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Foreword

I wish to thank Juan A. Barceló for asking me to write the foreword to his fine book on Computational 
Intelligence in Archaeology. As he writes in the prologue, we might sometimes disagree, but he still 
regards himself as a kind of “gardinist” in his more modern world. One example is the place we both 
gave to the conference on computer applications and quantitative methods in archaeology (http://caa.
leidenuniv.nl). Barceló indicates that he attended nearly all the annual meetings of that series since 1991. 
I personally was invited to present the initial paper of the 2002 meeting of that conference, as an interim 
report on the logicist program. There are differences between that program and those that formed the 
basis of all the computer applications discussed at this conference. Before going into them, I shall first 
summarize Barceló’s views here presented on the subject. 

* * * *

Section I, From Natural Archaeology to “Artificial” Intelligence, establishes first the automated form 
of archaeology in an Input STATE  Output format. The analysis of such forms calls for some infer-
ences that are social interpretations of the input data, that is, ‘inverse engineering’ distinct from ‘real’ data. 
The major question is problem solving in the brain and by the machine. The answer here is the machine, 
but with a difference between expert systems, in which the mechanisms of human conceptualization are 
lacking (as in our view of expert rules), and a neurocomputational one where the “rational” automated 
archaeologist makes more sense.

Section II, Learning and Experimentation in Historical Sciences, takes on this neurocomputational 
framework of study through the concept of “inverse reasoning,” an inverse engineering based on ‘the 
generalization of input-output mappings connecting cause and effect in certain fields of regularity. 
Inverse reasoning starts not with observations but with conjectures, hence a predictive task depending 
on social processes more than on the accumulation of data. The ‘Introduction to neurocomputing’ is a 
way to answer this schematic representation between neurons from input detectors to integrated outputs 
(there are many ways to account for the relation between neural including the recurrent networks, which 
I shall not summarize here).

Section III, is titled Practical Examples of Automated Archaeology. The starting point is a recall of 
the principle of visual and non-visual analysis in automated archaeology, from observable effects to 
unobservable causes. The automated archaeologist should first find the social cause of what it ‘sees’ and 
extract from that analysis a number of unobservable questions which should be included in the initial 
computer classification of the data. Examples are given for shape analysis, texture and compositional 
analyses, spatiotemporal analysis. In this last case, the most provocative of all questions asked along 
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this book is raised: “Can an automated archaeologist not only ‘forecast’ the future, but even explain 
how our social action will be?” The provisional answer to that problem tends to call more on studies of 
social causation than on particular objects. In other words, we should concentrate on the function of the 
objects mentioned as inputs in order to convert into output actions that seem reasonable, that is, neither 
too general nor too specific. Some of the material elements in given social activity will be used to guide 
inferences and to fill gaps in the knowledge of the element’s function.

Section IV consists of the Conclusions. Summarizing the argument, the automated archaeology actu-
ally sees humans acting socially and perceives their variation in time backwards, explaining it through 
some causes. This may be understood as seeing the past or the present. In this second case, the inverse 
reasoning or inverse engineering approach is used to simulate unobservable mechanisms that link the 
input (observation) with the output (explanation), or to predict properties of parts of the social process 
from properties of other parts. The case of organized “libraries” of internal representations of various 
prototypical perceptual situations has not been discussed here.

The last section of the book Towards a Computational Philosophy of Science is particularly interest-
ing to understand its purpose. First, an artificial archaeologist is defined as “a physically instantiated 
system that can perceive, understand and interact with its environment, and evolve in order to achieve 
human—like performance in activities requiring context—(situation and task) specific knowledge.” 
Second, we therefore need “a theory of why a specific computation or a group of related computations 
performed by a system that has (those) abilities.” Among them, “computer programs (that) do work in 
real science, not only in archaeology ” that is, “not simulating or reproducing the way archaeologists 
think today because we are doing archaeology in the wrong way.” Thirdly, in this purpose, “the robot 
scientist can infer hypotheses with integrated reasoning, perception, and action with a uniform theoretical 
and implementation framework (derived) from cognitive robotics. Computational cognitive models of 
archaeological abilities should be based on the study of particular human capabilities and how humans 
solve certain tasks, but still models will never be like human archaeologists, nor do I pretend to substi-
tute human scientific endeavor by slave androids.” Finally, in other words, the preference is “to discuss 
how to design the theory of the computation (knowledge level) rather than the possible implementation 
(physical level) “hence a “ top-down strategy” with three kinds of assumptions: social activity, rather 
strong and daring; a more predictive hypotheses; or closely related to them but in terms that run the risk 
of certain distortions. 

* * * *

I wish now to go back to the logicist program and its interim report presented at the CAA 2002 meeting 
which I attended (Doerr & Sarris, 2003). The main point was to recall the two ‘natural kinds’ developed 
by Jerome Bruner in his theory inActual Minds, Possible Worlds (1986): one is the logic-scientific way 
used in the “hard” sciences, the other is the way of thought presented in the liberal kinds such as the ‘soft’ 
studies including literature. The example given by Bruner belonged all to the narrative kinds, which made 
it difficult to know whether a ‘third’ way of knowledge was possible existing beyond his two natural 
kinds, covering ‘between’ the two other points. Bruner was wise enough to avoid that question so that I 
myself had to propose an answer; it consisted in focusing that the logico-scientific part was applicable to 
our studies as well, while seeing in their case a large number of ‘complements’ differently named, from 
the more advanced to the more journalistic or literary ones. Our research on ‘Conceptual modeling and 
digitalization’ was logic-scientific in this case, but it did not hesitate to raise questions about the many 
computer works presented at the same meeting (Gardin, op. cit, p. 5-11).
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Yet my view is “wrong” according to Barceló because “it lacks the mechanism of human conceptualiza-
tion,” as done in his understanding of computational intelligence. I accept this criticism given the fact 
that “ problem solving never ends.” 

My understanding then went back to my initial book presented in 1980, Archaeological Constructs: 
an aspect of theoretical archaeology. The analysis was a set of basic data used in the picture (declara-
tion propositions) without explicit antecedents in the discourse, followed by inferences practiced by 
the author (rewriting, derivation, detachment) to reach his conclusion or hypothesis according to his 
way of presenting the argument (mode empiric-inductive or hypothetic-deductive). The argument it-
self thus took the form of a sequence of rewriting operations “pq,” read as “IF p, THEN q.” Each of 
the operations mark in the discourse the passage of a set {Pi} to another set {Pj} following a logic of 
“natural reasoning” as understood in historical disciplines as later named by J.-C. Passeron (1991). Two 
interesting properties of this sort of writing were named: (a) the function of the parts of discourse that 
are not present in the logicist modelization, provisionally regarded as ‘literary’ in a vague sense of the 
word ; (b) the metatheoretical aspect of the most diverse schools of thought mentioned, for example, 
‘traditional’ or ‘new archaeology,’ post-processual, marxist, structural, contextual, symbolic, cognitive, 
and many others. 

The next book mentioned was Expert Systems and Human Sciences: The Case of Archaeology, Pro-
duced by Several of us in 1987 (English version in Gardin et al., 1988). In the same year, I was invited 
by the Société Française de Philosophie to present my views on the ‘Questions d’épistémologie pratique 
dans les perspectives de l’intelligence artificielle.’ The name of ‘practical epistemology’ was essential 
in all such matters, implying the same relative view of the artificial intelligence to which it was applied. 
The decisive position then was to show that the use of computers should be regarded as an interesting 
part of the process but by no means as an essential one since a large number of articles on the problem 
were raised even before computers were used (ex., Binford, Renfrew), and so forth.

It was only in the 90s that our situation changed in that respect with the appearance of computers in 
archaeological publications, but not at first in Barceló’s views. My first example was an addition of a 
‘Problème de formes’ in a book on the long-term interpretation of certain facts observed in archeological 
sites of North-eastern Afghanistan, from the Bronze Age to Islamic times (Gardin, 1998). A computer 
system was envisaged to simulate the ‘data’ and successive ‘inferences’ necessary to justify the pro-
posed ‘hypothesis,’ using ways of presentation that entirely differed from the initial lines. An example 
of the kind was given by Valentine Roux in a collective publication of the Cornaline de l’Inde using two 
forms of writing: (a) the presentation of numerous techniques of fabrication (space, artisans, econom-
ics, workshops, etc.), followed by socio-historical hypotheses for each one of them; (b) the expression 
of such constructions by a set of logicist analyses submitted to practical epistemology and to different 
modes of computer writing. The book published in 2000 followed the same distinction: (a) first came 
a large set of individual collections (ca. 500 pages, rich in scientific studies of all sorts: psychometric, 
mathematics, economics, etc.), each ending with the kind of conclusions called ‘natural reasoning;’ (b) 
the second part was a CD-ROM in which Roux tried to represent the logico-empirical data mobilized in 
each of the hypotheses, using the more efficient multimedia required for this work developed by Philippe 
Blasco under the name of SCD (scientific constructs and data).

Seen like this, the CD-ROM could be understood as a way to replace the book rather than to complete 
it. The opinion of Roux was that this way of thinking was erroneous, as much as trying to distinguish the 
respective merits of models and literature in the human sciences. The position taken after the publication 
of the Cornaline de l’Inde was to considerably reduce the purpose of the objects and ideas presented in 
such books, while trying to observe the principle of ‘conceptual modeling and digitalization’ adopted 
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for the logico-scientific part of the work. A new collection came out called Referentiel at the Maison 
des Sciences de l’Homme, in which the CD-ROM became the major part of the argument delivered on 
the left-hand side of the book in a logic-empirical form. An added part was available on the right-hand 
side, limited to a few dozens papers written in linear format to expose the author’s complements (e.g., 
history of the methods used, their conception and structure, suggestions for future research, etc.). The 
first study of Referentiel was published after a thesis on the technical tradition of modern ceramics ob-
served in the Senegal valley (Gelbert, 2003). Others followed on the archaeology of Bronze Age in the 
Middle East (Boileau, 2005), the relation between India and South-East Asia in and after the passage 
to the first millennium (Bellina, 2007), the sequence of medieval traditions in Central France till the 
present (Zadora, in press), and so forth. The SCD format is still a relatively fixed way of presenting the 
logic-empirical reasoning, but with differences in some applications, where inverse reasoning may lead 
to the varied predictive analysis in Barceló recommendations.

Another development is oriented in the same program in the name of Archaeotek, the European As-
sociation for the Archaeology of Techniques. Its purpose is to encourage studies in a special journal of 
new works on the logicist analysis of archaeology of techniques (in English only). An article recently 
published (Gardin, Roux 2004) presents this project, its origin and attended programs, together with 
the reasons expected against its formal applications (op. cit., p. 35 – 39). Some of them may have to do 
with the historical and social exploitations in the internal analysis of the observed features, in which 
case the Archaeotek Journal approaches the phenomenon of computational intelligence. The existing 
examples already published raise different technical problems leading to interesting discussions of 
their rewriting procedures. In such features, it may happen that ‘new ways of thinking old concepts’ are 
formed, as required in Barceló’s computable archaeology. A true intelligent machine thus appears in 
his own sense of the word, “based on the study of particular human capabilities and how humans solve 
certain tasks, but such models will never be like human archaeologists” as understood in his notion of 
artificial intelligence. 

This book has a subtitle on Investigations at the Interface between Theory, Technique and Technology 
in Anthropology, History and the Geosciences. I regret not being able to extend this foreword to this large 
subject, except perhaps regarding my own views on ethnoarchaeology. We all know that many studies 
come out on surface features, characterizations, production systems and social groups in ethnoarchae-
ology, but with few correlates on regularities between material cultures and dynamic phenomena. This 
problem has been described recently by Valentine Roux in an interesting article on ‘Ethnoarchaeology: 
a Non-Historical Science of Reference Necessary for Interpreting the Past’ (Roux, 2007). In reading 
it, I could not avoid some thought on the inverse reasoning recommended by Barceló for the computer 
systems, namely ‘the observation of the presence of actions that were probably performed in the past’ 
using the computational intelligence. However, the fact that it is regarded as a non-historical science of 
references is another question, which I prefer to leave opened. 

Similar questions have been raised at the Commission IV of the International Congress on Prehis-
torical and Protohistorical Sciences that took place last year in Portugal (Lisbon, 2006). The following 
title was asked: “Reconstruction, simulation, reconstitution: how ‘real’ is our thought? How ‘imaginary’ 
is our view of the past?” The first seven papers tried to answer that point with reference to the ‘new 
paradigm of technology.’ My own position was that the problem could be raised in the wider perspec-
tive of cognitive archaeology presented by James Bell and Colin Renfrew. It was not evident that the 
inferences or imaginary visions of such ‘paradigms’ had more or less reality than the modes of writing 
or reasoning of another order in which technology did not have the same place. Moreover, 10 papers 
presented under the title of “Emergence of cognitive abilities” seemed to prefer a more general answer 



x  

with reference to wider ways of thought—neurophysiology, ethology, and so forth—than to the new 
paradigms of technology. Computer technique is then a particular detail of the ‘reality’ artificially observed 
using different ‘paradigms’ in each case. This view is again in favor of Barceló’s view on computational 
intelligence in archaeology based on models that are never like human archaeologists although they are 
able to solve certain human tasks.

Jean-Claude Gardin
Former Research Director at
Centre National pour la Recherche Scientifique
Ecole de Hautes Etudes en Sciences Sociales
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Preface

Is it possible to build a machine to do archaeology? 
Will this machine be capable of acting like a scientist? 
Will this machine be able to understand the way humans acted, or how humans think they acted in the 
past?

This book tries to offer some possible answers to these questions and to investigate what it means to 
solve “automatically” archaeological problems.
Don’t panic! Even if those questions would have a positive answer, I am not arguing that an artificial 
archaeologist will replace human archaeologists, because it will work better and cheaper than we will. We 
all know that artificial intelligence will eventually produce robots whose behavior may seem dazzling, 
but it will not produce robotic persons. Automatic archaeologists will DO a lot, but they will not BE a 
lot. Computational mechanisms cannot carry by themselves the weight of a scientific explanation. 
I have tried to create an analogy with an “intelligent” machine, in order to understand the way we think. 
We should imagine an automated or artificial archaeologist as a machine able to act as any of us, human 
archaeologists, learning through experience to associate archaeological observations to explanations, 
and using those associations to solve archaeological problems. It should have its own “cognitive core” 
and should interact with the world to make changes or to sense what is happening. In so saying, I am 
not arguing that machines run as human brains or that computer representations should be isomorphic 
to “mental” states. Rather, I want to understand reasoning processes by understanding the underlying 
abstract causal nature behind what archaeologists do. If a computer can be programmed to perform 
human-like tasks, it will offer a “model” of the human activity that is less open to argument than the 
verbalized explanations that are normal in philosophy. The purpose is then to understand how intelligent 
behavior is possible in archaeology. 

I am just arguing that the activity of machine and human automata can be described and analyzed in 
the same terms. The idea of an intelligent robot should be seen as a model of archaeologist’s behavior 
rather than an explanation of his or her mind. Computer hardware and programming techniques enable 
the model builder to construct virtual creatures that behave in intelligent and flexible ways under natural 
conditions. They provide powerful (and perhaps indispensable) tools for building such creatures, but 
they can play no role as explanatory kinds by themselves. 

In some way, computational intelligence provides social scientists with a set of tools with the same 
degree of finesse as those used in current qualitative studies and with the same mobility, the same 
capacities of aggregation and synthesis, as those used in quantitative studies by other social sciences. 
The limitations of these tools and methods are the same as those of any instrument from any scientific 
discipline. Instead of being restricted to the usual representational schemes based on formal logic and 
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ordinary language, computational approaches to the structure of archaeological reasoning can include 
many useful representations such as prototypical concepts, concept hierarchies, conceptual spaces, pro-
duction rules, associative memories, causal networks, mental images, and so on. Researchers concerned 
with the growth of scientific knowledge from a computational perspective can go beyond the narrow 
resources of inductive logic to consider algorithms for generating quantitative laws, discovering causal 
relationships, forming concepts and hypotheses, and evaluating competing explanatory theories. This 
book presents tools and methods that liberate us from the narrow constraints of words by enforcing rigor 
in a non-classical way, namely via the constraint of computational realizability.

Maybe some of you will say that we do “not yet” have automatic archaeologists, but we should hurry 
up to the engineering department and build them for having someone able to substitute us in the tedious 
task of studying ourselves and our past. Other readers will claim: “fortunately, such a machine will never 
exist!” “Why we need such an awful junk? Computers cannot emulate humans.” These critics seem to 
think that computer programs are guilty of excessive simplification, of forcing knowledge, or distorting 
it, and of failing to exploit fully the knowledge of the expert, but it seems to me that it is archaeology, 
and not computer programs, what is “narrow minded.” The saddest thing is that archaeologists do not 
know how they know archaeological matters.

The so called “intelligent” machines incite instinctive fear and anger by resembling ancestral threats, 
a rival for our social position as more or less respected specialists. But robots are here, around us. I 
have never heard of a claim against washing machines selecting “intelligently” the best way to wash 
a specific tissue, or a photo camera with an “intelligent” device measuring luminance and deciding by 
itself the parameters to take the picture. So, why have fear of a machine classifying a prehistoric tool and 
deciding “intelligently” its origin, function and/or chronology? Rather than arguing whether a particular 
behavior should be called intelligent or not,a point that is always debatable, I try to provide answers 
to the following question: Given some behavior that we find interesting in some ways, how does the 
behavior come about? Rather than use intuition as the sole guide for formulating explanations of past 
human behavior, we need a theory of why a specific computation or a group of related computations 
should be performed by a system that has certain abilities. 

The discussion is between what is considered an artificial way of reasoning (computer programs), 
and a natural way of reasoning (verbal narrative). Critics of computationalism insist that we should 
not confound scientific statements with predicate logic operations, since discursive practices or argu-
mentations observed in a scientific text are not “formal.” By that reason, they are tributary, to a certain 
extent, from the Natural Language and the narrative structure (literary) of which scientific texts derive. 
I take the opposite approach: scientific problem solving stems from the acquisition of knowledge from 
a specific environment, the manipulation of such knowledge, and the intervention in the real world with 
the manipulated knowledge. The more exhaustive and better structured the knowledge base, the more 
it emulates a scientific theory and the easier will be the solution to the scientific problem, and more 
adequate the interpretations we get.

My personal approach is based on a fact that archaeologists could not evaluate 15 years ago: computer 
programs do work in real science, not only in archaeology. Maybe they are more successful in other 
“harder” sciences, but we cannot deduce from this fact that archaeology is a different kind of science. We 
should instead rebuild archaeology. Simulating or reproducing the way archaeologists think today is not 
the guide to understand archaeology, because we are doing archaeology in the wrong way! Computable 
archaeology, if you do not like the expression “automatic archaeology,” is the proper way of exploring 
new ways of thinking old concepts. 

In other scientific domains the performance of humans at a particular task has been used to design a 
robot that can do the same task in the same manner (and as well). In many different domains it has been 
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shown how ‘robot scientists’ can interpret experiments without any human help. Such robots generate a 
set of hypotheses from what it is known about a scientific domain, and then design experiments to test 
them. That is, a robot scientist can formulate theories, carry out experiments and interpret results. For 
instance, the robot biochemist developed by Ross King of the University of Wales at Aberystwyth, and 
his colleagues, does everything a flesh-and-blood scientist does—or, rather, it does what philosophers 
of science say that scientists ought to do. That is, it formulates hypotheses from observations, conducts 
experiments to test them, and then formulates new hypotheses from the results. And, it does so as ef-
fectively as a person. The intellectual input comes from deciding, on the basis of the results obtained, 
which experiments to do next until you have filled in all the blanks. The robot scientist was able to do 
this. It was fitted with artificial intelligence software that could perform the logical processes involved 
in making such decisions, and this software was given a representation of the pathway chosen (one of 
those by which amino acids, the building blocks of proteins, are made) from which to work. The robot 
scientist can infer hypotheses to explain observations, infer experiments that will discriminate between 
these hypotheses, actually do the experiments and understand the results.

Consequently, the design of an automated archaeologist should not be considered a mere science fic-
tion tale. It is a technological reality. Research in cognitive robotics is concerned with endowing robots 
and software agents with higher level cognitive functions that enable them to reason, act and perceive 
in changing, incompletely known, and unpredictable environments. Such robots must, for example, be 
able to reason about goals, actions, when to perceive and what to look for, the cognitive states of other 
agents, time, collaborative task execution, and so forth. In short, cognitive robotics is concerned with 
integrating reasoning, perception and action within a uniform theoretical and implementation framework. 
The question of whether it is possible to such machines to automate the scientific process should be of 
both great theoretical interest and increasing practical importance because, in many scientific areas, data 
are being generated much faster than they can be effectively analyzed.

The book is divided into four parts. The first one introduces the subject of “artificial intelligence” 
within the apparently restricted domain of archaeology and historical sciences. This introductory part 
contains two chapters. The first one, “‘Automatic’” Archaeology: A Useless Endeavor, an Impossible 
Dream, or Reality?” provides an overview of the approach. After discussing the basic concepts of au-
tomata theory, the first elements of a formalization of archaeological reasoning are presented. The very 
idea of archaeological problems is introduced from the point of view of cause-effect analysis and social 
activity theory. The relationship between archaeological, anthropological, and historical problems is 
studied in detail, to serve as a basis for a presentation of how a mechanical problem solving procedure 
would look like in those domains. The chapter ends with a very short presentation of the diversity in 
current Artificial Intelligence theory and techniques.

The second chapter, “Problem Solving in the Brain and by the Machine,” presents the classical artifi-
cial intelligence approach to problem solving as search and planning. Rule-based systems are discussed, 
focusing in its philosophical foundations. Jean Claude Gardin’s logicist analysis is used as a relevant 
archaeological example, together with some of the current expert systems used in practical archaeology. 
A final debate leads the reader to a discussion about “rationality” and the shortcomings of traditional 
artificial intelligence and expert systems.

The second section of the book is the most technical one and presents a detailed but understandable 
account of learning algorithms and neural networks. It has been divided into two chapters. The third 
chapter, “Computer Systems that Learn,” develops the criticism of the classical approach to “intelligent 
robotics,” presenting the way computer systems and “intelligent” robots may learn. Learning is here 
presented as a predictive task that can be simulated by computers. Many archaeological cases are used 
through this chapter to understand the algorithmic nature of experimentation and discovery tasks.
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The fourth chapter, “An introduction to Neurocomputing,” offers a presentation of neural networks. 
After discussing in plain language what neural networks are, some algorithms are introduced with a 
minimum of mathematical jargon, here reduced to the basic arithmetic operations. Backpropagation 
networks are exhaustively analyzed, together with radial basis functions, self-organized maps, Hopfield 
networks, and other advanced architectures.

Section III constitutes the core of the book, and discusses different examples of computational in-
telligence in archaeology, with cases concerning rock-art, lithic tools, archeozoology, pottery analysis, 
remote sensing, ancient settlement investigation, funerary ritual, social organization in prehistoric soci-
eties, etc. It has been divided into six chapters.

In Chapter V, “Visual and Non-Visual Analysis in Archaeology,” some of the elements introduced 
in chapter I are developed. A general approach towards an “intelligent” pattern recognition system is 
presented, discussing the differences between a true visually based system and another one, which uses 
identified previously—instead of visual—data. This chapter serves as an introduction to the following 
ones, where practical and relevant examples of archaeological neurocomputing are shown in the domains 
of shape, texture, composition, spatiotemporal and functional analysis. 

Chapter VI, “Shape Analysis in Archaeology,” defines the concept of “shape” and presents differ-
ent approaches to shape representation, analysis, and interpretation. Emphasis has been placed on the 
analysis of three-dimensional objects and the study of complex shapes. 

Chapter VII, “Texture and Compositional Analysis in Archaeology,” defines the concepts of “tex-
ture” and “composition.” It also presents many archaeological applications of neurocomputing in these 
domains.

Chapter VII, “Spatiotemporal Analysis,” has been written in order to explain the way spatial and 
temporal data (frequencies and densities of archaeological findings, for instance) can be analyzed using 
neural networks and other similar technologies. The spatial interpolation problem is posed, and different 
methods for finding a solution are evaluated, showing many real examples. Remote sensing also finds its 
place in this chapter. Time series and chronological problems are also a form of interpolation problem. 
Neural networks can be used to solve it, but we also need specifically organized networks to deal with 
recursiveness and related questions. The focus is on spatiotemporal explanatory models, not only from a 
strictly archaeological point of view but with a more general social science and historical perspective.

In Chapter IX, “An Automated Approach to Historical and Social Explanation,” visually based 
explanatory approaches are substituted by a more general account of simulation and modeling, which 
illustrates how social processes can be simulated as computational mechanisms to be understood. The 
idea of social classification is discussed, and many examples of simulating social interaction using 
“populations” of computer programs are finally presented.

To conclude our journey into the automatization of scientific reasoning, the book ends with a Section 
IV that presents a theoretical discussion on the philosophy of social sciences and the benefits of comput-
ers and nonlinear algorithmic approaches. This part is composed of a single chapter that explores the 
theoretical consequences that may arise when using computational intelligence technologies to study the 
human past. Here the “robot” analogy gives its place to a proper account of a Computational Philosophy 
of Archaeology and related sciences. 

It is important to take into account that this is a book on “computational intelligence” in archaeol-
ogy, and not on “computer applications in archaeology.” I have focused the text on the very concept 
of “explanation,” and what it really means to explain archaeological (and historical) data. Therefore, 
important and usual concepts that are not properly related to “explanation” have less relevance. The 
reader may ask why I have not included more references to fashionable and apparently modern issues 
like geographic information systems, visualization and virtual reality. The answer is that these subjects 



  xv

appear in the book, but in a different envelope, insisting in their contributions to archaeological explana-
tion. Therefore, GIS techniques have been included in Chapter VIII on spatiotemporal explanation, and 
all the discussion on virtual reconstructions has a more logical place in Chapter VI on shape analysis, 
but it is also analyzed in Chapter X. The reader is referred to other books for the practical side of data 
bases, GIS, CAD and visualization software. This is a book on the interface between technique and 
theory. Although some “how-to” is presented, and many practical applications are referred, the book 
merely opens a door, encouraging the reader to begin a research along this line. 

Do not look for a classic presentation of the archaeological practice. This is an unconventional book 
with very little respect for tradition. In a first reading, the text may seem highly skewed towards com-
putational intelligence, with very little traditional archaeological stuff. Even the number of traditional 
archaeological references is surprisingly small. This is because my goal has been to open new grounds in 
archaeology and the social sciences. Technology is not the solution, but it is the way we have to follow 
if we want to rethink the way archaeology has been done. This emphasis on new ways to understand 
ancient times explains the apparently minor relevance of traditional aspects. However, they are not 
absent. They have acquired a new appearance, as a careful reading will prove.

