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Series Editor’s Note

Social science data are typically multilevel: Children are in classrooms, workers are in
departments or organizations, and people live in neighborhoods. Even laboratory data
are often multilevel in that the unit, whether it is a person or a Norwegian rat, is very
often measured over time, creating the levels of time and unit. Despite the nearly univer-
sal presence of multilevel data, data analysis methods have historically focused on a sin-
gle level, usually the individual. The reasons for such a focus are many. Some are
practical: Single-level models are much simpler than multilevel models. Some are philo-
sophical: Western culture focuses so much on the individual that higher-level units
recede to the background. Whatever the reasons, single-level data analysis tools have
dominated social research, which is ironic in that social science is inherently multilevel.

The days of data analysis being limited to a single level are dwindling. Multilevel
analysis has dramatically burst on the scene, and we now have the statistical tools to
study phenomena at multiple levels. However, many researchers think that they cannot
conduct such analyses because they are too complicated and they require specialized,
expensive software. Fortunately, as this book shows, both of these beliefs are mistaken.

First, multilevel analysis is not all that complex, as conveyed in the subtitle of the
book: “It’s Just Regression.” If the reader understands multiple regression, the funda-
mental statistical model in the social sciences, it is a relatively simple step to learn about
multilevel analysis. Typically, books on multilevel analysis emphasize how it is different
from standard methods of analysis. This book builds on the researcher’s prior knowledge
and shows how multilevel analysis is an extension of multiple regression. In fact, learn-
ing multilevel analysis should help one better understand regression. The focus is usu-
ally on the coefficients in regression—what is called the “fixed piece” in multilevel anal-
ysis. However there is also the “random piece,” which is the error variance. In multilevel
analysis, there are multiple random effects.

Second, multilevel analysis need not require specialized software. Certainly excel-
lent pieces of stand-alone, expensive software that can conduct multilevel analysis are
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available. However, as this book shows with numerous examples, one can use software
that is currently present on most readers’ computer desktops to conduct multilevel anal-
yses—that software being SPSS. The commands in SPSS are very similar to those of
regression. It must be said that some of the output of multilevel analysis (e.g., log likeli-
hoods) does not look like the output from a multiple regression. However, the author
presents that complicated output and explains carefully what it means and how to use it
in making decisions about the model.

Some researchers may plan to eventually use complicated software like the pro-
grams HLM or MLwiN. However, these researchers would still benefit in their under-
standing of multilevel analysis by seeing the similarities between multilevel analysis and
regression.

The book provides several different examples of multilevel analysis, which start
simply. In one case the model is just the simple mean of the outcome variable. These
models expand to become much more complicated, with interactions and cross-level
effects. Readers can follow along and try things out on their own. In the process they
will learn not only how to conduct a multilevel analysis, but also how to build complex,
theoretically rich models. I would strongly recommend that readers analyze their own
data as they read the book. The practical lessons of statistics are never clearer than when
you see them illustrated in your own data!

In 1968, Jacob Cohen wrote the seminal paper showing how analysis of variance is
really multiple regression. This book follows in that tradition and should educate a new
generation of social scientists that multilevel analysis is an extension of multiple regres-
sion.

DAVID A. KENNY
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PrefacePreface

Preface

Multilevel regression models have become commonplace in published research in edu-
cation, political science, public health, sociology, and a variety of other disciplines. Text-
books and other instructional accounts of multilevel modeling, however, are difficult to
follow for most applied researchers, program evaluators, policy analysts, and graduate
students (Greenland, 2000; Singer & Willett, 2003; Rumberger & Palardy, 2004). Fur-
thermore, instructional materials are rarely geared toward enabling prospective users to
employ widely available, general-purpose, user-friendly statistical software such as SPSS
in estimating and testing multilevel models (cf. SPSS, 2005a).

A pervasive source of difficulty in becoming a self-taught user of multilevel analysis
is textbook authors’ inclination to minimize rather than emphasize parallels between
multilevel modeling and widely understood statistical techniques, notably multiple
regression analysis. My account of multilevel modeling takes the position that it’s just
regression under a specific set of circumstances. I assume, moreover, that most research-
ers who use multilevel modeling will be primarily interested in relationships between an
individual-level dependent variable and explanatory contextual factors used in conjunc-
tion with individual-level predictors.

My account is made concrete with examples taken from research on educational
achievement, income attainment, voting behavior, and other timely issues. A detailed
analysis of county-level data from the U.S. presidential election of 2004 is used to illus-
trate the claim that multilevel regression is best used when the power and versatility of
ordinary least squares (OLS) regression and its established correctives have been
exhausted. From start to finish, the presentation is meant to be accessible and interesting
for readers with a broad range of substantive interests.

One perhaps surprising judgment illustrated by many of my examples is that there
is usually little difference between the unstandardized regression coefficients estimated
with conventional OLS regression and multilevel regression (Kreft, 1996). This observa-
tion may lead some readers—not just the most cynical!—to wonder if multilevel regres-

xi



sion is worth the effort. Many of us for whom research methods and statistics do not
come easily have long suspected that state-of-the-art developments in quantitative tech-
niques are best seen as convenient covers for the substantive thinness of social and
behavioral research. In short, there seems to be much ado about very little.

In the case of multilevel regression, it sometimes seems that not much is promised
beyond marginally improved estimates of standard errors, and identification of the cor-
rect numbers of degrees of freedom for inferential tests. Contextual variables and even
cross-level interaction terms are sometimes assumed to be peculiar to multilevel regres-
sion models, and completely beyond the scope of OLS regression. In truth, however,
these terms have long been incorporated into conventional OLS multiple regression
equations, even though OLS regression is inherently single level. The standard errors of
regression coefficients may very well be deflated, resulting in misleading tests of signifi-
cance, but this too may be corrected through the use of comparatively simple adjust-
ments that do not entail mastery of multilevel regression analysis (Bickel & Howley,
2000).

However, many analytical tasks that are beyond the scope of OLS can be accom-
plished with multilevel regression. Intercepts and slopes may be permitted to vary from
group to group, reflecting, for example, the facts that mean achievement levels may vary
from school to school, and that the relationship between measured achievement and
explanatory factors such as socioeconomic status may also vary from school to school.
In addition, contextual sources of variability in intercepts and slopes may be identified
and actually incorporated into multilevel regression models. Beyond that, varying inter-
cepts and varying slopes may turn out to be correlated in substantively interesting ways.
These relationships too may have measurable contextual sources that can be used as
additional independent variables.

Nevertheless, the frequently occurring similarity of the values of unstandardized
regression coefficients estimated using OLS and multilevel procedures is a useful
reminder that multilevel analysis is aptly construed as just one among many extensions
of regression analysis. It is easy to lose sight of this fact as we get caught up in discussion
of specification and testing of multilevel models. As I read over the material that follows,
I can see that I have lapsed into this oversight many times, in effect exaggerating the sub-
stantive uniqueness of multilevel regression.

Perhaps the most important difference between OLS regression and multilevel
regression is the thorough theoretical and substantive knowledge base needed to prop-
erly specify a multilevel model. In the absence of such a base, an analyst may be wise to
acknowledge the limitations of OLS, use readily available correctives for standard errors
and degrees of freedom, and forgo the opportunities provided by multilevel regression.
After all, the use of OLS procedures with contextual variables and cross-level interaction
terms to simulate what we now call multilevel regression has been with us for three
decades.

In spite of these disclaimers, multilevel regression analysis is a statistical tool whose
time has come. Undue reliance on adjustments to OLS regression in an effort to approxi-
mate multilevel regression results more closely is sure to raise objections. Furthermore,
the ideas, procedures, language, and software that constitute multilevel regression analy-
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sis have been thoroughly institutionalized in academic and professional journals, col-
leges and universities, governmental agencies, and private consulting firms throughout
the world (cf. Alford, 1998). Let’s make an effort, therefore, to identify the strengths and
limitations of this comparatively new statistical technique. Let’s learn to identify the ana-
lytical opportunities it presents and the constraints it imposes. Ultimately, it is worth the
effort.

Some readers may find the presentation that follows unduly conversational and
wordy. I acknowledge that my approach to multilevel regression and other topics in sta-
tistics is conceptual and verbal rather than mathematical, and that this may be an ineffi-
cient way to proceed. I suspect, however, that the nonmathematical approach is the one
taken by most applied researchers, policy analysts, and program evaluators—people
such as myself.

Some readers may also be troubled by the fact that new concepts are sometimes
introduced and briefly explained, but fully developed only later. This is the way I taught
myself to understand and use multilevel regression, and I have proceeded as if others,
especially fellow autodidacts, may also find this way of handling new and difficult mate-
rial useful.

I may have used far too many examples and too many different data sets, illustrating
too freely while directly explaining too little. However, my experience with the multi-
level regression literature has persuaded me that it relies too heavily on one or a few data
sets and contains too few accessible and realistic examples. This is especially true of
ideas and procedures such as estimates of covariance parameters and residual covariance
parameters, which are unfamiliar to many experienced users of OLS regression.

Some examples are used to answer questions or address issues that technically
astute readers may find obvious or trivial. My initial encounters with the literature on
multilevel models, however, were extremely confusing and left me certain of very little.
As a result, seemingly simple questions such as “Can a multilevel model have fixed and
random coefficients at the same level?” were sources of a good deal of anguish.

Throughout, however, I have tried to bear in mind that this book is meant to be a
pedagogical tool. It is meant to make learning how to interpret and use multilevel regres-
sion no more difficult than is necessary. As such, the book has three ideal readers: the
overwhelmed graduate student who is supposed to be good at this stuff but seems not to
be measuring up; the isolated academic in a small to midsized college or university who,
largely by default, has been cast in the role of local statistics person; and the policy ana-
lyst or program evaluator whose position is ill defined but who invariably, it seems, is
expected to be able to read, interpret, and respond to everything ever published, espe-
cially if it involves numbers. Having played all these roles at one time or another, I know
how tough things can get.

OVERVIEW OF CHAPTERS

The first chapter, a brief one, seeks illustratively to place multilevel regression into a use-
ful historical and conceptual context. Multilevel regression is treated as one part of a sus-
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tained, long-term effort to make regression analysis applicable even if well-known OLS
assumptions have been violated. Like established correctives with longer histories, mul-
tilevel regression is a set of sophisticated tools designed to broaden the scope of regres-
sion analysis, making it more versatile and informative. I emphasize the admonition “It’s
just regression!” under specific circumstances, and we see again that OLS and multilevel
regression results are often less different than we might expect.

In Chapter 1 I also begin providing instruction in using SPSS with the Windows
interface to estimate multilevel regression models. Since we do not yet have a working
knowledge of the basic concepts that make up multilevel regression, much of the SPSS
output will be unfamiliar. Running optional SPSS routines before we have mastered
interpretation of the statistical procedures is intended to provide mechanical facility and
confidence that we can make the software work. As we learn more about multilevel
regression, the SPSS output will become more interpretable.

Chapter 2 represents an effort to clarify the meaning of the fundamental concept of
nesting. Numerous examples illustrate the meaning and consequences of nesting, which
may correctly be construed as the primary reason for developing and mastering the tools
that constitute multilevel regression. Not just the simple truth that nesting is ubiquitous,
but the fact that nesting commonly reflects and produces group homogeneity, prompts
special analytical consideration. Within any group, observations become correlated or
dependent, thereby violating an important assumption of conventional regression analy-
sis.

There is nothing complicated about nesting itself: Students are nested within
schools, employees are nested within occupational groups, patients are nested within
wards, and wards are nested within hospitals. Nevertheless, nesting is sometimes easy to
overlook, and it has important conceptual implications and methodological conse-
quences.

When we use multilevel regression to give proper attention to nesting, we invari-
ably work with two or more levels—say, individual students at level one and school
characteristics, such as size and grade-span configuration, at level two. Quite often, anal-
ysis of nested data involves measures of the same variable, such as socioeconomic status,
at more than one level. For example, in comparing public and private schools in terms of
effectiveness and equity, we typically measure both individual students’ socioeconomic
status and schools’ average socioeconomic status, with each serving as an independent
variable in the same analysis.

Combining individual-level and group-level variables in this way has been done
with profit by analysts using OLS. However, the uniqueness of multilevel analysis
becomes apparent when we see that variables at different levels in a multilevel frame-
work are not simply add-ons to the same single-level equation. Instead, variables at dif-
ferent levels are clearly linked together in ways that make explicit the simultaneous exis-
tence of distinct level-one and level-two regression equations. In routine ways, these
different equations are then combined into one, and the result is a full equation that, in
appearance and interpretation, makes long-time users of OLS multiple regression feel
very much at home.
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Chapter 3 includes a long discussion of a crucial concept made necessary by nest-
ing: contextual variables. Contextual variables take a variety of forms. Some are aggre-
gates (typically means or percentages), computed using lower-level variables, such as the
percentage of students in a school who belong to an ethnic minority group. Some are
characteristics of an organization, such as for-profit or not-for-profit hospitals, or extrac-
tive, manufacturing, or service industry firms. Still other contextual variables may refer
to location, including values on the commonly used U.S. Department of Agriculture’s
urban–rural continuum (sometimes referred to as Beale Codes).

Whatever their specific form, the need for contextual variables can be traced
directly to the pervasive and consequential phenomenon of nesting. Without nesting
there are no contexts of substantive or methodological importance; there are just innoc-
uous naming conventions called categories. The reality of nesting, however, assures that
contexts differ from one another, and that they can be measured in ways that permit cre-
ation of contextual variables.

The quality of rural neighborhoods, for example, can be conceptualized and mea-
sured in a variety of interesting ways, sometimes focusing on the degree to which neigh-
bors are like-minded and routinely supportive yet unobtrusive. Rural residents who par-
ticipate in the same neighborhood—who are nested in the same context—become like
each other and different from residents of other neighborhoods. Measured levels of
neighborhood quality, as a result, can be used to constitute a contextual variable.

Contextual factors are used as independent variables in multilevel models to
explain variability in a level-one dependent variable. In this sense, they function exactly
like level-one independent variables. Neighborhood quality, for example, is often used to
help explain student-to-student variability in school achievement from one classroom to
another.

In addition, contextual variables contribute to explaining variability in random
intercepts and random slopes. They help to explain why relationships differ from group
to group. Variability in neighborhood quality, for example, may help account for vari-
ability in the relationship between ethnicity and dropping out of school. Contextual
variables, in short, are used in an effort to explain the substantive consequences of nest-
ing.

Finally, when contextual factors are used in an effort to account for group-to-group
variability in random slopes, they imply the existence of cross-level interaction terms.
Cross-level interaction terms are conceptually the same as conventional same-level
interaction terms, but they are created using variables from different levels. An example
that occurs frequently in this presentation involves creating a cross-level interaction
term using individual students’ ethnicity and the ethnic composition of schools.

As with contextual variables, cross-level interaction terms contribute to explaining
variability in a level-one dependent variable, and they also help to account for the vari-
ances of varying slopes. Cross-level interaction terms make it unmistakably clear that
differing levels are linked together in one analysis.

In Chapters 4 and 5 we finally get past just talking about and illustrating multilevel
regression models. We actually start acquiring the statistical tools needed to specify, esti-
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mate, test, and reformulate them. I continue providing instruction in using SPSS with
the Windows interface to estimate random coefficient and multilevel regression models.
Fundamentally, multilevel regression models are applications and extensions of random
coefficient regression models. The term random as used here refers to the fact that coeffi-
cient values are not fixed, but are selected from a probability distribution of values. That
probability distribution is referred to as a random variable; hence random coefficient
regression models.

With models such as this, the intercept and the slopes for lower-level variables may
be permitted to vary from context to context. Mean measured achievement levels, for
example, may vary enormously from school to school, and this is reflected in the way a
random intercept is conceptualized and measured. Furthermore, the association be-
tween, say, measured reading achievement and an independent variable such as family
income may vary from school to school. In some schools, family income differences may
be more consequential for achievement than in others. This is reflected in the way a ran-
dom coefficient representing the achievement-by-income relationship is conceptualized
and measured.

In addition, a random intercept and a random slope may be correlated, and the same
may be true for two random slopes. For example, from one school to another, higher
mean achievement levels may tend to occur with stronger associations between achieve-
ment and family income. Excellence, in a sense, is acquired at the cost of equity. This set
of circumstances may give rise to a positive correlation between the random intercept
and the random slope for socioeconomic status. Just as random coefficient regression
models permit coefficients to vary from context to context, they may also permit them to
vary together.

The variance of random coefficients and the covariances among them may be of real
substantive interest, as in the excellence–equity example. Furthermore, when random
coefficient regression models are used in a multilevel framework, the variances and
covariances may be treated as functions of contextual variables and cross-level interac-
tion terms. In a school setting where differences in reading achievement are being stud-
ied, a random intercept and random slope may be functions of school size, varying
together as a result. School size, then, is introduced as a contextual factor—a school-
level independent variable used to help explain variability in reading achievement and to
help account for the variances and covariances of the random coefficients. In this way, a
random coefficient regression model takes on a specific and very instructive form,
becoming a multilevel regression model.

If slopes and intercepts were the same for all schools, there would be no need for
random coefficient regression. If there were no need for random coefficient regression,
multilevel regression would be an abstract mathematical exercise. Once again we see
that the ubiquitous phenomenon of nesting gives rise to the need for random coefficient
and multilevel regression models. And once again we see the value of contextual vari-
ables, along with implied cross-level interaction terms, as explanatory factors.

Determining whether a random coefficient regression model is needed, or whether
conventional OLS regression will suffice, can be done using a statistic called the
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intraclass correlation coefficient. The numerical value of the coefficient tells us the pro-
portion of variance in the dependent variable that occurs between groups, such as class-
rooms or schools, rather than within groups. The intraclass correlation coefficient, then,
tells us whether or not nesting makes a difference. If it does, random coefficient regres-
sion and multilevel regression may be productively applied.

Once an informed decision is made to use random coefficient or multilevel
regression, OLS ceases to be the most useful estimator of intercepts, slopes, and espe-
cially standard errors. The most commonly used alternatives that fit neatly into sit-
uations where nesting is consequential are maximum likelihood and restricted maxi-
mum likelihood estimators. In substantive terms, fortunately, the alternative estimators
provide coefficient values that are interpreted in exactly the same way as OLS coeffi-
cients.

The distinction between fixed and random components of random regression coeffi-
cients is explained and illustrated. The roles of contextual variables and cross-level inter-
action terms in linking together the levels of a multilevel regression model are clarified
with numerous examples. The nature of the more complex error term required by multi-
level models with one or more random coefficients is discussed in detail. Emphasis is
given to the increasing complexity of the error term as more random coefficients are
introduced.

Decisions as to how to center or rescale explanatory variables turn out to be quite
consequential for substantive results. Centering is used as a way to make coefficients
more readily interpretable and as a very effective means of minimizing the consequences
of multicollinearity when cross-level interactions are included. I explain procedures for
centering explanatory variables with respect to the grand mean, and I discuss the conse-
quences of group-mean centering.

Centering is a topic that turns out to be less innocuous and straightforward than
one might imagine. Instead, the type of centering employed is an important issue in
multilevel regression model specification. For most applications it is well covered by a
simple admonition: “Always use grand-mean centering.” Nevertheless, some questions
of real theoretical and substantive importance may require use of alternatives such as
group-mean centering.

Other issues in regression model specification—Which coefficients should be fixed
and which should be random? Which contextual factors and cross-level interaction
terms should be employed? Should we constrain random components to be uncorrelated
or permit them to vary together?—are examined in detail. Increasingly complex multi-
level regression models are estimated, evaluated, and given substantive interpretations.
The distinction between fixed and random components is developed a bit further, and
ways of interpreting random components are illustrated.

In Chapter 5 especially, the notion that multilevel analysis is just regression analysis
under specific circumstances remains an important organizing principle. Parallels with
conventional OLS regression become particularly clear as I repeatedly illustrate develop-
ment of the full multilevel regression model. This is the equation that actually provides
the estimates of the fixed components—the intercept and slopes—for our regression
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coefficients. As with OLS regression, most of our substantive interest is in fixed compo-
nents, often called fixed effects.

In contrast to other instructional sources, I delay introducing the notational con-
ventions peculiar to multilevel regression until Chapter 5. This is consistent with my
emphasis on highlighting parallels with OLS regression. When the conventions are
finally introduced, however, I give them more attention than other sources. I am espe-
cially concerned with subscript conventions, which other sources take for granted, but
which readers may very well find quite confusing.

While emphasizing parallels between OLS regression and multilevel regression, I
use numerous examples to illustrate the exaggerated complexity of specifying a multi-
level model. In the absence of informative theoretical or substantive literature that pro-
vides a good deal of guidance, multilevel regression model specification is fraught with
ambiguity and very difficult judgment calls. As a result, multilevel regression can easily
devolve into uninformed data dredging.

Chapters 6 and 7 are based on development of a lengthy example to illustrate the
judgment that multilevel regression is best understood as a set of procedures that come
into play only after the power and versatility of conventional OLS procedures have been
exhausted. This places multilevel regression more firmly in the same broad category as
other correctives that are employed when one or more of the usual regression assump-
tions are violated. To illustrate this, I use a national county-level data set to study the
results of the 2004 U.S. presidential election.

I identify commonalities and differences between OLS and multilevel approaches,
and illustrate the added complexity of proper specification of a multilevel regression
model. After repeated and fruitful applications of increasingly refined OLS models, I
explain why use of multilevel analysis with random coefficients, contextual variables,
and cross-level interaction terms makes sense. As is often the case, the values of the coef-
ficients estimated for OLS and multilevel regression equations are very similar. Never-
theless, consequential differences between results of application of the two techniques
emerge. This is especially conspicuous with regard to tests of significance for random
slopes and the slopes of contextual variables and cross-level interaction terms.

Difficulties in making important specification decisions in multilevel modeling
become painfully apparent, especially with regard to which coefficients should be fixed,
which should be random, and which state-level variables should be used to explain the
variances and covariances of random components. Difficult decisions as to how best to
measure vaguely defined concepts, notably “traditional family values,” are common to
OLS and multilevel regression analyses. Much the same is true as to specification of the
proper functional form of relationships between vote and three of my four county-level
ethnicity measures.

Given the choices I have made, the results are illuminating and, especially with
regard to one high-profile relationship, surprising: With controls in place, county-level
median family income turns out to be negatively related to the percentage of county resi-
dents who voted for George W. Bush. Throughout this exercise, avoiding the ecological
fallacy of making inferences about individuals from grouped data is an ever-present dan-
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ger. Like so many other issues, this is a concern that OLS regression and multilevel
regression share.

Chapter 8 consists of a brief introduction to multilevel models with more than two
levels. I use a Kentucky data set that includes measures on nearly 50,000 students, 347
schools, and 135 districts. Students are treated as nested within schools and within dis-
tricts.

Conceptually, this is a straightforward extension of the two-level model. In practice,
however, three-level models bring with them a dramatic increase in complexity, with
seemingly minor changes in model specification yielding a proliferation of random com-
ponents and requiring much more computer time. SPSS instructions for estimating a
three-level model using the Windows interface are also included.

The possibility of formulating three-level models also introduces important specifi-
cation questions not previously encountered. As a specific example, should we treat stu-
dents as nested within both schools and districts, permitting one or more level-one coef-
ficients to vary across both higher-level units? Furthermore, should we permit one or
more school-level coefficients to vary across districts? I use the ongoing school size con-
troversy to illustrate specification, respecification, and evaluation of multilevel models
with three levels.

Chapter 9 is organized around application to three-level models of the intraclass
correlation coefficient, the R1

2 summary statistic, the deviance and deviance difference
statistics, and information criteria. In the process of presenting this material, I include a
more detailed and focused discussion of each of these measures. The chapter is brief
because I have already applied and interpreted each of the statistics with respect to two-
level models, and extension to higher-level models is quite straightforward.

Chapter 10 is an effort to use what I term OLS-engendered commonsense to address
the complex issue of suitable sample size in a multilevel model. Students of multilevel
regression show far more interest in sample size and statistical power than most users of
OLS regression analysis. In part, this may be due to the fact that multilevel regression
requires acknowledgment of at least two sample sizes: the sample size at level one, per-
haps a specified number of students, and the sample size at level two, perhaps the num-
ber of schools in which students are nested. Beyond that, each level-two group may be
construed as having a sample size of its own.

Moreover, when observations at level one are nested within groups at level two,
dependence among level-one observations is likely to diminish the effective level-one
sample size. When regression coefficients for level-one independent variables are per-
mitted to vary across groups, the number of groups, not the number of level-one obser-
vations, is used in tests of significance for level-one slopes. To make matters even more
complex, cross-level interaction terms are likely to have unstable coefficients and uncer-
tain inferential properties unless there is a comparatively large number of cases at both
levels one and two.

While there are commonly invoked rules of thumb, such as the frequently cited
30/30 standard, for sample size at the various levels of a multilevel regression model,
they are offered with reservations and turn out to be of dubious value. The best advice
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one can give on collecting data for multilevel analysis is to maximize the number of
higher-level groups relative to lower-level observations.

Most of us, of course, do secondary analyses with data collected by others, often for
purposes other than those that interest us. Under these circumstances, the most we can
do is be sure that the questions we ask are consistent with the strengths and limitations
of the data set.

In Chapter 11 I introduce still another consequential form of nesting: observations
nested within individuals. For readers accustomed to working with repeated measures,
this is nothing new. Nevertheless, the idea of construing individual elementary school
students as constituting the second level in a multilevel analysis does seem contrary to
commonsense. When we work with multilevel regression growth models, however, this
is exactly what we do.

Growth models in a multilevel regression framework enable us to do justice to
achievement data collected annually on a cohort of rural children during their first 4
years of elementary school. Similarly, growth models enable us to make best use of
national certification exam pass rates reported periodically over the course of a decade
for all the nursing education programs in an Appalachian state.

The growth model itself describes a trajectory—a pattern of change—for each
observational unit. The explanatory variables in a multilevel regression growth model
explain why individual units differ with regard to change. In the case of linear relation-
ships, instead of doing a simple before-and-after or pretest–posttest analysis, we are able
to acknowledge unit-to-unit differences in intercepts and slopes, and explain why these
occur. There is nothing intrinsic to either repeated measures growth models or multi-
level regression that inevitably ties the two together. In conjunction, however, they may
be much more informative than either would be alone.

In my presentation, I have tried to emphasize common features of multilevel regres-
sion growth models and more conventional multilevel models. This includes avoiding
the common practice of using different notation for growth models. Furthermore, resid-
ual covariance parameters, not introduced before discussion of growth models, are pre-
sented as displaying the same patterns as covariance parameters for random components
in commonplace multilevel regression analyses.
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MULTILEVEL ANALYSIS FOR APPLIED RESEARCHBroadening the Scope of Regression Analysis

1

Broadening the Scope
of Regression Analysis

1.1 CHAPTER INTRODUCTION

Much of the material in the first three chapters is devoted to explaining reasons for using
multilevel regression analysis. One answer is that nesting poses methodological prob-
lems and presents analytical opportunities that otherwise would be dealt with in less sat-
isfactory fashion. Another answer is that the history of regression analysis can be written
in terms of tests and procedures used to detect and correct for violations of the usual
ordinary least squares (OLS) assumptions. Still another answer is that multilevel re-
gression has now been thoroughly institutionalized in the academic and technical–
professional worlds, obliging those who would participate in these settings to under-
stand it.

The three answers offered for “Why do we use multilevel regression?” are comple-
mentary. Whichever one(s) we prefer, it is important to bear in mind that, in the
abstract, multilevel regression is no different from a large number of other correctives
that have been offered over the past 100 years to make regression analysis more useful.
When one or more of the usual OLS assumptions are violated and we hope to make
regression more generally applicable, such procedures are developed. Over time the use
of such correctives becomes routine, and regression analysis is made more informative.

It is true, however, that learning the basic principles of conventional regression
analysis is usually a lot less difficult than mastering needed correctives. As with multi-
level regression, explanations of the correctives are often expressed in densely technical
language, including new concepts and unfamiliar terminology, as well as distinctively
forbidding notation. It is easy to get lost in technical details, losing sight of our objec-
tive: finding ways to make regression analysis more generally applicable and useful.
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Once we have mastered and applied the new material, we may be surprised (and
perhaps even a bit exasperated) to find that regression results with and without correc-
tives are nearly the same. When comparing OLS and multilevel regression results, we
may find that differences among coefficient values are inconsequential, and tests of sig-
nificance may lead to the same decisions. A great deal of effort seems to have yielded
precious little gain.

Nevertheless, taken together and over the long term, we trust that even modest
improvements in specification, estimation, and inference make our statistical work more
informative. We continue to benefit from the power and versatility of regression analy-
sis, and we learn to do it better. Multilevel regression is part of this process; it is one of
many useful correctives that have been developed to make regression analysis more
broadly applicable and illuminating.

1.2 WHY USE MULTILEVEL REGRESSION ANALYSIS?

Our introductory discussion of basic issues in multilevel regression analysis may seem
much too long. Results of numerous examples will be presented for illustrative pur-
poses, but specification and testing of the statistical models and procedures that gener-
ated the results will be delayed until basic issues have been explained. All this may
prompt the reader to wonder when—if ever!—we will get to construction and evalua-
tion of multilevel regression models.

Admittedly, getting through this introductory material takes time. Working through
basic issues, however, will make our presentation of multilevel regression analysis more
accessible and useful.

Throughout this discussion it is important to bear in mind that multilevel analysis
is best construed as one among many extensions of OLS multiple regression. In the
tables in Chapters 6 and 7, our long statistical account of county-level data concerning
the 2004 U.S. presidential election illustrates the claim that multilevel regression is most
useful after the power and versatility of OLS regression have been exhausted in specific
ways. We will begin, therefore, with the most fundamental sort of question: Why bother?
Why use multilevel regression analysis in the first place?

Many of us doing applied work in the social and behavioral sciences learned to use
and understand statistical methods by reading material written by the late Hubert
Blalock (e.g., Blalock, 1960, 1972). In one of his first and most influential textbooks,
Blalock matter-of-factly observed that the laws of social science, insofar as they can be
formulated, are manifest in partial regression coefficients (Blalock, 1964). Blalock did
most of his work before the importance of contextual variables and the nested nature of
much social science data were widely appreciated. However, the search for partial regres-
sion coefficients that give interpretably consistent results from time to time and from
place to place inevitably leads in this direction (Kunovich, 2004).

The importance of contextual factors in social and behavioral research is fairly obvi-
ous, and contextual effects have a good deal of intuitive appeal (Blau, 1960, 1994;
Lazarsfeld & Menzel, 1969; Barr & Dreeben, 1983; Coleman & Hoffer, 1987; Riordan,
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2004). When we are studying reading achievement among middle school students, for
example, it is important to acknowledge explicitly that values of the dependent variable
may be affected by independent variables at both the individual level and at one or more
contextual or group levels. As a result, it is useful to know the gender, ethnicity, and
family income of each student, and it is also useful to know the gender composition, eth-
nic composition, and median family income of the schools they attend (Iversen, 1991;
Hox, 1995). The possibility of individual-level effects and contextual effects in the same
analysis is one compelling reason why multilevel modeling has become so conspicuous
in the study of student achievement.

Contextual variables can be used along with individual-level factors in conventional
OLS multiple regression analyses. Analyses of this kind have been reported at least since
the 1970s, and they have merit (Boyd & Iversen, 1979; Iversen, 1991). A good case can
be made, however, that such work can be done more accurately, elegantly, and persua-
sively by using alternatives to conventional OLS regression (Kreft, 1996).

In spite of its importance and intuitive appeal, however, the prospect of using multi-
level modeling to complement individual-level explanatory variables with contextual
factors may leave many applied researchers feeling obsolete and confused. Earlier meth-
odological developments, such as path analysis, log-linear analysis, and structural equa-
tion modeling, have had similar consequences. When they were introduced, however,
these techniques seemed easier to ignore as issue-specific, of uncertain value, and per-
haps even faddish (Coser, 1975; Duncan, 1975, pp. vii–viii; Cliff, 1983; Freedman, 1987;
Smelser, 2001).

One sometimes gets the impression, moreover, that the most fervent proponents of
new techniques have never really appreciated the power and flexibility of established
procedures, especially OLS multiple regression analysis. Given some historical sense and
the statistical maturity that comes with experience, it seems reasonable to surmise that
champions of novel quantitative techniques would be less inclined to dismiss demon-
strably useful methods as analytically naïve, technically deficient, or simply old-
fashioned.

Nevertheless, the sometimes overstated claim that analysis of student achievement
and other outcomes may be misleading unless consequences of group membership are
evaluated by using alternatives to OLS multiple regression analysis has to be acknowl-
edged. Otherwise, the credibility of a wide variety of statistical analyses will be dimin-
ished (Raudenbush & Bryk, 2002). Understanding multilevel regression and its legiti-
mate place in empirical work, therefore, seems undeniably important to policy analysts,
program evaluators, and others who produce or consume applied research.

1.3 LIMITATIONS OF AVAILABLE INSTRUCTIONAL MATERIAL

Available texts, instructional articles, and tutorials on multilevel analysis are difficult for
most readers. Resources produced for beginners seem only tenuously related to things
they may already understand, especially multiple regression analysis. Even Singer’s
(1998) often-cited article-length account of applying the general purpose software SAS
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in multilevel modeling is limited in this regard. The online Multilevel Modelling Newslet-
ter, while timely and informative, reads as if it were written by and for technically astute
insiders—and that, no doubt, is as intended.

In large measure, failure to draw all but the most abstract parallels between multi-
level analysis and conventional regression analysis may be due to authors’ understand-
able desire to make clear the distinctiveness of multilevel modeling by highlighting its
peculiar virtues, limitations, and demands. After all, multilevel regression is a technique
that raises unusually complex issues in regression model specification, and it works best
when pertinent theory is well developed and substantive literature is rich.

Whether or not this explains the absence of emphasis on obvious parallels, some of
the best-known, most influential authors of material on multilevel modeling seem to be
impatient with those who judge their offerings to be needlessly dense (cf. Goldstein,
2000; De Leeuw, 2003). Occasional efforts to make their applied work accessible to a
broader readership, though no doubt offered in good faith, seem oddly lacking in per-
suasiveness (see, e.g., Yang, Goldstein, Rath, & Hill, 1999).

It is true that some of the best-known and most influential texts seem much more
clearly related to widely used, better-understood regression-based procedures after read-
ers have acquired a fairly thorough understanding of multilevel regression (see, e.g.,
Bryk & Raudenbush, 1992; Raudenbush & Bryk, 2002; Heck & Thomas, 2000).
Typically, however, discussions of parallels are presented in very condensed form; new
concepts, such as cross-level interaction terms, are sometimes introduced with only an
off-handed acknowledgment that they may indeed be unfamiliar to the reader. As a
result, acquiring facility in working with new ideas and never-before-seen notation
remains the brutally difficult part.

Missing from existing accounts, moreover, is explicit recognition of the fact that
development of regression analysis over the last 100 years consists largely of efforts to
find ways to make OLS multiple regression applicable to increasingly complex ques-
tions, even when its basic assumptions have been violated (see, e.g., Haavelmo, 1943;
Ezekiel & Fox, 1959; Blalock, 1964; Goldfield & Quandt, 1972; Belsley, Kuh, & Welsh,
1980; Hosmer & Lemeshow, 1989; Kmenta, 1997; Kennedy, 1998, 2003; Campbell &
Kenny, 1999; Hoffmann, 2003; Kline, 2005; Aguinis, 2004; Santos & Freedman, 2004).
Moreover, whatever adjustments are made to accommodate violations of well-known
regression assumptions, analysts know that they are still doing regression analysis
(Wooldridge, 2006).

1.4 MULTILEVEL REGRESSION ANALYSIS IN SUGGESTIVE
HISTORICAL CONTEXT

Some of the best known statistical tests, such as the Durbin–Watson, Hausman, Chow,
and Breusch–Pagan tests, were developed to detect violations of assumptions that under-
gird OLS multiple regression analysis (Mirer, 1995). Commonly used correctives, such
as estimated generalized least squares, two-stage least squares, logistic regression, and
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generalized Tobit, were devised in an effort to permit efficient estimation of unbiased
regression coefficients when fundamental assumptions do not hold (Heckman, 1979;
Hausman, 1998; Fox, 1991; Berry, 1993; Menard, 2002).

By way of illustration, we will use a data set containing school-level reading
achievement data for 1001 Texas high schools for the school year 1996–1997 (Bickel,
Howley, Williams, & Glascock, 2001). Using OLS multiple regression analysis, we try to
account for mean reading achievement differences from school to school.

We use a conventional complement of school-level independent variables: percent-
age of students who are Black (XBLACK), percentage who are Hispanic (XHISPANIC), percent-
age sufficiently poor to be eligible for free/reduced cost lunch (XPOOR), student–teacher
ratio (XSTR), expenditure per pupil in units of $1000 (XEPP), and school enrollment units
of 100 students (XSIZE). The results of the OLS regression analysis are reported in
Table 1.1.

When we divide the unstandardized regression coefficients by their standard errors
(in parentheses), we get t values showing that XBLACK, XHISPANIC, and XPOOR have statisti-
cally significant coefficients. For each 1% increase in XBLACK, mean school reading
achievement decreases, on average, by 0.029 test score points. For each 1% increase in
XHISPANIC, mean school reading achievement decreases, on average, by 0.020 test score
points. For each 1% increase in XPOOR, mean school reading achievement decreases, on
average, by 0.044 test score points. Each of these relationships holds, moreover, while
we are controlling for all the other independent variables in the multiple regression
equation.

We then run routine tests for violation of OLS assumptions, including the Koenker–
Bassett (KB) test for heteroscedasticity (Gujarati, 2003). The test is easy to use:

1. Run the regression equation as in Table 1.1.
2. Save the residuals and the predicted values.
3. Regress the squared residuals on the squared predicted values.
4. A statistically significant regression coefficient for the variable represented by

squared predicted values tells us that standard errors of regression coefficients
may be inflated because the variance of the residuals is a function of one or
more independent variables.

The results of the KB test appear in Table 1.2. With a t value of 4.50 and 999 degrees of
freedom, we conclude that the assumption of homoscedasticity has been violated.
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TABLE 1.1. Mean Reading Achievement in Texas High Schools

Y = 41.754 – 0.029XBLACK – 0.020XHISPANIC – 0.044XPOOR – 0.014XSTR + 0.023XEPP – 0.005XSIZE

(0.655) (0.004) (0.004) (0.005) (0.036) (0.060) (0.011)

R2 = 36.7%

N = 1001



One source of heteroscedasticity may be the relationship between the residual vari-
ance and school size, as illustrated in Figure 1.1. Even though school size does not have
a statistically significant relationship with the reading achievement dependent variable,
it seems quite clear that the residual variance behaves as if it were a function of school
size: As school size increases, residual variance is diminished.

Given these results—a statistically nonsignificant coefficient for school size and the
apparent implication of school size in generating heteroscedasticity—a reasonable
response might be simply to delete the school size variable (Wittink, 1988). For present
purposes, however, we will proceed as if there is a compelling substantive or theoretical
reason to keep school size in the regression equation to avoid specification error.

Does this mean that heteroscedasticity will necessarily render our regression
results dubious? Of course not. There are various correctives for heteroscedasticity, in-
cluding an easy-to-use procedure called estimated generalized least squares (EGLS)
(Wooldridge, 2002). The EGLS procedure works as follows:

1. Run the regression equation as above and save the residuals.
2. Square the residuals and take their natural logarithms.
3. Use the natural logarithm of the squared residuals as a new dependent variable,

run the regression equation, and save the predicted values.
4. Create a new variable by exponentiating the predicted values. In other words,

raise the base of natural logarithms, 2.71828, to the power represented by each
of the predicted values. Then take the reciprocal of the exponentiated predicted
values.

5. Run the regression equation from item 1, but use the new variable from item 4
as a regression weight.

6. With EGLS, the regression analysis has
now been approximately corrected for
violation of the assumption of homo-
scedasticity.

The EGLS results appear in Table 1.3.
The OLS regression coefficient estimates

in Table 1.1 and EGLS regression coefficient
estimates in Table 1.3 are not exactly the same.
Differences are due to greater precision in esti-
mating regression coefficients after heterosce-
dasticity has been corrected; after all, inflated
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FIGURE 1.1. Heteroscedasticity: Re-
sidual variance by school size.

TABLE 1.2. The KB Test for Heteroscedasticity

YRESIDUALS
2 = 16.718 – 0.009XPREDICTED

2

(0.002)



standard errors mean less precise estimates. Nevertheless, differences between the two
sets of coefficients are small. This is often the case when correctives for violation of
assumptions are invoked, and it holds in most applications of multilevel regression.

We see, however, that five of the seven standard errors are smaller in Table 1.3 after
corrections for heteroscedasticity. Again, this is what we would expect, since hetero-
scedasticity yields inflated standard errors of OLS regression coefficients. These differ-
ences too are small. Furthermore, decisions as to the statistical significance of unstan-
dardized regression coefficients are the same for both corrected and uncorrected
analyses.

The most conspicuous difference between the two analyses is manifest in R2 values,
with R2 substantially larger for the EGLS equation. Over the past 30 years, however,
regression analysts have become a good deal less interested in R2 increments, giving
most of their attention to identification of relationships that are comparatively stable or
explicably different from time to time and from place to place (Blalock, 1964; Duncan,
1975; Wittink, 1988).

Finally, if we compare the scatterplot in Figure 1.2 with the scatterplot in Figure
1.1, we see that the EGLS procedure for correcting for heteroscedasticity, while effective,
is far from perfect. Heteroscedasticity is less strikingly evident in Figure 1.2, but we still
find that the residual variance, on average, diminishes as school size increases. This is an
approximate correction, but a correction nonetheless.

In general terms, what did we just do? We
acknowledged that OLS regression has a set of
assumptions that must be satisfied if we are to get
defensible parameter estimates. We detected vio-
lation of one of the assumptions in the form of
heteroscedasticity. We used one of the easiest-to-
apply procedures to make an approximate correc-
tion for that violation, and we estimated an equa-
tion with suitably precise parameter estimates
(Kennedy, 2003, pp, 133–156). We noted, more-
over, that the differences between corrected and
uncorrected results were small.

Throughout this process, there was never
any doubt that we were doing regression analysis.
We were just trying to make regression applicable
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TABLE 1.3. EGLS Correction for Heteroscedasticity

Y = 41.922 – 0.028XBLACK – 0.022XHISPANIC – 0.047XPOOR – 0.030XSTR + 0.037XEPP – 0.008XSIZE

(0.593) (0.004) (0.004) (0.004) (0.030) (0.059) (0.008)

R2 = 43.7%

N = 1001

FIGURE 1.2. Heteroscedasticity ap-
proximately corrected: Residual vari-
ance by school size.



to a broader range of specific circumstances. When we finished, we acknowledged that
consequences of invoking the EGLS correctives were not large, and reasonable observers
might be skeptical concerning claims that much of anything was gained. Given the ten-
tative and coarse-grained nature of knowledge in the social and behavioral sciences, per-
haps we erred in the direction of undue precision–but perhaps not.

Whatever the long-term value of remedial measures such as EGLS, they exemplify
the sort of corrective process we engage in when we employ multilevel regression analy-
sis. Viewed in this way, multilevel analysis is rightly understood as but one part of a
long-term effort to permit more effective use of multiple regression analysis when one or
more of its assumptions have been violated.

1.5 IT’S JUST REGRESSION UNDER SPECIFIC CIRCUMSTANCES

Consistent with this tradition, multilevel modeling can be usefully viewed as a better
way of doing regression analysis under specific circumstances. The circumstances are
those in which observations, such as students, are nested or grouped in identifiable con-
texts, such as classrooms, schools, and districts.

Grouping may give rise to interesting contextual effects and cross-level interaction
effects, as well as easy-to-miss but consequential methodological problems (Iversen,
1991). As such, explicitly acknowledging grouping through the use of multilevel regres-
sion analysis provides both improved analytical opportunities and a means of effectively
addressing troublesome statistical difficulties, such as dependence among nested obser-
vations and correlated residuals.

Recognition of the importance of nesting is not new in the social and behavioral sci-
ences. A conspicuous example from the early 1980s is Barr and Dreeben’s insightful and
widely read 1983 book How Schools Work, in which IQ is treated both as a characteristic
of individual students and, in the aggregate, as a characteristic of ability groups in which
students are nested.

To gauge the independent effects of IQ at the individual and group levels, Barr and
Dreeben constructed manifest variable path models, with standardized regression coeffi-
cients estimated via OLS. This is a perfectly legitimate approach, so long as the inher-
ently single-level nature of OLS regression is consistent with the analytical task at hand.
In Barr and Dreeben’s research, however, that was not the case.

An inherently single-level analysis means that both individual IQ and aggregated
group IQ will be treated as characteristics of individual students. Nesting is nominally
acknowledged in the form of group mean IQ, but, wittingly or not, nesting is effectively
ignored by simply plugging both individual-level and group-level variables into the same
OLS regression equation where both variables have the same analytical status.

While acknowledging the powerfully suggestive value of early research such as that
reported in How Schools Work, we need a more informative and methodologically defen-
sible way to deal with nesting. At this point, multilevel analysis becomes a valuable tech-
nique for broadening the applicability of conventional regression analysis.
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1.6 JUMPING THE GUN TO A MULTILEVEL ILLUSTRATION

For a moment, we’ll get way ahead of ourselves. We will use Tables 1.4, 1.5, and 1.6 to
illustrate the meaning of multilevel analysis for data organized into nested levels, with
individual observations thereby rendered dependent. Our objective is much the same as
with Tables 1.1 and 1.3, used to illustrate the consequences of EGLS for heteroscedas-
ticity. Specifically, when a regression assumption has been violated—in this case, inde-
pendent observations—what happens when correctives are brought to bear?

Using data from the Child Development Supplement of the Panel Study of Income
Dynamics (Institute for Social Research, 2003), we want to identify factors that explain
variability in total family income. We begin by calculating the intraclass correlation coef-
ficient, a statistic that measures the degree of dependence among observations nested
within states. There is, of course, a huge conceptual, social, and geographical gap
between the individual and the state (Belanger & Eagles, 2005). In the absence of inter-
vening units such as counties, however, we will work with what is available.

The intraclass correlation coefficient tells us the proportion of income variability
that occurs between states rather than within states. Though the numerical value of the
coefficient in this instance is small (r = 0.051), we shall learn that even a very weak
intraclass correlation can substantially deflate standard errors of regression coefficients
(Singer, 1987; Kreft & De Leeuw, 1998).

In spite of the existence of nesting-engendered intraclass correlation, for illustrative
purposes we begin with a conventional OLS multiple regression analysis. Total family
income in units of $1000 (YINCOME) is the dependent variable, and we have just two inde-
pendent variables: race of the household head simplified into two categories, Black or
White (XBLACK, coded 1 if Black and 0 if White); and years of educational attainment of
the household head (XEDUCATION). This is an inadequate specification, to be sure, but it is
a useful point of departure.

The results reported in Table 1.4 are simple enough: Families headed by someone
who is Black have, on average, an annual income of $29,213 less than families headed by
someone who is White, and each level of educational attainment for the family head cor-
responds, on average, to an additional $22,880 annually. (Standard errors are in paren-
theses.)
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TABLE 1.4. OLS Family Income Function

YINCOME
a = 84.156 – 29.213XBLACK1 + 22.880XEDUCATION1

(2.464) (9.688) (1.966)

R2 = 9.2%

N = 1524

Note. aFor the sake of simplicity, in this example we have not
sought to compensate for the rightward skew of family
income, so we are not using natural logarithms of YINCOME.



We may suspect, however, that not only individual characteristics of family heads
are important; contextual variables may make a difference as well. Still with OLS, and
with the state as the context or group, XBLACK1 is aggregated to the state level to give the
percentage of family heads in each state who are Black (XBLACK2), and XEDUCATION1 is aggre-
gated to the state level, yielding the state-level mean for level of educational attainment
for household heads, XEDUCATION2.

Beyond that, we may surmise that there may be specific interaction effects at work
in accounting for annual income differences among families. The relationship between
YINCOME1 and XBLACK1 may vary with the percentage of Black household heads in the state,
and the relationship between YINCOME1 and XEDUCATION1 may vary with the mean educa-
tional level of household heads in the state. In response, two multiplicative interaction
terms are created: XBLACK2 * XBLACK1 and XEDUCATION2 * XEDUCATION1. The respecified OLS
regression equation is reported in Table 1.5.

Three explanatory factors have statistically significant unstandardized coefficients:
XEDUCATION2, XEDUCATION1, and XBLACK2. With a more adequate OLS regression model speci-
fication, we see that families headed by a Black have, on average, an annual family
income $39,373 less than families headed by a White; each additional year of educa-
tional attainment by the household head yields, on average, an annual family income
increment of about $25,232; and for each increment in a state’s mean educational level
for household heads, annual family income increases, on average, by $8351.

At this point, we decide to take another step toward proper regression model speci-
fication. We explicitly acknowledge that we are working with hierarchically organized,
nested data, and we abandon OLS in favor of the soon-to-be-familiar tools of multilevel
regression. The concrete results of this change in analytical approach are reported in
Table 1.6.

To obtain the multilevel results in Table 1.6, you can just look at your computer
screen and follow the steps outlined in SPSS Routine 1.1. Much of the output will be
uninterpretable to readers who are new to multilevel regression. This SPSS routine is
included with our jumping-the-gun example for those who like to begin analyzing data
as soon as possible, even with a very imperfect understanding of the procedure being
used. Some of us gain confidence from the knowledge that once we have mastered con-
cepts and statistical procedures, we will not be stymied by inability to use pertinent soft-
ware. Other readers may choose to skip over this until later, coming back to use it as a
step-by-step guide for doing conventional multilevel analyses with SPSS.
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TABLE 1.5. OLS Family Income Function Respecified

YINCOME1 = 87.490 – 39.373XBLACK1 + 25.232XEDUCATION1 – 2.10XBLACK2 + 8.351XEDUCATION2

(2.507) (12.633) (2.188) (25.122) (3.056)

+ 116.377XBLACK2 * XBLACK1 – 0.083XEDUCATION2 * XEDUCATION1

(82.276) (1.268)

R2 = 11.8%

N = 1478



Near the bottom of the SPSS output, values for the intercept and slopes, along with
their standard errors, appear in the ESTIMATE and STD. ERROR columns of the box
labeled ESTIMATES OF FIXED EFFECTS. This is the information reported in Table 1.6.

The additional output, especially ESTIMATES OF COVARIANCE PARAMETERS, is
new to users of OLS regression and essential to understanding multilevel regression. As
we proceed through our presentation, we will learn to understand and apply the addi-
tional information. For now, however, we will focus exclusively on the intercept and the
slopes, which are interpreted just as the intercept and slopes in OLS regression are.
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TABLE 1.6. Multilevel Regression Analysis of Family Income

YINCOME1 = 85.328 – 39.712XBLACK1 + 24.030XEDUCATION1 – 2.706XBLACK2 + 5.038XEDUCATION2

(3.921) (12.448) (2.739) (34.115) (4.319)

+ 113.164XBLACK2 * XBLACK1 – 0.072XEDUCATION2 * XEDUCATION1

(82.147) (1.514)

R1
2 = 7.0%

N1 = 1478

N2 = 49

SPSS Routine 1.1. Multilevel Regression Analysis of Family Income

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the state is the level-two grouping variable in which individuals are nested,

insert the state identifier into the SUBJECTS box.
4. Click on CONTINUE; insert family income as the dependent variable into the

DEPENDENT VARIABLE box; and insert the independent variables XBLACK1,
XEDUCATION1, XBLACK2, and XEDUCATION2, and the cross-level interaction terms XBLACK2 *
XBLACK1 and XEDUCATION2 * XEDUCATION1, into the COVARIATE(S) box.

5. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move the independent variables and
cross-level interaction terms from the FACTORS AND COVARIATES box to the
MODEL box.

6. Click on CONTINUE.
7. Click on the RANDOM button at the bottom of the screen. The state identifier is

already in the SUBJECTS box, and now we also insert it into the COMBINATIONS
box.

8. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
9. Near the top of the screen, click on INCLUDE INTERCEPT, and move the indepen-

dent variables XBLACK1 and XEDUCATION1 into the MODEL box.
10. Just above INCLUDE INTERCEPT, select UNSTRUCTURED.
11. Click on CONTINUE, and then click on the STATISTICS button.
12. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
13. Click on CONTINUE and click on OK.



Researchers who became comfortable with SPSS using syntax language may do their
analyses in that way, simply by clicking on the PASTE button to the right of the
DEPENDENT VARIABLE box. Begin by entering a dependent variable in the DE-
PENDENT VARIABLE box, click on PASTE, and there it is! Analysts who prefer working
with the Windows interface but who would like to see what their SPSS routine looks like
in syntax language may click on PASTE any time after entering a dependent variable.

With so many more explanatory factors serving simultaneously as controls, it is to
be expected that the coefficients and standard errors for the independent variables in
Table 1.4 will be substantially different from corresponding measures in Tables 1.5 and
1.6. It may seem surprising, however, to see that the regression coefficients in Tables 1.5
and 1.6 are, for the most part, quite similar. After all, in ways that we shall discuss at
length, the multilevel regression model is conceptually and statistically much better
suited to the analysis at hand. In contrast to OLS regression, multilevel regression has an
inherently hierarchical structure, and it is designed to deal with nested data.

Recall, however, that when we compared the OLS and EGLS analyses from Tables
1.1 and 1.3, the regression coefficients were nearly the same, but the standard errors
were, on average, smaller with EGLS. When comparing Tables 1.5 and 1.6, we see that
the OLS and multilevel coefficients are, for the most part, nearly the same, but the multi-
level regression standard errors, on average, are larger. This becomes especially clear and
consequential when we compare the slopes for XEDUCATION2 in the OLS and multilevel
models: The XEDUCATION2 slope is statistically significant in the OLS analysis but not in the
multilevel analysis.

When comparing OLS and multilevel regression results, we will often find just what
we have found here: small coefficient differences coupled with typically larger standard
errors for the multilevel estimates. As with this example, we will see that statistically sig-
nificant results are harder to find with multilevel regression.

At this point, nevertheless, one may understandably feel obliged once again to raise
the all-important question: Why bother? Why use multilevel regression analysis in the
first place? The gains, at least to some well-informed and experienced analysts, may
seem small indeed. In response, let’s remember that, as with EGLS, established regres-
sion correctives are often disappointing in just the same way that multilevel regression
may be: A lot of additional effort leads to analytical improvements that are less compel-
ling than we may have expected. Beyond that, we should ask ourselves just how impor-
tant it is to gain a bit of precision in coefficient estimation, to avoid deflated standard
errors, and to avoid misleading results from tests of significance. After we have com-
pleted our account of multilevel regression, we will be in a position to give better-
informed answers to questions such as these.

1.7 SUMMING UP

Regression analysis, as we commonly understand that procedure, has been used in
applied work for nearly a century. The first edition of Ezekiel and Fox’s (1959) classic
text Methods of Correlation and Regression Analysis was published by Ezekiel in 1930, and
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the 1930 volume contains references to applications of regression published as early as
1917.

With subsequent editions and printings, this seminal statement got longer and man-
ifested a shift in emphasis from correlation to regression. The third edition contained a
heuristic introduction to the very contemporary topic of simultaneous equation models
(Ezekiel & Fox, 1959). Since simultaneity results in the error term’s being correlated
with an explanatory factor, all coefficients are estimated with bias. The development of
instrumental variable methods for estimating simultaneous equations is but one more
example of a regression corrective being developed to deal with a violation of one or
more of the usual OLS assumptions, enabling regression analysts to address interesting
questions that otherwise would be off limits.

Simultaneous equation models are often used in rigorous causal analyses, some-
times taking the form of path models, with nonexperimental data. Many of us who were
students or practitioners in the late 1960s and throughout the 1970s trace the develop-
ment of path analysis to Duncan’s influential article (Duncan, 1966) and widely read
textbook (Duncan, 1975). As Duncan and others have conspicuously noted, however,
the first applications of recursive path models were made much earlier by Wright (Office
of the Secretary, 1994; Wolfle, 2003). Wright’s first published path model on the
heritability of patterns of coloration among guinea pigs has a startlingly contemporary
look and interpretation (Wright, 1920). But what was Wright doing? Simply trying to
find a way to make regression analysis more informative by constructing testable causal
models.

In the 1960s and 1970s, however, the social science literature on path analysis did
nothing quite so well as obscure the fact that path analysis was simply a system of OLS
regression equations organized and interpreted in a specific way (see, e.g., the collection
edited by Borgatta & Bohrnstedt, 1969). Today, however, some of the same authors who
40 years ago rendered path analysis hopelessly obscure to experienced users of multiple
regression have managed to make it sufficiently accessible to be included in usable form
in introductory texts (Knoke, Bohrnstedt, & Mee, 2002).

Statistical tools may have a natural history that spans the range from new, over-
used, and hopelessly obscure, all the way to established, applied as needed, and reason-
ably accessible. This certainly is the case with structural equation modeling, a melding
of principles taken from simultaneous equations, path modeling, and modern measure-
ment theory. To see the transition from obscurity to accessibility, one need only compare
Joreskog’s seminal papers (e.g., Joreskog, 1973) and earlier versions of LISREL software
with Kline’s 2005 text and Byrne’s (2001) Structural Equation Modeling with Amos. Never-
theless, even in recently published, reader-friendly treatments, the fact that structural
equation modeling is best construed as but one of many correctives permitting more
informative use of multiple regression analysis is understated, disguised, or completely
unacknowledged.

The purpose of our account of multilevel regression is to facilitate the process
whereby a mathematically arcane, difficult-to-use, and sometimes overvalued statistical
procedure becomes routinely available for judicious application by applied researchers
asking interesting questions. We have taken the tack that this can best be accomplished
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by emphasizing rather than giving short shrift to parallels with OLS multiple regression
analysis. In fact, we have construed multilevel analysis as just another way of doing
regression analysis under specific circumstances. The circumstances are those in which
data are nested, and nesting produces within-group homogeneity.

Multilevel analysis enables us to accommodate dependent observations and corre-
lated residuals, while providing analytical opportunities in the form of contextual vari-
ables and cross-level interaction terms. These additional terms were used in conven-
tional OLS regression equations long before multilevel regression came along. In most
instances, the two procedures yield similar coefficient estimates with comparable inter-
pretations. With nesting, however, OLS estimators have deflated standard errors, making
tests of significance misleading. OLS software, moreover, routinely employs an incorrect
number of degrees of freedom for contextual variables and cross-level interaction terms.

Multilevel regression, in other words, is but one of the many correctives developed
over the past century to enable regression analysts to make their work more informative.
The farther we stray from this fundamental fact, the more difficult it becomes to learn
multilevel regression.

1.8 USEFUL RESOURCES

Ezekiel, M., & Fox, K. (1959) Methods of Correlation and Regression Analysis: Linear and
Curvilinear (3rd ed.). New York: Wiley.

For readers with little or no knowledge of regression analysis, this old text can still be useful.
Though now out of print, it is available through Amazon.com and other online vendors. Some of
the examples are so dated as to be quaint, and the book is replete with the kind of short-cut com-
putational formulas that were routinely employed before high-speed digital computers became
widely available. Nevertheless, the authors present a good deal of valuable material in easy-to-read
form. If the reader ignores the formulas and focuses on conceptual development, this is a good
introduction to the rudiments of simple and multiple regression analysis. Most of the badly out-
dated and extraneous material can be avoided by covering just Chapters 1–9, 11, 17, 21, 22, and
25. When the book is read in this way, Ezekiel and Fox enable the reader to focus on the nature of
regression analysis without getting lost in narrowly specific technical details.

Gujarati, D. (2006) Essentials of Econometrics. New York: McGraw-Hill.

Up-to-date and reasonably comprehensive, this may be the most accessible regression text
for the modern reader who has completed a first course in statistics. It is easier to read than the
same author’s Basic Econometrics (Gujarati, 2003) but covers less material. Comparing the text by
Gujarati with the one produced by Ezekiel and Fox powerfully reinforces the judgment that the
history of regression analysis has been largely a process of finding correctives and procedures to
make OLS regression applicable to a broader range of interesting issues without violating essential
assumptions. As with most of the econometrics texts commonly used to teach and learn regres-
sion analysis, Gujarati’s work requires little or no knowledge of economics. The statistical tech-
niques introduced are applicable to a broad range of disciplines.
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Wooldridge, J. (2002) Introductory Econometrics (2nd ed.). Cincinnati, OH: South-Western.

This volume is a bit more mathematical than Gujarati’s text, but still far more readable than
most introductions to regression analysis. Wooldridge gets to useful applications of multiple
regression more quickly than Gujarati, and this enhances the value of his book, especially for stu-
dents who are just starting out. As Gujarati does, Wooldridge often uses examples that include
sets of predictors spanning more than one level of analysis. Nevertheless, neither Wooldridge nor
Gujarati acknowledges the value of random coefficient regression or multilevel regression. This
anomaly is consistent with the view that applied statistics varies in important ways from one dis-
cipline to another. Nevertheless, much of the credit for developing random coefficient regression
models rightly goes to econometricians such as Swamy (1971).

Schroeder, L., Sjoquist, D., & Stephan, P. (1986) Understanding Regression Analysis: An Introduc-
tory Guide. Beverly Hills, CA: Sage.

Lewis-Beck, M. (1980) Applied Regression: An Introduction. Beverly Hills, CA: Sage.
Retherford, R., & Choe, M. (1993) Statistical Models for Causal Analysis. New York: Wiley, pp. 1–

68.
Heck, R., & Thomas, S. (2000) An Introduction to Multilevel Modeling Techniques. Mahwah, NJ:

Erlbaum, pp. 37–52.

The two easy-to-read Sage monographs are useful as preliminary or ancillary readings in first
courses in regression, and much the same is true of the first two chapters of Retherford and Choe’s
text. For students who are having trouble with Gujarati, Wooldridge, or other standard introduc-
tory texts, the material contained in these brief accounts may be helpful. Each provides the sort of
overview that enables students to place detailed treatments of specific topics in a coherent con-
text. This helps students understand just what we are trying to accomplish with all the tests, cor-
rectives, and relatively advanced analytical procedures that make up the bulk of textbooks such as
those by Gujurati and Wooldridge. Heck and Thomas’s very brief, elegantly written overview of
multiple regression can be read with benefit, along with any or all of the other three volumes
listed above.

Kennedy, P. (2003) A Guide to Econometrics (5th ed.). Cambridge, MA: MIT Press.

This fifth edition of Peter Kennedy’s very useful volume is 623 pages long. The first edition
(Kennedy, 1979), published 24 years earlier, ran 175 pages. Throughout the various editions and a
250% increase in page length, A Guide to Econometrics has remained what it was at the outset: a
catalogue of regression analysis correctives. The author explicitly acknowledges that his objective
has been to compile an accessible repository of the rapidly growing list of tests and procedures
available to make regression analysis more generally applicable and informative.

Though Kennedy does not acknowledge multilevel regression as such, the following passage
is instructive:

Not all instances of autocorrelated errors relate to time series data. Suppose you have micro [individual-
level] data on wages and other characteristics of workers located in several different industries. You are
interested in the impact of different characteristics on wages and so add measures of industry character-
istics to the set of regressors. Workers in the same industry are likely to have correlated errors because
they all share the influence of unmeasured characteristics of that industry. (Kennedy, 2003, p. 150)
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This is an unambiguous acknowledgment of one important consequence of the nesting of
individual observation within groups: Correlations among residuals may artificially deflate stan-
dard errors of regression coefficients, rendering tests of significance unreliable. There is nothing
remarkable about this quotation except that, in sharp contrast to the existing literature on multi-
level regression, it uses conventional language—expressions such as “autocorrelated errors”—to
identify a primary consequence of nesting.

One might respond by judging this to be excruciatingly obvious. To those just learning to
make sense of multilevel regression, however, it may not be obvious at all. By emphasizing the
distinctiveness of multilevel analysis and failing to make use of opportunities to discuss it in well-
known and broadly applicable language, authors needlessly mystify their material.
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MULTILEVEL ANALYSIS FOR APPLIED RESEARCHThe Meaning of Nesting

2

The Meaning of Nesting

2.1 CHAPTER INTRODUCTION

The nesting of observations within groups is fundamental to multilevel modeling. In
fact, nesting is the primary reason for doing multilevel analysis. Without nesting, group-
ing, or clustering, multilevel analysis loses its reason for being. As it turns out, whether
by design or as an intrinsic or emergent quality, nesting is ubiquitous, taking an inex-
haustible variety of forms.

Whatever its methodological consequences, nesting is a concept that should be of
first importance to students of any discipline that gives attention to contextual factors,
rather than focusing exclusively on individual-level variables. Nevertheless, the obvious
importance of nesting is often overlooked. This is due in part to the peculiar world views
that pervade different disciplines, providing both conceptual tools and unacknowledged
assumptions, with the assumptions sometimes serving as blinders (Alford & Friedland,
1985; Halsey, Lauder, Brown, & Wells, 1997; Alford, 1998).

Ironically, mainstream American economics, which has yielded so many important
developments in regression-based statistical procedures, is largely indifferent to the
methodological difficulties and substantive opportunities occasioned by nesting. The
high-profile public policy-making tool known as human capital theory is a case in point
(see, e.g., Mincer, 1974; Farkas, 1996; Woodhall, 1997).

The literature on human capital is often technically demanding, but the basic causal
process is quite simple:

EDUCATION → PRODUCTIVITY → INCOME

In other words, people who work for a living invest in themselves by improving their
levels of educational attainment. As a result, they become more productive in the work-
place. Productivity is rewarded with increased income.
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Seminal affirmations of human capital theory have placed near-exclusive emphasis
on characteristics of individuals (Schultz, 1960; Becker, 1964, 1993; Heckman &
Krueger, 2003). With rare exceptions, consequences of investments in oneself have been
treated as independent of variability in the social, political, and economic contexts in
which people are located (cf. Carnoy, 2001).

One consequence of this individual-level orientation has been fairly relentless
“school bashing” by American economists (see, e.g., McMurrer & Sawhill, 1998). When,
as during the past 30 years in the United States, expectations engendered by human cap-
ital theory are not met, the simple casual chain becomes problematic. Since the
PRODUCTIVITY → INCOME connection has become sacrosanct in mainstream eco-
nomic theory (Becker, 1993), the break must occur at the EDUCATION → PRODUC-
TIVITY nexus. Public education is presumed to be a lazy monopoly, incapable of pro-
ducing a productive workforce without thoroughgoing reform.

Schwarz (1997), however, has offered evidence that human capital theory works
much as expected only if working people have the institutionalized political resources to
secure payoffs for productivity. In western Europe, human capital theory works pretty
well. In the United States, by contrast, levels of educational attainment are not matched
by levels of income attainment, and exacerbation of economic inequality is one result
(Newman, 1994, 1999; Uchitelle, 2006).

If ever there were a theoretical perspective that demanded emphasis on nesting,
human capital theory is it! The simple causal chain that undergirds this perspec-
tive is a useful point of departure, but obvious and important contextual factors—
manifestations of nesting!—determine the nature and strength of the relationships
among the variables in the model. With multilevel regression analysis, these factors
can be explicitly incorporated. Regression coefficients themselves, such as the slope
that measures the PRODUCTIVITY → INCOME relationship, may be treated as func-
tions of overarching contextual factors, especially measurable changes in the occupa-
tional distribution. Failure to acknowledge nesting and its consequences results in a
misspecified model.

There is nothing new about the judgment that contemporary economics gives insuf-
ficient attention to contextual factors. Moreover, some commonplace econometric tools
such as the Chow test (Gujarati, 2003) were developed in recognition of contextual dif-
ferences. However, when the number of categories of a contextual variable (e.g., labor
markets nested in very different countries) becomes large, usual methods of dealing with
interaction effects are rendered hopelessly cumbersome. At this point, the virtues of
multilevel regression analysis become conspicuous.

By way of illustration, we will use a U.S. data set reported by Card (1995) that
permits evaluation of human capital theoretic causal processes (Wooldridge, 2002).
Respondents’ education is measured in years of schooling completed, and income is
expressed in terms of hourly wage. Because individual-level productivity is notoriously
difficult to measure (Thurow, 1983; Lowery, Petty, & Thompson, 1995; Boudreau &
Boswell, 1997), we will use respondents’ score on a standardized test of knowledge of
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the world of work as a crude proxy for productivity. Given these operational definitions,
the human capital theory schematic becomes more concrete:

YEARS OF SCHOOLING → KNOWLEDGE → HOURLY WAGE LOGGED

Say we estimate an OLS simple regression equation such as the following:

YWAGE = a + bYEARSXYEARS

If human capital theory works as its proponents claim, a positive coefficient for YEARS
OF SCHOOLING (XYEARS) should be substantially diminished when KNOWLEDGE
(XKNOW) is introduced into the regression equation:

YWAGE = a + bYEARSXYEARS + bKNOWXKNOW

Consistent with this, when all 3009 cases are used in the analysis, the simple and multi-
ple OLS regression results are as follows:

YWAGE = 5.742 + 0.043XYEARS

YWAGE = 5.454 + 0.017XYEARS + 0.018XKNOW

The unstandardized regression coefficient for XYEARS remains statistically significant, but
its numerical value becomes much smaller when our productivity proxy is introduced.
This is precisely what human capital theory implies.

What we do not see, however, is that when the data set is divided into nine geo-
graphical regions, the regression results vary substantially from place to place. When we
regress YWAGE on XYEARS, the coefficient for XYEARS varies from a statistically nonsignificant
(p > .05) 0.017 to a statistically significant (p < .001) 0.053. After our productivity proxy
has been introduced, the same coefficient varies from a statistically nonsignificant (p >
.05) –0.003 to a statistically significant (p < .001) 0.021.

Similarly, with XYEARS in the equation, from region to region the coefficient for XKNOW

varies from a statistically significant (p < .05) 0.011 to a statistically significant (p < .001)
0.023. As we would expect, moreover, when the residuals for the multiple regression
equation with all 3009 cases are used as the dependent variable in a one-way analysis of
variance with region as the independent variable, the F value is statistically significant
(p < .001).

This degree of variability in regression slopes makes a strong case for paying atten-
tion to nesting. Inasmuch as the earnings attainment processes intrinsic to human capi-
tal theory vary from place to place, they merit investigation with multilevel analysis.
This would give us added confidence in our coefficient estimates and inferential tests,
and we may even be able to explain why coefficients vary.
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2.2 NESTING ILLUSTRATED: SCHOOL ACHIEVEMENT
AND NEIGHBORHOOD QUALITY

The nature of nesting and corresponding contextual effects are easy to illustrate further.
Research concerning neighborhood effects on school achievement provides an instruc-
tive example. Imagine a cohort of 331 beginning kindergarten students in 12 randomly
selected elementary schools located in two contiguous counties in Appalachian West
Virginia (Bickel, Smith, & Eagle, 2002). The children, with few exceptions, are from
impoverished rural families living in impoverished rural neighborhoods.

In spite of shared poverty, however, the neighborhoods vary with respect to mea-
sured quality (cf. Furstenburg, Cook, Eccles, Elder, & Samerhoff, 1990). If a sense of sta-
bility, safety, social cohesion, and shared world view pervades a neighborhood, students
bring this with them to school. In the aggregate, this yields a foundation for develop-
ment of an in-school neighborhood—a school-level context in which individual stu-
dents are nested—that provides a secure and hopeful environment. Children are not
socially isolated, culturally adrift, and precociously fatalistic, as pervasive typifications
of poor rural areas would have it (Inkeles & Smith, 1974). Instead, this kind of Appala-
chian neighborhood—this kind of context—provides the social and cultural where-
withal for learning to occur (see also Bickel & Maynard, 2004).

It is useful to recognize, however, that neighborhood quality, in spite of its nesting-
intensive sound, need not be construed only as a contextual variable. It can also be
treated as a characteristic of individuals simply by assigning neighborhood quality val-
ues to each individual in a data set. One of the virtues of multilevel regression is that it
enables us to treat a variable such as neighborhood quality as both a characteristic of
individuals and a contextual variable in the same analysis. We can clarify this with our
12-school West Virginia data set.

Figures 2.1 through 2.3 below illustrate three different kinds of relationships
between neighborhood quality and a standardized measure of vocabulary achievement,
the Woodcock–Johnson 22 (Woodcock & Johnson, 1990; Bickel & McDonough, 1998).
In spite of the contextual-sounding nature of neighborhood quality as a concept, only
one relationship, displayed in Figure 2.3, was estimated with explicit conceptual and
statistical acknowledgment of nesting.

Table 2.1 and Figure 2.1 depict the relationship between individual students’ vocab-
ulary achievement at the beginning of kindergarten and neighborhood quality measured
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TABLE 2.1. Reading Achievement for West Virginia Kindergarten Students: Individual-Level Analysis
with OLS

Y = 10.233 + 0.325XINCOME1 + 0.208XEDUCATION1 + 0.330XHEADSTART1 – 0.586XETHNIC1 + 0.093XNEIGHBOR1

(0.228) (0.113) (0.154) (0.537) (0.812) (0.034)

R2 = 10.4%

N = 308



at the student level. Controls are included for the influence of family income, parents’
education, ethnicity, and Head Start participation. Variable name subscripts make it clear
that we are analyzing individual-level data.

We have found an interesting relationship that merits further investigation. How-
ever, since neighborhood quality is construed exclusively as a characteristic of individu-
als, this is not an analysis that acknowledges nesting. With nearly 22% of the variability
in reading achievement occurring between schools (intraclass correlation coefficient =
0.216), it certainly should be, but it’s not.

Given a comparable set of control variables, this time measured as characteristics of
schools, Table 2.2 and Figure 2.2 illustrate the relationship between school mean vocab-
ulary achievement and neighborhood quality measured at the school level. Variable name
subscripts indicate that we are analyzing level-two data. This relationship too may
prompt further empirical inquiry. However, since all variables are measured at the school
level and all are construed as characteristics of schools, this is another analysis that does
not involve nesting.

Interestingly, while Figures 2.1 and 2.2 both report regressions of vocabulary
achievement on neighborhood quality, they have very different slopes. Both are positive,
but the slope estimated with individual-level data in Figure 2.1 is 0.093; the slope esti-
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FIGURE 2.1. Individual vocabulary
achievement by neighborhood quality at
student level.

TABLE 2.2. Reading Achievement for West Virginia
Kindergarten Students: School-Level Analysis with OLS

Y = 10.222 – 0.682XINCOME2 – 2.536XEDUCATION2 + 2.214XHEADSTART2 – 8.014XETHNIC2 + 0.932XNEIGHBOR2

(0.744) (1.644) (2.474) (5.520) (8.642) (0.515)

R2 = 65.7%

N = 12

FIGURE 2.2. School mean vocabulary
achievement by neighborhood quality at
school level.



mated with school-level data in Figure 2.2 is more than nine times as large, 0.932,
though with so few cases it is not statistically significant.

Differences of this magnitude, sometimes involving different signs, are common-
place when comparing analyses of aggregated and nonaggregated data (Kreft & De
Leeuw, 1998; Snijders & Bosker, 1999). Moreover, Robinson’s (1950) well-known cau-
tionary observations concerning ecological inference still apply with undiminished
force. Specifically, making inferences about individuals from grouped data often gener-
ates misleading results.

Finally, with controls in place, Table 2.3 and Figure 2.3 display the relationship
between individual students’ vocabulary achievement and neighborhood quality mea-
sured at the level of the student, as in Table 2.1. In this instance, however, the individual
students are treated as nested within schools. This means that the intercept and the
neighborhood quality slope for individuals are permitted to vary from school to school.
Furthermore, school-to-school variability in the intercept and the neighborhood quality
slope are treated as functions of neighborhood quality at the school level. This means
that a school-level or contextual measure of neighborhood quality is used as another in-
dependent variable, also contributing to explaining variability in the vocabulary achieve-
ment dependent variable.

Table 2.3 and Figure 2.3 thus illustrate an analysis that explicitly recognizes nest-
ing. In this instance students are nested within schools. Variable name subscripts indi-
cate that we are using variables measured at the individual level and variables measured
at the school level. As with Table 1.6 in our annual family income example, we also see a
multiplicative interaction term, XNEIGHBOR2 * XNEIGHBOR1, created by using an independent
variable measured at two levels—in this case, the individual and the school.

Unfamiliar measures such as R1
2, the reporting of two sample sizes, and the nature

of alternative estimators used in this analysis will be fully explained as we proceed.
Moreover, there is additional interpretable output, concerning characteristics of the ran-
dom coefficients; this output is routinely provided with multilevel regression, but it is
new to users of OLS regression. We will introduce this gradually as we learn more about
this procedure.
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TABLE 2.3. Reading Achievement for West Virginia Kindergarten Students:
Multilevel Analysis with Alternative Estimators

Y = 0.755 + 0.210XINCOME1 + 0.296XEDUCATION1 + 0.301XHEADSTART1 – 0.012XETHNIC1

(6.494) (0.109) (0.149) (0.524) (0.842)

+ 0.074XNEIGHBOR1 + 0.275XNEIGHBOR2 + 0.004XNEIGHBOR2 * XNEIGHBOR1

(0.037) (0.186) (0.003)

R1
2 = 14.1%

N1 = 308

N2 = 12



For now we may say simply that R1
2 is a

multilevel regression analogue of the usual R2

statistic used with OLS regression. Two sample
sizes refer to the students (N1) nested in
schools (N2). The alternative estimators are
called restricted maximum likelihood (REML).
They are well suited to analyzing data in which
nesting gives rise to group-to-group variability
in intercepts and slopes, meaning that it is use-
ful to estimate intercepts and slopes while per-
mitting them to take on different values from
one school to another.

SPSS Routine 2.1 is the routine for estimat-
ing this multilevel equation. Much of the out-
put will be new to readers who have not
worked with multilevel analysis, and applica-
tion of the routine is optional. As noted for

The Meaning of Nesting 23

FIGURE 2.3. Individual vocabulary
achievement by neighborhood quality,
multilevel results.

SPSS Routine 2.1. Multilevel Analysis of Vocabulary Achievement

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the school is the level-two grouping variable in which individuals are nested,

insert the school identifier into the SUBJECTS box.
4. Click on CONTINUE; insert vocabulary achievement as the dependent variable into the

DEPENDENT VARIABLE box; and insert the independent variables XINCOME1,
XEDUCATION1, XHEADSTART1, XETHNIC1, XNEIGHBOR1, and XNEIGHBOR2, and the cross-level
interaction term XNEIGHBOR2 * XNEIGHBOR1, into the COVARIATE(S) box.

5. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move the independent variables and
cross-level interaction terms from the FACTORS AND COVARIATES box to the
MODEL box.

6. Click on CONTINUE.
7. Click on the RANDOM key at the bottom of the screen. The school identifier is already

in the SUBJECTS box, and now we also insert it into the COMBINATIONS box.
8. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
9. Near the top of the screen, click on INCLUDE INTERCEPT, and move the indepen-

dent variable XNEIGHBOR1 into the MODEL box.
10. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select

UNSTRUCTURED.
11. Click on CONTINUE, and then click on the STATISTICS button.
12. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
13. Click on CONTINUE and click on OK.



SPSS Routine 1.1, the primary benefit of actually running the analysis at this stage is
gaining confidence in and familiarity with the mechanics of the MIXED MODELS proce-
dure, which makes multilevel regression possible with SPSS. Either SPSS Routine 1.1 or
2.1 can be used as a step-by-step guide for using SPSS with the Windows interface to do
conventional multilevel analyses.

The unstandardized slope for individual-level neighborhood quality in Table 2.3,
based on a multilevel regression analysis of nested data, is 0.074, not too different from
the OLS slope for individual-level data in Table 2.1. If we estimate an OLS regression
equation that includes both individual and school-level measures of neighborhood qual-
ity, as in Table 2.4, the OLS coefficient for individual-level neighborhood quality and the
multilevel coefficient become still more similar. With OLS, of course, slopes and the
intercept cannot vary from group to group, so nesting is only simulated. Contextual vari-
ables and cross-level interaction terms are tacked on in a jerry-rigged way.

As we move through our discussion, we will learn how to use both individual-level and
group-level variables as explanatory factors in the same multilevel regression equation
explaining variability in the same individual-level dependent variable, as we have done in
Table 2.3. The same equation will include the effects of individual characteristics and the
effects of contextual characteristics. In other words, we will learn how to do methodologi-
cally creditable, substantively useful analyses of nested data without resorting to conceptu-
ally crude (even if numerically close) OLS approximations, as in Table 2.4.

As an aside, critics of the research that has found no effects for Head Start often
attribute disappointing findings, such as those reported in Table 2.4, to regression model
misspecification. Among other objections, the absence of a prior achievement control
variable is cited as a serious deficiency (Bickel & McDonough, 1998). If we respecify the
equation in Table 2.4 so that the dependent variable is reading achievement at the end of
kindergarten, with the beginning-of-kindergarten measure as a control, we get the OLS
results in Table 2.5.

Addition of a pretest control still leaves us with no Head Start effects. In Chapter 11
we will address the question of Head Start effects, making further regression model spec-
ification improvements. Specifically, we will use a multilevel growth model in an effort
to give Head Start its due.
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TABLE 2.4. Reading Achievement for West Virginia Kindergarten Students:
Simulating Multilevel Analysis with OLS

Y = –0.755 + 0.277XINCOME1 + 0.175XEDUCATION1 + 0.377XHEADSTART1 – 0.377XETHNIC1

(6.494) (0.112) (0.152) (0.529) (0.800)

– 0.082XNEIGHBOR1 + 0.314XNEIGHBOR2 + 0.005XNEIGHBOR2 * XNEIGHBOR1

(0.034) (0.094) (0.004)

R2 = 14.0%

N = 308



2.3 NESTING ILLUSTRATED:
COMPARING PUBLIC AND PRIVATE SCHOOLS

Other examples of nesting and associated contextual effects are numerous. During the
1980s, for example, education research and policy journals shared a near-obsession with
comparisons of the effectiveness and equity of public and private schools (Berliner &
Biddle, 1995). Arguments offered by proponents of private schooling held that private
schools were superior to their public counterparts because they enjoyed a more favor-
able disciplinary climate, made stronger academic demands on all students, were admin-
istratively streamlined, and were better able to promote parental involvement and a
sense of community (see, e.g., Coleman & Hoffer, 1987; Chubb & Moe, 1992; see also
the more recent work by Benveniste, Carnoy, & Rothstein, 2003). Individual students, as
a result, were presumed to be nested in differing educational contexts, depending on
whether they attended a public or private school.

The information reported in Figure 2.4 concerns standardized math achievement
test scores for 3642 public school students and 3543 private school students. The infor-
mation is taken from a widely used subset of the High School and Beyond data set (cf.
Singer, 1998; Raudenbush & Bryk, 2002).
Descriptive summaries such as this have
often been used to illustrate—and sometimes
to substantiate!—the claim that private
schools are more effective in promoting mea-
sured achievement than public schools. Per-
tinent examples include the very influential
report by Coleman, Hoffer, and Kilgore
(1982) and the frequently cited account by
Chubb and Moe (1992).

If the educational contexts represented
by public and private schools did in fact dif-
fer in learning-related ways, they would give
rise to contextual or group effects. Students
nested in differing contexts, as a result, might
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FIGURE 2.4. Public–private school math
achievement.

TABLE 2.5. Reading Achievement for West Virginia Kindergarten Students:
Simulating Multilevel Analysis with OLS; Pretest Included

Y = 4.106 + 0.018XINCOME1 + 0.055XEDUCATION1 – 0.162XHEADSTART1 + 0.410XETHNIC1

(1.103) (0.091) (0.122) (0.428) (0.642)

+ 0.000XNEIGHBOR1 + 0.074XNEIGHBOR2 + 0.006XNEIGHBOR2 * XNEIGHBOR1

(0.029) (0.080) (0.010)

R2 = 55.7%

N = 308



experience enhanced or diminished achievement. These contextual effects typically
would manifest the more favorable educational environments provided by private
schools. It would be conceptual mistake, therefore, to treat attendance at a public or pri-
vate school solely as a characteristic of individual students, as has often been done (see,
e.g., Coleman et al. 1982). To do so means failing to acknowledge nesting when it is
obviously present. The public–private variable, in this instance, should be treated as a
gauge or indicator of a group or contextual phenomenon occurring at the school level,
rather than a measure made on individual students.

Let us suppose, however, that we erroneously treat the public–private school vari-
able solely as a characteristic of individuals, ignoring the fact that this organizational fac-
tor is best understood as a contextual variable. Compounding this error, we treat other
independent variables, such as student socioeconomic status (SES), in the same way: We
rightly acknowledge SES as a characteristic of individual students, but we do not also
treat SES as an aggregated contextual factor, a characteristic of schools in which individ-
ual students are nested. If we again use the often-cited subset of the High School and
Beyond data containing 160 schools and 7185 students, what is the substantive meaning
of this misspecification of our regression model?

With math achievement as the dependent variable, Table 2.6 reports the value of the
public–private coefficient for an OLS regression equation with the public–private vari-
able and SES both treated as characteristics of individual students, but with no variables
representing contextual factors. In addition, using the same dependent variable, Table
2.6 reports the value of the public–private coefficient for an alternative multilevel regres-
sion model estimated with REML estimators. REML estimators are the alternatives to
OLS used in producing the results reported in Table 2.3. (Standard errors in Table 2.6 are
in parentheses.)

Simply using alternative estimators such as REML, of course, does not mean that we
are doing multilevel analysis. As we have noted and as we shall further explain, however,
REML estimators are better suited to multilevel regression analysis than OLS. Fortu-
nately for all of us, the unstandardized regression coefficients for REML and OLS are
interpreted in the same way.

Furthermore, in our regression equation using REML estimators, SES has been
treated as a characteristic of individual students and as an aggregated contextual charac-
teristic of schools, with the school mean for SES used as the contextual variable. The
public–private variable has been treated as a characteristic of schools only. For both the
OLS and multilevel REML analyses, a positive coefficient represents an advantage for
private high schools.
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TABLE 2.6. Public–Private Coefficients

Public–private coefficient without contextual effects = 2.806
(0.155)

Public–private coefficient with SES contextual effect = 1.210
(0.308)



The substantial difference in the size of the unstandardized regression coefficients
for the public–private variable is due to differences in regression model specification.
With OLS estimators used in the absence of contextual variables, the private school
advantage is more than twice as large as when the public–private variable is construed as
a contextual factor in a multilevel model.

The difficulties posed by failure to include variables representing contextual effects
are further clarified when we inquire about the effect of SES, in aggregated form, at the
school level. We learn that an important school-level contextual variable is completely
overlooked in the conventional OLS analysis, in which contextual variables have not
been included. If we fail to include a variable representing SES aggregated to the school
level, the coefficient for the SES contextual variable is constrained to equal zero in the
OLS equation. The consequences of this manifestation of regression model misspeci-
fication are conspicuously evident in Table 2.7.

We have just seen in Table 2.6 that failure to include SES aggregated to the school
level constitutes a troublesome specification error because it results in inflation of the
coefficient for the public–private contextual variable. Beyond that, Table 2.7 makes clear
that the same kind of specification error prompted us to completely overlook a substan-
tial group-level SES effect. Furthermore, as still another adverse consequence of the
same mistake, Table 2.8 suggests that the unstandardized regression coefficient for SES
at the individual level may have been slightly overestimated.

Figures 2.5 and 2.6 illustrate the point that the multilevel regression model with
contextual effects and REML estimators is more effective than the OLS model in
accounting for math achievement differences between public and private school stu-
dents. Since the multilevel model corrects for particular forms of specification error in
the OLS model, this is exactly what we would expect: A correctly specified model does a
better job of explaining variability in a dependent variable than a poorly specified model
(Gujarati, 2006).

We closed our neighborhood quality illustration of nesting with the promise that
eventually we would learn how to use both individual-level and group-level variables as
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TABLE 2.7. School-Level SES Coefficients

SES contextual variable excluded: Unstandardized coefficient = 0.000
(N/A)

SES contextual variable included: Unstandardized coefficient = 5.509
(0.376)

TABLE 2.8. Individual-Level SES Coefficients

SES individual-level coefficient with contextual variables excluded = 2.191
(0.117)

SES individual-level coefficient with contextual variable included = 2.133
(0.121)



explanatory factors in the same multilevel regression equation. While we have not got-
ten to the execution stage yet, it is worth emphasizing that the second set of results in
Tables 2.6, 2.7, and 2.8 are in fact coefficients taken from one multilevel regression equa-
tion, with students nested in schools. The same equation includes both individual-level
variables and group-level or contextual variables: it is a multilevel regression equation.

We have already seen such equations for our family income example in Table 1.6
and our reading achievement example in Table 2.3. Though we have not yet worked
through specification of the multilevel regression model or estimation of coefficients,
standard errors, and summary statistics, it seems useful to continue to jump the gun,
looking at the equations that give rise to the results we are discussing. In the process we
may compare these results with OLS estimates.

Beginning with a conventional OLS multiple regression equation in which both the
public–private variable and SES are treated exclusively as characteristics of individuals,
we get the results in Table 2.9. This is the equation that gave us the first set of numbers
in Tables 2.6, 2.7, and 2.8.

The multilevel regression equation that gave us the second set of numbers in Tables
2.6, 2.7, and 2.8 is presented in Table 2.10. These estimates have been corrected for the
effects of nesting-engendered intraclass correlation, with the intercept and the slope for
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FIGURE 2.5. Public–private school math
achievement: OLS adjustment.

FIGURE 2.6. Public–private school math
achievement: Multilevel adjustment.

TABLE 2.9. Public and Private School Math Achievement:
Individual-Level Analysis with OLS Estimators

Y = 11.377 + 2.191XSES1 + 2.806XPRIVATE1

(0.109) (0.117) (0.155)

R2 = 8.6%

N = 7185



XSES1 permitted to vary from school to school. XSES2 and XPRIVATE2 are contextual variables
that help explain variability in student math achievement and contribute to accounting
for variability in the random intercept and random slope.

The cross-level interaction terms XSES2 * XSES1 and XPRIVATE2 * XSES1 permit us to
address two interesting questions raised by the substantive literature comparing public
and private schools: Does the relationship between math achievement and individual
student SES vary with the SES composition of the school? And does the relationship
between math achievement and individual student SES vary with school type, public or
private? (see Huang, 2000).

