsequent
translation of the principles of free software to
business situations by the open source movement
(Raymond, 1998a), it took a while before analysts
worked out why the open source model works, and
the issue still is not fully understood.

A popular insight, fi elded by Raymond and
many others, is that open source developers are
mostly driven by “ego.” They develop and show

the world the results to boost their self-esteem.
However, this analysis turns out to be over-simpli-
fi ed. A better analysis can be made by referring
to existing (business) economic notions which got
developed when studying non-profi t economics,
a relatively new fi eld by itself (Hansmann, 1980).
These insights also cover the non-developing com-
munity participants, often a much larger number
than the actual developers (Craig & Beck, 1993).
We will briefl y summarize several known reasons
why people may contribute to open source projects
without being paid to do so, and place them in the
context of their role in the community.

Rent-Seeker and Donator Approach

Two main aspects of open source community
participation can be distinguished: rent-seeking
and donation.

In rent-seeking, “emphasis is put on the fact
that although no wages are paid to contributors,
other pay-offs may turn the investment of labour
into an open source project into a profi table deci-
sion” (Franck & Jungwirth, 2003, p. 402). This
aim to mostly establish individual reputation is not
only driven by ego, as Raymond states, but also
can be used to improve credibility on secondary
markets such as the job market or the market for
venture capital (Lerner & Tirole, 2002). However,
this only partially explains what happens.

An important remark must be made that the
actual rent-seeking is not necessarily done by the
individual open source community participant.
Many examples exist where participants are paid
by (for-profi t or non-profi t) institutions to work
on an open source project. As O’Mahony (2003)
states, “Contributors may be sponsored by fi rms,
but they are not employees of the project and
project relations are not guided by employment
relations” (p. 1179). This group of contributors
is likely not primarily motivated to contribute
to the project due to its open source nature. In
such a case, the participant’s rent-seeking and his
employer’s rent-seeking are not of the same type.

512

Community Customers

While the individual community participant might
be motivated by reasons which have nothing to
do with open source, such as “just doing his job,”
his employer apparently is motivated by the open
source nature. We want to emphasise that contribu-
tors are not necessarily developers, although most
literature seems to quietly assume this.

Donators on the other hand are not driven by
any immediate individual gain, either monetary
or reputation, and therefore can be considered
truly idealistic contributors that just want to im-
prove something they value as a product (Rota,
von Wartburg, & Osterloh, 2002). They do not
contribute for nothing, they do have a goal, but
the goal is not yet fully understood by mainstream
economics and subsequently might receive less
acknowledgment than classic rent-seeking moti-
vations (Hansmann, 1980).

As Franck and Jungwirth (2003) argue, neither
rent-seeking nor donation alone can suffi ciently
explain why the open source model works. It is the
combination of both, the motivation mix, which
makes the model successful. Therefore they con-
sider one of the basic institutional innovations of
open source projects the crafting of a governance
structure which enables rent-seeking without
crowding out donative behaviour, which is in line
with Bonaccorsi and Rossi (2003). In particular,
they explain why classical capitalistic fi rms based
on the rent-seeking model struggle to not drive out
idealistic donators who do want to help, but don’t
want to see their help turned into fi nancial profi t
by and for the company. Open source projects
avoid this problem, and subsequently may attract
more community participants, potentially leading
to more (community) customers.

Coordination Approach

Another clear distinction between open source
and proprietary processes can be found in the
type of the process itself. There is the disclosure-
feedback approach used in open source projects,
and the secrecy-incorporation approach used by

traditional fi rms in the software industry (Franck
& Jungwirth, 2003, p. 404). Not only do these
two approaches require different communication
paths between end-users and developers, they also
infl uence the complete organisational culture of
a software community.

It can be argued that institutional secrecy-
incorporation culture might cause a built-in
tendency for the vendor to focus on the code and
the feature list from his own point of view only,
growing a product that from the outside might be
what customers think they want, but that from
the inside slowly turns into a dinosaur. The open
source culture on the other hand does not only
drive the resulting product, but also the underly-
ing code base and the road map. It has inherently
less trouble with technical inbreeding and on top,
people downstream of the developers still can get
information about the used technology, coding
style, future plans, and other internal issues. If
the customers see developments that they do not
favour, they have a direct communication path
to the developers, without a sales and marketing
organisation that tries to mediate. And they can
always decide to take over the development, to
fork off a branch, or to move to another product
in time, depending on the costs and benefi ts
associated with these options. Some customers
may consciously select an open source product
for these reasons, and dutifully accept the costs
of community participation.

Motivation Structures

As the last part of the project domain, we want
to discuss several motivation structures that can
be used to get work done. The traditional prime
motivation structure of capitalistic fi rms builds
upon a complex mesh of trade secrets, informa-
tion hiding, licenses, copyrights, patents, and all
legal and economic institutions that are required
to enforce these rules upon the market. With these
instruments in place, fi rms can set up an incentive
structure from the top down and assure proper

 513

Community Customers

activities by individuals via extensive monitoring.
Monitoring includes observing input behaviour,
apportioning rewards, giving assignments and
instructions, terminating contracts, and so forth
(Alchian & Demetz, 1972). Rent-seekers can be
rewarded either by paying them proper wages for
their work, or by granting them residual claims
(profi ts) as a result of their monitoring (Franck
& Jungwirth, 2003).

In the open source culture, both incentives
(to have people perform good quality work and
to reap the profi ts of investments) are present as
well, yet differently implemented. Lerner and
Tirole (2002) argue how individual reputation
may make up for the work motivation without
requiring immediate fi nancial rewards, and the
thoughtful keeping of maintainer and credit fi les
which list individual contributions prevent shirk-
ing in a development group (Raymond, 1998b).
Franck and Jungwirth further expand on this
issue by introducing how experienced develop-
ers may gain further reputation by starting new
(sub)projects and attracting good people to join
in and make the project another success.

However, these incentives leave unexplained
who is going to do the “non-sexy work.” Typi-
cal volunteer contributions will be focussed on
“sexy” activities, such as feature expansion.
But, as Bonaccorsi and Rossi (2003) say, “The
core development group does not carry out the
bulk of the coordination effort” (p. 1247). They
further add that “it is diffi cult to accept the idea
that [mundane] low-gratifi cation activities could
be motivated by the same incentive structure than
high-level, creative work.” This opinion is shared
by Lakhani and von Hippel (2003), who add that
next to coordination and quality assurance work,
much effort usually is required for documenta-
tion, translation, marketing, packaging and other
“mundane” activities outside the typical develop-
ers’ scope. The obvious need for these “mundane”
activities may be a prime reason why organisations
that are end-users of an open source product may
decide to participate in the community. By mak-

ing sure these activities take place, they safeguard
their own interest in the product.

Community Customers

From the driving forces listed above, it can be con-
cluded that direct, individual participation in the
community is not necessarily suffi cient to make an
open source project fl ourish. Many projects will
need contributions outside the development core
which are insuffi ciently rewarding to be taken
up by volunteers (Bonaccorsi & Rossi, 2003, pp.
1246-1247; Lakhani & von Hippel, 2003).

The literature covers the case of so-called
 hybrid business models in which for-profi t or-
ganisations shift their attention from development
to providing services around an open source
product. End-users, or end-using organisations,
may purchase the services of such a vendor with
the product and can ignore the underlying open
source model. They talk primarily to the vendor
in case of problems or questions.

An alternative approach is when the end-using
organisation sees the open source community
itself as the vendor, and becomes a customer of
the community. This is distinctively different from
free riding on the product—the organisation truly
spends resources on the customership. In many
cases, there is no monetary exchange between
the organisation and the community, as often the
community has no central representative which
accepts money in exchange for services, such as
with a traditional vendor (even if hybrid). But the
customer certainly may spend resources on the
open source product, by donating effort around
the product to the community. A very common
way of becoming a community customer is to pay
employees or contractors to do some work around
the product, which is not necessarily development,
and then instructing them to donate the results to
the community (Lakhani & von Hippel, 2003).

From the point of view of a product end-user
who is not actively participating in the product’s
development, he has the choice of becoming a

514

Community Customers

 vendor customer or a community customer. In
both cases, he needs to assure motivation by pay-
ing up. He can pay a vendor to get the product,
or pay a person (or third party company) to as-
sure the product becomes and remains available
via the open source community. If an end-user
decides to free-ride on an existing open source
product and explicitly does not become a com-
munity customer, he runs the risk of being left
in the dark when the product deviates away from
his needs, which is exactly what would happen if
he illegally duplicates commercial software. For
individuals, this may be less of a problem, but
for organisations it surely is, or at least should
be considered a serious drawback.

The rest of this chapter will elaborate on the
role that end-user organisations should play as
they become a community customer.

PRODUCT vs. PROCESS

Related to the disclosure-feedback versus secrecy-
incorporation approaches discussed previously,
we can observe a key cultural aspect of open
source projects which fundamentally differs from
proprietary culture. Notice that we do not say com-
mercial culture: It has been conclusively proven by
now that commercial enterprise and open source
can go hand in hand with hybrid business models
(IBM, Sun Microsystems, Apple, Red Hat, Oracle,
and others are spending considerable funds on
open source product development, according to
Bonaccorsi and Rossi), although just GPL-ing the
sources of a previously proprietary product in the
hope of increasing user involvement certainly is
not suffi cient (Dalle & Jullien, 2003).

The key difference may be that open source
culture favours the process over the product.
Typical proprietary culture favours the product
over the process. Some open source products
are fully comparable to their proprietary coun-
terparts, yet the process which produced them is
completely different. We already discussed how

the open source governance structure enables
a sustainable process in a different way than
proprietary governance; in the next sections, we
discuss how this different process infl uences the
result, the product. We will argue that community
customers must focus on the process, not on the
product, and that their donations should be aimed
at the process.

Understanding how to use the community of
an open source project may be the key to suc-
cessful development, selection, deployment, and
maintenance of the product. The nature of open
source is such that ignoring the community may
mean a signifi cant increase in risk for open source
product users. We will show what use should be
made of the community in what phase of a project
(where deployment of a product is a project in
itself), and argue that (monetary) resources saved
by acquiring an open source product instead of
a commercial proprietary product should at least
partially be invested into the community. Not
because it is a noble thing to do, but because it is
required for proper process management, which
refl ects back onto the product. Just as vendors
need honest customers, open source communities
need honest customers as well.

COMMUNITY CUSTOMER ROLES

We defi ne a community customer as an individual
or organisation who wants to deploy an open
source product, without having a direct aim to
further develop the product, and who actively
engages or instigates engagement in community
participation to assure future suitability of the
product for one’s own purposes. A community
customer typically is not a developer. The term
customer should be assumed to mean exactly
that: offering resources, monetary or otherwise,
to receive services or products in exchange.

From a practical point of view, any organi-
sation that considers deploying open source
software should be fully aware of the roles that

 515

Community Customers

the community needs to play in the process. Just
as thinking of open source software as free beer
misses the point, assuming that open source
software can be treated as a shrink-wrapped
box with a help desk phone number inside may
lead to expensive mistakes as well. Becoming a
community customer is not as easy as becoming
a vendor customer—yet.

Development Process

This part of the open source process has been
discussed in great length in various places and
receives the most attention. For the purpose of our
statement, we will not join the discussion but just
observe that active participation in the develop-
ment community may be a very attractive option
for organisations that have operational feature
requirements which are not yet fully satisfi ed by
the current product (Green, 1999). Being open
source, the introduced enhancements will of
course fi nd their way outside the organisation,
so they cannot directly be used for competitive
advantage. However, indirect advantages may be
such that even considerable investments in devel-
opment may pay off. IBM and Oracle are prime
examples of companies which explicitly fund open
source development of infrastructural projects, to
reap the benefi ts of better infrastructure to build
proprietary products and services on.

Organisations funded by tax payers, such as
the Dutch SURFnet,1 increasingly demand that
any software developed with their funds must be
open source. This does justice to the origin of the
funds and prevents products from dying when their
originating project terminates. Many examples
exist of products, developed from government
grants by a commercial party not bound to open
source, that were shelved as soon as the project
came to a conclusion, no matter how successful it
was. Large public funding organisations such as
the European Union have tried to assure product
viability by stressing business plan development
during or even before product development, and

also by rigorous matched funding requirements to
force (commercial) partner tie-in. This approach
has not been very successful. Making all publicly
funded products open source by default could be
a very attractive alternative.

Summarizing, active participation in the de-
velopment process is true community customer-
ship for organisations, but by no means the only
possibility.

Procurement Process

Software procurement has been a well-studied
subject for many decades (Anderson, 1990), and
open source procurement gets much attention as
well. There appear to be a few basic differences
between typical proprietary software procurement
practices and open source software procurement
practices. Some of these differences occur because
open source software allows for much more in-
formation gathering from process details that are
usually unavailable with proprietary software.
Others occur because open source software typi-
cally does not have a commercial organisation
with a marketing and sales budget behind it, which
actively goes out to win new customers.

Although there are no licensing costs associ-
ated with open source products, their procurement
costs are not zero. There is evidence that open
source product assessment and selection might be
signifi cantly more expensive (for the customer)
than proprietary assessment and selection, as much
of the actual cost is shifted from the vendor to
the customer. Using industry-average data, it was
estimated that the sale of a proprietary learning
system would cost the vendor over US$250,000 in
proposal writing, large-scale demonstrations us-
ing detailed, prescribed scripts from the customer,
expert presentations and so forth (Farmer, 2006).
All this work needs to be done by other people
(not from a vendor) when the procurement of an
open source system is investigated. A part can
come from documented community experiences,
but it mostly is up to the customer to spend the

516

Community Customers

resources. Although, obviously, the customer ends
up paying the costs back to the vendor in case
he decides to license the proprietary product, he
does not need to pay in case he does not license
the product. This no-purchase-no-pay option is
unavailable when investigating open source soft-
ware, as there is nobody else who takes the risk
of spending the money in the hope of winning a
sale and getting it back with profi t.

The community already should play a very
important role in open source procurement deci-
sion making. Van den Berg (2005) lists explicit
community input for the decision process and
indicators to measure them objectively. She sug-
gests that visible community activity traces should
determine whether the associated open source
product should be shortlisted, and that in-depth
reviews of (implicit) community test results and
user experiences should play an important role
in the fi nal decision.

We would suggest that as standard part of an
open source procurement process, the “customer”
should donate its fi ndings during the procure-
ment process back to the community, no matter
whether the product was eventually adopted or
not. There is in no way any obligation to do so,
but the open source culture as a whole favours this
kind of contributions as in many cases they are
not purely donative, but have serious rent-seeking
components as well.

As Feldstein (2006) suggests, this might be
one of the few ways to fundamentally alter the
procurement process and gain signifi cant fi nancial
advantage for nearly everybody. It may come at
the expense of some proprietary vendors who use
large marketing budgets to outsell less fi nancially
strong competitors, making use of the unavail-
ability of free, objective assessments in the propri-
etary world. But in the end, the customers pay for
these marketing efforts out of their own pockets,
reason why they do have a long-term incentive to
change the procurement process to a more open
one. They can do so by contributing their fi ndings
to the community, which would satisfy the classic

economic assumption of availability of full market
information to all market parties.

As with most donations, the problem is that
there is no immediate fi nancial or other reward of
donating experiences, especially not if they were
negative and it was decided not to use the open
source product. However, if there is a chance that
the same organisation will in the future again
review any open source product, the donation
will be worth the effort, because it increases
the likelihood that others will contribute their
experiences as well, and it increases the respect
that the donating organisation will gain among
peer organisations. Having respect due to proven
contributions is a signifi cant asset in open source
communities, and will usually lead to priority
service in case the organisation needs something
in return, such as concrete help. First-class tickets
can be purchased, also in the open source world;
see also Lakhani and von Hippel (2003).

So, to summarize, open source procurement
must be approached differently than proprietary
procurement. Initially an organisation needs to
invest more of its time and resources, but the open
source community will be inclined to help, and
even more so if the organisation shows respect by
donating its experiences back to the community
straight away (preferably not after the whole pro-
curement process has been completed, but much
earlier). If the organisation decides to deploy the
open source product, it will be immediately re-
warded for its donation by not having to pay the
marketing and sales efforts back to the vendor in
licensing costs. Instead, it has invested soundly
in its community reputation. It has become a true
community customer.

Deployment Process

The community roles in the deployment pro-
cess are for a large part the same as those in
the procurement process. Documented previous
experiences, best practices, how-to and other
helpful guidelines are a valuable resource for any

 517

Community Customers

deployment project. These resources need to be
built up by organisations that deployed the product
in the past. Mature open source products usually
have a signifi cant body of this type of documents
available. Lakhani and von Hippel (2003) sum-
marize all these resources plus personal help as
fi eld support, and call it essential for open source
project success.

Extra information may be gathered from the
community by tapping into its people network.
When specifi c questions or problems pop up dur-
ing a deployment project, the community usually
offers fast methods to get help from people (and
organisations) that have been there. Here it pays
off if the deploying organisation has established
a level of visibility in the community, as there is a
cultural priority mechanism in place which makes
others more inclined to help if they feel that they
have been helped as well, in other words, previ-
ous community contributions have been made.
Note that it is not experience that counts in this
process, but attitude. If somebody helps people
that come after him, he will be helped by people
that went ahead of him.

Therefore, an allowance in the project deploy-
ment budget should be made to document and fi le
the experiences back to the community, and if pos-
sible to join the pool of active community members
that can provide quick assistance to new users of
the product. This active participation, beyond a
one-time documentation donation, demarcates
the line between treating the product as a stable
entity and treating it as a living, growing being.
It is natural that this demarcation coincides with
the moment of deployment: Before deployment,
the product was not actively used.

In practice, this active participation happens
nearly unnoticed. Many open source deployers
subscribe to the product’s mailing list or become
a regular visitor of the product’s web site to stay
informed of changes. According to Lakhani and
von Hippel (2003), time spent on reading these
resources may average 100 hours per year for ac-
tive participants. Many of them then get into the

habit of actually replying to cries for help from
others “while they are there anyway.” This is not
time lost to charity; it is a sound investment in
their organisation’s visibility in the community. It
will be noticed by other community members and
when the organisation needs help itself, it will get
it. As a community customer, they paid for it.

A way to disturb this process is by only ask-
ing and never returning the favour, or worse,
by outright demanding something from the
community as if it were a vendor. Therefore, de-
ployment project management should explicitly
favour active participation and visibility in the
community, and not view it as idling on the Web
instead of getting serious work done, or worse,
helping the competition ahead. Postponing com-
munity contributions until community services
are required means that the help will not come
when it is needed most.

 Operational Maintenance Process

Whereas during the deployment process the main
community resource is the available documen-
tation, the operational maintenance process is
largely supported by quick responses to concrete
(and often urgent) questions and the associated
monitoring of other organisation’s questions and
answers. For many organisations that use open
source products in their daily operations, such
participation in the community has become a
second nature.

Operational issues around software are not
much different for both proprietary and open
source products. Both need regular patching for
bugs and for security problems. Both need to have
feature development going on, as no environment
stays the same for very long. The community
provides these patching services as a natural
part of the process, and the organisation using
the open source product must be as committed
to keep their installation up to date as with a
proprietary product.

518

Community Customers

What may be different is that open source
products tend to have a livelier patch cycle. Pro-
prietary products typically have many months
between releases and may provide an update
service via the sales organisation, actively ap-
proaching their known customers with patches
depending on the perceived urgency. Open source
products may offer the same service, but usually
do not actively approach customers. Instead, the
community relies on being actively monitored.
With the current trend towards online updates,
many products from both proprietary and open
source origin check for updates automatically,
and even may apply the patches automatically
without service interruption.

Open source products tend to have a quicker
response than traditional vendors, with the
community watching the product vigilantly and
providing solutions to discovered problems often
within hours. Especially when security problems
are discovered, vendors may be tempted to keep
the problem in-house and quietly solve it with
the next patch release, hoping that nobody will
produce an exploit in the mean time. Open source
products usually do not tolerate this delay and rely
on the community to provide a patch as soon as
the problem is disclosed. This means that it is in
the deploying organisation’s own interest both
to keep a keen eye on the reported problems and
available patches, and to actively contribute in
reporting perceived problems or even fi xing them
for the community.

Proprietary products tend to have a few major
customers who are talking to the vendor’s market-
ing organisation, while the small customers may
be left in the dark. With open source products, in
theory everybody can talk directly to the develop-
ers. However, some community customers will
be larger than others, just as with major accounts
in traditional commercial relationships. It is to be
expected that the perceived account size in terms
of customer contributions to the community also
drives his infl uence on the developer core. But
customer contributions are independent of actual

organisation size in terms of number of licenses
and other traditional indicators.

This open community steering means two
things for organisations that deploy open source
products: they have a heavier vote in the product’s
development if they are actively participating in
the community, and if they are serious about some
required feature which is not getting enough at-
tention, they may develop it (or have it developed
by a third party) and donate it to the community
for further integration and maintenance. It is not
uncommon for organisations using infrastruc-
tural open source products to see the funding of
co-development of these products as a regular
operational cost. Instead of hoping that the vendor
steers the product towards a useful future, they
get hold of the steering wheel themselves where
required.

It will not come as a surprise that yet again
the community role here is one of serve and
be served. Free riding certainly is possible and
takes place all the time, but organisations that are
serious about their software have the option and
nearly the obligation to take an active role and
to invest real resources into their infrastructure.
The paybacks are not necessarily immediate,
but almost always guaranteed. Lakhani and von
Hippel (2003) report that 98% of time spent on
community communications is reserved for read-
ing and learning about other people’s problems, to
improve one’s own performance. Only the remain-
ing 2% is actually spent on helping others. In the
end, because of resource sharing and economies
of scale, the result often will be obtained with
less overall resource spending than with classical
proprietary production where competition is the
main driving force behind development. A side
effect is a reduced chance that a critical product
suddenly disappears from the market due to
competition. It is much more likely that a timely
course change takes place, or a friendly merger
with another product that appears better designed
or uses newer technology.

 519

Community Customers

FUTURE TRENDS

With the growing importance of open source
products in the world’s ICT infrastructure and
the proven viability of the business model under-
lying the process, it is to be expected that more
organisations will deploy open source products
in their daily operations. Care needs to be taken
that these organisations become true community
customers to assure continuity. Open source proj-
ects therefore will further develop the equivalent
of sales and marketing efforts to explicitly build
and foster their community of customers. It can
already be observed that some of the larger com-
munities spun off actual marketing departments
with a real budget, often sponsored by a traditional
commercial company which seeks rent from the
after sale services.

A new market may emerge for companies
which specialise in open source community cus-
tomer relationship management, organising the
community for a product without participating
in it. They would get their funding from active
community customers who outsource part of
their involvement in order to concentrate on core
product tasks while leaving the non-product-spe-
cifi c tasks to the specialised and more effi cient
company. Enterprises such as the Open Source
Technology Group,2 which exploits many Web-
based systems that play an important role in the
fabric of open source community building (such
as SourceForge, Slashdot, Linux.com, Freshmeat,
ThinkGeek, etc.), already move towards this
market but are not fully there yet.

Other expected trends are the increasing com-
mercialisation of all open source-related activi-
ties. Although there will be opposition from the
fundamentalists who believe that any commercial
activity should be rejected, commercial enterprise
around an open source product or even a Free
Software product in the most strict sense is totally
in line with the basic assumptions of the model.

People will fi nd creative ways to retain the impor-
tant aspects of open source while adding known
applications of capitalist economy to improve the
overall effi ciency. Existing proprietary vendors
will increasingly participate in this process in
order to survive, and several maturity models
already position software vendors with a large
interest in services higher up the maturity ladder
than development-centric organisations (Farmer,
2006, p. 7). These services can be both around the
product (deployment assistance, consultancy) but
also directly add to the process, where the services
typically are paid for by community customers
and delivered to the community by specialized
companies or individuals.

CONCLUSION

Any organisation planning to adopt an open
source product must consider investing in the
associated community, which is time-consum-
ing and expensive, but usually well worth the
effort. An indication of the investment required
cannot be given yet, although licensing costs of
comparable proprietary products obviously are
the upper limit. With the scale advantages and
organisational learning of an open source com-
munity, community participation costs should
show a decreasing trend in time and stay under
the licensing costs of a proprietary product in
most cases. Further research should attempt to
make this trend explicit and to develop theories
to predict actual individual and total costs of open
source projects.

What is evident in the process is that any at-
tempt to consider open source or free software a
bargain due to the absence of licensing costs is
bound to cause a problem. Free lunches are rare.
However, the freedom of choice what to eat for
lunch, where, and when, is a benefi t well worth
the price.

520

Community Customers

REFERENCES

Alchian, A. A., & Demetz, H. (1972). Production,
information costs, and economic organization.
The American Economic Review, 62, 777-795.

Anderson, E. E. (1990). Choice models for the
evaluation and selection of software packages.
Journal of Management Information Systems,
6(4), 123-138.

Bonaccorsi, A., & Rossi, C. (2003). Why open
source software can succeed. Research Policy,
32, 1243-1258.

Craig, J. S., & Beck, C. E. (1993). New look at
documentation and training: Technical commu-
nicator as problem solver. Information Systems
Management, 10(3), 47-55.

Dalle, J.-M., & Jullien, N. (2003). ‘Libre’ soft-
ware: Turning fads into institutions? Research
Policy, 32, 1-11.

Evers, S. (2000). An introduction to open source
software development. Technische Universität
Berlin, Fachbereich Informatik, Fachgebiet
Formale Modelle, Logik und Programmierung
(FLP).

Farmer, J. (2006). On the cost of selling an enter-
prise learning system. Retrieved February 2006,
from http://www.immagic.com/eLibrary/GEN-
ERAL/IMM/I060108F.pdf

Feldstein, M. (2006). More thoughts about
Blackboard: “The fault, dear Brutus...” Re-
trieved February 2006, from http://mfeld-
stein.com/index.php/weblog /permalink /
more_thoughts_about_blackboard_the_fault_
dear_brutus/

Franck, E., & Jungwirth, C. (2003). Reconciling
rent-seekers and donators: The governance struc-
ture of open source. Journal of Management &
Governance, 7(4), 401-421.

Green, L. (1999). Economics of open source soft-
ware. Retrieved June 2006, from http://badtux.
org/home/eric/editorial/economics.php

Hansmann, H.B. (1980). The role of nonprofi t
enterprise. Yale Law Journal, 89, 835-901.

Lakhani, K., & von Hippel, E. (2003). How open
source software works: “Free” user-to-user as-
sistance. Research Policy, 32(6), 923-943.

Lerner, J., & Tirole, J. (2002). Some simple eco-
nomics of open source. The Journal of Industrial
Economics, 50, 197-234.

O’Mahoney, S. (2003). Guarding the commons:
How community managed software projects pro-
tect their work. Research Policy, 32, 1179-1198.

Raymond, E. S. (1998a). The cathedral and the
bazaar. First Monday, 3(3). Retrieved November
17, 2005, from http://www.fi rstmonday.org/is-
sues/issue3_3/raymond/

Raymond, E. S. (1998b). Homesteading the Noo-
sphere. First Monday, 3(10). Retrieved November
17, 2005, from http://www.fi rstmonday.org/is-
sues/issue3_10/raymond/index.html

Rota, S., von Wartburg, M., & Osterloh, M. (2002).
Trust and commerce in open source: A contradic-
tion? [Working Paper]. University of Zürich.

Stallman, R. (1985). Free software foundation.
Currently active at http://www.fsf.org/

van den Berg, K. (2005). Finding open options.
Master’s thesis, Tilburg University. Retrieved
February 2006, from http://www.karinvanden-
berg.nl/Thesis.pdf

KEY TERMS

 Community Customer: An individual or
organisation who wants to deploy an open source
product, without having a direct aim to further
develop the product, and who actively engages or

 521

Community Customers

instigates engagement in community participa-
tion to assure future suitability of the product for
one’s own purposes.

Development (Open Source): The act of
writing program code to extend the functionality
of an (open source) product. Explicitly limited to
code writing to distinguish it from the many other
productive activities around an open source prod-
uct (reviewing, translations, packaging, end-user
help, documentation writing, marketing, process
management ...) which typically are not done by
developers but also not by typical users.

 Free Rider: An individual or organisation who
acquires an open source product and actively uses
it, without donating experiences or development
results back to the community, but while still
using the community resources.

 Open Source Community: In this chapter
the same as open source project, but community
is better suitable, as it has more people semantics
than project.

 Open Source Community Customer Rela-
tionship Management: Task/process of actively
following, facilitating, and fostering the commu-
nity customers, so that they keep coming back
to the community for help, and hopefully donate
contributions to the community in return. CCRM
may be outsourced to an organisation which does
not itself participate in the community and may
ask a fee for the work.

 Open Source Project: Any group of people
developing or deploying software common to the
group and providing their development results
and usage experiences to the public under an
open source license.

ENDNOTES

1 http://www.surfnet.nl/
2 http://www.ostg.com/

522

Chapter XL
Open Source Software

Business Models and Customer
Involvement Economics

Christoph Schlueter Langdon
Center for Telecom Management, University of Southern California, USA

Alexander Hars
Inventivio GmbH, Bayreuth, Germany

INTRODUCTION

Open source software applications and source code
are developed cooperatively in an Internet-based
 peer-to-peer network or community of programmers
(Hars, 2002). Some call the open source development
process, therefore, also as peer-to-peer production
(Wikipedia.org, 2006). The open source model
has caught the attention of business strategists and

ABSTRACT

This chapter is focused on the business economics of open source. From a strategic perspective, open
source falls into a category of business models that generate advantages based on customer and user
involvement (CUI). While open source has been a novel strategy in the software business, CUI-based
strategies have been used elsewhere before. Since the success of e-commerce and e-business, CUI-based
strategies have become far more prevalent for at least two reasons: Firstly, advances in information tech-
nology and systems have improved feasibility of implementation of CUI strategies and secondly, CUI-based
economics appear to have often become a requirement for e-business profi tability. This chapter presents a
review of CUI-based competition, clearly delineates CUI antecedents and business value consequences,
and concludes with a synopsis of managerial implications and a specifi c focus on open source.

fi nancial analysts (and executives and shareholders
of software fi rms), because open source developers
devolve most property rights to the public, including
the right to use, redistribute and modify the software
free of charge. Some industry observers argue that
this approach will emerge as the prevalent way to
design and write software; others have been more
cautious seeing open source as a niche model (Hars
& Ou, 2001; The Economist, 2006).

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 523

Open Source Software Business Models and Customer Involvement Economics

Open source is new and old at the same time.
It is a new concept in the software industry. How-
ever, the attractiveness of open source is rooted
in mechanisms and economics that have fueled
business success in many other areas before. From
a business strategy perspective open source fi ts
into a broader category of business models based
on customer and user involvement (CUI) that can
provide superior economics.

A very visible example of this category of
business models is Ikea, the Swedish furniture
maker and retailer. Among consumers Ikea is
known for its stylish yet affordable furniture.
Among some business strategists and researchers
Ikea is a prominent example of the economics of
customer involvement, which has emerged as a
key source of competitive advantage, particularly
in the e-commerce area. Broadly speaking cus-
tomer or user involvement describes a strategy
that emphasizes engaging customers and user in
business operations.

BACKGROUND

“ Ikea Economics”

In the case of the Swedish furniture maker and
retailer, Ikea, customer involvement is integral to
doing business and creating economic advantage.
Ikea customers are involved in business opera-
tions in that they pick their purchase off the Ikea
warehouse shelf, drive it home and assemble it
themselves.

Figure 1 depicts a two-tier industry system
following Porter’s value chain schematic (Porter,
1985). A product has to be developed, made, dis-
tributed, sold, and delivered. In the case of Ikea
outbound logistics or delivery and fi nal assembly
are “outsourced” to the customer (see Figure 1).
This saves Ikea cost compared to the competition
that sells assembled pieces, which are bulky and,
therefore, have to be home delivered. Furthermore,
because Ikea furniture is assembled at the fi nal

destination, a customer’s home, products can be
shipped in fl at boxes without negative space, which
further saves handling and storage cost throughout
the entire supply chain and channel system. But
the advantage of customer involvement doesn’t
stop here with merely lower cost. Customer in-
volvement economics can be an enabler of other
economic advantages. In the Ikea example, the
cost advantage due to customer involvement is
used or leveraged by splitting savings with the
customer, effectively lowering product prices,
often below the price of the competition. The lower
sticker price makes stylish design affordable for
a larger market, which increasing Ikeas market
potential. This larger footprint, in turn, allows
Ikea to benefi t from another economic advantage,
the one that has been the main economic engine
of mass production, namely scale economies.
In other words, at Ikea customer involvement
has worked as a starter to ignite an economies
of scale engine. This combination of customer
involvement economics and scale economies have
helped Ikea become the world’s largest furniture
maker and retailer with 221 stores in 34 countries
as of Spring 2006 (http://franchisor.ikea.com,

Figure 1. Open source and Ikea: Two examples
of customer and user involvement

Product
Development,

Production

Product
Development,

Production
Distribution,

Delivery
Distribution,

Delivery

Ikea
• Outbound logistics

- Customers take
purchase home

- Products are packed
in flat boxes, which
saves handling and
storage cost

• Final product assembly

Open Source
• Systems requirements

specification
• Systems architecture

design
• Code generation
• Versioning, testing and

debugging
• Maintenance, updates

Industry Value System
and Customer & User Involvement

524

Open Source Software Business Models and Customer Involvement Economics

3/31/06). It also turned its founder, Ingvar Kam-
prad, into a multi-billionaire. Forbes magazine
recently estimated Mr. Kamprad’s fortune at $28
billion—trailing only Microsoft co-founder Bill
Gates, U.S. investor Warren Buffett and Mexican
industrialist Carlos Slim (Forbes, 2006).

 Theory of Customer and
User Involvement (CUI)

The literature defi nes customer involvement as
the extent to which a customer is engaged as a
participant in business operations, specifi cally in
service production and delivery, including, for
example, order processing and account manage-
ment (Schlueter Langdon, 2003a, 2006). A fi rst
research construct has been developed and inte-
grated into a broader theoretic model (see Figure
2; Schlueter Langdon, 2003a, 2006).

The customer involvement construct and its
defi nition are rooted in several streams in the
literature: “customer integration” and “customer
relationship management” in marketing, “co-pro-
duction” and “service encounter management” in
service operations research, and “citizen partici-
pation” in the public policy literature.

In 1980, Whitaker introduced the notion of
“co-production” in public service delivery in the
fi eld of public policy management (1980). At the

same time Hakansson appears to have introduced
the notion of a “customer integration strategy”
within the context of marketing strategies in in-
dustrial markets, defi ning it as the ability to adapt
to specifi c customer needs to increase business
benefi ts (Hakansson, 1980, p. 370).

Brown, Raymond, and Bitner (1994) have fi rst
explicitly used the phrase “customer involvement”
in their categorization of research on service en-
counters. Brown et al. divided research on service
encounters into three primary types, the second
of which is focused “on customer involvement
in service encounters and the customer’s role in
service production and delivery” (1994, p. 34).
Chase (1978) fi rst discussed a customer’s role in
the service delivery process. This perspective has
been expanded in the service operations literature
to also consider the customer as a partial employee
(Czepiel, 1990; Bowen, 1986; Kelley, Donnelly,
& Skinner, 1990; Mills & Moberg, 1982; Mills
& Morris, 1986).

In the marketing literature Sheth and Parvati-
yar posited that “relationship marketing attempts
to involve and integrate customers, suppliers, and
other infrastructural partners into a fi rm’s develop-
ment and marketing activities. Such involvement
results in close interactive relationships with […]
customers […]” (Sheth & Parvatiyar, 1995, p.
399). Furthermore, “consumers are increasingly

Figure 2. Theoretic customer and user involvement model

AntecedentsAntecedents Customer/user
Involvement

Customer/user
Involvement Business ValueBusiness Value

Competitive
Environment
Competitive
Environment

Organizational
Context

Organizational
Context

• Technology
• Operational and

management processes
• Customer/user behavior
• …

• Higher productivity
• Better product fit
• Higher customer

satisfaction
• Higher loyalty
• …

 525

Open Source Software Business Models and Customer Involvement Economics

becoming co-producers. […] In many instances,
market participants jointly participate in design,
development, production, and consumption of
goods and services” (Sheth & Parvatiyar, 1995,
p. 413). Gruen, Summers, and Acito (2000, p. 36)
called this phenomenon “co-production.”

The notion of customer integration is presented
in the marketing literature as an extension of
manufacturer-distributor relationships (Ander-
sen & Narus, 1984, 1990). The theory base that
underlies the marketing literature on manufac-
turer-distributor relationships and, therefore, the
argument that customer involvement can enhance
business value (see Figure 2) is a synthesis of ex-
change theory (Kelley & Thibaut, 1978; Thibaut
& Kelley, 1959) and transaction cost economics
(Williamson, 1975, 1985). Exchange theory states
that parties transfer resources in relationships
to enhance self-interest, while transaction cost
economics reveals conditions under which certain
organizational choices can maximize self-interest
in the exchange relationship.

Specifi cally, the literature points to several
consumer and seller benefi ts from tight customer
integration. Lovelock and Young (1979) discussed
the customer as source for increasing a service
fi rm’s productivity. Sheth and Parvatiyar (1995)
indicate that consumers benefi t from products and
services that suit their needs better and sellers
from higher customer satisfaction. Higher cus-
tomer satisfaction in turn is positively related with
customer loyalty and market share (Anderson,
Fornell, & Lehmann, 1994; Anderson, Fornell,
& Rust, 1997).

MAIN FOCUS OF THE CHAPTER

Customer and User Involvement and
Business Value Categories

Since the success of the Internet in business, CUI-
based strategies have become more prevalent.
For one, advances in information technology and

many open standards have increased informa-
tion systems capabilities at lower cost to make
CUI-based strategies feasible. For another, CUI
economics are often required in the fi rst place in
order to make e-business operations profi table,
because in electronic commerce companies have
become expected to do more for less.

Analysis based on industrial organization
theory clearly highlights this more-for-less di-
lemma. Tracking value chain activities, such as
product search, reveals that the Internet-enabled
change in the interaction between a consumer
(demand side) and vendor (supply side) has led
to an extension of the traditional value system
(Schlueter Langdon & Shaw, 2000, 2002). In
electronic commerce vendors are often doing more
than in traditional commerce. Online vendors are
supporting activities, which consumers have to
perform manually in traditional channel systems.
For example, instead of driving to multiple stores,
walking up and down the aisles to search for a
product and fi nd a low price, shoppers can enter
key words and at the push of a button, they can
evaluate competing price quotes. Doing more is
costly as online sellers resort to “ softwarization,”
the wholesale automation of business transactions
and processes using information systems (Schlu-
eter Langdon, 2003b, 2003c). While labor cost
may be saved, online vendors have to invest in the
design, building and implementation of sophis-
ticated information systems, and they continue
to spend money on operations, maintenance and
updates. The cost of selling goods online may be
cheaper but consumers also expect lower sticker
prices online. In order to turn a profi t, online
vendors often rely on CUI economics. Table 1
provides a systematic overview of major, generic
CUI business value categories.

High customer involvement may allow for
mass-customization of products and services
using customer data or user profi les, which, in
turn, may facilitate both—lower cost and higher
revenue. To take a real-world example, Dell can
leave customization of products (e.g., choice of

526

Open Source Software Business Models and Customer Involvement Economics

microprocessor) and product bundling (e.g., PC
with ink jet or laser printer) to individual prefer-
ences, which can increase up-/cross-selling op-
portunities and customer satisfaction (see Table
1). At the same time Dell can save inventory
cost and write-offs, because customers trigger
of manufacturing and assembly activities (see
Table 1). Instead of Dell pushing products into the
market, customers are pulling the product through
the system, turning a made to stock system into
a made-to-order fl ow.

CUI is not limited to specifi c industries, such
as consumer products (Ikea and Dell). The auto
industry has discovered CUI economics as a
source of business advantage. For example, BMW,
the German maker of luxury cars, has designed
information systems so that European buyers can
custom-design their own cars with any change
possible until fi ve days before production. As a
result, 80% of European BMW buyers custom-
design their vehicles and most last minute changes
of orders are reportedly upgrades to bigger en-
gines and more luxurious interiors, which tend

to be more lucrative for the fi rm (Business Week,
2003). Another CUI example in the auto indus-
try is the emerging area of vehicle relationship
management (VRM). Automakers have begun to
install black boxes into vehicles that often work
similar to fl ight tracking devices in airplanes. The
box is valuable in two ways. Firstly, it provides
vehicle usage data, which is a function of vehicle
model, the driver and its environment. Secondly,
it provides a new, interactive channel system with
every customer. The data and the channel can be
exploited to better manage customer and vehicle
relationships, hence VRM. Vehicle usage data can
be exploited for diagnostics purposes to improve
uptime. The new channel can be used to interact
with customers to improve buyer satisfaction and
loyalty. All it takes to unlock the value is user
participation.

In the software industry open source software
has emerged as an important implementation of
CUI economics. Many applications are created by
an open source community. Figure 1 illustrates
that all essential software development activities

Cost Revenue

Customer or user operates business process activities

• Company saves employee time and expense
• Likely higher fi xed cost for IS that can be

operated by many customers instead of a few
employees only

• Goods can be purchased anytime and from
anywhere
-> Higher quality, better product fi t
-> Better customer data

Higher quality, better fi t

• Less inventory in entire channel system
• Less slow moving and obsolete items
• Less discounts

• Customer likes the feeling of being in control
-> Higher customer satisfaction

• Monopolistic competition pricing opportunities

Higher customer satisfaction

• Lower churn saves customer acquisition cost
• Positive word of mouth may save marketing

expenses

• Higher loyalty
• Higher lifetime customer value

Better customer data or “profi les” (behavior, wants and needs)

• Data mining improves accuracy of targeting
customers and saves marketing and sales cost

• Lower marketing research cost

• Up-selling opportunities
• Better next generation product
• User lock-in and higher switching cost

Table 1. Major, generic CUI business value categories

 527

Open Source Software Business Models and Customer Involvement Economics

of requirements specifi cation, architecture design,
code generation, debugging and testing as well
as ongoing maintenance are left to a community
of users.

FUTURE TRENDS

Discussion and Managerial
Implications

In open source software advantages accrue along
all three major dimensions of business perfor-
mance: cost, time and quality. Figure 3 reveals
how an average IT implementation project using
open source software compares with a project
that is being built traditionally. Results are based
on a convenience sample of expert assessments.
The business value parameters have been defi ned
at a very high level: cost measures project cost
including maintenance, time measures initial
implementation as well as downstream modifi ca-
tions, and quality rates the degree of excellence
and customer satisfaction.

In terms of cost, open source saves at least the
profi t or profi t margin associated with a brand
name product, brand name systems integration
service and brand name maintenance contract.
(The software business “has an exceedingly high
gross [profi t] margin of 90%, […] a net profi t
margin of 27%. This shows that its marketing
and administration costs are very high, while its
cost of sales and operating costs are relatively
low (McClure, 2004).)

Open source can save time, because documen-
tation is public and exposed to public scrutiny,
just like the source code itself (Hars, 2002).
Furthermore, customer support is not limited to a
vendor’s offi ce hours or a particular maintenance
subscription level but open source documenta-
tion and expertise tends to be available online
and anytime.

Quality can be better, fi rstly, because of trans-
parency of the process and secondly, because of

transparency of qualifi cation and achievements
of contributors (Hars, 2002). This mirrors a
key lesson of a free market system, namely that
transparency tends to increase buyer value. Also,
problems are fi xed when a problem exceeds users’
willingness to cope and not when decided by a
vendor’s corporate strategy or business policy.

Figure 3 summarizes the assessment of our
convenience sample of experts, which includes
senior developers and architects, and information
technology executives of Fortune 500 compa-
nies (chief information offi cers, CIOs, and vice
presidents).

Figure 3 compares an open source implemen-
tation with a traditional, branded solution along
the aforementioned and defi ned business value
categories of cost, time and quality. Results refl ect
a consensus among our experts that open source
software beats a traditional solution in any cat-
egory. The extent of this advantage can vary. First,
there is variability within each category. Consider
cost: some experts see an OSS implementation at
50% of the cost of a traditional solution. Others
see it more at 75%. Second, there is variability
across business value dimensions. Higher qual-
ity appears to be the most signifi cant advantage,
followed by lower cost.

Figure 3. CUI business value assessment: The
open source example

100%

50%

Traditional

Open Source

Cost Time Quality

200%

528

Open Source Software Business Models and Customer Involvement Economics

By nature, a high level comparison, such as
the one presented in Figure 3, is constrained and
implications are limited. First, this comparison
is limited to an implementation that utilizes open
source software instead of a commercial package
(e.g., installing, confi guring, integrating, testing,
and maintenance). It does not include the writ-
ing of application source code. Furthermore, the
comparison is focused on situations in which open
source is a true alternative. Second, the business
value parameters—cost, time, and quality—can
be interdependent and, therefore, diffi cult to iso-
late. For example, in order to speed up a project
the quality of the code may be compromised;
to save money less qualifi ed engineers are used
who need more time to write the code, and so on.
Expert interviews were conducted in a way that
such effect would be additive to the assessments
presented in Figure 3. Third, an average project
is considered and, therefore, results aim to refl ect
a central tendency, which is useful as a guideline
but it obscures the variance in size and complex-
ity of information systems projects. Furthermore,
the distribution may be skewed and in this case
average values can be easily misinterpreted.

It is understood that a specifi c evaluation would
require a dedicated analysis in order to properly
compare alternatives quantitatively. In order to
conduct such analysis, a multi-step approach

would have to be devised. Figure 4 depicts an
exemplary business intelligence analytics sche-
matic derived from research theory (Schlueter
Langdon, 2005, 2007).

Central to any business value assessment—and
open source is no exception—is the identifi cation
of a causal model that underlies everything that
follows (see Figure 4, phase two: qualitative as-
sessment -> conceptual model). A causal model
represents the most relevant variables and a set
of logical relationships between them. It prevents
confusing cause and consequences. The business
practice of jumping straight into a spreadsheet
to calculate a conclusion is a common mistake.
No patient would accept treatment without prior
diagnosis. By the same token, any reliable and
robust business value assessment requires careful
separation of independent and dependent vari-
ables as well as moderating effects grounded in
theory and best practice. While medical doctors
are trained extensively to administer diagnosis-
based treatment many managers jump straight to
actions, often based on gut instinct only. If key
variables and cause-result relationships cannot
be clearly identifi ed and delineated on a single
sheet of paper then it is not plausible that jump-
ing to some spreadsheet-based calculation would
suddenly solve the problem.

Figure 4. Business model evaluation method

• Review of
scenarios

• Identification of
questions

• Examination of
data

Business
Scenarios

• Strategic
analysis

• Understanding
causalities:
independent/
dependent
variables,
mediating/
moderating
effects

Qualitative
Assessment

Quantitative
Estimation

System
construction
=> Computational

model

=> Conceptual
model

© 2005-06 Pacific Coast Research Inc.

Rollout

Formal modeling
=> Formal model

Experimental
strategy and
laboratory
experiments
=> Estimates

• Dashboard
construction

• Data integration/
warehouse

=> Descriptive
analysis

=> Decision
support system

 529

Open Source Software Business Models and Customer Involvement Economics

At the conceptual modeling stage for assessing
CUI benefi ts it is important to:

• Understand under which circumstances
customer involvement can create benefi ts:

 { What are specifi c customer involvement
antecedents?

 { What are key moderating effects (see
Figure 2)?

 { Avoid reinventing the wheel and instead
use existing theory, best practice and
literature in information systems, man-
agement and marketing, for example.

• Understand how to leverage CUI econom-
ics:

 { Can CUI be leveraged to generate other
advantages (see Table 1)?

 { Would it take partners to increase ad-
vantages?

• Understand how an incumbent business
model may become vulnerable to CUI-based
competition from either old rivals or new
entrants or both.

Once a model has been designed it can be
implemented. Typically, this means constructing
a spreadsheet (see Figure 4, phase three: quan-
titative estimation -> estimates). This is also an
opportunity to verify measurements concepts
before collecting the required data. Finally, results
would have to be evaluated.

CONCLUSION

Aforementioned issues can only be exemplary.
Experience suggests that it is often mislead-
ing to suggest a generic solution. The business
model evaluation method presented in Figure 4
distinguishes between major analytical phases. It
would have to be adapted, modifi ed and specifi ed
for a given decision problem. However, while
actual outcomes may vary, Figure 3 suggests that
an open source solution may in any case be an

economical choice. This outcome coincidences
with the observation that brand name software
vendors increase the attractiveness of products
that compete with open source packages and/or
even offer products in an open source way.

ACKNOWLEDGMENT

The manuscript has benefi ted from thoughtful sug-
gestions and comments of the many contributors
and anonymous reviewers of the Special Interest
Group on Agent-Based Information Systems
(SIGABIS) of the Association for Information
Systems (AIS, www.agentbasedis.org). The au-
thors particularly acknowledge discussions with
and advice from Steve Davis, Omar El Sawy,
Mark Hayes, Jörg Heilig, Bob Josefek, Ann
Majchrzak, Steffen Neumann, Kim Spenchian,
and Ed Trainor.

REFERENCES

Anderson, E. W., Fornell, C., & Lehmann, D.
R. (1994, July). Customer satisfaction, market
share, and profi tability. Journal of Marketing,
56, 53-66.

Anderson, E. W., Fornell, C., & Rust, R. T. (1997).
Customer satisfaction, productivity, and profi t-
ability. Marketing Science, 2, 129-145.

Anderson, J. C., & Narus, J. A. (1984). A model
of the distributor’s perspective of distributor-
manufacturer working relationships. Journal of
Marketing, 48, 62-74.

Anderson, J. C., & Narus, J. A. (1990). A model
of distributor fi rm and manufacturer fi rm working
relationships. Journal of Marketing, 54, 42-58.

Bowen, D. E. (1986). Managing customers as hu-
man resources in service organizations. Human
Resource Management, 25(3), 371-383.

530

Open Source Software Business Models and Customer Involvement Economics

Brown, S. W., Raymond, P. F., & Bitner, M. J.
(1994). The development and emergence of ser-
vice marketing thought. International Journal of
Service Industry Management, 5(1), 21-48.

Business Week. (2003, June 9). BMW’s labor
practices are cutting-edge, too. Retrieved August
6, 2003, from http://www.businessweek.com

Chase, R. (1978, November-December). Where
does the customer fi t in a service operation?
Harvard Business Review, 138-139.

Czepiel, J. A. (1990). Service encounter and service
relationships: Implications for research. Journal
of Business Research, 20(1), 13-21.

The Economist. (2006, March 18). Open, but not
as usual. Special Report: Open-source business,
73-75.

Forbes. (2006). The world’s billionaires. Re-
trieved March 31, 2006, from http://www.forbes.
com/billionaires

Gruen, T. W., Summers, J. O., & Acito, F. (2000,
July). Relationship marketing activities, commit-
ment, and membership behavior in professional
associations. Journal of Marketing, 64, 34-49.

Hakansson, H. (1980). Marketing strategies in
industrial markets: A framework applied to a
steel producer. European Journal of Marketing,
14(5,6), 365-378.

Hars, A. (2002). Open source software. WISU,
4, 542-551.

Hars, A., & Ou, S. (2001). Working for free? Mo-
tivations for participating in open source projects.
International Journal of Electronic Commerce,
6(2), 25-39.

Kelley, H. H., & Thibaut, J. W. (1978). Interper-
sonal relations: A theory of interdependence.
New York: John Wiley & Sons.

Kelley, S. W., Donnelly, J. H., & Skinner, S. K.
(1990). Customer participation in service produc-

tion and delivery. Journal of Retailing, 66(3),
315-335.

Lovelock, C. H., & Young, R. F. (1979, May-June).
Look to consumers to increase productivity.
Harvard Business Review, 168-178.

McClure, B. (2004, April 28). The bottom line on
margins. Investopedia.com. Retrieved March 31,
2006, from http://www.investopedia.com

Mills, P. K., & Morris, J. H. (1986). Clients as
partial employees of service organizations: Role
development in client participation. Academy of
Management Review, 11(4), 726-735.

Mills, P. K., & Moberg, D. J. (1982). Perspectives
on the technology of service operations. Academy
of Management Review, 7(3), 467-78.

Porter, M. E. (1985). Competitive advantage:
Creating and sustaining superior performance.
New York: The Free Press.

Schlueter Langdon, C. (2007). Instrument valida-
tion for strategic business simulation. In V. Sugu-
maran (Ed.), Application of agent and intelligent
information technologies (pp. 108-120). Hershey,
PA: Idea Group Publishing.

Schlueter Langdon, C. (2003a). Linking IS
capabilities with IT business value in channel
systems: A theoretical conceptualization of
operational linkages and customer involvement.
In Proceedings of WeB December 2003, Seattle,
WA (pp. 259-270).

Schlueter Langdon, C. (2003b, June). IT matters.
In Does IT Matter? An HBR Debate. Harvard
Business Review, 16. Retrieved from www.hbr.
org

Schlueter Langdon, C. (2003c). Information
systems architecture styles and business interac-
tion patterns: Toward theoretic correspondence.
Journal of Information Systems and E-Business,
1(3), 283-304.

 531

Open Source Software Business Models and Customer Involvement Economics

Schlueter Langdon, C. (2005). Assessing eco-
nomic feasibility of e-business investments [White
Paper Version 3.0]. Redondo Beach, CA: Pacifi c
Coast Research.

Schlueter Langdon, C. (2006). Designing infor-
mation systems capabilities to create business
value: A theoretical conceptualization of the role
of fl exibility and integration. Journal of Database
Management, 17(3), 1-18.

Schlueter Langdon, C., & Shaw, M. J. (2000).
The online retailing challenge: Forward integra-
tion and e-backend development. In Proceedings
of ECIS July 2000 Conference, Vienna, Austria
(pp. 1025-1028).

Schlueter Langdon, C., & Shaw, M. J. (2002).
Emergent patterns of integration in electronic
channel systems. Communications of the ACM,
45(12), 50-55.

Sheth, J. N., & Parvatiyar, A. (1995). Relationship
marketing in consumer markets: Antecedents
and consequences. Journal of the Academy of
Marketing Science, 23(4), 255-271.

Thibaut, J. W., & Kelley, H. H. (1959). The social
psychology of groups. New York: John Wiley &
Sons.

Williamson, O. E. (1975). Markets and hierar-
chies: Analysis and antitrust implications. New
York: The Free Press.

Williamson, O. E. (1985). The economic institu-
tions of capitalism. New York: The Free Press.

Whitaker, G. (1980, May-June). Co-production:
Citizen participation in service delivery. Public
Administration Review, 240-242.

KEY TERMS

 Business Intelligence Analytics: Summa-
rizes models and methods used to analyze data
for the purpose of helping executives make better,
more precise decisions.

 Business Model: Describes how profi t is
generated; captures business logic by separating
independent/dependent variables and mediat-
ing/moderating effects.

 Co-Production: Has evolved to describe a
situation in which people outside paid employ-
ment, such as customers, contribute to business
value-added.

 Customer and User Involvement: Describes
the extent to which a customer is engaged as a
participant in business operations, specifi cally
in service production and delivery, including,
for example, order processing and account man-
agement.

 Customer Relationship Management
(CRM): A broad term to cover concepts, methods,
and procedures, and enabling information tech-
nology infrastructure that support an enterprise
in managing customer relationships.

 IT Business Value: Captures the business
value derived from investments in information
technology components and systems. Generic IT
business value categories include cost, revenue,
and quality.

 Peer-to-Peer Production: Describes work
performed and organized through the free co-
operation of equals.

532

Chapter XLI
Investing in Open Source

Software Companies:
Deal Making from a Venture

Capitalist’s Perspective

Mikko Puhakka
Helsinki University of Technology, Finland

Hannu Jungman
Tamlink Ltd., Finland

Marko Seppänen
Tampere University of Technology, Finland

INTRODUCTION

In the traditional view, the evolution of a technol-
ogy-based new company is seen through separate
consecutive stages. Business is based on creating
tangible real assets; and in the end, the value of

ABSTRACT

This chapter studies how venture capitalists invest in open source-based companies. Evaluation and
valuation of knowledge-intensive companies is a challenge to investors, and while many methods exist
for evaluating traditional knowledge-intensive companies, the rise of open source companies with new
hard-to-measure value propositions such as developer communities brings new complexity to deal-
making. The chapter highlights some experiences that venture capitalists have had with open source
companies. The authors hope that the overview of venture capital process and methodology as well
as two case examples will provide both researchers and entrepreneurs new insights into how venture
capitalists work and make investments.

a company is also based on real assets. First, the
technology is developed, which is followed by
setting up the organization. Once the organization
has reached a suffi cient scale, internationaliza-
tion is started. Finally, the value of the company
is estimated with potential venture investment

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 533

Investing in Open Source Software Companies

or through realization either through an initial
public offering (IPO) or a trade sale.

However, due to the increased complexity of
products and services, time-to-market tends to
lengthen. In order to maintain suffi cient resources
until the company reaches profi tability, external
fi nancing is needed. The time needed to turn a
company’s cash fl ow positive varies considerably.
A long product development phase and slow mar-
ket penetration prolong the period of negative cash
fl ow. Simultaneous internationalization drains
resources at an even higher rate. Since start-ups
do not usually have collateral to secure bank
loans, equity fi nancing is the most evident form
of fi nancing. Venture capital funding is usually
sought in order to get business development sup-
port in addition to plain fi nancing.

New business ideas are increasingly more
knowledge intensive, driven in part by the ap-
plication of ICT as an enabling technology across
industrial sectors. Also, the nature of business
has changed: times-to-market are faster, devel-
opment stages are no longer consecutive but can
be simultaneous or even skipped, and companies
are born global. Distinct from yesterday’s indus-
trial companies, today’s knowledge-intensive
companies’ values are not based on their real
assets but rather on their intangible assets such
as knowledge, networks, and brand. Needless
to say, intangible assets are considerably more
challenging to value. The previous is even truer
in the case of open source software (OSS) com-
panies, since part of their business (and value)
relies on open source (OS) communities in which
people contribute their time and knowledge vol-
untarily into projects. Contributions are real but
take place without formal contracts or incentive
mechanisms, and people can easily abandon the
community.

Furthermore, OSS companies that build their
businesses on OS products (e.g., Google, JotSpot)
have huge savings in time and licensing fees;
they get to market faster and cheaper. This sets

even greater challenges for those valuating OSS
companies. In theory, these free contributions
should yield in higher valuations. On the other
hand, the uncertainties involved should have the
opposite effect.

The mission of this study is to compare tra-
ditional IT companies and their valuations and
evaluations to those of OSS companies from the
viewpoint of the venture capitalist. This is further
divided into several subquestions:

• What are the special issues to be taken into
account when evaluating OSS companies?

• Do venture capitalists assign a positive,
negative, or no value to OSS companies
and their communities when compared to
traditional IT companies?

• Is there hype around OS?

Data for recent valuations of OSS and tra-
ditional IT companies were gathered from the
VentureOne database. VentureOne (2005) is one of
the leading venture capital research fi rms offering
information on the venture capital industry. To
better understand the investment decisions made
and valuations paid for OS companies, and in
order to get insights into what are the specialties
in evaluation of OSS companies, two case studies
were carried out. When designing the case study,
based on the authors’ initial understanding of the
issues at hand, a pattern of interview questions was
constructed. In addition to these semistructured
interviews, data were gathered from publicly
available sources. The interviewees were key
managers of the case companies. Both of the cases
present seed/early-stage venture capitalists that
have been active in investing in OS companies.
In addition, the case studies were backed up with
several interviews with venture capitalists and
entrepreneurs as well as feedback gathered from
Internet online communities (for the questionnaire
used, see Puhakka & Jungman, 2005).

534

Investing in Open Source Software Companies

BACKGROUND

Earlier Research on Evaluation
and Valuation Theory

 Venture capitalists evaluate their investment op-
portunities based on certain criteria. It is widely
accepted that the three key investment decision
criteria are management team, market projec-
tions, and product (Tyebjee & Bruno, 1981, 1984;
MacMillan, Siegel, & Narasimha 1985).

In addition, venture capitalists have prefer-
ences, such as a venture’s stage of development,
its location, its industry or technology, and size of
the investment required, which vary among one
another (Seppä, 2000). These criteria and prefer-
ences are related to evaluation of an investment
opportunity: does the venture have potential? Is
it worth our time and money? Does it fi t our in-
vestment strategy? Venture capitalists base their
evaluation on business plans, meetings with the
entrepreneurial team, and various researches.

Only after positive results from evaluation is
it time to think about the value of the company.
The process of valuation resembles business ne-
gotiation. Herein, “valuation means the process
of placing a monetary value on an investment
opportunity” (Seppä, 2003, p. 6). Venture capital
valuations are not as straightforward as public
market valuations or share prices. “Because of
the fl uctuations in the supply and demand of
venture capital, investment valuations are not
always determined according to the rules of ef-
fi cient markets” (Seppä, 2003, p. 11). Valuation
also can refer to venture capital funds’ periodic
valuations of investments (Association Française
des Investisseurs en Capital [AFIC], British Ven-
ture Capital Association [BVCA], & European
Private Equity and Venture Capital Association
[EVCA], 2005).

Valuation of high-tech companies by venture
capitalists theoretically has been studied exten-
sively (e.g., Lockett, Wright, Sapienza, & Pruthi,
2002; Seppä, 2003). The value of a new venture is

derived by discounting predicted future cash fl ows
to the present. The discounting factor depends on
the probability of returns. Even if a company has
signifi cant potential future cash fl ows, the risk of
failure decreases its net present value.

Different methodologies exist in the valuation,
but all aim at answering the same question: what
is the present value of expected future earnings
or the exit value of a company? The methods
fall into the following four categories (Lockett
et al., 2002):

1. Liquidation value-asset-based methods
2. Discounted cash-fl ow-based methods
3. Options-based valuation methods
4. Rule-of-thumb valuation methods (compara-

tor valuations)

The concepts of present value and net present
value (NPV) form the basis for the valuation of
real assets and investment decision-making. Es-
sentially, the method makes a comparison between
the cost of an investment and the net present value
of uncertain future cash fl ows generated by the
venture. There are at least four major steps in a
discounted cash fl ow for a proposed venture.

First, assuming that the venture is all equity
fi nanced (i.e., all necessary capital is provided by
the shareholders), forecasts are needed for what
the expected incremental cash fl ows would be to
the shareholders if the venture were accepted.

Second, an appropriate discount rate should be
established that refl ects the time value and risks
of the venture, which, therefore, can be used for
the calculation of the present value of expected
future cash fl ows. The concept of present value
includes the notion of the opportunity cost of
capital. The appropriate discount rate, or the cost
of capital, fi rst must compensate shareholders
for the foregone return they could achieve on
the capital market by investing in some risk-free
assets. It also has to compensate them for the risk
they are undertaking by investing in this project
rather than in a risk-free fi nancial asset. Thus,

 535

Investing in Open Source Software Companies

the cost of capital is determined by the rate of
return investors could expect from an alternative
investment with a similar risk profi le. Fortunately,
the rich menu of traded fi nancial assets provides
venture fund managers with the opportunity to
estimate the right price.

Third, based on the value additives of present
values, the NPV of the venture is to be calculated.
Once the cash fl ow forecasts are fi nalized and
the appropriate discount rate is established, the
calculation of the venture’s NPV is a technical
matter. When all future cash fl ows that need
to be discounted arrive at their present values,
and by adding them to the present value of the
necessary capital outlay, the NPV of the venture
is achieved.

Finally, a decision has to be made whether to
go ahead with the venture or not. As the company
proceeds toward profi tability, the likelihood of
success grows, and the value of the company
grows. Thus, it can be argued that every step
a company takes toward its goals increases its
value.

Exit valuations of technology companies are
dependent on the prevailing market situation.
Because the presumed exit valuation is the most
important measure when considering the value of
a company at the last venture capital round before
an IPO, it is obvious that exit valuations have
signifi cant effects on valuations at all investment
rounds, although the effect diminishes toward the
founding stage. Due to dramatic changes in exit
valuations (e.g., during 1999-2000), there has been
a wide variation in valuations at various venture
capital rounds as well.

Hype and Uncertainties
Vitiate the Theory

Every now and then, things get out of hand. In the
1990s, it was argued that revenues and earnings
were neither suffi cient nor relevant ways to put
value to emerging e-businesses or dot-coms that
had no revenues and actually no existing mecha-

nisms of extracting payments from customers. A
way to assign value to a member in a Web com-
munity was proposed: a so-called “lifetime value
of a customer” or a “price-to-eyeball multiple,”
an estimate of how much on average a customer
would end up paying to a company (Valliere &
Peterson, 2004).

Emerging OS companies face a similar chal-
lenge since part of their businesses (and values)
relies on OS communities in which people con-
tribute their time and knowledge voluntarily.
Contributions are real but take place without
formal contracts or incentive mechanisms, and
people can easily abandon the community. The
question rises how one should value community
contributions like these. The International Private
Equity and Venture Capital Valuation Guidelines
(AFIC, BVCA, & EVCA, 2005) provide no aid
on this. On the other hand, venture capitalists
certainly have some views, since there are already
several cases in which they have invested in OS
companies.

Every venture capital (VC) investment is
diffi cult to value due to the high degree of uncer-
tainty in the performance. The valuation of OS
companies is even more challenging, as there is
yet neither history nor guidelines due to the un-
certainties, for example, in the following:

• Profi tability of business model
• Revenue streams
• Market acceptance
• Community commitment
• Competitive reactions
• Quality of software
• New General Public License (GPL) version

in 2007

The list includes similar uncertainties that
were involved in the dot-com bubble (Valliere &
Peterson, 2004). Indeed, one can see the signs of
hype in OS as well. Signs of hype surround certain
companies (company hype), the OS market (mar-
ket hype), and the activity of other investors as a

536

Investing in Open Source Software Companies

group (investor hype) (Valliere & Peterson, 2004).
In 2005, OS was getting increasing attention in
the press, and venture capitalists were announc-
ing OS strategies. However, it is too early to say
whether this will lead to unreasonable valuations
of OS companies.

MAIN FOCUS OF THE CHAPTER

Done Deals and Given Valuations

So far, the OS experience has not been a happy one
for venture capitalists. According to the research
fi rm VentureOne, some $714 million was invested
in 71 OS companies in 1999-2000, and most of
those projects collapsed (VentureOne, 2005).
One of the biggest successes that is left of those
experiences is RedHat Inc., which went public
in 1999 and makes money selling enhancements
and maintenance services to corporations using
Linux OS operating systems. However, it still has
some ways to go before reaching $200 million
in revenues (RedHat, 2005) and is a relatively
mild success with market value less than $5,000
million and earnings per share (EPS) of $0.33
(NASDAQ, 2005). So this is certainly no Google
with market value just under $70,000 million
(EPS $5.02) or eBay with market value just under
$60,000 million (EPS $0.78) (NASDAQ, 2005)
that aggressive venture capitalists often use as a
reference as companies they want to fund as the
“next big thing.”

The biggest success so far with OS ventures,
as they traditionally have been viewed, has been
IBM’s Linux service business that the company
has grown as a separate emerging business op-
portunity unit and has managed to grow it from
$0 to more than $2 billion in revenues in just 5
years. Still, there is no public record on how much
IBM has invested in this venture to realize that
growth (IBM, 2005).

Several studies have pointed out that Linux,
Apache, and MySQL, for example, have reached

the maturity in which the technology or code
is comparable or even superior to the existing
proprietary ones. Furthermore, for example,
Firefox has managed to take the market by storm
extremely quickly without any signifi cant market-
ing budget. In other words, early evidence seems
to point to the OS approach, at least some cases,
as an effi cient way to develop technology and take
that to market. However, at least the experiences
from the fi rst round fi nancings of OS companies
indicate that it is not necessarily the best way to
do business.

After a few years of trying to fi gure out
whether money can be made by OS companies,
the answer from venture capitalists seems again
to be a reluctant yes. Twenty OS businesses raised
$149 million in venture money in 2004 in the
United States alone (VentureOne, 2005). There
are no numbers available for the rest of the world,
but in Europe, several investments took place.
Looking at that total, it would seem that most of
the investments are still on a seed or fi rst-round
level (compared to an average level on various
rounds of realized investments); if distributed
evenly among companies, the amount would be
$7.45 million.

Case: BlueRun Ventures

BlueRun Ventures was originally launched as
Nokia Venture Partners in 1998 with $150 million
initial invested capital from Nokia Corporation.
Even with money from Nokia, it was designed
right from the start to act independently of its only
investor. It raised a second fund of $500 million in
2000, which then already included other investors
besides Nokia, such as Goldman Sachs.

In 2005, Nokia Venture Partners raised its
third fund of $350 million and changed its name
to BlueRun Ventures. Today, BlueRun Ventures
has offi ces in nine locations globally and man-
ages $1 billion making investments into IT,
mobile, and consumer technologies at seed- and
early-stage levels (BlueRun Ventures, 2005). In

 537

Investing in Open Source Software Companies

looking at OS investment opportunities, the key
issue identifi ed by BlueRun Ventures is a strong
community close to the company. In their view,
OS is a transformation force that is forcing a unit
price down and the only realistic counterforce
to big incumbent companies such as Oracle or
BEA systems.

Still, they consider the market being at an early
stage of deployment since after the bubble there
have been no notable initial public offerings by
OS companies. From the investment point of view,
they consider two uncertainties in OS: the size of
the market and the fragile business attachment of
dealing with a community.

BlueRun Ventures has quite a bit of experi-
ence dealing with OS companies and has looked
at about a hundred companies from 2002 to 2005.
However, in early 2006, it had just completed its
fi rst investment in this space. Seed and early-stage
investments are tricky, as typically there is very
little or no historical numbers to look at. As the
company’s partner noted, it really is not a science
but rather a very subjective opinion of opportuni-
ties. The questions are typically, “Do I like this
opportunity? How much money is needed to make
it happen? Does it fi t with the funds strategy?”
After that, the actual valuation is actually based
on negotiations, which rely more on people skills
than anything else (A. Kokkinen, personal com-
munication, November 11, 2005).

From BlueRun Ventures’ perspective, valua-
tions in the long run should be the same for both
traditional and OS startups. However, the nature
of seed-investments is different since communi-
ties in a way have taken care of development
that is typically done with seed money, resulting
in a technology but not in protected intellectual
property rights (IPRs).

As the market is still developing, BlueRun
Ventures has not been able to identify any OS-
dedicated venture funds, even though it expects
several of those to be formed. A prerequisite
for an OS fund may be that fi rst there should be
four to fi ve initial public offerings, which would

give enough evidence to the managers of funds
in order to go to their investors and propose an
OS fund (A. Kokkinen, personal communica-
tion, November 11, 2005). How this will turn out
remains to be seen. Either OS will remain part of
existing funds’ investment targets, or OS-dedi-
cated funds will be seen in the future. The latter
would obviously result in more sophisticated ways
of evaluating OS; otherwise, the competition for
investors’ money will continue to be played out
between traditional software companies and OS
companies in mutually accepted terms.