 This is not an encyclopedia of archaeological methods and explanations. I could not present all 
aspects of the archaeological research process nor all available computer science methods. Because 
any book needs to be focused, I have had to obviate many important aspects that in other circumstances 
would be interesting. If a majority of readers find the book relevant, and I have the chance to do more 
research work in this “computable” archaeology, new chapters on archaeological site formation processes 
or intelligent virtual archaeology environments will follow. The technology is evolving, and each day 
sees some new advancement. For all information that couldn’t be included in the book, and for periodic 
updates of theories, techniques and technologies, the reader is referred to its related Web page: http://
antalya.uab.cat/perhistoria/Barcelo/IGIBook.html.
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Chapter I
“Automatic” Archaeology:

A Useless Endeavour, an Impossible 
Dream, or Reality?

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AutomAtA: thE AwFul tRuth 
About humANS ANd mAChiNES

Let us begin with a trivial example. Imagine 
a machine with artificial sensors, a brain, and 
some communication device. Suppose that such 
a machine is able to “see” prehistoric artifacts 
made of flint. The purpose of this automated ar-
chaeologist should be to “explain” the function of 
archaeological material. It decides consequently 
to measure, for instance, three properties: shape, 
texture, and size. The shape sensor will output a 1 
if the prehistoric tool is approximately round and 
a –1 if it is more elliptical. The texture sensor will 
output a 1 if the surface of the artifact is smooth 
and a –1 if it is rough. The size sensor will output 
a 1 if the artifact is greater than 20 cm, and a –1 
if it is less than 20 cm. The three sensor outputs 
will then be fed as input to the thinking core of 
the robot, whose purpose is to execute a function 
deciding which kind of tool has been discovered 
buried at this precise location. An input pattern 
is determined to belong to class Knife if there is 
a function, which relates incoming inputs with 
an already defined concept “knife,” or otherwise 
a “scraper.” As each observed element passes 
through the sensors, it can be represented by a 

three dimensional vector. The first element of the 
vector will represent shape, the second element 
will represent texture, and the third element will 
represent size.
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The task of this automated archaeologist will 

be to assign to any artifact, represented by some 
features, visual or not, some meaning or explana-
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tory concept. In other words, the performance of 
such an automated archaeologist is a three-stage 
process: Feature extraction, recognition, and 
explanation by which an input (description of 
the archaeological record) is transformed into an 
explanatory concept, in this case, the function of 
an archaeologically perceived entity (Figure 1). 
In order for the system to make a decision as to 
whether the object is a knife or a scraper, input 
information should be recognized, that is “cat-
egorized,” in such a way that once “activated” 
the selected categories will guide the selection 
of a response.

Let us move to a more interesting example. 
Imagine a specialized mobile robot equipped with 
video cameras, 3D scanners, remote sensors, exca-
vator arms, suction heads and tubes, manipulation 
hands for taking samples exploring in the search 
of evidence for archaeological sites, excavat-
ing the site by itself, describing the discovered 
evidence, and analyzing samples and materials 
(Barceló, 2007). Or even better, imagine a team 
of robots doing different kinds of archaeologi-
cal tasks, those tasks that, up to now, have been 
a matter of human performance. The idea is to 
develop an exploration system that allows a robot 
to explore and extract relevant features from the 
world around it, expressing them in some specific 
way. This unit should use visual and non-visual 
information to make decisions about how to find 
archaeological evidence. This specialized robot 
will use stereoscopic CCD cameras, laser rangers, 
sonar, infrared sensors, georadar, magnetometers, 

and construct a multidimensional representation 
of geometric space. From this representation, it 
will recognize locations, plan trajectories, and 
distinguish objects by shape, color, and location. 
The robot should acquire a sense of general spa-
tial awareness, and to be able to do it, it probably 
needs an especially fine representation of the 
volume around it to precisely locate archaeologi-
cal objects and structures and visually monitor 
performance. In other words, the first member of 
our team has to learn how to find an archaeologi-
cal site, based on the perceived properties of the 
observed archaeological elements. 

The second member of the team emulates 
what most archaeologists think is the definition 
of their job: the excavation of an archaeological 
site. Archaeological robots should do much more 
than just explore and visualize what is observable. 
They should take samples from the ground, and 
they should dig and unearth material evidence. 
When evaluating the differences between visual 
and non-visual information, the robot takes the 
decision of removing what prevents the visualiza-
tion of the archaeological evidence: earth. The 
explorer becomes an excavator. 

It is easy to see that this team of robots also 
needs some specialized understanding compo-
nent. This component is concerned with a spe-
cific mechanism able to identify archaeological 
evidence, and to solve specific goals linked to this 
distinction. The automated archaeologist should 
correlate evidence and explanation adequately in 
order to generate a solution to an archaeological 
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Figure 1.1. The performance of an automated archaeologist as a three-stage process
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problem. In the same way, our intelligent machine 
should have the ability to reflect on what it has 
done, to explain what it is doing and why, to answer 
questions about why it did not do something and 
explain what would have happened if it had done 
something different, or describe what someone 
else had done wrong. A computer program will 
implement this understanding component. It is 
important to keep these two ideas distinct. A 
cognitive function is an abstract mathematical 
description of what to do and how to accomplish 
the task; the computer program is a concrete 
implementation, running on the agent hardware 
architecture. What is difficult is to discover (or 
to learn) such a function, but once we have it, it 
is very easy to implement it in software or hard-
ware circuitry.

This example of the team of explorer-excava-
tor-explanator robots may seem science fiction by 
the way, it is! However, actual technology allows 

the construction of such a machine, allowing us 
going even further. We can imagine an “intelligent 
machine” able to translate any visual and non-
visual information about the material outcomes 
of social action into a causal explanation of the 
actions having generated those observables. Given 
a detailed description of burials, bodies and grave 
goods, such a machine should be able to explain 
the kind of society, which most reliably performed 
such a ritual activity in the past.

Archaeological research involves an intricate 
set of interrelated goals, and therefore, an intricate 
set of interrelated problems. We want to produce 
knowledge, to preserve data, and to prevent the 
loss of information about past human behavior. 
Why can’t intelligent machines contribute in such 
an effort? We can create a specialized automated 
archaeologist to solve each kind of problem types 
in archaeology (see Table 1).

TYPE GOAL TO BE ACHIEVED MACHINE TASK

Definition
What is society? What is a social class? 
What is an archaeological site? What is a 
tool?

Invention of concept or taxonomy

Theory
How do we explain the distribution of this 
pottery type? Why do these objects have this 
shape?

Invention of theory

Data What information is needed to test or build 
a theory? Observation, experiment

Technique
How can we obtain data? How do we ana-
lyze it? How may the phenomenon best be 
displayed?

Invention of instruments and methods of 
analysis and display

Evaluation
How adequate is a definition, theory, observa-
tion or technique? Is something a true anomaly 
or an artifact?

Invention of criteria for evaluation

Integration Can two disparate theories or sets of data be 
integrated? Does Binford contradict Hodder?

Reinterpretation and rethinking of  existing 
concepts and ideas.

Extension
How many cases does a theory explain? What 
are the boundary conditions for applying a 
theory or a technique?

Prediction and testing

Comparison Which theory or data set is more useful? Invention of criteria for comparison

Application How can this observation, theory or technique 
be used? Knowledge of related unsolved problems

Instrument Do these data disprove the theory? Is the tech-
nique for data collection appropriate?

Recognition that problem is insoluble 
as stated

Table 1. Problem types in archaeology (adapted from Root-Bernstein, 1989; Wagman, 2002)
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Simply stated, an automaton is a discrete 
processing mechanism, characterized by internal 
states. Bright (1958) divided machines up into 17 
types. For the purpose of this book, I follow Col-
lins and Kusch (1998) classification of machines 
in five types:

• Behavers: Machines that just do some-
thing.

• Disjunctive behavers: Machines that do 
something according to a predetermined 
list of choices.

• Feedback behavers: Machines that respond 
to anything within a preconceived range 
of sensed stimuli. Note that the behavior 
of a feedback behaver is not predictable in 
advance.

• Learning behavers: Machines that take 
information from their environment and 
their users, or both, and incorporate this in 
their design.

It is necessary to insist in the fact that an 
automated archaeologist is a computer program 
that acts (Stein, 1995). In our case, what the ma-
chine does is a kind of epistemic action (Kirsch 
& Maglio, 1995). Expressed in its most basic 
terms, the epistemic action to be performed may 
be understood in terms of predicting which expla-
nations should be generated in face of determined 
evidence. In that sense, explanations are for our 
automatic archaeology machine a form of acting. 
Explanation is not an explanatory structure, nor 
something that explains, but a process of provid-
ing understanding. Explanation is something 
that people do, not an eternal property of sets of 
sentences (Thagard, 1988). 

We can define an automated explanation as 
some function that maps any given stimulus to a 
response (Aleksander & Morton, 1993). Explana-
tion involves activating an input-output function 
(explanans) that enables any automaton, be it hu-
man or robotic, to deal with a situation (explanan-
dum) for which understanding is needed.

What gives its truly “intelligent” character 
to the automated archaeologist is the non-trivial 
connection between perception (data) and action 
(explanation) (Brady, 1985). If we assume that 
archaeological knowledge is just something that 
goes through a mechanism from an input sensor to 
an output actuator or “explanator,” during which 
it is processed, then the robot task would be the 
“interpretation of the change experimented by 
this knowledge under a given goal” (Kitamura 
& Mizougouchi, 2004). The automated archae-
ologist should also be capable of changing its 
internal state structure over time according to 
a set of algorithms that take information from 
the automaton’s own previous state and various 
inputs from outside the automaton to determine a 
new state in a subsequent time step. In this way, 
automated archaeologists will have the capacity 
to process information from their surroundings 
and to alter their characteristics accordingly. They 
will be flexible and efficient abstractions that en-
able the construction of detailed, complex, and 
dynamic models.

The possible tasks of such intelligent machines 
can be divided into three very general categories. 
If a task involves obtaining information about the 
empirical characteristics of an archaeological site 
or some archaeological material and producing 
a representation useful for other tasks (descrip-
tion, representation, analysis, explanation), then 
it falls in the SENSE category. If the task is based 
on processing information and evaluating the 
possibilities for generating explanations (either 
from primary data or some previous theoretical 
knowledge about the material evidence of so-
cial action, already implemented in the robot’s 
cognitive core), we say that the cognitive robot 
is PLANNING its future behavior. Finally, and 
most importantly, robotic tasks, which produce 
explanations, fall into the ACT category. 

A simple but quite general conception of what 
it means to act is to produce a specific output pat-
tern for a given input pattern (Figure 2). The input 
specifies the context, contingencies, or demands of 
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the task, and the output is the appropriate response 
(O’Reilly & Munakata, 2000, p. 147).

An automaton changes its current state over 
time according to a set of rules that take informa-
tion from an automaton’s own state and various 
inputs from outside to determine a new state in a 
subsequent time step. In this way, automata have 
the capacity to process information from their 
surroundings and to alter their characteristics 
accordingly. The essence of the automata ap-
proach is in temporal discreteness and its ability 
to change according to predetermined rules based 
on internal and external information.

Here lies the cognitive core of our robot. It 
should store and retrieve abstract, mathematical, 
or logical descriptions implemented in a computer 
program, which takes the current observation as 
input from the sensors and returns an explana-
tion. By applying some input to the system, it will 
produce new actions in response. The point is that 
outputs are the resulting actions that a machine 
performs in some environment as a response to 
what has been perceived. Thus, an automated 
archaeologist involves two sets of actions: (1) In-
puts—the information introduced in the machine 
(data, “percepts”); (2) Outputs—the explanatory 
action that the machine applies to incoming data. 
Two factors are responsible for the production 
of output actions. The first are the input actions, 
which we have just discussed. The second factor 
consists of certain properties that the machine 
has at the time of the input. In other words, there 
is a set of properties of the machine, called the 
automaton’s states that determine which output 
actions the machine will produce in response 

to its input actions. We have consequently two 
simultaneous mechanisms:

Input x State  Output
Input x State  New State

The activity of an automaton should be di-
vided into two subsets: (1) the set of actions that 
the machine contributes to any resulting causal 
interaction with the environment, and (2) the set 
of changes in the machine itself.

Essentially, the idea is to set up appropriate, 
well-conditioned, tight feedback loops between 
input and output, with the actual and past observa-
tions as the medium for the loop. In other words, 
our automatic archaeologist relies on the definition 
of a set of input events I1, I2,… and a set of output 
events Z1, Z2,… and relates the two through the 
intervention of a set of internal states Q1, Q2,… This 
intervention takes the following form: every pair 
of elements, one taken from the set of inputs and 
the other from the set of internal states, represents 
a possible combination of a present input and a 
present state. Such a pair is related to a unique 
“next” state. Outputs can be related directly to the 
internal states. In this way, the system arrives at an 
internal state through a chain of inputs, different 
chains leading to different states (Aleksander & 
Morton, 1993; Dawson, 2004).

The only way we have to make a machine 
explain what it perceives is by implementing some 
algorithms that map any given input sequence to 
an output action. We can say that an automated 
archaeologist’s activity is described by the func-
tion that maps any given percept sequence to 

Figure 1.2. A definition for automaton: Producing a specific output pattern for a given input pattern

INPUT STATE OUTPUT 
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explanation. Each time an explanation is asked 
for some input, the machine does two things. 
First, it tells its “brain,” or cognitive core, what 
it is being perceived. Second, it executes some 
“deliberative” procedure to decide what action it 
should perform. In the process of answering this 
query, extensive reasoning may be done about 
the current state of the world, about the outcomes 
of possible cognitive action sequences, and so 
on. Once the action is chosen, the automated 
archaeologist records its choice and executes 
the explanation. Essentially, the idea seems to 
set up appropriate, well-conditioned, tight feed-
back loops between the perceived input and its 
explanation (Donahoe & Palmer, 1994). For any 
mapping m: A  B in the system, we will call A 
the stimulus set (or input), and B the response set 
(or output), and we will consider the mapping m 
as a behavior. We are replacing the concepts of 
data and explanation by the concepts of informa-
tion input and output. In addition, theories about 
mediating stimulus-response chains would be 
replaced by theories about internal computations 
and computational states.

What characterizes an automaton is the fact 
that, if the machine has some data, the response 
is completely determined by the data and the 
machine’s state at that time. This deterministic 
character, however, has been mistaken with 
simple, direct association of a stimulus with a 
response, and it is the reason of the poor reputa-
tion of automata. Nevertheless, this algorithmic 
way of perceiving-deciding-and-acting character-
izes both human scientists and cognitive robots. 
Maybe humans do not think that way, but scientific 
knowledge should be produced in that way. After 
all, scientific reasoning is an artificial way of 
thinking, and it has nothing to do with common 
sense, or reasoning in everyday practice. 

How must we go about artificially reproducing 
archaeological reasoning in a robot? The current 
state of the field is such that no straightforward 
answer is possible. If we are going to say that an 
artificial machine thinks like a human, we must 

have some way of determining how humans think. 
We need to get inside the actual workings of hu-
man minds. It has been said that machines cannot 
act as humans do. They cannot be involved in 
“intentional actions” (cf. Collins & Kusch, 1998), 
because they do not have an understanding of the 
purpose or motivation of the action. Although ma-
chines do not have intentions, they can be made to 
mimic the mechanism used by humans to produce 
their own explanations. The boundary between 
humans and machines is then permeable, at least 
insofar as machines can be programmed with a 
surrogate of “intention.” The computer’s program, 
which determines the order and/or circumstances 
in which the operations are performed, can be 
thought of as a virtual machine. It “models” or 
imitates a set of relationships that may be quite 
unlike those expressed in the operation of the 
physical machine in which it is implemented, as 
evidenced by the possibility of running the same 
program on a range of computers with different 
physical structures (Rutkowska, 1993).

Thirty years ago Dreyfuss (1972) criticized 
the very idea of “artificial” intelligence, saying 
that scientists know too little about how the mind 
works to be able to create the kind of reasoning 
that humans take for granted. He was not so 
wrong. No one knows what “thinking” really 
means anyway, so we cannot answer the question 
of whether a machine can truly think. This is 
mostly true in archaeology, history, and the social 
sciences. The trouble is that we do not know what 
“archaeological,” “historical,” “anthropological,” 
or “sociological” reasoning really means. There-
fore, before thinking about endowing robots with 
“real cognition” (whatever that means) a number 
of fundamental and programmatic issues need to 
be addressed. Without an understanding of what 
archaeology really is, we cannot see how we can 
successfully fabricate an automated archaeolo-
gist. If archaeology is just excavating old remains, 
then a robot will do it better than us. What should 
we do for studying old remains? What does it 
mean to study the past? 
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ARChAEology AS A PRoblEm 
SolviNg tASk

Let us suppose that our “intelligent machine” is at 
an archaeological site. It excavates and unearths 
many things. It sees what a human archaeologist 
supposes are tools, rubbish generated by some 
past society, the remains of their houses… Is the 
automated archaeologist sure that the human 
archaeologist is right? Why does this object look 
like a container? Why does this other seem an 
arrow point? Are those stones being correctly 
interpreted as the remains of a house? Can “ac-
tivity areas” be recognized within an ancient 
hunter-gatherer settlement? Were those remains 
produced for some social elite in a class society? 
How can social inequality be discovered?  

Most of these questions seem out of order 
for mainstream archaeological studies. Current 
archaeological explanations, like most social sci-
ence explanations, seem addressed to tell us what 
happens now at the archaeological site. They do 
not tell us what happened in the past, nor why or 
how. A substantial proportion of research effort in 
archaeology and the social sciences isn’t expended 
directly in explanation tasks; it is expended in the 
business of unearthing the traces of social action, 
without arguing why those actions took place there 
and then. The fact is that it is very difficult to 
publish a paper that simply suggests an explana-
tion of social action. Most archaeology journals 
want reports of excavations and data. Explanation 
is relegated to the “discussion” section, which is 
generally lose and, frankly, speculative compared 
to the rest of the paper.

Our automated archaeologist, although it is 
perfectly capable of doing archaeology in the 
traditional way, is a bit more ambitious. It consid-
ers archaeology as a problem solving discipline, 
centered on historical problems, whose focus is 
on explaining existing perceivable phenomena in 
terms of long past causes. The aim of this parable 
of automated archaeology is to remark the fact 
that the goal of archaeology is to study social 

causation and not just objects. I am programming 
the automated archaeologist to perform the kind 
of cognitive tasks I presume define archaeology 
as a social science: the perceived present is the 
consequence of human action in the past, interact-
ing with natural processes through time. Human 
action exists by its capacity to produce and repro-
duce people, labor, goods, capital, information, 
and social relationships. In this situation, the 
obvious purpose of archaeological data is to be 
used as evidence of past actions. An archeological 
site is something to be explained. 

 Any consequence of social action should be 
considered an archaeological evidence or artifact: 
the bones of a hunted animal, the bones of a buried 
human body, a territory, even an empty place is 
the consequence of some action; cleaning, for 
instance. The outcomes of social activity can be 
anything participating in a transformation process, 
including both material tools and tools for thinking 
(e.g., instruments, signs, procedures, machines, 
methods, laws, and forms of labor organization). 
Social relationships are then effects because they 
are events produced by social actions. People are 
the material consequence of human work, too, in 
the same sense as authority, coercion, information, 
a village, territory or landscape are products of 
human work. 

By assuming that what it perceives in the 
present are simply the material effects of human 
work, the automated archaeologist should under-
stand “archaeological percepts” as material things 
that were products at the very beginning of their 
causal history. It has to analyze archaeological 
observables within the context of social activity 
by identifying the ways people produced (and/or 
used) the artifact, the needs it served, and the 
history of its development. 

In that sense, production, use and distribu-
tion are the social processes which in some way 
have produced (cause) archaeologically observed 
properties (effect) (Figure 1. 3).

Archaeological artifacts have specific physi-
cal properties because they were produced so 
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that they had those characteristics and not some 
other. They were produced in that way, at least 
partially, because those things were intended for 
some given uses and not some other: they were 
tools, or consumed waste material, or buildings, or 
containers, or fuel, and so forth. If objects appear 
in some locations and not in any other, it is because 
social actions were performed in those places and 
at those moments. Therefore, archaeological items 
have different shapes, sizes, and compositions. 
They also have different textures, and appear at 
different places and in different moments. That 
is to say, the changes and modifications in the 
form, size, texture, composition, and location that 
nature experiences as the result of human action 
(work) are determined somehow by these actions 
(production, use, distribution) having provoked 
its existence.

It is not hard to see that the automated archae-
ologist has a much more developed definition of 
archaeology than is usual, that of a discipline 
dealing with events instead of mere objects. 

An event instance describes a state or a change 
in the state of specific object attributes and oc-
curs at a specific time (Doyle, 2006; Findler & 
Bickmore, 1996). The automated archaeologist 
defines archaeological events as an expression 
of the fact that some percept has some feature f 
in some space and temporal location e, that the 
perceived entity is in a state s and that the features 
defining state s of that entity are changing or not 
according to another space and temporal location 
e. The fact that a vessel has shape x, and the fact 
that a lithic tool has texture t are events, because 
a social action has been performed at this spatial 
and temporal location (event), resulting in some 
artifact with, among other things, some specific 
shape and texture properties. The fact that “a 
pit has a specific shape,” and the fact that “there 
are some animal bones inside that pit” are also 
events, because a social action was performed at 
this spatial and temporal location (event), result-
ing in a modification of the physical space: first 
the excavation of a pit, and then an accumulation 
of garbage items. 

Figure 1.3. An automated archaeologist analyzes archaeological materials within the context of social 
activity by identifying the ways people produced (and/or used) the artifact, the needs it served, and the 
history of its development
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In that sense, the automated archaeologist con-
siders archaeology as a problem solving task:

WHY IS THE PRESENT OBSERVATION THE 
WAY IT IS? 
WHAT ACTION OR PROCESS CAUSED 
WHAT IT IS SEEING NOW?

In other words,

WHY THE OBSERVED MATERIAL ENTITIES 
HAVE SPECIFIC VALUES OF SIZE, SHAPE, 
TEXTURE, COMPOSITION, AND WHY DO 
THEY APPEAR AT SOME SPECIFIC SPATIAL 
AND TEMPORAL LOCATION?  

 Archaeology for our intelligent machine 
equals to solve such why questions. Their answer 
will always imply some kind of causal affirma-
tion. 

To produce causal affirmations, the cogni-
tive robot should know what a cause is. “Cause” 
has been defined as “the way an entity becomes 
what it is” (Bunge, 1959). In our case, causal af-
firmation should refer to the formation process of 
society. Social action appears as a transformational 
process to which the automated archaeologist 
attributes the cause of what it perceives at the 
archaeological site. Here, what humans did in 
the past is analyzed morphologically, in terms 
of the spatiotemporal characteristics of physical 
mechanisms involved. 

In other words, the automated archaeologist 
will solve the question “why archaeological ob-
servables are the way they are” in terms of how 
humans acted around them. It is easy to see that 
the concept of productivity becomes the heart of 
this kind of causal explanation. Productivity has 
been called a type of cause, which makes things 
up from other things. It is the idea of productive 
capability, which is so important in the explana-
tion of social events because the outcomes of any 
social action come from entities and actions being 
made up from old entities and old actions. 

Thus, the causal affirmation generated by 
the automated archaeologist will be expressed 
in terms of action. Social action can be defined 
in terms of purposeful changing of natural and 
social reality (Davydov, 1999; Engeström, 1987; 
Leont’ev, 1974; Wobcke, 1998,). In fact, it is a 
pattern of interactions with the world (Hendriks-
Jansen, 1996). Social actions are goal-directed 
processes that must be undertaken to fulfill some 
need or motivation. They are conscious (because 
one holds a goal in mind), and different actions may 
be undertaken to meet the same goal. However, 
an action can be an intentional action without the 
actor having to be aware of the intention from 
moment to moment. Motivations or intentions 
are not just conditions for developing cognitive 
activity, but real factors influencing productivity 
and perceivable structure. 

It is therefore important to distinguish be-
tween:

• The causal social actions: Which are 
processes and mechanisms capable of trans-
forming reality;

• Causal interactions: Which are events 
whereby the effect of a social action has in-
duced a transformation by virtue of its own 
invariant change-relating capability (Glennan, 
1996, 2002). In some sense, those interactions 
are the factors explaining why a social action 
was performed at a specific time and place, 
which is, its motivation or reason.

The automated archaeologist explains social 
events by showing how their results and conse-
quences fit into a causal structure, that is to say, 
a vast network of interacting actions and entities, 
where a change in a property of an entity dialectically 
produces a change in a property of another entity. 
What the automated archaeologist needs to compute 
is the definition of a complex system that produces 
the recognized evidence by the interaction of a 
number of actions and entities, where the interac-
tions between them can be characterized by direct, 
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invariant and change-relating generalizations. For 
example, consider what the main recognizable 
features of a cup are. Each has a crucial function 
assigned to it: the flat bottom is for standing the 
cup on a surface; the handle is for grasping the 
cup when lifting; the inside is for containing the 
liquid; the rim is for supporting the cup against 
the lips when drinking. The assignment of causal 
interactions to features defines the object as a cup 
(Leyton, 1992, 2005). We may argue, then, that 
the use of a cup is specified in terms of the actions 
applied to it, for example, standing up, lifting, 
and so forth, and in terms of the resulting actions 
that the cup applies back to the environment, for 
example, conveying the liquid upward. All that 
means that we are describing the cup in terms of 
five components:

1. INPUTS: e.g., standing up, lifting, etc.
2. OUTPUTS: e.g., conveying liquid
3. STATES: physical characteristics of the cup, 

e.g., its shape
4. FIRST CAUSAL RELATIONSHIP:
 e.g., lifting (input) acts on shape (state)  

conveying liquid (output)
5. SECOND CAUSAL RELATIONSHIP:
 e.g., lifting (input) acts on shape (state)  

shape does not change (dynamics: next 
state).

Clearly, nothing is gained if the automated 
archaeologist introduces as an explanation of how 
some x occurs, an indicator that some y occurred 
(where x and y refer to different acts, events or 
processes). Such descriptive mechanisms, even 
if true, are not explanations but are themselves 
something to be explained. Statistical regulari-
ties do not explain, but require explanation by 
appeal to the activities of individual entities and 
collections of entities. Studies offering models 
for the detection of event-related properties typi-
cally fail to distinguish between description and 
explanation. Usually the only explanation given 
for how the event in question was perceived was 

to describe some hypothetical mechanism that un-
dergoes a given state transition whenever the event 
undergoes a correlated transition. For instance, 
the cause of a table is not the fact that a board is 
fixed to four wood legs, and this appearance is 
regularly associated with what some people refer 
as “table.” The cause of the table lies in the fact 
that a carpenter, in a specific place and time, did a 
work action whose goal was to establish a physical 
and durable relationship between a specific board 
and some specific wood legs. The wheel of the 
potter is not the cause of the shape of a vessel; the 
condition for the existence of a vessel with that 
shape are a series of working actions made by one 
or several social agents with a determined goal, 
and in specific circumstances in which certain 
techniques and instruments were used.