The only difference between SPSS Routine 2.2 and the two already presented is
inclusion of a contextual variable. Like SPSS Routines 1.1 and 2.1, SPSS Routine 2.2 can
be used as a step-by-step guide for doing conventional multilevel analyses with SPSS.

The estimated coefficients measure the contextual effect of the public–private vari-
able (1.210), the contextual SES effect (5.509), and the individual-level SES effect
(2.133). The interaction term XSES2 * XSES1 tells us that individual-level SES pays off even
more handsomely as the average SES of the context provided by a school increases. The
interaction term XPRIVATE2 * XSES1 suggests that individual-level SES advantages and disad-
vantages are diminished in private schools.

As with Table 2.3, the multilevel regression results in Table 2.10 include some unfa-
miliar statistics that we briefly defined above. Again, moreover, we acknowledge that
there is additional essential output concerning characteristics of the random coefficients,
which we will gradually introduce as we proceed.

As we have already explained, moreover, it is useful to bear in mind that differences
between coefficients estimated with OLS and with multilevel procedures are often sur-
prisingly small. This holds in spite of the fact that OLS regression analyses are inherently
single-level and do not permit intercepts and slopes to vary from group to group. As a
case in point, when the contextual variables and cross-level interaction terms from the
multilevel model in Table 2.10 are added to the OLS equation in our public–private
example, the multilevel coefficients and the OLS coefficients are almost the same, as we
see in Table 2.11.

Figure 2.7, moreover, much more closely approximates Figure 2.6: OLS and multi-
level adjustments for math achievement give almost exactly the same results when the
same individual-level and contextual independent variables and cross-level interaction
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TABLE 2.10. Public and Private School Math Achievement: Multilevel Analysis
with Alternative Estimators

Y = 12.751 + 2.133XSES1 + 5.509XSES2 + 1.210XPRIVATE2 + 1.035XSES2 * XSES1 – 1.639XPRIVATE2 * XSES1

(0.143) (0.121) (0.376) (0.308) (0.299) (0.240)

R1
2 = 12.6%

N1 = 7185

N2 = 160
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TABLE 2.11. Public and Private School Math Achievement:
Simulating Multilevel Analysis with OLS

Y = 12.766 + 2.132XSES1 + 5.170XSES2 + 1.271XPRIVATE2 + 1.044XSES2 * XSES1

(0.074) (0.112) (0.191) (0.158) (0.300)

– 1.642XPRIVATE2 * XSES1

(0.240)

R1
2 = 12.6%

N1 = 7185

N2 = 160

SPSS Routine 2.2. Multilevel Regression Analysis
with Type of School and SES as Contextual Variables

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the school is the level-two grouping variable in which students are nested,

insert the school identifier into the SUBJECTS box. This means that individual stu-
dents are grouped in schools.

4. Click on CONTINUE; insert math achievement as the dependent variable into the
DEPENDENT VARIABLE box; and insert the independent variables XSES1, XSES2, and
XPRIVATE2, and the cross-level interaction terms XSES2 * XSES1 and XPRIVATE2 * XSES1,
into the COVARIATE(S) box.

5. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move the independent variables
and cross-level interaction terms from the FACTORS AND COVARIATES box to the
MODEL box.

6. Click on CONTINUE.
7. Click on the RANDOM button at the bottom of the screen. The school identifier is

already in the SUBJECTS box, and now we also insert it into the COMBINATIONS
box.

8. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
9. Near the top of the screen, click on INCLUDE INTERCEPT, and move the indepen-

dent variable XSES1 into the MODEL box.
10. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select

UNSTRUCTURED.
11. Click on CONTINUE, and click on the STATISTICS button.
12. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and

TESTS FOR COVARIANCE PARAMETERS.
13. Click on CONTINUE and click on OK.



terms are included in both equations. On
average, nevertheless, the standard errors in
the multilevel regression equation are larger,
as we would expect.

2.4 CAUTIONARY COMMENT
ON RESIDUALS
IN MULTILEVEL ANALYSIS

While comparison of Figures 2.5, 2.6, and
2.7 makes an important point with regard to
the effects of proper specification of a regres-
sion model, it also sets the stage for a brief
cautionary comment regarding the more
complex nature of residuals in multilevel regression (Diez-Roux, 2002). Figures 2.5, 2.6,
and 2.7 were constructed with residuals from OLS and multilevel regression analyses.
This works well enough with OLS estimators and with level-one residuals in multilevel
analyses (Hilden-Minton, 1995).

Odd as it may seem to long-time users of OLS multiple regression, however, a multi-
level model has more than one set of residuals. If a multilevel model has more than two
levels, residuals can be estimated for each. One of the limitations of SPSS versions 11.5
through 14.0 is that higher-level residuals cannot be saved in straightforward fashion
with a simple command statement. With some extra work, however, they are not too dif-
ficult to obtain.

The conceptual basis for higher-level residuals is not hard to understand. For exam-
ple, if an intercept is permitted to vary from one second-level group to another, the loca-
tion of the regression line for each group may vary with respect to the reported overall or
average regression line. Similarly, if one or more
slopes are permitted to vary from group to group,
this may be another source of variability for each
group’s regression line. Random intercepts and ran-
dom slopes are thus sources of error for estimated
values of the dependent variable when it is aggre-
gated to second and higher levels.

Testable assumptions of multilevel regression
analysis include normality of level-one residuals and
multivariate normality of higher-level residuals. In
addition, residuals at different levels are assumed to
be uncorrelated and to have uniform variance. Fig-
ure 2.8 displays the near-normal distribution of esti-
mated level-two or school-level residuals for the
analysis reported in Table 2.10. Figure 2.9 makes
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FIGURE 2.8. Estimated school-
level residuals.

FIGURE 2.7. Simulated multilevel adjust-
ment with OLS.



clear that the school-level and individual-level
residuals are, as a practical matter, uncor-
related (r = 0.07).

Higher-level residuals have gotten a good
deal of recent attention because they are
sometimes used in research on school ef-
fectiveness (Goldstein, Huiqi, Rath, & Hill,
2000; Betebenner, 2004; Leyland, 2004;
Thum, 2004). This kind of research tends to
be driven by narrowly quantitative gauges
of human capital theoretic concepts, such as
measures of “value added” to students’ stan-
dardized test scores.

The usual argument is that some schools
do better or worse than we might reasonably

expect from their student composition and other factors that can be statistically con-
trolled. Examination of school-level residuals enables us to identify high-performing and
low-performing schools, using information such as that presented in Figure 2.10 for the
High School and Beyond subsample (Hershberg, Simon, & Lea-Kruger, 2004). (Confi-
dence intervals for level-two residuals are usually part of such a layout, but they are not
available with SPSS versions 11.5 through 14.0.)

Analyses of approximately this kind were often done with OLS residuals long before
multilevel regression was introduced. As with multilevel regression, the operating
assumption was that once extraneous factors such as SES, ethnicity, prior achievement,
and gender were statistically controlled, comparison of residuals would tell us which
schools were doing better or worse than expected after student characteristics were
taken into consideration.

Some authors have suggested, however, that a fair assessment of the substantive
value of analyses of higher-order residuals requires the admonition that we not be
too quick to embrace this procedure for policy-making purposes (Tanner, Jones, &

Treadway, 2000; McCaffery, Lockwood, Koertz, & Hamilton,
2004; Watson, 2004; Brasington & Haurin, 2005; see also
Goldstein, 1998). This holds in spite of the enthusiasm of
seminal figures in the development of multilevel modeling
for immediate use of school effectiveness research of pre-
cisely this sort (see, e.g., Goldstein et al., 2000).

Bear in mind what we are doing when we use residuals
to compare schools. We have controlled for a more or less
readily identifiable, easy-to-measure set of independent vari-
ables, and whatever variability is left is attributed to differ-
ences in school effectiveness, with effectiveness conceptual-
ized in very narrow terms, and with reasons for school-to-
school differences based fundamentally on speculation.
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FIGURE 2.10. Ranked
school-level residuals.

FIGURE 2.9. School-level residuals re-
gressed on individual-level residuals.



Furthermore, school-level residuals
estimated via multilevel regression analy-
sis are subject to shrinkage. This means
that REML (or maximum livelihood) esti-
mation of the random coefficients in a
multilevel regression model gives greater
weight to large groups, such as large
schools or large classrooms, than to small
groups (Tate, 2004). The effect on school-
level residuals is to make them, too, func-
tions of school size. As a result, very high-
performing schools that also happen to be
very small will be comparatively devalued
relative to larger schools.

For some observers, it is difficult to see that any substantive explanatory power is
gained by what they take to be an aridly empirical exercise in which the role of shrink-
age is not suitably acknowledged. Instead, it seems like an invitation to treat differences
in school quality as manifestations of whatever reform, innovation, or bundle of ostensi-
bly best practices happens to be under discussion (cf. Thrupp, 1999; Alicias, 2005).
Nevertheless, use of higher-level residuals in organizational performance studies has oc-
casioned sophisticated, ongoing research among students of multilevel regression analy-
sis and school effectiveness (Rumberger & Palardy, 2004). Use of higher-level residuals
in studying organizational effectiveness, however, is not a topic that we will discuss fur-
ther here.

It is worth noting, finally, that when adjusted for SES differences at the school level,
the private school advantage in terms of mean math achievement is reduced to 1.058 test
score points, as illustrated in Figure 2.11. We see that if the school rather than the indi-
vidual student is treated as the unit of analysis, differences between public and private
schools in terms of measured achievement become still smaller.

This provides another illustration of the often-made observation that most of the
variability in student achievement occurs within schools rather than between schools
(Jencks et al., 1972). However, the fact that we can usefully speak of achievement in
these terms—within schools and between schools—again demonstrates the conceptual
and statistical importance of multilevel regression.

2.5 NESTING AND CORRELATED RESIDUALS

We have now seen that nesting brings analytical opportunities in the form of contextual
variables as potentially interesting explanatory factors. The estimators that we use as
alternatives to OLS permit intercepts and slopes to vary from group to group, providing
estimates of standard errors that are not inflated due to nesting-engendered intraclass
correlation. Contextual variables and cross-level interaction terms contribute to explain-
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FIGURE 2.11. OLS adjustment at the school
level.



ing variability in the dependent variable in the usual way. And they also contribute to
explaining variability in random intercepts and random slopes.

Nesting, however, also assures that there are additional methodological admoni-
tions that need to be heeded. With regard to level-one residuals specifically, when obser-
vations are not independent, the residuals produced by a regression equation will not be
independent (Beck, 2003). Instead, they will manifest autocorrelation—a term that is
ubiquitous in the literature on regression analysis. In accounts of multilevel analysis,
however, nesting-engendered dependence among residuals is rarely if ever characterized
as an instance of autocorrelation, though that is certainly what it is (Kennedy, 2003).

It is well known among users of OLS regression analysis that if residuals are corre-
lated, the standard errors of regression coefficients are inaccurate, and tests of signifi-
cance will be misleading (Bowerman & O’Connell, 1993). Since intraclass correlation is
almost always positive, its effects are almost always comparable to those of positive
autocorrelation: artificially deflated standard errors, an increased probability of errone-
ously rejecting null hypotheses, and specious inflation of R2 values (Singer, 1987; Fox,
1997).

For example, a Kentucky data set contains California Basic Educational Skills Test
math achievement scores for nearly 50,000 eighth-grade students in 347 schools in 2001
(National Evaluation Systems, 2002; Johnson, 2005). We estimate an OLS multiple
regression equation by using just two individual-level independent variables, gender and
ethnicity; no contextual variables are included. The OLS results are reported in
Table 2.12.

However, when the residuals from this regression analysis are used as the dependent
variable in a one-way analysis of variance (ANOVA) in which the school is the indepen-
dent variable, we get the results reported in Table 2.13: Grouping within schools pro-
duces residual values that are correlated.

In an effort to compensate for correlated residuals, we again use REML estimators.
The regression results obtained using this procedure with the Kentucky data are
included in Table 2.14. Since we have introduced no contextual variables, the example
in Table 2.14 is a random coefficient regression equation, but not a multilevel regression
analysis. With the REML estimators, however, we may permit estimates of the intercept
and slopes to vary from school to school, across the groups in which students are nested.
The information reported makes this random coefficient equation look very much like a
conventional OLS regression output.
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TABLE 2.12. Eighth-Grade Math Achievement in Kentucky:
OLS Estimates of Gender and Ethnicity Coefficients

YMATH = 49.22 – 1.28XGENDER1 – 11.58XETHNIC1

(0.10) (0.20) (0.32)

R2 = 2.7%

N = 49,616



We can further clarify the meaning of random coefficient regression by paraphras-
ing Singer and Willett (2003, p. 54). Imagine a population of regression coefficients. For
each school we randomly select from the population an intercept and a slope for each in-
dependent variable. Intercepts and slopes are thus random variables, and random coeffi-
cient regression analysis acquires its name in this way.

All three standard errors reported in Table 2.14 are larger than the same standard
errors reported in Table 2.12. With 347 schools, the differences in standard error esti-
mates have no effect on decisions about statistical significance. Nevertheless, it is clear
that downward bias in standard errors due to correlated residuals increases the probabil-
ity of erroneously rejecting the null hypothesis with the OLS results.

In Table 2.15, moreover, we see that with REML estimators permitting use of a ran-
dom intercept and random slope, the correlation among individual-level residuals has
diminished almost to zero. This is because random coefficient regression does not sim-
ply combine the individual school samples into one, and then estimate an overall regres-
sion equation while ignoring school differences. Instead, random coefficient regression
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TABLE 2.14. Random Coefficients with REML
Estimators Compensating for Correlated Residuals

YMATH = 45.11 – 1.14XGENDER1 – 10.18XETHNIC1

(0.50) (0.21) (0.55)

R1
2 = 2.5%

N1 = 49,616

N2 = 347

TABLE 2.15. ANOVA of REML Residuals

Sums of
squares df

Mean
square F Sig. level

Between 29,418 346 85 0.274 1.000

Within 15,086,614 48,193 313

Total 15,116,032 48,539

ω2 = 0.006

TABLE 2.13. ANOVA of OLS Residuals

Sums
of squares df

Mean
square F Sig. level

Between 1,482,251 346 4284 13.31 .000

Within 15,515,236 48,193 322

Total 169,977,487 48,539

ω2 = 0.081



uses its capacity to permit coefficients to vary across groups to compute a weighted aver-
age, which then takes the form of the overall intercept and slopes. It is this random coef-
ficient regression equation that yields uncorrelated residuals.

It is instructive to examine this process more closely. If we plot the OLS residuals
from Table 2.12 against the REML residuals from Table 2.14, as shown in Figure 2.12,
we see that they are closely associated (r = 0.94). This suggests that the really conspicu-
ous virtue of the random coefficient regression equation is not that it does a better job of
explaining variability in math achievement, but that it eliminates positive correlation
among the residuals, thereby helping to avoid inflated standard errors.

To illustrate this more clearly, imagine that we are studying county-level voting
behavior in five very different states: Arkansas, California, Michigan, Nebraska, and New
York. We begin by estimating OLS simple regression equations individually for each
of the five states. County-level percentage of people voting for George W. Bush in
the 2004 U.S. presidential election (YBUSH) is the dependent variable, and county-level
median family income in units of $1000 (XINCOME) is the independent variable. We get
the state-by-state results reported in Table 2.16.

The five OLS regression equations are very different, exhibiting dramatic variability
with respect to intercepts and slopes. If we ignore these differences and combine the 369
counties from the five states, the overall OLS regression results are as in Table 2.17.
Combining information from the five states and estimating an overall OLS regression
equation gives us interpretable results, but the intercepts and slopes in each state are
badly misrepresented by the intercept and slope in the overall regression. In truth, given
the variability in intercepts and slopes reported in Table 2.16, it is hard to imagine how it
could be otherwise.

If we use the combined five-state data set with REML estimators and permit the
intercept and slopes to vary across the five states, we get the results reported in Table
2.18. The REML coefficients in the random coefficient equation are a bit different from
the OLS coefficients, and the REML standard errors are larger, just as we would expect.

Still, except for the differences in standard
errors, there is no basis for making the case
that either procedure does a substantially
better job of representing the variability in
the state-by-state regression analyses.

However, if we save the residuals from
the OLS regression analysis and from the
random coefficient regression analysis, we
can put together the correlation matrix in
Table 2.19. (The five states are represented
by dummy variables with conventional
abbreviations. OLS and REML residuals are
in the columns as labeled.) All bivariate cor-
relations of county-level OLS residuals with
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FIGURE 2.12. OLS residuals by level-one
REML residuals.
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TABLE 2.16. OLS Simple Regression:
County-Level Voting Behavior in Five States

Arkansas

YBUSH = 29.468 + 0.689XINCOME

(6.771) (0.192)

R2 = 15.0%

N = 75

California

YBUSH = 87.495 – 0.718XINCOME

(6.334) (0.124)

R2 = 37.6%

N = 58

Michigan

YBUSH = 55.868 – 0.033XINCOME

(3.818) (0.082)

R2 = 0.0%

N = 83

Nebraska

YBUSH = 123.824 – 1.261XINCOME

(7.810) (0.193)

R2 = 1.5%

N = 93

New York

YBUSH = 56.257 – 0.110XINCOME

(5.783) (0.116)

R2 = 0.2%

N = 60

TABLE 2.17. OLS Simple Regression:
County-Level Voting Behavior,
States Combined

YBUSH = 78.297 – 0.469XINCOME

(3.022) (0.068)

R2 = 11.4%

N = 369



the states they represent are numerically much larger than the corresponding random
coefficient residuals. Furthermore, all five (boldfaced and italicized) correlation coeffi-
cients for OLS residuals are statistically significant, while none of the random coefficient
residuals correlates significantly with its state. This is because each state’s OLS county-
level residuals tend to be similar to each other—they are correlated—and different from
residuals for other states. The random coefficient residuals, by contrast, do not exhibit
this pattern of within-state homogeneity.

We see this contrast between OLS and random coefficient regression residuals again
in Table 2.20, which reports descriptive statistics for differences between the county-
level residuals computed using individual state-by-state OLS regression analyses, as in
Table 2.16, and residuals for the overall OLS regression analysis and the overall random
coefficient regression analysis. Differences between the state-by-state regressions and the
overall OLS regression are consistently much larger than differences between the state-
by-state and overall random coefficient regression analysis. When SPSS reports bivariate
correlations between state-by-state residuals and overall residuals from random coeffi-
cient regression analyses, they range in value from 0.999 to 1.000!

Again, this is because random coefficient regression does not simply combine the
individual state samples into one, and then estimate an overall regression equation while
ignoring state differences. Instead, random coefficient regression uses its capacity to per-

38 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 2.18. Random Coefficient Regression:
County-Level Voting Behavior, States Combined

YBUSH = 56.861 – 0.297XINCOME

(4.217) (0.322)

R1
2 = 5.3%

N1 = 286

N2 = 5

TABLE 2.19. Bivariate Correlations: Residuals by State
Dummy Variables

OLS REML

REML 0.727

AR –0.312 –0.002

CA 0.102 –0.004

MI –0.102 –0.002

NE 0.602 0.012

NY –0.152 –0.005



mit coefficients to vary across groups to compute a weighted average, which takes the
form of the overall regression equation. This enables us to effectively address the joint
problems of dependent observations and correlated residuals.

Just as a matter of curiosity, we might want to see the YBUSH-by-XINCOME relationship
for all 49 states in the data set. (Voting data for Alaska were not available when this data
set was assembled.) It might also be interesting to see what a multilevel regression equa-
tion using the same variables, though with median family income now measured at both
the county and state levels, would look like. Both the random coefficient equation and
the multilevel equation are reported in Table 2.21.
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TABLE 2.21. YBUSH-by-XINCOME Relationship

Random coefficient regression

YBUSH = 57.974 – 0.032XINCOME

(1.286) (0.088)

R1
2 = 0.0%

N1 = 3140

N2 = 49

Multilevel regression

YBUSH = 58.996 – 0.023XINCOME1 – 0.648XINCOME2 – 0.023XINCOME2 * XINCOME1

(1.147) (0.087) (0.170) (0.013)

R1
2 = 9.0%

N1 = 3140

N2 = 49

Simulating multilevel regression with OLS

YBUSH = 60.329 – 0.026XINCOME1 – 0.537XINCOME2 – 0.026XINCOME2 * XINCOME1

(0.235) (0.045) (0.029) (0.005)

R2 = 5.3%

N = 3140

TABLE 2.20. State-by-State Residuals Minus OLS and REML Overall Residuals

OLS REML

Min. Max. Mean
Standard
deviation Min. Max. Mean

Standard
deviation

AR –7.6 18.9 8.3 5.5 –1.3 0.9 0.0 0.5

CA –0.7 13.0 3.2 3.2 –0.0 0.4 0.1 0.1

MI –10.5 8.0 2.5 3.9 –0.2 0.1 –0.0 0.1

NE –23.5 1.8 –13.9 4.9 –0.8 0.8 –0.2 0.3

NY –7.5 11.0 4.6 4.0 –0.1 0.2 0.1 0.1



SPSS Routines 1.1 through 2.1–2.3 differ from each other only with regard to very
concrete and obvious details. With a little practice in using SPSS Mixed Models and the
Windows interface, the SPSS routines are easy to follow.

We will discuss county-level voting behavior in the 2004 presidential election much
more thoroughly in Chapter 6, “Giving OLS Regression Its Due.” For now, notice that
YBUSH is unrelated to county-level median family income in each equation reported in
Table 2.21. However, the aggregated state-level contextual variable XINCOME2 has a statis-
tically significant slope: In the multilevel regression equation, each $1000 increase in
state-level median family income corresponds, on average, to a 0.648-point decrease in
the percentage of people voting for Bush.
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SPSS Routine 2.3. Random Coefficient Regression
or Multilevel Regression?

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR
3. Since the state is the level-two grouping variable in which counties are nested, insert

the state identifier into the SUBJECTS box.
4. Click on CONTINUE; insert the percentage voting for Bush as the dependent variable

into the DEPENDENT VARIABLE box; and insert the independent variables XINCOME1

and XINCOME2, and the cross-level interaction term XINCOME2 * XINCOME1, into the
COVARIATE(S) box.

5. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. For a random coefficient regression
model with XINCOME1 as the only independent variable, move XINCOME1 from the
FACTORS AND COVARIATES box to the MODEL box. For a multilevel regression
model, move the independent variables XINCOME1 and XINCOME2, and the cross-level
interaction term XINCOME2 * XINCOME1, from the FACTORS AND COVARIATES box to the
MODEL box.

6. Click on CONTINUE.
7. Click on the RANDOM button in the middle of the screen. The state identifier is already

in the SUBJECTS box, and now we also insert it into the COMBINATIONS box.
8. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
9. Near the top of the screen, click on INCLUDE INTERCEPT, and move the independent

variable XINCOME1 into the model box. This applies for both random coefficient
regression and multilevel regression models. Both have a random intercept and
one random slope.

10. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select
UNSTRUCTURED.

11. Click on CONTINUE and click on the STATISTICS button.
12. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
13. Click on CONTINUE and click on OK.



Table 2.21 also shows us that our conclusions might have been a bit different had
we sought to mimic a multilevel regression model with OLS multiple regression. The
example-after-example consistency in comparisons of OLS results with those for random
coefficient and multilevel regression is striking: similar coefficient values, but larger
standard errors when REML estimators are used with random coefficient regression to
permit level-one coefficients to vary from group to group.

In this instance, moreover, the difference is substantively consequential. Had we
relied on the OLS simulation of multilevel regression, we would have concluded that the
cross-level interaction term, XINCOME2 * XINCOME1, is statistically significant. However, the
actual multilevel regression results show us that this is not correct, again illustrating the
inferential difficulties posed for OLS by nested data.

2.6 NESTING AND EFFECTIVE SAMPLE SIZE

Nesting and efforts to deal with it by using multilevel regression make determination of
effective sample size more difficult than is the case with OLS regression (Bland, 2000).
Among other difficulties, each level in a multilevel analysis has a sample size that is dif-
ferent from the sizes for the other levels. After all, if we have 49,616 students nested in
347 schools, the nominal sample sizes at the student level and school level are as given:
49,616 and 347. In addition, each school has a sample size of its own, and these are
rarely the same from one school to another.

Perhaps we can use familiar material taken from discussion of OLS regression to
introduce the complex topic of suitable sample size in multilevel regression. Much of the
material in the next few pages may be well known to many readers, and it is not difficult
to look up in textbooks on survey sampling and regression analysis. (See, e.g., the recent
work on statistical power with categorical moderator variables by Aguinis, 2004.)

Computing the standard error of an unstandardized regression coefficient with OLS
is straightforward. For an independent variable Xi, the formula for the standard error Sb

is presented in Table 2.22. SR
2 is the variance of the OLS residuals; SSXi is the sum of the

squared deviations for Xi with respect to its arithmetic mean; and VIF is the Variance
Inflation Factor, computed by dividing 1 by 1 – RJ

2. (RJ
2 for the coefficient corresponding

to any one independent variable is calculated by regressing that variable on all the other
independent variables.) The smaller the standard error, the greater the statistical
power—the likelihood that we will detect a relationship if one exists in the population
from which the sample was selected.
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TABLE 2.22. Standard Error of an OLS Slope

Sb = (((SR
2)/SSXi) * VIF)1/2



We can illustrate application of the formula in Table 2.22 by using all 4359 observa-
tions in our income and occupation data set. Hourly wage (XWAGE) is the dependent vari-
able. (For this example, hourly wage is not logged.) The independent variables are level
of educational attainment in years completed (XEDUCATION), years of work experience
(XYEARS), race (XBLACK), and union membership (XUNION). Results of the OLS multiple
regression analysis are reported in Table 2.23.

Continuing the illustration, we will focus specifically on the relationship between
YWAGE and XEDUCATION. The unstandardized regression coefficient for XEDUCATION is 0.647,
making it 23.96 times as large as its standard error and statistically significant by any
reasonable standard. The standard error itself is 0.027. This value is determined in
straightforward fashion by using the formula for Sb (see Table 2.24).

Using the just-reported value for the standard error, a 95% confidence interval for
the unstandardized regression coefficient is similarly easy to compute. We see this for
the XEDUCATION coefficient in Table 2.25.

Given such a large sample, we may understandably judge that the complexity of our
analysis need not be constrained by concern for statistical power. Even if added com-
plexity produces comparatively strong correlations among independent variables, we
may surmise that inflated standard errors due to multicollinearity will not pose problems
for estimation and inference simply because we have so many cases; micronumerosity is
not a problem here (cf. Goldberger, 1991)!

In response to the analytical opportunities promised by large sample size, we may
introduce additional explanatory factors: XMARRY, coded 1 if married and 0 otherwise;
XBLACKED, a multiplicative interaction term created with XBLACK and XEDUCATE; XBLACKYRS, a

42 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 2.23. Rudimentary Earnings Function

YWAGE = – 3.789 + 0.647XEDUCATION + 0.303XYEARS – 0.862XBLACK + 0.928XUNION

(0.376) (0.027) (0.017) (0.141) (0.105)

R2 = 15.3%

N = 4359

TABLE 2.24. Computing the Standard Error of an OLS Slope

Sb = (((SR
2)/SSXi) * VIF)1/2

0.027 = ((8.696/13286.310) * 1.130)1/2

TABLE 2.25. Confidence Interval Construction for an OLS Slope

bEDUCATION – t.05SbEDUCATION to bEDUCATION + t.05SbEDUCATION

0.647 – 1.960(0.027) to 0.647 + 1.960(0.027)

0.594 to 0.700



multiplicative interaction term created with XBLACK and XYEARS; and XBLACKUN, a multipli-
cative interaction term created using XBLACK and XUNION. Results for the respecified OLS
multiple regression equation are reported in Table 2.26.

Even with more than 4000 observations, however, we may eventually behave with a
bit more statistical prudence, acknowledging that multiplicative interaction terms are
very closely associated with one or both of the variables used to create them. As a safe-
guard against multicollinearity, we may decide to center the main-effect independent
variables with respect to their means, and then create interaction terms using the mean-
centered variables. As a result, usual measures of multicollinearity have satisfactory val-
ues: All Variance Inflation Factors are small, ranging from 1.021 to 1.254, and the value
of the Condition Index is only 1.669.

Results of the OLS multiple regression analysis are easy to interpret. Given the large
sample, it is no surprise that all coefficients save two—those corresponding to the inter-
action terms XBLACKYRS and XBLACKUN—are statistically significant. Everything seems to be
in order. But is everything in order? Or should we treat each observation as if it were
nested within one of nine occupational groups, and incorporate nesting into determina-
tion of effective sample size? Perhaps so, but what place has nesting in a discussion of
effective sample size?

Treating observations as nested is another way of saying that the observations may
be clustered into sampling units (Goldstein, 1999). Whether or not nesting or clustering
occurs as a result of explicitly made decisions in sample design, it may introduce
intraclass correlation; this means that observations are not independent and that as a
result of the absence of independence, we have less information than we thought.

Given a large sample with observations clustered into groups, nesting almost cer-
tainly will manifest itself in a design effect. This means that our effective sample size—
the sample size that should be used in determining degrees of freedom, calculating stan-
dard errors, and running tests of significance—will be smaller than we had expected.
The approximate design effect for determining loss of information due to dependence
among nested observations can be computed easily using the formula in Table 2.27,
where n is the average number of observations per group or cluster (Kalton, 1983). In
this instance, the value of the intraclass correlation with XWAGE as the dependent variable
is 0.117, and n is 484. The design effect due to nesting of observations within occupa-
tional categories is calculated in Table 2.28.
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TABLE 2.26. A More Complex Earnings Function

YWAGE = 5.922 + 0.542XEDUCATION + 0.246XYEARS – 0.571XBLACK + 1.106XUNION + 0.495XMARRY

(0.046) (0.030) (0.018) (0.149) (0.110) (0.099)

+ 0.283XBLACKED – 0.010XBLACKYRS + 0.008XBLACKUN

(0.108) (0.055) (0.310)

R2 = 17.7%

N = 4359



Now that we have acknowledged cluster-engendered dependence among observa-
tions, we see in Table 2.29 that the effective sample size—the sample size that deter-
mines the power of inferential procedures—is much smaller than the nominal sample
size of 4359 (Kish, 1989). Quite a shock! Throughout the analyses reported in Tables
2.23 through 2.26, we have been tacitly proceeding as if we were working with a simple
random sample. When we recognize that we are working with a cluster sample in which
individuals are nested in occupational groups, however, the OLS standard errors, tests of
significance, and confidence intervals become suspect.

Table 2.30 reproduces the OLS regression results from Table 2.26 but with standard
errors adjusted to reflect a discouragingly small effective sample size of about 76, rather
than the nominal sample size of 4359. According to the OLS results in Table 2.26, all the
unstandardized coefficients except those for the interaction terms XBLACKYRS and XBLACKUN

were statistically significant. In Table 2.30, however, only the intercept and the slopes for
XEDUCATION and XEXPERIENCE are statistically significant. The standard error for XEDUCATION,
moreover, is more than five times as large as in Table 2.26, and the standard error for
XYEARS is more than six times as large.

With an intraclass correlation of only 0.117, loss of this much information due to
clustering may seem to be a gross exaggeration. When we have a relatively small number
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TABLE 2.27. Sample Design Effect

Design effect = 1 + (n – 1) * intraclass correlation

TABLE 2.28. Computimg a Sample Design Effect

57.51 = 1 + (484 – 1) * 0.117

TABLE 2.29. Effective Sample Size

Effective sample size = N/design effect

75.80 = 4359/57.51

TABLE 2.30. Earnings Function Corrected for Unconditional
Intraclass Correlation

YWAGE = 5.922 + 0.542XEDUCATION + 0.246XYEARS – 0.571XBLACK + 1.106XUNION

(0.256) (0.141) (0.104) (0.820) (0.656)

+ 0.495XMARRY + 0.283XBLACKED – 0.010XBLACKYRS + 0.008XBLACKUN

(0.562) (0.552) (0.536) (2.107)

R2 = 17.7%

Effective N = 76



of clusters with a comparatively large number of cases in each, however, this is exactly
the kind of outcome we should expect. It is odd indeed to think of a large number of
within-cluster observations as diminishing rather than enhancing statistical power for
the overall sample. In the case of the average number of observations for each sampling
cluster or group, however, an outcome of this troublesome sort is predictable. The more
observations that are nested in each group, the greater the cost in terms of effective sam-
ple size (Snijders & Bosker, 1999).

By way of clarifying this contrary-to-commonsense phenomenon, imagine a hypo-
thetical sample of 1000 students. If they are nested in 100 schools, they have 100 school-
based sources of contextual diversity. If they are nested in only 10 schools, however, they
have only 10 school-based sources of contextual diversity. In the latter instance, similar-
ity among observations due to grouping costs us a great deal more information. This is
why researchers who design cluster and multistage samples place a premium on obtain-
ing a large number of clusters or groups for any total sample size (Kish, 1965/1995;
Mok, 1995).

With a multilevel regression framework and unstandardized coefficients that are
permitted to vary across second-level groups, clustering is automatically taken into con-
sideration in determining the effective sample size and number of degrees of freedom for
use in inferential tests. Furthermore, when we discuss the distinction between uncondi-
tional and conditional intraclass correlation, we will see that the effective sample size for
the occupation and income analysis, as it is specified in Table 2.30, is actually about 428
cases (Mok, 1995).

This more comfortable number occurs because, with a full complement of indepen-
dent variables in the equation for hourly wage, the conditional or effective intraclass cor-
relation is reduced to 0.019, much smaller than the original estimate of 0.117. This is
because one or more independent variables have explained or accounted for a substan-
tial portion of the variability between groups.

Inserting the conditional intraclass correlation into the design effect formula in
Table 2.28 yields a value of 10.18., rather than the originally reported design effect of
57.51. The resulting effective sample size computed with the formula in Table 2.29 is
about 428 cases. This is still only a fraction of the original 4359, but much more useful
than the previous estimate of 76, as is manifest in the results reported in Table 2.31.
With smaller standard errors, now XUNION is statistically significant, along with XEDUCATION
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TABLE 2.31. Earnings Function Corrected for Conditional Intraclass Correlation

YWAGE = 5.922 + 0.542XEDUCATION + 0.246XYEARS – 0.571XBLACK + 1.106XUNION + 0.495XMARRY

(0.157) (0.100) (0.065) (0.539) (0.391) (0.327)

+ 0.283XBLACKED – 0.010XBLACKYRS + 0.008XBLACKUN

(0.382) (0.213) (1.199)

R2 = 17.7%

Effective N = 428



and XYEARS. It may seem odd indeed to acknowledge that effective sample size depends,
at least on part, on how a regression model is specified. With nested data, however, this
is how things work.

As we have already suggested, the number of individual-level cases is only one of
the sample sizes of concern when we move from OLS to multilevel regression. What
about the second-level sample size? In the present example, with only 9 occupational cat-
egories, the second-level or group-level sample size is only 9! Since there is no third
level, this number is not subject to change due to intraclass correlation and resulting
design effects. Nevertheless, we should ask ourselves just what sorts of limitations this
unusually small number of cases imposes.

For example, we might aggregate education to the occupation level, using it as a
level-two explanatory factor in accounting for variability in income. The effective sample
size used in testing the resulting regression coefficient for statistical significance or con-
structing a confidence interval, however, is only 9. How much confidence can we have
in regression-based inferential statistics estimated from only nine cases?

Continuing with the same example, we might use alternative estimators such as
REML in place of OLS, enabling us to permit the level-one intercept and one or more
level-one slopes to vary across occupation groups. This is certainly how we would pro-
ceed if we were planning a multilevel regression analysis. Again, since there are only
nine groups with respect to which the intercept and coefficients might vary, sample size
for the random coefficients is only 9. And the same small sample size would hold for
cross-level interaction terms created from a variable with a random slope.

The effective sample size in Table 2.32 is only 9, the number of occupational
groups. Nevertheless, all coefficients are statistically significant! YWAGE increases with
educational attainment at the individual level and at the group level. In addition, the
cross-level interaction term (XEDUCATION2 * XEDUCATION1) tells us that the positive effect of
individual-level education (XEDUCATION1) is further increased as group-level education
(XEDUCATION2) increases.

How do we get statistically significant coefficients for all terms with this absurdly
small sample? The relationships are strong; the main-effect variables have been centered
with respect to their overall means, rendering them orthogonal to the cross-level interac-
tion term; and there are no other independent variables with which our explanatory fac-
tors might be confounded.

Nevertheless, as we are beginning to discern, multilevel regression has nasty sur-
prises of its own. Table 2.33 illustrates this. The last three entries, each with an effective
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TABLE 2.32. Miltilevel Regression Earnings Function

YWAGE = 5.740 + 0.406XEDUCATION1 + 1.238XEDUCATION2 + 0.179XEDUCATION2 * XEDUCATION1

(0.230) (0.035) (0.320) (0.051)

R1
2 = 12.1%

Effective N = N2 = 9



sample size of 9, would be the same even if we counted all 3459 individual-level obser-
vations without regard for the (unconditional or conditional) intraclass correlation.
No matter how we look at it, there are only nine observations—nine occupational
categories—at level two in which the level-one observations are nested.

As we continue with our discussion of multilevel regression (especially in Chapter
10, “Determining Sample Sizes for Multilevel Regression”), we will learn that the best
sample design for analyses of nested data is one that maximizes the number of level-two
observations, thereby distributing the level-one observations across a comparatively
large set of level-two categories. Referring back to the formula in Table 2.28, we see that
this approach, for any nominal sample size, results in the largest effective sample size.

Determination of suitable sample sizes at each level of a multilevel regression model
is a complex and underresearched issue (Mok, 1995; Maas & Hox, 2004). For now, it is
useful to repeat that clustering or nesting provides both analytical opportunities and
methodological concerns. Determination of effective sample size for nested data is one of
those concerns. Use of contextual variables and cross-level interaction terms as explana-
tory factors is one of those opportunities.

2.7 SUMMING UP

The social and behavioral sciences are heavily laden with questions that are never
answered once and for all. In part, this is due to differences in conceptual frameworks
and world views that separate practitioners into competing groups; in part, it is due to
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TABLE 2.33. What Is the Sample Size?

Nominal effective sample size for OLS regression

N = 3459

Effective sample size for OLS corrected for intraclass correlation

N = 76

Effective sample size for OLS corrected for conditional intraclass correlation

N = 428

Effective sample size for occupation-level contextual variables

N = 9

Effective sample size for random regression coefficients

N = 9

Effective sample size for cross-level interaction terms

N = 9



methodological limitations. Over the past couple of decades, however, progress has been
made in resolving at least a few seemingly intractable issues. This includes uncertainty
with regard to the meaning of neighborhood effects.

The fact that neighborhoods vary in quality is undeniable. The fact that participa-
tion in neighborhoods of different quality affects school achievement, children’s social
skills, and related factors may be a bit less certain. Still, few critics of neighborhood
research have been so stubborn as to deny that differences in neighborhood quality have
measurable consequences.

Researchers have differed, however, as to whether neighborhood differences and
neighborhood effects are due mainly to differences in neighborhood SES. According to
those for whom neighborhood effects are merely SES effects in disguise, people with
similar levels of income, similar occupational statuses, similar educational levels, and
similar tastes and consumption patterns tend to group together (see, e.g., Mayer &
Jencks, 1989; Solon, Page, & Duncan, 2000). This applies not only to friendship groups
and families but to larger units—in this case, neighborhoods. As a result, some children
are nested in neighborhoods that are affluent, prestigious, and attractive, showcases for
desirable social practices and cultural emblems. Less fortunate children are nested in less
favorable circumstances (Lareau, 2003).

Other researchers, however, have argued that neighborhood quality cannot be
reduced to indicators of SES. Instead, social support, useful cultural resources, the
means for acquiring essential interpersonal skills, and safety and social stability vary
substantially from one neighborhood to another, independent of SES composition
(Varanian & Gleason, 1999; Bickel et al., 2002). While no one denies that neighborhood
quality is confounded with SES, ethnicity, and other commonplace predictors, the
independent-neighborhood-effects view has prevailed.

One reason why the neighborhood quality issue has recently approximated resolu-
tion is the development of analytical techniques that are better suited to handling nest-
ing. Neighborhood quality, as we have seen, can be measured and analyzed at the
individual level, at the group level, or at both levels simultaneously. In addition, relation-
ships between individual-level outcomes (such as school achievement) and individual-
level predictors (such as SES and ethnicity) can be treated as varying with group-level
measures of neighborhood quality. We are no longer limited to choosing between model-
ing neighborhood effects at one level, individual or group. Instead, we can acknowledge
nesting and model neighborhood effects simultaneously at more than one level.

The same methodological advances that have contributed to an approximate con-
sensus with regard to neighborhoods and their outcomes have not, however, brought
resolution to more thoroughly politicized issues. After more than two decades of high-
profile research, for example, the often acrimonious debate over the comparative effec-
tiveness of public and private schools continues (Greene & Mellow, 1998; Rothstein,
Carnoy, & Benveniste, 1999; Lubienski & Lubienski, 2005).

Nevertheless, when we examine research from the early 1980s—the decade when
public–private school research was the hottest of hot topics—it is clear that substantial
conceptual and methodological progress has been made. In Coleman et al.’s (1982) still
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frequently cited book High School Achievement, for example, values on the type-of-school
variable were treated as characteristics of students. At the time, however, others argued
that the proper unit of analysis for public–private comparisons and other forms of
school effectiveness was the school in which students were nested (cf. Bickel, 1987). The
methodological tools for working with more than one level of analysis in the same equa-
tion were not yet widely known.

Subsequently, however, with the development and dissemination of the knowledge
and software needed to do multilevel analyses, school type has been treated as a contex-
tual factor, used primarily to explain relationships among individual-level outcomes
(such as achievement) and individual-level predictors (such as gender, race, and SES).
Furthermore, the same individual-level predictors can be aggregated to the school level
and also used as characteristics of schools.

Debates as contentious and ideologically infused as that involving comparisons of
public and private schools are not settled by methodological advances. Nevertheless, the
application of tools designed to deal with the analytical problems and opportunities
posed by nesting has introduced a level of conceptual clarity and methodological rigor
that was previously missing (see, e.g., Bryk & Thum, 1989).

It remains true that analyses of this kind have been usefully approximated with OLS
regression. OLS methods, however, do not enable us to address nesting-related issues
such as relationships that differ from one context to another. By permitting coefficients
to vary from group to group, however, alternative estimators used with random coeffi-
cient regression and multilevel regression deal with this problem quite effectively. As a
result, when the existence of a statistically significant intraclass correlation makes clear
that nesting is consequential, we have readily available analytical options that can be
effectively invoked.

It can be especially interesting to estimate the unconditional intraclass correlation
coefficient with no predictors in the equation, and then estimate the conditional
intraclass correlation coefficient following introduction of one or more contextual vari-
ables. Reduction in the value of this measure of within-group homogeneity tells us that
we are explaining in concrete terms just why a nonzero intraclass correlation exists. This
is certainly an interesting objective for statistical work.

2.8 USEFUL RESOURCES

Blau, P. (1994) Structural Contexts of Opportunity. Chicago: University of Chicago Press.

I have made frequent references to the thinness of the theoretical and substantive literature
in the social and behavioral sciences. This, as I see it, poses serious specification problems for
productive use of multilevel regression. Nevertheless, an occasional theoretical or substantive
source may make an unusually strong case for multilevel modeling. Such is true of the theoretical
statement by sociologist Peter Blau in Structural Contexts of Opportunity. In his discussion of the
effect on individual behavior of belonging to a multiplicity of collectivities, Blau posits the follow-
ing:
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Population structures entail not only multiple forms of differentiation, but multiple levels of structure,
as well. For example, a nation is composed of provinces, which consist of counties, whose subunits are
cities and towns, which contain neighborhoods. Similarly, the labor force can be divided into manual
and non-manual workers, who, in turn, are divisible into major occupational groups, whose subunits
are detailed occupations, which are composed of increasingly narrow specialties. (1994, p. 5)

Consistent with his earlier work (see, e.g., Blau, 1960, 1964), this unambiguous acknowl-
edgment of the contextually occasioned nature of human behavior establishes the importance of
nesting. Though methodologically astute, Blau does not acknowledge the existence of multilevel
regression. Nevertheless, it seems abundantly clear from the foregoing quotation that he saw the
need for statistical tools that permit modeling of nesting and its consequences. This stands in
sharp contrast to the work of equally influential sociologists, such as Homans (1974) and
Coleman (1986), who addressed some of the same issues while embracing a form of methodologi-
cal individualism that ignored contextual factors entirely or relegated them to inconsequential
status.

Farkas, G. (1996) Human Capital or Cultural Capital? New York: Aldine de Gruyter.
Arrow, K., Bowles, S., & Durlauf, S. (Eds.) (2000) Meritocracy and Economic Inequality. Princeton,

NJ: Princeton University.
Poston, D. (2002) The Effects of Human Capital and Cultural Characteristics on the Economic

Attainment Patterns of Male and Female Asian-Born Immigrants in the United States: A Mul-
tilevel Analysis. Asian and Pacific Migration Journal, 11, 197–220.

On the other hand, the fact that nesting and appreciation of its consequences are either
ignored or unrecognized in recent empirical research that purports to evaluate programs and rig-
orously compare theoretical perspectives has been noted by Singer and Willett (2003) and others.
In Farkas’s widely read monograph, for example, he estimates a large number of OLS regression
equations with a variety of data sets in an effort to account for the influence of cultural capital on
student achievement. One of Farkas’s data sets consists of measures on 486 students enrolled in
the seventh or eighth grades in 22 middle schools in Dallas. It is not clear from Farkas’s account
how many classrooms are represented, but if there is more than one per school, the consequences
of nesting could be quite consequential, especially since teacher characteristics are used as
explanatory variables.

If data were collected from one classroom in each school, there would be only 22 second-
level observations—by most standards, an unduly small number (Maas & Hox, 2005). Neverthe-
less, given the nature of the data and the objectives of Farkas’s research, failure at least to
acknowledge the possibility that group effects may exist at the school or classroom level seems an
odd oversight. The likelihood that differences in aggregated levels of cultural capital characterize
collections of schools and classrooms seems to provide opportunities that are too attractive to
avoid.

Similarly, the methodologically sophisticated research reported in the volume edited by
Arrow, Bowles, and Durlauf repeatedly and skillfully, with large data sets, carefully selected con-
trols, and meticulously specified functional forms, examines the relationship in the United States
between income and cognitive ability. In addition to educational level, some of the explanatory
factors used to complement intelligence are closely related to cultural capital, as Farkas uses that
concept.
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As intended, the chapters of Meritocracy and Economic Inequality correct many of the concep-
tual, methodological, and interpretative errors in Herrnstein and Murray’s (1994) well-known
polemic The Bell Curve. Nevertheless, none of the specifications acknowledges the possibility that
the relationship between income and cognitive ability may vary consequentially from one place to
another.

In contrast both to Farkas and to Arrow et al., Poston was able to analyze the connection
between income and individual-level variables such as education, while taking into consideration
variability in that relationship from one group of immigrants to another. Recent groups of immi-
grants to the United States were categorized by nation of origin, and two group-level measures of
cultural capital were used to account for variability in the income-by-education relationship.
Though he had only 27 groups, Poston explicitly and profitably acknowledged nesting as a meth-
odological issue and a source of analytical opportunities. To his credit, moreover, Poston used
multilevel analysis in a way that is best suited to its specification demands: He framed a very spe-
cific question in multilevel terms and then estimated a suitably parsimonious multilevel regres-
sion equation.
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3

Contextual Variables

3.1 CHAPTER INTRODUCTION

This is a long chapter that covers more conceptual territory than the straightforward title
“Contextual Variables” suggests. Nevertheless, inclusion of a broad range of topics under
this obvious-sounding title makes sense. We can use an empirical example to clarify this
claim. Unfamiliar concepts introduced with the example will be thoroughly explained as
we work through the chapter.

Suppose that we are using the High School and Beyond subsample introduced in
Chapter 2. We know that it includes 7185 students nested in 160 schools. As is often the
case, we are interested in investigating the association between student achievement and
family SES. We start off simply, with scores from a standardized test of math achievement
(YMATH1) as the dependent variable and a composite measure of family SES (XSES1) as the
only predictor.

With students grouped in 160 schools, we are obliged to investigate the possibility
that nesting is consequential. We compute the unconditional intraclass correlation and
find that it is statistically significant (p < .000) with a value of 0.153. This means that
15.3% of the variability in math achievement occurs between schools, with the other
84.7% occurring within schools.

Given this result, we decide to run our preliminary analysis with both the intercept
and the slope for SES (centered with respect to its grand mean) permitted to vary across
schools. We also permit the random intercept and random slope to be correlated. In
other words, we estimate a simple random coefficient regression model without putting
any constraints on the random terms. Results from this analysis yield a statistically sig-
nificant (p < .000) and positive intercept, with a fixed component value of 12.649, and
statistically significant (p < .000) and positive slope for SES, with a fixed component
value of 2.193.
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The results in Table 3.1 are easy to interpret: For each 1-unit increment in XSES1,
individual student math achievement increases, on average, by 2.193 points. Since the
intercept is 12.649 and XSES1 has been centered with respect to its mean, if XSES1 were set
equal to its mean, our best estimate of YMATH1 would be 12.649. This is just the sort of
interpretation we would offer if we were working with OLS regression.

As we have noted several times, however, with random coefficient regression or
multilevel regression, there is additional essential output. These are the random compo-
nent estimates in Table 3.2. Interpretation of random components is not difficult. The
statistically significant residual variance is simply a measure of variability for the level-
one or individual-level residuals. The statistically significant random intercept variance
tells us that the intercept really does vary from school to school. The random slope vari-
ance tells us that the slope too really does vary from school to school. Finally, the statisti-
cally nonsignificant intercept-by-slope covariance makes clear that the random compo-
nents for the slope and intercept are not correlated; they do not vary together.

At this juncture it makes sense to transform the random coefficient regression
model into a multilevel model by introducing one or more contextual variables. In view
of our statistically significant findings regarding random components, we use the con-
textual variables primarily to account for school-to-school variability in the random inter-
cept and the random slope for SES. Since we are trying to explain variability in a slope,
each contextual variable will correspond to an implied cross-level interaction term.
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TABLE 3.1. Math Achievement by SES:
Fixed Component Estimates

YMATH1 = 12.649 – 2.193XSES1

(0.245) (0.128)

R1
2 = 3.6%

N1 = 7185

N2 = 160

TABLE 3.2. Math Achievement by SES: Random Component Estimates

Parameter Estimate Std. error Wald Za Sig. level

Residual variance 36.700 0.626 58.650 .000

Random intercept variance 8.682 1.080 8.041 .000

Intercept-by-slope covariance 0.051 0.406 0.129 .901

Random slope variance 0.694 0.281 2.472 .013

Note. As we shall see below, SPSS printouts refer to random component estimates as “estimates of covariance
parameters.”
aWald Z tests for the statistical significance of random components are asymptotically valid, meaning that the
larger the sample, the more suitable the test. Most specialized multilevel software packages use a χ2-based
alternative.



Still keeping things simple, we use one school-level variable, percentage of students
enrolled in an academic curriculum (XACAD2), as our sole contextual variable. The
implied cross-level interaction term (XACAD2 * XSES1) is created simply by multiplying the
student-level SES measure by the school-level contextual variable percentage of aca-
demic enrollment.

When we estimate our multilevel regression equation, we find in Table 3.3 that the
fixed component for the intercept is still statistically significant (p < .000), and its value has
changed very little, now equal to 12.802. Since both independent variables have been cen-
tered with respect to their grand means, if XSES1 and XACAD2 were set equal to their means,
out best estimate of YMATH1 would be 12.802. The fixed component for the student-level SES
coefficient also remains statistically significant (p < .000), and its numerical value, 2.181, is
almost exactly the same as in our random coefficient equation. The fixed component for
the slope for the percentage academic contextual variable is statistically significant as well
(p < .000), with a value of 8.238. In addition, the fixed component for the cross-level inter-
action term is statistically significant (p < .008), with a value of 1.345.

Like the random coefficient regression results in Table 3.1, the multilevel regression
results in Table 3.3 are easy to interpret, just as if they were OLS coefficients. For every
1-unit increment in XSES1, individual student math achievement increases, on average, by
2.181 points. For every 1-unit increment in the XACAD2 contextual variable, individual
student math achievement increases, on average, by 8.238 points. Clearly, if the contex-
tual factor had not been included, we would have missed an important predictor of math
achievement. Finally, for every 1-unit increment in the percentage of academic enroll-
ment contextual variable, the relationship between individual student math achievement
and individual student SES is diminished by 1.345 test score points.

We can see that the contextual variable and the cross-level interaction term contrib-
ute to determining estimated values of the dependent variable. Our primary aim in intro-
ducing these factors, however, was to account for variability in the statistically signifi-
cant random components for the intercept and the slope for XSES1. In other words, we
wanted to explain why they vary. Have we succeeded?

We can easily calculate a conditional intraclass correlation coefficient value of
0.098, substantially less than the unconditional intraclass correlation of 0.153. The con-
textual variable and cross-level interaction term have accounted for 35.9% of the school-
to-school variability in math achievement.
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TABLE 3.3. Math Achievement by SES, Respecified:
Fixed Component Estimates

YMATH1 = 12.802 – 2.181XSES1 + 8.238XACAD2 – 1.345XACAD2 * XSES1

(0.181) (0.126) (0.709) (0.504)

R1
2 = 13.6%

N1 = 7185

N2 = 160



Furthermore, in Table 3.4 we see that while the variance of the random component
for the intercept remains statistically significant (p < .000), its magnitude has been sub-
stantially diminished, from 8.682 to 4.317. Clearly, a large part of the school-to-school
variability in the intercept has been accounted for by our contextual variable. The vari-
ance of the random component for the SES slope has also remained statistically signifi-
cant (p = .026). However, while its magnitude has diminished from 0.694 to 0.599, it
remains largely unexplained. Our contextual variable and cross-level interaction term
have accounted for only a little of the variability in the random component of the SES
slope.

Finally, the covariance between the random components of the intercept and slope
has actually become much larger, reaching a statistically significant value, with introduc-
tion of the contextual variable and cross-level interaction term. This association was
suppressed in the simple random regression equation. Now, however, we see that when
controlling for percentage of students enrolled in an academic curriculum, as school
mean achievement increases, the slope for XSES1 increases as well. In other words, with
XACAD2 held constant, higher-achieving schools yield greater payoffs for SES advantages
than lower-achieving schools.

This example may seem an odd vehicle for providing a chapter overview. As we
promised, however, it has enabled us to invoke a large number of seemingly disparate
concepts and illustrate their links to contextual variables and to multilevel regression
analysis. Some of the concepts have already been explained, and some have not. After we
have finished this chapter, we will understand all the concepts just employed and appre-
ciate the relationships among them.

3.2 CONTEXTUAL VARIABLES AND ANALYTICAL OPPORTUNITIES

For a variety of substantive and methodological reasons, nesting has to be explicitly
acknowledged and systematically incorporated into any analysis that includes grouped
data. Failure to do so renders the results of such an analysis suspect.

It is important to emphasize, however, that nesting is not simply a source of meth-
odological problems to be solved with multilevel regression. Nesting can also be con-
strued as a source of analytical opportunities, notably in the form of contextual variables
and cross-level interaction terms.
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TABLE 3.4. Math Achievement by SES, Respecified: Random Component Estimates

Parameter Estimate Std. error Wald Z Sig. level

Residual variance 36.689 0.625 58.668 .000

Random intercept variance 4.316 0.585 7.376 .000

Intercept-by-slope covariance 0.751 0.293 2.565 .010

Random slope variance 0.599 0.269 2.225 .026



To provide additional substantive examples of nesting and the need for contextual
variables, we will again use county-level data for all 3140 U.S. counties in the year 2000.
County-level differences in median income for two-parent families and families headed
by a single mother are often enormous (Boggess & Roulet, 2001; Shields & Snyder,
2005) and quite consequential for the well-being of families and individuals (Rubin,
1994; Kennedy, Kawachi, Glass, & Prothro-Stith, 1998). Median income for two-parent
families is $49,135, while median income for families headed by a single mother is
$17,753. The income difference varies dramatically, from $3182 to $74,461, in a distri-
bution that closely approximates normality (Annie E. Casey Foundation, 2004). How
might we explain county-to-county variability in the difference in median family income
for two-parent families and single-mother families (see Figure 3.1)?

Independent variables in a preliminary analysis of county-level differences in family
income would include obvious factors such as ethnic composition, median income per
capita, and rural–urban location (Economic Research Service [ERS], 2004a). In this
instance, ethnic composition is simplified and represented by the percentage of a county
population that is Black and the percentage of a county population that is Hispanic.
Median per capita income is available for the immediately previous year, 1999; these val-
ues are used as proxies for the 2000 values.

In addition, the ERS of the U.S. Department of Agriculture assigns each county an
urban–rural continuum score ranging from 1 to 9, with higher scores representing more
rural areas (ERS, 2004b). The irregular distribution of urban–rural scores for the 3140
counties in this U.S. Bureau of the Census data set is displayed in Figure 3.2. The same
information aggregated to the state level appears in Figure 3.3.

The process of aggregation has yielded a much more varied and irregular distribu-
tion at the state level than at the county level. In large part, this is due to the fact that
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FIGURE 3.1. Difference in median
family income.

FIGURE 3.2. County-level urban–
rural continuum.



each county has an integer score ranging from 1 to
9. For each state, however, counties with different
scores are combined, yielding a state-level urban–
rural score that is an average of county values.
Since none of the states is perfectly homogeneous
with regard to this variable, decimals are included,
assuring a much larger number of values. The
same measure—in this instance, the urban–rural
continuum score—yields very different variables
at the county and state levels.

Table 3.5 reports the OLS unstandardized
regression coefficient for the urban–rural contin-
uum variable for an equation with percentage of
Black residents, percentage of Hispanic residents,
median per capita income, and urban–rural con-
tinuum score treated as characteristics of individ-
ual counties, with no contextual variables. Using
the same family income difference dependent vari-

able, Table 3.5 also reports the value of the urban–rural coefficient for a multilevel
regression model using REML estimators, permitting the urban–rural coefficient to vary
from state to state. In the multilevel model, the urban–rural variable is treated as a char-
acteristic of individual counties and as an aggregated characteristic of states or a contex-
tual variable.

For simplicity, in the multilevel equation percentage of Black residents, percentage
of Hispanic residents, and median family income are treated as characteristics of individ-
ual counties only, without aggregated contextual variables. Each of the three, moreover,
has been assigned a fixed coefficient rather than a random one, meaning that their slopes
do not vary from context to context. REML estimators are still used, but in this example
only the intercept and one of four slopes are random.

As we shall explain in Chapter 5, when a contextual variable is introduced to
account for variability in a random slope, a cross-level interaction term is implied. This is
something we have seen in several previous examples. In this case, the county-level vari-
able XRURAL1 has been assigned a random slope, and the state-level variable XRURAL2 has
been given the task of explaining the variability in that random slope. This implies the
cross-level interaction term XRURAL2 * XRURAL1.
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FIGURE 3.3. State-level urban–ru-
ral continuum.

TABLE 3.5. County-Level Urban–Rural Coefficients

Urban–rural coefficient without contextual variable = –289.39
(33.09)

Urban–rural coefficient with contextual variable = –236.49
(67.35)



There is no reason, however, why the contextual variable has to be the same level-
one variable aggregated to level two. If we had theoretical, substantive, or commonsense
reasons to do so, we might have assigned the task of explaining variability in the random
slope for XRURAL1 to any other contextual variable, say, XBLACK2, the proportion of state res-
idents who are Black. This would have implied the cross-level interaction term XBLACK2 *
XRURAL1.

Furthermore, variability in a random slope (or a random intercept) may be treated
as a function of more than one contextual variable. If variability in the slope for XRURAL1

were treated as a function of both XRURAL2 and XBLACK2, this would imply inclusion of both
XRURAL2 * XRURAL1 and XBLACK2 * XRURAL1 in the multilevel equation.

In Table 3.5, the urban–rural contextual variable and one cross-level interaction
term are included in the multilevel equations that yielded the coefficients being com-
pared. (The numbers in parentheses are standard errors.) We have seen examples like
this before. In this instance both coefficients are negative, meaning that the county-level
median income difference between intact and single-mother families declines as coun-
ties become more rural.

In the absence of a contextual variable and a cross-level interaction term, however,
the absolute value of the urban–rural coefficient is 52.90 larger than when the additional
terms are included. While this is not a huge difference, we may still be correct in judging
that misspecification of the OLS regression model due to failure to acknowledge contex-
tual factors and cross-level interaction terms has yielded a biased estimate of the county-
level regression coefficient. (A formal test for model fit, the deviance difference, would
be applicable here and is introduced in Section 3.6.)

If the OLS model is misspecified, this may also produce misleading results for the
fixed slopes corresponding to the remaining independent variables. We investigate this
in Table 3.6. Much as with previous comparisons of OLS and multilevel regression coef-
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TABLE 3.6. County-Level Percent Black, Percent Hispanic, and Family
Income Coefficients

Percent Black coefficient without contextual variable = 132.31
(5.52)

Percent Black coefficient with urban–rural contextual variable = 158.30
(6.97)

Percent Hispanic coefficient without contextual variable = –28.18
(6.39)

Percent Hispanic coefficient with urban–rural contextual variable = –28.36
(7.95)

Median family income coefficient without contextual variable = 609.37
(9.07)

Median family income coefficient with urban–rural contextual variable = 634.97
(9.98)



ficients, we see that differences due to alternative specification—in this case, exclusion
or inclusion of a contextual variable and a cross-level interaction term—range from
modest to minuscule. As we have come to take for granted, moreover, the multilevel
standard errors are larger than the corresponding OLS standard errors. However, none of
the coefficient or standard error differences is sufficiently large to change the substantive
import of the analysis or to affect decision making with inferential tests.

Perhaps more consequential differences will be evident when we look at the coeffi-
cient for the contextual variable representing the urban–rural continuum. As with SES in
the public–private school example in Chapter 2, the coefficient for the state-level con-
textual variable, consisting of aggregated values of the urban–rural continuum, is con-
strained to equal zero in the OLS equation. The meaning of this choice is evident in
Table 3.7. The slope for the urban–rural contextual variable is not statistically signifi-
cant. Furthermore, we see in Table 3.8 that the same is true of the implied cross-level
interaction term. Since including these factors when obtaining the estimates in Tables
3.5 and 3.6 has little effect on the level-one coefficients, we may begin to suspect that
omitting the contextual variable and cross-level interaction term would have been the
right choice after all.

As we have done in previous examples, we can illustrate what is going on here via
several different analytical strategies. Each table from Tables 3.9 through 3.12 represents
an approach that might be used with a limited set of plausible explanatory variables.
Each variable may be used at the county level, at the state level, or as a constituent of a
cross-level interaction term.

The OLS multiple regression equation in Table 3.9 gives us the coefficients reported
in Tables 3.5 and 3.6, estimated with contextual variables and cross-level interaction
terms not included. (The dependent variable, difference in median family income for
two-parent families and single-mother families, is here expressed in units of $1000.)

Table 3.10 is an alternative specification of the OLS regression model, this one
including a contextual variable, XRURAL2, and a cross-level interaction term, XRURAL2 *
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TABLE 3.7. State-Level Urban–Rural Coefficients

Urban–rural contextual variable excluded: Unstandardized coefficient = 0.000
(N/A)

Urban–rural contextual variable included: Unstandardized coefficient = –163.70
(135.33)

TABLE 3.8. Cross-Level Interaction Terms

Cross-level interaction term excluded: Unstandardized coefficient = 0.000
(N/A)

Cross-level interaction term included: Unstandardized coefficient = –30.050
(43.743)



XRURAL1. Since OLS regression is inherently a single-level procedure, however, the contex-
tual variable and interaction term have the tacked-on, jerry-rigged status we mentioned
earlier.

Still another specification of this income difference function (Table 3.11) takes the
form of a random coefficient regression model with REML estimators. In this instance,
the intercept and the slope for XRURAL1 are permitted to vary from state to state. No effort
is made, however, to explain this state-to-state variability.

In the fourth specification (Table 3.12), we have a random intercept and a random
slope for XRURAL1; REML estimators are used for all coefficients, whether random or
fixed; and we include a contextual variable and a cross-level interaction term. The con-
textual variable and cross-level interaction term, moreover, are not merely tacked on, but
are manifestations of the inherently two-level nature of the multilevel regression model.

We again see that different analytical strategies give us similar coefficient values.
Notice, however, that the OLS simulation of multilevel regression in Table 3.11 gives us
statistically significant slopes for the aggregated contextual variable (XRURAL2) and for the
cross-level interaction term (XRURAL2 * XRURAL1). By contrast, in Table 3.12 the multilevel
regression equation with a random intercept and a random slope finds a statistically
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TABLE 3.9. OLS Regression: Family Income Difference

X$DIFFER = 31.383 + 0.132XBLACK1 – 0.028XHISPANIC1 + 0.609XINCOME1 – 0.289XRURAL1

(0.70) (0.005) (0.006) (0.009) (0.033)

R2 = 73.5%

N = 3140

TABLE 3.10. OLS Simulation of Multilevel Regression: Family Income Difference

Y$DIFFER = 31.385 + 0.127XBLACK1 + 0.030XHISPANIC1 – 0.592XINCOME1 – 0.267XRURAL1

(0.080) (0.006) (0.006) (0.011) (0.036)

– 0.179XRURAL2 – 0.043XRURAL2 * XRURAL1

(0.068) (0.021)

R2 = 73.7%

N = 3140

TABLE 3.11. Random Coefficient Regression: Family Income Difference

X$DIFFER = 31.714 + 0.159XBLACK1 – 0.028XHISPANIC1 + 0.635XINCOME1 – 0.249XRURAL1

(0.199) (0.007) (0.009) (0.016) (0.062)

R1
2 = 77.2%

N1 = 3140

N2 = 49



significant coefficient for neither of the additional terms. In this instance, getting the
correct results for tests of significance offers a strong argument for multilevel analysis.

3.3 CONTEXTUAL VARIABLES
AND INDEPENDENT OBSERVATIONS

We have repeatedly reported that OLS and multilevel regression equations that include
the same independent variables, including contextual factors, typically give similar coef-
ficient values. This reminds us that multilevel modeling is just regression under a spe-
cific set of circumstances. We expect, however, that consequential differences may
appear in standard error estimates.

Nevertheless, multilevel regression is not always a superior alternative to OLS
regression. How do we decide when random coefficients, which imply the need for con-
textual variables and cross-level interaction terms, should be used? A simpler way of
asking the same question goes like this: Are observations dependent? A good way to find
out is to calculate the intraclass correlation coefficient.

In the multilevel analysis reproduced in Table 3.13, the intercept and the slope for
XRURAL1 are random, meaning that they are permitted to vary across 49 of the 50 states.
The fact that these coefficients are random explains the presence of the contextual vari-
able, XRURAL2, as well as the cross-level interaction term, XRURAL2 * XRURAL1.

As we expected, the standard errors in the multilevel equation are larger than the
downwardly biased standard errors in the OLS simulation. Even with similar coefficient
values, this virtue of multilevel analysis makes for a predictable contrast: The contextual
variable and the cross-level interaction term have statistically significant coefficients in
the OLS equation, but neither is significant in the multilevel equation. If there are public
policy implications or theoretically pertinent inferences to be drawn from analyses of
family income differences, the meanings of these two equations are very different.

Including contextual effects in conventional OLS multiple regression equations
ignores the fact that observations of residents nested in the same neighborhood, or stu-
dents nested in the same school, or counties nested in the same state—observations
nested within the same group!—are likely to be experientially and demographically sim-
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TABLE 3.12. Multilevel Regression: Family Income Difference

Y$DIFFER = 31.670 + 0.158XBLACK1 – 0.028XHISPANIC1 – 0.635XINCOME1 – 0.236XRURAL1

(0.205) (0.007) (0.008) (0.017) (0.063)

– 0.164XRURAL2 – 0.030XRURAL2 * XRURAL1

(0.160) (0.043)

R1
2 = 77.4%

N1 = 3140

N2 = 49



ilar to each other, but different from observations in other groups. In other words, obser-
vations within groups may be dependent, a nesting-engendered phenomenon measured
by the intraclass correlation.

Without within-group dependence, there is no need to permit coefficients to vary.
Multilevel regression, with random coefficient variability explained by contextual vari-
ables and cross-level interaction terms, has no purpose. Perhaps our family income dif-
ference analyses illustrate just such a set of circumstances.

If this were the case, we would expect the intraclass correlation with family income
difference as the dependent variable to be close to zero. As it turns out, however, the
intraclass correlation coefficient value is large (r = 0.371). This tells us that about 37.1%
of the variability in family income difference occurs between states, with the remaining
62.9% occurring within states. By most standards, this represents a high level of depen-
dence. As a result, random coefficients, contextual variables, and cross-level interaction
terms certainly have a role to play.

The intraclass correlation coefficient is easy to compute. To do so, however, we
must use some of the additional essential information we get with multilevel regression
analysis. Referring to our income difference data, in Table 3.14 we see a measure of
residual variance (Residual) and a measure of the degree to which the random intercept
varies from state to state (INTERCEPT1). Residual is just a measure of within-state vari-
ability in the dependent variability, while INTERCEPT1 is a measure of variability
between states. These estimates are calculated with just a random intercept and no inde-
pendent variables in the multilevel regression equation.
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TABLE 3.13. Family Income Difference Equations Compared

TABLE 3.12, Reproduced. Multilevel Regression: Family Income Difference

Y$DIFFER = 31.670 + 0.158XBLACK1 – 0.028XHISPANIC1 – 0.635XINCOME1 – 0.236XRURAL1

(0.205) (0.007) (0.008) (0.017) (0.063)

– 0.164XRURAL2 – 0.030XRURAL2 * XRURAL1

(0.160) (0.043)

R1
2 = 77.4%

N1 = 3140

N2 = 49

TABLE 3.10, Reproduced. OLS Simulation of Multilevel Regression: Family Income Difference

Y$DIFFER = 31.385 + 0.127XBLACK1 + 0.030XHISPANIC1 – 0.592XINCOME1 – 0.267XRURAL1

(0.080) (0.006) (0.006) (0.011) (0.036)

– 0.179XRURAL2 – 0.043XRURAL2 * XRURAL1

(0.068) (0.021)

R2 = 73.7%

N = 3140



The intraclass correlation coefficient is comparable to the measure of association η2,
sometimes used with one-way ANOVA: between-group variability divided by total vari-
ability. Borrowing information from Table 3.14, we get the following:

r = Between-group variability/(between-group variability + within-group variability)

= INTERCEPT1/(INTERCEPT1 + Residual)

= 25.764/(25.764 + 43.620) = 0.371

This is the unconditional intraclass correlation, meaning that there are no explanatory
variables in the equation.

Getting information such as that reported in Table 3.14 is not at all difficult with
SPSS. SPSS Routine 3.1 is just another routine using the Mixed Models procedure with
the Windows interface. At the bottom of the SPSS output, values for random component
variances for RESIDUAL and INTERCEPT are reported in the ESTIMATE column of the
box labeled ESTIMATES OF COVARIANCE PARAMETERS. The RESIDUAL (within-
group variability) and INTERCEPT (between-group variability) values are inserted into
the formula for the intraclass correlation.

If the multilevel regression equation in Table 3.13 works as intended, introduction
of contextual factors and cross-level interaction terms will diminish the intraclass corre-
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TABLE 3.14. Random Component Estimates for Family Income Difference

Parameter Estimate Std. error Wald Z Sig. level

Residual 43.620 1.110 39.282 .000

INTERCEPT1 25.764 5.915 4.356 .000

SPSS Routine 3.1. Computing the Unconditional Intraclass Correlation

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the state is the level-two grouping variable, insert the state identifier into the

SUBJECTS box.
4. Click on CONTINUE and insert income difference as a dependent variable into the

DEPENDENT VARIABLE box.
5. Click on the RANDOM button at the bottom of the screen.
6. The state identifier is already in the SUBJECTS box; now also insert it into the

COMBINATIONS box.
7. Near the top of the screen, click on INCLUDE INTERCEPT.
8. Click on CONTINUE, and then click on the STATISTICS button.
9. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
10. Click on CONTINUE and click on OK.



lation. In principle, it is possible for a properly specified model to account for all
between-group variability, reducing the intraclass correlation to zero.

In this instance, we actually had a good deal of success in accounting for between-
group variability in the analysis reported in Table 3.13. The information in Table 3.15 is
of the same kind as that reported in Table 3.14; for ease of reference, a reproduction of
Table 3.14 is appended to the bottom of the table. The new estimates of the variance
components—the residual variance and the variance of INTERCEPT1—are calculated
after we have included a contextual factor, XRURAL2, and a cross-level interaction term,
XRURAL2 * XRURAL1. (The four level-one independent variables, XBLACK, XHISPANIC1, XINCOME1,
XRURAL1, have not yet been introduced into the equation.)

We calculate the intraclass correlation in the same way as above, but now we are
calculating the conditional intraclass correlation. We introduced the distinction between
the unconditional and conditional intraclass correlation in Section 2.6 of Chapter 2,
“Nesting and Effective Sample Size.” The term conditional means simply that the coeffi-
cient value we calculate depends on—is conditioned by—the presence of explanatory
variables in the equation.

The conditional intraclass correlation is calculated in the same way as the uncondi-
tional intraclass correlation, which we estimated as r = 0.371. Referring to Table 3.15, we
again divide our estimate of variability between groups, INTERCEPT1, by our estimate
of total variability, INTERCEPT1 plus Residual:

r = 10.522/(10.522 + 42.535) = 0.194

Including the contextual variable and cross-level interaction term in the multilevel
regression equation has produced a substantial reduction in the proportion of variability
that occurs between groups. We can see this even without computing the intraclass cor-
relation coefficient simply by noting that the variance of INTERCEPT1 has been reduced
from 25.764 to 10.522, while the residual variance is almost unchanged. Since one of
our objectives in multilevel analysis is use of contextual factors and cross-level interac-
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TABLE 3.15. Random Component Estimates for Family Income Difference;
Contextual Variables and Cross-Level Interaction Terms Included

Parameter Estimate Std. error Wald Z Sig. level

Residual 42.535 1.108 39.283 .000

INTERCEPT1 10.522 2.573 4.089 .000

TABLE 3.14, Reproduced. Random Component Estimates for Family Income Difference;
Contextual Variables and Cross-Level Interaction Terms Not Included

Parameter Estimate Std. error Wald Z Sig. level

Residual 43.620 1.110 39.282 .000

INTERCEPT1 25.764 5.915 4.356 .000



tion terms to explain why random components vary from context to context, it seems
clear that including XRURAL2 and XRURAL2 * XRURAL1 has paid off.

It may be, however, that XRURAL2 is not the most efficacious contextual variable, and
the cross-level interaction term XRURAL2 * XRURAL1 may be of less explanatory value than
others. Nevertheless, we are on the right track methodologically, even if our substantive
choices have not been the best ones.

At this point, then, we are faced with a substantive problem rather than a statistical
one: There is a wide variety of possible responses. We may, for example, decide to use
income aggregated to the state level, XINCOME2, as an additional contextual variable to
account for variability in the random slope for XRURAL1. This implies the cross-level inter-
action term XINCOME2 * XRURAL1. If we compute the conditional intraclass correlation with
XRURAL2, XINCOME2, XRURAL2 * XRURAL1, and XINCOME2 * XRURAL1 in the equation, we get the
information in Table 3.16.

The resulting conditional intraclass correlation has been diminished a good deal
more. The two contextual factors and the two cross-level interaction terms are doing a
very effective job of explaining the nesting-engendered intraclass correlation.

r = 1.790/(1.790 + 43.500) = 0.040

At the same time, these explanatory factors have reduced the residual variance, the
amount of variability occurring within groups, by very little. However, this set of find-
ings is not troubling. The primary purpose of contextual variables and cross-level inter-
action terms is to explain between-group variability (Hox & Maas, 2002). Within-group
variability is a function of the level-one explanatory variables.

In Table 3.17, we have reported the residual variance and the intercept variance for
the multilevel regression equation specified as in Table 3.18. Now that the level-one
explanatory variables (XRURAL1, XINCOME1, XBLACK1, and XHISPANIC1) have been included, the
residual variance has been sharply reduced, while INTERCEPT1 has been diminished

Contextual Variables 65

TABLE 3.16. Random Component Estimates for Family Income Difference,
Respecified

Parameter Estimate Std. error Wald Z Sig. level

Residual 43.500 1.106 39.321 .000

INTERCEPT1 1.790 0.570 3.139 .002

TABLE 3.17. Random Component Estimates for Family Income Difference;
All Independent Variables Included

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.536 0.349 38.754 .000

INTERCEPT1 1.333 0.370 3.594 .000



only a little more. It is worth noting, however, that the results reported in Table 3.16
have left us with very little between-group variability to explain.

Notice, by the way, that if we were to compute the conditional intraclass correlation
using the information in Table 3.17, its value would be 0.090. This is greater than the
value calculated for Table 3.16. This illustrates the fact that the conditional intraclass
correlation should be computed with contextual factors and cross-level interaction
terms as independent variables, but without level-one explanatory variables. If we
include the level-one predictors, the denominator in the formula for the conditional
intraclass correlation coefficient varies accordingly, and coefficients cease to be compara-
ble. The conditional coefficient no longer enables us to determine the comparative effi-
cacy of specific sets of contextual variables and cross-level interaction terms in account-
ing for between-group variability from one specification to another.

We have now seen that contextual variables and cross-level interaction terms
explain most of the variability in the dependent variable that occurs between groups. In
addition, level-one independent variables explain most of the variability that occurs
within groups. We have yet to acknowledge properly, however, that between-group vari-
ability is not manifest only in the random intercept, but also occurs in random slopes,
permitting them to vary from group to group. Explanation of this variability, too, may be
of substantive interest.

This is a good place to emphasize a crucial distinction: A random regression coeffi-
cient has two components, fixed and random. We will explain this more fully in Chapter
4. For now, we will note simply that the fixed component is a weighted average across
groups, with larger groups contributing more to the overall average than smaller groups.
The random component, by contrast, measures group-dependent deviations from this
average (Snijders & Bosker, 1999, pp. 67–98).

So far, we have given most of our attention to fixed components, such as those
reported in the multilevel equations in Tables 3.12, 3.13, and 3.18. Beginning with
Tables 3.2 and 3.4 in our introductory example, however, we have also begun to discuss
random components, often referred to as random effects. The random components
include the intercept variance and the variances of random slopes.

In the preliminary stages of an analysis, it may be useful to estimate the random
components without including contextual variables and cross-level interaction terms. In
the absence of well-developed theory or informative substantive literature, this can help
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TABLE 3.18. Multilevel Regression: Family Income Difference, Respecified

Y$DIFFER = 31.593 + 0.153XBLACK1 – 0.020XHISPANIC1 – 0.607XINCOME1 – 0.278XRURAL1 – 0.133XRURAL2

(0.194) (0.006) (0.008) (0.010) (0.063) (0.169)

– 0.043XRURAL2 * XRURAL1 + 0.046XINCOME2 – 0.002XINCOME2 * XRURAL1

(0.051) (0.037) (0.011)

R1
2 = 77.4%

N1 = 3140

N2 = 49



us decide which level-one coefficients, if any, should be permitted to vary across groups.
The intraclass correlation provides an answer to the question “Should any coefficients be
permitted to vary across higher-level groups?” Estimating level-one random components
can help answer a more specific question: “Which coefficients should be permitted to
vary across higher-level groups?”

Continuing with the family income difference analysis, we assign XINCOME1, county-
level median family income, a random slope rather than a fixed slope. We then estimate
random components for INTERCEPT1, XRURAL1, and XINCOME1, as reported in Table 3.19.

Notice that the Table 3.19 caption includes the phrase “Estimates of Covariance
Parameters” rather than “Random Component Estimates.” “Estimates of Covariance
Parameters” is the label that appears on SPSS printouts, acknowledging that when there
is more than one random component, they may be correlated. They may vary together in
substantively interpretable ways. Since we are permitting the intercept and the two
slopes to vary from state to state, we have three random components. As a result, the
random intercept may be correlated with one or more random slopes, and the random
slopes may be correlated with each other.

Furthermore, just as contextual variables and cross-level interaction terms are used
to account for variability in random components, they are also used to explain
covariances. We will discuss this more fully in Section 3.7, “Contextual Variables and
Covariance Structure.”

In Table 3.19 we see estimates of covariance parameters corresponding to the multi-
level regression equation in Table 3.18 but without the contextual variables and cross-
level interaction terms. Table 3.20 reports estimates for the same parameters, but with
the contextual variables and cross-level interaction terms included. When we introduce
the contextual variables and cross-level interaction terms, all but one of the random
component variance and covariance estimates in Table 3.20 is diminished, much as we
would expect. It is true, however, that we are still not explaining much of the variability
in the random component variance for the XRURAL1 slope, but it is clear that the decision
to make the slope for XRURAL1 random is consistent with our data.
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TABLE 3.19. Multilevel Regression: Family Income Difference, Respecified; Contextual Variables
and Cross-Level Interactions Not Included; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 15.215 0.394 38.639 .000

INTERCEPT1 2.446 0.720 3.400 .001

INTERCEPT1 by XINCOME1 –0.096 0.442 –2.163 .006

XINCOME1 0.012 0.004 2.742 .000

INTERCEPT1 by XRURAL1 –0.261 0.152 –1.722 .085

XINCOME1 by XRURAL1 0.018 0.012 1.337 .181

XRURAL1 0.133 0.058 2.293 .022



3.4 CONTEXTUAL VARIABLES
AND INDEPENDENT OBSERVATIONS:
A NINE-CATEGORY DUMMY VARIABLE

We have already used the national probability sample that includes annual income and
occupation in nine categories for 4359 observations on adult males. A one-way ANOVA
with income as the dependent variable and occupation as the independent variable
yields the results reported in Table 3.21.

There is nothing surprising here: Occupation and income are associated, as is
immediately evident in Table 3.22 and Figure 3.4. It is useful to reemphasize, however,
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TABLE 3.20. Multilevel Regression: Family Income Difference, Respecified; Contextual Variables
and Cross-Level Interaction Terms Included; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 15.199 0.393 38.659 .000

INTERCEPT1 1.784 0.542 3.289 .001

INTERCEPT1 by XINCOME1 –0.076 0.038 –1.988 .047

XINCOME1 0.008 0.003 2.535 .011

INTERCEPT1 by XRURAL1 –0.201 0.131 –1.535 .125

XINCOME1 by XRURAL1 0.017 0.012 1.421 .155

XRURAL1 0.118 0.058 2.003 .027

TABLE 3.21. ANOVA of Income by Occupation

Sums of
squares df

Mean
square F Sig. level

Between 70.16 8 8.77 32.71 .000

Within 1166.17 4350 0.27

Total 1236.3 4358

TABLE 3.22. OLS Regression of Hourly Income on Occupational Category

Y = 3.708 + 3.469XOCCUPY1 + 3.203XOCCUPY2 + 3.514XOCCUPY3 + 1.888XOCCUPY4 + 2.396XOCCUPY5

(0.388) (0.414) (0.417) (0.448) (0.412) (0.401)

+ 1.925XOCCUPY6 + 1.459XOCCUPY7 + 1.057XOCCUPY9

(0.401) (0.417) (0.411)

R2 = 6.4%

N = 4359

Note. The occupation with the lowest mean hourly income, XOCCUPY8, is the suppressed reference category.



that the statistically significant F value also means
that individual-level observations are not indepen-
dent. Instead, they may be construed as nested
within socially constructed occupational catego-
ries (Kennedy, 2003, p. 150). If so, the OLS regres-
sion coefficients estimated using this data will
have standard errors that are biased downward.

Using the simple procedure introduced above
and the within-group and between-group variance
component estimates provided in Table 3.23, it is
easy to determine the magnitude of the uncondi-
tional intraclass correlation coefficient:

r = 1.283/(1.283 + 9.613) = 0.117

As we learned from our discussion of effective sample size, with a large number of
cases and a small number of groups, this is a substantial intraclass correlation. It threat-
ens to compromise the validity of tests of significance and the accuracy of confidence
intervals.

With data nested in this fashion, contextual variables measured at the level of the
occupation rather than the individual merit investigation. As a simple illustration, we
may suspect that education-intensive occupations pay more than other occupations for
each additional year of school completed. In Table 3.24 we suspend judgment about
effective sample size, and we report the individual-level results of three analyses.

In the first analysis, the regression coefficient measuring the individual-level rela-
tionship between hourly wage and education is estimated using OLS estimators without
contextual variables. In the second and third analyses, we see the same relationship esti-
mated using REML estimators in a multilevel framework, along with a contextual vari-
able for mean years of educational attainment at the occupation level. The only differ-
ence between the two multilevel analyses is that random components are permitted to
vary together in one but not the other. The numbers in parentheses in Table 3.24 are
standard errors.

Table 3.24 shows us that if we use OLS estimators and fail to include the contextual
variable, we may underestimate the value of the unstandardized regression coefficient
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FIGURE 3.4. Hourly wage by nine
nominal categories of occupation.

TABLE 3.23. Random Component Estimates
for Annual Income; No Independent Variables Included

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.613 0.206 46.635 .000

INTERCEPT1 1.283 0.646 1.985 .048



for individual-level education. In this instance the difference is quite small. As we have
come to expect, moreover, OLS underestimates the value of the standard error. Table
3.24 also shows us that with a multilevel regression model, permitting random compo-
nents to be correlated or constraining them to be independent makes little or no differ-
ence. This is generally the case, though exceptions occur.

We see in Table 3.25, however, that if we do not include education aggregated to the
occupation level, we will completely miss a substantial contextual effect of education on
hourly wage. The same is true of the cross-level interaction term reported in Table 3.26.
Again, however, the decision as to whether or not to permit random components to be
correlated makes little difference for estimation of substantively interesting coefficients.

The equations that produced the regression coefficients and standard errors com-
pared in Tables 3.24 through 3.26 are reported in Table 3.27. In each of the six equa-
tions, individual-level educational attainment (XEDUCATION1) is positively related to hourly
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TABLE 3.24. Hourly Wage and Education:
Individual-Level Coefficients

OLS

Hourly wage and education without contextual variables = 0.414
(0.029)

Multilevel with correlated random components

Hourly wage and education with contextual variables = 0.406
(0.035)

Multilevel with independent random components

Hourly wage and education with contextual variables = 0.423
(0.036)

TABLE 3.25. Hourly Wage and Education:
Contextual Coefficients

OLS

Education contextual coefficient = 0.000
(N/A)

Multilevel with correlated random components

Education contextual coefficient = 1.238
(0.319)

Multilevel with independent random components

Education contextual coefficient = 1.239
(0.318)
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TABLE 3.26. Hourly Wage and Education:
Cross-Level Interaction Effects

OLS

Cross-level interaction = 0.000
(N/A)

Multilevel with correlated random components

Cross-level interaction = 0.178
(0.051)

Multilevel with independent random components

Cross-level interaction = 0.157
(0.052)

TABLE 3.27. OLS, REML/Random Coefficient, and REML/Multilevel Analyses
of Hourly Wage

OLS without contextual variables or cross-level interaction terms

Y = 5.920 + 0.414XEDUCATION1

(0.047) (0.029)

OLS simulation of multilevel analysis

Y = 5.923 + 0.420XEDUCATION1 + 0.900XEDUCATION2 + 0.149 XEDUCATION1 * XEDUCATION2

(0.047) (0.029) (0.070) (0.043)

REML/random coefficient regression; random components permitted to covary

Y = 5.833 + 0.414XEDUCATION1

(0.383) (0.060)

REML/random coefficient regression; random components constrained to be independent

Y = 5.827 + 0.440XEDUCATION1

(0.384) (0.054)

REML/multilevel; random components permitted to covary

Y = 5.740 + 0.406XEDUCATION1 + 1.238XEDUCATION2 + 0.178XEDUCATION1 * XEDUCATION2

(0.230) (0.035) (0.320) (0.051)

REML/multilevel; random components constrained to be independent

Y = 5.738 + 0.423XEDUCATION1 + 1.238XEDUCATION2 + 0.157XEDUCATION1 * XEDUCATION2

(0.229) (0.036) (0.319) (0.052)



wage. The size of the coefficient for this level-one variable varies little from one equation
to another.

In each of the three equations that include the occupation-level contextual variable
XEDUCATION2, this group-level aggregate is positively related to hourly wage. The size of
the coefficient for this level-two variable, however, is substantially smaller in the OLS
simulation of multilevel regression than in the two multilevel equations.

In each of the three equations that include the cross-level interaction term,
XEDUCATION2 * XEDUCATION1, the coefficient is positive. This means that individual-level
investments in education pay off best in occupations where the average level of educa-
tional attainment is comparatively high. This coefficient shows the greatest amount of
variability from equation to equation, with the coefficient for the OLS simulation again
smaller than either of the multilevel coefficients.

The OLS standard errors are consistently smaller. In this instance, however, that has
no bearing on decisions as to statistical significance: All coefficients are statistically sig-
nificant.

Table 3.27 makes clear that proper specification of a regression model inevitably
entails more decisions than we may commonly acknowledge. Do we use OLS or alterna-
tive estimators such as REML? Is one level enough, or does a credible analysis require
explicit inclusion of more than one level? Should all coefficients be fixed, or should one
or more be random, permitted to vary from group to group? If random coefficients are
used, which explanatory variables should be assigned random coefficients, and which
should remain fixed? If random coefficients are used, which second-level variables and
cross-level interaction terms should be used to explain why they vary? If more than one
random coefficient is used, should they be permitted to vary together, or should they be
constrained to be independent?

This is a long and difficult list of specification decisions! Moreover, they must all be
made on top of the usual regression analysis decisions, especially selection of indepen-
dent variables and identification of proper functional form. In this example, the added
intellectual labor has yielded coefficient estimates that differ little from each other.
Moreover, with alpha set at .05 or .01, decisions about statistical significance are the
same from one equation to another.

Suppose we could get rid of all disclaimers and hedging, and make the unqualified
assertion that OLS regression and multilevel regression coefficients will be nearly the
same whenever individual-level and contextual variables are included in the same analy-
sis. Even with effective correctives for standard errors and degrees of freedom, would
that be sufficient to prompt abandonment of the difficult literature, specialized software,
and overstated claims that come with multilevel regression? Not if we have information
adequate to the task of specifying a suitable multilevel model, enabling us to get the best
estimates we can get.

