

PHP for
Teens

Maneesh Sethi

� 2006 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or

retrieval system without written permission from Thomson Course

Technology PTR, except for the inclusion of brief quotations in a

review.

The Thomson Course Technology PTR logo and related trade dress

are trademarks of Thomson Course Technology, a division of

Thomson Learning Inc., and may not be used without written per-

mission. This product includes PHP software, freely available from

http://www.php.net/software/.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources,

Thomson Course Technology PTR, or others, the Publisher does not

guarantee the accuracy, adequacy, or completeness of any information

and is not responsible for any errors or omissions or the results

obtained from use of such information. Readers should be particularly

aware of the fact that the Internet is an ever-changing entity. Some facts

may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-139-X

ISBN-13: 978-1-59863-139-5

Library of Congress Catalog Card Number: 2006920364

Printed in the United States of America

06 07 08 09 10 PH 10 9 8 7 6 5 4 3 2

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Heather Hurley

Senior Acquisitions Editor:

Emi Smith

Project Editor:

Tonya Cupp

Technical Reviewers:

Andy Harris, Christopher McCulloh

Teen Reviewer:

Justin Windler

PTR Editorial Services Coordinator:

Elizabeth Furbish

Interior Layout Tech:

Interactive Composition Corp.

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Brandon Penticuff

Indexer:

Sharon Shock

Proofreader:

Megan Wade

Thomson Course Technology PTR,

a division of Thomson Course Technology

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

eISBN-10:1-59863-140-3

http://www.php.net/software/
http://www.courseptr.com

To the Quad—Loro 107

There are a lot of people to thank for this work. Really, to everyone who played a

part during the writing of this book, thank you so much.

First of all, I want to thank my parents, Neelam and Prab Sethi. My brother was a

big help to me with surviving this year; thanks Ramit. My sisters Nagina and

Rachi are awesome, and I love you both so much.

Thanks to Emi Smith, my acquisitions editor, Tonya Cupp, my copy editor, and

Andy Harris and Christopher McCullough, my tech editors. Everyone else at

Course PTR—you guys are great.

Lastly, my friends: Thanks a lot, you guys. I want to give special thanks to my

college roommates during the writing of this book, Nate Foorman and Arthur

Kaneko (Theo Polan too, sort of). Also, many thanks to David Weekly for his

help programming and all sorts of computer stuff.

To everyone else, and Lauren Choi: Thanks so much for your help! Keep in

touch!

Maneesh Sethi is a student at Stanford University in Palo Alto, California. As a

high-school student, he founded Standard Design, a website design company,

and Cold Vector Games, a game development team. Maneesh has authored the

international best-seller Game Programming for Teens andWeb Design for Teens,

and his new book How to Succeed as a Lazy Student is in the works.

Additionally, Maneesh lectures on game programming and design at various

conferences around the country. You can learn more at www.maneeshsethi.com or

visit his blog at www.lazymotivation.com.

iii

Acknowledgments

About the Author

www.maneeshsethi.com
www.lazymotivation.com

Contents

Introduction . ix

Chapter 1 Welcome to PHP . 1

Installing PHP on Windows . 2

Installing the Web Server . 2

Testing Apache . 7

Installing PHP. 8

Testing PHP . 11

Installing PHP on Macs . 19

Chapter 2 A Quick HTML Primer . 23

.htm or .html Extension. 24

ASCII Format. 25

Common Tags. 25

<html> Tag . 26

<head> Tag . 30

Text-Formatting Tags . 33

Miscellaneous Useful Tags . 37

Chapter 3 Building Your First PHP Program: Setting Up the HTML. . 39

HTML Template . 40

HTML Form. 42

iv

Form Elements . 45

Submit Button . 48

Adding PHP . 50

Chapter 4 Writing the PHP in Your First Program 53

Variables . 59

Types . 60

Inserting . 61

Rules . 65

Functions and Parameters. 67

Predefined Variables and Arrays . 70

GET Versus POST. 70

Arrays . 71

Predefined Variables . 72

Chapter 5 Constants, Expressions, and Operators 77

Constants . 77

Operators . 79

Unary . 81

Binary . 81

Ternary . 81

Arithmetic Operators . 83

Comparison Operators . 90

Logical Operators . 90

Other Operators. 91

Expressions . 93

Chapter 6 The Style Factor . 95

Why Style? . 95

How to Style. 99

Capitalization. 99

Underscores . 100

Comments . 100

Chapter 7 Program Flow: Control Structures 103

Branching Structures . 103

if . 104

else . 107

elseif . 109

switch . 111

Contents v

Loops . 114

while . 114

for . 116

do . . . while . 119

break and continue . 120

Chapter 8 Strings . 121

Making Strings . 121

Single-Quoted Syntax . 122

Double-Quoted Syntax . 131

String Functions . 132

Chapter 9 Functions . 135

Designing Your Own Functions . 135

Dissecting a Function . 138

Function Code . 138

Parameter List . 138

Return Value . 139

Calling a Function Depending on a Condition 146

Chapter 10 Arrays . 151

Creating an Array . 151

array() Language Construct . 152

Reference Items . 152

Creating Array Elements . 153

Defining Arrays with PHP . 154

Skip the Array Key Definition . 154

Use a Loop. 157

Working with Arrays . 158

unset() Function . 158

foreach Loop . 161

Chapter 11 Advanced Forms . 167

Advanced Elements . 167

Radio Buttons . 167

Password Fields . 170

Hidden Fields . 171

Using PHP and Forms . 171

Basic Email Commands . 176

vi Contents

Chapter 12 Cookies . 181

Creating Cookies. 182

$name . 182

$value . 182

$expire . 182

$path . 184

$domain . 184

$secure . 185

Common Problems . 185

Putting a Cookie in Your Site . 186

Chapter 13 Sessions. 195

Using Sessions. 196

Starting a Session. 197

Desiging a Form Page . 198

Developing a Basic PHP Page . 198

PHP Functions for Session Data . 202

The Errored Pages . 203

The Fix. 205

Creating a Web Page Counter . 208

Developing a Log-In Page . 211

Cookie Exercise . 219

Chapter 14 Working with Files . 223

Allowing File Uploads . 223

HTML Program. 224

enctype . 225

PHP Program . 225

Loading Files. 230

Opening a File . 231

Closing a File . 232

Writing to Files . 233

Reading in Files . 237

fread() . 237

file() . 239

Renaming, Copying, and Deleting Files . 241

copy . 241

rename . 241

unlink . 241

Contents vii

Appendix A Function List . 243

Appendix B Online Resources . 247

Appendix C What’s on the CD. 249

Index . 251

viii Contents

If you are holding this in your hand, you probably have some knowledge about

the web—either that or someone asked you to buy this book for them. Whatever

the case, you have found a gold mine! From this book you learn the secrets to

dynamic web sites with PHP.

What is dynamic content? Making a site change based on given information

(hence the word dynamic). Perhaps you want to make a site where you can have

several members who all store their own favorite links. Well, with PHP, you can

make your site offer dynamically different links to each user, maybe based on

recommendations or previous links. PHP gives you total control.

Who This Book Is For
You probably know better than I do who this book is for, but let me tell you what

I think anyway: You are a beginning programmer, with little or no background in

PHP. You may or may not have HTML experience. You are willing to take the

time to learn PHP by following this book closely and trying to make programs of

your own.

Your experience obviously doesn’t have to fit this exactly for you to benefit

from this book. You may or may not be a teenager; many of my books’s readers

are over 50 or under 13. The main thing is that you have a willingness to

learn.

ix

Introduction

x Introduction

What is the minimum knowledge you need to succeed here? You should be able

operate a computer well. If you can use your PC or Apple without any major

difficulties, you will probably do fine in this book. This book is paced for a

beginner, and topics work on a PC, Mac, or Linux computer. I have included

information on how to install the software for PCs and Macs, but you can find

Linux instructions on www.php.net.

If you ever have any problems with any of this, feel free to email me at

maneesh@maneeshsethi.com.

How This Book Is Organized
The first few chapters introduce design and give a brief overview of the PHP

language. You get a fast review of HTML and some PHP form design discussion.

You learn about variables, constants, expressions, and operators. Then I begin

talking about more-advanced PHP items. You learn about controlling program

flow through loops and control statements, organizing with functions, and

enhancing web scripts with strings and arrays. Starting with the chapter on

cookies, you get into somemore-advanced topics. You are introduced to sessions

and file handling. Finally, you get to the appendices, which lists all the functions

throughout the book, as well as external resources and what is on the CD.

All the source in this book is available on the CD. You just need to install your

server (which I show you how to do in Chapter 1) before using any of it.

Additionally, some of the figures were taken using different themes on a web

browser. Don’t worry about the different themes—all of the source files should

work as shown.

www.php.net

Welcome to PHP

Hey, welcome to PHP For Teens. I’m really glad you picked up this book, and I

want to let you know that you are in for a great ride. PHP, while easy to learn, is

also an incredibly powerful and useful language, and this book will teach you

everything you need to know to make some seriously dynamic web sites.

So what does PHP actually mean? PHP itself stands for PHP: Hypertext

processor—seriously. Seems kind of crazy, because the name itself is part of the

acronym, like it keeps going on and on forever! PHP is also a current pro-

gramming language that is often used on modern web sites and development

applications. PHP is extendible, strong, and works with many external utilities.

PHP is also pretty simple to learn. It is called a high-level language, which means

that it is between human language (English) and machine code (0s and 1s).

Because of this, you can easily understand it and write it almost like normal

writing, but it is also strong enough to do some seriously complex things.

So what can you actually do with PHP? You can make the Internet an interactive

experience by creating forms that people can fill out and submit and then deal

with the data however you like. For example, a visitor can email comments to a

webmaster, or post comments on site, or join a forum. PHP really makes the

Internet more usable.

To use this book, you only need a rudimentary knowledge of how to design a

web site. You need no programming background, but if you have done any

programming before, you will understand the language much more quickly. In

1

chapter 1

fact, even if you have never developed a web site of any kind before, you will pick

up everything you need to know as we go along.

In this chapter, we are going to go ahead and install PHP. Installing PHP takes

two steps. First, you need to install a web server and second, you need to install

PHP as a part of the web server. Fortunately, both of these parts are free and on

the CD included in the back of this book. The specific installation steps are

different depending on whether you are installing on a Mac or a PC. Because

most readers will be using a PC, I will explain in depth how to install it on

Windows machines. Then I’ll give a few hints on how to install it for Macs.

Installing PHP on Windows
Installing PHP by itself will allow you to execute PHP files. At this point you can

view them in a command-line prompt. This is rather annoying and ugly, so we

are going to take an extra step to install a web server, which lets us view PHP files

in a web browser. We need to install the web server first. Let’s go over that before

we work with PHP.

Installing the web server is a pretty easy process on Windows, because the web

server comes in one package and you just need to open and install the files. The

web server we are going to use is called Apache; it is free, common, and secure.

Wha t ’ s a web s e r v e r ?

The web server is an important part of using PHP. A web server (also called an HTTP server) is a
process that runs on your computer and sends out web pages when a browser tries to access it.
Whenever you go to a web site (such as www.maneeshsethi.com), a web server is running on
the domain and it returns the actual page that your browser sees. In effect, you are turning your
machine into a web site by installing a web server.

Installing the Web Server

Follow these steps to install the web server:

1. Find the installation file.

The CD contains one of the files, but you can also go to www.apache.org to

find the most current version of the file. Figure 1.1 shows you what the site

looks like. As you can see, it’s a pretty big site. Apache does a lot of things for

the computer.

2 Chapter 1 n Welcome to PHP

www.maneeshsethi.com
www.apache.org

2. Click the HTTP server link at the top-left column.

The new page is shown in Figure 1.2. Here is the place you can download the

actual server. You want to look for the newest stable version. As of the time

of this writing, the newest version is 2.0.54.

3. Click the Download link.

The new page gives you several options for downloading Apache. They look

something like the following:

n UNIX Source: httpd-2.0.54.tar.gz [PGP] [MD5]

n UNIX Source: httpd-2.0.54.tar.bz2 [PGP] [MD5]

n Win32 Source: httpd-2.0.54-win32-src.zip [PGP] [MD5]

n Win32 Binary (MSI Installer): apache_2.0.54-win32-x86-no_ssl.msi

[PGP] [MD5]

n Other files

Installing PHP on Windows 3

Figure 1.1
The www.apache.org web site.

www.apache.org

4. Download Win32 Binary (MSI Installer).

The other options are used if you are not using aWindows computer. You can

also install the program from the CD, located in the Programs directory. This

will not be the most updated version. Also, you can download the program

from www.maneeshsethi.com; just look for the link to PHP For Teens.

No t e

It’s important to note that if you upgrade to a new version of Apache, older modules (such as the
PHP module you install later) might not work. I recommend that you use the Apache install file
included on the CD with the book, because it is guaranteed to work.

5. Click the Binary option to bring up a download window.

6. Download the file and open it to bring up a window that looks like Figure 1.3.

7. Press Next until you get to the Server Information screen, which looks like

Figure 1.4.

4 Chapter 1 n Welcome to PHP

Figure 1.2
The HTTP server web section.

Often this window will be completely filled in for you. If so, you can skip the

step. If not, go to Step 8.

www.maneeshsethi.com

Installing PHP on Windows 5

Figure 1.3
Installing the Apache server.

Figure 1.4
The Apache configuration window.

8. Fill in some sample values (for example, somenet.com and www.somenet.com)

and enter an email address you like (doesn’t matter which one).

Note that you can’t create a domain just by typing it in. For the domain to

work, you must have it already registered and set up to point to your

computer.

9. Press Next and choose to run Apache as a service for all users or only for the

current user.

If you install it as a service, Apache will start as soon as the computer boots

up. You might get a warning about a firewall conflict with the web server if

you have a firewall set up. In this case, I recommend you only use your server

as localhost and firewall the server completely.

10. Choose Typical Installation, then install it to your computer.

11. Let it finish.

You have installed your web server! You will notice a new program running

in your system tray (the area next to your clock on the bottom-right corner

of your screen). It should look like a green arrow in a white circle with a

feather attached. Double-click it, and a window like Figure 1.5 will pop up.

6 Chapter 1 n Welcome to PHP

Figure 1.5
The Apache services monitor.

www.somenet.com

This is the window you use to restart your web server. You need to do this

when working with PHP.

Testing Apache

Let’s test Apache and see if it works:

1. Open up your web browser.

Most Windows computers will have Internet Explorer installed, but I

recommend you download Mozilla Firefox. You can get this browser from

the CD, from www.maneeshsethi.com or, for the most updated version,

www.mozilla.com. Firefox is more compatible with web sites than Internet

Explorer.

2. Type localhost into the address bar.

Note that I did not include any .com or .net extension. If your web browser

looks like Figure 1.6, congratulations! You successfully installed your web

Installing PHP on Windows 7

Figure 1.6
The successful installation page.

www.maneeshsethi.com
www.mozilla.com

page. If not, enter 127.0.0.1 instead of localhost. If it still does not work, try

installing again.

If your screen does look like this, you are ready to move on to the next

step—installing PHP.

Installing PHP

Follow these steps to install PHP:

1. Download the newest version of PHP you can find.

Check the CD, which has PHP 5.0.4; www.maneeshsethi.com; or (even

better) www.php.net.

2. Click the Downloads section.

You see a page that looks like Figure 1.7. Make sure your version of PHP is at

least 5.1.1; older versions are a little more difficult to set up.

3. Choose the Windows PHP zip package to go to the download page.

8 Chapter 1 n Welcome to PHP

Figure 1.7
The PHP download page.

www.maneeshsethi.com
www.php.net

4. Click the link and download the file.

The file is zipped. If you haveWindows XP, you can open this file by default.

If not, you may need to download WinZip.

5. Extract all the files to your computer.

For the rest of this chapter, I will assume that you extracted the files to

C:\php. Navigate to this directory after extraction, and it will look something

like the one in Figure 1.8. The next section is a little bit difficult, because you

need to edit some text files to make Apache (the web server) work nicely

with PHP.

6. Navigate to your Apache installation directory, open the /conf/ directory,

and find httpd.conf.

C:\Program Files\Apache Group\Apache2 is the default location. Go here and

open up the conf directory.

Installing PHP on Windows 9

Figure 1.8
The C:\php directory.

7. Open httpd.conf.

You need to add a few lines to the document. Figure 1.9 shows what the

document looks like.

C a u t i o n

Be careful! Two files in the conf directory are similar: httpd.conf and httpd.default.conf.
Make sure you pick httpd.conf.

8. Scroll to the bottom of the httpd.conf file and add these lines:

LoadModule php5_module "c:/php/php5apache2.dll"
AddType application/x-httpd-php .php

configure the path to php.ini
PHPIniDir "C:/php"

If you installed PHP to a different directory than C:\php, make sure you

substitute the name of the proper directory. All right! The installation

should be complete.

10 Chapter 1 n Welcome to PHP

Figure 1.9
The httpd.conf file.

9. Right-click the Apache icon in the system tray and select Open Apache

Monitor; you should see the Apache services window.

10. Click the restart panel on the rightmost bar.

Hopefully, the web server restarts successfully. If it does not, go through the

previous steps, making sure that you did not make any errors. If the restart

was successful, your Apache services monitor should look like the one in

Figure 1.10.

Note that the window says The Apache2 service has restarted (meaning that

your httpd.conf file was properly formatted) and that the information bar at the

bottom of the monitor says PHP/5.0.4 (which may differ depending on your

version of PHP). If you don’t see this, try shutting down Apache and restarting

the service.

Testing PHP

We are going to see if PHP is actually fully working on your machine. Remember

when you typed in localhost and that web page came up? Well, that file was

located on your computer, in the Apache installation directory.

1. Go to the Apache directory, which is at C:\Program Files\Apache Group\

Apache2 by default.

Installing PHP on Windows 11

Figure 1.10
A successful restart of Apache.

2. Open htdocs, whose contents should look a lot like Figure 1.11.

In this directory, you see a bunch of HTML files with different extensions.

Each of these files is identical to all the others, except they are translated

into different languages. Don’t worry about them though; you are creating

a new file.

3. Open your favorite text editor, such as Notepad or Wordpad—not

Microsoft Word.

4. Inside the file, type this:

<?php
phpinfo();
?>

Make sure you type it exactly correct, with the semicolon after the par-

enthesis. Using Notepad, the file should look like Figure 1.12.

12 Chapter 1 n Welcome to PHP

Figure 1.11
The Apache htdocs directory.

5. Save the file to the C:\Program Files\Apache Group\Apache2\htdocs

directory with the filename phpinfo.php.

Make sure the extension is .php, not .txt.

6. Open up your web browser, choose File > Open, and find your PHP file in

the Apache directory.

This loads the PHP file directly. Depending on your browser, either the page

will be blank or the browser will ask you to download a file. Neither of these

is good, because you want the PHP code to actually affect the browser. This

is where using your web server comes in. Remember how you typed in

localhost to open up the default page?Well, this time you need to open up a

non-default page.

7. Go to your browser and type in localhost/phpinfo.php.

One of two pages will open: either one that looks like Figure 1.13 or one that

looks like Figure 1.14.

Does your web browser look like Figure 1.14? If it does, then congratulations:

You have successfully installed PHP. If not, go through this checklist and double-

check all your steps:

n Is the extension of the PHP file .php?

n Did you edit the httpd.conf file to add these lines?

Installing PHP on Windows 13

Figure 1.12
The phpinfo.php file.

LoadModule php5_module "c:/php/php5apache2.dll"
AddType application/x-httpd-php .php

configure the path to php.ini
PHPIniDir "C:/php"

n Did you type localhost/phpinfo.php in your address bar?

n Does the file exist?

n Is the file in your htdocs directory?

n Did you install the Apache directory correctly?

n Does your Apache service monitor give a version of PHP in the status

window?

n Can you access non-PHP files through your web server?

14 Chapter 1 n Welcome to PHP

Figure 1.13
The incorrectly loaded phpinfo.php file.

If you cannot get the page to load, the error is most likely in one of these steps.

If PHP continues not to work, try reinstalling Apache and starting the process

all over again. If all else fails, reinstall to C:\Apache instead of C:\Program Files \

...\ Apache. The space in Program Files can sometimes cause an error. Also,

check www.php.net for ideas on how to fix the installation. In addition, feel free to

email me at maneesh@maneeshsethi.com with questions.

If the page did load correctly, congrats! You have successfully installed PHP and

your Apache web server. You can now fully use PHP.

Let’s look at the file you created. Open up the phpinfo.php file in your web

browser and check it out. This page details all of the configuration options and

items that come with your PHP installation.You will see a list of directives along

with a bunch of tables that talk about extensions to your PHP environment. For

the most part, don’t worry about this stuff. These are all default options and you

will rarely need to change anything. Just be happy that your installation worked!

Installing PHP on Windows 15

Figure 1.14
The correctly loaded phpinfo.php file.

www.php.net

Try using what you know to make a pretty simple web page. I will go over how to

design this page in Chapter 3, and how the PHP works in later chapters, but for

now, load the file phpform.php off the CD. If you want to, you can type in the file

directly. The following is the contents of the phpform.php file:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>
<meta content="text/html; charset=ISO-8859-1"

http-equiv="content-type">
<title>Sample Form</title>

</head>
<body>
<form name="sampleform" method="post" action=<?php echo $_SERVER[’PHP_SELF’];
?> >
<h1>Sample

Form</h1>
<?php
if (isset($_POST[’name’])){
echo $_POST[’name’] . ’. You are from ’. $_POST[’address’] . ’. Your comments
were ’ . $_POST[’comments’]. ’ .
’;

}
?>
Name: <input name="name">Address: <input name="address">

Comments: <textarea cols="40" rows="2" name="comments"></textarea>

<input name="submit" type="submit"><input name="reset" type="reset">

</form>
</body>
</html>

It’s a little long, eh? That is what a basic PHP document looks like, with forms

and everything. Open it up! (Make sure you go to localhost first. You need to

actually copy the file from the CD to your htdocs directory.) When you open up

the file, you will see a blank form that looks like Figure 1.15.

This form looks a lot like anything you would see on the Internet. However, it has

a little more functionality thanks to PHP. Try entering some data. My form

ended up looking like the one in Figure 1.16.

16 Chapter 1 n Welcome to PHP

Installing PHP on Windows 17

Figure 1.15
A blank PHP form.

Figure 1.16
Entering some data in the PHP form.

As you can see, you can basically type whatever you want. The comments provide

some true advice: You need to recommend www.maneeshsethi.com to all of your

friends. When you press the Submit button, the magic happens. Check it out.

Suddenly the page is transformed into what you see in Figure 1.17.

The data actually becomes a part of the real web page! This is one important thing

that PHP can do: integrate itself into a page’s HTML. Check out the page source

by choosing View > Source in the browser. It looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">

<title>Sample Form</title>
</head>
<body>
<form name="sampleform" method="post" action=/phpform.php>

<h1>Sample
Form</h1>

18 Chapter 1 n Welcome to PHP

Figure 1.17
The form after submitting it.

www.maneeshsethi.com

Maneesh Sethi. You are from maneesh@maneeshsethi.com. Your comments were
www.maneeshsethi.com is a cool site! I will tell all my friends about it.

Name: <input name="name">Address: <input name="address">

Comments: <textarea cols="40" rows="2" name="comments"></textarea>

<input name="submit" type="submit"><input name="reset" type="reset">

</form>
</body>
</html>

Do you notice what’s changed? The PHP code is hidden, but it looks like you

actually hard coded the Name, Address, and Comments fields directly into the

source of the document. PHP does not show itself within the document; it shows

only the changes it makes.

I spend the rest of the chapter giving tips on installing Apache and PHP on Mac

machines, but you can skip them and go directly to Chapter 2, which is a quick

primer over basic HTML programming.

Installing PHP on Macs
Installing PHP on Macs takes a lot of checking and writing, because you need to

compile the program for your specific hardware. Fortunately, Apache is already

installed on Macs, so it saves you a little trouble. In addition, an online PHP

module may be faster than the manual way I teach. You can find this module at

www.entropy.ch/software/macosx/php. My recommended steps for a manual

installation show you how to configure PHP on a Mac OS X (taken mostly from

www.php.net). This tutorial uses Apache 1.3 and PHP 4.

1. Go to www.php.net and download the latest distributions of Apache and

PHP.

Make sure you get the Mac binaries or the source.

2. Extract the files into their own directories and run the configure statement

through your Mac terminal, as follows:

./configure --exec-prefix=/usr --localstatedir=/var --mandir=/usr/share/man

- -libexecdir=/System/Library/Apache/Modules --iconsdir =
/System/Library/ Apache/Icons

Installing PHP on Macs 19

www.maneeshsethi.com
www.entropy.ch/software/macosx/php
www.php.net
www.php.net

includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/
Headers

- -enable-shared=max - -enable-module=most - -target=apache

3. Type the following to set your compiler to do optimization:

setenv OPTIM=-O2

4. Go to the PHP source directory and configure it, substituting your version

of Apache with 1.3.12 in this document:

./configure - -prefix=/usr - -sysconfdir=/etc - -localstatedir=/var

- -mandir=/usr/share/man - -with-xml - -with-apache=/src/apache_1.3.12

5. Type make and make install.

This creates a new directory in your Apache source directory, under src/

modules/phpx; x is your PHP version.

6. Reconfigure Apache to build in PHP.

./configure --exec-prefix=/usr --localstatedir=/var --mandir=/usr/share/man

- -libexecdir=/System/Library/Apache/Modules iconsdir =
/System/Library/Apache/Icons

includedir=/System/Library/Frameworks/Apache.framework/Versions/1.3/
Headers

- -enable-shared=max - -enable-module=most - -target=apache

- -activate-module=src/modules/php4/libphp4.a

If you get an error message telling you that libmodphp4.a is outdated, go to

the src/modules/php4 directory that was created earlier in the apache folder

and run ranlib libmodphp4.a. Then go back to the Apache source directory

and run the command again.

7. Run make and make install one last time.

8. Copy and rename the php.ini-dist file to your bin directory from your

PHP directory.

This is generally done with one of the following commands:

cp php-ini.dist /usr/local/bin/php.ini
cp php-ini.dist /usr/bin/php.ini

20 Chapter 1 n Welcome to PHP

And that should be it! A lot of steps perhaps, but it allows PHP to be installed.

Check the PHP web site, however, because you might be able to download

preconfigured binaries and skip these steps.

After all of this installation, make sure you check that everything is working right.

Follow the testing steps outlined in the ‘‘Testing Apache’’ and ‘‘Testing PHP’’

sections of this chapter: Navigate to localhost, make sure Apache is working,

load phpinfo.php, and make sure PHP is up to date.

Hopefully, everything is working correctly and you are good to go. If it isn’t,

check the Apache and PHP web sites for hints on how to fix it. In the next

chapter, we are going to refresh your HTML knowledge. HTML works hand in

hand with PHP, so you need to know a little about it to make decent web sites.

Installing PHP on Macs 21

This page intentionally left blank

A Quick HTML
Primer

If you followed the steps in Chapter 1, you know how to install PHP and how to

create a new PHP file. Now you are going to learn how to do a little bit of HTML,

which produces static pages, whereas PHP allows dynamic pages. The HTML in a

web page generally remains the same unless another process, such as PHP,

changes it.

Hypertext Markup Language, or HTML, is the backbone code that goes into most

web pages that makes text and graphics appear onscreen. This language is basically

a set of conventions, followed by all browsers, that allows people to view pages so

they look exactly the same in different applications. Because HTML is a markup

language, it is a lot easier to write than programming languages such as PHP.

HTML will be used in every web page you make (unless you jump to XML), so it

is important that you have a fundamental knowledge of it before moving on. I

recommend reading the chapter even if you know HTML; it’ll refresh anything

you might have forgotten.

We only have one chapter to do this, so I am going to skip some parts of HTML.

If we need to use them later in the text, I will explain them then. Instead of

dealing with forms in this chapter, you will find pages dedicated to them in

Chapter 3. Let’s start with the structure of a basic HTML document.

All HTML documents have a common structure. Whenever a web browser sees

an HTML file, it knows immediately that the file is a web page and should be

displayed as such because of a few factors:

23

chapter 2

n The .htm or .html extension

n The ASCII format

n The common tags

.htm or .html Extension
By default, most of the pure HTML documents have the extension .htm or .html.

However, this is not always the case. Some have .php, .xml, .shtml, .cgi, or

others. The web server (in our case, Apache, which you installed in Chapter 1)

chooses what actions to take based upon the file extension. Remember when you

added the following lines to the httpd.conf file during installation of PHP?

LoadModule php5_module "c:/php/php5apache2.dll"

AddType application/x-httpd-php .php

configure the path to php.ini

PHPIniDir "C:/php"

The first line (LoadModule) tells Apache to load the instructions to deal with any

.php file, and the second line tells Apache to use PHP to handle any files with the

.php extension. Figure 2.1 shows what these lines look like within httpd.conf.

24 Chapter 2 n A Quick HTML Primer

Figure 2.1
The httpd.conf file.

ASCII Format
If you can open up the file in a text editor and you see text, rather than gibberish,

then you have an ASCII file. ASCII files are made up only of letters, numbers, and

punctuation, rather than the binary bits used for executable files. When you

create an HTML file in a pure text editor such as Notepad, the file is always in

ASCII format. However, if you use a word processor such as Microsoft Word, the

program introduces some weird, non-ASCII information. For this reason, never

use any word processor to create HTML files.

Common Tags
Tags are a major part of creating and designing an HTML document. Every file

has several tags necessary for the page to be viewed in the web browser. Let’s look

at the structure of a blank document for the purposes of seeing the HTML

structure:

Wha t i s D O C T Y P E ?

All browsers interpret code a little bit differently. To help programmers write code that displays
consistently in all browsers, and to create a standard way of writing code, the World Wide Web
Consortium was created.