Case: Nexit Ventures

Nexit Ventures is a Finnish-based traditional
venture capital company. It raised its Euro 100
million fund in 2000, which was later reduced to
Euro 66.3 million. The investors are private insti-
tutions with 50% of their commitments outside
Finland. The initial focus was seed and early-
stage companies both in the Nordic and North
America; later this was modifi ed to early- and
later-stage companies in the same geographical
regions. The technology focus of mobile and wire-
less communication, from core components and
enabling middleware to applications and services,
has remained the same.

Nexit Ventures does not consider a pure OS
company to be a viable investment opportunity.
Rather, it sees the OS approach of collaborative
effort to solve various issues to be an enabler
for various things of potentially great value. For
example, Apple’s iPod makes it easy for con-
sumers to utilize music downloaded from Web,
whether the music is from legitimate sources or
not. Still, the idea was that the closer one gets to
the core of OS (the community), the harder it is
to make money. Nexit Ventures considers OS be
at every level of deployment from early adoption
to maturity; it just is not always very visible, and
there are legal uncertainties.

From Nexit Ventures’ point of view, it is
somewhat isolated in Finland about what is taking

538

Investing in Open Source Software Companies

place globally (a bit paradoxical, as most things
are said to take place on the Internet), and it has
not yet seen a rise of OS-based businesses, often
referred as Web 2.0 companies. There has been
little discussion on the public media, especially
compared to the United States. In the United
States, where valuations are very high again,
due diligence in follow-up rounds is quite weak,
according to Nexit Ventures, as there is pressure
to do hard sought deals.

Regardless, looking at opportunities and
valuating them, Nexit Venture’s comments cor-
roborate those of BlueRun Ventures. The markets
for venture capital investments are imperfect and
always will be. Therefore, the valuations are not
made with transparent scientifi c methods but
rather are results of negotiations. In other words,
it can be argued that the potential of one’s busi-
ness idea opens the door to negotiations with
the venture capitalist, but the valuation that will
take place with the investment is determined “by
one’s skills as a negotiator, that are impossible
to quantify or to break down into a scientifi c
model” (A. Tarjanne, personal communication,
November 30, 2005).

FUTURE TRENDS

It might be that in the end, the biggest successes to
fi nancing community come from and to companies
that are not really OS companies as such but rather
use OS components to build new businesses; for
example, Google, which, like most Web companies,
was built on top of OS). From $1 million initial
seed capital in 1998 and an injection of $25 mil-
lion growth capital in 1999, the company realized
the value to its investors in 2004 by going public,
and by spring 2005, it had surpassed the Finnish
pride Nokia with more than $80 billion in market
capitalization, compared to just less than $80 bil-
lion for Nokia (Google, 2005).

As stated earlier, lareg amounts of money are
invested into OS businesses, and we expect dedi-

cated OS funds to be formed in the near future.
The key driver will be successful exits from OS
investments. However, the fi rst bets (i.e., seed
round investments) to potential future successes
have just been made, and how successful those
will be can only be known in the coming years.
Once we can get signifi cant amounts of data, in-
teresting quantitative comparisons can be made
between investments in OSS and traditional IT
companies.

CONCLUSION

Venture capitalists do not seem to put special
value on OS companies. However, some of them
recognize that there are distinctly different ele-
ments in evaluating OS companies. For instance,
expected cash fl ows are likely to be bigger in
businesses built on OS software than in similar
traditional software companies, due to the savings,
for instance, in licensing fees. Concurrently, the
uncertainties in OS should increase the discount
rate (see Figure 1).

Figure 1. Potential cash fl ow and risk measured by
discount rate of the companies using OS or propri-
etary software (Source: Adapted from W. Cardwell,
personal communication, November 15, 2005)

Discount rate

OSS
company

company
Proprietary

P
ot

en
tia

l c
as

h
flo

w
 (r

ev
en

ue
 m

in
us

 c
os

ts
)

Proprietary
company

OSS
company

 539

Investing in Open Source Software Companies

In interviewing the selected experts and look-
ing at the selected cases, it seems that rather than
putting effort into further understanding valuation
methodologies, entrepreneurs should seek help in
learning better negotiation skills. However, in the
academic world, more complex approaches have
been taken in valuating a company. It might be
appropriate to ask whether the academics are re-
ally serving the industries if these methodologies
are not actually used by the people in the venture
capital industry.

The good news for entrepreneurs looking to
launch new OS ventures is that money is avail-
able, and investors are making their bets again
on OS. Still, the basic dilemma remains: while
the venture capitalist is looking to become a
shareholder as cheaply as possible, the entre-
preneur, of course, is trying to retain as much
ownership as possible. This would not be an
issue if there were a transparent, objective way
to estimate the value of the venture. However, as
one interviewee said, this is not likely to happen,
as the venture capital market remains imperfect.
Unfortunately, there are many unknown factors
affecting the present value of a startup that have
to be estimated, and thus, objectivity is hard to
maintain.

ACKNOWLEDGMENT

The authors wish to express their gratitude to
interviewed investors and other persons who
have expressed their valuable opinions in vari-
ous forums. An earlier version of this chapter
(Puhakka & Jungman, 2005) was presented at
the eBRF 2005 Conference in Tampere, Finland,
September 26-28, 2005, and published in the
Conference Proceedings, Frontiers of e-Business
Research (FeBR 2005).

REFERENCES

Association Française des Investisseurs en Capi-
tal (AFIC), British Venture Capital Association
(BVCA), & European Private Equity and Venture
Capital Association (EVCA). (2005). International
private equity and venture capital valuation
guidelines. Retrieved September 16, 2005, from
http://www.privateequityvaluation.com

Lockett, A., Wright, M., Sapienza, H., & Pruthi,
S. (2002). Venture capital investors, valuation
and information: A comparative study of the
U.S., Hong Kong, India and Singapore. Venture
Capital, 4(3), 237-252.

MacMillan, I. C., Siegel, R., & Narasimha, P. N.
S. (1985). Criteria used by venture capitalists to
evaluate new venture proposals. Journal of Busi-
ness Venturing, 1, 119-128.

NASDAQ. (2005). The NASDAQ stock market.
Retrieved February 14, 2006, from http://www.
nasdaq.com

Nexit Ventures. (2005). Nexit Ventures Web site.
Retrieved November 28, 2005, from http://www.
nexitventures.com

Puhakka, M., & Jungman, H. (2005). Evaluation
and valuation of open source software companies:
A venture capitalist’ perspective. In M. Seppä,
M. Hannula, A.-M. Järvelin, J. Kujala, M. Ruoho-
nen, & T. Tiainen (Eds.), Frontiers of e-business
research 2005 (pp. 855-865). Tampere, Finland:
Tampere University of Technology & University
of Tampere.

RedHat Inc. (2005). RedHat Inc. Web site. Re-
trieved December 3, 2005, from http://www.
redhat.com

Seppä, M. (2000). Strategy logic of the venture
capitalist. Jyväskylä Studies in Business and Eco-
nomics 3. Jyväskylä: University of Jyväskylä.

540

Investing in Open Source Software Companies

Seppä, T. (2003). Essays on the valuation and syn-
dication of venture capital investments. Doctoral
dissertations. Helsinki University of Technology,
Helsinki, Finland.

Tyebjee, T., & Bruno, A. (1984). A model of ven-
ture capitalist investment activity. Management
Science, 9, 1051-1066.

Tyebjee, T., & Bruno, A. (1981). Venture capi-
tal decision making: Preliminary results from
three empirical studies. Wellesley, MA: Babson
College.

Valliere, D., & Peterson, R. (2004). Infl ating the
bubble: Examining dot-com investor behaviour.
Venture Capital, 6(1), 1-22.

VentureOne. (2005). VentureOne Web site. Re-
trieved September 16, 2005, from http://www.
ventureone.com

KEY TERMS

 Evaluation: Subjective and qualitative assess-
ment of an investment opportunity.

 Proprietary: Belonging to or controlled by
an individual or organization that has the ability
to share that item (in this case, software code)
with others.

 Seed Company: Company in a stage of re-
search, assessment, and development of an initial
concept before reaching the start-up phase (FVCA
Yearbook, 2004).

 Startup Company: Company in a product
development stage requiring further funds to
initiate commercial manufacturing and sales
(FVCA Yearbook, 2004).

 Valuation: Process of placing a monetary
value on an investment opportunity (Seppä,
2003).

 Venture Capital: Equity investments made
for the launch, early development, or expansion
of a business (EVCA, 2005, www.evca.com).

 541

Chapter XLII
Revenue Models in the Open

Source Software Business
Risto Rajala

Helsinki School of Economics, Finland

Jussi Nissilä
University of Turku, Finland

Mika Westerlund
Helsinki School of Economics, Finland

INTRODUCTION

Whereas the business models of the traditional
providers of proprietary software are grounded in
one way or another on the distribution of access to
the use of software-related intellectual property
(IP) protected by copyrights, business models
within the open source movement have to rely

ABSTRACT

Profi t-oriented business behavior has increased within the open source software movement. However,
it has proved to be a challenging and complex issue due to the fact that open source software (OSS)
business models are based on software that typically is freely distributed or accessed by any interested
party, usually free of charge. It should be noted, however, that like all traditional software businesses,
the business models based on OSS ultimately aim at generating profi ts. The aim of this chapter is to
explore the key considerations in designing profi table revenue models for businesses based on OSS.
We approach the issue through two business cases: Red Hat and MySQL, both of which illustrate the
complexity and heterogeneity of solutions and options in the fi eld of OSS. We focus on the managerial
implications derived from the cases, discussing how different business model elements should be man-
aged when doing business with OSS.

on other types of revenue models. This is due to
the fact that open source software (OSS) business
models are based on software that typically is
freely distributed or accessed by any interested
party, usually free of charge. OSS is often mistaken
for shareware or freeware, but there are signifi cant
differences between the licensing models and
the processes between and within these types of

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

542

Revenue Models in the Open Source Software Business

software. It should be noted, however, that like
all traditional software businesses, the business
models based on OSS ultimately aim at generating
profi ts. However, profi tability and business models
of OSS are still poorly understood phenomena, and
there is no single framework that would explain
the potential determinants of fi rm-level revenue
model choices.

In this chapter, we make an attempt to iden-
tify key considerations in designing successful
revenue models in the OSS business. We explore
the revenue models of two selected OSS business
cases. Through these cases, we aim at identifying
the fi rm-specifi c business model elements that
guide, enable and constrain the choice of revenue
model options in OSS business. As a limitation
to the analysis presented in this chapter, we leave
the exogenous factors (such as competition and
other environmental factors) beyond the scope of
our consideration.

BACKGROUND

In this chapter, we discuss the background of the
OSS business, typical licence OSS choices, and
the potential for conducting for-profi t business
with OSS.

Development of OSS Business

The history of the open source movement goes
back to the early ages of computing. In the 1960s
and 1970s, it was common for programmers in
certain academic institutions (e.g., Berkeley,
MIT) and corporate research centers (e.g., Bell
Labs, Xerox’s Palo Alto Research Center) to
share computer program source codes with other
programmers. It was not until the early 1980s
that proprietary software became very popular,
thus causing problems with cooperative software
development (Lerner & Tirole, 2002). The pre-
decessor of the open source movement, the Free
Software Foundation (FSF), was founded in 1983

by MIT employee Richard Stallman in his attempt
to formalize cooperative software development
and create a complete free1 operating system
with necessary software development tools. This
project was called the GNU Project. Stallman’s
general concept of free software possesses four
essential freedoms (Stallman, 1999):

• Freedom to run the program
• Freedom to modify the program
• Freedom to redistribute the program
• Freedom to distribute modifi ed versions of

the program

Stallman didn’t want to release software with
restrictive copyright terms because it would
prevent certain forms of valuable cooperation.
On the other hand, releasing software to the
public domain would leave it vulnerable to be
copyrighted and included in proprietary pack-
ages. Thus, Stallman came up with the idea of
copyleft, or protecting the freedom of software
with the means of copyright laws. In addition,
copyleft ensures that the modifi ed works are also
released under copyleft terms and, therefore, to the
use of the community. Stallman, (2002) argues,
“Proprietary software developers use copyright to
take away the users’ freedom; we use copyright to
guarantee their freedom. That’s why we reverse
the name, changing ‘copyright’ into ‘copyleft.’” To
implement this idea, the FSF developed the GNU
General Public License (GNU GPL), the fi rst of
the now extensive selection of copyleft licenses
that are used to protect free/OSS. Meanwhile, the
open anticommercialism of FSF led to a group of
free software movement leaders deciding to fi nd
new ways to strengthen their cause, but with less
radical means. They came up with the term “open
source,” which they thought would better describe
the software ideals, and founded the Open Source
Initiative (OSI). The idea of the organization was
to promote the Open Source Defi nition (OSD), a
set of terms for licences, which is more adaptable
to commercial use than the approach FSF took.

 543

Revenue Models in the Open Source Software Business

OSI has since registered a certifi cation mark, and
there is a variety of OSI-certifi ed licenses (includ-
ing GNU GPL and other copyleft licenses).

What motivated the birth of OSI was the
way free software was being developed in such
projects as the Linux operating system since the
beginning of the 1990s. The new development
model introduced in the Linux project was fi rst
described in “The Cathedral and the Bazaar,” an
essay written by Eric Steven Raymond, one of the
founders of the OSI (Raymond, 2001). The Linux
development model was seen as a better way of
software development that could lead to higher
quality and rapid advancement. Cooperational
software development was not only for the ideolo-
gists and community-spirited anymore, but rather
something also to be used in more commercial
projects. The new emphasis born with the OSI
made it possible for the business world to inten-
sively embrace OSS. Before 1998, relatively few
people in the IT industry knew about free software;
however, a couple years later, open source was
on many people’s lips. With the participation of
big IT companies such as IBM, Hewlett Packard,
and Nokia, open source has become a credible
player in the IT fi eld.

OSS Licensing

OSS, exactly defi ned, is software fulfi lling the
terms of distribution given in the OSD and adopt-
ing a license approved by the OSI (Open Source
Initiative, 2004). Summarizing the ideas behind
the terms in OSD, the software license must
generate the following effects:

• Source code must be readable and avail-
able, either included with the binary code
or publicly downloadable

• Free distribution of the software by any
party, on any medium, to any party, gratis
or for a fee

• Derivative works must be allowed, either
under similar license or not, depending on
the specifi c OSS license type

• No discrimination against persons, groups,
or fi elds of endeavor

The nature of OSS is in the licensing terms
and not just the accessible source code, which is
just one part of the features the licensing terms
generate. In addition, the licensing terms allow
the free use, redistribution, and modifi cation of
the software. The copyright owner preserves
the moral rights and some economic rights, such
as the right to dual-license the software, but
transfers many important rights to the users and
developers of the software in order to enable the
development of the software and to increase its
adoption. It is important to understand that the
OSD licensing terms allow the creation of many
types of OSS licenses, each with different quali-
ties. Välimäki (2005) categorizes OSS licenses
into three functionality classes, ranging from the
most liberal to the most restrictive. The categories
are permissive licenses, licenses with standard
reciprocity obligation, and licenses with strong
reciprocity obligation. Standard reciprocity means
that the distribution terms of the source code must
be maintained in further developed versions,
which is also called the “copyleft” effect. Strong
reciprocity obligation means that in addition to
standard reciprocity effects, derivative works and
adaptations must keep the licensing terms intact,
also called the “viral” effect.

Välimäki (2005) has studied the prevalence of
different OSS license types. Table 1 presents the
most popular licenses as surveyed in his study
at SourceForge.net in 2004 (Välimäki 2005),
together with their functionality and relative
popularity in project licensing.

In Table 1, the popularity percentage refers
to the occurrences of these license types among
all OSS licenses (surveyed at the SourceForge.
net in late 2004).

544

Revenue Models in the Open Source Software Business

Special Characteristics
of OSS Business

One of the most critical issues for OSS business is
that the licensing terms allow free redistribution
of the licensed software (i.e., the licenser doesn’t
necessarily gain any revenue from these copies
of the software). In fact, charging a fee for OSS
is usually not feasible, because (1) any buyer may
start to resell the software or give it away and (2)
fees could severely diminish the rate at which both
developers and users adopt the software product
(De Laat, 2005), which often is the motivation
behind licensing a product as OSS. Therefore, it
is usually not feasible to base the revenue logic
on licensing fees. It is also possible to use OSS as
part of a fi rm’s other products; namely, software
packages, hardware, and/or services. This ap-
proach is not free of challenges either, since the
unique licensing of OSS may create risks as well
as opportunities.

Many fi rms conducting business with OSS are
in some way dependent on the OSS community
for developing software in their product offerings,
for support, or for customers. However, the OSS

community is outside the hierarchical control of
the fi rms since there are normally no contractual
agreements between them. In addition, the idea of
exploiting the fi nancial value of a jointly developed
community might go against the values of the
community (Dahlander & Magnusson, 2005) in
which the code is actively protected from being
appropriated by commercial fi rms through the use
of legal and normative mechanisms (O’Mahony,
2003). However, the attitudes and policies toward
the commercial exploitation within the OSS com-
munity range from the critical attitudes of FSF
and copyleft licensing to the more liberal attitude
of OSI and permissive licenses.

Dahlander and Magnusson (2005) propose
three approaches a fi rm can use to relate to the OSS
community. In question is the parasitic approach in
which the fi rm focuses on its own benefi ts without
considering possible damages to the community.
Since the fi rm doesn’t share the norms, values, or
rules of the community, the possibility to infl uence
community development does not exist. The com-
mensalistic approach is about benefi ting from the
community while leaving it otherwise indifferent.
Since the fi rm isn’t considered hostile, infl uencing

License Functionality Popularity

GNU GPL strong reciprocity 66.50%

GNU LGPL standard reciprocity 10.60%

BSD permissive 6.90%

Public domain permissive 2.70%

Artistic permissive 2.00%

MIT permissive 1.70%

Mozilla standard reciprocity 1.50%

Common Public License strong reciprocity 0.60%

Zlib permissive 0.50%

QPL strong reciprocity 0.40%

Open Software License strong reciprocity 0.40%

Python License permissive 0.40%

Academic Free License permissive 0.30%

Table 1. Most popular OSS licenses and their functionality (Source: Adapted from Välimäki, 2005)

 545

Revenue Models in the Open Source Software Business

the community is possible but diffi cult. Also in
question is the symbiotic approach in which the
fi rm tries to co-develop itself and the community.
This demands heavy involvement in community
development and sharing of norms and values but
also allows infl uencing community development
in a desired direction. These approaches are il-
lustrated in Table 2.

MAIN FOCUS OF THE CHAPTER

According to recent studies, the business-model
concept includes some elements of business
strategy and aims to describe the business as
a manifestation derived from strategy (Rajala,
Rossi, & Tuunainen, 2003; Osterwalder, 2004;
Morris, Schindehutte, & Allen, 2005). It has
also been defi ned as an abstraction of business
(Seddon & Lewis, 2003), which characterizes
revenue sources and specifi es where the com-
pany is positioned in its value-creating network
in a specifi c business. The essential elements of
various business models are defi ned in differ-
ent words by several researchers (Rajala et al.,
2003; Hedman & Kalling, 2003; Osterwalder,
2004; Morris et al., 2005, Rajala & Westerlund,
in press). Many of the studies identify a number
of elements that are characteristic of various
business models. These elements, expressed in
different words by different authors, include the
following: (1) offerings; (2) resources needed to
develop and implement a business model; and (3)
relationships with other actors (Timmers, 2003;

Osterwalder, 2004; Morris et al., 2005). Finally,
these elements are interconnected with (4) the
revenue model, including sources of revenue,
price-quotation principles, and cost structures,
which is characteristic of a particular business.
Grounded on the previous review and summation
of the prior research literature, we identify three
business model elements in order to describe
the revenue models in the OSS business. These
business model elements are key considerations
on which fi rms should focus after the decision to
participate in an OSS business. In the following
we discuss these elements in detail.

Offering

In the literature of business and management,
the concepts of product strategies and product
offerings are discussed widely (Cravens, 1987;
Kotler, Armstrong, Saunders, & Wong, 1996). We
see that offerings embody several aspects within
the concept of a business model and, thus, affect
the revenue model. Generally, type of offering,
target market, product vs. service orientation,
licensing model, and so forth, can be consid-
ered as aspects related to the product strategy.
Likewise, the product offering includes aspects
such as complexity, the essential benefi t that the
customer is really buying, and product features,
styling, quality, brand name, and packaging of the
product offered for sale (Kotler et al., 1996).

From the business model perspective, a defi n-
ing characteristic of OSS as a product is that it is
not a physical but rather an information product.

Approaches Description Nature of Relationship

Parasitic approach Focuses on fi rm’s own benefi ts without considering
possible damages to the community

Search for useful input without obeying
norms, values, and rules

Commensalistic approach Firm aims to benefi t from the community Search for useful input from the community

Symbiotic approach Firm tries to codevelop itself and the community Give something to the community, often
through a fi rm-established community

Table 2. Firm-community relationship (Source: Modifi ed from Dahlander & Magnusson, 2005)

546

Revenue Models in the Open Source Software Business

Information, or digital, products have unique
characteristics that differ largely from physical
product characteristics. However, certain open
source business models, such as widget-frosting
and accessorizing (see the following), consist also
of physical products. In addition, OSS revenue
models such as support selling, service enabling,
and software franchising, are comprised mostly
of service components, which also have a very
different nature.

In addition to the type of offering, license types
are considered part of the offering element in our
conceptual model as a determinant of revenue
model choices. Indeed, the licensing issues and
commitment to the principles of OSS licenses
(GPL, etc.) are key issues related to information
products such as OSS solutions (Lee, 1999).

Resources

The development of resources in the indus-
trial-network perspective is linked to its strat-
egy (Håkansson & Snehota, 1995; Gadde &
Håkansson, 2001; Sallinen, 2002). According
to this view, resources vary according to the
business and product strategy. The resources
and capabilities of a fi rm are among the central
issues in understanding and analyzing its busi-
ness. This accentuates the essence of resources
in core competencies (Selznick, 1957; Prahalad
& Hamel, 1990), as they are generally seen as
fi rm-specifi c property that is subordinate to the
core competencies. The resource-based view of
the fi rm originated from the work of Penrose
(1959) and was further developed by Wernerfelt
(1984). According to Penrose (1959), bundles of
resources that are activated in different ways lead
to incoherent performance and heterogeneous
outputs in various organizational settings.

In our analysis of the resources in the OSS
business, we share the view of Metcalfe and
James (2000), who defi ne tangible and intangible
assets as physical and nonphysical resources, and
capabilities as intangible knowledge resources.

Furthermore, we see that the increasing complex-
ity of OSS markets makes it diffi cult for fi rms to
have all the necessary resources in their possession
to compete effectively. This view is consistent
with the research of Ariño and de la Torre (1998).
These resource-related approaches provide us with
a basis on which to identify key resources in vari-
ous types of OSS business models. They deepen
our understanding, especially of how resources
are applied and combined by a fi rm, and take
inimitable resources as a basis for the creation
of sustainable capabilities as described in other
technology-intensive industries such as those by
Hart (1995) and Gabrielsson (2004).

Relationships

We see that the elements in our conceptual model
are interrelated with each other and, therefore,
are consistent with Håkansson and Snehota
(1995) and Rosenbröijer (1998) that capabilities
of a company refl ect its success in combining
resources to perform activities through internal
and external relationships.

As pointed out in the previous discussion, we
need to consider the interaction of companies with
other actors as an inseparable part of a business
model, similar to offerings and resources. Tim-
mers (2003) points out that in the context of busi-
ness models, the focus shifts from creating value
through internal activities to creating value through
external relations. He identifi es these relationships
within the value-creating network as an important
element in the development and distribution of of-
ferings. In addition to being an important intangible
company asset, a fi rm’s network offers access to
the resources of other network actors (Foss, 1999;
Gulati, Nohria, & Zaheer, 2000; Chetty & Wilson,
2003, Möller & Svahn, 2003).

 Revenue Model

Discussion of the revenue models in the context of
OSS has traditionally been problematic since the

 547

Revenue Models in the Open Source Software Business

OSS movement emphasizes free distribution of in-
tellectual property. However, since the emergence
of the OSS movement, there has also coexisted
a favorable attitude toward earning money and,
more generally, toward profi t-oriented behavior
based on the OSS (Raymond, 2001).

Concerning open source as an economic phe-
nomenon, De Laat (2005) argues that whether an
enterprise involved in the open source business
chooses to license its own software product as
open source or tries to benefi t from existing OSS
products, the ways of making money with open
source are basically the same. These ways include
selling services to facilitate OSS use, selling con-
nected hardware, and selling commercial closed
applications to use with OSS. However, Hecker

(1999) has identifi ed eight possible revenue mod-
els to be applied in conjunction with OSS. These
models are described in Table 3.

Although Hecker’s list of OSS revenue models
(summarized in Table 3) was published as early
as 1999, it still remains one of the most compre-
hensive classifi cations of OSS revenue models. It
clearly points out that a company has a multitude
of options to capture revenue with OSS.

CASE EXAMPLES

In our literature review, we identifi ed three
endogenous business model elements (i.e., of-
fering, resources, and relationships) that affect

Revenue
Model Description License

Types Revenue Sources

Support selling A for-profi t company provides support for a software that is
distributed free of charge. Any

Revenue comes from media
distribution, branding, training,
consulting, custom development,
and post-sales support for physical
goods and services.

Loss-leader

A no-charge open source product is used as a loss leader for
traditional commercial software (i.e., the software is made free
by hoping that it will stimulate demand for a related offering of
the company).

Varies Complementary offerings (e.g.,
other software products)

Widget-frosting

Companies that are in business primarily to sell hardware can
use this model to enable software such as driver and interface
code. By making the needed drivers open, the vendor can
ensure that they are debugged and kept up to date.

Any
The company’s main business is
hardware. This is quite similar to
the loss-leader model.

Accessorizing Companies that distribute books, computer hardware, and other
physical items associated with and supportive of OSS. Any Supplementary offerings

Service enabler
OSS is created and distributed primarily to support access
to generating revenue from consulting services and online
services.

Any Service fees

Brand licensing A company charges other companies for the right to use its
brand names and trademarks in creating derivative products.

Strong
reciprocity Copyright compensations

Sell it, Free it
A company’s software products start out their product life cycle
as traditional commercial products and then are converted to
open source products when appropriate.

Alteration
of license

type

Initial revenue from software prod-
uct offerings converted into other
models (e.g., the loss-leader model)

Software
franchising

A combination of several of the preceding models (in particu-
lar, brand licensing and support sellers) in which a company
authorizes others to use its brand names and trademarks in
creating associated organizations doing custom software devel-
opment; in particular, geographic areas or vertical markets.

Strong
reciprocity

The franchiser supplies franchisees
with training and related services
in exchange for franchising fees of
some sort

Table 3. Summary of OSS revenue models (Source: Modifi ed from Hecker, 1999; Välimäki, 2005)

548

Revenue Models in the Open Source Software Business

the revenue models in the OSS business. In this
chapter, we illustrate these determinants and their
interconnectedness with the revenue model in two
empirical examples: MySQL and RedHat. We see
that these case examples improve understanding
of the interrelatedness of these business model
elements, and especially their role as determinants
in setting up the revenue model. Furthermore, the
cases illustrate the complexity and heterogeneity
of solutions and options related to revenue models
in the fi eld of OSS business.

MySQL

The MySQL trademark and copyright are owned
by the Swedish company MySQL AB. Two
Swedes, David Axmark and Allan Larsson,
founded MySQL AB, together with Michael
“Monty” Widenius, a Finn who is broadly ap-
preciated as the chief designer and developer of
the system. The company develops and maintains
its key product offering, the MySQL open source
database system, in close collaboration with the
OSS community over the Internet. Unlike projects
such as Apache, MySQL is owned and sponsored
by a single for-profi t fi rm, MySQL AB. In addition
to providing the database product under the GPL
license, the company sells support through service
contracts as well as commercially-licensed copies
of the MySQL database software, and employs
people all over the world to communicate about
the use and development of the product.

Offering

The offering of MySQL AB is a multithreaded,
multiuser SQL (structured query language) re-
lational database server (RDBS) software. The
software is available either under the GNU GPL
or under other licenses when the GPL is inap-
plicable to the intended use. MySQL provides
database products for integrating software vendors
and original component manufacturing (OCM)
partners, enterprise organizations, and private

users in the OSS community. To distribute its
offering to a large number of users worldwide,
MySQL AB has applied a dual licensing prin-
ciple by making the MySQL database software
available for free on the Internet under the GPL
and selling it under proprietary licenses when
the GPL is not an ideal option and in situations
such as inclusion of MySQL technology in closed
source products. In summary, the core offering
of MySQL AB embodies an in-house developed
software product and related services.

Resources

As a symbol of the key resources of MySQL AB,
chief technology offi cer Widenius began program-
ming databases in 1981. He worked previously in
Tapio Laakso Oy developing systems that needed
data storage. Similarly, Axmark and Larsson, his
two colleagues and later cofounders of MySQL,
collaborated in programming projects from 1983
to 1995 and accumulated knowledge about data-
base systems. By licensing the MySQL product
under an OSS license, the company transferred
some of its internal intellectual property resources
to the open source community, thus gaining
possible future clients as well as developers and
enthusiasts to support its offering. The internal
programming resources can still be considered
the key element in the MySQL business model.
Currently, 80% of the source code in the MySQL
core database product (version 4.0) is programmed
by in-house programming resources; the com-
pany has systematically invested in professional
management resources to successfully manage
its growing for-profi t business.

Relationships

As already described, the collaboration based on
personal relationships between key individuals
can be seen as the key determinant of success in the
early phases of the MySQL product development.
This open atmosphere and knowledge-sharing

 549

Revenue Models in the Open Source Software Business

culture between the cofounders of MySQL AB
provided a sound base for enlarging the network
to OSS-oriented Internet communities. At pres-
ent, partners in the business network of MySQL
include companies such as suppliers, distributors,
outsourcing service providers, other key compa-
nies in the OSS fi eld, commercial research institu-
tions, and other strategic partners. Relationships
with these actors are based on commercial multi-
or bilateral activity. Furthermore, relationships
in the business network include collaboration
with public (government) organizations, research
institutes, and so forth.

Relationships within the OSS community are a
multifaceted phenomenon. According to the com-
pany CEO, the community of 5 million MySQL
users includes several groups that produce MySQL
books and articles as well as conduct courses and
presentations. Furthermore, these ecosystems
develop applications in different OSS projects.
Currently, MySQL AB is balancing between the
OSS community and commercial business net-
works that have somewhat disparate needs and
values. We see that MySQL AB depends on the
OSS community for its ecosystems and even more
for the customer base, but they mostly conduct
the product development in-house. However, the
company also has made a signifi cant contribution
to the OSS community by licensing the database as
an OSS. Therefore, we defi ne MySQL’s approach
toward the OSS community as a symbiotic one.

The Revenue Model

MySQL AB is often cited as the champion of
the second generation of open source projects.
These projects are open source but are directed
by for-profi t companies. The revenues of these
corporations derive from selling consulting
services for their products. MySQL AB makes
MySQL available under the GPL for free and
sells it under proprietary licenses for clients when
the GPL is not an ideal option (e.g., inclusion of
MySQL technology in a closed source product).

Currently, MySQL AB receives more income
from proprietary license sales than from its other
income sources, branding, and services. Its main
income seems to come from embedded commer-
cial users (Välimäki, 2003). In terms of Hecker
(1999), the revenue models of MySQL AB include
features from support selling and dual licensing,
both of which can be considered incarnations of
the loss-leader model.

Red Hat

The U.S.-based Red Hat is one of the world’s
leading Linux software provider and one of the
highest profi le companies employing OSS in its
business model. Red Hat’s offerings resemble
those of a classical software vendor: software
distributed on CDs or over the Internet, deploy-
ment support, add-on products, and so forth. The
unique aspect of the business model is that, for
the most part, Red Hat has neither developed the
software offering itself nor paid the development
for suppliers. The role of Red Hat in its value net-
work is related to its main activities in packaging,
branding, and distributing the open source Linux
operating system, thus making it usable for those
who are not familiar with the ins and outs of the
constantly evolving project.

Offering

Red Hat offers Linux and open source solutions
into the mainstream by making high-quality,
low-cost technology accessible (Rappa, 2005).
In particular, Red Hat provides operating system
software along with middleware, applications,
and management solutions. In recent years, the
target market has shifted mainly to corporate
customers, thus infl uencing the heavy emphasis
on enterprise Linux and network tools. Major parts
of the software offering are provided under the
GPL, which governs the redistribution of source
code as well as monetary licensing rights for the
binaries (Microsoft, 2005). In addition, Red Hat

550

Revenue Models in the Open Source Software Business

offers support, training, and consulting services
to its customers worldwide and through top-tier
partnerships. These services range from complete
Linux migration to client-directed engineering
to custom software development, especially in
industry-specifi c solutions.

Resources

From the perspective of Red Hat’s business model,
it is obvious that key resources are related to brands
and their development and management, as well
as to marketing and business management. The
funding provided by investors has enabled Red
Hat to systematically develop these resources. In
addition to marketing and management capabili-
ties, relationships with OSS communities as the
supplier network form a key resource in Red Hat’s
business model. Indeed, the company makes an
extensive use of external resources for developing
the software in its offering. The internal produc-
tion resources include personnel and technology
aimed at producing services.

Relationships

Red Hat has succeeded in establishing strong
ties with large enterprise and academic custom-
ers such as Amazon.com, AOL, Merrill Lynch,
Credit Suisse First Boston, DreamWorks, Veri-
Sign, Reuters, and Morgan Stanley. In addition,
its customer portfolio includes local, state, and
federal governments in various countries. The
company also maintains key industry relation-
ships with hardware and middleware suppliers.
In June 2002, Red Hat, Oracle, and Dell formally
launched a combined Linux effort that includes
joint development, support, and hardware and
software certifi cation. It was considered as an
emphatic declaration in the strategy of Red Hat
to focus on enterprise customers. Due to the in-
herent sharing nature of OSS, Red Hat considers
balance as a key aspect in building a successful

business without sacrifi cing customer trust, and
in creating shareholder value without severing
ties to the open source community.

Red Hat is gaining signifi cantly from the
software produced in the OSS community. It
participates in OSS and Linux development by
collaborating in standards creation as well as
sponsoring the Fedora Project. According to the
classifi cation of Dahlander and Magnusson (2005)
presented in the theoretical part of the study, the
company’s approach toward the OSS community
could be defi ned as a symbiotic relationship,
although the emphasis on enterprise customers
embodies commensialistic elements.

The Revenue Model

Despite the release of software under the GPL-
license mode, the services employed by Red
Hat for commercial viability places a layer of
restriction upon the binary and source code usage
based on support contracts. This hybrid approach
enables the company to provide OSS solutions in
a commercial way (Microsoft, 2005). Thus, the
primary revenue model is currently what Red Hat
calls “subscriptions,” which allows the company
to effectively develop and deliver its technology
based on customer feedback, as well as to provide
support to customers over the life of an agree-
ment. In terms of Hecker (1999), we identify this
revenue model as support selling.

It has been claimed that this is a high-margin
activity demanding only a little investment (Man-
tarov, 1999). On the other hand, little investment
means lower entry barriers, and support offers a
very weak basis for differentiation to gain sus-
tainable competitive advantage. Microsoft clearly
has nearly a monopoly on desktop operating
systems, but its market share in services related
to desktop operating systems is much smaller.
Thus, there is potential for revenue models based
on service provisioning, as in some OSS-based
businesses.

 551

Revenue Models in the Open Source Software Business

CONCLUSION

This chapter aims at identifying the key deter-
minants of OSS revenue model choices. On the
basis of our literature review and through our
case studies, we see that there are several motives
for fi rms to participate and contribute to the OSS
movement.

In this chapter, we identify three business
model elements that affect fi rms’ revenue model
choices. These identifi ed elements are offering,
resources, and relationships. The type of offering
in terms of the user environment and, thus, the
target market of the software (private vs. enterprise
applications and desktop vs. server applications)
constrain the possibilities to form a revenue
model. Furthermore, the licensing model affects
the revenue model choice through defi ning the
free and commercial components, as well as the
use and further development terms and conditions
of the software.

In addition to the type of offering, we argue
that a fi rm’s resources are an important factor
affecting the revenue model. We see that the
internal resources and capabilities of fi rms are
essential determinants of the actor-driven devel-

opment activity in the collection and integration
of divergent OSS components into commercial
offerings. Our cases illustrate that they strongly
enable and constrain the possibilities to collect
revenue based on OSS. Furthermore, relationships
between business actors and the OSS community
form the essential external resource and capability
base of the fi rm. The importance of relationship
management is emphasized in balancing between
the noncommercial culture of OSS communities
and the for-profi t business networks. The objec-
tives and characteristics of these two networks
differ in terms of the development of loyalty, trust,
and motivation of actors into activities in which
some actors may benefi t economically.

The managerial implications of this chapter
suggest that profi t-seeking fi rms in the fi eld of OSS
must maintain a balance between their profi t-ori-
ented business objectives and the noncommercial
principles of the OSS community. This is consis-
tent with Dahlander and Magnusson (2005), who
argue that an intention to control the community
development may allow a fi rm to manipulate the
development toward its strategic goals, but might
also diminish the creativity and general interest
of the community toward the project.

Business Model
Elements MySQL Red Hat

Offering Core offering embodies an in-house developed data-
base software product and related services.

Operating system software maintenance and services along
with operating system software.

Resources The internal programming resources and professional
management resources.

Resources related to the development and management of
brands, as well as to marketing and business management.

Relationships

Balancing between the OSS community and com-
mercial business networks that have somewhat
disparate needs and values. Dependence on the OSS
community mainly as a user community.

OSS community as signifi cant product developer.

Revenue model

A majority of revenue originates from proprietary
license sales, and a smaller proportion stems from
other sources such as services. The main income
seems to come from business users. The revenue
model includes features from support selling and
dual licensing, both of which can be considered
incarnations of the loss-leader model.

The primary revenue model is currently what Red Hat
calls “subscriptions,” which allows the company to ef-
fectively develop and deliver its technology based on
customer feedback, as well as to provide support to cus-
tomers over the life of an agreement. The revenue model is
identifi ed as support selling.

Table 4. Summary of the cases

552

Revenue Models in the Open Source Software Business

Our empirical observations from the two
case examples indicate that the selection of the
revenue model is dependent on other business
model elements. The case of MySQL illustrates
that the need to maintain relationships with both
the OSS community and the business network has
led to a revenue model based on dual licensing.
In this model, the community has access to the
software for free, but business users may buy a
software license for their commercial purposes.
Furthermore, the dual-licensing model used by
MySQL illustrates that a change in any of the
elements of the identifi ed key determinants may
affect the revenue model choice. In this model,
the company owns all copyrights to the software
and, therefore, can license the software with two
licenses, one allowing gathering of revenue from
sold copies of the software and the other based on
the principles of the loss-leader model.

The lesson learned from the Red Hat case is
that internal resources (e.g., well-known brands)
and superior commercialization capabilities allow
a company to benefi t from the development efforts
of the OSS community. The business model of Red
Hat is based on the ecosystem developing the core
product collaboratively. The role of Red Hat in this
collaboration is to deliver the results of the devel-
opment work commercially added with service
elements essential for the users of software.

REFERENCES

Ariño, A., & de la Torre, J. (1998). Learning
from failure: Towards an evolutionary model of
collaborative ventures. Organization Science, 9,
306-325.

Chetty, S. K., & Wilson, H. I. M. (2003). Col-
laborating with competitors to acquire resources.
International Business Review, 12, 61-81.

Cravens, D. W. (1987). Strategic marketing.
Homewood, IL: Richard D. Irwin, Inc.

Dahlander, L., & Magnusson, M.G. (2005). Rela-
tionships between open source software compa-
nies and communities: Observations from Nordic
fi rms. Research Policy, 34(4), 481-493.

de Laat, P. B. (2005). Copyright or copyleft? An
analysis of property regimes for software develop-
ment. Research Policy, 34(10), 1511-1532.

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. Pearson
Education Limited.

Foss, N. J. (1999). Networks, capabilities, and
competitive advantage. Scandinavian Journal
of Management, 15, 1-16.

Gabrielsson, P. (2004). Globalizing internationals:
Product strategies of ICT companies. Series A:
229, Helsinki: Helsinki School of Economics.

Gadde, L.-E., & Håkansson, H. (2001). Supply
network strategies. Chichester, UK: Wiley.

Gulati, R., Nohria, N., & Zaheer, A. (2000). Stra-
tegic networks. Strategic Management Journal,
21, 203-215.

Håkansson, H., & Snehota, I. (1995). Analyzing
business relationships. In D. Ford (Ed.), Under-
standing business marketing and purchasing (3rd
ed., pp. 162-182). London: Thomson Learning.

Hart, S.L. (1995). A natural-resource-based view
of the fi rm. Academy of Management Review,
20, 986-1014.

Hecker, F. (1999). Setting up shop: The business of
open source software. IEEE Software, 16(1), 45-
51. Retrieved August 24, 2000, from http://www.
hecker.org/writings/setting-up-shop.html

Hedman, J., & Kalling, T. (2003). The business
model concept: Theoretical underpinnings and
empirical illustrations. European Journal of
Information Systems, 12, 49-59.

 553

Revenue Models in the Open Source Software Business

Kotler, P., Armstrong, G., Saunders, J., & Wong,
V. (1996). Principles of marketing. Hertfordshire,
UK: Prentice Hall.

Lee, S. H. (1999). Open source software licensing.
Retrieved February 14, 2006, from http://eon.law.
harvard.edu/openlaw/gpl.pdf

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 50(2), 197-234.

Mantarov, B. (1999). Open source software as
a new business model: The entry of Red Hats
Software, Inc. on the operating system market
with Linux. Retrieved August 24, 2000, from
http://www.lochnet.net/bozweb/academic/dis-
sert.htm

Metcalfe, J. S., & James, A. (2000). Knowledge and
capabilities: A new view of the fi rm. In N. J. Foss
& P. L. Robertson (Eds.), Resources, technology
and strategy: Explorations in the resource-based
perspective. New York: Routledge.

Microsoft. (2005). Software licensing models.
Retrieved March 23, 2006, from http://www.
microsoft.com/resources/sharedsource/licens-
ingbasics/licensingmodels.mspx

Möller, K., & Svahn, S. (2003). Managing stra-
tegic nets: A capability perspective. Marketing
Theory, 3, 201-226.

Morris, M., Schindehutte, M, & Allen, J. (2005).
The entrepreneur’s business model: Toward a uni-
fi ed perspective. Journal of Business Research,
58, 726-735.

O’Mahony, S. (2003). Guarding the commons:
How community managed software projects
protect their work. Research Policy, 32(7), 1179-
1198.

Open Source Initiative. (2004). The open source
defi nition (Version 1.9). Retrieved March 5, 2004,
from http://www.opensource.org/docs/defi nition.
php

Osterwalder, A. (2004). The business-model ontol-
ogy: A proposition in design science approach.
Academic dissertation, Universite de Lausanne,
Ecole des Hautes Etudes Commerciales, Lau-
sanne, France.

Pateli, A. G., & Giaglis, G. M. (2004). A research
framework for analysing eBusiness models. Euro-
pean Journal of Information Systems, 13(4).

Penrose, E. (1959). The theory of the growth of the
fi rm. New York: Oxford University Press.

Perens, B. (1999). The open source defi nition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
Sebastobol, CA: O’Reilly & Associates, Inc.

Prahalad, C. K., & Hamel, G. (1990). The core
competence of the corporation. Harvard Business
Review, 32, 79-91.

Rajala, R., Rossi, M.., & Tuunainen, V.K. (2003).
Software vendor’s business model dynamics
case: TradeSys. Annals of Cases on Information
Technology, 5, 538-549.

Rajala, R., & Westerlund, M. (In press). A busi-
ness model perspective on knowledge-intensive
services in the software industry. International
Journal of Technoentrepreneurship.

Rappa, M. (2005). Case study: Red Hat. Manag-
ing the digital enterprise. Retrieved November
20, 2002, from http://digitalenterprise.org/cases/
redhat.html

Raymond, E. S. (2001). The cathedral and the
bazaar: Musings on Linux and Open Source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates, Inc.

Rosenbröijer, C.-J. (1998). Capability develop-
ment in business networks. Doctoral dissertation,
Swedish School of Economics and Business
Administration, Helsinki.

Rossi, M. A. (2004). Decoding the “ free/open
source (F/OSS) software puzzle” a survey of

554

Revenue Models in the Open Source Software Business

theoretical and empirical contributions. Quad-
erni, Siena: Dipartimento di Economica Politica,
Università di Siena.

Sallinen, S. (2002). Development of industrial
software supplier fi rms in the ICT cluster. Doctoral
dissertation, University of Oulu, Oulu.

Seddon, P. B., & Lewis, G. P. (2003). Strategy
and business models: What’s the difference. In
Proceedings from the 7th Pacifi c Asia Confer-
ence on Information Systems, Adelaide, South
Australia (pp. 1-30).

Selznik, P. (1957). Leadership in administra-
tion: A sociological interpretation. New York:
Harper Row.

Stallman, R. M. (1999). The GNU operating
system and the free software movement. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
Sebastobol, CA: O’Reilly & Associates, Inc.

Stallman, R. M. (2002). What is copyleft? Re-
trieved November 20, 2002, from http://www.
gnu.org/licenses/licenses.html

Timmers, P. (2003). Lessons from e-business
models. ZfB—Die Zukunft des Electronic Busi-
ness, 1, 121-140.

Välimäki, M. (2003). Dual licensing in open
source software industry. Systemes d´Information
et Management, 8(1), 63-75.

Välimäki, M. (2005). The rise of open source
licensing. A challenge to the use of intellectual
property in the software industry. Helsinki: Hel-
sinki University of Technology.

Wernerfelt, B. (1984). A resource-based view
of the fi rm. Strategic Management Journal, 5,
171-180.

KEY TERMS

 Business Model: An abstraction of business,
or the manifestation of strategy, that characterizes
the business and specifi es in which the company
is positioned in its value-creating network.

 Offering: An inseparable part of a business
model that includes aspects such as complexity;
the essential benefi t that the customer is really
buying; and product features, styling, quality,
brand name, and packaging of the product of-
fered for sale.

 Relationships: The ties and interaction of
companies with other actors.

 Resources: Specifi c properties that are subor-
dinate to the core competencies of companies.

 Revenue Model: The method of value captur-
ing that includes the description of the sources
of revenue, price-quotation principle, and cost
structure.

 Software Licensing: The defi nition and
agreement of rights to use, redistribute, or modify
software.

 Source Code: The programming that allows
software to perform a particular function or
operation.

ENDNOTE

1 The adjective “free” refers to freedom, not
price.

 555

Chapter XLIII
Open Source for Accounting

and Enterprise Systems
Thomas Tribunella

State University of New York at Oswego, USA

James Baroody
Rochester Institute of Technology, USA

INTRODUCTION

This chapter will inform the readers about the
feasibility and potential applicability of open
source software (OSS) to the functional areas of
accounting and fi nance. Small and enterprise-
scale systems will be examined. The chapter will
review background information and frameworks
for analyzing the business case related to fi nancial
applications of OSS.

OSS systems can provide support to individual
business functions or integrated suites of func-
tions. For example, open source enterprise systems
provide an integrated set of business functions that
are organized around business processes.

ABSTRACT

This chapter introduces open source software (OSS) for accounting and enterprise information systems.
It covers the background, functions, maturity models, adoption issues, strategic considerations, and
future trends for small accounting systems as well as large-scale enterprise systems. The authors hope
that understanding OSS for fi nancial applications will not only inform readers of how to better analyze
accounting and enterprise information systems but will also assist in the understanding of relationships
among the various functions.

In this chapter, we will address the concerns
of managers and educators who are interested
in learning more about open source business
systems. We studied available OSS accounting
and fi nancial applications by reviewing available
documentation on Web sites. For a number of
enterprise applications we reviewed, the system
functionality and market positioning, downloaded
the systems and studied system requirements,
installed and set up the systems, and reviewed
the license agreements. Initially, the chapter will
review the current state of OSS business systems
with a focus on defi nitions and functional appli-
cations of small accounting systems and larger
enterprise systems. We will then address the

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

556

Open Source for Accounting and Enterprise Systems

critical factors and decision frameworks relevant
to the adoption OSS for accounting and fi nancial
applications. In addition, we will explore future
trends in OSS fi nancial reporting systems.

BACKGROUND OF OSS
ACCOUNTING AND
FINANCE APPLICATIONS

In this section, we will discuss the business issues
that are a required background in order to have a
general understanding of accounting and fi nancial
applications with OSS. Open source is used to
describe “a software program or set of software
technologies that are made widely available by an
individual or group in source code form for use,
modifi cation, and redistribution under a license
agreement with having very few restrictions”
(American Bar Association, 2006). The logic be-
hind the open source philosophy is that users must
be able to read, redistribute, and modify the source
code for a piece of open source software. In contrast,
a traditional software license is designed to protect
the intellectual property of the software developer
and severely restricts reading, redistributing, and
modifying source code. Since an open source
license gives broad rights to read, redistribute,
and modify the source code for a piece of OSS,
users constantly improve the OSS by adapting it
to various applications and fi xing bugs.

The intellectual and legal origin of most open
source license agreements can be traced to two
sources: the GNU General Public License (GPL)
and the University of California BSD Unix license
agreements (McGowan, 2001). These agreements
refl ect the goal of creating a community environ-
ment in which innovation and quality improve-
ments are rapidly shared and distributed through
common ownership of intellectual property
rather than through individual or organizational
ownerships through copyrights (Kennedy, 2001).
Improvements made by individuals are made
publicly available back to the community.

Statistics available from www.freshmeat.net
(Freshmeat, 2006), a Web site described as one
of the largest indexes of Unix and cross-platform
OSS, indicates that these two license forms (or
close revisions of them) account for almost 80%
of the license agreements used by projects tracked
on the site. Since 20% of the projects utilize dif-
ferent types of agreements, users must examine
carefully the license agreement of the system
they want to use.

We downloaded and reviewed the license
agreements for a number of enterprise, account-
ing, and fi nancial applications (see Tables 1 and
2). For this sample, The GNU General Public
License was the most common agreement. It is
important to note that as the target market for these
systems moves toward large enterprises, commer-
cial licenses and hosted licenses emerge (Tustena
CRM, 2006). Given the variations of licensing
agreements demonstrated in this sample, users
must carefully compare the license agreement
with the requirements of their organizations.

The trade press and other publications em-
phasize that OSS is about back-offi ce technology
such as servers and operating platforms. The
relevance of OSS to functional areas, including
accounting, fi nance and enterprise systems, is not
well understood. Historically, OSS has focused
on technology components such as the Linux
operating system and the Apache Web server.
Open source business applications are beginning
to emerge, the most familiar being OpenOffi ce,
an OSS application offi ce suite supporting word
processing, presentation, and spreadsheet ap-
plications. Now available as OSS is a variety of
accounting, fi nancial, and enterprise systems ap-
plications. Refl ecting the potential these offerings
have in the marketplace, venture capital is fl owing
into open source business applications, which be
an indicator that these OSS business applications
will play a signifi cant role in the future (Cook,
2004; Marshall, 2005; Stein, 2005).

Finding operating systems and servers to
support the various open source accounting and

 557

Open Source for Accounting and Enterprise Systems

fi nance (A&F) systems (except venture capital)
is not a problem. Microsoft (MS) Windows,
Linux (Red Hat), Solaris (Sun), BSD, Mac OSX,
and UNIX all have accounting applications that
run on their platforms. OSS systems will run on
most popular servers such as Microsoft, Apache
(the most popular server with more than 50% of
all installations), Sun, and so forth. Table 1 dis-
plays some of the more well-known OSS small
accounting systems and the operating systems
they require (Sourceforge, 2006).

To compile Table 1, we went to SourceForge
and checked all software under the Topic menu
listed as offi ce/business -> fi nancial -> account-
ing. This identifi ed more than 500 systems as of
June 2006. We then identifi ed all systems rated
as mature, stable, or production. Many systems
display the term accounting under topics, but

we question whether some of these systems are
true accounting systems. Therefore, we exam-
ined company Web sites to determine through
product information if the systems were capable
of most traditional accounting functions. In ad-
dition, we checked to determine if the company
was still actively operating and if the software
was current. We also reviewed recent journal
articles on the subject to see if the companies
were cited. We understand that this market is
in a continual state of change and many new
products are appearing. We feel that we have
highlighted most of the more well-known sys-
tems, but we may have missed a few. Certainly,
the OSS accounting market would benefi t from
some consolidation.

In addition to small accounting applications,
there are other business applications available

Table 1. OSS small accounting systems

Name of Product Operating System Database
(if any)

Appx-BANG Windows, OS-Independent, Linux MySQL, Oracle

BestBooks OS-Independent JDBC

CentraView Windows, Linux, Mac OSX MySQL

EzyBiz Linux, OS-Independent

GRISBI Windows XML-Based

Lazy8 Ledger OS-Independent

Muhasebeci Windows, Linux MySQL

NetAccounts OS-Independent

NOLA Linux, Windows

OpenAccounting OS-Independent

OSAS Windows

PHPBalanceSheet OS-Independent

Quasar Linux, Windows

SQL-Ledger UNIX, Mac OSX, Windows Perl DBI/DBD

Tiny ERP Linux

TinyBA Windows, Linux

Traverse Windows SQL

TurboCash Windows

XIWA Linux

558

Open Source for Accounting and Enterprise Systems

in the form of OSS systems. For example, func-
tions such as personal fi nancial management,
e-commerce, offi ce suites (e.g., spreadsheet,
word processing, database, graphical presenta-
tion), Web browsers, RDBM (relational database
management), e-mailing clients, and strategic
planning are all available in OSS. The enter-
prise scale accounting systems usually interface
with a relational database as well as with other
applications. Table 2 displays some of the more
well-known OSS enterprise scale accounting
systems and summarizes the target market ap-
plications, database, and license requirements of
each system (Compiere, 2006; GNUCash, 2006;
Sourceforge 2006; TinyERP, 2006; Tustena CRM,
2006; WebERP, 2006).

Most open source accounting and fi nance
(A&F) systems work very well with relational
database systems. As a matter of fact, some open
source systems run on open source RDBM sys-
tems. For example, Compiere runs on MySQL,
a mature and stable open source RDBM system.
Even though there are many related applications
that work with A&F systems, this chapter will
focus mainly on the fi nancial applications of
these systems. However, we will briefl y discuss
closely related applications since they interface
with A&F applications.

MAIN FOCUS OF FINANCIAL OSS
SYSTEMS: FUNCTIONS AND
ADOPTION CONSIDERATIONS

In this section, we fi rst will describe the functions
of small and enterprise-scale A&F systems, and
then we will discuss the frameworks as well as
the considerations used to evaluate these systems.
Evaluation criteria will include quantitative fi nan-
cial models and qualitative maturity and strategic
considerations.

 Small-Scale Business Systems

A&F systems can be viewed as a functional set
of application modules that can be mixed and
combined. Traditional OSS modules support func-
tions such as general ledger, accounts receivable,
accounts payable, purchase orders, sale orders,
inventory management, and fi xed assets. OSS
modules that are based on the same operating
systems are often mixed and combined with the
help of consultants who program the patches and
make the code publicly available. Most proprietary
systems do not operate well with OSS modules at
the functional application level. Table 3 displays
the typical accounting modules that come with a
standard small business OSS package (Romney,
2006).

Name of Product Target Market
Segment Database Open Source License

Agreement

Compiere
ERP and CRM, small to
medium enterprises and large
corporations

Oracle, MySQL GNU Public License

GnuCash Desktop fi nancial manager PostgreSQL GNU Public License

Tiny ERP Small to medium business ERP PostgresQL GNU Public License

Tustena CRM CRM, including large
enterprises SQL Mozilla Public License

WebERP ERP for small to medium
enterprises MySQL GNU Public License

Table 2. OSS enterprise scale accounting systems

 559

Open Source for Accounting and Enterprise Systems

 Enterprise-Scale Business Systems

There are many small business OSS packages,
but one can ask if open source systems support
enterprise-level applications such as support for
inventory and manufacturing operations. The
answer is clearly yes, as a few OSS systems
operate at the enterprise level. For example,
Compiere can handle enterprise-level applica-
tions with integrated business processes such as

quote-to-cash, requisition-to-pay, CRM (customer
relationship management), PRM (partner relation-
ship management), supply chain management,
performance measurement, and a Web store. Table
4 displays the typical business process modules
that should come with an enterprise-level OSS
package (Davenport, 1998; The ERP Fan Club
and User Forum, 2006; O’Leary, 2000; Stein,
2006; Sumner, 2005).

Application Description

General Ledger The chart of all accounts and balances that supports the double entry system of
accounting.

Accounts Receivable Amounts due from customers for credit sales.

Accounts Payable Amounts due to suppliers for credit purchases.

Purchase Order Used to place and record orders with suppliers.

Sales Order Used to place and record sale orders with customers as well as completing sales
tax returns.

Inventory Management Used to keep track of goods purchased from suppliers and merchandise available
for sale to customers.

Fixed Assets Used to keep track of the purchase, depreciation, and disposition of long-term
productive assets such as property, plant, and equipment.

Payroll Used to record and pay employees as well as fi le payroll tax returns.

Project Management Used to track revenue and costs related to specifi c jobs or projects.

Financial Statements Compiles fi nancial statements such as balance sheets and income statements from
general ledger accounts.

Table 3. Module application features: Small to mid-size accounting systems

Application Module Description

Financial Includes general ledger, accounts receivable, accounts payable, legal consolida-
tion, cost center accounting, product cost controlling, and activity-based costing.

Operations and
Logistics

Includes inventory management, materials requirements planning, materials
management, plant maintenance, production planning, project management,
purchasing, quality management, routing management, shipping, and vendor
evaluation.

Sales and Marketing Includes order management, pricing, sales management, and sales planning.

Human Resource
Management

Includes human resource time accounting, payroll, personnel planning, and
travel expenses. Also includes vacation and sick time tracking..

System Administration
and Management

Includes tools to support ERP system installation and management, such as
security management.

Table 4. Core application and business process features: Enterprise scale systems

560

Open Source for Accounting and Enterprise Systems

In order for OSS business systems to have a
signifi cant impact on the market in the future,
they will have to reach enterprise scale. The term
 enterprise system has a broad defi nition. One
defi nition focuses on the capacity, robustness,
and scalability of the underlying technology: An
enterprise system is an information system that
offers a high quality of service and can support
the large volumes of processing and data typical
of a large organization. Such systems typically
require independent server hardware and a dedi-
cated administration. When the term enterprise
system is applied to business applications, it has
a more restricted defi nition. An enterprise system
not only provides the quality and capacity to sup-
port a large organization as described previously,
but its business functionality is broader than what
is required for a specifi c workgroup, department,
or small business. An enterprise system provides
cross-functional capability to support multiple
business operations such as accounting, fi nance,
production, sales, and marketing (Davenport, 1998).
Table 5 shows examples of the advanced application
features of some enterprise systems that achieve

cross-functional integration among various depart-
ments in a large organization (e-consultancy, 1999;
Swanton, 2004; Techtarget, 2006).

As can be seen in Table 5, open source A&F
systems usually support and interface with Web-
based applications such as online transactions,
CRM systems, Internet catalogs, and electronic
banking. The underlying infrastructure of open
source operating systems, open source database
systems, and open source Web servers has a
demonstrated record of stability and reliability.
For example, a high percentage of Web serv-
ers are based on open source platforms such as
Apache servers.

What are the implications for open source
A&F systems? Open source A&F systems must
be stable, reliable, and able to process transactions
with multiple simultaneous users. The larger en-
terprise systems must handle large groups of users.
One view, as discussed by Wheeler (2005), is that
the open source process with many developers
having access to and contributing to the source
code inherently produces system software that
runs with higher stability and has less down time

Application Module Description

Supply Chain
Management (SCM)

The management of information between partners in the supply chain to
enable the control of goods, services, and money from the acquisition of
raw materials to the fi nal customer product.

Partner Relationship
Management (PRM)

Supports communication among companies and their partners, which en-
ables shipping schedules and real-time information to be available to all.

Auditing Information
System

Includes tools for auditing businesses and systems, documenting the
progress of an audit, and preparing reports.

Customer Relationship
Management (CRM)

Includes one-on-one marketing, telemarketing, sales force manage-
ment, call center automation, e-selling, data warehousing, and customer
service.

Internal Controls
Management

Includes tools to plan and manage enterprise systems audits and verify
internal controls.

E-Business
Technology to enable employees, customers, suppliers, and business
partners to collaborate. Includes business-to-business and business-to-
consumer capabilities such as Web stores and Internet catalogs.

Strategic Enterprise
Management

Includes tools to manage and integrate strategic planning, budgeting,
forecasting, and performance management.

Table 5. Advanced application features: Enterprise scale systems

 561

Open Source for Accounting and Enterprise Systems

than proprietary systems such as Windows-based
systems (Wheeler, 2005).

There is other research and testing that dem-
onstrates different conclusions. Zhao and Elbaum
(2003) compare the development process for OSS
and proprietary software. While the open source
process does involve more developers and should
have more testing performed in parallel, this results
in improved detection of defects, not necessarily
improved debugging and correction of defects
(Zhao & Elbaum, 2003). Paulson (2004) and Sta-
melos (2002) also present fi ndings that question
the superior reliability of open source software.

Collectively, this research is ambiguous and
does not provide clear-cut direction to decision-
makers regarding the quality and reliability of
open source A&F applications. The open source
model does enable organizations considering the
adoption of open source A&F applications the
ability to download and rigorously evaluate the
application. However, to fully test the applica-
tion using samples of an organization’s data and
processes involves much of the work to actually
implement the system, so this benefi t may not be
as positive as it fi rst seems.

Another advanced application of enterprise
systems are built-in security and audit modules.
In theory, the audit risk associated with A&F
systems is not greater with OSS than with pro-
prietary systems. Since the code is freely avail-
able, the OSS community fi nds weaknesses in
the program that could violate system security.
Since the systems are open, they are patched by
a wide variety of users at a very rapid rate. Those
patches become open and available to other users
in the community. Therefore, a well-maintained
OSS should be a low-risk system from a security
point of view. There are very few reports of open
source A&F systems having been hacked. The
more widely used proprietary systems have audit
modules that support the work of external auditors
such as CPA fi rms and governmental regulators.
OSS systems are lagging in this area. However,
Tiny ERP does have an audit module.

Maturity and Stability Frameworks
for Understanding OSS Systems

There are several maturity models, such as the gen-
erally recognized as mature (GRAM) and gener-
ally recognized as safe (GRAS) models (Wheeler,
2006). Maturity and safety are important consid-
erations in OSS because immature systems will
not have a critical mass of support, consulting,
training, vendors, and users. The GRAM and
GRAS models are conceptual. More quantitative
models are the business readiness rating (BRR)
developed at Carnegie Mellon (Center for Open
Source Investigation, 2005), open source maturity
model (OSMM), and CapGemini OSMM (Cap-
Gemini, 2006). The quantitative models employ
a rating system in which important attributes and
goals of the system are rated and then weighted
proportionately. Then a score is calculated, and
the OSS systems are ranked in order of maturity
and acceptability. Table 6 displays the framework
for the open source maturity model (OSMM)
(Golden, 2006).

Notice in Table 6 that software elements are
listed on the left side of the model. Then each
element is scored based on its maturity. Next,
each element is given a weighting factor based
on its importance to the organization. In the next
phase of the analysis, the element maturity scores
are multiplied by the weighting factor to generate
element-weighted scores. In the fi nal phase of the
analysis, the element-weighted scores are totaled
to produce a product maturity score. The various
product maturity scores are then compared to
determine the best OSS system. A well-designed
maturity model should help managers understand
the development and stability level of an OSS
product.

Sourceforge.net identifi ed more than 500 OSS
accounting projects as of early 2006. The vast ma-
jority of these products is neither mature nore ready
for commercial applications. Sourceforge.net
ranks OSS in the following seven categories:

562

Open Source for Accounting and Enterprise Systems

• 7: Inactive
• 6: Mature
• 5: Production/Stable
• 4: Beta
• 3: Alpha
• 2: Pre-Alpha
• 1: Planning

Examples of major OSS producers with ma-
ture or stable systems are Compiere, GnuCash,
TurboCash, Traverse (MS compatible), OSAS
(NT, Linux, Unix), Lazy8 Ledger, NOLA, Ne-
tAccounts, SQL-Ledger, PHPBalanceSheet,
WebERP, OpenAccounting, Quasar, CentraView,
and TinyBA. There are also many systems under
development (Sourceforge, 2006).

Getting support and training for an open source
A&F system can be diffi cult if the system is not
mature. Very mature systems that are industry
leaders have a support infrastructure equivalent to
the infrastructure provided by mature proprietary
software vendors, including the following:

• Call center and help-desk support
• Online assistance such as demonstrations,

documentation, and forums
• Consulting services
• Training seminars and conferences

However, there is a contrast between these ser-
vices for open source A&F and the offerings from
proprietary software vendors. The services from
a proprietary software application vendor focus
on providing support to customers while they are
making their purchase decisions and then provid-
ing support while customers install, confi gure, and
operate the application. The consultants for open
source A&F applications expand their support to
address the needs of software developers with
technical documentation and recommendations
during the development process.

An organization considering the use of open
source A&F applications must look carefully at
the vendors’ services and support, determine the
balance between support for development and

Element Potential Score Actual Score Weighting Factor
(default weights)

Element Weighted
Score (actual score
x weighting factor)

(1) Product Software 0 to 10 4

(2) Support 0 to 10 2

(3) Documentation 0 to 10 1

(4) Training 0 to 10 1

(5) Product Integrations 0 to 10 1

(6) Professional Services 0 to 10 1

Total of Weighting Factors 10

Product Maturity Score
(max. = 100) 100

Type of User Æ Early Adaptor Pragmatist

Purpose of Use:

Experimentation 25 40

Pilot 40 60

Production 60 70

Table 6. Open source maturity model (OSMM)

 563

Open Source for Accounting and Enterprise Systems

operational usage, and evaluate whether the of-
ferings of the vendor meet its needs. In addition,
the revenue model for support vendors in open
source is different from the proprietary software
model. An implication of this is that an organiza-
tion using open source may receive its support
from a network of suppliers. These suppliers may
include support from the core organization leading
the open source A&F development, operational
support from independent consultants, patches
and improvements from partners, and value-added
resellers (VAR) who address various aspects of
the support value chain.

Accordingly, organizations adopting open
source A&F most likely do not have the one-stop
alternatives that exist for proprietary software.
Adopting organizations will need to assess their
capabilities to be actively engaged in selecting
consultants and managing their support.

Financial Frameworks for
Understanding OSS Systems

There are several frameworks that can help us
understand the cost and value of OSS information
systems and that can be applied to accounting

applications. For example, the total cost of owner-
ship (TCO) as well as capital budgeting models
such as return on investment (ROI), net present
value (NPV), payback period (PB), and internal
rate of return (IRR) can shed light on the value
of these systems.

Costs for an information system fall into a
number of categories: purchase cost for new
software, hardware, and networking technologies;
resource costs to install, set up, and confi gure the
hardware and software; and ongoing administra-
tion and maintenance costs. The primary savings
for an organization adopting open source A&F
will be the purchase cost. Generally, an OSS is
available free or at a very low cost. Therefore, the
initial software (SW) cost is very low. Hardware
requirements for Linux- and Unix-based operat-
ing systems are very low since these systems
run very effi ciently and can operate very well
on used equipment. The most common model for
categorizing costs related to information systems
is the TCO (David, 2002). The TCO model is
displayed in Table 7.

TCO includes all expenses associated with
owning and maintaining work stations within
an organization. It is a holistic view of IT-related

Table 7. Total cost of ownership

Measure Calculation Percent of
Use

ROI: Return on Investment Income from Investment / Average Investment 40.7%

TCO: Total Cost of Ownership See Table 7 29.1%

IRR: Internal Rate of Return Rate of Return when NPV = 0 13.6%

ROA: Return on Assets Net Income / Average Total Assets 08.2%

Other Measures See Below 08.4%

NPV: Net Present Value Investment – Present Value of Net Cash Flow at the Desired Rate of Return

PBP: Payback Period Investment / Net Cash Flow

ARR: Accounting Rate of Return (Net Cash Flow – Depreciation) / Initial Investment

SLD: Straight Line Depreciation (Cost – Salvage) / Useful Life

BEU: Break Even Units Fixed Costs / Contribution Margin Per Unit

RI: Residual Income Net Project Income – ([Cost of Capital] [Capital Investment])

564

Open Source for Accounting and Enterprise Systems

costs at an enterprise level. TCO includes acqui-
sition costs, control costs, and operation costs.
Acquisition costs account for approximately 20%
of the total costs. It has been posited that invest-
ing in control will reduce many operational costs
(David, 2002).

Consulting, training, and change management
are usually very expensive when an organiza-
tion converts to an OSS or to any other system.
Ongoing administrative costs will likely be the
same for various open source A&F systems.
Finally, maintenance costs are also impacted
since frequent updates, corrections, extensions,
and patches are frequently released by the open
source community.

An additional dimension of cost and time af-
fected by open source systems is the request for
proposal (RFP) cycle. Much of the RFP process
is invested in analyzing the licensing proposals
from each potential vendor, assessing the pay-
back from the investment, and negotiating the
terms and conditions of acquiring the software.
Organizations utilizing OSS business applications
should see this process shortened and reduced in
complexity, since the software is usually free and
license agreements follow standard models.

Table 8 displays the most common fi nancial
models for judging information technology (IT)
projects. The percentage of use was reported by
a CIO magazine research report in which 256 IT
professionals reported the metric they used to
measure IT initiatives (CIO, 2001).

Following is a summary of the IT budgeting
and measurement tools in Table 8 (Romney &
Steinbart, 2006; Williams, Haka, Bettner, &
Meigs, 2005):

• ROI: Compares the annual cash fl ow with
the initial investment to produce a return on
investment percentage. If the cash fl ow is
unequal over the life of the project, managers
can use the average annual cash fl ow. ROI
does not consider the time value of money,
which is a signifi cant fl aw in the method for
long-term projects.

• IRR: Calculates the effective interest rate
that would result, assuming a net present
value of zero for the project. In other words,
IRR is the discount rate that makes the NPV
of an investment (or project) equal to zero.
Using this method, managers will select
projects with higher IRRs.

Acquisition Administrative Costs

Control Operations

Hardware Costs Centralization: Control of software and network
administration from one department.

Installation and upgrades: Installing updates and new
systems.

Software Costs Standardization: Similar hard and software con-
fi gurations throughout the end-user community.

Evaluation: Analyzing the latest technology that becomes
available.

Power consumption: Costs of energy per work station.

Training: Cost of helping end users understand system
features.

Downtime: Cost of system failures and repairs.

Fuzz: Personal use of company systems.

Auditing: Cost of monitoring systems.

Viruses: Cost of repairing software and data from intrusions.

Support: Cost of services to address user problems.