There is nothing new about this point of view. Beginning in Chapter 1 with the
application of EGLS in Figures 1.1 though 1.3, our examples suggest that most correc-
tives for violations of OLS assumptions yield only small coefficient differences and occa-
sional changes in inferential judgments.
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As conventional correctives do, multilevel regression explicitly takes into consider-
ation more information in the specification, estimation, and testing of regression models
than OLS. The additional information takes the form of variances and covariances of
random terms. With the hourly-wage-by-education examples, if we permit the intercept
and the coefficient for XEDUCATION1 to vary across occupational groups, we get the addi-
tional measures reported in Tables 3.28 through 3.31. Again, the specific values reported
depend on how the random coefficient model or multilevel regression model is speci-
fied.

Contextual factors and cross-level interaction terms are included in the equations
that yielded the random component values in Tables 3.30 and 3.31, but not in Tables
3.28 and 3.29. This explains why the variances in Table 3.31 are smaller than those in
Table 3.29, and why the variances and covariances in Table 3.30 are smaller than those
in Table 3.28: Contextual effects and cross-level interaction terms are intended to
account for variability in random components.
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TABLE 3.28. Estimates of Covariance Parameters for Hourly Wage: Random Coefficient
Regression; Random Components Permitted to Covary

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.135 0.196 46.597 .000

INTERCEPT1 1.289 0.677 1.904 .057

INTERCEPT1 by XEDUCATION1 0.170 0.100 1.693 .091

XEDUCATION1 0.024 0.018 1.138 .188

TABLE 3.29. Estimates of Covariance Parameters for Hourly Wage: Random Coefficient
Regression; Random Components Constrained to Be Independent

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.138 0.196 46.582 .000

INTERCEPT1 1.291 0.679 1.901 .057

INTERCEPT1 by XEDUCATION1 N/A N/A N/A N/A

XEDUCATION1 0.017 0.014 1.196 .232

TABLE 3.30. Estimates of Covariance Parameters for Hourly Wage: Multilevel Regression;
Random Components Permitted to Covary

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.137 0.196 46.581 .000

INTERCEPT1 0.436 0.256 1.703 .089

INTERCEPT1 by XEDUCATION1 0.037 0.033 1.148 .251

XEDUCATION1 0.004 0.008 0.491 .623



3.5 CONTEXTUAL VARIABLES, INTRACLASS CORRELATION,
AND MISSPECIFICATION

At this point, we will reemphasize the judgment that multilevel regression is best under-
stood as one of many correctives that enable us to use regression analysis even when
well-known OLS assumptions have been violated. In a variety of ways, authors such as
Heckman (1979), Kennedy (1998), Wooldridge (2002), Gujarati (2003, 2006), and
Hayes and Cai (2005) have effectively argued that the assumption most frequently vio-
lated is proper specification.1 Often, in this view, what appear to be violations such as
nonrandom sampling, heteroscedasticity, nonadditivity, serial correlation, and non-
linearity can best be treated as manifestations of specification error.

This raises an interesting question: If we select the correct independent variables
and use proper functional forms, can OLS approximations to a perfectly specified regres-
sion model rid us of dependence among observations, diminishing the intraclass correla-
tion coefficient to an inconsequential value? After all, it is gradually becoming evident
from our examples that the more closely an OLS specification approximates a suitable
multilevel model, the better the OLS estimates.

Many of us who use applied statistics are accustomed to explaining away correla-
tions by introducing judiciously selected control variables. This is intrinsic to the pro-
cess of using statistics to understand why variables are correlated (see, e.g., the classic
statement by Rosenberg, 1968) and fundamental to the development of manifest variable
path analysis and structural equation modeling (Kenny, 1979; Davis, 1985). The distinc-
tion between unconditional and conditional intraclass correlation clearly implies that
introducing a suitable set of explanatory factors can go a long way toward accounting for
within-group homogeneity (Mok, 1995). Why not get rid of intraclass correlation in just
this way?

For example, with the 12-school West Virginia data set introduced earlier, we use
Woodcock–Johnson 22 reading test scores (Woodcock & Johnson, 1990) at the begin-
ning of kindergarten as the dependent variable in a one-way ANOVA. Each of the
schools represents a category of a nominal-level independent variable. This yields the
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TABLE 3.31. Estimates of Covariance Parameters for Hourly Wage: Multilevel Regression;
Random Components Constrained to Be Independent

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.138 0.196 46.580 .000

INTERCEPT1 0.432 0.254 1.700 .089

INTERCEPT1 by XEDUCATION1 N/A N/A N/A N/A

XEDUCATION1 0.004 0.007 0.507 .612

1The meaning of proper specification is not perfectly consistent from one source to another. In Section 3.2 we
have used this expression to mean use of the correct set of independent variables and functional forms.



results reported in Table 3.32. No surprises: Schools differ with respect to mean student
achievement.

In response, we might estimate an OLS multiple regression equation aimed at
explaining student-to-student differences in reading achievement at the beginning of
kindergarten. If we assume that differences among students and their social backgrounds
account for the mean school differences, we could introduce a small but plausible com-
plement of independent variables such as family income (XINCOME1), respondent parent’s
educational level (XED1), race (XBLACK1), and neighborhood quality (XHOOD1), all measured
at the individual level. (Independent variables are measured only at the individual level,
because contextual effects by their nature take time to emerge, and the students in this
analysis are just beginning kindergarten.)

If we save the residuals from the OLS regression analysis in Table 3.33 and use them
as the dependent variable in another one-way ANOVA with each of the 12 schools repre-
senting a category of a dummy independent variable, we get the results reported in Table
3.34. The residuals are the Woodcock–Johnson 22 scores’ net variability due to XINCOME1,
XED1, XBLACK1, and XHOOD1. The ω2 values for Tables 3.32 and 3.34 indicate that the associ-
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TABLE 3.32. ANOVA of Reading Achievement

Sums of
squares df

Mean
square F

Sig.
level

Between 1057.27 11 96.12 6.50 .000

Within 4391.95 297 14.79

Total 5449.22 308

ω2 = 0.16

TABLE 3.33. OLS Analysis of Reading Achievement at Start
of Kindergarten

YREAD = 10.233 + 0.298XINCOME1 + 0.201XED1 – 0.578XBLACK1 + 0.101XHOOD1

(0.228) (0.104) (0.154) (0.841) (0.034)

R2 = 10.3%

N = 309

TABLE 3.34. ANOVA of Reading Achievement Residuals

Sums of
squares df

Mean
square F

Sig.
level

Between 1066.05 11 96.91 7.12 .000

Within 4045.69 297 13.62

Total 5111.74 308

ω2 = 0.18



ation between reading test scores and the school variable is almost exactly the same,
actually increasing just a bit with introduction of the independent variables.

As an exercise with an entirely predictable but instructive outcome, we could
reestimate the OLS regression analysis from Table 3.33 after adding 11 school dummy
variables representing the 12 West Virginia elementary schools, with the highest-scoring
school as the suppressed category (Kerlinger & Pedhazuer, 1973). We again save the
residuals as new values for reading achievement scores’ net variability due to XINCOME1,
XED1, XBLACK1, and XHOOD1, as well as variability due to unspecified differences among
schools. The results are reported in Table 3.35.

If we do a one-way ANOVA with this set of residuals as the dependent variable and
school as the independent variable, we get the results reported in Table 3.36. What could
be more obvious? If we purge a dependent variable of variability due to a specific inde-
pendent variable, such as school attended, that explanatory factor will no longer be
related to the outcome measure.

But let’s think about it. What is it that accounts for incoming kindergarten students’
having higher or lower average reading scores at one elementary school than at another
school? Since school effects have not had time to become manifest in student perfor-
mance, it is reasonable to conclude that reading score differences are due to student
characteristics that we have failed to control—characteristics other than XINCOME1, XED1,
XBLACK1, and XHOOD1. If we could identify and measure all such characteristics and incor-
porate them as independent variables, beginning school-to-school achievement differ-
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TABLE 3.35. OLS Analysis of Reading Achievement at Start of Kindergarten, Respecified

YREAD = 11.944 + 0.253XINCOME1 + 0.344 XED1 – 0.034 XBLACK1 + 0.058XHOOD1 – 3.583XSCHL1

(0.715) (0.101) (0.149) (0.851) (0.033) (1.058)

– 3.327SCHL2 – 2.608XSCHL3 – 0.223XSCHL4 – 2.563XSCHL5 – 1.189XSCHL6 – 2.237XSCHL7

(1.066) (0.887) (1.152) (0.917) (1.227) (1.099)

– 2.939XSCHL8 – 0.131XSCHL9 + 2.548XSCHL11 – 0.321XSCHL12

(1.006) (1.283) (1.074) (1.803)

R2 = 21.1%

N = 309

TABLE 3.36. ANOVA of Reading Achievement Net Association
with School

Sums of
squares df

Mean
square F

Sig.
level

Between 00.00 11 0.00 0.00 1.000

Within 4731.33 297 15.93

Total 4731.33 308

ω2 = 0.00



ences would disappear. There would no longer be an association between reading
achievement and the school variable. The intraclass correlation due to students’ being
nested in schools would be zero.

The possibility of producing the complete absence of an association between
achievement and school in this example might be taken to suggest that a suitably speci-
fied OLS multiple regression equation would be free of the adverse consequences of
dependent observations. With the correct set of independent variables and with each
relationship expressed in the proper functional form, statistical dependence among
observations might be completely eliminated. We would have been correct in suspecting
that intraclass correlation was due to specification error. Methodological difficulties due
to nesting would be gone.

There are, however, serious practical, methodological, and substantive problems
associated with construing dependence among observations as a consequence of mis-
specification. To begin with, a perfectly specified regression model is never in the offing
(Retherford & Choe, 1993; Hayes & Cai, 2005). Acknowledging the existence of con-
textual or grouping variables further emphasizes this judgment by forcing us to recog-
nize that the consequences of grouping are never completely understood (Goldstein,
2003).

Furthermore, with 309 observations and only 12 school categories, introduction of
11 school dummies uses a comparatively small number of degrees of freedom. If, how-
ever, a second-level variable were constituted of a very large number of categories, repre-
senting these with dummy variables not only would be enormously clumsy but would
use up a needlessly large number of degrees of freedom and might give rise to problems
with multicollinearity.

In addition, creating dummy independent variables to represent schools in an OLS
regression equation implies that we are treating this variable as a characteristic of indi-
viduals rather than as a second-level or contextual variable in which individuals are
nested. In some instances this is the correct call (Tabachnick, 2005). Nevertheless, rou-
tine use of dummy variables as just described removes this decision from the realm of
substantively informed judgment.

For now, we will use Tables 3.37 through 3.40 below to illustrate results that follow
from deciding to use schools to create individual-level dummy variables, or deciding to
treat school as a second-level variable in which individuals are nested. In each instance,
we will again use XED1, XINCOME1, XBLACK1, and XHOOD1 as independent variables. In addi-
tion, to make clear that we are giving the effects of contextual variables time to develop,
we will use the Woodcock–Johnson 22 reading achievement test score at the beginning
of kindergarten as another independent variable, with the same test administered at the
end of kindergarten providing values for the dependent variable.

When school membership is treated as a category of individual students, we will use
OLS estimators and no contextual variables or cross-level interaction terms. This yields
the equation with 11 dummy variables representing 12 schools. In the multilevel analy-
sis, on the other hand, the intercept and the slope for XACHIEVE1 will be permitted to vary
from school to school. The only contextual variable in the multilevel analysis will be
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the beginning-of-kindergarten achievement test score aggregated to the school level,
XACHIEVE2. An implied cross-level interaction term, XACHIEVE2 * XACHIEVE1, created with
reading achievement measured at the individual and school levels, will be used as an
additional explanatory factor.

Table 3.37 shows that with the exception of ethnicity and achievement, differences
between the OLS coefficients and multilevel coefficients are extremely small. In the case
of ethnicity, while the difference between coefficients is comparatively large, it is of no
consequence since neither coefficient is statistically significant. In fact, the achievement
coefficients are the only ones at the student level in either equation that are significant.

Recall, moreover, that the achievement coefficient in the multilevel equation is ran-
dom, meaning that it corresponds to a sample size of 12 schools. The OLS coefficient, by
contrast, corresponds to a sample size of 309 students. As expected, moreover, the stan-
dard error for the random coefficient is larger than the OLS coefficient.

The differences between standard errors produced by the two approaches would be
larger if the OLS coefficients were not inflated due to multicollinearity. Eleven school
dummies gives us 16 independent variables in the OLS equation. Variance inflation fac-
tors range from 1.169 to 10.467, with 6 of the 16 greater than the usual cutoff of 4.00
(Fox, 1997). Use of a large set of dummy variables in the OLS equation has made
multicollinearity troublesome (Montgomery, Peck, & Vining, 2001).
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TABLE 3.37. Analytical Status of Schools: Level-Two
Grouping Variable or Level-One Dummy Variables?

Income coefficient with school at level one = 0.036
(0.084)

Income coefficient with school at level two = 0.042
(0.083)

Education coefficient with school at level one = 0.161
(0.125)

Education coefficient with school at level two = 0.160
(0.124)

Ethnicity coefficient with school at level one = 0.227
(0.706)

Ethnicity coefficient with school at level two = 0.143
(0.289)

Neighborhood coefficient with school at level one = –0.001
(0.028)

Neighborhood coefficient with school at level two = 0.001
(0.027)

Achievement coefficient with school at level one = 0.757
(0.048)

Achievement coefficient with school at level two = 0.845
(0.063)



Table 3.38 emphasizes again that in the absence of second-level contextual vari-
ables, their regression coefficients are constrained to be zero. In this instance, we see that
when the second-level aggregated achievement variable is included in the multilevel
regression model, it has a nonzero coefficient that turns out to be statistically significant.
In the absence of this school-level variable, a substantial contextual effect would again
have been overlooked.

As we know by now, failure to include one or more school-level variables would
also mean that implied cross-level interactions were excluded. In this instance, the
cross-level interaction term created using achievement at the individual and school lev-
els is statistically significant, as we see in Table 3.39: For every 1-unit increment in
XACHIEVE2, the relationship between student-level reading achievement at the end of kin-
dergarten and student-level reading achievement at the beginning of kindergarten is
increased by 0.041 points.

Notice how the role of the school variable differs from the OLS regression equation
to the multilevel regression equation. In the OLS analysis, 12 school categories are used
to create 11 dummy variables that are treated as characteristics of individuals. In the
multilevel analysis, however, school is not explicitly introduced into the regression
equation. Instead, the intercept and the slope for student-level beginning achievement
are permitted to vary across the 12 school categories. In this example, moreover, vari-
ability in the intercept and in each slope is treated as a function of the aggregated school-
level beginning achievement variable, as well as a cross-level interaction term. The con-
trast between the simplicity of the multilevel regression equation for reading achieve-
ment in Table 3.40 and the cluttered complexity of the OLS regression equation in Table
3.41 is striking.

As we are reminded again by Tables 3.42 and 3.43, second-level and cross-level
explanatory factors are intended to account for school-to-school variability in random
component estimates. In Table 3.42, the variance of the random component for the
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TABLE 3.38. Analytical Status of Schools: School-Level
Family Income Coefficients

Achievement contextual variable excluded: Unstandardized coefficient = 0.000
(N/A)

Achievement contextual variable included: Unstandardized coefficient = 1.097
(0.127)

TABLE 3.39. Analytical Status of Schools: Cross-Level Interaction Term

Cross-level interaction term excluded: Unstandardized coefficient = 0.000
(N/A)

Cross-level interaction term included: Unstandardized coefficient = 0.041
(0.018)
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TABLE 3.40. Multilevel Analysis of Reading Achievement at End of Kindergarten

Y = 16.631 + 0.042XINCOME1 + 0.160XED1 + 0.143XBLACK1 + 0.001XHOOD1 + 0.845XACHIEVE1

(1.340) (0.083) (0.124) (0.268) (0.027) (0.063)

+ 1.097XACHIEVE2 + 0.041XACHIEVE2 * XACHIEVE1

(0.127) (0.018)

R2 = 57.3%

N1 = 309

N2 = 12

TABLE 3.41. OLS Analysis of Reading Achievement at End of Kindergarten

YREAD = 14.965 + 0.036XINCOME1 + 0.161XED1 + 0.227XBLACK1 – 0.001XHOOD1 + 0.757XACHIEVE1

(2.219) (0.084) (0.125) (0.706) (0.028) (0.048)

– 2.952XSCHL1 – 2.633 XSCHL2 – 1.906 XSCHL3 – 1.532XSCHL4 – 0.951XSCHL5 – 0.104XSCHL6

(0.867) (1.362) (1.165) (1.170) (1.234) (1.962)

– 3.031XSCHL7 – 2.743XSCHL8 + 0.967XSCHL9 + 5.880XSCHL11 + 0.426XSCHL12

(0.937) (0.972) (1.061) (1.907) (1.524)

R2 = 59.4%

N = 309

TABLE 3.42. Multilevel Analysis of West Virginia Reading Achievement:
Contextual Variable and Cross-Level Interaction Term Not Included;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 8.944 0.712 12.554 .000

INTERCEPT1 5.432 2.443 2.223 .026

INTERCEPT1 by XACHIEVE1 0.181 0.088 2.061 .039

XACHIEVE1 0.001 0.012 0.086 .931

TABLE 3.43. Multilevel Analysis of West Virginia Reading Achievement:
Contextual Variable and Cross-Level Interaction Term Included; Estimates
of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 9.305 0.773 12.033 .000

INTERCEPT1 0.281 0.322 0.872 .383

INTERCEPT1 by XACHIEVE1 –0.186 0.096 –0.195 .846

XACHIEVE1 0.001 0.000 — —

Note. A dash (—) indicates a value too small to measure.



intercept, INTERCEPT1, is statistically significant, as is the covariance for INTERCEPT1
and the random component of the slope XACHIEVE1. In Table 3.43, however, after the con-
textual variable, XACHIEVE2, and the cross-level interaction term, XACHIEVE2 * XACHIEVE1, have
been added to the equation, INTERCEPT1 and the INTERCEPT1-by-XACHIEVE1 covari-
ance are statistically nonsignificant. They have been accounted for by the contextual
variable and the cross-level interaction term.

We have gone a long way to make the point that within-group homogeneity as mea-
sured by the intraclass correlation can rarely be treated exclusively as a consequence of
regression model misspecification. Nevertheless, since this approach at first blush is an
intriguing possibility, it is best dispensed with once and for all (B. Andersen, 2004). A
perfectly specified model is not a practically tenable way to explain away intraclass cor-
relation and get rid of the adverse statistical consequences of grouping.

3.6 CONTEXTUAL VARIABLES AND VARYING
PARAMETER ESTIMATES

As we know, use of OLS estimators entails the assumption of additivity, meaning that
relationships between an independent and a dependent variable do not vary across cate-
gories of one or more other variables (Gujarati, 2006). The intercept and slopes for each
equation are assumed to be the same for all groups, whether they be schools, districts, or
some other units. All coefficients, in other words, are fixed.

The standard response to violation of the assumption of nonvarying slopes and inter-
cepts is explicit acknowledgment of this variability through use of a limited set of interac-
tion terms (Jaccard, Turrisi, & Wan, 1990). If relationships vary across a large number of
unordered categories, however, other ways must be found to incorporate this variability
into the analysis, such as use of random coefficient regression or multilevel regression,
which will allow slopes and intercepts to vary from group to group (Kennedy, 1998).

For example, using our data set with nine occupational categories, we will again
suspend judgment as to effective sample size and run separate regression equations for
the relationship between hourly wage and level of educational attainment for each of the
nine occupational groups. This gives us a slope and intercept for each category and per-
mits comparison of occupation-specific coefficients with results for the entire sample.
Table 3.44 reports intercepts and slopes for the nine occupational categories. Estimates
that are boldfaced and italicized are significantly different from the overall intercept and
slope.

It comes as no surprise that there is a good deal of variability with regard to the
intercept. We also see, however, that the slope estimates vary from one nominal-level
category of occupation to another, with some significantly greater and others signifi-
cantly less than the overall or average slope. This is clearly an instance in which the
assumption of nonvarying parameter estimates, meaning both the intercept and the
slope, has been violated: Payoffs for investments in education vary from occupation to
occupation (see, e.g., Sousza-Poza, 1998).
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If we proceeded in conventional fashion, inserting interaction terms to correct for
nonadditivity, with nine nominal-level occupational categories we would need nine
same-level interaction terms just to deal with education. What if we found the same sort
of group-to-group variability for years of experience, knowledge of the world of work,
and still other independent variables? The number of interaction terms would quickly
become unwieldy.

Failure to acknowledge that intercepts and slopes vary from context to context is
yet another form of specification error, though one that is often left unacknowledged.
Just as omission of an independent variable from a multiple regression equation tacitly
constrains its slope to be zero, failure to permit intercepts and slopes to vary tacitly con-
strains them to be uniform across groups (Teachman, Duncan, Young, & Levy, 2001). If
intercepts and slopes do in fact vary, the regression model will be misspecified.

In an analysis such as this, use of a random coefficient or multilevel regression
model in which the intercept and slopes are permitted to vary from one occupational
category to another seems essential. In addition, we may now include second-level vari-
ables as contextual factors that may be related to the first-level dependent variable, and
that may account for variability in the random intercept. When one or more contextual
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TABLE 3.44. Income and Occupation: Varying Intercept and
Slope Estimates

Occupation Intercept Slope
Standard

error Sig. level

All
N = 4359

0.215 0.497 0.038 .000

One
n = 453

0.379 0.525 0.098 .000

Two
n = 399

–2.895 0.785 0.148 .000

Three
n = 233

–0.828 0.646 0.283 .023

Four
n = 486

0.150 0.459 0.085 .000

Five
n = 934

2.140 0.357 0.055 .000

Six
n = 881

1.427 0.378 0.064 .000

Seven
n = 401

1.038 0.378 0.074 .000

Eight
n = 64

1.477 0.200 0.078 .005

Nine
n = 508

1.625 0.270 0.066 .000



variables are introduced and we begin thinking about two or more levels of analysis, we
can also expect to see implied cross-level interaction terms as additional explanatory fac-
tors, which may account for variability in random slopes.

We can clarify all this further with a data set that contains 11th-grade composite
achievement test scores from the Iowa Tests of Basic Skills (Hoover, Dunbar, & Frisbie,
2001). The sample consists of 298 Georgia secondary schools in 1996 (Bickel & Howley,
2000). The school is the unit of analysis, with schools nested in 155 districts. The num-
ber of schools per district ranges from 1 to 18. Level-one variables are measures on
schools, and level-two contextual variables are measures on districts.

We begin by computing the intraclass correlation coefficient, using the information
in Table 3.45:

r = 66.687/(66.687 + 188.858) = 0.261

In this instance, with 26.1% of the variability due to differences between districts, we
know that the nesting of schools within districts has resulted in dependent observations.
As a result, one or more coefficients may vary from group to group. Now, however,
instead of just nine occupational categories, we have 155 school districts!

We can keep the example instructively simple by using just two independent vari-
ables at the school level: percentage of students sufficiently poor to be eligible for free/
reduced cost lunch (POOR1) and percentage of students who are Black (BLACK1).
Rather than immediately proceeding with the analysis, we may begin by asking which
coefficients do in fact vary across second-level groups.

Ideally, questions such as this are addressed through reference to well-developed
theory or richly informative substantive literature. Resources for answering questions as
to how schools work, however, are thin and subject to contestation (see, e.g., Gerwitz,
1997; Thrupp, 1999; Gorard, 2000; Howley & Howley, 2004; Lee, 2004). As a result, we
will answer the question in a nakedly empirical fashion, using covariance parameter esti-
mates provided by SPSS.

Table 3.46 reports the residual variance, as well as measures of the degree to which
the intercept and the slopes for POOR1 and BLACK1 vary from district to district. We
also see the standard errors of these estimates of variability and their significance levels.
Table 3.46 also gives estimates of the covariances of the random components. What can
we learn from all this?
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TABLE 3.45. Mean Composite Achievement in Georgia
Secondary Schools: Residual Variance and Random Intercept Variance

Parameter Estimate Std. error Wald Z Sig. level

Residual 188.858 18.909 9.988 .000

INTERCEPT1 66.687 18.863 3.535 .000



When interpreting the random component variance estimates, we must bear in
mind that a variance cannot be negative. As a result, tests of significance for the random
components should be one-tailed tests. For a large sample, the critical value of the Wald
Z statistic becomes 1.645 rather than 1.960.

Table 3.46 makes clear that estimates of variability for the intercept and both slopes
are statistically significant. This tells us that the school-level intercept and the school-
level slopes do in fact vary across the 155 districts included in the data set. Furthermore,
we see that one of the covariances, INTERCEPT1 by XPOOR1, is statistically significant.
This tells us that if we constrained the random components to be statistically indepen-
dent, we would be making a specification error.

With this additional information, we can see that it is essential to estimate a multi-
level regression model with a random intercept and with random slopes for both first-
level independent variables. Beyond that, the random components should be permitted
to covary.

Having made these empirically informed judgments, we have created two contex-
tual variables to account for variability in the random components and to explain the
INTERCEPT1-by-XPOOR1 covariance. Specifically, we aggregated the school-level variable
XPOOR1 to the district level, creating the contextual variable XPOOR2. And we aggregated
the school-level variable XBLACK1 to the district level, creating the contextual variable
XBLACK2. School-level and district-level variables were then used to create two implied
cross-level interaction terms, XPOOR2 * XPOOR1 and XBLACK2 * XBLACK1.

Estimates for the level-one intercept and slopes, along with their standard errors,
are reported in Table 3.47, where they are compared with OLS estimates from a regres-
sion equation that included no district-level contextual variables or cross-level interac-
tion terms. Standard errors are in parentheses.

The OLS and random coefficient/multilevel estimates differ because the OLS regres-
sion equation is misspecified, treating the intercepts and slopes as nonvarying or fixed
from district to district, and not including aggregated district-level contextual variables
and cross-level interaction terms. As expected, moreover, with the exception of the inter-
cept, the multilevel estimates have larger standard errors.
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TABLE 3.46. Mean Composite Achievement in Georgia Secondary Schools:
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 86.264 10.593 8.144 .000

INTERCEPT1 209.092 51.381 4.069 .000

XPOOR1 0.251 0.100 2.508 .012

INTERCEPT1 by XPOOR1 6.623 2.216 3.116 .002

XBLACK1 0.130 0.046 2.820 .005

INTERCEPT1 by XBLACK1 –1.231 1.308 –0.941 .347

XPOOR1 by XBLACK1 –0.054 0.056 –0.815 .415



District-level contextual variables are entirely missing from the inherently single-
level OLS regression equation. The consequences of this omission are starkly evident in
Table 3.48. Both the percentage of poor students and the percentage of Black students as
aggregated district-level variables have statistically significant and negative regression
coefficients. In the OLS equation without contextual variables, however, these coeffi-
cients are erroneously constrained to equal zero.

As with contextual factors, in Table 3.49 we see that failure to include cross-level
interaction terms in the inherently single-level OLS equation has adverse consequences.
In this instance, we have a statistically significant coefficient for XBLACK2* XBLACK1 in the
multilevel equation, which is missing from the OLS equation.

In the interest of closure, the equations that yielded the values compared in Tables
3.47 through 3.49 are reported in Table 3.50. For purposes of comparison, results of an
OLS simulation of the multilevel regression equation are also included.

When parameter estimates vary over a large number of categories, such as the
school districts in a state, OLS regression can no longer provide a properly specified
model. Multilevel regression, permitting coefficients to vary across categories, should be
used instead.
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TABLE 3.47. OLS and Random/Multilevel Intercepts and Slopes:
School-Level Achievement in Georgia Secondary Schools

OLS intercept = 63.102
(1.370)

Multilevel intercept = 60.250
(1.247)

XPOOR1 OLS slope = –0.295
(0.068)

XPOOR1 multilevel slope = –0.278
(0.078)

XBLACK1 OLS slope = –0.286
(0.033)

XBLACK1 multilevel slope = –0.378
(0.072)

TABLE 3.48. District-Level Coefficients: School-Level Achievement
in Georgia Secondary Schools

XPOOR2 contextual variable excluded: Unstandardized slope = 0.000
(N/A)

XPOOR2 contextual variable included: Unstandardized slope = –0.448
(0.062)

XBLACK2 contextual variable excluded: Unstandardized slope = 0.000
(N/A)

XBLACK2 contextual variable included: Unstandardized slope = –0.140
(0.041)



3.7 CONTEXTUAL VARIABLES AND COVARIANCE STRUCTURE

When we find that one or more random components vary across categories such as dis-
tricts, we want to be able to explain that variability. We also want to know if random
components vary together. If they do, we want to be able to explain their covariance.

In addressing these issues with regard to Georgia schools and school districts, we
compare Table 3.51 (Table 3.46 reproduced) with Table 3.52. The random component
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TABLE 3.49. Cross-Level Interaction Term Coefficients:
School-Level Achievement in Georgia Secondary Schools

XPOOR2 * XPOOR1 cross-level interaction term excluded: Fixed slope = 0.000
(N/A)

XPOOR2 * XPOOR1 cross-level interaction term included: Fixed slope = –0.006
(0.004)

XBLACK2 * XBLACK1 cross-level interaction term excluded: Fixed slope = 0.000
(N/A)

XBLACK2 * XBLACK1 cross-level interaction term included: Fixed slope = –0.004
(0.001)

TABLE 3.50. OLS and Multilevel Analyses of School-Level Composite Achievement

OLS regression equation as reported

YACHIEVE = 63.102 – 0.0.295XPOOR1 – 0.286XBLACK1

(1.370) (0.068) (0.033)

R2 = 26.5%

N = 298

OLS simulation of multilevel regression

YACHIEVE = 59.965 – 0.311 XPOOR1 – 0.353XBLACK1 – 0.439XPOOR2 – 0.145XBLACK2 – 0.164XPOOR2

(0.979) (0.052) (0.039) (0.050) (0.036) (0.160)

* XPOOR1 – 0.030XBLACK2 * XBLACKL1

(0.038)

R2 = 68.8%

N = 298

Multilevel regression equation

YACHIEVE = 60.250 – 0.278 XPOOR1 – 0.378XBLACK1 – 0.448XPOOR2 – 0.140XBLACK2 – 0.006XPOOR2

(1.246) (0.078) (0.072) (0.062) (0.041) (0.004)

* XPOOR1 – 0.004XBLACK2 * XBLACKL1

(0.001)

R2 = 66.3%

N1 = 298

N2 = 155



variances and covariances in Table 3.51 were computed without contextual factors or
cross-level interaction terms included in the multilevel regression equation. When the
results reported in Table 3.52 were computed, however, these additional factors were
incorporated into the analysis.

Comparing the two tables, we see that the random component variance estimates
for INTERCEPT1, XPOOR1, and XBLACK1 have been substantially diminished by introduc-
tion of the contextual variables and cross-level interaction terms. The same is true of the
values for INTERCEPT1 by XPOOR1, INTERCEPT1 by XBLACK1, and XPOOR1 by XBLACK1. In
fact, all six terms have been reduced to statistical nonsignificance, and three are so small
that SPSS was unable to estimate Wald Z values and significance levels.

In this example, we were able to explain the variability in our random components.
In addition, we were able to explain random component covariances. Both explanations
were accomplished through use of contextual variables and cross-level interaction terms.

To further illustrate why we should be sensitive to the fact that random coefficients
may vary together, we turn again to our large Kentucky data set (see Table 3.53). We use
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TABLE 3.51. (TABLE 3.46, Reproduced). Mean Composite Achievement in Georgia Secondary
Schools: Contextual Variable and Cross-Level Interaction Term Not Included;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 86.264 10.593 8.144 .000

INTERCEPT1 209.092 51.381 4.069 .000

XPOOR1 0.251 0.100 2.508 .012

INTERCEPT1 by XPOOR1 6.623 2.216 3.116 .002

XBLACK1 0.130 0.046 2.820 .005

INTERCEPT1 by XBLACK1 –1.231 1.308 –0.941 .347

XPOOR1 by XBLACK1 –0.054 0.056 –0.815 .415

TABLE 3.52. Mean Composite Achievement in Georgia Secondary Schools: Contextual Variable
and Cross-Level Interaction Term Included; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 86.113 10.617 8.111 .000

INTERCEPT1 11.666 18.903 0.607 .537

XPOOR1 0.082 0.000 — —

INTERCEPT1 by XPOOR1 0.941 0.615 1.528 .126

XBLACK1 0.094 0.000 — —

INTERCEPT1 by XBLACK1 –0.773 0.704 –1.098 .272

XPOOR1 by XBLACK1 –0.047 0.000 — —

Note. A dash (—) indicates a value too small to measure.



reading achievement as the dependent variable and a student-level dummy variable
called XNONWHITE1 as the only independent variable. XNONWHITE1 was created by coding
White students as 0 and members of all other ethnic groups as 1. XNONWHITE1 differs from
the XETHNIC1 variable used in previous analyses, in that XETHNIC1 was created after selecting
out all students who were located in a category other than White or Black. This resulted
in a loss of 0.41% of all cases.

r = 45.359/(45.359 + 337.865) = 0.120

With an intraclass correlation coefficient of 0.120, we know that a properly specified
regression model will have one or more random coefficients. If there is more than one
random component, they may vary together.

For purely illustrative purposes, we use randomly selected school identification
numbers and take a small subsample of 55 schools. We then estimate an OLS intercept
and slope for each school. Intercept estimates vary from 30.09 to 64.58, with a mean of
48.55. Slope estimates vary from –26.12 to 23.50, with a mean of –4.09. When intercept
and slope estimates are correlated, we get an r value of –0.33. The negative relationship
between intercepts and slopes for the 55 randomly selected schools is displayed in Fig-
ure 3.5.

Before offering a tentative substantive in-
terpretation of this negative slope-by-intercept
covariance, we should emphasize that the co-
efficient estimates used in Figure 3.5 were
generated by using OLS regression. As such,
they exhibit greater variability than the group-
specific estimates that would be used to com-
pute the weighted averages that yield REML
estimates for a random intercept and a random
slope. This is due to a phenomenon called
shrinkage.

When we invoke the concept shrinkage,
we are acknowledging that group-specific es-
timates in multilevel analysis are pulled or
shrunk toward an overall average (Hox, 2002).
The degree of shrinkage is a function of the
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TABLE 3.53. Eighth-Grade Reading Achievement in Kentucky: Estimates of
Covariance Parameters; Information for Computing Unconditional Intraclass Correlation

Parameter Estimate Std. error Wald Z Sig. level

Residual 337.685 2.147 157.295 .000

INTERCEPT1 45.359 4.463 10.163 .000

FIGURE 3.5. Slopes by intercepts:
Reading achievement by XNONWHITE1.



number of cases in a group. The fewer the number of cases, the greater the shrinkage
(Tate, 2004). In other words, the groups with a smaller number of cases will weigh less
heavily in estimating the value of the overall or average slope than will groups with a
larger number. For present purposes, the overall effect of primary interest is diminished
variability in random coefficient estimates.

Furthermore, covariances among random components are sensitive to the way vari-
ables have been centered. In their classic paper on centering, Kreft, De Leeuw, and Aiken
(1995) demonstrate that when compared to raw scores, grand-mean centering results in
a substantial reduction in random component covariances. Group-mean centering,
moreover, may diminish the covariance still further. In the absence of a stricture that
centering will always be used and will always be done in the same way, this can generate
a good deal of confusion. We can see this in Table 3.54.

We immediately see that the INTERCEPT1-by-XNONWHITE1 covariance (see the bold-
faced, italicized entries in Table 3.54) has a smaller absolute value with group-
mean centering than with grand-mean centering, and that the absence of centering
yields the largest covariance. Moreover, the covariance obtained by using group-mean
centering is not statistically significant. If we compute Pearson’s r for the correla-
tion between INTERCEPT1 and the XNONWHITE1 slope after using grand-mean centering,
r = –0.30. However, when the same information is obtained by using group-mean center-
ing, r = –0.21. Without centering, r = –0.54.
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TABLE 3.54. Eighth-Grade Reading Achievement in Kentucky:
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Group-mean centered

Residual 328.968 2.120 155.180 .000

INTERCEPT1 46.360 4.553 10.182 .000

INTERCEPT1 by XNONWHITE1 –6.619 3.529 –1.876 .061

XNONWHITE1 21.353 4.450 4.796 .000

Grand-mean centered

Residual 329.057 2.121 155.162 .000

INTERCEPT1 42.969 4.321 9.944 .000

INTERCEPT1 by XNONWHITE1 –8.413 3.250 –2.588 .010

XNONWHITE1 18.788 4.020 4.664 .000

Raw scores

Residual 422.806 2.777 152.822 .000

INTERCEPT1 27.825 3.799 7.323 .000

INTERCEPT1 by XNONWHITE1 –15.993 4.728 –3.383 .001

XNONWHITE1 31.729 8.437 3.761 .000



Having made these cautionary comments,
how might we account for the negative associa-
tion between OLS estimates of intercepts and
slopes for the 55 analyses in our illustration? In
search of an answer, we may consider the possi-
bility that as schools get larger, mean achieve-
ment levels increase, but the achievement-
related costs associated with not being White
increase as well (Howley & Howley, 2005).

In this small sample, school size varies from
60 to 519 students, with a mean of 179. In Fig-
ure 3.6, we see the slopes-by-intercepts relation-
ship net the influence of school size. Clearly, the
slope of the OLS regression line that summarizes
the slope-by-intercept relationship is much less
steep than in Figure 3.5.

With suggestive evidence from this small subsample indicating that school-specific
intercepts and slopes are correlated, we estimate a random coefficient regression equa-
tion in which the intercept and the slope for XNONWHITE1 are permitted to vary across
schools. Results of the analysis are reported in Tables 3.55 and 3.56. (No contextual vari-
ables are included in this preliminary example.) The parameter estimates in Table 3.56
make clear that the intercept and slope do in fact vary from school to school, and that
the random components for INTERCEPT1 and XNONWHITE1 have a negative covariance.
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FIGURE 3.6. Slopes by intercepts:
Reading achievement by XNONWHITE1, net
school size.

TABLE 3.55. Eighth-Grade Reading Achievement
in Kentucky: Random Coefficient Regression

Y = 48.381 – 6.743XNONWHITE1

(0.392) (0.453)

R1
2 = 2.0%

N1 = 49,616

N2 = 347

TABLE 3.56. Eighth-Grade Reading Achievement in Kentucky: Random Coefficient
Regression; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 329.057 2.121 155.162 .000

INTERCEPT1 42.969 4.321 9.944 .000

INTERCEPT1 by XNONWHITE1 –8.413 3.250 –2.588 .010

XNONWHITE1 18.788 4.020 4.664 .000



As we saw with reference to the second section of Table 3.54, Pearson’s r = –0.30.
This is little different from the small-sample estimate of –0.33 that we calculated with
the OLS information used to construct Figure 3.5. Similarly, the negative and statistically
significant coefficient for INTERCEPT1 * XNONWHITE1 is consistent with the information
provided by Figures 3.5 and 3.6. Had we chosen to constrain covariances among random
components to equal zero, we would have completely missed this substantively interest-
ing relationship.

If we take Figures 3.5 and 3.6 seriously and introduce school size (XSIZE2) and the
implied cross-level interaction term (XSIZE2 * XNONWHITE1) into the analysis, we get the
results reported in Tables 3.57 and 3.58. The INTERCEPT1-by-XNONWHITE1 covariance
has been substantially reduced, corresponding to a diminished Pearson’s r = –0.22.

Clearly, when we are working with a multilevel regression model, one important
aspect of proper specification is deciding which coefficients should be fixed and which
should be random. Another important part of proper specification is deciding on a suit-
able covariance structure when there is more than one random term. Still another step in
proper specification is identification of contextual variables and cross-level interaction
terms that may contribute to explaining both the variances and the covariances that
come with use of random coefficients.

A specific covariance structure tells us the nature of the relationships that are per-
mitted to exist among random components (SPSS, 2003; see also Wolfinger, 1993;
Abdulnabi, 1999). For example, the default option with SPSS is called variance compo-
nents. If we select variance components as the covariance structure, we are permitting
the variances of random components to vary, but we are specifying that they do not vary
together.
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TABLE 3.57. Eighth-Grade Reading Achievement in Kentucky:
Multilevel Regression; Unstructured

Y = 51.731 – 5.572XNONWHITE1 + 1.312XSIZE2 – 1.512XSIZE2 * XNONWHITE2

(0.336) (0.613) (0.393) (1.512)

R1
2 = 2.2%

N1 = 49,616

N2 = 347

TABLE 3.58. Eighth-Grade Reading Achievement in Kentucky: Multilevel Regression;
Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.446 2.172 152.572 .000

INTERCEPT1 19.572 2.056 9.518 .000

INTERCEPT1 by XNONWHITE1 –4.503 2.156 –2.088 .037

XNONWHITE1 21.485 4.956 4.3335 .000



Variance components covariance structure is sometimes referred to as the tradi-
tional choice (SAS Institute, 1999). In the social and behavioral sciences, however, ran-
dom intercepts and random slopes are usually modeled to permit correlations among
them. Snijders and Bosker (1999) offer the unambiguous admonition that a random
intercept should always be permitted to vary with random slopes—a judgment they
illustrate with interesting examples. Singer (1998) has also noted that an unstruc-
tured approach to covariance structure is the one most frequently used in the social
and behavioral sciences. Similarly, all of the multilevel models used by Kreft and
De Leeuw (1998) in their introductory text permit random components to vary together.
Raudenbush and Bryk (2002), as another example, routinely permit random compo-
nents to covary.

If we specify an unstructured approach to covariance structure, using SPSS or any
other software, we impose no constraints on relationships among random components.
We are not only permitting the random intercept and all random slopes to vary together;
we are also acknowledging that the variances and covariances of random components
may differ from level to level of the independent variables used in the analysis. The
unstructured option, in effect, covers all the bases, providing a measure of assurance that
we have not missed anything important.

On the other hand, the unstructured option requires more parameters to estimate a
model. This uses up degrees of freedom, and may yield misleading information about
model fit when we apply the deviance difference statistic (Hox, 2002, pp. 50–51).

It is true that the variance components option and the unstructured option are not
our only choices. For example, if we were willing to stipulate that our random compo-
nents were not only uncorrelated but had the same variance for each level of each inde-
pendent variable, we could use the scaled identity option. Furthermore, there are
numerous other covariance structures that permit intermediate levels of complexity with
regard to variances of random components and relationships among them (see, e.g.,
Abdulnabi, 1999; Singer & Willett, 2003). Moreover, SPSS, SAS, and other versatile soft-
ware packages permit us to specify a different covariance structure for each random
component.

Typically, however, we have little or no theoretical or substantive information that
would prompt us to choose one covariance structure over another. What do we do? All
told, there is good reason to use the unstructured option routinely, permitting the ran-
dom components to vary together. We shall adhere to this stricture. It is instructive, nev-
ertheless, to illustrate the consequences of this decision.

Returning to the model estimated in Tables 3.57 and 3.58, we run the analysis using
the variance components option, meaning that the intercept and slopes are not permitted
to vary together. Results are reported in Tables 3.59 and 3.60.

In general, choice of covariance structure has little effect on fixed component esti-
mates, but may yield more accurate estimates of their standard errors (SAS Institute,
1999). It is no surprise, therefore, that when comparing the results reported in Tables
3.57 and 3.59, we find only very small differences in estimates for the intercept and
slopes. In this instance, moreover, the same applies to differences in standard errors. In
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addition, comparing Tables 3.58 and 3.60 shows us that the random component vari-
ances and their standard errors are almost exactly the same. Is there any reason to
believe that either model provides a better fit? How do we make a judgment?

One applicable set of decision-making tools that we have not used so far in compar-
isons of multilevel regression models estimated in different ways consists of the deviance
difference and information criteria. Routinely, SPSS reports the deviance, here referred to
as the –2 log likelihood, and four information criteria, as we see in Table 3.61. When we
get to Chapter 9, we will learn more about information criteria. For now we will simply
note that each measure has a smaller-is-better interpretation, meaning that the model
with the smaller value is the one with the better overall fit (SAS Institute, 1999;
Burnham & Anderson, 2002; Kuha, 2004; Cavanaugh, 2005).

The information criteria differ because each has its own formula to punish analysts
for using additional parameters in estimating coefficients (Luke, 2004). The –2 log like-
lihood statistic includes no disincentives for using additional parameters. Differences
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TABLE 3.59. Eighth-Grade Reading Achievement in Kentucky:
Multilevel Regression; Variance Components

Y = 51.733 – 5.587XNONWHITE1 + 1.357XSIZE2 – 1.561XSIZE2 * XNONWHITE2

(0.336) (0.623) (0.377) (0.436)

R1
2 = 2.2%

N1 = 49,616

N2 = 347

TABLE 3.60. Eighth-Grade Reading Achievement in Kentucky: Multilevel Regression;
Variance Components; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.451 2.173 152.562 .000

INTERCEPT1 19.848 2.080 9.541 .000

XNONWHITE1 21.757 5.047 4.311 .000

TABLE 3.61. Information Criteria for Tables 3.58 and 3.60

Criterion
Variance

components Unstructured

–2 log likelihood 406542.1 406537.8
Akaike’s Information Criterion 406556.1 406553.8
Hurvich and Tsai’s Criterion 406556.1 406553.8
Bozdogan’s Criterion 406624.4 406631.8

Schwarz’s Bayesian Criterion 406617.4 406623.8



between the basic –2 log likelihood statistic and the other measures, therefore, are analo-
gous to the difference between R2 and adjusted R2 in OLS regression.

When we are comparing alternative multilevel model specifications using the differ-
ence between two deviance values or the information criteria, all measures are estimated
using maximum likelihood (ML) rather than REML. Estimating coefficients with REML
and then estimating information criteria for the same model with ML is very easy to do,
as we shall explain in Chapter 4.

With the information in Table 3.61, we can calculate the deviance difference in this
instance as follows:

Deviance difference = 406542.1 – 406537.8 = 4.3

df = 8 – 7 = 1

For each measure in Table 3.61, the smaller value has been boldfaced and italicized.
Comparison of the five different decision-making measures yields conflicting results.

The deviance (–2 log likelihood) is sometimes construed as a measure of lack of fit:
The larger the deviance, the less well the model fits the data. The deviance becomes
interpretable when we use deviances from competing models to compute the deviance
difference.

The deviance difference is distributed approximately as χ2, with degrees of freedom
equal to the difference between the numbers of parameters used in estimating competing
models. The model reported in Tables 3.57 and 3.58 uses eight parameter estimates: one
for the intercept, one for each of the three slopes, and one for each of the four random
terms. The model reported in Tables 3.59 and 3.60 uses seven parameter estimates: one
for the intercept, one for each of the three slopes, and one for each of the three parame-
ter estimates. The critical value of χ2 with one degree of freedom and the alpha level set
at .05 is 3.841, which we have exceeded. This indicates that the model with an unstruc-
tured approach to covariance structure provides a better fit.

The information criteria, however, provide conflicting results. The most commonly
used criteria are Akaike’s Information Criterion and Schwarz’s Bayesian Criterion
(Abdulnabi, 1999). In this instance, Akaike’s Information Criterion indicates that the
unstructured model is the better-fitting one, while Schwarz’s Bayesian Criterion indi-
cates that the variance components model provides the better fit. If we referred to the
less commonly used information criteria, we would be faced with the same sort of ambi-
guity.

What do we make of this? Again we see that choice of covariance structure has
made very little difference in the multilevel models that we have used for examples.

We continue with this example, still trying to account for random component vari-
ances and covariances, in Table 3.62. Starting with the model in Tables 3.57 and 3.59, we
add the contextual variables XNONWHITE2 (non-White status aggregated to the school
level) and XGENDER2 (gender aggregated to the school level) as additional predictors of
variability in the random component of the intercept and the random component of the
slope for XNONWHITE1.
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In addition, XGENDER1 is introduced as an additional level-one predictor with a ran-
dom slope. Variability in the slope for XGENDER1 is also treated as a function of XSIZE2,
XNONWHITE2, and XGENDER2. This gives us five more implied cross-level interaction terms:
XNONWHITE2 * XNONWHITE1, XNONWHITE2 * XGENDER1, XGENDER2 * XGENDER1, XGENDER2 * XNONWHITE1,
and XSIZE2 * XGENDER1.

The additional cross-level interaction terms enable us to determine if the relation-
ship between XNONWHITE1 and reading achievement varies from level to level of XNONWHITE2

(XNONWHITE2 * XNONWHITE1); if the relationship between XGENDER1 and reading achievement
varies from level to level of XNONWHITE2 (XNONWHITE2 * XGENDER1); if the relationship
between XGENDER1 and reading achievement varies from level to level of XGENDER2

(XGENDER2 * XGENDER1); if the relationship between XNONWHITE1 and reading achievement
varies from level to level of XGENDER2 (XGENDER2 * XNONWHITE1); and if the relationship
between XGENDER1 and reading achievement varies from level to level of XSIZE2 (XSIZE2 *
XGENDER1).

Substantively, the most interesting results in Table 3.62 concern the cross-level
interaction terms XNONWHITE2 * XNONWHITE1 and XNONWHITE2 * XGENDER1. Their statistically
significant and negative coefficients tell us that as the proportion of a school’s students
who are non-White increases, average reading achievement levels of individual non-
White students and individual female students diminishes.

To some readers, these substantively interesting results may seem statistically dubi-
ous because the multilevel regression model is becoming quite complex, and complex
models may be unstable (Kreft & De Leeuw, 1998). Furthermore, the inferential proper-
ties of cross-level interaction terms are not well understood (Mok, 1995; Hox, 2002).

It is known, however, that coefficient estimates for cross-level interaction terms are
most stable and their tests of significance are most reliable when a large number of
observations at level one is nested in a large number of observations at level two (Kreft
& De Leeuw, 1998; also see Maas & Hox, 2005). In this instance we have an unusually
large number of observations at both the student level and the school level, and the t val-
ues for both coefficients are large by any conventional standard. Furthermore, in an OLS
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TABLE 3.62. Eighth-Grade Reading Achievement in Kentucky: Multilevel Regression, Respecified;
Unstructured

Y = 50.890 – 6.189XNONWHITE1 + 7.981XGENDER1 + 1.069XSIZE2 + 3.456XNONWHITE2 + 26.206XGENDER2

(0.417) (0.483) (0.372) (0.450) (2.214) (6.604)

– 1.096XSIZE2 * XNONWHITE1 – 0.673XSIZE2 * XGENDER1 – 17.814XNONWHITE2 * XNONWHITE1

(0.759) (0.365) (2.771)

– 6.434XNONWHITE2 * XGENDER1 + 1.719XGENDER2 * XGENDER1 + 11.010XGENDER2 * XNONWHITE1

(1.408) (4.907) (10.267)

R1
2 = 12.5%

N1 = 49,616

N2 = 347



multiple regression equation with the same variables, all variance inflation factors are
below 2.00, and the condition index is only 2.618, meaning that multicollinearity is not
a problem.

All this lends credibility to the statistical and substantive value of these interesting
results. This holds even though there was only a very small increase in the R1

2 summary
statistic.

Note in Table 3.63 that the random intercept is in fact correlated with both random
slopes. These correlations, moreover, remain statistically significant even with level-two
contextual variables and cross-level interaction terms in the equation. What would have
happened if we had used variance components instead of the unstructured option? In
other words, what would have happened if we had gotten it wrong?

By now it comes as no surprise that the multilevel regression coefficients and stan-
dard errors reported in Table 3.64 are very similar to those in Table 3.62. Use of variance
components rather than the unstructured option does not change the substantive import
of our fixed components; nor does it have any effect on their tests of significance. Com-
paring random component variances in Tables 3.63 and 3.65 also shows little difference
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TABLE 3.63. Reading Achievement by Non-White Status among Kentucky Eighth Graders:
Multilevel Regression, Respecified; Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 316.447 2.082 151.983 .000

INTERCEPT1 18.042 1.906 9.465 .000

XNONWHITE1 14.777 3.603 4.099 .000

INTERCEPT1 by XNONWHITE1 –5.411 1.987 –2.852 .004

XGENDER1 2.084 0.755 2.759 .006

INTERCEPT1 by XGENDER1 –2.477 0.873 –2.838 .005

XNONWHITE1 by XGENDER1 0.247 1.198 0.206 .837

TABLE 3.64. Eighth-Grade Reading Achievement in Kentucky: Multilevel Regression, Respecified;
Variance Components

Y = 51.880 – 6.298XNONWHITE1 + 8.111XGENDER1 + 1.068XSIZE2 + 3.555XNONWHITE2 + 25.886XGENDER2

(0.421) (0.494) (0.372) (0.454) (2.229) (6.656)

– 1. 279XSIZE2 * XNONWHITE1 – 0.833XSIZE2 * XGENDER1 – 17.185XNONWHITE2 * XNONWHITE1

(0.789) (0.366) (2.845)

– 6.329XNONWHITE2 * XGENDER1 + 1.185XGENDER2 * XGENDER1 + 8.042XGENDER2 * XNONWHITE1

(1.407) (4.914) (10.073)

R1
2 = 12.5%

N1 = 49,616

N2 = 347



between the two sets of estimates. If any obvious gains come with use of the unstruc-
tured option, they will have to be manifest in the random component covariances.

Because differences between results for the analyses in Tables 3.62 and 3.64 and in
Tables 3.63 and 3.65 are not large, we might suspect that simply sticking with variance
components is a parsimonious and otherwise reasonable choice. It may seem that little
or nothing of value was gained by estimating 19 parameters for the unstructured option
rather than 16 parameters for variance components. (Each coefficient estimate, each
variance component estimate, and each covariance estimate represents an additional
parameter. The additional parameters estimated with the unstructured configuration are
the covariances among random components.)

Use of the unstructured option seems the correct call, however, if we bear in mind
that one purpose of contextual variables and cross-level interaction terms in multilevel
analysis is to account for variability in random components and to explain why
covariances among random terms differ from zero. If we go back to Tables 3.54 and 3.58,
we see that we had substantial success in explaining the random component covariance
INTERCEPT1 by XNONWHITE1 as a function of school size. Introduction of additional con-
textual factors and cross-level interaction terms, however, did not contribute to further
diminution of this covariance.

Still, it is certainly worth knowing that school size increases are related to increases
in average reading achievement levels, and that school size increases undercut achieve-
ment for non-White and female students. It is also worth acknowledging that school size
was the only contextual factor that was chosen in an informed way. XGENDER2 and
XNONWHITE2 were selected simply because they were available.

With the information in Table 3.66, we can calculate the deviance difference in this
instance as follows:

Deviance difference = 402698.2 – 402680.2 = 18.0

df = 19 – 16 = 3

Though the unstructured option still seems the better choice, comparisons of the devi-
ance difference and the information criteria yield conflicting results. This is still further
evidence that choice of covariance structure has made very little difference in the multi-
level models that we have used for examples.
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TABLE 3.65. Reading Achievement by Non-White Status among Kentucky Eighth Graders:
Multilevel Regression, Respecified; Variance Components; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 316.457 2.082 151.965 .000

INTERCEPT1 18.347 1.935 9.483 .000

XNONWHITE1 15.719 3.860 4.073 .000

XGENDER1 2.019 0.746 2.706 .007



This certainly is a long discussion to illustrate consequences of our decision to use
the option for unstructured covariance structure routinely. The illustrations, however,
lend credibility to our decision. Covariances among random components may be
instructive, and permitting random components to covary usually has little effect on
parameter estimates. As a result, we adhere to the convention prevailing in the social and
behavioral sciences and routinely use the unstructured option.

3.8 CONTEXTUAL VARIABLES AND DEGREES OF FREEDOM

Finally, we use a data set that includes 281 kindergarten students from 12 randomly
selected elementary schools located in two contiguous counties in western West Virginia
(Bickel et al., 2002). We run an OLS regression equation with a measure of individual
students’ social skills taken at the end of the school year as the dependent variable (Gres-
ham & Elliott, 1990). We then try to account for variability in social skills with one
individual-level predictor, a student-level measure of neighborhood quality, along with
an aggregated school-level contextual variable for neighborhood quality (Furstenberg et
al., 1990). Our results are reported in Table 3.67.

In this equation, all independent variables—whether at the individual level or the
school level—correspond to the same number of degrees of freedom, sample size minus
the number of parameters estimated. Since we are estimating three parameters (the inter-
cept and two slopes), we have 278 degrees of freedom for tests of significance with each
regression coefficient. However, it seems odd indeed to use the same number of degrees
of freedom for both XNEIGHBOR1 and XNEIGHBOR2. After all, while there are 281 students,
there are only 12 schools, and XNEIGHBOR2 is a contextual variable—neighborhood quality
aggregated to the school level.
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TABLE 3.66. Information Criteria for Tables 3.62 and 3.64

Criterion
Variance

components Unstructured

–2 log likelihood 402698.2 402680.2
Akaike’s Information Criterion 402730.2 402718.2
Hurvich and Tsai’s Criterion 402730.2 402718.2
Bozdogan’s Criterion 402886.3 402903.5

Schwarz’s Bayesian Criterion 402870.3 402884.5

TABLE 3.67. OLS Analysis of Student Social Skills

Y = 24.838 – 0.182 XNEIGHBOR1 + 0.341XNEIGHBOR2

(0.265) (0.0239) (0.097)

R2 = 10.5%

N = 281



If we run the same regression equation using REML estimators in a random coeffi-
cient model in which we permit the intercept to vary across schools, SPSS applies the
correct number of degrees of freedom at both the individual level and the school level.
The individual-level degrees of freedom remain the same (278), but number of degrees
of freedom at the school level is equal to N2 – k – 1, where N2 is the number of groups
and k is the number of independent variables at level two (Snijders & Bosker, 1999,
pp. 86–87). With 12 schools, this gives us 10 degrees of freedom for testing XNEIGHBOR2

rather than 278 (Snijders & Bosker, 1999, p. 86). This is an enormous difference with
potentially profound implications for tests of significance for regression coefficients. The
random coefficient regression results with a random intercept appear in Tables 3.68 and
3.69.

By now we are accustomed to seeing larger standard errors with random coefficient
regression equations than with OLS equations that contain the same variables. If we
compute a t value for the OLS estimate of the XNEIGHBOR2 coefficient, we get 3.515, quite a
bit larger than the t value of 2.480 for the corresponding random coefficient. In either
case, however, with the alpha level set at the usual .05, we reject the null hypothesis.

However, with 10 degrees of freedom and a t value of 2.480, the p value at or above
which the XNEIGHBOR2 coefficient is statistically significant is .023. If we had used 278
degrees of freedom as with OLS, the p value would have been approximately .014 (Levin &
Fox, 2002, pp. 446–447). Not only does OLS yield a deflated standard error for level-two
variables; it also applies an incorrect number of degrees of freedom. Here that error would
be inconsequential, but eventually it catches up with us (Bickel & McDonough, 1998).

Recall, moreover, that if the level-one regression coefficient for the XNEIGHBOR1 had
been random rather than fixed—if the level-one slope had been permitted to vary across
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TABLE 3.68. Random Coefficient Analysis of Student Social Skills

Y = 24.961 + 0.183XNEIGHBOR1 + 0.305XNEIGHBOR2

(0.361) (0.038) (0.123)

R1
2 = 12.8%

N1 = 281

N2 = 12

TABLE 3.69. Random Coefficient Analysis of Student Social Skills;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 14.045 0.804 17.474 .000

INTERCEPT1 2.591 1.274 2.033 .041

INTERCEPT1 by XNEIGHBOR1 –0.003 0.068 –0.041 .967

XNEIGHBOR1 0.007 0.006 1.163 .245



schools—the number of degrees of freedom available for testing it would have been
determined by the number of second-level groups (in this case, the 12 schools), rather
than the number of level-one observations. With a random intercept and one random
slope, the number of degrees of freedom used in t tests for the regression coefficients
would have been the same as the number of degrees of freedom for a single contextual
variable at the school level: N2 – k – 1. We will clarify this further when we get to our
discussion of suitable sample sizes for multilevel regression models.

In Table 3.69 the cross-level interaction term XNEIGHBOR2 * XNEIGHBOR1 has been
inserted into our multilevel regression equation. This term is implied by our use of a
random slope with XNEIGHBOR1 and use of XNEIGHBOR2 to account for variability in that ran-
dom slope. Even with a multiplicative interaction term, collinearity diagnostics are
about as good as they get. Variance inflation factors range from 1.001 to 1.079, and the
condition index is 1.322.

Though multicollinearity is virtually nonexistent, when we compare Tables 3.70
and 3.71 we see that with assignment of a random slope to XNEIGHBOR1, the standard error
of its regression coefficient has substantially increased. With a t value of 3.327, the corre-
sponding p value would be approximately .001 if we were computing degrees of freedom
from all 281 cases. Once we make the XNEIGHBOR1 slope random, however, the number of
available degrees of freedom shrinks to 10, and SPSS computes a p value of .010. Since
we have set our alpha level at .05, we make the same decision about statistical signifi-
cance. Nevertheless, it is clear that this will not always be the case.

The t value for the coefficient corresponding to the cross-level interaction term,
XNEIGHBOR2 * XNEIGHBOR1, is 1.211, smaller than any conventionally used critical value. It is
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TABLE 3.70. Multilevel Analysis of Student Social Skills

Y = 24.969 + 0.183XNEIGHBOR1 + 0.298XNEIGHBOR2 + 0.023XNEIGHBOR2 * XNEIGHBOR1

(0.364) (0.055) (0.124) (0.019)

R1
2 = 13.3%

N1 = 281

N2 = 12

Note. Random coefficients are boldfaced and italicized.

TABLE 3.71. Multilevel Analysis of Student Social Skills; Estimates of
Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 14.033 0.803 17.484 .000

INTERCEPT1 2.590 1.271 2.033 .042

INTERCEPT1 by XNEIGHBOR1 –0.004 0.067 –0.061 .951

XNEIGHBOR1 0.007 0.006 1.070 .306



worth noting, however, that the number of degrees of freedom assigned to the fixed
slope for a cross-level interaction term is also N2 – k – 1, the same number of degrees of
freedom assigned to the random slope used in creating this multiplicative term. Occa-
sionally a cross-level interaction term may be created by using level-one and level-two
predictors that both have fixed slopes. In cases such as this, the number of degrees of
freedom for the cross-level interaction terms is N1 – k – 1.

When SPSS is used, degrees of freedom for fixed components of random coeffi-
cients is actually calculated by using a procedure called Satterthwaite’s approximation
(Satterthwaite, 1946; Dallal, 2005; SPSS, 2005b). The number of degrees of freedom in
use will thus be a bit different from those resulting from direct application of the simple
formulas presented here. In practice, this difference is seldom consequential. Neverthe-
less, seeing degrees of freedom expressed with decimals rather than whole numbers on
an SPSS printout does seem odd.

3.9 SUMMING UP

We have subsumed a great deal under the straightforward chapter title “Contextual Vari-
ables,” because this obliges us to invoke a broad range of issues in multilevel regression
analysis. We have seen, for example, that use of contextual variables is not limited to
multilevel models. Instead, these group-level explanatory factors have been used in OLS
regression models for at least three decades. The same is true for discretionary employ-
ment of cross-level interaction terms with OLS regression, though their use is implied in
multilevel models with one or more random slopes.

The meaning of these group-level explanatory factors, however, differs from OLS
regression to multilevel regression. In OLS regression, contextual variables and atten-
dant cross-level interaction terms are used exclusively as predictors of a level-one depen-
dent variable. Furthermore, even though we refer to contextual variables as being
located at the group level, OLS regression is an inherently single-level procedure.

In multilevel regression, contextual variables and implied cross-level interaction
terms are used as predictors, as in OLS, but their primary function is to account for vari-
ability in random components. As we shall see in Chapter 5, moreover, multilevel regres-
sion models really are explicitly specified to operate at different levels. When we are
working with two levels, for example, there are two sets of equations that are eventually
combined into one. Contextual variables are located at level two.

Our discussion of contextual variables has also shown us that without nesting-
engendered homogeneity, the distinction between OLS regression and multilevel regres-
sion would be at most a mathematical oddity. Nevertheless, even though nesting is per-
vasive and consequential, we need not simply assume that it exists. We can compute the
unconditional intraclass correlation coefficient and be sure. This enables us to determine
the amount of variability in a dependent variable that exists between groups rather than
within them. It also enables us to avoid making an analysis unduly complex in situations
where OLS regression will do just fine.
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After introducing one or more contextual variables and implied cross-level interac-
tion terms, moreover, we can compute the conditional intraclass correlation coefficient.
This enables us to determine how much of the between-group variability has been
explained.

In addition, introduction of judiciously selected contextual variables and cross-level
interaction terms may enable us to account for variability in the random components of
the intercept and one or more slopes. Success in this effort, meaning substantial reduc-
tion in the variability of random components, may be of real substantive importance.

Much the same may be true of covariances among random components, whether
they are an intercept and a slope or two slopes. If our choice of covariance structure per-
mits random components to vary together, and if a nonzero covariance occurs, contex-
tual factors may be used in an effort to explain this covariance. Success in our efforts to
account for random component covariances may provide useful information. We have
seen, moreover, that measures such as Akaike’s Information Criterion and Schwarz’s
Bayesian Criterion can be useful in evaluating multilevel regression model fit in terms of
different covariance structures.

Again, the straightforward concept contextual variable may helpfully be used to
subsume a diverse but interrelated set of ideas pertinent to discussion of multilevel mod-
eling. With nested data, contextual variables and all that their proper understanding
entails will soon follow.

3.10 USEFUL RESOURCES

Barr, R., & Dreeben, R. (1983) How Schools Work. Chicago: University of Chicago Press.

Even after a quarter century of methodological advances, Barr and Dreeben’s monograph
merits reading, especially for the clear and uncomplicated way in which they used contextual
variables. The authors’ thesis was that school organization—social context—was too little studied
as a source of achievement differences among students. For too long, they held, pride of place had
been given to characteristics of individuals.

As a remedy, Barr and Dreeben began with a fairly conventional model of reading achieve-
ment. In a departure from conventional practice, they measured one of their explanatory factors,
student aptitude, at both the individual and reading group levels. Aptitude aggregated to the level
of the reading group was a contextual variable. Group mean aptitude, in the authors’ analysis,
exerted a substantial influence on reading achievement, exceeding the influence of individual
aptitude. Contextual factors, they concluded, were consequential and underappreciated sources of
achievement variability among elementary school students.

Barr and Dreeben’s research has more than its share of methodological difficulties. Neverthe-
less, their acknowledgment of the importance of contextual variables is, in its own way, exem-
plary. This is exactly the sort of conceptual and methodological sensitivity one might expect from
sociologists, but at least until recently, it has been difficult to find.

Even beyond that, Barr and Dreeben specified a very plausible mechanism for their use of
group mean aptitude as a contextual variable: Pace of instruction is a function of group mean apti-
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tude, and measured achievement is a function of pace of instruction. Once stated, this sounds per-
fectly obvious. Barr and Dreeben’s work, however, had the virtue of formulating a retrospectively
obvious assertion in terms of testable relationships involving a contextual variable.

Boyd, L., & Iversen, G. (1979) Contextual Analysis: Concepts and Statistical Techniques. Belmont,
CA: Wadsworth.

Iversen, G. (1991) Contextual Analysis. Newbury Park, CA: Sage.
Bickel, R., Smith, C., & Eagle, T. (2002) Poor Rural Neighborhoods and Early School Achieve-

ment. Journal of Poverty, 6, 89–108.
Bickel, R., & Howley, C. (2000) The Influence of Scale on School Performance: A Multi-Level

Extension of the Matthew Principle. Education Policy Analysis Archives, 8. Retrieved from
http://epaa.asu.edu/epaa/v8n22

Bickel, R., & McDonough, M. (1998) No Effects to Fade: Head Start in Two West Virginia
Counties. Educational Foundations, 12, 68–89.

Barr and Dreeben do not acknowledge the path-breaking work on contextual analysis done
by Boyd and Iversen, but they seem clearly to be working in that tradition. Texts written in
this tradition may still be read with profit. Boyd and Iversen anticipate and effectively address
many of the issues that demand the attention of contemporary students of multilevel regression
analysis.

In their textbook accounts, however, Boyd and Iversen rely exclusively on OLS estimators.
While they acknowledge the importance of nesting and group-to-group variability in intercepts
and slopes, by limiting themselves to OLS regression they cannot incorporate random coefficients
into their models. Contextual variables with OLS regression, moreover, fit the tacked-on, jerry-
rigged characterization we have already introduced. Nevertheless, these authors’ work represents
an effort to accomplish what good social scientists have always wanted to do: to take context seri-
ously in their statistical models, thereby getting away from undue reliance on measures taken at
the level of the individual. Work done using concepts and procedures explained in Boyd and
Iversen’s textbooks is still being produced. The three articles by Bickel and associates used OLS-
based contextual analysis rather than multilevel regression.

Oberwittler, D. (2004) A Multilevel Analysis of Neighbourhood Contextual Effects on Serious
Juvenile Offending. European Journal of Criminology, 1, 201–235.

Lochman, J. (2004) Contextual Factors in Risk and Prevention Research. Merrill–Palmer Quar-
terly, 50, 311–325.

Today, however, most applications of contextual variables as explanatory factors use multi-
level regression analysis with alternative estimators. An accessible analysis that uses contextual
variables in the analysis of neighborhood characteristics and criminal behavior is provided by
Oberwittler. Oberwittler’s choice of contextual variables in analyzing data collected in Germany is
rooted in perspectives that explain delinquent behavior in terms of social disorganization and
subcultural influences. As a result, his work constitutes an interesting effort to evaluate the cross-
national explanatory power of established, even if rudimentary, theoretical frameworks that have
been used by American social scientists for decades.

Lochman’s review article on the role of a broad range of contextual factors in child develop-
ment is especially interesting. The following quotation is straightforward and instructive:
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Efforts to understand the development of childhood psychopathology have placed a growing emphasis
on contextual factors that influence children’s development. . . . A child’s developmental course is set
within the child’s social ecology, and an ecological framework is needed to understand these effects. . . .
Children not only have important interactions in their microsystems of . . . child–family, child–peer,
and teacher–student interactions, but these fields also relate to each other in important ways. . . . The
influence of neighborhood context on individuals, and on school and family contextual factors, can also
be pivotal. (Lochman, 2004, pp. 311–312)

Thinking of contextual factors and their role in understanding of nested data in the ecological
terms used by Lochman makes perfect sense. This is suggestive of the broad applicability of multi-
level regression.
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4

From OLS to Random Coefficient
to Multilevel Regression

4.1 CHAPTER INTRODUCTION

Multilevel regression analysis is a specific application of random coefficient regression
models. Without a mathematical foundation in random coefficient regression, multilevel
regression would not be feasible. This is because multilevel analysis begins with
acknowledgment that nesting is substantively and methodologically consequential. By
permitting coefficients to vary from group to group, random coefficient regression
acknowledges that nesting-engendered homogeneity may give rise to varying intercepts
and slopes. Furthermore, when contextual variables are added—transforming random
coefficient regression models into multilevel regression models—we have a means of
providing substantively interesting explanations of group-to-group variability in inter-
cepts and slopes.

We decide if random coefficient regression is needed by computing the uncondi-
tional intraclass correlation coefficient. If this measure has a statistically significant
value, we know that within-group homogeneity is sufficiently consequential to inflate
standard errors estimated for the usual fixed OLS coefficients. Alternative estimators,
such as maximum likelihood (ML) and restricted maximum likelihood (REML), can be
used to compute coefficients that have both fixed and random components, permitting
variability from one context to another. In this way, the intraclass correlation is acknowl-
edged. When contextual factors are added, the intraclass correlation may be explained.

In general, the fixed components are of greatest substantive interest for most ana-
lysts. Fortunately for all of us, the alternative estimators provide fixed component values
that are interpreted in the same way as OLS regression coefficients.

The random component values, moreover, are also easy to interpret. In fact, we can
use random components, for either the intercept or one or more slopes, to construct
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intervals for the fixed components. These intervals are not the same as the usual confi-
dence intervals, which gauge the consequences of random sampling error. Instead, the
intervals constructed for fixed components with random components enable us to esti-
mate how much intercepts and slopes vary across a set of groups due to nesting-
engendered homogeneity.

Beyond that, we may introduce contextual variables in an effort to explain random
coefficient variability and narrow the intervals that span coefficient values across groups.
When the contextual factors and associated cross-level interaction terms have been
added, our random coefficient model becomes a multilevel model.

As we have seen, once we acknowledge random component variability, we may also
wish to acknowledge that random components may vary together. Our choice of covari-
ance structure determines if random components are permitted to vary and covary. As a
result, random coefficient regression presents us with another specification decision for
which we may or may not have adequate information. As explained in Chapter 3, we
have decided to use the unstructured option as a matter of routine.

With random coefficient regression, moreover, we have a more complex error term
than with OLS regression. Furthermore, as we shall see, each time we add another ran-
dom component, the error term becomes still more complex. The added complexity of
the error term takes predictable forms, but unless this is clearly spelled out, it is difficult
to discern.

For better or worse, random coefficient regression models, and the multilevel models
they permit, employ notational conventions that are a bit different from the familiar OLS
conventions. There is nothing esoteric or unduly complicated about this alternative set of
conventions, but it is something else that must be learned as part of the process of master-
ing multilevel regression analysis. Random coefficient regression and multilevel regression
also have their own peculiar set of summary measures and model-fit decision-making
tools. Although these are additional things to learn, again, they are not particularly difficult.

Throughout the rest of our discussion, the objective will be to make random coeffi-
cient and multilevel regression models easier to actually construct. We will finally get to
execution! We do so by emphasizing again that random coefficient regression and multi-
level regression can be usefully construed as regression analysis modified to be more
informative and more accurate in specific circumstances. When the power and versatil-
ity of OLS multiple regression are exhausted by their encounter with nested data, multi-
level analysis enables regression analysts to continue. This judgment becomes especially
persuasive when we develop our long presidential election example in Chapters 6 and 7.

We will begin our work by using a simple OLS regression equation as a point of
departure. As we proceed through the remaining examples, we will actually construct
and evaluate increasingly complex and informative regression models. After we have
more adequately introduced the random coefficient models that enable us to use varying
intercepts and varying slopes, we will apply what we have learned to rigorously specified
multilevel regression models.

It is useful, however, to keep in mind the OLS regression → random coefficient
regression → multilevel regression sequence, because it helps us see how multilevel
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regression emerged. For our purposes, the only difference between random coefficient
regression and multilevel regression is that the latter employs contextual factors and
cross-level interaction terms to explain variability in random components, while the for-
mer does not. Some social scientists, in fact, refer to multilevel models as random coeffi-
cient models.

4.2 SIMPLE REGRESSION EQUATION

We shall begin simply and diagnostically. Most people who do applied research know the
form of a simple regression equation, as presented in Table 4.1. The dependent variable
is Y, the independent variable is X, and the random error term is designated e. The
parameter estimate of primary interest in most circumstances is b, the unstandardized
regression coefficient or slope. The numerical value of the slope tells us, on average, how
much of an increase or decrease in Y corresponds to a 1-unit increase or decrease in X.
The intercept tells us the value of Y when X is equal to zero. When we do OLS regression
analysis, we find parameter estimates that, with the data set at hand, minimize the sum
of the squared deviations between observed and predicted values on the dependent vari-
able Y.

In conventional OLS regression models, the intercept and slope are fixed, meaning
that we assume they do not vary with respect to groups such as classrooms, schools,
occupational positions, or states. The error term, however, is random: Its values differ
from one observation to another and are assumed to be independently distributed with
uniform variance. This means that residuals are not correlated and exhibit homo-
scedasticity. The same assumptions hold for level-one residuals in random coefficient
and multilevel regression models.

A crucial difference between OLS regression and multilevel regression with random
coefficients is that in the latter kind of analysis, the intercept and slopes need not be
fixed. Instead, either or both may vary across groups or contexts, such as classrooms,
schools, or neighborhoods.

4.3 SIMPLE REGRESSION WITH AN INDIVIDUAL-LEVEL VARIABLE

Table 4.2 presents a simple OLS regression equation estimated using the large Kentucky
data set that enabled us to put together some of our previous examples. With nearly
50,000 eighth-grade students in 347 schools in 135 districts in 2001, this is a large data
set by any standard.
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TABLE 4.1. OLS Simple Regression Model

Y = a + bX + e



The dependent variable, Y, is a score on
the California Basic Educational Skills Test,
a state-mandated standardized test of read-
ing achievement (National Evaluation Sys-
tems, 2002). The independent variable, X, is
individual student gender, a dummy or cate-
gorical variable coded 0 for males and 1 for
females. For the sake of simplicity, there is
no group or contextual effect in this prelimi-
nary analysis. This is just a concrete exam-
ple of the abstract equation from Table 4.1.
By dividing the intercept and slope by their
standard errors (in parentheses), we get t
values of 641.63 and 43.41—values that are statistically significant at alpha levels far
smaller than those conventionally prescribed, such as .05, .01, or .001.

As we see in Figure 4.1, since XGENDER1 is a dichotomy or dummy variable, we are
using the term slope a bit loosely, but the usage is conventional (Hardy, 1993). The
unstandardized regression coefficient in the simple regression equation tells us that
female students in Kentucky score, on average, 7.391 points higher than male students
on this test of eighth-grade reading achievement (cf. Gujarati, 2006, p. 297).

4.4 MULTIPLE REGRESSION:
ADDING A CONTEXTUAL VARIABLE

In the abstract, a multiple regression equation can be represented as in Table 4.3. The
equation in Table 4.1 is just a special case in which K = 1. The ellipsis indicates that—
constrained by satisfaction of the usual assumptions, as well as by theoretical and
substantive knowledge and data set limitations—a multiple regression equation can
have an indefinitely large number of independent variables. Otherwise, the form of the
equation and the meaning of its terms are the same as in simple regression.

If we estimate a multiple regression equation with two independent variables (gen-
der at the individual level and gender composition at the school level), and again use
individual eighth-grade reading achievement as the dependent variable, we get the
results reported in Table 4.4. This is an example of an OLS regression equation that
includes both individual-level and group-level independent variables.
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TABLE 4.2. OLS Regression of Reading
Achievement on Gender

Y = 51.830 + 7.391XGENDER1

(0.085) (0.172)

R2 = 3.7%

N = 49,616

FIGURE 4.1. Reading achievement by
student gender.



As we know, however, given the inherently single-level nature of OLS multiple
regression analysis, both XGENDER1 and XGENDER2 are treated as if they were characteristics
of individual students. Yes, we characterize XGENDER2 as a contextual variable, and we
have measured it at the group level. Analytically, however, it occupies the same level of
analysis and has the same number of degrees of freedom as XGENDER1.

As with the simple regression equation, dividing the intercept and slopes by their
standard errors makes clear that each is statistically significant at any alpha level we
might realistically choose. Gender therefore has both individual-level and contextual or
school-level effects on reading achievement: Female students, on average, score 7.391
points higher than males, and for every 1% increase in the number of female students in
a school, individual students of both genders score, on average, 31.305 points higher.
(One reason the numerical value of the coefficient for the contextual variable is so large
is naturally limited variability in gender composition from school to school. The coeffi-
cient of variability for XGENDER2 is only 4.2%.)

Comparing Figures 4.1 and 4.2 makes clear that individual-level gender and gender
aggregated to the school level are very dif-
ferent variables. The numerical values of
the slopes and their graphic representations,
moreover, show us that the two variables are
related to reading achievement in different
ways.

4.5 NESTING (AGAIN!) WITH
A CONTEXTUAL VARIABLE

Before we go further, it is useful to em-
phasize another easy-to-overlook but crucial
difference between the individual-level and
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TABLE 4.3. OLS Multiple Regression Model

Y = a + b1X1 + b2X2 + . . . + bKXK + e

TABLE 4.4. OLS Regression of Reading
Achievement on Gender and Gender Composition

Y = 51.362 + 7.391XGENDER1 + 31.305XGENDER2

(0.084) (0.169) (1.280)

R2 = 4.8%

N = 49,616

FIGURE 4.2. Reading achievement by
gender aggregated to the school level.



school-level variables. Within the same school and across all schools, students are
coded 0 or 1 on the individual-level variable XGENDER1, depending on whether they are
males or females. However, within the same school, all students will be assigned the
same value on XGENDER2, and that value will be the mean value of XGENDER1 for that
school.

For example, if half of all students in a school with an enrollment of 500 were male
and half were female, we would find 250 students coded 1 on XGENDER1 and 250 students
coded 0 on XGENDER1. All students in that school, however, would have the same value on
XGENDER2, 0.50, which is the school-level mean for XGENDER1.

What we are really talking about, of course, is nesting. This example also makes
clear that the contextual variable, XGENDER2, is a characteristic of the grouping variable (in
this case, schools) rather than of individuals. Students are grouped or nested within
schools.

Given the nature of the independent variables—gender at the individual level and at
the group level—it is not surprising that they are correlated. In this case, however, the
correlation is modest (r = 0.129), inflating the standard error of the regression coeffi-
cient for each variable by less than 2%. For now at least, this puts to rest concerns as to
possibly adverse consequences of multicollinearity involving the specific individual-
level and group-level measures we have taken from the Kentucky data set (Chatterjee,
Hadi, & Price, 2000).

4.6 IS THERE A PROBLEM WITH DEGREES OF FREEDOM?

Though multicollinearity is not cause for concern with regard to the analysis reported in
Table 4.4, we do have other problems inherent in the multilevel nature of our analysis.
As is clear from our discussion of basic issues, we are certainly using too many degrees
of freedom, based on the number of students rather than the number of schools, in test-
ing the statistical significance of the coefficient for our group-level contextual variable,
XGENDER2.

The Kentucky data set includes 49,616 students and 347 schools. The correct num-
ber of degrees of freedom used in testing the regression coefficient for XGENDER1 is 49,613.
However, the correct number of degrees of freedom for the coefficient corresponding to
XGENDER2 is only 344. If we erroneously used individual-level degrees of freedom in evalu-
ating a school-level regression coefficient, the desirable inferential properties of regres-
sion analysis would be compromised by inflating the probability of erroneously rejecting
the null hypothesis.

With reference to Tables 2.22 through 2.33 in Chapter 2, we have already men-
tioned the possible presence of design effects due to nesting and illustrated the conse-
quences for effective sample size and degrees of freedom. We will develop these issues
further below. For now we will simply emphasize the obvious but ironically easy-to-
overlook fact that sample size and degrees of freedom vary from level to level of a multi-
level regression analysis.
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4.7 IS THERE A PROBLEM WITH DEPENDENT OBSERVATIONS?

There may be still other reasons why OLS estimators with fixed coefficients are unsuit-
able for the analysis in Table 4.4. After all, we have students nested within schools,
meaning that we may have violated three already discussed assumptions intrinsic to
usual applications of OLS regression analysis: independent observations, nonvarying
slopes and intercepts, and uncorrelated residuals. To find out if we have a problem
requiring use of alternatives to OLS regression that permit intercepts and slopes to vary,
we may begin by computing the intraclass correlation coefficient to determine if student
achievement varies between schools as well as within schools; we use the information in
Table 4.5 for this purpose. As in Chapter 3, INTERCEPT1 is the variance of the random
component of the intercept in a two-level model with no predictors at level one or level
two. Residual is just the level-one residual variance.

r = 20.653/(20.653 + 340.156) = 0.056

An intraclass correlation of 0.056 may not seem large, but with an average of 143 stu-
dents per school, even a small intraclass correlation can give very misleading results. In
the present instance, a nominal alpha level of .05 would be equal, in practice, to an
actual alpha level of very roughly .50 (Singer, 1987).

The intraclass correlation coefficient tells us that our observations are not indepen-
dent. Some of the variability in the dependent variable is accounted for simply by virtue
of the fact that students are grouped within different schools. This implies, furthermore,
that residuals from OLS regression analyses will be positively correlated. Finally, inter-
cepts and slopes are likely to vary from group to group.

When residuals are temporally correlated, there are well-known correctives for posi-
tive or negative autocorrelation. These have been developed as part of the ongoing pro-
cess of finding ways to use regression analysis even when one or more assumptions have
been violated. The Cochrane–Orcutt and Prais–Winsten procedures, for example, have
long and effective histories (Gujarati, 2003).

When the correlation among residuals is not temporally patterned, however, but is
occasioned by a nominal-level variable such as group membership, these familiar proce-
dures that are so useful with time series data cannot be applied (Chatfield, 2003). While
positive autocorrelation and positive intraclass correlation have comparably adverse
consequences, they require different remedies.
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TABLE 4.5. Reading Achievement in Kentucky: The Intraclass
Correlation Coefficient; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 340.156 2.199 154.688 .000

INTERCEPT1 20.653 2.111 9.782 .000



An effective method for dealing with intraclass correlation begins with estimation of
a random coefficient or multilevel regression model using estimators more suitable than
OLS (Angeles & Mroz, 2001). One of the most widely used alternatives to OLS is ML
(Kleinbaum, 1996). A closely related method of estimation is REML, which we have
used throughout our discussion of basic issues.

4.8 ALTERNATIVES TO OLS ESTIMATORS

By way of introducing our account of alternative estimators, we may ask a by-now-
familiar question: “What would the OLS regression equation in Table 4.2 look like if we
used REML estimators and permitted the intercept and level-one slope to vary from
school to school?”

Table 4.6 compares results of a random coefficient regression equation with REML
estimators and random intercept and random slope with the OLS results from Table 4.2.
As we have become accustomed to seeing, there is very little difference between the OLS
intercept and slope and the random coefficient regression intercept and slope. Standard
errors for the random coefficient estimates, however, are larger than the OLS standard
errors.

The reproduction of Table 4.2 appended to Table 4.6 gives us the basic information
we need to report OLS regression results for the relationship between reading achieve-
ment and student-level gender. As we know, however, the process of measuring the same
relationship using random coefficient regression with REML estimators is incomplete
without the additional information reported in Table 4.7.

As we saw with our jumping-the-gun example in Chapter 1, estimating a random
coefficient regression equation with REML (or ML) is not difficult with SPSS. Just look
at the computer screen and follow the instructions in SPSS Routine 4.1. To add a contex-
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TABLE 4.6. Random Coefficient Regression of
Reading Achievement on Gender; Unstructured

Y = 51.294 + 7.522XGENDER1

(0.314) (0.212)

R1
2 = 3.8%

N1 = 49,616

N2 = 347

TABLE 4.2, Reproduced. OLS Regression of Reading
Achievement on Gender

Y = 51.830 + 7.391XGENDER1

(0.085) (0.172)

R2 = 3.7%

N = 49,616
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TABLE 4.7. Random Coefficient Regression of Reading Achievement on Gender;
No Contextual Variables in Model; Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 325.169 2.112 153.962 .000

INTERCEPT1 20.702 2.109 9.815 .000

INTERCEPT1 by XGENDER1 –2.378 0.976 –2.437 .015

XGENDER1 3.338 0.904 3.692 .000

SPSS Routine 4.1. Estimating a Random Coefficient
Regression Equation with REML

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since school is the level-two or grouping variable, insert the school identifier into the

SUBJECTS box.
4. Click on CONTINUE, insert reading achievement as the dependent variable into the

DEPENDENT VARIABLE box, and insert student-level gender into the COVARIATE(S)
box.

5. Click on FIXED. In the small box in the middle of the screen, change FACTORIAL to
MAIN EFFECTS. Move the student-level gender variable from the FACTORS AND
COVARIATES box to the MODEL box. Click on CONTINUE.

6. Click on the RANDOM button at the bottom of the screen. The school identifier is
already in the SUBJECTS box, and now we also insert it into the COMBINATIONS
box. Move the student-level gender variable from the FACTORS AND COVARIATES
box to the MODEL box.

7. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
8. Near the top of the screen, click on INCLUDE INTERCEPT, and insert student-level

gender into the MODEL box.
9. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select

UNSTRUCTURED.
10. Click on CONTINUE, and then click on the STATISTICS button.
11. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
12. Click on CONTINUE and click on OK.
13. Near the bottom of the SPSS output, values for the INTERCEPT and SLOPE, along

with their standard errors, appear in the ESTIMATE and STD. ERROR columns of the
box labeled ESTIMATES OF FIXED EFFECTS.

14. Just below the ESTIMATES OF FIXED EFFECTS box, values for the variances and
covariances of random components appear in the ESTIMATE column of the box
labeled ESTIMATES OF COVARIANCE PARAMETERS.



tual variable, as in Table 4.4, we need only minor modifications to this routine. Spe-
cifically, in item 4, insert school-level gender into the COVARIATE(S) box along with
student-level gender. And in item 5, move the school-level gender variable from the
FACTORS AND COVARIATES box to the MODEL box along with the student-level gen-
der variable. We than get the results in Tables 4.8 and 4.9.

In Table 4.8, we see that, as with OLS, there is a substantial relationship between
reading achievement and the school-level contextual variable, XGENDER2. It is clear from
comparing Tables 4.7 and 4.9, however, that the contextual variable accounts for very
little of the variability in the random terms.

While our respecifications of Tables 4.2 and 4.4 used REML estimators, the concep-
tual basis of the most commonly used alternatives to OLS is easier to understand if we
begin with ML. This leads directly to REML.

4.9 THE CONCEPTUAL BASIS OF ML ESTIMATORS

ML estimators are designed to find hypothesized population parameters that make our
observed sample data most likely (Wonnacott & Wonnacott, 1990; Gujarati, 2003). The
job of ML estimators is to find parameter values that do the best job of making this case.
In other words, given the observed data, what parameter values would we expect to find
(Vogt, 1999)?

For a simple but instructive example, we follow Kmenta (1997, pp. 175–183) and
refer back to the social skills data used in generating the information in Tables 3.70 and

114 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 4.8. Random Coefficient Regression of Reading
Achievement on Gender; School-Level Gender Included
as a Contextual Variable; Unstructured

Y = 51.239 + 7.519XGENDER1 + 27.940XGENDER2

(0.304) (0.211) (6.609)

R1
2 = 4.2%

N1 = 49,616

N2 = 347

TABLE 4.9. Random Coefficient Regression of Reading Achievement on Gender; School-Level
Gender Included as a Contextual Variable; Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 325.165 2.112 153.964 .000

INTERCEPT1 19.237 1.976 9.737 .000

INTERCEPT1 by XGENDER1 –2.397 0.946 –2.535 .011

XGENDER1 3.314 0.904 3.669 .000



3.71. Suppose that for illustrative purposes we have 70 cases,
each measured on the social skills variable. The distribution
of social skills for this sample of 70 cases is shown in Figure
4.3.