To identify your document as conforming to these standards, you use a very scary-looking but
benign DOCTYPE declaration. It has only a few variations, and they are readily available to cut and
paste into your code---especially since you only have to use it once per document. Let’s look at a
sample declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

This lets the browser know that it is an HTML document: DOCTYPE html. (Yes, even though we
are going to make PHP documents, we will declare it HTML. Your server only sends HTML to the
browser after it has interpreted and taken out the PHP.)

Now for the important part: This lets the browser know that the code conforms to XHTML 1.0
Strict standards: PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN". (There are many versions.
This version makes your page look the most consistent across all browsers.)

The next part simply tells the browser where to look to find these standards: ‘‘http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd’’.

If you don’t declare a DOCTYPE, you are putting your code at the mercy of whatever conventions a
browser decides it should use. Write one! There is no need to write it from memory, either. To see
a full list, go to the W3C web site:

http://www.w3.org/QA/2002/04/valid-dtd-list.html#DTD

Common Tags 25

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/QA/2002/04/valid-dtd-list.html#DTD

<html>
<head>
<title> </title>
</head>
<body>
<p> </p>
</body>
</html>

Figure 2.2 shows what this page looks like in a browser. As of right now,

it’s completely blank. However, if you view the source shown in Figure 2.3, you

see that the document has some substance. This file is phpft02-01.html and it is

on the CD.

<html> Tag

The first tag in the file is <html>, which tells the computer that the following text

is HTML code and should be displayed as any HTML document would be.

26 Chapter 2 n A Quick HTML Primer

Figure 2.2
The phpft02-01.html file in a browser.

HTML tags follow a strict set of conventions. Each tag is surrounded by less-than

and greater-than brackets: < and >. Some tags have a beginning (opening) and

ending (closing); the opening tag is surrounded by brackets and the closing tag is

surrounded by brackets and preceded by a forward slash (/).

The tags need to be properly nested,which results in the first tag opened being the

last tag closed. In other words, when you open one tag, and then you open

another tag within that first tag, the second tag you opened needs to be closed

before closing the first tag. Let’s look at an example:

<html>
<head>
</head>
</html>

Notice that the first opened tag, <html>, is also the last tag to be closed; remember

that the tags that have / before them are the closing tags. In other words, it goes

Common Tags 27

Figure 2.3
Viewing the source.

a, b, /b, /a. Be careful with the nesting, because done incorrectly, it can make some

weird things happen in your document.

You know what the <html> tag does, so let’s move on to the next major tag. After

<html>, this is the next tag in the basic structure:

<head>
</head>

The <head> tag deals with items that aren’t actually shown within the document,

but are used within it. One of the most common tags is <title></title>.

Anything used in this tag is displayed at the top of the screen and in the taskbar.

Take a look at Figure 2.4 to see what the title looks like. As you can see, this

changes what the bar at the top of the screen looks like. Note that the page title is

Sample Form; the web browser added Mozilla Firefox.

C a u t i o n

Be careful about putting HTML code in your <head></head> section. The text in the header
section is not displayed on the screen. For your actual page contents, the code goes in the
<body></body> section.

Next, we come to the <body></body> tag. This is your document’s major section,

because all of the text and images that appear in your web page are included here.

Figure 2.5 shows the body section of the Sample Form web page.

As you can see, the part of the web page that displays all the important infor-

mation is in the body. If you look back at the structure of the web page that you

created earlier, you might notice the final tag: <p></p>. This tag creates a new

paragraph for text.

Well, now that we’ve created a document and set up everything, how do we

actually make text appear? Actually, all we have to do is type it in! Take, for

example, a very basic web page that simply displays a line of text to the visitor.

Well, take the structure that you created earlier, and enter your text inside the

28 Chapter 2 n A Quick HTML Primer

Figure 2.4
The title section.

<p></p> tags. Following is the code that would make a very simple web page. How

does this look in the actual web browser? Figure 2.6 shows you. This file is on the

CD as phpft02-02.html. You can also simply type it into your favorite text editor

and save it as an HTML file (a file with an .html extension).

<html>
<head>

<title> </title>
</head>

<body>
<p>
Hello, World!
</p>

</body>
</html>

No t e

There is a difference between this HTML file and the PHP file you created in Chapter 1. Remember
how the PHP file needed to be opened through the Apache web server using localhost as your
domain name? Well, that is only because the document needed some PHP programming that was
executed by the web server. In this case, because the web page is purely static and does not
require any HTML, you can open and view the web page by just opening the file in a browser.
Make sure that the file has an .html or .htm file extension. Also, if you wish, you are allowed to
open the file through your web server using localhost, but this is not required.

Common Tags 29

Figure 2.5
The body section.

Okay, so you’ve created a basic web page that shows some text. What if you want

to modify that text? For example, say you want to make the text bigger, or make it

a heading, or make it bold? Fortunately, HTML has a lot of ways to do text

modifications.

<head> Tag

Let’s start off with headings. A lot of times, when you want to display infor-

mation on a web page, you want to break it down into easily digestible chunks.

You can do this using headings. Headings, or headers, which come in size levels,

make some text larger for emphasis. Look at Figure 2.7, which shows all the

different heading levels compared to regular body text. Note that browsers may

interpret headings differently and yours could look a little different across dif-

ferent browsers.

You might want to use headers to break up some text. Even this book uses

headings: See the ‘‘Basic HTML’’ header at the beginning of this chapter? That tells

30 Chapter 2 n A Quick HTML Primer

Figure 2.6
The phpft02-02.html web page.

you what this part of the chapter is devoted to. Check out Figures 2.8 and 2.9.

Figure 2.8 shows what text can look like when headers are not used at all: a big

load of text, which makes it actually difficult to read. Figure 2.9 shows what

headers can look like when used correctly. In this case, the header successfully

breaks up a large section of text, helping direct the visitor’s eye to the major

section of the page. Not too bad at all, eh? These headers really make viewing text

a lot easier. The first figure can be viewed on the CD as phpft02-04.html and the

second figure can be viewed as phpft02-05.html.

To make a heading in HTML, you need to use the <hnumber> tag, where number is

a number between 1 and 6. <h1> is the largest and <h6> is the smallest. Using these

tags around some text will change its size and boldness.

So, if you have a basic web page, how can you change its text into a heading? Simply

add the heading tags around the text. For example, if I wanted to make ‘‘Welcome

to our page!’’ a medium-sized heading, I might do something like the following:

<h3>Welcome to our page!</h3>

Common Tags 31

Figure 2.7
Different headers.

Let’s put this directly into the basic page we have been building. It now looks like

this. (I also filled in the title so it isn’t blank.) Figure 2.10 shows what this page

looks like.

<html>
<head>
<title>Quick Sample Page</title>
</head>
<body>
<h3>Welcome to our page!</h3>
<p>
Hello, World!
</p>
</body>
</html>

This page now has a nicely defined heading that welcomes the visitor to the site. It

looks pretty cool, huh?

32 Chapter 2 n A Quick HTML Primer

Figure 2.8
The phpft02-04.html file with no headings.

Text-Formatting Tags

Okay, let’s do some text editing. At some point you’re going to want to change

the font or text color, as well as make some words italicized, underlined, or

bolded. HTML makes this easy. Let’s first go over the easier functions:

n Bolding is done with .

n Italicizing is done with <i></i>.

n Underlining is done with <u></u>.

C au t i o n

It is important to note that the , <i></i>, and <u></u> tags are considered
deprecated, or not recommended, by the HTML standard. Because HTML is moving to something
called Cascading Style Sheets (CSS), it is recommended you use CSS to do bolding, underlining,
and italicizing. The syntax for underlining in CSS is like this: <span style = "font-style:
italic">. Bolding and underlining are the same, except replace italic with bold or
underline. It’s an ugly syntax so I am not using it in this book, but be forewarned that you should
design any page with this syntax if you expect the page to be around for several years, because
browsers in the future may stop supporting the original tags.

Common Tags 33

Figure 2.9
The phpft02-05.html file with proper headings.

Let’s put some of this into the page. I’ve added a few lines to the body. The new

code is shown here. Trying to visualize what the changes will look like without

looking at Figure 2.11 might help you understand when you should use these

tags. (I removed the <head></head> section to take up a little less space.)

<html>
. . .
<body>
<h3>Welcome to our page!</h3>
<p>
Hello, World!
</p>
<p>I am some bolded text, <i>I am some italicized text</i>,
<u>and I am some underlined text</u>. <u><i>I am both underlined and
italicized.</i></u>

</body>
</html>

34 Chapter 2 n A Quick HTML Primer

Figure 2.10
The phpft02-06.html file.

All right, you’ve edited a lot of text. Now let’s change the font using the <span

style="font-family: " > tag.

Font refers to many important facets of text. It refers to the face, which is the style.

Almost all the text in this book is in Times New Roman. Check out the following

however: I am Courier. This is a little different, huh? Besides face, font also refers

to the color. Youmight want the font to be green or red or gray. It’s a heck of a lot

easier to do that on a web page than in printed material. If I wanted to show you

some color fonts in this book, you might have to pay well over $40 for it! Take

advantage of color when it is free! Lastly, font refers to the size.

Changing all of these things requires the tag. However, because

fonts have so many aspects, you have to use something called a tag attribute. A

tag attribute helps inform the browser what part of the tag you wish to influence;

for example, you might want to change the size and color, but not the face. An

attribute is added after the name of the tag and is defined with an equals sign: =.

Common Tags 35

Figure 2.11
The phpft02-07.html file.

Say you want to change font size. Well, you need to use the tag

with the font-size attribute. It would end up looking something like this:

I am a line of text that is font size 18!

This changes the font to point size 18. Figure 2.12 compares two different font

sizes.

The code would look something like the following:

<body>

<p>I am regular text!</p>

<p>I am text with a size attribute of 18!
</p>

</body>

You can change the font color by using . The

color can be RGB (Red, Green, and Blue) using the proper hexadecimal code or

you can use any basic named color, such as white, red, green, blue, black, or orange.

36 Chapter 2 n A Quick HTML Primer

Figure 2.12
Comparing different font sizes.

No t e

For a list of many common hex codes, go to http://webmonkey.wired.com/webmonkey/
reference/color_codes.

I n e e d t o c h a n g e t h e p a g e ’ s b a c k g r o u n d c o l o r .

You can do this using the background-color: color style attribute within the <body
style=""> tag. If you want the background to be black, you can just use <body
style="background-color: black; color: white">. Keep in mind that setting the
background color to black will cause your black text to essentially disappear. Make sure you
change the font color of your text to "color: white" or something else easily visible on black.

To change the font face, you need to use the font-face style attribute. You can

change the font face by putting the face you wish to use within quotes in the

font-face attribute. For example, writing the following would put text in

Courier, assuming that style is available on the user’s machine:

I am in courier!

Miscellaneous Useful Tags

You will probably need to go to a new line of text without actually using a new

paragraph. The
 tag will do this. The forward slash at the end of the tag lets

the web browser know that there is no closing tag.

If you want to insert an image, you can use the function. This function,

when it uses the src attribute, will allow you to insert an image into your page. To

add image.jpg, which is located in the same directory of the HTML file, you

would do something like this:

Also, if you use the alt attribute, you can make the image bring up text whenever

the user puts his mouse over the image. Also, the alt tag refers to alternate text,

which can appear whenever the user turns off images in a browser. Make sure the

alt text describes the image. You might do something like this:

This tag does not require a closing tag. Keep in mind the only types of images you

can safely display are .bmp, .jpg, .gif, or .png.

That last type of HTML you will commonly use are links, which can help you

navigate from one page or site to another. This is done with the

Common Tags 37

http://webmonkey.wired.com/webmonkey/reference/color_codes
http://webmonkey.wired.com/webmonkey/reference/color_codes

 team, where the href attribute refers to the referenced item’s location. This

needs to be preceded with http:// if you are referencing an external site. This will

look something like the following:

Click here to view a page on
an external site

Or you may want to link to a different page on your own site:

Click here to visit page 2

In the next chapter you learn about HTML forms, which are an important part of

PHP. After that, you are actually going to start doing some real PHP.

No t e

I did not go over every programming construct in this chapter. For example, I skipped tables.
Tables are very important in HTML, but not so much so in PHP. Because of this, I only teach tables
if you absolutely need to use them later on in some examples in this book.

38 Chapter 2 n A Quick HTML Primer

Building Your First
PHP Program:
Setting Up the HTML

PHP is very common on sites that have forms. You’ve seen web sites that

have forms. They’re the parts of web pages that look like Figure 3.1. In this

chapter I show you the basics of designing a form. You will be using forms a lot

in PHP programming, so it’s important to know as much as you can about

them.

These guys are basic staples of Internet business: an easy way for the user to send

information back to the web site. And they aren’t limited to just accepting words,

either. A lot of times, a site allows you to take a quiz or something that requires

you to select from checkboxes and radio buttons, and some sites even let you

upload a file. All of these things are done through forms.

Let’s take a look at what PHP can do. Just with one line of PHP, I can make the

web page turn from Figure 3.1 to Figure 3.2. Pretty cool, huh? Using PHP, I can

make it so the web page reflects back what the user typed in earlier.

So how did I do this? First, I designed a basic web page. I’m going to spend the

rest of this chapter giving you a quick refresher on how to build basic pages. If

you want to learn more about web design, check out my other book,Web Design

For Teens.

You can develop a web page a couple of ways: through a basic text editor (such as

Notepad) or through an HTML editor. We are going to be using a basic text

editor to write the HTML for this chapter. Most HTML editors are known as

39

chapter 3

WYSIWYG (pronounced wizzywig), which stands forWhat You See Is What You

Get. The editors try to show you the page how it will look on the web site. A basic,

non-WYSIWYG text editor, however, shows only the code behind the page—not

what it looks like on the screen.

No t e

You can get Nvu, which is a free WYSIWYG text editor, from this book’s CD or from www.
maneeshsethi.com. However, in this book you use a basic text editor.

HTML Template
The first thing you need to do is open up a text editor. In Windows, choose

Start > Run, which is shown in Figure 3.3. Notepad opens in a new window that

looks like Figure 3.4. On a Mac, find any text editor you have installed (such as

TextEdit) and open it.

40 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Figure 3.1
A sample web form.

www.maneeshsethi.com
www.maneeshsethi.com

HTML Template 41

Figure 3.2
A sample web form after adding PHP.

Figure 3.3
Opening up Notepad through the Start menu.

As you learned in Chapter 2, HTML is made up of tags. The complete template

for a page looks like the following. Figure 3.5 shows what it looks like after typing

it into Notepad.

<html>
<head>
<title>Insert title here</title>
</head>

<body>
Insert body here
</body>
</html>

The page title appears at the top of the browser, and the body appears in the

actual page space. Figure 3.6 shows the page as typed in the web browser.

HTML Form
Now that you have seen the HTML template, let’s build an HTML form. Forms

communicate data to PHP. Use the <form></form> tag to create a form. (Crazy,

huh?) This tag surrounds all of the inputs, such as textboxes and submit buttons.

42 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Figure 3.4
Notepad is open.

HTML Form 43

Figure 3.5
Inputting the web page template into Nvu.

Figure 3.6
Inputting the web-page template.

The actual <form> tag itself has several attributes, which are tag describers. Put

attributes into an HTML tag like the following:

<tagname attribute1="value1" attribute2="value2">

The important <form></form> attributes follow:

n method describes the way the data is transferred. I talk more about these

methods in the next chapter.

n action explains where the data is being sent. Generally, the data is sent to a

separate PHP file, which operates on the data.

Let’s define a form, leaving the action blank and setting the method to post.

<html>
<head>
<title>A Sample Form</title>
</head>

<body>
<h1>A Sample Form</h1>

<form action="" method="post">
</form>
</body>
</html>

You added some big text that says A Sample Form, which now looks like Figure 3.7.

Now it’s time to add some form elements. How about two textboxes and a text

area?

Wha t a r e t e x t b o x e s a n d t e x t a r e a s ?

Textboxes and text areas are common HTML form elements. They allow the user to type text
directly into the form. However, both of these elements are very similar; for example, take a look
at Figure 3.1: The elements after Name and Address are textboxes, and the element after
Comments is a text area. What is the difference between these two? Textboxes only allow one
line of text, which is not enough space to write something substantial. Generally, it is used for
writing small bits of information such as names, passwords, or addresses. On the other hand, text
areas can be scaled to any size, even as big as the browser itself! They are great for comments or
stories.

44 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Form Elements
Let’s make the textboxes first. Type into Notepad an explanation of what the

textboxes actually do. This description won’t affect the code, but your site visitor

uses the explanation to understand what to put in the box. For example, I typed

Name: into the Notepad document you see in Figure 3.8.

Now you do the same: To create a textbox, use the <input /> tag with a few

attributes in order to make it properly work with the page. The first attribute is

type. Type tells the browser what kind of form element it’s dealing with. Because

you are using a textbox, the type is text. The second attribute you need is a name,

which is the variable that stores the textbox contents when you use PHP. Let’s

create the textbox now. Look at Figure 3.8 to see what it looks like to the user.

(Remember that if a tag has a /> ending, it has no ending tag.)

This window shows all the options you need to deal with for any form field. In

our case we want to make a textbox, so let’s do that via HTML. Add a name to

Form Elements 45

Figure 3.7
Creating an empty form.

this field; I chose fullname. If you want to give it an initial value, add the value

attribute and set it equal to the initial value.

<form action="" method="post">
Name: <input type="text" name="fullname" />
</form>

Why g i v e f o rm f i e l d s a n ame v a l u e ?

The option to give a field name to the textbox is incredibly important: Never, ever forget to set it.
Whenever PHP tries to run any commands upon the form fields, it needs to have a way to
reference them. In this case, it uses the field’s name. When you need to talk to a friend, and he is
in a crowd of other people, typically, you will call out his name; that is exactly what the code is
doing. Giving the form field a name allows the PHP program to call the form field and use its data.
I will go over this more further on in the book.

Now add the second field. Do exactly the same: Write the text on the screen

(Address:), then create a textbox with the name value set to address. So far, so

good? The result should look a lot like Figure 3.9.

46 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Figure 3.8
Creating a textbox.

We have just created the beginning of a web page that allows the reader to add

some data. So far, she can enter her name and address, but we still need to create a

text area so she can put in some comments about the site. Let’s do that now with

a text area. Text areas are not much more difficult than textboxes. However, they

do have a few more options: You can specify their width and height. Before

creating the area, use text to tell the user what the area is for, just like with the

Name and Address textboxes. To do this, just type Comments: on the next line

(by using a
).

To create a text area, use the <textarea></textarea> tag. Anything you type

between the opening and closing tags is the default value. Pretty simple, eh? Let’s

add the options. Let’s give this text area 2 rows and 40 columns. (Each column is

one character.) Use the attributes cols for columns and rows for rows. Make sure

you name the text area, such as ‘‘comments’’. The code will create what you see in

Figure 3.10.

Form Elements 47

Figure 3.9
Adding the second textbox.

No t e

Even though we made the text area 2 � 40, the user can still type more. When more than the
allowed number of characters is typed, the area displays a scrolling bar on its side, just like when
your web browser lets you scroll down a page.

<form action="" method="post">
Name: <input type="text" name="fullname" />
Address: <input type="text" name="address" />

Comments: <textarea name="comments" cols="40" rows="2"></textarea>

</form>

Submit Button
So far, the user can enter plenty of information. However, you can’t do anything

with it! The server uses the HTML form to pass data to another program, such as

one written in PHP, that will handle and deal with the information. It might email

48 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Figure 3.10
Adding a text area to the page.

the comments to the site’s webmaster or it might display them on the site. Either

way, you still need to create a way to actually submit that data! This is done with a

submit button. When the user finishes entering information, she can press the

submit button so the form sends the data to the PHP program to be processed.

Creating a submit button is very easy. In HTML, just use the <input /> field with

the type set to submit. In most cases, it isn’t necessary to enter a name for the

submit button because you rarely need to process it, but just to be safe, give it a

name such as submitbutton. The value attribute allows you to change the text on

the submit button’s face, so it won’t say Submit Query. The code for the submit

button follows. The page now looks like Figure 3.11.

<input type="submit" name="submitbutton" />

No t e

If you want to, feel free to change the submit button’s value. You can make the button say
whatever you want by default, such as Send Information or Leave a Comment. Figure 3.12 shows
what it might look like.

Submit Button 49

Figure 3.11
Adding a submit button.

Add one last, optional, thing to this form: a reset button. It allows the user to

clear everything he has typed or selected. Creating a reset button is just as easy as

creating a submit button. Use <input />with the type set to reset. Give it a name,

such as resetbutton, and click OK. You have created a form that looks like

Figure 3.13.

<input type="reset" name="resetbutton" />

Adding PHP
We have created a full form. Only one problem—if you open this web browser

and press Submit Query, nothing happens! This is where PHP comes in. Before

adding PHP, take a look at the source code for the web page we just created:

<html>
<head>

50 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Figure 3.12
A different value.

<title>A Sample Form</title>
</head>

<body>
<h1>A Sample Form</h1>

<form action="" method="post">
Name: <input type="text" name="fullname" />
Address: <input type="text" name="address" />

Comments: <textarea name="comments" cols="40" rows="2"></textarea>

<input type="submit" name="submitbutton" />
<input type="reset" name="resetbutton" />

</form>
</body>
</html>

Adding PHP 51

Figure 3.13
The final form with a reset button.

How does the form know to which page to send the data? It is defined in the

action attribute of the <form>HTML tag. Look at our <form> tag as it stands now:

<form name="sampleform" method="post">
...
</form>

We need to use an action attribute inside the <form> tag to tell the web page

where to send the data. Assigning the action attribute to be blank makes the page

send its data to itself, so the page itself can operate on it. However, this is not

useful unless the page is a PHP document. You do this in the next chapter.

52 Chapter 3 n Building Your First PHP Program: Setting Up the HTML

Writing the PHP
in Your First
Program

This chapter will help you complete your first PHP program and learn some of

the basic ideas in PHP, such as variables. Before we start, take a look back at the

HTML page we created earlier. The HTML looked like the following:

No t e

From now on, we are using a valid DOCTYPE and valid header throughout our web pages. This
will get you into making all of your web pages follow the standard. Note that the pages work
without a DOCTYPE, but it is very much recommended you use them.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A Sample Form</title>
</head>

<body>
<h1>A Sample Form</h1>

<form action="" method="post">
<p>Name: <input type="text" name="fullname" />
Address: <input type="text" name="address" /></p>
<p>Comments: <textarea name="comments" cols="40" rows="2"></textarea></p>
<p><input type="submit" name="submitbutton" />

53

chapter 4

<input type="reset" name="resetbutton" /></p>
</form>

</body>
</html>

If you want to make the page pass the data directly back to itself, you can

generally make it follow this template:

<form name="sampleform" method="post">
. . .
</form>

We just remove the action attribute, and the data from this web page is passed to

itself ! What does this mean? All the data typed into the form are stored in specific

variables. These variables can be passed to any PHP page. Some pages might just

display what the user typed, other pages might add two numbers, and so on. The

most important thing to remember is that any PHP page must have the extension

.php, not .html. Rename the page from Chapter 3 firstphpprogram.php.

If you want your form to send its data to a program called something.php, modify

the action attribute so it looks like this:

<form name = "sampleForm"
method = "post"
action = "something.php">

Unfortunately, the page doesn’t do anything with the data yet because we haven’t

put in any code that handles it! No PHP in this case is kind of like throwing a

football over a wall and hoping someone is there to get it. Without PHP, there is

no one to retrieve or use the ball because we haven’t created him. With PHP, we

can design someone to be on the other side of the wall and tell him what to do

with the ball.

How do you code PHP? Well, because this is your first experience, and because

I go over all of this in depth later in this chapter, I give just a very quick

layout here. When you insert <?php ?> tags around code, the web server

immediately recognizes that it is PHP info and starts running the PHP program.

After the code has run, the web server puts together the PHP and the HTML into

one document that becomes the final web site that the user sees. So let’s add these

brackets.

54 Chapter 4 n Writing the PHP in Your First Program

Add these PHP tags in directly after the <h1> section that says Sample Form. Now

our page looks like this:

<body>
<h1>A Sample Form</h1>
<?php
?>

<form action="" method="post">
Name: <input type="text" name="fullname" />
Address: <input type="text" name="address" />

Comments: <textarea name="comments" cols="40" rows="2"></textarea>

<input type="submit" name="submitbutton" />
<input type="reset" name="resetbutton" />

</form>
</body>

Note that <?php?> tags are not symmetrical like normal HTML tags. The web

browser thinks of PHP as one gigantic tag! It also is good to note these other PHP

tags you might see: <? ?> and <script language = "php"></script>. Loaded in the

web browser it looks something like Figure 4.1.

Well, there is a reason why it looks the same: Nothing has really changed! We

have added a placeholder for some PHP code, but we haven’t entered any code!

Let’s do some basic stuff. Enter the following lines:

echo "$_POST[fullname]. You are from $_POST[address]. Your comments were

$_POST[comments].
 ";

When you see the word echo in a PHP program, the following text is displayed on

the screen. In this case, we are displaying the information inputted on the form.

Do you remember when we set the form’s method to post? Well, all the data that

the user typed in the form is put into a storage device called $_POST. See all those

references to $_POST in the PHP code? The letters in the brackets immediately

following $_POST access the contents of the form element that had that name in the

HTML form. So, the user’s address was put into a textbox with the name set to

address. Therefore, the user’s address is stored in $_POST[address]. The entire

statement is echoed and the variables are displayed in place of the $_POST[]

Writing the PHP in Your First Program 55

sections. When you put that into the source, your code will look like the fol-

lowing, and you can see the result in Figure 4.2:

<body>
<h1>A Sample Form</h1>
<?php
echo "$_POST[fullname]. You are from $_POST[address]. Your comments were
$_POST[comments].
 "

?>

<form method="post">
Name: <input type="text" name="fullname" />
Address: <input type="text" name="address" />

Comments: <textarea name="comments" cols="40" rows="2"></textarea>

<input type="submit" name="submitbutton" />

56 Chapter 4 n Writing the PHP in Your First Program

Figure 4.1
The form with <?php ?> tags added.

<input type="reset" name="resetbutton" />
</form>
</body>

C au t i o n

If you run this code on a server with strict warnings turned on, you may get some strange errors
about undefined indices. Adding an if(isset()) clause will fix this error. You can see how to
do this later on in this same section, just before we start talking about variables.

You see some new words written! The variables haven’t been sent yet, so it just

says . You are from . Your comments were .. Enter your name, address, and some

comments into the form and press the submit button. Suddenly, the page looks

like Figure 4.3. Cool, huh? Now it reflects exactly what was said to you! Figure 4.4

shows what the source looks like.

Figure 4.2
The form with some PHP added.

Writing the PHP in Your First Program 57

Why do e s t h e p ag e s h ow ’ ; ? > ?

If you are following this program and try running the web page, there is a chance you might get
an error in which none of the PHP code works. The reason is that you are not accessing the page
correctly through your web server. PHP only works if it is accessed through the Apache web server.
In general, you get the error if you double-click a web page to open it. If you find the web page by
using localhost in your URL, you will get the correct page. Refer back to Chapter 1 to learn
about installation and setting up your web server.

By the way, did you notice how annoying it was that the web form showed a

sentence with blanks? Well, check out what we can do easily with PHP. Using a

little bit of code, we can make the text disappear when the page is first seen, and

reappear when the page is submitted. We need to change the PHP code that we

designed earlier to look like this:

<?php
if (isset($_POST[’name’])){

58 Chapter 4 n Writing the PHP in Your First Program

Figure 4.3
The form after being submitted.

echo "$_POST[fullname]. You are from $_POST[address]. Your comments were
$_POST[comments].
 "

}
?>

Variables
Variables are the backbone of any programming language—but what is a vari-

able? All variables contain a value that you can change throughout the program.

What can a variable hold? Well, anything really. If you want to track who last

visited your site to use the form, you can store the visitor’s name inside a variable.

If you want to create a message board, a variable can save the message that is to

be posted.

Variables 59

Figure 4.4
The source of the form.

Types

There are numerous types of variables, and they’re listed in Table 4.1. Each

type stores a different type of data. For example, PHP draws a distinction be-

tween the number 343 and 343.14. PHP handles them different ways, so you can

get some weird results when you try to divide a whole number by a fraction, for

instance.

Different variables help prevent you from doing something impossible, such as

adding a number to a string, which is a set of letters. What is 6 + Hello World? I

don’t know, and if I were programming something, I wouldn’t want to find out!

We aren’t going to be using all of these types in this book, because some of them

are rare and not necessary for basic PHP programming. Let’s go over the ones we

will use.

n Integers are very common and encase a number, positive or negative,

without a decimal point. See these examples:

n 314

n –2141003

n 0

n Boolean is used for items that have only two states. For example, a checkbox

can be either on (TRUE) or off (FALSE). Obviously the following are the only

things Boolean types will look like:

n TRUE

n FALSE

60 Chapter 4 n Writing the PHP in Your First Program

Table 4.1 PHP Data Types

Type Description

Boolean Represents TRUE or FALSE.

Integer Any number that does not use a decimal point.

Float Any number with a decimal point.

String A series of characters, like a sentence or any form of text.

Array An ordered map that maps values to keys.

Object A representative piece of a class.

Resource A special variable that holds a reference to an external resource.

NULL A variable that has no value.

n Float are sometimes called double. Doubles and floats are treated as inter-

changeable by PHP. Float variables (which is short for floating-point

variable) is similar to an integer except that it has a decimal point. Some

examples of floats follow:

n 769.124

n –22385.124412

n 0.9993858

n Strings are a different type of beast altogether. While floats and integers

contain numbers, strings contain text. In the following examples, notice the

surrounding quotation marks. They tell PHP that a string is being dealt with.

n "Hello, World!"

n "Welcome to my web site."

n "Please donate money to me!"