Table 8. Profi tability and capital budgeting methods for measuring IT investments

 565

Open Source for Accounting and Enterprise Systems

• ROA: Determines the return on the book
value of the average assets related to the
system.

• NPV: Calculates and sums the discounted
future cash fl ows of the benefi ts minus the
costs. NPV discounts all cash fl ows on an
investment back to present value using a
required ROI. Accordingly, the analyst tries
to determine if the present value of future
cash fl ows (revenues or savings) from the
system is greater than the current investment
required to fi nance the system. Under this
method, managers will select projects with
higher positive NPV.

• PBP: Calculates the number of years before
the new savings from the project equal the
initial cost of the investment. The method
calculates the time it will take to recoup an
investment in terms of nominal dollars. It
does not consider the time value of money,
which is a signifi cant fl aw in the method.
Under this method, managers will select
projects with shorter payback periods.

• ARR: Calculates the percentage increase
in operating income from an investment in
nominal dollars. ARR does not consider the
time value of money, which is a signifi cant
fl aw in the method. It does consider depre-
ciation, which is a method to allocate the
cost of an asset to accounting periods in a
systematic and rational manner required by
generally accepted accounting principles.

• BEU: With break-even (BE) analysis, we
can determine how many units we need to
sell (or savings we need to gain) in order to
break even on an IT project. Furthermore,
we can calculate forecasted and projected
levels of profi ts analysis. The analysis gen-
erates understandable income statements
and graphical presentations of potential IT
project results and is a popular technique
in the MIS industry. It explains how cost
drivers affect cost behavior and allows for
sensitivity analysis. It shows how changes

in cost-driver activity levels affect variable
and fi xed costs. The tool is easy to quantify
and calculate break-even sales volume in
total dollars and total units. BEU provides a
visual representation of project performance
by creating a cost volume-profi t graph and
helps to supply information for forecasts and
projections. It also calculates sales volume in
total dollars and total units to reach a target
profi t.

• Residual Income (RI): Determines the net
income of a division less the cost of capital
on the division’s capital investment.

These measures should be improved with the
implementation of OSS systems if those systems
are less expensive and have the same functional-
ity. Accordingly, chief fi nancial offi cers (CFOs)
should look favorably on OSS systems.

Strategic Factors Related to
OSS Financial Systems

The decision regarding implementing an OSS
enterprise system includes additional factors. In
order to address the business processes within
an individual organization, enterprise systems
require a signifi cant amount of customization
to the specifi c requirements of the organization.
Before adopting an OSS enterprise system, an
organization must analyze the capability of the
candidate software to support this customiza-
tion. Does the candidate software meet the needs
of the organization as delivered? If not, then
what tools and processes are defi ned to support
customizing the enterprise system? Proprietary
systems such as SAP R/3 and Oracle Applica-
tions enable confi guration, which customizes the
application to the business requirements without
writing software. If confi guration capability is
not supported, then the organization must assess
the adoption and extension the software needs to
meet the organizations requirements.

566

Open Source for Accounting and Enterprise Systems

Closely aligned with customization is a stra-
tegic question. The open source model generally
requires that changes to the software be shared
with the open source development community.
Frequently, the specialization of business pro-
cesses within an organization is a source of
competitive advantage. Typically, OSS license
agreements enable organizations to modify the
source code and freely use the modifi cations
internally as long as the software containing the
modifi cations is not distributed publicly. Organi-
zations using OSS systems must carefully review
the license agreements and be sure that their plans
are supported.

FUTURE TRENDS

In the future, most A&F systems will support
markup standards such as XML (extensible
markup language) and XBRL (extensible busi-
ness reporting language). The hypertext markup
language (HTML) is a standard that defi nes the
format of information exchanged between Web
browsers and Web servers. However, it has a fi xed
set of information types that it can exchange. XML
language is a standard created to overcome the
restrictions of HTML by providing mechanisms
to extend, in an application-specifi c manner, the
types of information that are exchanged.

XBRL is a specifi c standardized set of ex-
tensions created using XML for fi nancial ap-
plications. It is the markup language used to tag
fi nancial information for the U.S. Securities and
Exchange Commission’s (SEC’s) EDGAR (Elec-
tronic Data Gathering and Retrieval) database.
In the short run, XBRL will soon be used by the
SEC to accept fi nancial reports that contain data
in XBRL-compliant form. XBRL is voluntary for
now, but in the future, given the current trend of
government regulation of the fi nancial markets,
it may become required (Debreceny, 2005). The
creation of languages such as XBRL will allow

for the rapid communication of data among or-
ganizations, systems, and networks.

XBRL allows users to increase the speed of
the fi nancial reporting process and may lead to
a continuous reporting process in the future.
In an environment of continuous reporting, ac-
countants and auditors will have to transition
from periodic reviews of batches of fi nancial
information to a constant monitoring of a fl ow of
fi nancial information. The security and control of
these online, real-time systems will create new
challenges and opportunities for accountants and
auditors (Debreceny, 2005). Furthermore, since
XBRL-based tags can be used to identify grains
of data for fi nancial applications, new ways of
understanding the fi nancial reporting process
and testing data quality will have to be developed
(Tribunella, 2005).

Organizations and companies in Europe and
Asia have emphasized de facto standards more
than U.S. companies, which tend to focus more on
innovation and rapid technology migration. How
will these factors affect OSS fi nancial systems?
Standards are emphasized because of the vendor
independence they provide. In the technology
domain, OSS has exploited standards to offer
technologies that support standards at a lower cost.
The role of standards in A&F systems domains is
much smaller. It is too early to tell whether a trend
for standardization will be driven by European
and Asian governments and organizations.

CONCLUSION

The adoption of OSS accounting and fi nancial
systems is not widespread. Proprietary systems
such as QuickBooks, Peachtree, and Cougar
Mountain have a majority of the market share of
small business systems. Closed source systems
such as SAP, Oracle, and Microsoft dominate the
enterprise systems market. However, Compiere
(an OSS) reports 930,000 downloads of its en-

 567

Open Source for Accounting and Enterprise Systems

terprise system and is supported by 44 partners
with worldwide locations.

Open source A&F systems are in a state of
rapid evolution. They are not well developed at
the enterprise level, but there are many small
business accounting systems with a complete set
of standard modules. However, only a few of the
systems are mature with a network of vendors
that support and train users as well as provide
consulting and installation. The lack of support
should change as more venture capital fl ows into
the OSS industry. Given the low cost and stability
of an OSS system for A&F applications, one can
make a strong business case for its implementation.
Accordingly, we believe these systems will gain
greater acceptance in the business community
in the future.

The bottom-line questions that an organization
must answer are whether the applications meet its
needs and whether the costs are affordable. Since
open source A&F systems are in their infancy the
current answer is yes in a minority of cases. But
for those organizations that choose to employ OSS
systems, the next question is whether the structure
of pricing, support, and maintenance cost is less
than the proprietary alternative. Given the business
criticality of these applications and the potential
need to customize them, the jury is still out.

REFERENCES

American Bar Association. (2006). An overview
of “open source” software licenses. Retrieved
February 9, 2006, from http://www.abanet.org/
intelprop/opensource.html

CapGemini’s OSMM. (2006). Accessed July 2,
2006, from www.seriouslyopen.org

Center for Open Source Investigation at Carnegie
Mellon West. (2005). Business readiness rating
for open source: A proposed open standard to
facilitate assessment and adoption of open source

software. Retrieved July 2, 2006, from http://www.
openbrr.org

CIO. (2001). CIO research reports: Measuring IT
value. Retrieved July 5, 2006, from http://www.
cio.com

Compiere ERP and CRM homepage. (2005).
Retrieved July 7, 2006, from http://www.com-
piere.org

Cook, J. (2005). Venture capital: Investors see
open source software potential. Seattle Post-In-
telligencer. Retrieved November 11, 2005, from
http://seattlepi.nwsource.com

Davenport, T. H. (1998). Putting the enterprise
into the enterprise system. Harvard Business
Review, 76(4), 121-131.

David, J. S., Schuff, D., & St. Louis, R. (2002).
Managing your IT total cost of ownership. Com-
munications of the ACM, 45(1), 101-106.

Debreceny, R. S., Chandra, A., Cheh, J. J., Gui-
thues-Amrhein, D., Hannon, N. J., Hutchison, P.
D., et al. (2005). Financial reporting in XBRL
on the SEC’s EDGAR system: A critique and
evaluation, Journal of Information Systems,
19(2), 191-210.

e-consultancy. (1999). Oracle announces strate-
gic enterprise management; major components
available now. ZDNet UK. Retrieved February
9, 2006, from http://www.e-consultancy.com/
newsfeatures/19803/oracle-announces-strate-
gic-enterprise-management-major-components-
available-now.html

The ERP Fan Club and User Forum. (n.d.). En-
terprise resource planning. Retrieved February
9, 2006, from http://www.erpfans.com/erpfans/
erpca.htm

Extensible Markup Language (XML). (2006).
Retrieved February 9, 2006, from http://www.
w3c.org\xml

568

Open Source for Accounting and Enterprise Systems

Freshmeat. (2006). Retrieved July 6, 2006, from
http://www.freshmeat.net

GnuCash. (2005). Retrieved July 6, 2006, from
http://www.gnucash.org

Golden, B. (2005). Creating your open source
ERP strategy. Retrieved June 8, 2005, from
http://SearchOpenSource.com

Golden, B. (2006, September-October). The open
source maturity model. Enterprise Open Source
Journal, 22-25.

HyperText Markup Language (HTML). (2006).
Retrieved February 9, 2006, from http://www.
w3c.org\markup

Kennedy, D. M. (2001). A Primer on open source
licensing legal issues: Copyright,copyleft and
copyfuture. St. Louis, MO: Saint Louis Uni-
versity Public Law Review. Retrieved July 5,
2006, from http://www.denniskennedy.com/
opensourcedmk.pdf

Marshall, M. (2005). Net start-ups face odd problem:
More VC cash than they need. Retrieved October
14, 2005, from http://www.siliconvalley.com

McGowan, D. (2001). Legal implications of open
source software. Retrieved July 5, 2006, from
http://www.law.umn.edu/uploads/images/254/
McGowanD-OpenSourceFinal.pdf

O’Leary, D. E. (2000). Enterprise resource planning
systems: Systems, life cycle, electronic commerce
and risk. London: Cambridge University Press.

OpenOffi ce. (2006). Retrieved February 9, 2006,
from http://www.openoffi ce.org

Paulson, J., Succi, G., & Eberlein, A. (2004). An
empirical study of open source and closed source
software products. IEEE Transactions of Software
Engineering, 30(4), 246-256.

Romney, M., & Steinbart, P. (2006). Accounting
information systems (10th ed.). Upper Saddle River,
NJ: Pearson Prentice-Hall.

Sourceforge. (2006). Retrieved January 31, 2006,
from http://www.sourceforge.net

Stamelos, I. L., Angelis, A., & Oikonomou, G.B.
(2002). Code quality analysis in open source soft-
ware development. Information Systems Journal,
12(1), 43-60.

Stein, S. (2006). EDI impact on ERP system
implementation. Retrieved February 9, 2006,
from http://www.msc-inc.net/ERP_Implementa-
tion.htm

Stein, T. (2005, September). Has the free software
paradox been solved? Venture Capital Journal.

Sumner, M. (2005). Enterprise resource planning.
Upper Saddle River, NJ: Pearson Prentice Hall.

Swanton, B. (2004). Oracle internal controls man-
ager keeping ahead of SOA projects. ZDNet. Re-
trieved February 9, 2006, from http://techupdate.
zdnet.com/techupdate/stories/main/Oracle_Inter-
nal_Controls_Manager.html

TechTarget. (2006). Retrieved February 9, 2006,
from http://searchcrm.techtarget.com/sDefi nition/
0,,sid11_gci214321,00.html

TinyERP. (2006). Retrieved February 5, 2006,
from http://tinyerp.com.

Tribunella, T. J., Neely, M. P., & Triubunella, H.
R. (2005). Academic and practitioner interests
regarding emerging technologies in accounting.
Journal of College Teaching and Learning, 2(5),
31-41.

Tustena CRM. (2006). Retrieved February 9, 2006,
from http://www.tustena.com/crm/default.aspx

WebERP. (2006). Retrieved February 9, 2006,
from http://www.weberp.org/index.php

Wheeler, D. A. Homepage. (2005). Why OSS/FS?
Look at the numbers. Retrieved February 9, 2006,
from http://www.dwheeler.com

Williams, J. R., Haka, S. F., Bettner, M. S., &
Meigs, R. F. (2005). Financial and managerial

 569

Open Source for Accounting and Enterprise Systems

accounting: The basis for business decisions (13th
ed.). New York: McGraw Hill Irwin.

Zhao, L., & Elbaum, S. (2003). Quality assur-
ance under the open source development model.
Journal of Systems and Software, 66-75.

KEY TERMS

 Accounting Information System (AIS): A
subset of the management information systems
composed of the people, processes, and assets
that are responsible for the fi nancial information
of an organization. The AIS collects transaction
data, monitors internal controls, and produces
accounting information such as fi nancial state-
ments and budgets.

 Auditing: An independent objective review
and assessment of an organization’s fi nancial
processes and information to validate that ap-
propriate internal control processes are followed,
that the information resulting from these processes
is valid, and that risks are being monitored and
responded to appropriately.

 Cross-Functional Integration: The process
of combining the various functional business
activities within an organization by bridging the
boundaries and enabling the fl ow of information
among the various organizational functions.

 Database Management System (DBMS):
A specialized software package that serves as
the repository of an organization’s data. The
DBMS organizes and manages the data so they
are available to applications programs such as the
accounting information system.

 eXtensible Business Reporting Language
(XBRL): XBRL is a specifi cation for the report-
ing and communication of fi nancial informa-
tion. XBRL is an extension of extended markup
language (XML). Financial information is de-

scribed by a set of tags that is standardized for
representing fi nancial information and enabling
its communication between information systems
using the Internet.

 Internal Control: The set of management pro-
cedures, either manually performed or automated
by information systems, that are utilized to assure
that an organization’s management policies and
procedures are adhered to and that the objectives
of the organization are being achieved. Internal
controls processes include monitoring risks and
monitoring the reliability and quality of informa-
tion within the organization.

 Relational Data Model: A model in which
data are viewed by users as two-dimensional
tables. Each table represents an entity type such
as a customer. Rows are instances of an entity,
and columns are attributes of the entity. The
tables relate or link to each other through shared
attributes.

 Request for Proposal (RFP): An RFP is a
document utilized in the acquisition process for
the purchase of software and services. An RFP
documents the needs of the acquiring organiza-
tion and defi nes all specifi c requirements that the
acquiring organization has related to functionality,
delivery time, post-acquisition support, additional
services, and so forth. The RFP also defi nes spe-
cifi c requirements for vendors responding to the
request, including information that is required in
their requests, the deadline for responses, fi nan-
cial disclosure, security and intellectual property
rights, and so forth.

 Strategic Planning: A plan created by top
management to achieve the general long-range
vision and mission of the organization. This plan
may include multi-year goals related to technology
infrastructure, large capital projects, governance
policies, fi nancial budgets, and market share
objectives.

570

Chapter XLIV
Open Source Software and the

Corporate World
Sigrid Kelsey

Louisiana State University, USA

INTRODUCTION

 Open source software (OSS) is impacting the
corporate world in numerous ways, from provid-
ing software and competing with its proprietary
software companies to changing the direction
of the software industry. While some corporate
giants are embracing the OSS business model,
launching OSS projects of their own, and sup-
porting existing OSS projects, others are vigor-
ously competing with the OSS movement and

ABSTRACT

This chapter discusses various ways that open source software (OSS) methods of software development
interact with the corporate world. The success achieved by many OSS products has produced a range
of effects on the corporate world, and likewise, the corporate world infl uences the success of OSS.
Many times, OSS products provide a quality product with strong support, providing competition to the
corporate model of proprietary software. OSS has presented the corporate world with opportunities
and ideas, prompting some companies to implement components from the OSS business model. Others
have formed companies to support and distribute OSS products. The corporate world, in turn, affects
OSS, from funding labs where OSS is developed to engaging in intellectual property disputes with OSS
entities. The consumer of software is sometimes baffl ed by the differences in the two, often lacking un-
derstanding about the two models and how they interact. This chapter clarifi es common misconceptions
about the relationship between OSS and the corporate world and explains facets of the business models
of software design to better inform potential consumers.

its products. Still others are capitalizing on suc-
cessful OSS products by packaging, distributing,
and providing support for them. Sharma et al.
(2002) assert that the success of OSS is turning
the software industry from a manufacturing to a
service industry in which customers are paying
more for support and service than for the product
itself. In addition, the OSS model of production
has gained recognition as an “important organi-
zational innovation” (Lerner & Tirole, 2002, p.
1). Without a doubt, the OSS movement has had

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 571

Open Source Software and the Corporate World

a substantial infl uence on the software industry
and the corporate world.

BACKGROUND

Both the OSS and proprietary models of software
productions have existed since the early days of
software development. Unix, for example, was
developed at Bell Laboratories in the late 1960s
and early 1970s and distributed freely to uni-
versities during the 1970s. Unlike the altruistic
motivations of many OSS products, the reason for
Bell Laboratories’ free distribution was to keep
the “consent decree” that resulted from a 1956
antitrust litigation that prevented AT&T from
marketing computing products (Vahalia, 1996).
In fact, AT&T’s 1979 announcement that it would
commercialize UNIX prompted the University of
California Berkeley to develop its own version,
BSD UNIX (Lerner & Tirole, 2002). AT&T’s
move to make the cooperatively developed UNIX
into a proprietary product came four years before
Stallman’s decision to develop GNU and General
Public License.

By 1980, a business model for software had
emerged, restricting the copying and redistribu-
tion of software by copyright. Bill Gates had
already established himself as a supporter of this
proprietary model, stating in his February 3, 1976,
“An Open Letter to Hobbyists”:

As the majority of hobbyists must be aware, most
of you steal your software. Hardware must be paid
for, but software is something to share. Who cares
if the people who worked on it get paid? … Is
this fair? … One thing you do do is prevent good
software from being written. Who can afford to do
professional work for nothing? (Gates, 1979)

Gates’ letter indicates the differences in phi-
losophy between proprietary and free software
proponents that have existed since the early days
of software development.

In 1984, computer scientist Richard Stallman,
frustrated that all available operating systems
were proprietary, quit his job at MIT to develop
the GNU (pronounced guh-noo, a recursive ac-
ronym for GNU’s Not Unix) system. His goal, in
addition to developing a new operating system,
was to change the way software was created
and shared, giving users freedom to modify or
add to programs, redistribute the programs with
their changes, cooperate with each other, and
form communities. Stallman also developed
the concept of “copyleft” and the GNU General
Public License (GPL) in 1989, publishing all of his
work under that license. Copyleft gives software
a copyright and users permission to change the
software, add to it, and redistribute it, as long as
it remains under the GPL terms. By preventing
the software from entering the public domain, the
GPL prevents users from turning free software
into a proprietary derivative. Thus, the beginnings
of the OSS movement were a reaction to the pro-
prietary corporate model. In 1990, University of
Helsinki student Linus Torvalds wrote the Linux
kernel, releasing it under GPL, and fi lling the
gap for a piece of Stallman’s system still under
development. Soon after, the Apache Web server
was developed, providing an OSS application
for Linux. This combination of software offered
a new option to Internet service providers and
e-commerce companies, which, until then, had
only proprietary options.

Stallmans’s Free Software Foundation Web
page, reminding readers that free software means
“free” as in “free speech,” not as in “free beer”
(Free Software Foundation, 2005), echoes a
concept brought forth perhaps more eloquently
by Thomas Jefferson and widely-quoted by OSS
advocates that “ideas should freely spread from
one to another over the globe, for the moral and
mutual instruction of man, and improvement of
his condition” With the growth of the OSS
movement, some of the values of the OSS culture
have diversifi ed, but freedom and sharing remain
integral to its success and completely dissimilar

572

Open Source Software and the Corporate World

to the proprietary model of development and
distribution.

The corporate and OSS models and phi-
losophies continued to infl uence one another
and develop throughout the 1990s. The “open
source” label came out of a 1998 meeting, and
shortly thereafter, the Open Source Initiative
was created. Also in 1998, the Digital Millen-
nium Copyright Act (DMCA), criminalizing the
production of software for the purpose of evading
copyright, and the Sonny Bono Copyright Term
Extension Act, extending U.S. copyright terms
by 10 years, both passed. Despite the divergent
directions the two movements were taking, the
difference between free software and proprietary
software has never been reducible to a battle
between anti-corporate OSS proponents and the
profi teering corporate world, as many people
perceive. Corporate companies with a stake in
the software industry have, in fact, navigated
various approaches to succeed in an industry in
which the motivations for developing software go
beyond the commercial value of the product or
ownership of intellectual property. While the two
models of software production and distribution
are competitive in many ways, it was also in the
1990s that it became common for commercial
companies to interact with the OSS community
(Lerner & Tirole, 2002).

During 1998, Torvalds appeared on the cover
of Forbes, Netscape announced a decision to
make the next version of its Web browser an
OSS product, and IBM adopted the Apache Web
server as the core of its Websphere line of products
(O’Reilly, 1999). Like IBM, some corporate giants
have chosen to use and support OSS voluntarily.
Others have found it necessary to contribute in
order to market products to Linux users; still others
have fought intellectual property battles with OSS
constituents. The relationship between the OSS
and corporate cultures is complex, but it is clear
that the OSS culture is making an impression on
the corporate world, and vice versa.

As the OSS community has grown to include
professionals, students, hobbyists, corporate gi-
ants, universities, and others, the freedom of ideas
and sharing knowledge remains the crux of the
OSS ideology. To integrate into the OSS culture,
therefore, the corporate world must be willing to
share its developments. This chapter summarizes
some ways in which the OSS movement has
motivated change in the software industry and
corporate world, citing some specifi c examples of
corporations reacting to OSS software and strate-
gies in different ways, which serves to illustrate
the larger picture.

MAIN FOCUS OF THE CHAPTER

Corporate Culture and Motivations
of OSS Developers

A misconception often associated with OSS
developers is that they are volunteer program-
mers, willing to “dedicate their time, skills, and
knowledge to the OSS systems with no monetary
benefi ts” (Ye & Kishida, 2003, p. 1). In fact, there
are many money-making opportunities for open
source developers, from providing software sup-
port to programming for companies or institutions
using the software. While it is true that many OSS
developers are paid to make the developments,
Eric Raymond is quick to point out that while OSS
developers may be paid for their contributions to
the software, their salaries rarely depend on the
sales value of their software (Raymond, 2001).
OSS contributors may work for support compa-
nies, universities, and other organizations with
motivations not attached to selling the software.
This is a key difference between the OSS and
proprietary software business models. Stallman’s
1985 GNU Manifesto not only outlines his reasons
for creating GNU but also offers some sugges-
tions for how programmers can make money in
an OSS environment.

 573

Open Source Software and the Corporate World

While too often OSS advocacy is reduced to
an anti-Microsoft position, the challenge that the
OSS community has posed to the software giant
does provide an illustration of the extent of the
movement’s success. For example, throughout
the Microsoft Corporation antitrust case, Linux
was a named threat to Windows domination, with
Microsoft CEO Steve Ballmer referring to open
source as a “cancer” (Microsoft Exec, 2006). In
the midst of the antitrust trial, Eric Raymond
became the recipient of two leaked internal Mi-
crosoft memos, posting them on a Web site and
naming them the “Halloween Documents.” The
documents, acknowledged by Microsoft to be
authentic but according to Raymond dismissed as
an engineering study not defi ning company policy,
discuss the success of Linux, acknowledging the
achievements of the OSS movement and outlin-
ing strategies to “beat” Linux (Raymond, n.d.).
Microsoft is not the only corporation combating
the success of Linux and other OSS products.

The SCO Group is a software company cur-
rently involved in a number of disputes regarding
intellectual property, including lawsuits with
IBM, Red Hat, and Novell. SCO fi led a complaint
against IBM in March 2003 claming that IBM has
misappropriated SCO’s proprietary knowledge
by contributing to the GNU/Linux systems with
code SCO claims to own, alleging damages of at
least $1 billion. The result of the ongoing litigation
will set a precedent for future cases.

In 2005, Columbia University law professor
Eben Moglin formed the Software Freedom Law
Center to help protect OSS development from
similar litigation. The center provides pro bono
legal services to FOSS projects and developers;
its mission to help provide FOSS developers
with “an environment in which liability and
other legal issues do not impede their important
public service work. The Software Freedom Law
Center (SFLC) provides legal representation and
other law-related services to protect and advance
FOSS.” His foundation is one of several helping
to defray legal costs for litigation against FOSS

developments. The Open Source Development
Labs (OSDL) Linux Legal Defense Fund has
raised more than $10 million to provide legal
support for Linus Torvalds and others subject to
SCO litigation (Goth, 2005, p. 3).

While Microsoft and SCO are resisting the OSS
model of business, others in the corporate world
have come to see the benefi t of working with OSS
producers and products. Silicon Valley’s NetApp,
for example, became involved in Linux because
its Linux-using customers were experiencing dif-
fi culty moving fi les between their computers and
NetApp fi lers. Although it was a Linux problem,
customers complained to NetApp, and with a
vested interest in fi xing it, NetApp cofounder and
chief of engineering talked to Linus Torvalds.
Mistrustful of companies like NetApp, Torvalds
declined NetApp’s offer to fi x the problem, naming
instead his choice programmer for the job, Trond
Myklebust. NetApp, along with Linux developers
worldwide, could submit suggestions to Myklebust
in hopes that he would accept them. Therefore, if
NetApp was to market its product to Linux users,
it was obliged to join the OSS culture (Lyons,
2004). The NetApp circumstances demonstrate
that any company wishing to make its product
compatible on a Linux platform has a stake in the
OSS world. Yet while the OSS culture is able to
infl uence the actions of the corporate world, so
the corporate world is able to do likewise.

In 1999, NetApp began funding the University
of Michigan’s Center for Information Technol-
ogy Integration (CITI), home to a lot of Linux
NFS development. By 2002, NetApp was paying
Myklebust a stipend and providing him offi ce
space in the lab and a company-paid apartment in
Ann Arbor. Peter Honeyman, scientifi c director
of the lab where Myklebust works who receives
$192,000 a year from NetApp, notes, “What’s in
it for [NetApp] is sales; it can sell into the Linux
market. This is not about philanthropy. There is
plenty of mutual benefi t going on here” (quoted
in Lyons, 2004). Torvalds, who was mistrustful
of NetApps’ offer to help, works at a Beaverton,

574

Open Source Software and the Corporate World

Oregon, lab funded in part by Hewlett-Packard
(Lyons, 2004). In response to the apparent confl ict
between picking up a salary from a revenue-hun-
gry corporation and developing OSS, Torvalds
compares himself to an athlete with a corporate
sponsor (Lyons, 2004).

The OSS culture, therefore, is not separate from
the proprietary model of development; rather, the
two models interact with and infl uence each other
in many ways. Indeed, the OSS, corporate, and
academic worlds have a complex relationship,
each able to control, to some extent, the others’
directions.

A 2004 Forbes article notes that many top tech-
nical fi rms hire Linux programmers in hopes of
manipulating the direction of Linux development
(Lyons, 2004). Hewlett Packard Vice President
Martin Fink acknowledges that the closer he can
get to Torvalds, the more infl uence he can have on
Linux, saying “I try to keep it under two hops. ...
The way to get stuff done in the Linux commu-
nity is to hire the right people.” In 2003, Hewlett
Packard generated $2.5 billion in Linux-related
revenue; IBM $2 billion; and Red Hat, which
distributes a version of Linux, $125 million in
revenues. Linux runs in datacenters of places like
Charles Schwab & Co. and Sabre Holdings (Lyons,
2004). These corporations have recognized the
benefi ts of the OSS culture, and many of them
have become sponsors of its research.

IBM has been a powerful corporate advocate
of OSS development for years. In 2005, IBM
promised free use of 500 of its U.S. patents to
open source developers, stating, “The open source
community has been at the forefront of innovation
and we are taking this action to encourage addi-
tional innovation of open platforms” (IBM, 2005).
IBM’s Bob Sutor, vice president of standards, says
that this move was made in hopes of starting a
“patent commons” for companies to contribute
intellectual property for open source developers
to use freely without fear of litigation (Goth, 2005,
p.4) from companies like SCO. OSS supporters

generally believe that software patents hinder
advancements in software research; in Europe,
efforts are underway to prevent laws that would
allow the patenting of software (Carver, 2005).

With IBM and other such corporations design-
ing their products with OSS platforms in mind,
and contributing to the furthering of OSS research,
it is plain that the two cultures have learned to
work together.

Reliable Code, Reliable Support

The success of OSS projects like Linux, Apache,
and Perl evince the success of the bazaar model
on the code itself. The traditional paradigm
of collaborative development follows Brooks’
Law, which ascertains that only a select circle of
experts should be allowed to collaborate, with
little or no feedback, to improve a product before
it is fi nished. Brooks’ Law states, “Conceptual
integrity in turn dictates that the design must
proceed from one mind, or a very small number of
agreeing resonant minds” (Neus & Scherf, 2005,
p. 216). Eric Raymond dubs the bazaar approach
Linus’ Law in which software is released early
and often, evolving as users around the world use
it and contribute to it. Making the code freely
available and open to review by one’s peers makes
the quality better (Bergquist & Ljungberg, 2001).
Open source has proved itself to be a formidable
model for creating quality software, and as OSS
projects become even more widely adopted, the
culture and communities grow larger.

Customers often question the availability or
longevity of support available for OSS. Without
a revenue-generating company supporting it, it
is diffi cult for OSS newcomers to imagine that
any support will exist. But the success of OSS
projects like Linux, GIMP, and Apache provide
examples of the bazaar model’s success. In fact,
with proprietary software, the support is propri-
etary as well, where anyone who is able to provide
support for OSS is free to do so. O’Reilly Media,

 575

Open Source Software and the Corporate World

Inc., a strong supporter and early advocate of OSS,
points out on its Web site that its success came in
part because it was not “afraid to say in print that
a vendor’s technology didn’t work as advertised”
(O’Reilly, n.d.). Besides publishing numerous sup-
port books, O’Reilly provides online services and
hosts OSS summits and conferences. O’Reilly is
not the only company providing support for OSS.
The OSS culture of sharing and helping gives
assurance that with any successful OSS product,
adequate support is available.

FUTURE TRENDS

A July 2005 article reports that 70% of Web
servers on the Internet use Apache compared
to roughly 25% using Microsoft’s Internet In-
formation Server (Bradbury, 2005). Already,
European governments have adopted OSS
for their computing needs, and California has
started a U.S. trend toward the same, making a
2004 recommendation for the use of OSS in its
performance reviews. Products like OpenOffi ce,
named by Developer.com as a 2006 Open Source
Product of the year, offer products that are able
to compete with Microsoft’s Offi ce Suite. The
state of Massachusetts is currently deciding
whether to go forward with a decision made by
the former CIO to use OpenOffi ce, with Harvard
Law School Professor John Palfrey predicting, “If
Massachusetts gets this right, others will follow”
(McMillan, 2005).

OpenOffi ce is already common in Israel, in
part because OpenOffi ce works well with the
Hebrew language and because Microsoft software
is expensive. China, where software theft has dis-
couraged proprietary companies from marketing,
has embraced OSS, creating the China Standard
Software Company (CSSC) and the China Open
Source Software Promotion Alliance (Bradbury,
2005). The growing trend to adopt OSS has spread
worldwide. With such support, the OSS culture
and movement will continue to grow. Market re-

searcher IDC predicts that by 2008, Linux server
sales could approach $10 billion.

The GPL has yet to be ruled enforceable in
a U.S. court of law; until now, it has only been
enforced in private negotiation or settlement
agreements (Carver, 2005). In Germany, how-
ever, a Munich district court has ruled it valid
and enforceable (Carver, 2005). The result of
ongoing litigation between SCO and IBM will
set a precedent for how the GPL is interpreted in
the United States.

Lerner and Tirole acknowledge that the future
of the open source development process is diffi cult
to predict with existing economic models and
that further research is needed from an economic
perspective.

CONCLUSION

The predominating shared norms, values, atti-
tudes, and behavior that characterize OSS culture
are deeply rooted in valuing freedom and sharing.
As OSS has grown to offer software options for
large entities like governments, companies, and
universities, reasons for joining the OSS move-
ment diversify. While the movement has grown
and the culture has shifted, the basic values have
remained in tact. Its success has impacted other
cultures and traditions worldwide, from academic
publishing and research to government to the
corporate world. Clearly, the initial ideas and
philosophies set forth by Jefferson and echoed
by Stallman are affecting the culture of research
worldwide, with the OSS movement proof that
a culture of sharing is benefi cial to everyone
involved.

REFERENCES

Association of College and Research Libraries
(ACRL), Association of Research Libraries (ARL),
SPARC, & SPARC Europe. 2003. Create: New

576

Open Source Software and the Corporate World

systems of scholarly communications; change: old
systems of scholarly communication. Retrieved
from http://www.createchange.org/resources/Cre-
ateChange2003.pdf

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305.

Bradbury, D. (2005). The future is open
source: Should Microsoft be watching its
back? Retrieved January 18, 2006, from http://
www.silicon.com/research/specialreports/open-
source/0,3800004943,39150625,00.htm

Carver, B. W. (2005). Share and share alike:
Understanding and enforcing open source and
free software licenses. Berkeley Technology Law
Journal, 20(1), 443.

Free Software Foundation. (2005). The free soft-
ware defi nition. Retrieved December 1, 2005,
from http://www.fsf.org/licensing/essays/free-
sw.html

Gates, W. H., III. (1979). An open letter to hob-
byists. Retrieved July 7, 2006, from http://www.
digibarn.com/collections/newsletters/homebrew/
V2_01/homebrew_V2_01_p2.jpg

Goth, G. (2005). Open source infrastructure
solidifying quickly. IEEE Distributed Systems
Online, 6(3), 1.

Hars, A., & Shaosong, O. (2001). Working for
free? Motivations of participating in open source
projects.

IBM. (2005). IBM statement of non-assertion of
named patents against OSS. Retrieved January
29, 2006, from http://www.ibm.com/ibm/licens-
ing/patents/pledgedpatents.pdf

Lattemann, C., & Stieglitz, S. (2005). Framework
for governance in open source communities. In
Proceedings of the 38th Hawaii International
Conference on System Science.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 50(2), 197.

Lyons, D. (2004). Peace, love and paychecks.
Forbes, 174(5), 180. Retrieved July 11, 2006, from
http://www.msnbc.msn.com/id/5907194/

McMillan, R. (2005). CIO who brought OpenOf-
fi ce to Massachusetts resigns: Whether Peter
Quinn’s departure helps or hinders state’s move
away from Microsoft remains to be seen. Info-
World. Retrieved January 29, 2006, from http://
ww6.infoworld.com/products/print_friendly.
jsp?link=/article/05/12/28/HNmasscio_1.html

Microsoft exec leaves suddenly: Windows live
offi cial helped company fi ght Linux threat (2006,
June 21). The Seattle Post-Intelligencer, p. E1.

Moore, J. (2003). Revolution OS: Hackers, pro-
grammers & rebels unite. In W. Productions
(Producer): Seventh Art Releasing.

Neus, A., & Scherf, P. (2005). Opening minds:
Cultural change with the introduction of open
source collaboration methods. IBM Systems
Journal, 44(2), 215.

Open Source Initiative. (n.d.). The open source
defi nition. Retrieved December 1, 2005, from
http://www.opensource.org/docs/defi nition.php

O’Reilly, T. (n.d.). O’Reilly media: History. Re-
trieved July 11, 2006, from http://www.oreilly.
com/history.html

O’Reilly, T. (1999). Lessons from open source
software development. Communications of the
ACM, 42(4), 32-37.

Raymond, E. S. (n.d.). The halloween documents.
Retrieved January 30, 2006, from http://www.
catb.org/~esr/halloween/index.html

Raymond, E. S. (2001a). The cathedral & the
bazaar. Beijing: O’Reilly.

 577

Open Source Software and the Corporate World

Raymond, E. S. (2001b). How to become a hacker.
Retrieved January 24, 2006, from http://www.catb.
org/~esr/faqs/hacker-howto.html#what_is

Rheingold, H. (1994). Virtual community. London:
Minerva.

Sharma, S., Sugumaran, V., & Rajagopalan, R.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12, 7.

Stallman, R. (1985). The GNU manifesto. Re-
trieved from http://www.gnu.org/gnu/manifesto.
html

Unsworth, J. M. (2004). The next wave: Liberation
technology. The Chronicle of Higher Education,
50(21), B16-B20.

Vahalia, U. (1996). UNIX internals: The new
frontiers. Upper Saddle River, NJ: Prentice-Hall,
Inc.

Ye, Y., & Kishida, K. (2003). Toward an un-
derstanding of the motivation of open source
software developers. In Proceedings of the 25th

International Conference on Software Engineer-
ing (ICSE’03) (pp. 419-429).

KEY TERMS

 Free Software (FS): Software that users have
the freedom to alter, use, and redistribute, usually
under the terms of the General Public License.
Closely related to Open Source Software, the two
terms are sometimes used interchangeably. “Free”
is not associated with cost but with the freedom
associated with it. However, free software is often
cost-free as well.

 General Public License (GPL): A license
created by Richard Stallman that protects free
software from being turned into proprietary
software.

 Open Source Software (OSS): Software that
allows the user to see and alter the source code;
closely related to free software.

 Proprietary Software (PS): Software that
does not allow the user to see or alter the source
code.

578

Chapter XLV
Business Models in Open

Source Software Value Creation
Marko Seppänen

Tampere University of Technology, Finland

Nina Helander
Tampere University of Technology, Finland

Saku Mäkinen
Tampere University of Technology, Finland

INTRODUCTION

Firms have recognized an increasing need to
improve their abilities to change the way their
business operations are organized. Thus, they
assess new business opportunities and evaluate
them in terms of whether they would suit the
fi rm’s business portfolio. A business model is

ABSTRACT

This chapter explores how the use of a business model enables value creation in the open source software
(OSS) environment. We argue that this value can be attained by analyzing the value creation logic and
the elements of potential business models emerging in the OSS environment, since profi table business
is all about creating value and capturing it properly. Open source (OS) offers one possibility for fi rms
that are continuously fi nding new opportunities to organize their business activities and increase the
amount of value they appropriate according to their capabilities. Furthermore, the concept of a business
model is considered a tool for exploring new business ideas and capturing the essential elements of each
alternative. We propose that a general business model is also applicable in the context of OSS, and we
provide a list of questions that may help managers deal with OSS in their businesses.

considered a tool for exploring new business
ideas and capturing the essential elements of
each alternative. It is a construct for mediating
technologies’ development and economic value
creation; in other words, it is an abstract repre-
sentation of the business logic of a company. OS
is a phenomenon that almost every company has
encountered in the last couple of years. Obvi-

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 579

Business Models in Open Source Software Value Creation

ously, it offers opportunities for the creation of
new business, and thus, exploring the types of
alternatives it may offer for value creation is a
subject of growing interest.

We begin the chapter with a brief discussion
of value creation and business models, which are
applied and analyzed in the special context of
the OSS environment. We argue that a general
business model typical of proprietary software
business is also applicable in the context of
OSS. However, the elements of such a business
model appear and are implemented in the OSS
context in a different way than in the proprietary
software business. One reason for this is that the
value created in an OSS project often cannot be
owned by single companies. This argument of
the differences between OSS and proprietary
software business forms the starting point of our
analysis and is taken into account throughout the
chapter.

The objective of this chapter is to explore how
use of a business model enables value creation
within the OSS environment. We argue that this
value can be attained by analyzing the value cre-
ation logic and the elements of potential business
models emerging in the OSS environment, since
profi table business is all about creating value and
capturing it properly. Firms are continuously fi nd-
ing new opportunities to organize their business
activities and increase the amount of value they
appropriate according to their capabilities. OS
may offer one possibility for this.

BACKGROUND

Differences between Business
Based on Proprietary and Open
Source Software

In our examination, we have distinguished the
three most salient points separating proprietary
and OS software as (1) OS and licenses, (2)
networks and their actors, and (3) the customer.

The main differences emerge from the openness
of source code and licenses. OS code enables
anyone to further develop the original code, and
the license ensures that the will of the original
developer holds. With proprietary software, the
source code is not available, and typical licenses
restrict utilization of the source code to only the
commercial supplier of the software. Woods
and Guliani (2005) stated, “The most important
difference between software created by the OS
communities and commercial software sold by
vendors is that OSS is published under licenses
that ensure that the source code is available to ev-
eryone to inspect, change, download, and explore
as they wish. This is the essential meaning of open
source: the source code ... can be obtained and
improved by anyone with the right skills.”

The openness and availability of the source
code further mean that the value in OS projects
is created for the network, not for individual
companies or other entities or individuals. As it
is, the business models of the companies involved
in OSS projects must be linked to the business
models of other network actors and perhaps
include components outside the network. Thus,
management of network relationships has a key
role in OS business operations (Dahlander &
Magnusson, 2005).

The idea is that by openly sharing the software
code with others, each actor can do the part it
does best and the cooperative effort’s outcome is
characterized by high quality. Additionally, when
all actors have had the opportunity to do those
parts of the development work that are nearest
their respective core competencies, the develop-
ment work usually feels easy, fun, and rewarding
(Torvalds, 2001). A noteworthy feature of OSS
is that the knowledge to create the product is not
in the hands of fi rms but resides within various
actors in the fi rm. Posing a challenge for utiliza-
tion of this knowledge is that actors involved in
OSS networks sometimes have very contradictory
intentions and expectations. For example, fi rms
usually are more focused on the issue of monetary

580

Business Models in Open Source Software Value Creation

value, while many of the coders participating in
the OSS community fi nd that money is not the
fi rst or even sometimes the last, motivator.

Additionally, when we consider the issue of
creating value for the end customer, the role of the
customer in the OSS environment is not always
clear. In principle, all of the software coders can
be understood as customers since they develop
software for their own use. It is often claimed
that a good OS project starts “by scratching a
developer’s personal itch.” Apart from that, the
coders seldom think in terms of specifi c customers
for their projects; instead, all who want to utilize
their software are free to do so. Thus, customer
segmentation, while a typical consideration in
proprietary software business networks, is not
considered in OSS communities. More detailed
analyses of the differences can be found in the
works of Kooths et al. (2003, pp. 74-79) and
Lerner and Tirole (2004), who reviewed the
multidimensional nature of differences between
the proprietary and OS approach to the software
business.

Perspectives on Value Creation

In this section, value creation is discussed from
the monetary and nonmonetary standpoint and
in terms of various value creation functions
and evaluation criteria; fi nally, it is discussed as
something related to both the object of exchange
and the interactive relationship between customer
and supplier. During the interaction, the value is
perceived by both parties.

While both academics and actors in the fi eld
commonly make use of the concept of value, it
is often unclear what is actually meant by it in
different contexts (Ford & McDowell, 1999; Lind-
green & Wynstra, 2005; Ramsay, 2005; Wood-
all, 2003). From a rather broad perspective, the
concept of value can be regarded as the trade-off
between benefi ts and sacrifi ces (Berry & Yadav,
1996; Lapierre, 2000; Parolini, 1999; Ravald &
Grönroos, 1996; Slater, 1997; Walter, Ritter, &

Gemünden, 2001). These costs and benefi ts can
be understood in monetary terms, but they can
also be seen as including nonmonetary rewards
such as competence, market position, and social
rewards (Walter et al., 2001). Nonmonetary costs
might include time, effort, energy, and confl ict
invested by the customer to obtain the product
or service.

Both monetary and nonmonetary viewpoints
are also visible in the analysis of direct and indi-
rect value creation functions. According to Walter
et al. (2001), the direct value creation functions
are volume, profi t, and safeguarding functions,
while innovation, marketing, scouting, and ac-
cess functions are indirect functions. Volume and
profi t functions are usually easier to measure in
monetary terms, whereas the other value functions
are basically nonmonetary in nature, although in
the end, they should liquidate to money.

These monetary and nonmonetary costs and
benefi ts, however, are eventually evaluated in
the mind of the customer. Parolini (1999) dis-
cusses absolute and differential value, the latter
of which should be understood as dependent on
the customer’s own expectations and evaluations.
Thus, value is something the customer perceives.
Furthermore, the customer always perceives the
value of a certain product or service in relation to
other possible solutions (Parolini, 1999).

Additionally, Parolini (1999) discusses the
various criteria the customer can use in consid-
ering the value of products and services. These
criteria for products and services are whether they
improve the performance of the customer or reduce
costs; whether they are hygienic or motivating;
whether they are under the control of whomever
is performing the analysis; and whether the costs
are borne before, during, or after the purchase.

Value before (i.e., potential value), during (i.e.,
exchange value) and after (i.e., use value) pur-
chase are important elements to take into account
when discussing value creation. Value creation
should be understood as a process during which
the customer and supplier interact. During the

 581

Business Models in Open Source Software Value Creation

interaction, the product or service is exchanged
between the parties, and the benefi ts and sacrifi ces
are thus realized. However, there is also a great
amount of interaction between the parties in the
relationship that is not directly related to the object
of exchange. This interaction, however, usually
does infl uence how the customer perceives the
total value gained.

To be more precise, the benefi ts and sacrifi ces,
whether understood in monetary or nonmonetary
terms, are related naturally to the product or ser-
vice that is exchanged between the supplier and the
customer, as Reidenbach, Reginald, and McClung
(2000) suggest when they defi ne value as “the in-
teraction between the benefi ts that customers want
from a particular product/service and the price
they are willing to pay to acquire the benefi ts pro-
vided by that product/service.” However, Thomas
and Wilson (2003) suggest that consideration of
benefi ts and sacrifi ces should not be limited only
to something related to the object of exchange;
instead, they say, value should be considered also
in relation to the benefi ts and sacrifi ces that occur
in/from the relationship between the supplier and
the customer. In other words, customers do not
perceive the value merely through the object of
exchange; they also take into account the whole
relationship with the supplier as an infl uence on
the amount of perceived net value (Lindgreen &
Wynstra, 2005).

Kothandaraman and Wilson (2001) also ad-
dress the issue of understanding value creation
related to the product as well as to the overall
process through which the product is developed,
marketed, and delivered to the customer. Un-
derstanding value creation as a process between
the supplier and the customer makes visible the
relevant roles of both the customer and the sup-
plier. We argue that just as it is not enough to study
a relationship from the viewpoint of one party
alone, the analysis of value creation also should
not focus on only the customer’s perspective,
the latter being, unfortunately, the main area of
concentration in recent literature (for refreshing

exceptions, see Möller & Törrönen, 2003; Walter
et al., 2001).

The customer and the supplier both have their
own views and infl uences on the value that is cre-
ated, and both parties also want to capture their
own share of the value. Figure 1 illustrates the
viewpoint of both the customer and the supplier
in value creation.

In order for a business to be profi table, the value
captured by the supplier (denoted by VF) should
be higher than that created for the customer (VC).
We argue that the value perceived by a customer
may change due to use of OS but not in every case.
The value may change; for instance, the customer
may perceive the utilization of OS components as
more valuable than proprietary components for
ideological reasons. We argue that the effects of
utilizing OS components, nevertheless, may result
in higher perceived value for the supplier fi rm.
If, for example, a fi rm uses OS components in its
product development, it may achieve either more
value with the same effort or the same value with
less effort (see in Figure 1 the difference in effort
level between VFOS

 and VF).
The successfulness of the interaction between

the supplier and the customer infl uences the net

Figure 1. Perceived value and effort of the fi rm
with proprietary vs. open source software

VFOS

VF

VC

Effort of firm

To
ta

l p
er

ce
ive

d
va

lu
e

Firm’s effort to achieve the
same total value perceived

decreases

582

Business Models in Open Source Software Value Creation

value perceived by the counterparts also in the
OS environment. Thus, the supplier needs to keep
in mind that it is not only the functionality of
the actual object of exchange (i.e., the software),
but it is the services offered around the software
and the whole relationship with the supplier that
infl uence the value perception of the customer. In
many OS cases, the supplier, in fact, is offering
services to the customer, while the source code as
the actual object of exchange could be acquired
by the customer directly from the specifi c OS
project. The customer is actually acquiring the
software from the specifi c supplier because he
or she trusts the ability of the supplier to create
more value in the form of smooth cooperation,
upgrading, and maintenance services.

MAIN FOCUS OF THE CHAPTER:
PURPOSE AND ELEMENTS OF
BUSINESS MODELS

The Purpose of a Business Model

A business model is seen as a tool for exploring
new business ideas and capturing the essence of
each alternative. It is an abstract representation
for mediating the development of technology and
economic value creation. The business model con-
cept often is discussed at only a superfi cial level
(Porter, 2001). The model could be a tool allowing
different strategic alternatives to be examined and
developed before actions are taken, such as a shift
in strategy or other change. There has been much
confusion about the division of tasks between a
strategy and a business model. Some have even
considered the two concepts to be synonymous,
while others have strongly argued that business
models should include strategic aspects. By defi -
nition, a business model should encompass the
business logic of a company. Still other authors
have not seen any use for the latter concept, view-
ing it as the emperor’s new clothes.

Although the concepts of a business model and
strategy are highly complementary, they are not
the same. A strategy focuses on value appropria-
tion, while a business model explains how value
is created for all stakeholders. Chesbrough and
Rosenbloom (2002) made three clear distinctions
between the two. First, a business model is based
on value creation for the customer, but emphasis
on capturing that value and sustaining it is part of
the scope of a strategy. Second, fi nancing of the
value creation is implicitly assumed in business
models, whereas a strategy explicitly considers
the fi nancing issues of value creation because of
the underlying assumptions of shareholder value
creation. Finally, there is a difference in the as-
sumptions about the state of knowledge held by
the fi rm and its stakeholders. Business models
consciously assume limited and distorted infor-
mation and knowledge, while a strategy is built
on analysis and refi nements in knowledge and,
therefore, assumes the existence of a plentitude
of reliable information to be transformed into
knowledge. A practical distinction describes
business models as a system that shows how the
pieces of a business fi t together, while strategy
also includes competition (Magretta, 2002).

We specify the purposes of a business model
in accordance with the view of Chesbrough and
Rosenbloom (2002), who argue that the functions
of a business model are as follows:

• To articulate the value proposition
• To identify a market segment
• To defi ne the structure of the value chain

within the fi rm
• To estimate the cost structure and profi t

potential
• To describe the position of the fi rm within

the value network
• To formulate the competitive strategy

An explicit business model makes visible at
least some of the invisible assumptions made dur-

 583

Business Models in Open Source Software Value Creation

ing the design of a model. We are able to visualize
what boundaries guide our thinking processes
and may also restrict applicability. Moreover, the
prerequisites for success of the business model in
question may become clearer.

The Elements of a Business Model

An important consideration is the context-specifi c-
ity of a business model. Is there need for specifi c
models that are targeted to a particular industry?
Regardless of the several industry-related papers
devoted to these (i.e., business models for e-busi-
ness) (Rappa, 2003; Rayport & Jaworski, 2001;
Weill & Vitale, 2001), we propose that there is
no need for a context-specifi c business model. A
generic business model should involve the same
elements, regardless of the industry in which the
model is used. A context-specifi c model (perhaps
with a prefi x) should be seen as a local application
of a general business model.

OSS as a phenomenon does not require any
special business model as such. A generic busi-
ness model could act as well in that environment

as in any other. Indeed, the requirements for
such a business model are the same as in the
general case. Yet, of course, the application of a
general model refl ects the characteristics of this
particular business environment. For example,
Timmers (2003) pointed out that the focus shifts
from creating value through internal activities to
creating value through external relations, and the
number of relationships multiplies. He proposed
that these relationships within the value-creating
network are an inseparable part of the business
model of a fi rm.

We propose that the generic business model of
Osterwalder, Pigneur, and Tucci (2005) has all of
the elements needed to fulfi ll the aforementioned
purposes for a business model (see Figure 2).

For some readers, these elements may ring a
bell. Indeed, “business plan” is used sometimes as
a synonym for “business model.” Business plans
are useful tools for developing new businesses.
However, they are a bit too heavy and infl exible
for considering new business practices, and, as
practice has many times demonstrated, they can-
not show how the whole business should function

Figure 2. The elements and structure of a business model (Source: Modifi ed from Osterwalder et al.,
2005)

Infrastructure
Operations

Product
Innovation

Customer
Relationship

Financial
Aspects

Partnership
Relationship

Capability
Value

Confi guration
Value

Proposition
Distribution

Channel
Target

Customer

Cost
Structure

Revenue
Model

584

Business Models in Open Source Software Value Creation

(i.e., indicating what mechanism makes the busi-
ness idea in question tick). Table 1 explains how
the suggested business model approach functions.
When a firm is considering utilization of OSS,
it should answer certain questions. The example
questions are presented separately for each ele-
ment of a generic business model, and the elements
therein are also described in more detail.

Product Innovation

The value proposition explains the overall bundle
of products and services offered by the company.
It typically starts from an innovation or product
idea, and the aforementioned considerations of
value creation are tightly linked to this element.
The firm’s ability to interpret its own intentions

Table 1. Business model elements and example questions in OSS

Element Description Questions

Value
Proposition

Gives an overall view of a
company's bundle of products
and services

Does the utilization of OSS affect the way the
customer perceives our value offering? How do
we take OSS into account in customer
marketing?

Target
Customer

Describes the market segments
to which a company wants to
offer value

Who are our target customers? Does OSS
impose restrictions or provide wider access for
certain market segments?

Distribution
Channel

Describes the company's the
various means of getting in
touch with its customers

Could we use open distribution (Sourceforge or
other), our own web site, or other servers? How
are potential utilizers going to find us or our
product?

Relationship

Explains the kind of links a
company establishes between
itself and its different customer
groups

What is an appropriate OS license to use?
What kind of relationship are we going to
create with the community?

Value
Configuration

Describes the arrangement of
activities and resources

What is our role in the community? How do we
share resources and carry out activities with
the other actors and community players?

Core
Competency

Outlines the competencies
necessary to actualize the
company's business model

What are the competencies we especially seek
from and can offer to the community? How are
we to manage relationships and maintain
sustainable development?

Partner
network

Portrays the network of
cooperative agreements with
other companies that are
necessary for efficiently offering
and commercializing value

What kinds of agreements are we going to
make with various participants? How does
utilization of OSS affect our partners outside
the community?

Cost Structure
Sums up the monetary
consequences of the means
employed in the business model

What kind of cost structure do the
aforementioned choices involve? Are we able
to cope with the economic consequences?

Revenue
Model

Describes the way a company
makes money through a variety
of revenue flows

What revenue models should we choose? Do
we prepare revenue and risk sharing models?

 585

Business Models in Open Source Software Value Creation

correctly is crucial. If the value proposition re-
mains vague or even misleading, this may predict
diffi culties in the implementation of the rest of
the business model, and in the worst case, desired
success in the market does not occur.

Customer Relationships

First, selection of target customer(s) is closely
linked to the value proposition element. If, for
example, a fi rm chooses a developer group or
a community as its primary target customer, it
must understand who the secondary customers
(the primary customer’s customers) are and the
nature of their needs. In other words, selection of
target customer demarcates what kinds of value
propositions are within range. Second, decisions
concerning distribution channels mainly specify
how the targeted market segment is to be reached.
These decisions involve marketing, communica-
tion, and advertising. For example, Red Hat has put
a lot of effort into advertising in order to reach its
potential customers. Third, license policy and at-
titudes toward OS communities are the main items
falling under the relationships element. Choosing
an appropriate license may refl ect the possibility
a certain business idea has of success.

Infrastructure Operations

The fi rst thing that must be understood in planning
and starting to negotiate with suitable communi-
ties is the “onion model of communities” (Naka-
koji, Yamamoto, Nishinaka, Kishida, & Ye, 2002).
There may be a multitude of people linked loosely
to a particular community, but not all are equal
in importance. A fi rm, if it is to understand what
kind of decision-making mechanism a community
utilizes, must fi nd a successful way to cooperate
(Crowston & Howison, 2005; Mockus, Fielding,
& Herbsleb, 2000; Raymond, 2000). For instance,
IBM’s way to cooperate with Eclipse community
seems to work very well. IBM supports the com-
munity’s development by donations and by hiring

experts to work for community purposes; these
actions also mutually support IBM’s business
purposes. Second, to benefi t from what OS may
offer, a fi rm must be able to carry out operations
such as searches, evaluations, and negotiations.
Thus, the core competencies of such a fi rm must
lie in these areas. It has been recognized that it
is not very easy to assess the maturity of an OS
project (Comino, Manenti, & Parisi, 2005; Woods
& Guliani, 2005). Finally, a partnership network
actually is created on the basis of decisions made
about earlier elements. It is in considering this
element that decisions concerning agreements
between parties are made. Agreements typically
include descriptions of responsibilities and docu-
ments outlining the sharing of revenues and risks,
for example.

Financial Aspects

Cost structure, as well, is based on choices made
earlier. The effi ciency of the fi rm’s operations (ac-
tivities such as search and evaluation) determines
the company’s internal cost structure. External
cost structure is based mainly on the selection
of licenses, partners, and customers. Finally,
revenue model is based on the value proposition,
the choice of target customer, license model, and
other environmental elements. A famous example
of successful licensing model is MySQL and its
dual licensing. To develop and distribute OS ap-
plications under a GPL license, it is free to use
MySQL, whereas a commercial license is offered
for business purposes. There is no consensus as
to whether some revenue models are better than
others; one can only go by examples of what may
create a successful business.

Appearances of the elements of the generic
business model presented here differ not only
between proprietary and OSS contexts but also
among types of OS intensive fi rms. Some fi rms are
more involved with OSS than others. For example,
some utilize OSS tools in their own software de-
velopment; others use OSS components as part of

586

Business Models in Open Source Software Value Creation

a system solution sold to end customers, and some
fi rms are built entirely on OSS. Furthermore, the
skills required can vary widely, depending on the
maturity of the OS project (Woods & Guliani,
2005). In an OS business, a fi rm should recognize
its own position desired and skill level needed.
When the OS world evolves, OS expertise is be-
coming increasingly for sale, and thus, fi rms have
more opportunities to buy expertise that they do
not possess by themselves.

We argue that the generic business model pre-
sented in this chapter is applicable in considering
each of these uses of OSS. It is just the way in
which OSS affects the elements of the business
model that varies. For example, a fi rm that utilizes
OSS as a software development tool does not need
to think about most of the questions presented
in Table 1; whereas a fi rm that has built all of its
operations on OSS needs to consider all of the
suggested questions.

DISCUSSION AND FUTURE TRENDS

Academics and businesspeople often speak of
business models when they really mean only
parts of one (Linder & Cantrell, 2000). The ba-
sic message of this chapter is that the elements
of a business model remain the same regardless
of industry. These elements are necessary if the
model is to cover all aspects of business. Choosing
a license is a very important part of a business
model creation, but the license on its own does
not dictate the business model. We have already
demonstrated how these elements can be con-
sidered in the OS environment from a business
perspective.

One of the premises for a successful business
is that the value perceived by the customer must
be higher than the monetary counterpart—price.
Traditionally, only when this is the case may a
monetary transaction occur. The very essence of
a business model is that it is a construct mediat-
ing the creation of value from a technological

potential. Thus, the concept of value must be
regarded as multidimensional; and perceived
value, in particular, as seen from both customer
and supplier perspectives, is important when
one considers value proposition. As Raymond
(2000) pointed out in his seminal book, the de-
velopmental work for an OS project should be
executed according to the top-down principle, not
bottom-up. Therefore, managers can remember
as a basic guideline that the fi rm should fi rst be
very clear as to what needs it hopes to address
by taking part in or even simply utilizing OSS.
When these basic questions have been answered,
the process may proceed further.

The suggested business model is, in its cur-
rent form, still somewhat abstract. However, it
nonetheless may aid in structuring, thinking,
visualizing, and further developing the planned
mode of operations. Some authors have already
developed computer-aided tools to assist in the im-
plementation phase (Gordijn, 2004; Osterwalder
et al., 2005). Another defi ciency in the model is
the weak link to operations. The nine elements
should be further developed and grounded soundly
in existing theoretical frameworks. Although
some authors (Fogel, 2006; Woods & Guliani,
2005) have already offered practical viewpoints
and guidelines for managers, academic research
should take a more normative direction. Existing
business models are typically only descriptive,
whereas managers call for normative guidelines
that could help in daily work. Linking elements
more closely to the operational level of a fi rm
would be of use in fi nding ways to operational-
ize and fi nally implement a particular business
model. At the moment, this can give us only a
static picture of business.

When the number of fi rms involved in OS
increases, interest in the issue of value creation
with OSS will grow as well. Business model dis-
cussion then will be a key area of interest, since
a business model is a tool for value creation. One
avenue for future research involves not limiting
the discussion to critical analysis of successful

 587

Business Models in Open Source Software Value Creation

business models for single fi rms but, instead,
addressing the matter of how the elements of
business models of several fi rms acting in the
OSS network will engage and codevelop. In the
network context, the question of fi rms and their
ways of operating is only a starting point. The
more interesting and potentially fruitful question
is that of interaction and relationship management
among the commercially oriented fi rms and the
individual coders involved in the community.

CONCLUSION

In this chapter, we have addressed value creation
and business models in the context of OSS. We
defi ned the elements of value and a business model,
and additionally provided a list of questions that
should help managers deal with OSS in their busi-
nesses. We also have made comparisons between
businesses with operations based on proprietary
software and OSS. Although there are clear dif-
ferences between the two, there is no need for a
new kind of generic business model.

The generic business model suggested in this
chapter is also applicable in the OSS fi eld; only the
emphasis and appearance of the elements of the
model may vary. All in all, nonmonetary value and
voluntary value division between network actors
is typical of OSS business, meaning further that
there are differences in value creation logic be-
tween businesses based on OSS and ones centered
on proprietary code. This also causes variations
within the elements of the business model.

REFERENCES

Berry, L. L., & Yadav, M. S. (1996, Summer).
Capture and communicate value in the pricing of
services. Sloan Management Review, 41-51.

Chesbrough, H., & Rosenbloom, R. S. (2002). The
role of the business model in capturing value from

innovation: Evidence from Xerox Corporation’s
technology spin-off companies. Industrial and
Corporate Change, 11(3), 529-555.

Comino, S., Manenti, F. M., & Parisi, M. L. (2005).
From planning to mature: On the determinants
of open source take off. Retrieved December 13,
2005, from http://opensource.mit.edu/

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software de-
velopment. First Monday, 10(2). Retrieved from
http://www.firstmonday.org/issues/issue10_2/
crowston/index.html

Dahlander, L., & Magnusson, M.G. (2005).
Relationships between open source software
companies and communities: Observations from
Nordic fi rms. Research Policy, 34, 481-493.

Fogel, K. (2006). Producing open source software:
How to run a successful free software project.
O’Reilly.

Ford, D., & McDowell, R. (1999). Managing busi-
ness relationships by analyzing the effects and
value of different actions. Industrial Marketing
Management, 28, 429-442.

Gordijn, J. (2004). E-business model ontologies.
In W. Curry (Ed.), E-business modelling using
the e3-value ontology (pp. 98-128). Oxford, UK:
Elsevier Butterworth-Heinemann.

Kooths, S., Langenfurth, M., & Kalwey, N. (2003).
Open source software. An economic assessment.
MICE Economic Research Studies, 4, 95.

Kothandaraman, P., & Wilson, D. T. (2001). The
future of competition: Value-creating networks.
Industrial Marketing Management, 30, 379-
389.

Lapierre, J. (2000). Customer-perceived value
in industrial contexts. Journal of Business &
Industrial Marketing, 15(2/3), 122-140.

Lerner, J., & Tirole, J. (2004). The economics of
technology sharing: Open source and beyond

588

Business Models in Open Source Software Value Creation

(No. 10956). Retrieved February 22, 2005, from
http://opensource.mit.edu/

Linder, J., & Cantrell, S. (2000). Changing busi-
ness models: Surveying the landscape. Accenture
Institute for Strategic Change. Retrieved March
14, 2004, from http://www.accenture.com/global/
research_and_insights/

Lindgreen, A., & Wynstra, F. (2005). Value in
business markets: What do we know? Where are
we going? Industrial Marketing Management,
34, 732-748.

Magretta, J. (2002, May). Why business models
matter. Harvard Business Review, 86-92.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software development:
The Apache server. In Proceedings of the ICSE.
Retrieved from http://opensource.mit.edu/

Möller, K. E. K., & Törrönen, P. (2003). Business
suppliers’ value creation potential: A conceptual
analysis. Industrial Marketing Management, 32,
109-118.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y.,
Kishida, K., & Ye, Y. (2002). Evolution patterns of
open source software systems and communities.
In Proceedings of the International Workshop
on Principles of Software Evolution, Orlando,
Florida. Retrieved from www.kid.rcast.u-tokyo.
ac.jp/~kumiyo/mypapers/IWPSE2002.pdf

Osterwalder, A., Pigneur, Y., & Tucci, C. L. (2005).
Clarifying business models: Origins, present,
and future of the concept. Communications of
the Association for Information Systems, 16(1).
Retrieved from http://cais.aisnet.org/articles/de-
fault.asp?vol=16&art=1

Parolini, C. (1999). The value net: A tool for
competitive strategy. West Sussex, UK: John
Wiley & Sons.

Porter, M. E. (2001). Strategy and Internet. Har-
vard Business Review, 79(3), 62-78.

Ramsay, J. (2005). The real meaning of value in
trading relationships. International Journal of
Operations & Production Management, 25(6),
549-565.

Rappa, M. (2003). Business models on the Web.
Retrieved November 9, 2004, from http://digital-
enterprise.org/models/models.html

Ravald, A., & Grönroos, C. (1996). The value
concept and relationship marketing. European
Journal of Marketing, 30(2), 19-30.

Raymond, E. S. (2000). The cathedral and the
bazaar. Sebastopol, CA: O’Reilly.

Rayport, J. F., & Jaworski, B. J. (2001). E-com-
merce. Boston: McGraw-Hill.

Reidenbach, R. E., Reginald, W. G., & McClung,
G. W. (2000). Dominating markets with value:
Advances in customer management. Morgantown,
WV: Rhumb Line Publishing.

Slater, S. F. (1997). Developing a customer value-
based theory of the fi rm. Journal of the Academy
of Marketing Science, 25(2), 162-167.

Thomas, S., & Wilson, D. T. (2003). Creating
and dividing value in a value creating network.
In Proceedings of the 2003 IMP conference.
Retrieved October 3, 2005, from http://www.
impgroup.org/

Torvalds, L. (2001). Just for fun. Keuruu, Finland:
Harper Collins.

Walter, A., Ritter, T., & Gemünden, H. G. (2001).
Value creation in buyer-seller relationships: Theo-
retical considerations and empirical results from
a supplier’s perspective. Industrial Marketing
Management, 30(4), 365-377.

Weill, P., & Vitale, M. R. (2001). Place to space.
Migrating to eBusiness models. Boston: Harvard
Business School Press.

Woodall, T. (2003). Conceptualising ‘value for
the customer’: An attributional, structural and

 589

Business Models in Open Source Software Value Creation

dispositional analysis. Academy of Marketing
Science Review, 12. Retrieved from http://oxygen.
vancouver.wsu.edu/amsrev/theory/woodall12-
2003.html

Woods, D., & Guliani, G. (2005). Open source for
the enterprise. Managing risks, reaping rewards.
Sepastopol, CA: O’Reilly.

KEY TERMS

 Business Model: A tool for exploring new
business ideas and capturing the essence of each
alternative.

 Competitive Strategy: How a fi rm attracts
customers, withstands competitive pressures, and
strengthens the fi rm’s market position.

 Core Competency: The set of skills that an
organization must perform well in order for the
organization to be successful in comparison with
its rivals.

 Value Chain: The generic value-adding activi-
ties of an organization that provide an analysis
tool for strategic planning.

 Value Network: Three or more organizations
strategically collaborate to create superior value
to the end-customer.

 Value Proposition: How an organization
will differentiate itself to customers, and what
particular set of values it will deliver.

590

Chapter XLVI
Novell’s Open Source Evolution

Jacobus Andries du Preez
University of Pretoria, South Africa

Yocto Linux & OSS Business Solutions, South Africa

INTRODUCTION

Novell, Inc. is one of only a few multinational
organizations that originally produced proprietary
software and is now driving and successfully
implementing a free/libre open source software
(FLOSS) business strategy. Since 1994, Novell
has been actively making use of open standards
and open source software (OSS) from both a
technical and a business point of view. Today,
Novell uses open source standards and software
in its business strategy.

In recent years, researchers have taken a keen
interest in the open source sphere and how it can
be applied to business strategies and business

ABSTRACT

Novell, Inc. was a leading network operating system provider in the 1980s and early 1990s. However,
in the mid-1990s, Novell lost market share in the network operating system market. To counter this loss
of market share, Novell made a strategic decision to go open (i.e., to make use of open standards and
open source business strategies). Novell employs a subscription strategy, selling subscriptions to its
Linux desktop operating system called SuSE. Novell has subsequently successfully handled the change-
over from being a proprietary network operating system provider to being a leader in Linux and open
source solutions. For example, a comparison of the fi nancial results of Novell’s fourth quarters of 2004
and 2005 shows an increase of 418% in Linux revenue to US$61 million. Novell has demonstrated that
open source business strategies are feasible and profi table.

models (Koenig, 2004; Raymond, 2000, August;
Raymond, 2000, September).

A concern exists within the academic world
that in this arena there is no substantial evidence
on whether the processes and practices are ef-
fective within the business environment and
whether the theories are not prematurely adopted
in an enthusiastic manner (Bitzer & Schröder,
2004; Scacchi, 2004). Goode and Golden (2004;
2004) suggest that organizations are reluctant
to be initial adopters of open source strategies
without knowing whether or not OSS can bring
substantial fi nancial benefi t to their organiza-
tions’ business.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 591

Novell’s Open Source Evolution

Raymond (2000, August) points out that by
studying this question, one will gain valuable
insight into the economics of open source use.
Therefore, there is a need for studies to be done on
organizations that have successfully implemented
an OSS strategy (Raymond, 2000, August). Not
enough practical core studies have been done
based on any successful use and implementation of
effective open source strategies and business mod-
els (Bitzer & Schröder, 2004; Scacchi, 2004).

This chapter is an attempt to fulfi ll the need
for such a study and will hopefully prove that
an open source business strategy is a feasible
and profi table option. The outcome is based on a
practical case study.

BACKGROUND

Apart from any studies done, Raymond (2000,
August) suggests that organizations releasing
their products as open source compel information
technology organizations to focus on the service
industry rather than on the product manufactur-
ing industry.

Specifi cally, he suggests that Linux distributors
should compete with each other in a manner that
would benefi t us all. They are required to compete
on service and support rather than product and
price. Legally and ethically, Linux distributors
can only sell service, administration, support,
distribution, media, training, and its brand to
consumers and clients who are willing to comply
with the terms and conditions of the GPL license
under which the Linux kernel is licensed (Lerner
& Tirole, 2005; Raymond, 2000, August).