We know that these 70 cases are a simple random sample
taken from an unidentified population, but we do not know
which one. As it turns out, we have three data sets, and all
have the same number of cases and the same social skills
measure. We treat each data set as if it were an entire popula-
tion. We generate histograms for the social skills variable for
each of the three data sets. Using intuition and common-
sense, we try to select the data set that maximizes the likeli-
hood that it generated the sample data yielding the histogram
in Figure 4.3.

Since all three candidate data sets are approximately nor-
mally distributed, we know that they differ only with respect to central tendency and
variability. As a result, our choice is easy: Since the mean and standard deviation in Fig-
ure 4.3 are very similar to the same measures in Data Set Candidate 2 (Figure 4.5), but
different from Data Set Candidates 1 (Figure 4.4) and 3 (Figure 4.6), we choose Data Set
Candidate 2. Our choice may be the wrong one, but it seems clear that we have maxi-
mized the likelihood that we are right.

When we get past simple statistics such as the mean and standard deviation, the
choices become more mathematically complex, but the same basic principle applies. In
the case of multiple regression analysis, ML estimators provide values for the intercept
and slopes that have the greatest likelihood of giving rise to the observed data—the val-
ues actually appearing in our data set (Nunnally & Bernstein, 1994).

For example, suppose we have a national probability sample of 1588 families. For
each family, we have annual income as well as educational level and race of the self-
reported family head in the year 2000. We use ML to estimate the intercept and slopes in
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FIGURE 4.3. Simple
random sample: Social
skills.

FIGURE 4.6. Data Set
Candidate 3: Social skills.

FIGURE 4.5. Data Set
Candidate 2: Social skills.

FIGURE 4.4. Data Set
Candidate 1: Social skills.



a multiple regression equation in which annual family income is the dependent variable
and educational level and race are independent variables. Given specific distributions for
all variables, what parameter values maximize the probability of the observed values for
the dependent variable and the independent variables (Wonnacott & Wonnacott, 1984)?

Using data taken from the Child Development Supplement of the Panel Study of
Income Dynamics (Institute for Social Research, 2003) along with ML estimation for the
intercept and slopes, we get the results shown in Table 4.10 for individual-level variables
with no contextual factors. Thus, for a family whose head is Black and has 16 years of
education, the predicted value on family income is $108,413.37. For a family whose
head is White and has 12 years of education, the predicted value for family income is
$77,085.10. Given the nature of ML estimation, the intercept and slope values are those
that maximize the joint probability of these two and the remaining 1586 sets of values
for YINCOME, XBLACK, and XEDUCATION (Wooldridge, 2002).

Notice that in Figure 4.7, however, this straightforward, easy-to-interpret analysis
presents us with a difficulty in the form of a non-normal distribution of residuals. This is
commonplace with income analyses, because income distributions are usually skewed to
the right. However, as we have illustrated in Figures 4.4 through 4.6, the assumption of
normality is essential to ML estimation because it makes possible straightforward com-
parison of statistics such as means, standard deviations, and more complex measures.

An often effective response to a sharp rightward skew in a residual plot is use of natural
logarithms of the dependent variable, as in Table
4.11. Interpretation of the coefficients changes after
logging of the dependent variable. In Table 4.11, for
example, we see that each one-level increase in
XEDUCATION corresponds, on average, to a 12.8% in-
crease in annual family income. In addition, families
headed by someone who is Black experience, on
average, a 9.1% decrease in annual income.

Having acknowledged changes in interpreta-
tion prompted by logging the dependent variable,
we see in Figure 4.8 that the residuals for the
regression analysis with ML estimators are now
normally distributed, consistent with the require-
ments of ML estimation.
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TABLE 4.10. An Earnings Function with ML Estimators

YINCOME = –31448.970 – 4849.716XBLACK + 9044.843XEDUCATION

(11293.813) (1740.209) (762.604)

N = 1588

FIGURE 4.7. Residual plot for total
family income.



ML is a computationally intensive, iterative
process that was known but impractical to employ
before the development of high-speed computers. It
is more restrictive than OLS, in that it assumes a
normally distributed error term even for large sam-
ples. In addition, even with a normally distributed
error term, regression coefficients estimated with
small samples may be biased, because ML does not
take into consideration the number of parameters
used in model estimation (Nunnally & Bernstein,
1994).

4.10 DESIRABLE PROPERTIES OF REML ESTIMATORS

SPSS and most other statistical software packages that permit estimation and testing of
random coefficient and multilevel regression models offer ML as one method of estima-
tion. However, in most applications, the closely related REML procedure is more likely
to be used (Kreft & De Leeuw, 1998). We have used REML estimators in the examples of
random coefficient and multilevel regression models already presented.

The advantage of REML over ML estimators is diminished bias in estimates of the
random components of random regression coefficients for small samples. This occurs
because REML, in contrast to ML, takes into consideration the number of parameters
used in model estimation. The difference between the ML and REML estimators, how-
ever, becomes quite small as the number of group-level observations becomes large
(Luke, 2004).

To compare illustrative results of application of ML and REML, Table 4.12 reports
three random coefficient regression equations. In each, the dependent variable is math
achievement as measured by the California Basic Educational Skills Test. There are two
level-one independent variables, which we have used in previously reported analyses
with the Kentucky data set: XNONWHITE1 and XGENDER1. The intercept and the slope for
XNONWHITE1 are random, while the slope for XGENDER1 is fixed. There are no contextual
variables.

In comparing the results of ML and REML methods of estimation, we begin with the
entire sample of nearly 50,000 students and 347 schools. Then we report the same analy-
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TABLE 4.11. Earnings Logged: ML Estimators

YLNINCOME = 9.279 – 0.091XBLACK + 0.128XEDUCATION

(0.096) (0.011) (0.018)

N = 1588

FIGURE 4.8. Residual plot for to-
tal family income, logged.
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TABLE 4.12. Comparing ML and REML Estimators:
Random Coefficient Analyses of Math Achievement

ML: Full sample

YMATH = 49.068 – 8.705XNONWHITE1 – 1.154XGENDER1

(0.430) (0.607) (0.186)

R2 = 3.6%

N1 = 49,616

N2 = 347

REML: Full sample

YMATH = 49.068 – 8.705XNONWHITE1 – 1.154XGENDER1

(0.430) (0.607) (0.186)

R2 = 3.6%

N1 = 49,616

N2 = 347

ML: 10% simple random sample

YMATH = 49.060 – 11.057XNONWHITE1 + 0.163XGENDER1

(0.565) (1.006) (0.595)

R2 = 3.9%

N1 = 4964

N2 = 57

REML: 10% simple random sample

YMATH = 49.065 – 11.465XNONWHITE1 + 0.167XGENDER1

(0.567) (1.018) (0.596)

R2 = 3.3%

N1 = 4964

N2 = 57

ML: 5% random sample

YMATH = 48.900 – 12.639XNONWHITE1 – 1.084XGENDER1

(0.612) (1.365) (0.854)

R2 = 3.1%

N1 = 2508

N2 = 46

REML: 5% simple random sample

YMATH = 49.899 – 12.648XNONWHITE1 – 1.076XGENDER1

(0.611) (1.356) (0.856)

R2 = 2.9%

N1 = 2508

N2 = 46

Note. Random coefficients are boldfaced and italicized.



ses for a 10% simple random sample and a 5% simple random sample. Notice that the
samples are being selected on students. While we will have 10% and 5% simple random
samples of Kentucky eighth graders, the school percentages will be different from these.

A useful summary of the information in Table 4.12 might go like this: Differences in
sample size assure substantial differences in intercepts, slopes, and standard errors. For
any sample size, however, differences between ML and REML estimates are small,
though they do get a bit larger as sample sizes get smaller.

The summary statement we have just made with regard to Table 4.12 applies almost
as neatly to Table 4.13: Differences in sample size assure substantial differences in the
estimates of random component variances and covariances. For any sample size, how-
ever, differences between ML and REML estimates are small, though they do get a bit
larger as sample sizes get smaller.

None of our samples, however, including the 5% simple random sample, is all that
small by most standards. This applies to the number of students, the number of schools,
and the average number of students within schools. Perhaps differences between ML and
REML estimators would be become a lot clearer if we pared down sample sizes a good
deal more. In addition, while we have varied sample size, we have not varied the number
of parameters estimated in our comparisons of ML and REML estimates. In general, as
the number of parameters estimated increases, the difference between ML and REML
estimates becomes larger (SAS Institute, 1999).

Again, this discussion of alternative estimators is prompted by the fact that in some
instances, OLS estimates cannot be effectively corrected to deal with violation of specific
assumptions. When this happens—as in the cases of varying parameter estimates,
nonindependence of observations, and nonindependence of residuals—useful alterna-
tives are sometimes available. ML is one such alternative, and REML is another.

4.11 APPLYING REML ESTIMATORS WITH RANDOM COEFFICIENT
REGRESSION MODELS

By way of illustrating application of REML estimators, recall the simple OLS regression
equation from Table 4.1: Y = a + bX + e. We have already estimated OLS coefficients for
this equation in Table 4.2, and we compared these with random coefficient estimates for
the same equation in Table 4.6. In Table 4.14 we are merely expressing the same equation
with notation that has become conventional with random coefficient and multilevel
regression models. Yes, for the first time we are also making the structure of the more
complex error term explicit, but beyond that it’s just notation!

Other textbooks introduce these notational conventions much earlier, and this does
help in construction of random coefficient and multilevel models. However, consistent
with our “It’s just regression!” theme, we have delayed introduction of material that
might make multilevel regression seem fundamentally different from OLS regression.

The random intercept is represented by β0J, the random slope is represented by β1J,
and the independent variable corresponding to the random slope is represented as
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TABLE 4.13. Comparing ML and REML Estimators: Random Coefficient Analyses
of Math Achievement; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

ML: Full sample

Residual 400.448 2.631 152.200 .000

INTERCEPT 39.567 3.961 9.989 .000

INTERCEPT by XNONWHITE1 –13.191 3.791 –3.480 .001

XNONWHITE1 36.993 7.270 5.088 .000

REML: Full sample

Residual 400.455 2.631 152.198 .000

INTERCEPT 39.750 3.987 9.970 .000

INTERCEPT by XNONWHITE1 –13.238 3.824 –3.462 .001

XNONWHITE1 37.438 7.351 5.093 .000

ML: 10% simple random sample

Residual 395.642 8.533 46.365 .000

INTERCEPT 47.356 6.585 7.191 .000

INTERCEPT by XNONWHITE1 –13.259 7.405 –1.791 .073

XNONWHITE1 16.024 16.767 0.956 .339

REML: 10% simple random sample

Residual 395.624 8.533 46.364 .000

INTERCEPT 47.024 6.533 7.198 .000

INTERCEPT by XNONWHITE1 –13.387 7.261 –1.844 .065

XNONWHITE1 14.251 16.317 0.873 .382

ML: 5% simple random sample

Residual 403.801 12.356 32.680 .000

INTERCEPT 41.086 7.965 5.158 .000

INTERCEPT by XNONWHITE1 –0.758 11.937 –0.064 .949

XNONWHITE1 13.194 25.481 0.518 .605

REML: 5% simple random sample

Residual 403.953 12.366 32.666 .000

INTERCEPT 41.482 8.033 5.164 .000

INTERCEPT by XNONWHITE1 –0.714 12.087 –0.059 .953

XNONWHITE1 15.174 26.089 0.582 .561

TABLE 4.14. Simple Regression with Random Coefficients

Y = 0J + 1JGENDER1 + (u0J + u1J * GENDER1 + eIJ)



GENDER1. Beta coefficients such as these are routinely used to represent random inter-
cepts, unstandardized random slopes, and unstandardized fixed slopes in random coeffi-
cient and multilevel regression models. As such, they are just conventions—more or less
convenient ways to distinguish random coefficient and multilevel regression models
from OLS regression models. We will discuss subscript conventions for beta coefficients
in Section 4.14.

The added complexity of the error term (in parentheses) stems from the fact that it
captures residual variance, as in OLS regression, as well as group-to-group variability in
the random intercept relative to the overall intercept, and group-to-group variability in
the random slope relative to the overall slope. As with OLS regression, the error term or
residual, eIJ, varies randomly about the fitted or predicted value of Y. In addition, u0J var-
ies with respect to the random intercept, 0J; and u1J varies with respect to the random
slope, 1J (Kennedy, 1998). We assume, moreover, that level-one residuals vary indepen-
dently of each other and independently of the level-two error terms, u0J and u1J (Snijders
& Bosker, 1999).

The random intercept, therefore, may be expressed in the form β0J + u0J: a fixed
value for the intercept plus a measure of the variability of the intercept from group to
group. The random slope is expressed as β1J + u1J: a fixed value for the slope plus a mea-
sure of the variability of the slope from group to group. When we express the random
intercept and random slope in this way, we add the u0J and u1J * GENDER1 components
to the error term. For the slope specifically, it is important to note the following: (β1J +
u1J) * GENDER1 gives us 1JGENDER1 + u1J * GENDER1.

For the sake of clarity, we will illustrate construction of the more complex error
term that comes with random coefficient regression with additional examples. In earlier
examples, we introduced a data set that enabled us to examine relationships between
hourly wage and a variety of explanatory factors within nine categories of occupation.
The individual worker is the unit of analysis, and workers are nested within occupa-
tional groups. No contextual factors will be introduced.

The first random coefficient regression model, with level of educational attainment
in years (YEARS1) as the only independent variable, is presented in Table 4.15. Both the
intercept and the slope for YEARS1 have been permitted to vary across occupational cat-
egories. (In the interest of realism, REML estimates of coefficients are reported below the
specified models.) Error terms in Tables 4.15 through 4.18 are boldfaced and italicized.

In Tables 4.16 and 4.17 the model becomes increasingly complex, as first union
membership (UNION1, coded 1 if member of a labor union and 0 otherwise) and then
race (BLACK1, coded 1 if Black and 0 otherwise) are added as additional independent
variables. Again, the intercept and slopes in each model have been permitted to vary
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TABLE 4.15. Error Term with One Random Slope

Y = β0J + β1JYEARS1 + (u0J + u1J * YEARS1 + eIJ)

Y = 5.833 + 0.414YEARS1



across districts. In Table 4.16, we see that by adding the independent variable UNION1
and permitting its slope to vary across occupational groups, we have necessarily added
another component, u2J * UNION1, to the error term. In Table 4.17, with addition of
BLACK1 as another independent variable that has been assigned a random coefficient,
the error term becomes more complex still.

The random slopes follow the same form as that given with reference to Table 4.14:
(β1J + u1J) * YEARS1; (β2J + u2J) * UNION1; and (β3J + u3J) * BLACK1. The random inter-
cept has the form β0J + u0J. In this way, each additional random component adds to the
complexity of the error term. This is a very complex error term indeed. Four random
components in one multilevel regression model is more than we will usually encounter.

Adding fixed components to a multilevel regression equation, however, leaves the
error term unchanged. In Table 4.18 an additional independent variable, marital status
(XMARRY1, coded 1 if married and 0 otherwise), has been added to the equation from Table
4.17. This additional explanatory factor, however, has been assigned a fixed slope. As a
result, the concrete regression results in Table 4.18 are different from those in Table
4.17, but the error term specification remains the same.

If we want estimates of the random component variances used in Table 4.18, we
know where to look: estimates of covariance parameters. In Table 4.19 we find estimates
of the variances of random components: u0J, u1J, u2J, u3J. Since variances cannot be nega-
tive, we know that they will be tested for significance with one-tailed tests.

As we will discuss further in the next section, random component estimates can be
informative—sometimes alarmingly so!—in a way we have not yet acknowledged. For
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TABLE 4.16. Error Term with Two Random Slopes

Y = β0J + β1JYEARS1 + β2JUNION1 + (u0J + u1J * YEARS1 + u2J * UNION1 + eIJ)

Y = 5.837 + 0.402YEARS1 + 1.058UNION1

TABLE 4.17. Error Term with Three Random Slopes

Y = β0J + β1JYEARS1 + β2JUNION1 + β3JBLACK1 + (u0J + u1J * YEARS1 + u2J * UNION1

+ u3J * BLACK1 + eIJ)

Y = 5.832 + 0.395YEARS1 + 1.111UNION1 – 0.565BLACK1

TABLE 4.18. Error Term with Three Random Slopes and One Fixed Slope

Y = β0J + β1JYEARS1 + β2JUNION1 + β3JBLACK1 + β40XMARRY1 + (u0J + u1J * YEARS1

+ u2J * UNION1 + u3J * BLACK1 + eIJ)

Y = 5.839 + 0.377YEARS1 + 1.026UNION1 – 0.393BLACK1 + 0.885XMARRY1



example, the intercept variance in the hourly-wage-by-occupation illustration is statisti-
cally significant with a value of 1.294. In Table 4.18 we reported an estimated value for
the intercept itself of 5.839. Since all independent variables have been centered with
respect to their grand means, 5.839 is our best estimate of the value of the dependent
variable if all independent variables were set equal to their means.

As we saw with Table 2.25 in our Chapter 2 discussion of effective sample size, a
conventional 95% confidence interval for an intercept or slope is easy to compute. All we
need is an intercept or slope value, a t value, and a standard error. Then we are justified
in asserting that 95% of the time in the long run the population parameter will be
included in an interval constructed in this way (Snedecor & Cochran, 1989).

Suppose, however, that we frame the issue a bit differently: Given that the intercepts
and slopes summarized in random regression coefficients vary from group to group, what
range do they cover? Since the random component variance for the intercept is normally
distributed (Hox, 2002), we know that 95% of the distribution is included in an interval
that includes the range 1.960 standard deviations above and below the mean. If we use
the intercept value of 5.839 and the square root of the intercept variance (1.2941/2 =
1.138) as the standard deviation, we get the results reported in Table 4.20.
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TABLE 4.19. Random Coefficient Analyses of Hourly Wage; REML Estimators;
Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual (eIJ
2) 8.619 0.186 46.453 .000

INTERCEPT (u0J
2) 1.294 0.676 1.913 .056

INTERCEPT by YEARS1 0.157 0.093 1.679 .093

YEARS1 (u1J
2) 0.021 0.016 1.290 .197

INTERCEPT by BLACK1 –0.377 0.389 –0.968 .333

YEARS1 by BLACK1 –0.064 0.058 –1.106 .269

BLACK1 (u2J
2) 0.361 0.266 1.358 .175

INTERCEPT by UNION1 –0.412 0.452 –0.912 .362

YEARS1 by UNION1 –0.048 0.064 –0.753 .452

BLACK1 by UNION1 0.008 0.268 0.028 .977

UNION1 (u3J
2) 0.458 0.499 0.920 .357

TABLE 4.20. Variability with Respect to a Random
Intercept for a Random Coefficient Model

aINTERCEPT – t.05SaINTERCEPT to aINTERCEPT + t.05SaINTERCEPT

5.839 – 1.960(1.138) to 5.839 + 1.960(1.138)

3.660 to 8.069



This means that 95% of the intercepts for our occupational groups will fall within
an uncomfortably wide interval from 3.660 to 8.069. At least the interval does not con-
tain both positive and negative values, which is sometimes the disconcerting case for
both intercepts and slopes, making interpretation of results much more difficult
(Tabachnick, 2005).

Is there anything we can do to narrow the interval, making us more comfortable
with the overall or average slope estimate? Yes, we can try to account for the variability
in the random components by introducing one or more level-two contextual variables
and implied cross-level interaction terms into the random coefficient regression equa-
tion that gave us the information in Tables 4.18 through 4.20. We now have a multilevel
regression model, as in Table 4.21. In this case, years of educational attainment has been
aggregated to the occupational level, giving us the contextual variable XYEARS2. This
aggregated variable enables us to determine if income varies with the average educa-
tional level of the occupational group.

The implied cross-level interaction terms enable us to address the following ques-
tions: Does the relationship between an individual worker’s income level and his or her
level of educational attainment vary with the average educational level of the occupa-
tional group (XYEARS2 * YEARS1)? Does the relationship between individual workers’
income level and union membership status vary with the average educational level of the
occupational group (XYEARS2 * UNION1)? Does the relationship between individual
workers’ income level and race vary with the average educational level of the occupa-
tional group (XYEARS2 * BLACK1)?

When we examine Table 4.22, the estimates of random component variances make clear
that the contextual variable (XYEARS2) and the three cross-level interaction terms (XYEARS2 *
YEARS1, XYEARS2 * UNION1, XYEARS2 * BLACK1) have accounted for a substantial amount of
the variability in these variances. In addition, we see that the values of the covariances among
random components have also been diminished, much as we would expect.

Ignoring the issue of statistical significance for this calculation, if we take the new
estimate of the intercept variance and recalculate the interval from Table 4.20, we get the
results reported in Table 4.23. The interval that includes 95% of the intercepts across
occupational categories is now quite a bit narrower. As a result, the use of an average or
overall intercept makes a lot more sense.
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TABLE 4.21. Table 4.18 with Contextual Variables and Cross-Level Interaction Terms

Y = 5.742 + 0.382YEARS1 + 1.001UNION1 – 0.403BLACK1 + 0.883XMARRY1 + 1.267XYEARS2

(0.254) (0.028) (0.211) (0.253) (0.092) (0.292)

+ 0.162XYEARS2 * YEARS1 – 0.598XYEARS2 * UNION1 – 0.594XYEARS2 * BLACK1
(0.041) (0.300) (0.441)

R1
2 = 8.7%

N1 = 4395

N2 = 9



4.12 FIXED COMPONENTS AND RANDOM COMPONENTS

Another instructive way to clarify the meaning of the more complex error term is by
emphasizing the fact that the random intercept and a random slope each consist of two
components. In the simple example of a random coefficient model we began developing
in Table 4.14, β0J is the fixed component of the random intercept, and u0J is the random
component of the random intercept. In the same way, β1J is the fixed component of the
random slope, and u1J is the random component of the slope. Again, the random compo-
nent captures group-to-group variability in the slope, while the fixed component is a
weighted average for the slope across all groups.

The distinction between random components and fixed components is a new one
for users of OLS regression. Intercepts and slopes in OLS regression equations are fixed
and do not vary from group to group. If a regression coefficient is estimated for students
within schools, for example, we judge that it is the same for all schools.

However, as we now know, there are many instances in which coefficients do in fact
vary across schools and other groups. For example, the relationship between family
income and measured achievement may differ markedly from one school to another in a
data set that contains information on hundreds of schools. In circumstances such as this,
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TABLE 4.22. Multilevel Regression Analysis of Hourly Wage; REML Estimators;
Unstructured Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual (eIJ
2) 8.616 0.205 42.089 .000

INTERCEPT (u0J) 0.610 0.403 1.514 .192

INTERCEPT by YEARS1 0.028 0.448 0.063 .950

YEARS1 (u1J
2) 0.003 0.000 — —

INTERCEPT by BLACK1 –0.321 0.283 –0.968 .333

YEARS1 by BLACK1 –0.064 0.058 –1.106 .269

BLACK1 (u2J
2) 0.609 1.116 0.546 .585

INTERCEPT by UNION1 0.063 .309 0.204 .838

YEARS1 by UNION1 0.015 .740 0.020 .984

BLACK1 by UNION1 –0.111 1.485 –0.075 .941

UNION1 (u3J
2) 0.229 1.078 0.212 .832

Note. A dash (—) indicates a value too small to measure.

TABLE 4.23. Variability with Respect to a Random
Intercept for a Multilevel Model

aINTERCEPT – t.05SaINTERCEPT to aINTERCEPT + t.05SaINTERCEPT

5.839 – 1.960(0.610) to 5.839 + 1.960(0.610)

4.644 to 7.034



we use alternatives to OLS estimators, such as ML or REML, and we permit the coeffi-
cients to vary across schools. Intercepts and slopes in regression equations such as this
are commonly referred to as random.

Throughout our discussion, we will refer to regression coefficients that are not per-
mitted to vary across higher-level groups as fixed regression coefficients. We will refer to
regression coefficients that are permitted to vary as random regression coefficients.

Fixed regression coefficients are fixed. That’s it. But random regression coefficients
have two components: fixed and random. The fixed component is interpreted in the same
way as an OLS unstandardized regression coefficient. The random component is an esti-
mate of the variance of the random regression coefficient as it varies from group to group.

We can illustrate this by again estimating a rudimentary earnings function with the
Child Development Supplement of the Panel Study of Income Dynamics data set (Insti-
tute for Social Research, 2003). Annual family income is logged, and we employ a very
limited set of independent variables: race of household head (coded 1 if Black and 0 oth-
erwise); years of educational attainment of the household head; and the character of the
place of residence as measured by the nine-level urban–rural continuum.

OLS regression coefficients and standard errors are presented in Table 4.24. Inter-
pretations of the coefficients are straightforward: If the household head is Black, annual
income is reduced, on average, by 48.8% relative to that of households headed by non-
Blacks; for every 1-year increment in level of educational attainment, family income is
increased, on average, by 12.7%; for every 1-unit increase in the rural character of place
of residence, annual income is decreased, on average, by 3.4%. Since all three indepen-
dent variables are centered with respect to their grand means, the intercept tells us the
predicted value of the dependent variable for a family head with average values for
XBLACK, XEDUCATION, and XURBANRURAL.

However, if we suspect that one or more of the relationships reported in Table 4.24
varies from state to state, we may use the state as a grouping variable, with a random
intercept and one or more random slopes. We then run the same analysis using a ran-
dom coefficient regression equation with a random intercept and one, two, or three ran-
dom slopes. In this example we will be gratuitously extravagant and use three random
slopes.

Assignment of random slopes to all three independent variables is, by most stan-
dards, excessive. In addition, our decision is based on little more than suspicion. We
have not referred to a well-developed theoretical perspective on income attainment in
making this judgment. The status attainment research that figured so conspicuously in
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TABLE 4.24. Another OLS Multiple Regression Earnings Function

YLNINCOME = 4.002 – 0.488XBLACK1 + 0.127XEDUCATION1 – 0.034XURBANRURAL1

(0.020) (0.080) (0.006) (0.008)

R2 = 28.3%

N = 1291



the sociological literature during the late 1960s and 1970s is suggestive with regard to
each of these variables, but hardly compelling with respect to the decision at hand—
assignment of fixed or random status to the slopes for XBLACK1, XEDUCATION1, and
XURBANRURAL1 (see, e.g., the broad-ranging collection edited by Grusky, 2001).

This is hardly the best way to proceed when specifying a random coefficient regres-
sion model, but for the purposes of the present exercise, we will continue. We will see in
Table 4.26, moreover, that our decisions are consistent with our sample data, since the
random component variances of all coefficients are statistically significant.

The intercept and slopes reported in Table 4.25 are the fixed components. They are
overall estimates or averages that summarize intercepts and slopes as they vary from one
state to another. The coefficients reported in Table 4.25 are interpreted in the same way
as OLS coefficients, such as those in Table 4.24. As usual, the numerical values of the
fixed OLS coefficients and the random regression coefficients are very similar, and the
standard errors for random coefficient estimates are larger than the standard errors for
the OLS estimates.

In Table 4.26 we see estimates of the random components—measures of the degree
to which the random intercept and random slopes vary across the grouping variable (in
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TABLE 4.26. Random Components for Random Coefficient Earnings Function; Unstructured;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.389 0.002 24.797 .000

INTERCEPT1 0.098 0.027 3.664 .000

INTERCEPT1 by EDUCATION1 –0.005 0.006 –0.994 .320

EDUCATION1 0.042 0.010 4.321 .000

INTERCEPT1 by BLACK1 –0.007 0.068 –0.111 .912

EDUCATION1 by BLACK1 0.009 0.022 0.491 .623

BLACK1 0.498 0.194 2.567 .012

INTERCEPT1 by URBANRURAL1 –0.009 0.006 –1.438 .150

EDUCATION1 by URBANRURAL1 0.002 0.002 1.151 .250

BLACK1 by URBANRURAL1 0.025 0.014 1.773 .108

URBANRURAL1 0.005 0.002 2.270 .023

TABLE 4.25. Fixed Components for Random Coefficient Earnings Function

YLNINCOME = 4.02 – 0.384BLACK1 + 0.142EDUCATION1 – 0.028URBANRURAL1
(0.038)(0.133) (0.013) (0.013)

R1
2 = 20.4

N1 = 1291

N2 = 50



this example, the state). We see that all variances are statistically significant. This means
that the intercepts and slopes do indeed vary across states. None of the covariances,
however, is statistically significant, meaning that none of the random components vary
together.

4.13 INTERPRETING RANDOM COEFFICIENTS:
DEVELOPING A CAUTIONARY COMMENT

Throughout our discussion we will continue to emphasize that the fixed components of
random regression coefficients are interpreted in the same way as OLS coefficients. After
all, it’s just regression! Significance testing and confidence interval construction, more-
over, are also done in exactly the same way.

Nevertheless, we should continue to bear in mind that random regression coeffi-
cients do in fact vary from group to group. As a result, an intercept or slope may be very
different from one second-level category to another, sometimes making interpretation
thoroughly problematic (Tabachnick, 2005). The coefficient that we actually interpret—
the fixed component of a random coefficient—is a weighted average over all second-
level categories. The random component tells us how much the fixed component varies,
and it may vary a great deal (Hox, 2002).

In our previous illustration of this idea, we used the fixed component of a random
intercept. This time we will take the fixed component of a random slope from Table
4.25. It is easy to modify the procedure specified in Table 4.23 for random intercepts to
accommodate random slopes. Moreover, now that we have clarified the distinction
between fixed components and random components, we can spell out the procedure in a
way that is a bit more instructive. We simply take the fixed component of the coefficient
of interest and add and subtract the product of a specified t value and the square root
(standard deviation) of the random component. In this case, we will use the fixed com-
ponent of the random coefficient for BLACK1 from Table 4.25 and the random compo-
nent for the same independent variable from Table 4.26. The result is reported in
Table 4.27.

There is little comfort in saying that 95% of the 50 slopes will be included in this
interval. A slope corresponding to the lower level of the interval would indicate that if
the head of a household is Black, annual family income is decreased by 176.7% when
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TABLE 4.27. Variability with Respect to a Random
Slope for a Random Coefficient Model

bFIXED – t.05(bRANDOM)1/2 to bFIXED + t.05bRANDOM
1/2

–0.384 – 1.960(0.498)1/2 to –0.384 + 1.960(0.498)1/2

–1.767 to 0.999



compared with that of households headed by a non-Black. A slope corresponding to the
upper limit of the interval would mean that if the head of a household is Black, annual
family income is increased by 99.9% when compared with that of households headed by
a non-Black. The difference in the magnitude and substantive import of the two slopes is
enormous.

Emphatically, this finding makes the relationship between the annual income and
BLACK1 very difficult to interpret. This example forcefully reminds us that the fixed
slope is in fact a weighted average, and the random component has an important role to
play in its interpretation.

The obvious question at this point is one we have asked before: At this stage of the
analysis, can anything be done to narrow the interval? In response, we again acknowl-
edge that variability in the random components can be reduced through introduction of
contextual factors and cross-level interaction terms. Accordingly, we transform our ran-
dom coefficient regression equation into a multilevel regression equation.

Table 4.28 reports the results of a multilevel regression analysis in which the aggre-
gated state-level contextual variable (XURBANRURAL2), along with three cross-level interac-
tion terms (XURBANRURAL2 * BLACK1, XURBANRURAL2 * EDUCATION1 and XURBANRURAL2 *
URBANRURAL1), have been introduced as additional explanatory factors. The cross-
level interaction terms are implied by our choice of XURBANRURAL2 as a contextual variable.

Table 4.29 reports the random component variances and covariances. The variance
of the random component for BLACK1 is now statistically nonsignificant. As a result, we
conclude that the population value of the variance of BLACK1 is not different from zero.
If we recalculate the interval in Table 4.27, using this additional information, we get the
result reported in Table 4.30.

The statistically significant fixed component for BLACK1, taken from the multilevel
regression model, has gotten smaller. Moreover, by accounting for variability in its ran-
dom component, we have eliminated the enormous uncertainty as to its meaning.
Clearly, multilevel regression analysis can be much more informative than random coef-
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TABLE 4.28. Table 4.25 with Contextual Variable and Cross-Level
Interaction Terms

Y = 11.008 + 0.136EDUCATION1 – 0.462BLACK1 – 0.051URBANRURAL1
(0.053) (0.017) (0.139) (0.016)

– 0.056XURBANRURAL2 + 0.041XURBANRURAL2 * BLACK1
(0.032) (0.087)

– 0.018XURBANRURAL2 * EDUCATION1 + 0.013XURBANRURAL2 * URBANRURAL1
(0.010) (0.009)

R1
2 = 21.5%

N1 = 1291

N2 = 50



ficient regression. Just as clearly, it would be difficult to overstate the importance of a
properly specified multilevel model in all its complexity.

4.14 SUBSCRIPT CONVENTIONS

The subscript conventions used with random coefficient regression and multilevel
regression are not hard to learn, though they receive little attention in currently available
accounts. The same conventions apply to full-fledged multilevel models, as we shall see,
though in that context they get a bit more complicated.

The first subscript for a beta coefficient representing a random intercept is 0, distin-
guishing it from slopes. The second subscript for the intercept, J, indicates that the inter-
cept is permitted to vary over J groups.

The first subscript for a beta coefficient representing a random slope is 1, 2, . . ., I,
depending on how many independent variables are in the equation. The second sub-
script for the slope, J, indicates that the slope is permitted to vary over J groups.

We shall return to notational conventions as our models become more complex.
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TABLE 4.29. Table 4.26 with Contextual Variable and Cross-Level Interaction Terms

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.388 0.016 24.816 .000

INTERCEPT1 0.092 0.026 3.495 .000

INTERCEPT1 by EDUCATION1 –0.009 0.006 –1.511 .131

EDUCATION1 0.007 0.002 2.606 .009

INTERCEPT1 by EDUCATION1 0.006 0.100 0.063 .950

EDUCATION1 by BLACK1 –0.064 0.058 –1.106 .269

EDUCATION1 by BLACK1 0.009 0.022 0.415 .678

BLACK1 0.224 0.161 1.397 .162

INTERCEPT1 by URBANRURAL1 –0.009 0.006 –1.438 .150

EDUCATION1 by URBANRURAL1 0.002 0.002 1.151 .250

BLACK1 by URBANRURAL1 0.025 0.014 1.773 .076

URBANRURAL1 0.003 0.002 1.571 .114

TABLE 4.30. Variability with Respect to a Random Slope
for a Random Coefficient Model, Recalculated

[bFIXED – t.05(bRANDOM)]1/2 to [bFIXED + t.05(bRANDOM)]1/2

[–0.462 – 1.960 * (0.000)1/2] to [–0.462 + 1.960*(0.000)1/2]

–0.462 to –0.462



4.15 PERCENTAGE OF VARIANCE EXPLAINED FOR RANDOM
COEFFICIENT AND MULTILEVEL MODELS

In Table 4.14, we presented a simple random coefficient regression equation that speci-
fied the relationship between reading achievement and gender for our Kentucky data set.
It is a simple matter to specify a random coefficient regression model that uses student-
level ethnicity in place of student-level gender (see Table 4.31). Except for the indepen-
dent variable name, the models are identical.

Coefficient estimates for this model are reported in Tables 4.32 and 4.33. By now,
most of the output from analyses of this kind is beginning to look familiar. However, we
still have not explained the summary statistic R1

2, as it appears in Table 4.32.
The familiar R2 statistic, equal to the squared correlation of observed and predicted

values of the dependent variable, is not used with models containing random coeffi-
cients. However, the alternative R1

2 statistic is sufficiently like R2 to make it intuitively
appealing to regular users of OLS regression. In addition, it is easy to compute (Snijders
& Bosker, 1999, pp. 99–105). We will give more attention to the meaning and computa-
tion of the R1

2 summary statistic for multilevel models in Chapter 10. For now, the fol-
lowing brief account will do the job.

R1
2 is conceptually similar to the conventional R2. However, instead of reporting the

amount of variability in the individual-level dependent variable explained by a random
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TABLE 4.31. Simple Regression with Random Coefficients

Y = β0J + β1JETHNIC1 + (u0J + u1J * ETHNIC + eIJ)

TABLE 4.33. Random Coefficient Regression of Reading Achievement on Ethnicity;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.429 2.172 152.578 .000

INTERCEPT1 20.894 2.145 9.741 .000

INTERCEPT1 by ETHNIC1 –2.482 2.248 –1.103 .270

ETHNIC1 22.748 5.031 4.521 .000

TABLE 4.32. Random Coefficient Regression of
Reading Achievement on Ethnicity; Fixed Components

Y = 51.268 – 6.994XETHNIC1

(0.316) (0.516)

R1
2 = 2.0%

N1 = 49,616

N2 = 347



regression equation, it tells us the proportional reduction in errors of prediction when our
model is compared with the unconditional or null model (Kreft & De Leeuw, 1998).

To calculate R1
2 for the random coefficient model in Table 4.32, we begin by esti-

mating the unconditional model, containing only a random intercept with no explana-
tory variables. The idea of an intercept-only model—one in which the random intercept
is the only predictor—is an odd one for most of us for whom OLS multiple regression
analysis is a staple statistical tool. The intercept gets a lot more attention in random coef-
ficient regression and multilevel regression than in OLS regression.

For the example at hand, the random components for the null model—the random-
intercept-only model—are reported in Table 4.34. The residual variance (Residual) mea-
sures the within-school variance in reading achievement for the 347 schools in our Ken-
tucky data set. The intercept variance (INTERCEPT1) measures the between-school
variance in reading achievement.

Earlier, we used these measures to estimate the intraclass correlation coefficient.
After acknowledging that Residual plus INTERCEPT1 provides an estimate of the
total variance in the level-one dependent variable, we simply divided this sum into
INTERCEPT1, our estimate of between group variance. The resulting intraclass correla-
tion coefficient value told us the proportion of variance between groups.

The rationale for R1
2 is similar. Now, however, the sum of the residual variance

and intercept variance is divided into the sum of the residual variance and intercept
variance for a conditional model—a random coefficient or multilevel regression model
that has one or more independent variables. Table 4.35 provides this additional infor-
mation.

It is important to acknowledge that Table 4.35 does not contain a variance estimate
for the slope for ETHNIC1. This is because calculation of R1

2 with general purpose soft-
ware such as SPSS requires that all slopes be fixed. So, while the intercept is random,
ETHNIC1, which has a random slope in this example, is temporarily assigned a fixed
slope when we are estimating R1

2 (Snijders & Bosker, 1999).
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TABLE 4.34. Unconditional (Null) Model for Reading Achievement;
Random Coefficient Regression; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual (eIJ
2) 340.214 2.223 152.867 .000

INTERCEPT (u0J) 20.910 2.150 9.726 .000

TABLE 4.35. Conditional Model for Reading Achievement;
Random Coefficient Regression; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual (eIJ
2) 333.315 2.180 156.865 .000

INTERCEPT1(u0J) 20.847 2.141 9.738 .000



The R1
2 summary statistic is then calculated by dividing the sum of Residual and

INTERCEPT1 for the conditional model by the sum of Residual and INTERCEPT1 for
the null model, subtracting the result from one, and multiplying by 100:

R1
2 = (1 – [(RESIDUALFIXED + INTERCEPT1FIXED)/(RESIDUALNULL

+ INTERCEPT1NULL)] * 100)

2.0% = [1 – (333.315 + 20.847)/(340.214 + 20.910)] * 100

Including the independent variable, ETHNIC1, in our conditional random coefficient
model reduces errors in predicting reading achievement by 2.0% when compared with
the null model. As we shall see in Chapter 10, this simple procedure can easily be
extended to include any number of independent variables and can be applied, in
straightforward fashion, to models with more than two levels.

At this point it may be useful to briefly return to the information criteria summary
statistics that we have used in several examples in Chapter 3. The information criteria do
not have the intuitive appeal of R1

2, but as we have already illustrated, they can be useful
for decision-making purposes (Burnham & Anderson, 2002; Cavanaugh, 2005).

Suppose, for example, that we are not convinced that adding ETHNIC1 to the null
model in Table 4.35 improved the fit of the model to the observed data. After all, the value
of the R1

2 statistic is quite small. Since the null model and the conditional model are nested,
meaning that the only differences between them have to do with addition and deletion of
parameter estimates, we can make this decision with the deviance difference statistic.

In contrast to the procedure for calculating R1
2, when we are using the deviance dif-

ference and information criteria, random slopes remain random. It is important to
remember, however, that the compared deviance values and the information criteria
must be estimated with ML rather than REML.

As we have seen in Chapter 3, the deviance difference is calculated simply by sub-
tracting the –2 log likelihood or deviance value for the conditional model from the same
measure for the null model (Hox, in press). As already noted, the –2 log likelihood mea-
sure and the information criteria have smaller-is-better interpretations.

With the information in Table 4.36, the deviance difference in this instance is calcu-
lated as follows:

Deviance difference = 407632.3 – 406543.7 = 1088.6

df = 6 – 3 = 3

Degrees of freedom are determined by subtracting the number of parameters used in
estimating the null model from the number used in estimating the conditional model. In
this instance, the conditional model used three additional parameters: the fixed compo-
nent of the random slope for ETHNIC1, the random component of the random slope for
ETHNIC1, and the covariance of the random components for the random intercept and
the random slope.
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With the alpha level set at .05 and with three degrees of freedom, the critical value
of χ2 is 7.815 (Gujarati, 2003). Our computed deviance statistic easily exceeds this
value. As a result, we reject the null hypothesis of no difference between the two models
and conclude that the conditional model provides a better fit. With their smaller-is-
better interpretations, we would reach the same conclusion if we used one or more of
the information criteria.

The deviance difference and information criteria are used routinely when random
coefficient regression and multilevel regression models are compared (R. Andersen,
2004). While they lack the intuitive appeal of R1

2, they are easy to use as model-fit
decision-making tools (Abdulnabi, 1999; Burnham & Anderson, 2002, 2004; Cavanaugh,
2005). Even with its intuitively appealing interpretation, R1

2 is used inconsistently in
published research.

4.16 GRAND-MEAN CENTERING

Grand-mean centering is a seemingly innocuous but quite consequential procedure that
we have used in examples throughout our presentation. When employed with OLS
regression, grand-mean centering clarifies interpretation of regression coefficients and
permits use of multiplicative interaction terms without generating troublesome multi-
collinearity (Preacher, 2003).

For example, if we refer back to the OLS regression model presented in Table 4.4,
we may be interested in whether or not the relationship between reading achievement
and the individual-level predictor XGENDER1 varies from level to level of the contextual
variable, XGENDER2. In response to this question, we create the multiplicative interaction
term XGENDER2 * XGENDER1. When we run the analysis, we get the results reported in
Table 4.37.

The OLS slopes for XGENDER1 and XGENDER2 in Table 4.37 are similar to those reported
in Table 4.4, but the intercept is quite different. Furthermore, the standard errors are
enormous, and none of the coefficients is statistically significant. With nearly 50,000
cases, this is astonishing!
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TABLE 4.36. Information Criteria for Reading Achievement
by ETHNIC1

Criterion Null model
Conditional

model

–2 log likelihood 407632.3 406543.7
Akaike’s Information Criterion 407636.3 406551.7
Hurvich and Tsai’s Criterion 407636.3 406551.7
Bozdogan’s Criterion 407655.8 406590.7
Schwarz’s Bayesian Criterion 407653.8 406586.7

Note. The smaller value for each measure is boldfaced and italicized.



An examination of SPSS collinearity diagnostics for this OLS simulation of a multi-
level model is instructive: The variance inflation factor for XGENDER1 is 1424.801, and the
same measure for XGENDER2 is 1450.869. The condition index is 459.279. Rules of thumb
for these measures vary from source to source, but our values are huge by any standard.
They are strong evidence of badly inflated standard errors and imprecise coefficient esti-
mates due to multicollinearity (Chatterjee et al., 2000; Gujarati, 2003).

In response, we center both XGENDER1 and XGENDER2 with respect to the grand mean
for XGENDER1, and then recalculate the interaction term using the centered variables.
When we rerun the OLS multiple regression equation with grand-mean-centered inde-
pendent variables, we get the results reported in Table 4.38.

The information in Table 4.38 is much more compatible with that in Table 4.4. The
standard errors are no longer badly inflated, the intercept is consistent with what we
would expect, and the OLS slopes for XGENDER1 and XGENDER2 are both statistically signifi-
cant. The OLS coefficient for the interaction term is not statistically significant, but this
is not cause for concern. Instead of being suspect as just another artifact of multi-
collinearity, this may be plausibly acknowledged as a legitimately interpretable result of
our regression analysis. All three variance inflation factors are at or below 1.015, and the
condition index is 1.148. Due to grand-mean centering, multicollinearity is no longer a
problem.

In this OLS example, grand-mean centering enabled us to render the multiplicative
interaction term approximately orthogonal to the main effect independent variables used
to create it (Iversen, 1991). The use of centering for this and other purposes has become
commonplace among users of OLS multiple regression analysis (Jaccard & Turrisi,
2003).

Furthermore, when we are working with random coefficient and multilevel regres-
sion models, it is best that all independent variables be centered—usually with respect
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TABLE 4.37. OLS Regression of Reading Achievement on Gender
and Gender Composition; Multiplicative Interaction Term Added

Y = –1.503 + 8.023XGENDER1 + 28.532XGENDER2 – 0.422XGENDER2 * XGENDER1

(10.102) (6.438) (16.750) (4.335)

R2 = 4.8%

N = 49,616

TABLE 4.38. OLS Regression of Reading Achievement on Gender and Gender
Composition; Multiplicative Interaction Term Added; Independent Variables Centered

Y = 51.638 + 7.391XGENDER1 + 35.307XGENDER2 + 0.925XGENDER2 * XGENDER1

(0.086) (0.172) (2.158) (4.371)

R2 = 4.8%

N = 49,616



to their grand means, as with the OLS examples just given (Snijders & Bosker, 1999;
Hox, 2002). This simply means that independent variables at all levels are expressed as
deviation scores, assuring that zero is an interpretable value. In the present example, the
grand mean for gender is subtracted from each student’s value for XGENDER1, and the same
grand mean is subtracted from each school’s value for XGENDER2.

It may seem odd to speak in terms of values, and especially of means, when we are
working with dummy variables such as gender. However, recall that the male students in
our Kentucky data set were assigned a score of 0 on XGENDER1, and female students were
given a score of 1. If there were 500 students in a school, and half were male and half
were female, we would compute the XGENDER1 mean for that school as in Table 4.39.
Grand-mean centering of the independent variable XGENDER1 for males and females in this
school would be done as in Table 4.40.

Centering a group-level variable (in this case, XGENDER2) at the school level is done in
the same way (see Table 4.41). In practice, however, centering level-two independent
variables may be a bit more tedious than Table 4.41 suggests. After all, each value for
XGENDER2 is a school mean, expressed as the proportion of students who are female. With
SPSS 13.0 and 14.0, school means are easy to compute by using the AGGREGATE func-
tion. By default, the AGGREGATE function adds the school means to the existing data
file. Each observation has a value, and each student in the same school has the same
value. It is then easy to find the grand mean for XGENDER1 and calculate deviation scores.

With SPSS 11.5 and 12.0, however, the process is a bit more tedious. One must first
use the AGGREGATE function to create a separate data file containing school means.
The original data file can then be merged with the new AGGREGATE file as described in
SPSS Routine 4.2. Now each observation has the correct value on XGENMEAN, which in this
case is XGENDER2, and centering can be done as above. For those of us who struggle with
software, this procedure may take some practice. It is far easier, however, than inserting
computed school means one at a time.
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TABLE 4.39. Computing the Mean for a Level-One Dummy Variable

XGENDER1 mean = ((250 * 0.000) + (250*1.000))/500 = 0.500

TABLE 4.40. Centering a Level-One Dummy Variable with Respect
to the Grand Mean

XGENDER1 centered for males = 0.000 – 0.500 = –0.500

XGENDER1 centered for females = 1.000 – 0.500 = 0.500

TABLE 4.41. Centering a Level-Two Variable with Respect
to the Level-One Grand Mean

XGENDER2 centered for schools = XGENDER2 – 0.500



Since same-level interaction terms serve the same role and are used as frequently
with multilevel regression as with OLS regression, a primary reason for grand-mean cen-
tering is, as just described, to guard against multicollinearity. This is also an important
reason for using grand-mean centering with a multilevel regression in which one or
more cross-level interaction terms are employed.

Still another reason for using grand-mean centering is to minimize adverse effects
that follow when random intercepts and random slopes are strongly correlated with each
other (Kreft & De Leeuw, 1998; Wooldridge, 2004). We illustrated this in Table 3.54 in
our discussion of covariance structures for multilevel models.

In brief, covariances among random slopes and between random slopes and random
intercepts have consequences that are comparable to multicollinearity (Gill & King,
2003). When relationships among these various factors are strong, they interfere with
efficient estimation of random regression coefficients (Murtazashvilli & Wooldridge,
2005). Grand-mean centering of all independent variables is a useful corrective (Kreft et
al., 1995; Nezlek, 2001).

4.17 GRAND-MEAN CENTERING, GROUP-MEAN CENTERING,
AND RAW SCORES COMPARED

So far, our presentation has offered grand-mean centering as if it were the only kind we
need seriously consider. Actually, however, other forms of centering are available and are
sometimes quite useful (Raudenbush & Bryk, 2002).

The most commonly discussed alternative with respect to random coefficient
regression and multilevel regression is group-mean centering, also referred to as context
centering. For example, if we are using our U.S. Bureau of the Census data set to study
county-level variability in voting for George W. Bush in 2004, we might use a measure of
family structure (XFAMILY1) at the county level as an independent variable. XFAMILY1 is the
percentage of all county residents living in a traditional nuclear family, defined as having
a husband, a wife, and at least one child under age 18. Table 4.42 depicts the centering
options for this variable.
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SPSS Routine 4.2. Merging Data Files
to Include Aggregated Variables

1. Open the aggregate data file.
2. Change the name of the aggregated variable so it can be distinguished from the origi-

nal variable; for example, change XGENDER1 to XGENMEAN.
3. Click on DATA, MERGE FILES, and ADD VARIABLES.
4. Insert the original file name into the FILE NAME box and click on OPEN.
5. Click on MATCH CASES and WORKING DATA FILE.
6. Move the item in the EXCLUDED VARIABLES box to the KEY VARIABLES and click

on OK.



Tables 4.43 and 4.44 below report results of three random coefficient regression
analyses. In each instance, we have used percentage of county residents voting for Bush
in the 2004 presidential election as the level-one dependent variable (YBUSH), and per-
centage of all county residents living in traditional nuclear families as the level-one inde-
pendent variable (XFAMILY1). The only differences in the way the three equations are spec-
ified pertain to centering.

In Table 4.43, notice the enormous difference between the value of the fixed com-
ponent of the random intercept when XFAMILY1 is expressed in raw scores, and the value of
the same estimate with either grand-mean or group-mean centering. In general, the
intercepts will be similar with grand-mean or group-mean centering, but the raw score
intercept will be substantially different (Kreft et al., 1995).

In a random coefficient analysis that has only level-one independent variables with
no contextual factors, grand-mean centering and use of raw scores will result in the
same value for the fixed component of the random slope. Use of group-mean centering,
however, will result in a slope estimate that differs from the other two, though the differ-
ence is often small (Kreft et al., 1995). We see this in Table 4.43, in which the slopes and
standard errors estimated with grand-mean centering and raw scores are the same, but
the fixed component and standard error for the slope estimated with group-mean center-
ing are slightly larger.
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TABLE 4.42. Centering Options

Centering at level one with respect to the grand mean

XFAMILY1 – grand mean = XFAMILY1 grand-mean-centered

(This is done using just the overall or grand mean.)

Centering at level one with respect to group means

XFAMILY1 – group mean = XFAMILY1 group-mean-centered

(This is done for each group, using the mean for that group.)

TABLE 4.43. Centering Options and Use of Raw Scores
Illustrated for YBUSH as a Function of XFAMILY1; Fixed Components

Independent variable grand-mean-centered

YBUSH = 58.787 + 1.995XFAMILY1

(1.080) (0.157)

Independent variable group-mean-centered

YBUSH = 58.787 + 1.998XFAMILY1

(1.328) (0.160)

Independent variable in raw scores

YBUSH = 23.855 + 1.995XFAMILY1

(0.276) (0.157)



Our primary concern in Table 4.44 is with the intercept-by-slope covariances: Each
type of centering yields a different value, though the covariances with grand-mean and
group-mean centering are both statistically nonsignificant. The much larger and statisti-
cally significant value of the INTERCEPT1-by-XFAMILY1 covariance produced with raw
scores is consistent with our earlier observation that one of the virtues of centering,
whether with the grand mean or with group means, is that it improves estimates of coef-
ficients by reducing potentially troublesome correlations among random components.

Some authors have taken the position that group-mean centering is more effective
than grand-mean centering in diminishing correlations among random components, and
that group-mean centering minimizes bias in estimating variances of random compo-
nents (Raudenbush & Bryk, 2002). Others, however, have suggested that each of the
two forms of centering is sufficiently effective that choices between them need not be
made on this basis (Kreft et al., 1995). Either way, it is clear that centering, whether with
grand means or with group means, should always be used in multilevel regression.

Given this, it is important to remember that different forms of centering alter the
interpretation of multilevel models. Interpretation of the fixed coefficient of a random
intercept is a prime example. If we avoid centering altogether and use scores raw for all
variables, the following is true: The intercept is our best estimate of the value of the de-
pendent variable when all independent variables are set equal to zero. With grand-mean
centering, however, the intercept is our best estimate of the value of the dependent vari-
able when all independent variables are set equal to their grand means. With group-
mean centering, the intercept is our best estimate of the value of the dependent variable
when all independent variables are set equal to their group means (Paccagnella, 2006).
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TABLE 4.44. Centering Options and Use of Raw Scores Illustrated for YBUSH as
a Function of XFAMILY1; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Independent variable grand-mean-centered

Residual 106.664 2.757 36.688 .000

INTERCEPT1 50.687 12.067 4.200 .000

INTERCEPT1 by XFAMILY1 1.311 1.386 0.946 .344

XFAMILY1 0.756 0.234 3.235 .001

Independent variable group-mean-centered

Residual 106.061 2.762 38.665 .000

INTERCEPT1 80.069 19.586 4.088 .000

INTERCEPT1 by XFAMILY1 –1.436 1.805 –0.796 .426

XFAMILY1 0.772 0.235 3.285 .001

Independent variable in raw scores

Residual 106.665 2.757 36.688 .000

INTERCEPT1 236.568 70.820 3.341 .001

INTERCEPT1 by XFAMILY1 –11.925 3.822 –3.235 .002

XFAMILY1 0.756 0.234 3.235 .001



Notice that with grand-mean centering we are merely rescaling the independent
variables by taking deviation scores. We are not creating a new independent variable.
Instead, an equation estimated with raw scores will be equivalent to the same equation
estimated with grand-mean centering (Hox, 2002). Yes, some parameter estimates may
differ, as with the intercept estimates in Table 4.43, but fitted values of the dependent
variable will be the same (Paccagnella, 2006). It is in this sense that the models are
equivalent.

With group-mean centering, however, we do create a new variable. Specifically, the
means subtracted from independent variable raw scores vary from group to group. As a
result, we are not merely rescaling predictors; we are rescaling them differently from one
context to another. Consequently, group-mean centering will yield fitted values for the
dependent variables that differ from those obtained using raw scores or grand-mean cen-
tering.

In general terms, what have we learned about centering from our discussion of the
examples in Tables 4.43 and 4.44?

First, when working with multilevel models, center all independent variables.
Second, choose your method of centering based on how you want to interpret your

results. In the absence of a good reason to prefer one form of centering over another, fol-
low the recommendation offered by Snijders and Bosker (1999), Hox (2002), and Luke
(2004): Use the simpler, more commonly employed form, grand-mean centering.

Third, use of grand-mean centering or group-mean centering will yield similar esti-
mates for the fixed component of a random intercept. The intercept will, however, be
interpreted in a different way. Use of raw scores usually yields a very different value, and
it too has its own distinctive interpretation.

Fourth, use of grand-mean centering or raw scores will yield the same value for the
fixed component of a level-one random slope. Use of group-mean centering, however,
will yield a different value. Whether you are using raw scores, grand-mean centering, or
group-mean centering, however, the level-one random slope will be interpreted in the
same way.

Fifth, either form of centering effectively diminishes the magnitude of the intercept-
by-slope covariance when compared with use of raw scores. In this way, centering con-
tributes to controlling potentially troublesome correlations among random components.

These observations are affirmed when we introduce a contextual factor, as in Tables
4.45 and 4.46 below. For the level-one independent variable XFAMILY1, the same centering
options apply as before. However, in both of the first two equations, the contextual vari-
able XFAMILY2 is grand-mean-centered, while XFAMILY2 is expressed in raw scores in the
third equation.

When we compare fixed components of random intercepts and level-one random
slopes in Table 4.45, things are much as they were in Table 4.43. The random intercept
in the equation in which XFAMILY1 is expressed in raw scores is a good deal smaller and is
no longer statistically significant. This merely adds emphasis to a difference we had
found in Table 4.43. Otherwise, fixed component estimates and standard errors have
changed very little. The fixed component estimates of the random slopes are the same
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when we are using raw scores or grand-mean centering, but group-mean centering yields
a slightly different value.

Notice, however that with group-mean centering, the slope for the contextual vari-
able XFAMILY2 is much larger than in the analyses in which XFAMILY1 is grand-mean-
centered or not centered. In fact, with a two-tailed t test, the XFAMILY2 slope is statistically
significant only when XFAMILY1 is group-mean-centered. Since we expect XFAMILY2 to be
positively related to YBUSH, however, we will use one-tailed tests, making all three esti-
mates of the slope for XFAMILY2 statistically significant.

We are left, however, with a large difference between the XFAMILY2 slope estimated
with group-mean centering and the slopes estimated with raw scores and grand-mean
centering. How do we interpret this? It is at this juncture that the choice between grand-
mean and group-mean centering becomes crucial. Each presents us with a different way
of separating individual-level effects from group-level effects.

In the example in Table 4.45, with grand-mean centering XFAMILY2 has a statistically
significant slope equal to 0.823. This is our best estimate of the relationship between the
dependent variable and XFAMILY2 after we control for XFAMILY1. This is consistent with the
way we have interpreted coefficients for contextual variables throughout this book. The
contextual effect in this case is the expected difference in YBUSH for counties that have the
same value on XFAMILY1, but that are located in states differing by 1 unit on XFAMILY2. In
other words, for every 1-unit increment in XFAMILY2, YBUSH increases by 0.823 points.

With group-mean centering, however, the XFAMILY2 slope is much larger. This is
because with group-mean centering the XFAMILY2 slope has a different interpretation: It is
the expected difference in the mean of YBUSH for states that differ by 1 unit on the mean
for XFAMILY2 (cf. Raudenbush & Bryk, 2002, p. 141). In other words, for every 1-unit
increment in the mean of XFAMILY2, the mean of YBUSH increases by 2.713 points.

As with Table 4.44, we see in Table 4.46 that both grand-mean centering and group-
mean centering substantially reduce the random component covariance, when com-
pared with raw scores.
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TABLE 4.45. Centering Options and Use of Raw Scores
Illustrated for YBUSH as a Function of XFAMILY1 and XFAMILY2;
Contextual Variable Added; Fixed Components

Level-one independent variable grand-mean-centered

YBUSH = 58.879 + 1.948XFAMILY1 + 0.823XFAMILY2

(1.113) (0.157) (0.475)

Level-one independent variable group-mean-centered

YBUSH = 57.763 + 1.932XFAMILY1 + 2.713XFAMILY2

(1.007) (0.160) (0.416)

Level-one independent variable in raw scores

YBUSH = 10.333 + 1.948XFAMILY1 + 0.823XFAMILY2

(8.413) (0.157) (1.745)



The best textbook discussion of the comparative consequences of using grand-mean
centering or group-mean centering is provided by Raudenbush and Bryk (2002,
pp. 134–148). They introduce other ways to think about and visualize the meaning of
the coefficients that follow from centering decisions.

One interpretation that is commonly found in discussions of grand-mean and
group-mean centering uses the distinction between between-groups and within-groups
regressions. Our voting behavior illustration of this distinction closely parallels an exam-
ple from Raudenbush and Bryk (2002), using the High School and Beyond subset to ana-
lyze math achievement.

A between-groups regression is done by aggregating variables of interest to the
group level and running the analysis with the group rather than the individual observa-
tion as the unit of analysis. In the YBUSH-by-XFAMILY1 example, this would mean regressing
the state-level mean of YBUSH on the state-level mean of XFAMILY1. By contrast, a within-
groups regression is just a conventional individual-level regression analysis in which
slopes are assumed to be uniform across groups. In this case, we would simply regress
YBUSH on XFAMILY1, using all 3091 counties.

What does this distinction have to do with our choice of centering methods? We
begin by using the county-level voting behavior data with group-mean centering applied
to the level-one predictor XFAMILY1. XFAMILY2 is a contextual variable. We then estimate a
random coefficient equation in which only the intercept is random, and we get the
results reported in Tables 4.47 and 4.48. With group-mean centering, the coefficient for
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TABLE 4.46. Centering Options and Use of Raw Scores Illustrated for YBUSH
as a Function of XFAMILY1 and XFAMILY2; Contextual Variable Added; Estimates
of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Level-one independent variable grand-mean-centered

Residual 106.604 2.754 36.706 .000

INTERCEPT1 53.766 13.019 4.130 .000

INTERCEPT1 by XFAMILY1 2.136 1.479 1.444 .149

XFAMILY1 0.752 0.232 3.253 .001

Level-one independent variable group-mean-centered

Residual 106.568 2.752 38.722 .000

INTERCEPT1 44.587 10.678 4.176 .000

INTERCEPT1 by XFAMILY1 1.145 1.263 0.906 .365

XFAMILY1 0.794 0.241 3.295 .001

Level-one independent variable in raw scores

Residual 106.605 2.754 38.706 .000

INTERCEPT1 209.640 64.377 3.256 .001

INTERCEPT1 by XFAMILY1 –11.037 3.605 –3.061 .002

XFAMILY1 0.752 0.231 3.253 .001



XFAMILY1 is equal to the slope for the within-group regression. The slope for XFAMILY2 is
equal to the slope for the between-group regression.

Now let’s do the same analysis, using grand-mean centering. Our results are
reported in Tables 4.49 and 4.50. Notice that the slope for XFAMILY1 is the same as in Table
4.47; it is equal to the within-group regression. The slope for the group-level variable,
however, is much smaller. We can see how to interpret this if we use the following
increasingly concrete formulas:

Contextual effect = Between-groups effect – Within-groups effect

Contextual effect = State effect – County effect

0.792 = 2.598 – 1.806

Say we have two counties with the same value on XFAMILY1, but the counties are located
in states that differ on XFAMILY2. The contextual effect is the change in YBUSH for each 1-
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TABLE 4.47. YBUSH as a Function of XFAMILY1 and XFAMILY2; Level-One Independent
Variable Group-Mean-Centered; Random Intercept; All Slopes Fixed

YBUSH = 12.868 + 1.806XFAMILY1 + 2.598XFAMILY2

(1.113) (0.157) (0.475)

TABLE 4.48. YBUSH as a Function of XFAMILY1 and XFAMILY2; Level-One
Independent Variable Group-Mean-Centered; Random Intercept;
All Slopes Fixed; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 111.688 2.866 38.970 .000

INTERCEPT1 43.922 10.514 4.177 .001

TABLE 4.49. YBUSH as a Function of XFAMILY1 and XFAMILY2; Level-One Independent
Variable Grand-Mean-Centered; Random Intercept; All Slopes Fixed

YBUSH = 44.491 + 1.806XFAMILY1 + 0.792XFAMILY2

(7.449) (0.070) (0.424)

TABLE 4.50. YBUSH as a Function of XFAMILY1 and XFAMILY2; Level-One
Independent Variable Grand-Mean-Centered; Random Intercept;
All Slopes Fixed; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 111.688 2.866 38.970 .000

INTERCEPT1 43.922 10.514 4.177 .001



unit increase in XFAMILY2. Again, this is exactly the way in which we have treated contex-
tual effects throughout our presentation.

We are faced, then, with still another question in multilevel regression model speci-
fication: Should we use grand-mean centering or group-mean centering? In large mea-
sure, the answer depends on how we want to interpret slopes for group-level variables.

Suppose a political scientist is interested in making a tentative but informed judg-
ment about who would win a U.S. presidential election. Furthermore, suppose that the
political scientist has a data set much like ours, with counties at level one and states at
level two. In view of the winner-take-all way in which the Electoral College uses state-
level votes, group-mean centering might very well be a better choice than grand-mean
centering. Imagine, however, that another political scientist is a student of county gov-
ernment and county-level voting behavior. Given the same data set, it is pretty clear that
grand-mean centering would be the better choice.

Throughout the rest of our discussion of multilevel models, we will be trying to
account for variability in a level-one dependent variable, using independent variables at
more than one level. The multilevel equations we construct for this purpose are best
suited to use of grand-mean centering. If, however, our primary interest is in measuring
relationships between group-level independent variables and group-level outcomes, we
may decide that group-mean centering is a better choice.

We began our discussion of centering by focusing on its value in controlling
multicollinearity when same-level or cross-level interaction terms are used. We also
acknowledged that troublesome correlations may occur among random components,
and centering is valuable in controlling this form of multicollinearity as well. We now
see, in addition, that different forms of centering enable us to select different ways of
interpreting the fixed component for a random intercept and the slope of a group-level
variable. In most applications, grand-mean centering is the best choice. Group-mean
centering may be used, however, if there is good theoretical or substantive reason for
preferring it.

4.18 SUMMING UP

Just as it can be useful to provide a chapter overview through use of an example, we can
do much the same with a chapter summary. Suppose that we use a Texas data set in
which the high school is the unit of analysis (Bickel et al., 2001) in an effort to deter-
mine if there is a relationship between school mean scores on a high-stakes measure of
10th-grade reading achievement and the percentage of each school’s students who are
mobile. A mobile student is one who enrolls more than 6 weeks after the beginning of
the current semester.

With 1001 schools nested in 713 districts, we know that most districts have only
one high school. Including level-two units with only one case at level one is permissible,
so long as this does not apply to all districts. This is due to a process that Snijders and
Bosker (1999) refer to as exchangeability, and other authors refer to as borrowing
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strength (Raudenbush & Bryk, 2002). In other words, data from districts with a compar-
atively large number of schools will be used to inform estimates made for districts with a
smaller number of schools.

One consequence of exchangeability is that larger districts will weigh more heavily
in estimating average or overall coefficients than smaller districts. In effect, coefficients
for smaller districts will be affected more by shrinkage than coefficients for larger dis-
tricts will be.

When we calculate the intraclass correlation coefficient, we find that it is statisti-
cally significant, with a value of 0.220. The nesting of schools within districts gives rise
to a consequential degree of district-level homogeneity among schools.

We immediately see that nesting is likely to inflate the standard errors of regression
coefficients, so we decide to use random coefficient regression, with REML estimators
serving as substitutes for OLS estimators. With school means for 10th-grade reading
achievement as the dependent variable and school percentage of mobile students as the
only predictor, we estimate a random coefficient regression equation. We permit the
intercept and the slope to vary from district to district, and we select the unstructured
option for our covariance parameter structure. The results are shown in Tables 4.51 and
4.52.

Our regression results are easy to summarize. The fixed component for the intercept
is statistically significant (p < .000) and equal to 39.201. Since the independent variable
has been grand-mean-centered, the intercept is the predicted value for reading achieve-
ment if percent mobile is set equal to its mean. In addition, the value of the random
component for the intercept is statistically significant (p < .000) and equal to 1.108. This
is the variance of the intercept as it varies across districts. Recalling that random compo-
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TABLE 4.51. Reading Achievement and
Percent Mobile; Random Coefficient Model

Y = 39.201 – 0.089MOBILE1

(0.074) (0.010)

R1
2 = 10.8%

N1 = 1001

N2 = 713

TABLE 4.52. Reading Achievement and Percent Mobile: Random Coefficient Model;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 2.893 0.237 12.223 .000

INTERCEPT1 1.108 0.258 4.295 .000

INTERCEPT1 by MOBILE1 0.027 0.145 1.890 .059

MOBILE1 0.007 0.002 3.279 .001



nents are normally distributed, if we construct an interval to capture district-to-district
variability in the intercept, we find that 95% of all intercept values fall within the range
37.13 to 41.265.

The fixed component for the percent mobile slope is statistically significant (p <
.000), with a value of –0.089. This means that for each 1-point increase in percentage of
mobile students, the value of the reading achievement outcome measure decreases, on
average, by 0.089 points. In addition, the value of the random component for the per-
cent mobile slope is 0.007. This is the variance of the random component for the slope.
If we construct an interval to capture district-to-district variability in the slope, we find
that 95% of all slope values fall within the range –0.254 to 0.076. The width of this inter-
val, going from negative to positive, renders the slope difficult to interpret in substantive
terms. We hope to find district-level contextual factors that will diminish slope variabil-
ity, making the slope more readily interpretable.

The covariance of the random components for the intercept and the percent
mobile slope is statistically significant (p = .039) with a value of 0.027. The value of
Pearson’s r for this relationship is 0.307. This means that the random components for
the intercept and slope vary together, with one tending to increase as the other
increases.

In an effort to explain variability in the random components of the intercept and the
slope, and to account for their covariance, we introduce percent mobile aggregated to
the district level as a contextual factor (XMOBILE2). In addition, we recognize that a cross-
level interaction term created with percent mobile at the school level and at the district
level is implied by our specification decisions. The results are shown in Tables 4.53 and
4.54.
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TABLE 4.53. Reading Achievement and Percent Mobile:
Multilevel Regression Model

Y = 39.088 – 0.177MOBILE1 + 0.023XMOBILE2 + 0.002XMOBILE2 * MOBILE1
(0.080) (0.017) (0.017) (0.001)

R1
2 = 14.0%

N1 = 1001

N2 = 713

TABLE 4.54. Reading Achievement and Percent Mobile:
Multilevel Regression Model; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 2.884 0.238 12.095 .000

INTERCEPT1 1.138 0.255 4.456 .000

INTERCEPT1 by MOBILE1 0.016 0.113 1.232 .245

MOBILE1 0.005 0.002 2.744 .006



We have transformed our simple random coefficient regression model into a multi-
level regression model. The fixed component for the intercept is little different, now
equal to 39.088. The random component for the intercept is now 1.138, a little larger
than in the random coefficient equation. Clearly, the contextual factor has not contrib-
uted to explaining variability in the random intercept.

The fixed component for the slope has also increased a bit, now equal to –0.177.
Evidently part of the relationship between reading achievement and MOBILE1 was sup-
pressed before introduction of the contextual variable and cross-level interaction term.
The random component for the slope, however, has diminished, as has the intercept-by-
slope covariance. The contextual variable and cross-level interaction term have helped
to account for variability in these terms. As a result, if we construct an interval to cap-
ture district-to-district variability in the slope, we find that 95% of all slope values fall
within the range –0.230 to 0.016. The width of this interval is narrower than before we
introduced the contextual variable and cross-level interaction term, but it still ranges
from negative to positive, still rendering the slope difficult to interpret.

The fixed component for the contextual variable representing the percentage of
each district’s students who are mobile is not statistically significant (p = .189). Further-
more, since the contextual variable has not been permitted to vary from group to group
of a higher-level factor, it has no random component.

The fixed component for the cross-level interaction term created with the percent
mobile variable at the school and district levels is statistically significant (p < .000). This
means that the relationship between the reading achievement dependent variable and
school-level percent mobile variable varies from category to category of percent mobile
at the district level. In this instance, each 1-point increase in the percent mobile contex-
tual variable corresponds to a 0.002-point increase in the reading-achievement-by-
MOBILE1 relationship.

The summary measure, R1
2, has a value of 14.0%, and each of the smaller-is-better

information criteria has a smaller value with the multilevel regression model than with
the random coefficient regression model (see Table 4.55). In addition, the deviance sta-
tistic is statistically significant (p < .049) with a value of 6.200 with two degrees of free-
dom. Each of the summary measures is consistent with the judgment that the multilevel
regression model provides a better fit than the random coefficient regression model.

Deviance difference = 4292.3 – 4286.1 = 6.2

df = 7 – 5 = 2

The concepts and procedures used in this simple example enable us to concretely
summarize random coefficient regression models and their transformation into multi-
level regression models. As we see, random coefficient regression provides the statistical
foundation for multilevel models. For our purposes, the essential difference between the
two types of models is that multilevel regression seeks to explain random component
variances and covariances, while random coefficient regression stops with measuring
them.
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4.19 USEFUL RESOURCES

Williams, L. (2002) The Prophecy of Place: A Labor Market Study of Young Women and Educa-
tion. American Journal of Sociology and Economics, 61, 681–712.

Typically, the intimate connection between random coefficient regression and multilevel
regression is taken for granted and glossed over in published research. This is as it should be,
since the conceptual link between these analytical procedures has become well known among
those who use multilevel regression.

For someone trying to acquire a basic knowledge of multilevel modeling, however, experi-
enced practitioners’ taken-for-granted notions may be a source of confusion, hiding distinctions
that are by no means obvious to beginners. This is one reason why Williams’s article is especially
useful. Williams is writing for a journal that includes many economists among its readers. Though
econometricians have done path-breaking work in the development of random coefficient regres-
sion, few economists are familiar with multilevel regression. Perhaps this is why Williams pro-
vides an unusually clear and detailed account of the place of random coefficient regression in her
multilevel analyses.

Using individual-level data from the National Longitudinal Survey of Youth, along with
group-level variables constructed with data taken from 95 labor market areas, Williams con-
textualizes young women’s educational attainment processes. She finds that structurally deter-
mined factors, such as sector composition, affect females and males differently. In addition, she
identifies contextual variables—such as women’s representation in higher education and in the
workforce—that condition the relationship between educational aspirations and educational
attainment. Williams’s presentation is strengthened because of the clarity she brings to her discus-
sion of the place of different social organizational levels and relationships between them.

Chevalier, A., Harmon, C., & Walker, I. (2002) Does Education Raise Productivity, or Just Reflect It?
Dublin: Policy Evaluation and Governance Programme, Institute for the Study of Social
Change.

It is difficult to find recent research reports that use random coefficient regression without
explicitly embedding such analyses in a multilevel framework. Nevertheless, in some instances, it
remains true that the question “Do regression coefficients vary?” is important in and of itself, even
without identifying contextual factors that account for that variability.

As part of their evaluation of human capital theoretic accounts relative to the screening
hypothesis, Chevalier, Harmon, and Walker raise just such questions. Specifically, they want to
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TABLE 4.55. Information Criteria for Tables 4.51 and 4.53

Criterion
Random coefficient

regression
Multilevel
regression

–2 log likelihood 4292.3 4286.1
Akaike’s Information Criterion 4300.3 4294.1
Hurvich and Tsai’s Criterion 4300.3 4294.2
Bozdogan’s Criterion 4323.9 4317.7
Schwarz’s Bayesian Criterion 4319.9 4313.5

Note. The smaller value for each measure is boldfaced and italicized.



know if payoffs for investments in education vary from person to person. Applications of random
coefficient regression constitute a comparatively small part of their overall analysis. Nevertheless,
it is instructive to see that interesting questions can be addressed by using uncomplicated applica-
tions of random coefficient regression, in which coefficients vary but their variability is not
explained.

Wright, R., Dielman, T., & Nantell, T. (1977) Analysis of Stock Repurchases with a Random Coeffi-
cient Regression Model (Working Paper No. 149). Ann Arbor: Division of Research, Graduate
School of Business Administration, University of Michigan.

Swamy, P. (1970) Efficient Inference in a Random Coefficient Regression Model. Econometrica, 38,
311–323.

The working paper by Wright, Dielman, and Nantell uses random coefficient regression anal-
ysis as developed in the pioneering work of Swamy. As a working paper, the Wright et al. manu-
script has an unfinished appearance, but this clearly is an instance in which researchers were
interested primarily in whether or not coefficients did in fact vary from one context to another. In
this instance, the random components of interest correspond to the slope for rate of return on
stocks repurchased by 40 firms.

While the authors are interested in the consequences for their 40 firms of operating in differ-
ent economic contexts, this early work does not employ contextual variables to account for coeffi-
cient variability. In very straightforward fashion, however, the authors report the existence of a
mean slope of 15.2% and a range of variability of 11.9% with respect to that mean.

Wright and colleagues take seriously the distributional assumptions that apply to random
coefficients and to residuals. Furthermore, much as an analyst doing regression analysis of any
sort might consider deleting unduly influential observations, they raise the possibility of deleting
firms with the most discrepant slopes. For a variety of reasons, then, this three-decade-old explo-
ration of the use of random coefficient regression is instructive, making parallels between random
coefficient and conventional OLS regression quite clear.

The article by Swamy, like his book-length account of random coefficient regression (Swamy,
1971), is densely mathematical by any standard. Nevertheless, this is the material that provided
the statistical tools for Wright et al.’s interesting paper. In spite of the demands that Swamy’s work
places on the reader, there are instructive sections that can be quoted with profit:

. . . it is unlikely that interindividual differences observed in a cross section sample can be explained by
a simple regression equation with a few independent variables. In such situations, the coefficient[s] . . .
of a regression model can be treated as random to account for interindividual heterogeneity. (Swamy,
1970, p. 311)

And later, after a densely mathematical discussion of the properties of the random coefficient esti-
mators developed by the author:

In closing, we note that many, if not all, micro units are heterogeneous with regard to the regression
[coefficients] in a model. If we proceed blithely with cross section analysis ignoring such heterogeneity,
we may be led to erroneous inferences. (Swamy, 1970, p. 322)
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5

Developing the Multilevel
Regression Model

5.1 CHAPTER INTRODUCTION

We have discussed the random coefficient regression model and applied it in specifica-
tion and estimation of multilevel regression models. In the process, we have seen that
with the random coefficient model serving as the statistical basis for multilevel models,
we can achieve improvements over OLS approximations to multilevel regression. Con-
textual variables and cross-level interaction terms need no longer be simply tacked onto
inherently single-level models. Instead, we may specify regression models that are con-
structed by combining equations from two or more analytical levels.

Construction of multilevel models entails a procedure entirely foreign to OLS
regression: using intercepts and slopes as outcomes! We acknowledge that intercepts and
slopes may vary across groups, and we use contextual variables in an effort to explain
that variability in substantively interesting ways.

The equations specified with an intercept or slope as a dependent variable are struc-
turally just as simple as they sound: It really is just regression! Until we become accus-
tomed to working with such equations, they may seem a lot more complicated than they
really are. We have already seen several reasons for this.

First, with multilevel regression there are at least two levels and two models. As
with OLS, the level-one dependent variable will be an outcome of substantive interest—
a conventional measure such as individual students’ reading achievement test scores.
The independent variables in a level-one model are also substantively conventional.
Along with the intercept, they include obvious level-one measures such as race, gender,
and SES. One or more of these measures, however, may have a coefficient with a random
component as well as a fixed component.
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At level two, however, the dependent variables are random components of regres-
sion coefficients. Each random component, whether an intercept or a slope, has its own
equation. Explanatory factors for random components are substantively conventional
measures such as school mean SES or school size.

After the level-one and level-two models have been specified, they are combined by
using a straightforward process of substitution. It is this combined or full equation for
which we actually estimate coefficients and offer interpretations.

A second reason why the equations constituting a multilevel model may seem
unduly confusing has to do with notation. The beta coefficients used to represent ran-
dom terms at level one and the gamma coefficients used to represent fixed coefficients at
level two are new to experienced users of OLS regression.

We can make all this concrete with a simple example. Suppose we have an
individual-level measure of reading achievement (XRACH). We wish to account for
student-to-student variability in reading achievement with a level-one measure of family
SES class background (XFSES). With OLS this would be straightforward.

XRACH = a + bXFSES + rIJ

We may, however, have good reason to suspect that both the intercept and the slope
for XFSES vary across a level-two grouping variable such as school. As a result, we decide
to make the intercept and slope random coefficients. At that point, our straightforward
and uncomplicated OLS regression equation will be modified as follows:

XRACH = β0J + β1JFSES1 + (u0J + u1J * FSES1 + rIJ)

This is the level-one model, a random coefficient regression model. The random inter-
cept is β0J, the random slope is β1J, and the greater complexity of the error term reflects
the fact that in addition to the usual level-one residual, rIJ, it now includes variability
with respect to the random slope, u0J, and the random intercept, u1J * FSES1. By chang-
ing XFSES to FSES1, we are merely indicating that the level-one independent variable now
has a random slope.

Rather than stop with a random coefficient regression model, we suspect that vari-
ability in the random intercept and random slope are functions of the school-level vari-
able, XFSES2. This is just family SES aggregated to the school level. As a result, the level-
two model takes the following form:

β0J = γ00 + γ01XFSES2 + u0J

β1J = γ10+ γ11XFSES2 + u1J

This is the level-two model. As we see, it has a separate equation for each random coeffi-
cient.

The next step is to substitute the level-two terms into the level-one equation:
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XRACH = γ00+ γ01XFSES2 + γ10FSES1 + γ11XFSES2*FSES1

+ (u1J * FSES1 + u0J + eIJ)

This is the final equation, the one for which we estimate values to insert for the
gamma coefficients. Notice that the process of substituting the level-two model into
the level-one model has created a cross-level interaction term. The cross-level interac-
tion term is implied when the level-one and level-two models are combined to create
the final model.

Clearly, the level-one and level-two models are linked. The cross-level interaction
term makes this explicit, and the linking of different levels is manifest in the way the full
model is created.

Unfamiliar structure and distinctive notation may indeed make multilevel models
seem more complex than they really are. Fortunately, however, the coefficients for the
full model are interpreted in exactly the same way as OLS regression coefficients. Yes, as
we have already illustrated, the magnitude of these fixed components may vary sharply
from group to group. As summary measures of intercept and slope values, however, their
interpretation is familiar and straightforward.

As we add more random components to a multilevel model, it quickly becomes
quite complex. It is easy to inadvertently make a multilevel model so complex that inter-
pretations become problematic. Once again, we acknowledge that specification decisions
in multilevel regression are numerous, difficult, and often based on very limited infor-
mation. All this complicates the process of settling on a particular specification as the
best.

5.2 FROM RANDOM COEFFICIENT REGRESSION
TO MULTILEVEL REGRESSION

Let us use Table 5.1 to look once more at the random coefficient regression model dis-
cussed above. We first introduced this rudimentary model with a single level-one in-
dependent variable in Table 4.14, and subsequently added the contextual variable
XGENDER2. The model has a random intercept, a predictor with a random slope at level
one, and a contextual variable with a fixed slope at level two. (The subscripts for the
XGENDER2 slope, β20, indicate that the slope corresponds to the second predictor in the
equation (2), but that the slope does not vary (0).

We have repeatedly referred to this as a random coefficient regression model, but is
it also a multilevel regression model? After all, it does have predictors at two levels. Per-
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TABLE 5.1. Is This a Multilevel Model?

Y = β0J + β1JGENDER1 + β20XGENDER2 + (u0J + u1J * GENDER1 + eIJ)



haps the best answer is an unsatisfactorily equivocal “yes and no.” Yes, it has both
individual-level and contextual variables, and a suitably complex error term. However,
treating the individual-level random intercept and the individual-level random slope as
functions of the school-level variable, XGENDER2, is done off-handedly—as an after-
thought, with too little concern for the meaning of proper specification of a multilevel
regression model.

In addition, we have not explicitly acknowledged the need to link together the indi-
vidual level and the school level. We have referred to the linking of levels in previous
examples, and have explained that linking is accomplished through use of contextual
variables and cross-level interaction terms. For both substantive and methodological
reasons, however, it is necessary to give more attention to the peculiar nature of multi-
level regression models, which we shall now do.

5.3 EQUATIONS FOR A RANDOM INTERCEPT
AND RANDOM SLOPE

We can begin by explicitly defining variability in the random intercept as a function of
one or more second-level variables (in this case, one or more characteristics of schools)
as in Table 5.2. In this instance, school-to-school variability in the random intercept is
expressed as a function of XGENDER2, gender aggregated to the school level.

In effect, the random intercept, β0J, takes the position of a dependent variable in a
simple regression equation. As with the beta coefficients, the gamma notation represents
another set of conventions and takes a bit of getting accustomed to, but the equation in
Table 5.2 is just a simple regression equation with all the usual terms, including an inter-
cept, 00, slope, 01, and error term, u0J. The objective of the equation is to account for
school-to-school variability in the random intercept, 0J.

The random slope is expressed in the same general way (see Table 5.3): just another
simple regression equation with all the usual terms, but now the random slope, β1J, is the
dependent variable. Intercepts and slopes, in effect, are being expressed as outcomes,
functions of higher-level variables.
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TABLE 5.2. Level-Two Model:
Equation for a Random Intercept

β0J = γ00 + γ01XGENDER2 + u0J

TABLE 5.3. Level-Two Model:
Equation for a Random Slope

β1J = γ10 + γ11XGENDER2 + u1J



5.4 SUBSCRIPT CONVENTIONS FOR TWO-LEVEL MODELS:
GAMMA COEFFICIENTS

Notice that the first subscript for the gamma coefficient used in estimating the intercept
is a 0, while the first subscript for gamma coefficients used in estimating the slope is a 1.
This is consistent with the subscript conventions presented in Chapter 4 for beta coeffi-
cients, wherein the first subscript for an intercept is always 0, and the first subscript for a
slope is 1, 2, . . . , I, depending on how many independent variables there are in the
equation. Here there is one independent variable in the equation for β0J, XGENDER2, and
the same is true of the equation for β1J.

The second subscript for gamma coefficient indicates that the random intercept, β0J,
is a function of the average intercept over all schools, γ00, and school-to-school depar-
tures from same. Departures from the average intercept over all schools are represented
by the γ0J coefficient; the slope for the level-two independent variable XGENDER2; and the
error term, u0J.

Similarly, the random slope, β1J, is a function of the slope over all schools, γ10, and
school-to-school departures from same. Departures from the slope over all schools are
represented by the γ11 coefficient; the slope for the level-two independent variable
XGENDER2; and the error term, u1J.

Having said this, I still find that when working with gamma coefficients the sub-
scripts are confusing, especially when we get to models with more than two levels, as we
will in Chapter 8. To make sure we get the right subscripts for gamma coefficients in a
two-level random coefficient model, the following additional explanation may be useful.
It will also serve as a point of departure for understanding subscripts for three-level
models.

The first subscript for a gamma coefficient in a two-level model tells us what we are
trying to account for: variability in a random intercept, or variability in a random slope.
For example, in the following equation for a random intercept, β0J, we see that the first
subscript for each of the gamma coefficients—the intercept, 00, and the slopes, 01 and

02—is a zero: β0J = 00 + γ01X1 + 02X2. When the first subscript of a gamma coefficient in
a two-level model is a zero, we know that we are trying to account for variability in a
random intercept. Notice that the second subscript in the example identifies the inde-
pendent variable used in explaining variability in β0J. As we see, γ01 corresponds to inde-
pendent variable X1, γ02 corresponds to independent variable X2, and so on.

In other words, if we are trying to account for variability in the random intercept in a
two-level model, 00 is the common intercept across groups; 01 and 02 are the effects of
the group-level predictors on group-specific intercepts.

If we are trying to account for variability in a random slope in a two-level model, the
first subscript identifies the specific random slope we are trying to explain. For example,
if we are trying to account for variability in two random slopes by using two second-
level independent variables, we would have two equations: β1J = 10 + 11X1 + 12X2 and
β2J = 20 + 21X1 + 22X2. Notice again that the second subscript in the example identifies

154 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH



the independent variable (in this example, either X1 or X2). Since the intercepts, 10 and

20, do not correspond to an independent variable, each has a second subscript equal to
zero.

In other words, if we are trying to account for variability in a random slope in a two-
level model, 10 and 20 are the common slopes associated with individual-level predictors
across groups; 11 and 12 are the effects of the group-level predictors on the group specific
slopes.

5.5 THE FULL EQUATION

When we substitute the terms from Tables 5.2 and 5.3 into the now-familiar equation
from Table 5.1, we can see what develops in Table 5.4. Now there is no need to equivo-
cate: We definitely have a multilevel regression model!

If we want to trace the emergence of the final multilevel regression model more
compactly, the process is outlined in Table 5.5. The level-one model expresses the de-
pendent variable, Y, as a function of the level-one independent variables. The level-two
model expresses the random intercept and random slope as functions of one or more
level-two contextual variables. The final model is derived by combining the level-one
and level-two models. Again, the final equation is the one we actually run with SPSS or
other general purpose software, giving us substantively interesting values for the inter-
cept and slopes.
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TABLE 5.4. A Multilevel Regression Model

Y = β0J + β1JGENDER1 + (u0J + u1J * GENDER1 + eIJ)

Y = γ00 + γ01XGENDER2 + u0J + (γ10 + γ11XGENDER2 + u1J) * GENDER1

Y = γ00 + γ01XGENDER2 + γ10GENDER1 + γ11XGENDER2 * GENDER1 + u0J + u1J * GENDER1 + eIJ

TABLE 5.5. Constructing a Final (Full, Complete) Multilevel Regression Model

Level-one model

Y = β0J + β1JGENDER1 + eIJ

Level-two model

β0J = γ00 + γ01XGENDER2 + u0J

β1J = γ10 + γ11XGENDER2 + u1J

Full model

Y = γ00 + γ01XGENDER2 + γ10GENDER1 + γ11XGENDER2 * GENDER1 + u1J * GENDER1 + u0J + eIJ



5.6 AN IMPLIED CROSS-LEVEL INTERACTION TERM

In addition to the main effect independent variables GENDER1 and XGENDER2, the full
equation now has a cross-level interaction term, XGENDER2 * GENDER1. We have seen
cross-level interaction terms in many examples already presented. We have explained,
moreover, that when a contextual variable is used to explain variability in a random
slope, the level-one and level-two independent variables form a cross-level interaction
term. In Table 5.5 we see how such terms emerge.

Yes, this is still regression analysis. However, the special circumstances addressed by
multilevel models have now been fully acknowledged. In this instance, the process of
substituting the random intercept and random slope to create the full equation shows us
that the cross-level interaction term is implied by our choices of fixed and random coeffi-
cients.