You know what a variable is. You even know the different types. All you need to

know is how to use them! First, know that you cannot use variables in HTML;

you must use them within PHP. As a result, whenever you need a variable, escape

from HTML, just like you did in Chapter 1. Remember? Whenever we needed to

escape from HTML, we wrote this:

<?php

. . .

?>

Notice that there is no space between the question mark and the less-than and

greater-than (<>) signs. If you don’t escape correctly from HTML, none of your

PHP will work.

Inserting

So let’s add a variable in there now. You can create a variable and use it by

choosing a name and adding a dollar sign ($) to the beginning of it. For example,

the following is a valid variable-name assignment:

$testvariable=25;

Using that name, you could escape from HTML and get into PHP like this:

<?php

$testvariable=25;
?>

Variables 61

Look at that. While we are at it, let’s put that entire block of code directly

into a web page and see what it makes! The following code is on the CD as

phpft04-01.php:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>PHP Test Page</title>
</head>
<body>
<h3>Welcome to our page!</h3>
<p>
Following is the PHP code. It should reflect whatever PHP you type in!
<p>
—————————————
<p>
<?php
$testvariable=25;
?>
<p>
——————
<p>You see anything interesting?
</body>
</html>

As you can see, we have a lot of HTML, which creates the page. Then we have a

section where the PHP executes, and then the program ends with HTML again.

Let’s load this up in a browser. Make sure you load it up through your web server

using localhost, just as you always do when you need to execute PHP. What you

see will probably look a lot like Figure 4.5.

Uh oh. It looks blank. Well, why don’t we take a look at the source to figure out

what went wrong. You can see the source by right-clicking the page and choosing

View Source. Figure 4.6 shows the source.

Uh oh again. The source seems blank. It’s almost like the PHP code just, well,

disappeared!

Actually, this is exactly what we want it to do. The web page deals with the PHP

code before putting it on the screen. Remember when I said HTML is a static

language? Web browsers can only deal with static content, and PHP is certainly a

62 Chapter 4 n Writing the PHP in Your First Program

variable language. Because of this, PHP converts itself into HTML before the

document is displayed on the screen. In doing so, it strips away all of the PHP

code and translates any important PHP parts into HTML. So, let’s take another

look at the PHP code from this document:

<?php

$testvariable=25;
?>

Looks pretty good, right? But what did we do? We created and assigned a vari-

able. But we didn’t do anything with the variable! Variables store any type of data

depending on the context, so because this variable is assigned to an integer, the

variable has an integer type.

Fortunately, you can do a lot of very interesting things with a simple piece of data

like that. How about we make it display the value of the variable on the page? To

do this, we need to use something called a language construct. A language con-

struct is built into the PHP language and does a specified job. In this case, the

language construct we are looking for is echo, which prints out the results of any

Variables 63

Figure 4.5
The phpft04-01.php file.

operation or variable. To use echo, you simply type in the construct name within

PHP bounding areas, followed by the data you wish to display. You can choose

whether to use parentheses. You can decide not to include them and everything

will come out fine.

Let’s edit the PHP section to use the echo construct now. It will look like the

following:

<?php
$testvariable=25;
echo $testvariable;
?>

Wha t ’ s w i t h t h e s em i c o l o n ?

If you have been looking closely at the PHP sections of code, you might have noticed that a
semicolon appears after each statement. Why? Well, PHP is broken down into several statements,
all of which do a different thing. You might write one statement that creates a variable, followed
by another statement that deletes it, followed by another statement that reassigns the variable.

64 Chapter 4 n Writing the PHP in Your First Program

Figure 4.6
The phpft04-01.php source.

PHP needs to know where each statement stops and starts, and it uses semicolons at the end of
each statement to judge the ending point. You can use multiple statements per line, as long as
you have a semicolon after each major part. For example, the following code snippets arte
equivalent to each other:

<?php
$example=25;
echo "$example";
$example = 75;
echo "$example";
?>

<?php $example=25; echo "$example"; $example = 75; echo "$example";

?>

Va r i a b l e

The same variable changes to two different values and is echoed both times. PHP does not care
about white space, such as spaces or tabs, at all in almost all cases. You can condense the
document however much you wish. Notice, though, that the first version of the code is a heck of a
lot easier to read than the second one. Try to make your web pages simple and understandable, so
in this situation, it is probably a good idea to use the first version of the code.

Pretty cool, huh! Let’s see what the results are. Figure 4.7 shows what the new

page looks like. Hey, how about that! It works! The 25 we wanted to show up

appeared! What does the HTML source look like? Figure 4.8 shows you.

Instead of showing all of the PHP code, the document displays, very simply, the

results of the echo operation. PHP will only show what you tell it to show; the rest

it either hides or performs another operation.

Rules

So we have now created our very own integer and displayed it on the screen. Let’s

go over some rules for the creation of variables. They have to abide by some

naming guidelines.

Other than those listed here, the variable-naming rules are very lenient. Just be

careful, and don’t make any mistakes! An important thing to keep in mind is to

make sure you keep your variable names descriptive. For example, do not use

variable names such as $i. Instead, make it $numberCounter. You want to be able

to tell what the variable does when you look at the source code a few weeks after

you write it.

Variables 65

Start with Letter or Underscore

Variable names can only start with a letter or an underscore (_). After the first

letter, a variable can be made up of letters, underscores, or numbers. Therefore,

these variable names are both valid:

$newname
$_VariableForUse

Because it starts with a number, this variable is invalid:

$2variable

Mind Your Case

PHP is a case-sensitive language, meaning that capitalization matters in the

variable names, statements, and other calls in your programs. $Variable is dif-

ferent than $variable. Be extra careful that you don’t accidentally capitalize

variables in your code when you don’t want them to be capitalized.

66 Chapter 4 n Writing the PHP in Your First Program

Figure 4.7
The phpft04-02.php file.

Functions and Parameters

Let’s go back to that program we were just working on and see what we can do

with some more variables. Remember how we talked about the different types of

variables? There is a cool function in PHP called get_type(). This function

returns a variable’s type, so you can find out if it is a Boolean, a string, an integer,

or something else.

What is a function? It is very similar to the echo language construct we used

earlier. A function is a piece of centralized code that can be called from within

your program and reused over and over again. It is basically a way to have PHP

perform some actions on some data. There are predefined and self-written

functions. I stick with predefined in this chapter.

You can send something called a parameter to many functions. The function then

acts upon this parameter. In the case of get_type(), the parameter we pass is the

variable whose type we want to know. Functions can also return a value, which

Variables 67

Figure 4.8
The phpft04-02.php source.

can be used for many purposes. Here, the return value is the name of the type that

the variable uses, such as integer or float.

Let’s use get_type() in a program. We are going to add this function to the

program we created earlier. Let’s create a bunch of variables of different types,

then see if the types were correctly identified by PHP. First create the variables:

<?php
$integervar=25;
$booleanvar=TRUE;
$floatvar=314.13;
$stringvar="Hello, World!";
$nullvar=NULL;

Now echo out the variable types:

echo "integervar: ".gettype($integervar);
echo "
booleanvar: ".gettype($booleanvar);
echo "
floatvar: ".gettype($floatvar);
echo "
stringvar: ".gettype($stringvar);
echo "
nullvar: " .gettype($nullvar);
?>

Putting it all into the HTML document, we get the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>PHP Test Page</title>
</head>
<body>
<h3>Welcome to our page!</h3>
<p>
Following is the PHP code. It should reflect whatever PHP you type in!
<p>
—————————————
<p>

<?php
$integervar=25;
$booleanvar=TRUE;
$floatvar=314.13;
$stringvar="Hello, World!";
$nullvar=NULL;

68 Chapter 4 n Writing the PHP in Your First Program

echo "integervar: ".gettype($integervar);

echo "
booleanvar: ".gettype($booleanvar);
echo "
floatvar: ".gettype($floatvar);
echo "
stringvar: ".gettype($stringvar);
echo "
nullvar: " .gettype($nullvar);
?>
<p>
—————————————
<p>You see anything interesting?
</body>
</html>

So how does this look? Well, check out Figure 4.9 to see.

Not bad at all, huh? We got the page working correctly! The only thing that looks

a little weird is that the float variable is classified as a double, but both double and

float are equivalent, so it is not a problem. Look at what source is generated in

Figure 4.10. The source shows how PHP reinterprets the code to become just

regular HTML.

Variables 69

Figure 4.9
The phpft04-03.php file.

Now that I’ve gone over some basic variables, let me show you some other

special types.

Predefined Variables and Arrays
PHP includes some predefined variables—those it designates. Some of these

variables are created by the web server or sent by GET or POST forms (which I went

over in Chapter 3). You can use these variables within your program for a lot of

things. Before we move on, let’s talk a little about the difference between GET

and POST.

GET Versus POST

In all of your forms, you have the option of using GET or POST. Both are useful in

different cases, so you should know the difference between the two.When using a

GET form, all of the variable data are passed along in the URL’s address bar. This

70 Chapter 4 n Writing the PHP in Your First Program

Figure 4.10
The phpft04-03.php source.

means that you can look at the URL and see all the variables and their values. On

the other hand, POST hides all the variables from the address bar—instead, it is

transparently passed to the PHP program.

For example, say you had a page at www.something.com/page.php, which uses a

GET form, and that the form passes the data to itself. After inputting the values

and pressing submit, the address bar might look like the following:

http://www.something.com/page.php?first=value1&second=value2

In this case, there are two fields on the form: The first field has the name set to

first, and the user entered in value1 in the textbox. The second field is called

second and the value is value2. As you can see, all the data is passed along the

address bar. This means that the user can manually change the values without

even going through the form. POST, on the other hand, does not show the data in

the URL address bar. After submitting the form, the address will look like this:

http://www.something.com/page.php

So why would you use one or the other? In some cases, it is important to secure

data by not passing it in the address bar. For example, if the form is a log in, you

don’t want the password to be displayed in the address bar; you would use POST.

Alternatively, if you want the user to be able to bookmark a page through a form,

using GET allows that.

Arrays

To access the predefined variables, we have to use a variable array. Arrays are sets

of variables that all have the same name, but are referenced by a specific number.

Arrays look exactly like a normal variable, except it has a reference number

attached to the end of the name. For example, while a normal variable might be

called $name, an array of three names would look like this: $name[0], $name[1],

$name[2]. In addition, arrays can use reference words rather than digits—for

example, $name["first"] or $name["second"]. The number or word that you use

to reference the variable in the array (such as first or 0) is called a key. You use the

=> operator to send the value into the key.

You can create your own arrays in a few ways. The easiest way is to simply define

each individual item from the array. For example, to create a few variables of the

array $name, we could do it like this:

$name[1] = "Maneesh";

Predefined Variables and Arrays 71

www.something.com/page.php
http://www.something.com/page.php?first=value1&second=value2
http://www.something.com/page.php

$name[2] = "John";
$name[3] = "Smith";

There are some quicker ways. You can add values to the array at the same time

you create it. This is done as follows:

$name = array(key => value, key =>value);

As you can see, you can designate any number of items in the array at the same

time by using different values and keys. We could do this with our $name array as

follows:

$name = array(1=>"Maneesh", 2 => "John", 3 => "Smith");

We now have an array that contains these three names. To print out Maneesh, for

example, the value of $name[1], we would write this:

echo $name[1];

Predefined Variables

A lot of the predefined variables that PHP creates deal with forms, like the

ones we created in Chapter 3. When you use a form, submit it with the

method post or get. There are a few differences on these two, which we will

go over in the next chapter, but when you use a form that submits, it transfers

its data (such as a name or comments) through a method of either post or

get.

When the page finishes submitting, it passes the data to the following page inside

a predefined variable array. It will use either the $_GET or a $_POST array,

depending on the method you used. To access the actual item, make the array’s

key the same as the name field of the part of the form you want.

This may sound a little complex, but it will make a little more sense if I show you

an example. Let’s create two pages: a form that asks for only a name and a page

that displays the name. Because the first page is only a form, it can be named

form.html, while the second requires PHP and therefore needs the extension

.php. We will make it phpft04-04.php. (By the way, I go into much more depth

on programs of this nature in the next chapter. This one is simply to show how to

access a predefined array.)

A simple web page with a post formmight look like the following. This is the text

to the form.html file.

72 Chapter 4 n Writing the PHP in Your First Program

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>A sample PHP form</title>
</head>

<body>
<form action="phpft04-04.php" name="form" method="post">
Please enter your first name: <input type="text" name="firstName">

<input type="submit">
</form>
</body>
</html>

This is a very basic page that displays a small form and a submit button. It looks

like Figure 4.11.

Predefined Variables and Arrays 73

Figure 4.11
The form.html file.

Now you need a PHP page that takes the variable outside the form and displays it

on the page. Notice that in the HTML document, the form uses the postmethod

and the text field is called firstName. This is how the PHP document appears.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>The results of the form using PHP</title>
</head>

<body>
<?php
//Echo out the first name of the userecho ’The name that you put into the previous
form was ’.$_POST[’firstName’];
?>
</body>

</html>

74 Chapter 4 n Writing the PHP in Your First Program

Figure 4.12
The php04-04.php file.

The echo line displays the text within the single quotation marks (’) and then

attaches that line to the variable $_POST[’name’] using the dot operator (.),

which joins a string to a variable. What is this crazy text that follows the //? Well

actually, that is a comment. If you enter a //, anything that follows it on the same

line is hidden from the program. This helps you remember what the program

does when you look at it later. Comments are very important, so use them

whenever you can! This page shows how you can use this predefined variable

array to use forms. The page ends up looking like Figure 4.12.

You know all about how to use these arrays now; find out some more of the

arrays that you can use. Check out Table 4.2.

These are the most common, but even some of these are rarely used. You don’t

need to know all about them, so I discuss them when they come up.

Predefined Variables and Arrays 75

Table 4.2 Predefined Variable Arrays

Array Description

$GLOBALS References every global variable available; rarely used.

$_SERVER Variables set by the server, such as the name of the file being used.

$_GET Variables from a form that uses the GET method.

$_POST Variables from a form that use the POST method.

$_REQUEST A combination of the variables from $_GET, $_POST, and $_COOKIE.

$_COOKIE Variables that are provided as cookies, which can be set.

$_FILES Files that are uploaded via HTTP post.

$_ENV PHP environment variables.

$_SESSION Variables that are currently registered to script’s session.

This page intentionally left blank

Constants,
Expressions,
and Operators

In this chapter, we are going to go over some of the language basics. You use

constants, expressions, and operators in a lot of programs and web pages, so it is

very important to learn all about them. Let’s move forward and work with

them. Ready?

Constants
Constants are an important concept to learn because they can make your pro-

grams a lot safer. Imagine a program that converts hours into days. You might

have a hoursPerDay constant that always equals 24. You can define constants, but

once they are defined they can never be redefined or undefined. Unlike variables,

constants never change throughout the entire program. Use constants whenever,

for instance, you have a value you want to multiply all inputs by or a known

natural constant such as pi. Because the program cannot change the constant’s

value, it is guaranteed to work correctly.

You define constants differently than you do variables. With variables, you simply

do something like this:

$variable = value;

You can change the value again just by doing something like this:

$variable = newvalue;

77

chapter 5

Makes sense, right?Well, with constants, it is a little different. Defining a constant

requires the use of a function called define(). You need to pass along two param-

eters to the define() function for it to work. The first parameter is the name of

the constant, and the second is the constant’s value. The function is defined like

this:

define("CONSTANTNAME", constantvalue);

Here are a few defined sample constants:

define("BOOLEANCONSTANT", TRUE);
define("INTEGERCONSTANT", 768);
define("FLOATCONSTANT", 469.12);
define("STRINGCONSTANT", "I am a string!");

Pretty cool, huh? I only defined these four types of constants (Boolean, integer,

float, and string) because they are the only valid types of constants. Constants can

be defined anywhere in your program and are accessible without regard to scope.

Another difference between constants and variables: When using a variable, you

use a $ sign. For example, to print out a variable on the screen, you might do this:

echo $variablename;

However, constants are referred to simply by name; they do not need a symbol.

To display a constant on the screen, you would probably do something like

this:

echo CONSTANTNAME;

Constants are like variables in that they are case sensitive. Make sure you

pay attention to their capitalization. You can capitalize all the letters (as I have

been doing, simply for stylistic purposes) or you can choose all lowercase

letters. However, whenever you reference your constants in the program, make

sure that you use the correct capitalization scheme. For example, say you write a

program that defines NAME as Smith, and the program echoes it on the screen. You

need to echo it with the correct capitalization. What happens when we echo it

incorrectly?

<?php

define("NAME","Smith");
echo name;

?>

78 Chapter 5 n Constants, Expressions, and Operators

There is an apparent error in this page. We created the constant to be named

NAME. However, we displayed the variable name, which has not been created yet.

Figure 5.1 shows you the results.

See how it displays name rather than the correct value? PHP assumes that if you

have not created a constant for the value you echo, it should echo it as a string.

Therefore, it converts NAME to name. Let’s rewrite it so that it uses the correct

capitalization and check out the results in Figure 5.2:

<?php

define("NAME","Smith");
echo NAME;

?>

Operators
An operator is a helper in PHP that deals with one or more values and returns a

different value. This may seem very vague, but operators are everywhere. Think

about a math class. When you do basic addition, what are you doing? You are

Operators 79

Figure 5.1
The phpft05-01.php incorrect constant file.

taking in two values (7 and 5, for example), adding them together (7 + 5), and

receiving a different value (12). In this case, the plus sign is the operator causing

the change.

Think about the gettype() function that we went over in Chapter 4. This

function takes in a variable name and returns its type. This function is an

operator because it takes in a value (the variable) and results in something

different (a type). Sure, these two pieces of data may be different, but the function

still acts upon it!

There are three classes of operators.

No t e

Even though functions do act upon data, we generally don’t think of functions as operators. We
consider functions to be their own type of construction, and just deal with PHP default operators
as operators.

80 Chapter 5 n Constants, Expressions, and Operators

Figure 5.2
The phpft05-02.php correct constant file.

Unary

A unary operator acts only upon one input. For example, the ++ operator

increments a variable by 1. For example, assume you type the following:

$x = 10
$x++;
$echo $x;

You get the result 11.

Binary

Binary operators act upon two pieces of data. Think about the addition problem

I just mentioned. There were two pieces of data: 5 and 7. Both of these, along

with the operator �, achieve a new result. Binary operators include arithmetic

operators such as multiplication and division, as well as testing operators such

as greater than or less than.

Ternary

There is only one ternary operator. This one is a little weird if you have never seen

it before, and it is used a lot less than the binary operators, but it can be powerful

when used correctly. The operator is called the ?: operator because it works with

three sets of data. The first set comes before the question mark, and it is a test; for

example, $x>$y determines whether $x is greater than $y.

n If the test is true, then the result is after the question mark (but before the

colon).

n If the test is false, then the result is after the colon.

Before going into the rest of the operators, look at an example using the ternary

operator. If you want to do the same test to check if $x is larger than $y, you

might want to echo out the results. Take a look at the following PHP document,

then check out Figure 5.3 to see the result:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Using the ternary operator</title>
</head>

Operators 81

<body>
<?php

$x = 7;
$y = 10;

//If x is greater than y, $ans = "greater", otherwise it equals "less"
$ans = ($x > $y) ? "greater" : "less";

//Print out the result
echo "<p>After the test, we have determined that $x is $ans than $y</p>";

?>
</body>

</html>

In this case, we gave variable values to $x and $y. We then used the ternary

operator to give a value to the variable $ans, which could have the result of

82 Chapter 5 n Constants, Expressions, and Operators

Figure 5.3
The phpft05-03.php ternary operator file.

greater or less, depending on whether $x is greater than or less than $y. Let’s take

an in-depth look.

$ans = ($x > $y) ? "greater" : "less";

First, $ans is created and is left to the side to be assigned to the operation results.

Next, the operator tests the expression ($x > $y). If this is true, then the first result

is returned: greater. If the test is false, then the second result is returned: less.

Because $ans is assigned to the result, it can only be either greater or less. In this

example, $x was not greater than $y, so the result was false and $ans was less. We

then plugged this value into an echo statement:

echo "After the test, we have determined that $x is $ans than $y";

This statement echoes the results. First, it writes out "After the test, we have

determined that .". Then it writes out the value of $x, followed by is, displays the

$ans value, and shows than $y". Because $ans can only be greater or less, it will

make a valid sentence. By the way, if $x and $y are both equal to the same

number, the program is blank. In a real program, you need to handle that event.

You might have noticed that I used a different scheme to write out the echo

statement. Earlier, we used single quotes to echo out text; here I used double

quotes. Check out the sidebar to find out why.

Why c a n I e c h o w i t h d oub l e q u o t e s o r s i n g l e q u o t e s ?

When using an echo command (or any command that requires quotation marks), consider
whether you want to use single or double quotes. When writing out basic text, there is no
difference. For example, echo ’Hello, World!’ is identical to echo "Hello, World!".
However, when you use variables or constants within an echo statement, double quotes and
single quotes are very different. Double quotes allow you to place a variable directly into the
string, referenced by a $ symbol; PHP substitutes the variable’s value. However, with single
quotes, the value is not substituted; instead, the page displays the quote’s name. To use variables
within single-quoted statements, you need to use the dot operator (.), ending the string with a
single quote and using the dot operator to join a variable and the string.

Arithmetic Operators

Arithmetic operators are the most common. Most are basically the same ones

you have known your entire life: addition, subtraction, multiplication, and

division. Arithmetic operators act just like you would expect them to when you

do something like what you see in Table 5.1.

Operators 83

The last two might be new to you. The negative operator returns the number’s

negative value. For example, using the negative operator on 7 would return -7.

This operator is a unary operator, meaning it only works on one input. The last

arithmetic operator is called the modulus operator. It works in the same way as

any of the binary operators. For instance, 7%7 would return 0 because there is no

remainder in a 7/7 division problem. In 9%7, the answer is 2, because there is a

remainder. Modulus is awesome for checking some specific things, such as if a

number is even or odd. 6%2 is 0, meaning the number (6) is even, and 5%2 is odd

(and it is equal to 1), meaning that 5 is odd. If you are checking remainders,

modulus is excellent for that purpose.

Let’s put all these arithmetic operators into a program. We will use a basic

calculator form. Here is the form that we created to do this job. You can find it on

the CD as phpft05-04.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>
<title>A Basic Arithmetic Calculator</title>
</head>

<body>
<form name="calculator" method="get" action="phpft05-04.php">
<p>
Enter your first value:
<input type="text" name="first" />
<p>Choose an operation:
<select name="operation">

84 Chapter 5 n Constants, Expressions, and Operators

Table 5.1 Arithmetic Operators

Task Symbol Example

Add two numbers Addition (+) $sum = $a + $b

Subtract two numbers Subtraction (–) $different = $a – $b

Multiply two numbers Asterisk (*) $product = $a * $b

Divide two numbers Forward slash (/) $quotient = $a / $b

Retrieve a negative number Subtraction (–) $negative = – $a

Retrieve a division remainder Percentage (%) $remainder = $a % $b?

<option value="+">+
<option value="-">-
<option value="*">*
<option value="/">/
<option value="%">%

</select>

<p>
Enter your second value:
<input type="text" name="second" />
<p>
<input type="submit" >
</form>

</body>

</html>

This looks like Figure 5.4, where I substituted some sample values.

Operators 85

Figure 5.4
The phpft05-03.htmlcalculator form file.

As you can see, this creates a sample form which sends its data through the GET

method to a PHP file. The form code also creates a cool drop-down box, pictured

in Figure 5.5.

The following <select> HTML element makes the drop-down box show up:

<select name="operation">

<option value="+">+
<option value="-">-
<option value="*">*
<option value="/">/
<option value="%">%

</select>

Each option has a value, which you set. When using PHP, the selected option is

passed into the $_GET[] or $_POST[] variable, just as if the user had entered the

value in a textbox. Therefore, if the user selects /, the $_GET[‘operation’]

variable will be equal to /.

Now, the PHP document is a little more complex than anything we have seen so

far. Check out the code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>PHP Calculator</title>
</head>

<body>
<?php

86 Chapter 5 n Constants, Expressions, and Operators

Figure 5.5
A drop-down box.

//put form variables in standard variables
$a = $_GET[’first’];
$b = $_GET[’second’];
$op = $_GET[’operation’];

echo "The result of your expression, $a $op $b is ";

//Check the operation and deal with the result correctly
if($op==’+’)
{
echo $a + $b;

}

if($op==’-’)
{
echo $a - $b;

}

if($op==’*’)
{
echo $a * $b;

}

if($op==’/’)
{
echo $a/$b;

}

if ($op==’%’)
{
echo $a%$b;

}

?>
</body>

</html>

That’s pretty crazy, huh? Check out the results in Figure 5.6.

This page introduces you to something new: conditional statements. For this

page, you have to do something different depending on what operator the user

chooses. Because of this, we use the if statements you see in the preceding code.

Basically, the statement tests whether something is true. This test is within the

Operators 87

parentheses after the word if. If the test is true, then whatever is in the curly

braces (’{’ ’}’) occurs. If not, then the statement doesn’t occur. (I go over this in

depth in the next part, when I talk about conditional statements. I wanted to

introduce this here because if statements are everywhere and it helps to

understand what they do, even if you can’t write them yourself yet.)

One other thing to notice in this page: This is the first time we used the GET

method rather than POST. Take a look at the address bar after filling out the form

and pressing submit. Figure 5.7 shows you what mine says.

You see the tricky part? It actually encodes the variables within the address bar.

This means that you can see the variables you passed along with the form just by

88 Chapter 5 n Constants, Expressions, and Operators

Figure 5.7
The address bar using the GET method.

Figure 5.6
The phpft05-04.php file.

looking at the URL. This also means that you can bookmark the results, and they

will continue to show the correct results. With the POST method, you lose the

form results each time. Also, Figure 5.8 shows what happens when I change the

address bar to pass / rather than * for the operator. You can see here that it

actually changes the page results.

Using GET is great for pages where you want a visitor to be able to return. Since

the data is stored in the URL, the user can easily bookmark the page with the

correctly inputted information and access the interpreted data without sub-

mitting the form each time. However, GET has some drawbacks:

n There is a URL-length limit that prevents you from having unlimited

variables in the page.

n Information is not secure. When passing secure information, such as a

password, it is much better to use POST so that the sensitive data is not shown

in the address bar.

Operators 89

Figure 5.8
Changing the variables in a GET form.

Comparison Operators

Take a look at the PHP document. See how the if statements test for equality

using the == operator? That’s a comparison operator. Comparison operators allow

you to test two values against each other, and if they relate correctly, the test

returns true. If the relationship specified by the test is incorrect, the return value

is false. All comparison operators are binary, meaning they take two values in for

input. Take a look at Table 5.2 for all of them.

These operators can be used within any type of flow-control system, such as if

tests or, as you learn later, switch tests. They are great tools for checking

values.

No t e

Keep in mind that the equality operator (==) is different than the assignment operator (=). The
assignment operator changes the variable on the left to have a new value, while the equality
variable tests for equality and returns a 1 if true.

Logical Operators

Logical operators are used when two or more comparisons are needed for a test.

For example, you would use a logical operator if you needed to determine that

$number is greater than 7 and also less than 10. With logical operators, you can do

this and execute a statement only if $number is equal to 8 or 9. Table 5.3 lists the

90 Chapter 5 n Constants, Expressions, and Operators

Table 5.2 Comparison Operators

Task Symbol Example

Return true if values are equal. Equal (=) $a == $b

Return true if values are equal and the same type. Identical (===) $a === $b

Return true if the values are not equal. Not equal (<>) $a != $b or $a <> $b

Return true if the values are unequal or are
different types.

Not identical (!==) $a !== $b

Return true if the first value is less than the second. Less than (<) $a < $b

Return true if the first value is larger than the second. Greater than (>) $a > $b

Return true if the first value is less than or equal
to the second.

Less than or
equal to (<=)

$a <= $b

Return true if the first value is greater than or equal
to the second.

Greater than or
equal to (>=)

$a >= $b

logical operators. For this table, $a and $b are comparisons, so in the preceding

example, $a would be $number > 7 and $b would be $number < 10.

Precedence can be an issue with logical operators. Be careful to always use paren-

theses. Here’s an example: Pretend that you have three different statements—A, B,

and C. Here are two different tests:

n (A and B) or C

n A and (B or C)

The test in the parentheses is always executed first.

Other Operators

A few more operators don’t really fit into the other categories, but you should

know them because they are useful.

Assignment

You know this one already, because you used it to create a variable. This operator

uses the = symbol, and it assigns a value to a variable. For example, the following

is an assignment operation:

$x = 13;

The variable $x has the value 13. This assignment operation returns the value of

the assignment, so if you set a new variable equal to the result of this operation, it

is also equal to 13.

Incrementing and Decrementing

The operators add 1 to the value of an integer, meaning they are all unary. Look

at the following samples of incrementing (the first two) and decrementing

operators (the last two):

$a++
$++a

Operators 91

Table 5.3 Logical Operators

Task Symbol Example

Return true if both comparisons are true. and $a and $b

Return true if either comparison is true or both comparisons are true. or $a or $b

Return true if either comparison is true, but not both. xor $a xor $b

Return true is the comparison is not true. ! !$a

Return true if both comparisons are true. && $a && $b

Return true if either comparison is true or both comparisons are true. k $a k $b

$a--
$--a

The value of each number increases by 1 when using the ++ operator and

decreases by 1 when using the -- operator. For example, look at the following:

$a = 10;
$a++;
echo $a;
$a--;
echo $a;

The variable $a is given a starting value of 10. It is then incremented, and the

first echo statement shows the variable as having a value of 11. The second

echo statement shows $a as having the value of 10, because the -- operation

decrements it.