The simplest way to understand social activ-
ity is to realize that in the case of many types 
of actions, the same action can be carried out 
by an indefinite number of different behaviors. 
At the same time, the same behavior may be the 
instantiation of many different actions. The pres-
ence of variability is characteristic of intentional 
activity. The variability with which an action of 
some kind can be realized is thus part of what 
this kind of action means for the agent. Social 
activity is characterized by essential variability 
in the behaviors with which they are executed. 
The goal-directed nature of actions involves 
varying behavior to carry out the same action in 
relation to a situation. Some tools have different 
use wear texture, because they have been used to 
cut different materials; some vases have different 
shapes because they have been produced in dif-
ferent ways; graves have different compositions 
because social objects circulated unequally be-
tween members of a society and were accumulated 
differentially by elites. 

The automated archaeologist looks for changes 
in the temporal and spatial trajectory of some 
properties of an entity, which appear to be causally 
linked to changes in properties of another entity. 
This is what the automated archaeologist consid-
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ers a causal transformation. Careful examination 
shows that not every observed change is a causal 
transformation. Transformation means changing 
an object internally, making evident its essence, 
and altering it (Davydov, 1999). Many changes of 
natural and social reality carried out by people or by 
natural factors affect the object externally without 
changing it internally. Such changes can hardly 
be called transformations. Therefore, in order to 
discern causal effects from accidental changes, 
the automated archaeologist needs a more strict 
definition of causal transformation. 

This is the reason of emphasizing the use of 
invariant change-relating capabilities to charac-
terize social events. The automated archaeologist 
adds the additional stipulation that a relationship 
between two (or perhaps more) actions and enti-
ties should involve an intervention if it pretends 
to explain how one effect brings about a related 
effect. An intervention is an idealized manipulation 
that determines whether changes in some variable 
are causally related to changes in another variable. 
The emphasis on the nature of interventions is 
related to a focus on practice: to the automated 
archaeologist humans are what they do, the way 
they do it, and also the way they have actually 
changed the way they did before. What humans did 
and the way they did it is firmly and inextricably 
embedded in the social matrix of which every 
person is a member. This social matrix has to be 
discovered and analyzed by the cognitive robot. 
Consequently, it is not possible to understand 
how people act and work if the unit of study is 
the unaided individual with no access to other 
people, or to artifacts for accomplishing the task. 
The unit of analysis is object-oriented action 
mediated by human produced tools and signs. 
Thus, the automated archaeologist is motivated 
to study context to understand relations among 
individuals, artifacts, and social groups.

Because of this focus on social actions as 
practiced by human actors in reference to other 
human actors, the automated archaeologist should 
take into account that social action has purpose 

in mind of the people involved in the action or 
causal process. Activity theory (Davydov, 1999; 
Engeström, 1987, 1999; Leont’ev, 1974; Nardi, 
1996; Zinchenko, 1996) emphasizes human mo-
tivation and purposefulness. Those researchers 
suggest that social activity is shaped primarily by 
an intention held by the subject; in fact, humans 
are able to distinguish one activity from another 
only by virtue of their differing motivations or 
intentions. 

That is to say, social actions cannot be un-
derstood without a frame of reference created 
by the corresponding social motivation or in-
tention. Leont’ev, one of the chief architects of 
activity theory, describes social activity as being 
composed of subjects, needs, motivations, goals, 
actions and operations (or behavior), together 
with mediating artifacts (signs, tools, rules, com-
munity, and division of labor) (Leont’ev, 1974). A 
subject is a person or group engaged in an activity. 
An intention or motivation is held by the subject 
and it explains activity. Activities are realized 
as individual or cooperative actions. Chains and 
networks of such actions are related to each other 
by the same overall object and motivation. For 
their part, actions consist of chains of operations, 
which are well defined behaviors used as answers 
to conditions faced during the performing of an 
action. Activities are oriented to motivations, that 
is, the reasons that are impelling by themselves. 
Each motivation is an object, material or ideal, 
that satisfies a need. Actions are the processes 
functionally subordinated to activities; they are 
directed at specific conscious goals. Actions are 
realized through operations that are the result of 
knowledge or skill, and depend on the conditions 
under which the action is being carried out.

One social need or motivation may be real-
ized using different actions, depending on the 
situation. On the other hand, the same action can 
be associated to different motivations, in which 
case the action will have a diverse meaning in the 
context of each motivation. For instance, if the 
motivation (activity) is “building a house,” one 
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of its goals (actions) will be “fixing the roof,” the 
skill (operation) can be hammering, or making 
bricks, or cutting wood. In the same way: 

A person may have the object of obtaining food, but 
to do so he must carry out actions not immediately 
directed at obtaining food… His goal may be to 
make a hunting weapon. Does he subsequently 
use the weapon he made, or does he pass it on to 
someone else and receive a portion of the total 
catch? In both cases, that which energizes his 
activity and that to which his action is directed do 
not coincide.  (Leont’ev, 1974, quoted by Nardi, 
1996, p. 73-74)

The frontier between intentional activity and 
operational behavior is blurred, and movements 
are possible in all directions. Intentions can be 
transformed in the course of an activity. An 
activity can lose its motivation and become an 
action, and an action can become an operation 
when the goal changes. The motivation of some 
activity may become the goal of an activity, as a 
consequence of which the later is transformed into 
some integral activity. Therefore, it is impossible 
to make a general classification of what an activ-
ity is, what an action is and so forth, because the 
definition depends on what the subject or object 
in a particular real situation is. 

Since social activity is not relative to one indi-
vidual, but to a distributed collection of interacting 
people and the consequences of their actions, the 
automated archaeologist will not study how social 
activities took place by understanding the inten-
tions or motivations of individual agents alone, 
no matter how detailed the knowledge of those 
individuals might be. To capture the teleological, 
or purposive aspect of behavior, it should investi-
gate collective action, that is, why different people 
made the same action, or different actions at the 
same place and at the same time. Its research goal 
should be to explain the sources or causes of that 
variability, and not exactly the inner intentions 
of individual action. Some relevant questions to 

be solved are: Why this group of people always 
hunted rabbits when living in those mountains? 
Why funerary practices are so different among 
different social classes? Why this people used the 
same instruments to prepare their food, whereas 
this other group of people used a very different 
toolbox for the same task? How was social hierar-
chy? Why some people accumulated more capital 
than others? Why the social elite had more chances 
of survival than the rest of society? Why social 
action changes through time and space, and how 
other actions were performed in such a way that 
they caused the performance of a new action?

The automated archaeologist moves the unit 
of analysis to the system and finds its center of 
gravity in the functioning of the relationships 
between social activities, social action, opera-
tions, and social actors. The unit of analysis is 
thus not the individual, nor the context, but a 
relation between the two. The term contradiction 
is used to indicate a misfit within the components 
of social action; that is, among subjects, needs, 
motivations, goals, actions and operations, and 
even mediating artifacts (division of labor, rules, 
institutions, etc.), and produces internal tensions in 
apparently irregular qualitative changes, due to the 
changing predominance of one over other. Social 
activities are virtually always in the process of 
working through contradictions, which manifest 
themselves as problems, ruptures, breakdowns, 
clashes, and so forth. They are accentuated by con-
tinuous transitions and transformations between 
subjects, needs, motivations, goals, behavior, 
signs, tools, rules, community, division of labor, 
and between the embedded hierarchical levels of 
collective motivation-driven activity, individual 
goal-driven action, and mechanical behavior 
driven by the tools and conditions of action. 
Here lies the true nature of social causality and 
the motivation force of change and development: 
there is a global tendency to resolve underlying 
tension and contradictions by means of change 
and transformation. To discover the cause of ob-
served changes and transformations, the cognitive 
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robot should look for tensions and contradictions 
between the components of social activity.

An important aspect of this way of understand-
ing social causality is that it forces the analysis 
to pay attention to the flux of ongoing activities, 
to focus on the unfolding of real activity in a 
real setting. In other words, social activities are 
not isolated entities; they are influenced by other 
activities and other changes in the environment. 
The automated archaeologist uses a very specific 
notion of context: the activity itself is the context. 
What takes place in an activity system composed 
of objects, actions and operations, is the context. 
People interact, influence others, reinforce some 
actions, interfere with others, and even some-
times prevent the action of other people. People 
consciously and deliberately generate contexts 
(activities) in part through their own objects; 
hence, context is not just “out there” (Nardi, 
1996). Context is not an outer container or shell 
inside of which people behave in certain ways. 
It is constituted through the performance of an 
activity involving people and artifacts.

Therefore, the relationship between social 
actions as cause and social actions as effect ap-
pears to be extraordinarily complex, because the 
aspects of social action we are interested in are 
divisible in components with their own dynamics, 
often contradictory. On the other hand, external 
influences change some elements of activities, 
causing imbalances between them.

To sum up, we have to build a cognitive robot 
which should not only be able to explain existing 
perceivable phenomena in terms of their causes, 
but in terms of the human purposeful activity and 
operational behavior performed in the past and 
responsible of what has been performed until the 
present. The automated archaeologist will base 
its reasoning about social causality by accepting 
that each social behavior is by definition uniquely 
constituted by the confluence or interaction of 
particular factors that come together to form 
one “situation” or event. Such factors, mostly 
contradictory among themselves, are the same 

components of social activity we have enumer-
ated so far. That means that to know the cause of 
social actions, the automated archaeologist should 
specify an indivisible conjunction of particulari-
ties giving rise to a unique situation where social 
activity takes place. 

That means that the automated archaeologist 
should study a double causality chain:

• What is the causal process or processes re-
sponsible of the actual appearance of what 
it “perceives” in the present? 

• What is the causal process or processes 
responsible of human activity performed 
in the past?

In the same way as human archaeologists, an 
automated archaeologist needs to document what, 
where and when before explaining why some social 
group made something, and how. Only after solv-
ing preliminary perceptual recognition (what?), 
the automated archaeologist can ask more general 
problems about the cause for social actions (why?). 
It is obvious that solving the first kind of problem 
is a condition to solve the second. 

The following pages will try to offer an ac-
count of the first kind of problem (archaeological 
recognition). The study of the cause of social 
activity will be put off until the last chapters of 
the book.

why ARChAEologiCAl 
obSERvAblES ARE thE wAy 
thEy ARE? thE mEChANiCAl 
NAtuRE oF ARChAEologiCAl 
RECogNitioN

As we have seen throughout this book, human 
and machine archaeologists seem to be interested 
in knowing why what they (we) archaeologically 
“see” or “perceive” (shape, size, composition, 
texture, location of archaeological elements), 
predict the way things having those properties 
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had been produced or used in the past (Figure 
1.4). I am using here the term percept to refer to 
the archaeologist’s data inputs at any given in-
stant. Following Leyton (1992), I understand the 
task of perception to be the recovery of causal 
interactions. That is, the role of perception is to 
unpack time from this memory. 

The main assumption is that some percept 
(archaeological description) is related to a 
causal affirmation about the causal event (social 
action) having produced the perceived evidence 
(archaeological explanation). In our case, it im-
plies to predict the cause or formation process of 
some archaeological entity given some perceived 
evidence of the effect of this causal process. In its 
most basic sense, then, the task may be reduced 
to the problem of detecting localized key percep-
tual stimuli or features, which are unambiguous 
cues to appropriate causal events. For instance, 
a distinctive use wear texture on the surface of 
a lithic tool, and not on others predict that these 
tools have been used to process fresh wood, and 
we infer that at some moment a group of people 
was cutting trees or gathering firewood. Alter-
natively, we can consider that the shape of some 
pottery vases predicts their past use as containers 
for wine, and then we have traces of wine produc-
tion and trade; the composition of some graves 
predicts the social personality of the individual 
buried there and hence the existence of social 
classes. Here the output is not the object (trees or 
firewood, wine, social elite), but a cause: cutting 

trees or gathering firewood, wine production and 
trade, social power and coercion. 

Interpretations of this kind typically constitute 
what we may call inverse engineering. Inverse 
problems refer to problems in which one has ob-
servations on the response, or part of the response, 
of a system and wishes to use this information 
to ascertain properties that are more detailed. It 
entails determining unknown causes based on 
observation of their effects. This is in contrast to 
the corresponding direct problem, whose solu-
tion involves finding effects based on a complete 
description of their causes. That is to say, the 
automated archaeologist has to be able to infer 
the motivations and goals of social action based 
on perceived material transformations, which are 
the consequence of such motivations and goals. 
When the relevant properties of the social action 
and their motivations are assumed known, as well 
as the initial and boundary conditions, a model 
then predicts the resultant effect: how reality has 
been transformed. 

There is usually an enormous number of ma-
terial effects of a past event that are individually 
enough (given the right theoretical assumptions) 
to infer the social action’s occurrence there and 
then: the presence of a house means that someone 
built it when other people lived there for some 
time, and abandoned it after that. The trick is 
finding such material clues of past action, in 
terms of the perceived modifications caused by 
the same action, and preserved until today. In 

PERCEPTION: Input

ENVIRONMENT Observations INFERENCE Archaeological
Explanation

EXPLANATION: Output

Figure 1.4. Archaeological explanation as an Input-Output function
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other words, the automated archaeologist looks 
for “a smoking gun:” “a trace(s) that unmistakably 
discriminates one hypothesis from among a set of 
currently available hypotheses as providing “the 
best explanation” of the traces thus far observed” 
(Cleland, 2002, p. 481). Instead of inferring test 
implications from a target hypothesis and per-
forming a series of experiments, the automated 
archaeologist focus its attention on formulating 
mutually exclusive hypotheses about social action 
in the past and searching for evidentiary traces 
in the present to discriminate among them. This 
places the automated archaeologist in the position 
of criminal investigators. Just as there are many 
different possibilities for catching a criminal, so 
there are many different possibilities for estab-
lishing what caused the perceptual properties of 
material effects of past actions. Like criminal 
investigators, the automated archaeologist collects 
observables, considers different suspects, and 
follows up leads. Unlike stereotypical criminal 
investigations, however, a smoking gun for a his-
torical hypothesis merely picks one hypothesis as 
providing the best explanation currently available; 
it does not supply direct confirming evidence for 
a hypothesis independently of its rivals.

Any one of a large of contemporaneous, disjoint 
combinations of traces is enough to conclude that 
the event occurred. The automated archaeologist 
does not need to perceive every sherd of pottery, 
bone, or stone in order to infer that people lived 
there and did something. A surprisingly small 
number of appropriately dispersed fragments 
will do. The over determination of causes by their 
effects makes it difficult to fake past events by 
engineering the appropriate traces since there will 
typically be many other traces indicating fakery. 
This is not to deny that traces may be so small, 
far flung, or complicated that no human being nor 
intelligent machine could ever decode them. 

Let us consider with more detail archaeologi-
cal perception, and how it can be implemented 
in the robot’s hardware and software. The first 
we have to take into account when dealing with 

archaeological “perception” is that archaeology 
is a quintessentially “visual” discipline, because 
it makes us aware of such fundamental proper-
ties of objects as their size, orientation, shape, 
color, texture, spatial position, distance, all at 
once. Visual cues often tell us about more than 
just optical qualities. In particular, the mechani-
cal properties of a thing of any kind are often 
expressed in its image. 

If human archaeologists have eyes, automated 
archaeologists have diverse onboard sensors. The 
sensor is a device that measures some visual at-
tribute of the world. Regardless of sensor hardware 
or application, they can be thought of the way a 
robot interacts with the world. If human archae-
ologists have a brain to think on what they see, 
in a cognitive robot the sensor observation should 
be intercepted by a perceptual mechanism, which 
extracts the relevant percept of environment for 
the problem solving behavior (Figure 1.5). This 
percept is then used by the inference mechanism, 
which leads to explanation.

Explanation occurs when a perceptual input 
matches a perceptual memory containing a de-
scription of each causal event the system is ex-
pected to recognize or identify. Visual recognition 
means here the reasoning process during which 
the social action’s observable effects are used to 
specify the conceptual identity of the causal ac-
tion. At this level, we should distinguish:

• Event recognition can be defined as the pro-
cess of finding and “labeling events [in the 
real world] based on known causal models,” 
that is event recognition is the process of 
deciding what category of causal processes 
an observed effect belongs to. 

• Event identification can be defined as the 
process of deciding which individual event 
it is, rather than deciding what category of 
causal processes it belongs to. 

Historically, the traditional approach to 
explaining what has been perceived was cat-
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egorization in the guise of associationism and 
unconscious inference. That is, the meaning of 
an object was thought to be accessed by its visual 
appearance’s activating a category representa-
tion that was linked to known interpretations 
via associations in memory. This is the basics 
of what has been called pattern matching. Pat-
tern matching is actually a very broad concept, 
and it is useful to distinguish among types of 
matching. Pattern completion has been defined 
as the mapping of an incomplete pattern onto a 
completed version of the same pattern. Pattern 
transformation is the mapping of one pattern onto 
a different, related pattern. Pattern association is 
the arbitrary mapping of one pattern onto another, 
unrelated pattern. Finally, pattern recognition 
has been defined as the mapping of a specific 
pattern onto a more general pattern (that is, the 
identification of an individual as an exemplar of 
a class). In statistical terms, one first extracts a 
sufficient set of characteristic features from the 
primary input patterns, and then applies statisti-
cal decision theory for the identification and the 
classification of the latter.

Comparing an internal model with an external 
input is assumed the basis for perception under-
standing. The recognition of one input constitutes 
an internal cue, which facilitates explanation 
together with the external cues available from 

outside the brain. The outcomes of preliminary 
classifications should be combined to obtain 
patterns that are more global. They will in turn 
serve as input patterns to higher-level recogni-
tion devices. Thus, a problem will be solved by 
explaining something, and with the help of that 
result, explaining further.

There is nothing wrong in this approach, except 
of the limitations of current memory: just objects 
from our current life. The idea is that any general 
rules for organizing perceptions and spatiotem-
poral variability are of little help, if such rules 
are not integrated with previous knowledge of 
the complex series of causal processes involved 
in the formation of the archaeological record. 
Consequently, the automated archaeologist should 
determine whether visual data “it currently 
sees” corresponds to a causal event, “it already 
knows.” Recognition requires knowledge about 
how social action happens, and about the specific 
changes generated by all related social and natural 
processes. 

The automated archaeologist is then defined 
as a machine consisting of a number of repre-
sentations and processes, or on a more abstract 
level, as a set of maps which can be classified into 
three categories: (a) the visual competences that 
map different visual features to each other, (b) 
the problem solving routines which map visual 

Figure 1.5. Mechanizing the process of perception-explanation
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features to explanatory concepts or representa-
tions of various kinds residing in memory, and 
(c) the learning programs that are responsible for 
the development of any map. To design or analyze 
such a vision system amounts to understanding 
the mappings involved.

Palmer and Kimchi (1986) have analyzed 
some of the implicit assumptions that underlie 
this information processing approach to cogni-
tive behavior:

• Informational description: Explanations 
can be functionally described as informa-
tional events, each of which consists of three 
parts: the input information, the operation 
performed on the input, and the output in-
formation. That means that what our robot 
explains can be specified as an operation 
that transforms an initial ensemble of input 
information into output information. If the 
input/output mapping is well defined, there 
will be a way of specifying the operation 
such that knowing the input and the opera-
tion determines the output.

• Recursive decomposition: It is used to 
generate more complex descriptions of 
what goes inside an input/output mapping. 
The important concept introduced by this 
assumption is that one can define an in-
put/output mapping in terms of a number 
of smaller input/output mappings inside 
it, plus a specification of how they are 
interconnected. These smaller mappings 
can be considered as stages, each of which 
is assumed independent of other stages to 
some degree. What this assumption asserts 
is that any complex informational event at 
one level can be specified more fully at a 
lower level by decomposing it into a number 
of component informational events. Because 
decomposition is recursive, any stage can 
be further decomposed into a hierarchy of 
lower level stages and the ordering relations 
among them. Successive decompositions re-

move some of the complexity that is implicit 
within a single input/output mapping and 
makes it explicit through the connections 
among the operations at the next lower level 
of analysis.

• Physical embodiment: In the physical sys-
tem whose behavior is being described as in-
formational events, information is carried by 
states of the system (called representations), 
while operations that use this information 
are carried out by changes in state (called 
processes). Information and operations 
are, technically speaking, entities in the 
abstract domain of information processing 
descriptions, whereas representations and 
processes are entities in the physical world 
when viewed as embodiments of information 
and operations.

Here are some basic examples. Archaeologists 
use shape as a visual feature to identify animal and 
human bones according to a reference database: 
all bones in a human or animal skeleton. In this 
case, archaeologists are lucky: anatomy provides 
the necessary theory to find equivalences between 
shape and explanation: a bone has the shape it has 
because of the particular evolution of the animal 
species. The shape of the bone (and other visual 
features as size, porosity, composition, etc.) is 
the key for understanding some characteristics 
of animal behavior, which are based on the 
particular way this animal species has evolved. 
Furthermore, the particular variations of the visual 
features describing this particular bone can be 
used to infer some specificities of its individual 
behavior. This is the case, for instance of human 
paleopathology or labor-induced alterations on 
bone morphology.

The problem is quite different in other ar-
chaeological domains. We see that a particular 
pottery vase is a bowl, because its shape is quite 
similar to bowls I have at home. However, I do 
not have any explanatory theory relating shape 
to function. I do not know why this particular 
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ancient vase is a bowl because it is not related to 
the way a vase with a similar shape is being used 
in the present. Even, not all bowls can be used 
in the same way. This trouble is also typical of 
most kinds of archaeological material, be it the 
remains of a house, a garbage pit, or a whole site. 
We need some reference model if we want to rec-
ognize what we are seeing archaeologically, but 
this reference model is usually built subjectively. 
This is the classical approach of typological rea-
soning. The archaeologist takes all known shapes 
and organizes them according to some criteria 
known to him or her. The typology only accounts 
for shape differences. 

More interesting would be the organization 
of a systematic description of the morphometry 
of pottery vases, and an exhaustive investigation 
of the way vases with a similar morphometry 
have been used in specific and well-documented 
contexts. Then, by using ethnoarchaeological 
analogies, a reference knowledge base on shape 
and function can be built.

Even better is the approach followed in lithic 
use wear studies. Here, the use of the tool is not 
matched to ethnoarchaeologically recorded cases, 
but to an experimental reference knowledge base, 
where some traces are repeatedly associated 
with some ways of using a tool (cutting wood, 
scraping leather, etc.) in a specifically designed 
experiment.

If we consider those cases as examples for a 
forthcoming archaeological recognition system, 
the automated archaeologist must have the fol-
lowing components to be able to perceive and 
explain what it has perceived (Figure 1.6):

• A knowledge base or causal model
• A feature detector
• A hypothesizer
• A hypothesis verifier

The model database should contain all the 
models known to the system. The information in 
the model database depends on the approach used 

for the recognition. It can vary from a qualitative 
or functional description to precise parametric 
equations. The feature detector applies operators 
to the input and identifies locations of features that 
help in forming causal event hypotheses. Using 
the detected features in the input, the hypothesizer 
assigns likelihoods to those events that may have 
produced the observed evidence. The knowledge 
base is organized using some type of indexing 
scheme to facilitate elimination of unlikely causal 
events candidates from possible consideration. 
The verifier then uses causal theories to verify the 
hypotheses and refines the likelihood of explana-
tions. The system then selects the causal event with 
the highest likelihood, as the correct event.

The mechanism works in the following way 
(Alexandrov & Gorsky, 1991). To recognize a so-
cial action, the robot should compare the perceived 
hierarchy of the visual features of a social action 
effect with many hierarchies stored in memory. 
On the one hand, the automated archaeologist 
creates a group of possible percepts with each 
salient feature in the perceptual sequence. The 
most important details possessing the most valu-
able information are identified in the first step. 
Hypotheses on the percept arising after one has 
recognized each individual percept are important, 
even when the robot still has not discovered what 
the perceived element really is. If the type of the 
perceived element is known approximately, then 
it is often possible to say in advance, where addi-
tional key distinctive properties are to be found. It 
means that in remembering how a causal process 
produces its effects, the automated archaeologist 
can weight the significance of perceived features 
differently for correct identification. By the way, 
maybe these “significant” features will later cre-
ate the same natural classifications—the causal 
events will group themselves according to their 
most similar details. 

This is a prototype-based approach, where 
archaeological events are grouped into classes, 
such as a class of work actions (hunting, butchery, 
coercion, social reproduction, etc.). Each group 
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of equivalent events is represented by a single 
class prototype. As we have already discussed, 
the first stage in recognizing new archaeological 
evidence consists of comparing it against the class 
prototypes, rather than against already known 
individual events. The best matching prototype is 
identified, and further processing is then limited 
to the class represented by this prototype (Figure 
1.7). On some occasions the classification may 
happen to be ambiguous, that is, a number of 
prototypes may compete for the best match. In 
this case, subsequent processing will be directed 
to a number of classes rather than a single one.

However, establishing the desired correspon-
dence between the archaeological evidence and 
their causal explanation is not an easy task. A 
direct matching between a perceived input and 
explanatory stored patterns is insufficient for 
various reasons (Adelson, 2001; Fernmüller, & 
Aloimonos, 1995; Jain et al., 1995; Marr, 1982; 
Palmer 1999; Ullman, 1996):

• The space of all possible visualizations of 
all causal events is likely to be prohibitively 
large. It therefore becomes impossible to test 
a shape for property P by simply compar-
ing it against all the members of S stored in 
memory. To be more accurate, the problem 
lies in fact not simply in the size of the set 

S, but in what may be called the size of the 
support of S. When the set of supports is 
small, the recognition of even a large set of 
objects can still be accomplished by simple 
means such as direct template matching. 
This means that a small number of patterns 
is stored and matched against the figure 
in question. When the set of supports is 
prohibitively large, a template matching 
decision scheme will become impossible. 
The classification task may nevertheless 
be feasible if the set of shapes sharing the 
property in question contains regularities. 
This roughly means that the recognition of 
property P can be broken down into a set of 
operations in such a manner that the overall 
computation required for establishing P is 
substantially less demanding than the stor-
ing of all the shapes in S.

• Finding solutions by inverse engineering 
may also seem an impossible task because 
of the non-uniqueness difficulties that arise. 
Non-uniqueness means that the true solu-
tion cannot be selected from among a large 
set of possible solutions without further 
constraints imposed (Thornton, 2000). This 
undesirable behavior is due to noise in the 
measurements, and insufficient number of 
measurements. 

Figure 1.6. A model for an archaeological recognition system
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• The material traces to be recognized will 
often not be sufficiently equivalent to any 
already known causal model. For instance, 
DVD players, computers, and shoeboxes 
have visual features (shapes) that are about 
as unrevealing of their function as they 
could possibly be. Although we might be 
able to figure out their functions after ex-
tended viewing and interaction, if we did 
not know them already, its explanation will 
be impossible. Therefore, the relationship 
shape-explanation seems to be too ambigu-
ous to base archaeological explanations.