5.7 ESTIMATING A MULTILEVEL MODEL: THE FULL EQUATION

The cross-level interaction term, XGENDER2 * GENDER1, and the level-two independent
variable, XGENDER2, have fixed slopes. The level-one independent variable, GENDER1,
has a random slope, and the level-one intercept is also random. When we estimate the
equation (see Table 5.6) and divide each coefficient by its standard error, we see that the
fixed component of the intercept, the random component of the slope corresponding to
GENDER1, and the fixed slope corresponding to XGENDER2 are statistically significant (p
< .000). The fixed slope corresponding to the cross-level interaction term, however, is
not statistically significant (p = .421).

Table 5.7 makes clear that the random intercept and the random slope for
GENDER1 do in fact vary from school to school, and that the INTERCEPT1-by-
GENDER1 covariance is statistically significant as well. If we estimate the same multi-
level regression equation after deleting the contextual variable and the cross-level inter-
action term, we see by comparing Table 5.7 with Table 5.8 that the additional terms left
most of the school-to-school variability in INTERCEPT1 and GENDER1 unexplained,
and the same applies to the INTERCEPT1-by-GENDER1 covariance.
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TABLE 5.6. Kentucky Reading Achievement and Gender: Fixed Component
Estimates for a Multilevel Model

Y = 51.239 + 7.516GENDER1 + 27.764XGENDER2 – 0.965XGENDER2 * GENDER1
(0.304) (0.213) (6.678) (5.211)

R1
2 = 4.1%

N1 = 49,616

N2 = 347



These results are very similar to those reported in Tables 4.8 and 4.9, when we were
working with reading achievement as a function of GENDER1 and XGENDER2 in a random
coefficient regression model. Though the fixed and random components are nearly the
same in this instance, the two analyses are conceptually different. Now, with explicit
specification of a level-one model, a level-two model, a full model, and inclusion of an
implied cross-level interaction term, we are working with a multilevel regression
model—a more complex and potentially more informative analytical tool than the ran-
dom coefficient model on which it is based.

In spite of the increasing conceptual sophistication of our model, however, we still
have not managed to explain school-to-school variability in the random intercept and
random slope, and the INTERCEPT1-by-GENDER1 negative covariance remains unac-
counted for as well. Based on previous research, we may suspect that gender is con-
founded with SES in ways that cause the relationship between reading achievement and
student gender to vary from one second-level group to another (Bickel & Howley, 2003;
Bickel & Maynard, 2004). In response, we introduce a measure of SES aggregated to the
school level, XPOOR2, as an additional explanatory factor—one that may contribute to
accounting for variability in the random intercept and in the random slope for
GENDER1. XPOOR2 is just the percentage of each school’s students who are eligible for
free/reduced cost lunch. Though we are introducing no additional random components,
explicitly specifying XPOOR2 as a predictor of variability in the random slope for
GENDER1 modifies our level-two and full models as indicated in Table 5.9.

Empirical results based on the full model are reported in Tables 5.10 and 5.11. The
fixed component estimates in Table 5.10 show us that the contextual variable XPOOR2 and
the cross-level interaction term XPOOR2 * GENDER1 both have statistically significant
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TABLE 5.7. Kentucky Reading Achievement and Gender: Contextual Variable
and Cross-Level Interaction Term Included; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 325.167 2.112 168.473 .000

INTERCEPT1 19.239 1.976 9.736 .000

INTERCEPT1 by GENDER1 –2.413 0.950 –2.540 .011

GENDER1 3.351 0.909 3.685 .000

TABLE 5.8. Kentucky Reading Achievement and Gender: Contextual Effect
and Cross-Level Interaction Term Not Included; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 325.169 2.112 153.962 .000

INTERCEPT1 20.702 2.109 9.815 .000

INTERCEPT1 by GENDER1 –2.378 0.976 –2.437 .015

GENDER1 3.318 0.904 3.670 .000



coefficients. Individual reading achievement scores, on average, decline as the percent-
age of economically poor students in a school increases, but the female advantage rela-
tive to male students actually increases, on average, as XPOOR2 increases.

In Table 5.11 we see that respecifying our regression model has substantially dimin-
ished the variance of the random component for INTERCEPT1, and has explained away
the statistically significant and negative INTERCEPT1-by-GENDER1 covariance. This is
because as the percentage of students who are economically poor increases, reading
achievement scores, on average, diminish; and as the percentage of economically poor
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TABLE 5.9. Constructing a Final Multilevel Regression Model: XPOOR2
as an Additional Level-Two Predictor

Level-one model

Y = β0J + β1JGENDER1 + eIJ

Level-two model

β0J = γ00 + γ01XGENDER2 + γ02XPOOR2 + u0J

β1J = γ10 + γ11XGENDER2 + γ12XPOOR2 + u1J

Full model

Y = γ00 + γ01XGENDER2 + γ02XPOOR2 + γ10GENDER1 + γ11XGENDER2 * GENDER1

+ γ12XPOOR2 * GENDER1 + (u1J * GENDER1 + u0J + eIJ)

TABLE 5.10. Kentucky Reading Achievement and Gender: Fixed Component
Estimates for a Multilevel Model; XPOOR2 as an Additional Level-Two Predictor

Y = 49.016 + 8.033GENDER1 + 17.111XGENDER2 + 2.968XGENDER2 * GENDER1
(0.258) (0.266) (4.86) (5.183)

– 0.183XPOOR2 + 0.389XPOOR2 * GENDER1
(0.118) (0.117)

R1
2 = 7.2%

N1 = 49,616

N2 = 347

TABLE 5.11. Kentucky Reading Achievement and Gender:
Estimates of Covariance Parameters; XPOOR2 as an Additional Level-Two Predictor

Parameter Estimate Std. error Wald Z Sig. level

Residual 325.156 2.112 153.973 .000

INTERCEPT1 8.405 0.967 8.693 .000

INTERCEPT1 by GENDER1 –0.171 0.648 –0.264 .792

GENDER1 2.949 0.862 3.418 .001



students increases, the reading achievement advantage of female students, on average,
increases.

As we examine estimates of covariance parameters under a variety of different cir-
cumstances, we may also notice that the residual variance changes very little. This is
because the gains that have come with regression model respecification have not made
an appreciable contribution to accounting for within-school variance in the reading
achievement dependent variable. This is also manifest, from model to model, in persis-
tently small R1

2 values. If we introduce additional pertinent level-one predictors, we will
do better in this regard.

For example, if we introduce ethnicity (ETHNIC1, coded 1 if a student is Black and
0 otherwise) as a student-level independent variable with a random slope—along with
the aggregated contextual variable (XETHNIC2) and a cross-level interaction term (XETHNIC2

* ETHNIC1)—into the multilevel regression analysis, we get the level-one model, level-
two model, and full model described in Table 5.12.

This is not the only model that could have followed from adding ETHNIC1 and
XETHNIC2 to the analysis. As things stand, we have specified XETHNIC2 as a predictor of vari-
ability in the random intercept and the random slope for ETHNIC1, but not as a predic-
tor of variability in the random intercept for GENDER1. Had we done so, there would
have been still one more factor included in the full model: the cross-level interaction
term GENDER1 * XETHNIC2. We might also have included XPOOR2 as a predictor of vari-
ability in the random slope for ETHNIC1. This would have led to inclusion of the cross-
level interaction term ETHNIC1 * XPOOR2. Whether or not these or other modifications
would have represented improved regression model specification, they certainly would
have made the final equation more complicated.

The most interesting findings in Table 5.13 concern the cross-level interaction
terms XGENDER2 * GENDER1 and XETHNIC2 * ETHNIC1. XGENDER2 * GENDER1 was
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TABLE 5.12. Constructing a Final Multilevel Regression Model:
ETHNIC1 as an Additional Level-One Predictor

Level-one model

Y = β0J + β1JGENDER1 + β2JETHNIC1eIJ

Level-two model

β0J = γ00 + γ01XGENDER2 + γ02XPOOR2 + γ03XETHNIC2 + u0J

β1J = γ10 + γ11XGENDER2 + γ12XPOOR2 + u1J

β2J = γ20 + γ21XGENDER2 + γ22XETHNIC2 + u1J

Full model

Y = γ00 + γ01XGENDER2 + γ02XPOOR2 + γ02XETHNIC2 + γ10GENDER1 + γ20ETHNIC1

+ γ11XGENDER2 * GENDER1 + γ12XPOOR2 * GENDER1 + γ22XETHNIC2 * ETHNIC1

+ γ22XGENDER2 * ETHNIC1 + (u1J * GENDER1 + u2J * ETHNIC1 + u0J + eIJ)



included in Table 5.10, but its coefficient was statistically nonsignificant. Now that the
model has been respecified, however, this term emerges as statistically significant at any
reasonable alpha level. This tells us that as the percentage of a school’s students who are
female increases, individual female students, on average, have an increased advantage in
reading achievement.

The XETHNIC2 * ETHNIC1 term is new with this respecification. Its coefficient tells
us that as the percentage of a school’s students who are Black increases, individual
Black students, on average, experience an increased disadvantage in reading achieve-
ment.

Our stated objective in this instance was to identify level-one predictors that would
make a substantial contribution to explaining the residual variance, variability in the de-
pendent variable occurring within schools. Comparing Tables 5.11 and 5.14 indicates
that we have made some progress, with Residual being reduced from 325.156 to
316.426. Nevertheless, consistent with the still small R1

2 summary statistic, our multi-
level regression model is not particularly effective in this regard.
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TABLE 5.13. Kentucky Reading Achievement and Gender: Fixed Component Estimates
for a Multilevel Model; ETHNIC1 as an Additional Level-One Predictor

Y = 48.868 + 8.033GENDER1 – 8.033ETHNIC1 + 16.533XGENDER2 – 5.465XETHNIC2 – 0.183XPOOR2

(0.258) (0.263) (0.501) (4.768) (1.458) (0.012)

+ 3.782XGENDER2 * GENDER1 – 16.061 XETHNIC2 * ETHNIC1 + 9.087XGENDER2 * ETHNIC1
(0.511) (2.848) (10.796)

+ 0.382XPOOR2 * GENDER1
(0.112)

R1
2 = 9.4%

N1 = 49,616

N2 = 347

TABLE 5.14. Kentucky Reading Achievement and Gender:
Estimates of Covariance Parameters; ETHNIC1 as an Additional Level-One Predictor

Parameter Estimate Std. error Wald Z Sig. level

Residual 316.426 2.082 151.979 .000

INTERCEPT1 7.981 0.935 8.540 .000

INTERCEPT1 by GENDER1 –1.042 0.663 –1.571 .116

GENDER1 2.273 0.836 3.268 .001

INTERCEPT1 by ETHNIC1 –1.959 1.349 –1.452 .146

GENDER1 by ETHNIC1 –0.676 1.424 –0.475 .635

ETHNIC1 17.127 3.949 4.342 .000



5.8 A MULTILEVEL MODEL WITH A RANDOM SLOPE
AND FIXED SLOPES AT LEVEL ONE

Decisions as to which independent variables have random slopes and which have fixed
slopes are best made through reference to substantive and theoretical knowledge, when
this is available. As a result, the same multilevel regression equation commonly contains,
at the same level, coefficients that are permitted to vary across higher-level groups along
with coefficients that are not permitted to vary (Hausman, 1978).

For example, we have seen that data on individuals and the urban–rural character
of the areas in which they live are available in the Child Development Supplement of the
Panel Study of Income Dynamics data set (Institute for Social Research, 2003). In Tables
5.15 through 5.17 below, we have specified a multilevel regression model in which the
natural logarithm of family income in units of $1000 is the dependent variable. The
individual-level independent variables are family head’s race (coded 1 if Black and 0 oth-
erwise), family head’s educational level in years, and a value on the urban–rural contin-
uum variable.

We have, moreover, assigned the coefficients for race and educational level fixed
slopes, while the intercept and the urban–rural slope at the individual level are permit-
ted to vary across states. The random urban–rural slope reflects our suspicion that the
relationship between family income and area of residence may vary with the urban–rural
context provided by the state.

The level-one model is defined in Table 5.15, and the level-two model with its ran-
dom intercept and random slope are defined in Table 5.16. After substituting terms and
adding the individual-level variables to which we have assigned fixed slopes, we have
the full equation as reported in Table 5.17. Concretely, the multilevel regression equa-
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TABLE 5.15. Level-One Model
for an Earnings Function

YINCOME= β0J + β1JURBANRURAL1 + eIJ

TABLE 5.16. Level-Two Model
for an Earnings Function

β0J = γ00 + γ01XURBANRURAL2 + u0J

β1J = γ10 + γ11XURBANRURAL2 + u1J

TABLE 5.17. Multilevel Model for an Earnings Function

Y = γ00 + γ01XURBANRURAL2 + γ10URBANRURAL1 + γ11X URBANRURAL2 * URBANRURAL1 + γ20XBLACK1

+ γ30XEDUCATE1 + (u0J + u1J * URBANRURAL1 + eIJ)



tion with a random intercept, one random slope, and two fixed slopes appears in Table
5.18. Estimates of the random component variances and covariances are reported in
Table 5.19 below.

In Table 5.18, we see that all regression coefficients are statistically significant. We
learn that even when we control for XBLACK1 and XEDUCATE1, as places of individual family
residence become more rural, substantial income disadvantages are, on average, in-
curred. In addition, as states become more rural, additional family income disadvantages
are, on average, incurred. The XURBANRURAL2 * URBANRURAL1 cross-level interaction
term, however, indicates that the individual-level family income losses associated with
living in more rural areas are diminished as states become more rural.

In addition, the coefficients for individual-level variables with fixed slopes, XBLACK1

and XEDUCATE1, show us that annual income for families headed by someone who is Black
are, on average, 49.1% lower than for other families, and each additional year of educa-
tion completed by the family head yields, on average, a 14.4% increase in annual
income.

Since the urban–rural variable plays a conspicuous role in this set of examples, we
have included Figures 5.1 and 5.2 (Beale, 2004; Howe, 2005).
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TABLE 5.18. Multilevel Regression Earnings Function; Fixed Component Estimates

Y = 4.086 – 0.079XURBANRURAL2 + 0.018XURBANRURAL2 * URBANRURAL1 – 0.059URBANRURAL1
(0.045) (0.028) (0.009) (0.014)

– 0.491XBLACK 1 + 0.144XEDUCATE1

(0.075) (0.008)

R1
2 = 23.1%

N1 = 1541

N2 = 50

FIGURE 5.1. Family income by
urban–rural continuum; no con-
trols.

FIGURE 5.2. Family income by
urban–rural continuum; controls in
place as in Table 5.18.



In this application of multilevel regression, Table 5.19 makes clear that the random
components for INTERCEPT1 and URBANRURAL1 are statistically significant. (Again,
since variances cannot be negative, we are using one-tailed tests.) However, the
INTERCEPT1-by-URBANRURAL1 covariance is not statistically significant, meaning
that the two random components do not vary together.

5.9 COMPLEXITY AND CONFUSION:
TOO MANY RANDOM COMPONENTS

One of the limitations of some instructional accounts of multilevel regression models is
that they do not go beyond very simple examples. The typical thinness of the theoretical
and substantive literature available to guide model specification decisions is, no doubt,
one reason why multilevel regression models do not become more complex than they
usually are (see, e.g., Klein & Kozlowski, 2000; Stemler, Sternberg, Grigorenko, Jarvin,
& Macomber, 2003; Hofmann, 2005). Just as when we are working with OLS multiple
regression analysis, complex exercises in arid empiricism involving unguided selection
of too many explanatory variables may generate confusion.

The complexity of multilevel models is something we have referred to previously,
but it is easier to appreciate now that we are writing out equations for the level-one,
level-two, and full models. In truth, we have already completed some rather complex
multilevel regression analyses, such as the Kentucky reading achievement example
reported in Tables 5.13 and 5.14, using a random intercept and two random slopes. We
may explicitly examine consequences of using more than one random slope, perhaps
generating undue complexity, by using the model presented in Tables 5.15 through 5.19
as a point of departure.

Table 5.20 presents the level-one, level-two, and full models for a rather com-
plex multilevel regression analysis in which the fixed coefficients assigned to XBLACK1

(now BLACK1) and XEDUCATE1 (now EDUCATE1) have been made random. Since
URBANRURAL1 was already assigned a random slope in Table 5.15, we now have a
model with a random intercept and three random slopes.

You may recall that we illustrated a random coefficient regression model with three
random slopes when we estimated an earnings function with a different data set in
Tables 4.18 through 4.21. Now that we are explicitly specifying multilevel regression
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TABLE 5.19. Multilevel Regression Earnings Function; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.421 0.019 22.189 .000

INTERCEPT1 0.069 0.022 3.157 .002

INTERCEPT1 by URBANRURAL1 –0.009 0.006 –1.474 .141

URBANRURAL1 0.006 0.003 2.033 .042



models, however, incorporating additional random coefficients becomes a more complex
task. What level-two contextual variables, for example, should be used in an effort to
account for variability in the random components?

In the simpler model that we are using as a point of departure, we used one contex-
tual variable, XURBANRURAL2, to account for variability in the random intercept and the ran-
dom slope for URBANRURAL1. We made clear, however, that we had other choices.
With more random components we are faced with even more decisions, making specifi-
cation of our multilevel regression model complex indeed.

Suppose we decide in this example that variability in the intercept and all three ran-
dom slopes is in fact a function of XURBANRURAL2. This produces the multilevel regression
model specified in Table 5.20. The top portion of Table 5.21 makes concrete the earnings
function specified in Table 5.20. To facilitate comparison, the bottom portion contains
results from the similar but less complex earnings function estimated in Table 5.18. Esti-
mates of the random component variances and covariances are reported in Table 5.22.

Substantively, it is not at all clear that anything has been gained by making the
model more complex. Since the models are nested, we may use the –2 log likelihood-
based deviance statistic introduced in Chapter 3 to compare models with regard to good-
ness of fit, as we have done in Table 5.23.

Nine parameters (6 fixed components, 2 random components, and 1 covariance)
were used in estimating the simple model in Table 5.18, while 19 parameters (8 fixed
components, 4 random components, and 7 covariances) were used in estimating the
more complex model in Table 5.21. With degrees of freedom equal to the difference in
the number of parameters used in estimating the two models (in this case, 10), the criti-
cal value of χ2 with alpha set at .05 is 18.307. The result of the deviance test tells us that
the more complex model, whatever its interpretative merit, provides a better fit to the
data:
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TABLE 5.20. Augmented Multilevel Earnings Function

Level-one model

YINCOME = β0J + β1JURBANRURAL1 + β2JBLACK1+ β3JEDUCATE1 + eIJ

Level-two model

β0J = γ00 + γ01XURBANRURAL2 + u0J

β1J = γ10 + γ11XURBANRURAL2 + u1J

β2J = γ20 + γ21XURBANRURAL2 + u2J

β3J = γ30 + γ31XURBANRURAL2 + u3J

Multilevel model

Y = γ00 + γ01XURBANRURAL2 + γ10URBANRURAL1 + γ20BLACK1 + γ30EDUCATE1

+ γ11XURBANRURAL2 * URBANRURAL1 + γ21XURBANRURAL2 * BLACK1 + γ31XURBANRURAL2

* EDUCATE1 + (u0J + u1J * URBANRURAL1 + u2J * BLACK1 + u3J * EDUCATE1 + eIJ)
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TABLE 5.21. Comparing Multilevel Earnings Functions: Augmented Multilevel
Regression Earnings Function; Fixed Component Estimates

Y = 4.133 – 0.058XURBANRURAL2 + 0.010XURBANRURAL2 * URBANRURAL1
(0.050) (0.031) (0.011)

– 0.054URBANRURAL1 + 0.137EDUCATE1 – 0.294BLACK1
(0.018) (0.017) (0.172)

– 0.016XURBANRURAL2 * EDUCATE1 + 0.059XURBANRURAL2 * BLACK1
(0.010) (0.107)

R1
2 = 22.0%

N1 = 1541

N2 = 50

TABLE 5.18, Reproduced. Multilevel Regression Earnings Function;
Fixed Component Estimates

Y = 4.086 – 0.079XURBANRURAL2 + 0.018XURBANRURAL2 * URBANRURAL1
(0.045) (0.028) (0.009)

– 0.059URBANRURAL1 + 0.491XBLACK1 – 0.144XEDUCATE1

(0.014) (0.0075) (0.008)

R1
2 = 23.7%

N1 = 1541

N2 = 50

TABLE 5.22. Augmented Earnings Function; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.386 0.018 21.689 .000

INTERCEPT1 0.072 0.023 3.161 .002

INTERCEPT1 by URBANRURAL1 –0.010 0.006 –1.566 .117

URBANRURAL1 0.006 0.003 2.271 .023

INTERCEPT1 by EDUCATE1 –0.009 0.005 –1.689 .091

URBANRURAL1 by EDUCATE1 0.003 0.002 1.630 .103

EDUCATE1 0.006 0.002 2.448 .014

INTERCEPT by BLACK1 0.168 0.104 0.162 .871

URBANRURAL1 by BLACK1 0.036 0.019 1.848 .065

EDUCATE1 by BLACK1 0.004 0.021 0.165 .869

BLACK1 0.372 0.302 1.231 .218



Deviance difference = 2235.6 – 2192.4 = 43.2

df = 19 – 9 = 10

As we have seen in previous examples, however, when we refer to the information crite-
ria (again estimated with ML), which punish analysts for using additional degrees of
freedom, results are mixed. Two of the four smaller-is-better criteria are consistent with
the deviance tests, and two are not.

At this point it may be best to invoke the distinction between results of goodness-of-
fit measures and judgments about the practical meaning of the two sets of results. If we
examine Table 5.21, we see that the two models discern similar relationships between
annual family income and urban–rural residence and between annual family income and
level of educational attainment. As place of residence at the individual level becomes
more rural, annual family income, on average, decreases. As family heads become better
educated, annual family income, on average, increases.

There are no other statistically significant coefficients in the more complex equa-
tion, but the simpler equation has statistically significant coefficients for the level-one
variable XBLACK1, the contextual variable XURBANRURAL2, and the cross-level interaction term
XURBANRURAL2 * URBANRURAL1. Analysts accustomed to working with OLS regression
might immediately suspect that differences between the two models may be due, at least
in part, to multicollinearity.

However, variance inflation factors for the simpler model range from 1.039 to
1.209, and for the more complex model from 1.042 to 1.306. Condition indices for the
two models are almost exactly the same, 1.637 and 1.803. Difference in degree of
collinearity among independent variables seems clearly not to be a source of statistical
and substantive differences between the simpler and more complex models.

Differences between the two models with regard to the statistical significance of
household head’s race may very well be due to the fact that this variable has a fixed coef-
ficient in the simpler model, but a random coefficient in the more complex model. Recall
that the sample size corresponding to a random coefficient for a level-one independent
variable is equal to the number of second-level groups, not the number of level-one
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TABLE 5.23. Information Criteria Summary for Tables 5.18 and 5.21

Earnings functions

Criterion Simple Complex

–2 log likelihood 2235.6 2192.4
Akaike’s Information Criterion 2241.6 2212.4
Hurvich and Tsai’s Criterion 2241.6 2214.6
Bozdogan’s Criterion 2259.5 2280.0

Schwarz’s Bayesian Criterion 2256.5 2269.0

Note. The smaller value for each measure is boldfaced and italicized.



cases. As a result, the sample size corresponding to the fixed coefficient for XBLACK1 is
1541, while the sample size corresponding to the random coefficient BLACK1 is 50. This
makes for a substantial difference in statistical power.

Rather than continue with this makeshift analysis of possible reasons as to why the
two models yield different results, a better response may be simply to acknowledge that by
adding random coefficients and cross-level interaction terms in the absence of good reason
to do so, we made the model more complex but less informative. We would have been better
served by sticking with the simpler model, or we should learn a lot more about the social
processes involved in income determination (Arrow, Bowles, & Durlauf, 2000).

As we noted above, the same sort of confusion often follows if we make an OLS
multiple regression model more complex than our knowledge warrants. With multilevel
regression, however, there are many more ways of making this same mistake.

5.10 INTERPRETING MULTILEVEL REGRESSION EQUATIONS

It is clear from our efforts to compare differently specified earnings functions that we
need a more systematic way of interpreting the results of multilevel regression analysis.
We will begin with the data set containing information on nearly 50,000 Kentucky
eighth graders. We have specified a variety of random coefficient regression and multi-
level regression models building on the simple random coefficient model first presented
in Table 4.14. We can augment this model in a variety of straightforward ways.

Ethnicity is rarely missing from analyses aimed at accounting for achievement dif-
ferences among students. For this example, we have coded ethnicity 1 for Blacks and 0
for Whites. The dichotomous simplicity of the ethnicity variable reflects the descrip-
tively uncomplicated nature of ethnic diversity in the Appalachian United States (Bickel
& Howley, 2003). Due to limitations of the Kentucky data set, gender and ethnicity are
the only student-level variables available.

Referring to the growing literature on school size, we decide to treat gender
(GENDER1) and ethnicity (ETHNIC1) at the student level as predictors with random
coefficients, and we also make the intercept random (see, e.g., Bickel, McDonough, &
Williams, 1999; Bickel & Dufrene, 2001). We treat the two random slopes and the ran-
dom intercept as functions of four school-level contextual variables: gender (XGENDER2)
and ethnicity (XETHNIC2) aggregated to the school level; the percentage of students who
are eligible for free/reduced cost lunch (XPOOR2); and school size expressed in 100-stu-
dent units (XSIZE2).

Figures 5.3 and 5.4 illustrate the distributions of the individual-level and school-
level ethnicity variables with respect to reading achievement. Since ethnicity is a dichot-
omy that is then aggregated to the school level, Figures 5.3 and 5.4 for ethnicity are simi-
lar to Figures 4.1 and 4.2 for gender. In both cases, we are reminded that we have very
different variables involved in very different relationships at the individual level and
school level. Configurations such as this, defining differences between explanatory vari-

Developing the Multilevel Regression Model 167



ables at different levels of analysis, contribute to making multilevel regression interest-
ing and useful.

With eighth-grade reading achievement as the dependent variable, our multilevel
regression model is specified in Table 5.24. If we had lingering doubts about the impor-
tance of cautionary comments concerning the value of planned parsimony in multilevel
regression models, Table 5.24 is sure to dispel them. Three random components and
four contextual variables imply eight cross-level interaction terms. What may have
seemed like a fairly simple model becomes quite complex.
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FIGURE 5.3. Reading achievement by
student ethnicity.

FIGURE 5.4. Reading achievement by
ethnicity aggregated to school level.

TABLE 5.24. Reading Achievement: An Interpretable Multilevel Regression Model

Level-one model

Y = β0J + β1JGENDER1 + β2JETHNIC1 + (u0J + u1J * GENDER1 + u2J * ETHNIC1 + eIJ)

Level-two model

β0J = γ00 + γ01XGENDER2 + γ02XETHNIC2 + γ03XPOOR2 + γ04XSIZE2 + u0J

β1J = γ10 + γ11XGENDER2 + γ12XETHNIC2 + γ13XPOOR2 + γ14XSIZE2 + u1J

β2J = γ20 + γ21XGENDER2 + γ22XETHNIC2 + γ23XPOOR2 + γ24XSIZE2 + u2J

Multilevel (full) model

Y = γ00 + γ01XGENDER2 + γ02XETHNIC2 + γ03XPOOR2 + γ04XSIZE2 + u0J + (γ10 + γ11XGENDER2

+ γ12XETHNIC2 + γ13XPOOR2 + γ14XSIZE2 + u1J) * GENDER1 + (γ20 + γ21XGENDER2 + γ22XETHNIC2

+ γ23XPOOR2 + γ24XSIZE2 + u2J) * ETHNIC1

Y = γ00 + γ01XGENDER2 + γ02XETHNIC2 + γ03XPOOR2 + γ04XSIZE2 + γ10GENDER1 + γ11XGENDER2

* GENDER1 + γ12XETHNIC2 * GENDER1 + γ13XPOOR2 * GENDER1 + γ14XSIZE2 * GENDER1

+ γ20ETHNIC1 + γ21XGENDER2 * ETHNIC1 + γ22XETHNIC2 * ETHNIC1 + γ23XPOOR2 * ETHNIC1

+ γ24XSIZE2ETHNIC1 + (u0J + u1J * GENDER1 + u2J * ETHNIC1 + eIJ)



For all three random coefficients, other specifications are entirely possible, depend-
ing on substantive and theoretical knowledge and data limitations. Clearly, however, this
is another illustration that depends more on commonsense, conventional wisdom, and
instructional objectives than on insights derived from careful consideration of well-
developed theory.

When we estimate coefficients and standard errors for the model in Table 5.24, we
get the results reported in Table 5.25. Random component variances and covariances are
reported in Table 5.26. Interpreting this complex set of results is straightforward.
Referring to the fixed component estimates in Table 5.25, we see the following:

1. Each 1% increase in a school’s students who are female (XGENDER2) corresponds,
on average, to a 16.745-point increase in measured reading achievement.

2. Each 1% increase in a school’s students who are Black (XRACE2) corresponds, on
average, to a 4.093-point decrease in measured reading achievement.

3. Each 1% increase in a school’s students who are eligible for free/reduced cost
lunch (XPOOR2) corresponds, on average, to a 0.194-point decrease in measured
reading achievement.
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TABLE 5.25. Multilevel Reading Achievement Function; Fixed Component Estimates

Y = 49.249 + 16.745XGENDER2 – 4.093XETHNIC2 – 0.194 XPOOR2 – 0.737 XSIZE2 + 8.207GENDER1
(0.314) (4.776) (1.489) (0.012) (0.353) (0.371)

– 4.647ETHNIC1 + 3.808XGENDER2 * GENDER1 + 13.688XGENDER2 * ETHNIC1
(0.872) (4.887) (10.656)

– 17.526XETHNIC2 * ETHNIC1 – 6.239 XETHNIC2 * GENDER1 – 0.388XSIZE2 * GENDER1
(2.872) (1.348) (0.393)

– 0.044XSIZE2 * ETHNIC1 + 0.032 XPOOR2 * GENDER1 + 0.097XPOOR2 * ETHNIC1
(0.871) (0.012) (0.032)

R1
2 = 9.7%

N1 = 49,616

N2 = 347

TABLE 5.26. Multilevel Reading Achievement Function;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 316.419 2.082 151.993 .000

INTERCEPT1 7.911 0.922 8.583 .000

INTERCEPT1 by GENDER1 –0.852 0.586 –1.455 .146

GENDER1 1.866 0.733 2.5465 .011

INTERCEPT1 by ETHNIC1 –1.458 1.295 –1.126 .260

GENDER1 by ETHNIC1 –0.456 1.186 –0.385 .701

ETHNIC1 14.560 3.707 3.938 .000



4. Each 100-student increase in school size (XSIZE2) corresponds, on average, to a
0.737-point decrease in measured reading achievement.

5. Female students (GENDER1), on average, score 8.207-points higher than
males.

6. Black students (ETHNIC1), on average, score 4.647 points lower than White
students.

7. Each 1% increase in a school’s students who are Black (XETHNIC2) increases the
measured reading achievement disadvantage for individual Black students, on
average, by 17.526 points.

8. Each 1% increase in a school’s students who are Black (XETHNIC2) decreases the
measured reading achievement advantage for individual female students, on
average, by 6.239 points.

9. Each 1% increase in a school’s students who are eligible for free/reduced cost
lunch (XPOOR2) increases the measured reading achievement advantage for indi-
vidual female students by 0.032 points.

10. Each 1% increase in a school’s students who are eligible for free/reduced cost
lunch (XPOOR2) decreases measured reading achievement disadvantage for indi-
vidual Black students by 0.097 points.

These are exactly the kinds of interpretations we are accustomed to making with the
unstandardized coefficients of a multiple regression equation estimated with OLS. In the
present instance, however, we are interpreting the fixed components of regression coeffi-
cients in a multilevel regression model.

We have also explained, however, that random coefficients merit a bit more atten-
tion, because they do in fact take different values across categories of the level-two
grouping variable. As we have already seen, this can yield unsettlingly broad ranges for
coefficient estimates. With 347 schools in the Kentucky data set, we see the meaning
of random coefficient variability for the estimated intercept and for the slopes for
GENDER1 and ETHNIC1.

With normally distributed random components and a large sample, the intervals
constructed in Table 5.27 contain 95% of the intercepts and 95% of the GENDER1 and
ETHNIC1 slopes for the 347 schools in the Kentucky data set (Raudenbush & Bryk,
2002). The width of the interval for the random coefficient for ETHNIC1 covers an
unusually broad range, including both positive and negative values. This renders its
interpretation much more ambiguous than we may have thought. Yes, it remains true
that the unstandardized regression coefficients in multilevel regression are interpreted in
the same way as in OLS regression. OLS coefficients, however, are invariably fixed and
cannot exhibit the kind of group-to-group variability we see in Table 5.27.

The negative coefficient for XETHNIC2 * ETHNIC1 indicates that the reading achieve-
ment disadvantage for individual Black students is exacerbated as the percentage of stu-
dents in a school who are Black increases. The negative coefficient for XETHNIC2 *
GENDER1 indicates that the reading achievement advantage for individual female stu-
dents diminishes as the percentage of students in a school who are Black increases. The
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positive coefficient for XPOOR2 * GENDER1 indicates that the reading achievement
advantage for individual female students increases as the percentage of students in a
school who are eligible for free/reduced cost lunch increases. Finally, the positive coeffi-
cient for XPOOR2 * ETHNIC1 indicates that the reading achievement disadvantage for
individual Black students is diminished as the percentage of students in a school who are
eligible for free/reduced cost lunch increases

We have illustrated each of the cross-level interaction terms below in Figures 5.5
through 5.16. In each instance, to facilitate illustration we have divided the school-level
variable into consecutive thirds. The unstandardized slope for each analysis is reported
beneath its figure. Some of the depicted slope differences are dramatically obvious, while
others are barely discernible. Taken together with the slope values included beneath
each figure, however, each makes its point.

Beginning with Figures 5.5 through 5.7, we see that the slope representing the rela-
tionship between reading achievement and ethnicity becomes more negative as the per-
centage of students who are Black increases. The XETHNIC2 * ETHNIC1 interaction term
provides the most visually arresting graphs because of the dramatic change in slope val-
ues from one analysis to another.

Figures 5.8 through 5.10 tell us that the slopes representing the relationship
between reading achievement and gender become less positive as the percentage of stu-
dents who are Black increases.

Figures 5.11 through 5.13 display the slopes representing the changing relationship
between reading achievement and gender, as the slope becomes more positive with
increases in the percentage of students who are eligible for free/reduced cost lunch.

Finally, in Figures 5.14 through 5.16 we see the different slopes representing the
changing relationship between reading achievement and ethnicity, as the slope becomes
less negative with increases in the percentage of students who are eligible for free/
reduced cost lunch.
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TABLE 5.27. Multilevel Reading Achievement Function;
Variability with Respect to Random Coefficients

aINTERCEPT – t.05SaINTERCEPT to aINTERCEPT + t.05SaINTERCEPT

49.249 – 1.960(7.911)1/2 to 49.249 + 1.960(7.911)1/2

46.436 to 52.062

bGENDER1 – t.05SbGENDER1 to bGENDER1 + t.05SbGENDER1

8.207 – 1.960(1.866)1/2 to 8.207 + 1.960(1.866)1/2

6.841 to 10.885

bETHNIC1 – t.05SbETHNIC1 to bETHNIC1 + t.05SbETHNIC1

–4.647 – 1.960(14.560)1/2 to 4.647 + 1.960(14.560)1/2

–11.946 to 2.832
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Beyond all this, the random component variance and covariance estimates reported
in Table 5.26 indicate that when these are compared with simpler specifications such as
those presented in Tables 5.9 through 5.14, we are accounting for more of the variability
in the random intercept and in the random slopes for GENDER1 and ETHNIC1. All ran-
dom component estimates, however, remain statistically significant (p < .000), though
none of the random component covariances is statistically significant.

Without contextual variables and cross-level interaction terms in the equation, two
of the random component covariances (INTERCEPT1 by GENDER1 and GENDER1 by
ETHNIC1) were statistically significant, as we see in Table 5.28. In our full multilevel
model in Table 5.26, however, these have been explained.

5.11 COMPARING INTERPRETATIONS
OF ALTERNATIVE SPECIFICATIONS

As we have acknowledged, there are many other plausible ways of specifying this multi-
level model. Though it may not be manifest in the model in Table 5.24, we have learned
that simplicity is a virtue in specifying multilevel regression models. Let’s take this
knowledge seriously.

Let’s suppose that we decide to simplify the specification in Table 5.24 by assigning
fixed slopes to GENDER1 (now XGENDER1) and ETHNIC1 (now XETHNIC1). Only the inter-
cept (INTERCEPT1) retains a random component, and it has the same predictors as
before: XGENDER2, XETHNIC2, XPOOR2, and XSIZE2. In Table 5.29, we see that the primary con-
sequences of this parsimonious respecification are elimination of the implied cross-level
interaction terms and simplification of the error term.

Once again, a good part of the ease we felt in doing a pretty thorough simplification
of this model stems from the absence of compelling theoretical or substantive reason for
not doing so. Nevertheless, all the level-one and level-two explanatory variables
included in Table 5.24 are still contained in our respecified multilevel regression model.

174 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 5.28. Multilevel Reading Achievement Function; Contextual Factors and Cross-Level
Interaction Terms Not Included; Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z
Sig.
level

Residual 316.459 2.083 151.943 .000

INTERCEPT1 20.923 2.140 9.776 .000

INTERCEPT1 by GENDER1 –2.448 0.968 –2.530 .011

GENDER1 3.051 0.865 3.528 .000

INTERCEPT1 by ETHNIC1 –2.659 2.258 –1.177 .239

GENDER1 by ETHNIC1 2.941 1.501 1.960 .005

ETHNIC1 23.022 4.948 4.653 .000



Assigning fixed slopes rather than random ones (see Table 5.30), however, has elimi-
nated all eight implied cross-level interaction terms, four of which we spent a great deal
of time discussing and illustrating. Since the deleted cross-level interaction terms were
informative, we very well might have retained them, even though they are no longer
implied.

This is one of the few times we have seen a level-one model with just one random
component, for the intercept. This accounts for the odd-looking level-one model, con-
taining only the intercept and error term. Such models are commonplace in applications
of multilevel regression (see, e.g., Goldstein et al., 1999).

In Table 5.31 we have retained the unstructured option for the variance compo-
nents structure. However, with just one random component, the possibility of correlated
random terms has been eliminated: There are no other random components with which
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TABLE 5.29. Reading Achievement: An Interpretable Multilevel Regression Model, Simplified

Level-one model

Y = β 0J + (u0J + eIJ)

Level-two model

β0J = γ00 + γ01XGENDER2 + γ02XETHNIC2 + γ03XPOOR2 + γ04XSIZE2 + u0J

Multilevel model

Y = γ00 + γ01XGENDER1 + γ02XETHNIC1 + γ03XGENDER2 + γ04XETHNIC2 + γ05XPOOR2 + γ06XETHNIC2 + (u0J + eIJ)

TABLE 5.30. Reading Achievement: An Interpretable Multilevel
Regression Model, Simplified; Fixed Component Estimates

Y = 49.249 + 16.694XGENDER2 – 4.068XETHNIC2 – 0.195XPOOR2 – 0.737XSIZE2

(0.311) (4.725) (1.462) (0.012) (0.350)

+ 7.418GENDER1 – 8.942ETHNIC1
(0.166) (0.279)

R1
2 = 9.3%

N1 = 49,616

N2 = 347

TABLE 5.31. Reading Achievement: An Interpretable Multilevel
Regression Model, Simplified; Random Component Estimates

Parameter Estimate Std. error Wald Z Sig. level

Residual 318.946 2.091 152.560 .000

INTERCEPT1 7.672 2.890 8.623 .000



INTERCEPT1 might be correlated. Consequently, the results would be exactly the same
if we had specified variance components as our covariance structure.

For the coefficients and standard errors that are common to Tables 5.25 and 5.31,
there are only two substantial differences. First, the standard errors for GENDER1 and
ETHNIC1 are much larger than the standard errors for XGENDER1 and XETHNIC1. This is to
be expected, since the random slopes for GENDER1 and ETHNIC1 correspond to the
level-two sample size of 347, while the fixed slopes for XGENDER1 and XETHNIC1 correspond
to the level-one sample size of 49,616. Nevertheless, decisions as to statistical signifi-
cance of the level-one gender and ethnicity variables are the same.

Of greater substantive interest, however, is the increase in absolute value, from
–4.647 to –8.942, for the unstandardized slope of the ETHNIC1/XETHNIC1 independent
variable. The sign and import of the coefficient are the same for both analyses: Black stu-
dents, on average, do less well in reading achievement than White students. The magni-
tude of the relative difference between Blacks and Whites, however, is nearly twice as
large when measured with a fixed slope rather than a random one. This is an especially
interesting finding, since we have seen in Table 5.27 that the random coefficient for
ETHNIC1 has a disturbingly broad range, including both positive and negative values. If
its value were –8.942 instead of –4.647, the range would be a good deal narrower in
comparison to the size of the coefficient.

Perhaps the most surprising result of comparing the two equations is the very small
difference in the R1

2. One might expect that deletion of eight cross-level interaction
terms—four of them statistically significant and substantively interesting—would yield a
greater decrease in the percentage reduction in errors of prediction than we have found,
from 9.7% to 9.3%. Recall, however, that the primary function of cross-level interaction
terms is explanation of variances for random components at level two, not explanation
of the residual variance at level one.

At this point, when comparing the multilevel regression models in Tables 5.24 and
5.29, we might lean toward the simpler specification. Too little, it may understandably
seem, has been gained by including the eight cross-level interaction terms. Recall, how-
ever, that when the additional contextual variables and cross-level interaction terms
were not included, two of the random component covariances (INTERCEPT1 by
GENDER1 and GENDER1 by ETHNIC1), were statistically significant. These same
covariances had been accounted for when the contextual variables and cross-level inter-
action  terms  were  in  the  equation.  In  addition,  the  random  component  variances,
though still statistically significant, were a good deal smaller.

Of even greater substantive interest, we learned a great deal by including the cross-
level interaction terms implied by our specification of random coefficients and contex-
tual variables in Table 5.24, as we illustrated in Figures 5.5 through 5.16. Furthermore,
the statistically significant slopes for cross-level interaction terms cannot be dismissed as
substantively inconsequential artifacts of a large sample size. This is because creation of
cross-level interaction terms makes the number of degrees of freedom used in testing a
slope for statistical significance a function of sample size at level two—in this case, the
347 schools (SPSS, 2003).
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Finally, adopting the more complex model specified in Table 5.24 is consistent with
the deviance difference and information criteria values reported in Table 5.32. In this
case, moreover, all information criteria are consistent with the deviance difference. Each
of the smaller-is-better measures indicates that the more complex model provides the
better fit. The model presented in Table 5.24 and the interpretation we have given it
based on the results in Tables 5.25 and 5.26 hold for now.

Deviance difference = 402730.5 – 402510.7 = 219.8

df = 22 – 9 = 13

5.12 WHAT HAPPENED TO THE ERROR TERM?

As we have seen in numerous examples, when more random components are added to a
multilevel model, the error term becomes more visually conspicuous. However, when we
report our concrete estimates of the intercept and slopes in a multilevel regression equa-
tion, the error term disappears. We get estimates of random component variances and
covariances, but that is all.

At first glance, this may be confusing. However, as with the less complex error term
in OLS regression, none of the components of the error term is itself an intercept and
none has a slope. In other words, it has no fixed components. As a result, there is noth-
ing to report in the estimated final equation. So the error term exists explicitly as a com-
ponent of a multilevel regression model, but, just as with OLS regression, we do not
expect to see it as an estimated parameter in an empirically derived equation. It is of
importance in evaluating the equation, however, as we have seen.

Understanding the composition of the error term is essential to understanding
model specification. This is because each time we introduce an additional random term,
we are specifying an additional random component of between-group variability. Each
time we use the multilevel framework to introduce an additional random component,
we do so with error. This additional error adds to the complexity of the error term.

By way of illustration, we compare two analyses of math achievement data from 12
randomly selected elementary schools in two contiguous counties in western West Vir-
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TABLE 5.32. Information Criteria for Tables 5.24 and 5.30

Criterion Simple model Complex model

–2 log likelihood 402730.5 402510.7
Akaike’s Information Criterion 402748.5 402552.7
Hurvich and Tsai’s Criterion 402748.5 402552.7
Bozdogan’s Criterion 402836.3 402757.5
Schwarz’s Bayesian Criterion 402827.3 402736.5

Note. The smaller value for each measure is boldfaced and italicized.



ginia (Bickel & Howley, 2003). Three hundred thirty-one students were tested for their
understanding of basic math concepts at the end of kindergarten. The data were ana-
lyzed using two different specifications of a multilevel regression model.

The first multilevel specification, presented in Table 5.33, uses math achievement at
the end of kindergarten as measured by the Woodcock–Johnson 25 test of problem-solving
skills as the dependent variable (Woodcock & Johnson, 1990). The only level-one inde-
pendent variable is math achievement at the beginning of kindergarten, as measured by the
same test. The intercept and the slope are permitted to vary from school to school. Variabil-
ity in each random component is treated as a function of the aggregated school-level vari-
able XHEAD2, the proportion of students in each school who attended Head Start.

The second specification, presented in Table 5.34, uses the same math achievement
dependent variable along with the same level-one independent variable and the same
level-two contextual variable. However, only the intercept is treated as random, varying
from school to school as a function of XHEAD2. The individual-level slope remains fixed.
With no random slopes, we have no cross-level interaction terms. The alternative multi-
level regression models in Tables 5.33 and 5.34 illustrate the way in which the makeup
of the error term varies with the number of random components.
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TABLE 5.33. West Virginia Math Achievement with Random Intercept and One Random Slope

Level-one model

Y = β0J + β1JPRETEST1 + eIJ

Level-two model

β0J = γ00 + γ01XHEAD2 + U0J

β1J = γ10 + γ11XHEAD2 + u1J

Multilevel model

Y = γ00 + γ01XHEAD2 + U0J + (γ10 + γ11XHEAD2 + u1J) * PRETEST1

Y = γ00 + γ01XHEAD2 + γ10PRETEST1 + γ11XHEAD2 * PRETEST1 + (u0J + u1J * HEAD1 + eIJ)

TABLE 5.34. West Virginia Math Achievement with Random Intercept

Level-one model

Y = β0J + β10XPRETEST1 + eIJ

Level-two model

β0J = γ00 + γ01XHEAD2 + u0J

Multilevel model

Y = γ00 + γ01XHEAD2 + γ10XPRETEST1 + (u0J + eIJ)



Suppose that we estimate the equation in Table 5.34 and get the concrete results
reported in Tables 5.35 and 5.36. The only coefficient with a random component is the
intercept. Its variance, however, is statistically nonsignificant whether or not the contex-
tual variable is included in the equation.

As a result, we may decide to respecify again, formulating a model that has no ran-
dom coefficients. Since there is no random component variability to explain, we also
delete the contextual variable, XHEAD2—though, again, we could have retained the con-
textual variable on substantive or theoretical grounds.

What would the resulting model look like? What would its error term look like? As
we see in Table 5.37, we now have a conventional, inherently single-level OLS regression
model. The error term is represented by level-one residuals. There are no other levels, so
there are no higher-level residuals.

One of the lessons of this chapter, and of the entire book, is that theoretically thin
disciplines fraught with conflict over proper interpretation of substantive findings may
give multilevel regression analysts fits. Perhaps we have seen this clearly because we
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TABLE 5.35. West Virginia Math Achievement:
Fixed Component Estimates

Y = 17.981 + 0.582XPRETEST1 – 2.120XHEAD2

(0.435) (0.040) (2.076)

R1
2 = 42.4%

N1 = 331

N2 = 12

TABLE 5.36. West Virginia Math Achievement: Estimates of
Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Contextual variable included

Residual 8.906 0.709 12.564 .000

INTERCEPT1 1.736 1.062 1.635 .122

Contextual variable not included

Residual 8.926 0.711 12.542 .000

INTERCEPT1 2.082 1.268 1.641 .101

TABLE 5.37. West Virginia Math Achievement
with No Random Components

YIJ = a + b1XPRETEST1 + (eIJ)



have made so many of our examples unduly complex, and have done so in an aridly
empirical, even guesswork sort of way.

5.13 SUMMING UP

Throughout this presentation, we have made frequent use of the idea that multilevel
modeling is but one of many correctives that constitute the voluminous literature on
regression analysis. We can see this quite clearly if we think in terms of a hierarchy of
procedures. We can begin with conventional OLS multiple regression analysis. This is a
powerful statistical tool with one overriding virtue: Each independent variable serves as
a control for all other independent variables.

Since so many questions of interest to researchers do not lend themselves to investi-
gation through use of an experimental design, random assignment is not available to
deal with confounding. With multiple regression, however, statistical control enables us
to address confounding without random assignment. Our level of success is limited only
by the quality of our data and by the substantive and theoretical knowledge available for
regression model specification.

Regression analysis, however, brings with it a set of well-known assumptions—
constraints that must be satisfied if multiple regression analysis is to work as advertised.
One assumption too often overlooked is that of nonvarying coefficients. Nevertheless, if
we are working with nested data, introducing within-group homogeneity, it is likely that
intercepts and slopes will vary from group to group. In addition, standard errors will be
deflated, and relationships among variables will be treated as if they are the same for all
times and all places, when in fact they span a measurable, sometimes surprisingly sub-
stantial range of values.

Given this set of circumstances, random coefficient regression provides an obvious
remedy. With alternative estimators that permit intercepts and slopes to vary from one
group to another, we have a corrective for violation of the assumption of fixed coeffi-
cients.

Since random coefficient regression permits intercepts and slopes to vary, it is useful
that it tells us how much they vary. By construing coefficients as having two compo-
nents, fixed and random, we are provided with the tools to construct intervals that cover
the context-to-context range of an intercept or slope. In addition, we may permit ran-
dom components to vary together and measure their covariance.

While random coefficient regression is a useful corrective, it leaves random com-
ponent variances and covariances unexplained. If we take another conceptual step and
introduce contextual factors, however, we may find explanations for variability in
random components and for covariances among random components. Contextual fac-
tors, moreover, may serve as moderator variables, explaining why associations among
level-one variables sometimes vary from level to level of one or more group-level pre-
dictors.
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Violation of the nonvarying coefficient assumption of OLS regression creates a need
for random coefficient regression. Making best use of the additional information pro-
vided by random coefficient regression makes multilevel regression a valuable tool. The
structured relationships among these closely related statistical procedures now seem
almost obvious and certainly purposeful.

5.14 USEFUL RESOURCES

In spite of the difficulties presented by existing sources, those of us who would teach ourselves
have to learn multilevel modeling somewhere. I encountered the texts below in the order in which
they are listed. I doubt that a different ordering would have made learning this material any more
or less frustrating.

Raudenbush, S., & Bryk, A. (2002) Hierarchical Linear Models (2nd ed.). Thousand Oaks, CA:
Sage.

Snijders, T., & Bosker, R. (1999) Multilevel Analysis. Thousand Oaks, CA: Sage.
Kreft, I., & De Leeuw, J. (1998) Introducing Multilevel Modeling. Thousand Oaks, CA: Sage.
Heck, R., & Thomas, S. (2000) An Introduction to Multilevel Modeling Techniques. Mahwah, NJ:

Erlbaum.
Hox, J. (2002) Multilevel Analysis: Techniques and Applications. Mahwah, NJ: Erlbaum.
Singer, J., & Willett, J. (2003) Applied Longitudinal Data Analysis. New York: Oxford University

Press.
Longford, N. (1993) Random Coefficient Models. New York: Oxford University Press.
Goldstein, H. (1999) Multilevel Statistical Models (3rd ed.). London: Arnold.

The second edition of Raudenbush and Bryk’s Hierarchical Linear Models is the best-known,
most frequently cited text for multilevel analysis and growth modeling. In good part, this is due to
the fact that the first edition (Bryk & Raudenbush, 1992) was the first text of its kind, and intro-
duced specialized software, HLM, that the authors had developed for multilevel analysis.

The text is mathematically rigorous and is best suited for use by mathematically accom-
plished readers. Parallels between multilevel analysis and widely known statistical procedures
such as multiple regression are deemphasized through presentation in a very condensed form.
Applications are limited to use of HLM software. For most readers, this book is very difficult to
use as a self-instructional tool; such difficulties are exacerbated for those lacking access to HLM
software.

Snijder and Bosker’s Multilevel Analysis: An Introduction to Basic and Advanced Multilevel
Modeling is mathematically demanding but a bit more readable than Raudenbush and Bryk’s text.
Especially useful for beginners, however, would be a directory identifying essential material.
Snijder and Bosker’s text, too, fails to capitalize on parallels between multilevel analysis and
better-known, more commonly used techniques. Snijder and Bosker’s book covers a broad range
of pertinent topics, and it is an excellent reference for readers already familiar with multilevel
modeling. Again, however, for most readers it has limited value as a self-instructional text.

Kreft and De Leeuw’s Introducing Multilevel Modeling was written to place only limited math-
ematical demands on readers. It includes an interesting and readable account of slopes as out-
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comes. However, in common with the other texts, it fails to accessibly develop parallels between
multilevel modeling and more widely understood procedures. Instead, the authors’ intent seems
to be to highlight differences, perhaps to make the distinctiveness, virtues, and limitations of mul-
tilevel modeling clear to the reader.

Simple examples are presented for use with specialized MLn software. Models with more
than two levels are not discussed. Growth models are mentioned in passing. This is a brief text
that addresses some issues of importance in a Frequently Asked Questions section at the end of
the book. It is not a comprehensive reference, but reads well the second time through. In addition,
Kreft and De Leeuw give a good deal of attention to centering, something glossed over in most
other texts.

Heck and Thomas’s text, An Introduction to Multilevel Modeling Techniques, devotes most of its
209 pages to structural equation modeling and, earlier on, to an unusually elegant discussion of
multiple regression analysis. The discussion of regression, however, is not closely tied to the com-
paratively brief treatment of multilevel analysis. While the joining of multilevel modeling, factor
analysis, and structural equation modeling are discussed, the development of multilevel modeling
itself gets less attention than one might expect from the title of the book.

Hox’s Multilevel Modeling: Techniques and Applications covers an unusually broad range of
topics, some of them fairly far removed from usual applications of multilevel analysis. Breadth of
coverage, however, may have limited the amount of attention given to introducing readers to mul-
tilevel modeling as an extension of regression under specific circumstances. Hox’s useful text is a
bit more readable than most, but it does not develop parallels with well known techniques such as
regression. It is, however, the first introductory text to acknowledge (though with just one sen-
tence) that SPSS software now permits estimation and testing of multilevel models.

Singer and Willett’s Applied Longitudinal Data Analysis is a recently published, oft-cited, well-
written addition to the growing number of texts dealing with multilevel growth models. While
this book has many virtues, including a useful website with instructive references to SAS, Stata,
HLM, MLn, and SPSS, it was not written primarily as an introduction to multilevel analysis, with
or without growth modeling. Instead, the emphasis throughout is on use of the multilevel frame-
work in the study of change, and on survival analysis.

Other well-known texts include Nicholas Longford’s Random Coefficient Models and Harvey
Goldstein’s Multilevel Statistical Models. Longford’s development of concrete examples is better
than that of other authors, and Goldstein’s book, now in its third edition, is sometimes a useful
reference. Both, however, make substantial mathematical demands on the reader, and to my
knowledge neither is commonly used as an introductory text.
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Giving OLS Regression Its Due

6.1 CHAPTER INTRODUCTION

Without question, random coefficient regression analysis and multilevel regression anal-
ysis have an important place in a broad range of disciplines. It can be disheartening, nev-
ertheless, to have familiar statistical procedures such as OLS regression found wanting—
sometimes dismissed as methodologically deficient, conceptually naïve, and simply old-
fashioned. Furthermore, there is nothing new about methodological faddishness in the
social and behavioral sciences (Coser, 1975). Of course, ongoing methodological ad-
vances are an integral part of the process of improving the quality of social and behavior-
al scientific work; even legitimate gains, however, can engender a sense of obsolescence
among experienced researchers.

Put yourself in the 1960s and imagine being a veteran academician with a scholarly
interest in occupational stratification and status attainment. In the middle of your career,
Blau and Duncan (1967) publish The American Occupational Structure, a methodologically
state-of-the-art, immediately influential account of social mobility in the United States.
Among the monograph’s strengths is application of manifest variable path analysis, a causal
modeling tool borrowed from population genetics but new to the social sciences.

Blau and Duncan construct and test their relatively simple path models compe-
tently, of course. For most readers, however, the path models are obscure. It is hard to
see that path analysis is firmly grounded in straightforward fashion in a statistical proce-
dure that most researchers use and understand—OLS multiple regression analysis
(Wright, 1960). Nevertheless, by the early 1970s just about every empirical piece
appearing in major social science journals uses path analysis. Feelings of professional
obsolescence and disaffection are made worse.

When Duncan (1975) publishes his widely adopted textbook on path modeling,
most of it is devoted to fairly complex nonrecursive models of the sort not usually
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encountered by applied social science researchers. From the preface on, moreover, the
tone of the book is admonitory—as if to say, “This is so basic, and you are so far behind
your colleagues in other disciplines.”

Feelings of obsolescence are reinforced by capable authors such as Hayduk (1987),
who warn readers that understanding Duncan’s work means understanding the “meth-
ods of the 1970s.” But sadly, this knowledge does not provide a solid foundation for
understanding causal modeling for the 1980s and beyond.

The quality of the work by Blau, Duncan, and Hayduk ranges from exemplary to
estimable. Whatever the authors’ contributions and intentions might have been, how-
ever, each added to a subtle but pervasive underestimation of the value of stan-
dard, widely used statistical tools; this is especially true with respect to OLS mul-
tiple regression analysis. In much the same way, accounts of multilevel analysis
have seemed summarily dismissive of OLS regression. In spite of our “It’s just regres-
sion!” disclaimer, the material presented so far may make us as culpable as anyone
else.

One way to redeem ourselves is to give OLS regression a chance to show what it can
do in addressing a complex, interesting, and timely issue at length. At that point, we can
ask if multilevel analysis has anything to add. We can then correctly treat multilevel
regression as a source of additional analytical opportunities, rather than a series of meth-
odological traps waiting to be sprung on those who are naïve, unsuspecting, or over the
hill.

6.2 AN EXTENDED EXERCISE WITH COUNTY-LEVEL DATA

We have made frequent use of a U.S. Bureau of the Census data set containing measures
on a broad range of demographic variables for the year 2000 for 3140 U.S. counties. The
county is the unit of analysis, with counties nested in states (Annie E. Casey Founda-
tion, 2004). Conveniently, following the U.S. presidential election of November 2, 2004,
USA Today published county-level election results for all states except Alaska (USA
Today, 2004). Combining data from these two sources permits us to do county-level vot-
ing behavior analyses of a hotly contested presidential election.

The following example, spanning discussion of Tables 6.1 to 7.10, is unusually
long. Its purpose, however, merits sustained effort. We hope to illustrate and exhaust the
power and versatility of OLS multiple regression, and only then ask if multilevel regres-
sion analysis has anything else to offer.

6.3 TENTATIVE SPECIFICATION OF AN OLS REGRESSION MODEL

For this extended example, the dependent variable at the county level is the percentage
of voters who voted for George W. Bush (YBUSH). For county-level voting behavior data,
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the distribution has an unexpectedly broad range,
from 0.16% to 95.53%; as we see in Figure 6.1, it is
approximately normal, though slightly skewed to the
left.

Selection of independent variables poses familiar
problems in regression model specification. Which
explanatory factors should be used? What is avail-
able in our data set? Which proxies are best suited to
serve as substitutes for missing variables that we
really want? How can we best operationalize our
choices? And what functional forms should be em-
ployed? Whether an analyst is using OLS regression,
multilevel regression, or any other creditable statisti-
cal procedure, questions such as this are unavoid-
able.

Since the unit of analysis is the county, more-
over, regression model specification is complicated
by the need to avoid unwitting errors in ecological
inference. With regard to selection of independent variables and interpretation of results,
the ecological fallacy is an ever-present source of difficulty (Blalock, 1982). Avoiding
unwitting inferences about individual behavior from county-level analyses is an impor-
tant reason why we will not include gender composition among our explanatory vari-
ables.

Given the nature of our data set and a desire to keep the analysis from becoming
unduly complex, we have chosen nine county-level independent variables for use in a
preliminary OLS multiple regression analysis.

Independent Variables

XFAMILY

We have used percentage of the population living
in a traditional nuclear family as a variable in previ-
ous examples, and in the present application it is
defined as the percentage of residents living in a
household with husband, wife, and at least one
child under age 18. We are trying to capture the
journalistically pervasive but nebulous notion of
traditional family values (Thompson, 2000), and
we will use XFAMILY as a proxy. We see in Figure 6.2
that the XFAMILY variable very closely approximates
a normal distribution.
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FIGURE 6.1. Percentage voting
for Bush.

FIGURE 6.2. Percentage living in
traditional nuclear family.



XYOUTH

Throughout the 2004 campaign, the Democratic Party sought to tap the so-called
youth vote, especially among those just over 18 who were voting for the first time
(MoveOn.org, 2005). Supporters of John Kerry sought to kindle a temperate form of
youthful idealism and bring young voters into the Democratic fold (McDonough, 2004).
In our analysis, the prospective youth vote is the percentage of each county’s residents
ages 18–24. The XYOUTH variable is skewed sharply to the right, as we see in Figure 6.3,
but taking natural logarithms produces a very close approximation to a normal distribu-
tion, as displayed in Figure 6.4 (Fox, 1997).

XINCOME

Students of voting behavior routinely include a standard set of demographic measures in
analyses of election outcomes (Beck, Dalton, & Greene, 2001). This applies whether the
unit of analysis is the individual or a geographical unit such as the county (Anatolyev,
2002). Conspicuous among these measures is family income, which we capture as a
county-level median expressed in units of $1000. Income and vote for Republican candi-
dates have historically been positively associated (Niemi & Weisberg, 2001). With the
advent of the so-called Reagan revolution and the emergence of right-wing populism,
however, this relationship has become uncertain (Ilbo, 2000).

Income variables are typically logged in empirical applications, but we do not log
XINCOME here for two reasons. First, the rightward skew of XINCOME is modest, as we see in
Figure 6.5. In addition, logging XINCOME causes unanticipated multicollinearity problems,
indicated by a condition index of just over 108.
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FIGURE 6.3. Percentage of
county residents ages 18–24.

FIGURE 6.4. Percentage of county
residents ages 18–24, logged.



XEDUCATION

Historically, better-educated voters have tended to vote for Democrats (Weisberg &
Wilcox, 2004). However, much as with income, the past 25 years have introduced ambi-
guity into this traditionally reliable relationship (U.S. Politics, 2004). Our proxy for
county-level educational attainment is crude: percentage of residents ages 18–24 who do
not have a high school diploma. Given the limitations of our data set, we are defining
educational attainment in deficit terms. This variable too has a surprisingly broad range,
from 13.0% to 69.5%, and it approximates a normal distribution, as seen in Figure 6.6.

XBLACK

Ethnicity can be categorized in a variety of ways, depending on time and place (Mayer,
2002). While ethnicity is often confounded with income, education, and family struc-
ture, ethnicity has independent political consequences, with members of most ethnic
minority groups tending to vote for Democrats (cf. Conley, 1999).

In the United States today, an informative and manageable set of ethnic categories is
White, Black, Hispanic, Asian, and Native American. In our analysis, Whites are repre-
sented by implication. The skewed-to-the-right variable XBLACK is explicitly incorporated
and is measured as the percentage of each county’s residents who are Black.

XHISPANIC

As XBLACK does, XHISPANIC (the percentage of each county’s residents classified as His-
panic) varies sharply from county to county, with a rightward skew.
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FIGURE 6.5. Median family in-
come.

FIGURE 6.6. Percentage of county
population ages 18–24 without high
school diploma.



XASIAN

Dramatic variability, though with a sharp rightward skew, also characterizes the distribu-
tion of XASIAN (the percentage of each county’s residents classified as Asian). While 34%
of all counties reported XASIAN values of zero, the maximum value for this variable is
large, just over 54%.

XNATIVE

The percentage of each county’s residents who are Native American (XNATIVE) is zero for
5% of all counties. Only 10% have an XNATIVE value of at least 15%. Nevertheless, XNATIVE

has a large maximum value of 94%.

As with XBLACK, XHISPANIC, and XASIAN, the sharp rightward skew of XNATIVE suggests
that logging might be useful (Fox, 1997). Even with zero-valued entries, this could be
done by first adding one to each county’s value on each of the ethnicity variables (cf.
Wooldridge, 2002). Logging, however, would still leave heavy concentrations of cases in
the lowest-valued categories. We have concluded, therefore, that in their nonlogged
form the ethnicity measures give us about as much information as we can get. By way of
illustration, the distributions of XBLACK without and with logging are reported in Figures
6.7 and 6.8, respectively. The fact that little or nothing is gained from logging seems self-
evident, and applies with even greater force to the other ethnicity measures.

XRURAL

Finally, the broad swath of Republican-voting states across the middle of the nation
intimates that rural residents were more likely to vote for Bush than nonrural resi-
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dents. We have already made frequent use of the urban–rural continuum used to
assign county-level scores ranging from 1 to 9, with higher scores representing more
rural areas (ERS, 2004b). We will use this continuum to determine if place of resi-
dence is related to YBUSH. We illustrated this irregular, very roughly horizontal distribu-
tion in Figure 3.2.

6.4 PRELIMINARY REGRESSION RESULTS

With complete data for 3090 of the 3140 counties, OLS multiple regression results are as
reported in Table 6.1. Standard errors are in parentheses. Dividing each regression coeffi-
cient by its standard error yields values that exceed the critical t value (p < .001) for all
coefficients. Because the county is the unit of analysis, interpretation of the OLS regres-
sion results is straightforward.

1. Each 1% increase in the number of county residents living in a traditionally
structured family corresponds, on average, to a 1.482-point increase in percent
voting for Bush.

2. Each 1% increase in the percentage of county residents between the ages of 18
and 24 corresponds, on average, to a 1.855-point increase in percent voting for
Bush. Remember that this independent variable has been logged, modifying its
interpretation as indicated.

3. Each $1000 increase in county median family income corresponds, on average,
to a 0.242-point decrease in percent voting for Bush.

4. Each 1% increase in the number of county residents ages 18–24 who are not
high school graduates corresponds, on average, to a 0.188-point increase in per-
cent voting for Bush.

5. Each 1% increase in the number of county residents who are Black corresponds,
on average, to a 0.224-point decrease in percent voting for Bush.

6. Each 1% increase in the number of county residents who are Hispanic corre-
sponds, on average, to a 0.176-point decrease in percent voting for Bush.

7. Each 1% increase in the number of county residents who are Asian corresponds,
on average, to a 0.376-point decrease in percent voting for Bush.
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TABLE 6.1. Preliminary OLS Analysis of County-Level Percentage Voting for Bush

YBUSH = 46.945 + 1.482XFAMILY + 1.855XLNYOUTH – 0.242XINCOME + 0.188XEDUCATION – 0.224XBLACK

(1.964) (0.075) (0.222) (0.029) (0.024) (0.017)

– 0.176XHISPANIC – 0.376XASIAN – 0.409XNATIVE – 0.440XRURAL

(0.019) (0.093) (0.031) (0.112)

R2 = 37.6%

N = 3090



8. Each 1% increase in the number of county residents who are Native American
corresponds, on average, to a 0.409-point decrease in percent voting for Bush.

9. Each one-level increase in the direction of increasing rurality on the urban–rural
continuum corresponds, on average, to a 0.440-point decrease in percent voting
for Bush.

6.5 SURPRISE RESULTS AND POSSIBLE VIOLATION
OF OLS ASSUMPTIONS

We have acknowledged the emergence of right-wing populism during the last three
decades (Mayer, 2000). Nevertheless, the negative XINCOME coefficient in our county-
level data is a surprise. A prudent response to unexpected findings is reexamination of
the regression analysis with respect to the usual OLS assumptions.

YBUSH by XINCOME

Upon visual examination of a scatterplot, the relationship between YBUSH and XINCOME

turns out to be curvilinear at the bivariate level. The relationship is positive but deceler-
ating until XINCOME reaches a value of $41,440, and then slopes downward in accelerat-
ing fashion (Wooldridge, 2002, p. 191). R2 for the simple linear regression is 0.6%, while
the same value with a quadratic functional form is 6.6%. Figure 6.9 provides a visual
comparison of efforts to capture the relationship between YBUSH and XINCOME, using lin-
ear and quadratic relationships.

Even sharp departures from linearity may be due to failure to include needed inde-
pendent variables in a regression model (Kennedy, 1998; Wooldridge, 2002; see also the
discussion of the RESET test in Gujarati, 2006). With our tentatively specified comple-
ment of controls in place, as in Table 6.1, the YBUSH-by-XINCOME relationship is approxi-
mately linearized, as is evident from examination of Figure 6.10.

When YBUSH and XINCOME are both purged of variability due to the remaining inde-
pendent variables, the R2 value for the simple linear regression of YBUSH on XINCOME is
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3.5%, and the R2 value for the same relationship with quadratic functional form is
3.6%—a statistically nonsignificant difference (cf. Freckleton, 2002). The negative lin-
ear relationship between YBUSH and XINCOME is retained, with departures from linearity at
the bivariate level attributed to specification error in the form of excluded independent
variables.

6.6 CURVILINEAR RELATIONSHIPS:
YBUSH BY XBLACK, XHISPANIC, AND XNATIVE

Nevertheless, examination of partial plots for all relationships makes clear that even
with the full complement of independent variables, the relationships between YBUSH and
three of our four measures of ethnicity (XBLACK, XHISPANIC, and XNATIVE) remain curvi-
linear. As values of the ethnicity variables increase, relationships with percent voting for
Bush curve sharply downward (see Figures 6.11, 6.12, and 6.13).

6.7 QUADRATIC FUNCTIONAL FORM

One of the virtues of OLS regression is that it is well
suited to dealing with curvilinear relationships
(Halcoussis, 2005). In this instance, quadratic func-
tions have been estimated, creating a polynomial
regression equation (Pedhazur & Schmelkin, 1991).
Polynomial regression is just another useful exten-
sion of OLS regression, modifying it to deal better
with our complex social world.

Use of quadratic functional forms, however,
raises the issue of multicollinearity. Even though
XBLACK, XHISPANIC, and XNATIVE are not linearly related
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FIGURE 6.11. YBUSH by XBLACK,
adjusted.

FIGURE 6.12. YBUSH by XHISPANIC, adjusted. FIGURE 6.13. YBUSH by XNATIVE, adjusted.



to their squared values, bivariate correlations among them are quite large, with r values
ranging from 0.909 to 0.928.

To make approximate corrections for multicollinearity, XBLACK, XHISPANIC, and XNATIVE,
along with their squared values, have been centered with respect to their grand means,
as have all the other independent variables. Mean centering diminishes the bivariate cor-
relations between the ethnicity variables and their squared terms, but the associations
remain strong, ranging from 0.783 to 0.863. Fortunately, our sample size is large.

6.8 A RESPECIFIED OLS REGRESSION MODEL

OLS regression results, with relationships respecified as just described, are reported in
Table 6.2. All unstandardized regression coefficients except those for XEDUCATION and
XNATIVE are statistically significant. Without assigning undue importance to the R2 sum-
mary statistic (Yuan & Loi, 1996), we can see that the increase in the value of this con-
ventional goodness-of-fit measure from Table 6.1 to Table 6.2 is substantial, going from
37.6% to 43.9%.

For all variables except those representing percent of county residents who are
Black, Hispanic, or Native American, the signs, approximate values, and substantive
import of the unstandardized regression coefficients are as reported in Table 6.1. The
variables XBLACK, XHISPANIC, and XNATIVE and their squared values, however, require addi-
tional interpretation.

6.9 INTERPRETING QUADRATIC RELATIONSHIPS

In its simplest form, a quadratic relationship is expressed as in Table 6.3. More concretely
for the relationship between YBUSH and XBLACK, and with borrowing of the coefficient esti-
mates reported in Table 6.2, the quadratic relationship is expressed as in Table 6.4.

192 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 6.2. A Respecified OLS Model of Percentage Voting for Bush

YBUSH = –101.386 + 1.541XFAMILY + 3.161XLNYOUTH – 0.173XINCOME + 0.002XEDUCATION

(27.329) (0.083) (0.166) (0.033) (0.024)

– 0.004XBLACK – 0.009XHISPANIC – 0.556XASIAN – 0.001XNATIVE – 0.359XRURAL – 0.003XBLACK
2

(0.000) (0.001) (0.145) (0.001) (0.100) (0.000)

+ 0.004XHISPANIC
2 + 0.004XNATIVE

2

(0.000) (0.055)

R2 = 43.8%

N = 3090

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely
small values, and each corresponds to a statistically significant regression coefficient.



Working with the information in Table 6.4, we can illustrate a simple procedure for
making sense of quadratic relationships in OLS regression (Bickel & Howley, 2000). Set-
ting up Table 6.5 is not difficult. Just insert coefficient values where indicated, and do
the specified arithmetic for rate of change with illustrative values of the independent
variable—in this instance, XBLACK. Simply put, we multiply each illustrative value by the
coefficient corresponding to XBLACK, and then adjust for curvilinearity using the coeffi-
cient for XBLACK

2. In this way, we start with the best-fitting linear relationship, and then
make the relationship more precise by introducing departures from linearity. The values
reported are sometimes referred to as marginal increments (Hayashi, 2000).

Via the same procedure, the quadratic relationships between YBUSH and XHISPANIC and
YBUSH and XNATIVE are clarified in Tables 6.6 to 6.9.

6.10 NONADDITIVITY AND INTERACTION TERMS

We have just seen that several quadratic relationships can be handled in the same con-
ventional multiple regression equation in an informative and succinct manner. The
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TABLE 6.3. Specifying a Quadratic Relationship

Y = a + b1X1 + b2X1
2

TABLE 6.4. YBUSH by XBLACK in Quadratic Form

YBUSH = a – 0.004XBLACK – 0.003XBLACK
2

TABLE 6.5. Making Sense of Quadratic Relationships: YBUSH by XBLACK

Coefficient values

XBLACK XBLACK
2 Rate of change

–0.004 –0.003 (–0.004) + (2 * [–0.003 * XBLACK]) = Total

Variable values

10 –0.004 – 0.060 = –0.064

20 –0.004 – 0.120 = –0.124

30 –0.004 – 0.180 = –0.184

40 –0.004 – 0.240 = –0.244

50 –0.004 – 0.300 = –0.304

60 –0.004 – 0.360 = –0.364

70 –0.004 – 0.420 = –0.424

80 –0.004 – 0.480 = –0.484

90 –0.004 – 0.540 = –0.544
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TABLE 6.6. YBUSH by XHISPANIC in Quadratic Form

YBUSH = a – 0.009XHISPANIC + 0.004XHISPANIC
2

TABLE 6.7. Making Sense of Quadratic Relationships: YBUSH by XHISPANIC

Coefficient values

XHISPANIC XHISPANIC
2 Rate of change

–0.009 0.004 (–0.009) + (2 * [0.004 * XHISPANIC]) = Total

Variable values

10 –0.009 + 0.080 = 0.071

20 –0.009 + 0.160 = 0.151

30 –0.009 + 0.240 = 0.231

40 –0.009 + 0.320 = 0.319

50 –0.009 + 0.400 = 0.391

60 –0.009 + 0.480 = 0.471

70 –0.009 + 0.560 = 0.551

80 –0.009 + 0.640 = 0.631

90 –0.009 + 0.720 = 0.711

TABLE 6.8. YBUSH by XNATIVE in Quadratic Form

YBUSH = a + 0.004XNATIVE
2

TABLE 6.9. Making Sense of Quadratic Relationships: YBUSH by XNATIVE

Coefficient values

XNATIVE XNATIVE
2 Rate of change

N.S. 0.004 (2 * [0.004 * XNATIVE]) = Total

Variable values

10 — + 0.004 = 0.004

20 — + 0.008 = 0.008

30 — + 0.012 = 0.012

40 — + 0.016 = 0.016

50 — + 0.020 = 0.020

60 — + 0.024 = 0.024

70 — + 0.028 = 0.028

80 — + 0.032 = 0.032

90 — + 0.036 = 0.036



assumption of linearity was violated, but a corrective in the form of polynomial regres-
sion was readily available.

The same is true of the assumption of additivity. This is another strength of OLS
regression. By way of illustration, our analysis of county-to-county variability in percent
voting for Bush offers interesting opportunities for studying same-level interaction
effects or departures from additivity.

Though we are now speaking in terms of relationships that vary, in this instance we
are not suggesting that relationships vary from state to state in a way that necessitates
use of a random coefficient regression model. We are interested instead in the possibility
that the relationship between YBUSH and one or more independent variables varies from
level to level of another independent variable. So long as the moderator variable is a
dichotomy or is measured at the interval or ratio level, this is a phenomenon that OLS
regression easily accommodates (Jaccard et al., 1990).

As a concrete example, living in a traditional nuclear family commonly brings the
economic advantage of two breadwinners (Lareau, 2003). This suggests that even at the
county level, the relationship between YBUSH and XFAMILY may vary from level to level of
XINCOME. Similarly, urban and rural environments may have different consequences for
variability in family structure and income. It may be that the relationships between YBUSH

and XFAMILY and YBUSH and XINCOME vary from level to level of XRURAL.
As with so many of the specification decisions we have made throughout this pre-

sentation, the rationale for each of the interaction terms we plan to introduce is more
speculative than we would like. Nevertheless, the posited interactions are not without
commonsense justification, and they permit us to illustrate the strength of OLS multiple
regression analysis in dealing with departures from additivity.

Therefore, we have added three same-level multiplicative interaction terms—
XINCOME * XFAMILY, XRURAL * XFAMILY, and XRURAL * XINCOME—to our OLS multiple regression
equation. To minimize multicollinearity, all variables have been centered with respect to
their overall means before creation of the interaction terms.
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TABLE 6.10. A Further Respecified OLS Model of Percentage Voting for Bush

YBUSH = –100.820 + 1.553XFAMILY + 3.111XLNYOUTH – 0.122XINCOME + 0.010XEDUCATION – 0.004XBLACK

(27.351) (0.084) (0.166) (0.036) (0.024) (0.000)

– 0.009XHISPANIC – 0.456XASIAN + 0.001XNATIVE – 0.283XRURAL – 0.003XBLACK
2 + 0.004XHISPANIC

2

(0.001) (0.088) (0.001) (0.102) (0.000) (0.000)

– 0.331XNATIVE
2 + 0.027XINCOME * XFAMILY + 0.030XRURAL * XFAMILY + 0.007XRURAL * XINCOME

(0.055) (0.023) (0.008) (0.008)

R2 = 44.1%

N = 3090

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely
small values, and each corresponds to a statistically significant regression coefficient.



6.11 FURTHER RESPECIFICATION OF THE REGRESSION MODEL

Table 6.10 shows us the OLS regression results obtained by adding the interaction terms
XINCOME * XFAMILY, XRURAL * XFAMILY, and XRURAL * XINCOME to the equation in Table 6.2.
Dividing coefficients by standard errors, we see that one of these interaction terms,
XRURAL * XFAMILY, has a statistically significant coefficient. This indicates that as places of
residence become more rural, the positive relationship between YBUSH and XFAMILY is
increased: For each one-level increase in XRURAL, a 1% increase in XFAMILY corresponds,
on average, to an additional 0.030-point increase in YBUSH.

6.12 CLARIFYING OLS INTERACTION EFFECTS

We can clarify the meaning of interaction effects by using basically the same procedure
we used with quadratic relationships. In its simplest form, a multiplicative interaction
term with two variables can be represented as in Table 6.11. In the case of the interaction
term involving XRURAL and XFAMILY, this set of relationships is made concrete in
Table 6.12.

As we have just said, this means that for every one-level increase in XRURAL, each
1-point increase in XFAMILY corresponds, on average, to a 0.030-point decrease in YBUSH.
A procedure for saying the same thing more instructively is illustrated in Table 6.13.
This table too is easy to construct. Just insert main-effect and interaction-effect coeffi-
cients in the table as indicated, and then introduce illustrative values of the moderator
variable.

We may interpret Table 6.13 much as we did the tables representing quadratic rela-
tionships. The main-effect coefficient represents our best estimate of the relationship
between YBUSH and XFAMILY without additivity. The interaction term enables us to specify
the effect of departures from additivity. Inserting coefficients from Table 6.12 into Table
6.13 enables us to better explain the interaction effect involving XRURAL as the moderator
variable, YBUSH as the dependent variable, and XFAMILY as the independent variable. This
shifting pattern of relationships is illustrated in Figures 6.14 through 6.16, with slope
estimates ranging from 1.476 to 1.852 to 1.992.

196 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 6.11. Multiplicative Interaction Term

Y = a + b1X1 + b2X2 + b3X1 * X2

TABLE 6.12. XRURAL Moderates YBUSH by XFAMILY

YBUSH = a – 0.283XRURAL + 1.553XFAMILY + 0.030XRURAL * XFAMILY
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FIGURE 6.14. YBUSH by XFAMILY for urban categories of XRURAL

FIGURE 6.15. YBUSH by XFAMILY for middle categories of XRURAL.

FIGURE 6.16. YBUSH by XFAMILY for rural categories of XRURAL.



6.13 INTERPRETING RESULTS FOR THE RESPECIFIED OLS
REGRESSION EQUATION FOR COUNTY-LEVEL DATA

Given the constraints of secondary analysis with county-level data, as well as the virtues
and limitations of OLS regression, the results reproduced in Table 6.14 (from Table 6.10)
provide an interesting statistical account of relationships that contributed to determin-
ing the outcome of the 2004 U.S. presidential election. These results can be interpreted
as follows:

1. Each 1% increase in the number of county residents living in a traditionally
structured family corresponds, on average, to a 1.553-point increase in percent
voting for Bush.

2. Each 1% increase in the number of county residents between the ages of 18 and
24 corresponds, on average, to a 3.111-point increase in percent voting for Bush.
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TABLE 6.14. (Table 6.10, Reproduced). A Further Respecified OLS Model of Percentage Voting
for Bush

YBUSH = –100.820 + 1.553XFAMILY + 3.111XLNYOUTH – 0.122XINCOME + 0.010XEDUCATION – 0.004XBLACK

(27.351) (0.084) (0.166) (0.036) (0.024) (0.000)

– 0.009XHISPANIC – 0.456XASIAN + 0.001XNATIVE – 0.283XRURAL – 0.003XBLACK
2 + 0.004XHISPANIC

2

(0.001) (0.088) (0.001) (0.102) (0.000) (0.000)

+ 0.004XNATIVE
2 + 0.027XINCOME * XFAMILY + 0.030XRURAL * XFAMILY + 0.007XRURAL * XINCOME

(0.000) (0.023) (0.008) (0.008)

R2 = 44.1%

N = 3090

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely small
values, and each corresponds to a statistically significant regression coefficient.

TABLE 6.13. Making Sense of Interaction Effects: XRURAL Moderates YBUSH by XFAMILY

Coefficient values

Main effect Interaction effect Rate of change

–0.283 0.030 (–0.283) + (0.030 * XRURAL) = Total

Moderator variable values

1 –0.283 + 0.030 = –0.253

2 –0.283 + 0.060 = –0.223

3 –0.283 + 0.090 = –0.193

4 –0.283 + 0.120 = –0.163

5 –0.283 + 0.150 = –0.133

6 –0.283 + 0.180 = –0.103

7 –0.283 + 0.210 = –0.073

8 –0.283 + 0.240 = –0.043

9 –0.283 + 0.270 = –0.013



3. Each $1000 increase in county median family income corresponds, on average,
to a 0.122-point decrease in percent voting for Bush. As already explained, we
had not expected a negative relationship.

4. We have tentatively determined that the relationship between YBUSH and XBLACK is
curvilinear, usefully expressed in quadratic form. Furthermore, by dividing the
coefficient for XBLACK by twice the absolute value of the coefficient for XBLACK

2,
we can identify the value of XBLACK at which the relationship curves from posi-
tive to negative (Wooldridge, 2006, p. 201). In this case, we get 0.004/0.006, or
0.67%.

5. We have also tentatively determined that the YBUSH-by-XHISPANIC relationship is
quadratic. The relationship changes from positive to negative when XHISPANIC

equals –0.009/0.008, or 1.13%. (The minus sign is simply deleted.)
6. The relationship between YBUSH and XASIAN has been specified as linear through-

out. Based on the regression results from Table 6.10 reproduced in Table 6.14,
we see that each 1% increase in the number of county residents who are Asian
corresponds, on average, to a 0.456-point decrease in percent voting for Bush.

7. The YBUSH-by-XNATIVE relationship has been tentatively specified as quadratic. The
coefficient for XNATIVE is not statistically significant, meaning that the relation-
ship, while curvilinear, is negative for all values of the independent variable:
0.000/0.008 yields zero.

8. For every one-level increase in XRURAL, each 1-point increase in XFAMILY corre-
sponds, on average, to a 0.030-point decrease in YBUSH.

6.14 SUMMING UP

Given the limitations of our county-level data set, we have pretty well exhausted the
power of OLS regression in analyzing the results of the U.S. presidential election of
2004. One of the most interesting findings is that increases in the percentage of people
living in traditionally structured nuclear families yielded a substantial increase in the
percentage voting for Bush. If our XFAMILY variable is a reasonable proxy for the ill-
defined but relentlessly invoked notion of traditional family values, then popular jour-
nalistic conceptions were correct: The more pervasive this factor, the better Bush did.

We also see that insofar as percentage of county residents ages 18–24 is a useful
proxy for younger prospective voters, Kerry’s effort to win aggregates of voters by
appealing to the youth vote seems to have failed. At the county level, as the representa-
tion of this age group increased, percent voting for Bush increased as well.

It is not surprising that increases in ethnic minority representation are negatively
associated with percent voting for Bush. This is consistent with voting patterns that have
prevailed since before Franklin D. Roosevelt’s New Deal.

It is surprising, however, that as a county’s median family income increased, percent
voting for Bush decreased. It is conceivable that as a county’s median family income
increased the percentage of nonaffluent residents voting for Bush increased as well, and
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that this accounts for the negative association between percent voting for Bush and
median family income. This, however, seems unlikely.

As far as we can tell, then, the Bush base was organized around traditional family
values and youth. The Kerry base was organized around ethnic minorities and compara-
tive affluence. It will be interesting to see if these findings hold up when we improve our
analysis through use of multilevel regression in Chapter 7.

6.15 USEFUL RESOURCES

Johnston, R., Hagen, M., & Jamieson, K. (2004) The 2000 Presidential Election and the Foundations
of Party Politics. New York: Cambridge University Press.

Weisberg, H., & Wilcox, C. (Eds.) (2004) Models of Voting in Presidential Elections: The 2000 U.S.
Elections. Stanford, CA: Stanford Law and Politics.

Use of OLS regression, logistic regression, and related techniques has a long history in the
study of voting behavior. The book by Johnston, Hagen, and Jamieson is an informative example.
The collection of essays by Weisberg and Wilcox illustrates the broad range of issues pertinent to
voting behavior research.
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MULTILEVEL ANALYSIS FOR APPLIED RESEARCHDoes Multilevel Regression Have Anything to Contribute?

7

Does Multilevel Regression
Have Anything to Contribute?

7.1 CHAPTER INTRODUCTION

Our OLS multiple regression analysis of county-level voting in the 2004 U.S. presidential
election could be further developed in a variety of ways. After all, only three two-way
interactions have been investigated, and no higher-order interactions have been consid-
ered.

There are, moreover, interesting variables in the data set that we might have used as
explanatory factors but did not. Percentage of the population under age 6, for example,
turns out to have a statistically significant and negative regression coefficient when
added to the regression equation in Table 6.14. More interesting still is the statistically
significant and positive coefficient for the interaction term created with XFAMILY and
XUNDER6. However, since these relationships were discovered by accident and their mean-
ing requires a good deal of speculation, they have not been incorporated into the regres-
sion model. Nevertheless, if we had a better understanding of the traditional family val-
ues concept and if we were not restricted to working with county-level data, it is likely
that XFAMILY could have been defined in a more informative way.

There are also high-profile variables that are not included in our data set but that
belong in any analysis of this kind. These include county-level voter turnout (Flanigan
& Zingale, 2002), religious affiliation (Johnston, Hagen, & Jamieson, 2004), and union
membership (Weisberg & Wilcox, 2004).

Moreover, none of our independent variables is inherently cultural or social-
psychological. Insofar as we are interested in the way that collectivities assign value and
respond to their circumstances, we have been limited to using county-level demographic
aggregates as proxies.
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In addition, as we have acknowledged, using county-level data is rarely a first
choice. Having measures comparable to those used in this analysis for individuals would
be better suited to answering most questions concerning voting behavior. As it is, avoid-
ance of unwarranted ecological inferences is an ever-present concern. Again, this
explains why we were uncomfortable incorporating county-level gender composition
into our analysis.

Nevertheless, the process that led to the results in Table 6.14 was thorough. Modifi-
cations of functional form were prompted by examination of preliminary regression
results for violation of assumptions. Selection of interaction terms, while speculative,
was animated by an interest in three identifiable themes: the commonplace but poorly
understood notion of traditional family values; lingering uncertainty as to the negative
relationship between percentage voting for Bush and median family income; and the
knowledge that a large rural turnout may have been crucial in the Bush victory (see, e.g.,
Kaiser, 2005). When all was said and done, we sought to make good choices, avoid data
dredging, be reasonably parsimonious, and make a case for the power and flexibility of
OLS multiple regression analysis. A case has been made.

At this point we may ask: Is there anything left for multilevel regression analysis to
contribute? Are there analytical opportunities we cannot use without the additional tools
and correctives embodied in multilevel regression?

7.2 CONTEXTUAL EFFECTS IN OLS REGRESSION

It is immediately evident that contextual or grouping variables are missing from our
analysis. We have already explained, however, that OLS is not designed to handle more
than one level of analysis in the same equation. By tacitly treating all variables as if they
were measures made at the same level, OLS regression denies the reality and conse-
quences of nesting.