No t e

You might be wondering why both operators can be attached to either the beginning or the end of
the variable name. Attaching it to the front versus the back has similar results, but there is one
important difference: When attaching the operator to the front, the variable is incremented by 1,
and then the new value is returned. When the operator is attached to the back, the old value of
the operator is returned, and then the variable is incremented by 1. For example, look at the
following code:

$a=10;
echo $a++;
$a=10;
echo ++$a;

The first echo statement will show the variable as being equal to 10, but immediately after the
echo, the variable becomes 11. On the second echo statement, the variable becomes 11 and
then the variable is echoed.

String Dot Operator and Dot Assignment

The string dot operator attaches different parts of strings together to form one

big string. Take a look at the following code:

$firstpart = "Welcome to ";
$secondpart= "my web site. ";
$fullstring = $firstpart . $secondpart;

$fullstring now contains the value "Welcome to my web site." The dot operator

joins the two parts of the string.

92 Chapter 5 n Constants, Expressions, and Operators

The dot assignment operator (.=) appends a new string to the end of the first

string. For example, the following code puts in "Welcome to my web site.":

$text = "Welcome to ";
$text .= "my web site.";

Expressions
Expressions are basically the most important element of PHP. In essence, any-

thing that you write in PHP, anything that has a value, is considered an

expression. If you create a statement that does something, it is generally an

expression.

A very simple example of an expression—creating and assigning a variable—

might look something like this:

$variablename = "value";

This creates a variable called variablename that is assigned to some value. Because

"value" is a string, the variable $variablename will also be a string. See the

semicolon at the end? That marks the end of a statement.

Wha t i s t h e d i f f e r e n c e b e twe e n a s t a t emen t a n d a n e x p r e s s i o n ?

Statements and expressions are both very common and very important. All statements are
expressions, but not all expressions are statements. An expression is basically anything that has a
value within a web page, such as a test or an assignment. A statement is something that forces
something to be done, such as calling a function or an assignment. As you can see, an assignment
is also clearly an expression. You can easily differentiate statements and expressions by looking at
them---generally, statements end with a semicolon.

Expressions produce a value, which means that each expression returns a result.

Let’s take a simple integer assignment:

$intvar = 15;

You might see two parts to this expression: the value 15 and the assignment to

$intvar. However, there is also one more step—the result of the actual assign-

ment itself. This action returns a value. The value returned from an assignment is

simply the value of the newly defined variable.

Let’s look at an example of this. What happens if we assign a new variable to the

value of the assignment?

Expressions 93

$secondvar = ($firstvar = 15);

$secondvar will now have a result of 15, as will $firstvar. Both variables get the

same result. This example shows what expressions are all about. You will need

to use a mix of pure expressions and statements in your web pages to get the

results you are looking for, and many times you will need to use compounds

statements.

94 Chapter 5 n Constants, Expressions, and Operators

The Style Factor

This is the last chapter of the first part! Thus far, we’ve learned a lot about PHP

programming, including designing a web page and forms, using variables and

operators, and communicating with expressions in our web pages. All of these

items are very important in PHP programming, but there is one part we have

neglected to talk about so far: style. I use the word style in the sense of cleanliness

and orderliness of your code. Whenever you develop a web page, you are going to

have to write some code. This code, whether it is in HTML or PHP, can get rather

large and ugly, so it is very important that you keep some structure within it.

No matter in what language you are writing your programs, your code style can

become a big concern. Take the time to develop a structure. It will help make

your code easier to understand.

Why Style?
You might be wondering why it even matters how organized or neat your code.

After all, you are the only one who looks at it, right? It shouldn’t matter whether

your code is commented or easy to understand—right?

Wrong. Absolutely wrong. Many times I have written code for a game or project,

and when I looked it over again three months later, I had no idea how the code

worked. Even worse, sometimes I had errors in the code that I could not fix. If I

had spent just a few more minutes making it neater or more organized, my

efficiency would have been hundreds of times better. Instead, I wasted hours

95

chapter 6

simply trying to catch an error (or even simply figure out what was going on). I

once even read about a programmer who spent 30 minutes looking at a section of

code asking, ‘‘Who is this idiot and what is he doing?’’ He later found out that it

was his own work.

How can you achieve style? Take a look at the web page we designed:

<html><head><title>Quick Sample Page</title>
</head><body><h3>Welcome to our page!</h3>
<p>Hello,

World!
</p>
<p>I am some bolded text,
<i>I am some italicized
text</i>, <u>and I am some underlined text</u>. <u><i>I am both underlined and
italicized.</i></u>
</body>
</html>

This code is badly spaced, poorly organized, and does not flow. However, even

though it looks poorly organized in code, check out how it looks on the screen in

Figure 6.1.

96 Chapter 6 n The Style Factor

Figure 6.1
The unorganized phpft06-01.html file.

Now look at it spaced a little nicer:

<html>
<head>

<title>Quick Sample Page</title>
</head>

<body>
<h3>Welcome to our page!</h3>
<p>

Hello, World!
</p>
<p>

I am some bolded text,
<i>I am some italicized text</i>,
<u>and I am some underlined text</u>.
<u><i>I am both underlined and italicized.</i></u>

</p>

</body>
</html>

A lot easier on the eyes this time, huh? You can see in Figure 6.2 that it looks

exactly the same. That is because HTML and PHP don’t care about how many

spaces or tabs you put into your document—they remove all the white space

before displaying the file on the screen. Because of this, it’s a lot better to make

easy to read in the first place.

This is the same with PHP. The following two samples of code are

identical:

Example 1:

<?php$a = $_GET[’first’];
$b = $_GET[’second’]; $op = $_GET[’operation’]; echo "The result of your
expression, $a $op $b is ";

if($op==’+’)
{echo $a + $b; }if($op==’-’){
echo $a - $b; }if($op==’*’) {echo $a * $b;
}if($op==’/’){echo $a/$b;}

if ($op==’%’){
echo $a%$b;}?>

Why Style? 97

Example 2:

<?php

$a = $_GET[’first’];
$b = $_GET[’second’];
$op = $_GET[’operation’];

echo "The result of your expression, $a $op $b is ";
if($op==’+’)
{

echo $a + $b;
}

if($op==’-’)
{

echo $a - $b;
}

if($op==’*’)
{

98 Chapter 6 n The Style Factor

Figure 6.2
The organized phpft06-01.html file.

echo $a * $b;
}

if($op==’/’)
{

echo $a/$b;
}

if ($op==’%’)
{

echo $a%$b;
}

?>

Isn’t the second one so much nicer?

How to Style
There are millions of different style methods, but the most important part is that

you stay consistent. You must follow a pattern. If you stray, put your pattern into

words and print it—laminate it if you must. Again, the most important part is

staying consistent.

What does this mean? You can choose to make all of your variables start with var,

so that, for instance, a variable that contains a name is called $varname. Heck, you

could even make it called $afbkajfbkaname, as long as you stay so consistent that

your address variable is called $afbkajfbkaaddress. One popular way of keeping

track of your variables is to preface each name with the type of variable it is. For

example, a string called $strFirstName and an integer called $intAge.

Let me share some conventions that I follow for my own style. You don’t have to

follow what I say, but these are good general guidelines that will help you to find

your own style.

Capitalization

I leave all of my variables lowercased. You will see variables like the following in

my code:

$name
$homeaddress
$age

How to Style 99

Take a look at that second example, $homeaddress. Notice that it is two words. I

like to usually keep them both lowercase, and I can easily tell what it means.

However, some people prefer to split up words in a variable with capital letters:

$homeAddress
$HomeAddress

I—and just about everyone else—capitalize all of my constants. Remember,

constants are designated using the define() function.

TIME
CONVERSION
EMAILADDRESS

If you want to designate two words in a different way, you can use an under-

score (_).

I use underscores for multiple-word functions. This makes it a little easier on the

eyes. I go over functions in Chapter 9, so you should learn how to style them as

well.

change_address()
build_model()
buy()

Underscores

One good way to organize your documents is to tab your tags and code. If you are

using several tags in an HTML document, you can space them out nicely:

<body>
<p>

I am bold!
</p>

</body>

If you do this, you can tell at a glance what tags refer to a piece of code.

Comments

Another important part of organization is understanding the use of comments.

When you write a program, it all makes sense to you at the time. You know

exactly why you wrote everything and how each piece of code does what it does.

This won’t always be the case, however. In only a few weeks, you may forget

everything about how the program works.

100 Chapter 6 n The Style Factor

Comments allow you to add text that the web server throws away; they make no

difference on the outcome of the program. They willmake a difference when you

need to look at it only a few months later.

You should use comments in these places:

n At the beginning of every program

n At the beginning of any large section of code

n Just before any piece of code that other readers might not understand

n Throughout the program to help the reader understand its purpose and goal

There are three methods of adding comments: C, C++, and Perl. All are named

after the programming languages in which they were introduced.

C Method

The C method allows you to comment out as much code as you want, spanning

multiple lines. It does not take into account any line breaks. To use the Cmethod,

you enclose whatever you want commented by /* and */. For example, look at

the following:

echo "I will be printed";
/* echo "I won’t be printed";
Neither will I. */

As you can see, anything within the /* and */ marks is ignored.

C++ Method

The C++ method is a little different. This comments out anything on the same

line, starting with the // symbol and ending with the new line. Look at the

following example:

echo "I will be printed"; // I won’t be printed, because of comments
echo "however, I will be printed, because this is a new line.";

Perl Method

The Perl method is exactly the same as the C++ method, except it uses a # sign:

echo "I will be printed"; # I won’t be printed, because of comments
echo "however, I will be printed, because this is a new line."

How to Style 101

The last thing we are going to do in this chapter is take that earlier code segment

and add comments. Check it out:

<?php

//Create three variables that take in the GET form data
$a = $_GET[’first’]; //This is the first operand
$b = $_GET[’second’]; //This is the second operand
$op = $_GET[’operation’]; //This is the operation to be preformed

//Write out introduction text to the screen
echo "The result of your expression, $a $op $b is ";

//If an addition problem, echo out an addition answer.
if($op==’+’)
{

echo $a + $b;
}

//If a subtraction problem, echo out a subtraction answer.
if($op==’-’)
{

echo $a - $b;
}

//If an multiplication problem, echo out a multiplication answer.
if($op==’*’)
{

echo $a * $b;
}

//If a division problem, echo out a division answer.
if($op==’/’)
{

echo $a/$b;
}

//If a modulus problem, echo out a modulus answer.
if ($op==’%’)
{

echo $a%$b;
}

?>

Easier to read and understand, huh?

102 Chapter 6 n The Style Factor

Program Flow:
Control
Structures

You are going to use what you learned earlier to develop some really cool pages

and PHP programs. Control structures are part of that, taking a comparison

statement and performing a comparison. If the comparison is true, special

statements are executed. If the comparison is false, the statements are skipped.

In this chapter, where I go over loops and branching structures, you learn ways to

make your programs interactive and how to get PHP to act upon data and

perform different actions depending on input.

Branching Structures
Control structures include branching structures, which allow your program to

make all these things:

n if. . .then decisions

n Loops, which let you execute some code repeatedly

n Functions that put specialized code into their own separate section

When you run a program, you expect it to go from beginning to end. Usually,

the program displays everything that is in the code, putting each section one

after another. When you write an HTML page, every part of the page is displayed

in the same order as it is defined in the source. However, you might want

103

chapter 7

to change that flow. You might need to perform a different action because

some special event occurs. PHP offers a way to do this with branching

structures.

if
The easiest way is to use the if branching structure. A basic backbone looks like

the following:

if (condition is true)
{

//execute statements

}

You obviously need to replace the comparison with a condition test. Condition

tests are done using the comparison operators, such as <, >, !=, and so on. Take a

look at Chapter 5 to see the comparison methods.

We will create a page that allows a user to enter two numbers, and we use PHP to

compare the two numbers and say which is bigger. First, let’s take a look at the

form that would do this. We are going to use the GET submit method.

<html>

<head>

<title>Comparing two numbers</title>

</head>

<body>

<form name="compare" action="phpft07-01.php" method="get">

Enter your first number: <input type="text" name="firstnumber">

Enter your second number: <input type="text" name="secondnumber">

<input type="submit">

</form>

</body>

</html>

104 Chapter 7 n Program Flow: Control Structures

This page ends up looking like Figure 7.1. I added the numbers into the textbox

after opening the page.

Now look at the PHP page:

<html>

<head>

<title>Comparison of two numbers</title>

</head>

<body>

<?php

$a = $_GET[’firstnumber’];

$b = $_GET[’secondnumber’];

echo "Your first number was $a.";

echo "
Your second number was $b.";

Branching Structures 105

Figure 7.1
The phpft07-01.html form file.

echo "<p>";

if ($a > $b)

{

echo "Your first number ($a) is greater than your second number ($b).";

}

if ($a < $b)

{

echo "Your second number ($b) is greater than your first number ($a).";

}

?>

</body>

</html>

You see how this page works? Figure 7.2 shows what it looks like.

106 Chapter 7 n Program Flow: Control Structures

Figure 7.2
The phpft07-01.php results file.

A couple if statements work together to determine whether the first number is

larger than the second or vice versa. If the first one is greater, that is echoed, and if

the second is greater than the first, the correct result is echoed. However, what

happens if the numbers are equal? Check it out in Figure 7.3.

If the numbers are equal, nothing happens! We did not set up the program to do

anything if this situation occurs. We obviously need to fix this.

else
Let me show you a new control structure that works tightly with the one

you already know: else. When you join an if structure to an else structure,

one of the two statements will be executed. If the comparison test is true, the

if statements are executed, and if the test is false, the else statements are

executed.

Branching Structures 107

Figure 7.3
The form with equal values.

Look at a generalized else structure:

if (comparison is true)
{

//execute statements

}

else

{

//execute other statements

}

Let’s try putting this into our file, with phpft07-02.php. (I copied over the HTML

file for the CD as well, with the only change being the form action.)

if ($a > $b)

{

echo "Your first number ($a) is greater than your second number ($b).";

}

else

{

echo "Both your first number ($a) and your second number ($b) are equal!.";

}

if($a < $b)

{

echo "Your second number ($b) is greater than your first number ($a).";

}

else

{

echo "Both your first number ($a) and your second number ($b) are equal!.";

}

This makes sense, right? If the tests are false, it echoes out that the numbers are

equal. However, we just created a couple of big problems. Try to see if you can

find them, then check out Figure 7.4. Now it should be easier to spot the problem

within the code.

You see here that it actually gives two results! The code is going through both

structures. For the first structure, it checks to see if $a is greater than $b. This is

not true, so it executes the else statements. Therefore, the first text written is that

the two numbers are equal. Next, the code goes to the second if statement, where

it determines that $a is indeed bigger than $b. Because the if control structure

108 Chapter 7 n Program Flow: Control Structures

rings true, it executes the if statements and says that the second number is bigger

than the first one.

Before we move on, let’s see what happens when you put in two equal numbers.

The result is Figure 7.5.

Here, you can see that neither the first if or second structure is true. Because of

this, both execute their second statements, ending up with two comments saying

that the numbers are equal. We need to fix this so it only shows once and doesn’t

give the wrong answer every time.

elseif
We need to figure out a way to put if statements together so we can use the else

command and not have to execute the same code twice. Fortunately, PHP

provides a control structure called elseif, which is very similar to if. It is part

of an if structure and only executes on two conditions: First, the if test needs to

fail and second, its own elseif test needs to succeed. Check out the basic structure:

if (comparison is true)

Branching Structures 109

Figure 7.4
Using phpft07-02.php with some errors.

{

//execute statements

}

elseif (different comparison is true)
{

//execute other statements

}

You can add an else section to this control structure as well, which only executes

if both the if and the elseif sections fail. Let’s put the two if sections together

on the page and add the else. This allows us to finally have a well-designed

structure that gives no errors.

if ($a > $b)

{

echo "Your first number ($a) is greater than your second number ($b).";

}

elseif ($a < $b)

{

echo "Your second number ($b) is greater than your first number ($a).";

}

110 Chapter 7 n Program Flow: Control Structures

Figure 7.5
Using phpft07-02.php with equal numbers.

else

{

echo "Both your first number ($a) and your second number ($b) are equal!.";

}

This structure can have only three possibilities. $a could be bigger than $b, $b

could be bigger than $a, or they could be equal. However, only one of the three

echo statements will be executed.

C au t i o n

Take note that this page only deals with integers. If you enter a string rather than a number, you
might get some erratic results.

No t e

One other branching structure is the ternary structure, which is very similar to if. . .else. You
can see some more examples with the ternary operator in Chapter 5.

switch
switch is excellent at comparing one variable to several possible values. switch

only works when checking to see if an input is exactly the same as a value; you

cannot run comparison tests on it. This is a great way to compare a variable

against several different known values to see if something occurs. For example,

you can see if $a equals 0 or a, but you cannot use switch to see if $a is greater

than $b. The following is the generalized structure for a switch statement:

switch($variable)
{

case 0:

//execute statements

break;

case 1:

//execute statements

break;

default:

//execute statements only if none of the cases fit

break;

}

Let’s quickly recreate a program we did earlier. Remember when I introduced if

control structures while designing the calculator? Let’s go back to that and use

Branching Structures 111

switch instead of if. The HTML file is the same, except the action attribute has

changed; the PHP file has changed. Check out what it now looks like. This file is

phpft07-04.php on the CD. Figure 7.6 shows you what the form page looks like.

<?php

//Put $_GET variables into our own variables

$a = $_GET[’first’];

$b = $_GET[’second’];

$op = $_GET[’operation’];

echo "The result of your expression, $a $op $b is ";

//Echo out the result of the chosen operation

switch ($op)

{

case ’+’:

echo $a + $b;

break;

112 Chapter 7 n Program Flow: Control Structures

Figure 7.6
The phpft07-04.html form file.

case ’-’:

echo $a - $b;

break;

case ’*’:

echo $a * $b;

break;

case ’/’:

echo $a/$b;

break;

case ’%’:

echo $a%$b;

break;

default:

echo "Warning: Operation Not Valid";

break;

}

?>

This replaces it all with switch, including a default value just in case the

user enters something that gives a big error. One result might look like

Figure 7.7.

You might be wondering what the break statements do. switch is designed so

that the execution of one of the commands will flood into another one. So, for

example, if we removed the breaks and did an addition problem on our calcu-

lator, we would get six results: the addition, the subtraction, the multiplication,

the division, the modulus, and the default echo. break stops this by exiting

directly out of the switch structure. As a general rule, always use a break after

each case unless there is an overbearing reason not to do so.

It’s important to note that I included a default case for the switch statement, even

though it appears impossible for the operation to ever be anything other than the

given choices. However, you should always include a default clause for your

switch statement. What if the form is a GET form and the user changes the

operation through the URL? Other things can come up that may confuse your

program, so it is always better to be safe and simply use a default clause.

Branching Structures 113

Loops
Sometimes, while designing a program, you need to execute a set of statements

repeatedly. You might need to display an entire set of data with hundreds of

elements or list all numbers from 1 to 100. Fortunately, PHP offers loops, which

allow you to execute a set of statements as many times as needed. There are

several different types of loops. Each type has strengths and weaknesses. You

most often find loops with arrays, which I go over in Chapter 10.

while
Let’s start off with the most common loop: while. Using the while loop, you

execute the statements as long as a certain condition is true. Remember the three

stages of the while loop:

n Initialization outside the loop, which ensures the loop executes at least once

n Condition inside the while statement

n Code inside the loop, which causes it to end

114 Chapter 7 n Program Flow: Control Structures

Figure 7.7
The phpft07-04.php file.

Let’s look at the structure:

while (condition is true)
{

//execute repeated statements

} //end of loop

You can enter whatever statements you want executed.

C au t i o n

Be careful---you don’t want to accidentally create a loop that is always true. If the statement inside
the condition test is never false, the loop will execute forever. This could occur if you write
something like while (1==1) or even while(1), because any non-zero number is always
considered true. A common error is to check some condition that never occurs, such as while
($x!=7), when the variable $x never actually becomes 7. If you do this, the loop continues
forever and the page never loads correctly.

Let’s create a simple program: a counter that counts from 1 to 10 and then

displays the digits on the screen. This file is phpft07-05.php on the CD and results

in a page that looks like Figure 7.8.

<html>

<head>

<title>A counter from 1 to 10 using while</title>

</head>

<body>

<?php

//give starting value to counter

$counter=1;

//increment counter from 1 to 10

while ($counter<=10)

{

echo "$counter
";

$counter++;

}

?>

</body>

</html>

Loops 115

As you can see, this program displays the numbers 1 through 10 on new lines.

This program uses the ++ operator to increase the variable each time the loop

goes through. Notice that I created the variable before the loop began. If I had

done this inside the loop, the $counter variable would continually be set to 1 at

the beginning of each iteration of the loop.

for
The for loop is very similar to while, except that you do not need to create or

increase the variable outside of the main loop statement: Everything is done

inside the beginning statement of the for loop. They are optimized for counting

situations in which you know exactly how many times you want to execute some

code. Instead, you actually define the variable and increment it. Let’s look at the

for loop structure:

for (variable assignment; comparison test; variable change)
{

//execute statements
}

116 Chapter 7 n Program Flow: Control Structures

Figure 7.8
The phpft07-05.php file.

Doesn’t look too bad, huh? Put the loop in a program. We will create an HTML

form that lets the user enter any two numbers. As long as the second number is

larger than the first, the PHP page will display all numbers from the first to the

second number. Let’s take a look at the source. The first page is for the HTML

document:

<html>

<head>

<title>Counter of two arbitrary numbers</title>

</head>

<body>

<form name="numbers" method="get" action="phpft07-06.php">

<p>

Enter your first value:

<input type="text" name="first" />

<p>

Enter your second value:

<input type="text" name="second" />

<p>

<input type="submit" >

</form>

</body>

</html>

As you can see here, all we have to do is create two textboxes that contain

numbers. Figure 7.9 shows what the page looks like.

The next page is the PHP code:

<html>

<head>

<title>Arbitrary Counter</title>

</head>

<body>

<?php

//Store variables

$a = $_GET[’first’];

$b = $_GET[’second’];

Loops 117

//if b is greater than a, loop through everything from a to b

if ($b > $a)

{

for ($i = $a; $i <= $b; $i++)

{

echo "$i
";

}

}

//b must be greater than a! Error if not.

else

{
echo "Your second number is not greater than your first number. Please enter in
new numbers.";

}

?>

</body>

</html>

118 Chapter 7 n Program Flow: Control Structures

Figure 7.9
The phpft07-06.html file.

This page initially tests to see if the second number is larger than the first. If this is

true, it creates a for loop that counts through all of the numbers and displays

them, one after another. If this is false, it simply echoes out an error statement.

Figure 7.10 shows what this page looks like with the first value being 4 and the

second being 16.

do. . .while
The do. . .while loop is almost identical to the regular while loop except for one

thing: This loop always executes at least once—even if the condition is false. Let’s

look at the structure:

do

{

//execute statements

} while (condition is true);

Loops 119

Figure 7.10
The phpft07-06.php file.

For example, if we were using while, what would happen if we wrote the fol-

lowing code?

$x = 10;

while($x < 10)

{

echo $x;

}

This will obviously do nothing, because $x starts off at 10. The while condition is

never true and the echo statements never execute. What if we use a do...while

loop, however?

$x = 10;

do

{

echo $x;

} while ($x < 10);

This code would simply display a counter from 1 to 10.

No t e

foreach is a specialized type of loop that only works with arrays, so I go over it in Chapter 10.

break and continue
There are two rare commands that deal with loops: break and continue. You

might remember break from the switch statement: When using it, the switch

command finished and exited. The same thing happens within loops. break

causes a loop to break out of the loop immediately. continue, on the other hand,

immediately forces the loop to go back to the top and execute from the begin-

ning, skipping the rest of the loop for that individual iteration.

120 Chapter 7 n Program Flow: Control Structures

Strings

Strings are a data type, much like integers or floating-point values, except they do

not deal with numbers. Instead, they deal with characters and words. An example

of a very basic string is a. A more complex string might be Hello, World, while a

very complex string might have symbols in it that aren’t even letters. They also

can contain numbers. Youmight want to create a string that looks something like

this: My house has 2 stories and 5 bedrooms.. Strings allow you to store numbers

as characters inside your strings, but strings with numbers inside them are not

the same as integers. Combining two strings gives you a result that is not the same

as adding two numbers, so "10"+"14" does not equal 24, but 10+14 will. Be aware

of the quotation marks around strings.

PHP, unlike other languages, has no length limit on strings. You can make them

as long or as short as you like. This is great for when you want to turn an entire

web page’s source or a very long piece of text into a string.

Making Strings
There are a few methods of creating a string, and these methods are known as

different methods of syntax:

n Single quoted

n Double quoted

n Heredoc

121

chapter 8

If you want to display a variable, you use the $ symbol. If you want to display a

string, you use quotation marks. However, there are two forms of quotation

marks: single and double. Both do different things, so let’s go over one at a

time.

No t e

I skip heredoc syntax because it is rather difficult to use. If you are interested in it, go to
www.php.net or www.maneeshsethi.com.

Single-Quoted Syntax

Single quotation marks look like one apostrophe that appears before the string

and another at the end. For example, your string might look like this:

’Hello, I am a string!’

As you can see, these single quotation marks designate the endpoints of a string.

You can also create a variable that holds the string:

$stringvar = ’Hello, I am a string!’;

Displaying a string is just as easy: simply use the echo function:

echo ’Hello, I am a string!’;

Or, if you already created it as a variable, you can do this:

echo $stringvar;

One of the cool things you can do with single-quoted strings is embed new lines

directly into the string. The new lines appear directly as you want them to.

echo ’Hello, I am a
string. You can see several new
lines within me. Aren’t they
cool?
’;

As you can see here, we are echoing these new lines within the middle of the

string. We can set it up to deal with variables, also:

122 Chapter 8 n Strings

www.php.net
www.maneeshsethi.com

$stringvar = ’Hello, I am a
string. You can see several new
lines within me. Aren’t they
cool?
’;

echo $stringvar;

Pretty cool, huh? See what this looks like on the web page in Figure 8.1.

Uh oh! It removed them all and simply wrote a full statement. Why is the

web page not displaying the new lines correctly? Let’s check out the source in

Figure 8.2 to see what it looks like.

Well, that looks better, huh? All of the new lines are there as planned, but

for some reason, the web page comes out with all of the new lines gone. This

occurs because an HTML browser does not deal with white space; instead, it

Making Strings 123

Figure 8.1
Using new lines in a string.

automatically removes it all. There are a couple ways to fix this problem. The first

way is to use
 tags and manually put them into the code. Check out how

that would look:

$stringvar = ’Hello, I am a

string. You can see several new

lines within me. Aren’t they

cool?

’;

echo $stringvar;

Sure, this works fine, but it is a little tough to use. It’s annoying to have to enter

 every single time you need to have a new line! Fortunately, PHP offers

another way to get around this problem: a function called nl2br(). Look at the

function name and see if you can figure out what it means—that’s right, it

converts new lines (nl) to (2)
 tags (br).

124 Chapter 8 n Strings

Figure 8.2
Using new lines in a string and its source.

What does this mean? You can echo directly out your string and it will display the

new lines as intended! For example, doing something like the following displays

the text exactly how we want it:

echo ’Hello
I am
On
Several lines.’;

Let’s try adding this to our web page:

$stringvar = ’Hello, I am a
string. You can see several new
lines within me. Aren’t they
cool?
’;

echo nl2br($stringvar);

Figure 8.3 shows what this ends up looking like on the web page—working just as

we wanted it to, with all the new lines showing perfectly. Let’s even take a look at

the source in Figure 8.4.

Not bad at all, eh? Now look closely at the document we just created. Sure, it has

the new lines working fine, but there is one small error. This is one of the lines:

lines within me. Aren?t they

This is what it should be instead:

lines within me. Aren’t they

Uh oh! Why did that question mark appear?

I copied and pasted the word aren’t from a word processor. A lot of word

processors make text look prettier by curving the apostrophes, so that instead of

making a single quote straight (’), you get one that is curved (‘). This is a great

effect when writing documents, but in PHP, both the straight and the curved

single quotes (also called apostrophes) are recognized as different characters. This

error can occur whenever you have quotes anywhere in your page. Make sure you

don’t copy from a word processor!

In fact, the curved quote mark is not recognized as a valid character in PHP.

When the PHP document gets to this quotation mark, it displays a question

Making Strings 125

mark. So what would have happened if I had not used a curved quotation mark,

but rather a straight one? It would have been worse. PHP would have seen this

mark and assumed it was designating the end of the string. Then, it would have

seen the words after the string and unsuccessfully tried to interpret them. So,

instead, it would have given the following error:

Parse error: syntax error, unexpected T_STRING in file.php on line 5

This is obviously much worse. There must be a way to display apostrophes within

a PHP document, right? Of course there is. PHP offers an escape sequence. Most

escape sequences are used in double-quote syntax, but the apostrophe escape

sequence is used in single-quote syntax. An escape sequence is a single character

that tells PHP that the following character is meant to be displayed in a special

way. In this case, the escape character is the backslash \. When you want to use

apostrophes in your document, use \’. Let’s add to what we have created. This is

our final page, and you can find it on the CD as phpft08-01.php.

126 Chapter 8 n Strings

Figure 8.3
Using nl2br().

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using single quote syntax</title>
</head>

<body>
<?php
$stringvar = ’Hello, I am a
string. You can see several new
lines within me. Aren\’t they
cool?
’;

echo nl2br($stringvar);
?>
</body>
</html>

Making Strings 127

Figure 8.4
The nl2br() source.

See that? The escape sequence makes it work better. Figure 8.5 shows what this

page looks like when you load it within your web browser.

Now let’s talk about using variables with single-quote syntax. As you might re-

member, when using single quotes, you have to be careful about putting variables

into strings. Instead of simply putting the variable in, you need to join it to the rest

of the string using the dot operator (.). This is a little tricky, so pay attention.