Novell has followed a route that has allowed it
to enter the open source market more effectively
by providing Linux distribution and Linux sup-
port, and by selling proprietary software along
with open source Linux distribution. This allowed
Novell to profi t from selected proprietary products
as well as to enter the service industry. Novell is
believed to have effectively entered the service

market and is considered a successful open source
provider, having followed a systematic rather than
a “big-bang” approach.

The intention in this study is to look at several
factors to determine whether or not Novell has
made a success of its One Net strategy (a world
without information boundaries), which is mainly
driven by OSS.

To do this, I will show that Novell actively
changed from being a proprietary software
provider to being mainly a service provider of
open sources in particular, changing its strategy
to deliver a business solution by making use of
Linux and OSS. This study will examine Novell’s
corporate history, its public fi nancial statements
(10K fi lings), and interviews with Novell personnel
to show that open source is a viable and alterna-
tive to proprietary software.

OSS Business Models

According to Young (1999), making money with
OSS is very similar to making money with pro-
prietary software. This is achieved by producing
a good product, properly marketing it, taking care
of one’s customers’ needs, and building a brand
that represents excellent service and quality.

Hendry (2002) maintains that open source use
enables companies to make money, save money,
and form better business partnerships with greater
compatibility by means of various credible busi-
ness models.

Similarly, Dahlander (2004) contends that
although contributions to the OSS process are
public, this should not be misconstrued as mean-
ing that innovators are prohibited from capturing
private returns from their contributions. In other
words, an enterprise can make money from open
source use.

The benefi ts of using Linux, according to
Young (1999), are not its ease of use, the operating
system’s robustness, its high reliability, or the OSS
tools with which Linux is distributed, but rather
the benefi t of control it provides to use, change,

592

Novell’s Open Source Evolution

and redistribute the source code, as well as the
freedom it represents in allowing access to the
source code for understanding and modifi cation
or customization.

Gacek, Lawrie, and Arief (2004) describe the
primary way to obtain private returns from OSS
as providing service and distribution packages for
OSS. Another means of commercializing OSS is
by using open sources as a basis upon which other
proprietary software can be built.

Hawkins (2004) asserts that open source busi-
ness models can be subdivided into two catego-
ries: business models for the software consumer
and business models for the software producer.
When referring to the models for consumers, this
signifi es the total cost of ownership (TCO) of the
chosen software solution. When referring to the
models for software producers and, in particular,
the revenues of the company, there are a few
prospective sources of revenues, such as sale of
software, support of software, increased hardware
sales, training, consulting, customization, distri-
bution, and the value of internal use.

McKelvey (2001) maintains that there are three
idealistic business models that assess advances
in knowledge-intensive products and services; to
wit, fi rm-based control, network-based model, and
a hybrid model. Each of these can then be subdi-
vided into the two facets of innovation; namely,
economic value and creation of novelty.

Hecker (1999) suggests that in order to imple-
ment an effective open source strategy, an organiza-
tion should consider the implications and manage
the following factors: code sharing, third-party
technology, source code sanitization, export con-
trol, and a new software development process.

By providing solutions on time to the busi-
ness’ customers, according to Raymond (2000,
August), a business can make money using any
one or more of the seven open source business
models he describes.

Koenig (2004) highlights seven business strate-
gies that can give hardware or software vendors
a competitive advantage. These strategies are the

optimization strategy, the dual license strategy,
the consulting strategy, the subscription strategy,
the patronage strategy, the hosted strategy and,
fi nally, the embedded strategy.

The subscription strategy, also known as the
revenues-for-services strategy, is one in which
a provider charges a license fee for software
mainly to provide maintenance and consultation
services. Novell uses this strategy. Novell acquired
SuSE (Software- und System-Entwicklung) in
an attempt to supplement its declining NetWare
maintenance revenue and to enter the Linux
desktop market in which the adoption rate is very
promising (Koenig, 2004).

A particular approach, as described by Covey
(2000), highlights a way to sell and make money
with OSS. Covey specifi es that the trick is not to
sell a support contract but rather an administra-
tion contract. He explains that users of systems
do not need support all that often but do require
their systems to be administered on a regular
basis. Users of computing systems require their
computers to be updated with the latest security
patches and application updates, something us-
ers do not want to do or do not have the relevant
experience or knowledge to do.

On the other hand, Hohensohn and Hang (2003)
maintain that open source service providers can
be subdivided into fi ve categories: distributors as
OSS service providers, large hardware producers,
large software fi rms, global system integrators,
and specialized open source service providers.

Mantarov (1999) illustrates how a small fi rm
(in 1999) such as Red Hat Software Inc. could
enter a mature market by implementing an in-
novative strategy and turning threats and barriers
into opportunities.

Novell traditionally made use of proprietary
software and business strategies that coincided
with the proprietary software. By going open,
Novell made use of OSS and open source business
strategies. The strategic decision to go open is
explained in the next section, which summarizes
Novell’s corporate and open source history.

 593

Novell’s Open Source Evolution

Figure 1. Novell’s timeline of major events

Novell’s History

See Figure 1, Novell’s timeline of major events, for
a graphical representation of Novell’s history.

The company was founded in 1979 in Provo,
Utah, as Novell Data Systems Inc. At the time,
Novell was a computer hardware manufacturer
producing CP/M-based systems. The company

594

Novell’s Open Source Evolution

was cofounded by Jack Davis and George Canova.
The name Novell, suggested by Canova’s wife,
was a misinterpretation and was originally thought
to mean “new” in French. Safeguard Scientifi c
provided the seed capital for the company startup.
The company did not do well initially, and both
founders left the company soon afterwards. Vic-
tor Vurpillat, who originally organized the seed
capital for the company, did not want the company
to liquidate and persuaded Raymond Noorda to
join the company as president (Novell Pressroom,
2004; Wikipedia, 2005).

During January 1983, the fi rm was renamed
Novell, Inc., and Raymond Noorda was sub-
sequently appointed CEO in May 1983. Under
Noorda’s guidance, Novell helped to establish the
corporate network market with the introduction of
the local area network (LAN). That year, Novell
introduced a multiplatform network operating sys-
tem (NOS) called Novell NetWare, the fi rst LAN
software based on fi le-server technology. The NOS
made use of proprietary standards developed by
Novell called IPX (Internet Packet eXchange)
and SPX (Sequenced Packet eXchange), which
were based on XNS and created the standards
from IDP and SPP (Novell Pressroom, 2005;
Wikipedia, 2005).

In the 1980s, network software began sharing
fi les and printers within the LAN and expanded
to include the management of wide area networks
(WANs), which made enterprise-class computing
possible. During the 1980s, Novell did extremely
well, aggressively increasing market share by
selling costly Ethernet network cards at a reduced
price. In 1989, Novell acquired Excelan to gain
valuable experience and TCP/IP-related software
technologies. That year, Novell also released the
very fi rst commercially available 32-bit operat-
ing system for the 80386 CPU series processors
(Novell Facts, 2004; Novell Pressroom, 2005;
Wikipedia, 2005).

By 1990, Novell was the dominant player in
providing NOS for any businesses that required
a computer network. In 1991, Novell acquired

Digital Research and released Novell DOS (also
known as DR-DOS). This was done in order to
break the Microsoft monopoly in the operating
system market. Novell moved further away from
its original market (smaller companies) to target
larger corporations. Unfortunately, at the same
time, Novell underinvested in research and devel-
opment, which resulted in its key products being
too complex to administer and control properly
(Wikipedia, 2005).

In May 1991 Microsoft announced that it would
be discontinuing the OS/2 partnership and would
focus its time and resources on the Windows
platform. This included the Windows NT kernel.
This allowed them to enter the local area network
market. During June 1993, Novell acquired Unix
System Laboratories from AT&T, which gave it
the rights to the UNIX kernel as well as Tuxedo
(Transactions for UNIX, Extended for Distributed
Operations), a transaction-orientated middleware
platform used to manage distributed transaction
processing. This was apparently done to compete
directly with Microsoft in the enterprise network-
ing and distributed transaction area. A month
later, in July 1993, Novell acquired Fluent Inc.
(a multimedia software company) for US$17.5
million. In the 1990s, Novell’s NetWare operating
system was updated to include key features for
distributed enterprises.

During February 1994, Novell released the fi rst
commercially available, distributed, secure au-
thentication system and enterprisewide directory
service. That same year, in June, Novell acquired
WordPerfect and Quattro Pro from Borland Inc. to
gain entry into the offi ce suites, workgroup, and
standalone desktop applications market.

However, Novell was losing the network
operating system market to Microsoft. With No-
vell losing market share and strained by the new
competition, Noorda left Novell in 1994. John
Young was appointed interim CEO. Novell was
subsequently forced to sell UNIX to Santa Cruz
Operation (SCO) in 1995. By 1996, Novell had
sold WordPerfect and Quattro Pro as a package

 595

Novell’s Open Source Evolution

deal to Corel. DR was sold to Caldera Systems,
and Tuxedo was subsequently sold to BEA sys-
tems in 1996.

In 1996, Novell interim CEO John Young real-
ized that the Internet would make a tremendous
impact on the traditional network market. He took
a strategic decision to make all the company’s prod-
ucts Internet-ready by supporting standard Internet
protocols such as the TCP/IP protocol stack.

Eric Schmidt was appointed CEO in March
1997. He continued to drive the current strategy
to get Novell’s products portfolio Internet-ready.
The result was NetWare 5 and Novell Directory
Services.

In the last months of 1999, Novell released a
high-availability cluster system as well as an e-
directory. Novell’s e-directory, a cross platform
directory service, was a key requirement to ensure
true interoperability, allowing effortless exchange
and use of data across the Internet.

In a strategic move, Novell acquired consult-
ing fi rm Cambridge Technology Partners in July
2001 in an effort to deliver both products as well
as quality services to its customers. This partner-
ship allowed Novell to deliver networking solu-
tions that assisted companies with their business
challenges. In 2001, CEO Eric Schmidt moved to
Google Inc. and was subsequently replaced by
Jack Messman, then CEO of Cambridge Tech-
nologies Partners.

July 2002 saw another bold step by Novell with
the acquisition of SilverStream Software, a Web
services-oriented applications development fi rm.
With the acquisition of SilverStream Software,
Novell acquired the expertise to convert business
processes to Web services. The business area, called
Novell exteNd, contains XML and Web service
tools based on J2EE (Java 2 Enterprise Edition).

In August 2003, Novell acquired Ximian, an
open source Linux desktop management solution.
With this acquisition, Novell gained two open
source visionaries, Nat Friedman and Miguel de
lcaza, and two key open source projects, Mono
(an open source Microsoft .NET implementa-

tion), and Gnome (a Linux desktop management
platform). This gave Novell tremendous exposure
in the open source community.

In January 2004, Novell acquired SuSE,
Europe’s leading commercial Linux distribu-
tion. With this acquisition, IBM invested a bold
US$50 million in Novell to show its support for
the acquisition.

Novell acquired another fi rm, Salmon, a UK-
based IT consultancy fi rm, in July 2004, in order
to strengthen its consultancy delivery. In Novem-
ber 2004, based on the SuSE distribution, Novell
released the enterprise desktop, Novell Linux
Desktop 9. Also in November, Novell and Microsoft
settled a legal antitrust case for US $536 million
based on Microsoft’s efforts in the mid-1990s to
eliminate competition in the offi ce productivity
applications market.

Later, in February 2005, Novell released e-
directory developer interfaces to the open source
community. At that time, Novell also launched
the open source collaboration server initiative (an
open source project providing calendar and mail
functionality). In March 2005, Novell released the
Open Enterprise Server, a secure suite of services
that provides networking, communication, and
application services. A month later, in April 2005,
Novell acquired Tally Systems Corporation, an IT
asset management solutions company. In May, No-
vell announced the acquisition of Immunix Inc., a
host-based application security solutions provider.
Later that year, in August 2005, Novell released
SuSE as an open source project and named this
project openSuSE (Novell Facts, 2005). Shortly
afterwards, Novell released SuSE 10.

Novell’s Strategy

“Novell will accelerate the adoption of Linux by
working with its partners to remove barriers to
Linux adoption” (Novell Keynote Presentation,
2005, May, p. 9).

It is apparent from the published works on open
source business strategies that Novell acquired

596

Novell’s Open Source Evolution

SuSE in an attempt to increase its diminishing
NetWare maintenance revenue, and aims to get the
fast adoption rate of the Linux operating system
on board (Koenig, 2004).

According to an internal McKinsey consul-
tancy study, 30% of the income from enterprise
solutions comes from license fees and about 70%
from implementation of the solution (Koenig,
2004). In addition, a 2000 U.S. Department of
Commerce report states that not since 1962 has
software package cost exceeded 30% of the total
software investment (Hoch, Roeding, Purkert,
Kindner, & Muller, 1999). In line with this,
Novell’s software license net revenue for 2004
and 2005 was 25% and 22%, respectively (Novell
Press, 2005). This confi rms that the other 70+% of
the software investment goes toward consultation,
maintenance, and other related services.

Novell was forced in the mid-1990s to radically
change the way it operated as well as to change
the direction of the business due to Microsoft’s
entrance into the market. They accomplished
this by making sure their software products were
Internet-ready by guaranteeing that the products
supported the IP protocol and other related Internet
protocols. Since then, Novell has invested read-
ily in acquisitions to make sure its diminishing
services income could be boosted.

With the rapid adoption of the increasingly
popular Linux operating system, Novell made a
fi rm decision to supplement its Netware income
with that of Linux. This became apparent when
Novell acquired SuSE Linux. This move allowed
Novell to make use of an open source subscription
strategy, entering the desktop operating system
market, which it is believed will become a lucra-
tive market.

Careful study of the yearly and quarterly re-
ports over the last seven years shows that open
standards and open sources did assist Novell to
slow down the decrease in its income from the
Netware operating system and related services. It
becomes apparent that Novell’s main goal is not
to derive its primary income from Linux server

licenses or related services but rather to invest
in the desktop market and try to acquire a fair
share of the lucrative desktop operating system
market. This is noticeable when one looks at the
acquisitions of Ximian and SuSE in 2003 and
2004, respectively.

The acquisition of Ximian allowed Novell
entrance into the desktop management solution
arena, and with that acquisition, it acquired two
mainstream desktop projects the Mono project
(a .NET framework for the Linux desktop) and
the GNOME project for managing the Linux
desktop.

In 2005, Novell was actively driving the Mono
development, seemingly in an effort to convince
the Microsoft Windows’ developers later on that
all of their software development efforts can
easily run on a Linux desktop solution. If Novell
implements this strategy well, they might be able
to convince a large enough developer base to
convert to Linux and open source. On the other
hand, they might only succeed in creating a second
limited adoption solution similar to the situation
of Microsoft Offi ce and Open Offi ce.org.

Later in 2005, Novell released SuSE as an
open source project (openSuSE) in the hope that
it will gain widespread support and adoption by
the open source community as well as capitalize
on the development of SuSE by the community.
Naturally, Novell wants SuSE to become the Linux
desktop of choice.

Close to the end of the study, there were com-
plaints by a minority shareholder that Novell was
not focusing on its core business and that expen-
diture was too high. The shareholder suggested to
Novell that it should cut back on its spending on
R&D, its Netware expertise, and noncore business
areas, and invest more in Linux and open source
projects (Computer Business Review, 2005).

Just a few weeks later, Novell released a press
statement stating that it could reduce annual run
rate expenses by more than US$110 million by
attending to the concerns of that minority share-
holder (Novell Press, 2005).

 597

Novell’s Open Source Evolution

MAIN FOCUS OF THE CHAPTER

Financial Data

See Appendix for fi nancial graphs.
Looking at the fi nancial data, it is easy to see that

during the dot-com boom, Novell did well in terms
of earnings per share vs. free cash fl ow. After the
crash of the market, it is noticeable that Novell suf-
fered and had to actively change its strategy, which
led to its pursuit of the open source option.

Although Novell’s gross profi t margin was
above 60% from 2000 to 2005, it is obvious that
the operating profi t margin went below 0% to a
minimum of -26.3% due to the number of acquisi-
tions it made after 2001.

In terms of liquidity ratios, since 1999 Novell
has always kept the current ratio above 1.50 and
the quick ratio above 1.40. In 2005, the ratios
rocketed to 166.8 and 158.8, respectively.

After the fi rst acquisitions made by Novell
in 2001, it is clear that the long-term debt was
signifi cantly affected, dropping from about 128%
in 1999 and 69% in 2001, to -2324% in 2002 and
-7100% in 2003, only to return to -56% in 2004
and 55.0% in 2005.

The return on equity (ROE), the return on
invested capital (ROIC), and the return on assets
(ROA) fi gures support the debt ratios, the liquid-
ity ratios, and the operating profi t margins. The
ROE, ROIC, and ROA took a signifi cant dip in
2001 from about 10% in 1999 and 3.5% in 2000
to about -20% in 2001, 2002, and 2003. Novell
did see a recovery in these fi gures in 2004 with
an ROE ratio of 3.2% and 26.9% in 2005.

Again the same pattern is noticeable by com-
paring sustainable growth from 12% in 1999 to
-23% in 2002, only to return to 3.2% in 2004 and
26.9% in 2005.

Looking at net income, Novell’s went down
from US$190 million in 1999 to –US$272 million
in 2001, only to recover from –US$246 million in
2002 to US$31 million in 2004. In 2005, the net
income rose by 1210% to US$372.6 million.

The fi nancial results for the full fi scal year
of 2005 were released in early December 2005.
Novell showed the Linux revenue going up by
418% to US$61 million for the fourth quarter in
October 2005 compared to the fourth quarter in
October 2004 (Novell Press, 2005).

It is clear that although Novell initially lost
income from its traditional sources, the company
did, indeed, manage to change its strategy, which
in the long term has resulted in it successfully
replenishing its diminishing NetWare income
from that of Linux, OSS, and related services.
Novell managed to build yet again a profi table
enterprise, this time by making use of open source
business models (an open source subscription
strategy) rather than by making use of traditional
proprietary software business models.

Findings

It is understandable that Novell makes use of open
source strategies as part of its One Net strategy.

By looking at the major events in Novell’s his-
tory between 1994 and 2005, it is apparent that
the change to OSS has recently brought success.
For two years, 1995 and 1996, after Novell lost
the battle with Microsoft, Novell struggled to
keep solvent. That was so until Novell switched
to open standards and included the open source
option as part of its main business strategy.

In the late 1990s, the information and com-
munication technology (ICT) sector was booming;
it was the era of the dot-com boom, which was
later followed by a market crash. Eric Schmidt was
CEO of Novell at the time, and Novell did well.
Trying to determine the effect the ICT boom had
on Novell is problematic, but what is unmistakable
is that without OSS and an open source business
strategy, Novell would probably not be here today.
What is certain is that despite the market crash,
Novell kept on doing well.

With a steady decline in the Netware income,
Novell had to do something to replace that in-

598

Novell’s Open Source Evolution

come. Knowing that the ICT market is changing,
Novell made a strategic decision to focus more
on service delivery than on the selling of product
licenses. This is apparent from the acquisitions
made shortly afterwards. According to Koenig
(2004), the strategy Novell is following is an
open source subscription strategy. This will allow
Novell to sell SuSE Linux subscriptions and pro-
vide a support service bundled with the package,
thus supplementing the decreasing maintenance
income from Netware.

The author does not believe that Novell, in its
business strategy, is making use of the traditional
strengths of Linux as a server. Novell appears to be
focusing primarily on the lucrative Linux desktop
market by applying the open source subscription
strategy. It seems that Novell is making use of
Linux servers to get a foot in the door with the
Linux desktop.

 Earnings per Share

EPS, calculated in U.S. dollars, measures the
return made on behalf of each issued ordinary
share. For example, a company that made US$100
million last year and has 10 million shares out-

standing would state earnings of US$10 per share.
This value is calculated after paying preferred
shareholders and bondholders as well as taxes.

From 2001 to 2004, Novell’s earnings per
share took a bit of a plunge from previous years.
Between 2001 and 2004, Novell made signifi cant
investments in acquisitions that could have con-
tributed to the fall in earnings per share. In 2005,
however, Novell improved on the results of 2004
and showed a slight profi t.

Free Cash Flow per Share Leveraged

Free cash fl ow is defi ned as the amount of cash
a company makes after all deductions (taxes,
dividends, interest). Free cash fl ow is used to
allow all companies to be evaluated on a cash
basis. In many countries around the world and
in the U.S., interest expense is tax-deductible at
the business level. Leveraged cash fl ow includes
this tax benefi t.

From analyzing the earnings per share and
free cash fl ow per share, it is clear that Novell
struggled to show pure profi ts, but this is un-
derstandable since a large amount of the profi ts
was reinvested in acquisitions. The 2005 results

Free cash fl ow/Year 2000 2001 2002 2003 2004 2005

Earnings per share 0.13 -0.70 -0.63 -0.42 0.08 0.98

Free CF per share leveraged 0.12 -0.07 -0.14 -0.69 -1.44 0.90

Free CF per share un-leveraged 0.12 -0.07 -0.14 -0.69 -1.44 0.90

Table 1. Earnings per share vs. free cash fl ow 2000-2005 (Source: Novell Company Information, 2006)

Profi tability/Year 2000 2001 2002 2003 2004 2005

Gross margin 71.8% 67.8% 60.4% 60.3% 64.3% 63.0%

Operating margin 6.1% -26.3% -8.1% -5.0% 6.4% 38.9%

After-tax margin 4.3% -26.0% -21.8% -14.6% 2.7% 31.1%

Table 2. Profi tability ratios 2000-2005 (Source: Novell Company Information, 2006)

 599

Novell’s Open Source Evolution

showed a positive cash fl ow and an improvement
from the last four years.

Free Cash Flow per
Share Unleveraged

Unleveraged cash fl ow is similar to leveraged
cash fl ow except that it does not include the tax
benefi t. Looking at Novell’s free cash fl ow from
2000 to 2005, the leverage was not large enough
to infl uence the free cash fl ow per share.

Gross Margin

The gross margin, also called the gross profi t mar-
gin, specifi es the contribution from the company’s
core business toward covering the company’s
operating expenses. In many industries, the higher
this is, the better.

Between 2000 and 2005, Novell kept the gross
margin comfortable and acceptable, showing
good profi ts.

Operating Margin

The operating margin is used to measure the
performance and profi tability of the company.

Novell took an initial dip in operating margin
in the year of the dot-com bust (2001). Also that
year, Novell made a signifi cant investment in
Cambridge technology. After that, Novell started
to improve its profi tability, showing a small profi t
in 2004. In 2005, Novell showed a signifi cant
improvement from the 2004 fi gures.

After-Tax Margin

The after-tax margin is similar to the profi t margin,
except that it takes taxes into account. This is also
a good indicator of the company’s profi tability
and performance.

Novell’s fi gures for after-tax margin follow a
similar trend with those of the operating margin,
which implies that a lot of profi t was absorbed
by the operating expenses from 2000 through
2005.

Inventory Turnover

The inventory turnover ratio determines a compa-
ny’s activity or liquidity. The inventory turnover
can be compared to industry averages. This ratio
indicates how many times an inventory has been
sold and replaced; the higher the value, the better
the inventory is being managed.

With reference to Novell, there was an almost
exponential growth in the inventory ratio between
2000 and 2002. It appears Novell did manage its
inventory exceptionally well.

Current Ratio

The current ratio indicates the degree to which
assets cover the claims of short-term creditors. A
value of more than 1 is desirable since it allows the
company to meet its short-term debt obligations.
A high value may also indicate that assets are not
being used effectively to generate new revenue.

Liquidity/Year 2000 2001 2002 2003 2004 2005

Inventory turnover 125.92 376.22 4494.00 - - -

Current ratio 2.214 1.681 1.555 1.645 2.215 266.8

Quick ratio 1.966 1.526 1.438 1.571 2.137 258.8

Table 3. Liquidity ratios 2000-2005 (Source: Novell Company Information, 2006)

600

Novell’s Open Source Evolution

Novell appears to have had the current ratio
well under control since 2000, with exceptional
results in 2005 compared to those of previous
years.

Quick Ratio

The quick ratio, also referred to as the acid test, is
similar to the current ratio except that it excludes
inventory from current assets. The value can in-
dicate whether or not the company can meet its
obligations in diffi cult times. A value of greater
than 1 is normally to be expected, but it should
be compared to industry averages.

Here again, quick ratios over the years are
well within a comfortable range, similar to that
of the current ratios. Again, the 2005 results are
well above those of previous years.

Debt per Total Invested Capital

The ratio indicates the level of fi nancial lever-
age a company has, which is the total amount of
external investments used to fi nance a company’s
business. The debt used in the ratio is the total

debt obligations of the company. The ratio provides
a better insight into the company’s long-term
leverage and risk.

Novell showed low fi gures between 2000 and
2003, which implies that it did not use its debt
effectively to generate new returns. In 2004 and
2005, the debt was used more effectively, which
produced better results.

Operating Cash Flow
per Long-Term Debt

This ratio is calculated by using the previous four
quarters of operating cash fl ow (rolling cash fl ow)
divided by long-term debt. This ratio indicates
how well operating cash fl ow covers debt. A low
ratio suggests a potential solvency problem.

After Novell made signifi cant investments
in acquisitions in the period from 2001 through
2004, the operating cash fl ow per long-term debt
was signifi cantly affected. Novell had a serious
solvency problem in 2003 but began rectifying it
in 2004. By 2005, the problem had been overcome,
and the operating cash fl ow showed a signifi cant
improvement from that of 2004.

Debt/Year 2000 2001 2002 2003 2004 2005

Debt to total
invested capital 1.0% 1.7% 0.7% 0.7% 38.2% 30.5%

Operating cash fl ow
to long-term debt 32.2% 69.2% -2324% -7109% -55.9% 55.0%

Table 4. Debt ratios 2000-2005 (Source: Novell Company Information, 2006)

Earnings/Year 2000 2001 2002 2003 2004 2005

ROE 4.0% -21.5% -23.2% -17.3% 3.2% 26.9%

ROC/ROIC 3.9% -21.1% -23.0% -17.2% 1.9% 18.5%

ROA 2.9% -14.3% -14.8% -10.3% 1.4% 13.5%

Table 5. Earnings 2000-2005 (Source: Novell Company Information, 2006)

 601

Novell’s Open Source Evolution

 Return on Average Common Equity

The ROE percentage shows the rate of return
on the investment for the company’s common
shareholders. This ratio can be used to determine
how well an organization reinvested income to
generate additional income.

Most of the fi nancial fi gures for Novell between
2001 and 2003 attest to the fact that the company
was having a diffi cult time then. The ROE was
no exception, its fi gures being unacceptable for
that period of time. The year 2004 showed a
slight positive swing in this regard with a great
improvement in 2005.

 Return on Investment Capital

The ROC percentage shows how effectively
a company is utilizing its capital to generate
profi ts. The indicator can be used to evaluate
companies in terms of viability of products and
management effi ciency. It is also widely used to
evaluate fi nancial institutions but is not limited
to the fi nancial sector.

Again, the ROC fi gures are alarming for the
period between 2001 and 2003, which can be
attributed to the decrease in Netware sales and
to Novell investing heavily in new acquisitions
to replace the diminishing Netware income
with income from Linux. There were signs of
improvement in 2004, with a good ROC fi gure
in 2005.

 Return on Assets

The ROA percentage, also sometimes referred to
as ROI (return on investment), is used to determine
how profi table a company’s assets are in generating
revenue. In essence, it defi nes how many dollars
in profi t can be made from each dollar of assets
the company controls.

Although the fi gures for 2001 to 2003 are unac-
ceptable, a noticeable change is evident from the
fi gures for 2004 and 2005. What emerges is that
Novell made the appropriate changes to ensure
the company would be solvent and showed some
good profi ts.

Retention Ratio

The retention ratio is the exact opposite of the
dividend payout ratio. The ratio indicates the
proportion of net income that is not paid out as
dividends to shareholders.

It is clear that as a result of making use of all
the profi ts to reinvest in acquisitions, Novell has
not paid out any dividends to its shareholders for
the past six years.

 Sustainable Growth Rate

The ratio defi nes the rate at which a company
can grow without having to increase fi nancial
leverage. If the growth of the company surpasses
this rate, it needs to fi nance its growth through
external means.

Turnover/Year 2000 2001 2002 2003 2004 2005

Retention Ratio 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Sustainable Growth 4.0% -21.5% -23.2% -17.3% 3.2% 26.9%

Asset turnover 93.3% 82.7% 106.4% 118.3% 121.0% 86.4%

Table 6. Turnover 2000-2005 (Source: Novell Company Information, 2006)

602

Novell’s Open Source Evolution

The fi gures indicate that only in 2004 did No-
vell start showing that the company could grow
before the growth needed to be fi nanced. There
was a signifi cant improvement in 2005, showing
that the company can grow by 26.9% before it
requires external funding for expansion.

 Asset Turnover

The ratio indicates the amount of sales generated
from each dollar of assets. By using the compa-
ny’s assets, the ratio can be used to determine a
company’s effi ciency in making sales. The ratio
is indirectly proportional to the profi t margin.

Taking into account the high asset turnovers,
it can easily be deduced that Novell has low after-
tax-profi t margins. This is also an indication of
the fact that Novell is focusing on a service model
rather than a product model.

Novell in the Republic
of South Africa

The author’s geographic location is in the Republic
of South Africa.

In the Republic of South Africa, Novell RSA
is following a similar strategy to one that failed
for Microsoft when Microsoft entered the network
operating system market. In the mid-1990s, Novell
catered mainly to the SME market and began to
focus on large enterprises. Microsoft introduced its
desktop operating system and offi ce productivity
suite for the home and SME market, which resulted
in Novell losing most of its market to Microsoft.
The strategy in South Africa is similar, except
that Novell RSA is focusing on local government
and large public enterprises rather than on large
private enterprises.

So far, this appears to be working well in South
Africa, where Novell has won several key govern-
ment tenders. It remains to be seen whether Novell
will be able to maintain its dominance in South
African government contracts with the inception

of a local Linux distribution called Ubuntu (a Zulu
and Xhosa word roughly translating to “humanity
toward others”). It seems that the project owner,
Mark Shuttleworth, is following the exact oppo-
site strategy to Novell South Africa, focusing on
 small to medium enterprises (SME), schools, and
 nongovernmental organizations (NGOs) rather
than on large government contracts. This is very
similar to the strategy Microsoft followed in the
mid-1990s, which allowed it to gain market share
against Novell.

Shuttleworth is entering into schools and
community-based projects very successfully and
appears to be gaining wide support in developing
countries such as South Africa and Brazil. The
Ubuntu Linux distribution, at the time of the
study, was the number-one Linux distribution for
several months running, according to distrowatch.
org. Ubuntu is actively competing against larger
distributions such as Red Hat and SuSE. eWeek
(2005) rated both Ubuntu 5.10 and SuSE 10.0 high
in terms of maturity, polish, and innovation and
as being ready for the organization’s desktop.

FUTURE TRENDS

At the end of the study, it became apparent that
the ICT sector is experiencing what could eas-
ily be interpreted as déjà vu. Instead of having
a repeat of the dot-com boom, there appears to
be an increased interest and speculation in open
source business. It is likely that venture capital
companies are investing millions of dollars in
open source startups because of the widespread
belief that the open source service model is the one
that will replace the current proprietary product
license model (ZDNet UK Insight, 2005). A boom
is highly unlikely since fewer than 20 companies
secured venture capital in 2005 as open source
companies, compared to the hundreds of thou-
sands of companies that are developing proprietary
software for commercial and internal use.

 603

Novell’s Open Source Evolution

During 2004 and 2005, Novell made signifi -
cant investments in acquisitions, the exact same
strategy it followed about 10 years earlier when it
embarked on a spending spree. Novell’s acquisi-
tions during 1993 and 1994 were short-lived, and
today, the same scenario should ring warning bells.
Novell should carefully monitor this pattern since
it could lead to another selling spree similar to
that of the mid-1990s.

Future research is required into the study of
open source business models, particularly service-
based business models and case studies. Research
is required to determine how open source business
models are implemented and how successful the
business models and companies are that choose to
implement it. Further research is also required in
determining whether utilizing OSS and strategy
will become the new way of doing business.

CONCLUSION

After careful study of Novell’s corporate and open
source history as well as its fi nancial statements
of the last seven years, it is evident that OSS is a
viable alternative to proprietary software. Novell
was able to rebuild the company after being at a
low ebb in the mid-1990s and has grown into one
of the biggest contenders in Linux and OSS today,
or as eWeek (2005) stated, “Novell is pulling itself
out of its NetWare grave with SuSE Linux sales
and support” (p. 2).

OSS and open source business strategies
not only assisted Novell in supplementing its
diminishing NetWare income but also allowed it
to replace its proprietary software income with
that of Linux and OSS.

Today, Novell is making Linux and SuSE an
alternative and attractive option for business.
Novell has also shown the world that switching
from a proprietary-based model to an OSS model
is viable, feasible, and, indeed, profi table.

NOTE

The author (J. A. du Preez) has permission from
Novel, Inc. to publish this research on matters
regarding the company.

ACKNOWLEDGMENT

The author would like to thank Dr. A. B. Boake
for his helpful comments and suggestions. Any
errors are the author’s.

REFERENCES

Bitzer, J., & Schröder, P. J. (2004). Call for pa-
pers: The economics of open source software
development. Elsevier. Retrieved November 30,
2005, from http://opensource.mit.edu/papers/
bookcallforchapters.pdf

Computer Business Review. (2005). Novell under
pressure from investors. Retrieved September
16, 2005, from http://www.cbronline.com/ar-
ticle_news.asp?guid=0142D6B9-0B2B-4ACC-
8C0E-F4F5A2CB4497

Covey, J. (2000). A new business plan for free
software. Freshmeat Editorials. Retrieved De-
cember 3, 2004, from https://freshmeat.net/ar-
ticles/view/143

Dahlander, L. (2004). Appropriation and appro-
priability in open source software. International
Journal of Innovation Management, 8(4), 1-25.

eWeek. (2005). Going broke with free software.
eWeek Enterprise News & Reviews. Retrieved
July 15, 2005, from http://www.eweek.com/ar-
ticle2/0,1895,1833612,00.asp

eWeek. (2005). Upgrades lift Ubuntu and SuSE.
eWeek Labs Reviews. Retrieved November 3,
2005, from http://www.eweek.com/print_article2/
0,1217,a=163715,00.asp

604

Novell’s Open Source Evolution

Gacek, C., Lawrie, T., & Arief, B. (2004). The
many meanings of open source IEEE software,
21(1), 34-40.

Golden, B. (2004). Succeeding with open source.
Boston: Addison-Wesley Professional.

Goode, S. (2004). Something for nothing: Man-
agement rejection of open source software in
Australia’s top fi rms. Information & Management,
42(5), 669-681.

Hawkins, R. E. (2004). The economics of open
source software for a competitive fi rm: Why give
it away for free? Netnomics, 6(2), 103-117.

Hecker, F. (1999). Setting up shop: The business
of open source software. IEEE Software, 16(1),
45-51.

Hendry, K. (2002). Making money with open
source. Retrieved November 11, 2004, from
http://www.cs.helsinki.fi /u/campa/teaching/oss/
papers/hendry.pdf

Hoch, D. J., Roeding, C. R., Purkert, G., Kindner,
S. K., & Muller, R. (1999). Secrets of software
success: Management insights from 100 software
fi rms around the world. Boston.

Hohensohn, H., & Hang, J. (2003). Product- and
service-related business models for open source
software. Siemens Business Services GmbH.
Retrieved November 11, 2005, from http://mysite.
fh-coburg.de/~wielandt/OSSIE03/ossie03-Ho-
hensohnHang.pdf

Koenig, J. (2004). Seven open source busi-
ness strategies for competitive advantage. IT
Managers Journal. Retrieved November 30,
2005, from http://www.itmanagersjournal.com/
articles/314?tid=85

Lerner, J., & Tirole, J. (2005). The scope of open
source licensing. Journal of Law, Economics, and
Organization, 21(1), 20-56.

Mantarov, B. (1999). Open source software as a
new business model. Graduate Centre for Interna-

tional Business, University of Reading. Retrieved
November 30, 2004, from http://bmantarov.
free.fr//bojidar/essays/OSS_as_a_new_busi-
ness_model.pdf

McKelvey, M. (2001). The economic dynamics of
software: Three competing business models ex-
emplifi ed though Microsoft, Netscape and Linux.
Economics of innovation and New Technology,
10, 199-236.

Novell Company Information. (2006). Investor
relations; Annual reports. Retrieved February
3, 2006, from http://www.novell.com/company/
ir/annrpts.html

Novell facts. (2005). Retrieved December 12,
2005, from http://www.novell.com/company/
fastfacts.html

Novell Keynote Presentation. (2005). In Proceed-
ings of the Novell Linux Infrastructure Event.
Retrieved November 15, 2005, from http://part-
nerweb.novell.com/partners/events/nlie_part-
ners_keynote_script_english.doc

Novell Pressroom. (2005). Novell announces re-
structuring to more closely align expenses with
core business strategy. Retrieved November 15,
2005, from http://www.novell.com/news/press/
item.jsp?contentid=ded62eaedb847010VgnVC
M10000024f64189____&sourceidint=hp_a3_
aligns

Novell Pressroom. (2006). Novell corporate histo-
ry. Retrieved February 1, 2006, from http://www.
novell.com/news/press/pressroom/history.html

Novell Pressroom. (2005). Novell reports fi nancial
results for fourth fi scal quarter and full fi scal year
2005. Retrieved December 15, 2005, from http://
www.novell.com/news/press/item.jsp?contentid=
1eed0300713e7010VgnVCM10000024f64189

Raymond, E. S. (2000). The cathedral and the
bazaar. Revision 1.57. Retrieved December 15,
2005, from http://catb.org/~esr/writings/cathe-
dral-bazaar/

 605

Novell’s Open Source Evolution

Raymond, E. S. (2000). The magic cauldron.
Revision 1.19. Retrieved December 21, 2005, from
http://catb.org/~esr/writings/magic-cauldron/

Scacchi, W. (2004). Call for papers: Free/open
source software development processes. John
Wiley & Sons, Ltd. Retrieved November 30,
2005, from http://serl.cs.colorado.edu/~seworld/
database/4515.html

Spredgar® Software. (2006). Spredgar software
product, Financial ratios and graphs. Retrieved
January 6, 2006, from http://www.spredgar.com/
download2.htm

Wikipedia. (2005). Wikipedia the free ency-
clopedia. Retrieved July 16, 2005, from http://
en.wikipedia.org/wiki/

Young R. (1999). Giving it away: How red hat
software stumbled across a new economic model
and helped improve an industry. In C. DiBona, S.
Ockman, & M. Stone (Eds.), Open sources: Voices
from the open source revolution (1st ed., p. 114).
Sebastopol, CA: O’Reilly and Associates.

ZDNet UK Insight. (2005). Is open source a
bubble ready to burst? Retrieved December
15, 2005, from http://insight.zdnet.co.uk/soft-
ware/0,39020463,39235813,00.htm

KEY TERMS

 Business Model: A business model (also called
a business design) is the mechanism by which a
business intends to generate revenue and profi ts
(http://en.wikipedia.org/wiki/Business_model).

 Business Strategy: Business strategy or stra-
tegic management is the process of specifying an

organization’s objectives, developing policies, and
plans to achieve these objectives, and allocating
resources in order to implement the plans (http://
en.wikipedia.org/wiki/Business_strategy).

 Earnings: Income, generally defi ned, is the
money that is received as a result of the normal
business activities of an individual or a business
(http://en.wikipedia.org/wiki/Earnings).

 Earnings Per Share (EPS): The earnings
returned on the amount invested initially (http://
en.wikipedia.org/wiki/Earnings_per_share).

 Free Cash Flow: Measures a fi rm’s cash
fl ow remaining after all expenditures required to
maintain or expand the business have been paid off
(http://en.wikipedia.org/wiki/Free_cash_fl ow).

 Liquidity Ratios: Ratios that show the rela-
tionship of a fi rm’s cash and other current assets to
its current liabilities (http://dwc.hct.ac.ae/courses/
badm300/glossary/glosl.htm).

 Profi tability Ratios: A group of ratios that
shows the combined effects of liquidity, asset
management, and debts on operating results
(http://dwc.hct.ac.ae/courses/badm300/glossary/
glosp.htm).

 Turnover: In accounting, the number of times
an asset is replaced during a fi nancial period
(http://www.investopedia.com/terms/t/turnover.
asp).

 Ubuntu: A South African ethic or ideology
focusing on people’s allegiances and relations
with each other. The word comes from the Zulu
and Xhosa languages (http://en.wikipedia.org/
wiki/Ubuntu).

606

Novell’s Open Source Evolution

APPENDIX

Summary: Novell Annual Financial Reports 2000–2005

Figure 2. 2000-2005 earnings per share vs. free cash fl ow (Source: Spredgar® Software, 2006)

Figure 3. 2000-2005 profi tability ratios (Source: Spredgar® Software, 2006)

 607

Novell’s Open Source Evolution

Figure 4. 2000-2005 liquidity ratios (Source: Spredgar® Software, 2006)

Figure 5. 2000-2005 debt ratios (Source: Spredgar® Software, 2006)

608

Novell’s Open Source Evolution

Figure 6. 2000-2005 earnings (ROE, ROIC, & ROA) (Source: Spredgar® Software, 2006)

Figure 7. 2000-2005 turnover (Source: Spredgar® Software, 2006)

 609

Section VII
Educational Perspectives and

Practices Related to Open
Source Software

610

Chapter XLVII
Communities of Practice for

Open Source Software
Leila Lage Humes

University of São Paulo, Brazil

Nicolau Reinhard
University of São Paulo, Brazil

INTRODUCTION

Strategic and economic considerations led the
University of São Paulo to institute a program to
promote the use of OSS, also driven by a national
OSS dissemination policy that draws a lot of mass
media attention. The major drivers were software
license cost reductions and independence from
single vendors, as well as the perception that OSS
allows increased user control over systems and
interoperability.

ABSTRACT

This chapter studies the use of communities of practice in the process of disseminating open source
software (OSS) in the University of São Paulo. The change management process included establishing
an OSS support service and developing a skills-building training program for its professional IT staff,
supplemented by a community of practice supported by an Internet-based discussion list. After using the
resource extensively during the early phases of the adoption process, users replaced their participation
in this local community by a mostly peripheral involvement in global OSS communities of practice. As a
result of growing knowledge and experience with OSS, users’ beliefs and attitudes toward this technol-
ogy became more favorable. These results, consistent with the theory of planned behavior constructs,
provide useful guidance for managing the change process.

OSS technology has many adherents among
Brazilian faculty members and students. However,
the university’s professional IT staff, responsible
for the infrastructure and administrative systems
and a signifi cant share of the total IT budget, has
been more conservative regarding technological
innovation.

These professionals are largely autonomous in
their technological decision-making, and therefore,
they had to be motivated to adopt the new technolo-
gy. The university, besides providing all necessary

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 611

Communities of Practice for Open Source Software

support services to implement OSS, offered them
special courses in order to make the process of
adopting and implementing the technology easier.
This chapter presents the case study of the change
management program for the dissemination of
OSS at the university, having as its main target
the computer professionals of the various institutes
and schools in charge of local IT infrastructure
and support to end users.

The research approach was action-research,
the authors being the sponsors and managers
responsible for the dissemination process and
the establishment of the community of practice
(CoP). This chapter is structured as follows: the
fi rst section presents the motivation for OSS, its
concepts and the theoretical framework for the
case study. The case is described in the second
section, whereas the third section analyzes the case
and presents the conclusions of the study, with
emphasis on the use and evolution of the CoP.

BACKGROUND: THE APPROACH
TO THEORETICAL CONCEPTS
AND RESEARCH

Open Source Software

Open source software (OSS) is based on the prin-
ciple that computer programs should be shared
freely among users, giving them the possibility of
introducing improvements and modifi cations.

The Free Software Foundation (FSF), founded
in 1984 by Richard Stallman, aimed at recreating
the “open” environment of computers’ early days,
replaced by the establishment of the for-profi t
software industry. OSS users and developers
engage in intense voluntary worldwide coopera-
tion leading to community-based continuously
evolving systems that can safely be used in critical
applications and infrastructure (Nuvolari, 2004).
The use of OSS is growing steadily. The Campus
Computing 2003 survey (Green, 2003) found that
11.1% of all network servers in American higher

education institutions run on Linux. Another
survey conducted by the authors in 2003 found
that 20% of corporate low-platform servers in
Brazil are based on the Linux operating system
(Reinhard & Foresti, 2003).

Cooperation among OSS users and developers
is maintained through an elaborate infrastruc-
ture for sharing knowledge and communication,
including issue-reporting/tracking repositories,
discussion lists, chat rooms, forums, electronic
journals, specialized media, and meetings. A
strong culture and group behavior have been
developed in connection with it, enabled by the
Internet (Scacchi, Gasser, Ripoche, & Penne,
2003).

OSS is developed as distributed work, with
ample freedom for the creation and distribution
of nonstable versions of systems, but with special
governance mechanisms for the establishment of
standards, verifi cation, and distribution of so-
called stable software versions.

Theory of Planned Behavior (TPB)

Ajzen (1991) proposed the theory of planned
behavior to explain and predict individuals’
intentions to exhibit a given behavior. Intention
is seen as a function of the beliefs related to the
following:

• Attitude toward the behavior (evaluation of
the behavior)

• Subjective norm (perceived social pressure
to conform)

• Perceived behavioral control (perceived ease
or diffi culty to perform)

TPB can be considered a suitable model for
studying the behavior of computer profession-
als deciding on the adoption of OSS, since their
behavior is largely under their volitional control
(i.e., it is essentially their own decision whether
or not OSS will be adopted in their departmental
computing environments).

612

Communities of Practice for Open Source Software

The change management process aims to in-
crease the motivation of the university’s IT staff
to try the new technology (OSS) by:

• Creating a more favorable attitude toward the
adoption of open software by demonstrating
its benefi ts

• Promoting the perception of increased be-
havioral control through the provision of
technical resources, knowledge, skills, and
central support (including the CoP)

Subjective norms in favor of OSS (induced
by the administration, academic community, and
society at large) also played an important role in
the process.

Communities of Practice (CoPs)

A CoP is a group of people with common pur-
poses, experiences, and interests, who are willing
to provide and share information, devoting time
to collaborate with the group in solving problems
beyond organizational structures and boundar-
ies. There is a well established tradition of using
CoPs for the development and dissemination of
OSS knowledge.

CoPs are a way of capturing, documenting,
and sharing explicit and tacit knowledge among
its members. The interaction of members in these
communities allows them to learn from each
other by observing how they act in emerging
situations and solve real problems, and how they
generate new knowledge during this interac-
tion (Orlikowski, 2002). According to Wenger,
McDermott, and Snyder (2002), group members
learn by working together, developing together a
common sense of how work should be done and
what it takes to accomplish tasks. Wenger (1998a)
defi nes “practice” in this context as follows:

A concept of practice includes both the explicit and
the tacit. It includes what is said and what is left
unsaid; what is represented and what is assumed.
It includes language, tools, documents, images,
symbols, well-defi ned roles, specifi ed criteria,
codifi ed procedures, regulations and contracts
that various practices make explicit for a variety
of purposes. (Wenger, 1998a, p. 47)

Vygotsky (1978, cited in Borthik, Jones, &
Wakai, 2003, p.111) emphasizes the importance
of learning experiences that support the gradual
development of the learners’ capabilities so they
learn to do by themselves things that initially
they could do only with assistance. Regardless of
the source or form of the assistance, the goal is
for learners to develop the capabilities they fi rst
experienced in assisted or collaborative learning
situations (Bereiter & Scardamalia, 1985, cited in
Borthik et al., 2003, p. 109). Making use of each
other’s expertise depends, however, on learners’
recognizing expertise asymmetries and on their
willingness to collaborate with each other in order
to benefi t from the expertise distributed among
them (Borthick et al., 2003).

CoPs are an effective way of creating and or-
ganizing this knowledge. Group knowledge, both
explicit and tacit, is created when a member pres-
ents a problem and the solution emerges through
collaboration. CoPs may have members acting

Figure 1. Model of the theory of planned behavior
(Source: Ajzen, 1991)

Attitude
toward the
behavior

Subjective
norm

Intention Behavior

Perceived
behavioral
control

 613

Communities of Practice for Open Source Software

as coordinators or moderators and may develop
formal organizational forms. Participation can be
voluntary or mandatory. An individual can easily
migrate from one CoP to another or participate
simultaneously in several CoPs.

Members of a CoP must trust each other, and
their activities must be perceived as adding value.
Members can have different levels of participation
(Wenger, 2002):

1. Active participation in discussions (usually
10-15% of the members)

2. Occasional participation in discussions
(about 15-20%)

3. Peripheral participation (members who
usually read others’ messages but rarely ask
questions)

According to Gongla and Rizzuto (2001), the
evolution of CoPs is infl uenced by a dynamic
balance of people, processes, and technology.
These authors identify the following fi ve stages
of CoP evolution:

1. Potential stage: The community forms
itself around a nucleus and is comprised of
people with some common characteristics
related to work or personal interests.

2. Building stage: The community grows.
Founding members defi ne its characteristics,
how it will be built, and how it will present
itself. Processes and structures are created.
During this stage, the community defi nes
its identity and reason for existence.

3. Engagement stage: The community is fully
operational, growing in size and complex-
ity, and learning more about itself and its
environment. This learning helps to improve
its structure and builds its capacity for le-
veraging tacit and explicit knowledge.

4. Active stage: Community members ana-
lyze, understand, defi ne, and evaluate their
contributions to the community and its
environment.

5. Adaptive stage: The community starts to
perceive and adapt to external conditions.
Continuous adjustments and innovations
create new solutions, processes, and groups,
infl uencing and creating new tendencies in
the community’s area of expertise. Few CoPs
manage to reach this stage and maintain this
level because their perceived importance
encourages migration to other forms of
governance and institutionalization.

MAIN FOCUS OF THE CHAPTER:
CASE STUDY OBJECTIVES
AND METHODOLOGY

The study’s fi rst objective was to identify the
beliefs and attitudes of the potential adopters
and actual users of OSS, understand the relation
between these factors and management action,
and evaluate the users’ decisions to adopt the
new technology or increase its usage. For this
fi rst objective, the authors chose to use the theory
of planned behavior (TPB) model for analysis,
since, according to Taylor and Todd (1995), it can
provide more effective guidance to IT managers
and researchers interested in the study of system
implementation. Taylor and Todd (1995) compared
three technology acceptance models: the TPB
model, the technology acceptance model (TAM)
proposed by Davis (1989), and a decomposed
version of TPB. They concluded that TPB, which
adds subjective norms and perceived behavioral
control as key determinants for both intention
and IT usage provides a fuller explanation of
behavioral intention and IT usage behavior.

The second objective was to understand the
role of CoPs and other sources of support in this
process and their evolution over time. Gongla and
Rizzuto’s (2001) model for the evolution of CoPs
was adopted to study the strength of interaction
among the members of the community. According
to this model, the evolution of a CoP is infl uenced

614

Communities of Practice for Open Source Software

by a dynamic balance of people, processes, and
technology.

The research tools used in this study consisted
of a series of surveys applied to all participants
of the training program during the fi rst seven
months of the research, analysis of secondary
data from the University’s Statistical Yearbook,
USP (2005), monitoring the discussion list during
two and a half years, semi-structured interviews,
and participant observation (one of the authors
was the corporate manager of the university’s
OSS program).

The survey was conducted in 2003 and its
questionnaires were answered by a total of 147
course participants (all of whom were computer
professionals employed by the university) with
various levels of knowledge regarding the adoption
and use of OSS. The training program included
the lead instructor setting up an experimental
CoP to provide users with support after the course
and evaluate the evolution of their knowledge
over time. After the establishment of the CoP,
its evolution was evaluated for two and a half
years. Semistructured interviews were used as a
research tool for evaluating the instructors’ and
course participants’ perceptions of the usefulness
of the CoP.

The Case Study Context

The University of São Paulo (USP) is the largest
research university in Brazil, with 70,000 students
and 5,000 faculty, 35 Units (Schools and Institutes)
spread over seven campuses in the State of São
Paulo, and course offerings in all major fi elds of
science, technology, and the arts.

The university’s IT infrastructure is managed
by a corporate steering committee that oversees
a central IT center, three regional facilities (re-
sponsible for their campus) and local units (in all
institutes and schools), with a total staff of 600 IT
professionals. University administration is highly
decentralized. Units have their own IT staff and are

autonomous in managing their budgets and grants
obtained from external agencies, which leads to
a signifi cant diversity of resources, technologies,
and organizational approaches.

For this study, units were classifi ed accord-
ing to their OSS usage stage in the following
categories:

• Initial: OSS in initial stage of implementa-
tion

• Intermediate: Few OSS-based services in
regular use

• Advanced: Consolidated use, a large number
of applications based on OSS

The OSS Innovation Program

Budget restrictions and strategic considerations
(adoption of OSS is a goal heavily promoted by the
Brazilian federal government) led the university
to institute an OSS adoption promotion program,
starting with the Linux operating system, which
included the creation of an OSS repository, a sup-
port service, and a series of weeklong courses for
staff computer professionals. One of the authors
was the corporate manager of this initiative who
decided to use innovation management concepts
and tools (TPB, CoPs, support for technology
adoption, courses, measurements, etc.).

The courses were offered in various locations,
and participants could choose among the following
courses, depending on their prior knowledge of
OSS: Introductory—Basic Linux Installation (77
participants); Intermediate—PHP and Applica-
tions (43 participants); and Advanced—Security
(78 participants). These courses were taught by
a total of 11 instructors from the Central and
Regional IT Centers and led by one head instruc-
tor. There was a fairly uniform distribution of
the university’s IT staff between beginners and
advanced users of OSS.

The head instructor responsible for the courses
created a CoP devoted to OSS, starting with face-

 615

Communities of Practice for Open Source Software

to-face meetings (mostly during the courses),
followed by discussion lists, forums, and so
forth. Many participants, especially those taking
the introductory course, were not familiar with
these communication resources, but language
and cultural uniformity in addition to the high
credibility of the central IT center staff led to the
acceptance of these structures.

OSS issues are highly visible in local mass
media, generating a lot of folklore but also convey-
ing objective knowledge about its characteristics,
benefi ts, challenges, and available solutions. As
one instructor put it:

People (the professional staff, systems analysts and
technicians) read a lot about Linux in magazines
and newspapers, but know very few actual users
who can answer their questions. Linux is believed
to be for hackers, requiring extensive knowledge
of IT. Those who lack this knowledge shouldn’t
even try using Linux.

On the other hand, the academic community
at USP led by some infl uential professors is, in
general, in favor of this trend. OSS is used exten-
sively for teaching and research by both faculty
and students. In general, adherents see themselves
as more innovative and competent, and tend to
develop strong group behavior.

The university’s corporate administrative
systems and network infrastructure management,
however, depend largely on proprietary software.
At the unit and department level, there are many
applications and operating systems based on
proprietary software.

Analysis of Results: Evolution of Be-
liefs Related to OSS Characteristics

The introductory course participants answered
the same questionnaire twice, before and after the
course, whereas those who took advanced courses
and were already familiar with the technology
were asked to answer the questions only at the

start of their courses. The goal was to identify the
differences between the two groups’ beliefs about
OSS characteristics and the changes induced by
the courses.

Since participation was not completely optional
(central administration had urged unit deans to
send their IT staff to these courses), it cannot be
said that the instructors were “preaching to the
converted,” and therefore, the answers of the
participants at the beginning of the courses rea-
sonably refl ected the community’s beliefs. Being
able to give anonymous answers also encouraged
the candid expression of individual beliefs.

The survey shows that some of the participants’
beliefs changed during the introductory course,
particularly regarding OSS security and overall
quality. The other beliefs evaluated were good
cost/benefi t relationship, features, reliability,
ease of use, technical support, documentation,
and warranty/services.

The TPB model used to study the individual
adoption of OSS is based on the relationship
between three constructs (attitude, behavioral
control, and subjective norms) and their infl u-
ence on the intention of adopting OSS, which
was represented in this research by the variable
“interest in OSS.”

The TPB constructs consisted of the follow-
ing variables:

1. Attitude: This is composed of security,
a good cost-benefi t relationship, relevant
properties, reliability, and overall quality.

2. Behavioral control: This is composed of
technical support, documentation, war-
ranty/service, and ease of use.

3. Subjective norms: The survey questions
for building this construct were (1) Do you
consider the university’s OSS adequate? (2)
Do you take other units’ software usage into
account? (3) Do you take your colleagues’
software usage practices into account? and
(4) Do you take governmental recommenda-
tions into account?

616

Communities of Practice for Open Source Software

A factor analysis (principal components with
varimax rotation) was performed in order to
evaluate the TPB constructs. The outcome was a
single factor for attitude and behavioral control and
two factors for construct subjective norms. The
correlation between the attitude and behavioral
control of constructs was signifi cant at the 1%
level. The interest in OSS was signifi cant with
attitude and behavioral control at the 1% and 5%
levels, respectively, while subjective norms were
signifi cantly correlated with attitude at the 5%
level. These correlations are consistent with the
relationship proposed by the TPB model (except
for the direct infl uence of the behavioral control
construct on the subjective norms construct) (i.e.,
the interest in OSS is positively correlated with
attitude and behavioral control).

If these relations can be posited as causal
relationships, then the results can be interpreted
as confirmation of the effectiveness of the
university’s strategy for promoting the adoption
of OSS among its professionals through an ef-
fort to induce attitudes (beliefs) favorable to the
technology and an increase in the perception of
behavioral control over the adoption process by
these professionals.

The survey results also showed the following:

1. The perception of the overall quality of OSS
improves with the increase of both the IT
staff’s experience with the technology and
the unit’s stage of OSS adoption.

2. This perception of OSS quality is also related
to the IT staff’s willingness to implement
OSS.

3. Users’ favorable perceptions of OSS quality
are related more to the stage of adoption
in their units than to the chronological
dimension of their experiences with OSS.
Advanced users become leaders and refer-
ences in their communities, reinforcing the
adoption process.

4. The intention to adopt OSS is related
directly to a positive attitude toward the

technology, an empirical fi nding that is
consistent with TPB.

Communities of Practice

Initially, we will analyze the CoP that was es-
tablished during the introductory course, which
was offered several times in different locations
over the course of four months, always with the
same positive result.

Use of Internal Discussion
List by Course Participants

IT staff members enrolled in the one-week in-
troductory course were encouraged to join the
CoP and its discussion list created for them by
the head instructor. In order to motivate them to
join, the instructor used the list during the courses
to distribute lecture notes, technical information
on Linux versions and security bugs, new ap-
plications, practical hints for installation, and so
forth. This stage of a CoP can be identifi ed with
the potential stage of Gongla and Rizzuto’s model,
the community being formed around a nucleus by
people with certain common interests.

Given the challenge of establishing the trust at-
mosphere needed for the satisfactory evolution of the
CoP, the list was set up on a list server (yahoogroups)
that had no connection with the university.

The head instructor who created the CoP is a
Linux enthusiast and had been working with the
system for more than four years. He also maintains
the university’s Linux site and helps users with
their problems. His charisma and communication
skills helped to build a trust relationship with and
among the participants.

Although widely accepted through the mu-
tual trust developed during the course, not all
participants became active users of the list. As
the instructor said:

Some people are afraid of showing that they
don’t know that much; in other words, they are

 617

Communities of Practice for Open Source Software

afraid of asking elementary questions in the list.
They would rather ask them in person or through
personal e-mail.

Or in the words of a participant:

My doubts are much more basic than those put
to the list. I still don’t know much about Linux.
If someone’s question to the list interests me, I
contact him directly by phone or e-mail, instead
of using the list.

This participant, of course, was also an active
member of the CoP, only using different commu-
nication channels. One incident demonstrates the
emergence of the CoP’s governance structure; due
to the informality of the list, one participant started
using inappropriate wording in his messages.
Another member immediately rebuked him, and
the situation did not occur again. Therefore, at this
stage, the community was defi ning its rules and
the form of presenting itself to the world, char-
acterizing the building stage of the community,
according to Gongla and Rizzuto.

The percentage of active list users is similar to
what is reported in the literature: 26% made some
sort of contribution, either asking or answering
questions through the list. The 7% most active
members accounted for 30% of the messages,
and the instructor himself generated 38% of all
messages. Other members sent the remaining
32% of the messages.

When the list started, answers were provided
mostly by the instructor. Later on, other more ex-
perienced members began giving advice as well.
The CoP also had a large number of lurkers, who
remained on the list but only read messages.

The questions participants posed to the list
were rated by the authors according to their level
of diffi culty as a proxy for the users’ increasing
levels of competence. The evolution of question
complexity for the fi rst seven months is presented
in Figure 2, indicating that as members became
more knowledgeable, diffi cult questions replaced
simple ones. In fact, after seven months of use,
most of the questions on the list were complex
ones.

Figure 2. Evolution of question complexity over time

0

20

40

60

80

100

120

Ju
ly

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ary

Feb
rua

ry

Month

pe
rc

en
ta

ge
 o

f q
ue

st
io

ns

complex
intermediary
simple

618

Communities of Practice for Open Source Software

Figure 3 presents the total number of messages
posted in the community during the period of two
and a half years, showing a signifi cant variation
in list activity. The silent periods coincided with
a lack of courses or of new releases. However,
the announcement of a new Linux release or a
new course with the arrival of newcomers would
trigger an increase in community activity.

The instructor added information on the in-
teraction among community members:

Members of this community also call me on my
offi ce phone. The number of questions answered
by phone is at least twice the number of questions
that I regularly answer in the discussion list. I
also answer questions through my personal MSN
messenger address.

This comment also indicates that users do
not limit themselves to any single communica-
tion channel but rather adopt them according to
personal values and perceptions of their social
networks. According to Wenger et al. (2002):

Building trust, exploring the domain and dis-
covering the kind of ideas, methods, and mutual
support that are genuinely helpful take time. Most
of all, community members need to develop the
habit of consulting each other for help. … The
trust community members need is not simply the
result of a decision to trust each other person-
ally. It emerges from understanding each other.
(Wenger et al., 2002, p. 84)

The instructor analyzes the building of trust
among members of the community:

I believe that people feel free to share their opinions
with other members of the community. This can
be stated by the way people express themselves.
However, there are some people that are still afraid
of submitting simple questions and being judged
as someone that is not that knowledgeable. The
lack of knowledge sometimes inhibits interaction.
In my opinion, people need to trust each other in
order to freely interact within a community.

Figure 3. Evolution of the total number of questions posed to the CoP during the two-and-a-half-year
period

 YEARS

 2003 2004 2005

0

5

10

15

20

25

30

35

40

45

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Month

N
um

be
r

of
 q

ue
st

io
ns

2003

Years

2004 2005

Month

 619

Communities of Practice for Open Source Software

Nevertheless, users would still rate the list as a
valuable learning resource. Considering only the
list interactions, Figures 2 and 3 indicate that as
members became more knowledgeable, diffi cult
questions replaced the simple ones, and the total
number of messages fell over time during certain
periods of time.

The instructor also tried another form of inter-
action. He invited members of the CoP to join his
Orkut community because there one could get to
know people better as well as their preferences,
personal skills, and other interesting characteris-
tics. He assumed that the most active members of
the community would join his Orkut community,
but only 18% did so. He also mentioned that some
who joined the Orkut community would not par-
ticipate in the CoP list. Information on the Orkut
community was provided in the course material
available on the university’s Linux site.

Some members of the community also became
instructors of courses outside the university and
used the same material in these courses. During
the courses, the students were taught how to in-
teract in a discussion list. The instructor always
recommended that before submitting a question
to a list, students should look for the information
available on the Internet and in other discussion
lists. Some of them had no experience with inter-
action in CoPs or discussion lists. The instructor
also gave them advice on sites and tutorials avail-
able on the Internet. In his opinion, combining
the information dispersed over the Internet is a
diffi cult step for a beginner; the student is only
able to fi nd incomplete and scattered information
and is incapable of organizing it in such a way to
produce a solution to a problem.

In Brazil, a great challenge Linux beginners
face is related to language. Most tutorials are
available only in English, which is a problem for
many users. Therefore, the discussion list in the
country’s language (Portuguese) is very useful
to them.

Some people attending the course had no
chance to install and work with Linux in their

units. They would read the messages posted to the
list but would not participate in discussions.

As far as the authors know and as stated by
the instructor, there were no face-to-face meet-
ings with members of the community after the
training program. It should also be mentioned that
according to the instructor, the more advanced
members of the community quickly learned to
fi nd help in resources such as general discussion
lists and tutorials available on the Internet. They
would then use the CoP only as a last resort. As
a result, the questions posed on the list became
very complex, and sometimes the instructor would
not know the answers. The users’ attitudes toward
the CoP and their recognition of its importance
indicate that the community had reached the
engagement stage. Its continuity would depend
on new members joining it and an ongoing
demand for new information. Other structures
developed with some of the members becoming
focal points for OSS support in their unit and its
environment.

The discussion list was only one of the commu-
nication channels used by participants. CoPs build
various channels of communication. Intermediate
and advanced users still consider personal contact
with individual colleagues to be an important
source of information, in addition to the structured
archival information repositories.

According to our research, the CoP has not pro-
gressed to the more advanced active and adaptive
stages. These data are consistent with the opinion
of the more advanced participants: CoPs are more
important in the early stages, losing their value
to the increasingly competent user over time.
According to Wenger (1998b), CoPs preserve the
tacit aspects of knowledge that formal systems
cannot capture. For this reason, they are ideal for
initiating newcomers into a practice.

CoPs for Advanced Users

Participants in the advanced course, who were
more experienced users of OSS and providers

620

Communities of Practice for Open Source Software

of the university’s support services, were asked
about their attitudes and behavior toward support
structures and the use of CoPs. These courses had
a total of 78 participants, with 38 of them stating
that they were members of at least one CoP. It is
important to note that these answers relate to any
OSS CoP in which a respondent participated.

One can see that there is great diversity in the
levels of professional expertise and adoption of
OSS, as shown by the choice of training courses.
This diversity is important for the dynamics of
the CoP. In general, list members have a favorable
perception of the CoP’s organization, effective-
ness, and trust, an important condition for its
performance and continuity.

Although there is a high degree of trust and
collaboration among CoP members, the frequent
lack of a strong structure and leadership can impact
the CoP’s effectiveness. Nevertheless, members
perceive it as very signifi cant. (1) For units in
the initial stage of OSS adoption, all members
considered it important; (2) for units in the inter-
mediate stage of OSS adoption, 81% considered it
important; and (3) for units in the advanced stage
of adoption, 9% considered it very important, 82%
considered it important, and only 9% considered
it unimportant for the use of OSS.

Table 1 focuses on learning, socialization, and
knowledge-sharing through the CoP. Members
of units in the advanced stage value the list for

its dissemination of knowledge and organization
facilities.

The perceived benefi ts of CoPs to members in
the initial, intermediate, and advanced stages are,
respectively, (1) cost reduction, mentioned by 50%,
41%, and 42%; (2) productivity gains, mentioned
by 100%, 68%, and 67%; (3) increased innova-
tion through collaboration, mentioned by 25%,
50%, and 58%; and (4) incentive for collaboration
between members, mentioned by 25%, 59%, and
75%. Therefore, whereas members in the initial
stages look more for immediate productivity
gains, members in the advanced stages value the
collaboration aspects of the CoP more.

Participants from the intermediate and ad-
vanced courses were also asked about their use
of information sources for solving problems.
Table 2 shows the sources most frequently cited
by participants, classifi ed by their unit’s stage of
OSS adoption.

Table 2 also shows that there are distinct
patterns of source usage by stage of adoption,
with more advanced users being able to use
more structured sources and their own personal
relationships network. Advanced users are also
less likely to actively seek help through CoPs and
discussion lists.

Some of the members built very secure en-
vironments to be used in their units by faculty
members, researchers, and so forth, employing

Adoption Stage

Benefi ts of CoP Initial (%) Intermediate (%) Advanced (%)

Reduction in learning time 50 60 58

Improvement in quality and dissemination of best practices 100 46 58

Knowledge retention 0 23 25

Incentive to disseminate knowledge 50 64 75

Organizing and storing knowledge 0 23 50

Greater integration of members 50 46 67

Table 1. Frequency (percentage) of mentions of CoP benefi ts: gains in learning, socialization and knowl-
edge sharing (multiple responses allowed)

 621

Communities of Practice for Open Source Software

advanced Linux resources, and shared this knowl-
edge with colleagues (Humes, 2004). It is impor-
tant to emphasize that the university has various
other discussion lists about Linux maintained by
researchers, but there is no central coordination
of these communities. Therefore, there is also no
communication among them, and the university
does not map the knowledge of those groups.

CONCLUSION

The process of OSS diffusion at USP has been
successful in creating and promoting positive
attitudes to the technology. Mechanisms such as
establishing support centers, training courses,
and CoPs were instrumental in this process. The
survey shows that the training courses produced
a positive change in beliefs regarding OSS and
that they had a favorable impact on intention to
adopt OSS. Professionals working for units at more
advanced levels of adoption have more positive
beliefs regarding OSS and a willingness to use it,
a possible measure of the program’s success.

An internal CoP created by the university
demonstrated its usefulness to users in the early
stages of adoption. This community reached the
engagement stage, helping members solve their
initial problems, supporting them in their learning

processes, paving the way for the strengthening
of their social networks, and enabling them to
take part in global communities. Having fulfi lled
this purpose for the initial group of members, the
community became less useful and was ultimately
discontinued.

This chapter also provides empirical evidence
to support the usefulness of the TPB for OSS
adoption by demonstrating the connections among
beliefs, attitudes, intentions, and decisions to
adopt and increase the use of OSS. Additionally,
it provides empirical data on the perceived useful-
ness and actual usage patterns of a CoP created
for the specifi c purpose of promoting the use of
OSS. For the practitioner engaged in promoting the
dissemination of OSS in complex organizations
in which innovations are mainly dependent on
voluntary adoption, this chapter can also provide
useful managerial guidelines.

REFERENCES

Ajzen, I. (1991). The theory of planned behavior.
Organizational Behavior and Human Decision
Processes, 50(2), 179-211.

Borthick, A. F., Jones, D. R., & Wakai, S. (2003).
Designing learning experiences within learners’

Adoption Stage

Information Source Initial (%) Intermediate (%) Advanced (%)

Tutorials 12 42 22

Support through CoP, sending messages to discussion lists 6 19 7

Searching discussion lists and forums 10 26 12

Asking colleagues 10 34 23

Internet search 13 41 24

Reading FAQs 11 29 16

Other 3 4 -

Table 2. Frequency of mentions of information sources for problem solving by unit adoption stage
(multiple responses allowed)

622

Communities of Practice for Open Source Software

zones of proximal development (ZPDs): Enabling
collaborative learning on-site and online. Journal
of Information Systems, 17(1), 107-134.

Gongla, P., & Rizzuto, C. R. (2001). Evolving
communities of practice: IBM global services ex-
perience. IBM Systems Journal, 40(4), 842-862.