• How do relate between them the many visual 
appearances that the same causal event can 
generate (Kersten, et al., 2004)? That is to 
say, the objective ambiguity of visual data 
arises when several different causal events 
could have produced the same archaeological 
visual features.

• The automated archaeologist generally does 
not know the most relevant factors affecting 

the shape, size, texture, composition, and 
spatiotemporal location of material conse-
quences of social action. Instead, it extracts 
from the environment sparse and noisy 
measurements of perceptual properties, 
and an incomplete knowledge of relational 
contexts. The trouble here includes which 
features are selected for correspondence, 
and how to determine the match between 
image and model features. What simple 
properties would distinguish, for example 
the territory of a hunter-gatherer society 
from the territory of a chiefdom-kind of 
society? How do the effects of economic 
intensification distinguish in terms of simple 
visual properties from the effects of self-
subsistence? How do exchanged goods dif-
ferentiate from stolen goods? To make such 
recognitions, it appears that a more precise 
description of visual features, rather than 
a restricted geometric invariance (shape) 
would be necessary. In some cases, simple 

Figure 1.7. Archaeological explanation as pattern matching
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invariant properties may be common to all 
the archaeologically observable material 
consequences of a single action. In other, 
less restricted cases, such invariance may not 
exist. In archaeological event recognition, 
there is no particular reason to assume the 
existence of relatively simple properties. 

• There is a necessity to establish correspon-
dence with not just one, but multiple internal 
models. To select the correct model, cor-
respondence must be established between 
the viewed archaeological evidence and all 
the different candidate models that need to 
be considered. As we will see in Chapter 
IV, the alternative is to evaluate in parallel 
multiple competing alternatives.

• Specific to the archaeological case, we should 
take into account that the visible properties 
of the archaeological record are not always 
the result of purposeful human activity. 
The problem is that although many types 
of social activities, actions, and operative 
behaviors leave memory, many other types 
of processes do not. In fact, there are many 
types of processes whose effect is to actu-
ally wipe out memory. An aggregation of 
bones or artifacts may not reflect past human 
social action, but rather post depositional 
processes: fluvial, transport, solifluction, 
rodent activity, contemporary farming, etc. 
Most post depositional processes have the 
effect of disordering artifact patterning in 
the archaeological record, and increasing 
entropy. Loss, discard, reuse, decay, and ar-
chaeological recovery are numbered among 
the diverse formation processes that in a 
sense, mediate between the past behaviors 
of interest and their surviving traces in the 
present.

Instead of relying exclusively on bottom-up 
processing of the perceptual input, the recogni-
tion process can be aided by using the results 
of accumulated past experience with the same 

or similar objects. That is to say, an automated 
archaeologist can use previous “correct” solutions 
to increase its problem solving abilities and to 
recognize new percepts. When faced again with 
a similar input, the computation will follow the 
sequence that proved successful in the past rather 
than search anew for a possible link between the 
input and a stored representation. Relationships 
between the given stimuli and those occurring 
because of problem solving are registered, and 
invariants are sought for classes of stimuli. If 
such invariants are found, they are abstracted, 
and these, in turn, determine the contents of 
perception in terms of visual features that can 
be used to recognize classes of traces for which 
a comparable consequence of a certain action 
can be anticipated. In this view, perceptions that 
underlie recognition serve to anticipate explana-
tions (Hoffman, 1996).

By treating perceptual recognition as a form of 
probabilistic inference, various conclusions may 
be assigned subjective probabilities of correctness 
based on given observations. Archaeologically-
perceived evidence is not determined univocally 
by human labor; there is only certain probability 
that this specific material entity had been produced 
when a concrete action or series of actions have 
been performed, among many others. If and only 
if the perceived trace could not have produced in 
absence of that action (probability=0), then the 
automated archaeologist will be reasonably sure 
that the percept can be recognized as having been 
determined by that action. Consequently, prob-
abilities can be used to infer the most appropriate 
solution to the problem at hand, which may not 
even be based on the highest probability (Kersten 
et al., 2004; Lowe 1990). If we accept that auto-
mated recognition can never be made absolutely 
reliable, it is necessary to describe the goal of 
recognition as maximizing the probabilities of a 
correct identification and providing a confidence 
measure for each identification. 

The admittedly strange idea that what the robot 
“sees” is a probabilistic manifestation of its past 
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“experiences” with similar inputs, rather than 
a logical analysis of what now perceives in this 
actual case may be difficult to accept. Percepts 
are neither correct nor incorrect representations 
of reality but simply a consequence of having 
incorporated into visual processing the statistics 
of visual success or failure (Hoffman 1996; Purves 
& Lotto, 2003). Of course, this utilitarian-cum-
probabilistic approach to perception does not 
imply that the mechanisms of perceptual problem 
solving are completely chaotic and unlawful in 
character (Ramachandran, 1990). That is to say, 
“visual features” should be viewed as emergent 
properties of sensory fields, not static things in the 
environment that are merely detected, selected, or 
picked up. In this conception of perceptual problem 
solving, the automated archaeologist should see 
its empirical significance, or more formally, the 
probability distribution of the possible sources of 
the stimulus, in response to any given stimulus. 
Understanding what a robot can see and why will 
depend on understanding the probabilistic rela-
tionship between stimuli and their sources during 
the automated archaeologist past experience. As 
a result, the percepts that are entertained would 
accord with the accumulated experience of what 

the visual and non-visual inputs in question had 
typically signified in the history of this individual 
automated archaeologist. 

These ideas suggest that the perceptual 
structure underlying object recognition may be 
described as expectations of certain stimulations 
at certain locations in a still unstructured global 
stimulus distribution (Hoffman, 1996)(Figure 
1.8).

Anticipatory explanations can be modeled as 
a kind of “mechanical intention.” What the robot 
knows from its experience determines which set 
of explanations should be active based on the 
robot’s internal goals and objectives. In those 
circumstances, “intelligence” arises from the 
interactions of the robotic agent with its environ-
ment, that is, with what it has perceived. It is not 
a property of either the agent or the environment 
in isolation but is rather a result of the interplay 
between them. As a result, when using a robot for 
perceiving archaeological data, we get the ability 
to see the possibilities for action, and not merely 
seeing what already exists.

At the end, one may question whether percep-
tion is driving problem solving (explanations) 
or vice versa. Two different ways of solving 

Figure 1.8. Perceptual structure underlying object recognition
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perception problems have resulted (Arkin, 1998, 
p. 265-266):

• Action-oriented perception: In which 
problem solving needs to determine the 
perceptual strategies used. Action-ori-
ented perception requires that perception 
be conducted in a top down manner, with 
perceptual control and resources determined 
by an already defined causal theory. The 
underlying principle is that perception is 
predicated in the structure of explanation: 
Only the information germane for a particu-
lar explanation need be extracted from the 
input data. Instead of attempting to interpret 
almost everything a percept contains, an 
advantage is gained by recognizing that 
perceptual needs depend on what an agent 
is required to do within the world. This is in 
contrast to more traditional computer vision 
research, which to a large extent takes the 
view that perception is an end in itself or 
that its sole purpose is to construct a model 
of the world without any understanding of 
the need for such a model.

• Active perception: In which perceptual 
requirements dictate the automated archae-
ologist’s problem solving strategy. It focuses 
primarily on the needs of perception, rather 
the needs of action. The question changes 
from the action-oriented perspective of 
“how can perception provide information 
necessary for problem solving?” to “how 
can problem solving support perceptual 
activity?” An active perceptual system is a 
system that is able to manipulate its incoming 
sensory information in a controlled manner 
in order to extract useful data, based on 
traces gathered from other input data and 
with the aim of efficiently accomplishing 
an explanation with respect to the available 
resources (Fernmüller & Aloimonos, 1995; 
Tsontos, 1990, 2001). Therefore, an active 
approach is a selective one, and the issues 

of planning causal sequences become of 
primary importance, as well as focusing the 
attention on useful pieces of information. 
Active perception is thus defined as an intel-
ligent data acquisition process, intelligent in 
its use of sensors guided by feedback and a 
priori knowledge.

These two viewpoints are not mutually exclu-
sive; indeed active perception and action-oriented 
perception are intimately related. What the auto-
mated archaeologist needs to know to accomplish 
its tasks still dictates perceptual requirements, 
but active perception provides the perceptual 
processes with the ability to control the problem 
solving system to make its task easier as well.

According to this way of thinking, a social 
action is archaeologically recognized according to 
a stepwise and expectation-bound differentiation 
of visual information in which each given state 
defines the starting conditions for the generation 
of further information.

Archaeological perception (automated or not) 
is not a clear window onto past realities. The rea-
son is that perception is under specified (or under 
constrained or under determined) by the visual 
data captured from the empirical world. That 
means that archaeological explanation cannot be 
reduced to a mere “see” and “understand” because 
what we, or the robots, perceive is not necessarily 
identical to what the robots (or we) see. In order 
to perceive, one must understand the world. To 
recognize objects, the automated archaeologist 
must know what it is looking at. To know what 
it is looking at, it must already be able to see it, 
but it cannot if it does not know what to see. In 
other words, to recognize some pottery sherds as 
a vase, the automated archaeologist must know 
what a vase is, and which kind of vase was. To 
explain archaeological evidence from a grave, 
the robot has to know why such an individual 
was buried with those grave goods, who was she, 
and who were the people that performed such a 
funerary ritual.
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The world is not data, but a set of perceptual 
information waiting for an observer that imposes 
order by recognizing an object and by describing 
it. Global percepts are constructed from local 
information, and such a construction process 
depends on the interaction of the automated ar-
chaeologist with the external context. Perception 
is constructed according to individual history of 
practical experiences (Florian, 2002). Hence, the 
perception problem is reduced to recognizing what 
situation(s) the robot is in and then choosing one 
action (or perhaps many) to undertake. As soon as 
the robot finds itself in a new situation, it selects 
a new and more appropriate action. That means 
that, what is recognized, is always known in terms 
directly related to an agent’s current possibilities 
for future action (Anderson, 2003). 

The idea that perception depends on the inter-
action of the observer with the world is now a popu-
lar one (Clancey, 1997; Gibson, 1979; O’Reagan 
& Noë, 2001; Pfeiffer & Scheier, 1999; Purves & 
Lotto, 2003, among many others). Perceiving is 
an act, not a response; an act of attention, not a 
triggered impression; an achievement, not a reflex 
(Gibson, 1979). As a mechanical system, robots 
seem to lack perceptual capabilities at all; that 
is, they do not know anything about the scenes 
they record. Photographic images merely contain 
information, whereas sighted people and animals 
acquire knowledge about their environments. It 
is this knowledge that should enable cognitive 
robots to act appropriately in a given perceived 
situation. 

Perceptions are internal constructions of a 
hypothesized external reality. Unless the perceiver 
makes assumptions about the physical world that 
gave rise to a particular image, perception just 
is not possible (Vision, 1997, p. 22). It should 
be axiomatic then that perception is not passive 
but active. Automated perception should be con-
ducted on a need-to-know basis. That means that 
automated perception has to be considered as a 
holistic, synergistic process deeply intertwined 
with the complete agent’s cognitive system, be-

cause perceptual needs are predicated upon the 
agent’s motivational and behavioral requirements 
(Arkin, 1998, p. 238). 

Visual experience is a mode of activity involv-
ing practical knowledge about currently possible 
behaviors and associated sensory consequences. 
Visual experience rests on know-how, the pos-
session of skills. The experience of seeing occurs 
when the outside world is being probed according 
to the visual mode. In this sense, seeing is a way 
of acting. As the automated archaeologists look 
at archaeological visual data, it should question 
different aspects of the scene. As soon as it does 
so, each thing it asks about springs into aware-
ness, and it is perceived because knowledge is 
now available about how the external world will 
change when it manipulates the thing it sees. Per-
ceiving the world is not a reflection of the content 
of some knowledge base, but rather, it is due to 
the structure of the world itself and the robot’s 
ability to act intelligently with respect to it. 

Perception and cognitive problem solving are 
then closely linked. If perception has to be tied to 
action, then an artificial archaeologist should be an 
entity situated and surrounded by the real world. 
It should not operate upon abstract representations 
of reality, but rather upon reality itself. That means 
that the robot should have a physical presence (a 
body), which influences its dynamic interactions 
with the world (Anderson, 2003; Brooks, 1999; 
Noë,  2004; Pfeiffer & Scheier, 1999). Situated 
activity means that robot’s actions are predicated 
upon the situations in which it finds itself.  

  

thE SCiENCES oF thE 
ARtiFiCiAl 

Two different views on perception and explana-
tion were presented in the previously mentioned 
section:

1. Information is viewed as something that can 
be stored, coded, matched, and displayed. 
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That means that information is derived from 
external objects and flows into the system 
via the senses. It is denotational because it 
is an encoding. The robot’s memory is just 
a storehouse of denotational encodings.

2. Information is not given but created as 
transformations of stimuli. Information does 
not exist in the world waiting to be extracted 
by a rational agent, but, rather, the agent is 
situated in meaningful contexts, in which 
information should be defined as a function 
of the local needs and concerns of the agent. 
Perceiving a world implies distinguishing 
“possibilities for action” and not naming 
or identifying per se. That is to say, it can 
be understood as recognizing the circum-
stances to act with or upon. This means 
that the contents of perception (and, hence, 
the structure of the phenomenal world) is 
largely determined by the self-organized 
dynamics of the cognitive system and pre-
rational dispositions that are embodied in 
the cognitive agent. Being a perceiver, the 
automated archaeologist should literally 
create a phenomenal world, because the 
process of perception first defines relevant 
distinctions in the sensory environment. 

Consequently, two different, opposite ap-
proaches to build “intelligent” machines ap-
pear: 

1. We can build an automated archaeologist 
simply by telling it what it needs to know, 

2. Or we can build it as a learning machine. 

As we will see in this book, both approaches 
have their advantages. They are often presented 
as competing paradigms, but since they attack 
cognitive problems on different ways, we should 
see them rather as complementary methodologies. 
Chapter II shows how to define an automated 
archaeologist by adding one by one the sentences 
that represent the designer’s knowledge of the en-

vironment or domain. This is called the declarative 
approach to system building. Successive chapters 
will criticize this approach and an alternative will 
be presented.

The declarative or model-based approach is 
based on the idea that knowledge exists before 
experience (Plato’s philosophy). It consists of 
descriptions of how the world appears, such as 
the shape of the tool is associated with its past 
function, and descriptions of how to behave in 
certain situations, such as how an archaeologist 
infers the kind of society having produced the 
remains of an ancient settlement. In this approach, 
it is assumed that knowledge is stored as fixed 
packages in specific memories or knowledge-
bases. Descriptions of regularities in the world 
and regularities in the robot’s behavior are called 
knowledge, and located in the robot’s memory. 
In the first years of Artificial Intelligence (1960-
1980) it was hoped that if we could represent the 
knowledge necessary to describe the world and 
the possible actions in a suitable formalism, then 
by coupling this world description with a powerful 
inference machine one could construct an artificial 
agent capable of planning and problem solving. 
In our specific case, the automated archaeologist 
should be feed with: (a) an a priori causal model 
of how, when and where social action modifies 
matter in some specific way, to be able to suggest 
those actions as the cause of the observed modi-
fication without performing the action by itself, 
and (b) a notion of distance between the goal to 
be attained (the cause) and the current state (the 
observation). 

It is assumed that the robot can not explain 
nothing without an operationalization of low 
level concepts (“pottery,” “tool,” “activity area,” 
“landscape,” and high-level (“hunting,” “killing,” 
“fighting,” “reproducing,” “power,” “chiefdom,” 
“authority,” “poverty”) or any other similar. That 
means that our robot should store a priori knowl-
edge of patterns that it expects to encounter. Such 
declarative knowledge takes the form of proposi-
tions converted only slowly into action by means 
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of general interpretative procedures (algorithms). 
Designing the representation language to make 
easy to express this knowledge in the form of 
sentences simplifies the construction problem 
enormously. Although there are many criticisms 
to this approach, its advantage is that it is a practi-
cal and efficient way to reproduce “intelligent” 
or rational decision making (see next chapter for 
appropriate examples). It is then the most appro-
priate simulation of human “rationality,” defined 
in terms of searching for the best solution. Ac-
cording to that view, scientific theories may be 
considered as complex data structures consisting 
of highly organized packages of declarative facts, 
procedures and well defined goals.

However, it has been argued that such a de-
clarative framework cannot sufficiently account 
for cognitive process, because it neglects their 
creative, or constructive, aspects. Paraphrasing 
Wittgestein, we may ask: what does it mean to 
know what a lithic tool is, what an activity area 
is, what a territory is? What does it mean to know 
something and not be able to say nothing? Is this 
knowledge equivalent to an unformulated defi-
nition? If it were formulated, should a machine 
be able to recognize it as the expression of some 
background knowledge? 

Within the last two decades, the view of prob-
lem solving based on pre-fixed plans and searching 
in restricted knowledge-bases using well-defined 
operators for activating already existing sequence 
of explanations has come under scrutiny from 
both philosophers and computer scientists. The 
reliance on declarative expressions (logical for-
mulae) seems to be misplaced. The fundamentally 
unrepeatable nature of everyday life and human 
existence gives reality a significance that cannot 
be understood in terms of pre-defined, well-
structured declarative expressions. This position 
argues that a person’s understanding of things is 
rooted in the practical activity of coping with the 
everyday world. Explanation cannot be properly 
understood, if considered independently of the 
context in which it occurs. The historical, cul-

tural, and social context of the interactions of a 
cognitive system is crucial to the understanding 
of the ongoing process. 

All that means that although the automated 
archaeologist should use some form of knowledge 
base, this should not be identified with explicit, 
passively stored descriptions and well-defined 
rules. Our automated archaeologist should focus 
on the outside world, how this world constrains and 
guides its explanatory behavior. We have to take 
into account inarticulable “knowledge” closely 
related to regulating behaviors and coordinating 
perceptual-explanation interactions. 

One of the benefits of this approach is that the 
mode of processing it proposes is continuous with 
processes occurring in the external world. The 
automated system we would like to build is the 
agent-in-the-right-context, an agent constructing 
descriptions by adapting old ways of perceiving, 
by putting models out into the world as artifacts 
to manipulate and rearrange, and by perceiving 
generated descriptions over time, relating them 
to past experiences or future consequences.

 A theory of situated cognition has been 
proposed, claiming that every human thought 
and action is adapted to the environment, that 
is, situated, because what people perceive, how 
they conceive of their activity, and what they 
physically do develop together. Our names for 
things and what they mean, our theories, and 
our conceptions develop in our behavior as we 
interact with and perceive what others and we have 
previously explained and done. Explanation in this 
view emerges dialectically (reciprocally) from 
the interaction of the machine with its context: 
the elements that are perceived constrain what 
the agent can do, and what it does (thinks and/or 
explains) constrains what it perceives. Action 
enters as a variable into perception no less that 
perception enters as a variable into action.

Thus we have the possibility of situating au-
tomated archaeologists in the world in which we 
humans do (and did) things, where we have skills 
and social practices that facilitate our interaction 
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with the objects we want to study. Knowledge 
goes well beyond a mere process of mapping of 
observations from the environment to the cogni-
tive domain. It is rather the result of an interaction 
of processes within the cognitive reality. Hence, 
the structure of the cognitive system itself plays 
a dominating role in this process of construction, 
whereas the influence of the environment is rather 
marginal: it provides a kind of boundary condition 
that perturbs the organism’s internal dynamics; 
it influences, but does not control the structure 
of the cognitive reality. Because of constructing 
knowledge, the cognitive system is able to act 
within these conditions.

Rodney Brooks suggests that if we want to 
reproduce human intelligence in a machine, we 
should make emphasis on three central aspects: 
development, interaction, and integration. Devel-
opment forms the framework by which machines 
should imitate the way humans successfully 
acquire increasingly more complex skills and 
competencies. Interaction should allow robots to 
use the world itself as a tool for organizing and 
manipulating knowledge, it allows them to exploit 
humans for assistance, teaching, and knowledge. 
Integration should permit the automated archae-
ologist to maximize the efficacy and accuracy of 
complementary mechanisms for perceiving and 
acting (Brooks, 1999; Brooks et al., 1998). 

If we build an “intelligent” robot based on 
those aspects, we will obtain a machine, which 
is not born with a complete reasoning, motor or 
sensory systems. Instead, it should undergo a 
process of development where it will perform 
incrementally more difficult tasks in more com-
plex environments en route to an advanced state. 
In other words, our robot should be capable of 
improving its capabilities in a continuous pro-
cess of acquiring new knowledge and skills, and 
reacting to unusual events such as incomplete 
input, lack of prior knowledge (DeCallataÿ, 1992). 
To fulfill this requirement, it is suggested that 
an automated archaeologist should not be fully 
programmed since the beginning, but it still be 

built developmentally. The gradual acquisition 
of interpretive skills and the consequent gradual 
expansion of the automated archaeologist ca-
pacities to explain archaeological observables 
(creating more and more self-training data as it 
does so) will define then the cognitive behavior 
of our machine. This strategy facilitates learning 
both by providing a structured decomposition of 
skills and by gradually increasing the complex-
ity of the task to match the competency of the 
system. Behaviors and learned skills that have 
already been mastered prepare and enable the 
acquisition of more advanced explanations by 
providing subskills and knowledge that can be 
re-used, by placing simplifying constraints on the 
acquisition, and by minimizing new information 
that must be acquired. 

Chapters III and IV have been written with 
idea to show that an automated archaeologist is 
a computer system that learns to solve archaeo-
logical problems. Learning is there defined as 
the process of improving the execution of a task, 
without the need of reprogramming. The robot 
should be capable of modifying what it knows in 
terms of what it learns, and it will learn when it 
uses actual knowledge in a situation where that 
knowledge may be modified, according to some 
general goal. Consequently, the automated ar-
chaeologist should be able to criticize what it has 
predicted. In other words, declarative knowledge 
should not substitute perception. In a sense, what 
is being argued is the possibility of a hypothetical-
inductive reasoning, able to generate conjectures 
and refutations. Explanations are algorithmically 
produced, and refuted with situated data, that 
is information perceived in an experimental or 
controlled context.

diRECtioNS FoR FuRthER 
RESEARCh

The theoretical position taken here and throughout 
the book has its most obvious origins in the works 
of three very different scholars: the late David 
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Clarke, Jean Claude Gardin, and Jim Doran. In 
some ways, the book can be considered as an 
homage and update of the original suggestion 
by David Clarke, who considered the faculty of 
mathematics to be the proper place for study-
ing archaeology, and that cybernetics was the 
most convenient approach to investigate ancient 
remains (Clarke, 1968, 1972, 1973). Jean Claude 
Gardin took an explicitly non-quantitative ap-
proach to archaeological reasoning, but he was 
the very first scholar addressing the need of “au-
tomatization.” His investigations are covered in 
Chapter II. Finally, Jim Doran has all the credits 
for beginning the integration of Artificial Intel-
ligence in Archaeology. From his first papers 
(Doran, 1970a, 1970b, 1972, 1977) he explored the 
possibilities of computer modeling and simulation. 
His most recent investigations are presented in 
Chapter IX. Although the three approaches are 
very different, they constitute the prehistory of 
automated archaeology, what at that time (and 
even today!) may seem impossible.

This chapter has only an introductory charac-
ter. I have tried to present some of the main subjects 
that will be analyzed in depth throughout the book. 
Chapters V through IX present additional material, 
but it should be taken into account that research in 
this area is still in its beginnings, and that aspects 
like active vision, multi-dimensional representa-
tions, scene understanding, haptic interfaces, and 
so forth. need further investigation. In any case, 
what it lacks is technology. Theoretical basis on 
observations are already well established.

At the end of the chapter, the diversity of ar-
tificial intelligence is presented as an open gate 
to a new world. I have tried to present it in very 
schematic terms, both the classical approaches to 
symbol processing, and the new artificial intel-
ligence based on context situation. Materials here 
presented are only introductory. Other comments 
and suggestions for further research will be pre-
sented at the end of the respective chapters.
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lookiNg FoR SolutioNS

What does an “intelligent” human being when she 
tries to solve a problem? In general, she uses the 
word “problem” to mean different things:

• As a question to be answered, 
• As a series of circumstances that hinder the 

attainment of an objective,
• As a proposition directed to verify the way 

some results are known.

Research in cognitive sciences suggests 
“Problem solving is any goal-directed sequence 
of cognitive operations” (Anderson, 1980, p. 
257). According to Sloman (1987) “to have a 
goal” is to use a symbolic structure represented 
in some formalism to describe a state of affairs 
to be produced, preserved or prevented. Then, 
any rational agent, be artificial or natural, has a 
“problem” when an intention or goal cannot be 
achieved directly. Jackson (1983) summarizes this 
type of approach as:

PROBLEM= GOAL+OBSTACLE

When a specific goal is blocked, we have a 
problem. When we know ways round the block 

or how to remove it, we have less a problem. In 
our case, the automated archaeologist wants to 
know the cause of the observed material outcomes 
of social action. What blocks this goal is a lack 
of knowledge: it does not know the particular 
mechanism that caused in the past what it sees in 
the present. To remove this obstacle it must learn 
some specific knowledge: how a causal process 
or processes generated the specific measurable 
properties determining the observed evidence. To 
the automated archaeologist, problem solving has 
the task of devising some causal mechanism that 
may mediate between the observation and its cause 
or causes. Consequently, explanatory mechanisms 
taken in pursuit of that goal can be regarded as 
problem solving. In other words, explanation is 
a kind of problem solving where the facts to be 
explained are treated as goals to be reached, and 
hypotheses can be generated to provide the desired 
explanations (Thagard, 1988).

Problem solving has been defined as the suc-
cessive addition of knowledge until the obstacle, 
which prevented goal achievement, is surmounted 
(Newell & Simon, 1972). A cognitive machine 
will solve a problem just by adding knowledge 
to a situation where it identifies some lack of 
knowledge. Therefore, a foundation prescriptive 
rule, one that is so obvious that we always forget 
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it in real life: if you want to solve problems ef-
fectively in a given complex domain, you should 
have as much knowledge or information as you 
can about that domain. 

We cannot use any bit of knowledge we wish, 
because there is only a finite set of right answers 
to a problem. Looking for the needed knowl-
edge constitutes part of the procedure. The less 
knowledge available, the more “problematic,” and 
troublesome is the solution and the more difficult 
will be to produce a result. In this sense “problem-
atic” means “poor in knowledge.” This is true for 
archaeology as for any other scientific discipline. 
It is true for both humans and for robots!