Begin a string with a single quote and end it with a single quote. You then use the

dot operator to join the two. For example, I want to put a variable $name into a

document. I basically want the page to say "Welcome to www.maneeshsethi.com ,

$name" where $name is replaced with the user’s name. See how the dots join

the variable—which is not within quotes—to the strings—which are within

quotes?

echo ’Welcome to maneeshsethi.com, ’ . $name . ’!’;

Okay, let’s make an example program that does exactly this. We will have a page

into which you enter your name, and the next page welcomes you by the name

128 Chapter 8 n Strings

Figure 8.5
The phpft08-01.php file.

www.maneeshsethi.com

you entered. Let’s take a look at the form first. This page is phpft08-02.html on

the CD. See Figure 8.6.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using the dot operator</title>
</head>

<body>
<form name="nameofuser" action="phpft08-02.php" method="get">

Enter your name: <input type="text" name="username">
<input type="submit">

</form>
</body>
</html>

Making Strings 129

Figure 8.6
The phpft08-02.html file.

We just created a form with an input value. Let’s add the PHP document to that,

phpft08-02.php, then check out how it looks in Figure 8.7:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using the dot operator with a form</title>
</head>

<body>
<?php

$name = $_GET[’username’];

echo ’Welcome to maneeshsethi.com, ’ . $name . ’!’;

130 Chapter 8 n Strings

Figure 8.7
The phpft08-02.php file.

?>
</body>
</html>

Double-Quoted Syntax

Double-quoted syntax has these differences from single-quote syntax:

n Many more escape sequences.

n The way that variables are

parsed. Parsing means

displaying variables, and double

quotes deal with the variables

in a different (and easier)

fashion.

n A different way of dealing with

variables. Table 8.1 lists the

escape sequences available when

using double-quote syntax. Try

to memorize those you will use.

No t e

There are two other double-quote syntax escape sequences, but they deal with numbers of a
different base.

You can use variable names directly in a string simply by referring to them with a

$ symbol. If I want to refer to the variable $name within a program, this is what I

could do:

echo "My name is $name";

Pretty cool, huh? You don’t need to worry at all about using the dot operator, nor

using any special symbols for your variable. You can do a few cool things with

double-quoted syntax. For example, take a look at the following script:

$stringvar = car;

echo "I want to buy six $stringvars";

Making Strings 131

Table 8.1 Common Escape Sequences

Sequence Name

\n Line feed

\r Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\" Double quote

This doesn’t work as we want. We want the result to say "I want to buy six cars",

but instead we get an error. PHP has a way to fix this:

$stringvar = car;

echo "I want to buy six ${stringvar}s;

The trick here is to use curly braces: { and }. By using them, you can display the

variables as you want. Another way to do this is to use concatenation like we did

with the single-quote syntax. The previous example could be done like this:

$stringvar = car;

echo "I want to buy six $stringvar" . "s";

As you can see, we bypass this problem altogether by using the dot operator!

String Functions
A lot of functions can enhance a string’s capabilities. One very common need is

to convert an integer into a string. This may happen when you take in an integer

from a form and need to add it to part of a string. Fortunately, there is a function

that can do this: strval(). Let’s put this in a quick program.Watch what happens

if we have the user enter two numbers. The program adds them together and

combines the results of strval(). The first page is a simple HTML page. The

following code creates a page that looks like Figure 8.8:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>
<title>Putting two numbers together with strval()</title>
</head>

<body>

<form name="together" action="phpft08-03.php" method="get">

Enter your first number: <input type="text" name="firstop">
<p>Enter your second number: <input type="text" name="secondop">
<p><input type="submit">

132 Chapter 8 n Strings

</form>
</body>

</html>

Now, let’s take a look at the PHP document:

<html>
<head>
<title>Using strval()</title>
</head>
<body>
<?php

$a = $_GET[’firstop’];
$b = $_GET[’secondop’];

echo "Let’s take a look at the two results of using your operators.";
echo "<p>Using the addition operator does this: ".($a + $b);

String Functions 133

Figure 8.8
The phpft08-03.html file.

echo "
Adding the numbers using strval produces this: ". strval($a).’ ’.
strval($b);
?>
</body>

</html>

This page, with the inputs of 13 and 15, looks like Figure 8.9.

You see what this program does? In the echoing section, adding two numbers

creates an addition problem. However, using their strval() values, you get a new

sentence!

This is only one of the possible string functions, and there are several dozen

more. Some are really cool, such as substr(), which lets you search within a

string, and soundex(), which lets you find words that have similar pronuncia-

tions. I recommend researching www.maneeshsethi.com and www.php.net to learn

some more useful techniques for strings.

134 Chapter 8 n Strings

Figure 8.9
The phpft08-03.php file.

www.maneeshsethi.com
www.php.net

Functions

A function is essentially a section of code that you can call over and over again.

This function can do repetitive tasks very easily and safely, and because it is

encapsulated in a function name, it makes the main program look a lot neater.

We have been using a lot of predefined functions, written by PHP, such as

strval() and nl2br(). Notice how both functions have parentheses after the

name? That is a function’s defining attribute. In Chapter 6 I explain that I format

my multi-word functions using an underscore. This is an example of one of my

functions:

execute_func();

Designing Your Own Functions
You might be wondering why you would ever want to design a function.

Functions allow your program to become a lot more robust and capable.

Functions make your program modular, meaning that you can use parts of your

program in other programs without worrying about problems. This means less

work for you overall. Let’s take an example. Let’s say I had a program that added

the numbers 1 through 10. This is how a sample program would look if I wrote it

without functions:

<?php
echo "The following counter will add up the numbers 1 through 10";
echo "
Please wait, your numbers are being tabulated below.";

135

chapter 9

$runningcounter=0;
for ($x=1; $x <= 10; $x++)
{

$runningcounter = $runningcounter + $x;
}
echo ’<p>Your result is ’ . $runningcounter;
echo "
Thanks for using our program!";
?>

The majority of this program is taken up by the code for the running counter.

The counter also does not seem to mix well with the rest of the program

that consists solely of echo statements. The program would look like the one in

Figure 9.1.

136 Chapter 9 n Functions

Figure 9.1
A running counter program without using a function in phpft09-01.php.

As you can see, the display looks fine. Underneath, as you saw before, the code

isn’t as nice as it could be. Look at how we could make this program look a heck

of a lot better by turning the counter into a function:

<?php
echo "The following counter will add up the numbers 1 through 10";
echo "
Please wait, your numbers are being tabulated below.";
echo ’<p>Your result is ’ . counter_1_10();
echo "
Thanks for using our program!";
?>

This might look a little strange. The only change is removing the code for the for

loop from the earlier program and replacing it with a function call. The call is in

the echo statement.

echo ’<p>Your result is ’ . counter_1_10();

You can see here we changed the variable $x to counter_1_10(). Of course, this

function name by itself doesn’t do anything—we need to make it actually mean

something! I show you, very soon, how tomake your functions work, but before I

do, look at another example of using functions.

If you are writing a song, you could do something like this:

<?php
verse1();
chorus();
verse2();
chorus();
verse3();
chorus();
chorus();
?>

This is a pretty common setup for a song, but notice how you are allowed to call

the same function chorus() multiple times, and in any order? Functions allow

you to do cool things like this.

Before you learn how to create this program, look at the basic structure for

defining a function. The parts you can change to suit your individual function are

in italics.

Designing Your Own Functions 137

<?php
function function_name(parameter1,parameter2,. . .)
{
function code
}
?>

Doesn’t seem too difficult, does it? Function definitions are just the structure and

code of the function.

Dissecting a Function
Functions have three parts that we need to go over:

n Function code

n Parameter list

n Return value

Only the code section is required; both the parameter list and the return value are

optional. However, in most functions, you will be using all three.

Function Code

The function code section is the main section located between the curly braces:

{ and }. This section deals with the function’s actual work. You can add state-

ments and expressions in this section as you would in a normal section of the

code. Often, this section of the code interacts with the parameter list in the

function declaration.

Parameter List

Parameters are variables and values that you can pass to a function when calling

it. Remember when we used the nl2br() function? This function converted new

lines in your code to
 tags, taking the string that had new lines in it as a

parameter. You pass parameters inside the parentheses when you call the func-

tion, and the function can then use the parameters to act upon it.

In using the nl2br() function, you might create a string and send it to the

function like this:

138 Chapter 9 n Functions

<?php
$stringvar = ’Hello
I am a string
that has new lines inside
of it’;

echo nl2br($stringvar);
?>

In this example, the variable $stringvar acts as a parameter and is passed to the

nl2br() function. However, notice that the result is echoed by the echo construct.

You create a result from a function by using a return value. Many functions use a

return value if they produce a result.

Return Value

Return values are the opposite of parameters. When you use a parameter, you are

sending data to the function to be acted upon. A return value is data sent from the

function to the program that called it. The program uses the result to go on with

its actions. In the case of nl2br(), the return value was the new string. In the case

of the program we wrote, the return value is as follows:

’Hello

I am a string

that has new lines inside

of it’;

This result is then echoed out by the echo statement. This causes the display in

Figure 9.2. Because of the function’s return value, the echo statement is able to do

its job and display the proper code.

Let’s take a look at the web page we created earlier in this chapter. In that program,

we created a running counter to display the value of the sum of all numbers

between 1 and 10. By removing the counter and replacing it with a variable, we

made the program a lot easier on the eyes: The coding section was exported into a

function, and the main section was executed with a function call. We still need to

declare and display that function on the screen, however. Take a look at how the

full program looks with the main section’s code and the function’s code in place:

<?php
echo "The following counter will add up the numbers 1 through 10";
echo "
Please wait, your numbers are being tabulated below.";

Dissecting a Function 139

echo ’<p>Your result is ’ . counter_1_10();
echo "
Thanks for using our program!";

function counter_1_10()
{

$runningcounter=0;
for ($x=1; $x <= 10; $x++)
{

$runningcounter = $runningcounter + $x;
}

return $runningcounter;
}
?>

The program has expanded a little bit, huh? Well, it has, but the expansion has

caused it to be a lot cleaner. The new function takes care of all the code and you

can concentrate only on the main program to see what is going on.

140 Chapter 9 n Functions

Figure 9.2
Using a return value in a function.

The function here is defined as counter_1_10() and it does the same thing as the

running counter we developed earlier. The only difference is that it also uses a

return value near the end of the script. The following line makes the return magic

happen:

return $runningcounter;

The variable $runningcounter contains the sum that we have been looking for

throughout the function. We return the value back to where it was called up in

the echo statement in the main program. The value of the returned data (in this

case, 55) is substituted for the function call, and the echo statement echoes out

the correct result. The web page looks like the one in Figure 9.3.

Hey, that looks a lot like Figure 9.1! Actually, they are identical. If you are

writing code and you get the feeling that you should copy and paste some code

from earlier in your script, that is a perfect time to use a function! A function just

Dissecting a Function 141

Figure 9.3
Using a return value in phpft09-03.php.

splits up the section where the code occurs to make the program make more

sense.

This may seem pointless. Why split it up if all it does is make the program a little

longer? Well, for one, the program is cleaner when using functions. However, the

real power in using functions comes when you combine return values with

parameters and make the functions more flexible.

Let’s rewrite this program to deal with an HTML page, allowing input from

the user. The user can enter a lower value and an upper value, and the program

will add all numbers between the two and show the result. Let’s start off by

looking at the HTML page, shown in Figure 9.4. It’s similar to ones we have seen

in the past.

142 Chapter 9 n Functions

Figure 9.4
Designing the form in phpft09-03.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>
<title>Using parameters on a running number counter</title>
</head>

<body>

<form name="together" action="phpft09-03.php" method="get">

Enter your first number: <input type="text" name="firstop">
<p>Enter your second number: <input type="text" name="secondop">
<p><input type="submit">

</form>
</body>

</html>

Now display the result of the two numbers in the following PHP document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using a running counter with functions</title>
</head>

<body>

This page is designed to add up all the numbers between the numbers you provided.

Please wait, your numbers are being tabulated below.

<?php

$first = $_GET[’firstop’];
$second = $_GET[’secondop’];

if ($second > $first) //if the second number is larger than the first, execute
the program as it should run

{

Dissecting a Function 143

echo ’<p>Your result is ’ . running_counter($first,$second);
echo "
Thanks for using our program!";

}

else //the second number is not larger than the first, error

{

echo "<p> Your second number is not larger than the first
number, please fix and try again.";

}

function running_counter($first,$second)
{

$runningcounter=0;
for ($x=$first; $x <= $second; $x++)
{

$runningcounter = $runningcounter + $x;

}

return $runningcounter;

}

?>

</body>
</html>

Pretty tricky, huh? This has been our most complex program so far, and it is one

of the coolest. This function lets you find the sum of any two arbitrary numbers

using a simple for loop. Check out Figure 9.5. The figure shows the result using

the numbers 13 and 314. The result, as shown, is the sum of every number

between 13 and 314. Doing this by hand would take forever!

The program has a basic body, utilizing the main section only to access the

variables and echo results. The function it calls takes in two parameters, $first

and $second, and uses these parameters to return a sum. This function could be

used in any program that needs the sum of all digits between two numbers.

144 Chapter 9 n Functions

Notice that we called the function with variables $first and $second, and the

function used variables of the same name. This is not required. We can pass

whatever parameters we want into the function, and the values that we pass are

copied into the variable names of the function declaration. We could have chosen

simply to pass $_GET[‘firstop’] and $_GET[‘secondop’] rather than ever turning

them into the scalar variables $first and $second, for example. We converted the

$_GET variables because they are a lot easier to handle without the bracketed array

syntax and because their names are more intuitive.

The real strength of using functions comes from their portability. Because a

function can be written so that it does not rely on any variables from the pro-

gram, you can simply lift that function right out of this script and use it on

another. If you ever write another program that requires a counter, you can use

this same function without modification. In fact, a lot of programmers take all of

their commonly used functions and build a library file with them. Then,

Dissecting a Function 145

Figure 9.5
The sum in phpft09-03.php.

whenever they need to perform a task, they simply load up the library file and call

the already written function.

Of course, not all functions are portable because of something called variable

scope.When using variables, the program can only access a subset of the variables

that are created. For example, if you have a variable $test_var in function DoA(),

another function DoB() cannot access that $test_var unless the variable is

passed as a parameter to DoB(). Some arrays that are predefined by the language,

such as $_GET and $_POST, are global to all functions. However, for functions you

develop on your own, be careful to make sure you only access and use variables in

scope.

F o r t h e ma t h ema t i c a l l y m i n d ed

If you look at the program we created, you can see it’s a pretty ugly way to get a sum of all the
numbers between arbitrary endpoints. We use a mechanism that actually loops through each
value and adds it to a running counter. A few mathematical functions will produce the correct
result without the ugly loops. This means that for very large sums, this program could take a
while.

To get the sum from this series, there is a cool mathematical formula: sum. This is how it appears:
S(n) = n/2 * (a(1) + a(n)), where n is the total of numbers you want to add together, a(1) is the
first number in the series, and a(n) is the final number in the series. If you want to find the sum of
the first four members of the series we wrote, you would get this: S(4) = 4/2 * (1 + 7) = 16. If you
use this formula in your running calculation, the answer will be achieved much more quickly.

So what’s the point? Just because a solution works doesn’t mean it is the fastest or best way to
do something. Sometimes things can go much faster if you find a better algorithm.

Calling a Function Depending on a Condition
Sometimes you need to call a function depending on a condition. You’ll often

need to write more than one function in a program. We don’t need to call all of

them in every run, but we may need to call a few depending on the situation.

One of the best examples is when you need to convert Celsius to Fahrenheit or

vice versa: a degree-conversion calculator. The first thing to do is design the

HTML page. This is going to be complex because it gives the user lots of options

to convert. Let’s take a look at the HTML file it takes to produce this. You can

find this on the CD as phpft09-04.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

146 Chapter 9 n Functions

<html>

<head>
<title>A Degree Calculator</title>
</head>

<body>

<form name="together" action="phpft09-04.php" method="get">
<p>This script will convert one degree measurement to another.
<p>Enter your first number: <input type="text" name="firstdeg">

<select name="firsttype">
<option value="celsius">Celsius
<option value="fahrenheit">Fahrenheit

</select>

<p>Choose what you would like the degree to be converted to:

<select name="secondtype">
<option value="celsius">Celsius
<option value="fahrenheit">Fahrenheit
</select>

<p><input type="submit">

</form>
</body>
</html>

This page looks like Figure 9.6.

You might be wondering why we allow the user to choose what he converts the

degree measurement to. Why not automatically choose to convert to Fahrenheit

if she selects Fahrenheit? This allows for expandability. If you want to let the user

convert to a different degree measurement, such as Kelvin, you can easily add this

without changing the HTML page very much.

The PHP for this page is very complex and involves a lot of functions. Let’s go

through the major parts one at a time. The first section involves setting up the

HTML and synchronizing the variables.

Calling a Function Depending on a Condition 147

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Conversions of degrees</title>
</head>

<body>

We are going to convert your value as you requested. Please wait.<p>

<?php

$a = $_GET[’firstdeg’];
$firstdeg = $_GET[’firsttype’];
$seconddeg = $_GET[’secondtype’];

148 Chapter 9 n Functions

Figure 9.6
Conversion form in phpft09-04.html.

This section creates the page and sets up some basic variables for the remainder of

the program. We use the $_GET[] array to take in the user’s input from the

previous page. Next, we need to deal with these variables.

//DECLARE CONDITIONS
if ($firstdeg == ’celsius’ && $seconddeg == ’fahrenheit’)
{

echo "The conversion of $a degrees $firstdeg to $seconddeg is " .
celsius_to_fahrenheit($a) . ".";
}

else if ($firstdeg == ’fahrenheit’ && $seconddeg == ’celsius’)

{
echo "The conversion of $a degrees $firstdeg to $seconddeg is " .

fahrenheit_to_celsius($a) . ".";
}

else //if they are both the same

{
echo "Error, you are converting a degree to the same measurement.

Please change one and try again. ";

}

This part of the program handles the echoing out of the results of the function

calls. In addition, it actually goes about interpolating the function calls between

the echoed strings. Look carefully at the strings to see how the quotation marks

and function calls work to make the string become a valid sentence.

The final section of the program is a listing of the functions that do the program’s

work:

function celsius_to_fahrenheit($a)
{

return ((9/5)*$a + 32);

}

function fahrenheit_to_celsius($a)
{

Calling a Function Depending on a Condition 149

return (5.0/9.0)*($a-32);
}

?>

</body>
</html>

Pretty simple, huh? Check out Figure 9.7 to see what this page looks like. These

two functions return the values requested by the echo calls. Their return values

come from the Celsius and Fahrenheit conversion formulas, easily found in any

science textbook. Together, all the parts of this PHP program create a very cool

result, a form that can accept user input and deal with whatever numbers it gets.

All in all, it’s not bad for just a short time of learning, huh?

150 Chapter 9 n Functions

Figure 9.7
Conversion in phpft09-04.php.

Arrays

You already learned a little about arrays, those pesky little sets of variables, and in

this chapter, we are going to review what we already know and learn a lot more

about them. Arrays are very useful in PHP programming, and you will find them

in probably every advanced program you see. When using a form to submit a

value, the variables are stored in an array, which is passed along to the new page.

This array is used for calculations and data recall.

PHP documentation explains an array as an ordered map that has a set of keys

that each has a value. You create the keys in the array; keys are names that

reference the individual items in an array. Sometimes a set of consecutive

numbers is used, and other times a set of strings is used. Because all elements of

an array have the same name, you need some way to keep them separate. For

example, when using the $_GET[] array, the key was whatever was in the brackets.

For example, the $_GET[‘fullname’] key was fullname. Often, the key is a

number, so you can have a set of arrays from 0 to 10 looking like $array[0] to

$array[10].

Arrays are particularly strong if you use integers with them and want to initialize

a large number of values. for loops can do this very easily, using a for loop to set

each individual element of an array. Arrays and loops are natural companions.

Creating an Array
To create an array, you need several elements.

151

chapter 10

array() Language Construct

Use the array()language construct, which is very similar to a function. You call

array() and the return value is equal to the new array. Therefore, whatever

variable you set as equal to the result of array()becomes an array. For example,

take a look at the following:

$newarray = array();

Your new array will be stored in the variable $newarray. Of course, the problem

we have now is that this array is blank! We have to create items in the array.

Before we do this, let me show you how to reference items in an array.

Reference Items

Array items have two parts: a key and a value. A key is basically the location of the

variable, and the value is what is stored at that location. Think of a golf course. In

this case, the hole you are on is the key (1–18), and your score on the hole is

the value. You can then look for a specific hole and see what your score was.

Similarly, if you make a reference to a variable in your array with a valid key, a

value at that location is returned. The key in this type of problem is stored within

brackets attached to the end of the variable’s name. Here is a simple structure:

$newarray[’key’] = value;

If you substitute your wanted values, you create an array element.

Let’s look at a simple program, whose results are shown in Figure 10.1. This is

phpft10-01.php. This program simply creates five array values and echoes them

on the screen.

<?php

$newarray = array();

$newarray[1] = "First item";
$newarray[2] = "Second item";
$newarray[3] = "Third item";
$newarray[4] = "Fourth item";
$newarray[5] = "Fifth item";

echo $newarray[1];
echo $newarray[2];
echo $newarray[3];

152 Chapter 10 n Arrays

echo $newarray[4];
echo $newarray[5];

?>

That’s not too difficult, huh? Creating an array just requires you to reference it

using the proper syntax and set the items equal to their values.

Creating Array Elements
Now, in a case like earlier, you already knew what all the variables were going to

equal. PHP offers a great way to create your array elements at the same time as

creating arrays. This requires the => operator, and the array declaration is done at

the time array() is called. Look at the basic structure:

$newarray = array(key => value, key => value, . . .)

Creating Array Elements 153

Figure 10.1
Creating array elements in phpft10-01.php.

As you can see, we are calling array() with a list of parameters. You can create as

many keys as you want, and all of them will be part of $newarray.

Let’s rewrite the program using this new syntax. This is phpft10-02.php and you

can find it on the CD. In addition to changing the preceding program’s syntax, I

added
 tags to make it cleaner.

<?php

$newarray = array(1 => "First item", 2 => "Second item", 3 => "Third item", 4
=> "Fourth item", 5 => "Fifth item");

echo $newarray[1] . ’
 ’;
echo $newarray[2] . ’
 ’;
echo $newarray[3] . ’
 ’;
echo $newarray[4] . ’
 ’;
echo $newarray[5] . ’
 ’;

?>

The results are shown in Figure 10.2. Pretty cool, huh? A lot less work if you

already know the variable names.

Defining Arrays with PHP
I’m going to show you a couple cool tricks you can use for defining arrays like

this.

Notice that this type of array uses a consecutive list of integers. When using

strings or nonconsecutive integers, these tricks won’t work, but when using

similar lists these tricks are great.

Skip the Array Key Definition

The first trick is to skip defining the array key. When you begin defining the array

with the short syntax and skip the "key" => part (using only a list of values), you

get an array with integer indices starting at 0. For example, say you did this:

$testarray = array(’a’,’b’,’c’,’d’,’e’);

You get an array with these elements:

$testarray[0]=’a’;
$testarray[1]=’b’;

154 Chapter 10 n Arrays

$testarray[2]=’c’;
$testarray[3]=’d’;
$testarray[4]=’e’;

The declarations are identical. Note that because we start counting with 0, a five-

element array ends at array key 4.

If you want to do this without using short syntax, there is a method for that

also:

$testarray = array();
$testarray[]=’a’;
$testarray[]=’b’;
$testarray[]=’c’;
$testarray[]=’d’;
$testarray[]=’e’;

Defining Arrays with PHP 155

Figure 10.2
Creating array elements in phpft10-01.php.

In this case, we just leave the key absolutely blank, and it assigns the next integer

value to the array. Let’s take a look at an example. The following is code from

phpft10-03.php and it appears onscreen like Figure 10.3.

<?php

$newarray = array("January", "February", "March", "April", "May", "June",
"July"

, "August", "September", "October" , "November", "December");

echo $newarray[0] . ’
 ’;
echo $newarray[1] . ’
 ’;
echo $newarray[2] . ’
 ’;
echo $newarray[3] . ’
 ’;
echo $newarray[4] . ’
 ’;
echo $newarray[5] . ’
 ’;
echo $newarray[6] . ’
 ’;

156 Chapter 10 n Arrays

Figure 10.3
Creating array elements without keys in phpft10-03.php.

echo $newarray[7] . ’
 ’;
echo $newarray[8] . ’
 ’;
echo $newarray[9] . ’
 ’;
echo $newarray[10] . ’
 ’;
echo $newarray[11] . ’
 ’;
?>

Note that in this case, the months started with 0 and ended with 12. Many times

in programs it is easier to think of calendar months as 1–12, rather than 0–11. If

you do this, you should probably create a blank month at month 0 and start

January off at array element 1.

Numeric indices for your array are really useful when you are going to loop

through all of the data and manipulate them. For example, in the golf example at

the beginning of the chapter, we stored the hole number as the key and the score

on that hole as a value. If we loop through all the holes from 1–18, we would get

the final full score! String indices are better for describing what is stored in the

array, such as with $_GET[] arrays. You have string describers, so it is easier to see

what is stored in each element.

Use a Loop

Now there is one more trick involved with basic array creation and display.

Notice how hard it is to type out all those echo statements? Wouldn’t it be easier

if you could loop through the array and display them all?

There is a special type of loop that does this, but it is more powerful and we will

be going over it later on in this chapter. For now, let’s use a basic for loop to

make this program a lot easier to write. The following code is from phpft10-04.

Check out Figure 10.4, which shows what this array looks like on the screen.

<?php

$newarray = array("January", "February", "March", "April", "May", "June",
"July"

, "August", "September", "October" , "November", "December");

for ($i = 0; $i <= 11; $i++)
{

echo $newarray[$i] . ’
 ’;
}

?>

Defining Arrays with PHP 157

See how this program works? A for loop goes through all the indices and

elements of an array, and displays them on the screen. It’s a lot easier than

actually writing out each element manually.

Working with Arrays
The following functions let you use arrays in various ways throughout your

program.

unset() Function

When you are done working with array values, sometimes it is nice to get rid of

them altogether. You might need to use them again later in the program, and

want to reuse the keys without worrying about overwriting data. PHP offers the

158 Chapter 10 n Arrays

Figure 10.4
Creating array elements with a for loop phpft10-04.php.

unset() function to get rid of old array values (or, for that matter, old arrays).

The function unset() works by only unsetting exactly the parameter you pass to

it. Unsetting an array is useful for memory management.

If you want to create an array with five values, you could write something like the

following, which ends up looking like Figure 10.5:

<?php

$newarray[]=0;
$newarray[]=1;
$newarray[]=2;
$newarray[]=3;
$newarray[]=4;

echo $newarray[0];
echo $newarray[1];

Working with Arrays 159

Figure 10.5
Before using unset().

echo $newarray[2];
echo $newarray[3];
echo $newarray[4];

?>

Now, let’s use unset() on this program:

<?php

$newarray[]=0;
$newarray[]=1;
$newarray[]=2;
$newarray[]=3;
$newarray[]=4;

unset($newarray[2]);
unset($newarray[3]);

echo $newarray[0];
echo $newarray[1];
echo $newarray[2];
echo $newarray[3];
echo $newarray[4];

?>

All we did here was add a couple of lines on unsetting some array items. The

result is in Figure 10.6.

If this program gives you an error, that means that your server has its restrictions

set very high. This error arises when you try to echo out unset variables. However,

this means it is working correctly—an error should occur if your server has strict

settings.

This page can be found in phpft10-05.php on the CD. As you see, simply the act

of unsetting the variables made trying to echo them impossible, because they did

not exist. You could’ve gone one step further, however, and eliminated the entire

array by doing this:

unset($newarray);

160 Chapter 10 n Arrays

foreach Loop

The foreach loop is designed distinctly for working with arrays, and if you know

how to use it, you can do many more things with arrays. foreach lets you choose

any array that you have designed and independently loop through every

single item in the array. This is great if you have developed an array of an

unknown amount of items and simply want to display the array’s contents as soon

as possible.

The foreach loop has two separate structures, both of which you can use at any

time. The first structure looks like this:

foreach ($arrayname as $valuename)
{

//perform statements
}

Working with Arrays 161

Figure 10.6
After using unset() in phpft10-05.php.

Take a look at that! I just created a new loop that goes through every single one of

the loop’s elements and allows me to access each one. The value $arrayname is the

name of the array, and $valuename is an arbitrary variable that is assigned to each

individual value of the loop in each iteration.

Let’s see how we might use this. Let’s go back to the web page we made earlier,

phpft10-03.php. In this script, we developed a page that would display each

month of the year. We used a dozen echo commands to display each one.

However, using the foreach loop, we could do this much quicker—more

quickly, in fact, than a basic for loop like the one we developed in phpft10-

04.php. Check out Figure 10.7 and look at the code that would do this. This page

is phpft10-05.php on the CD.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using a foreach loop</title>
</head>

<body>

<?php

$newarray = array("January", "February", "March", "April", "May", "June",
"July", "August", "September", "October" , "November", "December");

$variablecounter = 1;
foreach ($newarray as $month)
{
echo "We have iterated through the loop $variablecounter times ==> ";
echo $month . ’
’;
$variablecounter++;
}

?>

</body>
</html>

162 Chapter 10 n Arrays

Hey, pretty cool, huh? We developed the same item and used a variable counter

to actually count the number of times we looped through. The counter incre-

ments itself each time the loop is iterated, so we see the number of times that

every command occurs. This is a lot easier than using the basic for loop, huh?

Let’s take a look at the other possible structure you can use for defining foreach

loops in your programs:

foreach ($arrayname as $keyname ==> $valuename)
{

//perform statements
}

A little different declaration. The only major difference here is that we added

$keyname; now we can figure out the keys as well as the values. This structure is

great for using with forms.