Green, K. C. (2003). Campus computing 2003.
Encinco, CA: Campus Computing.

Humes, L. L. (2004). A adoção de software
livre na USP: Um estudo de caso. Uunpublished
master’s thesis, School of Economics, Business
Administration and Accounting, University of
São Paulo, São Paulo, Brazil.

Markus, M. L., Manville, B., & Agres, C. (2004).
Virtual organization design: Lessons from the
open source movement. Retrieved February
23, 2005, from http://web.bentley.edu/empl/m/
lmarkus/Markus_Web_Documents_(pdf)/Vir-
tual_Organization_Open_Source.pdf

McDermott, R. (2004). Knowing in community: 10
critical success factors in building communities
of practice. Retrieved February 10, 2004, from
http://www.co-i-l.com/coil/knowledge-garden/
cop/knowing.shtml

Nuvolari, A. (2004) Open source software devel-
opment: Some historical perspectives. Retrieved
February 15, 2005, from http://opensource.mit.
edu/papers/nuvolari.pdf

Orlikowski, W. J. (2002). Knowing in practice:
Enacting a collective capability in distributed or-
ganizing. Organization Science, 13(3), 249-273.

Reinhard, N., & Foresti, N. (2003). Fogo cruzado.
Informationweek (Brasil), 5(104), 20-22.

Scacchi, W., Gasser, L., Ripoche, G., & Penne,
B. (2003). Understanding continuous design in
F/OSS Projects. In Proceedings of the 16th Inter-
national Conference on Software and Systems
Engineering and its Applications (ICSSEA-03),
Paris. Retrieved February 10, 2005, from http://

www.ics.uci.edu/%7Ewscacchi/Papers/New/ICS-
SEA03.pdf

Taylor, S., & Todd, P. A. (1995). Understanding
information technology usage: A test of compet-
ing models. Information Systems Research, 6(2),
144-176.

USP. (2005). University of São Paulo statisti-
cal yearbook. Retrieved March 15, 2005, from
http://sistemas.usp.br/anuario/

Wenger, E. (1998a). Communities of practice:
Learning, meaning and identity. Cambridge:
Cambridge University Press.

Wenger, E. (1998b). Communities of practice:
Learning as a social system. The Systems Thinker,
9(5). Retrieved February 20, 2005, from http://
www.ewenger.com/pub/pub_systems_thinker_
wrd.doc

Wenger, E., McDermott, R., & Snyder, W. M.
(2002). Cultivating communities of practice: A
guide to managing knowledge. Boston: Harvard
Business School Press.

KEY TERMS

 Adoption: The adoption of an innovation
may be conceptualized as a temporal sequence
of steps through which an individual passes from
initial knowledge of an innovation to a decision
to adopt or reject it, to put the innovation to use,
or fi nally, to seek reinforcement of the adoption
decision made.

 Change Process Management: Activities
involved in defi ning and instilling new values,
attitudes, norms, and behaviors within an orga-
nization that supports new ways of doing work
and overcomes resistance to change; building
consensus among customers and stakeholders
on specifi c changes designed to better meet its
needs; and planning, testing, and implementing all

 623

Communities of Practice for Open Source Software

aspects of the transition from one organizational
structure or business process to another.

 Communities of Practice (CoPs): Groups of
people with common purposes, experiences, and
interests, who are willing to provide and share
information, devoting time to collaborate with the
group in solving problems beyond organizational
structures and boundaries.

 Linux: An operating system very similar to
Unix that is suitable for use on a wide range of
computers. It consists of a kernel that is the core
of the operating system and a wide range of free
utilities and application programs that are available
in coordinated packages named Versions.

 Linux Distribution: A version of a Unix-like
operating system for computers comprising most
of an operating system, the Linux kernel, and
other application programs. There are currently
more than 300 Linux distribution projects in ac-
tive development that are constantly revised and
improved by their respective developers.

 Open Source Software (OSS): The principle
that computer programs should be shared freely
among users, with the possibility of introducing
improvements and modifi cations. Therefore, us-
ers can make changes, build new versions, and
incorporate changes.

PHP: PHP hypertext preprocessor is a scripting
language used to create dynamic Web pages.

624

Chapter XLVIII
Selecting Open Source

Software for Use in Schools
Kathryn Moyle

University of Canberra, Australia

INTRODUCTION

Schools are characterized by their diversity,
complexity, and multidisciplinary nature; they
are unique and complex organizations in which
students are, for the most part, legal minors. So-
cieties invest heavily in education since it is the
way in which societies reproduce themselves
(Berger & Luckmann, 1979). Schools, therefore,
are dynamic and inherently social, political, and
cultural places (Johnson & Christensen, 2004)
in which values and philosophies are on show in

ABSTRACT

Schools are places where the choices made about computing technologies not only refl ect their technical
requirements but also refl ect the philosophical priorities directing those choices. Schools can deploy a
startling range of software (i.e., operating systems, databases, offi ce productivity software, and applica-
tions software) for specifi c teaching and learning purposes. Applications software deployed in schools
must be suitable for use by students who are young and often have limited reading and fi ne motor
skills. Back-end software must be robust enough to handle hundreds and sometimes thousands of users
concurrently. One issue that faces schools interested in deploying open source software is the number
of choices available; there is a wide variety of open source software that is suitable for use in schools.
It is intended that this chapter provide readers with entry points to selecting open source software by
identifying criteria that can be used by schools to shortlist potential open source software appropriate
for their local environments.

practical and concrete ways. Indeed, the choices
a school makes about computing technologies can
operate as indicators of the values and philosophies
that school endorses.

In the 21st century, including computing tech-
nologies into education is occurring throughout
the world. Countries are at different stages in
this process, but in general, the deployment of
technologies is moving from individual, stand-
alone computers to integrated technologies that
are networked and, when possible, connected to
the Internet (Hepp, Hinostroza, Laval, & Rehbein,

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 625

Selecting Open Source Software for Use in Schools

2004). Since models of open source software
(OSS) development are based on contributing to
the public good through online networked activi-
ties (Bessen, 2004), the paradigm shift away from
personal to networked computers linked to the
Internet makes OSS viable both technically and
philosophically for the education sector. Some of
the technical and philosophical contributions that
OSS can make to education are discussed here in
order to report the criteria proposed for identify-
ing suitable OSS for use in schools.

TECHNOLOGIES IN SCHOOLS

Schools vary in the way computers are deployed
for student use. Some schools may not have any
computers in classrooms but may have them in
a computer laboratory or library resource center.
Other schools may have no computer laboratories
but may have computers in classrooms or on por-
table carts; other schools may have computers in
classrooms as well as in computer laboratories.
Still other schools use thin-client or terminal ser-
vice solutions (Moyle, 2005). Wireless, portable,
and handheld technologies are also fi nding places
in schools (Preparing Tomorrow’s Teachers to Use
Technology, 2002). In countries where basic access
to computers is approaching universal, there are
pedagogical moves away from teaching comput-
ing skills per se to integrating technologies into
the teaching and learning (Guttman, 2003; Hepp,
Hinostroza, Laval, & Rehbein 2004).

Integrating technologies into school educa-
tion depends upon a robust information technol-
ogy (IT) infrastructure: the hardware, software,
and telecommunications (where it is available).
Schools are becoming increasingly sophisticated
IT environments in which hundreds of users can
be logged on at any one time, but not all schools
use software in the same way or to the same ex-
tent. A challenge for schools is to determine what
infrastructure is appropriate for their contexts.

In education, traditionally the term infra-
structure has referred to the physical attributes
of schools; it now includes an IT infrastructure.
Schools use a variety of IT infrastructure models.
The choice of model depends upon an array of
educational, social, and economic factors. If we
accept that the main role of schools is teaching
and learning, however, and if we accept that teach-
ing and learning should include the integration
of technologies, then we also must accept that
the infrastructure of schools must emerge from
what we want to happen in classrooms with our
students, irrespective of whether those classrooms
are physical, in an online environment, or are a
mixture of both. Over the past several years in
both developing and developed countries, there
have been sustained efforts to put in place both
school-based and systemic networked IT infra-
structures (Farrell & Wachholz, 2004; Guttman,
2003; Programme for International Student As-
sessment (PISA), 2005). Schools and education
departments, however, continue to grapple with
the best way to organize themselves in order to
ensure technologies are usefully and meaning-
fully deployed (United Nations Educational,
Scientifi c and Cultural Organization (UNESCO)
Bangkok, n.d.). It is timely, therefore, for schools
to consider whether OSS has a place in their IT
infrastructures.

Schools use various sorts of software for the
respective pedagogical and administrative pur-
poses they undertake (British Educational and
Communications Technology Agency (BECTA),
2005; Hepp et al., 2004; Moyle, 2003). Some
schools deploy only proprietary software, while
others deploy only OSS; still others deploy a
mixture of both. Some schools and school systems
commission software development (e.g., student
reporting, human resource, and payroll systems)
as well as purchase off-the-shelf products (e.g.,
Microsoft Offi ce). Over the past decade, however,
the inclusion of OSS into schools’ IT portfolios
has been an emerging phenomenon around the
world.

626

Selecting Open Source Software for Use in Schools

When considering the use of OSS in schools, it
is important to recognize that creating and using
this software is as much a social process as it is
a technical one; it is underpinned with a differ-
ent development model to that used to develop
closed, proprietary software. The differences
between the two models are eloquently captured
by Eric Raymond in his book, The Cathedral
and the Bazaar (2001). Indeed, understanding
that there are differences between the way open
and closed software is developed raises questions
for schools about the nature of the control and
use of software, which, in turn, raises questions
about what human, organizational, and physical
models are adopted; the nature of decision-mak-
ing exercised; and who has access to the skills,
facilities, and knowledge essential in order to
design, implement, and sustain technologies in
schools. There is no ultimate truth, however, about
how software ought to be constructed or used in
schools. As such, it is important to understand
the philosophy and processes underpinning the
development of OSS in order to understand how
to select suitable software for schools.

SOFTWARE IS SOCIALLY
CONSTRUCTED

Software is created by people. Irrespective of the
nature of software and its purpose, software is
socially constructed. All technologies, including
the infrastructure or architecture established to
support software deployment, are socially con-
structed; they are designed and built by people
who have their own views about what problems
require solving and how a particular problem
can be solved with software. Closed proprietary
software is developed in secret, and the source
code cannot be viewed by anyone other than the
developers.

People within open source communities
contribute to a software project in ways in which
they are able. People write software programs to

enable themselves and other people to use comput-
ers to communicate with each other in a variety
of ways; through document and presentation
development, via e-mail, and through the use of
rich multimedia on CD, DVD, and over the web.
Programmers working over the Internet develop
OSS in a devolved manner. Those people with
suffi cient programming knowledge contribute to
the development of the software code. Program-
ming requires the use of a language, which are
known as programming languages, the languages
in which authors write the commands required
to make computers work the way they want them
to (Raymond, 2001). Communities of developers
communicate with each other via the Internet
to create software. Anyone with the skills to
understand the languages of programming can
contribute.

Others can aid in the development processes
by testing and debugging software, writing user
documentation, and helping others use the soft-
ware. This work is conducted through mailing
lists. This devolved model is used for open source
product development, testing, and maintenance.
Those accessing OSS from the Internet can get
help desk support through user groups. People
contribute their ideas and experiences so the col-
lective is able to develop greater wisdom. These
groups can be considered to be akin to communi-
ties of learners (Whyte, 2000).

Members of OSS projects share systems of
beliefs and values about software development
and accessibility. There is the belief that software
should be freely redistributable. It is considered a
good thing that it can be modifi ed to suit the social
and cultural requirements to which the software
can be put, which justifi es the contribution of
considerable collective effort. It is, therefore, a
culture that encourages code sharing. The capac-
ity to redistribute source code gives users of the
software control over the technologies instead
of vendors controlling customers by restricting
access to the software code. The ability to par-
ticipate in an open source community requires

 627

Selecting Open Source Software for Use in Schools

higher skill levels than simply maintaining the
operation of software. The development of these
skills, however, is supported by working in open
source communities of learners and assists the
process of continuous improvement of both the
software and the skills of the people involved.
Open source communities, therefore, are educa-
tive in themselves.

Understanding that software is the artifact of
people collaborating either in secret or in public
is fundamental to being able to make informed
decisions about which OSS is suitable for a
given school context. Accepting that software
development is a social phenomenon that pro-
duces software assists in understanding how OSS
communities operate, which, in turn, assists in
evaluating whether certain pieces of OSS have a
place in a school’s IT portfolio.

SOFTWARE AND SCHOOLS

Schools use software for a variety of purposes. At
the back end of a school’s IT architecture, software
is used to run servers, intranets, and proxy caches,
and to provide printing, fi le serving, e-mail, and
Internet access, and to run desktop computers.
Common open source operating systems software
deployed in schools include versions of Linux,
Debian, Mandrake, SUSE, and Redhat Fedora
(K-12 Linux 2006; Schoolforge-UK 2006).

Some schools use terminal services by utiliz-
ing the Linux Terminal Server Project (LTSP), an
add-on piece of software for Linux that allows
many computers to be used simultaneously. Ap-
plications run on the server with a thin client
terminal handling input and output. Computers
used in terminal services confi gurations tend to be
low-powered, have no hard disk, and are quieter
than desktop computers. In classrooms in which
there are many computers operating, quieter op-
tions are very attractive. LTSP is also becoming
popular in schools since it allows students to ac-
cess computers without the purchase of expensive

desktop machines. Examples of distributions us-
ing LTSP include Skolelinux, AbulEdu, Edubuntu
(an Ubuntu derivative), Deworks, and K12LTSP,
which works with Fedora, (K-12 Linux Terminal
Server Project, 2006).

At the front end, school software can be
conceptually divided into two parts: the require-
ments for running the administrative functions
of a school and the software used for enhancing
teaching and learning, including specifi c cur-
riculum software applications to achieve identi-
fi ed learning outcomes. Both the administrative
and curriculum sides of a school network deploy
offi ce productivity software. Open source offi ce
software used in schools includes OpenOffi ce,
which provides word processing, spreadsheets,
and presentation software; and KOffi ce, an in-
tegrated offi ce suite for KDE, the desktop envi-
ronment used on Linux (Open Source Victoria,
2005). Curriculum software such as GIMP (or
GNU Image Manipulation Project), OpenOffi ce
Draw, and Blender 3D are used for manipulat-
ing graphics; Audacity is used for manipulating
sound. Open source online games such as Lin
City NG and NASA World Wind are available
for teaching and learning purposes (Open Source
Victoria, 2005).

MAKING CHOICES ABOUT OPEN
SOURCE SOFTWARE IN SCHOOLS

Evaluating suitable OSS solutions alongside
proprietary software must now be part of any
responsible school’s considerations concerning
which software should constitute its IT portfolios.
Making choices about what is the most suitable
software in any given school environment, how-
ever, can be an interesting but time-consuming
exercise. Questions concerning whether to
include OSS within the IT portfolio of a school
tend to revolve around balancing the following
fi ve demands:

628

Selecting Open Source Software for Use in Schools

• School context
• Educational, ethical, and social require-

ments
• Technical demands
• Business case
• Administrative and legal requirements

To balance these demands, some criteria are
proposed to assist schools in their selection of
suitable OSS. It is intended that this approach
will enable schools to make informed choices
about which OSS matches their particular envi-
ronments.

SOFTWARE PROCESSES
AND ARTIFACTS

It is important for school sector decision-makers
to understand that OSS developments focus on
processes for making the software as well as on the
artifact itself. Although many OSS communities
indicate which version of a software development
is the most stable, the communities tend to operate
on the principle that the software is always in beta
release. As such, selecting OSS for deployment in
schools requires an evaluation of the quality of the
software and of the community that develops and
sustains it. Understanding the depth and maturity
of an OSS project can assist in making decisions
about whether to deploy it in a school.

In the business sector, Bernard Golden (2005)
has documented the importance of understand-
ing the maturity of an OSS project in his book,
Succeeding with Open Source Software. Golden
(2005) outlines an approach to evaluating OSS
called the open source maturity model (OSMM),
which is structured to enable businesses to make
comparisons between software alternatives and
to check the match between the business require-
ments and the software under consideration. He
highlights for those working in the commercial
sector, the importance of the following:

• Assessing open source business models and
determining how they align with those of
the business in question

• Managing risk, including the licensing issues
associated with OSS

• Locating and assessing technical support,
training, and documentation resources

While schools have different motives from
that of the business sector, it can be seen in the
following that there is the capacity to translate
some of Golden’s work to the school sector.

SOME SELECTION CRITERIA

Being able to make judgments about the maturity
of open source projects is a necessary consider-
ation for the viability of such software deploy-
ments in schools. To consider any specifi c piece
of OSS for inclusion in a school’s IT portfolio, it
must have the following characteristics:

1. Be appropriate for deployment in K-12 school
environments

2. Have leadership and a dedicated core devel-
oper group

3. Have an active community around the soft-
ware

4. Provide reports of developments and plans
for features development

5. Be able to run on multiple hardware and
software platforms

6. Have well-documented license conditions
7. Have third-party support and/or other stra-

tegic alliances
8. Provide rapid turnaround processes for sup-

porting requests and bug fi xes
9. Provide well-documented technical infor-

mation and quality assurance processes
10. Have professional development of both

teaching and technical staff easily avail-
able

 629

Selecting Open Source Software for Use in Schools

A brief exploration of these criteria follows.
The priorities placed on each of these criteria by
the reader will vary, depending on the school
context and the expectations of the functionality
of the software.

Appropriate in K-12
School Environments

An overriding criterion all software has to meet
for deployment in schools is that it is appropriate
to the school sector. Server and other back-end
software have to be suffi ciently robust in order
to enable hundreds of users to be logged on con-
currently without the quality and functionality
of the software degrading or ceasing to work.
Front-end software has to be suitable for use by
students who are young and often have varying
levels of reading abilities and fi ne motor skills.
Schools, therefore, require software that is robust,
durable, and interoperable with other major pieces
of software that it deploys.

The more software is interoperable with other
pieces of software being used in a school, both
technically and in its ability to share content, the
more streamlined the integration of technologies
into schools can be. Two OSS learning environ-
ments developed specifi cally for the education sec-
tor are Moodle (stands for modular object-oriented
dynamic learning environment) and the learning
activity management system (LAMS). Martin
Dougiamas, the leader of Moodle, and James Dal-
ziel, the leader of LAMS, communicate regularly
to ensure software compatibility, interoperability,
and collaboration between their two projects and
with proprietary software vendors.

The degree of success a piece of OSS may enjoy
within the open source community also depends
in part upon its interoperability. Increasingly, then,
open standards are being seen as fundamental to
both the work of schools and to the open source
community at large. Open standards are recog-
nized as important in the future developments

of OSS. Open standards can be considered to be
commonly agreed, publicly available specifi ca-
tions for achieving a specifi c task (Krechmer,
2005). Software that adheres, for example, to
the sharable courseware object reference model
(SCORM) and is compliant with the World Wide
Web Consortium (W3C) (http://www.w3.org/)
guidelines for open Internet standards are not only
technically desirable but increasingly are being
seen as attractive to the work of schools.

There is a range of organizations that aims to
provide standards to the open source community,
including the Free Standards Group (FSG) (http://
www.freestandards.org). The FSG has emerged
from the open source community to develop open
international standards that enable portability
of software within the Linux environment. The
aim of open source standards is to write once,
run everywhere (FSG, n.d.). The not-for-profi t
OpenStandards.net provides a portal (http://www.
openstandards.net) that has links to a wide range
of IT standards bodies such as the W3C.

Front-end or application software for use in
schools requires suffi ciently simple yet rich func-
tionality to enable children to use it. Complex sets
of keystrokes to log on, for example, can make the
software diffi cult and even impossible for use by
school students. Images, audio, and graphics have
to be clear and synchronized and load rapidly in
order to maintain student interest. Font sizes have
to be large enough for young children to read, and
the content has to be verifi able and factual. Given
that most of the users of software in schools are
students, the software must also have adequate
in-built security measures between the school
and the outside world.

While each of these characteristics may seem
self-evident, not all software has these charac-
teristics; indeed, much commercial educational
software designed for deployment in the univer-
sity sector and then marketed to schools does
not meet these criteria, so there is room for OSS
projects.

630

Selecting Open Source Software for Use in Schools

Leadership and a Dedicated
Core Developer Group

Schools purchase certain pieces of proprietary
software because their branding is recognized,
trusted, and perceived to be of high quality.
Making choices between recognized proprietary
pieces of software and open source alternatives,
however, requires schools to feel secure about the
alternatives. The leadership of a software project
and the longevity of the core developer group is
one indicator schools can look at in order to de-
termine whether an OSS project has veracity and,
therefore, is likely to be viable for deployment in a
school. As such, understanding how OSS projects
are led and managed can contribute to building
trust in that project.

Many schools, however, do not understand
that identifi able communities contribute to the
development of a particular piece of OSS. Each
community has a recognized leader who has the
last say about which developments to accept and
which to reject. The ability to provide leadership
to the core developer group is what makes an
OSS development community viable. Commu-
nities that tend to make the most successful and
enduring OSS have explicit philosophical objec-
tives; robust and rigorous development, testing
and approval processes for improvements; and
clear decision-making processes. For example,
the Debian community elects its leader through
a vote of its members.

The leader of an OSS development is critical
for getting a project up and running. An open
source development is typically commenced by
the leader instigating a software project, writing
a code that shows some possibility, and inviting
others to join in the work of the project (Weber,
2004). Software projects that are durable, such
as the Linux and Moodle developments, have
identifi able, respected, and decisive leaders.
Linus Torvalds, the instigator of the Linux soft-
ware, wrote the fi rst code and then opened it up

for others to view and contribute to solving the
programming problems. Torvalds remains the
fi nal arbiter on adopting a code contributed by
members of the community or not (Weber, 2004).
Similarly, Martin Dougiamas, who originally
developed Moodle, continues to lead that project,
enabling it to mature. The ability of a leader to
moderate between the members of a community
and maintain momentum for ongoing development
and maintenance of a software is fundamental to
its durability and success and, therefore, its ap-
plicability within the education context.

An Active Community
around the Software

Schools have to make choices about various
options for software that will have longevity.
They require software that will have an ongoing
life beyond the initial startup phase. The size of
the community contributing to an OSS project
can be used by schools as an indicator of that
software’s viability. OSS communities are made
up of people who identify themselves with the
development of a particular piece of software.
Members of an OSS project tend to behave in
ways in which trust; building a valued reputa-
tion among peers; and being generous with time,
expertise, and source code are highly regarded
traits of a community’s participants (Pavlicek,
2000). These characteristics are also similar to
those that schools traditionally value. While size
does not necessarily translate into quality soft-
ware, the size of a community contributing to its
development is indicative of the value placed on
the development and of the enthusiasm with which
the open source programming community views
the project. For example, there is a community of
more than 1,000 active developers working on the
software practical extraction and reporting lan-
guage (PERL) (http://www.perl.org), a language
often used for programming Web applications
such as creating CGI programs.

 631

Selecting Open Source Software for Use in Schools

Reports of Developments and Plans
for Features Development

In order to plan for the future, schools require
software that has a clearly identifi able life cycle.
Knowing who is the open source community
and what its plans for future software develop-
ments are assists schools in planning their own
deployments and upgrades. An indicator of the
health and viability of an OSS project for a school,
therefore, is whether there are ongoing feature
developments planned. Mature OSS develop-
ment projects maintain plans for future develop-
ments and provide regular reports back to their
community of developers concerning progress
toward achieving the planned developments.
The learning environment software Moodle, for
example, provides a roadmap for forthcoming
features (http://docs.moodle.org/en/Roadmap)
and provides documented plans for the future
(http://docs.moodle.org/en/Future). The PERL
community maintains a Web page that provides
both weekly progress updates concerning work
that has been undertaken and summaries of the
status of the projects being undertaken by PERL
developers. Chief technology offi cers in schools
can review these reports in order to be informed
about whether a piece of OSS is suitable for their
contexts.

The Software can be Run on Multiple
Hardware and Software Platforms

Since various schools run different hardware
platforms and different confi gurations of those
platforms, the ability of OSS to function well on
a range of hardware provides greater fl exibility
for the uptake of that software. The compatibility
of the software with hardware commonly used in
schools is, therefore, important. A detailed source
of information about hardware compatibility
with the operating system Linux can be found at
http://www.linuxcompatible.org/. The Web sites
for individual pieces of OSS also provide direc-

tions concerning which hardware platforms will
support that particular piece of software.

Some schools run both proprietary and non-
proprietary software operating systems. Checking
the Web site of an OSS project should indicate its
compatibility with various operating systems. If
it does not, then the software should be avoided
for school use. When an OSS Web site indicates
that the software will run on both open and
proprietary operating systems, schools have the
greatest fl exibility for deployments. Furthermore,
BECTA (2005) has published a suite of eight case
studies that schools can use to assist them in deci-
sions about OSS operating systems and hardware
compatibility questions.

Well-Documented
License Conditions

Software that provides the capacity for enhance-
ment and modifi cation is valuable to schools so
they can customize and badge or brand it to their
own requirements. But proprietary licenses that
allow such changes are not necessarily fi nancially
viable or easily accessible to schools. License
management then is an emerging and time-con-
suming problem for schools, and thus, the more
simple and straightforward a software license is,
the easier it is for schools to manage. OSS licenses
work within copyright laws with the community
making the software available under specifi ed
license terms. While licenses for most propri-
etary software are designed to reduce or prevent
copies of the software from being made and to
prevent changes to the software, OSS licenses are
designed to guarantee people’s abilities to share
and modify the software.

OSS licenses can also be very attractive to
schools since they allow the software to be dis-
tributed without limits to any number of machines
or number of users accessing the software, which
means that schools can make many copies of
a piece of OSS and distribute it freely to staff
and students to use at school and at home. This

632

Selecting Open Source Software for Use in Schools

characteristic of unlimited distribution of OSS is
important for schools since it reduces the amount of
administrative time to monitor software licenses
into which a school has to enter and avoids piracy
confl icts.

While there are several different OSS licenses,
the two main categories are copyleft and non-
copyleft. Copyleft licenses leave the right to copy
the software in place. The GNU General Public
Licence (GPL) is the most common copyleft li-
cense and requires that all modifi ed versions of the
software must also be OSS. Non-copyleft licenses
do not insist on the right to freely redistribute
the software. The most common non-copyleft
license is the Berkeley Software Distribution
(BSD) license. The Open Source Initiative (OSI)
credentials OSS licenses. Once accredited, the
software can use the phrase Certifi ed OSS to
accompany the software. Schools interested in
investigating the license associated with a piece
of OSS can fi nd detailed information about that
license at http://opensource.org/licenses/.

Third-Party Support and/or
Other Strategic Alliances

Knowing that a piece of software is going to have
longevity is important for schools’ planning and
maintenance schedules. It is, therefore, reassur-
ing to schools that as a piece of OSS matures and
develops a reputation as a piece of high-quality
software, it also tends to attract international
interest and industry support through third-party
publications, conferences, support documenta-
tion, and the provision of expertise. Red Hat
Fedora and Moodle provide ready illustrations
of this point.

Red Hat is a U.S. commercial company that
has outlets around the world. It was one of the
fi rst Linux distributors and offers enterprise-level
support services. Red Hat was one of the fi rst
OSS distributors to establish partnerships with
companies such as Oracle and Sun. In late 2003,
Red Hat split its corporate distributions from

its desktops and renamed the Red Hat desktop
operating system Red Hat Fedora. While the
Fedora Project is a Red-Hat-sponsored open
source project, it is also supported by the open
source community and has the goal of building
a complete, general-purpose operating system
from OSS. Schools around the world use Red Hat
publications and support services to assist their
OSS deployments.

When OSS is developed for a specifi c audi-
ence such as the education sector, the software
benefi ts from those industry connections. The
development of the learning environment Moodle
(http://moodle.org), for example, has been de-
signed specifi cally to support social construction-
ist frameworks of online teaching and learning
(http://docs.moodle.org/en/About_Moodle).
Schools around the globe are taking up the use
of Moodle, and Moodle Moots were conducted
at Oxford University in England and in Adelaide
and Sydney, Australia, in 2005 and 2006, with
more planned in the foreseeable future. In 2006,
the National Educational Computing Conference
(NECC), the largest school education technology
conference in the world, hosted several sessions
and workshops about how to deploy Moodle in
schools.

Rapid Turnaround Processes for
Support Requests and Bug Fixes

Schools must maintain robust IT infrastructures.
Teachers and students require the technology to
work when they require it. There can be signifi -
cant adverse ramifi cations to IT system crashes
and virus invasions in schools, especially during
test and examination times. Rapid turnarounds
for support requests and bug fi xes are, therefore,
essential for schools. User forums and mailing
lists can provide insights into how a community
responds to requests for support. Chief technol-
ogy offi cers investigating OSS options can look
at the project’s changelogs to see lists of new
features, bug fi xes, improvements, and other

 633

Selecting Open Source Software for Use in Schools

known issues for each release of the software.
Open source projects that quickly address and
fi x bugs demonstrate that a healthy community
is sitting behind the software, and for schools,
software with a community supporting bug fi xes
is important in order to ensure that the software
remains robust and stable. Some projects may use
bug-tracking software that enables the status of
each bug to be tracked. Schools can use portals
such as Sourceforge.org and Freshmeat.net to gain
data about OSS projects, including information
such as activity, bug fi xes, and user rankings.

Well-Documented Technical
Information and Quality
Assurance Processes

The increasing complexity of school IT environ-
ments is challenging the human resources models
used in schools. As the number of computers
in a school increases, it becomes necessary for
technical support to be either on site or easily and
rapidly accessible. An interested teacher may have
performed such a function previously, but there
is now recognition that the role of a teacher is to
teach, not to maintain, upgrade, and troubleshoot
a school’s computing network (BECTA, 2002). In
the 21st century, the provision of expert technical
support is a mission-critical component in being
able to effi ciently deploy both proprietary software
and OSS in schools.

Well-documented technical information, then,
is necessary so that in-school technical offi cers
can download and install software without dif-
fi culty. Since OSS is created over the Internet by
a devolved group of developers, the maintenance
of high-quality documentation is vital to the ongo-
ing health of an OSS project. Well-documented
technical information, therefore, can be used by
schools as an indicator of the maturity and health
of an OSS project. The quality of a piece of OSS
also can be seen in the quality assurances pro-
cesses put in place and managed to validate and
verify the quality of that software. Furthermore,

design and code reviews of the software and
documentation of test cases (Golden, 2005) can
be used as indicators to the quality and robustness
of the software.

Technical documentation associated with
software can be accessed by a school via the In-
ternet or can be obtained from service vendors.
Technical documentation also can be presented
in changelogs, release notes, and installation
instructions, as well as in manuals. Important to
schools is that the technical documentation is easy
to access and understand; especially the instal-
lation and user documentation for the software
distributions. The provision of accessible and
easily understood technical documentation can
provide school support staff with the necessary
assistance to enable OSS to be deployed.

While the quality and availability of the tech-
nical documentation associated with a piece of
OSS can be used as an indicator of the maturity
of the software, not all OSS projects are good
at maintaining their technical documentation
in up-to-date and easy-to-read formats. Schools
wishing to use OSS must check the quality of
that particular software’s documentation before
deploying it. To assist schools in this process,
a brief review of the technical documentation
associated with fi ve OSS projects is provided.
The documentation accompanying these pieces
of software is suitable for use in schools and is
easy to locate on the Web.

Operating System

Debian is a stable Linux distribution and argu-
ably the most widely used OSS distribution in the
world. The Debian community adopts licenses that
are OSI approved. Documentation for Debian is
available electronically in several languages and
in various formats, including PDF and HTML
(http://www.debian.org/releases/stable/install-
manual). The installation manual is written for
a technically competent user and guides him or
her through each installation step.

634

Selecting Open Source Software for Use in Schools

Offi ce Productivity Software

OpenOffi ce is compatible with many operating
systems and hardware platforms. It comes with
easily accessible technical documentation to
assist installation and troubleshooting. Many of
its features and interfaces are similar to other
proprietary offi ce productivity software brands.
The technical documentation and online help
documentation associated with OpenOffi ce is
written for end users and, as such, is nontechnical
in its language.

Learning Environments

Moodle (www.Moodle.org) provides easily acces-
sible and simple documentation that can be located
on the Moodle home page. The technical docu-
mentation is regularly updated and is supported
by frequently asked questions (FAQs) and online
forums. The documentation has been tailored for
teachers, administrators, and developers. Recent
changes to the software are also documented on
http://docs.moodle.org/.

Graphics Manipulation

GIMP is a graphics manipulation program that
runs on multiple operating systems. The docu-
mentation includes books, tutorials, and mailing
lists. Support documentation is provided in several
languages and covers the tools and options found
in the GIMP software.

Sound Editing

Audacity is a cross platform audio editing pro-
gram. The Audacity home page (http://audacity.
sourceforge.net/) provides information for both
developers and the user community. Release notes,
online help, FAQs, and tutorials are available
online to support its use.

These preceding fi ve software projects are
used in schools because they are easy to install

and use, and each has well-documented technical
information.

Professional Development of
Both Teaching and Technical
Staff Is Available

The provision of training and professional devel-
opment of technical, administrative, and teaching
staff is required if the deployment of any piece of
software is to be successful in schools. Indeed,
the importance of professional development
to support the integration of technologies into
school environments has long been recognized
(Bosco, 2003; Yee, 2000) by both government and
nongovernment agencies alike. Golden (2005)
also highlights the importance of training and
development in the implementation of OSS in the
business sector. Yet the development of staff in
the use of technologies is often poorly executed
by organizations, including schools. Many third-
party organizations, however, provide support,
including training and professional development
services, to schools to enable them to easily and
effi ciently include and maintain OSS in their IT
portfolios. A quick search of the Internet provides
names of such third-party support services that
specialize in training and professional develop-
ment associated with the deployment of OSS and
that schools can access.

CONCLUSION

There is a wide array of OSS available to schools
and, as such, it is now prudent for decision-makers
deploying software in schools to consider OSS.
Schools face challenges in determining whether
OSS is suitable for them and in determining
which software projects are viable and sustain-
able. These challenges include understanding how
OSS is developed and how OSS can be deployed
in schools’ IT infrastructures. To determine
the viability of OSS for deployment in schools,

 635

Selecting Open Source Software for Use in Schools

however, the following characteristics must be
examined concurrently: (1) the quality of the
software, (2) the community of developers, and
(3) the maturity or status of the software develop-
ment as a project.

To assist decision-makers in schools, this
chapter has presented some criteria to assist in
the selection or not of OSS. It is intended that the
outline provided here can contribute to developing
understandings about whether OSS has a place in
a school’s IT portfolio. The selections of software
that various schools make, however, are unlikely
to be uniform. Schools will balance differently
the demands of their respective school contexts;
their educational, ethical, and social require-
ments; technical demands; business cases; and
administrative and legal requirements in order
to make decisions about whether to include OSS
in their IT architectures.

The choices that schools make about the soft-
ware they deploy, however, will not only be an
indication of the technical requirements associated
with their particular contexts but will also be a
concrete refl ection of the philosophical priorities
they endorse. In the 21st century, schools have to ask
themselves whether they are truly communities
of learners in which they examine and implement
what they value in every aspect of their schools.
They now have to question whether they value
open or secret processes of software development
and examine how their choices translate into
the decisions they make about their schools’ IT
infrastructures, because these structures are on
show for all to see.

REFERENCES

Berger, P., & Luckmann, T. (1979). The social
construction of reality. A treatise in the sociology
of knowledge. London: Peregrine Books.

Bessen, J. (2004). Open source software: Free
provision of complex public goods. Social Sci-

ence Research Network (SSRN), USA. Retrieved
February 8, 2006, from http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=588763

Bosco, J. (2003). Toward a balanced appraisal
of educational technology in US schools and
recognition of seven leadership challenges. In
Proceedings of the Consortium for School Net-
working (CoSN) Conference, Washington, DC
(pp. 2-8).

British Educational and Communications Tech-
nology Agency (BECTA). (2002). ICT subject
leaders: Outline ICT job description. Retrieved
February 8, 2006, from http://www.teachict.
com/teacher/ict_subjectleader.doc

British Educational and Communications
Technology Agency (BECTA). (2005). Open
source software in schools. A case study report.
Retrieved February 8, 2006, from http://www.
becta.org.uk/corporate/publications/documents/
BEC5606_Case_Study_16.pdf

Computer Economics. (2005). Help desk staffi ng
metrics, executive summary. Retrieved February
8, 2006, from http://www.computereconomics.
com/article.cfm?id=1076

Farrell, G., & Wachholz, C. (2004). ICT in edu-
cation: Meta-survey on the use of technologies
in education. United Nations Educational, Sci-
entifi c and Cultural Organization (UNESCO)
Asia Pacifi c Regional Bureau for Education.
Retrieved February 8, 2006, from http://www.
eldis.org/static/DOC14840.htm

Free Standards Group (FSG). (n.d.). The impera-
tive for Linux standards. A recommendation for
the future. A white paper prepared by the Free
Standards Group. Retrieved February 8, 2006,
from http://www.freestandards.org/docs/FSG_
Imperative_WP_Public.pdf

Goldman, B. (2005). Succeeding with open source.
Boston: Addison-Wesley Professional.

636

Selecting Open Source Software for Use in Schools

Guttman, C. (2003). Education in and for the
information society. United Nations Educational,
Scientifi c and Cultural Organization (UNESCO),
Publications for the World Summit on the Informa-
tion Society (WSIS) UNESCO, Paris. Retrieved
February 8, 2006, from http://www.unescobkk.
org/education/ict/v2/detail.asp?id=15685

Hepp, P., Hinostroza, E., Laval, E., & Rehbein,
L. (2004). Technology in schools: Education, ICT
and the knowledge society. World Bank. Retrieved
February 8, 2006, from http://www1.worldbank.
org/education/pdf/ICT_report_oct04a.pdf

Johnson, B., & Christensen, L. (2004). Educa-
tional research: Quantitative, qualitative, and
mixed approaches (2nd ed.). Boston: Allyn and
Bacon.

K-12 Linux. (2006). Case studies. K-12 Linux.
Retrieved February 8, 2006, from http://k12ltsp.
org/casestudy.html

Krechmer, K. (2005). The meaning of open
standards. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences. Retrieved
February 10, 2006, from http://www.csrstds.
com/openstds.html

Moyle, K. (2003). Report of the trial of open
source software conducted at Grant High School.
Department of Education and Children’s Services
(SA) South Australia, Australia. http://www.
educationau.edu.au/...report_trial_open_source_
GHS.pdf

Moyle, K. (2005). An infrastructure for what?
What infrastructure? New technologies online
conference, International Networking for Educa-
tional Transformation, Specialist Schools Trust.
http://www.sst-inet.net/olc/papers.aspx?id=4

Open Source Victoria. (2005). Free software
for schools, catalog of open source software
for education. Open Source Victoria. Retrieved
December 1, 2005, from http://www.cybersource.
com.au/about/education_FOSS_catalog.pdf

Pavlicek, D. (2000). Embracing insanity: Open
source software development. Indianapolis: SAMS
Publishing.

Preparing Tomorrow’s Teachers to Use Tech-
nology. (2002). Digital handhelds: The future
of connected teaching and learning? Retrieved
February 8, 2006, from http://pt3.altec.org/sto-
ries/digital_handhelds.html

Programme for International Student As-
sessment (PISA). (2005). Are students ready
for a technology-rich world? What PISA
studies tells us. Organization for Economic
Co-Operation and Development. Retrieved
December 8, 2005, from http://72.14.207.104/
search?q=cache:FYC6xe3Pl1IJ:www.pisa.oecd.
org/dataoecd/28/4/35995145.pdf+Are+students
+ready+for+a+technology-rich+world&hl=en&
gl=au&ct=clnk&cd=2

Raymond, E. (2001). The cathedral and the ba-
zaar. Musings on Linux and open source code by
an accidental revolutionary (2nd ed.). O’Reilly.

Schoolforge-UK. (2006). Case studies. Retrieved
December 8, 2005, from http://www.schoolforge.
org.uk/index.php/Case_Studies

United Nations Educational, Scientific and
Cultural Organization (UNESCO) Bangkok.
(n.d.). Issues and rationale. Retrieved February
8, 2006, from http://www.unescobkk.org/index.
php?id=794

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Whyte, B. (2000). “Upgrading”: Co-constructing
a community of learners. In Proceedings of the
Australian Association for Research in Education
Annual Conference 2000, Australia. Retrieved
December 8, 2001, from http://www.aare.edu.
au/00pap/why00394.htm

Yee, D. L. (2000). Images of school principals’
information and communications technology

 637

Selecting Open Source Software for Use in Schools

leadership. Journal of Information Technology
for Teacher Education, 9(3), 287-302.

KEY TERMS

 Beta Release: The stage of software develop-
ment in which all the features in their initial form
have been implemented. Only bugs are fi xed at
this stage. In the OSS development cycle, beta
releases of software are released widely in order
that bugs can be identifi ed and fi xed rapidly.

 Infrastructure: The structural components
that together contribute to a full structure or orga-
nization. The term infrastructure often is used to
refer to the physical elements of an entity such as
a school but also refers to an information technol-
ogy infrastructure that includes the hardware and
software to create the system or structure.

 Interoperability: The ability of products
(in this case, software) to work together seam-
lessly.

 License Management: The process of ensur-
ing that the legal requirements specifi ed in any
one software license are met by the users in an
organization.

 Pedagogy: The processes of teaching chil-
dren.

 Professional Development: The process of
learning undertaken to build the capacity of people
working in a particular occupation or organiza-
tion.

 Public Good: Goods or services provided
in the public interest and in which the processes
undertaken to provide a public good do not inhibit
other people’s freedoms.

 Schools: Institutions organized by groups
within a society to educate younger members of
that society. School buildings are the traditional
places in which such learning occurs; however,
the necessity to physically attend school is starting
to change with the advent of the Internet.

 Socially Constructed: The process used by
entities, agencies, organizations, or other groups
of people that enables goods and services to be
created, invented, or produced through understood
social processes created by the members of that
group of people.

 Values: Principles to which an individual or
organization subscribes.

638

Chapter XLIX
Open Source

E-Learning Systems:
Evaluation of Features

and Functionality

Phillip Olla
Madonna University, USA

INTRODUCTION

Techniques for delivering educational material
are constantly evolving to keep pace with new
technologies and society habits. Educational
content can be created in a variety of formats,
such as video, online courses, telecourses, and
podcasts, which are just a few of the alternatives
to the traditional brick-and-mortar classroom
environment. These alternative formats are
creating a paradigm shift that is exemplifi ed by
the term e-learning, which is sometimes called
online education or distance learning. The growth
in e-learning is compounded by the confl uence
of Web-based technologies, advances in digital

storage, processing and media, and the ongoing
boutique approach to software development. This
convergence of technologies facilitates educa-
tion and learning that become ubiquitous and
more engaging for both students and educators
(Koohang & Harman 2005). E-learning relates
to all activities relevant to instructing, teaching,
and learning using various types of electronic
media. The electronic delivery conduit could be
the Internet, intranets, extranets, satellite TV,
video/audiotape, and/or CD-ROM.

There is a variety of software applications and
platforms that can be used for e-learning. They
are defi ned using a variety of terms, including
 educational knowledge portal (EKP), learning

ABSTRACT

E-learning applications are becoming commonplace in most higher education institutions, and some in-
stitutions have implemented open source applications such as course management systems and electronic
portfolios. These e-learning applications initiatives are the fi rst step to moving away from proprietary
software such as Blackboard and WEBCT toward open source. With open source, higher education
institutions can easily and freely audit their systems. This chapter presents evaluation criteria that was
used by a higher education institution to evaluate an open source e-learning system.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 639

Open Source E-Learning Systems

management systems (LMS), virtual learning
environments (VLE), education via computer-
mediated communication (CMC) or online
education. They might also be called a managed
learning environment (MLE), learning support
system (LSS), or learning platform (LP). This
chapter presents a list of criteria that need to be
considered when an organization is considering
the implementation of an e-learning system.

E-learning applications are expected to reduce
institutional expenses and increase institutional
revenues (Harvey, 2004; Moallem, 2004; Porter,
2003). Some higher education institutions are
considering the use of open source e-learning
applications. Open source software products are
freely available for delivering education online
(Coppola & Neelley, 2004). Siemens (2003) pro-
poses that the benefi ts of using an open source
model are increased quality, greater stability,
superior performance, improved functionality, re-
duced vendor reliance, reusability, reduced costs,
auditability, reliability, and quick bug fi xes.

This chapter is structured as follows: The fi rst
section provides an introduction to open source
software (OSS), followed by an overview of the
features and functionality that can be incorpo-
rated in any e-learning system. This is followed
by evaluation criteria that can be used to evaluate
open source e-learning systems.

BACKGROUND

Open Source E-Learning Software

There are various interpretations of OSS (Fug-
getta, 2003); however, generally open source
refers to a software’s source code that is freely
available to anyone who wishes to extend, modify,
and improve the code. Examples of open source
projects include Linux (http://www.linux.org),
Apache (http://www.apache.org), Mozilla (http://
www.mozilla.org), and OpenOffi ce (http://www.

openoffi ce.org) (Koohang & Harman, 2005). The
GNU project (http://www.gnu.org) defi nes free
software as “a matter of the users’ freedom to
run, copy, distribute, study, change and improve
the software.” There are four elements that are
emphasized by the GNU: (1) the freedom to run
the program for any purpose, (2) the freedom
to study how the program works and adapt it to
your needs, (3) the freedom to redistribute cop-
ies, (4) the freedom to improve the program and
release your improvements to the public so the
whole community benefi ts (freedom 3). The open
source model encompasses a set of principles and
values that ensures the integrity of OSS. One of
the prominent organizations that advocates open
source projects is the Open Source Initiative (OSI)
(http://www.opensource.org). OSI is a not-for-
profi t organization that recommends the following
10 guiding rules that are widely accepted by the
open source community:

1. Free redistribution
2. Source code must be included
3. Derived works; allow modifi cations
4. Integrity of the author’s source code
5. No discrimination against persons or groups
6. No discrimination against fi elds of en-

deavor
7. Distribution of license
8. License must not be specifi c to a product
9. License must not restrict other software
10. License must be technology-neutral

E-learning applications are becoming com-
monplace in most higher education institutions,
and some have implemented open source appli-
cations such as course management systems and
electronic portfolios. These e-learning applica-
tions initiatives are the fi rst step to moving away
from proprietary software toward open source.
With open source, higher education institutions
can easily and freely audit their systems. There
is a view that open source systems are open and

640

Open Source E-Learning Systems

transparent and reduce the vendor lock-in. The
system becomes fl exible. There will be ultimate
access/control, ownership, and freedom. The open
system encourages increased exchange of ideas
that advances innovation (Koohang & Harman,
2005). Young (2004) proposes that successful
implementation of an open source model depends
on (1) community building, (2) agreeing on a com-
mon defi nition of open source, (3) allocating and
securing budget for free software, (4) encouraging
institutions to switch to open source, and (5) have
a positive working relationship with companies.
Coppola and Neelley (2004) delineated several
benefi ts of OSS for open learning. They are as
follows:

1. The software evolves more rapidly and
organically.

2. Users’ needs are rapidly met as the OSS
model harnesses their collective expertise
and contribution.

3. New versions are released often and rely on
the community of users and developers to
test it, resulting in superior quality software
tested on more platforms and in more envi-
ronments than most commercial software.

4. The development team is often largely
volunteers, distributed, many in numbers,
and diverse. Often, paid members of the
development team will manage the project
and organize the work of the volunteers.

5. Security is enhanced because the code is
exposed to the world.

The open source model promotes collaboration
and sharing of resources. It creates a community
of people that work together to achieve common
goals (Koohang & Harman, 2005), especially
in the open learning environment. Coppola and
Neelley (2004) also suggest that an open source
model promotes freedom to choose, increases
user access/control, encourages a link to a global
community, promotes quality, and enhances in-
novation in teaching and learning. The following

section describes some of the features of e-learn-
ing systems.

MAIN FOCUS OF THE CHAPTER

Features and Functionality
of E-Learning Systems

E-learning applications comprise different fea-
tures and functionalities that support the online
learning environment. One of the key features
expected from any open source system is the
ability to facilitate communication between stu-
dents and the tutor. It is also important to have a
system that has capabilities such as creation of
announcements, calendar entries, discussions,
links, syllabi, course descriptions, and other
course content using templates. Students should
have the ability to e-mail other students, profes-
sors, or predefi ned distribution groups, along with
access to a searchable e-mail address book.

The discussion board is a virtual space used
to promote dialogue between students and the
instructor. Typically, instructor-led discussions
can be viewed by date and thread. Discussion
posts may include attachments and URLs. Posts
can be plain text, formatted text, or html. Discus-
sion threads tend to be expandable and collaps-
ible in order to view an entire conversation on
one screen.

It is important that groups have their own
shared fi le area and a private group discussion
board in order to facilitate collaborative learning,
since the ability to form cohorts is critical for
distance learning courses. Groups can be defi ned
either at the course level and apply across all
activities that support them or at the individual
activity level. In some systems, group work is
managed through the use of project sites that are
separate from the main course site. Each project
site can have its own shared fi le exchange, dis-
cussion tool, calendar, announcements, chat, and
group e-mail list.

 641

Open Source E-Learning Systems

It is important that the e-learning system
allows real-time communication, also known
as instant messaging, among students enrolled
in the specifi ed course as well as between the
students and the instructor. This allows for quick
interaction between students, which is unlike a
typical discussion board in which it can take days
for students or professors to respond. Real-time
communication is crucial in maintaining dynamic
conversations and debates, similar to what might
take place in a traditional college classroom. This
instantaneous communication also enhances
student teamwork.

Some e-learning systems contain features that
push academic information to user cell phones,
PDAs, or external e-mail addresses. Another
important feature is a course calendar, a fl exible
tool for both instructors and students. Instructors
can post course-related events and announcements
and can assign tasks. This allows the instructor to
plan lessons and balance workload across several
courses. For students, calendars provide the ability
to monitor important deadlines.

One of the most important features of an
e-learning system is the ability to effectively
manage assessments and students grading. An
e-learning testing engine allows the creation,
randomization, and scoring of the most common
test formats, including true/false, multiple-choice,
multiple-answer, matching, fi ll-in-the-blank, and
short-answer/essay type questions. Some systems
will also allow test questions to contain images and
audio fi les. Test security features should include
the ability to set specifi c times when students
are permitted to take tests and to set a specifi c
time limit on a test. The systems should support
a fully functional grade book that categorizes
grades by assessment and by student, and should
provide the capability to export scores to an
external spreadsheet. Most systems provide the
functionality to allow students to securely submit
their work to their tutors, a feature called a digital
drop box for submitting to professors completed

assignments that are time and date stamped.
Students have the ability to view their individual
grades as well as to compare themselves against
the overall performance of the class by viewing
overall percentages.

Most e-learning systems allow the tutor some
level of customization; the instructor should be
able to easily change the appearance of a course
by changing the order and name of menu items
and the location and width of the navigation menu.
Custom tools can be created and quickly added
and removed from course or student home pages.
Students can customize the sounds, colors, font
sizes, and layout of the tools within the interface.
All registered students should have access to
their own home page, which provides access to
each of the classes in which they are enrolled as
well as any groups of which they may be a part.
The individual home page also lists any events
that are linked to classes in which the student is
enrolled as well as system-wide events from the
student’s personal calendar.

The systems normally provide templates to
choose from when designing an online course. The
templates can contain specifi c university logos and
colors schemes, and users can change navigational
options according to their preferences.

It is important that any chosen system possess
adequate help and support. This feature provides
tutors with access to supporting material such
as an online instructor training guide, help fi les,
and context-sensitive help; online groups to share
documents, course components, schedules, and
other collaborative tools and learning objects

An important functionality is the ability to
allow instructors to post online lectures in sev-
eral popular video and audio formats, including
MPEG, WAV, MP3, QMOV, and others. This
fl exibility allows multiple pedagogical methods
to be used in presenting course material. The next
section will present evaluation criteria that can be
used to evaluate a course management system.

642

Open Source E-Learning Systems

FUTURE TRENDS

Evaluation of Existing Course
Management Systems

The evaluation criteria of any e-learning system
must start fi rst with an understanding of the goals
of the institution. There are potential trade-offs to
consider when assigning weights to these criteria,
which should be determined by the university’s
vision and strategy. For example, a university
may want an e-learning package that can meet
its future requirements and is easy to implement.
However, putting an emphasis on meeting future
requirements may require a package that uses
state-of-the-art component technology, even
though that technology has not been successfully
implemented by other universities and may contain
bugs, making it harder to implement initially.
Such factors should be considered carefully and
weighted in order of importance to the institu-
tion. These evaluation criteria would include the
following:

• Known requirements: Ability of the pack-
age to meet the university’s current academic
and administrative requirements and future
requirements that are currently known to
exist

• Unknown future requirements: Ability to
modify the package to meet the university’s
new requirements as they become known

• Implementability: Ability to implement the
package easily; this might include an analysis
of the vendor’s background, software ma-
turity, technology maturity, modifi cations,
third-party implementer considerations,
implementation assistance provided by the
e-learning vendor, quality, documentation,
and training

• Support: Ability of the vendor to support
both the package and the university in the
future; factors include vendor responsive-
ness, quality, development methodology,

modifi cations, fi nancial stability, warranty,
user groups, and support functions

• Cost: Total cost to purchase and implement
the package as well as ongoing maintenance
and support costs. These costs include the
following:

 { Annual software license fee
 { Software purchase price, including

discounts
 { Cost of additional hardware
 { Cost of customizing the package to

individual specifi cations
 { Cost of installing the software and

integrating it with other systems
 { Cost of converting data (e.g., course

Web sites on the system not chosen)
 { Cost of training the system admin-

istrators and those who will become
e-learning faculty trainers

 { Cost of additional products, such as
software tools needed to run the sys-
tem and hardware needed to run the
system

 { Annual base maintenance package,
cost of modifi cations and maintenance
of required hardware (including depre-
ciation)

 { Ongoing costs for training, help
desk support, system administrators,
and application programmer costs for
ongoing customizations, installations,
and support

Once the university has established its overall
goals and weighted them in terms of importance,
it can then move on to an evaluation of the fea-
tures of specifi c products and how those might
best meet the needs of its constituents. Standard
features of contemporary e-learning management
systems include the following:

• Course scheduling and organization
• Student enrollment and administration
• Course content delivery capabilities

 643

Open Source E-Learning Systems

• Management of online class transactions
• Tracking and reporting of learner prog-

ress
• Assessment and measurement of out-

comes
• Reporting of achievement and completion
• Student records management
• Hosting capabilities
• Virtual classroom and live collaboration

tools
• Content assembly and authoring tools

The next generation integrated e-learning will
likely include the following additional features:

• Object-oriented and Web-based architec-
ture

• Skills gaps analysis/pretest and test-out
features

• Profi ling and mapping of personalized learn-
ing paths

• Employee competency and performance
management

• Seamless integration with other enterprise
systems

• E-commerce and wireless (mobile e-learn-
ing) capabilities

• Compliance with industry standards

The new generation of e-learning systems is
increasingly browser-based and does not require
many downloads or plug-ins on the user’s desktop.
While the emergence of completely Web-based
applications is not a revolutionary technological
shift, it is a major evolutionary process that pro-
vides a number of benefi ts to vendors, customers,
and end users. The most important advantages of
these are shorter implementation times, increased
scalability, easier systems maintenance, enhanced
deployment and data management, improved
software control, and fewer memory problems
on the user’s desktop.

In addition to supporting the university’s vi-
sion, mission, and goals, the evaluation of a spe-
cifi c e-learning tool must take into consideration
the learner, the faculty, and the administration.
Listed in Table 1 is an evaluation of 10 of the most
popular open course e-learning systems. Each
was evaluated on a scale of one to fi ve, with fi ve
representing a particular strength of the product

.L
R

N

B
od

in
gt

on

C
la

ro
lin

e
1.

4

C
la

ss
W

eb

2.
0

K
EW

L
1.

2

M
oo

dl
e

1.
5.

3

Sa
ka

i 2
.0

AT
ut

or
 1

.5

C
H

EF

C
ou

rs
e

m
an

ag
er

Communication

Discussion Forums 5 3 1 2 4 5 3 4 2 3

File Exchange 4 4 2 0 3 3 4 4 3 0

Internal E-Mail 5 0 5 0 5 2 4 3 0 3

Online Journal/Notes 5 2 0 0 2 0 0 5 0 2

Real-Time Chat 0 0 3 0 5 4 3 5 3 2

Audio/Video Services 0 0 0 0 5 0 0 0 0 5

Whiteboard 0 0 0 0 5 0 0 5 0 0

Subtotal Communication 19 9 11 2 29 14 14 26 8 15

Table 1. Open source course management systems comparison copyright (Source: Olla Crider, 2006)

continued on following page

644

Open Source E-Learning Systems

Productivity

Bookmarks 0 0 0 0 5 0 0 0 5 0

Calendar/Progress Review 5 0 2 0 3 3 5 3 4 3

Orientation/Help 3 0 0 0 4 3 5 4 2 2

Searching Within Course 4 0 0 0 5 3 3 3 1 0

Work Off-line/Synchronize 5 0 0 0 3 0 0 4 0 0

Subtotal Productivity 17 0 2 0 20 9 13 14 12 5

Student Involvement

Groupwork 5 4 3 0 4 4 4 4 0 2

Self-Assessment 3 5 5 0 3 3 4 3 0 2

Student Community
Building 5 0 0 0 3 0 3 4 0 0

Student Portfolios 5 0 3 0 2 4 4 3 0 0

Subtotal Student
Involvement 18 9 11 0 12 11 15 14 0 4

Administration

Authentication 5 3 3 0 3 5 5 4 4 3

Course Authorization 3 5 0 0 3 4 4 5 3 3

Hosted Services 5 0 0 0 0 5 4 4 0 3

Registration Integration 5 0 3 0 3 4 3 5 0 3

Subtotal Administration 18 8 6 0 9 18 16 18 7 12

Course Delivery Tools

Automated Testing and
Scoring 1 3 3 2 5 5 5 4 1 2

Course Management 5 3 0 0 2 4 3 3 0 0

Instructor Helpdesk 4 4 4 0 3 3 5 3 0 0

Online Grading Tools 0 3 0 0 5 5 4 3 2 3

Student Tracking 0 0 3 0 0 5 0 3 0 2

Subtotal Course Delivery 10 13 10 2 15 22 17 16 3 7

Curriculum Design

Accessibility Compliance 3 4 0 0 4 5 3 5 2 5

Content Sharing/Reuse 0 0 0 0 0 0 0 4 0 0

Course Templates 4 4 4 0 0 4 3 4 0 2

Curriculum Management 0 0 0 0 0 0 0 0 0 5

Customized Look and Feel 5 4 0 3 3 5 5 5 0 4

Instructional Design Tools 0 0 0 0 4 5 3 4 0 2

Table 1. continued

continued on following page

 645

Open Source E-Learning Systems

Table 1. continued

Instructional Standards
Compliance 5 5 0 0 0 5 5 5 0 0

Subtotal Curriculum
Design 17 17 4 3 11 24 19 27 2 18

Technical Specifi cations

Hardware/Software

Client Browser Required 4 0 4 0 2 4 5 4 0 3

Database Required

M
yS

ql

ot
he

rs

- M
yS

ql

M
yS

ql

M
SS

ql

M
yS

ql

M
yS

ql
O

ra
cl

e

M
yS

ql

- M
SS

ql

Server Software Allowed 4 3 2 3 3 5 4 3 3 3

UNIX Server 4 4 4 0 0 4 4 4 4 0

Windows Server 1 4 3 3 2 3 4 3 2 3

Subtotal Hardware/
Software 13 11 13 6 7 16 17 17 9 9

Pricing/Licensing

University or Private U U U U U U U U U P

Costs Free Free Free Free Free Free Free Free Free $$$

Open Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Variety of Optional Extras 1 2 2 0 3 4 5 4 2 3

Software Version 2.1.3 2.6 1.71 2.0.3 1.2 1.5.3 2.1 1.5.2 2.4

TOTAL SCORE 95 69 59 13 106 118 116 136 43 73

being evaluated and one offering the least desir-
able functionality of those reviewed. Features
evaluated included communication, productiv-
ity, student involvement, administration support
tools, course delivery tools, curriculum design,
technical specifi cations, and pricing/licensing.
An overall rating was assigned by tallying the
scores of each product in each of the functional
areas. It should be noted that some systems were
particularly strong in some functional areas and
had a decided edge in a particular category.

It is the author’s opinion that such evaluations
should include both technical and nontechnical
considerations in order to build the strongest level
of support and capabilities. It likewise should

include feedback from faculty, students, depart-
ments, and administrators in order to optimize
input on the components most likely to be used,
appreciated, and anticipated by each group.

CONCLUSION

Higher education leaders must fi nd a way to reduce
the cost and complexity of system integration
work while ensuring that their electronic learn-
ing systems are built on a reliable and scalable
architecture that allows them the fl exibility to
meet the needs of diverse teaching and learning
styles. The educational technology systems of

646

Open Source E-Learning Systems

the future must be built from the perspective of
enterprise infrastructure. They must be based
on an open and modular framework that can be
used by software vendors, and they must meet the
needs of entire campuses, individual departments,
and even single courses. In addition, they must
take advantage of international standards that
are being used by formal educational systems
around the world.

The design of open source e-learning systems
are now fl exible enough to adapt to a wide range
of instructional requirements and styles yet
stable enough to allow faculty and students to
concentrate on teaching and learning and not on
the technology itself. They are robust enough to
successfully scale up to support an ever-increas-
ing workload, to adapt to new technologies over
time, and to integrate with the existing campus
infrastructure.

Recent years have seen strong growth in the
availability of open source course management
systems, and many tools now exist for the evalu-
ation of these systems. An educational institution
wanting to take advantage of these new tools may
fi nd that it is a laborious task to identify those
systems that best align with its mission, values,
and goals. Using the categories presented in this
chapter may assist in the evaluation criteria.

REFERENCES

American Bar Association (n.d.) An overview of
“open source” software licenses: A report of the
Software Licensing Committee of the American
Bar Association’s Intellectual Property Section.
Retrieved October 12, 2005, from http://www.
abanet.org/intelprop/opensource.html

The Centre for Educational Technology In-
teroperability Standards (CETIS). (2004). Open
source e-learning technology hits prime time.
Retrieved from http://www.cetis.ac.uk/con-
tent2/20040724101134

Collier, G., & Robson, R. (2002). What is the open
knowledge initiative? A white paper prepared by
Eduworks Corporation for O.K.I. September 20,

2002. Retrieved October 30, 2005, from http://web.
mit.edu/oki/learn/whtpapers/OKI_white_pa-
per_120902.pdf

Coppola, C., & Neelley, E. (2004). Open source
open learning: Why open source makes sense
for education. Retrieved October 27, 2004, from
http://www.rsmart.com/assets/OpenSourceO-
pensLearningJuly2004.pdf

EdTechPost (n.d.) EdTech post open course man-
agement systems. Retrieved September, 2006,
from http://www.edtechpost.ca/pmwiki/pmwiki.
php/EdTechPost/OpenSourceCourseManage-
mentSystems

EduTools (n.d.). Course management systems
comparison tool by the Western Cooperative
for Educational Telecommunications. Retrieved
November 27, 2005, from http://www.edutools.
info/course/compare

E-learning systems information and services.
(n.d.). Retrieved October 29, 2005, from http://
www.e-/learningcentre.co.uk/eclipse/vendors/
opensource.htm

Free & Open Source Software Portal, United
Nations Educational, Scientifi c and Cultural
Organization (UNESCO). (n.d.). Retrieved No-
vember 5, 2005, from http://www.unesco.org/
cgibin/webworld/portal_freesoftware/cgi/page.c
gi?g=Software%2FCourseware_Tools%2Findex.
shtml&d=1

Fugetta, A. (2003). Open source software: An
evaluation. The Journal of Systems and Software,
66, 77-90.

Harvey, A. (2004). Building a learning library.
The British Journal of Administrative Manage-
ment, 3/4, 26-27.

Jansen, C. M., Bach, V., & Osterle, H. (n.d.). Knowl-
edge portals: Using the Internet to enable business

 647

Open Source E-Learning Systems

transformation. Institute for Information Manage-
ment at the University of St. Gallen, Switzerland.
Retrieved October 27, 2005, from http://www.isoc.
org/inet2000/cdproceedings/7d/7d_2.htm

Koohang, A., & Harman, K. (2005). Open source:
A metaphor for e-learning. Informing Science
Journal, 8.

Kumar, V. M. S., Merriman, J., & Long, P. D.
(2001). Building open frameworks for education.
Retrieved October 20, 2005, from http://www.
educause.edu/ir/library/pdf/erm0169.pdf

Moallem, M. (2004). Distance learning and
university effectiveness. Review of C. Howard
et al. (n.d.). Distance learning and university
effectiveness: Changing educational paradigms
for online learning. Information Management,
17(3/4), 29-30.

Moodle Software homepage. (n.d.). Retrieved
October 28, 2005, from http://moodle.org/doc/

The open knowledge initiative. (n.d.) Retrieved
August 29, 2006, from http://www.okiproject.
org/

Open source e-learning ratings. (n.d.). Retrieved
November 20, 2005, from http://www.opensour-
cee-learning.com/index.php?option=content&ta
sk=view&id=388&Itemid=143

Paulsen, M. F. (2003). Online education and learn-
ing management systems: Global e-learning in a
Scandinavian perspective. Oslo: NKI Forlaget.

Porter, L. (2003). ABCs of e-learning: Reaping
the benefi ts and avoiding the pitfalls. Research
Library, 50(2), 273.

Sakai Project homepage. Retrieved October 28,
2005, from http://www.sakaiproject.org/

Siemens, G. (2003). Open source content in edu-
cation: Part 2. Developing, sharing, expanding
resources. Retrieved October 27, 2004, from
http://www.elearnspace.org/Articles/open_
source_part_2.htm

Sun Microsytems. (n.d.) Open knowledge initia-
tive. Retrieved November 2, 2005, from www.
sun.com/edu

Virtual learning environment. (n.d.) Retrieved
October 18, 2005, from http://en.wikipedia.org

Young, J. (2004). Five challenges for open source.
Chronicle of Higher Education.

KEY TERMS

 E-Learning: Education delivered electroni-
cally, typically over the Internet but also via a
network or stand-alone computer. E-learning is
computer-enabled transfer of skills and knowl-
edge. E-learning applications and processes
include Web-based learning, computer-based
learning, virtual classrooms, and digital col-
laboration. Content is delivered via the Internet,
intranet/extranet, audiotape, videotape, satellite
TV, and CD-ROM.

 Evaluation: To assess the effectiveness of
something according to pre-existing criteria.

 Evaluation Criteria: The factors that in-
dividuals track/follow in order to determine
the effectiveness of an item being assessed for
quality.

 Free Software (FS): Software that can be
used, studied, copied, modifi ed, and redistributed
without any restrictions, as defi ned by the Free
Software Foundation (FSF).

 Functionality: Degree to which an item
operates or can be operated as intended by its
designers/creators.

GNU: A project sponsored by the Free Soft-
ware Foundation; a complete operating system
based on the Linux kernel. GNU is an acronym
for Gnus not UNIX. The project has developed
its own kernel called HURD and maintains a
library that will link to both free and proprietary
software (GNU Project, 2004)].

648

Open Source E-Learning Systems

 Open Source Software (OSS): Software
distributed both as source code and in compiled
form. It cannot discriminate against any fi eld of
endeavor, group, or individual. It must come with a
license that does not restrict derivative works and

must not restrict any party from selling or giving
away the code. Further, rights to use the code
cannot be tied to a specifi c program and cannot
restrict any other software or program to be of a
certain origin or type (Open Source, 2005).

 649

Chapter L
The Role of Open

Source Software in Open
Access Publishing

David J. Solomon
Michigan State University, USA

INTRODUCTION

This chapter discusses the Open-Access Initia-
tive (OAI) in scholarly publishing and how open
source journal management software can be a
critical resource for small open-access journals
published by volunteers. The issues that will be
covered include the following:

• Rapid transition from paper to electronic
distribution of scholarly journals and its
economic implications

• Practical and ethical arguments for open
access to research and scholarship

ABSTRACT

This chapter discusses the rapid transition from paper to electronic distribution of scholarly journals
and how this has led to open-access journals that make their content freely available over the Internet.
It presents the practical and ethical arguments for providing open access to publicly funded research
and scholarship and outlines a variety of economic models for operating these journals. There are
hundreds of journals that are run on volunteer effort by a few people or even a single person. Journal
management software that can streamline the peer-review process as well as other aspects of operating
a journal can dramatically reduce the effort of operating these journals and allow them to fl ourish. The
availability of high-quality, open source journal management software is playing an important role in
facilitating the success of small volunteer-run, open-access journals.

• Alternative models for funding the dissemi-
nation of scholarship and the key role open
source software can play in facilitating open
access to scholarship

• Future trends in the organization and fund-
ing of scholarly publications

BACKGROUND

Although a few scholarly journals1 were distrib-
uted electronically prior to the World Wide Web
(the Web), the development of the Web made
electronic distribution of journals practical. Today,

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

650

The Role of Open Source Software in Open Access Publishing

the majority of scholarly journals are available
via the Internet, and electronic dissemination is
quickly becoming the dominant means by which
these journals are distributed (Van Orsdel &
Born, 2002).

This rapid transition and the inherent differ-
ences between paper and electronic distribution
have thrown the 340-year-old, multibillion-dollar
scholarly publication system into turmoil. With
electronic dissemination, many of the most re-
source-intensive roles that have traditionally been
played by both publishers and librarians are disap-
pearing, and it is not yet clear who will perform the
roles that remain and how the evolving system will
be organized and fi nanced (Solomon, 1999).

Along with speed and convenience, electronic
distribution has signifi cantly reduced the cost and
effort required to publish a journal. While these
effi ciencies are evident throughout the publica-
tion process, the most striking difference is that
electronic dissemination essentially has removed
the cost of distribution.

Since the incremental cost of distributing
each copy of a paper journal is signifi cant, the
only practical means of funding these journals
is through subscription fees. With electronic
publication, funding a journal by other means
and disseminating the content of these journals
at no charge is both feasible and, in the view of
many people, highly desirable. The calls for free
and open access to scholarly journals started al-
most as soon as they began appearing in digital
form (Harnad, 1990). By 2002, the movement
organized itself into what is commonly called the
open-access initiative (Budapest Open Access
Initiative, 2002). There are compelling reasons
for open access to scholarship that involve both
practical and ethical issues.2

As noted by Willinski (2006), open access
is not an all-or-nothing phenomena, but rather
a continuum with many forms. He defi nes 10
styles of open access that provide different types
of access that largely refl ect how the cost of pub-
lication is funded. At the most basic level, there

are two general approaches to open access: the
development of open-access journals and authors
archiving their own manuscripts in open-access
archives. These have been termed the “gold” and
“green” roads to open access (Guedon, 2004).