When there is insufficient knowledge, a prob-
lem cannot be solved. The robot needs specific 
knowledge for specifying what it knows and what 
it wants to do (goal). Acquiring this knowledge 
implies solving a previous problem (sub-goal). 
Each of the new sub-goals defines a problem that 
can be attacked independently. Problem decom-
position constitutes, at the same time, a problem. 
Finding a solution to each sub-goal will require 
fewer steps than solving the overall compound 
goal. The idea is:

TO DECOMPOSE THE PROBLEM
 If you want to reach the objective G,
 And, it is not fulfilled using the 
                  previous condition C,
 Then, 
       Look for sub-goal C
       Once C has been attained, 
                  Then, 
                          Proceed until G.

When the solution of each sub-goal depends 
in a major way of the solution of other sub-goals, 
and the best solution requires trade-offs between 
competing constraints, it is most efficient to solve 
all the goals incrementally in parallel. This allows 
information about the results to accrue in each 
sub-problem and to affect the emerging decisions 

about the remaining sub-problems. This procedure 
illustrates several important points about problem 
solving. First, it should be explicitly guided by 
knowledge of what to do. Second, an initial goal 
can lead to subsequent sub-goals that effectively 
decompose the problem into smaller parts. Third, 
methods can be applied recursively.

Problem solving always begins with the iden-
tification of the difficulty or obstacle that prevent 
goal achievement. Once identified, we appeal to 
available information—previous knowledge—
and we decide the starting point of the procedure. 
As we have already seen, in archaeology, this 
obstacle is a lack of knowledge on the social cause 
of some perceived features. Therefore, we need 
external information (expertise, already solved 
problems, known cases, scientific knowledge, 
etc.) so that we can make inferences and pos-
sibly choose what to do next. Any information 
missing from the problem statement has to be 
inferred from somewhere. All these sources of 
information together constitute the “space” in 
which problem solving takes place (Robertson, 
2001; Wagman, 2002). 

We need a full and exhaustive problem space. 
We can think of such a problem space as the 
equivalent of a problem solver’s memory: a large 
encyclopedia or library, the information stored 
by topics (nodes), liberally cross-referenced (as-
sociational links), and with an elaborate index 
(recognition capability) that gives direct access 
through multiple entries to the topics (Simon, 
1996, p. 88). The idea seems to be that solutions 
to a problem exist before the problem at some 
location in this problem space.

In archaeology, the problem space is con-
stituted by those valid scientific facts, possible 
interpretations, and work hypothesis related to a 
specific subject. When considering historical prob-
lem solving through the looking glass of problem 
spaces, it appears that the temporality of social 
action is a sizable structure. It consists of: 
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1. A space of alternative social actions that 
could have been occurred, 

2. A space of alternative circumstances (ex-
ternal factors) that could have resulted, 

3. A space of alternative consequences of the 
events that actually happened,

4. A description of how all the possible causal 
interactions, between all the possible actions 
and circumstances, determine the conse-
quences,

5. A description of how all the possible causal 
interactions, between all the possible ac-
tions and circumstances, determine a new 
event, that is, a change of state in the social 
system of agents, actions, consequences and 
external factors. 

For instance, the problem space for a given 
automated archaeologist will include all activities 
that can generate specific use-wear traces on the 
surface of lithic tools, or all the places in a region 
from which a specific pottery type may come 
from. The machine needs a set alternative pos-
sible solutions (possible, probable and improbable 
causes for the artifact) and deciding which of them 
is the most appropriate in the case in question, 
according to certain well specified criteria. This 
mechanism can be described using a single verb: 
searching for the best solution. Many problems 

can be represented as involving a search for a 
suitable series of operations that will transform 
the starting state of the problem (the GIVENS) 
into a state that meets the goal requirements (SO-
LUTION). Given a well-defined problem space, 
the cognitive robot engages in a search to find 
a path through alternative knowledge bits that 
will lead to a solution. In other words, within a 
given a universe (U), it is necessary to find in a 
set of possible solutions (X), the elementary x that 
fulfill conditions K(x), which tell us whether this 
particular x is the solution we are looking for. 
Of course, we are speaking of a metaphorical 
search in a metaphorical space, where goals are 
seen as spatial locations and event sequences as 
metaphorical paths leading from one state of the 
problem to another (Holyoak, 1990). 

It is precisely that metaphor of “searching” for 
solution what gives support to the idea of problem 
space: search is an enumeration of a set of potential 
partial solutions to a problem so that they can be 
checked to see if they truly are solutions, or could 
lead to solutions (Figure 2.1)

The search process consists of small, incre-
mental changes in the subject’s belief that can 
be modeled as small changes in a set of asser-
tions. Because of those changes, the state of the 
problem changes too. These successive states of 
the problem, or changes in the problem givens 

GOAL:  
                                                         A “difficulty” we need to “solve” 

PREVIOUS 
KNOWLEDGE   REPRESENTATION 
        Problem Outline 
        INITIAL STATE 

                              PROBLEM SPACE 

                       A set of ALL possible solutions   FINAL STATE 

needs 

Figure 2.1. A general procedure for problem solving
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as a result of adding new knowledge into them, 
can be evaluated by domain-specific additional 
knowledge and tested to see whether they are 
goal states. 

Consequently, automated problem solving 
can be described as starting from an initial given 
situation or statement of a problem (known as the 
INITIAL STATE of the problem). It coincides 
with what the logicians designate as explanans, 
this is, what we want to explain. The initial state 
of an archaeological problem is obvious: the 
archaeological record, the artifact or the artifact 
associations we want to explain; for instance, a 
spatial distribution of artifacts, description of 
some artifacts shape or texture, and so forth. Such 
an initial state should be sufficiently precise. It 
is not a general sentence about some descriptive 
features, but a precise statement of all physical 
properties of objects defined according to well-
defined locational properties. 

The automated archaeologist will advance 
towards the goal based on the problem situation 
and some prior knowledge. When it reaches it, 
it is in the GOAL STATE of the problem. It is 
expressed in terms of a set of requirements, and 
it can be defined as “what it wants to get.” There-
fore, it refers to the explanandum (what explains), 
and designates the final state of the problem. In 
our case, it is the specific mechanism explaining 
why the evidence is that way. Such a goal state is 
defined in terms of those elements that differenti-
ate the most probable cause from alternatives, but 
less probable ones. The more general be the terms 
that describe a goal, the wider will be the area of 
application, and will answer to more problems. 

Goals can be formulated explicitly as declara-
tive facts: the function of an ancient sword, for 
example, is to be used as a social identity symbol; 
the function of a medieval jar is to contain a liq-
uid. Here, “social identity symbols,” and “liquid 
containers” appear as facts, and questions like 
“is x a social identity symbol?” or “is y a liquid 
container?” are the correct representations of some 
specific research goals. The solution procedure 

can be expressed in terms of necessary actions 
needed to activate the most appropriated explana-
tory concept to the case at hand. For instance, to 
the question “which is the function of this burin?” 
it corresponds the following action: “by studying 
use-wear traces, check whether observed texture 
coincide with the characteristic texture patterns 
experimentally generated in a laboratory when 
cutting wood.” Here, the goal is not a single con-
ceptual label (“cutting wood”), but a procedure 
designed to discover if that tool served to this 
purpose or not.

Once the robot has defined its goals, it should 
estimate the existing difference between some 
starting point (input information: perception) and 
the point to which it wants to arrive (the goal: 
causal explanation), choosing for this procedure 
an operator which reduces that difference and 
makes it move from the starting state until the 
arrival point or solution. The term operator is used 
to denote the description of “an action or process 
that bears some rational relation to attaining a 
problem solution” (Newell & Simon, 1972, p. 88; 
Rusell & Norvig, 1995, p. 60). Associated with 
such cognitive operations is information about 
prerequisites and the effects of applying them. 

The operators are functions that transform 
a state description representing one state of the 
problem into one that represents the state resulting 
after an action. These are models of the effects of 
actions (Nilsson, 1998, p. 130). However, often the 
term “solution” is used as referring to two aspects 
of problem solving: either the final solution -the 
“answer”- or the means of finding the answer -the 
“solution procedure”- (Brown & Chandrasekaran, 
1989; Holyoak, 1990; Robertson, 2001). 

We also need a well-defined criterion to verify 
any solution proposed, and a recognizable proce-
dure to apply that criterion.

As an additional example of how search is 
used to solve an archaeological problem, con-
sider the task of determining the chronology of 
a bronze sword (GOAL: How old is this bronze 
sword?). A morphometric description of that 
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sword constitutes the initial state of the problem. 
The set of possible solutions contains all possible 
chronologies: 9th century B.C., 8th century B.C., 
7th century B.C., etc. The automated archaeologist 
needs some knowledge to go from the descrip-
tive features of the sword until the chronological 
knowledge. If the sword had its fabrication date 
inscribed, the problem would be easily solved. 
Imagine, however, that this is not the case. We 
have not the necessary knowledge. 

How do we acquire knowledge to explain the 
chronology of an ancient sword?

We can achieve this goal by determining the 
chronology of the context where the sword was 
found. Possible solutions may be:

• Pottery with painted decoration (9th century 
B.C.)

• Pottery with incised decoration  (8th century 
B.C. )

• Pottery without decoration  (7th century 
B.C.)

Therefore the sub-goal we have to achieve 
is:

What kind of decorated pottery is associated with 
the bronze sword found in that context?

Let us suppose that the sword has been found 
out of context. It belongs to the private collection 
of a local fan and nobody agrees on when and 

INITIAL STATE:
A lithic tool with straight edges and micro polished areas around the edge

GOAL: Why this tool has these physical properties?

SUB-GOAL:

Why this tool has a straight edge

SUB-GOAL:

Why this tool has micro polished areas around the edge

IF straight edges IF round edges
AND micro polished areas around the edge AND micro polished areas out of the edge

THEN wood THEN Scrapping leather

SOLUTION: SOLUTION:

Cause: wood Cause: scrapping leather

Figure 2.2. Problem solving in archaeology
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where was unearthed. The possible intermediate 
states are three, one by each type of ceramics 
that could be have found near the sword. We will 
appeal now to an analogy:

What sword morphometrically similar to the initial 
one (A) has been found in a context associated 
with one of the three previous kinds of pottery?

Suppose we have two examples, a sword as-
sociated with painted pottery in context (B) and 
another one associated with undecorated pottery 
in context (C). Here we have the typical case 
of too many possible solutions. Now, we use a 
mathematical operator (similarity)

Which description (B) or (C) is more similar 
to the initial state of the problem (the original 
sword)(A)?

An automated archaeologist can use a math-
ematical similarity criterion to establish which 
of the two swords in known contexts are like 
the “problematic” one. If the answer is sword 
(B), then using an analogical operator we will 
apply the chronological knowledge of (B) to the 
original case (A). Given that (B) is associated to 
painted pottery, and the presence of this pottery 
is a truth condition for “CHRONOLOGY=9th 
century B.C.,” it concludes that our sword is nearly 
3,000 years old.

Let us consider now how to select among a 
potentially infinite set of social actions. Imagine 
our automated archaeologist should explain the 
formation processes having acted on what today 
is an archaeological site. How it should explain 
the presence of a wall, the detection of some 
pits holes, or the discovery of an accumulation 
of animal bones near a wall and over a pit hole? 
Not many professional archaeologists are able 
to understand and explain those traces. Only 
experienced researchers can do that, and they can 
because they have organized all their knowledge, 
and the knowledge provided by their colleagues, 

into a coherent body of alternative solutions. The 
archaeologist is not a mere database of walls, pit 
holes or archaeological structures seen some-
where. We organize knowledge into hierarchical 
networks of observations, middle range descrip-
tions, explanatory and abstract concepts, and 
the like. We will see in Chapter III how to create 
generalizations from experimental and controlled 
observations and how to relate the empirical and 
the abstract. The results of such learning methods 
are stored to allow the archaeologist (human or a 
machine) finding something similar, in which case 
they it will be applied to specific cases, provided 
some ideal criteria be fulfilled. This task can be 
easily implemented in a computer. Similarity and 
analogy are then among the most useful opera-
tors to relate observations with explanations, in 
the same sense as statistical induction and causal 
modeling are used as operators for building the 
space of all solutions.

To explain the cause of social activity is, 
however, much more difficult. After all, a wall 
or a pit hole seen here are more or less similar to 
the wall or pit hole seen there. Traces of building 
houses, butchering animals, or making tools at 
some place can be proved similar to the evidence 
of building or butchering, or making tools at an-
other place. Nevertheless, a social organization 
having emerged here probably has nothing to do 
with a social organization having emerged there. 
It is usual, however, to solve historical problems 
using some kind of social typologies as problem 
spaces. For instance, if this group of people 
hunted rabbits, gathered apples, and killed their 
human neighbors without arrows, then they are a 
society of the X kind. Concepts like chiefdom or 
state have been used in this way. There is nothing 
intrinsically wrong with this approach. The dif-
ficulty is that actual typologies are rather limited 
and unstructured, and they cannot be used as full 
problem spaces. 

Archaeological problem solving does not 
have a unique problem space. Different kinds of 
problem spaces can be visualized, each appro-
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priate for some kinds of domain knowledge and 
not others. For a search in a problem space to be 
operationally definable, we need problem states, 
operators transforming one problem state into a 
set of successors, and some ordering knowledge 
that helps to choose between alternatives. For a 
search to be practical, such mechanisms should 
not be too complex.

ExPERt SyStEmS

The procedure required to conclude a successful 
search (i.e., to solve the problem) can be repre-
sented as a series of conditional actions (Lesgold, 
1988). The idea is that of a contingent association 
between a perception or sensory stimulus and an 
epistemic action as a response.

Some psychologists (among others Ander-
son, 1983; 1990, Johnson-Laird, 1988; Newell, 
1990; Newell & Simon 1972; Simon, 1996) have 
proposed to represent the association between 
successive states of the problem under the form 
of condition-actions pairs. When the current state 
of the world (the set of true statements describing 
the world), matches a specified CONDITION, 
this match should cause a specified ACTION to 
create another (true) descriptor for the world. A 
condition-action pair defines a single chunk of 
problem solving knowledge. Here, conditions are 
only a specific set of key features, and actions are 
explanatory concepts associated to those features, 
and used to reach the goal. 

Using the terminology proposed by Post (1943) 
we may call those conditionals productions or 
production rules. Each production is a process that 
consists of two parts: a set of tests or conditions 
and a set of actions. The actions contained in a 
production are executed whenever the conditions 
of that production are satisfied. In that sense, the 
productions operate in complete independence of 
each other (Simon, 1996, p. 102). They contain 
an antecedent and a consequent. The antecedent 
enumerates those situations in which the rule is 

applicable. When those conditions are “true,” we 
say that the knowledge represented in the rule 
consequent has been activated. Their fundamental 
advantage is that of “indexing” available knowl-
edge in terms of associations.

In general, the condition part of a production 
rule can be any binary-valued (0,1) function of the 
features resulting from perception of the problem 
givens. The action part is a primitive action, a call 
to another production system, or a set of epistemic 
actions to be executed simultaneously (Nilsson, 
1998, p. 27). As actions are executed, inputs and 
the values of features based on them change.

The underlying logical mechanism is:

IF   FEATURE1= true
   (object O has Feature1)
 AND (If Feature1 then Concept X) = true
 AND GOAL= G
THEN  CONCEPT X = true 

(the presence of object O allows the 
use of Concept X in the circumstances 
defined by Object O, if and only if 
your goal to achieve was G)

This rule represents the knowledge required 
for appropriate application of a problem solving 
operator. The “then” portion of the rule specifies 
the action to be taken and the expected state change 
will bring about. The “if” portion consists of a set 
of clauses describing when the action could and 
should be invoked. The clauses in the condition of 
this rule are of two types. The first two describe 
conditions that must be met before the operator 
can be applied. The third clause specifies a goal for 
which the operator is useful. The goal restriction 
helps to limit search, because it means this rule 
will only be considered when the relevant goal 
has arisen (Holyoak, 1990, p. 124). 

The associations between the different units 
of knowledge can be extremely complex: the con-
sequences of determined rules serve as condition 
of activation of others. For example:

If A and B, then C.
If x is X, then D. 
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If C and D, then H.
If B, then D.

In this case, A and B are attributes of the real 
world, and are defined as empirical facts in the 
problem statement. In this case, A and B “ex-
ist,” and the first rule is “true.” Therefore, the 
system instantiates this rule and it activates unit 
C. If the automated archaeologist has additional 
knowledge about the proper nature of entity x 
(it is an instance of class X), then, the system 
will instantiate another rule, which activates 
knowledge D. The effect of this new knowledge 
unit and unit C, is not to explain A and B, but to 
activate a new concept (H), whose function will 
be, either to activate a new unit, or to determine 
if the goal has been reached.

From this discussion, we infer that to activate 
some specific knowledge to solve a problem, 
two things are needed: a unit of knowledge and 
an association between this one and another. In 
other words, all inference is reduced to establish 
associations between predefined units of knowl-
edge. If the automated archaeologist does not 
have explanatory concepts (this is, if we have 
not provided them previously), it will never get 
to process the empirical data. In order to know 
whether a pottery vase dates in 9th century B.C., 
the automated archaeologist designer should 
previously define the concept “9th century B.C.,” 
because from this definition the connections will 
arise that will allow to associate (“to activate”) 
the initial state with the final state of the problem. 
If the intelligent machine should explain some 
society as an example of “Chiefdom,” the robot 
builder should know, in a very strict sense, what 
a “Chiefdom” is and what it looks like. Neverthe-
less, it is important to take into account that rules 
merely specify what is characteristic of typical 
entities, not what is universally true of them. 
Consequently, production rules provide a rough 
description of what is typical of some archaeologi-
cal events, not a definition of them.

In fact, the “activation” of a knowledge unit is 
much more than the mere execution of computer 
code. Knowledge activation cannot be defined by 
direct functional links:

If  OBJECT
Then CONCEPT

We need an “intelligent” evaluation of possible 
contexts where this association may be true:

 If (x,y,z) are proper empirical features of 
Object F1,

AND  (v,w)  are proper definition terms of Concept     
F,

OR  there is some contextual similarity between 
F and F1,

 THEN, F1 activates F
   Object (F1) is an instance of Concept  

  (F)

Problem solving knowledge is, however, 
usually very difficult to describe and to use. It 
comprises all we usually include under the label 
“experience” or “skill.” Therefore, we can distin-
guish three kinds of production rules:

• About the task,
• About the system,
• About how the system will perform the 

task,

In any case, it is important to remember that 
human memory is not a mere storehouse of knowl-
edge. An automated archaeologist should not be 
seen as a list of rules waiting to be mechanically 
applied to the archaeological facts. Production 
rules collect and combine information in appro-
priate ways to construct new representations in 
which the next rule will have easy access to the 
information it requires, but all information must 
be available. If the production rules are formulated 
as logical implications and the ACTION adds as-
sertions to working memory, then the act of rule 
firing corresponds to an application of modus 
ponens. There is however an alternative to prevent 
the formal character of classical predicate logics: 
the use of abductive reasoning. Josephson et al. 
(1987) suggest adopting the following pseudo-syl-
logism to represent the abductive inferences:
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D is a collection of data (observations expressed in 
terms of verbal descriptions, numerical measures 
or digitized images).
H explains D (If H were true, then would imply 
D).
None of the Hypotheses explains D better than 
H. 
Then, H is right.

Therefore, two abductively associated knowl-
edge units are two elements between which some 
relation has been settled down. Such relationship 
should not necessarily be based on the deep na-
ture of the associated units, but it can be built on 
an external criterion established by the scientist 
(Clancey, 1984). Following Thagard (1988), we 
must admit that what has led us to establish an 
abductive “connection” is merely a practical motif: 
A explains B because A fulfils certain require-
ments. Those requirements can be very diverse, 
formal or quasi-formal or well derived from the 
goals formulated upon stating the interpretive 
problem. In that case, we will designate it as a 
heuristic requirement. What is certain is that 
there is not any formal definition of the explana-
tion term. In absence of an operative definition, 
we should work under the assumption—probably 
wrong—that an explanation equals to a possible 
association, in which the adjective “possible” has 
no relation with “universal truth.” What converts 
this association into possible is that the link does 
not guarantee that it is a “true” bit of knowledge, 
but it is the best of all alternatives. In this case, the 
computer produces what it is sufficiently good, 
but calculable, instead of what is perfect (truth), 
but unreachable. 

Therefore, by means of associations, the activa-
tion or production of an explanation will automati-
cally expand, instantiating those concepts with 
which it is associated first, and these, as well, will 
cause the activation of new concepts. In a certain 
sense, then, we can consider that the activation 
function acts as “necessary energy” so that the 
automated archaeologist “thinks” and solves the 

problem, that is to say, so that it can look for the 
heuristically better solution.

The mechanism of expansion of the activation 
function is usually very complex, computationally 
speaking. In order the automated archaeologist 
“thinks,” its computational brain (inference en-
gine) has to be able to cause a cascade movement 
between different knowledge units. The result is 
very similar to a chain reaction, because the activa-
tion function extends gradually by all the system 
through the association between the concepts that 
have been implemented declaratively (under the 
form of production rules). If that reaction chain 
or rule search is too narrow, possibly the system 
will have very little utility, because we will hardly 
obtain solutions that, at first sight, seem innovating 
or, at least, different from the awaited thing. If 
the search is too ample, too many interpretations 
could be valid at the same time, and the system 
will fall in the incoherence. The resolution of 
this paradox, nevertheless, is beyond the reach 
of actual computer technology.

This cascade of rule firings and successive 
expanded explanations can be used to characterize 
the entire process of problem solving. In this case, 
we are speaking about a production system, and 
not a mere set of production rules. In computer 
terms, we usually refer to such mechanisms as 
expert systems. Every expert system consists of 
two principal parts: the knowledge base; and the 
reasoning, or inference engine.

The most important ingredient in any ex-
pert system is knowledge. The power of expert 
systems resides in the specific, high-quality 
knowledge they contain about task domains. The 
knowledge base of expert systems contains both 
factual and heuristic knowledge represented in 
terms of production rules. Factual knowledge 
is that knowledge of the task domain that is 
widely shared, typically found in textbooks or 
journals, and commonly agreed upon by those 
knowledgeable in the particular field. Heuristic 
knowledge is the less rigorous, more experiential, 
more judgmental knowledge of performance. In 
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contrast to factual knowledge, heuristic knowl-
edge is largely individualistic. It is the knowledge 
of good practice, good judgment, and plausible 
reasoning in the field.

The structure of rules in an expert system, 
including the distinction between the condition 
and the action and the order in which condi-
tions are tried, determines the way in which the 
problem space is searched. This task is carried 
out by the so-called “reasoning engine,” which 
organizes and controls the steps taken to solve the 
problem. One common but powerful paradigm 
involves chaining of IF-THEN rules to form a line 
of reasoning. If the chaining starts from a set of 
conditions and moves toward some conclusion, 
the method is called forward chaining. If the 
conclusion is known (for example, a goal to be 
achieved) but the path to that conclusion is not 
known, then reasoning backwards is called for, 
and the method is backward chaining. 

For instance, consider the following example 
of forward chaining (Barceló, 1997):

IF  (x) is a settlement,
AND (x) has (y)  in quantity (h),
AND (y) is an object of pottery,
OR  (y) is glassware,
AND (y) is dated in the 10th century B.C.,
THEN  VERIFY THE ORIGIN OF (y).
    
IF  (Goal) is TO VERIFY THE ORIGIN OF  
(y),
AND (y) is made of foreign material,
THEN  (y) is an Imported Object.

IF  (y) is an Imported Object,
AND (y) is similar to the Muslim pottery from   
the Castle of Silves (Portugal),
THEN (x) has Foreign Trade evidence.

In the case of backward chaining, goal-driven 
search begins with a goal and works backwards to 
establish its truth. The goal is placed on working 
memory and matched against the ACTIONS of the 
production rules. These ACTIONS are matched 

just as the CONDITIONS of the productions were 
matched in the data-driven reasoning. When the 
ACTION of a rule is matched, the CONDITIONS 
are added to working memory and they become 
new sub-goals of the search. The new states are 
then matched to the ACTIONS of other production 
rules. The process continues until a fact is found, 
usually in the problem’s initial description.

The control structure used for such a reason-
ing engine is straightforward. The current state 
of the problem solving is maintained as a set of 
patterns in working memory. Working memory 
is initialized with the beginning problem descrip-
tion. Production rules correspond to the problem 
solving planning skills in long-term memory and 
they are transferred to the working memory when 
necessary. The patterns in working memory are 
matched against the conditions of the production 
rules; this produces a subset of the productions, 
called the conflict set, whose conditions match 
the patterns in working memory. The productions 
in the conflict set are said to be enabled. One of 
the productions in the conflict set is then selected 
(conflict resolution) and the production is fired. 
That is, the action of the rule is performed, what 
changes the contents of working memory. After 
the selected production rule is fired, the control 
cycle repeats with the modified working memory. 
The process terminates when no rule conditions 
are matched by the contents of working memory. 
In this way, production rules are not changed by 
the execution of the system; they are invoked by 
the “pattern” of a particular problem instance, 
and new skills may be added without requiring 
“recoding” of the previous existing knowledge.

In addition to the knowledge base and the 
reasoning engine, an expert system usually in-
tegrates:

• A knowledge acquisition subsystem: A 
subsystem helps experts to build knowledge 
bases. Collecting knowledge needed to solve 
problems and building the knowledge base 
continues to be the biggest bottleneck in 
building expert systems,
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• An explanation subsystem: It is a subsys-
tem that explains the system’s actions. The 
explanation can range from how the final 
or intermediate solutions were arrived at to 
justifying the need for additional data. 

The general problem of explanation in an 
intelligent machine can be viewed as a problem 
of mapping between the information needed to 
satisfy the goals and what the machine can provide 
to meet that information needs. This mapping is 
complex because neither machine’s goals nor its 
explanatory abilities are static or simple. Both are 
complex hierarchical structures and both change 
dynamically. The need for understanding at any 
particular time (goal) might relate to general world 
knowledge relevant to the robot’s explanatory 
functionality, or it might relate to understanding 
the dynamic reasoning processes of the machine 
itself. Explanations of the reasoning of the system 
might refer to the details of individual explana-
tions, or they might refer to various higher level 
strategic procedures carried out by the system, 
which might be only implicit in the system design. 
In many ways, the world knowledge and reasoning 
questions can intertwine, as in the well-known 
issue of providing the justifications for rule-based 
actions (Clancey, 1984). In general, the states of 
rule-based systems change in ways that eliminate 
potential actions at later points that were possible 
earlier. During the system’s reasoning processes, 
resources are consumed, knowledge is combined 
in ways that preclude other combinations, time 
passes, actions are taken that prevent alternatives, 
either physically or by meeting the same goals, 
and so on. As a result, explanations for actions, 
and especially explanations for actions not taken, 
need to account for earlier states as well as the 
current situation (Metzler & Martincic, 1998). 