Nesting introduces the possibility that regression coefficients are not fixed, but
should be permitted to vary from context to context. Nesting also raises the possibility
that observations and residuals are dependent, accompanied by intraclass correlation
and deflated standard errors. With nesting, the number of degrees of freedom needed for
statistical tests varies from level to level. Nesting makes it virtually certain that contex-
tual factors will be needed as additional independent variables. The contextual factors
used to explain variability in nesting-engendered random slopes, moreover, are invari-
ably accompanied by implied cross-level interaction terms.

None of these inherently multilevel issues can be adequately addressed by using
OLS regression with fixed coefficients in a single-level framework. If contextual vari-
ables are needed in our voting behavior analysis, it would be best to use something other
than OLS. We would still be doing regression, but to do it right we need a multilevel
framework and the capacity to use a random coefficient regression model.

We have offered numerous examples, however, in which OLS applications have
used contextual variables and cross-level interaction terms to mimic multilevel regres-
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sion. For example, we could pursue our interest in relationships between YBUSH and spe-
cific explanatory factors by aggregating XFAMILY, XINCOME, XRURAL, XBLACK, XHISPANIC, XNATIVE,
and XASIAN to the state level, using state means as group or contextual variables. Further-
more, we may suspect that a county-level variable such as XFAMILY would behave differ-
ently in predominately rural states than in predominately urban states, or that variation
in XINCOME might have different consequences depending on the average income level of
the state.

With these last two examples, using contextual variables and cross-level interaction
terms, the notion of linked levels of analysis is very clearly introduced. As we know,
however, OLS regression does not permit dealing with different levels, much less linked
levels.

Nevertheless, we can continue our effort to give OLS regression its due, concretely
acknowledging its strengths and limitations, by tacking on contextual variables. This
may also provide a point of departure for a properly specified multilevel regression
model and facilitate regression diagnostics (Leyland & McCleod, 2000; see also Kreft &
De Leeuw, 1998; Snijders & Bosker, 1999). So we add the aggregated contextual
variables XFAMILYMEAN, XINCOMEMEAN, XRURALMEAN, XBLACKMEAN, XHISPANICMEAN, XNATIVEMEAN, and
XASIANMEAN to the OLS regression equation from Table 6.14 and get the results in Table
7.1. (As with all the other predictors, each of the contextual variables has been centered
with respect to its grand mean.)

In addition to the obvious methodological problems already discussed, the OLS
multiple regression equation is now becoming quite complex. Claims to parsimony have
become dubious. Moreover, even with grand-mean centering, multicollinearity has
become troublesome. Nine variance inflation factors exceed the usual rule-of-thumb
cutoff of 4.000, including enormous values ranging from 55.945 for XBLACK to 2076.290
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TABLE 7.1. OLS Analysis of Percentage Voting for Bush; Contextual Variables Included

YBUSH = 20.705 + 1.609XFAMILY + 2.273XLNYOUTH – 0.189XINCOME + 0.011XEDUCATION – 0.005XBLACK

(1.369) (0.083) (0.123) (0.035) (0.022) (0.003)

– 0.007XHISPANIC – 0.622XASIAN – 0.004XNATIVE – 0.143XRURAL – 0.001XBLACK
2 + 0.002XHISPANIC

2

(0.004) (0.150) (0.019) (0.002) (0.000) (0.000)

– 0.082XNATIVE
2 + 0.018XINCOME * XFAMILY + 0.053XRURAL * XFAMILY + 0.009XRURAL * XINCOME

(0.020) (0.007) (0.025) (0.008)

– 1.591XRURALMEAN + 1.879XFAMILYMEAN – 0.659XINCOMEMEAN + 0.004XBLACKMEAN

(0.221) (0.134) (0.041) (0.002)

+ 0.001XHISPANICMEAN – 0.016XNATIVEMEAN – 0.272XASIANMEAN

(0.001) (0.002) (0.117)

R2 = 49.9%
N = 3090

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely
small values, and each corresponds to a statistically significant regression coefficient.



for XNATIVE
2! In addition, the condition index is 561.324, far larger than any published

rule-of-thumb cutoff (cf. Draper & Smith, 1998; Gujarati, 2003).
No wonder. Three of the four ethnicity variables—percent Black, percent Hispanic,

and percent Native American—are represented in three different terms: XBLACK, XBLACK
2,

XBLACKMEAN; XHISPANIC, XHISPANIC
2, XHISPANICMEAN; and XNATIVE, XNATIVE

2, XNATIVEMEAN. Even with
grand-mean centering, correlations of squared values with county-level variables and
aggregated state-level variables remain strong, as we see in Table 7.2.

With 3090 cases, we might be inclined to ignore even huge variance inflation fac-
tors. As noted in our discussion of adequate sample sizes, however, when we specify and
estimate a more suitable multilevel regression alternative, multicollinearity will still be
there. It will still be inflating standard errors, rendering tests of significance dubious,
and making coefficient estimates unduly imprecise. Using random coefficients with
REML estimators instead of OLS will not eliminate multicollinearity and its adverse con-
sequences. In addition, multicollinearity may introduce bias into estimates of the vari-
ances of random components and their standard errors (Shier & Fouladi, 2003). What
are we to do?

7.3 RESPECIFICATION AND CHANGING FUNCTIONAL FORM

Recall our discussion of the relationship between YBUSH and XINCOME. We found that it
was curvilinear at the bivariate level, but that addition of needed independent variables
linearized the relationship—a fairly common result, though definitely not a certain one,
in OLS multiple regression analysis (Kennedy, 1998; Wooldridge, 2002). If contextual
variables are in fact needed for proper specification of the voting behavior regression
model, inclusion of XRURALMEAN, XFAMILYMEAN, XINCOMEMEAN, XBLACKMEAN, XHISPANICMEAN,
XNATIVEMEAN, and XASIANMEAN may linearize the relationships between YBUSH and the inde-
pendent variables XBLACK, XHISPANIC, and XNATIVE.

As it turns out, if we purge YBUSH, XBLACK, XHISPANIC, and XNATIVE of variability due to
the remaining independent variables (excluding the squared terms but including the
aggregated group variables), the relationships between YBUSH and the three ethnicity vari-
ables are in fact approximately linearized (Gujarati, 2003). Figures 7.1 through 7.3,
however, illustrate the fact that linearization is far from perfect.
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TABLE 7.2. Squaring, Aggregation, and Collinearity

XBLACK XBLACK
2 XHISPANIC XHISPANIC

2 XNATIVE XNATIVE
2

XBLACK
2 0.794

XBLACKMEAN 0.177 0.457
XHISPANIC

2 0.863
XHISPANICMEAN 0.000 0.505
XNATIVE

2 0.783
XNATIVEMEAN 0.000 0.527



Nevertheless, as with our application of this
procedure in examining the functional form of the
YBUSH-by-XINCOME relationship, values of R2 for linear
and quadratic functions vary very little, as we see in
Table 7.3. This is consistent with the judgment that
the relationships between YBUSH and the three eth-
nicity variables took nonlinear form due to specifi-
cation error. Since specification error in this in-
stance is manifest in failure to include one or more
needed contextual factors, this is a compelling rea-
son indeed to conclude that we have exhausted the
utility of OLS multiple regression and should use
the multilevel alternative.
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FIGURE 7.1. Approximate
linearization of YBUSH by XBLACK.

FIGURE 7.2. Approximate
linearization of YBUSH by XHISPANIC.

FIGURE 7.3. Approximate
linearization of YBUSH by XNATIVE.

TABLE 7.3. Linearizing OLS Relationships
with Contextual Variables

Linear Quadratic

R2 values,
contextual variables controlled

YBUSH by XBLACK 6.5% 6.8%
YBUSH by XHISPANIC 8.7% 9.6%
YBUSH by XNATIVE 3.4% 3.6%

R2 values,
contextual variables not controlled

YBUSH by XBLACK 5.1% 7.3%
YBUSH by XHISPANIC 3.5% 7.3%
YBUSH by XNATIVE 5.5% 6.8%



The value of state-level contextual variables in a multilevel model is again abun-
dantly evident. For comparative and diagnostic purposes, however, we will continue
developing the inherently single-level OLS equation with contextual variables. As a
result, we delete the squared terms while retaining the contextual variables. OLS regres-
sion results for the model with contextual variables but without squared terms are
reported in Table 7.4. All variance inflation factors are now below 3.00, and the condi-
tion index is much smaller as well, equal to 3.97. Since the R2 statistic in Table 7.4 is not
smaller than the same measure in Table 6.14, deleting the squared terms has cost us no
explanatory power. This is what we would expect if inclusion of contextual factors has
linearized the formerly curvilinear relationships.

7.4 ADDRESSING THE LIMITATIONS OF OLS

Using OLS regression with contextual variables, multicollinearity has been remedied.
In addition, a semblance of parsimony has been restored, including simplification of
functional forms. Critical observers might judge, however, that our earlier disclaimers
concerning mechanical empiricism and data dredging have been forgotten. After all,
how many times can a regression model be respecified before we acknowledge that we
are making too much of the peculiarities of one data set (cf. Kmenta, 1997, pp. 598–
600)?

In the absence of models thoroughly grounded in well-developed theory, however,
OLS regression, multilevel regression, and related techniques inevitably involve an ele-
ment of uncertainty and exploration (Falk & Miller, 1992; Hamilton, 1999; Klees,
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TABLE 7.4. Final OLS Model: Percentage Voting for Bush

YBUSH = 60.274 + 1.612XFAMILY + 2.290XLNYOUTH – 0.187XINCOME + 0.010XEDUCATION – 0.006XBLACK

(0.242) (0.080) (0.207) (0.035) (0.022) (0.000)

– 0.005XHISPANIC – 0.615XASIAN – 0.005XNATIVE + 0.145XRURAL + 0.018XINCOME * XFAMILY

(0.000) (0.148) (0.000) (0.104) (0.010)

– 0.054XRURAL * XFAMILY + 0.009XRURAL * XINCOME + 5.040XLNYOUTHMEAN

(0.032) (0.008) (0.409)

+ 0.380XEDUCATEMEAN – 1.597XRURALMEAN + 1.879XFAMILYMEAN – 0.655XINCOMEMEAN

(0.076) (0.238) (0.134) (0.050)

– 0.001XBLACKMEAN + 0.002XHISPANICMEAN – 0.017XNATIVEMEAN – 0.184XASIANMEAN

(0.001) (0.000) (0.002) (0.114)

R2 = 49.9%
N = 3090

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely
small values, and each corresponds to a statistically significant regression coefficient.



1999). To ignore this and to focus narrowly on statistical tests of inflexibly defined equa-
tions mean prematurely closing the door to discovery, turning social and behavioral
research into caricatures of the so-called hard sciences (Alford, 1998; Chatterjee et al.,
2000; Wooldridge, 2002). Specification and ongoing respecification of a statistical
model, while subject to abuse, become matters of informed judgment (cf. Leamer,
1983).

In that spirit, we have given OLS multiple regression analysis its due. In fact, we
have willfully erred and gone even further by including state-level and county-level vari-
ables in the same OLS regression equation. In the process, we have learned a lot about
county-level voting behavior in the 2004 election. We are also reminded, however, that
in spite of its power and flexibility, there are analytical tasks for which OLS regression is
not well suited.

For nearly a century, students of regression analysis have devised effective re-
sponses to such methodological challenges, and found new opportunities for fruitful
application of regression. In this instance, the remedy takes the form of multilevel
modeling with random coefficients, contextual variables, and cross-level interaction
terms.

7.5 COUNTIES NESTED WITHIN STATES:
INTRACLASS CORRELATION

With YBUSH as the dependent variable, and random component estimates as shown in
Table 7.5, the unconditional intraclass correlation for counties nested in states is large:

r = 71.421/(71.421 + 134.415) = 0.352

This tells us that 35.2% of the variability in YBUSH occurs between categories of the
grouping variable, state. With an intraclass correlation coefficient this large and an aver-
age of 64 counties per state, a nominal alpha level of .05 will correspond to an actual
alpha level of very roughly .70, certainly rendering inferential procedures suspect
(Singer, 1987). Nesting of counties within states, in other words, poses the kinds of sta-
tistical problems that multilevel regression is designed to address.
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TABLE 7.5. Random Component Estimates for Percentage Voting
for Bush; Unconditional Model

Parameter Estimate Std. error Wald Z Sig. level

Residual 134.415 3.452 38.939 .000
INTERCEPT1 71.421 15.522 4.076 .000



7.6 MULTILEVEL REGRESSION MODEL SPECIFICATION:
LEARNING FROM OLS

Whatever the limitations of OLS regression for the analytical task at hand, we would be
foolish to ignore all that we have learned with regard to county-to-county variability in
percentage voting for Bush. This is especially true of regression model specification. Our
work with OLS will inform everything we do with random coefficient regression and
REML estimators in a multilevel framework.

When we specified the OLS multiple regression model in Table 7.4, we provided a
brief, intuitive rationale for using nine state-level contextual factors: XLNYOUTHMEAN,
XEDUCATEMEAN, XRURALMEAN, XFAMILYMEAN, XINCOMEMEAN, XBLACKMEAN, XHISPANICMEAN, XNATIVEMEAN,
and XASIANMEAN. These contextual factors were selected because we anticipated that they
would contribute to explaining county-to-county variability in the dependent variable,
YBUSH. This rationale still holds.

However, in multilevel regression analysis, as we now know, our expectations go
further. Contextual factors and, by implication, cross-level interaction terms contribute
to explaining variability in the level-one dependent variable and to explaining variability
in random components corresponding to an intercept and to slopes that vary from group
to group. They may also provide information used in interpreting covariances among
random components.

In addition to variable selection and functional form, questions as to proper specifi-
cation of a multilevel regression model include identification of coefficients that are per-
mitted to vary across groups and coefficients that are fixed. These decisions are best
made through reference to pertinent theory and thorough knowledge of substantive lit-
erature. We will very roughly approximate this set of circumstances by assigning random
coefficients to the county-level variables that correspond to conspicuously high-profile
or unexpected findings.

In this instance, XFAMILY will be assigned a random slope because it is a proxy for a
poorly understood but empirically consequential concept, traditional family values. It
has, moreover, a strong and consistently powerful relationship with YBUSH. XINCOME will
be assigned a random slope because of its unexpected and consistently negative relation-
ship with YBUSH. The intercept will also be random, reflecting the enormous diversity
among states with respect to percentage voting for Bush.

Assigning random coefficients to XFAMILY and XINCOME has an appealing common-
sense rationale—often the best sort of explanation available, though an admittedly weak
one. In addition, by limiting the number of independent variables with random slopes to
two, we are able to guard against undue complexity in specification of our multilevel
regression model; this is something we have not consistently managed to do before.

This is certainly not the only way to go. Contextual variables measuring, say, the four
categories of ethnicity, might very well be used to account for variability in slopes corre-
sponding to income, traditional family structure, or any other level-one coefficient, includ-
ing the intercept. In the absence of a compelling reason to proceed otherwise, however, the
county-level variables to which we assign random slopes will be XFAMILY and XINCOME.
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We will, moreover, treat variability in the county-level intercept as a function of
each of the contextual factors: XLNYOUTHMEAN, XEDUCATEMEAN, XRURALMEAN, XFAMILYMEAN,
XINCOMEMEAN, XBLACKMEAN, XHISPANICMEAN, XNATIVEMEAN, and XASIANMEAN. To maintain a sem-
blance of simplicity, however, we will express variability in the two random intercepts,
for FAMILY1 and INCOME1, as functions of XFAMILYMEAN and XINCOMEMEAN.

Table 7.6 presents estimates of the random components of the intercept and the two
random slopes, as well as covariances among the three. Each of the independent vari-
ables has been centered with respect to its grand mean, and estimates have been made
without contextual factors, cross-level interaction terms, or the other independent vari-
ables in the equation.

From here on, we will adhere to the naming conventions introduced in Table 4.14
and used only sporadically since then. Variables with random coefficients are given
names with all capital letters, such as ETHNIC1, and variables with fixed coefficients are
given names in the form XETHNIC2. The number affixed to each variable name tells us the
level—in this case, county or state—at which the variable is measured. As we have
already acknowledged, this set of conventions differs from that normally used, but we
have found this alternative preferable. In addition, some variable names have been sim-
plified by deleting letters, as in EDUCATE1 rather than EDUCATION1 and ASIA1 rather
than ASIAN1. This signifies nothing but a desire to fit material more easily into tables.

As we see in Table 7.6, each of the estimates of the random components is statistically
significant. This is consistent with our decision to treat the INTERCEPT1 and the slopes
for FAMILY1 and INCOME1 as varying from state to state rather than being fixed across
states. Note, however, that even though the random components in Table 7.6 were esti-
mated without contextual variables or cross-level interaction terms in the multilevel
regression equation, none of the covariances is statistically significant. Consistent with our
discussion of contextual variables and covariance structure in Chapter 3, however, we will
use the unstructured option, permitting random components to vary together.

We are now in a position to specify a multilevel regression model to serve as an
alternative to OLS models. Our multilevel model appears in Table 7.7, with estimated
fixed component values reported in Table 7.8. The large number of independent vari-
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TABLE 7.6. Random Component Estimates for Percentage Voting for Bush;
Fixed Components Not Included in Equation

Parameter Estimate Std. error Wald Z Sig. level

Residual 92.427 2.410 38.348 .000

INTERCEPT1 84.777 20.764 4.083 .000

INTERCEP1 by FAMILY1 –3.229 2.007 –1.609 .108

FAMILY1 0.793 0.264 3.004 .003

INTERCEPT1 by FAMILY1 –0.943 0.843 –1.119 .263

FAMILY1 by INCOME1 –0.009 0.083 –0.110 .912

INCOME1 0.206 0.054 3.796 .000
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TABLE 7.7. Multilevel Regression Model: Percentage Voting for Bush

Level-one model

YBUSH = β0J + β1JFAMILY1 + β2JINCOME1 + γ30XLNYOUTH1 + γ40XEDUCATE1 + γ50XBLACK1 + γ60XHISPANIC1

+ γ70XASIA1 + γ80XNATIVE1 + γ90XRURAL1 + (u0J + u1J * FAMILY1 + u2J * INCOME1+ eIJ)

Level-two model

β0J = γ00 + γ01XFAMILY2 + γ02XINCOME2 + γ03XBLACK2 + γ04XHISPANIC2 + γ05XASIA2 + γ06XNATIVE2

+ γ07XRURAL2 + γ08XLNYOUTH2 + γ09XEDUCATE2 + u0J

β1J = γ10 + γ11XFAMILY2 + γ12XINCOME2 + u1J

β2J = γ20 + γ21XINCOME2 + γ22XFAMILY2 + u2J

Full equation

YBUSH = γ00 + γ10FAMILY1 + γ20INCOME1 + γ30XLNYOUTH1 + γ40XEDUCATE + γ50XBLACK1 + γ60XHISPANIC1

+ γ70XASIA1 + γ80XNATIVE1 + γ90XRURAL1 + γ01XFAMILY2 + γ02XINCOME2 + γ03XBLACK2 + γ04XHISPANIC2

+ γ05XASIA2 +γ06XNATIVE2 + γ07XRURAL2 + X08LNYOUTH2 + X9EDUCATE2 + γ11XFAMILY2 * FAMILY1

+ γ12XINCOME2 * FAMILY1 + γ21XINCOME2 * INCOME1 + γ21XFAMILY2 * INCOME1 + u0J

+ u1J * FAMILY1 + u2J * INCOME1+ eIJ

TABLE 7.8. Multilevel Regression Equation: Percentage Voting for Bush

YBUSH = 66.500 + 1.523FAMILY1+2.221XLNYOUTH1 – 0.214INCOME + 0.034XEDUCATE1 – 0.008XBLACK1

(2.592) (0.111) (0.197) (0.059) (0.019) (0.000)

– 0.006XHISPANIC1 – 0.674XASIA1 – 0.006XNATIVE1 + 0.098XRURAL1 – 0.071XFAMILY2 * INCOME1
(0.000) (0.133) (0.000) (0.091) (0.025)

– 0.065XINCOME2 * FAMILY1 + 0.011XFAMILY2 * FAMILY1 + 0.013XINCOME2 * INCOME1
(0.020) (0.009) (0.046)

– 0.098XRURAL2 + 1.368XFAMILY2 – 0.224XINCOME2 – 0.004XBLACK2 – 0.002XHISPANIC2

(0.091) (0.433) (0.184) (0.002) (0.003)

– 0.015XNATIVE2 – 0.101XASIA2 + 6.349XLNYOUTH2 + 0.764XEDUCATE2

(0.006) (0.201) (2.324) (0.258)

R1
2 = 56.1%

N1 = 3090
N2 = 49

Note. Standard errors have been rounded to three decimals. Those represented by “0.000” represent extremely
small values, and each corresponds to a statistically significant regression coefficient.



ables in this model, including contextual variables and cross-level interaction terms,
suggests that multicollinearity may be a problem. As it turns out, 14 of the 22 variance
inflation factors are less than 2.000, and another 4 are less than 3.000. Only 2 variance
inflation factors—those for XRURAL2 (5.552) and XLNYOUTH2 (6.351)—are greater than
4.000, but each of these variables corresponds to a statistically significant slope. The
condition index is 9.939. Multicollinearity is not the serious problem we had antici-
pated.

7.7 INTERPRETING THE MULTILEVEL REGRESSION EQUATION
FOR COUNTY-LEVEL DATA

1. Each 1% increase in the number of county residents living in a traditionally
structured family (FAMILY1) corresponds, on average, to a 1.523-point in-
crease in percent voting for Bush. In the preliminary OLS regression analysis,
the increase was almost the same, 1.482 points. In the final OLS model, the
value of the FAMILY1 slope was 1.612. All told, the relationship between YBUSH

and our traditional family structure variable changes little from one regression
model specification to another.

2. In the preliminary OLS regression equation, each 1% increase in the natural
logarithm of percentage of county residents ages 18–24 corresponded, on aver-
age, to a 1.855-point increase in YBUSH. In the final OLS model, the value of the
same coefficient was 2.290; in the multilevel model, the slope for XLNYOUTH is a
statistically significant 2.221. In general, as the OLS specification more closely
approximates adequacy, the OLS estimates become more similar to the multi-
level regression results.

3. Each $1000 increase in county median family income (INCOME1) corre-
sponds, on average, to a 0.214-point decrease in percent voting for Bush.
Again, we had not expected a negative relationship. Nevertheless, this robust
relationship remains statistically significant and negative, with a value similar
to the preliminary and final OLS results.

4. In the preliminary OLS analysis, each 1% increase in the number of county res-
idents ages 18–24 who are not high school graduates corresponded, on average,
to a 0.188-point increase in percent voting for Bush. As regression model speci-
fication improved, however, the value of the coefficient became smaller. In the
multilevel regression equation, the coefficient for XEDUCATE1 is no longer statisti-
cally significant, as was the case with the final OLS model.

5. Each 1% increase in the number of county residents who are Black (BLACK1)
corresponds, on average, to a 0.006-point decrease in percent voting for Bush.
In the preliminary OLS analysis, the value of this coefficient was a good deal
larger, –0.242. We then decided that the relationship between YBUSH and XBLACK

was quadratic. Subsequently, after addition of contextual variables, the curvi-
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linear character of the relationship was linearized, reducing the value of the
coefficient for XBLACK to –0.006. Clearly, specification of the multilevel regres-
sion model benefited enormously from our efforts to find the best OLS regres-
sion model.

6. For each 1% increase in the number of county residents who are Hispanic
(HISPANIC1), there is, on average, a 0.006-point decrease in percent voting for
Bush. This is much smaller than the coefficient value of –0.176 reported in the
preliminary OLS analysis, but the same as the final OLS estimate of –0.006.
We had tentatively specified the functional form of the relationship to be
curvilinear, but as with XBLACK, it was linearized when we introduced contex-
tual variables. Again we see that specification of our multilevel regression
model was usefully informed by our work with OLS models, and the better the
OLS specification, the closer the OLS estimates to multilevel estimates.

7. For each 1% increase in the number of county residents who are Asian
(ASIA1), there is, on average, a 0.674-point decrease in percent voting for
Bush. This is a larger negative coefficient than the –0.537 we found with the
preliminary OLS results. Nevertheless, from specification to specification, the
substantive meaning of the relationship between percent voting for Bush and
percent Asian is about the same. Furthermore, the consequences of gradually
improved specification are evident when we compare coefficient values from
equation to equation.

8. For each 1% increase in the number of county residents who are Native Ameri-
can (NATIVE1), percent voting for Bush decreases, on average, by 0.006 points.
Though statistically significant and negative, this coefficient is much smaller
than the –0.409 that we estimated in our preliminary OLS regression model,
and much closer to the –0.005 in the final OLS model.

9. Three same-level interaction terms were introduced as the OLS model was
respecified. In the final OLS analysis, none was statistically significant, and
they were excluded from the multilevel regression model. It is true, however,
that one or more of the same-level interaction terms—XINCOME * XFAMILY, XRURAL

* XFAMILY, and XRURAL * XINCOME—might have emerged as statistically significant
as a manifestation of the improved specification offered by the multilevel
model. Our model, however, is quite complex even without these additional
terms.

10. A primary source of multilevel regression model complexity is the presence of
four implied cross-level interaction terms: XFAMILY2 * INCOME1, XINCOME2 *
FAMILY1, XFAMILY2 * FAMILY1, and XINCOME2 * INCOME1. In the multilevel
model, the statistically significant slopes for the first two of these terms tell us
the following: For each 1% increase in XFAMILY2, the negative relationship
between YBUSH and INCOME1 moves, on average, 0.071 points closer to zero.
For each 1% increase in XINCOME2, the positive relationship between YBUSH and
FAMILY1 increases, on average, by 0.133 points.
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11. In the preliminary regression analysis, each one-level increase in the urban–
rural continuum variable XRURAL1 corresponded, on average, to a 0.440-point
decrease in YBUSH. In the final OLS regression analysis, however, the XRURAL1 co-
efficient had diminished to statistical nonsignificance, and it is also statisti-
cally nonsignificant in the multilevel regression analysis. Once again, as
the OLS regression model specification more closely approximates adequacy,
the OLS coefficient values become more similar to the multilevel coefficient
values.

12. Each 1% increase in XFAMILY2 corresponds, on average, to a 1.368-point increase
in YBUSH, similar to the coefficient value of 1.612 for XFAMILYMEAN in the final OLS
analysis. None of the other OLS analyses included contextual factors.

13. Each 1% increase in the state-level variable XBLACK2 corresponds, on average, to
a 0.004-point decrease in YBUSH. The slope for XBLACKMEAN in the final OLS
regression analysis was not statistically significant. This comparison is espe-
cially interesting because the multilevel coefficient for XBLACK2 corresponds to a
sample size of 49, while XBLACKMEAN corresponds to a sample size of 3090. In
this instance, multilevel regression detected and measured a relationship that
otherwise would have been relegated to the status of statistical nonsignificance.

14. Each 1% in the aggregated contextual variable XNATIVE2 corresponds, on average,
to a 0.015-point decrease in YBUSH—nearly the same value as in the final OLS
model.

15. Each 1% increase in the state-level contextual variable XLNYOUTH2 corresponds,
on average, to a 6.349-point increase in percent voting for Bush. The statisti-
cally significant slope for XLNYOUTHMEAN in the final OLS model was a bit smaller,
5.040, but also statistically significant.

16. Each 1% increase in XEDUCATE2 (the percentage of state residents ages 18–24 who
are not high school graduates) corresponds, on average, to a 0.764-point
increase in YBUSH. This coefficient is just over twice the size of the statistically
significant coefficient for XEDUCATEMEAN in the final OLS analysis.

7.8 KNOWING WHEN TO STOP

If we had compelling theoretical or substantive reasons, our analysis of county-level vot-
ing behavior could be developed further. In fact, thinking about this analysis forces us to
recognize how many consequential specification decisions are made, even if by default,
when we do multilevel regression. In the absence of a compelling rationale for changing
the model specification in Table 7.8, it seems a good idea to avoid making a complex
multilevel regression model even more complex. Similarly, it seems unwise to generate
confusion by searching for a way to make the existing model more parsimonious; there
are simply too many options available for what would be an exercise in naked empiri-
cism.
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The covariance parameter estimates for our multilevel voting behavior analysis
appear in the top panel of Table 7.9. To facilitate comparison, we have also reproduced
the covariance parameter estimates from Table 7.6. With or without the contextual vari-
ables and cross-level interaction terms in the analysis, none of the random component
covariances is statistically significant, while all three random component variances
remain statistically significant. Nevertheless, it is clear that introduction of contextual
variables and cross-level interaction terms has substantially reduced the numerical value
of each random component estimate.

As we have done in some of our previous analyses, we may wish to determine the
range of values covered by each of our random coefficients. To do so, we can construct
intervals for the random intercept and each of the two random slopes (see Table 7.10).
The intervals will include intercept and slope values for 95% of the 49 states in the vot-
ing behavior data set.

The interval constructed for the slopes for XFAMILY1 and XINCOME1 forcibly reminds us
that varying slopes may cover such a broad range as to make interpretation difficult
indeed. It is all well and good to say that every $1000 increase in median family income
corresponds, on average, to a 0.214-point decrease in YBUSH. In instances such as this,
however, we must bear in mind that such unambiguous statements, while true, need to
be qualified. An improved multilevel regression specification might substantially reduce
the width of this interval.
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TABLE 7.9. Random Component Estimates for Percentage Voting for Bush;
Contextual Variables and Cross-Level Interaction Terms Included in Equation

Parameter Estimate Std. error Wald Z Sig. level

Residual 64.153 1.672 38.362 .000
INTERCEPT1 28.678 7.432 3.993 .000
INTERCEPT1 by FAMILY1 –0.127 0.702 –0.181 .856
FAMILY1 0.274 0.109 2.506 .012
INTERCEPT1 by INCOME1 –0.259 0.386 –0.670 .503
FAMILY1 by INCOME1 –0.546 0.043 –1.282 .200
INCOME1 0.107 0.030 3.531 .001

TABLE 7.6, Reproduced. Random Component Estimates for Percentage Voting for Bush;
Contextual Variables and Cross-Level Interaction Terms Not Included in Equation

Parameter Estimate Std. error Wald Z Sig. level

Residual 92.427 2.410 38.348 .000
INTERCEPT1 84.777 20.764 4.083 .000
INTERCEPT1 by FAMILY1 –3.229 2.007 –1.609 .108
FAMILY1 0.793 0.264 3.004 .003
INTERCEPT1 by FAMILY1 –0.943 0.843 –1.119 .263
FAMILY1 by INCOME1 –0.816 0.830 –0.983 .368
INCOME1 0.206 0.054 3.796 .000



7.9 SUMMING UP

In Table 7.11, we compare results for four regression models: the preliminary OLS speci-
fication (OLS Preliminary); the final OLS specification, with aggregated contextual vari-
ables and same-level interaction terms (OLS Final); an OLS specification, discussed here
for the first time, in which we mimic our multilevel analysis (OLS “Multilevel”); and the
multilevel regression equation itself (Multilevel Regression).

For variables that used more than one variable name, such as those with fixed coef-
ficients in OLS equations and random coefficients in the multilevel equation, both
names are given. Results are presented only for variables that had statistically significant
regression coefficients in at least one of the four equations. Dashes (—) indicate terms
not included in a specific model. The abbreviation “n.s.” means statistically non-
significant for a specific model. The specified alpha level is .05. An R2 value is given for
each of the OLS specifications. The value of R1

2 is given for the multilevel regression
equation.

In Table 7.11 we see once again that there is usually little difference between coeffi-
cients estimated with OLS regression and multilevel regression. We also see that in gen-
eral, the more adequate the OLS specification, the closer the estimated coefficients are to
the values of the multilevel coefficients.

Furthermore, and especially with respect to the slopes for contextual variables, even
the best OLS specification yields standard errors with a negative bias, resulting in mis-
leading results for tests of significance. This is most obvious with respect to the unstan-
dardized slopes for XRURALMEAN2, XINCOMEMEAN2, and XHISPANICMEAN2: Each slope is statisti-
cally significant in the OLS model that mimics multilevel regression, but not in the
actual multilevel model.
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TABLE 7.10. Multilevel Voting Behavior Analysis:
Variability with Respect to Random Components

aINTERCEPT – t.05SaINTERCEPT to aINTERCEPT + t.05SaINTERCEPT

66.500 – 1.960(60.035)1/2 to 66.500 + 1.960(60.035)1/2

51.314 to 81.686

bFAMILY1 – t.05SbFAMILY1 to bFAMILY1 + t.05SbFAMILY1

1.523 – 1.960(0.365)1/2 to 1.523 + 1.960(0.365)1/2

0.339 to 2.707

bINCOME1 – t.05SbINCOME1 to bINCOME1 + t.05SbINCOME1

–0.214 – 1.960(0.136)1/2 to – 0.214 + 1.960(0.136)1/2

–0.937 to 0.508
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TABLE 7.11. Comparing Models: Percentage Voting for Bush

Variable
Preliminary

OLS Final OLS
OLS

“Multilevel”
Multilevel
Regression

XFAMILY1/FAMILY1 1.482
(0.075)

1.612
(0.080)

1.644
(0.079)

1.523
(0.111)

XLNYOUTH1 1.855
(0.222)

2.290
(0.207)

2.289
(0.218)

2.221
(0.197)

XINCOME1/INCOME1 –0.242
(0.029)

–0.187
(0.035)

–0.231
(0.032)

–0.214
(0.059)

XEDUCATION 0.188
(0.024)

n.s. n.s. n.s.

XBLACK1 –0.224
(0.017)

–0.006
(0.000)

–0.006
(0.000)

–0.008
(0.000)

XHISPANIC1 –0.176
(0.019)

–0.005
(0.000)

–0.006
(0.000)

–0.006
(0.000)

XASIAN1 –0.376
(0.093)

–0.615
(0.148)

–0.764
(0.143)

–0.674
(0.133)

XNATIVE1 –0.409
(0.031)

–0.005
(0.000)

–0.005
(0.000)

–0.006
(0.000)

XRURAL1 0.440
(0.112)

n.s. n.s. n.s.

XLNYOUTHMEAN2/XLNYOUTH2 — 5.040
(0.409)

7.209
(0.540)

6.329
(2.234)

XEDUCATEMEAN2 — 0.380
(0.076)

0.334
(0.077)

0.764
(0.258)

XRURALMEAN2 — –1.597
(0.238)

–4.213
(0.301)

n.s.

XFAMILYMEAN2/XFAMILY2 — 1.879
(0.134)

1.659
(0.131)

1.368
(0.433)

XINCOMEMEAN2 — –0.655
(0.050)

–0.481
(0.049)

n.s.

XHISPANICMEAN2 — 0.002
(0.000)

0.001
(0.000)

n.s.

XNATIVEMEAN2 — –0.017
(0.002)

–0.017
(0.002)

–0.015
(0.006)

XASIAN2 — –0.184
(0.114)

n.s. n.s.

XFAMILY2 * INCOME1 — — –0.043
(0.012)

–0.071
(0.025)

XINCOME2 * FAMILY1 — — 0.053
(0.015)

–0.065
(0.020)

R2/R1
2 37.1% 49.9% 53.0% 56.1%



The best estimates of coefficients and standard errors are provided by the multilevel
regression model with REML estimators. It is the only one suited to making best use of
the information available in an analysis with multiple levels, where nesting has to be
taken into consideration, random coefficients should be used, and contextual variables
with cross-level interaction terms are intrinsic parts of the regression model. As we illus-
trated in Table 7.10, however, multilevel regression results merit cautionary comments
peculiar to that method of analyzing data.

7.10 USEFUL RESOURCES

Steenbergen, M., & Bradford, S. (2002) Modeling Multilevel Data Structures. American Journal of
Political Science, 46, 218–237.

Belanger, P., & Eagles, M. (2005) The Geography of Class and Religion in Canadian Elections. Paper
Presented at the Canadian Political Science Association Conference, University of Western
Ontario, London, Ontario, June 2–4.

The article by Steenbergen and Bradford is fairly dense, but it merits attention. It makes a
compelling case for application of multilevel regression in comparative political analysis and in
political science generally. Application of the authors’ recommendation to studies of voting behav-
ior is straightforward.

The paper by Belanger and Eagles is readable and interesting. A primary purpose of their
three-level model is to demonstrate that selection of context—in this Canadian case, locality or
province—is crucial. The characteristics of contexts that are remote from individuals, such as
provinces, are less likely to influence individual voting behavior than more immediate contexts,
such as identifiable localities. Clearly, the same applies to contextual influences on other forms of
individual behavior as well.
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8

Multilevel Regression Models
with Three Levels

8.1 CHAPTER INTRODUCTION

Based on our county-level voting behavior example in Chapters 6 and 7, it is evident
that counties within states tend to be more alike than counties between states. We have
made use of this knowledge in applying a multilevel structure to our analysis and in
gauging the contribution of contextual factors—specifically state-level aggregates, along
with cross-level interaction terms—to explaining variability in the percentage of county
residents voting for George W. Bush. In the same way, we have sought to explain state-
to-state variability in random components.

Our analysis certainly would have been more informative if we had measures on
individuals comparable to those on counties and states. Students of voting behavior are
usually a lot more interested in how individuals behave than in how counties behave. In
addition, with individual-level information we could have constructed a multilevel
regression model with more than two levels. We might have treated individuals as nested
in both counties and states. Our multilevel model would have become a good deal more
complex, but it might have become more interesting as well.

Instructional treatments of models with three or more levels are not hard to find.
The very brief account provided by Luke (2004) is especially helpful, as are the on-the-
mark cautionary observations offered by Hox (2002) and Steenbergen and Bradford
(2002). Snijders and Bosker (1999) develop some informative and interesting examples.

While three-level models are available for study, most of them are quite simple, and
often do not include explanatory variables at level three. One reason for this is that mod-
els with more than two levels quickly become statistically cumbersome and may include
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implied cross-level interaction terms formed by using variables at all three levels (Hox,
2002). It is true that higher-order interaction terms are sometimes found in empirical
research, but unless they have a clear rationale in theoretical or substantive literature,
they may defy interpretation.

Recall the difficulties we encountered in making the numerous and difficult specifi-
cation decisions we encountered with two-level models: “Which independent variables
should be used? What are the proper functional forms? Which coefficients should be
fixed? Which coefficients should be random? Is there reason to depart from a covariance
structure that permits random components to covary?” With models that may have
three or more levels, the number of decisions is even more daunting. We must answer all
the questions posed by two-level models, and then continue to this one: “Do we need
more than two levels?”

Once again, the power of multilevel regression is limited by our theoretical and sub-
stantive knowledge. In the case of models with more than two levels, moreover, this con-
straint is even more conspicuous and confining than it has been until now. Beyond that,
as already noted, when we are working with more than two levels, statistical complexity
itself can be an effective deterrent to unduly ambitious analytical efforts. We will illus-
trate this concretely as we proceed through this chapter, especially with regard to the
proliferation of random terms.

In addition, when we work with more than two levels, it is common to find that
plausible-sounding third- and higher-level independent variables add nothing of explan-
atory value, and that random components do not vary with respect to third- and higher-
level grouping variables. If we look, for example, at the usual school system hierarchy—
students, classrooms, schools, districts, regional agencies, states—it seems clear that the
higher organizational levels are increasingly remote from the lives of individuals. Atten-
uation of group effects over social and geographical distance is precisely what Belanger
and Eagles (2005) found in their research on voting behavior in Canada. Yes, higher lev-
els may have substantial effects, but without the guidance of well-developed theory or
rich substantive literature, unproductive guesswork, data dredging, and intractable sta-
tistical complications come to the fore.

Nevertheless, multilevel regression models with more than two levels can provide
useful information. We gradually develop increasingly complex three-level models
throughout the remainder of this chapter. Each example is designed to build on the one
that precedes it. In this way we work toward development of three-level models that are
more than just exercises in complexity.

8.2 STUDENTS NESTED WITHIN SCHOOLS
AND WITHIN DISTRICTS

Just as counties are nested within states, we also know that students are nested within
schools and within districts. As a result, multilevel regression models with more than
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two levels are easy to imagine. Actually estimating such models, however, can be diffi-
cult and sometimes simply not practicable. Furthermore, the amount of computer time
needed to estimate models with three or more levels can be formidable.

The models developed below are based on our large Kentucky data set containing
information on nearly 50,000 eighth graders nested in 347 schools that are nested in 135
districts. We have already worked with numerous examples using this data set. Now,
however, we are moving toward use of three levels: students nested within schools and
within districts. The individual-level dependent variable is the California Basic Educa-
tional Skills Test measure of math achievement (National Evaluation Systems, 2002).

8.3 LEVEL ONE: STUDENTS

As we have seen in previous examples, the only student-level independent variables
available with this data set are gender and ethnicity. Given this, let’s begin very simply,
building on what we know.

Table 8.1 is just an OLS simple regression equation. We have seen specifications of
this sort at various places throughout our presentation. Individual student math achieve-
ment is treated as a function of one independent variable, individual student gender
(XGENDER). The possibility that nesting has occurred has not been acknowledged. As
always with OLS regression, the intercept and the slope are fixed. The error term is ran-
dom, varying from one level-one observation to another.

In Table 8.2 we see that dividing the intercept and slope by their standard errors will
give us t values that are statistically significant at any conventionally used alpha level.
Interpretation of coefficients is straightforward: Since XGENDER1 is coded 1 for females and
0 for males, females, on average, score 1.177 points lower on the math achievement test
than males.
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TABLE 8.1. Math Achievement: OLS
(Inherently Single-Level) Regression Model

Y = a + bXGENDER + e

TABLE 8.2. OLS Regression Equation:
Math Achievement on Gender

Y = 49.258 – 1.177XGENDER1

(0.084) (0.169)

R2 = 0.6%
N = 49,616



8.4 LEVEL TWO: SCHOOLS

An obvious question now is “Do we need more than one level?” To find out, we proceed
as usual and calculate the unconditional intraclass correlation coefficient, using the
information in Table 8.3. In this instance, individual students are at level one and
schools are at level two.

r = 72.945/(72.945 + 411.823) = 0.150

The intraclass correlation coefficient tells us that 85% of the variability in math achieve-
ment occurs within schools, while 15% occurs between schools. Nesting of students
within schools is thus cause for concern, deflating standard errors of regression coeffi-
cients, rendering tests of significance suspect, and causing uncertainty as to the correct
number of degrees of freedom to use in statistical tests.

Consequently, in Table 8.4 we have taken the OLS simple regression specification
from Table 8.1 and transformed it into a random coefficient regression equation. The
random coefficient equation uses REML estimators and has a random intercept and a
random slope. The intercept and slope used in predicting student-level reading achieve-
ment are permitted to vary from one school to another.

There are, however, no level-two predictors to explain variability in the random
intercept and random slope. Instead, the random intercept is treated as a function of the
average intercept over all students, γ00, plus a measure of school-to-school variability in
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TABLE 8.3. Do We Need More Than One Level?: Random Components

Parameter Estimate Std. error Wald Z Sig. level

Residual 411.823 2.622 156.860 .000
INTERCEPT1 72.942 6.816 10.703 .000

TABLE 8.4. Math Achievement: Random Coefficient
Regression Model with Two Levels

Level-one model

YIJ = β0J + β1JGENDER1 + eIJ

Level-two model

β0J = γ00 + u0J

β1J = γ10 + u1J

Full model

YIJ = γ00 + γ10GENDER1 + u0J + u1J * GENDER1 + eIJ



the intercept, u0J. Similarly, the random slope is treated as a function of the average slope
over all students, γ10, plus a measure of school-to-school variability in the slope, u1J. In
the full model, all this is joined together in a single equation, as we have come to expect.

The fixed and random component estimates for our two-level random coefficient
model are reported in Tables 8.5 and 8.6. As with the OLS results in Table 8.2, the inter-
cept and slope in Table 8.5 are statistically significant, and interpretation of fixed slope is
straightforward: Females, on average, score 0.999 points lower in math achievement
than males. The slope estimate differs very little from the same value in Table 8.2. The
random components reported in Table 8.6 tell us that both the random intercept and the
random slope have statistically significant variances, meaning that the random compo-
nents vary across schools. The intercept-by-slope covariance, however, is not statistically
significant.

We have yet to introduce a school-level predictor into the analysis, transforming
our random coefficient regression model into a multilevel regression model. We will, of
course, do so when we try to explain variability in the random terms. So far, however, we
have used the school level only to permit the random intercept and random slope to
manifest measurable variability.

8.5 LEVEL THREE: DISTRICTS

Before introducing one or more contextual variables from the school level, we may ask if
there is reason to introduce yet another level, districts. Suppose, for example, we suspect
that the level-one intercept and slope are best construed as random with respect to both
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TABLE 8.5. Random Coefficient Regression of Math
Achievement on Gender; Two-Level Model; Fixed Components

Y = 45.163 – 0.999GENDER1
(0.499) (0.218)

R1
2 = 0.6%

N1 = 46,770
N2 = 347

TABLE 8.6. Random Coefficient Regression of Math Achievement on Gender;
Two-Level Model; Random Components

Parameter Estimate Std. error Wald Z Sig. level

Residual 410.301 2.621 156.543 .000
INTERCEPT1 72.974 6.817 10.705 .000
INTERCEPT1 by GENDER1 –3.164 2.315 –1.367 .172
GENDER1 2.736 0.949 2.882 .004



schools and districts. We can make a judgment as to whether or not there is nakedly
empirical merit to this view by using the information in Table 8.7. Again we compute an
unconditional intraclass correlation coefficient. Now, however, we want to know if math
achievement, in addition to varying within schools and between schools, also varies
between districts.

Given this decomposition of math achievement variability across three levels, we
may ask if students in the same district are more alike than students in other districts. To
find out, we take the random component variances for all three levels and sum them.
Then we divide this sum into the estimated variance between districts. This is a straight-
forward extension of the simple procedure used to estimate the unconditional intraclass
correlation for a two-level model.

r = Between-districts variance/(Within-schools variance
+ Between-schools-within-districts variance
+ Between-districts variance)

r = Between-districts variance/Total variance

r = 7.420/(415.728 +31.605 + 7.420) = 0.016

Since the between-districts variance is statistically significant, we know that the
intraclass correlation is statistically significant as well (Snijders & Bosker, 1999). As a
practical matter, however, we should acknowledge that only 1.6% of the total variability
in math achievement occurs between districts. Individual students in the same district
tend to be more like each other than like students in other districts, but the association
is quite weak.

Snijders and Bosker (1999) introduce a variety of useful intraclass correlation coef-
ficients that we can apply, using different combinations of levels from Table 8.7. If we
wish, for example, we may calculate the intraclass correlation coefficient that measures
the degree to which schools within the same district tend to be more like each other than
like schools in other districts. We simply divide the between-schools-within-districts
variance by the sum of the between-schools-within-districts variance and the between-
districts variance.
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TABLE 8.7. Do We Need More Than Two Levels?: Random Components

Parameter Estimate Std. error Wald Z Sig. level

Residual: Variability within schools 415.728 2.695 154.245 .000

INTERCEPT at level two:
Variability between schools within districts

31.605 3.900 8.104 .000

INTERCEPT at level three:
Variability between districts

7.420 3.109 2.326 .020



r = Between-schools-within-districts variance/
(Between-schools-within-districts variance + Between-districts variance)

r = 7.420/(31.605 + 7.420) = 0.190

In this instance, the intraclass correlation means that 19% of the between-schools vari-
ance in math achievement occurs across districts.

Similarly, if we want to know the total amount of variability in individual student
math achievement that is due to grouping within schools and within districts, it is not
difficult to modify the formula for the intraclass correlation to compute this value.

r = (Between-schools-within-districts variance
+ Between-districts variance)/Total variance

r = (31.605 + 7.420)/454.753 = 0.086

In other words, 8.6% of the total variability in math achievement is due to students’
being grouped in schools and in districts.

These variations on the same simple measure begin to suggest the complexity we
analysts encounter when working with three-level models. Are we interested in students
nested within schools? Students nested within districts? Students nested in both schools
and districts? Students nested in schools and schools nested in districts? Schools nested
in districts? Complex indeed!

In our illustrations of three-level models, we will give most of our attention to the
simultaneous grouping of students within schools and districts. Specifically, we will
begin with and develop a model in which the intercept and the GENDER1 slope are ran-
dom with respect to both schools and districts. This is really just a three-level random
coefficient regression model.

8.6 NOTATION AND SUBSCRIPT CONVENTIONS
FOR SPECIFYING A THREE-LEVEL MODEL

With three levels, notation becomes a bit more complex than with two levels. Further-
more, notational conventions for three-level models vary markedly from one source
to another (compare, e.g., Snijders & Bosker, 1999; Raudenbush & Bryk, 2002;
Steenbergen & Bradford, 2002; Singer & Willett, 2003; Luke 2004; Belanger & Eagles,
2005).

Most accounts of three-level models augment the use of beta and gamma notation
by using different symbols for variables and parameter estimates at each level. Rather
than using different symbols, however, we will rely on subscripts to indicate the level-
specific nature of each variable and each parameter estimate.

For the level-one model in Table 8.8, the math achievement dependent variable is
represented by YIJK. This means that each math achievement score refers to a specific stu-
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dent (I) in a specific school (J) in a specific district (K). The same subscripts are attached
to the level-one residual, eIJK. Each level-one residual refers to the difference between
observed and predicted math achievement scores for a specific student (I) located in a
specific school (J) located in a specific district (K).

The random intercept is represented by a beta coefficient, β0JK. The subscripts tell us
that the intercept has the same value for individual students (0) in school J in district K.
Since the intercept varies across schools and districts, β0JK is the mean score for students
in school J and district K. Similarly, the random slope for GENDER1, β1JK, measures the
average difference between males and females on YIJK. The subscripts tells us that this is
the slope for a student-level predictor (1) for school J in district K. If there were two or
more student-level predictors, their slopes would be numbered sequentially (1, 2, . . . ,
I). β1JK is random across schools (J) and districts (K). In other words, it is the effect of
GENDER1 on math achievement for a student located in school J and district K.

For the level-two model, β00K tells us the common value of the school-level random
intercept, β0JK, for each student (0) in each school (J) in each district (K). In other
words, β00K is the school-level group effect for the intercept. School-specific variation
around this value is represented by u0JK. β10K tells us the common value of the school-
level random slope, β1JK, for each student (1) in each school (J) in district (K). In other
words, β10K is the school-level group effect for the slope. School-specific variation
around this value is represented by u1JK.

For the level-three model, γ000 tells us the common value of the random intercept
for each student (0) in each school (0) in each district (0). The string of three zeroes
constituting the subscripts indicates that γ000 is the grand mean for math achievement.
District-specific variation around this value is represented by u00K. Similarly, γ100 tells us
the common value of the random slope for each student (1) in each school (0) in each
district (0). District-specific variation around this common value is represented by u10K.
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TABLE 8.8. Math Achievement: Random Coefficient Regression with Three Levels;
One Student-Level Predictor; Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKGENDER1 + eIJK

Level-two model

β0JK = β00K + u0JK

β1JK = β10K + u1JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

Full model

YIJK = γ000 + γ100GENDER1 + u00K + u0JK + u10K * GENDER1 + u1JK * GENDER1 + eIJK



As we develop our discussion of three-level models, we will provide additional
information concerning notation and subscripts. The modifications we will make, how-
ever, are just extensions of the basic scheme we have just presented. Proper use of sub-
scripts in three-level models takes some getting used to, or at least that has been my
experience.

8.7 ESTIMATING A THREE-LEVEL RANDOM COEFFICIENT MODEL

Fixed components for this three-level model are reported in Table 8.9, and random com-
ponents are reported in Table 8.10. As with the two-level equation in Table 8.5, the fixed
component estimates of the intercept and slope are statistically significant. Females, on
average, score 0.840 points lower than males—an estimate with an absolute value a bit
lower than the OLS and two-level REML estimates.

Though we still have only one predictor, the complexity of three-level models has
begun to show itself in the random component estimates, with four variances and two
intercept-by-slope covariances. As with the two-level model reported in Tables 8.4
through 8.6, the variances for the intercept and the GENDER1 slope are statistically sig-
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TABLE 8.9. Math Achievement: Random Coefficient Regression
with Three Levels; One Student-Level Predictor; Random Intercept
and Random Slope at Level Two and Level Three; Fixed Components

Y = 49.281 – 0.840GENDER1
(0.481) (0.247)

R1
2 = 0.6%

N1 = 46,770
N2 = 347

TABLE 8.10. Math Achievement: Random Coefficient Regression with Three Levels;
One Student-Level Predictor; Random Intercept and Random Slope at Level Two and Level Three;
Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 414.645 2.693 156.952 .000

INTERCEPT1 variance at level two 31.217 3.808 8.198 .000

INTERCEPT1-by-GENDER1 covariance at level two –1.530 1.278 –1.197 .231

GENDER1 variance at level two 2.736 0.949 2.882 .004

INTERCEPT1 variance at level three 7.900 3.155 2.504 .012

INTERCEPT1-by-GENDER1 covariance at level three –1.496 1.017 –1.471 .141

GENDER1 variance at level three 1.210 0.594 2.308 .042



nificant at level two. In addition, we see that the variances for the intercept and the
GENDER1 slope are also statistically significant at level three. The random intercept and
the random slope vary across schools and across districts. Neither covariance, however,
is statistically significant.

Clearly, there is a lot more information in the random component results reported
in Table 8.10 than in Table 8.6. Furthermore, we can be confident that the random com-
ponent estimates at level two better reflect the way the world works, since we have per-
mitted their variability to be apportioned across both schools and districts. Nevertheless,
given the modest differences between the fixed component estimates in Tables 8.9 and
8.5, it may still be unclear that we have gained much from the work and computer time
needed to specify and estimate a three-level model.

SPSS remains easy to use with three levels. The instructions in SPSS Routine 8.1 are
only a little more complicated than those in SPSS Routines 1.1, 2.1, 2.2, and 2.3.

If we reestimate the level-two and level-three models with ML rather than REML,
we can use the deviance difference statistic and the information criteria routinely pro-
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SPSS Routine 8.1. Three-Level Regression Model
for Math Achievement

1. Open the SPSS data file; click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Insert the school identifier and the district identifier into the SUBJECTS box.
4. Click on CONTINUE, insert math achievement into the DEPENDENT variable box,

and insert GENDER1 into the COVARIATES box.
5. Click on FIXED. In the small box in the middle of the screen change FACTORIAL

to MAIN EFFECTS.
6. Move the independent variable from the FACTORS and COVARIATE(S) box to the

MODEL box.
7. Click on CONTINUE.
8. Click on the RANDOM button in the middle of the screen. Move the school

identifier from the SUBJECTS box to the COMBINATIONS box. In the small box
in the middle of the screen, change FACTORIAL to MAIN EFFECTS. Click on
INCLUDE INTERCEPT and move the independent variable GENDER1 into the
MODEL box.

9. Just above INCLUDE INTERCEPT select UNSTRUCTURED.
10. Click on NEXT. Move the district identifier from the SUBJECTS box to the

COMBINATIONS box.
11. Change FACTORIAL to MAIN EFFECTS. Click on INCLUDE INTERCEPT, and move

GENDER1 into the MODEL box.
12. Just above INCLUDE INTERCEPT select UNSTRUCTURED.
13. Click on CONTINUE, and then click on the STATISTICS button.
14. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
15. Click on CONTINUE and click on OK.



vided by SPSS (see Table 8.11) to make a better-informed judgment as to whether or not
the three-level model is really a better-fitting one.

Deviance difference = 424599.4 – 424579.1 = 20.3

df = 9 – 6 = 3

In this case, the deviance difference is statistically significant (p < .05), indicating that
the three-level model provides a better fit. The four information criteria, however, give
inconsistent results—an outcome with which we have become familiar. When we refer
to the most commonly used criteria, Akaike’s Information Criterion indicates that the
three-level model is the better-fitting one, while Schwarz’s Bayesian Criterion indicates
that the two-level model provides a better fit to the Kentucky data. If we refer to the less
commonly used information criteria, we are faced with the same sort of ambiguity.

Rather than anguish over which model really provides the better fit, we will simply
acknowledge that each is an obvious oversimplification. No one imagines that gender is
the only factor contributing to student-level difference in math achievement. Further-
more, it seems extremely unlikely that coefficients estimated with student-level gender
as the only predictor will not be compromised by misspecification. We would do well to
move toward a closer approximation of real-world complexity in explaining math
achievement differences.

Nevertheless, it is important to recognize what we have accomplished: We have esti-
mated a three-level random coefficient model in which the intercept and slope are ran-
dom for both schools and districts. We have found, moreover, that the intercept and
slope do in fact vary with respect to both level two and level three. We will use this
three-level model as a point of departure as we add predictors at all levels.

8.8 ADDING A SECOND LEVEL-ONE PREDICTOR

The three-level model specified in Table 8.12 contains an additional level-one predictor
with a random slope, ETHNIC1 (coded 1 for Blacks and 0 otherwise). The notation and
subscript conventions for this model are straightforward extensions of the model speci-
fied in Table 8.8.
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TABLE 8.11. Information Criteria for Tables 8.5 and 8.9

Criterion Three-Level Model Two-Level Model

–2 log likelihood 424579.1 424599.4
Akaike’s Information Criterion 424597.1 424611.4
Hurvich and Tsai’s Criterion 424597.1 424611.4
Bozdogan’s Criterion 424685.0 424670.0
Schwarz’s Bayesian Criterion 424676.0 424664.0

Note. The smaller value for each measure is boldfaced and italicized.



In the level-one model, the subscripts for the ETHNIC1 random slope, β2JK, tell us
that this is the slope for our second student-level predictor (2) and that it is random
across schools (J) and districts (K). The level-two model tells us that β2JK is a function of
two factors: β20K, the common value of the school-level random slope, β2JK, for each stu-
dent (2) in school J in district K; and u2JK, school-specific variation around this common
value. In the level-three model, we see that β20K is a function of two factors: γ200, the
common value of the random intercept for each student (2) in each school (0) in district
K; and u20K, district-specific variation around this common value.

Fixed components for this three-level model are reported in Table 8.13, and random
components are reported in Table 8.14. All coefficients in Table 8.13 are statistically sig-
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TABLE 8.12. Math Achievement: Random Coefficient Regression with Three Levels;
Adding a Second Level-One Predictor; Random Intercept and Random Slope at Level Two
and Level Three

Level-one model

YIJK = β0JK + β1JKGENDER1 + β2JKETHNIC1 + eIJK

Level-two model

β0JK = β00K + u0JK

β1JK = β10K + u1JK

β2JK = β20K + u2JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

β20K = γ200 + u20K

Full model

YIJK = γ000 + γ100GENDER1 + γ200ETHNIC1 + u00K + u0JK + u10K * GENDER1 + u1JK * GENDER1

+ u20K * ETHNIC1 + u2JK * ETHNIC1 + eIJK

TABLE 8.13. Math Achievement: Random Coefficient Regression with
Three Levels; Adding a Second Level-One Predictor; Random Intercept
and Random Slope at Level Two and Level Three; Fixed Components

Y = 49.285 – 0.811GENDER1 – 8.046ETHNIC1
(0.483) (0.238) (0.697)

R1
2 = 2.7%

N1 = 46,770
N2 = 347



nificant, and interpretation is straightforward: Female students, on average, score 0.811
points below male students in math achievement. Black students, on average, score
8.046 points below White students.

In Table 8.14 we see that, just as two-level models do, three-level regression models
give us a good deal of discretion with regard to including interaction terms not implied
by model specification. In this instance, we have created a same-level multiplicative
interaction term with GENDER1 and ETHNIC1. The fixed slope for GENDER1 *
ETHNIC1 turns out not to be statistically significant. Nevertheless, the notion that the
relationship between gender and math achievement varies from category to category of
ethnicity seems worthy of investigation.

If there had been any doubt as to whether or not the same-level interaction term
should be retained, we could have reestimated the equations in Tables 8.13 and 8.14
with ML, and then used the deviance difference and information criteria, as given in
Table 8.15.

Deviance difference = 413565.9 – 431565.1 = 0.08

df = 15 – 14 = 1

With the significance level set at .05, the deviance difference is not statistically signifi-
cant. This indicates that both models fit the Kentucky data equally well, which we inter-
pret to mean that nothing was gained by adding the GENDER1 * ETHNIC1 interaction
term. Nevertheless, each of the smaller-is-better information criteria tells us that the
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TABLE 8.14. Math Achievement: Random Coefficient Regression with Three Levels;
Adding a Second Level-One Predictor; Random Intercept and Random Slope at Level
Two and Level Three; Same-Level Interaction Term Included; Fixed Components

Y = 49.265 – 0.808GENDER1 – 8.046ETHNIC1 + 0.550GENDER1 * ETHNIC1
(0.483) (0.238) (0.697) (0.874)

R1
2 = 2.7%

N1 = 46,770
N2 = 347

TABLE 8.15. Information Criteria for Tables 8.13 and 8.14

Criterion Without interaction term With interaction term

–2 log likelihood 413565.1 413565.9
Akaike’s Information Criterion 413597.9 424611.4
Hurvich and Tsai’s Criterion 413597.9 424611.4
Bozdogan’s Criterion 413753.9 424670.0
Schwarz’s Bayesian Criterion 413737.9 424664.0

Note. The smaller value for each measure is boldfaced and italicized.



model without the same-level interaction term is the better-fitting one, although differ-
ences between criteria estimated for the models with and without the interaction term
are small.

We conclude that there is no gender-by-ethnicity interaction. However, investigat-
ing this possibility has shown us that discretionary use of same-level interactions is
another way in which we may develop three-level models to make them more instruc-
tive.

Still more interesting—some might say alarming!—with regard to the model speci-
fied in Table 8.12 are the random components reported in Table 8.16. This table is far
more complex than anything we have seen before, giving values for six random compo-
nent variances and six random component covariances. And we still have only two pre-
dictors, both at level one!

The variances for INTERCEPT1 at levels two and three are statistically significant,
indicating that the intercept does in fact vary across both schools and districts. In addi-
tion, the variance of the random component of the slope for ETHNIC1 is statistically sig-
nificant at level two, and the variance of the random slope for GENDER1 is statistically
significant at level three. This means that the ETHNIC1 slope does in fact vary across
schools, and the GENDER1 slope does in fact vary across districts.

In addition, the negative INTERCEPT1-by-ETHNIC1 covariance is statistically sig-
nificant at the school level: At level two, the random components for the intercept and
the ETHNIC1 slope vary in opposite directions. This suggests that as school mean math
achievement increases, the comparative math achievement disadvantage associated with
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TABLE 8.16. Math Achievement: Random Coefficient Regression with Three Levels;
Adding a Second Level-One Predictor; Random Intercept and Random Slope at Level Two
and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 399.771 2.632 151.913 .000
INTERCEPT1 variance at level two 31.481 3.860 8.156 .000

INTERCEPT1-by-GENDER1 covariance at level two –1.771 1.232 –1.438 .150

GENDER1 variance at level two 0.996 0.827 1.205 .228

INTERCEPT1-by-ETHNIC1 covariance at level two –9.359 3.461 –2.704 .007

GENDER1-by-ETHNIC1 covariance at level two –2.183 1.877 –1.163 .245

ETHNIC1 variance at level two 26.577 7.850 3.386 .001

INTERCEPT1 variance at level three 7.907 3.217 2.458 .014

INTERCEPT1-by-GENDER1 covariance at level three –1.234 1.006 –1.236 .216

GENDER1 variance at level three 1.168 0.666 1.754 .083

INTERCEPT-by-ETHNIC1 covariance at level three –1.035 3.634 –0.285 .776

GENDER1-by-ETHNIC1 covariance at level three 2.553 1.526 1.672 .094

ETHNIC1 variance at level three 9.577 8.488 1.128 .259



being Black decreases. Higher-achieving schools, in other words, may do a better job of
closing the Black–White achievement gap.

The fact remains, however, that there is a good deal of random component variabil-
ity to be explained in Table 8.16. As is often the case, we have little theoretical or sub-
stantive information to guide our efforts. An obvious way to simplify Table 8.16 is to use
the variance components covariance structure, constraining random components not to
covary (cf. Hox, 2002). Another obvious tack is to use fewer random terms. As we move
through this chapter, we will adopt the second strategy, exercising a good deal more cau-
tion in assigning random slopes to predictors.

8.9 ADDING A LEVEL-TWO PREDICTOR

In the multilevel regression model specified in Table 8.17, we have introduced a level-
two variable, school size (XSIZE2), into the three-level equation. Based on literature con-
cerning the politically charged school size issue, we suspect that school size may help to
account for variability in the random intercept at the school level and in the random
slopes for GENDER1 and ETHNIC1 at the school level (Bickel et al., 2002; Johnson,
Howley, & Howley, 2002).
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TABLE 8.17. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; Random Intercept
and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKGENDER1 + β2JKETHNIC1 + eIJK

Level-two model

β0JK = β00K + γ010XSIZE2 + u0JK

β1JK = β10K + γ110XSIZE2 + u1JK

β2JK = β20K + γ210XSIZE2 + u2JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

β20K = γ200 + u20K

Full model

YIJK = γ000 + γ100GENDER1 + γ200ETHNIC1 + γ010XSIZE2 + γ120XSIZE2 * GENDER1

+ γ220XSIZE2 * ETHNIC2 + u00K + u0JK + u10K * GENDER1 + u1JK * GENDER1

+ u0JK * ETHNIC1 + eIJK + u2JK * ETHNIC1 + eIJK



Admittedly, this is a very cautious first step toward accounting for random compo-
nents and introducing a measure of real-world complexity into the three-level model.
This move does, however, have a point of departure in substantive literature, and we are
proceeding as promised: developing the three-level model slowly, while acknowledging
that its complexity is an invitation to error and misunderstanding.

We now have three predictors: GENDER1 and ETHNIC1 at level one, and XSIZE2 at
level two. Both level-one predictors have been assigned random slopes, with the
GENDER1 and ETHNIC1 random slopes varying across both schools and districts. In
addition, the level-one intercept is random, also varying across schools and across dis-
tricts. The slope for XSIZE2 is fixed.

The subscript conventions for the three-level model in Table 8.17 are the same as
for Tables 8.8 and 8.12. For the first time, however, we have a predictor at level two:
XSIZE2, school size with a fixed slope. The coefficient γ010 represents the contribution of
XSIZE2 to the common value of the random intercept, β0JK. The coefficients γ120 and γ220

represent the contribution of XSIZE2 to the common values of the random slopes for
GENDER1, β1JK, and ETHNIC1, β2JK.

The fixed component estimates in Table 8.18 can be interpreted as follows:

1. Black students, on average, score 6.515 points lower in math achievement than
White students.

2. For each 100-student increase in school size, student math achievement in-
creases, on average, by 1.171 points.

3. For each 100-student increase in school size, Black students’ disadvantage rela-
tive to White students increases by 2.179 points.

By introducing school size at level two, along with two implied cross-level interac-
tion terms, we have begun to clarify the relationships between the math achievement de-
pendent variable and the gender and ethnicity independent variables. As is often the
case, the most interesting finding pertains to a cross-level interaction term: As school
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TABLE 8.18. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; Random Intercept
and Random Slope at Level Two and Level Three; Fixed Components

Y = 48.677 – 0.737GENDER1 – 6.515ETHNIC1 + 1.171XSIZE2 – 0.136XSIZE2 * GENDER1
(0.535) (0.396) (0.928) (0.460) (0.382)

– 2.179XSIZE2 * ETHNIC1
(0.830)

R1
2 = 3.2%

N1 = 46,770
N2 = 347



size increases, the math achievement disadvantage for Black students is exacerbated.
Increases in school size, on average, are associated with increased achievement. This
gain, however, comes at a relative cost to Blacks.

At first look, this finding seems to be at odds with our tentative interpretation of
the INTERCEPT1-by-ETHNIC1 negative covariance in Table 8.16. We interpreted that
association between random components to mean that as average achievement in-
creases, the Black–White achievement gap decreases. Let’s think about it. Suppose that
school size is confounded with math achievement and ethnicity, such that overall
math achievement increases with school size, and the math achievement gap between
Blacks and Whites also increases with school size. If this were happening, we would
expect the statistically significant XSIZE2 * ETHNIC1 interaction effect in Table 8.18,
and we would expect that introducing school size as an independent variable would
diminish the absolute value of the INTERCEPT1-by-ETHNIC1 covariance, because
school size is now controlled.

As it turns out, the only random term that is substantially reduced by introduction
of XSIZE2 is indeed the INTERCEPT1-by-ETHNIC1 covariance. Otherwise, we see in
Table 8.19 that we have gained very little with regard to explaining random component
variances and covariances. There have been very small reductions in the statistically sig-
nificant variances and covariances from Table 8.16. The district-level random compo-
nent variance for GENDER1 is no longer statistically significant, but this has been
accomplished in spite of the fact that the GENDER1 variance has been reduced very lit-
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TABLE 8.19. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; Random Intercept and Random Slope
at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 399.795 2.632 151.901 .000

INTERCEPT1 variance at level two 31.481 3.860 8.156 .000

INTERCEPT1-by-GENDER1 covariance at level two –1.683 1.234 –1.221 .222

GENDER1 variance at level two 1.104 0.831 1.221 .222

INTERCEPT1-by-ETHNIC1 covariance at level two –7.641 3.402 –2.246 .025

GENDER1-by-ETHNIC1 covariance at level two –2.306 1.867 –1.235 .217

ETHNIC1 variance at level two 25.277 8.007 3.157 .002

INTERCEPT1 variance at level three 7.734 3.105 2.490 .013

INTERCEPT1-by-GENDER1 covariance at level three –1.110 0.997 –1.113 .266

GENDER1 variance at level three 1.057 0.671 1.575 .124

INTERCEPT-by-ETHNIC1 covariance at level three –1.153 3.695 –0.312 .755

GENDER1-by-ETHNIC1 covariance at level three 2.377 1.609 1.478 .140

ETHNIC1 variance at level three 11.127 9.723 1.144 .252



tle. Beyond that, with the exception of the INTERCEPT1-by-ETHNIC1 covariance, any
real gains in accounting for these values will have to come from further respecifications
of the three-level regression model.

8.10 ADDING A SECOND PREDICTOR AT LEVEL TWO
AND A PREDICTOR AT LEVEL THREE

The subscript conventions for the three-level model in Table 8.20 are the same as for
those used previously. For the first time, however, we have a predictor at level three:
XSIZE3, school size with a fixed slope. The coefficient γ001 represents the contribution of
XSIZE3 to β00K, which is the common value of the random intercept, β0JK, as it varies
across districts. The coefficient γ201 represents the contribution of XSIZE3 to β20K, which is
the common value of the random slope, β2JK, as it varies across districts.

We have also assigned GENDER1 (now XGENDER1) a fixed slope rather than a random
slope. This is consistent with Table 8.19, in which we found that the district-level vari-
ance component for GENDER1 is no longer statistically significant. It is also a big step in
the direction of simplification, resulting in fewer random terms.

Moreover, we have added another school-level predictor: percentage of students
who are eligible for free/reduced cost lunch (XPOOR2), with a fixed slope. As with the
other level-two predictors, XPOOR2 and its implied cross-level interaction term (XPOOR2 *
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TABLE 8.20. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; Two School-Level Predictors; One District-Level
Predictor; Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + γ100XGENDER1 + β2JKETHNIC1 + eIJK

Level-two model

β0JK = β00K + γ010XSIZE2 + γ020XPOOR2 + u0JK

β2JK = β20K + γ210XSIZE2 + γ220XPOOR2 + u2JK

Level-three model

β00K = γ000 + γ001XSIZE3 + u00K

β20K = γ200 + γ201XSIZE3 + u20K

Full model

YIJK = γ000 + γ100XGENDER1 + γ002ETHNIC1 + γ010XSIZE2 + γ020XPOOR2 + γ001XSIZE3

+ γ210XSIZE2 * ETHNIC1 + γ220XPOOR2 * ETHNIC1 + γ201XSIZE3 * ETHNIC1

+ u00K + u0JK + u20K * ETHNIC1 + u2JK * ETHNIC1 + eIJK



ETHNIC1) are being used to account for variability in the random intercept, β0JK, and
the random slope, β0JK.

As with the fixed components for the other random coefficient and multilevel
regression analyses, interpretation of the fixed component results shown in Table 8.21 is
easy:

1. Female students, on average, score 1.155 points lower in math achievement
than male students. This coefficient was not statistically significant in Table
8.18, when gender had a random slope corresponding to a sample size of 347
schools. Now that the slope is fixed, it corresponds to a sample size of 46,770
schools, and it is statistically significant.

2. Black students, on average, score 7.105 points lower on math achievement than
White students.

3. For each 1-point increase in the percentage of a school’s students who are eligi-
ble for free/reduced cost lunch (XPOOR2), individual student math achievement
scores are decreased, on average, by 0.278 points.

4. District school size is expressed in natural logarithms, meaning that for each 1%
increase in district enrollment, individual student math achievement decreases,
on average, by 0.890 points.

Though we have added a level-two predictor, XPOOR2, and a level-three predictor,
XSIZE3, there are only half as many random terms in Table 8.22. This is a welcome conse-
quence of replacing the random slope for GENDER1 with a fixed slope for XGENDER1.

We see, furthermore, that three of the four random component variances and both
covariances have been substantially diminished. With the addition of XPOOR2, XSIZE3, and
the implied interaction terms XPOOR2 * ETHNIC1 and XSIZE3 * ETHNIC1, we are account-
ing for much more of the variability in the random component variances and co-
variances. Nevertheless, the random component for ETHNIC1 at the district level has
actually gotten larger and is now statistically significant. This suggests that variability in
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TABLE 8.21. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; Two School-Level Predictors; One District-Level Predictor;
Random Intercept and Random Slope at Level Two and Level Three; Fixed Components

Y = 46.061 – 1.155XGENDER1 – 7.105ETHNIC1 + 0.391XSIZE2 – 0.278XPOOR2 – 0.890XSIZE3

(0.386) (0.186) (1.110) (0.493) (0.016) (0.382)

– 0.136XSIZE2 * ETHNIC1 + 0.075XPOOR2 * ETHNIC1 + 0.773XSIZE3 * ETHNIC1
(0.874) (0.039) (0.971)

R1
2 = 8.4%

N1 = 46,770
N2 = 347
N3 = 135



district size masks district-to-district variability in the relationship between math
achievement and ethnicity.

8.11 DISCRETIONARY USE OF SAME-LEVEL INTERACTION TERMS

School size and district size seem to be implicated in educational achievement processes
in consequential ways that are only imperfectly understood (see, e.g., Bickel & Howley,
2000; Bickel et al., 2001; Strange, Howley, & Bickel, 2001). This is most conspicuously
manifest in the form of same-level interaction terms involving school size and percent-
age of a school’s students eligible for free/reduced cost lunch (Johnson et al., 2002;
Howley & Howley, 2004; A. Howley & Howley, 2006). Specifically, as school size
increases, the achievement test score costs associated with being in a school with eco-
nomically disadvantaged students increase. Less often, a same-level interaction term cre-
ated with district size and percentage of a district’s students eligible for free/reduced
lunch has yielded similar results.

By way of more effectively demonstrating some of the discretion and flexibility that
an analyst enjoys when working with three-level models, we will use the model specified
in Table 8.20 and estimated in Tables 8.21 and 8.22 as a point of departure. Guided by
substantive literature, we will add the two cross-level interaction terms just discussed
and make an assessment of their value in this context.

Interpretation of the fixed components in the multilevel model augmented by the
discretionary addition of two same-level interaction terms (see Table 8.23) is as follows:

1. Female students, on average, score 1.155 points lower in math achievement
than male students.

2. Black students, on average, score 6.924 points lower in math achievement than
White students.
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TABLE 8.22. Math Achievement: Multilevel Regression with Three Levels; Two Student-Level
Predictors; Two School-Level Predictors; One District-Level Predictor; Random Intercept
and Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 400.411 2.630 152.223 .000

INTERCEPT1 variance at level two 12.824 1.686 7.607 .000

INTERCEPT1-by-ETHNIC1 covariance at level two –3.171 2.312 –1.372 .170

ETHNIC1 variance at level two 20.756 6.698 3.099 .002

INTERCEPT1 variance at level three 1.119 1.106 1.012 .312

INTERCEPT1-by-ETHNIC1 covariance at level three –1.208 2.296 –0.526 .599

ETHNIC1 variance at level three 18.239 8.647 2.109 .035



3. For each 1% increase in a school’s students eligible for free/reduced cost lunch,
individual student math achievement is decreased, on average, by 0.226 points.

4. For each 1% increase in district size, individual student math achievement is
decreased, on average, by 1.056 points.

5. For each 1% increase in a school’s students eligible for free/reduced cost lunch,
Black students’ disadvantage in math achievement is decreased by 0.080 points.

6. For each 100-student increase in school size, the math achievement disadvan-
tage corresponding to a 1% increase in students who are economically disadvan-
taged increases by 0.097 points.

As we see, the same-level interaction term has worked as expected for schools but
not for districts. If there are doubts as to whether or not inclusion of the same-level
interaction has improved model fit, these may be addressed by using the deviance differ-
ence and the usual information criteria, as given in Table 8.24.

Deviance difference = 413386.8 – 413370.0 = 16.8

df = 18 – 16 = 2
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TABLE 8.23. Math Achievement: Multilevel Regression with Three Levels; Two Student-Level Predictors;
Two School-Level Predictors; One District-Level Predictor; Random Intercept and Random Slope at Level
Two and Level Three; Same-Level Interaction Terms Included; Fixed Components

Y = 46.197 – 1.155XGENDER1 – 6.924ETHNIC1 + 0.394XSIZE2 – 0.226XPOOR2 – 1.056XSIZE3

(0.380) (0.186) (1.020) (0.522) (0.019) (0.319)

– 0.942XSIZE2 * ETHNIC1 + 0.080XPOOR2 * ETHNIC1 + 0.892XSIZE3 * ETHNIC1
(0.863) (0.038) (0.801)

– 0.097 XSIZE2 * XPOOR2 + 0.019XSIZE3 * XPOOR3

(0.024) (0.021)

R1
2 = 8.7%

N1 = 46,770
N2 = 347
N3 = 135

TABLE 8.24. Information Criteria for Tables 8.21 and 8.23

Criterion With interaction term Without interaction term

–2 log likelihood 413386.8 413370.0
Akaike’s Information Criterion 413418.8 413406.0
Hurvich and Tsai’s Criterion 413418.8 413406.0
Bozdogan’s Criterion 413574.8 413581.5
Schwarz’s Bayesian Criterion 413558.8 413563.5

Note. The smaller value for each measure is boldfaced and italicized.



After rerunning the analyses with ML, we get mixed results with regard to which
model provides the better fit. The deviance difference and two of the information criteria
indicate that the model without the same-level interaction terms provides the better fit.
The other two information criteria, however, find that the model with the same-level
interaction terms is the better-fitting one.

We have seen this sort of split decision several times, and it remains a source of con-
fusion and uncertainty. For now, however, let’s focus on the same-level interaction term
for schools; acknowledge that our results are consistent with those presented in numer-
ous research reports; and judge this to be consistent with the observation that as school
size increases, the achievement test score costs of economic disadvantage increase as
well.

8.12 ONGOING RESPECIFICATION OF A THREE-LEVEL MODEL

There are many ways in which we might seek to improve the three-level model specifica-
tion in Table 8.20. Given the limitations of our Kentucky data set, we have exhausted
the list of level-one predictors. At levels two and three, however, additional, potentially
informative independent variables are available. In Table 8.25 we have added XETHNIC2

(ethnicity aggregated to the school level) and XPOOR3 (the percentage of students eligible
for free/reduced cost lunch, computed at the district level). Both XETHNIC2 and XPOOR3
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TABLE 8.25. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; Three School-Level Predictors; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + γ100XGENDER1 + β2JKETHNIC1 + eIJK

Level-two model

β0JK = β00K + γ010XSIZE2 + γ020XPOOR2 + γ030XETHNIC2 + u0JK

β2JK = β20K + γ210XSIZE2 + γ220XPOOR2 + γ230XETHNIC2 + u1JK

Level-three model

β00K = γ000 + γ001XSIZE3 + γ002XPOOR3 + u00K

β20K = γ002 + γ201XSIZE3 + γ202XPOOR3 + u10K

Full model

YIJK = γ000 + γ100XGENDER1 + γ200ETHNIC1 + γ010XSIZE2 + γ020XPOOR2 + γ020XETHNIC2

+ γ001XSIZE3 + γ002XPOOR3 + γ210XSIZE2 * ETHNIC1 + γ220XPOOR2 * ETHNIC1

+ γ230XETHNIC2 * ETHNIC1 + γ201XSIZE3 * ETHNIC1 + γ202XP0OOR3 * ETHNIC1

+ u00K + u0JK + u20K * ETHNIC1 + u2JK * ETHNIC1 + eIJK



have fixed slopes. The intercept remains random at the school and district levels, as does
the slope for ETHNIC1. The respecified three-level model is reported in Table 8.25.

Interpretation of fixed components (see Table 8.26) is much as for Table 8.21:

1. Female students, on average, score 1.155 points lower in math achievement
than male students.

2. Black students, on average, score 6.506 points lower in math achievement than
White students.

3. For each 1% increase in a school’s students eligible for free/reduced cost lunch,
individual student math achievement is decreased, on average, by 0.263 points.

4. For each 1% increase in district size, individual student math achievement is
decreased, on average, by 0.713 points.

5. For each 1% increase in a school’s students eligible for free/reduced cost
lunch, Black students’ disadvantage in math achievement is decreased by 0.094
points.

6. For each 1% increase in the number of a school’s students who are Black, the
math achievement disadvantage for Black students is increased by 21.188
points. Until now, this consequential finding has gone undetected. An important
reason why the coefficient is so large is naturally limited variability in XETHNIC2,
with a coefficient of variation of only 3.3%.

When we examine random components (see Table 8.27), we find that model
respecification has not diminished the magnitude of the random terms at the school
level. The variance of INTERCEPT1 at the school level is still statistically significant,
and has actually increased in value. The same is true for the random component vari-
ance of the slope for ETHNIC1: still statistically significant at the school level, and larger
than in Table 8.22.
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TABLE 8.26. Math Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; Three School-Level Predictors; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three; Fixed Components

Y = 46.167 – 1.155XGENDER1 – 6.506ETHNIC1 + 0.148XSIZE2 – 0.263XPOOR2 – 2.385XETHNIC2

(0.470) (0.186) (1.066) (0.581) (0.028) (2.335)

– 0.713XSIZE3 – 0.021XPOOR3 + 0.094XPOOR2 * ETHNIC1 – 1.361XSIZE2 * ETHNIC1
(0.345) (0.031) (0.040) (1.360)

– 21.188XETHNIC2 * ETHNIC1 + 0.932XSIZE3 * ETHNIC1
(0.451) (0.684)

R1
2 = 9.1%

N1 = 46,770
N2 = 347
N3 = 135



None of the district-level random components, however, is statistically significant.
Respecification of the three-level model has accounted for the district-level variance of
the random component for ETHNIC1, which had been statistically significant and more
than five times as large in Table 8.22.

Including the XSIZE2 * XPOOR2 and XSIZE3 * XPOOR3 same-level interaction terms in this
three-level equation makes little difference in the other fixed component values (see
Table 8.28). Once again, however, we see that the slope for XSIZE2 * XPOOR2 is statistically
significant: For each 100-student increase in school size, the math achievement disad-
vantage corresponding to a 1% increase in students who are economically disadvantaged
increases by 0.095 points. This is almost exactly the same value reported in Table 8.26.

As in our use of Table 8.24, we again get inconsistent results from application of the
deviance difference and the information criteria (see Table 8.29). In this instance, the
deviance difference indicates that the model with same-level interaction terms is the
better-fitting one. The information criteria, however, again give us a split decision.
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TABLE 8.27. Math Achievement: Multilevel Regression with Three Levels; Two Student-Level
Predictors; Three School-Level Predictors; Two District-Level Predictors; Random Intercept and
Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 400.402 2.630 152.234 .000

INTERCEPT1 variance at level two 13.032 1.748 7.455 .000

INTERCEPT1-by-ETHNIC1 covariance at level two –4.459 2.517 –1.772 .076

ETHNIC1 variance at level two 26.251 7.885 3.329 .001

INTERCEPT1 variance at level three 0.861 1.145 0.752 .452

INTERCEPT1-by-ETHNIC1 covariance at level three –0.607 1.988 –0.305 .760

ETHNIC1 variance at level three 3.301 7.259 0.455 .649

TABLE 8.28. Math Achievement: Multilevel Regression with Three Levels; Two Student-Level Predictors;
Three School-Level Predictors; Two District-Level Predictors; Random Intercept and Random Slope at
Level Two and Level Three; Same-Level Interaction Terms Included; Fixed Components

Y = 46.369 – 1.155XGENDER1 – 6.336ETHNIC1 + 0.115XSIZE2 – 0.208XPOOR2 – 1.374XETHNIC2 – 0.953XSIZE3

(0.470) (0.186) (1.071) (0.186) (0.032) (2.329) (0.353)

– 0.027XPOOR3 + 0.099XPOOR2 * ETHNIC1 – 1.572XSIZE2 * ETHNIC1 – 21.044XETHNIC2 * ETHNIC1
(0.032) (0.040) (1.369) (0.454)

+ 1.054XSIZE3 * ETHNIC1 – 0.095XSIZE2 * XPOOR2 + 0.019XSIZE3 * XPOOR3

(0.703) (0.025) (0.022)

R1
2 = 9.1%

N1 = 46,770
N2 = 347
N3 = 135



Deviance difference = 413360.6 – 413341.6 = 19.0

df = 21 – 19 = 2

As before, we acknowledge that it is not clear that either model, with or without
same-level interaction terms, fits the data better than the other. At the same time, the
consistency with which the same-level interaction term XSIZE2 * XPOOR2 has yielded statis-
tically significant and negative results in this research and in numerous analyses
reported by others gives it a good deal of credibility.

8.13 A LEVEL-TWO RANDOM SLOPE AT LEVEL THREE

Any terms included in the level-two model may be considered random at level three
(Luke, 2004). This is easy enough to say, but how do we actually make this happen?
Suppose that in developing our three-level model we decide to permit γ020—the slope for
XPOOR2 in the equation for the random intercept, β0JK—to be random with respect to dis-
tricts. In addition, we decide that the random component estimates in Table 8.27 indi-
cate that the random slope for ETHNIC1 should vary across schools, but not across dis-
tricts. Lastly, we permit the intercept to continue to be random with respect to both
schools and districts. What will our model look like?

Using Table 8.25 as a point of departure and making the changes in random terms
just indicated, we get the model specified in Table 8.30. At level two we see that the
equation for the random intercept, β0JK, contains a random slope, β02K, for the predictor
POOR2. The subscripts for β02K indicate that it is the contribution of POOR2 to the ran-
dom intercept, β0JK, as it varies across districts. β02K is a function of its common value,
γ020, and the district-level effects of XSIZE3 (γ021) and XPOOR3 (γ022). The district-specific
variability is represented by u02K.

The same-level interaction terms XSIZE2 * XPOOR2 and XSIZE3 * XPOOR3, which have
received a good deal of attention in previous analyses, have been excluded to avoid
multicollinearity. When the same-level interaction terms were added to an OLS regres-
sion equation specified to simulate the multilevel equation in Table 8.31, seven condi-
tion indices exceeded the usual cutoff of 4, with one condition index exceeding 10.0
(Fox, 1997).
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TABLE 8.29. Information Criteria for Tables 8.26 and 8.28

Criterion With interaction term Without interaction term

–2 log likelihood 413341.6 413360.6
Akaike’s Information Criterion 413383.6 413398.6
Hurvich and Tsai’s Criterion 413383.6 413398.6
Bozdogan’s Criterion 413588.4 413583.9
Schwarz’s Bayesian Criterion 413567.4 413564.9

Note. The smaller value for each measure is boldfaced and italicized.
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TABLE 8.30. Math Achievement: Random Coefficient Regression with Three Levels;
Two Student-Level Predictors; Two School-Level Predictors; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + γ100XGENDER1 + β2J0ETHNIC1 + eIJK

Level-two model

β0JK = β00K + γ010XSIZE2 + β02KPOOR2 + γ030XETHNIC2 + u0JK

β2J0 = γ200 + γ210XSIZE2 + γ220XPOOR2 + γ230XETHNIC2 + u2J0

Level-three model

β00K = γ000 + γ001XSIZE3 + γ002XPOOR3 + u00K

β02K = γ020 + γ021XSIZE3 + γ022XPOOR3 + u02K

Full model

YIJK = γ000 + γ100XGENDER1 + γ200ETHNIC1 + γ010XSIZE2 + γ002XPOOR2 + γ030XETHNIC2 + γ001XSIZE3

+ γ002XPOOR3 + γ210XSIZE2 * ETHNIC1 + γ220XPOOR2 * ETHNIC1 + γ230XETHNIC2 * ETHNIC1

+ γ021XSIZE3 * POOR2 + γ022XPOOR3 * POOR2 + u00K + u0JK + u02K * POOR2 + u2J0 * ETHNIC1 + eIJK

TABLE 8.31. Math Achievement: Random Coefficient Regression with Three Levels;
Two Student-Level Predictors; Two School-Level Predictors; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three; Fixed Components

Y = 46.769 – 1.154XGENDER1 – 6.528ETHNIC1 + 0.311XSIZE2 – 0.177POOR2 – 1.091XETHNIC2

(0.578) (0.186) (1.045) (0.541) (0.034) (2.204)

– 1.707XSIZE3 – 0.067XPOOR3 + 0.103POOR2 * ETHNIC1 – 0.289XSIZE2 * ETHNIC1
(0.382) (0.038) (0.040) (1.064)

– 19.774XETHNIC2 * ETHNIC1 – 0.063 XSIZE3 * POOR2 + 0.001XPOOR3 * POOR2
(3.635) (0.014) (0.001)

R1
2 = 9.2%

N1 = 46,770
N2 = 347
N3 = 135



Interpretation of this three-level model follows a by-now-familiar pattern:

1. Female students, on average, score 1.154 points lower in math achievement
than male students.

2. Black students, on average, score 6.258 points lower in math achievement than
White students.

3. For each 1% increase in the number of a school’s students eligible for free/
reduced cost lunch, individual student math achievement decreases, on average,
by 0.177 points.

4. For each 1% increase in district size, individual student math achievement
decreases, on average, by 1.707 points.

5. For each 1% increase in the number of a school’s students eligible for free/
reduced cost lunch, the math achievement disadvantage for Black students rela-
tive to Whites decreases, on average, by 0.103 points.