At its most limited form, there are journals
that make abstracts freely available. At the other
end of the continuum are what Willinsky (2006)
terms subsidized journals, which provide im-
mediate open access to their full content with the
cost of operating the journal subsidized by other
means. Other models include partial open access,
in which some material is freely available and the
rest is available only by paid subscriptions; delayed
open access, in which material is restricted to paid
subscribers initially and at some point is made
freely available; and author-paid models, in which
the material is made freely available but authors
must pay a fee to publish in the journal.

All these models provide some level of access
over the traditional subscription fee model; how-
ever, all but subsidized journals limit open access
to some extent or charge authors as a means of
funding the publication process. Unfortunately,
any restriction on access, including charging
authors for publication, places barriers to the
dissemination of research and scholarship that
reduces the value of the information.

ARGUMENTS FOR OPEN ACCESS
TO RESEARCH AND SCHOLARSHIP

There are compelling ethical and practical reasons
for providing complete unrestricted access to
scholarly literature. From an ethical standpoint,
much of the cost of scientifi c research and other
forms of scholarship is funded though public
sources. The National Institutes of Health (NIH),
for example, is spent approximately $29 billion on
biomedical research in fi scal year 2006 (National
Institutes of Health, 2005). Willinsky (2000) has
called the product of this research public knowl-
edge and argues that since the research is pub-

 651

The Role of Open Source Software in Open Access Publishing

licly funded, the knowledge it produces is public
property and should be made freely available to
anyone who wishes to access it.

For more than 340 years, scholarly journals
have formed the most comprehensive, accurate,
and up-to-date repository of knowledge. In a very
real sense, these journals in aggregate form are
our archive of scientifi c and scholarly knowledge
(Guédon, 2001). Journal publishers have tradition-
ally required authors to sign over copyrights in
exchange for publishing their works. Publishers
have argued that this is necessary to allow them
to fund the publication process. With the cost
reductions of electronic publication, it is getting
harder to justify this assertion. Although our tax
dollars largely pay for basic research, by requiring
the copyright, journal publishers end up owning
the embodiment of the knowledge generated by
the research. This state of affairs has become
almost ludicrous. For example, the public pays
$60,000 to $80,000 to fund the research that
results in an article from an NIH-funded grant,
while the cost of publishing the article is only
$2,000 to $3,000; yet the journal publisher ends
up owning the copyright to the article (Willinsky,
2006).3 Furthermore, in the United States, indirect
payments from research grants to universities and
other research organizations provide a signifi cant
portion of the funding for research libraries. It is
these same libraries that purchase the majority of
the subscriptions to scholarly journals. In essence,
not only is the research publicly funded but so is
the cost of disseminating the research.

Fifty years ago, virtually all scholarly journals
were owned by professional societies. They oper-
ated these journals for the benefi t of their profession,
and in most cases, they operated the journals as
a loss subsidized by the society. As the scientifi c
enterprise began to expand rapidly after World War
II, the need for journal space grew, and the budgets
of research libraries increased. By the 1970s, pub-
lishing scientifi c journals became profi table. This,
along with the need for additional journal space
as the scientifi c enterprise continued to expand,

resulted in the rapid growth of the commercial
scholarly publishing industry. This industry has
become extremely profi table and is publishing a
growing percentage of the scholarly journals.

The cost of commercially published journals
tends to be much higher than journals published
by societies. According to one set of studies done
in the area of physics, the cost of commercially
published journals was as much as an order of
magnitude higher than society-published journals
(Barschall, 1988). The cost of journal subscrip-
tions has skyrocketed over the last 40 years to the
point that it is signifi cantly limiting the abilities of
even well-funded research libraries in the United
States to maintain their journal collections. This
has prompted what librarians have called the se-
rial pricing crisis.4 Furthermore, the commercial
publishing industry is rapidly consolidating into
a few huge publishing companies that each owns
hundreds of scientifi c journals.

The high cost of journal subscription fees
has resulted in scientists and scholars in devel-
oping countries largely being cut off from the
literature in their fi elds.5 This has also resulted
in the general public in the United States and
other developed countries being cut off from
the scientifi c and scholarly literature they fund
through their tax dollars. While most scientists
and other scholars in the developed world have
reasonable access to the literature in their fi elds
via their university libraries, the access is far less
convenient than it could or should be. Rather than
seamlessly moving from hyperlinked references
to the full text of an article, scholars must either
pay a fee in the range of $30 per full-text article
via the publisher’s Web site or work through their
university library’s electronic journal portal to
access the article via the library’s subscription.
In my experience, working through these library
portals to a specifi c article is a tedious process
that takes about fi ve minutes. This does not seem
like much time; however, since scholars often
review dozens of articles in researching a topic, it
adds up to a great deal of wasted time compared

652

The Role of Open Source Software in Open Access Publishing

with clicking on a single hyperlink to access an
article in an open-access journal or archive. This
wasted time reduces the effi ciency of the research
process and is a drain on the resources the public
invests in research.

The advantages of moving to open-access
journals and funding publication through means
other than subscription fees seem obvious. How-
ever, the issues involved in radically changing a
huge and well-established publication system are
complex. As one might expect, there is a great
deal of resistance to the OAI from the commercial
publishers as well as from many scientifi c societ-
ies that are concerned about losing or having a
signifi cant reduction in the fi nancial support for
their journals. Although a growing number of
university faculty members is becoming aware
of the economic and ethical issues surrounding
scholarly publishing, the majority has not yet
embraced the OAI. This can be seen in the lack
of success of the NIH’s recent initiative encour-
aging its grantees to archive publications from
their grant-funded projects in PubMed Central,
the National Library of Medicine’s open-access
archive. During the fi rst eight months of the
program, less than 4% of the eligible articles was
archived (Zerhouni, 2006).

Despite the fact that there is still limited sup-
port for the OAI among scientists and scholars, a
growing number of open access journals and open
access archives is appearing. Most of the focus on
the topic in the literature has been on large, well-
organized initiatives such as the Public Library
of Science (2006), BioMed Central (2006), and
author self-archiving in PubMed Central (2006).
What is often forgotten is that there are hundreds
of open-access journals that have been created by
individuals and small groups of colleagues. In many
cases, these are excellent journals that have become
well respected and are having a signifi cant impact
on disseminating scholarship. They generally fall
into the category of subsidized journals that neither
charge for access nor charge authors for publication.
They tend to be subsidized by the people who have

created the journals and, to some extent, by their
employers or societies. In this sense, these journals
are the purest form of open access and, as such, the
most effi cient and effective means of disseminating
scholarship. Interestingly my experience with sev-
eral of these journals shows that they tend to share
many of the characteristics of open source projects
described in Jill Coffi n’s insightful article on open
source cultures (2006).

As I have argued elsewhere (Solomon, 2006),
these subsidized journals often face a dilemma.
As they become successful, both access and
submissions increase, as does the workload of
operating these journals. Unlike other funding
models, with subsidized journals there is no direct
link between the success of the journal and the
resources available for publishing the journal.
The people operating these journals can become
overwhelmed by the rapidly expanding workload
as the journal becomes successful. This was the
case for an open-access journal in medical educa-
tion, Medical Education Online (MEO), which
I founded in April 1996. Open-access journal
management software can be a key resource in
helping these journals survive and continue to
allow their content to be freely available even as
they become successful.

ROLE OF OPEN SOURCE SOFTWARE
IN MAINTAINING SUBSIDIZED
OPEN-ACCESS JOURNALS

Publishing an electronic journal can be done
with virtually no funding. All that is needed
is an e-mail account for communication and a
Web hosting site for disseminating manuscripts.
Both of these are available to most university
faculty members through their institutions. If
not, these resources can be purchased from an
Internet service provider for as little as a few
dollars a month.

Publishing an electronic journal requires
effort, including the effort of conducting the

 653

The Role of Open Source Software in Open Access Publishing

peer-review process and providing feedback
to authors; copy editing and typesetting manu-
scripts; indexing; handling correspondence
concerning the journal; and updating and main-
taining the journal Web site. These are tasks that
can be done by an individual or a small group
of scholars interested in creating an electronic
journal in their fi eld of scholarship. There are
hundreds of journals operating in this fashion.6
From my own experience with MEO, operating
a subsidized electronic journal is quite manage-
able for even an individual when the journal
receives only a small number of submissions.
When these journals grow and prosper, as they
often do, the workload can grow very quickly
and become unmanageable.

Web-based journal management software
provides a straightforward and effective means
of signifi cantly reducing the workload neces-
sary to operate a journal by automating much
of the clerical and administrative aspects of the
process. The workload of managing the peer-
review process, in particular, can be reduced by
Web-based software. Software can also streamline
the process of indexing journals and maintaining
the journal Web site and can provide tools that
facilitate accessing the material in the journal
more effectively. While journal management
software cannot solve the resource issues of
operating a successful subsidized journal, it can
be extremely helpful in reducing the workload as
these journals become successful. I believe this
can often be the difference between the success
and failure of these journals.

The co-editors of MEO and I have found
journal management software to be essential for
implementing another strategy for maintaining
a subsidized open-access journal as it grows.
The most time-consuming aspects of operat-
ing a scholarly journal are the editorial tasks
of conducting manuscript review. This requires
carefully reading each manuscript submitted to
the journal, assigning reviewers, aggregating the
feedback from reviewers in making a publication

decision, and providing constructive feedback
to authors. In most cases, articles are accepted
with revisions, and the editor must work with the
author(s) to complete these revisions.

At MEO, we are addressing the workload of
conducting the peer-review process by imple-
menting a system with multiple review editors.
By distributing the effort of this critical and
time-consuming aspect of operating a journal
among a number of different volunteer review
editors, we are keeping the workload of operating
a successful journal manageable. The strategy is
also fl exible; additional editors can be added to
meet an increasing number of submissions while
keeping the editorial tasks of the volunteer edi-
tors reasonable.

MEO currently has two managing editors; one
performs an initial review of each new manuscript
submission and assigns the manuscript, if suitable,
for peer review to one of six review editors who
manage the peer-review process until a manuscript
is either ready for publication or is rejected. Seven
of us are at various locations spread throughout the
continental United States, and one of the review
editors is located in Singapore. We generally have
about 20 manuscripts in some stage of the peer-
review or revision process and receive about 80
to 90 submissions a year. Without a Web-based
peer-review management system, it would be
nearly impossible to manage the review process
with the editorial board distributed at various
locations throughout the world.

JOURNAL MANAGEMENT
SOFTWARE

MEO began using a rudimentary version of our
journal management software about fi ve years
ago. It allowed manuscripts to be submitted elec-
tronically via a Web form system and maintained
a database of both submissions and reviewers.
The software automated the process of sending
requests to review and tracked the requests to

654

The Role of Open Source Software in Open Access Publishing

review sent to each of our more than 250 review-
ers. Even this minimal system saved a signifi cant
amount of time.

A much more automated system was put in
place about 6 months ago in order to allow us to
move to the distributed review system described
previously. The system tracks assignments of
manuscripts to review editors as well as each
manuscript through the various stages of the re-
view process. Review assignment and feedback
to authors is done by e-mails generated by the
system; reviewers enter their ratings and feedback
via Web forms. The submission process continues
to be Web-based, and reviewers download review
copies of the manuscript from our server. All
correspondence and review feedback is stored
in the database. Each reviewer’s areas of inter-
est/expertise as well as a detailed review history
with their acceptance/completion of reviews,
ratings, and written feedback are stored in the
database and are available to the review editors
when assigning manuscripts to reviewers. Review
editors can also track the completion of reviews
and view an individual reviewer’s feedback or
an aggregated summary of the reviews via the
Web-based review system. The review system has
signifi cantly reduced the workload of managing
the review process and has allowed us to keep
track of 20 to 30 manuscripts at various stages
of the review and revision process as well as the
review activity of more than 200 volunteer peer
reviewers; it has also made it possible to implement
a system of multiple geographically distributed
review editors.

I wrote the journal management software in
PHP, a widely used open source scripting lan-
guage, and used MySQL, an open source relational
database system, to store and manage the data.
We are still in a pilot phase of implementing the
software, and at this point, I am not comfortable
making it widely available. Once it is stable, I plan
to make the software available for use by other
journals through a general public license.

There is a number of journal management
software systems that are currently available
(McKirnan, 2002); most of them are quite expen-
sive and probably not affordable for the editors
of small subsidized open-access journals. Fortu-
nately, there is an excellent open source journal
management system, Open Journal System (OJS)
(2002), developed by the Public Knowledge
Project (2005), a federally funded project at the
University of British Columbia and Simon Fraser
University. OJS is currently being used by more
than 550 journals around the world and offers a
comprehensive software system that goes well
beyond automating the peer-review process. It
automates virtually the whole process of creating
and managing a journal and a journal Web site
and is highly customizable. It is written in PHP
and can interface with MySQL as well as other
database software.

We chose to develop our own software because
of the legacy issues of transferring a journal that
had been in operation for nearly a decade to a new
format and to ensure that we could implement our
distributed review process. For new subsidized,
open-access journals, OJS offers an excellent
means to reduce the workload of operating a
journal as well as the need for technical expertise
in Web development. OJS has strong user sup-
port and is a good example of a successful open
source project. OJS is available at no charge, and
the installation process is fairly straightforward.
Since it is written in PHP and works well with
MySQL, both widely available open source pack-
ages that run on a variety of operating systems,
use of OJS can be feasible even for open-access
journals with very limited resources.

FUTURE TRENDS IN OPEN-ACCESS
SCHOLARLY PUBLICATION

The transition of scholarly journals from paper to
electronic publication has been very rapid, and it

 655

The Role of Open Source Software in Open Access Publishing

is still not clear how these journals will be orga-
nized and funded in the future. It is quite likely
that there will be several competing models rather
than a single dominant model for disseminating
research and scholarship.

At the present time, the traditional subscrip-
tion-based funding model continues to dominate
scholarly publishing, though I suspect this will
change fairly rapidly. There is a growing aware-
ness and acceptance of the rationale for open
access publishing among scientists and scholars.
However, what appears to be the prime motivating
factor for change is government funding agencies.
At the time of this writing, there are two bills
under consideration in the United States Senate
that will mandate that articles funded through
federal granting agencies be made publicly avail-
able within a set period of time after publication.
These include a bill to amend the Public Health
Service Act to establish the American Center
for Cures (THOMAS, 2006a), which would also
require all research publications funded by the
Public Health Service to be made available within
six months after publication through PubMed
Central, the National Library of Medicine’s open-
access archive. The second bill is the Federal
Research Public Access Act of 2006 (FRPAA),
a more general bill to provide for federal agen-
cies to develop public access policies relating to
research conducted by employees of that agency
or from funds administered by that agency that
would provide open access no later than one
year after publication (THOMAS, 2006b). While
there is a great deal of opposition to these bills
from both the commercial publishing industry
and some scientifi c societies, there seems to be
strong public support for the concept. In a recent
Harris poll, 82% of those surveyed wanted open
access to publicly funded research for everyone
(SPARC Open Access News Letter, 2006). Similar
initiatives to require and/or support open access
to government-funded research results are also
being pursued in Europe.

I am not sure that the type of delayed access
strategy mandated by CURES and FRPAA is
the most sensible approach for providing open
access. The societies and publishers opposing the
legislation may be correct in that providing a grace
period during which publishers can charge for ac-
cess prior to complete open access may not ensure
adequate funding for operating their journals. It
also appears that the cost of electronic publication
may be higher than fi rst estimated (Butler, 2006).
Additionally, the six- to 12-month delay in open
access mandated by these bills unnecessarily
impedes the fl ow of scientifi c information.

In my view, a more prudent approach would be
to develop a system that allows journals publishing
federally funded scholarship to apply through a
grant or contract process for funding to cover the
cost of publication. The grant or contract program
should also support the continued development
of open source software such as OJS for increas-
ing the effi ciency of the publication process as
well as training material and other resources to
help scholars form their own journals. While
there would be signifi cant costs involved in such
a program, it is the public that currently largely
funds the publication process through indirect
and direct funding of research libraries that pay
journal subscription fees. As open-access journals
replace journals funded by subscription fees and
as electronic journals replace paper journals that
require a signifi cant amount of resources to dis-
tribute and then warehouse, the cost of operating
our research libraries will be signifi cantly reduced.
It is my belief that it will be possible to reduce the
indirect payments from federal grants to universi-
ties and other research institutions that are used
to fund these research libraries and, instead, use
those funds to directly support the development
and maintenance of open-access journals.7 This
would be a much more effi cient system that would
provide seamless access to scholarly journal ar-
ticles not only for university faculty in developed
countries but anyone else interested in accessing

656

The Role of Open Source Software in Open Access Publishing

the material. It is quite conceivable that such a
funding system could be cost neutral or even result
in cost savings over our current system. This is
particularly true if one factors in the cost of the
time wasted by scientists and scholars to access
our current journal system.

However, the funding models for scholarly
publishing evolve, and subsidized open-access
journals operated by an individual or a small group
of colleagues mainly through their own efforts
are likely to remain a limited but valuable niche
for disseminating scholarship. Open-access jour-
nal management software that can signifi cantly
reduce the workload of operating a journal is es-
sential for maintaining this valuable and highly
effi cient means of disseminating research and
scholarship.

REFERENCES

Barschall, H. H. (1988, July). The cost-effective-
ness of physics journals. Physics Today, 56-59.

BioMed Central. (2006). Retrieved July 22, 2006,
from http://www.biomedcentral.com/

Butler, D. (2006). Open-access journal hits rocky
times. Nature, 441(22), 914. Retrieved July 6,
2006, from http://www.nature.com/nature/jour-
nal/v441/n7096/full/441914a.html

Coffi n, J. (June 2006). Analysis of open source
principles in diverse collaborative communities.
First Monday, 11(6). Retrieved July 21, 2006,
from http://fi rstmonday.org/issues/issue11_6/cof-
fi n/index.html

Guédon, J. (2001). In Oldenburg’s long shadow:
Librarians, research scientists, publishers, and the
control of scientifi c publishing. In Proceedings of
the Association of Research Libraries (ARL), To-
ronto. Retrieved April 5, 2006, from http://www.
arl.org/arl/proceedings/138/guedon.html

Harnad, S. (1990). On-line journals and fi nan-
cial fi re-walls. Nature, 395, 127-128. Retrieved
June 23, 2006, from http://www.princeton.
edu/~harnad/nature.html

McKirnan, G. (2002). Web-based journal manu-
script management and peer-review software and
system. Library Hi Tech News, 19(7).

National Institutes of Health. (2005). Summary of
the FY 2006 president’s budget. Retrieved July
1, 2006, from http://www.nih.gov/news/budget/
FY2006presbudget.pdf

Open Access Initiative. (2002). Budapest open
access initiative. Retrieved April 27, 2006, from
http://www.soros.org/openaccess/

Open Journal System. (2006). PKP@SFU.
Retrieved July 13, 2006, from http://pkp.sfu.
ca/?q=ojs

Public Knowledge Project. (2005). The public
knowledge project of the University of British
Columbia. Retrieved July 13, 2006, from http://
www.pkp.ubc.ca/

Public Library of Science. (2006). PLoS public
library of science. Retrieved July 20, 2006, from
http://www.plos.org/

PubMed Central. (2006). U.S. National Institutes
of Health (NIH) free digital archive of biomedi-
cal and life sciences journal literature. Retrieved
July 22, 2006, from http://www.pubmedcentral.
nih.gov/

Solomon, D. J. (1999). Is it time to take the paper out
of serial publication? Medical Education Online,
4(7). Retreived July 22, 2006, from http://www.
msu.edu/~dsolomon//f0000016.pdf

Solomon, D. J. (2006). Strategies for developing
sustainable open access scholarly journals. First
Monday, 11(6). Retrieved July 22, 2006, from
http://www.firstmonday.org/issues/issue11_6/
solomon/index.html

 657

The Role of Open Source Software in Open Access Publishing

Suber, P. (2006). Welcome to the SPARC open
access newsletter, issue #98. Retrieved July 17,
2006, from http://www.earlham.edu/~peters/fos/
newsletter/06-02-06.htm#frpaa

THOMAS. (2006a). Library of Congress THOM-
AS. Retrieved July 17, 2006, from http://thomas.
loc.gov/ [search term: Center for Cures].

THOMAS. (2006b). Library of Congress THOM-
AS. Retrieved July 17, 2006, from http://thomas.
loc.gov/ [search term: Federal Research Public
Access Act].

Van Orsdel, L., & Born, K. (2002) Periodicals
price survey 2002: Doing the digital fl ip. Li-
brary Journal. Retrieved April 12, 2006, from
http://libraryjournal.reviewsnews.com/index.
asp?layout=article&articleid=CA206383&publi
cation=libraryjournal

Willinsky, J. (2000). Proposing a knowledge ex-
change model for scholarly publishing. Current
Issues in Education, 3(6). Retrieved July 22, 2006,
from http://cie.ed.asu.edu/volume3/number6/

Willinsky, J. (2006). The access principle: The
case for open access to research and scholarship.
Cambridge, MA: MIT Press.

Zerhouni, E. A. (2006). Report on the NIH public
access policy. Rockville, MD: National Institutes
of Health. Retrieved July 14, 2006, from http://pub-
licaccess.nih.gov/Final_Report_20060201.pdf

KEY TERMS

 Electronic Dissemination: The dissemina-
tion of digital material via the Internet. For the
purposes of this chapter, the term refers to the
dissemination of journal articles in digital form
via the World Wide Web.

“Gold” and “Green” Roads to Open Access:
Two general strategies for achieving open access
to scholarship. The gold road is via open-access

journals that make their material freely available
via the Internet. The green road is via authors
archiving articles published in traditional sub-
scription fee journals in archives that allow the
content to be freely available via the Internet.

 Journal Management Software: Helps
manage and track manuscripts through the peer-
review and publication process. It can automate a
signifi cant amount of the work required to operate
a journal, but far from all of it. A central argu-
ment of this chapter is that open source journal
management software can be a key asset in al-
lowing small subsidized open-access journals
with few resources to continue to operate and
thrive as they become established and as their
submissions grow.

 Open-Access Initiative (OAI): Sometimes
called the Budapest Open Access Initiative or
OAI, the term was coined at a meeting in Budapest
in December 2001 of the Open Society Institute.
The initiative strives to promote the free and
unrestricted online availability of scientifi c and
other scholarly journal articles.

 Scholarly Journals: Generally peer-reviewed
journals that publish original research or scholar-
ship by the researchers or scholars who performed
the research or scholarship. They originated in
the 17th century and up until about 50 years ago
were largely owned and operated by scientifi c
and scholarly societies. Since then, an increas-
ing number is owned and operated at a profi t by
commercial publishers.

 Serial Pricing Crisis: A term commonly used
by librarians to describe the dramatic increase in
the cost of journal subscription fees, particularly
among scientifi c, technical, and medical (STM)
journals, that has been occurring over the last 30
to 40 years. These price increases are limiting
the ability of even well-funded research librar-
ies in the United States to maintain their journal
collections.

658

The Role of Open Source Software in Open Access Publishing

 Subsidized Open-Access Journals: Open-ac-
cess journals in which all material in the journal
is made freely available to all readers via the
Internet from the time it is published, and there is
no charge to authors for publication. Hence, these
journals derive no income from their operations.
The cost and effort of publication is funded by
some type of subsidy. In many cases, these jour-
nals are operated via volunteer effort that is the
sole support of the journal.

ENDNOTES

1 The term scholarly journal is used to refer
to peer-reviewed journals used as a means
of disseminating scholarship throughout
most academic fi elds. The issues discussed
in this chapter refer most acutely to what
librarians term the STM (scientifi c, techni-
cal, and medical) journals.

2 For a good overview of OAI, see http://www.
earlham.edu/~peters/fos/overview.htm,
retrieved April 14, 2006.

3 Willinsky based this estimate on dividing
the yearly NIH budget by the number of

articles generated during a year, which came
out to $60,000. He estimates the research-
ers’ institutions; usually publicly funded
universities, contribute another $20,000 per
article. The $2,000 to $3,000 estimated cost
for publication is based on data from the
Public Library of Science (Butler, 2006).

4 For example, see http://www.arl.org/stats/
arlstat/graphs/2002/2002t2.html

5 It should be noted that this problem is being
abated somewhat by some publishers mak-
ing the electronic versions of their journals
freely available to libraries in developing
countries.

6 For examples, see the Directory of Open
Access Journals (http://www.doaj.org/),
which, as of July 11, 2006, contained 2,303
journals, a signifi cant portion of which fall
into this category.

7 I am not suggesting that we cut off support
for society or even commercially published
journals. They should also have the ability
to apply for funding for publishing federally
funded research.

 659

Chapter LI
An Innovative Desktop OSS
Implementation in a School

James Weller
University of Cape Town, South Africa

Jean-Paul Van Belle
University of Cape Town, South Africa

INTRODUCTION

There has been an increased interest and aware-
ness of OSS in South Africa (RSA) for various
reasons. The work of the Shuttleworth Foundation
(TSF) is one reason. In addition, OSS is increas-
ingly becoming a practical alternative to support
efforts to cross the digital divide in developing
countries. OSS is stable and, arguably, more reli-
able than its mainstream proprietary competitors
(Wheeler, 2005; Whittle, 2002). The availability
of OSS support for the development community
(GITOC, 2003) is, indeed, an added advantage.

ABSTRACT

This chapter presents a case study of a migration to open source software (OSS) in a South African school.
The innovative aspect of the case study lies in how the entire implementation was motivated by the col-
lapse of the school’s public address system. It was found that an OSS-based message system provided a
more cost-effective replacement option whereby the speakers in the school were replaced with low-cost
workstations (i.e., legacy systems) in each classroom. Interestingly, this OSS implementation happened
despite the fact that, in South Africa, Microsoft Windows and MS-Offi ce are available free of charge to
schools under Microsoft’s Academic Alliance initiative. The chapter also analyzes some critical themes
for adoption of OSS in the educational environment.

OSS source code can be modifi ed to solve scal-
ability issues (Hughes, 2003; Wheeler, 2005),
and some research suggests that OSS may be
more secure than proprietary software (Arendse,
Colledge, & Dismore, 2002; Wheeler, 2005a). It is
also cost effective in that it is capable of running
on older hardware, prolonging the hardware’s
useful lifetime (GITOC, 2002).

While OSS has been accepted for some time
as a viable alternative to proprietary software
(PS) in the network server market, desktop us-
age of OSS still remains fairly limited (Prentice
& Gammage, 2005). The high PS licensing and

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

660

An Innovative Desktop OSS Implementation in a School

computer hardware costs in South Africa relative
to the developed countries in combination with the
several other perceived advantages of OSS have
prompted several OSS on the desktop pilot projects
in the education, public, and private sectors.

RESEARCH METHODOLOGY

The aim of this research is to explore a deeper
understanding of issues that arise out of and in-
form migration into desktop OSS. It is an induc-
tive, qualitative, and exploratory study. Research
design was followed by data collection, analysis,
interpretation, and drawing of conclusions that,
in turn, informed the migration model.

A case study research method was considered
relevant to the purposes of the study. This method
has already garnered signifi cant acceptance in
the fi eld due to its ability to provide subtle yet
deep insights into social phenomena surround-
ing information systems (Klein & Myers, 1999;
Walsham, 1995). The case study method enables
investigations of social phenomena in their natural,
real-world context and attempts to extract a deep,
rich understanding of these phenomena (Benbasat,
Goldstein, & Mead, 1987; Broadbent et al., 1998).
A set of qualitative questionnaires were used to
collect data through interviews. Data from existing
documents and fi eld observations were used as a
support framework to the case study.

Thematic analysis was utilized to analyze
data obtained in the case study. This involved
extracting the common experiences/phenomena
mentioned in multiple interviews and grouping
together all specifi c talk related to these experi-
ences. Themes were then identifi ed by bringing
together these fragments of conversation to form
a comprehensive picture of the experience or
phenomenon (Aronson, 1994).

Data for the case study were collected by
conducting semistructured interviews with the
school’s IT manager, network administrator, staff
members, and pupils. In addition, several docu-

ments provided to the researchers were analyzed,
including a proposal to introduce a computer-
based announcements system at the school, as
well as basic internal training documentation for
the Red Hat desktop environment.

BACKGROUND

Arguments Supporting
OSS Usage in Education

 Information and communication technologies
(ICTs) are a key resource required in the fi eld of
education, especially in countries affected by the
digital divide (Kotschy, 2002). Most of the affected
countries are in Africa, where digital divide stud-
ies refl ect wider ICT access and developmental
inequalities. The existing ICT infrastructure
within SADC countries, for example, is more de-
veloped in urban than in rural areas (bridges.org,
2002). Countries such as the DRC have outdated
and costly telecommunications infrastructure
inherited from colonial times, while landmines
as a result of civil wars render most areas unus-
able in countries such as Angola (Bridges.org,
2003). ICTs have the potential to improve the
quality of education as well as the quality of life
for the people exposed to the technology (Tong,
2004). One of the largest barriers to utilizing
ICTs in education is the cost of proprietary soft-
ware (Tong, 2004). Additional barriers include
the security risks associated with proprietary
software, the trend of increasing proprietary
software license costs, and the cost of hardware
required to run proprietary software, especially
as newer versions are released and support for
older versions is discontinued (Glance, Kerr, &
Reid, 2004). There is evidence that educational
institutions, particularly tertiary educational insti-
tutions (TEIs), are showing signifi cant interest in
desktop OSS owing to the aforementioned factors
(Conlon, 2004). Additional factors identifi ed by
a group of surveyed TEIs included the potential

 661

An Innovative Desktop OSS Implementation in a School

for reduced dependence on proprietary software
vendors for support and upgrades, the ability to
customize the software in-house, reduced total
cost of ownership (TCO), and the ability to use
the available source code for teaching purposes
(Glance et al, 2004).

South African Examples of
Desktop OSS in Education

A number of cases of OSS on the desktop use
in the South African education section has
been publicized. Two early successful projects
conducted in Grahamstown involved Nathaniel
Nyaluza Secondary School and Nombulelo Se-
nior Secondary School (Halse & Terzoli, 2002).
Through the help of members of the Rhodes
University Computer Science Department, both
schools have functioning computer labs with
high-quality software. The research concluded
that even with minimal computing resources, a
satisfactory solution can be reached; however,
better hardware does facilitate the provision of
better, more advanced services.

Another successful desktop OSS project was
completed at Alexander Sinton High School in
Cape Town (Bardien, 2002). This was a migra-
tion from Microsoft to Mandrake Linux and
OpenOffi ce.org. The initial solution used obsolete
computers as thin clients, and the learners at the
school transitioned quickly and fearlessly. The low
cost of the client machines allowed the school to
deploy a decentralized infrastructure with PCs at
various locations in the school, and ensured that
each learner could have his or her own computer
when visiting the computer lab.

Perhaps the most widespread and, arguably,
most successful implementation of OSS in the edu-
cational sector is the Shuttleworth Foundation’s
(TSF’s) tuXlabs initiative, which endeavors to
provide disadvantaged South African schools
with basic computing facilities. These facilities
are based on a 100% pure OSS architecture. As

of December 2005, there were 154 successfully
implemented tuXlabs in operation (TSF, 2005).

THE PINELANDS HIGH
SCHOOL CASE STUDY

This section provides an analysis of the imple-
mentation of OSS on the desktop at Pinelands
High School (hereafter referred to as “the school”
or “Pinelands”), a secondary education school
in Western Cape Province, South Africa. The
school is located in the suburb of Pinelands in
Cape Town. This area is not considered a previ-
ously disadvantaged or low-income area, so the
fact that the school was utilizing OSS on the
desktop and the reasons surrounding this were
of particular interest.

Background to the Case Study

Pinelands’ fi rst implementation of OSS came about
as a result of the increasing burden of software
license fees for the Novell operating system that
was used to run its main server. The current IT
manager joined the school at a time when the
school was running version 3 of Novell and when
version 5 was about to be released. Management
realized that a Novell upgrade was needed and that
the school needed to make a long-term decision
about its future server operating system. After
some investigation into costs and feasibility, the
Novell server software was replaced with Linux in
2002. An outside company was paid a fairly large
sum of money to perform the migration; however,
this once-off payment resulted in approximately
R36, 000 annual savings on license fees.

At this point, with its limited knowledge of
OSS, the IT department began to investigate the
feasibility of further utilizing OSS at the school,
including investigating a possible relationship
with TSF and its tuXlabs project. In May 2002,
Microsoft announced its agreement with the South

662

An Innovative Desktop OSS Implementation in a School

African Government (the Microsoft Academic
Alliance) to provide free software to state schools
(Microsoft South Africa, 2002). This would have
included Pinelands High School. Indeed, the
school’s annual Microsoft licenses expenditure
decreased from R40,000 (≈US$6,000 in 2002)
to R5,000 (< US$1,000) in 2003. Thus, it is in-
teresting to note that Pinelands still decided to
go ahead with its tuXlab project, since software
license costs could no longer be considered a
driver. The reason was that the IT manager real-
ized that a relationship with TSF opened up a
wide range of new possibilities, particularly the
free Linux training offered. This was seen as a
potentially signifi cant benefi t and cost-saving in
terms of being able to better maintain the existing
Linux server, as well as the thin client machines
that would form a tuXlab in house. This training
is explained and further investigated later in the
analysis of the case.

Pinelands does not run a traditional tuXlab in
the sense that there is no lab of 20 to 30 thin client
machines running desktop OSS at the school. In-
stead, a number of old Pentium 1 PCs obtained by
the school were converted into thin clients for use
in the library to help students perform and write
research. TSF provided a server, and volunteers
from TSF came into the school on a weekend
and performed all of the necessary setup and
testing tasks for the network, thin clients, server,
and required software. This library, tuXlab, was
completed in November 2003.

The catalyst for getting OSS software onto
more desktops at Pinelands was the failure of
the school’s PA (intercom and announcements)
system in January 2004. A quote for R40,000 to
repair the system was obtained soon afterwards.
However, no guarantee of the repairs could be
assured by the repair company. Furthermore, the
amount required to completely replace the exist-
ing system was considered exorbitant by school
management. At this point, the IT manager came
up with the idea to replace the announcements
system with a computer-based one. She described

how she presented the motivation for the idea and
sold it to the school’s governing body:

I went to them with my feasibility [analysis], as
best as I could understand it at that stage, say-
ing, for R40, 000 this is what I could do: I could
bring in the old machines, [fi x up and extend our
network infrastructure] to put a copper network
in and also a wireless network across to the
buildings that are just too far away for copper,
and for R40, 000 this is what I could do for you:
a computer in every room, which will cover the
announcements system requirement, but which
will also give you a whole bunch of other things.
And that was really the catalyst that got [desktop
OSS] into every classroom.

The new computer-based announcements
system, affectionately known as IntraCom, is a
Web-based application that runs on the school’s
intranet. The system allows staff to log on,
view, and read announcements to the class at a
predefi ned time in the day. Staff can also post
their own new announcements for viewing by all
other users. The nature of the system also means
that there is no invasion of teaching time; staff
members read the announcements to their pupils
at their own convenience.

While this solution effectively satisfi es the
requirements for a school announcements system,
it also provides many additional benefi ts. Old
announcements can be archived and searched for
later retrieval. The Web application is accessible
from any networked computer in the school, which
allows pupils to log on and review announce-
ments, something not possible with a traditional
intercom system. Furthermore, staff can access
the Internet and e-mail, as well as produce text
documents, spreadsheets, and presentations using
OpenOffi ce.org version 1, all from the comfort
of their own classrooms.

Although the thin clients in the classrooms
are only used by school staff at this stage, the
additional benefi ts arising from having a com-

 663

An Innovative Desktop OSS Implementation in a School

puter in every classroom as well as a working
announcements system, all for the cost of the old
announcements system being repaired with no
guarantee, is a positive aspect of utilizing desktop
OSS at the school. Furthermore, the computers
in the library running desktop OSS provide an
affordable solution to satisfy pupils’ needs for
Internet research stations.

Pinelands still actively maintains ts Microsoft
desktop software (i.e., Microsoft Windows, MS-
Offi ce, etc.). Nevertheless, the process of getting
OSS onto desktops at the school should still be
seen as a migration rather than an implementation
from scratch. This is because the process involved
many changes at the school, including changes
to the network infrastructure and the hardware
being used, as well as many changes for both
the staff and pupils using the new OSS. This is
especially true in terms of a completely new look
and feel to become accustomed to, exposure to
new diffi culties and frustrations, new training
materials to absorb, and new ways (or software
used) to perform daily tasks.

The following section describes some of the
themes surrounding the implementation of the
desktop OSS at Pinelands High School, which
emerged from a thematic analysis of interview
transcripts and written source documentation.

Some Themes that Emerged from
the Case Study Analysis

Financial Benefi ts as the
Main Driver for Migration

The main motivating factor for Pinelands’ migra-
tion to OSS was found to be fi nancially related.
Several facets of this theme and the differing
perceptions of their relative importance to vari-
ous stakeholders were uncovered during analysis.
Although the Microsoft Academic Alliance was
already in effect in 2002, Pinelands still went
ahead with their migration to desktop OSS. The
fi nancial reason for the migration, therefore, was

not primarily related to software licensing costs.
This was confi rmed by the IT manager.

The fi rst fi nancial benefi t of having desktop
OSS for Pinelands was the vast reduction in
hardware costs. The IT manager illustrated the
degree to which the school can save money on
hardware by using desktop OSS instead of Mi-
crosoft products:

Where we already had a Windows machine in a
classroom, that’s great, but where I simply couldn’t
afford it, to put a R3, 000 massive box with 256MB
[RAM] minimum to run Windows, I could put a
thin client in at R400, or literally scrap that I’d
built up … we’ve been able to use any machine
that I can get my hands on that I can convert
into a working thin client, and that saves me R3,
000 every time [as opposed to] if I needed to get
Microsoft working.

In addition, according to the school’s IT man-
ager, the older hardware currently being utilized as
thin client machines does not incur any signifi cant
maintenance costs.

Another fi nancially related perceived benefi t
of using desktop OSS encountered in the case
was the ability to redistribute funds, which would
otherwise have been allocated to proprietary soft-
ware licenses and/or a new intercom system, into
other areas of the school. This point was raised by
almost all of the interviewees. One of the teachers
that was interviewed gave a good illustration of
this point when asked for her view on the benefi ts
of utilizing desktop OSS:

Researcher: Would you recommend other organi-
sations like yours migrate to desktop OSS? If so,
why? If not, why not?

Teacher 1: I think for our school we should go the
open source route because it does save money and
we can then use the money for other things, like
more computers, facilities, books for my English
department, etcetera. I think that while comput-

664

An Innovative Desktop OSS Implementation in a School

ers are useful, we need to spend the money on
other more practical things, rather than buying
expensive computer programs.

Another teacher, who claimed to know very
little about OSS, realized the potential fi nancial
savings that utilizing desktop OSS could bring.
She commented that in her view, the facts that
new desktop OSS could potentially be customized
in-house to suit the needs of the school and that
a lot of OSS was free were very positive aspects
of using it.

The IT manager further went on to emphasize
that the fi nancial benefi ts of using desktop OSS
are not always tangible. She pointed out that there
is no difference on the fi nancial “bottom line,”
but that a lot more can be done with IT using the
same funds allocated when using OSS instead of
proprietary software.

Ultimately, it would appear that fi nancial
factors were the main driving force behind the
migration decision.

Partial Migration

Both the school’s IT manager and network admin-
istrator stressed that it was not practical to migrate
the entire school to OSS on the desktop. This was
primarily due to the fact that the school was run-
ning several legacy applications, particularly its
student records system. This critical application,
along with other important legacy packages, runs
only on Microsoft Windows, and the vendor has
no immediate plans to rewrite it to run on Linux.
The IT manager has no plans to do away with the
Microsoft infrastructure for as long as it takes to
keep the legacy packages running and stressed
that a pragmatic phased approach to migration is
better than an all-out crusade.

Problems with Training

One benefi t of TSF’s school tuXlabs program
is that every school that is donated a tuXlab

receives some free training on basic computer
literacy, OpenOffi ce.org, and some educational
applications. In the case of Pinelands, the training
process did not work very well. The idea was that
the three hours of initial training given to a select
group of teachers would cause a ripple effect, and
those teachers would then transfer their skills on
to other teachers. This did not work at the time,
because TSF had not received the proper training
process and did not have knowledgeable enough
persons employed to perform the training. (This
was subsequently realized and fi xed by TSF.) It
was also pointed out by more than one interviewee
that the training materials received at the time
were somewhat basic in nature. The school’s IT
manager commented on the ineffectiveness of the
training and the reasons for this:

The quality of training being given at that stage
was disastrous and the guy eventually left [TSF],
because he really didn’t know [OpenOffi ce.org]
and when we went to him and said ‘This is how it
works in Microsoft, how does it work in [OpenOf-
fi ce.org]?’ he really didn’t know and sort of said
‘Oh I’ll come back to you’ or something.

The school’s IT manager had some previous
business background and experiences related to
training and emphasized the importance of ongo-
ing training, not simply a once-off engagement.
When asked about the merits of attempting to
train a small staff that then creates a ripple ef-
fect throughout the organization, she responded
by explaining:

My experience, in business as well as here, is that
that won’t happen. If you don’t have an ongoing
commitment from the organisation, you will lose
your training, through staff turnover or whatever;
you won’t have a second generation of people
trained from the inside.

The IT manager described how the school’s
IT department took what TSF had provided and

 665

An Innovative Desktop OSS Implementation in a School

built on it by offering voluntary internal training
sessions to staff members who had a desktop OSS
machine in their classrooms, or anyone else who
was interested. The network administrator also
emphasized that the IT department had tried to
organize voluntary training sessions for the teach-
ers, but the teachers did not have time to attend.
For this reason (or possibly through lack of com-
munication), neither the network administrator nor
any of the staff or pupils interviewed knew of any
planned training sessions in the near future.

All of the staff and pupils interviewed said that
they had not received any formal instruction on
the usage of the desktop OSS; some were not even
aware that there were training materials available
to them and had taught themselves. This implies
either a lack of communication within the school
about training or, more likely, a problem with
making the training sessions voluntary. Those
staff members who complained about problems
with using the desktop OSS were the same staff
members who said they did not receive training. It
is possible that had the staff attended the offered
training (assuming they knew about it), they would
not be experiencing the problems they described.
Thus, it would appear that a very strong emphasis
on desktop OSS training needs to be recognized
by management and, more importantly, its im-
portance communicated to new users.

The IT manager and network administrator
pointed out that the IT department at Pinelands,
specifi cally the network administrator, was well
prepared for the desktop OSS migration in terms
of their own skills and training. This, however,
was because the network administrator was
able to volunteer at several installs and attend
training sessions in advance. The IT manager
pointed out that this may not always be the case,
however, especially for most of the previously
disadvantaged schools being given a tuXlab. She
summed up very well a distinct weakness of the
volunteering approach:

Any school would be entitled to [the training that
the network administrator received], but we’re
in the privileged position where we have 2 IT
people and can afford to take up those [volunteer-
ing] opportunities, whereas an underprivileged
school that’s been given 20 machines and their
maths teacher is also running the computer lab;
he just physically doesn’t have the time to do
this; get out and do the volunteering and do the
training … so although it looks good on paper,
coming from a teacher’s perspective, it’s actually
not practical because they just don’t have enough
hours in the day.

IT Manager

User Apathy, Resistance,
and Acceptance

Inevitably, with change comes resistance, and
Pinelands’ migration of certain teachers from
Microsoft to desktop OSS was no different.
While the network administrator and IT manager
both mentioned that there were several naysay-
ers throughout the migration, from the proposal
to the actual implementation, it was generally
accepted by the staff that the move was going
to happen because it was the best solution to the
announcements system problem.

Interestingly, the IT manager, when asked
about staff involvement in the migration process,
highlighted the generally apathetic attitude toward
IT at the school, rather than user resistance.

Researcher: Was any resistance encountered
during the migration, and if so, where did this
resistance come from?

IT Manager: No, again, apathy. I don’t think
people really knew what we were trying to do.

This seemingly apathetic attitude of the
school’s staff should not be viewed in a negative

666

An Innovative Desktop OSS Implementation in a School

light. It is most likely the result of having been
exposed to IT for an extended period of time
(unlike many of the schools receiving a tuXlab
donation) and the fact that, as the IT manager
explained, most staff probably had very little
idea of what implementing desktop OSS in the
classroom to access a Web-based announcements
system actually meant.

It was discovered that, following the migra-
tion, user resistance was not nearly as strong as
anticipated. Although several staff members that
ended up having an OSS machine in their class-
room were not initially comfortable with using it,
the only thing they had to use it for was to access
the announcements system via a Web browser.
Thus, although OpenOffi ce.org and several other
packages useful to the teachers are available from
the classroom thin clients, the staff members who
are uncomfortable with OSS simply do not use
them, preferring instead to use the Microsoft ma-
chines elsewhere in the school. The IT manager
cites this as one of the benefi ts of not completely
migrating to desktop OSS; the users that prefer
to use Microsoft products have not been faced
with drastic change. However, this could be seen
to negate the entire point of migrating to desktop
OSS in the fi rst place.

In fact, all of the users interviewed, both pupils
and staff members, mentioned that the desktop
OSS installed, particularly OpenOffi ce.org and
Mozilla Internet browser, were both easy to learn
and use and that they did not care whether it was
Microsoft or not. As one teacher commented:

I would use any program that was user friendly
and catered for those who didn’t know anything
about it. As long as it’s easy to use, and [OpenOf-
fi ce.org] is, I would use it.

It would appear that the resistance to change
that did occur in the school concerning the usage
of OSS was and still is due to a loss of familiar-
ity or the comfort zone with existing software,
as opposed to a dislike or fear for all things open

source. This user resistance to change can occur
even when it seems to go against economic sense,
as illustrated in this example given by the network
administrator:

We use a program called SketchPad for drawing,
which had a problem with it, so I found a very
nice open source replacement, but [name omit-
ted for confi dentiality] overruled me because he
said that he knows SketchPad, so that’s the one
he wants to keep.

Finally, the IT manager made an interesting as-
sertion, that the reason most pupils were not fazed
by using the desktop OSS was probably because
of the more adventurous nature of children and
the differences in the way in which children and
adults learn. She illustrated the point very well:

Kids will just experiment, move around and be self
taught, whereas folk of my generation will want a
checklist, and as long as they can do something
sequentially, monolithically and the way they want,
they’re happy. The moment something happens
that isn’t on the piece of paper, it throws them, or
if they have to do something differently, it throws
them. So kids are far better at adapting.

Support Costs and Problems

While users at Pinelands are generally happy with
the usability of the desktop OSS, certain support
issues have been and continue to be encountered.
The school’s IT manager emphasized the fact that
while OSS does save the school money when it
comes to hardware, the software is far from free;
support costs are a major consideration. Main-
taining the actual thin clients, who are used to
accessing the desktop OSS, was not perceived to
be a major cost or highly demanding in terms of
technical expertise; the real cost was seen to be
paying specialists to maintain the Linux servers.
While (only) the desktop OSS server is maintained
by TSF and the local OSS community, as part of

 667

An Innovative Desktop OSS Implementation in a School

the tuXlab deal, the IT manager emphasized that
for any OSS implementation, support availability
and costs are a big problem, as illustrated by the
following quote:

If you don’t have the expertise in-house to maintain
a Linux system, you have to go out there and fi nd
specialists, and Linux specialists are few and far
between and expensive. And that’s why our rela-
tionship with [TSF] has helped a bit—to get around
some of those big issues of [support costs]—but at
this stage, until there is a broader base of Linux
specialists out there, it is a problem.

Although no longer tied down by heavy Novell
licensing fees, Pinelands’ IT department now
has a budget of between R10,000 and R15,000
(≈ US$1,500 to US$2,000) annually for Linux
server support and development.

CONCLUSION

This chapter described an interesting case study of
the introduction of OSS-on-the-desktop in a South
African school. The main driver for the installation
was the replacement of the school’s public address
system. In addition, however, OSS offers many
advantages toward bridging the digital divide at
the school level in developing countries such as
South Africa. Minimal license costs associated
with freely or minimal cost distribution makes
OSS a favorable option. The OSS access code
can also be modifi ed to suit the needs of the user,
making it a more fl exible option for innovative
uses by schools. It was found that an OSS-based
message provides the most cost-effective replace-
ment option, whereby the speakers in the school
were replaced with very low-cost workstations
in each classroom.

An interesting aspect is that this OSS imple-
mentation happened despite the fact that, in
South Africa, Microsoft Windows and MS-Of-

fi ce are available free of charge to schools under
Microsoft’s Academic Alliance initiative.

The chapter analyzed some critical themes for
adoption of OSS in the educational environment.
These were found to be related to fi nancial con-
siderations being the initial driver for OSS, the
importance of user training, although a project
can succeed without it, the fact that user apathy
may be more common than user resistance, and
the criticality of ongoing support.

To end the analysis of the themes emerging
from this case study, it is pertinent to quote
the Pinelands High School IT manager, who
succinctly expressed the approach toward OSS
projects at the school:

It’s always been fairly pragmatic; what’s going to
be the best for us in this environment, as opposed
to a crusade saying ‘thou shalt go open source’
and bite the bullet, whether that means I can’t fi nd
the drivers or it costs me more than I intended.

It is hoped that this case study will shed some
light on some of the issues other educational
sector implementers of desktop OSS may face.
However, since social and contextual issues differ
markedly between organizations, not all of the
aforementioned themes are expected to apply,
and new ones are likely to surface.

REFERENCES

Aronson, J. (1994). A pragmatic view of thematic
analysis. The Qualitative Report, 2(1).

Bardien, R. (2003). Linux case study: Alexander
Sinton High School. Retrieved December 10, 2005,
from http://casestudy.seul.org/cgi-bin/caseview1.
pl?recnum=82

Benbasat, I., Goldstein, D., & Mead, M. (1987).
The case research strategy in studies of informa-
tion systems. MIS Quarterly, 11(3), 369-386.

668

An Innovative Desktop OSS Implementation in a School

Bridges.org. (2002). SADC-WEF consultation
report on e-readiness: Better, faster, cheaper:
developing and leveraging world class ICT net-
works for social and economic advancement.
Retrieved January 3, 2006, from http://www.
bridges.org/e-readiness

Bridges.org. (2003). World Economic Forum-
NEPAD e-readiness policy programme: Building
capacity to narrow the digital divide in Africa
from within. Retrieved January 3, 2006, from
http://www.bridges.org/e-readiness

Broadbent, M., Darke, P., & Shanks, G. (1998).
Successfully completing case study research:
Combining rigour, relevance and pragmatism.
Information Systems Journal, 8, 273-289.

Conlon, J. (2004). I did it with Linux. Journal of
Applied Educational Technology, 2(2), 3-4.

Glance, D., Kerr, J., & Reid, A. (2004). Factors
affecting the use of open source software in ter-
tiary education institutions. First Monday, 9(2).
Retrieved from March 20, 2006, from http://www.
fi rstmonday.org/issues/issue9_9/glance

Halse, G., & Terzoli, A. (2002). Open source in
South African schools: Two case studies (Working
paper). Highway Africa 2002, Johannesburg.

Klein, H., & Myers, M. (1999). A set of principles
for conducting and evaluating interpretive fi eld
studies in information systems. MIS Quarterly,
23(1), 67-94.

Kotschy, P. (2002). The African digital divide,
Linux and open source. In Proceedings of the Con-
ference on the African Digital Divide. Retrieved
December 10, 2005, from http://www.linuxafrica.
co.za/conf_african_digital_divide.html

Microsoft South Africa. (2002). Microsoft’s
software donation to South African government
schools. Retrieved December 10, 2005, from http://
www.microsoft.com/southafrica/education

Prentice, S., & Gammage, B. (2005). Enterprise
Linux: Will adolescence yield to maturity. Gartner
Symposium/ITxpo.

Tong, T. (2004). Free/open source software:
Education. Retrieved December 10, 2005, from
http://www.iosn.net/education/foss-education-
primer/fossPrimer-Education.pdf

TSF (The Shuttleworth Foundation). (2005).
Shuttleworth tuXlab Program. Retrieved De-
cember 10, 2005, from http://www.tuxlab.org.
za/index.htm

Walsham, G. (1995). Interpretive case studies in IS
research: Nature and method. European Journal
of Information Systems, 4(2), 74-81.

Wheeler, D. (2005). Why open source software/
free software (OSS/FS, FLOSS, or FOSS)? Look
at the numbers! Retrieved April 16, 2005, from
http://www.dwheeler.com/oss_fs_why.html

Whittle, S. (2002). Secure, reliable, fl exible
… and free. IT training. Retrieved April 16,
2005, from http://search.epnet.com/direct.
asp?an=7339794&db=buh

KEY TERMS

 Linux: An open source version of the UNIX
operation system originally developed by Torvalds
Linus. It has many distributions such as Ubuntu,
Red Hat, SUSE, Knoppix, and so forth (also known
as distros). Linux versions have been developed
for an extremely wide variety of hardware plat-
forms ranging from handheld devices such as
cell phones and PDAs to massive super-computer
clusters. The term Linux actually refers to the
kernel around which the distros are built. Most
of the software tools and applications included
with the distros were developed under the GNU
project of he Free Software Foundation; hence, a
more accurate description is GNU/Linux.

 669

An Innovative Desktop OSS Implementation in a School

 Microsoft Academic Alliance (MSDN AA):
An initiative by Microsoft to promote the use of
Microsoft’s developer tools, platforms, and serv-
ers for instruction and research by signifi cantly
reducing their price to educational institutions.
In South Africa, government (i.e., nonprivate)
schools can apply for free use of, inter alia, the
Windows operating system and MS-Offi ce soft-
ware by teachers and learners (pupils).

 Mono: An open source implementation of
the common language infrastructure, based on
the .NET Framework specifi cation (www.mono-
project.com)

 Open Source Software (OSS): Software
distributed under a license that allows users to
copy, modify, and redistribute the software.

 Operating System (OS): Software that con-
trols the execution of computer programs and

may provide various services such as hardware
control, fi le storage, input-output functionality,
and user interface. It acts as the interface between
the hardware and the applications.

OSS on Desktop or Desktop OSS: OSS ap-
plications that are utilized by everyday users to
perform daily work tasks. This is in contrast to
Server OSS, which are applications running on the
server side. OSS on the desktop usually refers to
a combination of an OSS operating system—usu-
ally a Linux distribution—and OSS productivity
software such as OpenOffi ce, FireFox, or similar
applications.

 tuXlab: As a joint initiative of (partnership
between) the Shuttleworth Foundation (www.
tuxlab.org.za) and South African Schools tuXlab
are computer centers installed with OSS as an
economical and sustainable way to bring the power
of computing to the learners in South Africa.

670

Chapter LII
Rapid Insertion of Leading Edge

Industrial Strength Software
into University Classrooms

Dick B. Simmons
Texas A&M University, USA

William Lively
Texas A&M University, USA

Chris Nelson
IBM Corporation, USA

Joseph E. Urban
Arizona State University, USA

ABSTRACT

Within the United States, the greatest job growth is in software engineering and information manage-
ment. Open source software (OSS) is a major technology base for enterprise application development.
The complexity of technologies used by industry is often an obstacle to their use in the classroom. In
this chapter, a major software development paradigm change that occurred in about the year 2000 is
explained. CS education programs have been slow to adapt to the paradigm change due to problems
such as the tenure system, inexperienced student laboratory assistants, lack of leading-edge software
tool support, lack of software team project servers, unavailability of help and mentoring services, and
software unavailability. This chapter explains how these problems can be solved by creating an open
source-based shared software infrastructure program (SSIP) sponsored by industry, but planned and
implemented by SSIP member universities at no cost to member universities.

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 671

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

INTRODUCTION

Today students are saying no to computer sci-
ence (Frauenheim, 2004). CS faculty members
have panicked in what David Patterson (2005)
calls Chicken Little rumor mongering. He tells
everyone to stop whining about outsourcing. In
our opinion, CS faculty should panic and adapt
to a new software development paradigm. Pat-
terson makes an invalid implied assumption for
his article in that CS in some way is related to
 information technology (IT) jobs in U.S. industry
(or, for that matter, that CS is useful to a software
engineer). He is correct to say that U.S. IT jobs
are increasing. Also, software engineering (SE)
degree programs and jobs are increasing. His
domino theory of job migration is not correct.
We agree with Patterson that U.S. programmers
should worry about both India and China. We do
not agree that either India or China will have to
worry much about the Czech Republic. Both India
and China have such large populations and low
wages that major CS job migration will mainly
be to these two countries. The middle processes
of a software product development software life
cycle (DSLC) may completely migrate from the
United States.

Every Fortune 1000 company with which we
are familiar takes advantage of low labor costs
in India and/or China. Unfortunately for CS, ap-
proximately 80% of high-paying CS jobs in the
past have been with Fortune 1000 companies. Jobs
that will remain in the United States will go to
students that are familiar with open standards, a
wide variety of solutions including open source
solutions, software development tools that sup-
port open standard visualization design models
and open source integrated development environ-
ments. In this chapter, open standards will be
defi ned as standards that are publicly available.
The Object Management Group (OMG) (2006) is
an example of an organization that was created to
produce open standards. OMG is an open mem-
bership, not-for-profi t consortium that produces

and maintains computer industry open standards
for interoperable enterprise applications. OMG
membership includes virtually every large com-
pany in the computer industry and hundreds of
smaller ones. OMG’s most widely used standard is
described by the unifi ed modeling language (UML)
specifi cation. UML is used worldwide to model ap-
plication structure, behavior, architecture, business
process, and data structure. We use the term open
source software (OSS) to refer to software that
has Open Source Initiative (OSI) (2006) licenses.
Examples of OSS are Linux, Apache, Eclipse, and
Derby. We also include open-standard compliant
software that is provided free for classroom use to
universities. An example is IBM Rational Software
Architect (RSA).

The objective of this chapter is to explain how
leading-edge industrial-strength software can be
introduced into the university classroom by using
OSS, open standards, distance learning, and infra-
structure shared among cooperating universities.
In this chapter, we will describe the evolution of
software development during the 20th century,
the paradigm change at the beginning of the 21st
century, and the problems with existing university
information technology education. Then we will
describe a shared software infrastructure program
(SSIP) to rapidly introduce leading-edge industrial
software solutions into university classrooms at
no cost to SSIP member universities.

BACKGROUND

Software education emerged during the last 50
years of the 20th century. During the mid-1900s,
computers were applied to create fi ring tables for
the military. Scientists programmed these com-
puters using computational algorithms. Computer
memories were small and expensive, and success-
ful software depended on effi cient algorithms.
As computer use grew, universities began to
offer programming courses based on algorithm
methodology. The application of mathematical

672

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

science of algorithms to computers led to a new
fi eld called computer science. As demand for
computer programmers grew, computer science
programs at U.S. universities grew in number. U.S.
universities had the computers, while universities
outside the United States and Europe did not have
access to computers. As the size and complexity
of computer systems continued to grow, one could
not rely on the theory of algorithms to provide
acceptable solutions. At a 1968 NATO conference
in Europe (Naur & Randell, 1968), computer
professionals realized that the software for major
systems would have to be engineered based on
engineering science and practice. That is when
the term software engineering was introduced. In
1984, the U.S. Department of Defense created a
Software Engineering Institute at Carnegie Mel-
lon University (2006) to advance the practice of
software engineering.

Throughout the 1990s, the cost of comput-
ers continued to decline, and the capabilities
of computers increased. Computer cost was no
longer a barrier to the spread of computer-related
education programs to universities throughout
the world. This has been aided by the creation
and expansion of the World Wide Web (WWW)
over the Internet.

Education Programs at the
Beginning of the 21st Century

Computer-related educational programs at the be-
ginning of the 21st century fall under the umbrella
term information technology, which includes
computer science, computer engineering, infor-
mation management, and software engineering.
Overall, the demand for information technology
knowledge workers worldwide is increasing. The
U.S. information technology education programs
hit hardest by use of off-shore contractors are
the science-based computer science programs.
Enrollment in U.S. computer science programs
is on the decline. These programs emphasize
the middle or coding process of the DSLC. The

coding process is the easiest to outsource from
high labor cost regions to off-shore low-labor cost
regions. All indications are that the computer
science down trend will continue. Demand for
computer engineering graduates remains strong.
The fastest growing demand is for information
management and software engineering graduates.
Software engineering and information manage-
ment programs teach students about all phases
of the DSLC. The U.S. Department of Labor
Statistics (2005) projects software engineers to
be one of the fastest growing occupations through
at least 2014. Major universities are beginning to
offer software engineering certifi cates, bachelor
degrees, and master degrees.

At the beginning of the new millennium, the
outlook for software engineers is strong. Dis-
tance learning technology is becoming common.
Software development is being practiced with
project members distributed around the globe.
Open source, open standards, and interoperable
software are being demanded by customers.
Software knowledge will continue to change and
expand at a very rapid rate.

MAIN FOCUS OF THE CHAPTER

University Environments

At present, all students that come to the university
are computer literate and have their own comput-
ers. Many already know how to program and
are connected to the Internet. They are looking
for software knowledge that will qualify them
to fi nd jobs in which they can create complex
software products. They are not fi nding this
software knowledge in most computer science
(CS) departments.

We now return to David Patterson’s problems.
As the president of the Association for Computing
Machinery (ACM), he has to be a cheerleader for
CS faculty who run around yelling that the sky is
falling. For most of the CS degree programs, the

 673

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

sky is falling. Many of the CS degree programs are
in small liberal arts colleges and former teacher
colleges. These schools do not have the technical
background or faculty required to give students
the software knowledge that will be provided by
the increasing number of IT and SE degree pro-
grams. As CS job demands decline, CS programs
will continue to shrink with the faculty having
to face problems of dying programs unless they
adopt new methodologies to quickly introduce
into classrooms the latest software knowledge
required by industry

Woodie Flowers (2000), a mechanical engi-
neering professor at MIT, recently asked, “Why
should education change, we have been doing it
this way for 4,000 years?” He said that over the
next decade, educators will have to restructure
their curricula in order to accommodate the World
Wide Web. Change in the university moves at
glacial speed. Software knowledge is continu-
ally expanding and growing much faster than
the current education process can adapt to in
order to meet the needs of industry. Ways must
be found to upgrade software knowledge that
is taught to IT professionals graduating from
universities today.

The problem with education of the IT profes-
sional can be traced back to the fi rst programmers.
The fi rst IT professionals were scientists and
engineers who knew how to build and operate
the fi rst computers. Many programmers were
mathematicians. When universities began to use
computers in the 1950s and 1960s, engineering
schools emphasized teaching hardware, science
schools emphasized teaching programming lan-
guages, and business schools emphasized business
applications. The science schools originally placed
programming languages courses in mathematics
departments. As time progressed, mathematicians
teaching programming languages separated from
the mathematics departments to create CS depart-
ments. Instead of teaching the latest software
knowledge, the mathematicians began to teach
what they knew best: computational mathemat-

ics and theory of algorithms. An algorithm is a
procedure for solving a mathematical problem in
a fi nite number of steps that frequently involves
repetition of an operation (Webster’s new Colle-
giate Dictionary, 1981). It can be shown that for
any problems other than toy problems, it is im-
possible to prove that complex software products
terminate in a fi nite number of steps. Thus, the
time spent teaching theory of algorithms is time
wasted. Tenured faculty members hired to teach
mathematical algorithms will probably continue
teaching algorithms until they retire. Since faculty
members decide which young faculty members
are hired and later tenured, they will probably
continue to hire computational mathematics and
algorithm specialists.

During the 1960s and 1970s, computers came
into common use in industry. People with almost
any background could be trained to operate the
computer applications in industry. With the advent
of the personal computer in the 1980s, the people
familiar with computers continued to expand.
With the commercialization of the Internet in the
1990s and the introduction of Internet browsers
and computer games, virtually everyone below
middle age used computers. Essentially every high
school graduate that enters a university today has
a computer that can be connected to the Internet.
They learn how to program in high school and
are usually familiar with some form of database
management system. They learn how to access
Internet servers through the use of browsers. If
they would like to become an IT professional,
they expect to learn the latest software knowledge
that industry demands. CS departments that hire
specialists in computational mathematics, theory
of algorithms, and computational complexity
theory will continue to lose students. Unless they
change, CS departments probably will be absorbed
eventually back into mathematics departments.
By working with industry, university IT programs
can teach the latest software knowledge to their
students who will then be in high demand when
they seek jobs in industry.

674

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

Year 2000 Productivity
Paradigm Change

During the latter part of the 20th century, the
demand for U.S. software developers continued
to exceed the supply. During the 1950s, 1960s,
1970s, and 1980s, computer hardware was ex-
pensive and many developing countries could not
afford computers. Thus, if you wanted to become
an IT professional, you almost had to study in
the United States. As a result, virtually every
university created CS degree programs that were
advertised as the correct degree program for the
IT professional. The result is a huge oversupply of
PhD and Master’s degree graduates who learned
mathematics theory but obtained very little soft-
ware knowledge. During the 1990s, computer
costs continued to decline to where students and
universities even in the poorest countries could
afford computers. The Wall Street Journal pointed
out that the auto worker salary in Germany was
$33 per hour, while an auto worker in China earned
$0.98 cents per hour. The salary differential for
knowledge workers such as software developers
is similar. Leading up to the year 2000 was the
conversion of all legacy software in the United
States to handle a four-digit year instead of a two-
digit year built into existing software products.
There were not enough experienced program-
mers in the United States to handle the demand
for COBOL programmers. Companies turned
to the software houses in India to help with the
conversion. The large Fortune 1000 companies
were very pleased with the results, and after 2000,
they began to out source computer coding to off-
shore companies in India. Recently, the Chinese
commercial software industry, although lagging
behind India’s, has been undergoing major struc-
tural shifts that could make it the Asian industry
leader (Kshetri, 2005). Chinese developers are
making a major commitment to OSS. Large U.S.
companies are out-sourcing the middle processes
of the DSLC, while the upstream requirements
elicitation, requirements specifi cation, and soft-

ware architecture processes and downstream ac-
ceptance testing and software product installation
will remain in the United States. CS educational
programs emphasize the middle DSLC processes,
while SE and information management programs
emphasize the upstream and downstream DSLC
processes. While the demand for IT workers in
the United States is increasing, the demand for
CS professionals is decreasing.

As mentioned earlier, CS faculty members
have begun to panic and grasp for schemes to
restore CS popularity. Former ACM President
David Patterson (2005) suggests expanding
student recruiting in high schools by ACM’s
new CS Teachers Association. He recognizes
that software knowledge continually changes
and places emphasis on keeping job skills up to
date. Former ACM President Peter Deming along
with Andrew McGettrick (Denning & McGet-
rick, 2005) point out that CS places too much
emphasis on coding and not enough emphasis
on other DSLC processes, including the use of
advanced software tools to support requirements
gathering, defect tracking, confi guration manage-
ment, middleware services, advanced software
solutions, and software process visualization
tools. They recognize that emphasis placed on
analysis of algorithms and complexity theory
as the heart and soul of computing is a mistake.
Their solution is wrong. Recruiting of students is
not the solution to declining enrollments. What is
needed is emphasis on software knowledge that
today’s computer professional needs in order to be
competitive in the global marketplace. A solution
must be found to overcome the current problems
with CS programs.

CS Education Program Problems

Major problems that must be corrected in order
for CS graduates to be attractive to employers
include tenure system, inexperienced laboratory
assistants, software tool support, software team
project servers, inadequate department support

 675

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

personnel, help and mentoring services, and
available software.

The university tenure system is a type of union
for university faculty. It is almost impossible to
remove a tenured faculty member once tenure has
been granted. Tenure empowers faculty but does
not make them accountable. Tenured CS faculty
members who are specialists in computational
mathematics and algorithms will remain faculty
members for approximate 30 years between the
time tenure is granted and retirement. In most
cases, they will continue to teach computational
mathematics and algorithm theory even though
there is very little industrial or student interest
in these areas. Also, these subject areas are un-
necessary for an understanding of the software
knowledge required by the IT professional.

In universities with major research programs,
many of the funded graduate student teaching as-
sistants that oversee laboratories for software team
projects have never used any advanced software
tools used in industry to create software products.
Even though companies may provide these tools
to universities at no cost, the laboratory assistants
must understand them and be able to help and
mentor student teams in project courses.

Many software products can be used directly
out of the box. Software users expect to be able
to load a new software system and then begin to
immediately start using the system. Heavy-duty
software tools are not out-of-the-box. To set up
a software tool environment, a software tool ad-
ministrator must create directories and security
as well as initialize parameters in which the tools
in an environment work together. The typical
CS department does not have enough software
support staff or funds to hire additional staff to
administer a suite of advanced tools.

Student teams working on a capstone project
to create a software product must have access to
a server for testing the software product. Often
student projects crash servers during testing and
interfere with other people trying to use that same
server. Software projects need a server as a type

of sand box for operating their software product.
Normally, CS departments do not have the re-
sources to dedicate servers to student projects.

Many software vendors provide free training
and use of software tools to universities. But they
provide minimal help facilities to answer specifi c
questions that arise while trying to use the tools.
Students must be able to contact knowledgeable
people who will answer their questions in a timely
manner. When students are learning to use com-
plex software design and testing tools, they would
like access to a mentor to guide them. Ideally,
help and mentoring services should be available
24 hours a day, seven days a week (24/7).

As part of students gaining software knowl-
edge required by industry, students must have
easy access to software products and tools. Many
vendors will provide free software and licenses to
universities. Acquiring the software and licenses
to use the software can be a problem when uni-
versities are not paying for the software. There
needs to be a service to expedite the process of
acquiring software for classroom use at no cost
to universities.

By helping universities to quickly introduce
best software development practices, improved
processes, and advanced software tools, students
that graduate from these programs will gain
software knowledge that is in high demand by
industry. The goal of the SSIP is to set up an in-
frastructure shared among universities in which
universities can easily introduce the latest lead-
ing software knowledge into both undergradu-
ate and graduate classrooms without building a
costly infrastructure at each university. Member
universities will contribute software knowledge
infrastructure to the SSIP and will use the SSIP
as a resource to support their classes. Operation
of the SSIP is supported by industry sponsors at
no cost to universities. Eventually, the SSIP would
like to provide infrastructure to every interested
university in order to teach the latest leading-edge
software knowledge to their students.

676

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

Shared Software Infrastructure
Program (SSIP)

SSIP was created in spring 2005. Current indus-
trial sponsors of the program are AVNET, IBM,
and Intel. The program is sponsored by companies
who share a vision of integrated information fl ow
within and among enterprises based on OSS,
open standards, and global interoperability. The
SSIP will support tools compliant with the OMG
computer industry specifi cations for interoperable
enterprise applications. Services provided by the
SSIP will be determined by the member univer-
sities that use the SSIP Web site. Services and
software will be provided to member universities
at no cost to the universities. Costs of operating
the SSIP and developing the infrastructure will
be borne by sponsors.