Given the importance, complexity, and espe-
cially the heterogeneity of the explanation prob-
lem, it is not surprising to find that it has been 
addressed in a variety of ways as well (Giarratano 
& Riley, 2004; Tyler, 2007). Some intelligent 

system architectures have provided useful expla-
nation facilities based directly on their internal 
data and control structures, such as the rule traces 
of a rule-based system. Since intelligent systems, 
especially expert systems are most often based on 
data and control structures that correspond closely 
to human articulated knowledge, these structures 
are relatively understandable and informative to 
users, at least to expert users. In general however, 
while such ‘‘transparent system’’ approaches 
have proven useful, it is well understood today 
that they are relatively brittle, not providing the 
flexibility of focus required for general user un-
derstanding of an intelligent system. They do not 
directly deal with the complex issues mentioned 
previously. For instance, rule trace approaches are 
essentially chronological rather than dependency 
based, so that they do not distinguish which are 
the important events in a long history of past 
explanations. They deal only with what actually 
occurred and not with other hypothetical lines of 
reasoning, and they do not represent the notions 
of goals or purposes in any manner that directly 
supports explanation. Some have uncoupled 
the problem of providing explanation from the 
system’s reasoning by providing alternative rea-
soning mechanisms that are separate from the 
expert system’s functioning.

“dECoNStRuCtiNg” 
ARChAEology

Scientific reasoning has been described in terms of 
problem solving search ( Klahr & Dunbar, 1988; 
Klahr, 2000; Kulkarni & Simon, 1988; Langley 
et al., 1987; Simon & Lea, 1974; Thagard, 1988; 
Valdés-Pérez, 1995, 1996; Valdés-Pérez et al., 
1993; Wagman, 2000). According to that view, 
scientific theories may be considered as complex 
data structures in a computational system; they 
consist of highly organized packages of rules, 
concepts, and problem solutions.
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The idea is that scientific knowledge directs 
problem solving search through a space of theo-
retical concepts. This specific knowledge matches 
against different possible regularities in the data 
and take different actions depending on the kind 
of regularity the system has perceived among 
external data. Some of this knowledge proposes 
laws or hypotheses, others define a new theoreti-
cal term, and yet others alter the proposed scope 
of a law. Different data led to the application of 
alternative sequences of knowledge operators, 
and thus to different conclusions.

Generating a causal explanation is then a type 
of problem solving search, in which the initial state 
consists of some knowledge about a domain, and 
the goal state is a hypothesis that can account for 
some or all of that knowledge in a more concise 
form. A space of instances and a space of hypoth-
eses should then be used, with the search in one 
space guided by information available in the other. 
That is to say, the use of instances constrains the 
search for hypothetical statements of the causal 
relationship. Hypotheses are evaluated through 
known instances of the causal relationship. In 
looking for appropriate instances of examples, 
scientists are faced with a problem solving task 
paralleling their search for hypotheses. They 
must be able to plan by making predictions about 
which observational (or experimental) results 
could support or reject various hypotheses. This 
involves search in a space of data that is only 
partially defined at the outset. Constraints on the 
search must be added during the problem solving 
process. This, in turn, requires domain-general 
knowledge about the pragmatic constraints of the 
particular discovery context.

Archaeological explanation can be represented 
in the same terms, that is to say, as a series of 
successive actions that lead from the empirical 
description of an archaeological phenomenon 
to its interpretation. Those “actions” imply the 
application of different rules whose function is 
to put in touch the initial state (description of the 
phenomenon) with the final state (explanation). 

The problem space containing such rules is, in 
fact, a scientific theory.

This is exactly the proposal by Jean Claude 
Gardin: the way archaeologists take decisions can 
be mechanized. Although he never tried to build 
an automated archaeologist, some of his sugges-
tions are very interesting for our concern (Gardin, 
1980, 1991, 1993, 1994, 1998, 2003).  

His point of departure was to explore the 
discursive practices of archaeology. According 
to Gardin, the concrete expression of reasoning 
in any dominion of science is the text where the 
author has expressed the mental operations that 
have lead him or her from the observation of cer-
tain empirical facts, to the affirmation of certain 
explanatory proposals. This methodology looks 
for the necessary bridges between facts and theses 
and the links between explanations. It has been 
called logicist analysis (Gardin et al., 1981). Its 
goal is to reduce the content of the text in its main 
components, studying their fundamental connec-
tions. The schematization of an archaeological 
paper is not an abstract or a summary of the paper, 
but a reformulation of its content in a condensed 
form. Gardin uses the word “condensation” as in 
physics: a rearrangement of something into a more 
compact volume, without loss of substance. He and 
his colleagues “have deconstructed” numerous 
scientific works (mainly archaeological) in this 
way. This approach is precisely a framework for 
analyzing and modeling the questions and answers 
that bracket a scientific text, and there is an obvious 
intuitive link between meaning, questions, and 
answers. Similar approaches have been those by 
Stutt (1989), Winder (1996), Orlandi (1997, 2002), 
Tsaganou et al. (2003), Zhang et al. (2002). 

The deconstruction process involves: (1) 
capturing the source text; (2) capturing, making 
explicit, and formalizing the textual expertise of 
human interpreters; (3) defining and evaluating 
degrees of meaning and the plausibility of inter-
pretations; and (4) implementing a query system 
for interpretative questions on the computer.
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Gardin assumes that our theoretical con-
structs can be expressed in terms of a “calculus.” 
Archaeological theories can be formulated as 
computational structures with two components. 
The first one is a facts base, here understood as 
a set of declarative propositions that include not 
only descriptions of archaeological materials 
and their context, with associated archaeomet-
ric data, but also a large number of referential 
statements. Those statements are not usually 
regarded as “data;” they include primarily vast 
sets of analogies, “common sense,” shared belief, 
ideologies, and so forth. The second component is 
an inferential tree made up of rewrite operations, 
which reproduce the chain of inferences from the 
archaeological record (“facts,” represented as Po) 
to different explanatory statements (Pn). Between 
the extremes of the argumentation, there are in-
termediate theses (Pi). Scientific reasoning builds 
chains of oriented propositions Po, P1, P2…, Pn in 
terms of successive operations Pi --> Pi + 1.

Analogies between logicist analysis and 
some aspects of artificial intelligence are patent, 
although both representation schemas evolved 
in parallel without further implications (Gardin, 
1980,123-125, 1991; Gardin et al., 1987). Formal 
characteristics of expert systems technology ap-
pear to be very similar to the general structure 
of rewrite rules. The “deconstruction” of a scien-
tific text in terms of rewriting operations agrees 
with the “extraction” of the expert knowledge in 
terms of production rules. In the same way that 

the knowledge engineer tries to find out how a 
human expert thinks before introducing “prior 
knowledge” inside the computer program, a logi-
cist analyst tries to study what is hidden inside a 
scientific text written in natural language. 

The most interesting analogy between both 
procedures of representation concerns the com-
mon way to deal with the general architecture 
of reasoning: if the logicist analysis tries to re-
construct that architecture, starting from more 
or less literary texts, the expert system is able to 
reproduce it in absence of the investigator. Other 
parallelisms are registered at different levels of 
abstraction (see Table 2.1).

What we should compare are the results of 
“scientific” reasoning: a text or a computer pro-
gram. Both are encapsulated knowledge devices. 
The difference is that in human sciences, texts 
are usually “black boxes,” because authors hide 
their reasoning mechanisms in verbal rhetoric or 
they make very general references to “common 
sense,” forgetting that a text is not a photograph 
of a mental state, but a representation of a reason-
ing process. Expert systems are able to represent 
scientific reasoning, because it is always mechani-
cal and artificial, and it can be reduced to logical 
mechanisms.

“Rules” are the key, not laws, which are in-
violate, but rules that can be changed and indeed 
are always changing in a reflexive relationship 
allowing the expert (human or machine) to 
accommodate new information. Given some 

Semiologic               Logicist analysis
Database (Po)

Expert systems
Fact base

Representation
expressed in terms of 
a scientific language 
(descriptive “code”)

expressed in terms of 
a computer language 
(programming)

Information                      Re-write operations        Production Rules

Processing 
Pi  --> Pi + 1   .
Ordered in inductive or 
deductive  chains

IF  p  THEN q  
organized in a cascade 
linking

 Table 2.1.
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empirical data (observations) about a particular 
archaeological case, and some bit of associative 
knowledge (if…then) (hypotheses and interpreta-
tions considered valid in a social, anthropological, 
or historical theory), the archaeological problem 
can be explained in terms of the knowledge stored 
in the rule base. In other words, given some visual 
input and a candidate explanatory causal model, a 
correspondence can be established between them. 
This means that a small number of features are 
identified as matching features in the input and 
the model. Based on the corresponding features, 
a decision rule linking visual features with their 
causal process (social activity) is uniquely deter-
mined. The recovered decision rule is then applied 
to the model. Based on the degree of match, the 
candidate causal event is selected or rejected. To 
be accepted, the match must be sufficiently close, 
and better than that of competing solutions.

The rules discovered by logicist analysis or 
implemented in an expert system are subjective, 
but they are explicit. Anyone can produce the same 
results, so that although the system is subjective, 
it will be consistent when different subjectivities 
(i.e., different individuals) use it. The acceptance 
of the assumptions on which the problem solution 
is based leads to consistency, and direct compa-
rability between results produced by different 
people. This fulfills the basic requirements of 
objective data within the consensus reality of 
mutual users of the program. Therefore, expert 
systems and logicist analysis can extract objec-
tive-like data, but the complexity of the dynamic 
process is retained and the data is produced in 
the form of probabilities that can be compared 
as if they are objective data within a defined 
consensus reality.

Expert systems in archaeology have been 
accused of excessive simplification, of forcing 
knowledge, or distorting it, and of failing to ex-
ploit fully the knowledge of the expert (Doran, 
1988; Francfort, 1993; Gallay, 1989; Hugget & 
Baker, 1986, Lagrange, 1989c; Shennan & Stutt, 
1989; Puyol-Gruart, 1999; Wilcock, 1986, 1990;). 

However, there is nothing suspicious in such a 
technology. The basic idea behind them is simply 
that expertise, which is the vast body of task-spe-
cific knowledge, is transferred from a human to 
a computer. This knowledge is then stored in the 
computer and users call upon the computer for 
specific advice as needed. The computer can make 
inferences and arrive at a specific conclusion. 
Then like a human consultant, it gives advices 
and explains, if necessary, the logic behind the 
advice. Such a strategy has been successfully 
applied in many diverse domains as finance, 
medicine, engineering, legal studies, ecology and 
biological taxonomy (Liao, 2003, 2005). Why not 
in archaeology? 

Let us see some examples.

AN AutomAtEd ARChAEologiSt, 
whiCh diSCovERS thE 
FuNCtioN oF lithiC toolS

 
The most obvious archaeological application of 
expert systems technology has been the imple-
mentation of typologies. All of us know the 
troublesome thing that is to classify archaeological 
artifacts when we are not an expert in that cultural 
period. In these circumstances, an expert system 
can replace with advantage a series of books or, 
even, an expert. Its content is the same one that 
appears in the reference book, but clearer and 
better ordered. In the expert system, the clas-
sification criteria are, by definition, explicit (in 
form of rules), whereas in the reference book 
or table, it is usually very difficult to find out 
why the archaeologist has classified an object 
in a group and not in another one. Finally, and, 
mainly, an expert system is very easy to update, 
given the modularity of the architecture of the 
knowledge base. 

As an example of automatic typology, we can 
mention the work by Roger Grace (1989), who has 
developed an expert system for the classification 
of the technology and typology of tools. This 
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program is called LITHAN (LITHic Analysis 
of stone tools). 

Observations of the archaeological items are 
entered on a data card (Figure 2.3).

Metrical and non-metrical attributes of the 
tools such as length, width, thickness, position 
and type of retouch, and so forth are entered, by 
‘pressing’ the appropriate button (Figure 2.4). 
Shape related attributes are recorded as being 
nearest to the following alternatives.

Rules are then applied to interpret the type, 
and knapping technology. In the case of tool 
33, the expert system explains it as a non-corti-
cal morphological flake that was made using a 
blade technology with soft hammer and is an 
end scraper.

Often there is insufficient data to identify such 
categories as knapping technology or hammer 
mode, particularly when the tools are broken and 
the proximal end is missing. In such cases they 
will be classified as ‘indeterminate.’

LITHAN uses production rules like the fol-
lowing:

BLANK TYPE: 
 IF  length/width ratio >2,
  AND  width <12 mm, 
  THEN  put “BLADE LET.” 
TECH TYPE: 
 IF  platform Thickness <5, 
  AND  ButtType = “prepared,” 

Figure 2.3. Data acquisition initial screen in LITHAN. (© 1989, 1993, by Roger Grace. Figure reprinted 
with permission of the author). http://www.hf.uio.no/iakk/roger/lithic/expsys.html.

Figure 2.4. Selection of qualitative attributes in LITHAN. (© 1989, 1993, by Roger Grace. Figure re-
printed with permission of the author). http://www.hf.uio.no/iakk/roger/lithic/expsys.html.
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  AND  Sides = “parallel” ,
  AND  Ridges = “parallel,” 
  THEN  put “TECHBLADE.” 
HAMMERMODE: 
 IF  percussionCone = “no cone,” 
  AND  butt = “un-lipped,”
 AND  bulb = “diffuse,” 
 THEN  put “SOFT HAMMER.” 
TYPE: 
 IF  diff (length - width) > 0,
  AND  distalRetouch = “DISTAL,” 
  THEN  put “END SCRAPER.” 

General categories like end-scraper are further 
subdivided by applying secondary rules:

IF   endForm = “ROUND,” 
THEN put “END SCRAPER.”
IF   endForm = “CARINATED,” 
THEN put “CARINATED END SCRAPER.”

There are sub-routines for special categories, 
cores, burins, arrowheads, and microliths.

Lithic analysis, however, does not end up 
with shape considerations. Some interpretation 

about the most probable function of the tool is 
also necessary. Grace has created therefore the 
FAST (Functional Analysis of Stone Tools) expert 
system computer program.

In this case, metrical and non-metrical at-
tributes of use-wear such as grain size, micro-
topography, invasiveness, gloss, etc. are also 
entered, by ‘pressing’ the appropriate button 
(Figure 2.5).

The syntax for functional rules is very simply 
and takes the form of:

IF    (edge angle <30 degrees), 
THEN  PUT (cutting soft material). 
IF   (fractures are absent),
AND   (edge angle >30 and <60),
THEN  PUT (medium material). 

The parameters contained in these rules are 
derived from observations of experimental tools. 
The indications are then counted, again accord-
ing to a set of rules. If an indication contains two 
alternatives such as SOFT/MEDIUM for micro 
rounding, then SOFT would receive 0.5 points 
but doubled to 1 point because the other surface 

Figure 2.5.  Selection of qualitative and quantitative attributes in FAST. (© 1989, 1993, by Roger Grace. 
Figure reprinted with permission of the author). http://www.hf.uio.no/iakk/roger/lithic/FAST.html.
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is retouched. Each variable counts as two points 
[except thickness, which has a maximum of 1]. 
This is because thickness only has two values <4 
mm or > 4 mm and is not very discriminatory and 
consequently less important. Therefore, it carries 
less ‘weight.’ The results of the counting rules are 
entered as SCORES. For instance, if the program 
has calculated for a single tool 12 indications of 
scraping, 1 of cutting, 5 of a soft material, 8 of a 
medium material and 1 of a hard material, then 
the function rules are applied. 

IF   “cutting” <4 
 AND  “scraping” >8 
 AND “grooving” <2 
 AND  “whittling” <2
THEN PUT “SCRAPING”
IF   “soft” >4 and <8 
 AND  “medium” >0 and <2 
 AND  “hard” = 0
THEN   PUT “SOFT”

IF   “soft” <6 
 AND  “medium” >5 
 AND  “hard” <4
THEN   PUT “WOOD”

Rules that are more complex involve combining 
motions with materials, and in certain cases also 
including morphological information concerning 
the tools:

IF  “soft” >2 and <6 
 AND  “medium” <8 
 AND  “hard” <2 

AND  MOTION “whittling” OR “boring/
drilling” OR “grooving” OR “chopping/adz-
ing”

THEN PUT “HIDE”

This rule is constructed in this way because 
whittling, boring, drilling, grooving, chopping 
and adzing are motions unlikely to be used on 
hide.      

IF   “soft” =0, 
 AND  “medium” >3, 
 AND  “hard” >8,

AND  MOTION “whittling” OR “cutting” 
OR “piercing” OR “chopping/adzing” OR 
“grooving,”
AND SUBTYPE “facet” (when referring to 
a burin),

THEN  PUT “STONE.”

This rule is constructed in this way because 
whittling, cutting, chopping and adzing are un-
likely motions to be used on stone and grooving 
stone is more likely to be carried out with the 
burin ‘bit’ rather than the “facet.”

If the scores for motions and materials fall 
within the parameters in the program then an 
interpretation will be made of motion, hard-
ness of material and precise worked material. If 
the scores do not fall within the parameters for 
motion, hardness or worked material then the 
program gives ‘INSUFFICIENT DATA.’ This 
will apply if there is insufficient use-wear on 
the tool to be diagnostic or if the use-wear is not 
consistent with a particular use. That is, it does 
not match the use-wear of tools in the reference 
collection of experimental tools from which the 
parameters were derived. This means the program 
can suggest a material that has not been studied 
by experimentation and so is not included in the 
program.

Since the development of FAST, another expert 
system for the analysis of use-wear on stone tools 
has been developed. This program is called Waves 
(wear analyzing and visualizing expert system, see 
Dries, 1996). The program is similar in structure 
to FAST as data are entered by clicking on the 
appropriate observation from a multiple-choice 
menu for each variable, and IF-THEN rules are 
applied in order to match combinations of observa-
tions against experimental data. However, it has 
some other characteristics, which made it more 
suitable as an example of neural networks. It will 
be analyzed in detail in Chapter VII.



  ��

Problem Solving in the Brain and by the Machine

AN AutomAtEd ARChAEologiSt, 
whiCh RECoNStRuCtS 
iNComPlEtE dAtA

The archaeological record is fast always incom-
plete: not all past material things have remained 
until today. Even more, most of those few items 
from the past that we can observe today are broken. 
The only possibility to “see what cannot be seen” 
is as a generalization of fragmented observable 
data, representing partially the view of a lost 
physical world reality. This can only be done by 
generating simulated data (Barceló, 2000, 2001). 
That is to say, the automated archaeologist needs 
a complete “model” in order to complete damaged 
input data. The idea is to use a hypothetical model 
of the thing, and to fit it to the incomplete input 
data to simulate what is not preserved. We can 
use the following kinds of knowledge:

a. If all we know to simulate missing data are 
analogies and some other “similar” cases, 
then we can build a qualitative model. This 
is the case of ancient buildings. In most 
cases, preserved remains do not shed light 
on the structure of vertical walls, which 
therefore remain unknown. In general, 
the reconstruction of archaeological badly 
preserved ancient buildings is largely based 
on these types of sources: 

b. Pictorial evidence from plans and photo-
graphs of the building’s ruins. 

c. Descriptive accounts by modern authors on 
the ruins in both their existing condition and 
in their imagined original state.

d. Evidence shown by contemporary buildings 
in other neighboring places or culturally 
related areas, which gives clues as to likely 
construction methods and spatial forms. 

e. When old drawings and photographs are not 
available, external data can be estimated 
from ethnographic records. 

This knowledge can be arranged to constitute 
an expert system, and then using it to reconstruct 
archaeological ruins. The problem in all those 
cases is that theoretical knowledge is not being 
added to the model in a systematic way. That is 
to say, knowledge of the model to reconstruct is 
not organized in rules and facts, but selecting 
additional information in a subjective way, us-
ing what the illustrator wants, and not what the 
archaeologist really needs.

The problem of visually reconstructing bad 
preserved archaeological remains is exactly the 
same problem that any animal brain should solve 
when dealing with incomplete visual inputs. Be-
cause images are not the raw data of perception, 
it is theoretically possible to rebuild an altered 
image, using prior-knowledge in the process of 
image formation from the pattern of luminance 
contrasts observed in the empirical world. This 
process is analogous to scientific explanation, and 
therefore, it involves induction, deduction and 
analogy, and therefore we can use expert systems 
to integrate external knowledge to partial input, 
and then simulate the missing parts of the input. 
An automated archaeologist should follow the 
rule: “The most similar is taken for the complete 
simulation.” The procedure is as follows: we 
transform perceived data as a geometric data set 
(shape, size, texture), and we try to interpret the 
visual type, assuming some dependent preference 
function. Once the type is decided, the closest fit is 
determined using different numerical techniques 
(Barceló 2002).

IF  b (x,y,z) FITS THEORY,
AND MODEL A IS A PROJECTION OF 

THEORY,
THEN b (SHAPE) DERIVES FROM MODEL 

A.

The expert system inference engine organizes 
and controls factual knowledge, chaining different 
IF-THEN rules to form a line of reasoning, as we 
have seen. For instance:
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IF   the geometric model of (x) has geometric 
properties A,B,C,

THEN (x) is an example of MODEL AB.C..
IF  (x) is an example of MODEL AB.C.,
AND (x) has not property D,
THEN JOIN property D to the geometric model 

of (x).

Where JOIN is an operator implemented as 
a command able to add some geometric unit to 
those already present in a preliminary model of 
the partial input. As a result, some new visual 
features (property D) are added to the geometrical 
model of the original data.

To deal with uncertain knowledge, a rule may 
have associated with it a confidence factor or a 
weight. For instance:

IF  the geometric model of (x) has geometric 
properties A,B,C but not properties D,E,

THEN(x) is an example of MODEL ABC (with 
probability 0.7).

IF  the geometric model of (x) has geometric 
properties A,B,C, D,E,

THEN (x) is an example of MODEL ABC (with 
probability 1.0).

IF (x) APPROXIMATELY fits MODEL 
ABC,

THEN  VISUALIZE the incomplete parts of (x) 
using A,B,C properties.

The automated archaeologist needs to build 
the model first, and then use it for simulating 
the unseen object. It creates a geometric model 
of the interpreted reality, and then it uses infor-
mation deduced from the model when available 
visual data fit the model. In most cases, it creates 
“theoretical” or “simulated” geometric models. 
Here “theory” means general knowledge about 
the most probable “visualization” of the object 
to be simulated or prior knowledge of the reality 
to be simulated. 

One of the main examples of using expert 
systems for the simulation of archaeological 

missing data is the estimation of the general 
shape of a building by Ozawa (1992, 1996). The 
geometric model was based on a contour map of 
keyhole tomb mounds of ancient Japan. When 
archaeological information is not enough to pro-
duce the contour map, an expert system creates 
an estimated contour map of the original tomb 
mound in co-operation with archaeologists. The 
expert system holds the statistical knowledge for 
classifying any tomb into its likeliest type and the 
geometrical knowledge for drawing contour lines 
of the tomb mound. The user for each contour 
map introduces shape parameters, and the system 
classifies the mound as one of the seven types, 
according to specific parameters (diameter, length, 
weight, height, etc.). The estimated shape layout 
is then used as input for the 3D solid modeling 
and rendering (Ozawa, 1992). 

Florenzano et al. (1999) give a further advance 
in this artificial intelligence approach. They use 
an object-oriented knowledge-base containing a 
theoretical model of existing architecture. The 
proportion ratios linking the diverse parts of ar-
chitectural entities to the module allow a simple 
description of each entity’s morphology. The main 
hypothesis of this research is about comparing the 
theoretical model of the building to the incom-
plete input data (preserved remains) acquired by 
photogrammetry. Abstract models are organized 
with the aim of isolating elementary entities that 
share common morphological characteristics 
and function, on which rules of composition can 
be used to re-order the building. The concept of 
architectural entity gathers in a single class the ar-
chitectural data describing the entity, the interface 
with survey mechanisms and the representation 
methods. Each architectural entity, each element 
of the predefined architectural corpus, is therefore 
described through geometrical primitives cor-
responding to its morphological characteristics: 
a redundant number of measurable geometrical 
primitives are added to each entity’s definition, 
as previously mentioned. Related applications 
are Lewis and Séguin (1998), Drap et al. (2003).
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In the case of objects like pottery vases, recon-
structions can be easier, because manufactured 
objects fit better with single geometric models. 
Therefore, the reconstruction of a given object is 
most of the times a direct generalization of frag-
mented observable data by mathematical object 
description. The fragmented spatial information 
available can be extrapolated to complete a closed 
surface. The procedure may be illustrated by the 
mathematical ovoid and the eggshell compared. 
The eggshell is a solid formed by a fine closed 
surface. Continuity and dynamics are bound to 
the shape of the eggshell, in such a way that it is 
possible to locate the fragments of a broken egg-
shell as well as to define the whole by only very 
few spatial measurements. Evidently, to model the 
geometry of an eggshell, it is sufficient to pick 
from the fragments of a broken eggshell some 
spatial world data to simulate the entire eggshell. 
The spatial continuity and dynamics of the ovoid 
is included in the mathematical description, to 
simulate the missing information. The algorithm 
for the mathematical ovoid serves as a general-
ized constructive solid geometry, and just some 
additional information will tell the specification 
and the modification of the individual eggshell, its 
capacity, and the location of the centre of gravity. 
In other words, an automated archaeologist should 
create a geometric model (the mathematical ovoid) 
of the interpreted reality, and then use informa-
tion deduced from the model to fit the partially 
observed reality. The idea is very similar to the 
previous one, but instead of a qualitative model, 
the automated archaeologist uses geometric 
models. Several measurements—like volume, 
width, maximal perimeter, and so forth—are 
computed from observable data. Comparing the 
actual measurements or interpolated surface 
with the parameters and surfaces defining the 
theoretical model makes simulation possible. 
Relevant examples are Kampel and Sablatnig, 
2002, 2003, 2004, Cooper et al., 2002, Leitâo et 
al., 2002, Leymarie, 2003, Hawarah, et al. 2003, 

Melero et al., 2004, Kampel and Melero, 2003, 
and Moon et al., 2005.

An interesting future development is the pos-
sibility of using visualizations in a case-based 
reasoning framework (Foley & Ribarsky, 1994). 
The fundamental strategy is to organize a large 
collection of existing images or geometric models 
as cases and to design new visual reconstructions 
by adapting and combining the past cases. New 
problems in the case-based approach are solved 
by adapting the solutions to similar problems 
encountered in the past. The important issues in 
building a case-based visualization advisor are 
developing a large library of models, developing 
an indexing scheme to access relevant cases, and 
determining closeness metric to find the best 
matches from the case library.

AN AutomAtEd ARChAEologiSt, 
whiCh uNdERStANdS whAt AN 
ARChAEologiCAl SitE wAS

KIVA is an expert system designed to interpret 
hypothetical archaeological sites based on the 
current understanding of American Indian Pueblo 
cultures (Patel and Stutt 1988, Stutt 1989). KIVA 
takes a description of an American Pueblo Indian 
site, which includes features, artifacts and eco-
facts, and gives an interpretation of the activities 
that went on at that site when it was occupied in 
the past.