6. For each 1% increase in the number of a school’s students who are Black, indi-
vidual Black students’ math achievement disadvantage relative to Whites in-
creases, on average, by 19.744 points.

7. Each 1% increase in district size corresponds, on average, to a 0.063-point
increase in the negative relationship between math achievement and the per-
centage of a school’s students eligible for free/reduced lunch.

In Table 8.32 we see that the intercept at level one and the ETHNIC1 random slope
remain statistically significant. The ETHNIC1 random slope, in fact, has been immune
to substantial diminution over the various specifications in which it has been included.
Even though this is a very complex model, it is not difficult to run with SPSS. Look at
the screen and follow the steps in SPSS Routine 8.2.

It is instructive to compare Table 8.32 with Table 8.33. The random component
variances and covariances in the latter table have been estimated after exclusion of all
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TABLE 8.32. Math Achievement: Random Coefficient Regression with Three Levels; Two
Student-Level Predictors; Two School-Level Predictors; Two District-Level Predictors; Random
Intercept and Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 400.437 2.630 152.229 .000

INTERCEPT1 variance at level two 8.936 1.361 6.564 .000

INTERCEPT1-by-ETHNIC1 covariance at level two –1.863 2.028 –0.919 .358

ETHNIC1 variance at level two 27.767 6.504 4.269 .000

INTERCEPT1 variance at level three 1.449 1.165 1.244 .214

INTERCEPT1-by-POOR2 covariance at level three 0.048 0.044 1.089 .276

POOR2 variance at level three 0.004 0.003 1.301 .193
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SPSS Routine 8.2. Random Slope at Level Two and Level Three

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Insert the school identifier and the district identifier into the SUBJECTS box.
4. Click on CONTINUE; insert math achievement into the DEPENDENT VARIABLE box;

insert the independent variables and cross-level interaction terms into the
COVARIATE(S) box.

5. Click on FIXED; change FACTORIAL to MAIN EFFECTS. Move the independent vari-
ables and cross-level interaction terms from the FACTORS AND COVARIATES box to
the MODEL box.

6. Click on CONTINUE.
7. Click on RANDOM. Move the school identifier from the from the SUBJECTS box to

the COMBINATIONS box.
8. Change FACTORIAL to MAIN EFFECTS.
9. Click on INCLUDE INTERCEPT, and move ETHNIC1 into the MODEL box.

10. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select
UNSTRUCTURED. Click on NEXT.

11. Move the district identifier from the SUBJECTS box to the COMBINATIONS box.
Change FACTORIAL to MAIN EFFECTS.

12. Click on INCLUDE INTERCEPT and move the POOR2 into the MODEL box.
13. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select

UNSTRUCTURED.
14. Click on CONTINUE, and the click on the STATISTICS button.
15. Under MODEL STATISTICS select PARAMETER ESTIMATES and TESTS FOR

COVARIANCE PARAMETERS.
16. Click on CONTINUE and click on OK.

TABLE 8.33. Math Achievement: Random Coefficient Regression with Three Levels; Two Student-
Level Predictors; Contextual Variables and Cross-Level Interaction Terms Not Included; Random
Intercept and Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate
Std.
error Wald Z

Sig.
level

Residual 400.416 2.631 152.214 .000

INTERCEPT1 variance at level two 9.029 1.419 6.363 .000

INTERCEPT1-by-ETHNIC1 covariance at level two –3.336 2.389 –1.396 .183

ETHNIC1 variance at level two 39.424 7.664 5.144 .000

INTERCEPT1 variance at level three 4.585 1.614 2.842 .008

INTERCEPT1-by-POOR2 covariance at level three 0.152 0.064 2.359 .018

POOR2 variance at level three 0.007 0.003 2.110 .035



fixed effects that do not correspond to a random coefficient. When contextual variables
(other than XPOOR2) and all cross-level interaction terms are excluded, the random com-
ponent variances and covariances are substantially larger. As we can now see, the vari-
ance of the random slope for ETHNIC1 is substantially diminished when contextual
variables and cross-level interaction terms are included.

8.14 SUMMING UP

It is true that anyone who can specify and estimate a two-level model can learn to specify
and estimate a three-level model. In my experience, however, the amount of work
required to make the transition from two-level to three-level models is underestimated
in most instructional accounts. Part of the problem inheres in making more and more
difficult model specification decisions in the absence of readily interpretable guidance
from pertinent theoretical and substantive literature.

Beyond that, however, models with three or more levels quickly become very com-
plex statistically. The number of random component variances and covariances increases
dramatically with the addition of predictors with random slopes. Parallels between two-
level and three-level models are a good deal less obvious when it comes to actually speci-
fying a three-level model. Model-building facility takes practice.

Three-level models can be informative, providing insights that otherwise would not
be available. However, off-handed assertions that three-level regression models are just
straightforward extensions of two-level models may lead us to expect too much. Three-
level models are uniquely complex, and their effective application demands more theo-
retical and substantive knowledge than typically is available.

8.15 USEFUL RESOURCES

Hox, J. (2002) Multilevel Analysis. Mahwah, NJ: Erlbaum.
Luke, D. (2004) Multilevel Modeling. Thousand Oaks, CA: Sage.
Raudenbush, S., & Bryk, A. (2002) Hierarchical Linear Models (2nd ed.). Thousand Oaks, CA:

Sage.
Snijders, T., & Bosker, R. (1999) Multilevel Analysis. Thousand Oaks, CA: Sage.

Hox (2002) gives only one page to three-level models, but his cautionary comments are
invaluable. He persuasively alerts the reader to the intractable statistical complexity that is occa-
sioned by unduly ambitious three-level models.

Luke (2004) devotes only four pages to three-level models, but his examples are the most
instructive to be found. Understanding Luke’s examples lends a modicum of credibility to the off-
handed judgment that three-level models are almost as easy to specify, estimate, and understand
as two-level models.

Raudenbush and Bryk (2002) devote a chapter of their widely used textbook to three-level
models. A brief discussion is also provided by Snijders and Bosker (1999). The examples used by
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Snijders and Bosker are especially interesting. As we have noted before, however, these texts make
for difficult reading.

Belanger, P., & Eagles, M. (2005) The Geography of Class and Religion in Canadian Elections. Paper
Presented at the Canadian Political Science Association Conference, University of Western
Ontario, London, Ontario, June 2–4.

Romano, E., Tremblay, R., Boulerice, B., & Swisher, R. (2005) Multilevel Correlates of Childhood
Physical Aggression and Prosocial Behavior. Journal of Abnormal Child Psychology, 33, 565–
578.

Wiggins, R., Joshi, H., Bartley, M., Gleave, S., Lynch, K., & Cullis, A. (2002) Place and Personal
Circumstances in a Multilevel Account of Women’s Long-Term Illness. Social Science and
Medicine, 54, 827–838.

Clearly written article-length accounts provide some of the best material for learning about
three-level models. A primary virtue of the paper by Belanger and Eagles is their demonstration
that the choice of variables to constitute levels in a three-level analysis can have a dramatic effect
on results. The three levels in their Canadian voting behavior research are individual, locality, and
province. When they compare their results with analyses that used the province rather than the
locality at level two, they find that the social and geographical distance between individual and
province failed to reveal important group effects peculiar to localities.

Romano and colleagues (2005) address the role of individual, family, and neighborhood fac-
tors affecting unduly aggressive and socially acceptable behavior among adolescent males. Their
work is methodologically instructive because of the clarity with which the authors present their
analysis. Their identification of level-three neighborhood characteristics as correlates of aggressive
behavior is especially interesting because we have used similar measures, including gauges of
neighborhood quality, to account for student achievement differences in some of our two-level
models.

Wiggins et al.’s interesting application of multilevel regression analysis with three levels is
characterized by an unusually large sample of 76,374 women nested in 9539 local wards and 401
larger districts. Table 3 on page 838 of their article provides a remarkably clear and straightfor-
ward summary example of instructive reporting of fixed effects in a complex model. Level-three
factors related to the frequency of long-term illnesses among women in England and Wales are
numerous and easy to understand. Though their models are complex, the authors use no random
slopes, just random intercepts. This too is easy to see and interpret in their presentation. It is
instructive to learn that the authors used principal components analysis in constructing five of
their level-two independent variables. This is exactly the sort of variable construction approach
often used with OLS regression, and it lends itself just as readily to multilevel regression.
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9

Familiar Measures
Applied to Three-Level Models

9.1 CHAPTER INTRODUCTION

As we have repeatedly emphasized, the intraclass correlation coefficient is an indispens-
able tool. Without it, judgments as to whether or not multilevel regression is applicable
to the analytical task at hand would be a good deal less certain. Fortunately, as with the
other measures discussed in this brief chapter, calculation and interpretation of the
intraclass correlation coefficient are just as easy for three-level models as for two-level
models. This assertion holds for both the unconditional and conditional versions of this
informative statistic.

Reading empirical research in journals representing a variety of disciplines affirms
Kreft and De Leeuw’s (1998) judgment that the deviance is treated as if it were the most
important summary statistic. It is quite uncommon to find a research report using multi-
level analysis that does not use the deviance statistic, if only to demonstrate that a spe-
cific conditional model provides a better fit than the unconditional model. This is
accomplished by using the deviance difference to compare nested models.

The R1
2 summary measure, by contrast, is reported sporadically. As with contempo-

rary applications of OLS regression, there is a good deal more interest in the value of
fixed coefficients than in reduction in errors of prediction. The fact that R1

2 is of dubious
value as a decision-making tool when we are comparing differently specified models may
help to explain its irregular use. Some authors, moreover, prefer reporting reductions in
within-group variance and between-group variance without also using an overall sum-
mary statistic.

While the utility of the deviance for choosing among competing models helps to
account for its popularity, we have already noted some of its limitations. Comparing
models by using the deviance difference should be done only with nested models (cf.
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SAS Institute, 1999). In addition, the deviance is sensitive to the number of parameters
estimated: The more parameters used, the easier it is to find a statistically significant dif-
ference between two deviance values. As still another caution, the deviance is sensitive
to sample size: The larger the sample, the easier it is to find a statistically significant dif-
ference between two deviance values.

However, application of the information criteria routinely reported by SPSS—
Akaike’s Information Criterion, Hurvich and Tsai’s Criterion, Bozdogan’s Criterion, and
Schwarz’s Bayesian Criterion—need share none of these limitations. They can be used to
compare either nested or non-nested models; they impose penalties for estimating addi-
tional parameters; and Schwarz’s Bayesian Criterion adjusts for sample size.

The smaller-is-better interpretations of the information criteria, however, lack the
intuitive appeal of the R1

2 summary measure. In addition, the information criteria do not
provide the decisive appearance of a formal statistical test, while the deviance difference
does grant this kind of statistical authority. Nevertheless, the information criteria, espe-
cially Akaike’s Information Criterion and Schwarz’s Bayesian Criterion, are versatile and
commonly used measures. They do not share the ubiquity of the deviance in the empiri-
cal literature on multilevel regression, but, as we have seen, they can be used to address
questions for which the deviance is not well suited.

Whatever their purpose and pervasiveness, all the measures discussed in this
chapter—the intraclass correlation, R1

2, the deviance and the deviance difference, and
the information criteria—play exactly the same role with three-level models as with two-
level models. Increasing the number of levels in our model, moreover, does not make
these statistics more difficult to compute.

9.2 THE INTRACLASS CORRELATION COEFFICIENT REVISITED

We have already seen that computation of the unconditional intraclass correlation for a
two-level model is not difficult. For example, if we use vocabulary achievement at the
end of kindergarten with the 18 classrooms in our 12-school West Virginia data set, we
get the information in Table 9.1.

As always, the unconditional intraclass correlation is computed as follows:

r = Variability between groups/total variability

r = 3.815/(3.815 + 17.772) = 0.175
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TABLE 9.1. Computing the Unconditional Intraclass Correlation Coefficient:
Students Nested in Classrooms; Random Component Estimates for Null Model

Parameter Estimate Std. error Wald Z Sig. level

Residual 17.772 1.432 12.409 .000
INTERCEPT1 3.815 1.699 2.246 .025



As we know, this means that 17.5% of the variability in vocabulary achievement occurs
between classrooms, while the rest occurs within classrooms. A useful way to say the
same thing is to note that between-group variability is explained simply by virtue of the
fact that individuals are placed into a set of categories, while within-group variability is
not explained by the process of categorization.

We know, of course, that the unconditional intraclass correlation coefficient is com-
puted with no predictors other than the random intercept. In other words, there are no
independent variables. However, after one or more independent variables have been
introduced, the unconditional intraclass correlation coefficient gives way to the condi-
tional intraclass correlation coefficient.

The information in Table 9.2, for example, has been obtained by including indepen-
dent variables representing family income at the classroom level and a cross-level inter-
action term created by using this contextual variable and its level-one counterpart.

r = 3.467/(3.467 + 17.059) = 0.169

As we expect, the conditional intraclass correlation is smaller than its unconditional
counterpart. The contextual variable and the cross-level interaction term have ac-
counted for some, though not very much, of the between-group variability in end-of-
kindergarten reading achievement.

The information in Table 9.3 has been obtained by adding another contextual vari-
able. This second group-level variable has been created by aggregating beginning-of-
kindergarten reading achievement to the classroom level. In addition, a cross-level inter-
action term created by multiplying this contextual variable by its level-one counterpart
has been introduced. Again, between-group variability in the dependent variable has
been diminished, and the overall consequence is further reduction in the magnitude of
the conditional intraclass correlation coefficient:
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TABLE 9.2. Computing the Conditional Intraclass Correlation Coefficient: Students
Nested in Classrooms; Random Component Estimates for Conditional Model

Parameter Estimate Std. error Wald Z Sig. level

Residual 17.059 1.411 12.089 .000
INTERCEPT1 3.467 1.656 2.093 .036

TABLE 9.3. Computing the Conditional Intraclass Correlation Coefficient; Students
Nested in Classrooms; Random Component Estimates for a More Complex Model

Parameter Estimate Std. error Wald Z Sig. level

Residual 8.296 0.669 12.393 .000
INTERCEPT1 0.411 0.562 0.721 .465



r = 0.411/(0.411 + 8.296) = 0.047

Notice that INTERCEPT1, our measure of between-classroom variability, is no lon-
ger statistically significant. This means that we have succeeded in accounting for all
but an incidental, sample-specific amount of the between-classroom variability in end-
of-kindergarten reading achievement. If we had gotten a nonsignificant value for
INTERCEPT1 when computing the unconditional intraclass correlation, we would have
concluded that multilevel regression was not needed, and we would have continued
with OLS.

As we illustrated in Chapter 8, with more than two levels, there will be more than
one unconditional intraclass correlation. To clarify this with another example, we have
structured Table 9.4 in the same way as Table 8.7, though we have added a fourth level.
In this instance we are using a second West Virginia data set, this one assembled by the
National Institute for Early Education Research (NIEER) for evaluating early childhood
education programs (Lamy, Barnett, & Jung, 2005). The data set includes 750 students
nested in 164 classrooms nested in 92 schools nested in 34 districts (Lamy et al., 2005).
The dependent variable is a measure of skill in sound blending or phonics from the Pre-
school Comprehensive Test of Phonological and Print Processing, used to measure read-
ing readiness at the beginning of kindergarten (Lonigan, Wagner, Torgesen, & Rashotte,
2002).

Following our cautionary comments regarding the sometimes troublesome com-
plexity of three-level models in Chapter 8, invoking four levels may seem excessive.
However, we will use the information in Table 9.4 only to illustrate the ease with which
a variety of different unconditional intraclass correlation coefficients may be computed
(Snijders & Bosker, 1999).

If we are interested in the intraclass correlation for individual students nested in
classrooms, the procedure is by now quite familiar:

r = 2.756/(2.756 + 13.316) = 0.171
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TABLE 9.4. Phonics (Sound-Blending): Students in Classrooms in Schools in Districts;
the Unconditional Intraclass Correlation with More Than Two Levels; Random Component Estimates

Parameter Estimate Std. error Wald Z Sig. level

Residual variability within schools 13.316 0.807 16.496 .000

INTERCEPT at level two:
Variability between classrooms within schools

2.756 0.971 2.839 .005

INTERCEPT at level three:
Variability between schools within districts

0.793 0.912 0.870 .384

INTERCEPT at level four:
Variability between districts

8.321 2.528 3.291 .001



As we know, this means that 17.1% of the variability in reading readiness occurs between
classrooms.

If we are interested in the intraclass correlation for individuals nested in classrooms,
schools, and districts, a straightforward variation on the same procedure is easy to apply:

r = (2.796 + 0.794 + 8.321)/(2.796 + 0.794 + 8.321 + 13.316) = 0.472

This means that 47.2% of the variability in reading readiness is due to grouping in class-
rooms, schools, and districts, while 52.8% of the variability occurs between individual
students.

It is interesting to see, by the way, that most of the variability due to grouping
occurs at the district level, farther removed from individual students than classrooms or
schools. This unexpected finding indicates that 69.9% of the reading readiness variabil-
ity attributable to grouping occurs at the district level. We calculate this percentage by
using another straightforward variation on the usual formula for the intraclass correla-
tion coefficient:

r = 8.321/(2.796 + 0.794 + 8.321) = 0.699

Clearly, working with more than two levels gives rise to patterns of nesting that we
otherwise would not anticipate. Furthermore, we now see that increasing the organiza-
tional distance between students and a grouping variable does not always mean that
groups become internally less homogeneous.

It is also interesting that variability between schools within districts is not statisti-
cally significant. If we were contemplating a multilevel regression analysis using school-
level data, we would not have to worry about the nesting of schools in districts; as a
practical matter, there is none! The statistically nonsignificant variance component at
the school level tells us that the intraclass correlation coefficient for an analysis of this
sort would also be statistically nonsignificant. In this case, we could use traditional OLS
regression.

9.3 PERCENTAGE OF VARIANCE EXPLAINED
IN A LEVEL-ONE DEPENDENT VARIABLE

We have also seen that R1
2 is easy to compute. Say, for example, that we want to examine

the relationship between individual reading readiness and age in months among begin-
ning kindergarten students. We use the West Virginia data set introduced in the preced-
ing section, and specify a three-level model. With 750 students nested in 164 classrooms
and 34 districts, we make the intercept and the age-in-months slope random at both the
classroom and district levels. This gives us the three-level model specified in Table 9.5.

When we run the analysis, we get the results reported in Tables 9.6 and 9.7. In Table
9.6 we see that for each 1-month increase in age, the value of the measure of phonics or
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TABLE 9.5. Phonics: Random Coefficient Regression with Three
Levels; One Student-Level Predictor; Random Intercept and Random
Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKAGE1 + eIJK

Level-two model

β0JK = β00K + u0JK

β1JK = β10K + u1JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

Full model

YIJK = γ000 + γ100AGE1 + u00K + u0JK + u10K * AGE1 + u1JK * AGE1 + eIJK

TABLE 9.6. Phonics: Random Coefficient Regression with Three
Levels; One Student-Level Predictor; Random Intercept and Random
Slope at Level Two and Level Three; Fixed Components

Y = 14.968 + 0.156AGE1
(0.350) (0.225)

R1
2 = 5.3%

N = 46,770

TABLE 9.7. Phonics: Random Coefficient Regression with Three Levels; One Student-Level
Predictor; Random Intercept and Random Slope at Level Two and Level Three; Estimates
of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 12.158 0.791 15.832 .000

INTERCEPT variance at level two 0.303 0.867 0.350 .726

INTERCEPT-by-AGE1 covariance at level two 0.005 0.051 0.095 .925

AGE1 variance at level two 0.014 0.014 0.994 .320

INTERCEPT variance at level three 9.488 1.826 5.197 .000

INTERCEPT-by-AGE1 covariance at level three 0.206 0.095 2.165 .030

AGE1 variance at level three 0.005 0.008 0.594 .552



sound-blending skills increases, on average, by 0.156 points. In Table 9.7 we see that the
level-two intercept variance that contributed substantially to the values we calculated for
unconditional intraclass correlation coefficients following Table 9.4 has been reduced to
statistical nonsignificance. In fact, the only statistically significant random terms are the
intercept and the intercept-by-slope covariance at the district level.

For present purposes, however, the important question concerns R1
2 in Table 9.6.

Specifically, how did we determine the value of this summary measure? My notation is
clumsy, but the formula is as follows (Snijders & Bosker, 1999):

R1
2 = (1 – [RESIDUALFIXED + INTERCEPT2FIXED + INTERCEPT3FIXED)/

(RESIDUALNULL + INTERCEPT3NULL + INTERCEPT3NULL)]) * 100

In other words, we first estimate the null model, permitting the intercept to be ran-
dom at both level two and level three. Then we sum the random components, and we
have the denominator for the formula above. Next, we estimate the conditional model
permitting the intercept to be random at levels two and three, but make all slopes fixed.
We then sum the random components, and we have the numerator in the formula above.
After dividing, we subtract the result from 1.00 and multiply by 100. This gives us R1

2 for
a three-level model, percentage of reduction of errors in prediction for the dependent
variable. This is just a straightforward extension of the formula we used in calculating
R1

2 for two-level models. Now, however, we have more levels.
The information needed to compute R1

2 for Table 9.6 is reported in Tables 9.8 and
9.9. With this information, we can do so as follows:

R1
2 = 1 – [(13.068 + 1.050 + 8.943)/(13.092 + 2.845 + 8.983)] * 100 = 5.3%
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TABLE 9.8. Phonics: Random Coefficient Regression with Three Levels; One Student-
Level Predictor; Estimates of Covariance Parameters; Unconditional (Null) Model

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.092 0.802 16.328 .000

INTERCEPT variance at level two 2.845 1.022 2.783 .005

INTERCEPT variance at level three 8.983 1.852 4.849 .000

TABLE 9.9. Phonics: Random Coefficient Regression with Three Levels; One Student-
Level Predictor; Estimates of Covariance Parameters; Conditional Model with Fixed Slope

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.068 0.798 16.383 .000

INTERCEPT variance at level two 1.050 0.751 1.398 .162

INTERCEPT variance at level three 8.943 1.687 5.302 .000



Relative to the null model, the conditional model has reduced errors in predicting the
value of individual students’ sound-blending scores by 5.3%.

Suppose we add another level-one predictor, a measure of student social skills at the
beginning of kindergarten (XSOCIAL1) (Gresham & Elliott, 1990). As a rationale for this
additional student-level predictor, we surmise that social skills are an essential prerequi-
site for learning, both in school and out of school. Social skills deficits, in fact, have been
construed as a primary learning disability (Gresham & Elliott, 1989). We assign XSOCIAL1

a fixed slope. The only difference between the respecified three-level model in Table 9.10
and the original three-level specification in Table 9.5 occurs in the level-one model with
the addition of the predictor XSOCIAL1 and its fixed slope, γ200.

When we examine Table 9.11, we see that both slopes are statistically significant
with large t values. For each 1-month increase in student age (AGE1), beginning-of-
kindergarten phonics achievement increases, on average, by 0.156 points. In addition,
for each 1-unit increase in social skills (XSOCIAL1), beginning-of-kindergarten phonics
achievement increases, on average, by 0.795 points.
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TABLE 9.10. Phonics: Random Coefficient Regression with Three
Levels; Two Student-Level Predictors; Random Intercept and Random
Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKAGE1 + γ200XSOCIAL1 + eIJK

Level-two model

β0JK = β00K + u0JK

β1JK = β10K + u1JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

Full model

YIJK = γ000 + γ100AGE1 + u00K + u0JK + u10K * AGE1 + u1JK * AGE1 + eIJK

TABLE 9.11. Phonics: Random Coefficient Regression with Three
Levels; Two Student-Level Predictors; Random Intercept and Random
Slope at Level Two and Level Three; Fixed Components

Y = 14.890 + 0.156AGE1 + 0.795XSOCIAL1

(0.372) (0.023) (0.016)

R1
2 = 8.8%

N = 46,770



Random component variances and covariances are reported in Table 9.12. Introduc-
tion of XSOCIAL1 as an additional predictor has reduced the INTERCEPT-by-AGE1 covari-
ance to statistical nonsignificance. The variance of the random component of the inter-
cept at the district level, however, remains statistically significant and has actually gotten
a bit larger. None of the other random terms were statistically significant in Table 9.7
with only AGE1 as a predictor, and they remain statistically nonsignificant in Table 9.12.

More important for present purposes, however, are the random component esti-
mates in Table 9.13. This information was computed for the conditional model in Table
9.11, with all slopes fixed. We divide this by the random components already computed
for the null model in Table 9.8, and we can calculate R1

2 in the usual way. Addition of
XSOCIAL1 as a second predictor has increased the value of R1

2 from 5.3% to 8.8%. In other
words, by using AGE1 and XSOCIAL1 as explanatory factors, we reduce errors in prediction
of the dependent variable by 8.8%.

R1
2 = 1 – [(12.125 + 1.000 + 8.696)/(13.092 + 2.845 + 8.983)] * 100 = 8.8%

Summary measures such as the conventional R2 statistic have a long history among
users of multiple regression analysis. While reporting such goodness-of-fit measures is
customary, the information they provide is sometimes of dubious value (Wittink, 1988).
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TABLE 9.12. Phonics: Random Coefficient Regression with Three Levels;
Two Student-Level Predictors; Random Intercept and Random Slope at Level Two and Level Three;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 11.288 0.736 15.342 .000

INTERCEPT variance at level two 0.849 0.000 — —

INTERCEPT-by-AGE1 covariance at level two 0.072 0.120 0.605 .545

AGE1 variance at level two 0.048 0.000 — —

INTERCEPT variance at level three 9.741 1.994 4.885 .000

INTERCEPT-by-AGE1 covariance at level three 0.186 0.137 1.353 .176

AGE1 variance at level three 0.004 0.000 — —

Note. A dash (—) indicates a value too small to measure.

TABLE 9.13. Phonics: Random Coefficient Regression with Three Levels; Two Student-Level
Predictors; Estimates of Covariance Parameters; Conditional Model with Fixed Slopes

Parameter Estimate Std. error Wald Z Sig. level

Residual 12.125 0.783 15.479 .000

INTERCEPT variance at level two 1.000 0.766 1.306 .192

INTERCEPT variance at level three 8.696 1.807 5.367 .000



Historically, OLS regression analysis has too often devolved into an effort to maximize
values of summary statistics (notably R2 as used in OLS regression analysis), with little
attention to substantive importance or theoretical development (Blalock, 1964).

During the past four decades, however, the search for unstandardized partial regres-
sion coefficients that reflect approximately uniform relationships from time to time and
place to place has taken precedence over efforts to maximize R2 values (Blalock, 1964;
Duncan, 1975; Wittink, 1988; Tacq, 1997; Wooldridge, 2002). Nevertheless, measures
comparable to the conventional R2, when interpreted judiciously, can be informative.

Our application of R1
2 is premised on the assumption that we are interested in

determining the percentage of reduction in errors of prediction for the first-level depen-
dent variable, and we have less interest in using a comparable measure at other levels,
though such measures exist. In addition, while R1

2 provides a close approximation of
this percentage, a more accurate measure would take into consideration the fact that
some slopes are random. Such measures are available, but their computation is complex,
and they are not included with general purpose statistical software such as SPSS.

9.4 OTHER SUMMARY MEASURES USED
WITH MULTILEVEL REGRESSION

Throughout this presentation we have had to make some difficult choices among alter-
native multilevel regression model specifications. Often, as we have seen, we had no firm
statistical basis for doing so, and very thin substantive criteria were brought to bear in
making difficult decisions. Nevertheless, it was always reassuring to know that, what-
ever our choice, it was not wildly at odds with application of the deviance difference or
the four information criteria routinely reported by SPSS. This holds true for three-level
models as well as for two-level models.

We will once again use the Kentucky data set to formulate three-level regression
models. The dependent variable will be reading achievement as measured by the Califor-
nia Basic Educational Skills Test. Our objective is to illustrate application of the deviance
difference and the four information criteria routinely provided by SPSS in comparing dif-
ferently specified models.

All comparisons will be made with nested models. In this context, nesting means
than one of the models being compared has more specified parameters than the other.
The deviance difference, as we noted above, is intended for use only with nested models
(SAS Institute, 1999).

In addition, the deviance difference assumes use of ML rather than REML. Since we
will be estimating parameter values for our three-level models with REML, obtaining
deviance values for use in computing the deviance difference will mean running each
model a second time with ML. In contrast to the deviance difference, the information
criteria may be used with either nested or non-nested models (Singer & Willett, 2003).
As with the deviance difference, however, the information criteria presuppose use of ML
rather than REML.
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In the three-level reading achievement model specified in Table 9.14, ethnicity
(ETHNIC1, coded 1 for Black and 0 for White) is the only level-one predictor. It has
been assigned a random slope that varies across both schools and districts. The intercept
too is random, varying across schools and districts. XETHNIC2, ethnicity aggregated to the
school level, is the only level-two predictor. It has been assigned a fixed slope. There are
no predictors at the district level.

When we estimate fixed and random components for the model in Table 9.14, we
get the results reported in Tables 9.15 and 9.16. The fixed components in Table 9.15 tell
us that Black students, on average, score 5.932 points lower than White students in
reading achievement. The cross-level interaction term tells us that for each 1% increase
in the number of Black students in a school, the reading achievement disadvantage for
individual Black students is increased by 17.024 points. As we have already explained,
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TABLE 9.14. Reading Achievement: Multilevel Regression with Three
Levels; One Student-Level Predictor; One School-Level Predictor;
Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKETHNIC1 + eIJK

Level-two model

β0JK = β00K + γ010XETHNIC2 + u0JK

β1JK = β10K + γ110XETHNIC2 + u1JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

Full model

YIJK = γ000 + γ100ETHNIC1 + γ020XETHNIC2 + γ120XETHNIC * ETHNIC1

+ u00K + u0JK + u10K * ETHNIC1 + u1JK * ETHNIC1 + eIJK

TABLE 9.15. Reading Achievement: Multilevel Regression with Three
Levels; One Student-Level Predictor; One School-Level Predictor;
No District-Level Predictors; Random Intercept and Random Slope
at Level Two and Level Three; Fixed Components

Y = 51.187 – 5.932ETHNIC1 – 5.024XETHNIC2 – 17.024XETHNIC2 * ETHNIC1
(0.411) (0.572) (2.945) (3.422)

R1
2 = 2.1%

N1 = 46,770
N2 = 347
N3 = 135



one reason why the unstandardized slope for the XETHNIC2 * ETHNIC1 is so large is natu-
rally limited school-to-school variation in XETHNIC2.

The random components in Table 9.16 include statistically significant variances for
the random intercept at level one and the ETHNIC1 random slope at level one. One
objective of subsequent respecifications of this model will be explanation of random
component values. As we know, this is accomplished through introduction of contextual
variables and cross-level interaction terms.

For now, however, we will begin by introducing gender (XGENDER1) with a fixed slope
in the three-level model specified in Table 9.17. Perhaps introduction of a second level-
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TABLE 9.16. Reading Achievement: Multilevel Regression with Three Levels; One Student-Level
Predictor; One School-Level Predictor; No District-Level Predictors; Random Intercept and Random
Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.757 2.177 152.401 .000

INTERCEPT variance at level two 22.843 3.587 6.368 .000

INTERCEPT-by-ETHNIC1 covariance at level two –5.788 3.256 –1.778 .075

ETHNIC1 variance at level two 24.193 6.722 3.599 .000

INTERCEPT variance at level three 3.993 3.077 1.298 .194

INTERCEPT-by-ETHNIC1 covariance at level three –2.644 3.156 –0.837 .403

ETHNIC1 variance at level three 1.774 0.000 — —

Note. A dash (—) indicates a value too small to measure.

TABLE 9.17. Reading Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; No District-Level
Predictors; Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKETHNIC1 + γ200XGENDER1 + eIJK

Level-two model

β0JK = β00K + γ010XETHNIC2 + u0JK

β1JK = β10K + γ121XETHNIC2 + u1JK

Level-three model

β00K = γ000 + u00K

β10K = γ100 + u10K

Full model

YIJK = γ000 + γ100ETHNIC1 + γ200XGENDER1 + γ020XETHNIC2 + γ120XETHNIC2 * ETHNIC1

+ u00K + u0JK + u10K * ETHNIC1 + u1JK * ETHNIC1 + eIJK



one predictor will increase the predictive efficacy of our equation, thereby increasing the
value of R1

2. In Table 9.18, we see that introduction of gender as a second level-one pre-
dictor has indeed increased the value of R1

2, from 2.2% to 5.8%. The slope for XGENDER1

tells us that females, on average, score 7.405 points higher than males in reading
achievement. The coefficients for ETHNIC1, XETHNIC2, and XETHNIC2 * ETHNIC1 are simi-
lar to those reported in Table 9.15, before XGENDER1 was introduced.

The random component variances and covariances in Table 9.19 are little different
from those reported in Table 9.16. This finding is not surprising, because the only
change in model specification has been addition of a predictor at level one. Had we
added contextual variables at level two—say, XGENDER2 and XPOOR2—we might have sub-
stantially reduced the random component variances and covariances, as we illustrate in
Table 9.20. Inclusion of these contextual variables as level-two predictors substantially
reduces each of the random terms.

The more important point for present purposes, however, is that the fixed compo-
nent results make a compelling case for the model that includes XGENDER1 as the better-
fitting one. This is certainly consistent with the increase in R1

2 in Table 9.18. If we want
additional evidence to use in deciding which model provides the better fit, we have
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TABLE 9.18. Reading Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; No District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three; Fixed Components

Y = 51.222 – 5.977ETHNIC1 + 7.405XGENDER1 – 4.870XETHNIC2 – 17.015XETHNIC2 * ETHNIC1
(0.418) (0.566) (0.166) (2.998) (3.382)

R1
2 = 5.8%

N1 = 46,770
N2 = 347
N3 = 135

TABLE 9.19. Reading Achievement: Multilevel Regression with Three Levels; Two Student-Level
Predictors; One School-Level Predictor; No District-Level Predictors; Random Intercept and
Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 317.591 2.088 152.053 .000

INTERCEPT variance at level two 23.275 3.733 6.236 .000

INTERCEPT-by-ETHNIC1 covariance at level two –5.493 3.400 –1.616 .106

ETHNIC1 variance at level two 25.099 7.012 3.579 .000

INTERCEPT variance at level three 4.294 3.319 1.294 .196

INTERCEPT-by-ETHNIC1 covariance at level three –2.377 3.708 –0.641 .521

ETHNIC1 variance at level three 1.346 0.000 — —

Note. A dash (—) indicates a value too small to measure.



ready access to the deviance difference and the four information criteria, as given in
Table 9.21.

Deviance difference = 406503.6 – 402773.9 = 3729.7

df = 12 – 11 = 1

When we compare the three-level models from Tables 9.15 and 9.18, the deviance differ-
ence is statistically significant at any commonly used alpha level. This is consistent with
the claim that the three-level model including XGENDER1 as a second individual-level pre-
dictor is the better-fitting one. In addition, and in contrast with some of the split deci-
sions we have found in other examples, the value for each of the smaller-is-better infor-
mation criteria is consistent with the judgment that the model with XGENDER1 provides
the better fit.

We have used the information criteria fairly often, explaining that one of their vir-
tues, when compared with the deviance, is that they punish analysts for using additional
degrees of freedom in specifying statistical models. We have not, however, described
how this is accomplished. Formulas for the most commonly cited information criteria,
Akaike’s Information Criterion and Schwarz’s Bayesian Criterion, make it easy to see
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TABLE 9.20. Reading Achievement: Multilevel Regression with Three Levels; Two Student-Level
Predictors; One School-Level Predictor; No District-Level Predictors; Random Intercept and
Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 317.249 2.084 152.266 .000

INTERCEPT variance at level two 8.233 1.149 7.156 .000

INTERCEPT-by-ETHNIC1 covariance at level two –1.861 1.563 –1.191 .234

ETHNIC1 variance at level two 18.393 4.389 4.191 .000

INTERCEPT variance at level three 0.515 0.650 0.792 .428

INTERCEPT-by-ETHNIC1 covariance at level three –0.356 0.892 –0.399 .690

ETHNIC1 variance at level three 0.248 0.000 — —

Note. A dash (—) indicates a value too small to measure.

TABLE 9.21. Information Criteria for Tables 9.15 and 9.18

Criterion With XGENDER1 Without XGENDER1

–2 log likelihood 402773.9 406503.6
Akaike’s Information Criterion 402797.9 406525.6
Hurvich and Tsai’s Criterion 402797.9 406525.6
Bozdogan’s Criterion 402914.9 406632.9
Schwarz’s Bayesian Criterion 402902.9 406621.9

Note. The smaller value for each measure is boldfaced and italicized.



why using additional degrees of freedom is costly. In the formula for Schwarz’s Bayesian
Criterion, ln(N) is the natural logarithm of the level-one sample size (Luke, 2004).

Akaike’s Information Criterion = –2 log likelihood + (2 * number of parameters)
402797.9 = 402773.9 + (2 * 12)

Schwarz’s Bayesian Criterion = –2 log likelihood + number of parameters * ln(N)
402902.9 = 402773.9 + 12 * 10.753

Both criteria use the –2 log likelihood or deviance as a point of departure. As more
parameters are added, the criteria become larger. This is a safeguard against using addi-
tional parameters to provide the appearance of a better fit to the data, when in fact little
or nothing has been accomplished. In the sense, the information criteria are analogous
to adjusted R2 as it is used in OLS regression.

Schwarz’s Bayesian Criterion increases not only in response to an increase in the
number of parameters estimated, but as a function of level-one sample size as well. As
sample size increases, deviance values become larger, and the deviance difference is
more likely to be statistically significant. Schwarz’s Bayesian Criterion provides a hedge
against deviance values that are inflated due to large sample sizes.

We can illustrate use of the deviance difference and information criteria again by
adding two level-three predictors, XETHNIC3 and XPOOR3, to the model specified in Table
9.17. This change in model specification is manifest in the level-three model and the full
model in Table 9.22.
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TABLE 9.22. Reading Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three

Level-one model

YIJK = β0JK + β1JKETHNIC1 + γ200XGENDER1 + eIJK

Level-two model

β0JK = β00K + γ010XETHNIC2 + u0JK

β1JK = β10K + γ110XETHNIC2 + u1JK

Level-three model

β00K = γ000 + γ001XETHNIC3 + γ002XPOOR3 + u00K

β10K = γ100 + γ101XETHNIC3 + γ102XPOOR3 + u10K

Full model

YIJK = γ000 + γ100ETHNIC1 + γ200XGENDER1 + γ010XETHNIC2 + 001XETHNIC3 + γ002XPOOR3

+ γ110XETHNIC2 * ETHNIC1 + γ101XETHNIC3 * ETHNIC1 + γ102XPOOR3 * ETHNIC1

+ u00K + u0JK + u10K * ETHNIC1 + u1JK * ETHNIC1 + eIJK



When we estimate fixed and random components for the full model, we get the
values reported in Tables 9.23 and 9.24. From Table 9.23, we can conclude the follow-
ing:

1. Female students, on average, score 7.406 points higher in verbal achievement
than males.

2. Each 1% increase in the number of a school’s students who are Black corre-
sponds, on average, to an 8.819-point decrease in individual student reading
achievement.

3. Each 1% increase in the number of a school’s students eligible for free/reduced
cost lunch corresponds, on average, to a 0.174-point decrease in individual stu-
dent reading achievement.

4. Each 1% increase in the number of a district’s students who are Black corre-
sponds, on average, to an 11.952-point exacerbation of the reading achievement
disadvantage for individual Black students.
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TABLE 9.23. Reading Achievement: Multilevel Regression with Three Levels;
Two Student-Level Predictors; One School-Level Predictor; Two District-Level Predictors;
Random Intercept and Random Slope at Level Two and Level Three; Fixed Components

Y = 46.372 – 6.599ETHNIC1 + 7.406XGENDER1 – 8.819XETHNIC2 + 4.489XETHNIC3 – 0.174XPOOR3

(4.259) (5.994) (0.166) (4.346) (4.026) (0.020)

– 6.220XETHNIC2 * ETHNIC1 – 11.952XETHNIC3 * ETHNIC1 + 0.046XPOOR3 * ETHNIC1
(5.872) (5.267) (0.461)

R1
2 = 8.2%

N1 = 46,770
N2 = 347
N3 = 135

TABLE 9.24. Reading Achievement: Multilevel Regression with Three Levels; Two Student-Level
Predictors; One School-Level Predictor; Two District-Level Predictors; Random Intercept
and Random Slope at Level Two and Level Three; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.511 2.088 152.074 .000

INTERCEPT variance at level two 22.497 5.155 4.170 .000

INTERCEPT-by-ETHNIC1 covariance at level two –3.018 3.458 –0.873 .383

ETHNIC1 variance at level two 25.919 8.677 2.987 .000

INTERCEPT variance at level three 0.286 0.000 — —

INTERCEPT-by-ETHNIC1 covariance at level three –0.102 4.526 –0.023 .982

ETHNIC1 variance at level three 1.440 0.000 — —

Note. A dash (—) indicates a value too small to measure.



We also see that inclusion of the two district-level predictors has increased the R1
2 value

from 5.8% to 8.2%.
From Table 9.25, we see that the deviance difference for models with and without

the district-level predictors is statistically significant at any commonly used alpha level,
indicating that the district-level predictors improve model fit. In addition, each of the
information criteria gives a smaller value for the model with the district-level predictors.

Deviance difference = 402773.9 – 402662.2 = 111.7

df = 16 – 12 = 4

9.5 SUMMING UP

The measures discussed in this chapter—the intraclass correlation coefficient, R1
2, the

deviance statistic, and the information criteria—are staples of multilevel regression anal-
ysis. Conveniently, their use with models that have three or more levels varies very little
in application and interpretation from their use with two-level models.

The intraclass correlation coefficient tells us whether or not multilevel regression is
needed. R1

2 is a summary statistic analogous to R2 in OLS regression. The deviance dif-
ference enables us to make formal comparisons of nested models. The information crite-
ria, especially Akaike’s Information Criterion and Schwarz’s Bayesian Criterion, enable
us to compare both nested and non-nested models. Since they include penalties for the
number of parameters estimated, they give the nod to simple models.

9.6 USEFUL RESOURCES

UCLA Academic Technology Services (2006) Statistical Computing Seminar: Introduction to
Multilevel Modeling Using SAS. Retrieved from www.ats.ucla.edu/STAT/seminars/sas_mlm/
mlm_sas_seminar.htm

Snijders, T., & Boesker, R. (1999) Multilevel Analysis. Thousand Oaks, CA: Sage.
Kreft, I., & De Leeuw, J. (1998) Introducing Multilevel Modeling. Thousand Oaks, CA: Sage.
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TABLE 9.25. Information Criteria for Tables 9.18 and 9.24

Criterion
Level-three
predictors

No level-three
predictors

–2 log likelihood 402662.2 402773.9
Akaike’s Information Criterion 402694.2 402797.9
Hurvich and Tsai’s Criterion 402694.2 402797.9
Bozdogan’s Criterion 402850.2 402914.9
Schwarz’s Bayesian Criterion 402834.2 402902.9

Note. The smaller value for each measure is boldfaced and italicized.



Luke, D. (2004) Multilevel Modeling. Thousand Oaks, CA: Sage.
SAS Institute (1999) SAS/STAT User’s Guide: The Mixed Procedure. Cary, NC: Author.
Leyland, A. (2004) A Review of Multilevel Modeling in SPSS. Glasgow, UK: University of Glasgow.
Abdulnabi, R. (1999) Using Model Fitting Information and PROC PLOT to Select the Type of

Variance–Covariance Structure for Repeated Measures. Ann Arbor, MI: Clinical Biostatistics,
Pfizer.

The unconditional and conditional intraclass correlation coefficients are ubiquitous. How-
ever, formulas (especially for the latter measure) are sometimes difficult to find, and not even
noted in textbook indices. The valuable UCLA statistical consulting website contains a wealth of
information on multilevel regression and related topics. It includes simply presented and easy-to-
find formulas for both the unconditional and conditional intraclass correlation coefficients, along
with examples of each.

Extension of these measures to more than two levels is explained and illustrated in Snijders
and Bosker’s valuable text. Snijders and Bosker also provide an easy-to-follow account of the R1

2

summary statistic as applied to measures with two or more levels. The authors explain limitations
of their version of this statistic when applied to models with one or more random slopes. Their
account of the interpretation of R1

2 is straightforward and clear.
Kreft and De Leeuw (1998) make the strong assertion that the deviance is the most impor-

tant statistic in multilevel modeling. Whether or not this is an overstatement, they clearly discuss
the meaning and calculation of the deviance statistic, and they apply it to numerous models. We
have found the deviance difference to be a useful, even if imperfect, decision-making tool.

We have explained that Akaike’s Information Criterion and Schwarz’s Bayesian Criterion are
the most commonly used information criteria. Formulas for both measures have been presented
and can be found in Luke’s book. Formulas for all four information criteria are included in the
PROC MIXED section of the SAS Institute’s guide (1999) and in Leyland’s review.

Abdulanabi’s procedure for using Akaike’s Information Criterion and Schwarz’s Bayesian Cri-
terion in selecting the most suitable covariance structure is useful in illustrating interesting ways
in which these information criteria can be applied.
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10

Determining Sample Sizes
for Multilevel Regression

10.1 CHAPTER INTRODUCTION

In Section 2.6, “Nesting and Effective Sample Size,” we have already begun to explain
that effective sample size determination is a much more complex issue when we are
working with a multilevel regression model than when we are working with an inher-
ently single-level OLS regression model. We can illustrate this a bit more emphatically
with an extravagant example, one with four levels.

As we have reported earlier, the NIEER West Virginia data set includes 750 kinder-
garten students nested in 164 classrooms (Lamy et al., 2005). The classrooms are nested
in 92 schools, and the schools are nested in 34 districts. We used this data set in Chapter
9 to illustrate computing the intraclass correlation and summary measures for three-
level models.

If we use phonics scores on a reading readiness test as the dependent variable and
construe students as nested in classrooms, classrooms as nested in schools, and schools
as nested in districts, we may have reason to do a variety of different analyses with two
levels at a time. Each pair of levels, moreover, will give us a different value for the
intraclass correlation coefficient.

If we work with students nested in classrooms, disregarding the other levels, the
variance components in Table 10.1 will give us the unconditional intraclass correlation
coefficient:

r = 14.012/(14.012 + 11.191) = 0.44
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If we work with classrooms nested in schools, disregarding the other levels, the uncon-
ditional intraclass correlation coefficient can be computed by using the variance compo-
nents in Table 10.2:

r = 11.084/(3.859 + 11.084) = 0.74

If we work with schools nested in districts, disregarding the other levels, the uncondi-
tional intraclass correlation coefficient can be computed by using the variance compo-
nents in Table 10.3:

r = 11.036/(2.597 + 11.036) = 0.81

Given these unconditional intraclass correlations and the number of observations at
each level, we can easily calculate sample design effects by using the formula from Table
2.27: students nested in classrooms = 2.59; classrooms nested in schools = 1.56; and
schools nested in districts = 2.26. Now that we know the design effects, we can use the
formula from Table 2.29 and easily calculate effective sample size for each level: students
= 290; classrooms = 104; schools = 41. Since districts are not nested within a larger unit,
the nominal and effective sample sizes at the district level are the same: 34.

Based on previous work, however, we also know that effective sample size calcu-
lated with the unconditional intraclass correlation coefficient may be very misleading. If
we introduce one or more higher-level contextual variables, we may explain some or all
of the between-group variability in the dependent variable. This will enable us to com-
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TABLE 10.1. Phonics: Students Nested in Classrooms; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 11.191 1.624 6.889 .000
INTERCEPT at classroom level 14.012 0.838 16.719 .000

TABLE 10.2. Phonics: Classrooms Nested in Schools; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 3.859 0.214 18.051 .000
INTERCEPT at school level 11.084 1.679 6.602 .000

TABLE 10.3. Phonics: Schools Nested in Districts; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 2.597 0.138 18.864 .000
INTERCEPT at district level 11.036 2.622 4.208 .000



pute the conditional intraclass correlation coefficient, which is usually smaller than the
unconditional intraclass correlation. As a result, design effects will be smaller, and the
effective sample sizes will be larger.

All of this is useful to know, but it leaves a really essential question unanswered:
How big does the sample size have to be at each level to provide efficient and unbiased
estimates of both fixed and random components? Rules of thumb are not hard to find,
but they are rarely convincing and usually based on guesswork. We will try to clarify the
sample size issue in this chapter.

10.2 INTEREST IN SAMPLE SIZE IN OLS
AND MULTILEVEL REGRESSION

Many evaluators, policy analysts, and applied researchers from a broad range of disci-
plines have learned regression analysis by using literature taken from econometrics.
Econometrics textbooks exhibit a good deal of variability with respect to cover-
age, mathematical sophistication, and demands placed on the reader (compare, e.g.,
Kmenta, 1997; Kennedy, 1998; Gujarati, 2003, 2006; Halcoussis, 2005; Hayashi, 2000;
Wooldridge, 2006).

One characteristic shared by these different sources, however, is lack of interest in
statistical power. As a result, discussions of suitable sample size are hard to find and
underdeveloped. With a few exceptions, such as Cohen, Cohen, West, and Aiken
(2002), much the same is true of most treatments of regression analysis produced by
authors not writing in the econometrics tradition.

In multilevel regression, by contrast, there is a good deal of interest in determining
suitable sample size and gauging statistical power (Maas & Hox, 2005). In large mea-
sure, this may be due to the fact that multilevel regression is inevitably complicated by
the need to acknowledge at least two different sample sizes: the number of observations
at level one and the number of observations at level two. As we have seen in Chapter 8,
moreover, we may have to concern ourselves with sample sizes at level three and even
higher levels. In any application of multilevel analysis, therefore, the inferential proper-
ties of our data will differ from level to level.

The number of cases and the effective sample size at level one may seem obviously
large enough to meet the statistical power needs of any application. At level two, how-
ever, things may be a lot less clear (Mok, 1995). And what about cross-level interaction
terms?

For example, if we do a two-level reading achievement analysis with the Kentucky
data set, the student-level effective sample size at level one is just under 2800 cases with-
out explanatory factors in the model. This stands in sharp contrast to the nearly 50,000
cases that we have reported again and again. The computations involved in arriving at
Table 10.4 were introduced in Tables 2.28 and 2.29.

As we add independent variables and use the conditional intraclass correlation
rather than the unconditional intraclass correlation, design effects will decrease, and
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effective sample sizes will increase. Insofar as we are able to account for intraclass corre-
lation, design effects get smaller, and effective sample sizes get larger (Mok, 1995). We
see this again by referring to Tables 10.5 through 10.8. For the two-level model specified
in Table 10.5 and estimated in Tables 10.6 and 10.7, the conditional intraclass correla-
tion at level one is now only 0.025. The effective sample size at the individual level is
10,847.

Can we find comparable numbers for the school level in a three-level model? Using
exactly the same procedures described in Tables 2.28 and 2.29, we get Table 10.9. In this
table, n is the mean group size (where groups are now districts), and N is the total num-
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TABLE 10.4. Individual-Level Effective Sample Size

Design effect = 1 + (n – 1) * intraclass correlation

17.730 = 1 + (143.99 – 1) * 0.117

Effective sample size = N/design effect

2798.42 = 49,616/17.730

TABLE 10.5. Reading Achievement: Model for Computing Effective Sample Size at Level One

Level-one model

Y = β0J + β1JETHNIC1 + eIJ

Level-two model

β0J = γ00 + γ01XETHNIC2 + γ02XSIZE2 + γ03XPOOR2 + u0J

β1J = γ10 + γ11XETHNIC2 + γ12XSIZE2 + γ13XPOOR2 + u1J

Full equation

Y = γ00 + γ01XETHNIC2 + γ02XSIZE2 + γ03XPOOR2 + γ020XSIZE2 + γ10ETHNIC1 + γ11XETHNIC2 * ETHNIC1

+ γ12XSIZE2 * ETHNIC1 + γ13XPOOR2 * ETHNIC1 + (u0J + u1J * ETHNIC1 + eIJ)

TABLE 10.6. Reading Achievement Equation for Computing Effective Sample Size
at Level One; Fixed Components

Y = 49.148 – 4.4302XETHNIC2 – 0.684XSIZE2 – 0.200XPOOR2 – 4.637ETHNIC1
(0.321) (0.873) (0.362) (0.013) (0.874)

– 17.865 XETHNIC2 * ETHNIC1 – 0.086XSIZE2 * ETHNIC1 – 0.101*XPOOR2ETHNIC1
(2.898) (0.872) (0.032)

R1
2 = 5.6%

N1 = 46,770
N2 = 347



ber of groups. The unconditional intraclass correlation in this instance is computed for
schools nested within districts and still pertains to reading achievement. Though the
unconditional intraclass correlation coefficient is more than four times larger than it was
for students nested within schools, the design effect is much smaller. This is because
there are, on average, comparatively few schools nested within districts. This leaves us
with an effective sample size of 192 cases at level two.

Again, if we introduce explanatory factors, as with the model specified in Table
10.10 and estimated in Tables 10.11 and 10.12, the conditional intraclass correlation
will be diminished, the design effect will be diminished, and effective sample size will
increase.

r = 8.210/(8.210 + 11.144) = 0.423

When the unconditional intraclass correlation in Table 10.9 is replaced by the con-
ditional intraclass correlation in Table 10.13, the effective level-two sample size in-
creases from 192 to 205. This is exactly the sort of thing we found at level one. However
we construe it, we have two very different effective sample sizes at the individual level
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TABLE 10.7. Reading Achievement: Computing Effective Sample Size at Level One;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 331.400 2.173 152.628 .000
INTERCEPT1 8.347 0.967 8.633 .000
INTERCEPT1 by ETHNIC1 –1.037 1.291 –0.803 .422
ETHNIC1 14.574 3.721 3.917 .000

TABLE 10.8. Individual-Level Effective Sample Size

Design effect = 1 + (n – 1) * intraclass correlation

4.574 = 1 + (143.99 – 1) * 0.025

Effective sample size = N/design effect

10,847 = 49,616/4.574

TABLE 10.9. School-Level Effective Sample Size

Design effect = 1 + (n – 1) * unconditional intraclass correlation

1.810 = 1 + (2.630 – 1) * 0.494

Effective sample size = N/design effect

192 = 347/1.810
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TABLE 10.10. Reading Achievement: Model for Computing Effective Sample Size
at Level Two

Level-one model

Y = β0J + β1JETHNIC2 + eIJ

Level-two model

β0J = γ00 + γ01XETHNIC3 + γ02XSIZE3 + γ03XPOOR3 + u0J

β1J = γ10 + γ11XETHNIC3 + γ12XSIZE3 + γ13XPOOR3 + u1J

Full equation

Y = γ00 + γ01XETHNIC3 + γ02XSIZE3 + γ03XPOOR3 + γ10ETHNIC2 + γ11XETHNIC3 * ETHNIC2

+ γ12XSIZE3 * ETHNIC2 + γ13XPOOR3 * ETHNIC2 + (u0J + u1J * ETHNIC2 + eIJ)

TABLE 10.11. Reading Achievement: Equation for Computing Effective Sample Size at Level Two;
Fixed Components

Y = 51.400 – 4.355XETHNIC3 – 0.160XSIZE3 – 0.124XPOOR3 + 2.238ETHNIC2 + 0.004XETHNIC3 * ETHNIC2
(0.264) (1.768) (0.266) (0.004) (0.524) (0.188)

– 8.076XSIZE3 * ETHNIC2 + 0.453XPOOR3 * ETHNIC2
(0.173) (0.032)

R1
2 = 31.3%

N1 = 347
N2 = 135

TABLE 10.12. Reading Achievement: Computing Effective Sample Size
at Level Two; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 11.144 0.072 154.556 .000
INTERCEPT1 8.210 1.036 7.924 .000

TABLE 10.13. School-Level Effective Sample Size

Design effect = 1 + (n – 1) * conditional intraclass correlation

1.689 = 1 + (2.630 – 1) * 0.423

Effective sample size = N/design effect

205 = 347/1.689



and the school level. At both levels, moreover, effective sample size varies with changing
multilevel regression model specification.

Things get more complex still when we acknowledge that a three-level model will
have three effective sample sizes. With the Kentucky data set, the 135 districts will con-
stitute the sample size at level three. Since there is no grouping variable higher than the
district, the effects of intraclass correlation are not measurable at the district level. The
effective sample size will remain 135.

When we are working with fixed components in multilevel regression analysis, the
likelihood that we will detect a relationship if one exists is a function of four factors: the
strength of the relationship, the designated alpha level, the magnitude of correlations
among independent variables, and effective sample size. We see therefore that with the
first three factors held constant, effective sample size is a powerful determinant of statis-
tical power. We also see that in the same multilevel analysis, statistical power may vary
enormously from level to level. How do we address this issue?

10.3 SAMPLE SIZE: RULES OF THUMB AND DATA CONSTRAINTS

The most commonly offered rule of thumb with regard to sample size for multilevel
models is at least 20 groups and at least 30 observations per group (Heck & Thomas,
2000). An alternative recommendation, cited almost as frequently, is 30 groups and 30
observations per group (Hox, 2002). Almost invariably, however, such recommendations
are heavily qualified. It soon becomes clear that sample size and sample structure are
complex and underresearched issues in multilevel analysis (Mok, 1995; Hox, 1998;
Maas & Hox, 2004).

Even without immersing ourselves in the growing and difficult technical literature
on sample size and statistical power in multilevel analysis, the “20/30” and “30/30” rules
of thumb merit a closer look. With 20—or even 30—observations at the second level of
a multilevel analysis, tests of significance and construction of confidence intervals for
level-two regression coefficients will be based on a dangerously small number of cases.

As a rather extreme but quite real case, recall the data set we have used that contains
measures on 331 beginning kindergarten students in 18 classrooms in 12 randomly
selected West Virginia elementary schools. Clearly, there are three levels that might be
used in an analysis of this information: the individual student, the classroom, and the
school. With 331 students, at first glance, the sample size seems not to be unduly small.

Again, however, if we use multilevel regression, the nominal sample size at the
classroom level is only 18, and the effective sample size at the school level is only 12!
These are constraints that came with the data set and over which we have no control. At
levels two and three, therefore, actual sample size constraints are even more severe than
those embedded in the dubious 20/30 and 30/30 rules of thumb.

To make matters worse, classrooms and schools are badly confounded in the West
Virginia data set. Seven of the schools have only one kindergarten classroom, making
school and classroom coterminous. No, this is not the best way to do a compelling mul-
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tilevel analysis—but especially in applied settings, we often have little control over the
data we analyze and even the way we analyze it.

With 18 classrooms at level two, how many school-level explanatory factors could
we use? In addition, are 18 classrooms enough second-level units to permit interpretable
use of random coefficients in analyzing varying relationships between a level-one depen-
dent variable and even one or two level-one independent variables? And what about 12
schools at level three?

These kinds of questions, in simplified form and pertaining to only one level and to
fixed coefficients, are well known in OLS regression analysis (Maxwell, 2000). It is not
difficult to see that the usual OLS issues have easy-to-identify, though more complex
analogues in multilevel regression.

Continuing with the West Virginia data, because of the confounding of levels, we
decide to work with students at level one and schools at level two, ignoring classrooms.
We run a multilevel analysis using a standardized measure of vocabulary achievement as
the dependent variable (Woodcock & Johnson, 1990). The test was administered at the
end of the kindergarten year.

We treat the intercept as random—a function of the contextual variable XBEGIN2, the
beginning-of-kindergarten test score aggregated to the school level, and the cross-level
interaction term XBEGIN2 * XBEGIN1. The cross-level interaction term is created in the usual
way, by multiplying the variable representing beginning-of-kindergarten test score at the
student level by the same variable aggregated to the school level. XBEGIN1 is the only
student-level independent variable. Since all slopes are fixed, the cross-level interaction
term is not implied by our multilevel regression model. Instead, we use it at our discre-
tion.

The case for using multilevel analysis in this example is based on the information in
Table 10.14. The intercept variance is statistically significant, and the unconditional
intraclass correlation is as follows:

r = 0.025/(0.025 + 0.089) = 0.219

Unstandardized regression coefficients and standard errors for this illustrative anal-
ysis are reported in Table 10.15, with random components reported in Table 10.16. With
only 12 schools—12 observations—at level two, it comes as no surprise that the slope
for the contextual variable XBEGIN2 is not statistically significant. This is exactly the sort
of thing we have just been discussing. Similarly, since our level-one independent variable
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TABLE 10.14. Reading Achievement for 12 West Virginia Schools:
Unconditional (Null) Model; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.089 0.005 18.106 .000
INTERCEPT1 0.025 0.011 2.230 .026



has a fixed coefficient, there is nothing exceptional about our level-one results: With
331 level-one observations, and given the nature of the relationship—posttest scores
regressed on pretest scores—the coefficient is almost certain to be statistically signifi-
cant.

In addition, the number of degrees of freedom for a cross-level interaction term cre-
ated from independent variables with fixed slopes is the same as the number of degrees
of freedom for a level-one independent variable with a fixed slope. So, with 331 cases at
level one, a statistically significant coefficient for the cross-level interaction term is not
unexpected.

In Tables 10.17 and 10.18, however, we estimate the same multilevel regression
model—but this time, in addition to the intercept, the slope for XBEGIN1 (now BEGIN1) is
random. This, as we know, yields a larger standard error for the fixed component of the
slope for BEGIN1. In addition, it means that we have many fewer degrees of freedom
when we test the slopes for BEGIN1 and XBEGIN2 * BEGIN1 for statistical significance.
Instead of N1 – k – 1 = 327 degrees of freedom, we have N2 – k – 1 = 8 degrees of freedom
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TABLE 10.15. Reading Achievement for 12 West Virginia
Schools: Random Intercept with All Slopes Fixed; Fixed Components

Y = 2.446 + 0.471XBEGIN1 – 0.197XBEGIN2 + 0.439XXBEGIN2 * XBEGIN1

(0.019) (0.023) (0.099) (0.176)

R1
2 = 50.1%

N1 = 331
N2 = 12

TABLE 10.16. Reading Achievement for 12 West Virginia Schools:
Random Intercept with All Slopes Fixed; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.054 0.003 17.988 .000
INTERCEPT1 0.003 0.002 1.520 .129

TABLE 10.17. Reading Achievement for 12 West Virginia Elementary
Schools: Random Intercept and One Random Slope; Fixed Components

Y = 2.441 + 0.495BEGIN1 – 0.188XBEGIN2 + 0.440XBEGIN2 * BEGIN1
(0.021) (0.035) (0.109) (2.000)

R1
2 = 50.1%

N1 = 331
N2 = 12



for each test. Inferential tests for BEGIN1 and XBEGIN2 * BEGIN1 now correspond to a
sample size of 12, the number of schools, rather than 331, the number of students.

The slope for BEGIN1 remains statistically significant. With the alpha level set at
.05, however, the slope for XBEGIN2 * BEGIN1 is not significant. This holds in spite of the
fact that the t value for the XBEGIN2 * BEGIN1 is 2.204. With 8 degrees of freedom, the
critical value for t for a two-tailed test is 2.306 (Levin & Fox, 2002). With only 12
schools at level two, statistical significance is hard to get.

Even if we got statistically significant results for the slopes for XBEGIN2 and XBEGIN2 *
BEGIN1, what would we make of them? With such a small sample at the school level,
how much confidence can we have in our slope estimates? If we were using OLS regres-
sion to work with a sample size of only 12, we would be quite dubious as to the value of
coefficient estimates, even if they were statistically significant. Our doubts with regard to
the value of level-two fixed slopes estimated with so few cases are consistent with recent
work by Maas and Hox (2005). They have reported that approximately 50 level-two
cases are needed to justify claims as to the absence of bias in standard error estimates for
level-two slopes.

10.4 ESTIMATION AND INFERENCE FOR UNSTANDARDIZED
REGRESSION COEFFICIENTS

As with OLS multiple regression, most applications of multilevel regression are aimed at
estimation and inference for unstandardized regression coefficients, and sample size is
an important consideration. We want unbiased, efficient estimates of the coefficients
themselves and of their standard errors. This is perfectly obvious with OLS regression.
With multilevel regression, however, we have seen that more parameters of varying
kinds are estimated, and that they are estimated at more than one level.

Using knowledge acquired from working with OLS regression as a point of depar-
ture, we will try to make the inevitably complex issue of multilevel sample size more
tractable. In the process, much as with the examples just presented, we tentatively con-
clude that OLS-engendered commonsense can be a useful (even if preliminary and
incomplete) guide to approximating answers to some practical questions concerning
sample size in applied multilevel analysis.
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TABLE 10.18. Reading Achievement for 12 West Virginia Elementary Schools:
Random Intercept and One Random Slope; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 0.053 0.003 17.812 .000
INTERCEPT1 0.004 0.003 1.322 .186
INTERCEPT1 by BEGIN1 –0.003 0.003 –0.870 .384
BEGIN1 0.006 0.008 0.779 .436



10.5 MORE THAN ONE LEVEL OF ANALYSIS MEANS
MORE THAN ONE SAMPLE SIZE

When using OLS regression, we are accustomed to dealing with the total number of
observations—in other words, the number of observations at level one. With multilevel
analysis, however, we must consider at least two sample sizes: the number of observa-
tions at level one, or the total sample size; and the number of observations at level two,
or the number of groups.

In truth, even with just two levels, there is a third sample size that has been conspic-
uously evident in our account of effective sample size: the mean number of level-one
observations nested in each level-two group. With more than two levels, this framework
becomes even more complex.

We have already discussed computation of the standard error of an unstandardized
regression coefficient estimated with OLS. We have seen in Tables 2.22 through 2.33 that
in the presence of nesting or clustering, effective total sample size must be adjusted for
the absence of independence among observations.

Using the subset of the High School and Beyond data set, we will again illustrate the
effect of nesting on effective sample size, much as we did in with occupational group
data in Tables 2.22 through 2.33. When working with multilevel regression, we now
know that there are two kinds of regression coefficients: fixed and random. In addition,
we know that a random regression coefficient has two components: a fixed component
and a random component. As a result, multilevel analysis requires three different kinds
of estimates specific to regression coefficients: fixed coefficients; fixed components of
random coefficients; and random components of random coefficients. Furthermore,
fixed coefficients, fixed components, and random components may occur at more than
one level of our model.

In addition, peculiar to multilevel analysis are cross-level interaction terms, created
by using variables at two levels. Cross-level interaction terms, too, have fixed regression
coefficients to be estimated and tested.

At the risk of redundancy, we will further develop these issues with analyses similar
to the one spelled out in Tables 2.22 through 2.33. In this instance, however, the sample
has a much larger number of second-level observations—160 high schools, with 7185
students at level one.

In Table 10.19, we reproduce from Table 2.22 the formula for the standard error of
an unstandardized regression coefficient. We then restate the SR

2 term, the variance of

276 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

TABLE 10.19. Standard Error of an OLS Slope:
Expanded Formula

Sb = (((SR
2)/SSX) * VIF)1/2

SR
2 = Σ residuals2/(N – k – 1)

Sb = (((Σ residuals2/(N – k – 1))/SSX) * VIF)1/2



the residuals, to clarify the role of sample size in estimating the standard error. With the
formula for Sb expanded in this way, it is clear that as sample size increases, Sb gets
smaller and statistical power is legitimately increased. Table 10.20, however, reminds us
again that effective sample size with nested data is determined only after we incorporate
the cluster-engendered intraclass correlation, in the form of a design effect, into our cal-
culations for Sb.

This is getting to be an uncomfortably complex formula. Nevertheless, applying it is
not difficult. For example, with our High School and Beyond subset, the intraclass corre-
lation coefficient for math achievement is calculated in Table 10.21. With an average of
44.91 students per school, the design effect and effective sample size can be computed as
in Table 10.22.

10.6 AN INDIVIDUAL-LEVEL OLS ANALYSIS
WITH A LARGE SAMPLE

We can illustrate application of the information in Tables 10.19 through 10.22 with the
OLS multiple regression analysis reported in Table 10.23. The dependent variable is
math achievement (YMATH). The independent variables are SES (XSES); gender (XFEMALE),
with females coded 1 and males coded 0; and ethnic minority status (XMINORITY), with
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TABLE 10.20. Standard Error and Effective Sample Size

Design effect = 1 + (n – 1) * intraclass correlation

Effective sample size = N/design effect

Sb = (((Σ residuals2/(N/[design effect] – k – 1))/SSX) * VIF)1/2

TABLE 10.21. Unconditional Intraclass Correlation
for High School and Beyond Subset

Intraclass correlation = Explained/(error + explained)

Intraclass correlation = 8.61/(39.1 + 8.61) = 0.18

TABLE 10.22. Effective Sample Size for High
School and Beyond Subset

Design effect = 1 + (n – 1) * intraclass correlation

8.90 = 1 + (44.9 – 1) * 0.18

Effective sample size = N/design effect

807.30 = 7185/8.90



members of ethnic minority groups coded 1 and Whites coded 0. Dividing each unstan-
dardized slope by its standard error yields t values that are all greater than 9.000, well
above the usual critical value of 1.960 for a large sample.

In Table 10.24, however, we have corrected the OLS standard errors for design
effects. Table 10.25 reports the regression results from Table 10.23, but with corrected
standard errors of OLS slopes inserted in brackets and boldfaced beneath the uncor-
rected standard errors. Since we still have an effective sample size of 807 observations, it
is not surprising that all coefficients are still statistically significant (alpha = .05). Never-
theless, we can easily see that the corrected standard errors are larger, and that each of
the t values will be smaller.

10.7 A GROUP-LEVEL OLS ANALYSIS WITH A SMALL SAMPLE

As is often the case, if we estimate an OLS multiple regression equation using the same
variables as in Table 10.25 but aggregated to the group level, we get results that are very
different from those obtained with the individual as the unit of analysis. While in this
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TABLE 10.23. Illustrative OLS Analysis with High School
and Beyond Subset

YMATH = 14.254 + 0.2.683XSES – 1.377XFEMALE – 2.837XMINORITY

(0.119) (0.199) (0.148) (0.172)

R2 = 17.1%
N = 7185

TABLE 10.24. OLS Standard Errors Corrected for Design Effects

Sb = (((Σ residuals2/(N/[design effect] – k – 1))/SSX) * VIF)1/2

SSES = 0.300 = (((286651.59/(7185/[8.90] – 3 – 1))/4363.52) * 1.084)1/2

SFEMALE = 0.671 = (((286651.59/(7185/[8.90] – 3 – 1))/1790.54) * 1.005)1/2

SMINORITY = 0.778 = (((286651.59/(/[8.90] – 3 – 1))/1431.67) * 1.080)1/2

TABLE 10.25. OLS Illustrative Analysis with Uncorrected
and Corrected Standard Errors

YMATH = 14.254 + 0.2.683 XSES – 1.377XFEMALE – 2.837XMINORITY

(0.119) (0.199) (0.148) (0.172)
[0.300] [0.671] [0.778]

R2 = 17.1%
Corrected N = 807



instance signs of the regression coefficients are the same and tests of significance yield
the same results, coefficient sizes from Tables 10.25 and 10.26 are very different, as is the
value of R2.

Should the group-level standard errors be adjusted for design effects due to nesting,
much as the individual-level standard errors were adjusted? We made this sort of adjust-
ment when working with the Kentucky data set. However, since the High School and
Beyond subset does not include a grouping variable above the school level, no adjust-
ment can be made. Perhaps an adjustment should be made, since it is safe to assume that
schools are grouped within districts; however, we do not know which schools belong in
the same and different districts, so an adjustment for intraclass correlation is not possi-
ble. The effective sample size at the school level, therefore, will be the same as the nomi-
nal sample size: 160.

10.8 STANDARD ERRORS: CORRECTED AND UNCORRECTED,
INDIVIDUAL AND GROUP LEVELS

Of special pertinence for present purposes, the standard errors for the unstandardized
OLS group-level slopes are reported correctly in Table 10.26. However, we can compare
the uncorrected and corrected individual-level standard errors, along with the group-
level standard errors, using the information in Table 10.27. The group-level standard
errors are much larger than the individual-level standard errors that have not been cor-
rected for clustering or nesting. Differences between the group-level standard errors and
the corrected individual-level standard errors, however, are much smaller, and for XSESu

(XSES) and XFEMALEu (XFEMALE) the group-level standard errors are actually smaller than
the individual-level standard errors.

The important point is that the effective sample size at the group level is only 160
cases. If we do multilevel regression without bearing in mind that the number of second-
level observations is the number of second-level groups (in this instance, schools), we
may badly overestimate the statistical power of our analysis, winding up with standard
errors much larger than we had off-handedly anticipated.

Perhaps we have made this point too often and illustrated it in a needlessly wordy and
otherwise cumbersome way. When we are making the transition from OLS regression and
its more conventional correctives to multilevel regression, however, it is a point that is easy
to forget, and its importance and ubiquitous character make it worth repeating.
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TABLE 10.26. OLS Aggregated Group-Level Analysis

YMATHu = 14.060 + 5.201XSESu – 1.901 XFEMALEu – 1.515XMINORITYu

(6.572) (0.296) (0.513) (6.572)

R2 = 65.6%
N = 160



10.9 WHEN OUTPUT IS NOT FORTHCOMING!

Let’s take another extreme case. Suppose we do the occupation and income analysis from
Table 2.26, but with data aggregated to the group level. The level-two grouping variable
is occupational category. That means that there will be only nine second-level groups.

With the group as the unit of analysis, we see in Table 10.28 that we get values for
OLS regression coefficients that are very different from those reported in Table 2.26 with
the individual as the unit of analysis. We also get a wildly implausible R2 value: 100%!

But where are the standard errors for the group-level analysis? Since our eight inde-
pendent variables have used up all nine available degrees of freedom (df = N – k – 1 = 0),
SPSS is unable to compute inferential statistics. Even after we adjust for design effects,
and with a comparatively large number of independent variables, we have enough cases
to do an interpretable (even if not statistically powerful) individual-level hourly-wage
analysis. But we do not have enough occupational categories to get interpretable output
at the group level.
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TABLE 10.27. Standard Errors of OLS Slopes
for Three Different Circumstances

Uncorrected individual-level

XSES XFEMALE XMINORITY

0.199 0.148 0.172

Corrected individual-level

XSES XFEMALE XMINORITY

0.300 0.671 0.778

Group-level

XSESu XFEMALEu XMINORITYu

0.555 0.578 0.407

TABLE 10.28. OLS Group-Level Results: Too Few Degrees of Freedom

YWAGEu = 9.852 – 8.279XEDUCATIONu – 3.599XYEARSu – 51.766XBLACKu – 55.987XUNIONu

( ) ( ) ( ) ( ) ( )

– 3.276XMARRYu – 163.953XBLACKEDu – 9.022XBLACKYRSu – 1157.306XBLACKUNu

( ) ( ) ( ) ( )

R2 = 100%
N = 9
df = 0



10.10 SAMPLE SIZES AND OLS-BASED COMMONSENSE
IN MULTILEVEL REGRESSION

Given the foregoing, imagine that we use the occupation-and-income data set to esti-
mate a multilevel regression equation. The dependent variable is hourly wage, and the
independent variables at the individual level are XEDUCATION, XYEARS, XBLACK, XUNION, and
XMARRY, as well as the interaction terms XBLACKED, XBLACKYRS, and XBLACKUN. At the group
level, we include aggregates of each of the five main-effect variables.

After we correct the total sample size for clustering or nesting by invoking design
effects, we have many fewer effective cases at the individual level than we had
thought. At the group level, however, things are much worse. We have only nine
cases, and only four degrees of freedom that we have not used up. With so few group-
level observations, even though estimates of unstandardized regression coefficients
will be forthcoming, they will be extremely imprecise, and the analysis will be very
short on statistical power.

As a less extreme example, recall the extended county-level voting behavior analysis
that culminated in the multilevel regression equation specified in Table 7.8. At this
point, a pertinent question is the following: Just what are the effective sample sizes at the
county and state levels? We have 3140 counties nested within 49 states, meaning that
the average number of county-level observations per state is 64.1. With a conditional
intraclass correlation of 0.153, we see in Table 10.29 that our effective sample size at the
county level is not 3140, as we had understandably assumed, but only 291! Another
nasty surprise! The effective sample size at the state level remains 49.

Imagine that we are using OLS estimators. Would we be equally comfortable with
effective sample sizes of 3140, 291, and 49? There is more to the sample size issue in
multilevel regression than OLS-based questions such as this, but this is a good point of
departure. If we have serious statistical power reservations prompted by sample sizes
used with OLS regression, these concerns will be at least as serious with multilevel
regression, and this assertion will apply to all levels of the analysis. After all, since multi-
level estimates are adjusted for negative bias due to nesting-engendered intraclass corre-
lation, their standard errors are typically larger than OLS standard errors (Angeles &
Mroz, 2001).
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TABLE 10.29. Effective Sample Size for Extended Voting
Behavior Example

Design effect = 1 + (n – 1) * conditional intraclass correlation

10.79 = 1 + (n – 1) * 0.153

Effective sample size = N/design effect

291 = 3140/10.79



10.11 SAMPLE SIZE GENERALIZATIONS PECULIAR
TO MULTILEVEL REGRESSION

Most of the sample size illustrations produced so far have been based on OLS estimators.
As we know, however, when estimating coefficients for multilevel models, we have been
using REML estimators. While there is a good deal of overlap with regard to sample size
considerations, with REML estimators there is no straightforward, generally applicable
formula for the standard error, such as that introduced for OLS coefficients (cf. Cohen,
1998).

Nevertheless, as with OLS, the statistical power of REML estimators in a multilevel
analysis is improved as level-specific sample sizes increase. Statistical power also
improves as relationships become stronger, as the alpha level is made larger, as the asso-
ciations among independent variables diminish, and as the intraclass correlation is
diminished. Beyond that, the following observations are worth remembering.

10.12 LEVEL-ONE SAMPLE SIZE AND LEVEL-TWO
STATISTICAL POWER

Increasing the sample size at level one does nothing to enhance statistical power at level
two. Instead, as far as sample size is concerned, improving power at level two is accom-
plished only by increasing the number of observations at that level. As a result, it is
entirely possible to have an enormous total sample, but still have too few group-level
observations to obtain creditable coefficient estimates—or any estimates at all!—for the
group level.

10.13 THE IMPORTANCE OF SAMPLE SIZE AT HIGHER LEVELS

In general, for any fixed sample size, results of multilevel analyses are improved by mak-
ing the number of groups as large as possible, thereby diminishing the number of cases
for each group (Snijders & Bosker, 1999). Say we take the oft-cited rule of thumb that
doing a multilevel analysis requires at least 20 groups and 30 observations per group,
meaning a total of 600 level-one observations. The 600 cases would actually give better
estimates of unstandardized regression coefficients and standard errors at the group level
if we had 30 groups and an average of 20 observations per group. Better still for group-
level estimates would be 60 groups and an average of 10 observations per group. Even
then, how comfortable would we be with a conventional OLS analysis based on 60
observations? At the very least, we would feel obliged to use a small number of indepen-
dent variables.

What about level-one estimates with fixed regression coefficients? As we have seen,
the more level-one cases we have for each level-two group or cluster, the more our effec-
tive sample size is diminished. It is easy to forget, moreover, that the effective sample
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size for level-one random regression coefficients is equal to the number of groups at the
second level. This makes sense if we recall that the random component of a random
regression coefficient is an estimate of the variability of the coefficient across the number
of groups with which we are working. The fixed component, moreover, is a weighted
average taken across the same number of groups. Clearly, when we are estimating ran-
dom coefficients, the number of groups is a crucial consideration.

Where does this leave us with regard to workable prescriptions for sample sizes in a
multilevel regression analysis? Think of the sample sizes at each of the different levels of
a multilevel model as providing or not providing the basis for reasonably precise esti-
mates and adequate statistical power. OLS-based commonsense can be a useful tool for
thinking this through.

10.14 SUMMING UP

An obvious problem with the material presented in this chapter is the absence of strict
rules for determining adequate sample size at any level. This again reflects the under-
researched and poorly understood character of sample size determination in multilevel
analysis. It is useful to point out, nevertheless, that similar concerns are often expressed
with regard to conventional applications of OLS multiple regression. With OLS regres-
sion, however, decades of applications, along with acknowledgment of the importance of
design effects and increased concern for the consequences of multicollinearity, have
imbued experienced analysts with a useful feel or intuition as to the number of cases
needed to do creditable work (Gujarati, 2003).

My approach to judgments as to suitable sample size in multilevel analysis is to lean
heavily on this OLS-engendered conventional wisdom. For example, in the exemplary
work by Maas and Hox (2005) they have found that in a two-level model, at least 50
level-two observations are needed to assure that standard error estimates for fixed com-
ponents are unbiased. We should ask ourselves, however, if 50 cases would be enough to
give us confidence in OLS estimates of fixed components. Or would we be inclined to
suspect that with only 50 cases, standard errors would be unduly large, confidence inter-
vals unduly wide, and tests of significance unduly likely to prompt us to reject the null
hypothesis? After all, even if estimates are unbiased, they may be misleading (Kennedy,
2003).

10.15 USEFUL RESOURCES

Kish, L. (1995) Survey Sampling. New York: Wiley. (Original work published 1965)

Kish’s text is a widely read classic on survey sampling and sample design; it remains accessi-
ble and informative. Many readers first encountered concepts such as clustering, within-group
homogeneity, design effects, and effective as opposed to nominal sample size by reading Kish.
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Insofar as what I have termed OLS-engendered commonsense is useful in determining suitable
sample size in multilevel models, it is due to the value of concepts ably discussed in this survey
research classic.

Mok, M. (1995) Sample Size Requirements for 2-Level Designs in Educational Research. Multi-
level Modelling Newsletter, 7, 11–15.

Maas, C., & Hox, J. (2004) Robustness Issues in Multilevel Regression Analysis. Statistica
Neerlandica, 58, 127–137.

Maas, C., & Hox, J. (2005) Sufficient Sample Sizes for Multilevel Modeling. Methodology, 1, 86–
92.

Hox, J. (2002) Multilevel Analysis: Techniques and Applications. Mahwah, NJ: Erlbaum.

Mok’s brief article is one of the most frequently cited discussions of sample size in the litera-
ture on multilevel regression. Though no less difficult to read than the other research reports
appearing in the Multilevel Modelling Newsletter, Mok’s paper merits the effort required to work
through her sometimes idiosyncratic mode of presentation.

For our purposes, Mok’s most important finding is that what I have termed OLS-engendered
commonsense works quite well for both fixed and random components of random regression
coefficients. She also affirms that the efficiency of coefficient estimates is maximized and bias is
minimized as the number of higher-level units is increased.

Mok emphasizes the distinction between nominal and effective sample size. She also makes
clear that introduction of one or more predictors necessarily shifts attention from the uncondi-
tional intraclass correlation coefficient to the conditional version of this measure.

Maas and Hox have made a sustained effort to develop the literature on sample size and sta-
tistical power in multilevel modeling. In various papers, including those cited here, they have
begun to accumulate a useful set of findings with regard to sample size and statistical power.

Maas and Hox have effectively questioned the 30/30 rule, finding that 30 cases at the group
level are too few to avoid misleading results from tests of significance for random components. In
the same vein, they have found that estimates of group-level standard errors are likely to be biased
if there are fewer than 50 group-level observations. In addition, Maas and Hox’s research has dem-
onstrated that estimation of standard errors of random components is extremely sensitive to viola-
tion of the normality assumption for group-level residuals, while estimation of standard errors of
fixed components is robust with regard to violation of the same assumption.
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11

Multilevel Regression Growth Models

11.1 CHAPTER INTRODUCTION

The literature on multilevel regression is conceptually diverse and difficult. Even begin-
ners, however, can occasionally find a crucial idea that seems not to be still another
source of never-ending confusion. One of these concepts is nesting. Students within
schools, schools within districts, employees within occupational groups, riflemen within
squads, squads within platoons, platoons within companies … a wonderfully obvious
and useful idea. But what about this: measures nested within individual-level units? The
first few examples are obvious indeed. But measures nested within individual-level units?
What does that mean? For readers not accustomed to working with repeated measures,
this view of nesting may be confusing.

By way of illustration, suppose we are interested in evaluating a program designed
to maintain achievement gains due to participation in Head Start. We hope to maintain
gains through the first 4 years of elementary school (Penn, 2004). Using the Woodcock–
Johnson 22 standardized test of vocabulary achievement (Woodcock & Johnson, 1990),
we measure 331 students from 12 randomly selected elementary schools in two contigu-
ous districts at the beginning of kindergarten, the end of kindergarten, the end of first
grade, the end of second grade, and the end of third grade. When data collection is fin-
ished, we have longitudinal data consisting of five measures on each student. In a very
real sense, individual students are the grouping variable, and test scores are nested within
students. The individual student is at level two, with the repeated measures at level one!

From the beginning of kindergarten until the end of third grade, we certainly expect
attrition (Fitzgerald, Gottschalk, & Moffitt, 2002). Families move, students are placed in
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private schools, parents decide to home-school their youngsters, and especially unfortu-
nate children become chronically ill or die in accidents. In many areas of the United
States, moreover, students drop out long before they get to middle school, and truant
officers are but a quaint recollection from decades past (Bickel & Papagiannis, 1988;
Bickel, 1989; Bickel & Lange, 1995).

Nevertheless, with careful attention to follow-up and a little luck, at the end of third
grade we have measured vocabulary achievement at five different times for most of the
331 students. For some others, children who have missed one or more testing sessions
but who are still in one of the 12 schools, we have measures on several—two, three,
four—different occasions.

The same, moreover, will be true of many students lost to attrition. We may not
have measures for every testing occasion, but we are likely to have collected vocabulary
achievement data for a subset of the five testing periods. For each student measured,
then, we have test scores nested within individual students.

11.2 ANALYZING LONGITUDINAL DATA: PRETEST–POSTTEST

At one time or another, many of us have encountered data similar to those just
described. An obvious, time-honored, and informative way to analyze the post-Head
Start program data is through regression-based analysis of covariance (ANCOVA).

Depending on the data set, there are a variety of ways to specify the regression
model. In this example, we will simply use the end-of-third-grade vocabulary test score
as the dependent variable. Independent variables will be limited to the beginning-of-
kindergarten test score as a pretest (XPRE), and dummy variables representing participa-
tion in Head Start (XHEAD) and participation in a post-Head Start program (XPROGRAM).
Measures of duration of participation in the program being evaluated would be more
informative than a dummy variable, but we will use what we have. As things stand,
62.7% of the students in the data set participated in Head Start, and 54.2% participated
in the post-Head Start program.

After centering the Head Start and post-Head Start program variables, we create a
same-level multiplicative interaction term (XHEAD * XPROGRAM). This term is especially
useful in our analysis, because 52.2% of Head Start participants were enrolled in the
post-Head Start program, while the remaining 47.8% received no additional services.

Finally, as additional independent (control) variables, we add family income
(XINCOME), parent respondent’s level of educational attainment (XEDUCATION), and neigh-
borhood quality (XHOOD).

The results reported in Table 11.1 indicate that Head Start (XHEAD) makes no differ-
ence, that the program being evaluated (XPROGRAM) makes no difference, and that the
XHEAD * XPROGRAM interaction effect is also inconsequential. The pretest, of course, has a
substantial relationship with the posttest: For each 1-point increase in the pretest score,
posttest scores, on average, increased by 0.940 points.
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11.3 NESTED MEASURES:
GROWTH IN STUDENT VOCABULARY ACHIEVEMENT

Notice, however, that our sample size is only 258. Due to attrition and missing data, we
have lost 73 cases.

Furthermore, the question being asked and answered—is vocabulary achievement
at the end of third grade related to post-Head Start program participation?—ignores a
good deal of data. Specifically, test scores at the end of kindergarten, at the end of first
grade, and at the end of second grade have been excluded. If we had measures on all
variables in the analysis for the specified occasions, we could use well-known time series
procedures. But the available data are not adequate to that task.

Perhaps we should simply ignore the additional data. After all, we have provided a
tentative answer to the question posed—the program makes no difference—and test
score data for intervening outcome variables seem not to have been needed. Just what
may we be missing by making this choice?

Suppose we select one case at random. (In our program evaluation data set, it is case
number 280.) We find that this student had a vocabulary test score of 11 at the begin-
ning of kindergarten and 37 at the end of third grade. This means that student number
280 gained, on average, 6.5 points per year. Since the standard deviation for vocabulary
achievement at the beginning of kindergarten is 4.28, this is, on average, just over 1.5
standard deviations per year. It all seems perfectly straightforward and at first look, it is
not clear that we have lost anything by excluding the intervening scores.

But let’s look more closely at the progress of student number 280 over the four years
from the beginning of kindergarten until the end of third grade. If we plot test scores
year by year, as in Figure 11.1, we see that growth in vocabulary achievement represents
a fairly clear-cut departure from linearity.

If we limit our analysis to the posttest score as a function of the pretest score and a
commonplace complement of other independent variables, as in Table 11.1, we com-
pletely overlook the S-shaped pattern that is evident in Figure 11.1. But perhaps this is
for the best. After all, there is no good reason to believe that case 280 provides a useful
typification of the entire data set. It may be, moreover, that departures from linearity
with regard to this case are due to random error (Singer & Willett, 2003).
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TABLE 11.1. ANCOVA for Vocabulary Achievement

YPOST = 37.149 + 0.940XPRE – 0.675XHEAD – 0.556XPROGRAM + 1.587XHEAD * XPROGRAM

(0.384) (0.095) (0.904) (0.805) (1.591)

+ 0.289XEDUCATION – 0.064XINCOME + 0.069XHOOD

(0.253) (0.193) (0.058)

R2 = 35.9%
N = 258



We can, however, easily select another case at
random and see what we get. This time we select
case number 87 (see Figure 11.2). This is certainly
a very different pattern, and one wonders how to
account for the sharp drop in test-taking perfor-
mance at the end of first grade. Perhaps the data
were mispunched. Maybe the child was ill. It could
be that he or she misunderstood the test admin-
istrator’s directions. Or perhaps the child actu-
ally suffered a rather dramatic achievement decline
throughout the kindergarten year. Whatever the
explanation, scores for this case do not suggest the
S-shaped pattern we very tentatively discerned in
Figure 11.1.