Let’s see a sample.We could develop a form that has several optional items. It can

then display the keys and values to help understand which fields were filled in and

Working with Arrays 163

Figure 10.7
Using the foreach loop in phpft10-05.php.

which the user decided to leave blank. Create a sample form. The following code

comes from phpft10-06.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using a form with foreach</title>
</head>

<body>
<form name="sampleform" action="phpft10-06.php" method="get">

<h2>Please enter in the following information. All fields are optional. </h2>
Name: <input type="text" name="name">

Address: <input type="text" name="address">
<p>Phone number:

<input type="text" name="phone">

I prefer a) <input type="radio" name="prefer" value="cheese">Cheese

b) <input type="radio" name="prefer" value="bread">Bread

c) <input type="radio" name="prefer" value="meat">Meat
<input type="submit">
</form>

</body>
</html>

This page creates a nice-looking form with radio buttons. Check out what this

page looks like in Figure 10.8.

Let’s look at the PHP section of phpft10-06.php, which displays the results using

PHP:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Using a foreach loop with forms</title>
</head>

<body>

164 Chapter 10 n Arrays

<?php

$counter = 1;
foreach($_GET as $keyvalue => $realvalue)
{

echo "Loop has iterated $counter times: ";
echo "Key: $keyvalue has value: $realvalue" . ’<p>’ ;
$counter++;

}

?>

</body>
</html>

Working with Arrays 165

Figure 10.8
Creating a form for phpft10-06.html.

This ends up looking like Figure 10.9.

Whoa, look at that. The page displays the proper results by showing the key value

and the real value of each element in the $_GET array. Remember that the $_GET

array actually is a predefined container that holds all of the elements submitted

through the GET method on a form. When we used the form on the last page, we

sent all the information through GET to the new page. This page then took that

data and looped through each element of the array, displaying the key value and

the real value on the screen. With that, we got the results we wanted!

This program properly reports the value of every field of every form with a GET

method. This form is not tied to a specific form, and you can use any HTML page

to reference this PHP page, and it will display all the elements of your GET array.

This is useful to check for errors. Pretty cool, huh?

166 Chapter 10 n Arrays

Figure 10.9
Displaying results in phpft10-06.php.

Advanced Forms

We’ve been using forms in almost every chapter so far in this book, and now it is

time to learn more about what they can do. We have only been using basic forms

so far, such as those with textboxes and a submit button or a selection box. In this

chapter we take a closer look at web forms and see how PHP can make them very

strong. I start by discussing some more-advanced HTML form elements, and

then discuss the ways to use the forms in PHP to make your pages more robust.

Advanced Elements
Get ready—I go over a lot of different form elements in this chapter.

Radio Buttons

Radio buttons are organized into groups: Only one in a group of radio buttons

can be selected. Use the <input> tag with the type set to radio (the same way that

you do with a checkbox). However, you need to add one more parameter in

addition to type and name: value. This parameter becomes the value of the $_GET

or $_POST array that you access through PHP. For items of the same group, all of

their name parameters are identical. This becomes the key of the GET or POST array.

It’s important to note that a key/value pair is only sent if at least one of the radio

buttons is selected. For this reason, if you decide to not make one of the radio

buttons checked by default, make sure that the array key is set. If you don’t test

this, the user can simply skip the radio button section, creating an error when you

167

chapter 11

try to access the radio button. You can ensure that at least one button was

checked by using the $isset() function.

You might want to create a page that asks the user where he lives. This can be

done with a simple set of checkboxes, like the ones that are in Figure 11.1.

As you can see in the figure, only one item is selected: theWest (because I’m from

California). If you click another, the West radio button clears and the other is

selected. Let’s look at the HTML code that makes this page possible:

<body>

Please enter your location

<form action="something.php" method="post">

<input type="radio" name="location" value="west">The West

<input type="radio" name="location" value"northwest">The Northwest

<input type="radio" name="location" value"southwest">The Southwest

<input type="radio" name="location" value"south">The South

168 Chapter 11 n Advanced Forms

Figure 11.1
A sample set of radio buttons.

<input type="radio" name="location" value"northeast">The Northeast

<input type="radio" name="location" value"east">The East

<input type="radio" name="location" value"midwest">The Midwest

<input type="radio" name="location" value"south">The South

<p><input type="submit">

</form>
</body>

Notice how all of the buttons have the same name? That is because this parameter

defines which group they are in. If you had changed half of them to have a

different name, you could select two items, one from each group. Figure 11.2

shows how this would happen if I had changed this into two groups. As you can

see, two buttons have been selected. That is because the items have a different

value for name. In Figure 11.2, all I did was change the name of the second group.

Advanced Elements 169

Figure 11.2
Splitting the radio buttons into two groups.

Password Fields

A password field is very simple. It looks identical to a textbox, except that the

characters are coded, or hidden, from view. They look like asterisks or dots,

depending on your browser. A password box is most commonly used when you

want the user to be able to log into your site and is often used in conjunction with

a username field. When typing in a password box, you get a result that looks like

Figure 11.3. The code for this page follows.

<body>

Please enter in your username and password to log in.
<form action="something.php" method="post">
<p>Username:<input type="text" name="username">
<p>Password:<input type="password" name="password">

<p><input type="submit">

</form>
</body>

170 Chapter 11 n Advanced Forms

Figure 11.3
Using a password box.

C au t i o n

A password box does not secure or encrypt the data in any way, so it is possible the information
could be stolen.

Remember to use the POSTmethod on your form. GET sends the data through the

address bar, and it is very easy to steal the data just by looking at the URL. POST

hides this data from the link. If you send data through POST, make sure you use

the $_POST array to access data.

No t e

I go over file selectors, another important HTML element, in Chapter 14.

Hidden Fields

Another type you might want to learn about is the hidden field. No user can see

it, but a hidden field can pass data through forms. You can use the hidden field to

keep necessary data alive through all of your pages in a simple manner. You can

make a hidden field like follows:

<input name="hiddenfield" type="hidden" value="whateverValueYouWant" />

Using PHP and Forms
So far we have looked at the basics of entering items on a form and submitting it

to another page that utilizes PHP and deals with the inputs. However, you may

not want to have to submit the information to another page. In cases like this you

can have the PHP form submit the data to itself: The same page that loads takes in

the data and uses it for calculations. This can be useful when you want the user’s

input to change the page onscreen.

I have used this myself when developing a web site. On one page, the user was

allowed to enter a code tomake the item cheaper. I didn’t want the page to submit

the code data to another page, because that would require multiple pages with

almost entirely identical content. Instead, I developed only one page that dealtwith

the data if the coupon codewas submitted, but hid thePHP if the codewas skipped.

The first thing I needed to do was develop a form. In most cases, the form

submits the data to another page using the action attribute, but in this case we

did not have the benefit of having another page to submit the information.

Fortunately, there is a predefined variable that contains the address of the page

Using PHP and Forms 171

from where it is called. This is part of the predefined array $_SERVER and the

complete variable name is $_SERVER[‘PHP_SELF’]. By setting the action attribute

of the <form> tag to this location, the form sent the data to the same page and

interacted upon it. The form declaration looked something like this:

<form name="couponcode" action="<?php $_SERVER[’PHP_SELF’] ?>" method="get">
//rest of form here
</form>

No t e

There is an easier way to do this, if you remember from earlier chapters. By leaving out the action
attribute altogether, the form will call itself automatically. However, I wanted to demonstrate some
cool interpolation and array variables, so we will continue with $_SERVER[‘PHP_SELF’] for this
example.

Check out the action attribute. This wants to use the PHP_SELF variable, but the

problem is that HTML itself does not know what the variable means! Only PHP

uses this predefined variable, so we need to escape into PHP before using the

array variable. This is done using <?php and ?>.

Now that we have created the basic level of the form, we need to add a textbox

that allows the user to enter a coupon code. The textbox is very simple and allows

regular letters and numbers.

Please enter in your coupon code <input type="text" name="couponcode" />
<input type="submit">

This creates the basic coupon code outline in which the user can type the code

and press the submit button. If we wrote the form correctly, the page should

simply refresh. We have created a form whose action is itself, but has no data to

pass on and no way to interact with that data.

We need to write some actual PHP to handle anything that might come up. To

do this, we are going to add the code before the form. The code we need to write

might look something like the following:

<?php
$code = $_GET[’couponcode’];

echo "You entered the coupon code " . $code;

?>

172 Chapter 11 n Advanced Forms

Let’s put this code together. The result is shown in Figure 11.4. You can find this

file on the CD as phpft11-01.php. This looks pretty normal, right? As soon as

you submit the data, the coupon code appears. However, what happens if you

don’t submit something? What happens if you just load the page? Check out

Figure 11.5.

Uh oh. In this case, it just left the document blank. That is because the PHP code

will always display the text "You entered the coupon code", whether or not there is

a code to show. Let’s fix this problem.We need to add some data to make the text

show only when a code has actually been submitted. Our page will probably end

up looking like the following, the way it does in phpft11-02.php:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<body>

Using PHP and Forms 173

Figure 11.4
Beginning to use a coupon code.

<?php
$code = $_GET[’couponcode’];

if (empty($code)){
?>

<form name=.couponcode. action="<?php $_SERVER[’PHP_SELF’] ?>"
method="get">

Please enter in your coupon code <input type=.text. name="couponcode" />
<input type="submit">

<?php
}
else
{

echo "You entered the coupon code $code";

}
?>

174 Chapter 11 n Advanced Forms

Figure 11.5
Using the code without submitting the form.

</form>

</body>
</html>

Now check out what happens when you load up the page. See Figure 11.6.

All right! If you want to have a form submit data to the same page, so that any

input is reflected on itself, this is how you do it!

We used kind of a cool trick. When using conditional statements in PHP, any-

thing between the condition is executed only if the condition is true. That means

that after the test if, the HTML form is only shown if the empty condition is true.

Even though we exited PHP using the ?> symbol, the if statement still stands:

Anything inside is only executed if the statement is true. Also, we used a new

function: empty(). This function is true is the variable is blank, and has no data

inside of it.

Using PHP and Forms 175

Figure 11.6
The coupon code form in phpft11-02.php without data.

By the way, in most cases with items like this, you only want the code to change

the page if it is identical to a predefined number. Most codes are useless if they

just write themselves on the same page.

To do a comparison, just compare the code to a predefined number. If they

match, change the page as you like. Look at phpft11-03.php, which is on the CD:

<body>

<form name="code" action="<?php echo $_SERVER[’PHP_SELF’]; ?>" method="get">
<p>For the purposes of this page, the code is 31413. Try entering in this number
and other numbers.

<p>Please enter in your coupon code: <input type="text" name="couponcode" />
<p>

<?php

$code = $_GET[’couponcode’];

if ($code == ’31413’)
{
echo "Congratulations, you have the code!<p>";
}

?>
<input type="submit">

</form>

</body>

For this page, we moved the PHP section down near the end, after the input

button. We set the variable so that if $code equals the specific constant we are

looking for, a special text value is echoed to the screen. If the value is incorrect,

the statement is never echoed. Check out what the page looks like in Figure 11.7.

Basic Email Commands
If you wish to send email through an HTML form, a very simple method is to use

the mail() function built into PHP. Mail() gives the ability to send out a very

basic email with a to address filled in. In addition, you can have a subject and a

message inside the email. Let’s look at a basic email declaration.

176 Chapter 11 n Advanced Forms

Notice that it seems like you cannot choose to change who the message is from.

Actually, you can. Just choose one of these methods:

n Define it manually within the $additionalheaders variable.

n Go into your php.ini file from your PHP installation and configure the from

address directly in the file.

Because the web server is handling part of the sending, the from option on the

email will be from the web server.

No t e

The web server is not actually sending the email. PHP uses an external program to send mail. In
most cases, this function won’t work after installing on Windows, unless you do some extra
configuration. You can find out more about how to configure your server for sending email on
www.php.net or www.maneeshsethi.com.

Basic Email Commands 177

Figure 11.7
Changing the code in phpft11-03.php.

www.php.net
www.maneeshsethi.com

We are going to create one basic form that lets you enter a message, a subject, and

a from and to address. We will put that into a PHP mailer and let the file email

something to whomever the user chooses. Let’s start off by designing the form

document. This file is located in phpft11-04.html on the CD.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>PHP Email</title>
</head>

<body>
<form name="email" action=phpft11-04.php method="post">

<p>Please fill out the form to send an email.
<p>Enter your email address: <input type="text" name="from"> Enter recipient’s
email address: <input type="text" name="to">
<p>Enter subject: <input type="text" name="subject">
<p>Enter your message:
 <textarea name="message" rows=10 cols=40>
</textarea>

<p><input type="submit"> <input type="reset">
</form>

</body>

</html>

This is a pretty simple page, right? You can see what it looks like in Figure 11.8.

If you thought this was simple, look at the PHP code you send it in

phpft11-04.php:

<?php
$to = $_POST[’to’];
$subject = $_POST[’subject’];
$message = $_POST[’message’];
$headers = ’From: ’ . $_GET[’from’] . "\r\n" .

mail($to, $subject, $message, $headers);
?>

178 Chapter 11 n Advanced Forms

This page takes in all the necessary prerequisites for sending out an email and

organizes them into a mail() function. Look closely at the $headers section: Be

careful with that. The $from variable has to be formulated in a special way: ‘From:

emailaddress.’. The extra \r\n allows you to later add headers, such as Reply-To.

By doing this, we have now sent out an email to whoever is in the $to textbox!

Pretty cool, huh?

You can use this on your web sites if you want to give the user a way to email you.

I have a very similar script set up on my web site, which allows users to subscribe

to my forum by way of email. You can probably think of many more uses for

email technology.

Basic Email Commands 179

Figure 11.8
The mail form in phpft11-04.html.

This page intentionally left blank

Cookies

PHP has many functions and abilities for web sites. One of these capabilities is to

create and use cookies. You may have heard of cookies while using your web

browser. A cookie is a text file stored on the user’s machine. This text file has a

data value, which stores some small amount of data. You just load this text file as

a variable on pages that use the cookie, and that is your stored data! The text file is

stored, in a hidden spot, by your web browser.

Basically, a cookie is a way for a site to save some data on your computer.

This can be good and bad. For example, a lot of spyware sites use cookies to

keep track of where you visit and use this data to sell ads to you. Also, make sure

you don’t overdo it: A lot of people don’t like a lot of cookies because it can

seem like you are storing data about them. On the other hand, using cookies

allows you to choose and have those choices reflected on the site every time you

use it.

This might seem vague, so let me give an example. Say you have a site where

the user enters her name. This name might be reflected in many parts of the

site, such as on the top of every page and in printable sections and documents.

It is a little annoying to have to reenter her name every time the user enters

the site, so adding cookies is a great way to make things a little easier. The

Internet, as a whole, does not save data, so the developers of PHP came up with

cookies.

181

chapter 12

Creating Cookies
Set cookies using the setcookie() function. This function has a lot of parameters.

setcookie($name, [$value, $expire, $path, $domain, $secure])

What do those brackets ([]) in the function declaration mean? Take a look at the

setcookie() function. When a parameter is enclosed by brackets in a declaration

like this, the parameters are optional. If you would prefer to leave them as they

are by default, you can do that. In addition, be careful when defining only some

of the default values. If you want to change the $secure parameter, but not the

$path parameter, you still have to set $path. This is because you can only set

the parameters from left to right—you cannot skip any. You must set $name first,

$value second, $expire third, and so on. If you want to set one of the later

parameters, you can set the earlier ones to their default value.

$name
The first parameter of setcookie() is $name. This is the name of the cookie, and

you will use this to reference it in the future. In fact, the cookie eventually

becomes part of an array called $_COOKIE, so if you want to reference a cookie,

you would do it by calling the array like this:

$_COOKIE[’name’];

As you can see, the name eventually becomes its key for the array that it is a

part of.

$value
The function’s second parameter is $value. If you want the cookie to be of any

real use, you need to give it a value. You can reference the cookie later, get

the value back, and use this value to affect your web site. In the example at the

beginning of the chapter, we talked about creating a cookie that had a value of the

visitor’s name. We would store the value using the $value parameter. We could

then pull this value back later, and use it to reference the visitor’s name

throughout the web site.

$expire
$expire is the first complex parameter, because it isn’t part of the basic name-

and-value entity. Instead, it refers to the amount of time, in seconds, that the

182 Chapter 12 n Cookies

cookie should remain on the server. By default, if you leave the $expire para-

meter blank, the cookie disappears as soon as the visitor closes his browser. By

setting $expire, you can make the cookie last a lot longer.

Having a cookie run for the default amount of time—until the browser closes—

is rarely useful in practice. If you were designing the page that remembers the

user’s name, it would be ridiculous for it only to remember the name for one

session. Using the $expire attribute allows the cookie to last for a meaningful

length of time. However, in pages where you only want the cookie to last

throughout the current use of the browser, you can use the cookie without the

$expire attribute.

To set the time, we need a new function: time(). For the technical minded, this

function returns the number of seconds since the epoch (which is an arbitrary

point in time; most computers use January 1, 1970 as the epoch), but you can just

think of it as returning what time it is now. You set $expire to the value of time()

plus the number of seconds you want the function to expire in.

Let’s see how we could define the time. We need the function to expire in a set

period of days or weeks. We can use the following $expire code:

$expire = time() + 60 * 60 * 24 * 30

Assuming we created the variables correctly earlier, this is identical to the

following:

$expire = time() + $secondsPerMinute * $minutesPerHour * $hoursPerDay *
$daysPerMonth;

Hmm, so what does this do? Remember that time() returns the current time in

seconds. We want to add the number of seconds we want the cookie to endure to

the current time. If we forget to add time(), the cookie will have expired several

decades ago, making it worthless.

Here are some cool examples of time. This isn’t actual PHP code, but it de-

monstrates how you can use time().

15 seconds = time() + 15;
30 minutes = time() 60 * 30
5 hours = time() * 60 * 60 * 5
10 days = time() * 60 * 60 * 24 * 10

Now that we have added the current time, we want to add the amount of time the

cookie should last. Using multiplication like this makes it a lot easier to

Creating Cookies 183

understand. The first 60 is measured in seconds/minute, times 60 minutes/hour,

times 24 hours/day, times 30 days. This will result in a cookie that expires after

30 days. If we wanted to change it so that the cookie expired after two weeks,

we could do something like this:

$name = "samplecookie";
$value= "samplevalue";
$expire= time() + 60 * 60 * 24 * 14; //expire in 2 weeks
setcookie($name, $value, $expire);

This creates a cookie with the key samplecookie and the value samplevalue to

expire after 14 days.

The following setcookie() parameters are optional. You can use them when you

want your cookies to work in specific cases or be stored in specific locations.

$path
The $path variable lets you choose the path of the web server on which the cookie

will be valid. The default value is the directory that the file is in. You can make the

cookie valid for all the pages in your web server by setting $path to /. If you set it

to /somefolder/images, the cookie only works in the images folder of somefolder.

Make sure you set the correct path so you can use your cookies in all the pages

you want for your site.

$domain
$domain is most often used when you have a web site with several subdomains. A

subdomain is a site that is a part of the original site, but whose URL is separated

by a period. For example, maneeshsethi.com is the original site. I might create

a subdomain such as subdomain.maneeshsethi.com. The actual domain is

maneeshsethi.com, and the subdomain is subdomain.maneeshsethi.com. One

trick here is to remember that www.maneeshsethi.com is considered a subdomain

of maneeshsethi.com. Even the www makes the site into a subdomain.

$domain refers to the domain for which the cookie is valid. In most cases, you

want it to be valid for your entire web site. This is common when you have a site

that people might visit at website.com and at www.website.com. Because

www.website.com is considered a subdomain, make sure that the cookie is valid

for both options.

184 Chapter 12 n Cookies

www.maneeshsethi.com
www.website.com
www.website.com

Tomake the cookie valid to all subdomains, make the cookie set to .website.com,

with a period before the name. This causes all subdomains to recognize the

cookie. If you want only www.website.com to accept the cookie, use www.website.

com as your $domain.

$secure
The $secure parameter indicates that the cookie should only work over a secure

HTTPS connection. We have not gone over HTTPS for this book, so it will not

work if you set this Boolean parameter to true. However, if you ever learn how to

use HTTPS on your own, this is how you would enable it for your cookies.

Common Problems

Many people have some difficulty defining a cookie. Let’s look at some of these

problems.

n The web script in the PHP document does not recognize the cookie. Cookies

are not usable until the web page has been refreshed, so if you try to use

a cookie on the same page where you created the cookie, the cookie will

not work. In cases like these, simply use the value you assigned to the

cookie to the areas where the value was going to be used.

n The web browser accessing the document has disallowed cookies on the

page. This causes a problem creating a cookie and throws out any you create.

Double-check that your page will work well without cookies if a user wants

to use the page without them.

n Sometimes, developers try to create a cookie that has no value. That is

fine, but make sure you set the value to " (no value), not false. Using

the Boolean false creates a cookie that automatically deletes itself. Use a

regular cookie and leave the value blank. A cookie with no value could

let your PHP script know that the user has visited there before, sort

of as a place mark.

n Cookies change the HTTP header, so you cannot put the setCookie function

that defines and deletes cookies after any HTML code. Make sure your

cookie code goes before the HTML header.

If you double-check, your pages should be fine.

Creating Cookies 185

www.website.com
www.website.com
www.website.com

Putting a Cookie in Your Site
Now it is time to put your knowledge into action. We are going to develop a

couple pages with cookies, starting off with the one described earlier, which

allows the user to enter a name on the form, which the web page remembers for a

long period of time. The first thing we need to do is develop an HTML docu-

ment. This HTML form allows the user to enter his name. From there, we will

develop a couple of PHP forms that display the user’s name.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Developing a page with cookies</title>
</head>

<body>
Please enter your name into the following text box and hit submit. Note that if
you have entered in a name in the past few weeks, that name will be deleted with
the new one.

<p>
<form name="cookie" action="phpft12-01.php" method="post">
Enter your name here:
<input type="text" name="name" />
<p>
<input type="submit" />
</form>

</body>
</html>

This is a very simple page, with just an input textbox. The page ends up looking

like Figure 12.1. You can see this file on the CD as phpft12-01.html.

Let’s enter a name in that box. You press submit, and what do you get? Nothing

yet, because we still need to design the PHP page. Let’s do that now.We want this

PHP acceptor to do a couple of things:

n It should confirm whether a cookie has been created recently. If it has,

then we need to delete that cookie and reset it with the new value. If not,

it simply needs to create the new cookie.

186 Chapter 12 n Cookies

n It should direct the user to a new page, which shows the cookie results. If

the cookie is valid, it will say the user’s name; if invalid, the page will say

that a cookie has not been set.

The PHP page is a little complex, so let’s go through it one step at a time. Then,

we will look it over all at once so you can see how everything flows. The first part

of the script tests to see if the user left the field from the form page blank or did

not access the PHP page through the form:

<?php

$cookievalue = $_POST[’name’];

//if cookievalue is blank, end the page
if ($cookievalue == ’’)

{
echo "You did not submit a cookie value. Please go back to

 phpft12-01.html and correct this error.";
exit;

}

Putting a Cookie in Your Site 187

Figure 12.1
The phpft12-01.html file.

This section assigns the value of the form to the variable $cookievalue. It then

tests to make sure $cookievalue has a value. If it is blank, a statement is echoed

referring the user to go back to the form page and submit the form.

Note the following statement: exit. It uses a language construct exit. This

construct should be used if there is an error—it halts execution of the PHP script

in the web page and causes the page to skip over any further PHP.When you have

an error such as this one, you can use exit to tell the browser that an error has

occurred.

It’s important to note that some PHP programmers prefer that you never use

exit(), because it breaks the flow of the program. If you want the web page to

completely load whether or not there is an error, you should not use exit(). The

best time to use exit() is when the error is fatal, and you do not want the

program to continue to execute without it.

After this section, we have another that checks to see if a cookie has been set

recently, depending on the cookie length:

//If the cookie has been set recently
if (isset($_COOKIE[’name’]))

{
setCookie("name", "", time()-1);

unset($_COOKIE[’name’]);
}

Here, we use two new functions to see if a cookie has been created. isset() returns

true if its parameter (in this case, the name cookie) has been set. If the cookie was

set, we delete the cookie by resetting it to expire in the past, and then we use the

unset() function to delete the cookie from the $_COOKIES array. Why do we reset

the cookie with the setCookie() function?We have to redefine the cookie to delete

it, because no function directly deletes it. Instead, we use the setCookie() function

to delete it by creating a cookie with the same name that expires in the past

(time()-1). The cookie is automatically deleted by the web browser.

The last step is to create the cookie:

//Whether or not the cookie was set earlier, set this cookie.
setcookie("name", $cookievalue, time() + 60 * 60 * 24 * 12);

echo "Cookie has been set, please visit
phpft12-01result.php to see the result.";

?>

188 Chapter 12 n Cookies

We set the cookie to last 12 days by giving it an expire time of time() + 60 * 60 *

24 * 12, and we set the value to the name that was submitted on the form.

Remember that you are creating stored bits of data that exist for a set amount of

time, so the amount of time we use for the cookies is the time the cookie will exist.

Now, we put this in the web document after the <body> tag, and the script should

execute flawlessly, right? Check out what happens when we do this by looking at

Figure 12.2.

Uh oh.We got an error!What happened?When creating cookies, you have to put

the cookie before any HTML tag. Cookies are part of a special part of the

document which is dealt with before even the <html> tag. You need to set them

before even the opening <html> tag. If you have any <!DOCTYPE> or <meta> tags,

the cookie must go before these, also. This means that you cannot create a cookie

after any executed echo statement in your program.

Putting a Cookie in Your Site 189

Figure 12.2
An error with the phpft12-02.php file.

By rearranging the document so it looks like the following, we can get a better

result:

<?php

$cookievalue = $_POST[’name’];
//if cookievalue is blank, end the page
if ($cookievalue == ’’)

{
echo "You did not submit a cookie value. Please go back to

 phpft12-01.html and correct this error.";
exit;

}

//If the cookie has been set recently
if (isset($_COOKIE[’name’]))

{
unset($_COOKIE[’name’]);

}

//Whether or not the cookie was set earlier, set this cookie.
setcookie("name", $cookievalue, time() + 60 * 60 * 24 * 12);

echo "Cookie has been set, please visit
phpft12-01result.php to see the result.";

?>

<html>
<head>
<title>Creating the cookie</title>
</head>

<body>

</body>
</html>

We moved the PHP code above the <html> section. Notice that the body is

empty. This doesn’t matter: The cookie will still set and everything will work fine.

Figure 12.3 shows the result.

Now all we have to do is create a simple PHP page that echoes out the cookie.

This isn’t too bad at all. Check out the following source from phpft12-01result.

php on the CD:

190 Chapter 12 n Cookies

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Displaying the cookie</title>
</head>

<body>

<?php

$cookievalue = $_COOKIE[’name’];

//if the cookie is blank or does not exist, echo an error
if ($cookievalue == ")

{
echo "You have not created the cookie yet? Go to

phpft12-01.html to set a cookie.";

Putting a Cookie in Your Site 191

Figure 12.3
Finally setting a cookie in phpft12-01.php.

exit;
}

else
{

echo "Welcome back to the page, $cookievalue. Feel free to change your
cookie by visiting phpft12-01.html.";

}

?>
</body>
</html>

This page simply echoes an error if the cookie does not exist and displays the

person’s name if it does exist.

Let’s see the three pages in succession. Figure 12.4 shows how a person can enter

his name, Figure 12.5 shows the result of entering a name, and Figure 12.6 shows

the final results.

192 Chapter 12 n Cookies

Figure 12.4
Step one: entering your name.

Putting a Cookie in Your Site 193

Figure 12.6
Step three: the results.

Figure 12.5
Step two: creating the cookie.

Check that out! Three steps to set a complete cookie and display it on one

page.

I have an exercise for you: Rewrite these PHP pages so that it does all three

of these steps on one page. Make one page display a form, set the cookie, and

echo the result out if it exists. This is a pretty tough job, but I bet you are up

to it!

194 Chapter 12 n Cookies

Sessions

As you learned in Chapter 12, cookies allow you to save a small file, on the user’s

computer, that recorded some data in a variable. However, there are a few

problems with saving data inside cookies for use in all your site’s pages:

n Cookies are stored on the user’s computer. This means that the user can

go into the cookie file and edit the text to change the results of a page.

n Cookies are not super reliable. They can be turned off, deleted, and edited

by hand, so you have to worry about what a knowledgeable user can do

with cookies you create.

n A lot of Internet viewers don’t like cookies, because they can track down

visitors’ locations and use them for advertising purposes. In fact, a lot

of people on the Internet hate cookies for this reason, and they do not

allow them altogether.

Because of all of these reasons, PHP created a completely new interface whenever

you want to remember user data. This new interface is called a session. Sessions are

very similar to cookies because they are anothermethod of storing variables for use

on a web site. However, there are several important differences between the two:

n Sessions store the variables on the server. This means that the user cannot

edit any of the data that his computer uses because he cannot access it.

In other words, sessions are a lot safer than cookies overall.

195

chapter 13

n Sessions cannot have an expiration time: They always expire as soon as

the browser closes. Because no file is saved to the user’s computer, the

session variables simply lose their point of reference when the browser

closes, and cannot be used anymore. Of course, you can find ways to get

around this, but in most cases ending the session immediately is better

for both the server and the user.

Sessions are a great way for implementing a username/password system on your

website, and this chapter will discuss how to do that. We will also go over some

other sample programs for which sessions are suited. Let’s get started now.

Using Sessions
To start a session, you only need to use one function: session_start(). It

automatically checks to see if a session is already running on your browser and, if

not, assigns a new session ID. If a session is already running, it joins that session

and uses it on the current page. A session ID is simply a sequence of numbers

assigned to your computer when you start a session. Each computer gets a

different session ID; it helps the web server keep track of who is doing what on

the web site and inside the session.

session_start() must be placed before any other echoed HTML or test. This is

exactly the same thing that happened with setcookie() in Chapter 12. Because

sessions deal with the document header, the function pertaining to themmust be

placed right at the beginning. Figure 13.1 shows what happens if session_

start() is placed after some text is echoed to the screen.