The system applies the heuristic or transfor-
mation rules, which embody the archaeological 
knowledge about Pueblo sites, to the facts, which 
constitute the description of a site, in order to pro-
duce an interpretation of the site in terms of the 
activities that may be associated with significant 
areas. This process forms an essential stage in the 
derivation of a cultural profile for the site.

The knowledge base of KIVA consists of facts 
about the domain and heuristic rules for interpret-
ing those facts. The major part of the fact frames 
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consists of two classifications: features and finds. 
Finds are objects, worked-on or man-made (ar-
tifacts) and of natural origin. Artifacts carry rich 
information about the technology, economy, and 
social organization. Features refer to the physical 
characteristics of the site. These include hole, ac-
cumulation (e.g., debris), enclosing feature (e.g., 
ring of stones, palisades, area demarcations), and 
mound. Features provide important clues regard-
ing the spatial layout of an archaeological site. For 
example, the number of rooms in the site, burial 
places, fire places, etc. At the cultural profile level, 
they provide information on the social organiza-
tion of the occupants of the site.

Another important classification is that of 
activity areas. These are derived by the system 
from data about finds and features. There are 
four basic types of activity areas: living area, 
a large room with a fire pit in it; storage area, 
a small room with no fire pit; plaza, the area 
between rooms; kiva, a subterranean room used 
for religious purposes.

The activity areas are derived from the fea-
tures using the interpretive rules held in KIVA’s 
knowledge base. These rule frames consist of 
seven sets (or clusters) of rules. 

1. Features rules: This cluster of rules pro-
duces significant areas from the size and 
placement attributes of features.

2. Finds rules: This cluster derives uses of 
artifacts from their attributes.

3. Content rules: This cluster takes individual 
areas and searches for finds and features 
within the area. It also checks that the con-
tents are from the same period in time.

4. Area rules: Based on contents, the main 
activity areas are identified.

5. Activity rules: From artifact uses, a different 
world is created for each possible activity.

6. Constraint rules: Expectations derived 
from the model help prune the worlds.

7. Site rules: Worlds are merged to give final 
interpretation of the site.

Once the raw facts are input, the interpretation 
can begin. KIVA activates rules in forward chain-
ing to discover areas, based on where activities 
could take place. This is done using information 
like the size and location of the feature. Next, 
content rules determine which finds and features 
are contained within the significant areas. Area 
rules use this information to detect activity areas. 
For example, a significant area with a fire pit 
would be classed as a living room. Then, a world 
is created in the world browser corresponding to 
each defined activity area.

By creating “worlds,” it is possible to hypo-
thetically reason about a situation. Thus, when 
activity rules are fired, a child world of an area 
world is created for each possible activity within 
the area. An area world is comprised of a set of 
propositions about the area. It contains proposi-
tions such as, “the contents of the area are fire pit 
No. 5” and “the area is a living room” and so on. 
It does not include propositions about the activ-
ity carried out in this area. Activities possible in 
any given area are derived from the artifacts and 
features found within the area. A fire pit would 
suggest cooking activity, for example.

Next, top-down reasoning is employed in a 
two-stage process to determine which activities 
are feasible. Firstly, impossible activities are 
marked as false. Butchering, for instance, can-
not be an activity of a living area. This process 
is achieved by means of constraint rules, which 
reduce the set of possible activities for an area. 
Secondly, other rules identify sets of activities that 
go naturally together and thus provide stronger 
evidence for a particular activity. Hence, the sys-
tem suggests that cooking is a possible activity 
of area51, because two of the activities possible 
at the area, cooking and cutting reinforce each 
other.

In a penultimate step, site rules eliminate all 
improbable activities and confirm the most prob-
able ones. For example, the possible activity of 
area No. 51 (i.e., cooking) is confirmed by the 
presence of food preparation as an activity. As 
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a result, the other likely activity (i.e., sleeping) 
is eliminated as a contending activity. This dif-
fers from the previous stage in the reasoning in 
that all contenders which are not reinforced are 
eliminated, leaving, if possible, only one contender 
for each area. Finally, site profiles are derived by 
combining possible site world/s. 

As it has been shown, KIVA is build around 
an expectation-based model. According to the 
authors, the approach seems to capture the actual 
practice of archaeologists. When an archaeologist 
interprets a site, she has a model of the kind of site 
determining what she expects to find. Thus, in the 
example given above, the archaeologist, thinking 
that she is excavating a Pueblo Indian site, will 
expect a particular range of artifacts and features. 
If a find or feature is wrongly identified at some 
early stage, the application of the fine details of 
the model will generally serve to correct initial 
misconceptions.

In archaeological reasoning, therefore, the 
correct interpretation is the one that subsumes as 
many of the finds as possible without infringing 
any constraints on the combination of possible 
activities on a site (Stutt, 1988, 1989, 1990). 
KIVA builds up all possible solutions and, from 
its knowledge of a typical site, picks out the best 
solution (or solutions). In the above example, the 
system could apply a set of constraint rules, which 
includes the knowledge that all Pueblo sites have 
a cooking area. Thus, it could determine that it 
is better to believe that the activity carried out in 
this particular area was cooking since the area 
has a fire pit and no other area of the site has 
evidence for this necessary component of a site 
of this kind. Furthermore, from its knowledge 
that leather working was never carried out in an 
area reserved for cooking, it can determine that 
cooking was the only activity carried out. Since 
the knowledge which is used to select the pos-
sible interpretations is represented explicitly (in 
what is, in effect, a distributed model of a typical 
archaeological site) the knowledge of how the 

system reached its decision about its reasoning is 
available for possible use in explanation.

AN AutomAtEd ARChAEologiSt, 
whiCh ExPlAiNS ANCiENt 
SoCiEtiES

 
PALAMEDE is an expert system capable of mea-
suring some aspects of social dynamics (Francfort, 
1987, 1990, 1991, 1997, Francfort, Lagrange & 
Renaud, 1989). The program calculates the rela-
tive value of three main socio-economic func-
tions (residential, productive, prestige) for each 
archaeological unit and cumulates the results for 
each of the historical phases.

IF  (x) is a settlement area,
       AND in (x) there is kitchen pottery,
THEN  increase 20 points residential indicator 

at (x).

IF   (x) is a settlement area,
 AND in (x)  there are tools for manufactur-

ing ornaments,
THEN 
 increase10 points productive indicator at 

(x).

IF   (x) is a settlement area,
       AND dominant pottery at (x) are storing 

vases,
  AND prestige indicator >= 40,
THEN 
 increase 20 points prestige indicator at (x).

IF   (x) is a settlement area,
       AND productive indicator at (x) >= resi-

dential indicator at (x),
THEN 
  (x) predominant function is productive.

There are other rules allowing evaluation of 
the relative variation of the values of the three 
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between the different phases. Thirteen kinds of 
variations are possible, with each function increas-
ing, decreasing, stable, or indefinite.

IF   (A) and (B) are chronological phases,
          AND      (A) is older than (B),
THEN 
   CALCULATE:

   Difference of Residential indica-
tors Ri(B)- Ri (A)

  Difference of Productive indica-
tors Pi(B)- Pi (A)

   Difference of Prestige indicators 
PGi(B)- PGi (A)

IF   (A) and (B) are chronological phases,
         AND      (A) is older than (B),
               AND  Difference of Prestige indicators 

PGi(B)- PGi (A) > 5%,
THEN 
 Prestige increases at (B).

Another set of rules interprets the variations in 
function and allows conclusions about the value 
of the variation of specialization of the areas, the 
amplitude of the variation on a conventional scale 
and the direction of the variation.

IF   (A) and (B) are chronological phases,
         AND      (A) is older than (B),
    AND “prestige” in (B) increases,
 AND “domestic” in (B) decreases,

THEN 
 “specialization” in (B) increases.

The next rules deal with long distance “ex-
change” at the site, quantified with respect to 
imports. They give a value to the exchange, a 
measure of the amplitude and direction of the 
variation.

Results are printed in the following format:

From phase A to phase B, the domestic indicator 
increases, the crafts indicator is stable, the pres-
tige indicator decreases; conclusions, at this site, 
from phase A to phase B, the specialization of the 
areas diminishes somewhat (-2), the long distance 
trade diminishes enormously (-4).(Francfort et 
al., 1989, p. 116).

A second module of PALAMEDE models 
techno-informational aspects, proceeding from 
data to notions like “number of technological 
operations needed to elaborate some item,” or 
“of technological operations needed to elaborate 
divided by the number of items found at a distinct 
activity area.” In general, the idea is to weight an 
estimation of the quantity of labor with an estima-
tion of the mass of artifacts generated by such a 
work. The results follow the previous format:

From phase A to phase B, the volume of produc-
tion diminishes greatly (4) when the sophistication 
of production is stable. (Francfort et al., 1989, p. 
142).

The next module of PALAMEDE evaluates all 
the architectural and urban features excavated, 
using indicators, and constructing meta-notions 
like: architectural technique, urbanism, quantity 
of work, urban planning, architectural sophistica-
tion, degree of monumentality, urban comfort, 
common ideology, collective control, defense of 
territory, and the like. As in previous models, 
the archaeological indicators of meta-notions are 
compared by phase.

Finally, PALAMEDE produces a synthesis of 
the historical dynamics at each level: the stability 
of crafts and the stability of the sophistication 
of production, for instance, can be related to the 
absence of urbanism growth, and the lack of 
common ideologies.
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AN AutomAtEd ARChAEologiSt, 
whiCh uNdERStANdS 
EvERythiNg 

In the late 1970s, Doug Lenat built a computer 
program (Eurisko) that discovered things on its 
own in many fields. To get it to work, he had to 
give it the power to tinker with its own learning 
heuristics and its own goals. Often he found it in 
a mode best described as “dead.” Sometime dur-
ing the night, the program decided by itself that 
the best thing to do was to commit suicide and 
shut itself off. More precisely, it modified its own 
judgmental rules in a way that valued “making 
no errors at all” as highly as “making productive 
new discoveries.” As soon as Eurisko did this, 
it found it could successfully meet its new goal 
by doing nothing at all for the rest of the night 
(Lenat, 1995a). 

People have found many ways to grapple with 
and resolve conflicting goals short of killing 
everybody in sight. Surviving and thriving in 
the real world means constantly making tough 
decisions, and making mistakes. The only ways 
not to make mistakes are:

1. Do nothing 
2. Make sure there are no living souls left 

anywhere around you 
3. Be omniscient. 

Surely, any automated archaeologist will un-
derstand that occasional mistakes and inconsisten-
cies are inevitable and can even serve as valuable 
learning experiences. Anything else leads to the 
absurdity that holds that one small inconsistency 
will make the computer self-destruct.

Our human dependence on common sense 
is very far-reaching. It comes into play with 
spoken and written language (as when we try to 
decipher someone’s scratchy handwriting) and in 
our actions (e.g., when driving a car and deciding 
whether to brake or accelerate or swerve to avoid 

something). Our simple common-sense models of 
the world do not just clarify possible ambiguities; 
they are good enough to provide a context, a way 
of restricting reasoning to potentially relevant 
information and excluding irrelevant data. 

Before we let automatic archaeologists explain 
by themselves past human actions, it is necessary 
that the machine has general common sense about 
the value of a pottery sherd compared with a 
simple stone, about adobe walls being more dif-
ficult to distinguish than stone walls, and so on. 
That “and so on” obscures a massive amount of 
general knowledge of the everyday world without 
which not any human or machine scientists should 
be on the road. These examples illustrate how 
important it is to have a fair amount of common 
knowledge to understand what the world really 
is. In other words, before any future “intelligent” 
machine can be entrusted with absolute power of 
decision, it would somehow have to acquire this 
massive prerequisite store of knowledge. You 
can think of this knowledge as the foundation of 
consensus reality, things that are so fundamental 
that anyone who does not know and believe them 
lives in a different world.

Lenat thinks he is now in a position to specify 
the steps required to bring a possible intelligent 
machine into existence:

1. Prime the pump with the millions of ev-
eryday terms, concepts, facts, and rules 
of thumb that comprise human consensus 
reality—that is, common sense.

2. On top of this base, construct the ability to 
communicate in a natural language, such 
as English or Catalan (my own language). 
Let the intelligent robot use that ability to 
vastly enlarge its knowledge base.

3. Eventually, as it reaches the frontier of hu-
man knowledge in some area, there will be 
no one left to talk to about it, so it will need 
to perform experiments to make further 
headway in that area.
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Of course, the first step is both immensely 
difficult and immensely time-consuming. What 
are the millions of things that we should use to 
prime an automated archaeologist’s knowledge 
pump? How should they be represented inside 
the machine so that it can use them efficiently to 
deduce further conclusions when needed, just as 
we would? Who will do the actual entering of all 
that data? Assuming a large group of individuals 
(humans) can do this task, how will they keep from 
diverging and contradicting each other?

It may surprise you to hear that this is not 
just a fanciful blueprint for some massive future 
endeavor to be launched when humanity reaches 
a higher plateau of utopian cooperation. It is, in 
fact, the specific plan Doug Lenat and his team 
have been following for the past dozen years: 
The CyC project, a program with common sense 
(Lenat & Guha, 1990; Lenat, 1995b; Reed & Lenat, 
2002; Schneider et al., 2005. See: http://www.cyc.
com). The purpose was not to understand more 
about how the human mind works, nor to test 
some particular theory of intelligence. Instead, 
the idea was to build a machine understanding 
natural language. 

The Cyc knowledge base is a formalized 
representation of a vast quantity of fundamental 
human knowledge: facts, rules of thumb, and 
heuristics for reasoning about the objects and 
events of everyday life. It is not a simple set of 
rules; the system’s designers think of it as a sea of 
assertions. The Cyc knowledge base is divided into 
many (currently thousands of) “microtheories,” 
each of which is essentially a bundle of asser-
tions that share a common set of assumptions; 
some microtheories are focused on a particular 
domain of knowledge, a particular level of detail, 
a particular interval in time, etc. The microtheory 
mechanism allows CyC to independently maintain 
assertions, which are prima facie contradictory, 
and enhances the performance of the system by 
focusing the inference process.

At the time of writing, the full version contains 
over 2.5 million assertions (facts and rules) inter-

relating more than 155,000 concepts. Most of the 
assertions in the knowledge base are intended to 
capture “commonsense” knowledge pertaining 
to the objects and events of everyday human life, 
such as buying and selling, kinship relations, 
household appliances, eating, office buildings, 
vehicles, time, and space. The system also con-
tains highly specialized, “expert” knowledge in 
domains such as chemistry, biology, military 
organizations, diseases, and weapon systems, as 
well as the grammatical and lexical knowledge 
that enables the natural language processing 
(parsing and generation) capabilities incorporated 
into CyC’s user interfaces. CyC’s ability to reason 
is provided by an inference engine that employs 
hundreds of pattern specific heuristic modules to 
derive new conclusions (deduction) or introduce 
new hypotheses (abduction) from the assertions 
in the knowledge base. CyC’s inference engine is 
multi-threaded, which means that it is able to work 
on multiple tasks (such as question answering or 
problem solving) at the same time. It is also able 
to provide complete explanations for its answers, 
including the names of the sources (e.g., people, 
published works, Web sites) from which informa-
tion was obtained. It can even alert the user in 
cases where both pro and con arguments can be 
constructed for particular conclusions, perhaps 
due to differing circumstances or changes in 
context. Users can modify dozens of parameters 
to achieve very fine-grained control of inference, 
if desired. 

At its most basic level, you can do only two 
things with CyC: you can tell it things (assert facts 
and rules) and you can ask it things (query). You 
cannot directly tell the system what it should do. 
Its explanatory power comes from its ability: 

• To “know” things you never told it (because 
others have, over many years),

• To “know” things it was never told (through 
inference and heuristics modules), and

• To independently draw upon the right com-
bination of knowledge to bring to bear on a 
problem.
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One of the flashiest early uses of CyC has 
been for information retrieval. Imagine a library 
of captioned images and a user who comes along 
and types in a word, phrase, or sentence asking 
for images. Today’s software would have to do 
Boolean searches based on keywords in the query 
and the captions, perhaps broadening the search 
a bit by looking up synonyms in a thesaurus or 
definitions in a dictionary. Alternatively, consider 
the World Wide Web, whose keyword-based 
indexing is the only way to search through that 
immense information space. That’s fine if you 
want to match “a 23rd century B.C. pottery ex-
ample” against “a scraper used to scrap fresh hide 
before the invention of agriculture” but it takes 
something like CyC to match assertions like “a 
privileged social class” against “a man giving 
orders to kill another person.” CyC uses common 
sense to do matches of that sort. To do that, it 
used a few rules of the sort: “If people kill other 
people to dominate in a social context, then they 
are members of a privileged social class.”

 

iS A “RAtioNAl” AutomAtEd 
ARChAEologiSt AN imPoSSiblE 
dREAm?

All those examples should serve us to conclude 
that expert systems are useful, very useful in-
deed, because many archaeological problems 
can be structured in terms of a single template 
matching mechanism. Incoming patterns are 
matched against a set of previously memorized 
templates by means of some explicit rules link-
ing external input and internal explanations. The 
automated archaeologist asks itself “Is what I’m 
seeing already contained in my Memory?” That 
is to say, “Did I know this item before?” If the 
answer is affirmative, it decides to remember 
what was memorized at that moment, and find 
out additional associate affirmations. By mak-
ing use of some previously stored knowledge, 
the robot infers from sensory data, what it is that 

gave rise to those data. The input pattern is then 
categorized as belonging to the class captured by 
that pre-existing explanation. 

One major insight gained using expert systems 
is the importance of domain-specific knowledge 
in problem solving tasks. Expert knowledge is a 
combination of a theoretical understanding of the 
problem and a collection of problem solving rules 
that experience has shown to be effective in the 
domain. A doctor, for example, is not effective at 
diagnosing illness solely because she possesses 
some innate and universal problem solving skill; 
she is effective because she is a specialist in some 
medical domain. Similarly, archaeologists are ef-
fective at discovering archaeological items and at 
explaining them in social-causal terms because 
they have previous experience with archaeological 
materials and explanations. The degree of suc-
cess is based on the quantity and quality of such 
expert knowledge.

Consequently, expert systems assume that to 
recognize an archaeological item, and explain its 
functional or social meaning there is a predefined 
representation of that item or that interpretation 
already stored in the memory. The reader may 
be surprised with this characterization of ar-
chaeological problem solving. We have defined 
a problem as “something we wish to get and we 
do not know how.” Now, it results that “we do not 
know how” is constituted, in reality, by a set of 
possible solutions, one of which will become a 
suitable answer after a specific search procedure 
and selection mechanism. The world is knowable, 
only if it is already known. It seems a tricky way 
to solve problems! Nevertheless, this procedure 
is at the very core of any scientific reasoning ef-
fort in whatsoever discipline. Plato’s answer to 
the possibility of problem solving was that the 
concepts of mind must have been put into a hu-
man being a priori, that is, before the existence of 
the individual human being. This philosophical 
concept was named “the realism of ideas.” Plato’s 
principle of a priority was used by Minsky as a 
basis for creating computer artificial intelligence. 
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For a computer to operate and make decisions in 
a complicated environment, concluded Minsky, 
knowledge ought to be placed onto the computer 
a priori (Minsky, 1968). A system of logical rules 
is put into the computer, containing all possible 
situations, for example, all possible readings of 
sensors of a particular device or system.

That makes expert systems nothing more than 
a discrete plan for expressing cognitive action, 
because they contain descriptions of intended 
courses of behavior. In that case, a specific expla-
nation is created by searching through a space of 
possible explanations until the knowledge neces-
sary to generate that explanation is discovered. 
The procedure may be as follows: during sensing, 
information from various sensors is collected and 
integrated into a central representation of the en-
vironment, the world model that forms the basis 
for producing explanations. A number of possible 
explanations are generated and one of them is 
chosen and finally applied. This requires a great 
deal of central processing, which is equivalent to 
a human rational mind.  

Figure 2.6 shows a general cognitive archi-
tecture allowing the automated archaeologist to 
first plan (deliberate) how to best decompose a 
given archaeological problem into sub problems 
for which knowledge already exists and then to 

enumerate what are the specific linking of sub-
explanations that will bring the solution to the 
preliminary problem. This type of organization 
can be described as a sequence of THINK, PER-
CEIVE-EXPLAIN where the comma indicates 
that rational thinking, that is, conscious problem 
decomposition, is done at one step, then acquiring 
data (“perceiving”) in terms of a priori background 
knowledge. In this way, what the automated ar-
chaeologist is permitted to sense and understand 
is denoted. We can describe the idea in more 
general terms: given knowledge of the material 
consequences of social action the automated 
archaeologist is likely to encounter, it uses this 
information to understand what it is seeing.  

However, there is a trouble. A big one, indeed! 
It is obvious that we do not understand past social 
actions by enumerating every possible outcome of 
every possible social action. A template matching 
scheme like the one we have here presented could 
work provided we had precompiled rules for all 
events to be explained. To explain social action 
produced in the past, the automated archaeologist 
would need a universal knowledge base covering 
the entire domain of interaction. Unfortunately, 
this is almost impossible to achieve, because 
it implies the existence of an infinite number 
of rules to have the ability of recognizing each 

Figure 2.6. A general cognitive architecture allowing the automated archaeologist to explain archaeo-
logical observables
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unique archaeological observation for what it is 
and then selecting an appropriate explanation for 
each possible historical state. Although the last 
example—the CyC system, with its 2.5 million 
of rules—seems to be “near” of such a universal 
knowledge base, the need to formally insert the 
entire world within the automated archaeologist’s 
brain and then maintain every change about it is 
impossible. This is the reason of many computer 
failures to understand the real world: it is very 
easy to forget to put all the necessary details into 
the world model. Furthermore, the incomplete-
ness of their explicit world models makes expert 
systems often lack robustness, which means that 
they lack tolerance of noise and fault tolerance 
and cannot behave appropriately in new situations. 
If a situation arises that has not been predefined 
in its programming, a traditional system breaks 
down or stops operating. They are incapable of 
performing appropriately in novel situations, that 
is, they lack generalization capacity.

Expert systems’ relative success is due to 
their working within a world in which the range 
of meaning for terms is circumscribed within a 
carefully selected micro-world. Human archaeolo-
gists work in a dynamic world, where perceptions 
change constantly, and explanations have to be 
updated concurrently. An expert system is com-
pletely different: it should be seen as a series of 
discrete mappings between aspects of the world 
and individuated cognitive actions that are based 
on a closed world assumption which says that the 
cognitive model (the rule base) contains every-
thing the robot needs to know: there can be no 
surprises. When the closed world is violated, the 
robot will not be able to function correctly. The 
automated archaeologist should not be limited 
to produce discrete responses to discrete facts, 
and there should be no assumption that the social 
history consists of a finite body of facts. Rather, 
the social world we have to study consists of a 
rich body of information, some of which crosses 
the perceptual abilities of our cognitive robot, far 
greater than ours. The information that is captured 

by different kinds of specialized sensors provides 
a broad spectrum about the environment in which 
the automated archaeologist solves its problems, 
some of which may be regarded as contextual, 
depending upon what explanation the machine 
is looking for. It is up to the machine to learn to 
identify evidence in an archaeological environ-
ment by learning responses to already observed 
patterns. One advantage of this way of viewing 
the system’s responsiveness to the environment 
is that the particular response of the system may 
be influenced by a variety of different factors, 
some of which we may take to be only indirectly 
related to the task at hand, but which are able to 
influence the patterns of activation arising inside 
the system.

Robots cannot simply be programmed with 
knowledge, since that would imply a designer-
based high-level ontology that would in turn lead 
to a system incapable of interacting efficiently 
with the world on its own. A key implication is 
that the automated archaeologist has to interact 
with its environment on its own, because solutions 
to an archaeological problem do not come from 
nowhere. To predigest the world for a person or 
a program by supplying readily labeled things 
and events is to bypass the essential problem that 
memory must address. Creating a knowledge 
base is often a scientific effort of empirically 
constructing and testing models. Very often cre-
ating a knowledge base requires inventing new 
terminology and developing an understanding of 
causal, temporal, and spatial relations that exceeds 
what anyone has known before. Indeed, even 
though many people can readily spout a wealth of 
rules and relations about their area of expertise, 
extracting facts and rules from an expert’s head is 
a poor characterization of the archaeologist’s task. 
Therefore, a declarative model of knowledge bears 
no necessary relation to human knowledge. It has 
been argued, even, that the contents of an expert 
system are not knowledge. It is a representation of 
knowledge (Clancey, 1997). Some times, although 
the knowledge is relevant, its representation is 
incomplete or not efficient enough.
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Explanatory knowledge cannot be defined by 
necessary and sufficient conditions. Archaeolo-
gists do not have exact or complete definitions 
readily available. They are rather creating the 
boundaries of their concepts when there is a 
demand for it. These “blurred” concepts cannot 
easily be operationalized. Many concepts seem to 
have a rather “generic” definition, which shapes 
up by instantiating the concepts with concrete 
objects. That is our concepts do not have sharp 
boundaries initially, and that the boundaries are 
drawn incrementally during use of the concept 
and probably also during use of other more or less 
related concepts. In fact, concepts are not fixed 
entities; rather, they are constructed on each usage 
by combining attribute values that are appropriate 
to the context. That raises the question of what 
mechanism constructs theses unstable concepts. 
This is obviously not an expert system with its 
pre-fixed rules and facts! 

Scientists do not simply begin with data and 
then move to theories, but are involved in a continu-
ous loop of data collection and theory formation. 
There should be no favored starting point, no 
priority given to any of the activities of problem 
solving, hypothesis formation or experimenta-
tion. Automated problem solving should lead to 
various kinds of learning, including the formation 
of hypotheses; the need to test hypotheses leads 
to the design and execution of experiments and 
controlled observations; experiments generate 
problems to be solved, which in turn lead to new 
hypotheses. In addition, the formation of hypoth-
eses can generate new problems waiting also for 
their solution, if a new generalization or theory can 
in turn require explanation (Thagard, 1988). 

Consequently, although expert systems are 
very interesting tools for some determinate tasks, 
they are not the best model for understanding how 
we are doing archaeology. In that sense, Gardin 
was wrong: expert systems can (and should) be 
used for classifying archaeological material, 
inferring chronology, function and the like, but 
they are not the best analogy for simulating the 

way human archaeologists think. Why? Because 
an expert system is not reasoning about its ar-
chaeological or historical rules; it is applying them 
blindly. Certainly, that is what many professional 
human archaeologists do, but in so doing, they 
are as stupid as their mechanic counterpart. A 
person using such descriptions without knowing 
what they mean would be quickly uncovered as 
a charlatan.  