As it turns out, we have scores for the same
students on four other tests administered during
the same testing sessions for the same program

evaluation purpose. Two of these—the Peabody Picture Vocabulary Test (Dunn & Dunn,
1981) and the Woodcock–Johnson 23 passage comprehension test (Woodcock & John-
son, 1990)—have also been commonly used as measures of verbal achievement. We can
easily graph changes in the performance of student number 87, using these tests (see
Figure 11.3 and 11.4). Though the three tests are not directly comparable, it is instruc-
tive to see that the dramatic drop in measured achievement for case number 87 is pecu-
liar to the Woodcock–Johnson 22. Whatever the explanation for this dramatic decline, it
is not manifest in related test scores for the same student.

If we select another case at random (number 166) and plot growth in vocabulary
achievement as measured by the Woodcock–
Johnson 22, we get the results in Figure 11.5. In
this instance, all points are clustered very close to
the regression line.

We could continue randomly selecting individ-
ual cases and graphing achievement growth student
by student, and, as we have been doing, using OLS
to estimate intercepts and slopes. This would be a
tedious exercise, to be sure, and it is not at all clear
that we would learn much more than is suggested
by the few cases we have examined: For vocabulary
achievement as measured by the Woodcock–
Johnson 22, OLS estimates of intercepts and slopes
vary substantially from case to case. Furthermore,
there seems not to be a nonlinear functional form
that is consistently better-fitting than a straight
regression line.
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FIGURE 11.1. Case number 280:
Growth in Woodcock–Johnson 22
vocabulary test scores.

FIGURE 11.2. Case number 87:
Growth in Woodcock–Johnson 22
vocabulary test scores.



Still, we might try developing this example fur-
ther by being more purposeful in selecting cases.
Suppose we select two cases at random, but we
specify that one student (case number 45) will be a
White female from a rural county, with parents
whose education and income levels are in the top
quartile; the other (case number 72) will be a Black
male from a nonrural county, with parents whose
education and income levels are in the bottom
quartile. Having selected two students to assure
they are different on high-profile variables—race,
gender, place of residence, family income, and par-
ents’ education—we get the vocabulary achieve-
ment growth results in Figures 11.6 and 11.7.

With these additional examples, we continue
to get very different intercepts and slopes from one
student to another, and it remains the case that

consistently patterned departures from linearity are not evident. Our examples show a
tight clustering of observations about the regression line, and the S-shaped growth curve
suggested by case number 280, while again intimated in Figure 11.6, seems likely to
have been due to chance.

The dramatic differences in intercepts and slopes are instructive in themselves.
They suggest, moreover, that even when a growth curve is best construed as linear, use
of a simple pretest–posttest analysis hides a lot of valuable information. Students may
start at very different achievement levels, and by the end of the third grade may be at a
similar place. And the converse is also true. Understanding the achievement growth pro-
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FIGURE 11.3. Case number 87:
Growth in Peabody Picture Vocabu-
lary Test scores.

FIGURE 11.4. Case number 87:
Growth in Woodcock–Johnson 23
passage comprehension test scores.

FIGURE 11.5. Case number 166:
Growth in Woodcock–Johnson 22
vocabulary test scores.



cess, as a result, requires a good deal more informa-
tion than is provided by a pretest–posttest design.

The slope and intercept differences we have
just seen should be remembered when we examine
a relationship such as that displayed in Figure 11.8.
Here we have used all information available for the
Woodcock–Johnson 22 vocabulary test for each of
the five testing occasions.

Figures 11.1 through 11.8 enable us to visual-
ize what we mean by the claim that observations
are nested within individual students. In this
instance, depending on the number of testing ses-
sions for which a student was present, each was
measured one to five times over a period of 4 years.

11.4 NESTED MEASURES:
GROWTH IN NCLEX PASS RATES

Though we have learned a lot from examining the graphical descriptions of achievement
growth, it is important that we not be misled by the tidy relationships so far depicted.
Yes, intercepts and slopes varied sharply, but in case after case we saw remarkably little
variation around the regression line. In each instance, moreover, growth meant growth!
In addition, each of the individuals whose performance was graphed had been measured
on all five test-taking occasions. None of the students whose scores provided our exam-
ples had failed to take one or more tests.

290 MULTILEVEL ANALYSIS FOR APPLIED RESEARCH

FIGURE 11.6. Case number 45:
Growth in Woodcock–Johnson 22
vocabulary test scores.

FIGURE 11.7. Case number 72:
Growth in Woodcock–Johnson 22
vocabulary test scores.

FIGURE 11.8. All cases: Growth
in Woodcock–Johnson 22 vocabu-
lary test scores.



Figures 11.9 through 11.12 below, however,
illustrate growth in institutional pass rates on the
national nursing certification exam, commonly
referred to as NCLEX (National Council of State
Boards of Nursing, 2006). The cases include all 21
institutions—whether these were universities, 4-
year colleges, community colleges, vocational–
technical schools, or hospitals—that offered regis-
tered nursing programs in West Virginia at any time
during the 10-year period from 1985 to 1994.

We have purposefully selected three of those
institutions to further illustrate the meaning of the
nesting of measures within level-one cases, and to
clarify the meaning of growth as we are using that
term. In Figure 11.9 we see that institution 15
reported pass rates for 9 of the 10 years. For those
nine measures, an upward-sloping linear regression line seems quite fitting.

In Figure 11.10 we see that institution 12 reported pass rates for all 10 years. In this
instance, the scatter of points corresponding to the pass-rate-by-time relationship clearly
suggests no change. The OLS estimate of the slope of the regression line is almost exactly
zero.

In Figure 11.11 we see that institution 21 reported pass rates for 9 of 10 years. In
this case, points are scattered widely, but the pass-rate-by-time relationship is clearly
negative. Calling the regression line in Figure 10.11 a growth curve manifests a linguistic
convention. Change curve would be a better way to put it, but so long as we recognize
that repeated measures growth curves may manifest loss or constancy as well as growth,
conventional terminology will do the job well enough.
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FIGURE 11.9. Institution 15:
Growth in NCLEX pass rate.

FIGURE 11.10. Institution 12:
Growth in NCLEX pass rate.

FIGURE 11.11. Institution 21:
Growth in NCLEX pass rate.



In Figure 11.12 we have graphed all 21 institu-
tions in terms of the relationship between time and
NCLEX pass rate from 1985 to 1994. We find a
very weak average relationship represented by an
OLS regression line that has a slight downward
slope with a great deal of scatter. Figures 11.9
through 11.12 suggest a marked lack of consistency
in the pass-rate-by-time relationship from institu-
tion to institution. However, since we have no rea-
son to think that the relationship is nonlinear for
any institution, the intercepts and slope, while
quite different from case to case, are directly com-
parable.

Note, by the way, that whether we used vocab-
ulary achievement test scores or NCLEX pass rates to construct growth curves, measures
were taken on fixed occasions—at the beginning of kindergarten or at the end of a subse-
quent year of elementary school; or at the end of a year of operation of a nursing educa-
tion program during from 1985 to 1994. Even if measurement occasions are not fixed,
however, multilevel regression growth models may be used in much the same way as
when measurement occasions are fixed (Hox, 2002, pp. 74–93).

11.5 DEVELOPING MULTILEVEL REGRESSION GROWTH MODELS

Now that we have provided another series of examples of observations’ being nested
within level-one units, how do we use this information to describe and explain growth
more informatively? With regard to evaluating the post-Head Start program, for exam-
ple, can we get regression results more useful than those reported in Table 11.1? As it
turns out, by studying multilevel regression models, we have already learned most of
what we need to know about growth models—a more informative alternative to tradi-
tional pretest–posttest designs evaluating programs such as post-Head Start.

Let’s think about it. We have just devoted a good deal of effort and exposition to
demonstrating that growth models with repeated measures are manifestations of nesting.
This immediately gives us two levels: the measures themselves separated by time inter-
vals, and the individual cases within which the measures are nested. In other words, we
have set the stage for a multilevel regression model with at least two levels.

The emphasis on at least two levels is quite pertinent here. Observations within stu-
dents are at level one, where we place our measure of time as a predictor. The individual
student is at level two, where student-level predictors such as family income, parents’
educational level, and Head Start participation are located. But what about the post-Head
Start program that we want to evaluate?

As it turns out, the post-Head Start program (XPROGRAM) is at level three, the school
level. This is because the 12 schools involved were randomly assigned to program
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FIGURE 11.12. All institutions:
Growth in NCLEX pass rate.



participation–nonparticipation status, with six schools in each category. As a result, in
evaluating the post-Head Start program, we will use a three-level growth model.

Since our objective is primarily pedagogical rather than evaluative, however, we will
begin with simpler two-level models and work our way up. When we have acquired a
reasonable degree of skill in specifying and testing two-level growth models, we will
specify and test the three-level growth model needed for evaluating the post-Head Start
program. Along the way, we will be introducing predictors that will be needed as constit-
uents of that three-level model.

Data sets with repeated measures are commonly set up with each case correspond-
ing to one record, one row of data. To estimate growth curves, the data set has to be reor-
ganized so that the repeated measures (in this case, vocabulary test scores) are arranged
in a column. This means that each case will now have as many rows of data or records as
there are testing occasions. For most of us, this is a very unfamiliar procedure, but it can
be done simply by looking at the computer screen and following the instructions listed
in SPSS Routine 11.1.
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SPSS Routine 11.1. Restructuring a Data File for Growth Modeling

1. Open an SPSS data file.
2. Click on DATA and then click on RESTRUCTURE.
3. At the top of the screen, you will see WELCOME TO THE RESTURUCTURE DATA

WIZARD!
4. Beneath WHAT DO YOU WANT TO DO?, stay with the default option RESTRUCTURE

SELECTED VARIABLES INTO CASES.
5. At the bottom of the RESTRUCTURE DATA WIZARD box, click on NEXT.
6. At the top of the screen, you will see VARIABLES TO CASES: NUMBER OF

VARIABLE GROUPS. Beneath that you will see HOW MANY VARIABLES DO YOU
WANT TO RESTRUCTURE? For now, choose the default option ONE (FOR
EXAMPLE, W1, W2, W3).

7. At the bottom of the screen, click on NEXT.
8. At the top of the screen, you will see VARIABLES TO CASES: SELECT VARIABLES.

Move the variables that will used to estimate the growth curve into the VARIABLES
TO BE TRANSPOSED box beneath TARGET VARIABLE.

9. Move time-independent variables to be used as predictors into the FIXED
VARIABLE(S) box. (Time-independent variables may be factors such as gender, eth-
nicity, or parent’s level of education. They are independent variables that have the
same value at each measurement occasion.)

10. At the bottom of the screen, click on NEXT.
11. At the top of the screen, you will see VARIABLES TO CASES: CREATE INDEX

VARIABLES. Use the default option ONE.
12. At the bottom of the screen, click on NEXT.
13. At the top of the screen, you will see VARIABLES TO CASES: CREATE ONE INDEX

VARIABLE. Click on FINISH.
14. Remove the contents of the OUTPUT VIEWER from the screen, and you will see the

restructured data set. It is currently UNTITLED, so save it, using any name you like.



The first few times I restructured a data set to accommodate a growth model, I felt
very uncertain about the process. Just remember that SPSS does all the work. When the
data set has been restructured, with repeated measures arranged in a column, it is suit-
able for doing multilevel regression analysis with growth curves.

In Table 11.2, we have specified level-one, level-two, and full models for growth in
vocabulary achievement, using the West Virginia data set that includes the post-Head
Start data. In this example, the intercept and the slope for TIME1 are random, and the
slope for the student-level predictor XHEAD2 is fixed. As with our other applications of
multilevel regression, all independent variables are grand-mean-centered.

TIME1 is measured in terms of testing sessions. As we will see in subsequent exam-
ples, however, we will usually measure time in a more purposeful way. Depending on
research objectives, time might be reckoned in terms of age, grade level, span of program
participation, or other substantively interesting time-varying factors.

In contrast to presentations that adopt distinctive notation for growth models, we
have used the same notation that we used with other multilevel regression models (see,
e.g., Raudenbush & Bryk, 2002; Singer & Willett, 2003). This is part of our ongoing
effort to find useful commonalities among statistical procedures. After all, if multilevel
analysis is just regression under specific circumstances, perhaps the same is true of mul-
tilevel growth modeling.

The within-student or level-one predictor, TIME1, is measured simply by number-
ing the testing sessions from 1 to 5. The between-student or level-two contextual vari-
able, XHEAD2, is a dummy variable coded 1 for those who participated in the Head Start
program and 0 for those who did not.

It is important to emphasize again that the level-one independent variable TIME1
refers to repeated measures taken within each student. Variability in the random compo-
nent for TIME1 occurs between students. The student constitutes level two. As a result,
the level-two variable XHEAD2 is a characteristic of students—they participated in Head
Start or they did not. It sounds odd, to be sure, but the individual student is the context.
Level-one measures occur within students.
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TABLE 11.2. Vocabulary Achievement Growth: Multilevel Regression
Growth Model

Level-one model

Y = β0J + β1JTIME1 + eIJ

Level-two model

β0J = γ00 + γ01XHEAD + u0J

β1J = γ10 + γ11XHEAD2 + u1J

Full model

Y = γ00 + γ01XHEAD2 + γ10TIME1 + γ11XHEAD2 * TIME1 + (u1J *TIME1 + u0J + eIJ)



As we develop this model, it will become more realistic, including a level-three pre-
dictor for the post-Head Start program (XPROGRAM). We will then be able to replicate and
improve upon the ANCOVA evaluation model in Table 11.1, this time using a three-level
regression growth model.

We will, however, start simply. Empirical results for the model specified in Table
11.2 are reported in Tables 11.3 and 11.4. They have almost exactly the same form and
content as our other tabular accounts of multilevel regression. Interpretation of the fixed
components in Table 11.3 proceeds very much like interpretation of fixed components
in any other multilevel analysis:

1. For each 1-unit increase in time, vocabulary achievement growth increases, on
average, by 7.128 points.

2. Head Start participants’ vocabulary achievement is, on average, diminished by
1.710 points when compared to that of nonparticipants.

This analysis is easy to do with SPSS Mixed Models. Just follow the steps in SPSS Rou-
tine 11.2.

In the pretest–posttest ANCOVA in Table 11.1, we found no Head Start effect, but
here we find that Head Start participation actually diminishes achievement. This is not
an impossible finding, but it certainly seems implausible. When the signs of coefficients
go in unexpected directions, multicollinearity is a usual suspect. When the analysis
reported in Table 11.3 is run as an OLS regression equation, however, each of the vari-
ance inflation factors is 1.000 and the Condition Index is 1.110. Multicollinearity is not
the problem.
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TABLE 11.3. Vocabulary Achievement Growth: Multilevel Regression
Growth Equation; Fixed Components

YGROWTH = 8.508 + 7.128TIME1 – 1.710XHEAD2 – 0.345XHEAD2 * TIME1
(0.242) (0.101) (0.619) (0.227)

Pseudo-R2 = 87.9%a

Note. aPseudo-R2 is a summary measure used here as an alternative to R1
2. Its

interpretation is given in the next section.

TABLE 11.4. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.902 0.673 20.667 .000
INTERCEPT1 10.671 1.553 6.871 .000
INTERCEPT1 by TIME1 2.296 0.449 5.115 .000
TIME1 1.445 0.256 5.645 .001



Too often, I must admit, I have misrepresented a finding such as that pertaining to
XHEAD2 by saying something like “Program participants’ vocabulary achievement growth
is, on average, diminished by 1.710 points. . . . ” This interpretation is patently incorrect.
Since the XHEAD2 dummy variable is a main effect, it may shift the growth curve up or
down, but it is not implicated in the growth process itself. XHEAD2 may affect achieve-
ment, but not achievement growth.

On the other hand, if the negative coefficient for XHEAD2 * TIME1 had been statisti-
cally significant, we would have interpreted it as follows: “For program participants, the
relationship between verbal achievement growth and TIME1 is diminished, on average,
by 0.345 points when compared with that for nonparticipants.” Since the coefficient is
not statistically significant, however, it needs no further interpretation. It will be useful
to keep these main-effect and interaction-effect interpretations in mind as we continue
working with multilevel growth models.

Having clarified the interpretation of level-two coefficients, we can also see that our
multilevel growth model is misspecified. There are obvious and consequential indepen-
dent (control) variables such as family income that should be included in a multilevel
regression model designed to answer the question posed here.
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SPSS Routine 11.2. Multilevel Growth Model
for Vocabulary Achievement

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the student is the level-two grouping variable in which measures are nested,

insert the student identifier into the SUBJECTS box.
4. Click on CONTINUE, and insert vocabulary achievement as a repeated measures vari-

able into the DEPENDENT variable box. Then insert our measure of time, TIME1,
along with the other independent variable, XHEAD2, and the cross-level interaction term,
XHEAD2 * TIME1, into the COVARIATES box.

5. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move the independent variables and
the cross-level interaction term from the FACTORS AND COVARIATES box to the
MODEL box.

6. Click on CONTINUE.
7. Click on the RANDOM button at the bottom of the screen. The student identifier is

already in the SUBJECTS box, and now we also insert it into the COMBINATIONS
box.

8. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
9. Near the top of the screen, click on INCLUDE INTERCEPT, and move the measure of

time, TIME1, into the MODEL box.
10. Just above INCLUDE INTERCEPT, select UNSTRUCTURED.
11. Click on CONTINUE and click on the STATISTICS button.
12. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
13. Click on CONTINUE and click on OK.



Observers familiar with the voluminous and conflicting literature that has charac-
terized the history of Head Start since its inception in 1965 will not be astonished by
negative results (Spatig, Bickel, Parrot, Dillon, & Conrad, 1998). The same applies to no
Head Start effects or positive Head Start effects (see, e.g., Gilliam & Zigler, 2000; Garces,
Thomas, & Currie, 2000; U.S. Department of Health and Human Services, Administra-
tion for Children and Families, 2005).

Previous analyses with this West Virginia data set have simply reported no Head
Start effects (Bickel & McDonough, 1998). None of those analyses, however, was done
with a multilevel growth model. We shall see what happens as we further develop the
model, making it more realistic and defensible. We will bear in mind, moreover, that we
are working toward a three-level growth model—one sufficiently complex to permit
evaluation of the post-Head Start program.

Table 11.3 does make clear, however, that our multilevel growth equation has
explained a substantial amount of the variability in the vocabulary achievement depen-
dent variable. Substantial growth occurs with the passage of time from one testing occa-
sion to another.

With a linear functional form for our growth curve, we may use the fixed compo-
nent of the slope for TIME1 as reported in Table 11.3 and the random component vari-
ance for TIME1 as reported in Table 11.4 to construct the interval in Table 11.5. As these
things go, this is a fairly narrow interval—one enabling us to say that 95% of the
achievement-by-TIME1 slopes for the students in the data set fall within the range from
4.772 to 9.484. Nevertheless, we see quite clearly that achievement growth over time is
not uniform from one student to another, but displays substantial variability. Surely it
makes a good deal of sense to assign a random coefficient to TIME1.

Notice, by the way, that the information in Table 11.4 includes random component
variances and a random component covariance. This means that we have used an
unstructured covariance structure, just as we have done many times in previous exam-
ples. Both random component variances and the random component covariance are sta-
tistically significant.

11.6 SUMMARY STATISTICS WITH GROWTH MODELS

The R1
2 summary statistic that we have used with cross-sectional data can also be

applied to multilevel growth models. As with simpler multilevel models, however, realis-
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TABLE 11.5. Vocabulary Achievement Growth: Multilevel Regression
Growth Equation; Variability with Respect to a Random Slope

bFIXED – t.05(bRANDOM)1/2 to bFIXED + t.05(bRANDOM)1/2

7.128 – 1.960(1.445)1/2 to 7.128 + 1.960(1.445)1/2

4.772 to 9.484



tic growth model specification usually includes acknowledgment that random compo-
nent variances may differ from group to group, and that they may be correlated. Why
else introduce the complexity that comes with application of the unstructured option for
covariance structure? Under these circumstances, calculation of R1

2 for growth models
becomes labor-intensive (Snijders & Bosker, 1999, pp. 173–180). Consequently, we will
adopt a conceptually similar statistic called pseudo-R2 (Singer & Willett, 2003)—one of
a family of summary measures that is also well known to analysts who use logistic
regression (Menard, 2002).

Tables 11.6 and 11.7 provide the information we have become accustomed to using
for computing R1

2. As we know, R1
2 is easy to compute. All we need is the residual vari-

ance and the intercept variance for the unconditional model (as in Table 11.6) and the
residual variance and intercept variance for the conditional model with all slopes fixed
(as in Table 11.7).

R1
2 = (1 – [(17.265 + 23.409)/(142.227 + 5.250)]) * 100 = 72.4%

Pseudo-R2, our growth model alternative to R1
2, is even easier to compute. We just

divide the residual variance from the unconditional model by the residual variance for
the conditional model, subtract the result from 1, and multiply by 100. In this instance,
that gives us the following:

Pseudo-R2 = (1 – [(17.265)/(142.227)]) * 100 = 89.9%

This is the percentage of reduction in level-one residual variance when the uncondi-
tional model is compared with the conditional model.

One troublesome limitation of this easy-to-compute, easy-to-interpret measure is
that in some instances introduction of an additional independent variable may yield a
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TABLE 11.6. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Unconditional (Null) Model; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 142.227 5.975 23.804 .000
INTERCEPT1 5.250 2.342 2.027 .027

TABLE 11.7. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Conditional Model with Fixed Slopes; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 17.265 0.721 23.956 .000
INTERCEPT1 23.409 2.129 10.994 .000



decreased rather than increased pseudo-R2 value. This is because computation of the
unconditional model, which gives us the denominator for pseudo-R2, tends to underesti-
mate the residual variance component and overestimate the level-two variance compo-
nent (Hox, 2002). An anomalous decrease in pseudo-R2 is typically due to model
misspecification, in the form of introduction of predictors unrelated to the dependent
variable in the population from which the sample is selected.

The foregoing cautionary comment applies to all multilevel models, but it is an
issue we were able to avoid until now because of the ease with which we could calculate
R1

2 when working with cross-sectional data. We have compromised between labor-
intensivity and precision by using pseudo-R2 as an alternative to R2 when working with
growth models.

On the other hand, the –2 log likelihood statistic or deviance and the information
criteria, all estimated with ML, are used in exactly the same way with growth models as
they are with other multilevel models. The versatility and accuracy of information crite-
ria and the deviance difference statistic explain why they are used so often and in so
many different kinds of analyses.

By way of illustration, we might compare the growth model specified in Table 11.3
with the unconditional or intercept-only model. After reestimating both equations with
ML, we get the results in Table 11.8.

Deviance difference = 9675.8 – 8824.3 = 851.5

df = 8 – 3 = 5

Each of the five smaller-is-better measures indicates that the conditional model provides
the better fit. In addition, with three parameters estimated for the unconditional model
(the fixed component and the random component for the intercept and the level-one
residual) and eight parameters estimated for the conditional model (fixed components
for the intercept and three slopes, the random components for the intercept and one
slope, and the level-one residual), the deviance difference is statistically significant at
any conventionally used alpha level.
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TABLE 11.8. Vocabulary Achievement Growth: Information Criteria
for Unconditional and Conditional Growth Models

Criterion Unconditional Conditional

–2 log likelihood 9675.8 8824.3
Akaike’s Information Criterion 9685.8 8840.3
Hurvich and Tsai’s Criterion 9685.9 8840.4
Bozdogan’s Criterion 9717.3 8890.7
Schwarz’s Bayesian Criterion 9712.3 8862.7

Note. The smaller value for each measure is boldfaced and italicized.



11.7 SAMPLE SIZES

In addition to the difference manifest in reporting pseudo-R2 rather than R1
2, Table 11.3

differs from previous reports of multilevel regression analyses in that it does not report
nominal sample sizes. The level-one sample size is the number of repeated measures
occurring within each student. In the example at hand, student vocabulary achievement
was measured on five occasions. However, the actual number of measures on each stu-
dent shows a good deal of variability from one test-taking session to another: beginning
of kindergarten, 331; end of kindergarten, 331; end of first grade, 281; end of second
grade, 273; end of third grade, 258. Furthermore, SPSS reports that the valid number of
cases with listwise deletion of missing data is 246, meaning that some students skipped a
testing session but appeared again later. Finally, the mean number of tests completed by
the 331 students is 2.86.

In conventional analyses, such as the pretest–posttest ANCOVA reported in Table
11.1, we would be obliged to report that we had lost 22% of our cases due to attrition
and missing data. This is because we would be working with the data collected in the
first and last testing sessions.

With multilevel growth models, however, SPSS uses whatever data are available to
estimate the best-informed growth curve for each student. For example, Figures 11.13
and 11.14 report OLS estimates of growth curves for students who were present for four
of the five testing sessions. Student number 302 has no test score for the end-of-second-
grade testing session, and student number 58 has no test score for the end-of-third-grade
testing session.

The slope of the growth curve in Figure 11.14 seems much steeper than its reported
value of 5.500 would suggest, because the SPSS software ties the metric for the vertical
axis to maximum and minimum test scores. Since the end-of-third-grade score (usually
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FIGURE 11.13. Case number
302: Growth in Woodcock–Johnson
22 vocabulary test scores.

FIGURE 11.14. Case number 58:
Growth in Woodcock–Johnson 22
vocabulary test scores.



the highest) is missing for case number 58, the vertical axis has been shortened. This
visually exaggerates the steepness of the slope. The growth curve in Figure 11.15 was
estimated with only three test scores, and the growth curve in Figure 11.16 was drawn
with data from only two testing sessions. As a result, the graphed steepness of these
slopes is further exaggerated. Nevertheless, the OLS intercepts and slopes recorded
beneath each graph are accurate for the data at hand.

Though confusion may result from the way in which SPSS draws growth models
with missing values, Figures 11.13 through 11.16 still make an important point: Even
with one or more missing test scores, individual growth curves are estimated and used in
constructing the overall or average growth curve. This holds, moreover, even for cases
such as number 302 in Figure 11.13, in which a student missed one testing session but
was present for the next.

In instances where we have reason to suspect that growth curves depart from linear-
ity, however, missing data, if they exist in abundance, may have more serious conse-
quences. In Figure 11.16, for example, with only beginning-of-kindergarten and end-of-
kindergarten test scores, we can estimate an intercept and a slope, but departures from
linearity cannot occur. In general, the more measurement occasions the better, and the
fewer missing data the better.

This flexible procedure for estimating growth curves when data are complete or
some measures are missing is extremely useful. As explained in detail by Singer and
Willett (2003), however, missing data still pose the usual inferential problems. The
nature and number of missing data may badly compromise our analysis, so that infer-
ences from sample to population become dubious. As with so many other issues,
exactly the same sorts of questions arise when we are working with more conven-
tional applications of regression analysis or any other statistical procedure (Little &
Rubin, 2002).
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FIGURE 11.15. Case number
177: Growth in Woodcock–Johnson
22 vocabulary test scores.

FIGURE 11.16. Case number
149: Growth in Woodcock–Johnson
22 vocabulary test scores.



We can now see, however, that reporting level-one and level-two sample sizes for
multilevel regression growth models is complicated by the fact that due to missing data,
the number of measures available varies from student to student. In addition, in the
presence of missing data, the number of students corresponding to each subset of mea-
sures also exhibits variability. Singer and Willett’s (2003, pp. 156–159) discussion of
types of missing data and their consequences is certainly worth reading.

11.8 THE MULTILEVEL REGRESSION GROWTH MODEL RESPECIFIED

At this point we may move toward more adequately replicating and improving upon the
ANCOVA in Table 11.1. We will, of course, be using individual student growth curves as
the dependent variable rather than end-of third-grade posttest scores. In addition to the
Head Start independent variable (XHEAD2), we will introduce family income (XINCOME2)
and parent’s educational level (XEDUCATION2) as predictors at level two.

We will, moreover, modify the way we understand time, construing it in a substan-
tively more interesting way. Recall that testing sessions occurred at the beginning and end
of kindergarten, and at the end of first, second, and third grades. This enables us to measure
time in terms of years of schooling completed: 0 for the beginning of kindergarten, 1 for the
end of kindergarten, 2 for the end of first grade, 3 for the end of second grade, and 4 for the
end of third grade. Our measure of time in terms of years of schooling completed, YEARS1,
will have a random slope, permitting it to vary from student to student.

Years of schooling completed is certainly a more substantively appealing measure
than testing occasions. In addition, since YEARS1 has an unambiguous zero, it lends
itself more readily to informative interpretation. Seventeen students were retained one or
more grades, and they have been removed from the data set. The respecified model is
shown in Table 11.9.

Interpretation of the fixed components (see Table 11.10) is again straightforward:
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TABLE 11.9. Vocabulary Achievement Growth: Multilevel Regression Growth Model;
First Respecification

Level-one model

Y = β0J + β1JYEARS1 + eIJ

Level-two model

β0J = γ00 + γ01XHEAD2 + γ02XINCOME2 + γ03XEDUCATION2 + u0J

β1J = γ10 + γ11XHEAD2 + γ12XINCOME2 + γ13XEDUCATION2 + u1J

Full model

Y = γ00 + γ01XHEAD2 + γ02XINCOME2 + γ03XEDUCATION2 + γ10GRADE1 + γ11XHEAD2 * YEARS1

+ γ12XINCOME2 * YEARS1 + γ13XEDUCATION2 * YEARS1 + (u1J * YEARS1 + u0J + eIJ)



1. For each year of schooling completed, vocabulary achievement growth in-
creases, on average, by 7.126 points.

2. For every one-level increase in family income, vocabulary achievement in-
creases, on average, by 0.507 points.

3. For every one-level increase in parent’s education, vocabulary achievement
increases, on average, by 0.477 points.

Now that the multilevel growth model is approximating a more defensible specification,
the negative Head Start effect that we acknowledged in reference to Table 11.3 has been
explained away. This is not surprising, since we are now controlling for family income
and the respondent parent’s educational level—independent variables typically con-
founded with Head Start participation–nonparticipation.

The slope of the vocabulary achievement growth curve has been affected very little
by model respecification. In Table 11.11, however, we see that the level-one intercept
variance (INTERCEPT1) and the covariance between the intercept and the slope for our
measure of time (INTERCEPT1 by YEARS1) have been substantially diminished when
compared with the parameter estimates in Table 11.4. The variance of the YEARS1 slope,
however, is only slightly smaller.

11.9 THE MULTILEVEL REGRESSION GROWTH MODEL:
FURTHER RESPECIFICATION

In Table 11.12, we have two additional level-two predictors: neighborhood quality
(XHOOD2) and ethnicity (XBLACK2, coded 1 if Black and 0 if White). Each of the addi-
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TABLE 11.10. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
First Respecification; Fixed Components

YGROWTH = 8.508 – 0.245XHEAD2 + 0.507XINCOME2 + 0.477XEDUCATION2 + 7.126YEARS1
(0.233) (0.667) (0.137) (0.190) (0.110)

– 0.194XHEAD2 * YEARS1 + 0.031XINCOME2 * YEARS1 + 0.116XEDUCATION2 * YEARS1
(0.230) (0.047) (0.065)

Pseudo-R2 = 83.6%

TABLE 11.11. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
First Respecification; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.896 0.672 20.671 .000
INTERCEPT1 9.315 1.447 6.438 .000
INTERCEPT1 by YEARS1 2.124 0.430 4.934 .000
YEARS1 1.384 0.250 5.542 .000



tional independent variables has a fixed slope, and each is used to account for vari-
ability in the level-one dependent variable, the random intercept and the random
slope for YEARS1, and for the INTERCEPT1-by-YEARS1 covariance. Inclusion of
these additional student-level contextual factors also yields two more implied cross-
level interaction terms: XHOOD2 * YEARS1 and XEDUCATE2 * YEARS1. The cross-level
interaction terms have fixed slopes. All level-two variables are centered with respect to
their grand means.

Statistically, there is nothing new or unusual about this model; it is just a bit more
complex than the multilevel growth model specified in Table 11.9. As it turns out, how-
ever, the model specified in Table 11.12 will serve a useful instructional purpose,
enabling us to illustrate interpretation of a statistically significant cross-level interaction
term created with the level-two predictor XEDUCATION2 and our level-one measure of time,
YEARS1.

Interpretation of the fixed components (see Table 11.13) goes as follows:
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TABLE 11.12. Vocabulary Achievement Growth: Multilevel Regression Growth Model;
Second Respecification

Level-one model

Y = β0J + β1JYEARS1 + eIJ

Level-two model

β0J = γ00 + γ02XHEAD2 + γ02XINCOME2 + γ03XEDUCATION2 + γ04XHOOD2 + γ05XETHNIC2 + u0J

β1J = γ10 + γ11XHEAD2 + γ12XINCOME2 + γ13XEDUCATION2 + γ14XHOOD2 + γ15XETHNIC2 + u1J

Full model

Y = γ00 + γ01XHEAD2 + γ02XINCOME2 + γ03XEDUCATION2 + γ04XHOOD2 + γ05XETHNIC2 + γ10YEARS1

+ γ11XHEAD2 * YEARS + γ12XINCOME2 * YEARS + γ13XEDUCATION2 * YEARS+ γ14XHOOD2 * YEARS

+ γ15XETHNIC2 * YEARS + (u1J * YEARS1 + u0J + eIJ)

TABLE 11.13. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Second Respecification; Fixed Components

YGROWTH = 8.464 – 0.257XHEAD2 + 0.360XINCOME2 + 0.402XEDUCATION2 + 0.130XHOOD2

(0.234) (0.693) (0.146) (0.198) (0.044)

+ 0.455XETHNIC2 + 7.137YEARS1 – 0.142XHEAD2 * YEARS1 + 0.023XINCOME2 * YEARS1
(0.840) (0.104) (0.243) (0.051)

+ 0.116XEDUCATION2 * YEARS1 + 0.016XHOOD2 * YEARS1 + 0.353XETHNIC2 * YEARS1
(0.069) (0.017) (0.366)

Pseudo-R2 = 83.7%



1. For each year of schooling completed, student vocabulary achievement growth
increases, on average, by 7.137 points. This value has changed very little from
one specification to another.

2. For each one-level increase in family income, student vocabulary achievement
increases, on average, by 0.360 points.

3. For each one-level increase in parent respondent’s educational level, student
vocabulary achievement increases, on average, by 0.402 points.

4. For each one-level increase in neighborhood quality, vocabulary achievement
increases, on average, by 0.130 points.

5. If we use a one-tailed t test for the slope corresponding to XEDUCATE2 * YEARS1,
the effect on achievement growth of each additional year of schooling completed
is increased, on average, by 0.116 points. Given the nature of the variables
involved, use of a one-tailed test makes sense. The more important point for in-
structional purposes, however, is that we can see how a level-two predictor can
serve as a moderator variable and modify the relationship between YEARS1, our
measure of time, and achievement growth.

When we compare Table 11.14 with Table 11.11, we see that the additional level-
two predictors and cross-level interaction terms have contributed little to explaining the
random component variances and covariance. The intercept variance has been modestly
diminished, while the random component covariance and the slope variance have
slightly increased.

In Table 11.15 we compare the simpler multilevel regression growth equation from
Table 11.10 with the more complex respecification from Table 11.13. The deviance dif-
ference is statistically significant at any alpha level we might reasonably select, indicat-
ing that the more complex model provides the better fit. Each information criterion is
consistent with this judgment.

Deviance difference = 8795.8 – 8216.0 = 579.8

df = 16 – 12 = 4
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TABLE 11.14. Vocabulary Achievement Growth: Multilevel Growth Equation;
Second Respecification; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.941 0.697 19.997 .000
INTERCEPT1 8.604 1.442 5.965 .000
INTERCEPT1 by YEARS1 2.152 0.440 4.893 .000
YEARS1 1.422 0.262 5.427 .000



11.10 RESIDUAL COVARIANCE STRUCTURES

We have paid a lot of attention to covariance structures for random components.
Through there are many other choices, we have consistently used the unstructured
option. The unstructured option permits random components to vary, and it permits
them to be correlated as well. But why raise the long-since-settled issue of covariance
structures here and now? What is the point?

Let’s think about some of the usual regression assumptions that we have been taking
for granted. Specifically, do homoscedasticity and the absence of autocorrelation charac-
terize the level-one residuals? In other words, should we model the level-one residuals in
much the same way that we have modeled the random components? In the form of a ques-
tion, that is the point.

Without saying so, in the growth models estimated above we have been using the
scaled identity option for the level-one residuals. Scaled identity constrains residuals to
have a homogeneous variance and be uncorrelated. Does this seem realistic?

Given that we are using repeated measures (the same test administered on five dif-
ferent occasions), there is good reason to be guided by the possibility that the residuals
do not have uniform variance from one testing occasion to another and that they are cor-
related. If we want to estimate a multilevel growth model from the specification in Table
11.12 while allowing for violations of the assumption of homoscedasticity for level-one
residuals, the SPSS instructions are again pretty easy to follow (see SPSS Routine 11.3).

The results of this analysis, with the error term modeled to accommodate hetero-
scedasticity, are reported in Tables 11.16 and 11.17. Interpretation of fixed components
for Table 11.16 is similar to that for Table 11.13. In Table 11.16, however, each of the
slopes for each of the statistically significant main effects is a bit smaller than in Table
11.13, and the slope for the cross-level interaction term XEDUCATION2 * YEARS1 is no lon-
ger statistically significant.

1. For each year of schooling completed, student vocabulary achievement growth
increases, on average, by 6.702 years.

2. For each one-level increase in family income, student vocabulary achievement
increases, on average, by 0.336 points.
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TABLE 11.15. Vocabulary Achievement Growth: Information Criteria
for Comparing Respecifications

Criterion Table 11.10 Table 11.13

–2 log likelihood 8795.8 8216.0
Akaike’s Information Criterion 8819.8 8248.0
Hurvich and Tsai’s Criterion 8820.0 8248.4
Bozdogan’s Criterion 8895.3 8347.6
Schwarz’s Bayesian Criterion 8883.3 8331.6

Note. The smaller value for each measure is boldfaced and italicized.
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SPSS Routine 11.3. Growth Model
with a Diagonal Residual Covariance Structure

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the individual student is the level-two or grouping variable, insert the student

identifier into the SUBJECTS box.
4. Insert the INDEX NUMBER (INDEX1) into the REPEATED box. The INDEX NUMBER

was created when we restructured the data set. By inserting INDEX1 into the
REPEATED box, we indicate that we are using repeated measures.

5. Beneath the REPEATED box, you will see the REPEATED COVARIANCE TYPE box.
The default option is DIAGONAL. Structurally this is equivalent to the covariance struc-
ture that we have used to illustrate random components, but here it is applied to level-
one residuals. It permits residual variances to vary from one repeated measure to
another, but it constrains the residuals to be uncorrelated.

6. Click on CONTINUE, insert vocabulary achievement as the dependent variable into the
DEPENDENT VARIABLE box, and insert YEARS1 into the COVARIATE(S) box.
YEARS1 in the COVARIATE(S) box is our level-one measure of time.

7. Insert all the level-two independent variables and cross-level interaction terms into the
COVARIATE(S) box: XHEAD2, XINCOME2, XEDUCATION2, XHOOD2, XINCOME2, XETHNIC2, XHEAD2

* YEARS1, XINCOME2 * YEARS1, XEDUCATION2 * YEARS1, XHOOD2 * YEARS1, and
XETHNIC2 * YEARS1.

8. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move the level-one independent vari-
able INDEX1, all the level-two independent variables, and all the cross-level interaction
terms from the FACTORS AND COVARIATES box to the MODEL box.

9. Click on CONTINUE.
10. Click on the RANDOM button at the bottom of the screen. The student identifier is

already in the SUBJECTS box, and now we also insert it into the COMBINATIONS box.
Move YEARS1 from the FACTORS AND COVARIATES box to the MODEL box.

11. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
12. Near the top of the screen, click on INCLUDE INTERCEPT, and insert YEARS1 into

the MODEL box.
13. Just above INCLUDE INTERCEPT and to the right of COVARIANCE TYPE, select

UNSTRUCTURED.
14. Click on CONTINUE, and then click on the STATISTICS button.
15. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
16. Click on CONTINUE and click on OK.
17. Near the bottom of the SPSS output, values for the INTERCEPT and SLOPE, along

with their standard errors, appear in the ESTIMATE and STD. ERROR columns of the
box labeled ESTIMATES OF FIXED EFFECTS.

18. Just below the ESTIMATES OF FIXED EFFECTS box, values of the variances for the
repeated measures of reading achievement appear in the ESTIMATES column of the
box labeled ESTIMATES OF COVARIANCE PARAMETERS. Beneath values of the vari-
ances for the repeated measures of reading achievement, we find values for the vari-
ances and covariances of random components.



3. For each one-level increase in parent’s educational level, vocabulary achieve-
ment increases, on average, by 0.375 points. (This holds only if we use a one-
tailed test for the slope for XEDUCATION2.)

4. For each one-level increase in neighborhood quality, vocabulary achievement
increases, on average, by 0.131 points.

In Table 11.17, we have an estimate of the level-one residual variance for each test-
ing occasion (INDEX1 = 1 through INDEX1 = 5). It is clear that residual variances are
quite different from one testing occasion to another. Our tacit assumption of homoge-
neous variances for the level-one residuals was obviously in error. For this reason, use of
the diagonal residual covariance structure rather than scaled identity represents an
improvement in regression model specification.

When we compare information criteria in Table 11.18, we see that permitting the
residuals to have a nonuniform variance has improved the model fit. The deviance differ-
ence and each of the smaller-is-better information criteria indicate that modeling the
error term to accommodate heteroscedasticity has been the right thing to do.

Deviance difference = 8216.0 – 8138.8 = 77.2

df = 20 – 16 = 4
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TABLE 11.16. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Diagonal Residual Covariance Structure; Fixed Components

YGROWTH = 9.935 – 0.060XHEAD2 + 0.336XINCOME2 + 0.375XEDUCATION2 + 0.131XHOOD2

(0.228) (0.682) (0.143) (0.195) (0.043)

+ 0.542XETHNIC2 + 6.702YEARS1 – 0.088XHEAD2 * YEARS1 – 0.004XINCOME2 * YEARS1
(0.811) (0.094) (0.220) (0.047)

+ 0.083XEDUCATION2 * YEARS1 + 0.014XHOOD2 * YEARS1 + 0.376XETHNIC2 * YEARS1
(0.063) (0.014) (0.331)

Pseudo-R2 = 83.7%

TABLE 11.17. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Diagonal Residual Covariance Structure; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

INDEX1 = 1 2.406 1.246 1.932 .053
INDEX1 = 2 23.033 2.142 10.753 .000
INDEX1 = 3 17.215 1.776 9.696 .000
INDEX1 = 4 17.367 1.771 9.807 .000
INDEX1 = 5 2.395 1.637 1.463 .143
INTERCEPT1 14.099 1.911 7.379 .000
INTERCEPT1 by YEARS1 0.396 0.458 0.865 .367
YEARS1 2.010 0.230 8.723 .000



We have also acknowledged, however, the possibility that the residuals may be cor-
related. To model both heteroscedasticity and autocorrelation in the level-one error term,
we would make one simple change in SPSS Routine 11.3: In step 5, instead of selecting
DIAGONAL, we select AR(1): HETEROGENEOUS. In other words, we will use a hetero-
geneous autoregressive residual covariance structure.

The fixed component estimates in Table 11.19 are very similar to those in Table
11.16. Of the random component variances and covariance in Table 11.20, only the vari-
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TABLE 11.18. Vocabulary Achievement Growth: Information Criteria
for Scaled Identity and Diagonal Residual Covariance Structures

Criterion Scaled identity Diagonal

–2 log likelihood 8216.0 8138.8
Akaike’s Information Criterion 8248.0 8178.8
Hurvich and Tsai’s Criterion 8248.4 8179.4
Bozdogan’s Criterion 8347.6 8303.3
Schwarz’s Bayesian Criterion 8331.6 8283.3

Note. The smaller value for each measure is boldfaced and italicized.

TABLE 11.19. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
AR(1): Heterogeneous Residual Covariance Structure; Fixed Components

YGROWTH = 10.195 – 0.129XHEAD2 + 0.334XINCOME2 + 0.375XEDUCATION2 + 0.133XHOOD2

(0.183) (0.679) (0.143) (0.194) (0.043)

+ 0.571XETHNIC2 + 6.592YEARS1 – 0.080XHEAD2 * YEARS1 – 0.003XINCOME2 * YEARS1
(0.651) (0.121) (0.284) (0.060)

+ 0.082XEDUCATION2 * YEARS1 + 0.015XHOOD2 * YEARS1 + 0.333XETHNIC2 * YEARS1
(0.081) (0.018) (0.427)

Pseudo-R2 = 83.7%

TABLE 11.20. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
AR(1): Heterogeneous Residual Covariance Structure; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

INDEX1 = 1 1.326 0.838 1.581 .114
INDEX1 = 2 22.680 2.954 7.675 .000
INDEX1 = 3 19.343 2.013 9.609 .000
INDEX1 = 4 17.188 2.571 6.686 .000
INDEX1 = 5 1.201 1.184 1.014 .311
Rho 0.167 0.043 3.868 .000
INTERCEPT1 5.408 4.376 1.236 .216
INTERCEPT1 by YEARS1 1.520 1.057 1.438 .150
YEARS1 1.187 0.280 4.225 .000



ance for YEARS1 remains statistically significant, and its magnitude has been substan-
tially diminished

The repeated measures variances again show substantial variability from one testing
occasion to another. Furthermore, the value of rho, a measure of the strength of the asso-
ciation among the level-one residuals, is statistically significant. The level-one residuals
are correlated, and the added complexity that comes with modeling a heterogeneous
autoregressive residual covariance structure, including estimation of rho, is warranted.
The heterogeneous autoregressive error covariance structure seems the right choice.

When we compare information criteria for an equation estimated with the diagonal
residual covariance structure to information criteria for the same equation estimated
with the heterogeneous autoregressive residual covariance structure, we get the results
in Table 11.21. The deviance difference is statistically significant, and each of the infor-
mation criteria indicates that the more complex covariance structure provides the better
fit. This is certainly consistent with the statistically significant rho value.

Deviance difference = 8216.0 – 8106.3 = 109.7

df = 21 – 20 = 1

Having made this decision, moreover, we will forgo the opportunity to consider an
even more complex residual covariance structure. Yes, the unstructured option is avail-
able for modeling residuals, just as it is available for modeling random component vari-
ances and covariances. We have just seen, however, that the gain in goodness of fit that
came with the heterogeneous autoregressive residual covariance structure, while real,
was quite small. Furthermore, the unstructured residual covariance option requires nine
additional parameter estimates. This is one of those instances in which, even though
greater complexity is possible, we have done enough.

At this point, it is useful to recall all the specification decisions we are obliged to
make with a conventional multilevel model: selection of predictors; assuring proper
functional form; determining if the intraclass correlation is sufficiently large to warrant
use of a multilevel model; deciding which coefficients should be fixed and which should
be permitted to vary across higher-level groups; determining which contextual factors
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TABLE 11.21. Vocabulary Achievement Growth: Information Criteria
for Diagonal and AR(1): Heterogeneous Covariance Structures

Criterion Diagonal
AR(1):

Heterogeneous

–2 log likelihood 8216.0 8106.3
Akaike’s Information Criterion 8248.0 8148.3
Hurvich and Tsai’s Criterion 8248.4 8149.0
Bozdogan’s Criterion 8347.6 8279.0
Schwarz’s Bayesian Criterion 8331.6 8258.0

Note. The smaller value for each measure is boldfaced and italicized.



and cross-level interaction terms should be used to explain variability in the random
components; deciding if random components should be independent or should be per-
mitted to vary together; and deciding whether or not a third or higher level should be
included.

Now, with multilevel regression repeated measures growth models, we have yet
another specification decision: selecting the proper residual covariance structure. Each
of these decisions can be statistically and substantively consequential, and each is best
made with reference to richly informative substantive and theoretical knowledge. As we
know all too well, however, such knowledge is often not available in the social and
behavioral sciences.

11.11 MULTILEVEL REGRESSION GROWTH MODELS
WITH THREE LEVELS

Multilevel regression growth models are always complex. Just as conventional multilevel
models may, moreover, a growth model may have more than two levels. The example we
have been working with has so far been restricted to the within-student level and the
between-student level. As we know from previous work with this data set, however, the
school is also available as a third level. Since there are only 12 schools, this West Virginia
data set is not ideal for constructing a three-level growth model, but it can still be useful
for illustrative purposes.

In the process of working toward specification of this three-level growth model,
we may have lost sight of the basic question that prompted it all: Does the post-Head
Start program work? Does it contribute to student achievement? Even more specifi-
cally, does it maintain Head Start gains? In the analyses we have seen so far, there are
no Head Start gains to maintain. Nevertheless, we can introduce the post-Head Start
categorical variable at level three in our three-level growth model and evaluate the
results.

With the repeated measures at level one, student characteristics at level two,
and school characteristics at level three, the post-Head Start variable (XPROGRAM3)
belongs at the school level. After all, schools were randomly assigned to participation–
nonparticipation in the program. For this reason, we need a three-level model.

It would, of course, be useful if we had a more informative measure of XPROGRAM3

than that provided by a dummy variable. A measure of level of implementation would be
helpful. Acknowledging that the post-Head Start program was poorly implemented in all
12 schools does not help, however, and a participant–nonparticipant school-level
dummy variable is the best that we can do.

The basic three-level growth model is specified in Table 11.22, and the fixed com-
ponent results for this model with a scaled identity structure are reported in Table 11.23.
In the three-level equation reported in Table 11.23, the intercept is random at levels two
and three, and the slope for YEARS1 is random at level two. An obvious and useful mod-
ification to this specification would assign a random slope to YEARS1 at both levels two
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and three. Recall, however, that we have only 12 schools—only 12 observations at level
three—so we will proceed cautiously.

In Table 11.23 we see that neither XPROGRAM3 nor XPROGRAM3 * XHEAD2 has a statistically
significant slope. XPROGRAM3 * XHEAD2 is a cross-level interaction term not implied by the
model, but added at our discretion. It is intended to respond directly to this question:
“Does the relationship between vocabulary achievement and Head Start participation
vary from category to category of XPROGRAM3?” In this specification of our three-level
growth model, there is no evidence that the program works.

Random component variances and covariances are reported in Table 11.24. Since
this is a three-level model, we have an estimate of the intercept variance at level three. In
this example, it is statistically nonsignificant.
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TABLE 11.22. Vocabulary Achievement Growth: Multilevel Regression Growth Model
with Three Levels

Level-one model

YIJK = β0JK + β1JKYEARS1 + eIJK

Level-two model

β0JK = β00K + γ010XHEAD2 + γ020XINCOME2 + γ030XEDUCATION2 + γ040XHOOD2 + γ050XETHNIC2 + u0JK

β1JK = γ100 + γ110XHEAD2 + γ120XINCOME2 + γ130XEDUCATION2 + γ140XHOOD2 + γ150XETHNIC2 + u1JK

Level-three model

β00K = γ000 + γ001XPROGRAM3 + u00K

Full model

Y = γ000 + γ001XPROGRAM3 + γ010XHEAD2 + γ020XINCOME2 + γ030XEDUCATE2 + γ040XHOOD2 + γ050XETHNIC2

+ γ100YEARS1 + γ110XHEAD2 * YEARS1 + γ120XINCOME2 * YEARS1 + γ130XEDUCATE2 * YEARS1

+ γ140XHOOD2 * YEARS1 + γ150XETHNIC2 * YEARS1 + (u00K + u0JK + u1JK * YEARS1 + eIJK)

TABLE 11.23. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Three-Level Model; Unstructured; Fixed Components

YGROWTH = 8.792 + 0.682XHEAD2 + 0.265XINCOME2 + 0.570XEDUCATION2 + 0.107XHOOD2 + 0.124XETHNIC2

(0.652) (0.754) (0.156) (0.213) (0.047) (0.821)

+ 7.123YEARS1 – 0.144XHEAD2 * YEARS1 + 0.023XINCOME2 * YEARS1
(0.128) (0.298) (0.063)

+ 0.105XEDUCATION2 * YEARS1 + 0.016XHOOD2 * YEARS1 + 0.339XETHNIC2 * YEARS1
(0.085) (0.019) (0.445)

– 1.515XPROGRAM3 – 0.577XPROGRAM3 * XHEAD2

(1.285) (0.989)

Pseudo-R2 = 83.8%



In Table 11.25, we have reestimated the three-level growth equation specified in
Table 11.22, this time using the heterogeneous autoregressive residual covariance struc-
ture rather than scaled identity. The fixed components in Table 11.25 are approximately
the same as in Table 11.23. SPSS Routine 11.4 provides instructions for estimating a
three-level growth model with the AR(1): Heterogeneous covariance structure.

The random component estimates in Table 11.26 indicate that there is substantial
variability in the residual variance from one testing occasion to another, indicating viola-
tion of the assumption of homoscedasticity for the residuals at level one. The rho value,
moreover, is statistically significant, meaning that the level-one residuals are auto-
correlated. Based on our work with the two-level model specified in Table 11.12, we sus-
pected that both heteroscedasticity and autorcorrelation would characterize the distribu-
tion of our level-one residuals, and in this instance we were right. As with Table 11.24,
the intercept variance at level three is statistically nonsignificant, and the other covari-
ance parameter estimates are largely unchanged.

In Table 11.27, we use the four information criteria routinely provided by SPSS to
compare multilevel regression equations based on the three-level model specified in
Table 11.22. The equations differ only with regard to residual covariance structure. Each
information criterion indicates that the model with heterogeneous autoregressive resid-
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TABLE 11.24. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Three-Level Model; Unstructured; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 18.860 0.779 24.207 .000

INTERCEPT1 variance at level two 3.552 1.318 2.695 .007

INTERCEPT1 by YEARS1 covariance at level two 2.878 0.614 4.685 .000

YEARS1 variance at level two 2.332 0.633 3.687 .000

INTERCEPT1 variance at level three 3.841 2.389 1.608 .108

TABLE 11.25. Vocabulary Achievement Growth: Multilevel Regression Growth Equation; Three-
Level Model; AR(1): Heterogeneous; Fixed Components

YGROWTH = 10.312 – 0.575XHEAD2 + 0.215XINCOME2 + 0.486XEDUCATION2 + 0.090XHOOD2

(0.553) (0.676) (0.141) (0.192) (0.043)

– 0.098XETHNIC2 + 6.668YEARS1 – 0.077XHEAD2 * YEARS1 + 0.009XINCOME2 * YEARS1
(0.844) (0.094) (0.219) (0.046)

+ 0.076XEDUCATION2 * YEARS1 + 0.014XHOOD2 * YEARS1 + 0.391XETHNIC2 * YEARS1
(0.062) (0.014) (0.330)

– 1.610XPROGRAM3 – 0.009XPROGRAM3 * XHEAD2

(1.093) (0.939)

Peudo-R2 = 83.7%
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SPSS Routine 11.4. Three-Level Growth Model for Vocabulary
Achievement with AR(1) Heterogeneous Covariance Structure

1. Open the SPSS data file and click on ANALYZE.
2. Go to MIXED MODELS and click on LINEAR.
3. Since the individual student is the level-two grouping variable, insert the student identi-

fier into the SUBJECTS box. Since the school is the level-three grouping variable,
insert the school identifier into the SUBJECTS box.

4. Insert the INDEX NUMBER (INDEX1) into the REPEATED box. The INDEX NUMBER
was created when we restructured the data set. By inserting INDEX1 into the
REPEATED box, we indicate that we are using repeated measures.

5. Beneath the REPEATED box, you will see the REPEATED COVARIANCE TYPE box.
Replace the default option, DIAGONAL, with AR(1): HETEROGENEOUS. This models
the residual variance to vary from one measurement occasion to another, and to be
autocorrelated.

6. Click on CONTINUE; insert vocabulary achievement as the dependent variable into the
DEPENDENT VARIABLE box; and insert the independent variables XHEAD2, XINCOME2,
XEDUCATION2, XHOOD2, XETHNIC2, XPROGRAM3, and YEARS1, and the cross-level interac-
tion terms XEDUCATION2 * YEARS1, XHOOD2 * YEARS1, XETHNIC2 * YEARS1, and
XPROGRAM3 * XHEAD2 into the COVARIATES box.

7. Click on FIXED at the bottom of the screen. In the small box in the middle of the
screen, change FACTORIAL to MAIN EFFECTS. Move all the independent variables
and cross-level interaction terms from the FACTORS AND COVARIATES box to the
MODEL box.

8. Click on CONTINUE.
9. Click on the RANDOM button at the bottom of the screen. The student identifier is

already in the SUBJECTS box, and now we also insert it in the COMBINATIONS box.
10. In the small box in the middle of the screen, change FACTORIAL to MAIN EFFECTS.
11. Near the top of the screen, click on INCLUDE INTERCEPT and move the independent

variable YEARS1, our measure of time, into the MODEL box.
12. Just above INCLUDE INTERCEPT, select UNSTRUCTURED.
13. In the upper right corner of the screen, click on NEXT.
14. Near the top of the screen, click on INCLUDE INTERCEPT.
15. Just above INCLUDE INTERCEPT, select UNSTRUCTURED.
16. Click on CONTINUE, and then click on the STATISTICS button.
17. On the left, under MODEL STATISTICS, select PARAMETER ESTIMATES and TESTS

FOR COVARIANCE PARAMETERS.
18. Click on CONTINUE and click on OK.



ual covariance structure provides the best fit. This means that we should model the
residuals to have nonuniform variance and to be autocorrelated. This is consistent with
the statistically significant rho value in Table 11.26. The fixed coefficients in Tables
11.25 and 11.28, however, are quite similar, and the same applies to random compo-
nents when we compare Tables 11.26 and 11.29. As a practical matter, then, it is of little
or no consequence if we use a diagonal or heterogeneous autoregressive residual covari-
ance structure.

We have already presented the regression results obtained with the scaled identity
residual covariance structure in Tables 11.23 and 11.24, and the same information
obtained with the heterogeneous autoregressive residual covariance structure is reported
in Tables 11.25 and 11.26. The regression results obtained with a diagonal covariance
structure are presented in Tables 11.28 and 11.29.

We have worked with various specifications of the three-level growth model needed
to evaluate the post-Head Start program. The program’s objective was to maintain Head
Start gains throughout the first 4 years of elementary school, but in the West Virginia
analysis, there were no Head Start gains to maintain. The most we can say, then, is that
the post-Head Start program itself did not improve vocabulary achievement or promote
vocabulary achievement growth.
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TABLE 11.26. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Three-Level Model; AR(1): Heterogeneous; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

INDEX1 = 1 3.787 2.236 1.693 .090
INDEX1 = 2 25.243 2.259 11.174 .000
INDEX1 = 3 54.353 4.886 11.125 .000
INDEX1 = 4 18.993 1.843 10.306 .000
INDEX1 = 5 0.652 1.216 0.537 .591
Rho 0.175 0.487 3.586 .000
INTERCEPT1 variance at level two 9.886 2.529 3.910 .000
INTERCEPT1 by YEARS1 covariance at level two 0.873 0.628 1.391 .164
YEARS1 variance at level two 1.974 0.257 7.681 .000
INTERCEPT1 variance at level three 2.786 1.581 1.762 .078

TABLE 11.27. Vocabulary Achievement Growth: Information Criteria for Scaled Identity,
Diagonal, and AR(1): Heterogeneous Residual Covariance Structures

Criterion Scaled identity Diagonal
AR(1):

Heterogeneous

–2 log likelihood 8652.7 8373.7 8323.7
Akaike’s Information Criterion 8690.7 8421.7 8369.7
Hurvich and Tsai’s Criterion 8691.2 8422.6 8370.5
Bozdogan’s Criterion 8809.0 8571.2 8512.9
Schwarz’s Bayesian Criterion 8790.0 8547.2 8489.9

Note. The smaller value for each measure is boldfaced and italicized.



11.12 NONLINEAR GROWTH CURVES

At the beginning of our discussion of vocabulary achievement growth, we entertained
the possibility that this growth was not linear. In response to data from case number 280
in Figure 11.1, we briefly considered a cubic relationship—one that changed direction
twice in roughly S-shaped fashion—as providing the best descriptive account of vocabu-
lary growth over five testing occasions. After examining growth curves for more ran-
domly selected students, however, we decided that the complexity of a cubic functional
form was not warranted. All told, a linear growth curve seemed a better choice, and cer-
tainly one providing statistical results that were easier to interpret.

When we use the same West Virginia data set and examine math achievement
growth for its 331 students over the same time span, from the beginning of kindergarten
until the end of third grade, the existence of a roughly consistent and identifiable depar-
ture from linearity seems just a bit easier to discern. Using the same five randomly
selected illustrative cases as in our vocabulary achievement example, Figures 11.17
through 11.21 below suggest that the relationship, on average, may be nonlinear.
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TABLE 11.28. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Three-Level Model; Diagonal; Fixed Components

YGROWTH = 10.151 – 0.571XHEAD2 + 0.217XINCOME2 + 0.485XEDUCATION2 + 0.090XHOOD2

(0.558) (0.674) (0.140) (0.191) (0.043)

– 0.097XETHNIC2 + 6.713YEARS1 – 0.073XHEAD2 * YEARS1 + 0.006XINCOME2 * YEARS1
(0.838) (0.094) (0.221) (0.047)

+ 0.076XEDUCATION2 * YEARS1 + 0.015XHOOD2 * YEARS1 + 0.384XETHNIC2 * YEARS1
(0.063) (0.014) (0.332)

– 1.584XPROGRAM3 – 0.038XPROGRAM3 * XHEAD2

(0.102) (0.934)

Pseudo-R2 = 83.7%

TABLE 11.29. Vocabulary Achievement Growth: Multilevel Regression Growth Equation;
Three-Level Model; Diagonal; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

INDEX1 = 1 2.578 1.226 2.104 .035
INDEX1 = 2 23.484 2.002 11.732 .000
INDEX1 = 3 53.210 4.668 11.400 .000
INDEX1 = 4 18.243 1.637 11.143 .000
INDEX1 = 5 0.901 1.681 0.536 .592
INTERCEPT1 variance at level two 10.885 1.324 8.223 .000
INTERCEPT1-by-YEARS1 covariance at level two 0.550 0.413 1.332 .183
YEARS1 variance at level two 2.124 0.228 9.323 .000
INTERCEPT1 variance at level three 2.852 1.711 1.667 .096



Yielding to the temptation to fish or dredge
data, we will then examine two additional cases,
appearing in Figures 11.22 and 11.23. Figure 11.22
suggests a nonlinear relationship, very roughly ap-
proximating a sine wave. Figure 11.23, however,
looks like the usual unpatterned scatter around a
linear regression line.

In Figure 11.17, the growth curve for case
number 280 increases, decelerates, and then accel-
erates. This description may represent an over-
interpretation of the five data points in this figure,
but it’s a start.

Figures 11.18 and 11.19 are not consistent
with our interpretation of Figure 11.17. Again,
although we are perhaps overinterpreting random
fluctuations, each curve seems to open upward in
parabolic fashion and then either decelerate or
actually slope downward. Since Figure 11.19 includes measures of math achievement at
only four times, with a score for the fourth testing occasion missing, it is especially diffi-
cult to describe this curve in functionally specific terms.

Figure 11.20, however, is similar to Figure 11.17: increasing, decelerating or level-
ing off, and than accelerating. Figures 11.21 and 11.22 begin with a shallow slope, then
accelerate, and then decelerate, both very roughly approximating a sine wave.

Figure 11.23, however, exhibits the sort of distribution of points we expect to find
with a linear functional form accompanied by a random scatter of observations about the
growth curve. Perhaps each of our efforts to discern identifiable nonlinear growth curves
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FIGURE 11.17. Case number
280: Growth in Woodcock–Johnson
25 math test scores.

FIGURE 11.18. Case number 87:
Growth in Woodcock–Johnson 25
math test.

FIGURE 11.19. Case number
166: Growth in Woodcock–Johnson
25 math test scores.



in Figures 11.17 through 11.21 has been nothing
more than overinterpretation of random error.

Finally, in Figure 11.24 we examine math
achievement growth for all students. In the aggre-
gate, it appears that an S-shaped cubic functional
form may prove useful. If this is the case, however,
the troughs and peaks that characterize a cubic
function appear only in very shallow form. What
do we do?

Lacking a theoretical rationale for any particu-
lar functional form, and faced with thoroughgoing
empirical uncertainty, it seems best to opt for the
straightforward interpretability and simplicity of a
linear function. This is consistent with Singer and
Willett’s (2003) informative discussion of linear
and nonlinear growth curves. They add that it is
seldom necessary to work with a functional form
more complex than quadratic.

For instructional purposes, we will begin by specifying a linear functional form for
math achievement growth. We will then use the information criteria to test this against
quadratic and cubic functional forms to determine which seems best suited to math
achievement growth. While engaged in this exercise, we will bear in mind that we hope
to avoid the interpretative complexity that comes with a cubic growth curve. Whatever
functional form we settle on, we will remember that individual growth curves typically
exhibit a great deal of variability. We have seen this with respect to intercepts and slopes
in our examples using reading achievement growth. The same applies to the shape of
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FIGURE 11.20. Case number 45:
Growth in Woodcock–Johnson 25
math test scores.

FIGURE 11.21. Case number
172: Growth in Woodcock–Johnson
25 math test scores.

FIGURE 11.22. Case number
201: Growth in Woodcock–Johnson
25 math test scores.



each individual curve. Whatever functional form we choose for our analysis of math
achievement growth, it will represent an overall average.

Tables 11.30 through 11.40 below report the results of analyses aimed at deciding
on a suitable functional form—linear, quadratic, or cubic—for the math achievement
growth curve. After we have made a decision on functional form, we will use individual
student growth curves as the dependent variable, and introduce level-two predictors,
beginning in Table 11.41.

In Table 11.30 we have specified a two-level model for math achievement growth in
which a linear growth curve is specified. At level one, our measure of time, years of
schooling completed (YEARS1), is incorporated into a linear function. Both the intercept
and the slope are treated as random coefficients, varying among individuals at level two.
Since there are no level-two contextual factors to account for this variability, we have
specified a random coefficient growth model with a linear functional form. This model
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FIGURE 11.23. Case number
161: Growth in Woodcock–Johnson
25 math test scores.

FIGURE 11.24. All cases: Growth
in Woodcock–Johnson 25 math test
scores.

TABLE 11.30. Math Achievement Growth:
Multilevel Regression Growth Model; Linear Functional Form

Level-one model

Y = β0J + β1JYEARS1 + eIJ

Level-two model

β0J = γ00 + u0J

β1J = γ10 + u1J

Full model

Y = γ00 + γ10YEARS1 + (u0J + u1JYEAR+ eIJ)



has exactly the same form as two-level growth models that we have specified previously.
Results for fixed components and random components are reported in Tables 11.31 and
11.32.

This model specified in Table 11.33 is a straightforward extension of the model in
Table 11.30. We have added the quadratic term YEARS12 to the level-one model; the
random slope β2J is included in the level-two model; and the full model, complete with
its more complex error term, has been modified accordingly. A quadratic growth curve
can be estimated only if there are at least three measurement occasions: one for the
change in direction of the curve, and two for each section of the curve that precedes or
follows the change in direction.
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TABLE 11.31. Math Achievement Growth:
Multilevel Regression Growth Equation;
Linear Functional Form; Fixed Components

YGROWTH = 15.454 + 4.189YEARS1
(0.230) (0.105)

Pseudo-R2 = 68.7%

TABLE 11.32. Math Achievement Growth: Multilevel Regression Growth Equation;
Linear Functional Form; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 16.234 0.837 19.396 .000

INTERCEPT1 variance at level one 7.347 1.444 5.089 .000

INTERCEPT1-BY-LINEAR TERM
covariance at level two

–0.073 0.507 –0.143 .886

LINEAR TERM variance at level two 1.469 0.334 4.400 .000

TABLE 11.33. Math Achievement Growth; Multilevel Regression
Growth Model; Quadratic Functional Form

Level-one model

Y = β0J + β1JYEARS1 + β2JYEARS12 + eIJ

Level-two model

β0J = γ00 + u0J

β1J = γ10 + u1J

β2J = γ20 + u2J

Full model

Y = γ00 + γ10YEARS1 + γ20YEARS12 + (u0J + u1JYEAR + u2JYEARS12 + eIJ)



Results for fixed components and random components are reported in Tables 11.34
and 11.35.

Table 11.36 is a straightforward modification of the linear and quadratic specifica-
tion in Tables 11.30 and 11.33. The cubic term YEARS13 has been added as an additional
predictor at level one; the random term β3J is included in the level-two model; and the
full model, complete with its more complex error term, has been modified accordingly. A
cubic growth curve, whatever its value in this instance, can be estimated only if there are
at least five testing occasions: two testing occasions for each change of direction in the
cubic growth curve, and three for each section of the curve that precedes or follows each
change of direction.

Results for fixed components and random components are reported in Tables 11.37
and 11.38. The most conspicuous feature of the estimates of covariance parameters
reported in Table 11.38 is the frequency with which random component variances and
covariances are too small to measure. The warning at the top of the SPSS printout reads
as follows: “Iteration was terminated but convergence has not been achieved. . . . ” The
REML algorithm, in other words, cannot settle on a specific value for the unmeasured
parameter estimate.

It is easy to prompt SPSS to work through additional iterations, and this sometimes
results in more useful output. In this instance, however, with additional iterations the
warning changes to the following: “The final Hessian matrix is not positive definite
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TABLE 11.34. Math Achievement Growth; Multilevel Regression
Growth Equation; Quadratic Functional Form; Fixed Components

YGROWTH = 14.609 + 4.115YEARS1 + 0.503YEARS12

(0.214) (0.064) (0.045)

Pseudo-R2 = 70.0%

TABLE 11.35. Math Achievement Growth: Multilevel Regression Growth Equation;
Quadratic Functional Form; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 12.828 0.809 15.859 .000

INTERCEPT1 variance at level one 15.987 2.258 7.082 .000

INTERCEPT1-by-LINEAR TERM
covariance at level two

–1.316 0.555 –2.370 .018

LINEAR TERM variance at level two 1.211 0.295 4.103 .000

QUADRATIC TERM variance at level two –2.532 0.494 –5.128 .000

QUADRATIC TERM-by-INTERCEPT1
covariance at level two

0.586 0.133 –4.403 .000

QUADRATIC TERM-by-LINEAR TERM
covariance at level two

0.677 0.162 4.178 .000
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TABLE 11.36. Math Achievement Growth: Multilevel Regression Growth Model;
Cubic Functional Form

Level-one model

Y = β0J + β1JYEARS1 + β2JYEARS12 + β3J YEARS13 + eIJ

Level-two model

β0J = γ00 + u0J

β1J = γ10 + u1J

β2J = γ20 + u2J

β3J = γ30 + u3J

Full model

Y = γ00 + γ10YEARS1 + γ20YEARS12 + γ30YEARS3 + (u0J + u1JYEARS1 + u2JYEARS12 + u2JYEARS13 + eIJ)

TABLE 11.37. Math Achievement Growth: Multilevel Regression
Growth Equation; Cubic Functional Form; Fixed Components

YGROWTH = 12.465 + 5.244YEARS1 + 0.575YEARS12 – 0.349YEARS13

(0.308) (0.192) (0.085) (0.077)

Pseudo-R2 = 70.6%

TABLE 11.38. Math Achievement Growth: Multilevel Regression Growth Equation;
Cubic Functional Form; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 7.057 0.315 22.392 .000

INTERCEPT1 variance at level one 1.197 0.000 — —

INTERCEPT1-by-LINEAR TERM
covariance at level two

–0.267 0.721 –0.370 .711

LINEAR TERM variance at level two 4.027 0.873 4.614 .000

QUADRATIC TERM variance at level two 1.033 0.659 1.569 .117

QUADRATIC TERM-by-INTERCEPT1
covariance at level two

–0.884 0.698 –1.265 .206

QUADRATIC TERM-by-LINEAR TERM
covariance at level two

1.412 0.000 — —

CUBIC TERM variance at level two –0.432 0.419 –1.031 .302

CUBIC TERM-by-INTERCEPT1
covariance at level two

–0.342 0.000 — —

CUBIC TERM-by-LINEAR TERM
covariance at level two

0.329 0.000 — —

CUBIC TERM-by-QUADRATIC TERM
covariance at level two

1.253 0.000 — —

Note. A dash (—) indicates a value too small to measure.



although all convergence criteria are satisfied. The MIXED procedure continues despite
this warning. Validity of subsequent results cannot be ascertained.”

In other words, given the data at hand, a cubic functional form is unduly complex,
resulting in a misspecified growth model. This is consistent with the information criteria
in Table 11.39. When linear, quadratic, and cubic functional forms are compared, the
best fit is provided by the quadratic curve, and the worst fit to the data comes with the
cubic specification.

We can remedy lack of convergence if we assign fixed rather than random coeffi-
cients to one or more of the terms in the cubic function. In the absence of a compelling
theoretical or substantive rationale, there is no reason not to do so. The consequences of
changing some of the random terms to fixed are reported in Table 11.40. Note, however,
that when we compare information criteria for alternative specifications of the cubic
growth curve with the information criteria in Table 11.39, the quadratic functional form
still provides the best fit.

Now that we have settled on a quadratic functional form, we begin trying to account
for student-to-student differences with respect to math achievement growth. In Table
11.41 we use some of the same individual-level predictors we have used with vocabulary
achievement growth models.

Results for fixed and random components are reported in Tables 11.42 and 11.43.
With a quadratic functional form for our measure of time, interpretation of the fixed
components is a bit more complex than with the other growth models we have studied.
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TABLE 11.39. Math Achievement Growth: Information Criteria for Linear,
Quadratic, and Cubic Functional Forms

Criterion Linear Quadratic Cubic

–2 log likelihood 8888.5 7917.9 9116.1
Akaike’s Information Criterion 8900.5 7931.9 9146.1
Hurvich and Tsai’s Criterion 8900.6 7932.0 9146.4
Bozdogan’s Criterion 8938.3 7976.0 9240.5
Schwarz’s Bayesian Criterion 8932.3 7969.0 9225.5

Note. The smaller value for each measure is boldfaced and italicized.

TABLE 11.40. Math Achievement Growth: Information Criteria for Cubic
Functional Form; Fixed and Random Coefficient Combinations

Criterion All fixed Linear
Linear and
quadratic

–2 log likelihood 8879.8 8796.2 8738.9
Akaike’s Information Criterion 8891.8 8812.2 8752.9
Hurvich and Tsai’s Criterion 8891.9 8813.3 8753.0
Bozdogan’s Criterion 8929.6 8862.5 8797.0
Schwarz’s Bayesian Criterion 8923.6 8854.5 8789.0

Note. The smaller value for each measure is boldfaced and italicized.
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TABLE 11.41. Math Achievement Growth: Multilevel Regression Growth Model;
Quadratic Functional Form; Level-Two Predictors Added

Level-one model

Y = β0J + β1JYEARS1 + β2JYEARS12 + eIJ

Level-two model

β0J = γ00 + γ01XINCOME2 + γ02XEDUCATION2 + γ03XHOOD2 + u0J

β1J = γ10 + γ11XINCOME2 + γ12XEDUCATION2 + γ13XHOOD2 + u1J

β2J = γ20 + γ21XINCOME2 + γ22XEDUCATION2 + γ23XHOOD2 + u2J

Full model

Y = γ00 + γ01XINCOME2 + γ02XEDUCATION2 + γ03XHOOD2 + γ10YEARS1 + γ11XINCOME2 * YEARS1

+ γ12XEDUCATION2 * YEARS1 + γ13XHOOD2 * YEARS1 + γ20YEARS12+ γ21XINCOME2 * YEARS12

+ γ22XEDUCATION2 * YEARS12 + γ23XHOOD2 * YEARS12 + (u0J + u1JYEARS1 + u2JYEARS12 + eIJ)

TABLE 11.42. Math Achievement Growth: Multilevel Regression Growth Equation;
Quadratic Functional Form; Level-Two Predictors Added; Fixed Components

YGROWTH = 22.805 + 0.226XINCOME2 + 0.249XEDUCATION2 + 0.058XHOOD2 + 4.238YEARS1
(0.269) (0.122) (0.178) (0.040) (0.103)

+ 0.110XINCOME2 * YEARS1 + 0.146XEDUCATION2 * YEARS1 – 0.024XHOOD2 * YEARS1
(0.047) (0.068) (0.015)

+ 0.506YEARS12 + 0.029XINCOME2 * YEARS12 + 0.040XEDUCATION2 * YEARS12

(0.078) (0.035) (0.051)

– 0.038XHOOD2 * YEARS12

(0.332)

Pseudo-R2 = 71.4%

TABLE 11.43. Math Achievement Growth: Multilevel Regression Growth Equation;
Quadratic Functional Form; Level-Two Predictors Added; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

Residual 13.188 0.849 15.536 .000

INTERCEPT1 variance at level one 15.156 1.967 7.714 .000

INTERCEPT1-by-LINEAR TERM
covariance at level two

0.357 0.615 0.581 .561

LINEAR TERM variance at level two 1.470 0.299 4.908 .000

QUADRATIC TERM variance at level two 0.734 0.175 4.191 .000

QUADRATIC TERM-by-INTERCEPT1
covariance at level two

–1.582 0.475 –3.332 .001

QUADRATIC TERM-by-LINEAR TERM
covariance at level two

0.794 0.159 5.061 .000



Recall, however, our work with quadratic relation-
ships in OLS regression from Chapter 6: The coeffi-
cient for YEARS1 represents the best-fitting linear
relationship, and the coefficient for YEARS12 mea-
sures departures from linearity over time.

1. For each year of schooling completed, in-
dividual student math achievement growth
increases, on average, by 4.238 points.

2. For each year of schooling completed,
the rate of change for math achievement
growth increases, on average, by 0.506
points. This is a measure of the upward
curve of the relationship graphed in Figure
11.25. The best-fitting linear relationship is adjusted to conform better to the
data.

3. For each one-level increase in family income, math achievement increases, on
average, by 0.226 points. This finding holds only with use of a one-tailed t test.

4. For each one-level increase in parent’s level of educational attainment, the effect
of YEARS1 on math achievement growth increases, on average, by 0.146 points.
This is due to the XEDUCATION2 * YEARS1 interaction term.

5. For each one-level increase in family income, math achievement growth in-
creases, on average, by 0.110 points. This is due to the XINCOME2 * YEARS1 inter-
action term.

11.13 NCLEX PASS RATES WITH A TIME-DEPENDENT PREDICTOR

In Figures 11.9 through 11.12, we found an enormous amount of variability in growth in
pass rates for the 21 nursing education programs operating in West Virginia during all or
part of the period from 1985 to 1994. Referring specifically to Figure 11.12, which
includes an overall growth curve for all programs for all years, we see that use of the
term growth might easily be misconstrued because, on average, there was a very modest
decline in pass rates over time. Having made that cautionary observation, we can specify
a multilevel regression growth model for pass rates, as in Figure 11.25.

YEAR1 is a level-one predictor defined by subtracting 85, the value for the first year,
from all entries for time. This produces a range of values from 0 to 9, indicating the
number of years for which a program has been reporting NCLEX information to the
state. We will use this as a crude proxy for level of organizational maturity or develop-
ment.

The institutions that certify registered nurses may be categorized in a variety of
ways. In this instance, we will create a set of dummy variables corresponding to the kind
of certification offered: certification with a diploma but no degree (XDIPLOMA2), certifica-
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FIGURE 11.25. Growth in Wood-
cock–Johnson 25 math test scores:
Quadratic functional form.



tion with an associate’s degree (XASSOC2), or certification with a bachelor’s degree.
Dummy variables for the first two categories were created by using the usual 1-if-yes, 0-
if-no coding scheme. The third category is suppressed and provides a basis for compari-
son.

In addition, percentage of faculty members with a doctorate (XPCTDOC1) is used as
another level-one independent variable. This variable too has been centered with respect
to its mean.

Throughout our discussion of multilevel growth models, all the independent vari-
ables except time have been measured at one occasion only: at the beginning of data col-
lection. From year to year, all level-two and level-three explanatory variables have had
fixed values. As such, they are referred to as time-independent predictors. In our nursing
education example, the level-two variables XDIPLOMA2 and XASSOC2 are time-independent.
The status of each program in terms of these two variables has been constant from one
year to the next over the time span for which we have data.

The level-one predictor XPCTDOC2, however, varies from one measurement occasion
to another. As faculty members come and go, faculty composition changes in a variety of
ways, and one of these is the percentage of instructors who have a doctorate. As such,
XPCTDOC2 is a time-dependent predictor, and it becomes a component of our level-one
model.

The role of a time-dependent predictor in analyzing growth curves is the same as
that for a time-independent predictor. We are still trying to account for differences in the
way entities (in this case, nursing education programs) change over time. The compara-
bility of time-independent and time-dependent predictors makes sense if we recall how
the data set has been restructured (Hox, 2002). Each value of the dependent variable
corresponds to a value on each independent variable. With time-independent predictors,
the values of the independent variable do not change over time. With time-dependent
predictors, they may differ from one measurement occasion to another.

The multilevel regression growth model that we will use in accounting for differ-
ences in institutional change over a 10-year period in terms of NCLEX pass rates is spec-
ified in Table 11.44. Results of applying the model to the West Virginia data set are
reported in Tables 11.45 and 11.46.

The only independent variables with statistically significant coefficients are the
time-dependent predictor, XPCTDOC2, and the cross-level interaction term, XDIPLOMA2 *
YEAR1. As we see, for every 1% increase in XPCTDOC2, growth in NCLEX pass rate is
diminished by 0.267%. In addition, with each 1-unit increment in YEAR1, pass rates for
diploma programs increase by 2.264% relative to those for bachelor’s degree programs.

How do we explain the unexpected negative relationship between change in pass
rate and percentage of instructors with a doctorate? This finding has been robust in
unpublished analyses of the same data done in different ways (Stevens, 1996). It may be
due to the fact that instructors with doctorates are more likely than others to be inter-
ested in nursing research, which is not covered in the NCLEX, than in nursing practice.
In addition, nurses with doctorates may be more likely to work in settings where
research is valued and clinical practice is given less attention.
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TABLE 11.44. NCLEX Pass Rate: Multilevel Regression Growth Model;
Diagonal Residual Covariance Structure

Level-one model

Y = β0J + β1JYEAR1 + 20XPCTDOC1 + eIJ

Level-two model

β0J = γ00 + γ01XDIPLOMA2 + γ02XASSOC2 + u0J

β1J = γ10 + γ11XDIPLOMA2 + γ12XASSOC2 + u1J

Full model

Y = γ00 + γ01XDIPLOMA2 + γ1JYEAR + γ02XASSOC2 + γ11XDIPLOMA2 * YEAR1

+ γ12XASSOC2 * YEAR1 + γ20XPCTDOC1 + (u1J *YEAR1 + u0J + eIJ)

TABLE 11.45. NCLEX Pass Rate: Multilevel Regression Growth Equation; Diagonal
Residual Covariance Structure; Fixed Components

YCHANGE = 85.338 + 6.688XDIPLOMA2 – 0.350YEAR1 + 0.081XASSOC2 – 0.267XPCTDOC2

(1.645) (7.669) (0.248) (3.727) (0.119)

+ 2.264XDIPLOMA2 * YEAR1 + 0.1932XASSOC2 * YEAR1 + 0.034XPCTDOC2 * TIME1
(1.243) (0.616) (0.035)

Pseudo-R2 = 4.7%

TABLE 11.46. NCLEX Pass Rate: Multilevel Regression Growth Equation;
Diagonal Residual Covariance Structure; Estimates of Covariance Parameters

Parameter Estimate Std. error Wald Z Sig. level

INDEX1 = 1 98.932 45.247 2.187 .029
INDEX1 = 2 18.241 12.640 1.443 .149
INDEX1 = 3 37.317 18.384 2.030 .042
INDEX1 = 4 125.179 51.933 2.410 .016
INDEX1 = 5 96.846 43.946 2.204 .028
INDEX1 = 6 45.959 22.069 2.082 .037
INDEX1 = 7 18.607 10.928 1.703 .089
INDEX1 = 8 111.020 45.149 2.459 .014
INDEX1 = 9 118.313 44.687 2.648 .008
INDEX1 = 10 24.011 15.130 1.587 .113
INTERCEPT1 42.060 18.796 2.238 .439
INTERCEPT1 by YEAR1 1.744 2.254 0.774 .000
YEAR1 0.300 0.403 0.745 .456



Table 11.46 shows us the repeated measures variances from year to year, as well as
random component variances and the covariance for INTERCEPT1 and YEAR1. This
information is provided because we selected the diagonal residual covariance structure
option, and the unstructured option for random components. Again, we have permitted
residuals for the repeated measures to have nonuniform variances, but we have con-
strained the residuals to be uncorrelated.

If we want to make sure that we have made the correct choice, we may use the
information criteria in Table 11.47, where we see results obtained with a variety of resid-
ual covariance structures, from the simplest to the most complex. (To save space, fixed
and random components for analyses using scaled identity, heterogeneous autore-
gressive, and unstructured residual covariance structures are not reported.) Clearly, the
relatively simple diagonal residual covariance structure provides a better fit than more
complex structures.

11.14 SUMMING UP

In this chapter we have tried to make the case that the admonition “It’s just regression!”
applies not only to conventional multilevel models, but to multilevel growth models as
well. After all, repeated measures taken on the same set of units, such as repeated
achievement scores calculated for individual students, can readily be construed as mea-
sures taken at level one, while the students or other units are located at level two. Still
higher-level units, such as classrooms, schools, and school districts, may then be treated
as located at levels three, four, and five. In this way, the multilevel framework is main-
tained.

The primary difference between conventional multilevel models estimated with
cross-sectional data and multilevel growth models, of course, is the way time is treated.
Given the nature of cross-sectional data, time has to be ignored. When repeated mea-
sures are available, however, change over time may be profitably studied. More to the
point, change over time becomes available for close scrutiny.
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TABLE 11.47. NCLEX Pass Rate: Multilevel Regression Growth Equation; Information Criteria
for Comparing Residual Covariance Structures

Criterion Scaled identity Diagonal
AR:1

Heterogeneous Unstructured

–2 log likelihood 1032.7 993.5 1022.1 1094.9

Akaike’s Information Criterion 1040.7 1019.5 1068.1 1211.0

Hurvich and Tsai’s Criterion 1041.0 1022.6 1077.6 1295.5

Bozdogan’s Criterion 1056.4 1070.1 1158.8 1439.6

Schwarz’s Bayesian Criterion 1052.4 1057.1 1135.8 1381.6

Note. The smaller value for each measure is boldfaced and italicized.



As we have seen, multilevel growth models permit us to estimate individual growth
curves displaying the nature of change over time for each person or other unit in our
data set. This is accomplished by treating measures as nested within individuals. The
individual growth curves provide a basis for estimating an overall or average growth
curve, summarizing the time-dependent pattern over all individuals.

Beyond that, level-two explanatory factors may be used to explain differences in
change over time among individuals. The level-two explanatory variables may have fixed
or random coefficients, and variability in random components may be explained with
level-three variables, if a third level is available.

In short, multilevel growth models enable us to describe the nature of measured
change, and to explain why patterns of change differ from one individual to another.
They represent a substantial advance over conventional before-and-after or pretest–
posttest designs.
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The first 300 pages of Singer and Willett’s text provide an excellent introduction to multi-
level growth modeling. The material is very well written and unusually accessible. An analyst who
has acquired a good understanding of multilevel regression will be able to work through this
material without the usual enormous amount of difficulty, and will soon be able to construct and
estimate informative models of change over time. Coverage of important topics is extremely thor-
ough, and there are numerous carefully worked-out examples.

Until reading Singer and Willett, I was troubled by uncertainty as to the best way to make
analytical sense of the distinction between time-independent and time-dependent explanatory
variables. The authors clarify this distinction in a way that makes it readily applicable in applied
work. Moreover, Singer and Willett’s discussion of error covariance structures facilitates drawing
useful parallels with random component covariance structures; this makes a complex topic com-
paratively easy to understand. Finally, the authors devote a great deal of attention to alternative
ways of construing time and to nonlinear growth curves. As with other difficult issues, this mate-
rial is presented in readable fashion.

Gamoran’s brief account of using multilevel growth models to assess the achievement effects
of district-level urban systemic initiatives is useful because of the clarity of its objectives and the
straightforward way in which a three-level model—within-student, student, district—is pre-
sented. Achievement growth in Gamoran’s evaluation is curvilinear, with growth slowing as time
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passes. Comparison of students from selected Texas school districts suggests that implementation
of the urban systemic initiative enhances achievement growth for all students. Differences in level
of implementation, however, make no difference. Gamoran’s discussion of data problems, espe-
cially measuring level of implementation, is instructive.

The material is presented as part of a larger but unspecified document, and the nature of sys-
temic initiatives is not explained. I am assuming that Gamoran is studying an example of the sys-
temic initiatives fostered by the National Academy of Sciences to promote achievement in science
and math. In spite of this uncertainty, the clarity of Gamoran’s methodological account makes this
document well worth reading.

The brief paper by Zaidman-Zat and Zumbo is of interest for much the same reason as
Gamoran’s: clearly explained application of a relatively simple model to an issue of real interest.
The authors’ objective is to examine the effects of missing data on fixed coefficients estimated to
explain differences among individuals with regard to verbal achievement.

Recall that one of the commonly cited virtues of multilevel growth models is that even if one
or more observations on the dependent variable are missing, the procedure makes best use of
information available, rather than deleting the case. Zaidman-Zat and Zumbo provide evidence
consistent with this desirable characteristic, but they offer a caveat: If the level-one model is
misspecified, missing data constitute much more of a problem than has commonly been recog-
nized. With proper level-one specification as manifest in use of the correct functional form, how-
ever, the efficacy of multilevel models of change in handling missing data is remarkable, indeed.

Clearly, this paper is intrinsically interesting. For one new to the specification and estimation
of multilevel growth models, however, the primary virtue of Zaidman-Zat and Zumbo’s work is
the clarity with which they present it.
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Varying parameter estimates, 81–86
Vocabulary achievement example

ANCOVA, 286–287
growth in achievement, 287–290
information criteria, 306
multilevel regression growth equation, 295,

297, 298
multilevel regression growth equation,

respecified, 303, 304, 305
multilevel regression growth model, 294
multilevel regression growth model,

respecified, 302, 304
three-level model, 311–316

Voting behavior example. See County-level
voting behavior example

Within-group homogeneity, 81
Within-groups regression, 142

Youth vote, 186
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