Initial courses supported by the SSIP were
capstone software engineering courses that had a
software project in which teams of students devel-
op a software product starting with the customer
requirements and fi nishing with a demonstration
of a working product. Students are introduced to
a full set of computer-aided software engineering
(CASE) tools. CASE tools were introduced across
all phases of the DSLC. Each week a new tool
with open was introduced. For each tool, the SSIP
staff provided an overview, tool use examples,
and online tutorials, and suggested assignments
and a tool Web site. SSIP 34 Member Universities
for fall 2006 include the following:

• Arizona State University, Tempe, Arizona
• Auburn University, Auburn, Alabama
• California State University, Los Angeles,

California
• DePaul University, Chicago, Illinois
• Iowa State University, Ames, Iowa
• Louisiana State University, Baton Rouge,

Louisiana
• Marquette University, Milwaukee, Wis-

consin

• Mississippi State University, Mississippi
State, Mississippi

• Neumont University, South Jordan, Utah
• North Carolina State University, Raleigh,

North Carolina
• Pace University, New York City, New

York
• Purdue University, West Lafayette, Indiana
• Queens University, Kingston, Canada
• Rutgers University, New Brunswick/Pisca-

taway, New Jersey
• San Jose State University, San Jose, Cali-

fornia
• Sacramento State University, Sacramento,

California
• Southern Methodist University, Dallas,

Texas
• Texas A&M International University, Lar-

edo, Texas
• Texas A&M University, College Station,

Texas
• Texas A&M-Corpus Christi, Corpus Christi,

Texas
• Texas State University, San Marcos, Texas
• Texas Tech University, Lubbock, Texas
• University of Arizona, Tucson, Arizona
• University of Arkansas, Fayetteville, Ar-

kansas
• University of California – San Diego, San

Diego, California
• University of Houston -- Clear Lake, Hous-

ton, Texas
• University of Kentucky, Lexington, Ken-

tucky
• University of Missouri – Rolla, Rolla, Mis-

souri
• University of North Texas, Denton, Texas
• University of Oklahoma, Norman, Okla-

homa
• University of Tennessee at Chattanooga,

Chattanooga, Tennessee
• University of Tennessee at Knoxville, Knox-

ville, Tennessee

 677

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

• University of Texas at Arlington, Arlington,
Texas

• University of Texas at Dallas, Dallas,
Texas

The current OSS tools supported by the SSIP
for the software engineering capstone courses are
the following:

• Apache: HTTP server and application
server

• CVS: Confi guration management system
• Derby: Database management system
• Eclipse: Platform for building an integrated

development environment with plug-ins for
tools

• FireFox: Web browser
• Gantt Project: Project planning software
• Java: With supporting tools
• JRequire: Requirements engineering

tools
• Linux: Operating system
• Tomcat: Application server

At no cost to SSIP member universities, SSIP
sponsors are very helpful in closing the infor-
mation technology gap between software used
by industry and software used in classrooms at
universities. Avnet has agreed to provide computer
server hardware, and Intel has agreed to support
software and provide access to the Intel Software
College (2006) where students can learn how
to optimize and accelerate applications and to
enhance software design, anticipate and address
potential issues, and improve application perfor-
mance. They also provide online courses as well
as live and recorded Webcasts. IBM and IBM
Rational provide computer servers, operational
support, and the following software tools:

• ClearCase: Confi guration management
system

• ClearQuest: Defect tracking and change
management system

• DB2: Database management system
• ProjectConsole: Visual project monitoring

tool
• PureCoverage: Code coverage tool
• Purify: Automatic error detection tool for

fi nding runtime errors and memory leaks
• Quantify: Performance analysis tool
• RequisitePro: Requirements tracking

tool
• Robot: Automated functional regression

testing tool
• RSA: Rational Software Architect visual

modeling tool
• SoDA: Report generation tool that supports

day-to-day reporting and formal documenta-
tion requirements

• Test Manager: Test management tool
• Websphere: Web server technologies
• SSIP distributes content using the SSIP

Web site located at the following URL:
http://ssi7.cs.tamu.edu/ssi/

For each software tool, the SSIP Web site
contains a short tool overview describing the tool
in terms easily understood by a student. There
are also online tutorials for how to use the tool
as part of the student team project. Use-cases are
used to describe the relationship of the user to the
sample application of the tool. Where available,
a WWW link points to the tool Web site. New
SSIP member universities are provided WWW
linkages to course Web sites for courses that use
SSIP content and services. The SSIP provides a
user help service to answer questions about any
of the tools. Where required, mentors are made
available to provide one-on-one tool use help.
SSIP servers are available for student project
teams to test their project software products. SSIP
user forums can be set up for member schools
to discuss all aspects of introducing the latest
software technology into classrooms.

Many of the CS education program problems
are solved by using the SSIP. Students that come to
the university today have their own personal client

678

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

computer that can connect to the Internet. They
can connect to computer servers for everything
needed in a university curriculum. The SSIP has
servers available to SSIP member universities to
support member university courses. By using OSS
and free software tools provided by industry, the
latest software solutions used by industry can be
introduced into classrooms at very little cost to
the SSIP member university.

Tenured university faculty members who
control the courses taught can reduce the time it
takes to introduce into the classrooms the latest
advanced software solutions used by industry. In
the lecture part of a course, the faculty member
introduces software development theory, practice,
and processes. In the software project laboratory,
tools used to support software development are
introduced by distance learning through an SSIP
Web site. Examples showing the use of each
tool are provided. When additional assistance is
required, the SSIP operates a help desk and can
supply mentors.

The problem of inexperienced laboratory as-
sistance is solved by SSIP supplying services in
which students in the laboratory obtain all of the
knowledge that is necessary to learn and effec-
tively use software tools. As a result, laboratory
assistants spend most of their time managing the
student laboratory assignments and activities.

Software tools and support of the tools are
provided through the SSIP Web site. The goal is to
minimize the support staff that must be provided at
the local university. The cost of development tools
is minimized by use of OSS and by free software
provided by industrial sponsors. Interoperability
of applications developed by student software
development teams is assured by emphasizing
open standards.

Industry today is looking to hire students who
know how to be a productive team member. Often
universities are reluctant to let student projects use
department computer servers shared with other
applications for fear that the students will cause
the servers to fail. Student project teams need a

type of sand-box server on which the student team
can build a software product. Sand-box computer
servers are provided by the SSIP for use by SSIP
member universities.

Help desks and mentoring services are expen-
sive. Industry provides extensive help desk and
mentoring services to their customers at great
costs. Individual universities cannot afford to
provide these infrastructure services to students
for the wide variety of software tools needed to
support team software development projects in
order to create the latest software solutions. By
member universities sharing these services, the
SSIP can provide services to a large number of
universities at a low cost to SSIP sponsors and
at no cost to the universities. The SSIP can make
these services available 24/7.

Without outside help, universities have diffi cul-
ty making the latest software solutions available
to the students in the classroom. Three barriers
to availability are cost, training, and licensing.
An SSIP goal is to solve the availability problem
by providing open source or free software tools
at no cost to SSIP member universities, software
tool training classes by distance learning through
the SSIP Web site, and free licensing to SSIP
member universities.

The SSIP has been well received by member
schools. Leading-edge software knowledge is be-
ing introduced into university classes at no cost
to the university. We are very encouraged with
the SSIP success to date. We plan to continue to
take advantage of the existing environment in
which every student has his or her own Internet-
connected client computer on which the student
can access the latest software knowledge content
from Internet-connected SSIP servers.

CONCLUSION

With the beginning of the new millennium, soft-
ware development is in a state of change. Low-cost
client computers that can be interconnected by the

 679

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

Internet are available worldwide. Software devel-
opment teams can be globally distributed around
the world. OSS tools can be used to create infra-
structures to help introduce industrial strength
software into university classrooms. The latest
software development process and practices along
with open standards can help university students
learn how to create enterprise-level interoperable
software solutions. The SSIP is an example of how
universities working with industry can cooperate
to share infrastructure to rapidly close the gap
between advanced software technology used by
industry and the software knowledge and skills
taught in the classroom.

REFERENCES

Denning, P. J., & McGetrick, A. (2005). Recen-
tering computer science. Communications of the
ACM, 48(11), 15-19.

Flowers, W. (2000). Why change? Been doin’ it this
way for 4,000 years! In Proceedings of the ASME
Mechanical Engineering Education Conference,
Fort Lauderdale, Florida. Retrieved July 6, 2006,
from http://www.asmenews.org/archives/backis-
sues/may/features/educonf.html

Frauenheim, E. (2004). Students saying no to
computer science. ZDNet News. Retrieved July
6, 2006, from http://news.com.com/Students+s
aying+no+to+computer+science/2100-1022_3-
5306096.html

Intel Software College. (2006). Retrieved July
6, 2006, from http://or1cedar.cps.intel.com/soft-
warecollege/HomePage.aspx

Kshetri, N. (2005). Structural shifts in the Chinese
software industry, IEEE Software, 22(4), 86-93.

Naur, N., & Randell, B. (1968). Report on a
conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany.

Object Management Group. (2006). Retrieved
July 6, 2006, from http://www.omg.org

Open Source Initiative. (2006). Retrieved July 6,
2006, from http://www.opensource.org/

Patterson, D. (2005a). Stop whining about out-
sourcing! ACM Queue, 3(9), 63-64.

Patterson, D. A. (2005b). Restoring the popular-
ity of computer science. Communications of the
ACM, 48(9), 25-26.

Software Engineering Institute at Carnegie Mel-
lon University. (2006). Retrieved July 6, 2006,
from http://www.sei.cmu.edu/

U.S. Department of Labor Statistics. (2005). Oc-
cupational outlook handbook, 2006-2007 edition.
Retrieved July 6, 2006, from http://www.bls.
gov/oco/ococ267.htm

Webster’s new collegiate dictionary. (1981).
Springfi eld, MA: C. & C. Merriam Company.

KEY TERMS

 Capstone Project: Designed for students to
synthesize and integrate knowledge acquired
through course work and other learning experi-
ences.

 Computer-Aided Software Engineering
(CASE) Tools: Software tools used to assist in
the development and maintenance of software.

 Development Software Life Cycle (DSLC):
Includes the multiple phases during which defi ned
information technology work products are created
or modifi ed as part of the software development
process. The last phase of development occurs
when the software product is placed into opera-
tion.

 Interoperable Software: Software that oper-
ates with various kinds of software applications

680

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

and systems by agreeing on a common method
with which to communicate and exchange data
with one another.

 Open Source: Refers to software that has Open
Source Initiative (OSI) (2006) licenses. Examples
of open source software are Linux, Apache,
Eclipse, Derby, and so forth. Also included is open
standard compliant software that is provided free
to universities for classroom use. An example is
IBM Rational Software Architect (RSA).

 Open Standard: Refers to standards that are
publicly available. The Object Management Group
(OMG) (2006) is an example of an organization
that was created to produce open standards.

 Outsource: To send work that would normally
be done by employees in a company to workers
that are employed by an outside company.

 Productivity Paradigm Change: The im-
provement of productivity by use of the Internet,
clients and servers connected to the Internet,
improved communication technologies, advanced
software tools, and outsourcing to low-cost labor
regions.

 Shared Software Infrastructure Program
(SSIP): The goal of SSIP is to set up an infra-
structure shared among universities in which
universities can easily introduce the latest lead-
ing software knowledge into both undergraduate
and graduate classrooms without building costly
infrastructure at each university.

 Software Tool: A software product that soft-
ware developers use to create, debug, or maintain
software.

 681

Chapter LIII
Wikis as an Exemplary Model of

Open Source Learning
Robert Fitzgerald

University of Canberra, Australia

INTRODUCTION

Wikis are an instance of what is known as a read/
write technology. They allow groups of users,
many of whom are anonymous, to create, view,
and edit Web pages. In many cases, these pages
are online, but there are instances of Wikis used
as personal notebooks (e.g., Tiddlywiki, http://
www.tiddlywiki.com/). All wiki systems use a
simplifi ed html markup language, but as their use
spreads, so does the appeal of more user-friendly
java-based WYSIWYG editors. It will be argued
that the simplicity, accessibility, and openness
of wikis support a model of collaboration and
knowledge building that represents an exemplary

ABSTRACT

In their simplest form, Wikis are Web pages that allow people to collaboratively create and edit docu-
ments online. Key principles of simplicity, robustness, and accessibility underlie the wiki publication
system. It is the open and free spirit of Wikis fundamental to open source software (OSS) that offers new
contexts for learning and knowledge creation with technology. This chapter will briefl y consider the role
of technology in learning before discussing Wikis and their development. The emerging literature on the
application of Wikis to education will be reviewed and discussed. It will be argued that Wikis embody
an exemplary model of open source learning that has the potential to transform the use of information
communication technologies in education.

model of learning with technology. This model is
congruent with many of the key principles em-
bodied in free and open source software (FOSS)
and sociocultural theories of learning (Lave &
Wenger, 1991; Vygotsky, 1978; Wenger, 1998).
Many Internet-based communities and groups
are already fi nding ways to embrace these forms
of learning as a part of their ongoing process of
community capacity building. In contrast, formal
places of learning such as schools and universities
have been slow to explore the potential of this
technology. This chapter will briefl y consider the
role of technology in learning before discussing
Wikis and their development. The chapter argues
that FOSS and Wikis in particular offer education

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

682

Wikis as an Exemplary Model of Open Source Learning

far more than just low-cost software or even sound
principles of practice; they open up a space for
new models of learning and knowledge creation
with technology. The emerging literature on the
application of Wikis to education will be reviewed
before considering Wikis as an exemplary model
of open source learning.

TECHNOLOGY AND LEARNING

While the application of computing technology
to teaching and learning has at least a 30-year
history, there is a large body of literature that
suggests education is still struggling to use tech-
nology effectively (Cuban, 2001; Healy, 1998;
Oppenheimer, 2003; Postman, 1993; Stoll, 1999).
Results from large international studies show that
the dominant use of technology tends to focus
on skills and involves learners as content users
and not content creators (Kozma, 2003). Part of
the problem is that formal places of learning by
their very nature are highly structured contexts.
The role of context is important because there is
a direct relationship between form and quality of
the pedagogy and the form and quality of the resul-
tant learning. Different teaching approaches and
learning contexts result in different outcomes for
students. In Boaler’s (1997) study of mathematics
classrooms, she showed that teacher-centered and
rule-based teaching approaches not only produce
low levels of student engagement but work to ef-
fectively limit the scope of the learning outcomes.
There is a strong suggestion from her work that
routine-style classrooms generate routine knowl-
edge and that this is neither of the quality nor
quantity required for real-world mathematical
problem solving. Her key fi nding is that context
matters. The Russian neuropsychologist Alexan-
dra Luria understood this relationship well when
he argued that cognition is a function of context.
“Cognitive processes … are not independent and
unchanging ‘abilities’ … they are processes oc-
curring in concrete, practical activities and are

formed within the limits of this activity” (Luria,
1971, p. 266). In effect, Luria was saying that
cognition is plastic, a fi nding that has subsequently
been confi rmed by contemporary neuroscience
(Goldberg, 1990, 2001). The activities and tasks
we set for learners not only determine the type
and quality of knowledge that is produced but,
more importantly, set the parameters for the de-
velopment of their cognitive processes. Therefore,
from a philosophical and practical design point of
view, the contexts or settings of learning should
be as open and free as possible.

There is also a growing body of literature
suggesting that young people learn in different
ways to past students and, therefore, require (and
even demand) different teaching approaches (Gee,
2003; Oblinger, 2004; Prensky, 2001). Chris Dede
(2005) has written extensively in this area, and in
his assessment, these learners seek to co-design
their learning experiences and prefer communal
learning over individual learning. Anyone who
has recently studied in schools or universities
will know that despite institutional rhetoric to
the contrary, these new modes of teaching and
learning are not widespread. The pedagogical
challenge is to use technology in ways that build
upon learners’ existing experiences and foster the
creation of what von Krogh, Ichijo, and Nonaka
(2000) refer to as communities of knowledge. In
education, there is widespread recognition of the
need to explore more collaborative approaches to
learning (Jonassen, Peck & Wilson, 1999; Kozma,
2003; Laurillard, 2002; Sefton-Green, 2004;
Somekh, 2004). Wikis offer one such tool, which
is already a part of many learners’ everyday lives
as are a wide variety of other social software such
as blogs and social networking applications like
MySpace (http://www.myspace.com/).

BACKGROUND TO WIKIS

The founding developer of the World Wide Web
(WWW), Sir Tim Berners Lee, fi rst conceived of

 683

Wikis as an Exemplary Model of Open Source Learning

the Internet as a way for people to both read and
write data. The reality of nonintuitive operating
systems, html-based coding, clunky fi le transfer
tools, and security restrictions guaranteed that
while we could all read the Web, very few of us
were able to easily write and publish material.
To address some of these issues, Ward Cun-
ningham developed the fi rst Web-based Wiki
(http://en.wikipedia.org/wiki/WikiWikiWeb) in
1995 as part of the Portland Pattern Repository
(PPR). The origin of wikis, however, goes back
much earlier to the 1980s and Cunningham’s
work on hypertext using Hypercard™ (eWEEK,
2006). In his original formulation (see Table 1),
Cunningham developed wiki software to adhere to
a number of core design principles (http://c2.com/
cgi/wiki?WikiDesignPrinciples).

These basic principles result in a Web publica-
tion system that is simple, robust, and accessible.
The system is designed to position users differ-
ently from traditional publishing models—from
a Web reader to a Web author. This can be seen
particularly in the universal principle in which
any writer is automatically both a space organizer
and an editor.

FREE AND OPEN LEARNING

Free and open are key principles underpinning
FOSS. This chapter argues that these also under-
pin learning with Wiki technology. For a piece of
software to be open source, it must also adhere to
four freedoms summarized in Table 2 (http://www.
gnu.org/philosophy/free-sw.html).

While these freedoms relate to OSS, they are
enacted within a community of software develop-
ers in which community learning and knowledge
construction is central. In this sense, open can
be used to refer to something that is visible and
without barriers. In relation to FOSS, it also refers
to a principle of practice that embodies an attitude
of generosity. This is perhaps best thought about
in terms of an individual (or group) that makes
himself or herself available to others and is free
and willing to think about new ideas. The notions
of free and open have much to offer our concep-
tions of learning and the underpinning processes
of collaboration and knowledge construction
with Wikis.

Design Principle Core functionality

Open Should a page be found to be incomplete or poorly organized, any reader can edit it as they see fi t

Incremental Pages can cite other pages, including pages that have not been written yet

Organic The structure and text content of the site are open to editing and evolution

Mundane A small number of (irregular) text conventions will provide access to the most useful page markup

Universal The mechanisms of editing and organizing are the same as those of writing so that any writer is automatically
an editor and organizer

Overt The formatted (and printed) output will suggest the input required to reproduce it

Unifi ed Page names will be drawn from a fl at space, so that no additional context is required to interpret them

Precise Pages will be titled with suffi cient precision to avoid most name clashes, typically by forming noun phrases

Tolerant Interpretable (even if undesirable) behaviour is preferred to error messages

Observable Activity within the site can be watched and reviewed by any other visitor to the site

Convergent Duplication can be discouraged or removed by fi nding and citing similar or related content

Table 1. Wiki core design principles

684

Wikis as an Exemplary Model of Open Source Learning

EXAMPLES OF WIKI PROJECTS

The use of Wikis had a signifi cant development
when Jim Wales launched Wikipedia (http://
en.wikipedia.org) and the Wikimedia Foundation
(http://wikimediafoundation.org) in 2001. For the
fi rst time, this project made Wiki technology and
tools freely and readily available to the public
while also offering a series of projects to which
they could contribute. The most recognized Wiki
is the free-content encyclopedia Wikipedia (http://
en.wikipedia.org/wiki/), which is maintained by a
group of volunteers from around the world and is
generally regarded as a rich information resource
(LeLoup & Ponerio, 2006; Lih, 2004).

Jim Wales explained:

Wikimedia’s mission is to give the world’s knowl-
edge to every single person on the planet in their
own language. As part of that mission, Wikipedia is
fi rst and foremost an effort to create and distribute
a free encyclopedia of the highest possible quality.
Asking whether the community comes before or
after this goal is really asking the wrong question:
the entire purpose of the community is this goal.
(Wales, 2005)

Wikipedia currently comprises 1,315,437
English language articles and nearly two mil-
lion registered accounts (http://en.wikipedia.
org/wiki/Special:Statistics). Roughly 25% of
these articles have been translated into other
languages (nine at last count). Since July 2002,

Wikipedians have made more than 70 million
edits. Web traffi c statistics rank Wikipedia as the
17th most popular Web site (out of 250 million)
on the Internet with more than 2.9 billion page
views in the month of August 2006 (http://www.
alexa.com). Currently there is a number of re-
lated Wikimedia Foundation projects that are in
development, including Wikipedia (http://www.
wikipedia.org/); Wiktionary (http://wiktionary.
org/); Wikibooks; Wikinews (http://www.wiki-
news.org/); Wikiquote (http://www.wikiquote.
org/); Wikicommons (http://commons.wikime-
dia.org); Wikisource (http://wikisource.org/);
Wikispecies (http://species.wikimedia.org) and
the soon to be offi cially established Wikiversity
(http://en.wikibooks.org/wiki/Wikiversity). Each
of these projects takes the basic wiki model and
extends it into a specifi c area with a specifi c goal.
For example, Wikibooks (http://en.wikibooks.org)
is a project designed to produce open-content
textbook modules to create global curricula. To
date 21,019 book modules have been developed
for more than 1,000 books. Some of these books
are available in PDF format.

The large-scale application of wikis to com-
munity knowledge building can also be seen in
Wikia (http://www.wikia.com) and Wikispaces
(http://www.wikispaces.com/). The aim of these
initiatives is to provide individuals and com-
munities with a Web site they can use to create
open content around their areas of interest. For
example, establishing a Wikia site requires the
topic to appeal to a large number of people and

Freedom Description

0 The freedom to run the program, for any purpose

1 The freedom to study how the program works, and adapt it to your needs Access to the source code is a
precondition for this

2 The freedom to redistribute copies so you can help your neighbour

3 The freedom to improve the program, and release your improvements to the public, so that the whole
community benefi ts. Access to the source code is a precondition for this

Table 2. Four freedoms of open source software

 685

Wikis as an Exemplary Model of Open Source Learning

that its content will have some longevity. Com-
puter game players have been particularly active,
creating communities around their games. One
example of how this is used can be seen in the
ways that players of the massively multiplayer
online game Runescape (http://www.runescape.
com/) have built encyclopedic knowledge about
all aspects of the game (http://www.wikia.com/
wiki/Runescape).

LITERATURE REVIEW ON WIKIS

Many of the applications of Wikis are entirely
congruent with the so-called Web2.0 and social
software models that attempt to offer simple and
robust technologies to non-expert users so they are
able to create content and build communities. The
last few years have seen a proliferation of simple
tools for authoring Web content, particularly in the
area of personal blogging. Wikis are still without
peer when it comes to the large-scale collaborative
authoring of Web content (Lamb, 2004; Wagner,
2004). A literature based on the application of
Wikis is beginning to emerge, although to date
it is primarily conceptual and descriptive. Gen-
erally, there is widespread agreement that Wikis
represent an innovative and potentially powerful
tool for collaborative content creation and sharing
(Bold, 2006; Engstrom & Jewett, 2005; Godwin-
Jones, 2003; Lamb, 2004; Wegner, 2004). There
have been few studies that have tested empirical
propositions, although many of these have been
exploratory in nature.

Wikis have been studied in language learning
(Godwin-Jones, 2003; LeLoup & Ponerio, 2006;
Wang et al., 2005; Wei et al., 2005) as tools in
higher education (Augar, Raitman, & Zhou, 2004;
Bold, 2006) to promote forms of participatory
journalism (Lih, 2004), as a tool for story-telling
in primary schools (Désilets & Paquet, 2005), and
examined for their potential role in increasing
citizen participation in e-government initiatives
(Wagner, Cheung, & Ip, 2006).

In summary, the empirical work fi nds the
following:

• The effective use of Wikis appears depen-
dent on a clear goal matched to a group of
committed uses (Godwin-Jones, 2003).

• Highly structured environments that rely
on top-down approaches (as opposed to
bottom-up) limit the potential of Wikis as a
tool for learning (Engstrom & Jewett, 2005;
Wagner, 2004).

• Wikis such as Wikipedia are a rich source
of information that can promote content
creation, sharing, and discussion (LeLoup
& Ponerio, 2006, Lih, 2004).

• It is important to augment students, Wiki
work with strategies to promote deep and
critical thinking to ensure high quality work
emerges (Engstrom & Jewett, 2005).

• Wikis support a short edit-review cycle that
ensures the rapid development of content
(Lih, 2004).

• Employing the user as organizer and edi-
tor (many “eyeballs”) is a highly effective
strategy for ensuring quality (Lih, 2004).

There have been widespread calls for more
research on Wikis (Lih, 2004; Wagner, 2004; Wei
et al., 2005). It will be particularly important to
develop research methods that are sensitive to
both the quality of content produced in concert
with how this content emerges within a commu-
nity of learners. There is encouraging work on
the development of metrics to assess the quality
of Wiki (see Wikipedia) articles based on edit
histories (Lih, 2004), but we also need to examine
and assess the quality of the articles. Wiki edits
are easily quantifi ed, but what they relate to is not
always clear. For example, a recent study found an
inverse relationship between the quantity of Wiki
edits and fi nal exam scores (Wang et al., 2005).
The authors advised caution against interpreting
these fi ndings as evidence that wikis are counter-
productive to learning, but it does highlight the

686

Wikis as an Exemplary Model of Open Source Learning

need for more nuanced and in-depth empirical
studies on Wikis.

Wikis have generated considerable interest in
education because they appear to support more
collaborative models of teaching and learning. It
is fair to say that there is considerable anecdotal
evidence that Wikis can and should play a key role
in e-learning in support of a more conversational
and dialogic approach to knowledge creation and
sharing.

AN EXEMPLARY MODEL OF
OPEN SOURCE LEARNING

Wikis offer a different model of creating, editing,
and sharing knowledge that is consistent with the
educational push toward what have become known
as sociocultural or constructivist approaches to
learning. A founding thinker in these areas, Lev
Vygotsky (1978), contended that learners neither
receive knowledge nor simply discover it. They
learn in social contexts in interaction with both
humans and tools. A key concept for Vygotsky was
the zone of proximal development (ZPD) in which
he said all learning takes place. In Vygotsky’s basic
model, it is adults who scaffold young learners,
helping to extend their thinking and learning.
However, as the technological tools develop and
evolve, we are beginning to see ways that both
humans and their tools can scaffold learning. The
technological spaces that make up wikis enable
new forms of sociotechnological ZPDs that sup-
port both individual and community knowledge
creation.

This focus on community and the power of joint
construction is taken up in The Wisdom of Crowds
(Surowiecki, 2004). Surowiecki argues that the
collective knowledge of large groups is often
unrecognized and almost always undervalued by
society. He explains that many everyday activi-
ties, from voting in elections and the operation of
the stock market to the way Google locates Web
pages, depend on the collective input and knowl-

edge of large groups. Of course, not all crowds
are smart, but Surowiecki believes that under
the right conditions, crowds can act more wisely
than an expert individual. To achieve the best re-
sults, crowds must be able to support diversity of
opinion, relative independence in an individual’s
thinking, a model of decentralization that allows
individuals to draw on their local knowledge and
aggregation; that is, embody a process whereby
individual knowledge can be combined into an
integrative whole. The ways technology might be
used to support the development of smart crowds
is a relatively unexplored area; however, applica-
tions such as Wikis, blogs, and multiplayer games
certainly show how large groups of people can
productively interact online. While there is a huge
qualitative difference between group interaction
and wisdom, there is a relationship to be explored
that highlights the importance of developing large-
scale social technologies such as Wikis.

The previous discussion suggested that col-
laborative knowledge creation should be an
important feature of formal learning; however, to
date, and particularly with reference to the use of
technology, it has not been. Some of the uses of
technology by young people in their everyday lives
seem to get closer to this goal. The way they work
in their communities around multiplayer games
to talk to each other and build knowledge is one
example. The next section considers the potential
that Wikis offer to achieve this goal.

One of the strengths of Wiki software is its
capability to document and record aspects of the
knowledge creation process. From an educational
point of view, this can provide valuable insights
to the knowledge construction process. In most
Wikis, an article features a number of views: the
article page, a discussion page, article editor, and
history. A rich edit history features full revision
history permitting comparison between current
and last entry. Edits can further be identifi ed via
fl ags and commenting, helping others understand
the changes that have been made. To help assure
quality, edits also appear on a recent-changes page.

 687

Wikis as an Exemplary Model of Open Source Learning

Rules can be set up to show pages that have been
changed since the last visit. A list of contributions
by users offers various analyses, often with full
history and comparison tools. In combination,
these tools open up the possibility of exploring
the relationship (and tension) between individual
and group constructions.

Surowiecki said:

Any “crowd”—whether it be a market, a corpo-
ration, or an intelligence agency—needs to fi nd
the right balance between the two imperatives:
making individual knowledge globally and col-
lectively useful (as we know it can be), while still
allowing it to remain resolutely specifi c and local.
(Surowiecki, 2004, p. 140)

Wikis allow both individual contributions and
the evolving group product to sit alongside each
other. The examples of Wikis outlined here seem
able to create new forms of sociotechnological
ZPDs for learners. These zones support both
individual and community knowledge creation
in ways that are consistent with the notion of
communities of practice (Lave & Wenger, 1991;
Wenger, 1998).

Wikis appear well suited to building knowl-
edge in which the representation of balanced
opinion is valued. While there is no guarantee that
this prevents wikiwars, it does seem that strong
opinion is better suited to other spaces such as
blogs. It is clear from the work of the Wikimedia
Foundation that there are no hard and fast rules
to using Wikis. What is apparent, though, is that
many of the more successful projects embody a
spirit of community characterized by openness
and freedom.

CONCLUSION

In the end, the success of innovations in learn-
ing such as Wikis will be seen in the increased
capacity of individuals and their communities to

create and apply new knowledge. Incorporating
tools that not only facilitate but also document the
effective management of information and creation
of knowledge is now essential for an innovative
and productive 21st-century society. Wikis are
signifi cant and innovative because they attempt
to position learners as knowledge creators rather
than simply content users. They also represent the
application of new collaborative technologies in
ways that are free and open. In terms of education,
the Wiki model locates the challenge of improving
information, data management, and knowledge
creation processes within a community model. It
also builds on strategies for increasing the capacity
of all community members to expand their ways
of thinking creatively and working collaboratively.
A key feature of this approach is that knowledge
and practice are shared in a spirit of generosity.
The extensive use of Wikis in education begs the
question: Are we really prepared to engage in this
form of open source learning?

REFERENCES

Augar, N., Raitman, R., & Zhou, W. (2004).
Teaching and learning online with wikis. In
R. Atkinson, C. McBeath, D. Jonas-Dwyer, &
R. Phillips (Eds.), Beyond the comfort zone:
Proceedings of the 21st ASCILITE Conference
(pp. 95-104). Retrieved June 17, 2006, from
http://www.ascilite.org.au/conferences/perth04/
procs/augar.html

Boaler, J. (1997). Experiencing school mathemat-
ics: Teaching styles, sex and setting. Buckingham,
UK: Open University Press.

Bold, M. (2006). Use of Wikis in graduate course
work. Journal of Interactive Learning Research,
17(1), 5-14.

Cuban, L. (2001). Oversold and underused:
Computers in the classroom. Cambridge, MA:
Harvard University Press.

688

Wikis as an Exemplary Model of Open Source Learning

Dede, C. (2005). Planning for neomillennial learn-
ing styles. In D. Oblinger & J. Oblinger (Eds.),
Educating the net generation (pp. 224-249), Re-
trieved July 4, 2006, from http://www.educause.
edu/educatingthenetgen

Désilets, A., & Paquet, S. (2005). Wiki as a tool
for Web-based collaborative story telling in
primary school: A case study. In P. Kommers & G.
Richards (Eds.), Proceedings of World Conference
on Educational Multimedia, Hypermedia
and Telecommunications 2005 (pp. 770-777).
Chesapeake, VA: AACE. Retrieved June 17, 2006,
from http://iit-iti.nrc-cnrc.gc.ca/iit-publications-
iti/docs/NRC-48234.pdf

Engstrom, M. E., & Jewett, D. (2005). Collabora-
tive learning the wiki way. TechTrends, 49(6),
12-16.

eWEEK.com. (2006). Father of Wiki speaks out
on community and collaborative development.
Retrieved July 14, 2006, from http://www.eweek.
com/article2/0,1895,1939982,00.asp

Godwin-Jones, R. (2003). Blogs and Wikis: En-
vironments for on-line collaboration. Language
Learning & Technology, 7(2), 12-16. Retrieved
June 20, 2006, from http://llt.msu.edu/vol7num2/
emerging/

Goldberg, M. E. (1990). Contemporary neuro-
psychology and the legacy of Luria. Hillsdale,
NJ: Lawrence Erlbaum.

Goldberg, M. E. (2001). The executive brain:
Frontal lobes and the civilized mind. New York:
Oxford Press.

Healy, J. (1998). Failure to connect: How comput-
ers affect our children’s minds. New York: Simon
& Schuster.

Jonassen, D., Peck, K. L., & Wilson, B. G. (1999).
Learning with technology: A constructivist
perspective. Upper Saddle River, NJ: Prentice
Hall.

Kozma, R.B. (2003). Technology and classroom
practices: An international study. Journal of Re-
search on Technology in Education, 36(1), 1-14.

Lamb, B. (2004, September/October). Wide open
spaces: Wikis, ready or not. Educause, 36-48.

Laurillard, D. (2002). Rethinking university teach-
ing. London: Routledge.

Lave, J., & Wenger, E. (1991). Situated learning:
Legitimate peripheral participation. New York:
Cambridge University Press.

LeLoup, J. W., & Ponerio, R. (2006). Wikipedia:
A multilingual treasure trove. Language Learning
& Technology, 10(2), 12-16. Retrieved June 20,
2006, from http://llt.msu.edu/vol10num2/net/

Lih, A. (2004). Wikipedia as participatory jour-
nalism: Reliable sources? Metrics for evaluat-
ing collaborative media as a news resource. In
Proceedings of the 5th International Symposium
on Online Journalism. Retrieved July 7, 2006,
from http://jmsc.hku.hk/faculty/alih/publica-
tions/utaustin-2004-wikipedia-rc2.pdf

Luria, A. R. (1971). Towards the problem of the
historical nature of psychological processes. In-
ternational Journal of Psychology, 6, 259-272.

Oppenheimer, T. (2003). The fl ickering mind: The
false promise of technology in the classroom and
how learning can be saved. New York: Random
House.

Postman, N. (1993). Technopoly: The surrender
of culture to technology. New York: Vintage
Books.

Stoll, C. (1999). High tech heretic: Why com-
puters don’t belong in the classroom and other
refl ections by a computer contrarian. New York:
Doubleday.

Surowiecki, J. (2004). The wisdom of crowds.
New York: Doubleday.

 689

Wikis as an Exemplary Model of Open Source Learning

von Krogh, G., Ichijo, K., & Nonaka, I. (2000).
Enabling knowledge creation. New York: Oxford
University Press.

Vygotsky, L. (1978). Mind in society. Cambridge,
MA: Harvard University Press.

Wagner, C. (2004). Wiki: A technology for
conversational knowledge management and group
collaboration. Communications of the Association
for Information Systems, 13, 265-289.

Wagner,C. Cheung, S. K., & Ip, K. F. (2006).
Building semantic Webs for e-government with
wiki technology. Electronic Government, 3,
36-55.

Wales, J. (2005). Letter from the founder. Retrieved
July 14, 2006, from http://wikimediafoundation.
org/wiki/Founder_letter

Wang, H. C., Lu, C. H., Yang, J. Y., Hu, H. W.,
Chiou, G. F., Chiang, Y. T., & Hsu, W. L. (2005). An
empirical exploration of using wiki in an English
as a second language course. In Proceedings of
5th IEEE International Conference on Advanced
Learning Technologies (pp. 155-157). Retrieved
July 17, 2006, from http://www.iis.sinica.edu.tw/
IASL/webpdf/paper-2005-An_Empirical_Explo-
ration_on_Using_Wiki_in_an_English_as_Sec-
ond_Language_Course.pdf

Wei, C., Maust, B., Barrick, J., Cuddihy, E., &
Spyridakis, J. H. (2005). Wikis for supporting
distributed collaborative writing. In Proceedings
of the Society for Technical Communication 52nd
Annual Conference. Retrieved July 7, 2006, from
http://www.uwtc.washington.edu/research/pubs/
jspyridakis/STC_Wiki_2005_STC_Attribution.
pdf

Wenger, E. (1998). Communities of practice:
Learning, meaning, and identity. New York:
Cambridge University Press.

KEY TERMS

 Constructivist: An approach based on the
work of Lev Vygotsky, who contended that learn-
ers neither receive knowledge nor simply discover
it. They learn in social contexts in interaction with
both humans and tools.

 Free and Open Source Software (FOSS): A
term fi rst described by Richard Stallman referring
to a software development process in which the
software source code is made freely available for
subsequent modifi cation and development.

 Hypercard™: A hypermedia program devel-
oped by Apple Computer in the 1980s.

 Open Source Learning: A model of learn-
ing inspired by the key principles or freedoms
embodied in the FOSS movement.

Web2.0: A term coined by Tim O’Reilly
(http://tim.oreilly.com/) referring to a range of
second-generation Web publishing and social
networking technologies.

 Wiki: A form of read/write technology that
allows groups of users, many of whom are anony-
mous, to create, view, and edit Web pages.

 Wikia: A project to provide communities
with Wiki-type Web sites (see http://www.wikia.
com).

 Wikimedia Foundation: An international
nonprofi t organization run by Jim Wales, us-
ing wiki technology to promote free and open
large-scale collaborative content creation projects
(http://wikimediafoundation.org).

 Wikipedia: A free-content encyclopedia
(http://en.wikipedia.org/wiki/).

 Zone of Proximal Development (ZPD):
The difference between what learners can do
by themselves and with the assistance of more
capable adults or peers.

690

Chapter LIV
A Perspective on Software

Engineering Education with
Open Source Software

Pankaj Kamthan
Concordia University, Canada

INTRODUCTION

The steady rise of OSS (Raymond, 1999) over the
last few decades has made a noticeable impact on
many sectors of society in which software has
a role to play. As refl ected from the frequency
of media articles, traffi c on mailing lists, and
growing research literature, OSS has garnered
much support in the software community. Indeed,
from the early days of GNU software to the X
Window System to Linux and its utilities, and
more recently the Apache Software Project, to
name a few, OSS has changed the way software
is developed and used.

ABSTRACT

As the development and use of open source software (OSS) becomes prominent, the issue of its outreach
in an educational context arises. The practices fundamental to software engineering, including those
related to management, process, and workfl ow deliverables, are examined in light of OSS. Based on a
pragmatic framework, the prospects of integrating OSS in a traditional software engineering curricu-
lum are outlined, and concerns in realizing them are given. In doing so, the cases of the adoption of an
OSS process model, the use of OSS as a computer-aided software engineering (CASE) tool, OSS as a
standalone subsystem, and open source code reuse are considered. The role of openly accessible content
in general is discussed briefl y.

Software engineering (Ghezzi, Jazayeri, &
Mandrioli, 2003) advocates a disciplined and sys-
tematic approach to the development of high-qual-
ity software within budget, schedule, and other
organizational constraints. This chapter discusses
the symbiosis between traditional software engi-
neering and open source software development
(OSSD) from an educational standpoint.

The organization of the chapter is as follows.
We fi rst outline the background necessary for the
discussion that follows and state our position. This
is followed by a detailed treatment of key software
engineering practices that are addressed in light of
OSS. We then discuss the use of OSS in software

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 691

A Perspective on Software Engineering Education with Open Source Software

engineering education (SEE). Next, challenges
and directions for future research are outlined,
and fi nally, concluding remarks are given.

BACKGROUND

The concept of open source can mean different
things in different contexts (Gacek & Arief, 2004;
Perens, 1999). For the purposes of this chapter, we
will use “open source” as a single encompassing
term that subsumes all of the following: free/freely
available or libre/liberated software whose source
is available without cost to the user, imposes
minimal nonrestrictive licensing conditions, and
is based upon nonproprietary technologies. Soft-
ware that does not fall into this category is termed
non-OSS. For example, commercial software is
one class of non-OSS.

As the use of OSS in various sectors of society
increases, the question of how they are actually
engineered garners interest. A software engineer-
ing perspective toward OSS is necessary for a
variety of reasons: OSS may be adopted and used
in critical areas of an organization and thus needs
to be carefully examined with respect to non-OSS
alternatives; OSS installed in an organization may
need to be maintained over time and, therefore,
needs to be well understood by maintenance
engineers; and current OSS practices could be
of interest from an academic (teaching, learning,
research) standpoint.

Although OSS itself has a long, rich history, it
is only in recent years that a software engineering
viewpoint toward it has been taken (Spinellis &
Szyperski, 2004; Vixie, 1999). Annual workshops
in recent years under the label of Open Source
Software Engineering have also created an aware-
ness of this important area.

As OSS becomes prominent, the issue of its
outreach in an educational context arises. In this
chapter, we take the position that students study-
ing software development should be exposed
early to this rapidly growing area. In fact, the

use of OSS in computer science education has
been emphasized in recent years (Attwell, 2005;
González-Barahona et al., 2000; Liu, 2003). It
has also been suggested (Cusumano, 2004) that
developing OSS could also help students in their
future career paths.

However, the current studies of OSS-based
education are limited in one or more of the follow-
ing ways: the discussion is often confi ned to the
case study of a specifi c OSS, does not highlight
the problems associated with introducing OSS,
does not address software engineering exclusively,
or ignores aspects of software engineering that
OSS does not address. One of the purposes of this
chapter is to address these concerns.

ELEMENTS OF SOFTWARE
ENGINEERING AND ITS EDUCATION
AND THEIR MANIFESTATIONS IN
OPEN SOURCE CONTEXTS

This section looks at six broadly classifi ed
aspects; namely, management, process, model-
ing/specifi cation, standards, documentation, and
quality/measurement, which are common in most
SEE contexts, and examines the extent to which
they are realized (or not) in an OSS environment.
In doing so, we inherently set the limits of the
use of OSS in SEE, which is discussed in the
following section.

Management

Managing a software project is important for its
eventual success. We shall limit our discussion
largely to measuring success and team, time, and
confi guration management.

The goals of developing software in educa-
tional and OSS contexts are different. In software
engineering, the software product is a means to
an end, not an end in itself. It has been reported
(Cusumano, 2004) that OSS often lacks precise
specifi cation of goals and, as a result, fails to defi ne

692

A Perspective on Software Engineering Education with Open Source Software

success. The reason for abandoning an OSS project
often are not given or made public. In SEE, there
is a price for not performing up to the expectations
or not working to full potential, which is often
exhibited in a grading differential.

Although software engineers are often bound
by an organizational or professional code of ethics,
this is not the case is OSS, which is carried out
on an honor system. Specifi cally, there are little
or no repercussions for not following up on work
or on schedule, or stalling the project altogether.
This fl exibility may be attractive in a professional
context but does not scale well in an educational
setting. In lieu of mimicking real-world software
projects as well as due to natural limitations of
schedules at educational institutions, there are
inevitable time constraints associated with course
projects. However, there is little sense of urgency
in OSS projects.

There are differences between the social
structure of a team of students in a software
engineering environment and participants in the
OSSD. In general, software engineers working on
a software project in a professional or learning
context are collocated, while those in OSS devel-
opers form a distributed community (Crowston
& Howison, 2005; Thomas & Hunt, 2004). There
is also a notable difference with respect to social
bonding. The students most likely belong to the
same institution and may take multiple courses
together. The students also may be related on
a personal level (roommates, siblings, friends),
while that is not the norm in an OSS develop-
ment in which the participants are loosely related.
There is no inherently hierarchical team structure
in OSS. There is usually a core group that con-
tributes the most with a sporadic participation
by others (Michlmayr, Hunt, & Probert, 2005).
On the other hand, assuming responsibility and
accountability individually and as a team are at
the heart of software engineering.

The distributed nature of contribution as
well as the desire of the developers to be able to
disseminate up-to-the-minute code has led to a

usually strong support for confi guration man-
agement (version control, bug tracking, or build
management) (Asklund & Bendix, 2001) in OSSD.
Posting nightly builds for tryout is quite common
in an OSS environment. However, in the author’s
experience with the practice of SEE, confi guration
management is not as pervasive in educational
software projects as it is in OSS and is usually
limited to version control and backups.

Process and Workfl ows

In software engineering, students are normally
introduced to both prescriptive and agile process
models. The former are often rigid/bureaucratic
and involve heavy use of documentation. The
latter allow fl exibility by virtue of sensitivity
to the social and organizational environment
in which software is being created and involve
lightweight documentation. Each is useful in its
own right with respect to the characteristics of
various application domains and in different team
environments.

The OSSD process, known as the Bazaar
model (Vixie, 1999), is not subsumed by any
of these conventional software process models,
although it is much closer to the latter than it is
to the former. For example, many of the practices
of extreme programming (XP) (Beck & Andres,
2005), an agile process model, are applicable
to OSS (Nishinaka, 2001). However, two of the
key practices of XP (namely, Onsite Customer
and Pair Programming) do not scale well in the
distributed, nonproximal environment of the OSS.
The Bazaar model also differs from other iterative
process model frameworks such as the Unifi ed
Process (UP) (Jacobson, Booch, & Rumbaugh,
1999) that embrace certain aspects of agility. For
example, UP has a strong emphasis on customer
involvement and is model-driven, both of which
are not a commonplace in OSSD.

Traditional software process workf lows
typically include software requirements (problem
defi nition), software design (high-level view of

 693

A Perspective on Software Engineering Education with Open Source Software

the solution), implementation (low-level working
solution), and testing (verifying whether the solu-
tion, in fact, matches the problem). In an OSSD
process, software requirements are usually absent,
the focus on design is informal, and there is much
attention on implementation and, in some cases,
on testing. Indeed, several OSS utilities (notably
for properly structuring source code and for unit
testing) have been created just to support the last
two phases.

It is a commonly held belief in the software
engineering community that the quality of a
software process directly impacts the quality
of the software product, and therefore, much
research in the last two decades has focused on
means for software process improvement. Indeed,
process maturity is an integral topic in many
courses related to software process engineering.
Based on project retrospectives, organizations
continually strive to improve their software
processes in order to make them more effective
while remaining cost-friendly. However, unlike
the case of traditional software process environ-
ments in which organizations can make use of
the capability maturity model (CMM) (Paulk,
Weber, Curtis, & Chrissis, 1995), there seems to
be little systematic effort toward addressing the
maturity of the OSSD process.

Modeling and Specifi cation

Modeling, particularly during early phases of
software development, is playing an increasingly
important role in activities and deliverables in
software engineering (Beydeda, Book, & Gruhn,
2005). Early modeling is crucial from the point of
view of understanding the problem and solution
domains in an implementation neutral manner
and control and prevention of problems that can
propagate into later stages. Modeling in its dif-
ferent degrees of formality plays a central role
in both XP and UP and is a determinant of the
process maturity of an organization. Some form of

modeling is introduced in most practical software
engineering courses.

The unifi ed modeling language (UML) (Booch,
Jacobson, & Rumbaugh, 2005) has emerged as a
standard language for modeling the structure and
behavior of object-oriented systems, and its use in
the last few years in SEE has increased dramati-
cally. The author has recommended a proper use
of UML (Kamthan, 2004) for domain and use
case modeling in several courses. However, there
is little evidence of use of UML and, in general,
of any form of systematic modeling in OSSD.

Formal specifi cations are also integral to many
courses in software engineering (Alagar & Peri-
yasamy, 1998) in which the safety requirements
or design of a critical system need to be precisely
(mathematically) expressed. However, once again,
there is little evidence to support the use of math-
ematics in OSS problem or solution domains for
system analysis or synthesis, respectively. This
evidently limits the use of OSS, even in part,
in safety-critical software. A similar argument
holds as the defi nition and design of real-time or
embedded systems also gradually begin to depend
on formal specifi cations.

Standards

There is a variety of reasons for introducing and
adhering to standards in software engineering.
Standards provide a common ground for a team,
streamline efforts, and when applied well, are
known to contribute to quality improvement
(Schneidewind & Fenton, 1996). Lack of stan-
dardization often can lead to communicability
problems (among humans) and interoperability
problems (among machines). The author has
been a strong proponent of the use of standards
throughout SEE, has made mandatory use of IEEE
and/or ISO/IEC standards in process documents,
and strongly encouraged standardized (ANSI,
ECMA) defi nitions of programming languages
and corresponding compilers/interpreters.

694

A Perspective on Software Engineering Education with Open Source Software

The use of standards in OSSD is usually
limited to implementation-level concerns. The
OSS approach serves as a platform for trying
out new technologies and developing proof-of-
concept implementations. In doing so, the use
of standards is limited to data formats such as
the hypertext markup language (HTML) or the
extensible markup language (XML) and pre-
sentation languages such as the cascading style
sheets (CSS).

Documentation

The role of communication is central to any
software development. The documentation forms
the message carrier within the communication
infrastructure of a software project.

The role of documentation is usually accentu-
ated in software engineering. The courses related
to technical communication and programming
methodology early in the curriculum form the
basis of internal documentation of software de-
veloped in later courses. In some cases, creating
external documentation (user manual or a help
system) may also be required.

In contrast, it has been the author’s experience
that often OSS is apparently weak with respect to
both internal and external documentation. Any
documentation, if at all, tends to focus more on
the implementation rather than early stages (of
requirements or design). Process documenta-
tion is not always adopted and followed. The
documentation at times may not be complete
or may only be sketchy. At times, help or tuto-
rial documents are not updated to synchronize
with the latest code releases. The OSS style of
writing currently in place at times tends to be
informal rather than technically inclined to the
issue at hand. In other words, in general, OSS is
not a hallmark of how documentation should be
written. That these issues be pointed out to the
students early is critical, especially if it is their
fi rst contact with a systematic use of documenta-
tion in software; otherwise, the perceptions and

habits tend to coagulate and are harder to change
with the passage of time.

Quality and Measurement

In software engineering and its education, there
is much emphasis on quality in all aspects of
software (project, process, product, and occasion-
ally people).

The issue of OSS quality in general, and
concerns of performance, security, and usability
in particular have been addressed (Schmidt &
Porter, 2001; Halloran & Scherlis, 2002; Seidel &
Niedermeier, 2003; Michlmayr, Hunt, & Probert,
2005).

There are many OSSs that exhibit high quality.
However, the approach to quality assurance and
assessment is not systematic (Fenton & Pfl eeger,
1997), and therefore, the results do not seem to
be repeatable. In OSS, peer reviews are used as
a technique for an informal evaluation, whereas
formal inspections are apparently nonexistent. In
general, comprehensive collections of test cases,
test suites, or test harnesses are rare, and broad
testing is even rarer. More importantly, par-
ticipation is voluntary, and monitoring is almost
nonexistent. The linear relation of the number of
bugs found to improve the quality proposed by
the OSS development process (Raymond, 1999)
is a bit simplistic and, indeed, has been termed as
a fallacy from a software engineering perspective
(Glass, 2003).

The view of quality that is usually taken in
SEE is the following: to improve an aspect of
a given entity, we must be able to quantify that
aspect. Therefore, the issue of quality is closely
related to that of measurement (Fenton & Pfl eeger,
1997). For example, if we wish to improve space-
effi ciency, we could measure the source program
fi le size and, in turn, the lines of code (or number
of characters); to improve structural complexity
of a program, we could measure the number of
decision structures, parent-child classes, method
calls, and so forth. Once again, there is little

 695

A Perspective on Software Engineering Education with Open Source Software

evidence to support rigorous measurement in
OSS contexts.

Having compared OSS to traditional software
engineering and its education, we now turn our
attention to realizing OSS in SEE.

IMPLICATIONS OF OPEN SOURCE
SOFTWARE IN SOFTWARE
ENGINEERING EDUCATION

We have previously advocated different (but not
necessarily mutually exclusive) ways in which
OSS can be used in SEE (Kamthan, 2006): for
pedagogy and learning, which are theoretical in
nature; and adopting the OSS process as tools
that support software production, as one of the
subsystems, or for the purpose of source code
reuse, which are practical in nature. We note that
the applied aspects can all occur within the same
software project. These approaches need to be
aligned with teaching and learning goals to which
the contributing factors include the pedagogical
aims of the institution (that will likely vary be-
tween, for instance, a polytechnic school and a
university), alignment with respect to overall pro-
gram curriculum, and student background. Since
software engineering is a practical discipline, all
the aims and activities from its initiation to its
completion should be feasible. To help achieve that,
 analytical hierarchy process (AHP) and quality
function deployment (QFD) are two commonly
used project management techniques. Finally,

laws regarding OSS vary across jurisdictions (e.g.,
Canada, Germany, and Russia), and therefore, any
use and/or development of OSS must be legally
acceptable where it is carried out.

The precise articulation of the teaching and
learning goals, of the criteria and techniques to
be adopted for carrying out a feasibility study, or
of legal issues is beyond the scope of this chapter.
Table 1 summarizes our approach for integrating
OSS in SEE.

We now discuss the theoretical and applica-
tion-specifi c elements of the framework in more
detail.

Open Source Software for Pedagogy

OSS could be deployed for the purposes of teach-
ing in a classroom. The availability of source
code in OSS provides a unique opportunity for
the teacher to experiment.

Source code internals of software (i.e., usu-
ally larger in scale than those accompanying the
commonly used textbooks) can be shown, and
aspects of its design and quality can be debated
in the classroom. Educators, for example, could
point out both successful and failed OSS efforts
and reasons for being so. As compared to toy theo-
retical examples in textbooks, the OSS real-world
contexts often can provide better opportunities
for teaching intricate concepts.

The openness of OSS in contrast to non-OSS
becomes all the more valuable when a deep
knowledge of system internals is necessary for

Table 1. A high-level view of the framework for deploying OSS in SEE

Legality

Feasibility

Teaching and Learning Goals

Application OSS Process Adoption, OSS as a Software Development
Tool, OSS as a Sub-System, OSS for Reuse

Theory OSS for Pedagogy, OSS for Learning

696

A Perspective on Software Engineering Education with Open Source Software

understanding. This is particularly the case in
systems software courses in which, for example,
the design of an operating system kernel of an
OSS such as Linux can be discussed.

Educators can also use OSS as a basis for
assigning course projects on similar topics. The
openness of the source code helps them judge the
feasibility of a software project for a given team
size and the time allowed. OSS also could be used
as a basis for reverse engineering in which, given
a certain OSS, students can be asked to create
a high-level model or visualization for it or to
refactor (Fowler et al., 1999) it to improve some
of its quality attributes while still preserving its
functionality.

It has been the author’s experience that OSS
also can serve as a starting point for discussing
social aspects of software engineering such as
software ethics (Qureshi, 2001) and licensing
issues. For example, how well a given OSS fol-
lows the principles put forward by the Software
Engineering Code of Ethics and Professional
Practice (SECEPP) of the ACM/IEEE-CS Joint
Task Force on Software Engineering Ethics and
Professional Practices are worthy of examination
and class discussion.

Open Source Software for Learning

OSS provides a useful workbench for learning.
OSS can be used for self-learning purposes
outside the classroom (e.g., at home). The ascent
of affordable personal computers, high-speed
Internet connectivity, and the use of the Web as
an information base are having a major impact
on the way students study and learn at home. The
constructivist theories of learning have empha-
sized learning by doing, and the availability of
OSS source code provides a unique opportunity
for students to experiment and thereby enhance
their skills.

We note, however, that the lack of suffi cient
documentation and timely technical support, if

at all, can pose obstacles for putting this into
practice.

Adopting the Open
Source Software Process

As part of a course project, students could be made
to simulate an OSS environment for developing
software by adopting the OSS process and the
practices in it. The resulting software will then
be an OSS whose development will be open to
the public. As an example, SourceForge could
provide a medium for development, collaboration,
and distribution.

However, this may be the most challenging of
all the applications of OSS in SEE. First, this will
require extra effort on the part of the educator
that may not be in line with the requirements of
mainstream courses. The Bazaar model requires
a different mindset from traditional approaches
and may need to be tailored for an educational use.
For example, instilling the sense of teamwork in
physical proximity and collectively experiencing
the issues that go with it are an important part of
learning. Some institutions discourage course-
work outside their confi nes and expect ownership
of the fi nal product.

Fairness in evaluation is also an issue. For
example, once a team has set up a place on Source-
Forge, should it be allowed to solicit help and
feedback from those not registered in the course?
What is the impact of openness of source across
teams? These questions need to be addressed and
satisfactorily answered prior to any OSS initiative
in education.

Open Source Software as
a Software Development Tool

We need software to develop software, and OSS
utilities could prove to be quite useful in that
regard. Examples are Apache Maven for project
management, MediaWiki for fostering teamwide

 697

A Perspective on Software Engineering Education with Open Source Software

communication, ArgoUML as a UML modeler,
IBM Eclipse as a multipurpose authoring environ-
ment, CCDoc for C++ documentation, Bugzilla
for issue tracking, Apache Ant for building, and
JUnit for unit testing, to name a few.

However, some of the hindrances one faces
are the following: OSS is not always feature-rich
in comparison to its non-OSS counterparts; the
OSS utilities used may not be interoperable with
each other; or students may fi nd that all-in-one
multi-utility packaged commercial integrated
development environments (IDE) are more con-
venient to use for programming purposes than
individual isolated pieces of software.

Open Source Software
as a Subsystem

Reinventing the wheel is considered inertia in
software development and, at times, is not prac-
tical. For example, it is not always realistic to
develop everything that is required from scratch
for a software project.

OSS can be used as auxiliary software and
thereby supports the system under development.
In that regard, OSS support in general has been
exemplary. A systematic approach for creating
Web applications has been termed Web engineer-
ing (Ginige & Murugesan, 2001), and OSS has
played a crucial role in advancing this discipline.
Indeed, the author’s experience with the support
of OSS in Web engineering for applications such
as Course Registration System, Distributed Battle
Ship Game, Fine Art Auction System, Patient
Medical Record System, and Student Personal
Information Portal, has in general been quite
encouraging. For example, a project involving a
Web application could use Amaya as the user agent
on the client side and Apache Web Server along
with Apache Tomcat or MySQL/PHP applica-
tion server, as deemed necessary, for a dynamic
delivery of resources on the server side. This can
be supplemented by other software for quality
assurance, including the use of information rep-

resentation language conformance checkers (for
CSS, for HTML or for markup languages based
on XML) and tools for checking Web accessibility
such as A-Prompt.

One of the obstacles faced in the use of OSS
as a subsystem is that due to security consider-
ations, certain educational institutions do not
allow arbitrary installations of network software
by students. In cases in which they do, system
administrators may consider it beyond their do-
mains of responsibility and may not be willing to
provide any technical support whatsoever.

Open Source Software for Reuse

This approach to OSS in software engineering
advocates reuse portions of OSS code in assign-
ments or as part of the system under develop-
ment as for the course project. Examples include
OSS libraries or frameworks. It ameliorates the
tedium of writing the entire code from scratch,
particularly for routine primitive functions such
as creating a menu bar, fi nding the inverse of a
matrix, or drawing an ellipse.

However, students treating reused code as a
black box without really understanding the inter-
nals, the degree to which reuse should be allowed,
and appropriate acknowledgement are some of the
issues that remain a challenge. There is also the
issue of evaluating work based on reuse, particu-
larly when it has to be balanced against originality.
For example, if the usability of software A (40%
original, 60% reuse) is deemed much better than
software B (60% original, 40% reuse), should A
be graded higher than B if it is known that it was
the reuse in A that made the difference? Similarly,
should a team be penalized for choosing a software
library that they did not know at the time of use
had subtle fl oating-point errors that only became
explicit in specifi c use cases?

We note here that reuse is neither truly free
nor automatic. Efforts of reuse that are not an in-
tegral part of planning at the outset of a software
project can be detrimental to productivity and

698

A Perspective on Software Engineering Education with Open Source Software

maintainability. Also, according to the COCOMO
II cost estimation model (Boehm et al., 2001), it
comes at a price of learning and adapting to new
situations.

Guidelines for Open Source
Software in Software
Engineering Education

Based on the previous discussion and our experi-
ence, we present the following broadly classifi ed
guidelines for the use of OSS in SEE:

• OSS use planning: Educators planning to
adopt OSS could look into the usefulness
of it for future careers of students since, for
example, some OSS for the same domains
are more broadly used in industry than oth-
ers; check the history of the OSS and see if
the evolution has been stable; verify claims
particularly related to quality, if any, and
look into the amount of testing; check the
availability of any nontrivial (representative)
examples and how well they work; check
whether the OSS is suffi ciently documented
before recommending its use; and go through
the licensing conditions. Indeed, close col-
laboration with systems administrators

of the corresponding departments can be
quite useful in such decision-making. An
incremental approach starting from a mini-
mal and well-defi ned list of OSS is highly
recommended.

• OSS reuse: Educators should set criteria
for the degree for reuse of OSS and make
it known to students. Students could be
asked to formally declare any OSS code
reuse and a precise articulation for doing
so. Given more than one option for the use
of an OSS as a subsystem, students could
be asked how and why they chose one over
the other. Possible criteria for choice of a
subsystem could be availability, ease of
installation, interoperability with the system
being built, portability, and past experience.
Finally, in order to minimize reuse of OSS
without refl ection, students could also be
questioned to refl ect understanding of any
reused code.

• OSS in perspective: Outlining the benefi ts
as well as pitfalls/shortcomings to students
can be useful in placing the scope of OSS
into context. In Tables 2 and 3, we summa-
rize some of the trade-offs that could help
in decision-making toward the use of OSS
in SEE contexts.

General/Administrative

• The possibility for educational institutions to be able to make available a broad collection
of software without incurring heavy costs as well as be able to provide OSS utilities for
which there are no commercial parallels.

• The fl exibility of trying out different OSSs and examining them at any level of desirable
detail prior to making a commitment.

Teaching/Learning

• The opportunity for both teachers and students to experiment (e.g., with source code
internals) more freely, which is in agreement with the spirit of teaching and learning.

• The prospect for students to develop their own personal collection of tools specialized for
various tasks (modelers, compilers, debuggers, etc.) in a software project within minimal
cost.

• The opportunity for students to contribute to an existing OSS in various directions (e.g.,
reengineering, reverse engineering, discovery of software design patterns, or extensions
via implementation of further modules).

• The opportunity for students to participate in the development of an OSS for their own
software projects.

Table 2. Advantages of the use of OSS in SEE

 699

A Perspective on Software Engineering Education with Open Source Software

FUTURE TRENDS

Among the possible domains that OSS addresses
(Nakakoji & Yamamoto, 2001), it would be of
interest to examine the ones more congruent to
software engineering. OSS has already had a major
impact on Web applications and Web services,
but their broad use in real-time and embedded
systems is yet to be seen.

Taking into consideration the human factor
is important to both teaching and learning. In
feedback to the author over the years, students
fi nd it important that the subject being commu-
nicated is fun to learn, and OSS can provide that
avenue (Luthiger, 2005). Computer games offer
a variety of technical challenges related to user
interface/interaction design and incorporation
of 3D graphics. They can also introduce many
of the software metaphors (Boyd, 1999) without
resorting to unnecessary terminology. Introducing
such games as part of software projects (Rucker,
2002) and the use of OSS libraries to realize that
would be of interest.

Among the open source possibilities, this
chapter focuses mostly on OSS; a natural exten-
sion of this work would be to look into the use
of open content (excluding source code) in soft-

ware engineering. The aim of open content is to
facilitate the prolifi c creation of freely available,
high-quality, well-maintained content (not includ-
ing software). The signifi cance of open content
for education in general has been highlighted in
Attwell (2005). The continually increasing price
of textbooks, none of which may be suitable as-
is to a given course, is one motivation for open
content in SEE.

To that regard, there are a few promising
initiatives on the horizon. The Open Sources
Education (Tadeusz & Ostrowska, 2006) is a
platform for e-learning that has been applied to
management courses in universities in Poland,
and adaptation of its didactic and communica-
tive aspects to SEE would be of interest. The
MIT OpenCourseWare and Rice Connexions
are two commonly cited examples of institution-
initiated efforts of making course content open
to the public-at-large. The participation of other
institutions will enable a wide range of choices
and will be crucial for the success of open-course
content. The Directory of Open Access Journals
(DOAJ) is an Internet-based service that covers
free, full-text, quality-controlled scientifi c and
scholarly journals in various disciplines, includ-
ing those related to software engineering, and in

Project • Usually, the absence of precise estimates of schedules and details of other aspects that provide the
overall picture of the software project plan.

Process

• The traditional OSS process model does not explicitly support any customer involvement in its
phases, an aspect that is important for today’s interactive systems.

• Little or no evidence of early modeling of software that could be used as inspiration for similar
domain contexts.

• Minimal trace between phases of a process and that from phases to process artifacts.

• Sporadic rationale for design decisions, including the use of algorithms and data structures, which
led to implementation.

• It can be diffi cult to make objective assessments of software projects that make broad reuse of
open source code.

• In many cases, there are no explicit guarantees for technical support when needed or at all.

• The use of OSS, particularly those whose breadth of testing is not known, in safety-critical
contexts.

Table 3. Disadvantages of the use of OSS in SEE

700

A Perspective on Software Engineering Education with Open Source Software

various natural languages. Such services could
help level the playing fi eld and open new vistas in
research-oriented higher educational contexts in
the software engineering discipline, particularly
where affordability is an issue.

CONCLUSION

Today, OSS has reached the level of maturity that
it could be embraced as well as criticized, but not
ignored. If the predictions of software business
models (Cusumano, 2004; Feller et al., 2005) are
correct, OSS and non-OSS will continue to co-ex-
ist. Both OSS and non-OSS have their own share
of strengths and weaknesses, are most likely to
co-exist, and any approach to software develop-
ment should take them into consideration. There is
much that software engineering and commercial
OSSD can learn from each other (Asundi, 2001),
and indeed, recent industrial support of OSS ef-
forts has led to mutual benefi ts.

If one of the goals of SEE is to prepare stu-
dents for their future careers, we must look at
OSS objectively. OSS has much to offer SEE;
however, the transition from one to the other is
hardly straightforward. However, the adoption of
OSS in education need not be seen with skepticism
but rather with cautious optimism.

In conclusion, OSS is bringing about change
in the way software is being developed and used.
To embrace this change requires a refl ection and
reexamination of the current state of the curricu-
lum. For that to come to realization, the current
software engineering culture (Wiegers, 1996) in
educational institutions will need to evolve.

ACKNOWLEDGMENT

The author would like to thank CUPFA (Concordia
University, Montreal, Canada) for its support via
a professional development grant and the anony-

mous reviewers for their detailed feedback and
suggestions for improvement.

REFERENCES

Alagar, V. S., & Periyasamy, K. (1998). Specifi ca-
tion of software systems. Springer-Verlag.

Asklund, U., & Bendix, L. (2001). Confi guration
management for open source software. Paper
presented at the First Workshop on Open Source
Software Engineering, Toronto, Canada.

Asundi, J. (2001). Software engineering lessons
from open source projects. Paper presented at
the First Workshop on Open Source Software
Engineering, Toronto, Canada.

Attwell, G. (2005). What is the signifi cance of
open source software for the education and
training community? Paper presented at The
First International Conference on Open Source
Systems (OSS 2005), Genova, Italy.

Beck, K., & Andres, C. (2005). Extreme pro-
gramming explained: Embrace change (2nd ed.).
Addison-Wesley.

Beydeda, S., Book, M., & Gruhn, V. (2005).
Model-driven software development. Springer-
Verlag.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S,
Clark, B. K, Horowitz, E., et al. (2001). Software
cost estimation with COCOMO II. Prentice Hall.

Booch, G., Jacobson, I., & Rumbaugh, J. (2005).
The unifi ed modeling language reference manual
(2nd ed.). Addison-Wesley.

Boyd, N. S. (1999). Using natural language in
software development. Journal of Object-Ori-
ented Programming, 11(9), 45-55.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software devel-
opment. First Monday, 10(2).

 701

A Perspective on Software Engineering Education with Open Source Software

Cusumano, M. A. (2004). Refl ections on free
and open software. Communications of the ACM,
47(10), 25-27.

Feller, J., Fitzgerald, B., Hissam, S. A., & Lakhani,
K. R. (2005). Perspectives on free and open source
software. MIT Press.

Fenton, N. E., & Pfl eeger, S. L. (1997). Software
metrics: A rigorous & practical approach. Inter-
national Thomson Computer Press.

Fowler, M., Beck, K., Brant, J., Opdyke, W., &
Roberts, D. (1999). Refactoring: Improving the
design of existing code. Addison-Wesley.

Gacek, C., & Arief, B. (2004). The many meanings
of open source. IEEE Software, 21(1), 34-40.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003).
Fundamentals of software engineering (2nd ed.)
Prentice-Hall.

Ginige, A., & Murugesan, S. (2001). Web en-
gineering: An introduction. IEEE Multimedia,
8(1), 14-18.

Glass, R. L. (2003). Facts and fallacies of software
engineering. Addison Wesley.

González-Barahona, J. M., Heras-Quirós, P. D.
L., Centeno-González, J., Matellán-Olivera, &
Ballesteros-Cámara, F. (2000). Libre software
for computer science classes. IEEE Software,
17(3), 76-79.

Halloran, T. J., & Scherlis, W. L. (2002). High
quality and open source software practices. Paper
presented at the Second Workshop on Open Source
Software Engineering, Orlando, Florida.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unifi ed software development process. Ad-
dison-Wesley.

Kamthan, P. (2004). A framework for addressing
the quality of UML artifacts. Studies in Com-
munication Sciences, 4(2), 85-114.

Kamthan, P. (2006). Open source software in
software engineering education: No free lunch.
Paper presented at the The 2006 Canadian Univer-
sity Software Engineering Conference (CUSEC
2006), Montreal, Canada.

Liu, C. (2003). Adopting open source software
engineering in computer science education.
Paper presented at the The Third Workshop on
Open Source Software Engineering, Portland,
Oregon.

Luthiger, B. (2005). Fun and software develop-
ment. Paper presented at the The First International
Conference on Open Source Systems (OSS 2005),
Genova, Italy.

Michlmayr, M., Hunt, F., & Probert, D. R. (2005).
Quality practices and problems in free software
projects. Paper presented at the The First Inter-
national Conference on Open Source Systems
(OSS 2005), Genova, Italy.

Nakakoji, K., & Yamamoto, Y. (2001). Taxonomy
of open source software development. Paper
presented at the First Workshop on Open Source
Software Engineering, Toronto, Canada.

Nishinaka, Y. (2001). Open source software devel-
opments in XP style. Paper presented at the First
Workshop on Open Source Software Engineering,
Toronto, Canada.

Paulk, M. C., Weber, C. V., Curtis, B., & Chris-
sis, M. B. (1995). The capability maturity model:
Guidelines for improving the software process.
Sebastopol, CA: Addison-Wesley.

Perens, B. (1999). The open source defi nition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
O’Reilly & Associates.