The code that produced this error is very short:

There will be an error below!
<?php
session_start();
?>

We entered There will be an error below on the screen. However, because we

wrote anything on the screen, we got the following error:

session_start(): Cannot send session cookie - headers already sent

Why did we get this error? Sessions have to start in the header of a document,

before anything at all is written on the screen. After the first piece of text or the

196 Chapter 13 n Sessions

first HTML tag (including <html>) is written, the server header section is over,

and session_start can no longer begin.

Starting a Session

Let’s try changing the code just a little bit. The result is shown in Figure 13.2.

<?php
session_start();
?>
Will there be an error above?

There is no error at all. Make sure that session_start() appears before any other

text or HTML tags.

header("Cache-control: private");

Using Sessions 197

Figure 13.1
Producing an error with session_start().

We have started our session, so what’s next? Let’s try making a page similar to the

one we made in Chapter 12, where the user can enter her name and have the page

display the name onscreen. We will use sessions rather than cookies to achieve

this, however.

Designing a Form Page

First of all, we need to design a form page. We are going to use a form identical

to the one we made last chapter, which looks like Figure 13.3. Check out

Chapter 12’s code listing on the CD as phpft13-01.html or download the source

from www.maneeshsethi.com.

Developing a Basic PHP Page

Now that we have a form set up, it’s time to actually put our session to work! Let’s

start off by developing a basic PHP page that saves the user’s name to a variable

that crosses different pages.

198 Chapter 13 n Sessions

Figure 13.2
Fixing the error with session_start().

www.maneeshsethi.com

Our new page starts with the introductory section:

<?php
session_start();
header("Cache-control:private");

Note that the form passed the name of the user using the POST method.

Now we need to assign a session variable to contain the value of the name that it

passes. In other chapters you have seen the $_POST array, the $_GET array, and the

$_COOKIE array. All of these valid arrays apply to their type of data. Take a guess

what the session array is. You guessed it: $_SESSION.

We actually get to define the elements of the $_SESSION array ourselves. In the

$_POST and $_GET arrays, the web server or the previous form sends the data to us,

through the arrays. With $_SESSION, there is no data to download; instead, we

create the array ourselves.

We are going to add an element to the array that lets us transfer some data across

the session. We are going to create an element which stores the user’s name. The

following code fragment shows you how:

Using Sessions 199

Figure 13.3
The phpft13-01.html file.

$_SESSION[’name’] = $_POST[’name’];

Not too bad at all, eh? All we did was create a new element of the $_SESSION array

and assign it to the form posted value of the $_POST array. By doing this, we have

created a variable that persists throughout the session on any page that we use

session_start() on. Basically, that is all we need to transfer the data. Let’s add a

text field just for good measure:

echo "Thanks for visiting the page {$_POST[’name]}.
Your name has been added to the session variable list!
Visit phpft13-01result.php
to see the result!"
?>

And now we have completely designed the page. Check out Figure 13.4 for the

result. As you can see, we have added the session variable to the session list.

200 Chapter 13 n Sessions

Figure 13.4
The phpft13-01.php file.

We then displayed the correct message, and set the user up to look at the next

page, which holds his variable. Look at the source in Figure 13.5. The PHP

server translated that PHP code we wrote into simply a line of text with a link

(<a href>). Not bad at all.

So now we have only one page left. Check out what this page looks like in

Figure 13.6. Following is the code for the phpft13-01result file, which uses the

stored session data to print the user’s name:

<?php
session_start();
header("Cache-control:private");

echo "Thanks for visiting our site, $_SESSION[’name’]. If your name appears in
this document, sessions work correctly!";

?>

While we are at it, let’s update the phpft13-01result.php file. We are going to

have the file display all the session data it can handle. PHP has a bunch of

Using Sessions 201

Figure 13.5
The source of the phpft13-01.php file.

functions for dealing with session data, and we are going to go over some of

them now.

PHP Functions for Session Data
Sessions are great tools for passing variables on your web site, but there is a

possible problem. You can get into trouble if two scripts use variables of the

same name. When Programmer A develops his web page, he creates a form

where the user can enter his information to ship an item. He calls this session

variable $name. Programmer B, who is an amateur PHP developer, decides to

create a page in which $name tracks the user’s name. Well, if a visitor goes to the

page developed by Programmer A, and then he goes to the second page devel-

oped by Programmer B, the $name variable is tracked and perhaps unchangeable.

This can be a problem because we don’t want both users getting mixed up

without letting the user know that there was a mixup.

202 Chapter 13 n Sessions

Figure 13.6
The phpft13-01result.php file.

The Errored Pages

Before we go over the fix, let’s develop a couple problem pages. The first page has

a basic form for entering your email address.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>A form demonstrating session name problems</title>
</head>

<body>
<form action="phpft13-02.php" method="get">
Please enter your email address: <input type="text" name="address">
<input type="submit">
</form>
</body>

</html>

Pretty run of the mill—a form with a submit button, like you see in Figure 13.7.

PHP Functions for Session Data 203

Figure 13.7
The phpft13-02.php file.

We are going to have it go to another simple web page that displays the email

address after assigning it to a session. Here is another very simplistic web page,

phpft13-02.php, which starts a session and assigns a session variable. See the

result in Figure 13.8.

<?php
session_start();
header("Cache-control:private");

$_SESSION[’address’] = $_GET[’address’];

echo "Thanks for visiting the page with the email address
{$_SESSION[’address’]}. Your name has been added to the session variable list!
Now, if everything is working correctly, this session variable should NOT work
on phpft13-02other.php"

?>

204 Chapter 13 n Sessions

Figure 13.8
The phpft13-02.php file.

Okay, we got the expected result. Very good so far. Now here is the rub: We want

to make a new page that uses an $address variable from another form. Assume

the form has been created and that the user bypassed the form and opened the

PHP document. In cases like this, the $address variable should be blank, right?

Because we created a session with the variable, $address is passed along. Let’s

check out this error-filled document. It is on the CD as phpft13-02other.php.

<?php
session_start();
header("Cache-control:private");

$address = $_SESSION[’address’];

if ($address != ’’)
{

echo "Uh oh, there is an error. \$address is registered.";
}
else
{

echo "Great! \$address is unregistered as a session variable!";
}

?>

The Fix

This is a little different from what you have seen before, huh? We created an

if. . .else section that tests to see whether the variable $address exists. The first

test checks to make sure that $address is not blank. If it is not blank, then there is

an error—the variable has carried through. If it is blank, then the session variable

has not carried through and it works correctly.

Let’s see what happens when you go to this page through your browser after

creating a session variable from the earlier file. Check out the result in Figure 13.9.

Uh oh! I got an error because the variable is registered. This is the problemwewere

expecting, and now we need to figure out a way to fix it.

Fortunately, the fix is simple: When dealing with sessions, each session has a

session name. Any script that uses session_start() gets a default session name,

and the script uses this session name to carry variables from page to page. How-

ever, if we want to differentiate two pages, we can create a new session name for

the scripts, causing the variables not to carry through.

PHP Functions for Session Data 205

Changing the session name is very simple. All you need to do is use the

session_name() variable. Include a parameter of the name you wish to assign it,

and there you go! One step to create a new session name. Note that the

session_name() function must be placed before session_start(). You should

use it at the beginning of your document, probably as the first line.

Let’s rewrite the page to fix the problem. All we need to do is change the session

name, and it should work.

<?php
session_name("testname");
session_start();
header("Cache-control:private");

$address = $_SESSION[’address’];

if ($address != ’’)

206 Chapter 13 n Sessions

Figure 13.9
The phpft13-02other.php file.

{
echo "Uh oh, there is an error. \$address is registered.";

}
else
{

echo "Great! \$address is unregistered as a session variable!";
echo "<p>Our session name is " . session_name();

}

?>

This file is phpft13-03.php on the CD. Check out how it looks in Figure 13.10.

Hey, check that out! The PHP document echoes the correct text because the new

session name causes the session variable $address to be forgotten.

At the bottom of this script, I included an echo call that tells the current session

name. If you use the session_name() function without any parameters, it returns

PHP Functions for Session Data 207

Figure 13.10
The phpft13-03.php file.

the current session name rather than applying a new session name. That is why

this line echoed out the correct session name into the document:

echo "<p>Our session name is " . session_name();

All right, so now we know how to differentiate between sessions. This is a great

way to allow different types of scripts on your pages without confusing the

variables and getting them all mixed up.

Creating a Web Page Counter
Okay, let’s try something new. Now that you know about basic session variables,

let’s create a web page counter. This counter will recognize how many times a

visitor has visited your page and display the number on the screen. The counter

starts at 0 when the page is closed.

Developing a counter requires just a little PHP. We will open a session and

reference the counter (which creates the variable if it doesn’t exist, or increments

it if it does exist). The following code fragment is taken from phpft13-04.php:

<?php
session_name("counter");
session_start();
header("Cache-control:private");

$_SESSION[’counter’]++;

echo "Hey, welcome to this web page. While you are here, feel free to browse
some other sites. Just make sure you come back!. Hey, you might as well check
out ManeeshSethi.com while you
are here!";

echo "<p>We will keep a record of how many times you come back!";

echo "<p><p><div align=\"center\">
You have visited our page {$_SESSION[’counter’]} times.";

?>

This is kind of strange, but all of the real power comes from this line:

$_SESSION[’counter’]++;

208 Chapter 13 n Sessions

This line creates the counter variable if it does not exist, and it increments it by 1

using the ++ operator if it does exist. Then, we echo out the session counter at the

bottom of the page. This tells the visitor how many times she has visited the site.

When she leaves the page, the session remains open. If the user returns, the

counter still increments correctly.

Let’s see what happens. First of all, you open the session, as shown in

Figure 13.11.

Now we are going to navigate away from the PHP page. We might go to the

indicated site (www.maneeshsethi.com). Figure 13.12 shows how the PHP page has

disappeared and has been replaced with ManeeshSethi.com.

Now go back to the PHP file. We cannot just press the browser’s Back button,

because we won’t rerun the PHP script that way. Instead, we are going to access

the correct file using the address bar. Type in the PHP file’s location and check

out the result in Figure 13.13. Check it out! The counter continues to update the

Creating a Web Page Counter 209

Figure 13.11
The phpft13-04.php file.

www.maneeshsethi.com

210 Chapter 13 n Sessions

Figure 13.12
Navigating away from the PHP file.

Figure 13.13
Returning to phpft13-04.php.

number even if the page has been changed! In Figure 13.11, you see a 5, and after

leaving and coming back, the counter says 6.

If you want to keep the counter running even when the session ends, you could

assign the value of the session variable to a cookie, and load the cookie every time

the page runs. Why don’t you try doing that as an exercise? We will come back to

that program at the end of the chapter and create a running counter that tracks

the visitor at all times. For right now, we are going to create a log-in page.

Developing a Log-In Page
Let’s develop a web page that lets the user log in and log out. You have probably

seen pages like this before: when you shop, post in forums, or bank online.

Username and password forms are ubiquitous and very important, so it is a good

thing to learn. In this section you learn the basics: a simple user/pass combi-

nation with different text strings for each user. You develop the user/pass script

without any record-keeping abilities. (Remember that a password box is the same

as a text box, except it disguises the entry with asterisks.)

The best way to create a user/pass section is to use a database. You can create new

users by adding information into the database. To read about databases, I

recommend A Guide to SQL by Philip J. Pratt and Mary Z. Last or A Guide to

MySQL by Pratt (Course).

We are going to add two user accounts directly into our web page. The first user

account will have the username test and the password test. The second user will

have the username maneesh and the password password. First, we develop an

HTML document that allows the visitor to log in. The following code is taken

from phpft13-05.html and its results are in Figure 13.14:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Logging in using sessions</title>
</head>

<body>

<div align="center">Welcome to our session script. Please enter in your
username and password.

Developing a Log-In Page 211

<p>
<form name="session" action="phpft13-05.php" method="post">
Username:
<input type="text" name="user" />
<p>
Password;
<input type="password" name="pass" />
<p>
<input type="submit" />
</form>
</div>
<p><p>
Use these values if you do not have your own account.

test/test

maneesh/password

</body>
</html>

212 Chapter 13 n Sessions

Figure 13.14
The phpft13-05.html file.

Hey, not bad looking. We have created a simple log-in form and told the user

some of the options he can choose. So far, so good.

Before we move forward, I want to talk about the structure of our log-in PHP

section. We have already created a form that allows the user to log in. The next

page is going to be a little different than the form handlers we used in other

chapters. Usually, we take in the information from the form and immediately act

upon it or display it on the new PHP page. However, with a log-in form, we need

to use one page to validate the user and confirm whether the information is

correct. That means that the first page the form submits to simply checks the

username and password. If they match one of the accounts, then it will register

some variables for the account and move to another page that acts upon those

variables. If the account is invalid, it displays an error and asks the user to log in

again. Let’s see the code for this PHP section:

<?php
session_name("login");
session_start();

header("Cache-control:private");

$user=$_POST[’user’];
$pass=$_POST[’pass’];

//if the username/pass is blank, error
if ($user == ’’ || $pass == ’’)
{

echo "ERROR: You must fill in both the username field and the password field.
Please push back on your browser and try again.";

exit;
}

if ($user==’test’ && $pass==’test’)
{

$_SESSION[’name’]="test";

header("Location: http://" . $_SERVER[’HTTP_HOST’]
. rtrim(dirname($_SERVER[’PHP_SELF’]), ’/\\’)
. "/" . "phpft13-05loggedin.php");

echo "Thank you for logging in test. You are being redirected to your account.";

Developing a Log-In Page 213

}

elseif ($user==’maneesh’ && $pass==’password’)
{

$_SESSION[’name’]="maneesh";

header("Location: http://" . $_SERVER[’HTTP_HOST’]
. rtrim(dirname($_SERVER[’PHP_SELF’]), ’/\\’)
. "/" . "phpft13-05loggedin.php");

echo "Thank you for logging in, Maneesh. You are being redirected to your
account.";

}

else
{
echo "You have entered in an incorrect combination of username and password.
Please try again.";

exit;
}

?>

That’s pretty long! This page does a lot of complex things. The first few lines of

code initiate the session and assign the username and password to local variables.

After doing this basic, introductory stuff, the script begins to handle whatever

was in the form.

The first if clause deals with a blank username or password field:

//if the username/pass is blank, error
if ($user == ’’ || $pass == ’’)
{

echo "ERROR: You must fill in both the username field and the password
field. Please push back on your browser and try again.";

exit;
}

Here, the $user and the $pass variables are checked. If either is blank, then an

error has occurred. Note that || means or, so we are testing whether $user is

214 Chapter 13 n Sessions

blank or if $pass is blank. Figure 13.15 shows what happens if you leave one of the

fields blank.

The next if clause begins a series of ifs and else. . .ifs that work together to

confirmwhether the correct user has entered the information. The first test begins

by checking if the user is the test user. The following is the snippet that tests:

if ($user==’test’ && $pass==’test’)
{

$_SESSION[’name’]="test";

header("Location: http://" . $_SERVER[’HTTP_HOST’]
. rtrim(dirname($_SERVER[’PHP_SELF’]), ’/\\’)
. "/" . "phpft13-05loggedin.php");

echo "Thank you for logging in test. You are being redirected to your account.";

}

Developing a Log-In Page 215

Figure 13.15
Leaving a field blank in the phpft13-05.php file.

The test begins by checking to see if the visitor entered test as both the username

and the password (&&means and). If so, it begins by creating a new session variable:

name. We pass it as a session variable and then must write a function that changes

the user’s location to a new page to deal with the information and the new variables.

To change the user’s URL, we use header(). This function changes some sections

of a document’s header. In our case, we want the user to visit a new page if he logs

in correctly. Therefore, we changed the header’s Location attribute. You might

have noticed how complex the header variable is. In fact, if we want to send the

user to an absolute web site, such as www.cnn.com, the location header makes a lot

more sense. This is how we would send a user to cnn.com:

header("Location: http://www.cnn.com");

However, header() only works with absolute web sites—you cannot send the

user to a relative path such as newpage.html. You would have to send the user to

http://localhost/newpage.html. Because you don’t always have an absolute

location of a web page’s location, using an absolute header can be a real pain.

Fortunately, several variables can create an absolute header out of a relative one.

Take a look at the preceding code. We take http:// and append the variable

$_SERVER[‘HTTP_HOST’] to it. This variable is the beginning part of your domain,

such as maneeshsethi.com or localhost. We then append a pretty complex sec-

tion to this: rtrim(dirname($_SERVER[‘PHP_SELF’]), ‘/\\’). We have seen the

$_SERVER[‘PHP_SELF’] variable before, which is the file’s identical location. The

two functions that act upon it, rtrim() and dirname(), delete the self location and

return to the previous folder. For example, if we were passing http://localhost/

~user/php/text.html, using rtrim() and dirname() would result in ~user/php.

We append ~user/php to the earlier section and get http://localhost/~user/

php. The last step is to add the document we want the user to go to. Do this by

adding a / and the filename.

All right! We have redirected a user to a new location. Our last step is to echo out

some text telling the user that we are redirecting his location:

echo "Thank you for logging in test. You are being redirected to your
account.";

The header() function is very quick, and in most cases the user won’t even notice

this text. However, if he has a particularly slow Internet connection, he may see

this page. Figure 13.16 shows what this page looks like.

216 Chapter 13 n Sessions

www.cnn.com
http://www.cnn.com

The program’s next section does the same thing if the user logs in as maneesh. The

only difference is that the passed $_SESSION[‘name’] variable is maneesh rather

than test.

The last section of the if. . .else clause is executed only if the user enters an

incorrect username and password:

else
{
echo "You have entered in an incorrect combination of username and password.
Please try again.";

exit;
}

This section simply echoes out an error if either the username or password is

incorrect, but both have been filled. The result looks like Figure 13.17.

Developing a Log-In Page 217

Figure 13.16
The phpft13-05.php file after logging in as test.

We need to create a simple page that recognizes the user depending on the session

variable. We do this in phpft13-05loggedin.php, which takes the session vari-

ables, which were created by logging in to the account, and reflects them on the

final page. Check out the following code listing to see how it works:

<?php
session_name("login");
session_start();

header("Cache-control:private");

$name = $_SESSION[’name’];

echo "Hey, $name! You have logged into the site. We will be doing a lot more
with this web page later, but right now, this is all we have done. Hope you
like it!";

?>

218 Chapter 13 n Sessions

Figure 13.17
The phpft13-05.php file after logging in with an incorrect username or password.

This isn’t too difficult, eh?We just created a page that echoes out the user’s logged

in name. Check out how it looks in Figure 13.18.

All right, we have created a complete login script! Granted, it doesn’t do much,

but we can make it a lot better when we save files to the server (which you learn

about in Chapter 14).

Cookie Exercise
Before leaving this chapter, let’s go over the exercise regarding using cookies

and a session in conjunction with each other to create a counter that always

updates itself, even after the session has been ended and the browser has been

closed. We are going to do this exercise by adding and updating a cookie every

time the user visits the site. The following code answers this problem. Take a look

Cookie Exercise 219

Figure 13.18
The phpft13-05loggedin.php page.

and see if you can understand it all the way through without looking at the

explanation.

<?php
session_name("counter");
session_start();
header("Cache-control:private");

$_SESSION[’counter’] = $_COOKIE[’counter’];

$_SESSION[’counter’]++;

setcookie("counter", $_SESSION[’counter’], time()+ 60 * 60 * 24 * 30);

echo "Hey, welcome to this web page. While you are here, feel free to browse
some other sites. Just make sure you come back!. Hey, you might as well check

out ManeeshSethi.com while you
are here!";

echo "<p>We will keep a record of how many times you come back!";

echo "<p><p><div align=\"center\">You have visited our page
{$_SESSION[’counter’]} times.";

?>

This page uses cookies and sessions in conjunction to create a counter that

remembers how many times you have visited the site even after you close the

page! The page begins by setting up the session and assigning a session variable to

the cookie variable. If the cookie variable does not exist, the session variable is

assigned to 0. You might be wondering how the variable knows how to set the

cookie variable to 0. If the variable does not exist, it automatically has a value of 0.

This line performs that feat:

$_SESSION[’counter’] = $_COOKIE[’counter’];

The next line increments the $_SESSION[‘counter’] variable, updating the

counter. Use this value for all future calculations in the script; it has the most

updated counter value.

Next is the main line: It sets the cookie that recalls the value every time we load

the page. The cookie has several important parameters, so take a look at the line

of code:

setcookie("counter", $_SESSION[’counter’], time()+ 60 * 60 * 24 * 30);

220 Chapter 13 n Sessions

The first parameter is the cookie name. We used it in one of the earlier assigning

lines of code. The second parameter is the cookie value. Notice that was the

counter’s $_SESSION value rather than the cookie value. This is because we

updated the $_SESSION value very recently, and the $_COOKIE value has not been

updated. If we assigned the cookie with the same value of $_COOKIE, the web page

would never update itself. In other words, the cookie would remain at 1 forever.

The last parameter refers to how long the cookie will last. We set it for 60 * 60 *

24 * 30, which can also be read as simply 30 days. After that time, the cookie

disappears and the counter resets. You can change the expire time.

The last few lines of code simply echo out the number of times the counter has

been echoed. Check out what this page looks like in Figure 13.19.

Cookie Exercise 221

Figure 13.19
The phpft13-06.php counter page.

This page intentionally left blank

Working with Files

This is the last chapter of the book, and we are going to be going out with a bang.

In this chapter, I’m going to teach you how to deal with files in PHP. We will

now be able to accept uploads, write to files, save information, and do other cool

stuff.

You might be thinking that this is exactly the same as cookies. Yeah, with cookies

you can save some information about a user. However, you could only save

a specific type of data; with file handling, you can save whatever information

you like to the server. You can also let the user upload files directly to the server.

File handling allows uploads and enables you to write to files on the user’s

computer.

Allowing File Uploads
You want a way for readers to communicate with you through your web site.

This is commonly done through email, but sometimes the visitor may want to

send something—a picture or a music file, perhaps. PHP allows you to upload a

file through a form and send it to the web server. Let’s take a look at how to do

this.

Remember that when using forms you can choose either GET or POST. PHP file

uploading works best with POST.

223

chapter 14

HTML Program

I’ve created the form that allows for selecting a file. This one allows you to select a

file from anywhere on your computer, and then it creates a submit button that

lets the visitor send the file through the browser. Check out the code that makes

this happen, then look at Figure 14.1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Upload Form</title>
</head>

<body>
<form action="phpft14-01.php" method="POST" enctype="multipart/form-data">

<input type="hidden" name="MAX_FILE_SIZE" value="30000" >

224 Chapter 14 n Working with Files

Figure 14.1
The file upload input form.

Please select file to upload: <input name="filename" type="file" >

<input type="submit">
</form>
</body>

</html>

enctype
Notice that the form has several familiar parts, such as method and action, but

there is something special: enctype. What is this? enctype stands for encoding

type, and it tells the PHP server that the form is going to send something other

than regular text and field data. Instead, it sends a data file called form-data.

input

Another weird thing is the first input inside the form, with type being set to

hidden. This input parameter defines the file’s maximum size. Right now, it is set

to 30,000 bytes. You can adjust this to any value you like by altering the value

parameter. Just make sure that the name of this input field is MAX_FILE_SIZE.

It is important you use MAX_FILE_SIZE. It prevents any uploaded file from being

over the specified size. Someone can try to upload gigantic files that can use up

your file space or server bandwidth. If someone has malicious intent, he can use

file-uploading forms in what is called a denial-of-service (DoS) attack.

Browse

Lastly, because it is a file-upload form, the last field has a type of file, which

creates a Browse button that lets the user select a file to upload. A box pops up

like the one in Figure 14.2 when you press the Browse button.

Writing the HTML page that sends the file to the server is the easy part. Let’s

make the PHP program to write it permanently to the server!

PHP Program

Take a look at the PHP you need to deal with file uploads.

Arrays

When submitting a file through a form, the server creates an array that holds the

uploaded files. Remember when we used sessions and had the $_SESSION array?

Allowing File Uploads 225

It’s a lot like that. The $_FILES array stores five pieces of information about the

uploaded data. These data are stored in multidimensional arrays:

n The first dimension is the name of the input field from the form on the

previous page. (In the preceding example the field name was filename.)

n The second dimension is the name of the information field.

Table 14.1 lists the five options. You won’t use all of these, but keep in mind that

you have the option to use any of them whenever necessary.

move_uploaded_file()

When a file is uploaded to your server, it is placed in a temporary directory.

This directory is a standard temporary directory, unless you change the

upload_tmp_dir in the php.ini file. You generally don’t need to change the

226 Chapter 14 n Working with Files

Figure 14.2
The file-upload dialog box on a file-upload field.

Allowing File Uploads 227

Table 14.1 The $_FILES Array

Array Description

$_FILES[‘filename’][‘name’] Stores the name of the original file from the sender’s computer.

$_FILES[‘filename’][‘type’] This is the MIME file type, defined by the browser. video/
mpeg is an example. Figure 14.3 shows www.iana.org/
assignments/media-types, where you can find out more.

$_FILES[‘filename’][‘size’] The uploaded file’s size in bytes.

$_FILES[‘filename’] [‘tmp_name’] When uploaded, a file is given a name on the server. This field
stores the name of the temporary file. The file is quickly moved
and no longer temporary after the full action is complete.

$_FILES[‘filename’][‘error’] This is the error code, if any, associated with the uploaded file.

Figure 14.3
The MIME-type web site.

www.iana.org/assignments/media-types
www.iana.org/assignments/media-types

temporary directory. We need to move the file from the temporary directory to

a directory of our choice. To do this, we can use a PHP function called

move_uploaded_file(). The declaration for this function follows:

move_uploaded_file($filename, $destination)

Both $filename and $destination are strings that hold the path and name of the

file.

To use this function, we use the $FILES[‘filename’][‘tmp_name’] data in the

array as the beginning $filename and the name of the original file as the final

destination. Let’s make this happen. First of all, we need to define the folder on

the server where the file will be located. We can then tag on the filename to get the

file’s full $destination. Let’s look at how this might be done:

$destinationdirectory = ’C:\PHP\uploads\\’; //Can be any directory on the
server

$destination = $updirectory . basename($_FILES[’file’][’name’]);

This makes sense, right?We just created a string, $upfile, as the final $destination.

You might have noticed this new function, $basename(). This function removes

any directory structure from a filename and returns the actual filename. So, if

you were to input basename(‘‘C:\windows\desktop\index.html’’), the function

would return index.html as a string.

No t e

This program only works if you have your directory set to read/write by anyone. If you are using a
UNIX server, you must chmod the final directory to 777. Otherwise, make sure anyone has read/
write privileges on the directory.

Now that we have this string created, we can use the move_uploaded_file()

function! Two cool things to note:

n If you use this function and it returns an error (for whatever reason),

the function returns a Boolean false; if it is successful, it returns true.

n You’ll notice the new function print_r(), which prints out all the

information about an array in one command.

228 Chapter 14 n Working with Files

Put it all together to make our final document:

<?

$updirectory = "c:\php\uploads\\"; //Can be any directory on the server
$upfile = $updirectory . basename($_FILES[’file’][’name’]);
echo $upfile;

echo "<pre>";
if (move_uploaded_file($_FILES[’file’][’tmp_name’],$upfile))
{

echo "Congrats! File was uploaded!";
}

else
{

echo "File was not uploaded. There was an error.";

}

echo "Let’s see some info about the file!";
print_r($_FILES);
echo "</pre>";

?>

Pretty cool huh? Figure 14.4 shows the results if you uploaded a file called

test.txt.

Not too shabby. The program tries to move the file and then tells the user if the

uploading was successful. Notice the code at the end of the document:

echo "Let’s see some info about the file!";
print_r($_FILES);
echo "</pre>";

This function, print_r(), writes out the contents of an array in human read-

able terms. As you can see in Figure 14.4, this function prints the array as follows:

[file] => Array
(

[name] => test.txt
[type] => text/plain

Allowing File Uploads 229

[tmp_name] => C:\PHP\uploadtemp\phpC9.tmp
[error] => 0
[size] => 4

)

This explains everything there is to know about the file. Notice the use of the

<pre></pre> tag. This tag makes the new lines in the document’s HTML code

appear as new lines on the web browser screen, rather than simply disappearing.

Without it, the program would look like Figure 14.5. Looks a lot harder to read,

huh?

Loading Files
Opening and loading files are very common programming operations, and

fortunately they are not difficult.

230 Chapter 14 n Working with Files

Figure 14.4
Results of uploading through phpft14-01.php.

Opening a File

Opening a file requires the use of the fopen() function, which gives you access to

any file and its contents. Let’s look at its declaration:

fopen($filename, $mode)

Both parameters are strings. Obviously $filename is intuitive; however, $mode is a

little bit more complex. Let’s take a look and let me explain what that parameter

means.

When you open a file, you can open it for several purposes—the most common

are reading and writing. You can also open a file for appending, which means that

you can add information only to the end of a file. Table 14.2 shows what the PHP

manual has to say about all the possible modes.

There aren’t too many modes. Yeah, there are two more modes, x and x+, which

look weird, but because they aren’t used much, I won’t spend any time on them

in this chapter.

Loading Files 231

Figure 14.5
Removing the <pre> tag.

Only use the most limited of modes depending on your situation. If you need to

use a file because you need to read data from it, use the r mode. If you need to

create and write a file, use w. Even though you can use w+ to read or write to the

file, it is safer to use the mode that allows only what you need. Otherwise, you can

accidentally overwrite a file.

The fopen() function returns a handle to the file. A handle is essentially the same

as a variable, and it stores all the data inside the file. So, if you wanted to open a

file for reading, you could do it like this:

$file = fopen(’file.txt’, ’r’);

All later operations are done upon the $file handle variable.