Raymond, E. S. (1999). The cathedral & the ba-
zaar. Sebastopol, CA: O’Reilly & Associates.

Rucker, R. (2002). Software engineering and
computer games. Addison-Wesley.

702

A Perspective on Software Engineering Education with Open Source Software

Qureshi, S. (2001). How practical is a code of eth-
ics for software engineers interested in quality?
Software Quality Journal, 9(3), 153-159.

Schmidt, D. C., & Porter, A. (2001). Leveraging
open source communities to improve the quality
and performance of open source software. Paper
presented at the First Workshop on Open Source
Software Engineering, Toronto, Canada.

Schneidewind, N. F., & Fenton, N. E. (1996). Do
standards improve product quality? IEEE Soft-
ware, 13(1), 22-24.

Seidel, W., & Niedermeier, C. (2003). Open
source software: Leveraging software quality
in the industrial context. Paper presented at the
First Workshop on Open Source Software in an
Industrial Environment (OSSIE 2003), Erfurt,
Germany.

Spinellis, D., & Szyperski, C. (2004). How is open
source affecting software development? IEEE
Software, 21(1), 28-33.

Tadeusz, K., & Ostrowska, T. (2006). The open
sources education: A real time education. Paper
presented at the The 17th Annual Information
Resources Management Association International
Conference (IRMA 2006), Washington, DC.

Thomas, D., & Hunt, A. (2004). Open source
ecosystems. IEEE Software, 21(4), 89-91.

Vixie, P. (1999). Software engineering. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
Sebastopol, CA: O’Reilly & Associates.

Wiegers, K. (1996). Creating a software engineer-
ing culture. New York: Dorset House,

KEY TERMS

 Agile Development: A philosophy that
embraces uncertainty, encourages team com-
munication, values customer satisfaction, vies
for early delivery, and promotes sustainable
development.

 Coding Standard: A documented agreement
that addresses the use of a formal (such as markup
or programming) language.

 Domain Model: A simplifi ed abstraction
from a certain viewpoint of an area of software
interest.

 Formal Specifi cation: A software representa-
tion with well-defi ned syntax and semantics that
is usually used to express software requirements
or detailed software design.

 Pair Programming: A practice that involves
two people such that one person (the primary
person or the pilot) works on the artifact while
the other (the secondary person or the copilot)
provides support in decision-making and provides
input and critical feedback on all aspects of the
artifact as it evolves.

 Quality: The totality of features and charac-
teristics of a product or a service that bear on its
ability to satisfy stated or implied needs.

 Software Engineering: A discipline that
advocates a systematic approach of developing
high-quality software on a large scale while tak-
ing into account the factors of sustainability and
longevity as well as organizational constraints of
time and resources.

 Software Pattern: A reusable entity repre-
senting knowledge and experience aggregated
by an expert in solving a recurring problem in
a domain.

 703

About the Contributors

Kirk St.Amant, PhD, is an assistant professor of technical communication and rhetoric at Texas
Tech University, USA. He has a background in anthropology, international government, and technical
communication and rhetoric, and his research focuses on intercultural communication—particularly in
relation to online media and outsourcing relationships. He has taught face-to-face and online courses in
intercultural communication, rhetoric, and technical communication for Texas Tech University, James
Madison University, Mercer University, and the University of Minnesota. He has also taught courses
in international business, e-commerce, and distance/online education for the USAID-sponsored Con-
sortium for the Enhancement of Ukrainian Management Education (CEUME) and the Kyiv Mohyla
Business School.

Brian Still, PhD, is an assistant professor teaching technical communication at Texas Tech Univer-
sity, USA. He has more than a decade of experience in information technology, including work as an
application developer and Internet services manager.

* * *

Ray Agostinelli is founder and president of Kaivo Software, Inc., a consulting fi rm based in Boulder,
CO, USA that specializes in open source software development. His interest in non-proprietary technolo-
gies dates to the mid 1980s when he served as a UNIX trainer and development manager for corporate
IT and sales personnel. Before founding Kaivo in 1999, he held executive management positions in
several technology companies serving both corporate and nonprofi t clients. Ray is a 1985 graduate of
Dartmouth College with degrees in physics and philosophy.

Noor Al-Nahas graduated with an MIS from the American University of Sharjah (AUS) in the UAE.
She is currently completing her MBA at AUS. Her research interests are in e-business strategy formu-
lation, knowledge management, and open source software. She has published in the SAM Advanced
Management Journal, the Proceedings of the Information Resource Management Association, and the
Proceedings of the 8th BIS Conference.

Reuven Aviv is an associate professor in the Department of Computer Science in Tel Hai Academic
College, Israel and previously served as the chairperson of the department. He is also on the academic
staff of the Open University of Israel and a member of Chais Research Center. He holds a PhD degree in
mathematical physics from Tel Aviv University. He specializes in complex network analysis—computer

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

704

About the Contributors

communication networks, security, and asynchronous learning networks, and he has published numerous
papers and given conference presentations on this topic. He and his colleagues were recently awarded
grants from Sloan Foundation and the Israel Science Foundation to pursue their research in this area.

Brian D. Ballentine is an assistant professor and the professional writing and editing coordinator
for the English Department at West Virginia University, USA. He holds degrees from John Carroll
University, the University of Rochester, and Case Western Reserve University. Before joining the Eng-
lish Department, he was a senior software engineer for Philips Medical Systems, where he designed
user interfaces for Web-based radiology applications and specialized in human-computer interaction.
Among other projects, he is currently researching and writing a textbook, Technical Communication
for Engineers, due out next year.

James Baroody is a distinguished lecturer and chair of the Decision Sciences and MIS Depart-
ment in the E. Philip Saunders College of Business at RIT, USA. He holds a BS from the University of
Richmond, an MS from the College of William and Mary, and a PhD from the University of Wisconsin-
Madison. Dr. Baroody has worked extensively as a software and systems architect, software developer,
and project manager in government, education, and industry. His most frequent role has been unifying
business requirements with technology selection and system architecture. His research interests include
information systems strategy, enterprise information systems, and service-oriented architectures.

Beatrice A. Boateng is an instructional technologist who recently completed her PhD at Ohio Uni-
versity, USA. She has interests in the use of instructional technology in the development and delivery
of online (distance education) courses and free open source software as alternatives to proprietary
software.

Kwasi Boateng is an assistant professor of new media at the School of Mass Communication at the
University of Arkansas at Little Rock, USA. He has interests in online/Web journalism, media policy,
and regulation and free/open source software.

Andrea Bosin is a researcher in the Mathematics and Computer Science Department, University
of Cagliari, Italy. His research interests include data mining and knowledge discovery, distributed and
service-oriented architectures, and grid computing.

Vanessa P. Braganholo is a professor in the Department of Computer Science at the Mathematics
Institute, Federal University of Rio de Janeiro, Brazil. She has received the Doctor of Science degree
from Federal University of Rio Grande do Sul in 2004. She has several publications in the database area.
She has participated as a member of program committees, on conference organization committees, and
as a reviewer of journals. She is a member of the Brazilian Computer Society. Her research interests are
on semi-structured data and query processing.

Daniel Brink graduated from the University of Cape Town, South Africa, with an Bachelor of
Commerce (Honors) degree in information system in 2005. He is currently an entrepreneur and avid
supporter of the open source movement, having co-written a number of articles to promote the use of
open source software.

 705

About the Contributors

Ralf Carbon is a researcher at the Fraunhofer IESE, Germany. His work focuses on agility in prod-
uct-line engineering and service-oriented computing. He is involved in open source evaluation projects
together with the University of Kaiserslautern since 2002. Before joining Fraunhofer IESE in 2005, he
received a diploma in computer science from the University of Kaiserslautern and worked with their
Software Engineering Research Group.

Marcus Ciolkowski is a researcher and project manager at Fraunhofer IESE, Germany, and at the
University of Kaiserslautern, Germany. He received an MS in computer science from the University
of Kaiserslautern. His research interests include empirical methods for software engineering and qual-
ity management. He has been involved in teaching open source courses since 2001 and has organized
several international workshops on empirical software engineering.

Stefano Comino is lecturer in economics at the Department of Economics of Trento. His main fi elds
of interest are industrial organization, innovation, software markets, regulation, and contract theory.

Megan Conklin is an assistant professor in the Department of Computing Sciences at Elon Univer-
sity, USA. Her primary research focus is on data mining and large database systems, particularly for
software engineering data. She has a PhD in computer science from Nova Southeastern University.

Robert Cunningham is an associate lecturer at the School of Law & Justice, Southern Cross Uni-
versity, Australia. He has scholarly publications relating to a broad range of subject matter including
sustainability, biotechnology and agriculture, and international trade. He occasionally contributes to
legal information, advocacy, and education at the Northern Rivers Community Legal Centre in his
capacity as solicitor.

Francesca da Rimini is a practising artist, video maker, writer, and occasional curator. After co-
managing two major research and publishing projects documenting creative applications of new tech-
nologies, she became the founding executive offi cer of the Australian Network for Art and Technology
in 1989. A member of the art collectives VNS Matrix (1991-1997) and identity_runners (1999-2006), she
has helped create distinctive media art and Internet projects. In 1999 she received a prestigious Australia
Council New Media Fellowship. Currently, she is a PhD candidate at the University of Technology,
Sydney, Australia, where she researches social software, cultural activism, and the digital commons.

Bruno de Vuyst is a graduate of Antwerp and Columbia law schools and is an associate professor
at Vesalius College, Vrije Universiteit Brussel (VUB); Advisor Industrial Policy, VUB; and secretary-
general, Brussels I³ Fund (the incubation and spin-off fund of the VUB) and a director of VUB spin-offs;
he is an elected representative of the Brussels Bar at the General Assembly of the Flemish Bars (OVB).
He is on the board of editors of Intellectuele Rechten – Droits Intellectuels and Ad Rem, the member
publication of OVB. He is on counsel at Lawfort Brussels, specializing in intellectual protection law.

Nicoletta Dessì is a professor of database systems and director of the Mathematics and Computer
Science Department, University of Cagliari, Italy. Her major fi elds of study and research are distributed
and service-oriented architectures, data mining and knowledge discovery, and e-learning.

706

About the Contributors

Jacobus Andries (Jaco) du Preez currently calls Centurion in South Africa home. He holds a master’s
degree in information technology (MIT) at the University of Pretoria in South Africa. For the last three
years he has been the technical director of an open source consulting company called Yocto Linux &
OSS Business Solutions. His speciality areas are the use of open source software in the enterprise,
enterprise architecture, business process management, and service-oriented architecture.

Alfreda Dudley-Sponaugle is a lecturer in the Department of Computer and Information Sciences
at Towson University, USA. She currently teaches the computer ethics courses in the curriculum. Her
research focus is technology, ethics, and culture. Her interests include information technology, systems
analysis, management information systems, databases, and computer science education. Professor
Dudley-Sponaugle’s recent publications involved Web accessibility, ethics, and diversity issues in in-
formation technology. She is advisor to the National Society of Black Engineers chapter at Towson.

Zippy Erlich is senior lecturer in the faculty of the Computer Science Department at the Open Uni-
versity of Israel, and she served as the head of the department for four years. She has developed curricula
for undergraduate and graduate programs of study in computer science. She received her BSc degree in
mathematics and statistics, MSc in applied mathematics (both from Tel-Aviv University), and PhD in
Computer science from the University of California, Los-Angeles. Before joining the Open University,
she headed the Data Processing Department of the Israeli Navy Computer Center. Her research interests
include measurement of information systems success, data mining, social networks, computer systems
security, and e-learning.

Theodoros Evdoridis received a 5-year BEng (2003) in information and communication systems
engineering and a MSc in information and communication systems security—from the University of
the Aegean. He is currently a laboratory tutor and a doctoral student at the same university. His main
research interests are information and database systems security.

Alea Fairchild is an associate professor of management and computer science at Vesalius College,
as well as faculty in the Economics Department of Vrije Universiteit Brussel, Belgium. Her technical
expertise lies in open architectures and interoperability. Her recent areas of research have included
knowledge management and productivity metrics for technology. Dr. Fairchild received her doctorate
in applied economics from Limburgs Universitair Centrum (now Universiteit Hasselt) in Belgium, in
the area of banking and technology.

Laurence Favier is an associate professor in information and communication sciences at the Uni-
versity of Bourgogne (Dijon), France. He is a member of the research laboratory CRIS of the University
of Paris X (Nanterre) and a member of Centre Georges Chevrier in the Human Sciences Home (Maison
des Sciences de l’Homme) of Dijon. His research interests focus on e-government, e-governance, and
knowledge management. He is also director of the program PRATSIC (for Research Program on Tech-
nology for Information and Knowledge Society) in Maison des Sciences de l’Homme of Dijon.

Robert Fitzgerald is a research fellow in the Learning Communities Research Area at the University
of Canberra (Australia). His main interests are in the application of information and communication
technologies (ICTs) to learning, collaboration, and problem solving. His current research focuses on

 707

About the Contributors

the so-called Web2.0 technologies, and he leads a project, funded by the Australian Carrick Institute
for Learning and Teaching in Higher Education, on the use of social software to support peer learning.
Robert has held academic positions in Hong Kong and Australia and is a regular reviewer for interna-
tional journals and conferences.

Ingbert R. Floyd is a doctoral student in the Graduate School of Library and Information Science
at the University of Illinois at Urbana-Champaign. His research interests focus around the design of so-
ciotechnical systems, particularly systems which are continuously evolving and thus require continuous
design. In particular, he is interested in developing participatory design methodologies which take the
rich descriptive and observational data from studies in social informatics and socio-technical systems
theory, and utilize their results to inform the design methodology and design process.

Maria Grazia Fugini is a professor at Politecnico di Milano, Italy. Her research interests are in
information system security and development. She is involved in the WS-Diamond and SEEMP UE
Projects on Web-based information systems for e-government

Jochen Gläser received his PhD in sociology of science at the Humboldt-University Berlin in 1990
and completed his habilitation in sociology by the Free University Berlin in 2005. He is currently a
Fellow at the Research School of Social Sciences of the Australian National University, Australia. His
major research interests are the sociology of science, sociological theory, economic sociology, and
qualitative methodology.

Alexander Hars (alexander.hars@inventivio.com) is founder and CEO of Inventivio, Germany, an
innovative software company specializing in Java-based knowledge applications. After many years
of research and teaching in information systems in the United States and Europe, Alexander Hars
has founded a software company to bridge the gap between theory and practice and turn innovative
ideas into marketable software products. Dr. Hars obtained a PhD degree and the habilitation degree
(German tenure) from the University of the Saarland. He taught for several years at the University of
Southern California. He has published two books on knowledge management and reference models for
information systems. He has published several articles on the open source phenomenon. His research
interests are knowledge management, applications of speech technology, and applications of speech
technology.

Jens Heidrich received the BS degree (Vordiplom) and the MS degree (Diplom) in computer science
with a minor in mathematics from the University of Kaiserslautern, Germany. Since July 2001, he is
a researcher at the Software Engineering Research Group (AGSE) at the University of Kaiserslautern,
Germany. His current research interests include software project management, software development
methodologies, quantitative analysis and evaluation of software development processes and products.

Nina Helander, PhD, is a senior researcher at The Institute of Business Information Management,
Tampere University of Technology, Finland. Her research interests are related to software business, in
particular open source software and software components from a managerial point of view. She is es-
pecially interested in studying the relationships between different OSS network actors and the logic of
value creation of these actors. Helander has publications on value creation, business networks, software

708

About the Contributors

component business, and OSS business models. In her doctoral dissertation, Helander studied software
business from value-creating network perspective.

Sungchul Hong is an assistant professor in the Department of Computer and Information Science at
Towson University, Maryland, USA. He received his PhD in management science from the University of
Texas at Dallas. His major research interests are E-Commerce related technologies including automated
algorithms in various markets, XML-related applications, and intelligent computer agent systems.

Jeroen Hoppenbrouwers holds a PhD in information science since 1997 and has worked as a research
engineer at Tilburg University and Vrije Universiteit Brussels, mostly on industrial research projects.
He specialises in language-related information science and systems architecture. His main interests are
on the boundary between language and modelling of both information systems and semantic domains,
often combined in ontology management. As a sidetrack, Jeroen values open source software for many
more reasons than just free beer and tries to integrate professional processes in typical open source
development projects.

Leila Lage Humes is a PhD student at the School of Economics, Business, Administration and Ac-
counting, University of São Paulo (FEA-USP), Brazil, and also the manager of IT staff training programs
at the University’s Central Information Technology Coordination Department. Her previous positions
include working as a network manager and as a support manager at the University of São Paulo.

Juha Järvensivu (MSc 2005) is studying towards a PhD at Tampere University of Technology,
Tampere, Finland. He works as a researcher at the Institute of Software Systems, Tampere University of
Technology. His primary research interests focus on open source software development and program-
ming of graphical user interfaces.

Isabel John is a researcher at the Fraunhofer IESE, Germany. She works in several research and
industrial projects in the context of software product line engineering and open source. Her work fo-
cuses on product line modeling, domain analysis and scoping. She has organized several workshops
in the area of product line engineering and held several talks and tutorials on the topic. She received a
diploma in computer Science from the University of Kaiserslautern.

M. Cameron Jones is a doctoral candidate in the Graduate School of Library and Information Science
at the University of Illinois at Urbana-Champaign, USA. His research interests include human-centered
computing, collaborative systems design, rapid prototyping and evaluation methods, and end-user ap-
propriation and innovation. He is interested in how the widespread availability and use of open-source
software and open-access APIs are impacting information systems design and development practices.
He also researches and teaches approaches to Web programming which explore the creative appropria-
tion, combination, and reuse of Web technologies and content.

Hannu Jungman, MSc (Eng.), is a project manager at Innovation Research Development Tamlink
Ltd. and PhD student at Tampere University of Technology (TUT), Finland. Mr. Jungman’s research
and business interests are in fi nding more effi cient, ownership-based operating models for pushing

 709

About the Contributors

growth-oriented university spin-offs and other ventures to the radar scan of the venture capital industry,
or, in other words, pushing them across the capital gap and the knowledge gap. Before, he worked in
management accounting and consulting of growth-driven companies in Finland and abroad.

Pankaj Kamthan has been teaching in academia and industry for several years. He has also been
a technical editor and participated in standards development. His professional interests and experience
include software quality, markup languages, and knowledge representation.

Sigrid Kelsey is an associate librarian at Louisiana State University Libraries, USA. Her publications
cover topics including Web design and usability, e-mail communication, online teaching, and informa-
tion-seeking behavior. She has taught a graduate course in information technology and is currently
co-editing a book on computer-mediated communication.

Mathias Klang (klang@ituniv.se) is a researcher in legal informatics at the University of Göteborg,
Sweden. His research interests and publications lie primarily in the areas of the law in connection with
topics such as technology, democracy, human rights, free expression, censorship, open access, and eth-
ics. He has published several articles in these topics. He completed his PhD, “Disruptive Technology:
Effects of Technology Regulation on Democracy,” in 2006. In his free time, Mathias is also project lead
for Creative Commons Sweden and a member of the Swedish Team of the Free Software Foundation
Europe.

Tung-Mei Ko has been the project manager of Open Source Software Foundry (OSSF), Institute of
Information Science, Academia Sinica, Taiwan since 2005. Her Research area focuses on the legal topics
about the Free/Open Source Software. She received her Master of Law degree (LLM) from the Institute
of Tax Law, Münster University, Germany in 2002 and her BL degree from Chung Yuan Christian
University, Taiwan. During 2003-2005, she worked in the Science and Technology Law Center (STLC)
of Institute of Information Industry (III) in Taiwan.

Gabor Laszlo currently teaches at Budapest Tech, Hungary and also manages the Information So-
ciety Research and Education Group. He is a PhD candidate at the Budapest University of Technology
and Economics. His research interests focus on open source software and its applications in the public
sector, and also e-learning. He has background in both economics and technology and has been a pre-
senter at numerous scientifi c conferences. He has participated as co-author in publications of working
progress booklets for the Hungarian Information Society and also wrote as co-author a position paper
on strategy-planning document for the National Open Source Strategy in Hungary.

Pierre-Paul Lemyre is a lawyer of the Quebec Bar and is in charge of the conception and develop-
ment of LexUM International Projects. He is highly interested in the challenges that lasting development
poses, as well as in syndication technologies for access to law and in the issues related to free and open
source software.

Diego Liberati is the chief scientist for information for the Control and Biomedical Engineering
with the Electronic, Information and Communication Institute of the Italian National Research Council
at Milano Institute of Technology, Italy.

710

About the Contributors

Kwei-Jay Lin received a PhD in computer science from the University of Maryland, College Park.
He is a professor in the Department of Electrical Engineering and Computer Science at the University of
California, Irvine, USA. His research interests include service-oriented systems, e-commerce, real-time
systems, scheduling theory, and Web-based systems. Dr. Lin is the editor-in-chief of the International
Journal of Service Oriented Computing and Applications (published by Springer), and the editor-in-
chief of the Software Publication Track, Journal of Information Science and Engineering (published by
Academia Sinica, Taiwan). He has been a co-chair of the IEEE Technical Committee on E-Commerce
since 2004.

Yi-Hsuan Lin is the legal lead of Creative Commons Taiwan. She received her Master of Law
degree (LLM) from Southern Methodist University, Dallas, Texas in 2001 and her BL degree from Fu
Jen Catholic University, Taiwan. During 2002-2003, she worked in MediaTek Incorporation of Taiwan,
which is the world’s leading digital media solution provider. She has worked for Institute of Information
Science, Academia Sinica, Taiwan since 2004.

Yu-Wei Lin, Taiwanese, holds a PhD in sociology from the University of York (UK). Her PhD re-
search investigates the heterogeneity and contingency in the free/libre open source software (FLOSS)
social world. Challenging existing writings that depict an idealistic and harmonious hacker culture
dominantly residing in FLOSS communities, Lin seeks to explore the socio-technical dynamics in
FLOSS development and examine the diverse articulations and performances in which hacker culture
and hacker identity are both refl ected and constructed. Lin works as research associate at the ESRC
National Centre of E-Social Science at the University of Manchester, UK.

William Lively received his PhD from Southern Methodist University in Computer Science and
Electrical Engineering. Dr. Lively was a member of the technical staff of the Advanced Scientifi c Com-
puter Group at Texas Instruments. He is a professor of computer science at Texas A&M University, USA
and co-principal investigator of the Shared Software Infrastructure Program. He has been a consultant
to many industrial fi rms and has served as principal investigator and/or co-principal investigator for
numerous projects sponsored by government and industry.

Saku Mäkinen, PhD, is a professor of technology management at the Institute of Industrial Man-
agement, Tampere University of Technology (TUT), Finland. Dr. Mäkinen has been previously with
the Department of Marketing, Faculty of Business Administration, National University of Singapore
(NUS). He received his PhD in technology strategy from TUT, Finland. His research interests include
international business, technology and innovation strategy, and management and industry evolution.
He is the director of Center for Innovation and Technology Research (CITER, http://www.tut.fi /citer)
at TUT.

Fabio M. Manenti is an associate professor in economics at the Department of Economics of Padua.
His main research fi elds are industrial organization, networks and Internet economics, telecommunica-
tions, software markets, regulation, and antitrust and competition policy.

Marta Mattoso is a professor of the Department of Computer Science at the COPPE Institute from
Federal University of Rio de Janeiro since 1994, where she co-leads the Database Research Group. She

 711

About the Contributors

received a doctor’s degree in science from Federal University of Rio de Janeiro. Dr. Mattoso has been
active in the database research community for more than ten years, and her current research interests
include distributed and parallel databases, data management aspects of Web services composition and
genome data management. She is the principal investigator in research projects in those areas, with
fundings from several Brazilian government agencies, including CNPq, CAPES, FINEP and FAPERJ.
She has published over 60 refereed international journal articles and conference papers. She has served
on the program committees of international conferences, and she is a reviewer of several journals. She
is a member of the Brazilian Computer Society, where she is the Society Publication’s director and the
ACM, where she is an editor of the ACM-SIGMOD Digital Symposium Collection.

Joël Mekhantar is a professor of law at University Jules Verne of Picardie (Amiens). He is a member
of CURAPP, Research Center in Law and Sociology in University Jules Verne of Picardie. Previously,
he was an associate professor at University of Burgundy in Dijon (1990-2005). His principal areas of
publishing and teaching are in constitutional law, public fi nance, civil service, e-administration, and
e-democracy (legal and political aspects). He has written Droit politique et constitutionnel, (éd. Eska,
Paris, 1998, p. 732); Finances publiques—Le Budget de l’État, (éd. Hachette, Paris, 2006, p. 160).

Tommi Mikkonen (MSc 1992, Lic. Tech. 1995, Dr. Tech 1999, all from Tampere University of
Technology, Tampere, Finland) works on software engineering related topics at the Institute of Soft-
ware Systems at Tampere U of Technology, Tampere, Finland. Professor Mikkonen’s primary research
interests include open source software development, software architecting, mobile devices program-
ming, and their relations.

Bernardo Miranda is a senior technology developer at World Travel Holdings, an Internet-based
travel agency. He has experience in many technologies, including Java, XML, databases and parallel
processing. He obtained a Master of Science degree in systems and computer engineering at Federal
University of Rio de Janeiro, Brazil in 2006. During the research at the university, he developed an open
source middleware for parallel query processing using commodity databases. He has also participated
as technology developer of the ParGRES project. ParGRES is an open source project with governmental
funding that aims to provide parallel processing capabilities to the PostgreSQL database system.

Andrew Mowbray is a professor of law and information technology at the University of Technol-
ogy, Sydney (UTS), Australia. He is the co-director of the Australasian Legal Information Institute
(AustLII). He has written various pieces of software (including the Sino search engine) and has played
some administrative roles in the law faculty at UTS.

Kathryn Moyle is one of Australia’s leaders on open source software in schools. She lives in Aus-
tralia’s national capital city: Canberra, where she is an associate professor at the University of Canberra
in the School of Education and Community Studies and is the director of the Learning Communities
Research Area. Her primary responsibilities include undertaking research into information and com-
munication technologies (ICT) in K-12 education. Dr. Moyle researches and publishes on a diversity of
topics, focusing on practical educational, social and technical issues in schools. Politicians through to
educational practitioners refer to her work.

712

About the Contributors

Emmanuel Mulo is the webmaster at Uganda Martyrs University and an assistant lecturer in the
Department of Computer Science and Information Systems of Uganda Martyrs University in Uganda.
He provided technical assistance in the migration project. He is specialized in programming and FOSS
tools for Web development. Currently, he is pursuing his MSc in computer science at Delft University
of Technology in The Netherlands.

Dirk Muthig heads the Product Line Architectures Department at the Fraunhofer IESE. He has been
involved in the defi nition, development, and transfer of Fraunhofer’s PuLSE (Product Line Software
Engineering) methodology since 1997. Dirk Muthig teaches product line engineering at the University
of Kaiserslautern and has organized and participated in numerous workshops. He received a diploma
in computer science, as well as a PhD, from the University of Kaiserslautern.

Chris Nelson, is the senior software engineer of the IBM Developer Skills Program. He has over 20
years of software development experience as both a programmer and an architect. He is also the owner
of a small company. As part of the IBM Developer Skills Program, Chris works to increase developer
skills on IBM’s standards-based software through education and university curriculum programs.

Jussi Nissilä is a researcher and project manager at the Department of Information Technology at
University of Turku, Finland. His work includes teaching and research in the areas of software entre-
preneurship and productization. His research interests include business models and strategies in ICT
business, virtual communities and network organizations and ICT in developing economies. He has
published articles in top international conferences as well as in books on business and information
systems.

Alessandro Nuvolari completed his fi rst degree in economics and social sciences at Bocconi
University in Milan (Italy), before obtaining his PhD at the Eindhoven Centre for Innovation Studies
(ECIS). He is currently an assistant professor in economics of science and technology at the Eindhoven
University of Technology, The Netherlands. His research interests include the nature of innovation and
technical change during the British industrial revolution and the relationships between IPR regimes and
the innovative performance of industries.

Casey O’Donnell is a PhD candidate in the Science and Technology Studies Department at Rensselaer
Polytechnic Institute, USA and has performed fi eldwork at game studios over two years. His disserta-
tion, “Playing the New Economy: Video Game Development in India and the United States,” is funded
by an NSF grant. His work examines the diverse forces and activities that shape software development
and makes it tenable in today’s globalized economy. His research questions, “What can the worlds of
software developers teach us about the “new” economy?” and “How do worlds differ across national
and cultural boundaries?” links software development to global processes.

Phillip Olla is an associate professor at the school of business at Madonna University in Michigan
His research interests include knowledge management, space Internet connectivity, mobile telecom-
munication, and health informatics. Over the last decade, in addition to university level teaching, Phillip
has worked as an independent information technology consultant. His experience is primarily in the
Internet and telecommunication and space industry. Olla has worked on a wide variety of pioneering

 713

About the Contributors

projects in conjunction with mobile network operators and mobile service providers including British
Telecom, Hutcinson 3G, T-Mobile, and IBM Global Services. He received his PhD from the Depart-
ment of Information Systems and Computing at Brunel University, UK. He is a member of the editorial
board for the Industrial Management & Data Systems Journal, the book review and software review
editor for the International Journal of Healthcare Information Systems, and a member of the Editorial
Advisory & Review Board for the Journal of Knowledge Management Practice.

Jennifer Papin-Ramcharan is the engineering and physical sciences librarian at the University of
the West Indies – St. Augustine Campus, Trinidad and Tobago. She has several years experience as a
lecturer in electronics, mathematics, physics, and computer science and also as an engineer. She is com-
mitted to user-centered service and the empowerment of individuals by connecting them to information
and its effective use.

Jonathan Peizer has over two decades of experience in strategic planning, development, manage-
ment, and successful execution of projects employing a broad variety of technologies. Peizer is a social
entrepreneur with signifi cant experience working in international, cross-cultural environments in over
75 countries. He has worked for Citicorp, AFS, Cheyenne Software, and the Soros Foundations, and
he is the author of the book The Dynamics of Technology for Social Change (http://technologyforso-
cialchange.org). He currently manages his own consulting fi rm (Internautconsulting.com), a socially
responsible eCommerce Enterprise (Greentealovers.com), and he developed the nonprofi t capacity
resource, Capaciteria.org. He is founder and board chair of the NGO Aspiration.

Barbara Pes is a researcher at the Mathematics and Computer Science Department, University of Ca-
gliari. Her research interests include service-oriented architectures, data mining, and bio-informatics.

Daniel Poulin is professor at the Faculty of Law of the University of Montreal. Professor Poulin
teaches information technologies in the Cyberspace Law Program. He is also director of LexUM, the
foremost laboratory in Canada working on the computerization of law. His current research interests
relate to legal information system design. Systems designed and implemented by LexUM include Can-
LII, Juris International and Portail du droit francophone Web sites.

Mikko Puhakka is researcher of open source business models at Helsinki University of Technology,
Finland. Mikko is a founder of Holtron in 1994. Since Holtron’s establishment Mikko has carried out
numerous advisory assignments to technology companies as well as special assignments to government
on innovation policy as well as on challenges of the information economy. Further he has managed
several venture capital investments including an investment into MySQL, the leading open source da-
tabase company in 2001. Besides the research work, Mikko continues to advise select clients from both
private and public sector. Further, more specifi cally related to open source, Mikko is an advisor in the
initiative for the Finnish Centre for Open Source Software (COSS).

Risto Rajala is a research fellow in information systems science and coordinator of the Business
Networks Research Programme at the Helsinki School of Economics, Finland. He has published several
articles on resources, services, networks and revenue models of software companies in international

714

About the Contributors

refereed publications. His current research activity is focused on the analysis of business models in the
software industry.

Nicolau Reinhard is an associate professor of business administration at the School of Econom-
ics, Business Administration and Accounting of the University of São Paulo, Brazil, a Member of the
University’s Information Technology Steering Committee, and coordinator of the IT Management MBA
Program of FIA (Administration Institute Foundation). Previous activities include positions in academic
and government organizations (technical, management, and governance). He is a member of ACM, AIS,
and the IEEE Computer Society and is an associate editor of the Journal of Global Information Manage-
ment, e-Service Qu@rterly, and a member of the Board of Editors of Information and Management.

Llewellyn Roos is an analyst programmer at Open Box Software in Cape Town. He obtained his
business science honours degree specializing in information systems at the University of Cape Town,
where he focused on the private sector adoption of OSS. He continues to work in the fi eld of enterprise
applications and Web-based technologies.

Alessandro Rossi is lecturer of management at the Department of Management and Computer
Science in Trento, Italy. His main fi elds of interest focus on modularity, software project management,
design of complex artefacts, and free/open source software.

Bruno Rossi received a Laurea (MSc) in economics at the University of Trento, Italy in 2000 and a
Laurea (BSc) in applied computer science from the University of Bozen-Bolzano (Italy) in 2004. From
2000 to 2003, he worked in two different software companies. From 2004 to 2005 he was a research
assistant at the Faculty of Computer Science, and in January 2005 started his PhD program in computer
science under the supervision of Prof. Giancarlo Succi. His research interests include the different
models of software development, the open source model, technology adoption models and software
engineering in general.

Francesco Rullani, after his graduation (2002), has worked as a junior researcher at the Fondazione
ENI Enrico Mattei studying the impact of ICT on fi rms’ location choices. During his Ph.D. at Sant’Anna
School of Advanced Studies, Pisa, Italy, he has been visiting researcher at Stanford University (2004).
Recently, he has been granted a Fondazione IRI scholarship (2006) to spend a year as a post-doc fellow
at Copenhagen Business School. His Ph.D. thesis is focused on open source software, and in particular
on developers’ motivations, and on the organization and sustainability of this model of innovation.

Barbara Russo received her master’s and PhD degrees in mathematics from the University of Trento,
Italy, respectively in 1991 and 1996. Since 1996, she has been a post-doc fellow and research assistant
in mathematics at the University of Trento, Italy. In 2003 she was full time research assistant at the Free
University of Bolzano-Bozen, Italy. She is currently a research associate at the Faculty of Computer
Science of the Free University of Bolzano-Bozen. She is a member of the Center for Applied Software
Engineering of the Free University of Bolzano-Bozen. Her current research interests include statistical
analysis of software metrics, models in software reliability (special focus on open source projects), and
evaluation of agile software methodologies.

 715

About the Contributors

Sofi ane Sahraoui is an associate professor of MIS at the American University of Sharjah in the
UAE. He received his PhD in MIS from the University of Pittsburgh in the USA in 1994. His research
interests are in e-government as a cornerstone of the information society and knowledge economy, open
source software, IT planning, enterprise modeling, and the management of IT change in general. He
has published in leading academic publications such as the Journal of Information Technology Man-
agement, the Journal of End-User Computing, Behaviour & Information Technology, Human Systems
Management, the Journal of Global Information Technology Management, the Journal of Computer
Information Systems, and a variety of other IT publications, both refereed and non-refereed.

Christoph Schlueter Langdon (csl@ebizstrategy.org) co-founded and chairs the Special Interest
Group on Agent-Based Information Systems (SIGABIS, http://www.agentbasedis.org) of the Association
for Information Systems (AIS). He is affi liated with the Center for Telecom Management of the University
of Southern California (USC), USA after having been a full-time professor of USC’s Marshall School of
Business for fi ve years. Prior to joining USC, Langdon was a scientist in the Artifi cial Intelligence Group
of the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-
Champaign. His research is focused on IS capabilities and their implications for business strategy using
next generation analytical tools, such as agent-based modeling and strategic simulation. Results and
insights have appeared in leading publications, including Communications of the ACM, IEEE journals,
and Harvard Business Review. Chris Langdon has also been an advisor to Global Fortune 500 companies
and governments on digital interactive channel development and business intelligence analytics, fi rst as
a consultant with Accenture (formerly Andersen Consulting), and then with Pacifi c Coast Research Inc.,
a boutique management advisory fi rm. Recent clients include DaimlerChrysler, Deutsche Telekom and
Nissan. He has been educated at the Darmstadt University of Technology, Germany, and University of
Illinois at Urbana-Champaign and received graduate degrees in Engineering and Finance & Business
Economics, and a PhD degree in economics, all summa cum laude.

Marko Seppänen is a senior researcher and holds MSc in industrial engineering and management.
Presently, he works for the Center for Innovation and Technology Research (CITER, http://www.tut.
fi /citer) at Tampere University of Technology, Finland. He has several years of experience in research
and teaching in the areas of technology management, management accounting and project management
and has published actively on these topics.

Dick B. Simmons received his PhD in computer and information sciences from the University of
Pennsylvania, USA. He served as an offi cer in the U.S. Army Signal Corps, worked as a design engineer
for Radio Corporation of America, and as a technical supervisor at Bell Telephone Laboratories. He
is a fellow of the IEEE. He currently is a professor of computer science at Texas A&M University and
co-principal investigator and director of the Shared Software Infrastructure Program. He has served as
principal investigator and/or co-principal investigator for over 38 Pprojects sponsored by government
and industry.

Darren Skidmore has over 15 years experience in the ICT industry, including over six years as an
academic at the University of Melbourne. He has conducted and presented research on free/libre and open
source software at international, academic, and industry conferences. Research areas include jurispru-
dence, fi duciary usage, business value, and history of ICT. He holds an honours degree in information

716

About the Contributors

systems, a Master of Commercial Law degree, and a graduate diploma in cross cultural communication
from the University of Melbourne, with a graduate diploma in applied fi nance and investment with
FINSIA. He is currently completing a PhD in evaluation of software and software environments with
Monash University, looking at issues such as the metrics used, the effects of architecture, best-practice
frameworks, total cost of ownership, and risk. The research will also look at the understanding of the
limitations of the evaluation process and the effects of reaction to favorable and adverse events on the
process.

Marcus Vinicius Brandão Soares holds an MSc degree in computing and systems engineering from
COPPE/UFRJ, Rio de Janeiro, Brazil. He is a member of the NECSO Science and Technology Studies
research group at UFRJ (www.necso.ufrj.br), the Brazilian Institute for Electronic Law (www.ibde.
org.br), and the Foundation for Free Information Infrastructures (www.ffi i.org). He presented lectures
in many universities in Brazil (UNIRIO, PUC-Rio, COPPE-UFRJ), France (École de Mines de Paris),
and the USA (University of Maryland). His interests include new institutional economics, intellectual
property rights, and actor-network theory. He can be found at oares@marcusvinicius.eti.br.

David J. Solomon is an associate professor in the Department of Medicine and the Offi ce of Medi-
cal Education Research and Development at Michigan State University, USA. He is editor and founder
of Medical Education Online (http://www.med-ed-online.org) an open access electronic journal that
has been covering all aspects of health professions education since 1996. He has a PhD in educational
psychology and works mainly in the area of program evaluation and performance assessment. His other
major scholarly interest is the communication of research.

Frank Soodeen has been a librarian for sixteen years. For most of this period he was responsible
for the development and management of the national standards information centre in Trinidad and
Tobago. For the past six years he has been working as a systems librarian at The University of the
West Indies – St. Augustine Campus, Trinidad and Tobago, where his focus has been on Web and mul-
timedia development, digital library initiatives, and online course delivery. He now manages the UWI
Libraries Systems Unit.

Wouter Stam is a doctoral candidate in strategy and entrepreneurship at the Vrije Universiteit Am-
sterdam, The Netherlands. He was also a visiting scholar at the Wharton School of the University
of Pennsylvania. His current research interests include the antecedents and consequences of social
networks, entrepreneurship, innovation, and the emergence of OSS fi rms. His dissertation is fi nanced
by a grant received from the Netherlands Organization for Scientifi c Research (NWO) and focuses on
how internal resources and external social networks interactively shape the innovative and fi nancial
performance of OSS fi rms.

R. Todd Stephens is the director of the Collaboration and Online Services Group for the BellSouth
Corporation, an Atlanta-based telecommunications organization. Todd is responsible for setting the
corporate strategy and architecture for the development and implementation of the enterprise collab-
orative and metadata solutions. Todd writes a monthly online column in Data Management Review
and has delivered keynotes, tutorials, and educational sessions for a wide variety of professional and
academic conferences around the world. Todd holds degrees in mathematics and computer science from

 717

About the Contributors

Columbus State University, an MBA degree from Georgia State University, and a PhD in information
systems from Nova Southeastern University.

Giancarlo Succi received a Laurea degree in electrical engineering (Genova, 1988), an MSc in
computer science (SUNY Buffalo, 1991), and a PhD degree in computer and electrical engineering
(Genova, 1993). He is a tenured professor at the Free University of Bolzano-Bozen, Italy, where he
directs the Center for Applied Software Engineering. He has been a principal investigator for projects
amounting more than 5 million dollars in cash and, overall, he has received more than 10 million dol-
lars in research support from private and public granting bodies. Dr. Succi is a Fulbright Scholar and a
member of the IEEE Computer Society.

Rania Suleiman is a graduate of MIS from the American University of Sharjah (AUS) in the UAE.
Her research interests are in knowledge management and open source software. She has published in
the Proceedings of the 8th BIS Conference.

Marie-Noëlle Terrasse is an associate professor in computer science at the University of Burgundy,
(Dijon) France and a member of the research laboratory LE2I. Her research interests include UML-based
metamodeling and its application to domain related frameworks (e.g., e-government frameworks), and
her enterprise-directed applications include Web site modeling and open source-based developments.
She has participated in various program comittees and conference organizing comittees (e.g., Libre
Software Meeting in 2005) and is a poject leader for Apogee (a university application for the manage-
ment of students).

Thomas Tribunella earned his PhD at the State University of New York at Albany, his MBA at the
Rochester Institute of Technology, and his BBA at Niagara University, and he is a certifi ed public ac-
countant. He has been teaching, writing, and consulting for over 20 years. Dr. Tribunella has published
over 35 journal articles, case studies, book chapters, and conference proceedings and has also won four
best-paper awards for his research.

Michael B. Twidale is an associate professor in the Graduate School of Library and Information
Science at the University of Illinois at Urbana-Champaign, USA. His research interests include the us-
ability of open-source software, and how open-source models can be applied to participatory usability
and data quality management. Dr. Twidale is interested in the development of novel information tech-
nologies through rapid prototyping and evaluation methods, and how end users collaboratively learn
and appropriate technologies to develop creative new uses. He also researches and teaches on human-
computer interaction, CSCW, information systems design, and the collaborative aspects of data-quality
management.

Theodoros Tzouramanis received his 5-year BEng (1996) in electrical and computer engineering
and his PhD (2002) in informatics from the Aristotle University of Thessaloniki. Currently, he is lec-
turer at the Department of Information and Communication Systems Engineering of the University of
the Aegean, Greece. His research interests include access methods and query processing for databases;
database security and privacy; and geographical information systems.

718

About the Contributors

Joseph E. Urban received his PhD from the University of Louisiana at Lafayette. He worked at
the University of Miami, the University of Southwestern Louisiana, and part-time at the University of
South Carolina, while with the U.S. Army Signal Center before joining Arizona State University. He
is currently a professor of computer science and engineering and directs the Inclusive Learning Com-
munities program. Urban leads the Software Process, Environment and Automation Research Group.
He is currently on leave to the National Science Foundation. He has authored more than 90 technical
papers and has supervised the development of seven software specifi cation languages.

Tere Vadén, is an assistant professor of philosophy and hypermedia at the University of Tampere,
Finland and the University of Skövde, Sweden. He has published articles on the philosophy of language
and art, and theories of information society. He is currently directing the Open Source Research Group
at the Hypermedia laboratory in the University of Tampere.

Niklas Vainio is a researcher at the Hypermedia laboratory in University of Tampere, Finland, in
its Open Source Research Group. He is interested in philosophical issues related to copyright, infor-
mation society, and free/open source software communities. He has a background both in philosophy
and software development and has previously published on free software philosophy and open source
community structures.

Jean-Paul Van Belle is an associate professor in information systems at the University of Cape Town,
South Africa. Before joining UCT, he set up the Information Systems Department at the University of
the Western Cape. He obtained his MBA in the fi eld of fi nancial modelling and his doctorate in the fi eld
of enterprise modelling. Currently he is researching various aspects of e-commerce and m-commerce
and supervises a number of doctoral and masters students in this area. He is a family man with three
children and a keen outdoors person.

Karin van den Berg, MSc, is a recent graduate of Tilburg University, The Netherlands, in the fi eld
of information science and has written her master’s thesis on the subject of open source software evalu-
ation. Currently, Ms. van den Berg works full time as a freelance programmer specializing in the Web
scripting languages of PHP in The Netherlands.

Victor van Reijswoud is a professor of information systems in the Department of Computer Sci-
ence and Information Systems, Uganda Martyrs University in Uganda and the architect of the FOSS
migration presented in this chapter. He is also chairman of the East African Center of Open Source
Software based in Uganda. Before moving to Uganda, he was engaged in research and lecturing at
several universities in Europe, Africa, and the USA.

Ruben van Wendel de Joode is an assistant professor in the School of Technology, Policy and Man-
agement, Delft University of Technology, The Netherlands. His research focuses on OSS communities.
He has published his work in journals like IBM Systems Journal, Computer Standards and Interfaces,
Knowledge, Technology and Policy, and Electronic Markets. His research on OSS communities has been
fi nanced by two grants received from the Netherlands Organization for Scientifi c Research (NWO). He
is also the lead author of the book Protecting the Virtual Commons: Self-Organizing Open Source and
Free Software Communities and Innovative Intellectual Property Regimes (2003).

 719

About the Contributors

Yuanqiong Wang is an assistant professor in the Department of Computer and Information Sciences
at Towson University, Maryland, USA. She received her PhD in computer and information systems
from New Jersey Institute of Technology. Her major research interests involve decision support systems
(DSS), asynchronous learning network, knowledge management, and HCI.

James Weller is a graduate of the University of Cape Town and holds BSc (computer science)
and BCom(Hons) (information systems). He is currently working as a business and systems integra-
tion analyst for a global management consulting fi rm in the mobile telecommunications industry. He
maintains a keen interest in open source technologies, particularly operating systems and Web-based
content delivery systems.

Mika Westerlund is a research fellow in the Finnish Graduate School of Marketing (FINNMARK)
at Helsinki School of Economics, Department of Marketing and Management and coordinator of the
ValueNet research consortium. His research interests address business networks, relationship value,
and business models of companies, especially in the software industry.

Dave Yeats (dave.yeats@auburn.edu) is an assistant professor in the technical and professional
communication program at Auburn University, USA, where he studies the communication practices of
the open source software community. In addition to open source software development, his research
interests include usability, documentation management, and technical communication pedagogy.

720

Index

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

A
accounting information system (AIS) 569
ACID (see atomicity, consistency, isolation, and

durability)
active browsing 13, 21
adoption 347, 622
Advanced Labs for Bioinformatics Agencies (ALBA)

69
after-tax margin 599
agile

development 702
software development 141, 152

Agreement on Trade-Related Aspects of International
Property (TRIPS) 338

AHP (see analytical hierarchy process)
AIS (see accounting information system)
ALBA (see Advanced Labs for Bioinformatics Agen-

cies)
analytical hierarchy process (AHP) 695
anarchism 362
anarchy 354
Apache 146, 217

HTTP server 152
Software Foundation (ASF) 145, 217

application
-development ideology 479
-selection ideology 479
-use ideology 479
service provider (ASP) 344

architectural
constraints 273

architecture
governance 481

ASF (see Apache Software Foundation)
ASP (see application service provider)
asset 493

turnover ratio 602
assimilation 311, 325

atomicity, consistency, isolation, and durability
(ACID) 308

auditing 569
author

-function 12, 13, 22
/owner 396

availability 262, 264, 418

B
back door 267
Berkeley

Software Distribution (BSD) 632
License 188

beta
release 637
version 267

bioinformatics 69, 78
Book Burro 13, 22
BPM (see business performance management)
BSA (see Busines Software Alliance)
BSD (see Berkeley Software Distribution)
business

intelligence analytics 531
model 504, 531, 554, 589, 605
performance management (BPM) 308
strategy 605

Business Software Alliance (BSA) 162, 166

C
CAL (see client access license)
capability maturity model (CMM) 209, 481, 693
capstone project 679
cascading style sheets (CSS) 694
CASE (see computer-aided software engineering)
case study 80, 91, 280
CCIDNET 114
CC licenses 385
CDS (see closed data standards)

 721

Index

central processing unit (CPU) 245
CGI program 630
change process management 622
client

-server infrastructure 242
access license (CAL) 246, 252

closed
data standards (CDS) 310
proprietary software 626
source software (CSS) 195, 309, 351

CMC (see computer-mediated communication)
CMM (see capability maturity model)
CMS (see content management system)
co-production 531
code 362

quality 270
coding standard 702
collaborative

software design 127
technologies 111, 114

collective invention 228, 238
commercial

off-the-shelf (COTS) 134
common warehouse model (CWM) 488
communitarianism 6, 11
community 169–183, 182–183, 199, 209, 347

-based innovation 230
customer 514, 520
of practice (CoP) 231, 611, 623
participation 508
support 203

competitive strategy 589
component (see also module)
computational costs 240
computer

-aided software engineering (CASE) 679, 690
-mediated communication (CMC) 639
science (CS) 672

computing practices 102
concurrent versioning system (CVS) 263, 267
connection manager 252
constructivist 689
content management system (CMS) 255–268
context 280

factors 274
contract 240, 252
convergent technologies 114
cooperative

information systems 70, 78
services 70

CoP (see community of practice)
copyleft 1, 4, 11, 187, 195, 356, 362, 366–

372, 372, 384, 392

copyright 338, 349, 367–372, 441
/patent 396
protection 328

core
competency 589
developers 171

cost
avoidance 295
savings 105
sharing 295

COTS
(see commercial off-the-shelf)
integration 140

CPU (see central processing unit)
Creative Commons (CC) 382–393

licenses 392
critical success factor (CSF) 155, 166
CRM (see customer relationship management)
cross-functional integration 569
CSF (see critical success factor)
CSS (see closed source software)
CUI (see customer and user involvement)
current ratio 599
customer

and user involvement (CUI) 522, 531
relationship management (CRM) 531, 559

customers’ lock-in 423
CVS (see concurrent versioning system)
CWM (see common warehouse model)
cybercollaboratories 127
cybercrime 475
cyberterrorism 475

D
data

analysis 283, 293
mining 283, 293
standard 309, 325

database 308
management system (DBMS) 295, 569

DBM (see database management system)
DBMS (see database management system)
denial of service (DoS) 475
dependency 458
deployment 310, 325
derivative work 397
derived works 188
design

for appropriation 467
phase 157

desktop 85, 91
OSS 154–167, 167

722

Index

destructive application ideologies 479
developing countries 94, 101, 103
development

practices 284, 293
software life cycle (DSLC) 679

digital
economy 445
right management 441

Digital Commons 47–67, 60
Directory of Open Access Journals (DOAJ) 699
dissipation 238
distribution license 215
DOAJ (see Directory of Open Access Journals)
documentation 204, 209, 264

project 222
domain model 702
DoS (see denial of service)
drug discovery 69, 78
DSLC (see development software life cycle)

E
e-

administration law 431
experiment 69, 78
learning 638, 647
science 69, 78

EAI (see enterprise application integration)
earning platform (LP) 639
earnings 605

per share (EPS) 536, 598, 605
Eclipse Public License (EPL) 188
economic regulation 424
editing macros (EMACS) 40, 45
educational knowledge portal (EKP) 638
efficiency in the public sector 418
EKP (see educational knowledge portal)
electronic dissemination 657
EMACS (see editing macros)
empirical evaluation 280
engine 267
enhanced competition 418
enterprise

-scale business systems 559
application integration (EAI) 488
system 560

EPC (see European Patent Convention)
epistemic community 231
EPO (see European Patent Office)
EPS (see earnings per share)
equivocality 128, 140
essential facility 424
ETL (see extraction transformation and load)
European Patent

Convention (EPC) 338

Office 338
evaluation 540, 647

criteria 647
framework 284
process 274
team creation 275

extensible businessr reporting language (XBRL) 569
external

network 120
observer 117, 125

extraction transform and load (ETL) 483
extreme programming (XP) 142
extrinsic motivations 230, 238

F
F/OS

(see free/open source)
FAQ (see frequently asked question)
FDD (see feature-driven development)
feature-driven development (FDD) 142
final

evaluation 276
release 142, 149, 152

Firebird 298
firm 508
flexibility 105, 342, 418
FLOSS (see free/libre open source software)

research 282–293
fork (software development) 45
forking 267
formal specification 702
forum 211, 226
frame analysis 467
framework 117, 125
free

/libre open source software (FLOSS) 30, 33, 45, 51,
60, 94, 101, 230, 240, 282, 394, 460, 590

/open source (F/OS) 412
access 373–381

to law movement 373
and open source software (FOSS) 91, 681, 689
cash flow 605
distribution 270
educational book 222
redistribution 187
rider 521
software (FS) 1–11, 24, 33, 60, 94, 101, 186, 195,

293, 363–372, 372, 452, 577, 647
movement 48, 60

Free Software
Foundation (FSF) 40, 94, 186, 363, 372, 383, 394,

409, 542
/GNU project 222

French e-administration 441

 723

Index

frequently asked questions (FAQs) 489
FS (see free software)
FSF (see Free Software Foundation)
functionality 205, 647
functional requirements 272

G
gateway 241, 252
generally recognized as

mature (GRAM) 561
safe (GRAS) 561

General Public License (GPL) 11, 40, 45, 187, 195, 33
3, 348, 362, 363, 372, 577

geographic information system (GIS) 446
gift economies 497
GIS (see geographic information system)
GLW (see GNU/Linux-Windows)
GNU 114, 267, 362, 372

/Linux-Windows (GLW) 240, 252
General Public License (GNU GPL) 308, 542
GPL (see GNU General Public License)
Lesser General Public License (LGPL) 188

goal-question-metric (GQM) 272, 280
governance 493
GPL (see General Public License)
GQM (see goal-question-metric)
GRAM (see generally recognized as mature)
graphical user interface (GUI) 308

design 121
GRAS (see generally recognized as safe)
Greasemonkey 13, 22
grid computing 69, 78, 308
gross

domestic product (GDP) 114
margin 599

GUI (see graphical user interface)

H
hacker 35, 45

community 4, 11
culture 35, 46

Hacktivism 479
Hacktivismo 475
HCI (see human computer interface)
high-fidelity prototypes 126
human-computer interface (HCI) 185
hybrid

business model 513
infrastructure 244, 247

Hypercard 689
hypertext markup language (HTML) 694

I
ICT (see information and communication technology)
IDE (see integrated development environment)
IDE (see integrated development environments)
Ikea economics 523
immaterial labour 50, 60
impact analysis 485
implementation phase 157
information

and communication technology (ICT) 79, 114, 660
diffusion 418
system 240
technology (IT) 625, 671

governance 481
technology infrastructure library (ITIL) 491

infrastructure 252, 625, 637
initial

public offering (IPO) 533
requirements analysis 275

integrated
development environment (IDE) 119
development environments (IDE) 697

integration 206
intellectual property (IP) 214, 226, 331, 396, 541

terms 396
intellectual property right (IPR)

240, 332, 349, 424, 537
interactive relay chat (IRC) 120
interdependence 118
internal

control 569
network 121
rate of return (IRR) 563

International Data Corporation (IDC) 114
Internet service provider (ISP) 82
interoperability 70, 78, 259, 264, 321, 418, 441,

458, 637
interoperable software 679
intrinsic

motivations 230, 238
inventory

management 485
turnover ratio 599

investments 118
IP (see intellectual property)
IPO (see initial public offering)
IPR (see intellectual property right)
IPRs (see intellectual property rights)
IRC (see interactive relay chat)
IRR (see internal rate of return)
ISP (see Internet service provider)
issue tracking 214, 226

724

Index

IT business value 531
iteration planning 275
iterative

development 142, 147
prototype development 275
software development 280

ITIL (see information technology library)

J
JavaScript 19, 22
journal management software 657
jurisdiction 380

L
L-PEST model 451
labor politics/economics 467
LAMS (see learning activity management system)
LAN (see local area network)
law 374, 380
LDC (see less developed countries)
learning

activity management system (LAMS) 629
management systems (LMS) 638
platform (LP) 639
support system (LSS) 639

legal
environment 452
information institutes (LIIs) 375
services community 340

Legal Services Corporation (LSC) 341, 347
less developed countries (LDC) 79, 92
liberalism 11
license 202, 209, 380, 393

/contract 397
agreement 240
compatibility 393
management 637
manager 252

Linupy 107, 114
Linux 372, 623, 668

distribution 623
liquidity ratios 605
local

area network (LAN) 594
e-administration 441

localization 458
lock-in 321, 325
longevity 201–210
low-fidelity

prototypes 128
prototyping 128

LSC (see Legal Services Corporation)
LSS (see learning support system)

M
mailing list 211, 226
maintenance cost 106
managed learning environment (MLE) 639
maturity model 209, 493
meta-model 493
metadata 493
Microsoft Academic Alliance (MSDN AA) 669
migration 155, 309, 326
mission sensitive nonprofit open source Applications 479
MIT License 188
MLE (see managed learning environment)
modularity 206
module (see also component)
Mono 669
morality 27, 33
Mozilla 147, 152, 449

Public License (MPL) 188
mutuality 118
MySQL 298, 548

N
Napster 20, 22
national security 105
net present value (NPV) 563
Netscape Public License (NPL) 188
network

effect 323, 325
studies 125

NGOs (see nongovernmental organizations)
non-functional requirements 273
nonexcludability 228
nongovernmental organizations (NGOs) 447, 602
nonprofit 347

organization 505
nonrivalry 228
NOS (see network operating system)
NPV (see net present value)

O
OAI (see Open-Access Initiative)
OASIS (see Organization for the Advancement of

Structured Information Standards)
object-relational database management system

(ORDBMS) 299, 308
Object Management Group (OMG) 488, 671
ObjectWeb 220
OCM (see original component manufacturing)
ODS (see open data standards)
off-the-shelf

option (OTSO) 271
products 625

 725

Index

offering 554
office automation 310, 326
OJS (see Open Journal System)
OLAP (see online analytical processing)
OMG (see Object Management Group)
online analytical processing (OLAP) 296, 308
Open

-Access Initiative (OAI) 649, 657
Journal System (OJS) 654
Source

Definition (OSD) 187, 255, 384, 542
Eclipse plug-in 117
Initiative (OSI) 187, 383, 394, 409, 542, 632,

639, 671, 680
Template (OST) 340, 347

open
access publishing 389, 393
content 393
data standards (ODS) 309
source 362, 533, 680

community 125, 521
customer relationship management 521

development 142
environment 486
journal management software 649
learning 689
maturity model (OSMM) 198–210, 482, 561, 628
meta-model 489
movement 511
project 117, 125, 521
repository 484
software (OSS) 23, 33, 48, 60, 69, 93, 101,

102–115, 116, 126, 152, 154, 168–183, 184–
196, 195, 198, 211–226, 227–239, 269–281,
280, 293, 308, 332, 352, 373–381, 431, 495,
533, 541, 555, 570, 577, 590, 610, 623,
625, 648, 659, 669, 681, 690

evaluation 197–210
evaluation literature 197–210
licenses 382–393, 393
market 197

support licenses 410
Web portals 211–226

source’s social value equation 479
source software (OSS)

development (OSSD) 690
standard 680
technology 228

operating
margin 599
system (OS) 368–372, 669

operational maintenance process 517
ORDBMS (see object-relational database management

system)

Organization for the Advancement of Structured
Information Standards (OASIS) 310

original component manufacturing (OCM) 548
OS (see operating system)
OSD (see Open Source Definition)
OSI (see Open Source Initiative)
OSMM (see open source maturity model)
OSS (see open source software)

candidate selection 275
OST (see Open Source Template)
OTSO (see off-the-shelf option)
outsource 680

P
paid support 203
pair programming 702
paper prototyping 128, 140
patchwork prototyping 126, 126–140, 140
patent 338

law protection 329
payback period (PB) 563
PB (see payback period)
PC (see personal computer)
PDA (see personal data assistance)
PDA (see personal data assistant)
pedagogy 637
peer

production 48, 60
review 172, 182

peer-to-peer
infrastructure 242
network 522
production 531

PERL (see practical extraction and reporting language)
per server license 246
personal

computer (PC) 155, 257
data

assistance (PDA) 491
assistant (PDA) 396

piracy 104
/copyright infringement 458

PiTR (see point-in-time recovery)
planning phase 157
point-in-time recovery (PiTR) 302
PORE (see procurement-oriented requirements

engineering)
PostgreSQL 299
power relations 118
PPP (see public-private partnership)
practical extraction and reporting language (PERL) 630
pragmatism 25, 33
primary materials 374, 376, 381
problem exploration 142, 152

726

Index

procurement-oriented requirements engineering (PORE)
271

production community 170–183, 182–183
productivity

paradigm change 680
software 92

professional development 637
profitability ratios 605
properties 117, 125
property rights 228
proprietary 540

software (PS) 26, 33, 94, 101, 154, 185, 196, 240,
283, 424, 577, 626, 659

prototype 274
prototyping 269–281, 281
PS (see proprietary software)
public

-private partnership (PPP) 429, 436, 441
access 381
good 637
legal information 374, 381
license 260

Public Knowledge Project 654
Python scripting language 121

Q
QA (see quality assurance)
QFD (see quality function deployment)
QIP (see quality improvement paradigm)
quality 702

assurance (QA) 199
function deployment (QFD) 695
improvement paradigm (QIP) 272, 281

quantitative methods 293
quasi open source licenses 410
quick ratio 600

R
rapid

application development (RAD) 128
prototyping 126, 128, 140

RAS (see reusable asset specification)
RDBMS (see relational database management system)
RDBS (see relational database server)
registered users 215
relational

database
management system (RDBMS) 295, 308
server (RDBS) 548

data model 569
relationships 554
release activity 200
rent-seeking 511

repository 493
request for proposal (RFP) 564, 569
research and development (R&D) 454
residual income (RI) 565
resource mobilization 467
resources 554
restrictive license 261
retention ratio 601
return on

assets (ROA) 601
average common equity (ROE) 601
investment (ROI) 155, 458, 486, 563
investment capital (ROC) 601

reusable asset specification (RAS) 488
reuse 493
revenue model 546, 554
RFP (see request for proposal)
RI (see residual income)
rights 240, 252
ROA (see return on assets)
ROC (see return on investment capital)
ROE (see return on average common equity)
ROI (see return on investment)

S
Samba 241, 252
scholarly journals 657
schools 637
SCORM (see sharable courseware object reference

model)
SDK (see software development kit)
secondary 374

materials 381
security (see also stability)
seed company 540
serial pricing crisis 657
service-oriented

architecture (SOA) 485
computing (SOC) 69

sharable courseware object reference model (SCORM)
629

shared software infrastructure program (SSIP) 670, 680
small

-scale business systems 558
to medium enterprise (SME) 602

SMP (see symmetric multiprocessor)
SOA (see service-oriented architecture)
SOC (see service-oriented computing)
social

-technical approach to COTS evaluation (STACE) 271
mechanism 168, 182
movements 467
order 168, 182
participation 502, 508

 727

Index

software 52, 60
technologies 48, 60

socially
constructed 637
informed algorithm 35, 46

sociotechnical system 127, 140
software

development
kit (SDK) 120
support 215

engineering (SE) 282, 293, 671, 672, 702
license 260, 264, 372
licensing 554
longevity 209
maturity models 481
migration 92
patent 368–372
pattern 702
project 222
protection 328–339
release activity 210
requirements 206
security 210
tool 680

softwarization 525
source

code 93, 101, 184, 187, 196, 424, 554
publication 215

SQL (see structured query language)
Server 297

SSIP (see shared software infrastructure program)
stability (see also security) 106, 186, 262, 264
STACE (see social-technical approach to COTS evalua-

tion)
standards 206
startup company 540
strategic planning 569
structural demands/conditions 467
structured query language (SQL) 308, 548
subsidized open-access journals 658
supercommunity 122
support 202
sustainability 233, 238
sustainable growth rate 601
symbiotic 467
symbolic Capital 467
symmetric multiprocessor (SMP) 303
system 117, 125

T
task management 226
TCO (see total cost of ownership)
technical

inbreeding 512

participation 502, 509
technological knowledge 228
technology adoption 311
Technology Initiative Grant (TIG) Program 347
TEIs (see tertiary educational institutions)
territorial e-administration 441
tertiary educational institutions (TEIs) 660
theory of

customer and user involvement (CUI) 524
planned behavior (TPB) 611, 613

Tigris 219
TiVo 368–372

-ization 368–372
total cost of ownership (TCO) 98, 101, 155, 167, 416,

424, 454, 459, 563, 592, 661
TPB (see theory of planned behavior)
trademark 397
trade sale 533
traditional open source licenses 410
tragedy of

the anticommons 349, 362
the commons 354, 362

transaction costs 240–254
transmission-control protocol/Internet protocol (TCP/IP)

241
transparency 459
TRIPS (see Agreement on Trade-Related Aspects of Inter-

national Property)
turnover 605
tuXlab 669

U
Ubuntu 605
UML (see unified modeling language)
uncertainty 128, 140
unified modeling language (UML) 241, 671, 693
United States Patent and Trademark Office (USPTO) 338
usability 186
user

awareness 161
community 211, 231, 238, 261, 264
scripts 13, 22
training 161

users/consumers 467
USPTO (see United States Patent and Trademark Office)

V
valuation 540

theory 534
value

-added resellers (VAR) 563
chain 589

728

Index

network 589
proposition 589

values 637
VAR (see value-added reselllers)
VC (see venture capital)
vehicle relationship management (VRM) 526
vendor

customer 514
lock-in 459

venture
capital (VC) 535, 540
capitalist 534

versatility 262, 264
version control 142, 148, 152

system 226
virtual

laboratories 71
learning environment (VLE) 639

VLE (see virtual learning environment)
volume license product key (VPK) 351
VPK (see volume licenses product key)
VRM (see vehicle relationship management)

W
WAN (see wide area network)
Web

portal 226
service definition language (WSDL) 488
services 69, 78

wide area networks (WANs) 594
Wiki 689
Wikia 689
Wikimedia Foundation 689
Wikipedia 689
World Trade Organization (WTO) 339, 451
WSDL (see Web service definition language)
WTO (see World Trade Organization)

X
XBRL (see extensible business reporting language)
XP (see extreme programming) 1

Z
zone of proximal development (ZPD) 686, 689
zope 347
ZPD (see zone of proximal development)

	Title Page
	Editorial Advisory Board
	List of Contributors
	Table of Contents
	Detailed Table of Contents
	Foreword
	Preface
	Acknowledgment
	Section ICulture, Society, andOpen Source Software
	Chapter IFree Software Philosophyand Open Source
	Chapter IIGreasemonkey and a Challengeto Notions of Authorship
	Chapter IIIMorality and Pragmatism inFree Software and Open Source
	Chapter IVHacker Culture and theFLOSS Innovation
	Chapter VSocial Technologies and theDigital Commons
	Chapter VIALBA Architecture as Proposalfor OSS Collaborative Science
	Chapter VIIEvaluating the Potential of Freeand Open Source Software inthe Developing World
	Chapter VIIIOpen Source Software:A Developing Country View
	Chapter IXThe Social and Economical Impactof OSS in Developing Countries

	Section IIDevelopment Models andMethods for Open SourceSoftware Production
	Chapter XDependencies, Networks,and Priorities in anOpen Source Project
	Chapter XIPatchwork Prototyping withOpen Source Software
	Chapter XIIAn Agile Perspective on OpenSource Software Engineering
	Chapter XIIIA Model for the SuccessfulMigration to Desktop OSS
	Chapter XIVThe Social Order of OpenSource Software Production

	Section IIIEvaluating Open SourceSoftware Products and Uses
	Chapter XVOpen Source Software:Strengths and Weaknesses
	Chapter XVIOpen SourceSoftware Evaluation
	Chapter XVIIOpen Source Web Portals
	Chapter XVIIICurious Exceptions?Open Source Software and“Open” Technology
	Chapter XIXReducing Transaction Costswith GLW Infrastructure
	Chapter XXIssues to Consider whenChoosing Open Source ContentManagement Systems (CMSs)
	Chapter XXIEvaluating Open SourceSoftware through Prototyping
	Chapter XXIIMotives and Methods forQuantitative FLOSS Re
	Chapter XXIIIA Generalized Comparison ofOpen Source and CommercialDatabase Management Systems
	Chapter XXIVEvaluation of a Migration toOpen Source Software

	Section IVLaws and LicensingPractices Affecting OpenSource Software Uses
	Chapter XXVLegal and EconomicJustifi cation forSoftware Protection
	Chapter XXVIOSS Adoption in the LegalServices Community
	Chapter XXVIIThe Road of ComputerCode Featuring thePolitical Economy of Copyleftand Legal Analysis of theGeneral Public License
	Chapter XXVIIIThe Evolution of Free Software
	Chapter XXIXFree Access to Law andOpen Source Software
	Chapter XXXExamining Open SourceSoftware Licenses throughthe Creative CommonsLicensing Model
	Chapter XXXIFLOSS Legal and EngineeringTerms and a License Taxonomy

	Section VPublic Policy, the Public Sector,and Government Perspectiveson Open Source Software
	Chapter XXXIIOn the Role of PublicPolicies SupportingFree/Open Source Software
	Chapter XXXIIIUse of OSS by LocalE-Administration:The French Situation
	Chapter XXXIVIssues and Aspects of OpenSource Software Usage andAdoption in the Public Sector
	Chapter XXXVThe Labor Politics ofScratching an Itch
	Chapter XXXVI Open Source Technology and Ideology in the Nonprofit Context
	Chapter XXXVIIGovernance and the OpenSource Repository

	Section VI Business Approaches and Applications Involving Open Source Software
	Chapter XXXVIIIAnalyzing Firm Participation inOpen Source Communities
	Chapter XXXIXCommunity Customers
	Chapter XLOpen Source SoftwareBusiness Models and CustomerInvolvement Economics
	Chapter XLIInvesting in Open SourceSoftware Companies:Deal Making from a VentureCapitalist’s Perspective
	Chapter XLIIRevenue Models in the OpenSource Software Business
	Chapter XLIIIOpen Source for Accountingand Enterprise Systems
	Chapter XLIVOpen Source Software and theCorporate World
	Chapter XLVBusiness Models in OpenSource Software Value Creation
	Chapter XLVINovell’s Open Source Evolution

	Section VIIEducational Perspectives andPractices Related to OpenSource Software
	Chapter XLVIICommunities of Practice forOpen Source Software
	Chapter XLVIIISelecting Open SourceSoftware for Use in Schools
	Chapter XLIXOpen SourceE-Learning Systems:Evaluation of Featuresand Functionality
	Chapter LThe Role of OpenSource Software in OpenAccess Publishing
	Chapter LIAn Innovative Desktop OSSImplementation in a School
	Chapter LIIRapid Insertion of Leading EdgeIndustrial Strength Softwareinto University Classrooms
	Chapter LIIIWikis as an Exemplary Model ofOpen Source Learning
	Chapter LIVA Perspective on SoftwareEngineering Education withOpen Source Software

	About the Contributors
	Index