Closing a File

When you are done with a file inside your PHP program, close it. If you leave it

open, the script can take up more space and slow down the system. Use the

fclose() function to close the file. The declaration for this function is as follows:

fclose($handle);

Simply pass the variable that you retrieved from fopen() to fclose() to close the

file, and the file disappears! Loading and closing a file could be done as follows:

<?
$handle = fopen(’file.txt’,’w’);

232 Chapter 14 n Working with Files

Table 14.2 fopen() Modes

Mode Description

r This opens the file for reading only. The file pointer is put at the beginning of the file.

r+ This opens the file for reading and writing. The file pointer is put at the beginning of the file.

w This opens the file for writing only. The file pointer is put at the beginning of the file. If the
file does not exist, this attempts to create it.

w+ This opens the file for reading and writing. The file pointer is put at the beginning of the file.
If the file does not exist, this attempts to create it.

a This opens the file for writing only. The file pointer is put at the end of the file. If the file
does not exist, this attempts to create it.

a+ This opens the file for reading and writing. The file pointer is put at the end of the file. If the
file does not exist, this attempts to create it.

//Do file operations, all writing because of mode

fclose($handle);
?>

Writing to Files
Writing to files is almost as simple as loading and closing files. All you need is

another function: fwrite(). This naming scheme is getting pretty easy to figure

out, huh? Take a look at the fwrite() declaration:

fwrite($handle, $string)

With this function, you can write whatever string you want to a file. Note that we

are writing an ASCII file, which means that anything you write to the file is a

string, because it will be interpreted as a string when data is later read from the

document. fwrite() only works if the $handle was opened for write or append

access, as discussed earlier in this chapter.

So let’s create a web page that lets the user append text to the bottom of a file and

close it. Let’s start off with the HTML form we need to create:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Append Form</title>
</head>

<body>
<form action="phpft14-02.php" method="POST" >

The text that you enter will be appended to the file phpft14-02.txt.

<p>Enter text to append: <textarea name="appendedtext"></textarea>

<input type="submit">
</form>
</body>

</html>

Writing to Files 233

Check out how this looks in Figure 14.6.

Now for the appending script, which, if working correctly, looks like Figure 14.7:

<?

$text = $_POST[’appendedtext’];
$filename="phpft14-02.txt";

$handle = fopen($filename, ’a’);

//if there is a problem with opening file, echo out error
if (!$handle)

{
exit("Could not open file!");
}

234 Chapter 14 n Working with Files

Figure 14.6
The phpft14-02.html appending form.

//If there is an error with writing, echo out an error
if (!fwrite($handle,stripslashes($text)))

{
exit("Could not write data!");
}

echo "Congratulations! Data appended!";

fclose($handle);

?>

Check out what happens to the text file. In this example, my original document

was C:\test.txt. Originally, before running the script, the file looked like the

one in Figure 14.8. But after running the script, look at test.txt now, in

Figure 14.9!

Writing to Files 235

Figure 14.7
The phpft14-02.php appending script.

236 Chapter 14 n Working with Files

Figure 14.8
The original test.txt file.

Figure 14.9
The new and appended test.txt file.

Cool, huh? But what’s up with that slash in Let\’s? Characters that require

escape sequences, such as the apostrophe, have a backslash before the character.

Fortunately, there is an easy way to fix this. PHP includes a cool function:

stripslashes().

stripslashes($string)

This function removes all the backslashes from a string and returns the new

string. If we wanted to add this to our document, we would only need to change

one line. We would change our fwrite() line from this

if (!fwrite($handle,$text))

to this

if (!fwrite($handle,stripslashes($text)))

After doing so, you can see what the new test.txt file would look like in

Figure 14.10. Small changes make big differences, huh?

Writing to Files 237

Figure 14.10
Using stripslashes().

Reading in Files
Reading in files is almost the same as writing to files—just the opposite. When we

were writing to files earlier, we passed a string as a parameter that contained the

data in the file. When we read in files, the reading function returns a string that

we can manipulate for our purposes.

fread()
So what is the reading function, then? If you’ve been paying attention, you can

probably guess the name: fread(). Take a look at the function declaration:

fread($handle, $lengthInBytes)

Both of these parameters are required. The first parameter is the handle to the file

we retrieved by using fopen(). The second parameter is the number of bytes you

wish to retrieve. fread() only works for pages that have been opened for reading

access.

This sounds all well and good if you know the amount of data you need to

retrieve, but what if you don’t? What if you want to retrieve the entire file?

Fortunately, PHP gives you a way to do this. PHP’s filesize()function returns a

file’s size in bytes. Look at the declaration:

filesize($filename)

Pretty cool, huh? If you want to read in an entire file, you can do it as follows:

$contents = fread($handle, filesize($filename));

There are a couple other cool functions you should know about. One is fgets(),

which reads the file until the next carriage return, returning the current line. You

can call this inside a loop and display or act upon the entire contents of a file.

file()
Another cool function is file(), which takes the entire file into an array without

requiring an fopen() command! All you have to do is pass file() the filename, as

follows:

$entireFile = file("yourfile.txt");

This creates an array of each line of the file. As an alternative, you can use a

foreach loop and act upon each line of the file.

238 Chapter 14 n Working with Files

After running this line of code, the $contents variable contains the entire con-

tents of the $handle file. The contents are in string format. You can do all of your

operations upon the strings, as I explain in Chapter 8.

So let’s use all of this in a script. You know by now how to make the HTML

document, but feel free to take a look at phpft14-03.html to see how the HTML

looks. The page we made looks like the one in Figure 14.11.

Now look at the PHP code that makes the reading happen:

<?

$filename = "c:\\test.txt";//$_POST[’file’];

$handle = fopen($filename, ’r’);
//if there is a problem with opening file, echo out error
if (!$handle)

Reading in Files 239

Figure 14.11
The phpft14-03.html reading form.

{
exit("Could not open file!");
}

$contents = fread($handle,filesize($filename));

//If there is an error with writing, echo out an error
if (!$contents)

{
exit("Could not read data!");
}

echo "The contents of your file $filename follow.<p>";
echo $contents;

fclose($handle);

?>

The main thing is the fread() line:

$contents = fread($handle,filesize($filename));

Here, we pass the $handle and the filesize of the file to the fread() function. We

put the result of this operation into the $contents variable. After this we check to

see if $contents is valid by running the following if test:

if (!$contents)
{
exit("Could not read data!");
}

$contents is invalid if it is blank, so we can check to see if it is valid by doing the

above test. If the file is blank, the program exits. Cool, huh? You can do whatever

you like with the file, maybe remove all of the new lines, or search for specific

substrings, or whatever you feel like!

Renaming, Copying, and Deleting Files
There are only a few more functions that I want to go over before finishing off

this chapter. These three functions are commonly used in file situations, both on

a computer and on a web site. They are simple to use, and all return a Boolean

value. If the function is successful, the function returns true; if it is false, the

function returns false.

240 Chapter 14 n Working with Files

copy
The first function copies:

copy($source_filename, $destination_filename)

When using the copy function, the program knows already that the source file

needs to be opened for reading and the destination file needs to be open for

writing. Because of this, the function does not require that you pass in a handle of

a file, but just the filename. The function actually sends the copy and rename

commands to the operating system, delegating the work from the PHP

program—saves you some work.

rename
The second function renames:

rename($old_filename, $new_filename);

One cool thing to know about rename is that you can use it to move a file across

directories, as well. By renaming the file to have a different path, you can move

the file. For example, if the old filename is C:\test.txt and the new filename is

D:\text\test.txt, you move the file from the C:\ directory to D:\text. Pretty

nifty, huh?

unlink
The last function deletes files. I bet you think you knowwhat the function name is.

unlink($filename)

Weird, huh? PHP sometimes gives functions annoying names, so even though

most people would expect this function to be delete(), it is instead entitled

unlink().

These functions are all simple to use, and all return a Boolean value. If the

function is successful, the function returns true, and if it is false, the function

returns false.

Renaming, Copying, and Deleting Files 241

Summary
That’s it. We are done. Nothing left to teach. Well, except for the rest of PHP. But

this book gave you a great introduction into the topic. You can now design your

own dynamic web site. You can have it interact with files, interact with strings—

whatever you want it to do.

You started with a quick primer on HTML to help refresh your memory. You

then learned how tomake forms and how to use the variables within those forms.

You then learned about constants, operators, and expressions, which you used

throughout the book. You took a brief respite to learn about the style that is

necessary to develop when programming. After that, in Part II you learned about

control structures and loops. You even learned about dealing with strings,

functions, and the hated arrays. In Part III you learned about really advanced

forms, cookies, sessions, and how to work with files. After all this learning, you

can now design your own dynamic site and make it do whatever you want!

PHP is the future of web sites. It interfaces with databases, which enables you to

store data in easily accessible formats. A great next step is to learn how to use

databases (mySQL is my favorite) and see how to interface them with PHP.

Everyone loves a well-designed database.

Other than that, I’ve exhausted what this book can teach you. If you have

any questions, you can always email me at maneesh@maneeshsethi.com. You

can visit my web site at www.maneeshsethi.com. You can visit my blog at www.

lazymotivation.com. You can even visit my forums and talk to other people who

have questions and answers about PHP at www.maneeshsethi.com/forum.

Please email me. I love to hear from readers, and I take all your comments to

heart. If you are interested in reading my other works, check out my blog, and see

Game Programming for Teens, Second Edition; Web Design for Teens; and my

soon-to-be-published How to Succeed as a Lazy Student. You can find infor-

mation about all these books at www.maneeshsethi.com.

Thank you so much for paying attention throughout this entire book. Good luck

with your web sites! Send me updates of your web pages, and if they are really

good, I might display them directly on www.maneeshsethi.com!

‘‘The greatest trick the devil ever pulled was convincing the world he didn’t exist.

And like that . . . he’s gone.’’ Maneesh, signing out.

242 Chapter 14 n Working with Files

www.maneeshsethi.com
www.lazymotivation.com
www.lazymotivation.com
www.maneeshsethi.com/forum
www.maneeshsethi.com
www.maneeshsethi.com!

Function List

This appendix lists all of the descriptions and declarations of the functions in this

book. The declaration is described as follows:

returnType FunctionName(varType variable1, varType variable2, . . .)

All of the functions follow this pattern. If the function returns nothing, the return

type is void. If the parameter is optional, brackets are placed around the

parameter.

243

appendix a

Table A.1 Functions

Name Description Code

basename() Returns the filename component
of a filename string.

string basename(string
$fullString)

copy() Copies the contents of one file
to another.

bool copy(string
$source_filename, string
$destination_filename)

define() Takes in a constant name and
a constant value and defines
the constant in the program.

void define(string
$constantName, int
constantValue);

continued

244 Appendix A

echo Although this is not a function
(it is a language construct), it
acts as one. Outputs the specified
text or variable to the page.

void echo (string $1, . . .)

exit Although this is not a function
(it is a language construct), it
acts as one. Causes the PHP page
to immediately halt script execution.
No following PHP commands
are executed on the page.

void exit (string/int
$status);

fclose() Closes a file. void fclose(resource
$handle);

filesize() Returns the size of a file in bytes. int filesize(string
$filename);

fopen() Opens a file and returns a handle to it. resource fopen(string
$filename, string $mode)

fread() Returns a string that contains
all the contents inside the chosen file.

string fread(resource
$handle, int $sizeInBytes);

fwrite() Writes a string to an already
opened file.

bool fwrite(resource
$handle, string $text);

gettype() Returns the type of the inputted
variable.

string gettype(anytype
$variable);

header() Allows you to modify some section
of the document header. Using
the Location: attribute changes
the web page’s URL.

void header(string
$newLocation);

isset() Confirms whether a variable has
been created. Returns true if it
already exists and false if not.

bool isset(anytype
$variable);

mail() Lets your web server send an
email message.

bool mail(string $to, string
$subject, string $message,
[string $additionalheaders],
[string $additionalparameters])

move_
uploaded_file()

Moves a file from its temporary
location to its final destination
on your server.

bool move_uploaded_file
(string $source, string
$destination);

nl2br() Takes in a string as a parameter and
converts the new lines into

tags. Allows proper display of strings
in the web browser.

string nl2br(string $text);

rename() Renames a file. bool rename(string
$old_filename, string
$new_filename);

Table A.1 continued

Name Description Code

Appendix A 245

session_
name()

Allows you to assign a name to
your session. Includes a string
parameter to change the
name. If you leave the
parameter blank, the current
session’s name is returned.

string session_name
([string $name]);

session_ start() Initiates or continues using a session.
This function must be placed before
any other echoed HTML or text.

void session_start(void);

setcookie() Sets a cookie on the web server,
which lets you store user data.

bool setcookie(string,
$name, [string $value, int
$expire, string $path, string
$domain, bool $secure])

stripslashes() Returns a string with all
backslashes removed.

string stripslashes(string
$orginalString);

strval() Takes in a non-string as a parameter
and returns the input as a string value.

string strval(int
$nonstring);

time() Returns the number of seconds since
the epoch (returns the current time).

int time(void);

unlink() Deletes a file. bool unlink(string
$filename)

unset() Deletes an element of an array
or an entire array, depending on
what variable you pass.

void unset(anytype
$elementOrArray);

Table A.1 concluded

Name Description Code

This page intentionally left blank

Online Resources

Check out some other web sites to learn a little more about PHP once you are

done with this book. Here are some recommendations:

n www.php.net—This is the official PHP web site. You can read the

documentation or see a full and complete function list. The tutorial is

excellent.

n php.resourceindex.com—This is a great resource for working PHP scripts

and tutorials. You can find a lot of cool tips and hacks.

n www.courseptr.com—This site offers books that can take your PHP and

SQL/MySQL studies to a higher level.

n www.maneeshsethi.com—This is my web site and I’ve included some

information for this book. Go to www.maneeshsethi.com/forum to interact

with other readers.

247

appendix b

www.php.net
www.courseptr.com
www.maneeshsethi.com
www.maneeshsethi.com/forum

This page intentionally left blank

What’s on the CD

On this book’s CD, you find all of the source code for all of the chapters. In

addition, it offers the Nvu HTML editor and a few cool PHP editors. The CD is

laid out like this:

Source/

Chapter 01/

Chapter 02/

. . .

Chapter 14

Programs/

Extra Programs/

Just navigate to the directory of your choice to install the software. The Programs

directory contains Apache and PHP for installation on your machine. The Extra

Programs directory holds the editors.

249

appendix c

This page intentionally left blank

Symbols
{ } (curly braces), 88, 90

\r (carriage return), 131

$ (dollar sign), 61

. (dot operator), 75, 83, 92–93

= (equal) operator, 90

/ (forward slash), 27

> (greater than), 61, 90

>= (greater than or equal to) operator, 90

\t (horizontal tab), 131

< (less than), 61, 90

<= (less than or equal to) operator, 90

\n (line feed), 131

; (semicolon), 12, 64–65

’ (single quotation marks), 75

_ (underscore), 66, 100

A
A Guide to MySQL (Pratt), 211
A Guide to SQL (Last and Pratt), 211
a+ mode, fopen() function, 232

a mode, fopen() function, 232

action attribute
advanced forms, 171–172
<form> tag, 44, 52

<alt> tag, 37

Apache services monitor, PHP installation, 6

apostrophes, 125

appending files, 231

arithmetic operators, 83–85

array data type, 60

arrays
array() function, 152
$arrayname value, 162
creation, 151–152

defined, 71–72
element creation, 153
for loop and, 157–158
keys in, 151, 154–157
numeric indices for, 157
old values, removing, 158–160
reference items, 152–153
return values, 152

ASCII files, 25

assignment operator, 91

B
 tag, 33

basename() function, 243

binary operators, 81

Binary option, PHP installation, 4

blank sentences in forms, 58

<body> tag, 28

bolded text, 33

boolean data type, 60

 tag, 37, 124

branching structures, control

structures, 103–104

break statements, 113, 120

C
C++, comment use, 101

C method, comment use, 101

capitalization
constant naming rules, 78
style considerations, 99–100
variable naming rules, 66

carriage return (\r), 131

Cascading Style Sheets (CSS), 33

251

INDEX

case sensitivity
constants, 78
variable naming rules, 66

CD
contents, 249
PHP installation, 4

closing files, 232–233

closing tag, 27

coded characters, password fields, 170–171

colors, font, 35–36

comments
C method, 101
C++ method, 101
organization techniques, 100–102
Perl method, 101
text areas, 47
when to use, 101

comparison operators, 90

conditional statements, 87, 175

conditions, calling functions depending

on, 146–150

conf directory, PHP installation, 9–10

consistency, style considerations, 99

constants
case-sensitivity, 78
naming rules, 79
variables versus, 77–78

$contents variable, file() function, 239

continue statement, loops and, 120

control structures
branching structures, 103–104
break statements, 113
else statements, 107–109
elseif statements, 109–111
if statements, 104–107
loops

for, 116–119
break statement and, 120
continue statement and, 120
do. . .while, 119–120
while, 114–116

switch statements, 111–113

$_COOKIE array, 75

cookies
$cookievalue variable, 188
counter creation exercise, 219–221
creation, 182–185
defined, 181
exit() function, 188
no value problems, 185
not recognizable problems, 185
placing on Web site, 186–190

sessions versus, 195–196
setcookie() function, 182–185, 188

copy() function, 241, 243

copying files, 241

counter creation, sessions, 208–211

CSS (Cascading Style Sheets), 33

curly braces ({ }), 88

D
data types, 60–61, 69

declaration, functions, 139

decrementing operators, 91–92

define() function, 78, 243

delete() function, 242

deleting files, 241–242

denial-of-service (DoS) attack, 225

$destination string, 228

dirname() function, 216

DOCTYPE declaration, 25

dollar sign ($), 61

domain name, PHP installation, 6

$domain parameter, setcookie()

function, 184–185

DoS (denial-of-service) attack, 225

dot operator (.), 75, 83, 92–93

double data type, 61

double-quoted syntax, string creation, 131–132

do. . .while loop, 119–120

E
echo command, 83, 244

editors
HTML, 39–40
Notepad, 39–41

else statements, 107–109

elseif statements, 109–111

email commands
document design, 178
from option, 177
headers section, 179
mail() function, 176–177, 179
to address, 176

empty() function, 175

enctype value, files, 225

$_ENV array, 75

equal (=) operator, 90

errors
PHP installation, 15
session, 203–205

escape sequence, 126

252 Index

exit() function, 188, 244

$expire parameter, setcookie() function, 182–183

expressions, 93–94

F
fclose() function, 232–233, 244

fgets() function, 238

file() function, 239–240

files
allowing uploads, 223
appending, 231
$basename string, 228
closing, 232–233
copying, 241
deleting, 241–242
enctype value, 225
$filename string, 228
$_FILES array, 226–227
form-data, 225
handles, 232
loading, 230
MAX_FILE_SIZE attribute, 225
move_uploaded_file() function, 226, 228
opening, 231–232
reading in, 237–241
renaming, 241
sizes, 238
unlinking, 241–242
writing to, 233–236

$_FILES array, 75

filesize() function, 238, 244

float data type, 60–61, 69

fonts, 35–37

fopen() function, 231–232, 244

for each loop, 161–166

for loop
arrays and, 157–158
how to use, 116–119

form page design, starting sessions, 198

<form> tag, 42–44

form-data, files, 225

forms
action attribute, 171–172
after submission, 58
blank sentences, 58
conditional statements, 175
discussed, 42
email commands

document design, 178
from option, 177
headers section, 179

mail() function, 176–177, 179
to address, 176

field names, 46
GET, 70–71
hidden fields, 171
password fields, 170–171
with PHP tags, 57
POST, 70–71
radio buttons, 167–169
reset button, 51
submit button, 48–50
text areas, 44, 47
textboxes, 44–46

forward slash (/), 27

fread() function, 237–238, 240, 244

from option, email commands, 177

functions
array(), 152
basename(), 243
condition dependent, 146–150
copy(), 241, 243
declaration, 139
define(), 78, 243
defined, 67, 135
delete(), 242
$destination string, 228
dirname(), 216
empty(), 175
exit(), 188, 244
fclose(), 232–233, 244
fgets(), 238
file(), 239–240
filesize(), 238, 244
fopen(), 231–232, 244
fread(), 237–238, 240, 244
function code, 138
fwrite(), 233, 244
gettype(), 80, 244
get_type, 67
header(), 216, 244
isset(), 188, 244
library files for, 145–146
mail(), 176–177, 179, 244
modular program, 135
move_uploaded_file(), 226, 228, 244
n12br(), 124, 127, 138, 244
parameter lists, 138–139
parameters, 67–68
print_r(), 228
rename(), 241, 244
return values, 68, 139–143
rtrim(), 216
running counter program, 135–137

Index 253

functions (continued)
session_name(), 245
session_start(), 196–197, 245
setcookie(), 182–185, 188, 245
soundex(), 134
string, 132–134
stripslashes(), 236, 245
strval(), 132, 134, 245
substr(), 134
time(), 183, 245
unlink(), 242, 245
unset(), 158–160, 188, 245
variable scope, 146

fwrite() function, 233, 244

G
$_GET array, 75

GET form, 70–71

GET method, 88–89, 171

gettype() function, 80, 244

get_type() function, 67

$GLOBALS array, 75

greater than (>), 61, 90

greater than or equal to (>=), 90

A Guide to MySQL (Pratt), 211
A Guide to SQL (Last and Pratt), 211

H
handles, file, 232

<head> tag, 30–32

header() function, 216, 244

headers section, email commands, 179

heading levels, 30–32

hexadecimal code, 36–37

hidden fields, advanced forms, 171

<hnumber> tag, 31

horizontal tab (\t), 131

htdocs directory, 12

HTML editors, 39–40

HTML (Hypertext Markup Language)
<alt> tag, 37
ASCII files, 25
 tag, 33
<body> tag, 28

 tag, 37
DOCTYPE declaration, 25
<form> tag, 42–44
forms

discussed, 42
field names, 46

reset button, 51
submit button, 48–50
text areas, 44, 47
textboxes, 44–46

<head> tag, 30–32
<hnumber> tag, 31
.htm extension, 24
.html extension, 24
<html> tag, 26–29
http.conf file, 24
 tag, 37
<input> tag, 44
<p> tag, 28–29
 tag, 35–36
structure of, 23–24
tags, defined, 25
template, 40–42
<textarea> tag, 47
<title> tag, 27

<html> tag, 26–29

HTTP server link, web server installation, 3

http.conf file, 24

Hypertext Markup Language. See HTML

I
<i> tag, 33

if statements, 87, 104–107

images, text, 37

 tag, 37

incrementing operators, 91–92

<input> tag, 44

installing PHP
from CD, 4
on Macs, 19–21
on Windows

Apache download, 3–4
Apache services monitor, 6
Binary option, 4
conf directory, opening, 9–10
domain name, 6
errors, 15
HTTP server link, 3
PHP download page, 8
Server Information screen, 4–5
testing, 7–8, 11–15
Typical Installation method, 6
web server installation, 2–7
zipped files, 9

integer data type, 60

integers, converting to strings, 132–134

isset() function, 188, 244

italicized text, 33

254 Index

K
keys, in arrays, 151, 154–157

L
language construct, 63–64

Last, Mary Z. (A Guide to SQL), 211
less than character (<), 61, 90

less than or equal to (<=) operator, 90

letters, variable naming rules, 66

library files, for functions, 145–146

line feed (\n), 131

loading files, 230

Location attribute, header() function, 216

logical operators, 90–91

log-in page development, sessions, 211–219

loops
break statement and, 120
continue statement and, 120
do. . .while, 119–120
for, 116–119, 157–158
foreach, 161–166
while, 114–116

M
machine code, 1

Macs, PHP installation, 19–21

mail() function, 176–177, 179, 244

MAX_FILE_SIZE attribute, 225

method attribute, /form/ tag, 44

methods
GET, 88–89, 171
POST, 88–89, 171

modular program functions, 135

modulus operator, 84

move_uploaded_file() function, 226, 228, 244

N
$name parameter, setcookie() function, 182

naming rules
for constants, 79
for variables, 65–66

n12br() function, 124, 127, 138, 244

negative operator, 84

nesting tags, 27–28

new lines, single quoted strings, 122–124

Notepad editor, 39–41

NULL data type, 60

numbers, variable naming rules, 66

numeric indices, for arrays, 157

O
object data type, 60

old values in arrays, removing, 158–160

online resources, 247

opening files, 231–232

opening tag, 27

operators
arithmetic, 83–85
assignment, 91
binary, 81
classes, 80
comparison, 90
conditional statements, 87
decrementing, 91–92
defined, 79
incrementing, 91–92
logical, 90–91
modulus, 84
negative, 84
string dot, 92–93
ternary, 81–83
unary, 81

organization. See style

P
<p> (paragraph) tag, 28–29

parameter list, functions, 138–139

parameters
function, 67–68
return values versus, 139

password and username, log-in page

development, 213–216

password fields, advanced forms, 170–171

$path parameter, setcookie() function, 184

Perl method, comment use, 101

PHP installation. See installing PHP
PHP tags, 54–56

PHP Web site, 247

phpinfo.php file, 12–13

placeholders, 55

$_POST array, 75

POST form, 70–71

POST method, 88–89, 171

Pratt, Philip J.
A Guide to MySQL, 211
A Guide to SQL, 211

predefined variables, 72–75

print_r() function, 228

program flow
branching structures, 103–104
break statements, 113

Index 255

program flow (continued)
else statements, 107–109
elseif statements, 109–111
if statements, 104–107
loops

break statement and, 120
continue statement and, 120
do. . .while, 119–120
for, 116–119
while, 114–116

switch statements, 111–113

R
r+ mode, fopen() function, 232

r mode, fopen() function, 232

radio buttons, 167–169

reading in files, 237–241

reference items, arrays, 152–153

rename() function, 241, 244

renaming files, 241

$_REQUEST array, 75

reset button, forms, 51

resource data type, 60

resources, web sites as, 247

return values
arrays, 152
functions, 68
parameters versus, 139

rtrim() function, 216

running counter program, function use, 135–137

S
script resources, 247

$secure parameter, setcookie() function, 185

semicolon (;), 12, 64–65

$_SERVER array, 75

Server Information screen, PHP installation, 4–5

$_SESSION array, 75

sessions
cookies versus, 195–196
defined, 195
errors, 203–205
log-in page development, 211–219
same name variable problems, 202
session names, 205–208, 245
session_start() function, 196–197, 245
starting

basic page development, 198–202
form page design, 198
how to, 197

variable assignment, 204–205
Web page counter creation, 208–211

setcookie() function, 182–185, 188, 245

single quotation marks (’), 75

single-quoted syntax, string creation, 122–129

sizes, file, 238

soundex() function, 134

 tag, 35–36

starting sessions
basic page development, 198–202
form page design, 198
how to, 197

statements
break, 113
continue, 120
else, 107–109
elseif, 109–111
if, 87, 104–107
switch, 111–113

string data type, 60–61

string dot operator, 92–93

strings
defined, 121
double-quoted syntax, 131–132
functions, 132–134
integer conversion, 132–134
single-quoted syntax, 122–129
soundex() function, 134
strval() function, 132, 134
substr() function, 134

stripslashes() function, 236, 245

strval() function, 132, 134, 245

style
capitalization, 99–100
comments, 100–102
consistency in, 99
guidelines, 99
organization considerations, 95–97

subdomains, 184

submit button, forms, 48–50

substr() function, 134

switch statements, 111–113

switch tests, 90

T
tags, HTML

<alt>, 37
, 33
<body>, 28

, 37, 124
closing, 27
<form>, 42–43
<head>, 30–32
<hnumber>, 31

256 Index

<html>, 26–29
HTML structure, 25
<i>, 33
, 37
<input>, 44
nesting, 27–28
opening, 27
<p>, 28–29
, 35–36
tag attribute, 35
<textarea>, 47
text-formatting, 33–37
<title>, 28
<u>, 33

tags, PHP, 54–56

templates, HTML, 40–42

ternary operators, 81–83

testing, PHP installation, 7–8, 11–15

text
bolded, 33
fonts, 35–37
italicized, 33
underlined, 33

text areas, HTML forms, 44, 47

text images, 37

<textarea> tag, 47

textboxes, HTML forms, 44–46

text-formatting tags, 33–37

time() function, 183, 245

<title> tag, 28

to address, email commands, 176

tutorial resources, 247

Typical Installation method, PHP installation, 6

U
<u> tag, 33

unary operators, 81

underlined text, 33

underscore (_), 66, 100

unlink() function, 242, 245

unlinking files, 241–242

unset() function, 158–160, 188, 245

uploads, files, 223

username and password, log-in page

development, 213–216

V
$value parameter, setcookie() function, 182

variable assignment, sessions, 204–205

variable scope, 146

variables
array data type, 60
arrays, 71–72, 75
boolean data type, 60
constants versus, 77–78
creating, 61–63
data types, 60–61
defined, 59
double data type, 61
float data type, 60–61, 69
integer data type, 60
language construct, 63–64
naming guidelines, 65–66
NULL data type, 60
object data type, 60
predefined, 72–75
resource data type, 60
string data type, 60–61

W
w+ mode, fopen() function, 232

w mode, fopen() function, 232

Web Design For Teens, 39
web server installation, 2–7

web sites, as resource, 247

What You See Is What You Get

(WYSIWYG) text editor, 40

while loop, 114–116

white space, 97

Windows, PHP installation
Apache download, 3–4
Apache services monitor, 6
Binary option, 4
conf directory, opening, 9–10
domain name, 6
errors, 15
HTTP server link, 3
PHP download page, 8
Server Information screen, 4–5
testing, 7–8, 11–15
Typical Installation method, 6
web server installation, 2–7
zipped files, 9

writing to files, 233–236

WYSIWYG (What You See Is What You Get)

text editor, 40

Z
zipped files, PHP installation, 9

Index 257