What would give a more “intelligent” character 
to our automatic archaeologist will be not a passive 
storing of individual rules, but an enhanced ability 
to learn and to react in a certain way to a certain 
stimulus. If we want to go beyond the usual ar-
chaeological template matching, we should make 
emphasis not on database consultation, analogy, 
and decision-making, but on learning and catego-
rizing, and on how meaning can be generalized 
from known examples of a given concept. That 
is, the automated archaeologist should develop 
its own cognitive machinery (what it knows) as 
opposed to construct a data structure on which 
a preexisting machinery operates.

This gives rise to an essential question: where 
new explanatory predicates come from?

In the next chapter, we will try to solve such 
a question using the idea of inverse engineer-
ing, which was already presented at the end of 
Chapter I.

diRECtioNS FoR FuRthER
RESEARCh

Interest on expert systems vanished in recent 
years, both in computer science and in archaeology 
(Liebowitz, 1997; Luger, 2005). What seemed at 
the early 80s an interesting tool, never found in 
archaeology the place it really merited. I have tried 
to explain here some aspects of this failure, but 
the real cause seems to be in the poorly developed 
formal aspects of our discipline, even today. The 
post-modern criticism of the early 90s and its 
reification of subjectivism was an insurmount-
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able obstacle to any effort that tried to analyze 
“objectively” the way we think. Nevertheless, 
the work by Jean Claude Gardin and colleagues 
shows that although most archaeologist still do 
not know how they think, they are using predicate 
logics in some way or another.

The actual fashion of bayesian logics and dis-
tributed systems (agent-based modeling) is giving 
a new life to classical artificial intelligence, and 
the traditional way of understanding explanation 
as a combination of propositional sentences. The 
frontiers of classical logics have been overcome 
however. Alternative ways of explaining, like the 
logic of possibilism, default logics, non-monotonic 
reasoning, etc. imply that we have plenty of tools 
to explore alternative ways of solving archaeo-
logical problems.

On the theoretic and technological side, more 
work is necessary on the proper use of logics in 
knowledge based systems. In this chapter, I have 
only presented some basic aspects of inference 
flow. More research is necessary in the domain of 
abductive reasoning, and especially on the use of 
quantifiers and fuzzy logic. Some aspects will be 
presented in the next chapter, but we still need a 
deeper understanding of the way to link different 
propositional statements in a coherent explanation 
(Levesque & Lakemeyer 2000; Torsun, 1995,).

On the practical side, we can mention differ-
ent real archaeological applications, whowing 
that the technology really works, but it also has 
its limits.

Missikoff (1996, 2003) has investigated 
some theoretical aspects of automated typolo-
gies. As practical applications, we can mention 
the pioneering work of Bishop and Thomas 
(1984) on the British Bell Beaker pottery, Joel 
Mourre (1985) on lithics, Ganascia et al. (1986) 
on axes of bronze, Markel (1987) on American 
Indians pipes, Herman (1987) on Cypriot ritual 
little statues, Steckner (1993) on roman pottery, 
Barceló (1996) on phoenician pottery sherds, 
and Kroepelien (1998) on medieval silver vases. 
Interesting projects were those by Ross (1989), on 

the classification and chronology of Anglo-Saxon 
fibulae, and Gegerun et al. (1990), on orientation 
of graves in a cemetery. Piqué and Piqué (1993) 
suggested the use of expert systems to mechanize 
the process of microscope samples classification 
for ancient wood taxonomy determination. 

VANDAL (Lagrange, 1989a, 1989b; Vitali & 
Lagrange, 1988,) is a computer program intending 
to help archaeologists to interpret the results of 
archaeometric analyses, within the framework of 
provenance studies. The system produces one (or 
several) “diagnoses” according to the geographic 
origin of raw material, from a database of analyzed 
samples of known origin provided by the user. 

Other classificatory programs, this time in 
zooarchaeology and osteology are those of Brough 
and Parfitt (1984), Fischer (1985), Maícas (1989), 
González and Maícas (1991), Mameli et al. (2002). 
An expert system from the field of paleontology 
for the determination of a dinosaur species has 
also been published. It helps the paleontologist 
to determine creatures from field data (Wichert, 
2000). The most recent “intelligent” classifiers 
go beyond the rule-paradigm, and organize pre-
existing knowledge in form of decision trees 
(Bolla, 2007; Mom, 2007). As we will see in the 
next chapter, decision trees and rule bases are 
exchangeable technologies.

Some other systems help scientist to de-
code decorative patterns in pottery or rock-art. 
T.I.R.E.S.I.A.S. (Bron et al., 1989, 1991a, 1991b ; 
Oberlin et al., 1991) interprets the iconography 
of Greek ceramics. Given an input formed by 
the iconographic features of the personages who 
appear represented in one vase in individual, the 
system answers with a reference to the mythologi-
cal role present in that scene. Of related interest, 
Hooker (2002) has built an expert system to 
classify some celtic coins based on iconographic 
characteristics. Monteiro (1993) has produced 
a system to interpret Upper Paleolithic female 
figurines, and Barceló (1997) a system to clas-
sify Bronze Age decorated Stelae. Also related 
to iconographic interpretation, SUPERIKON 
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(Lagrange & Renaud, 1983, 1984, 1985, 1987) 
compares alternative hypothesis of an icono-
graphic explanation.

About the use of expert systems in epigraphy, 
relevant examples are Siromoney et al. (1985), 
Terras and Robertson (2005).

In the domain of conservation analysis of 
archaeological materials, some prototype expert 
systems have also been proposed (Liberopolou, 
1999; Mello & Arias, 1996; Van Balen, 2001).

Of direct interest to archaeologists, are the 
important applications of expert systems tech-
nology to solve geographical and geosciences 
problems. The idea seems to be building a full 
geo-expert system to answer questions in a seem-
ingly intelligent way based on facts contained in 
a GIS and on the procedures and data available 
in a Digital Remote Sensing System (Filis et al., 
2003; Haj-Yehia & Peled; 2004, Pullar, 1997). In 
earth resources application, GEOMYCIN (Davis 
& Nanninga, 1985) demonstrated the possibility 
of incorporating spatial knowledge for land use 
prediction (forest management). Knowledge based 
systems for aerial photo interpretation have been 
developed (McKeown, 1987; McKeown et al., 
1985). For remote sensing, expert systems which 
help to detect relevant features in a landscape have 
been published (Crowther & Hartnett, 1997; Estes, 
1986; Kirby, 1996; Mulder et al., 1988;  Peuquet & 
Guo, 2000;  Schiøtz & Peti, 2003; Skidmore, 1989; 
Soh et al., 2004; Warner et al., 1994; Yialouris et 
al., 1997; Zhang & Wang, 2003). In the case of ar-
chaeological soils interpretation, we can mention 
the work of Louanna Furbee (Benfer & Furbee, 
1989; Benfer et al., 1996; Furbee, 1989). There are 
some interesting applications in geomorphology, 
which can be useful to archaeologists (Arentze 
et al., 1996; Findikaki, 1990; Luckman et al., 
1997; Rodriguez-Bachiller & Glasson, 2004, see 
a review in Witlox, 2005).

Social applications, that is to say, the use of 
expert systems to explain social action has not yet 
fully explored. Some preliminary examples are: 
Banerjee (1986), Carley (1988), Balachandran, et 
al. (1989), Brent (1989), Guillet (1989a,b).
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iNvERSE REASoNiNg

Inverse problems are among the most challenging 
in computational and applied science and have been 
studied extensively (Bunge, 2006; Hensel, 1991; 
Kaipio & Somersalo, 2004; Kirsch, 1996; Pizlo, 
2001; Sabatier, 2000; Tarantola, 2005; Woodbury, 
2002). Although there is no precise definition, the 
term refers to a wide range of problems that are 
generally described by saying that their answer is 
known, but not the question. An obvious example 
would be “Guessing the intentions of a person 
from her/his behavior.” In our case: “Guessing 
a past event from its vestiges.” In archaeology, 
the main source for inverse problems lies in the 
fact that archaeologists generally do not know 
why archaeological observables have the shape, 
size, texture, composition, and spatiotemporal 
location they have. Instead, we have sparse and 
noisy observations or measurements of percep-
tual properties, and an incomplete knowledge of 
relational contexts and possible causal processes. 
From this information, an inverse engineering 
approach should be used to interpret adequately 
archaeological observables as the material con-
sequence of some social actions. 

A naïve solution would be to list all possible 
consequences of the same cause. This universal 
knowledge base would contain all the knowledge 
needed to “guess” in a rational way the most 

probable cause of newly observed effects. This 
way of solving inverse problems implies a kind 
of instance-based learning, which represents 
knowledge in terms of specific cases or experi-
ences and relies on flexible matching methods 
to retrieve these cases and apply them to new 
situations. This way of learning, usually called 
case-based learning, is claimed to be a paradigm 
of the human way of solving complex diagnostic 
problems in domains like archaeology. To act as a 
human expert, a computer system needs to make 
decisions based on its accumulated experience 
contained in successfully solved cases. Descrip-
tions of past experiences, represented as cases, 
are stored in a knowledge base for later retrieval. 
When the computer sensor perceives a new case 
with similar parameters, the system searches for 
stored cases with problem characteristics similar 
to the new one, finds the closest fit, and applies 
the solutions of the old case to the new case. Suc-
cessful solutions are tagged to the new case and 
both are stored together with the other cases in the 
knowledge base. Unsuccessful solutions also are 
appended to the case base along with explanations 
as to why the solutions did not work.

The suggestion that the intelligent machine 
should define causal events in terms of the ob-
servation of a repeated series of similar events 
typically relies on a kind of regularity assump-
tion demanding that ‘similar problems have 
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similar solutions’ (Hüllermeier, 2007; Kolodner, 
1993). In other words, a learning machine can be 
broadly defined as any device whose actions are 
influenced by past experiences, so that learning 
procedures changes within an agent that over time 
enable it to perform more effectively within its 
environment (Arkin, 1998). The idea is that once 
a system has a rule that fits past data, if the future 
is similar to the past, the system will make correct 
predictions for novel instances (Alpaydin, 2004). 
This mechanism implies the search for maximal 
explanatory similarity between the situation being 
explained and some previously explained scenario 
(Falkenheimer, 1990). 

The trouble is that in most real cases, there 
are infinite observations that can be linked to a 
single social action, making them impossible to 
list by extension. Even the most systematic and 
long-term record keeping is unlikely to recover 
all the possible combinations of values that can 
arise in nature. Thus, the learning task becomes 
one of finding some solution that identifies es-
sential patterns in the samples that are not overly 
specific to the sample data. Added complications 
arise because any inferential task is often fraught 
with uncertainty. From an analytical perspective, 
this means that it is quite possible that two similar 
or even identical samples of prior cases will fall 
into different classes because there may be ambi-
guity within the learning sample. If many of our 
samples are ambiguous for a given set of features, 
we must conclude that these features have poor 
explanatory power, and no good solution to the 
problem may be possible with them alone.

Although we cannot follow the case-based ap-
proach in a real research situation, it suggests that 
an inverse problem can only be solved if there is 
some prior information about the necessary cause-
effect mapping. In other words, the automated 
archaeologist needs a record of past experiences 
linking the observed material effects with their 
cause. It should learn a rule for grouping observ-
able archaeological features in virtue of which they 
belong to sets of material effects of the same social 

action. Obviously, the intelligent machine has not 
enough with rules linking properties observed to 
co-occur in the instances. We should not forget 
that, in archaeology we deal with events and not 
with objects. Consequently, what our automated 
archaeologist should learn is not a category of 
similar objects, but the description of a causal 
event. The task is to find perceptual properties 
that are coherent across different realizations of 
the causal process. 

Robots can potentially learn how to behave 
either by modifying existing behaviors (adapta-
tion) or by learning new ones. This type of learn-
ing can be related to Piaget’s theory of cognitive 
development, in which assimilation refers to the 
modification or reorganization of the existing 
set of available behaviors, and accommodation 
is the process involved with the acquisition of 
new behaviors. Robots can also learn how to 
sense correctly by either learning where to look 
or determining what to look for.

For instance, the machine will understand 
what a house, a castle, a burial, a tool are when 
it learns how a prototypical house, a prototypical 
castle, a prototypical burial, a prototypical tool 
have been made, under which social and economic 
conditions they have existed. Through learning, 
the automated archaeologist will build a model 
predicting features that can be perceived in the 
archaeological record. The automated archaeolo-
gist may not be able to identify the causal process 
completely, but it can construct a good and useful 
approximation. That approximation may not ex-
plain everything, but may still be able to account 
for some part of the data. Although identifying 
the complete process may not be possible, an in-
telligent machine can still detect certain patterns 
or regularities. 

This is exactly what philosophers of science 
have called induction (Bunge, 2006; Genesareth 
& Nilsson, 1987; Gibbins, 1990; Gillies, 1996; 
Holland et al., 1986, Langley & Zytkow, 1989; 
Williamson, 2004; Tawfik, 2004). It can be de-
fined as the way of connecting two predicates 
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to each other, based on a number of examples 
exhibiting the relevant predicates. Additionally, 
we can say that induction allows us to conclude 
that facts similar to observed facts, are true in 
cases not examined (Pierce, 1878). Inductive 
learning tools are trained to recognize patterns 
or to predict outcomes by generalizing from a 
group of measurements for which the desired 
outcome is known (training data) to a larger set 
of circumstances.

Virtually all inductive inferences may be re-
garded in one sense as either generalizations or 
specializations. Since Aristotle, generalization has 
been the paradigmatic form of inductive inference. 
He and many subsequent logicians discussed the 
structure and legitimacy of inferences from the 
knowledge that some observed instances of a kind 
A have a property B to the conclusion that all A 
have the property B. In the past several decades 
in philosophy of science, the problem has been 
conceived in terms of the conditions under which 
observed instances can be said to confirm the 
generalization that all A are B. The underlying 
assumptions were once suggested by Bertrand 
Russell (1967):

a. When a thing of certain sort A has been 
found to be associated with a thing of a cer-
tain other sort B, and has never been found 
dissociated from a thing of the sort B, the 
greater the number of cases in which A and 
B have been associated, the greater is the 
probability that they will be associated in a 
fresh case in which one of them is known 
to be present;

b. Under the same circumstances, a sufficient 
number of cases of association will make the 
probability of a fresh association nearly a 
certainty, and will make it approach certainty 
without limit.

Consequently, one of the most fundamental 
notions in inverse reasoning methods is that of 
similarity: the solutions to an inverse problem 

group things together that are similar. Two entities 
are similar because they have many properties in 
common. According to this view:

1. Similarity between two entities increases as 
a function of the number of properties they 
share.

2. Properties can be treated as independent 
and additive.

3. The properties determining similarity are 
all roughly the same level of abstractness.

4. These similarities are sufficient to describe 
a conceptual structure: a concept would be 
then equivalent to a list of the properties 
shared by most of its instances.

It means that the automated archaeologist has 
to be able to identify the common property shared 
by two or more material effects of the same social 
action to acquire the ability of explaining similar 
observables as generated by the same cause. In any 
case, the very idea of similarity is insidious. First, 
we must recognize that similarity is relative and 
variable. That means that the degree of similarity 
between two entities must always be determined 
relative to a particular domain. Things are similar 
in color or shape, or in any other domain. There 
is nothing like overall similarity that can be uni-
versally measured, but we always have to say in 
what respects two things are similar. This kind 
of judgments will thus crucially depend on the 
context in which they occur. 

In our case, the task will be to find the common 
structure in a given perceptual sequence under the 
assumption that structure that is common across 
many individual instances of the same cause-ef-
fect relationship must be definitive of that group 
(Keselman & Dickinson, 2005). This imply that 
an automated archaeologist will learn explana-
tory concepts such as “15th century,” “cutting,” 
“killing,” “social elite,” or any other provided it 
has enough known instances for the underlying 
event, and a general background knowledge about 
how in this situation a human action has gener-
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ated the observed modification of visual appear-
ances that it is using as perceptual information. 
That is, the automated archaeologist will learn 
a mapping from the cause to the effect provided 
some instances of such a mapping are already 
known or can be provided by direct experience 
in the world. When subsequently asked to deter-
mine whether novel instances belong to the same 
causal event, those instances that are similar to 
instances characteristic of a single event of a 
single class of events will tend to be accepted. 
Here, the givens -the archaeological description 
of material consequences of social action- are 
the condition, and inverse engineering means to 
find a generalization of input-output mappings 
connecting cause and effect. 

Our goal is to program an automated archae-
ologist in such a way that it be capable of solving 
specific problems by finding for each domain a 
general way of relating any particular pattern of 
observations to one of the specified solutions. 
The basic representation of the task is therefore 
quite simple. Each sample of a solved problem 
consists of: (1) a set of related observations and 
(2) the corresponding social activity that caused 
them. For instance, the cause of an animal bone 
assemblage is the inverse problem we want to 
solve. The fact that these bones are the conse-
quence of a hunting event is the solution to the 
problem. This solution will be possible only when 
our automated archaeologist learn what “hunting” 
is, or more precisely how to relate the action with 
its material consequences. This learning has been 
possible because in the same way as a human 
archaeologist, the intelligent machine has been 
trained on a variety of cases in which descriptions 
of correlated sets of hunting strategies features 
(supposed to correspond to known instances of 
human hunting) were fed to the system. These 
descriptions were obtained by selecting one set of 
features and stipulating that these describe each 
prototypical hunting strategy. In case of oppor-
tunistic hunting, for instance, carcasses will be 
presumably butchered unsystematically, and this 

fact will be preserved in the number and kind of 
animal bones, in their fractures, cut marks, and 
butchery traces. An intelligent machine is then 
trained on these archaeozoological data -data 
coming from cases whose formation process is 
known, a learning set made of ethno-archaeologi-
cal or experimental data. It never sees a single 
prototypical “opportunistic hunting strategy,” 
but many instances of approximate examples of 
opportunistic hunting. It will learn when it will 
be able to extract the general pattern exemplified 
in the overall set of instances.  

When the automated archaeologist attempts to 
use a body of observed evidence to discover a way 
to reconstruct their generative social processes, it 
exploits certain properties in the data, which can 
be referred as trends, regularities, similarities and 
so on. This is the very basics of inverse engineer-
ing. The presence of communalities implies a 
high level of regularity in the data, what means 
that certain characteristics or properties are more 
probable that others (Zytkow & Baker, 1991, p. 34). 
In agreement with the most habitual definition of 
probability, we could affirm, then, that a causal 
event would exhibit some degree of regularity 
when the more characteristics are “frequent,” 
and the fewer characteristics are “infrequent” in 
the known series of observed events. In the same 
way, we could define the “regularity” of the social 
action when the material elements used to produce 
and to reproduce the social group show the same 
shape, when they have the same size, when their 
composition and its texture are similar, when we 
found them in the same place. Associations are 
likely to be learned if they involve properties that 
are important by virtue of their relevance to the 
goals of the system. The propensity, inclination, 
or tendency of certain states or events to appear 
together is, then, what we need to learn how the 
world is.

Regularity has the advantage of increasing 
useful redundancy into the learning mechanism. 
When we introduce useful redundancy into an 
encoding scheme, we want to provide the means 
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whereby a receiver agent can predict properties of 
parts of the message from properties of other parts, 
and hence generalize how most similar inputs are 
related to a single output. We must decide whether 
the number of positive instances and the degree 
of assessed variability and assessed randomness 
warrant the potentially useful generalization. 
These decisions require accurate representations 
of the variability in the environment and the role 
of chance, as well as the application of complex 
inferential rules related to the statistician’s law 
of large numbers.

Nevertheless, nothing is as easy as it seems. If 
we want to build a computer program that learns 
from experience, we always should take into ac-
count Popperian views about inductivism. Popper 
said very emphatically, “Induction, that is, infer-
ence based on many observations, is a myth. It is 
neither a psychological fact, nor a fact of ordinary 
life, nor one of scientific procedure (Popper, 1963, 
p. 53). In his view, science starts not with obser-
vations, as the strict inductivist claims, but with 
conjectures. The scientist then tries to refute (or 
falsify) these conjectures by criticism and testing 
(experiment and observations). The conjecture 
that has withstood a number of severe tests may 
be tentatively accepted, but only tentatively. It 
may break down on the next test or observation. 
Any refuted (or falsified) conjecture has to be 
given up, and scientists must try to rectify the 
situation, either by modifying the old conjecture 
by producing an entirely new one. The new or 
modified conjecture is then tested and criticized 
in its turn, so that science grows and progresses 
through a never-ending sequence of conjectures 
and refutations. 

Popper is right in the sense that whether learn-
ing takes place or not has to do with confirmed 
or disconfirmed expectations of prior conjectures 
about what should be learnt, not simple with 
observations; and it has to do with co-variation 
detection that leads to improved statistical predic-
tion, rather than with association in the sense of 
mere occurrence. We should base our approach 

on the fact that co-variation detection, and hence 
generalization, are heavily dependent on the initial 
mental model constructed from prior knowledge 
(Holland et al., 1986). In other words, the process 
of solving inverse problems should be based on 
one’s beliefs about the causal structure of some 
domain of events, and the statistical properties 
of the observed events. Not only is the degree of 
generalization from an event governed by one’s 
beliefs about the variability of that kind of event, 
but also the categorization of events is a highly 
variable and fluid process. A given event may be 
categorized in many different ways in a given 
problem context. 

The machine learning approach presented 
here goes beyond trivial inductivism because I 
am assuming that learning depends most directly 
on confirmations and disconfirmations of predic-
tions, rather than on observations or similarities 
per se. Machine learning is programming com-
puters to optimize a performance criterion using 
example data or past experience. An automated 
archaeologist would need then a model defined 
up to some parameters, and learning would be the 
execution of a computer program to optimize the 
parameters of the model using past experience. 
In any case, machine induction differs from hu-
man everyday reasoning in three major aspects. 
One set of differences has to do with motives and 
goals of the system. A second has to do with the 
system’s prior experience with the type of concept 
to be learned (reflected in knowledge available 
via higher levels in the default hierarchy). The 
third has to do with the codability of events and 
event relations that must be incorporated into the 
concept to be learned (Holland et al., 1986).

iNvERSE REASoNiNg AS A 
PREdiCtivE tASk

Chris Thornton, in a thought-provoking essay 
suggests that inverse reasoning tasks must be pre-
sented in the form of prediction tasks (Thornton, 
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2000). Inverse engineering is a predictive task 
because its aim is to extract a decision rule from 
known data that will be applicable to new data 
(Hitchcock & Sober 2004, Weiss & Kulikowski, 
1991; White, 2003). Since knowledge acquisition 
can always be viewed as the learning of new ex-
planatory or interpretive behavior, we can justifi-
ably treat all learning as some form of behavior 
adaptation to a specific and well-defined goal. 
That is, whenever we can specify some learning 
task sufficiently precisely to get a machine to do 
it, it is equivalent to having the machine learn to 
do predictions of a certain kind. We always want 
the machine to learn a rule of the form “If X, 
then Y;” which is the same, from its perspective, 
as learning to predict the cause when it sees the 
material evidence. 

Prediction and learning are associated accord-
ing to the following general principle:

Given a collection of examples of f, learn a func-
tion h that predicts the values of f.

The automated archaeologist has to generalize 
the set of known examples of f in such a way that 
h can be considered as an agreement of what is 
common to all f, leaving out the apparently ir-
relevant distinguishing features (Stary & Peschl, 
1995). The function h is called a hypothesis, 
and it will be used to predict the most appropri-
ate explanation for new archaeological data not 
previously seen. In other words, the automated 
archaeologist will be able to predict the social 
action given an observed material consequence 
of this action, when it is able to distinguish be-
tween events that are consequence of the action, 
and events that have not been generated by this 
action or process (White, 2003).

A learning algorithm is presented with a set of 
input-output pairs that specify the correct output 
to be generated for that particular input. As we 
suggested in previous section, this approach to 
inverse reasoning lead us to the fact that commu-
nalities among known instances of the cause-effect 

relationship are in the basis of the solution process 
for this kind of problem. In essence, learning in 
this view amounts to learning a mapping from 
perceived states to desired actions.

However, not only communality is necessary 
here, but also some kind of contingent relation-
ship between the observed examples, which will 
determine the type of association learned. To 
avoid generating innumerable fruitless hypothesis 
in its search for useful predictions, an intelligent 
machine should emphasize constraints that can 
be derived from the general nature of an infor-
mation-processing system that pursues goals in a 
complex environment. Furthermore, it will need 
some kind of received feedback about its success 
in attaining its goals (Holland et al., 1986). The 
central problem of inverse engineering is then to 
specify constraints that will ensure that the predic-
tions drawn by an automated archaeologist will 
tend to be plausible and relevant to the system’s 
goals. Which inductions should be characterized 
as plausible can be determined only with reference 
to the current knowledge of the system. Inverse 
engineering is thus highly context dependent, 
being guided by prior knowledge activated in 
particular situations that confront the system as 
it seeks to achieve its goals.

The task can be based on feedback regarding 
the success or failure of predictions previously 
generated by the system and tested using some 
new observed data. The currently active goals of 
the system, coupled with an activated subset of 
the system’s current store of knowledge provide 
input to inferential mechanisms that generate 
plans and predictions about the actual and future 
observations. The predictions are fed back to other 
inferential mechanisms along with receptor input. 
A comparison of predictions and receptor input 
will yield information about predictive success and 
failures, which will in turn trigger specific types 
of inductive changes in the knowledge base.

This approach is also similar to experiment 
design. Experimental analysis is the process 
whereby the antecedents of a phenomenon are 
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manipulated or controlled and their effects are 
measured. Hypotheses investigated in classical 
experimental science postulate regularities among 
different repetitions of the same event. A test 
condition C is inferred from the hypothesis to 
predict what should happen if C is performed (and 
the hypothesis is true). In many of these experi-
ments, C is held constant (repeated) while other 
experimental conditions are varied. Experimenta-
tion does not stop with a successful experiment. 
Scientists continue to fiddle with introducing 
variations in the conditions while repeating C. 
They also try removing C while holding conditions 
constant. When one considers that vast number 
of additional conditions (known and unknown) 
that might affect the outcome of an experiment 
independently of the truth of the hypothesis, all 
three of these activities make good sense. The 
experimental evaluation of a hypothesis involves 
a series of experiments, each one designed in light 
of the results of previous experiments. In the face 
of an ostensibly disconfirming result, auxiliary 
assumptions are modified. Similarly, auxiliary 
assumptions are also modified in the face of an 
ostensibly confirming result, and the test condi-
tion itself is eventually removed. 

The same should be true in the case of ar-
chaeology. However, here the meaning of the 
word “experiment” should change a little. If the 
automated archaeologist needs observed situa-
tions in which a causal relationship is present, its 
only chances are by rigorous experimentation or 
through “controlled” observation. In the first case, 
the cause is replicated in laboratory conditions in 
order to generate the material effect as the result of 
a single action, all other actions being controlled. 
An obvious example is modern use-wear analysis. 
By replicating lithic tools and using them a deter-
mined period of time performing some activity, 
such as cutting fresh wood, we will be able to 
test the relationship between kinematics, worked 
material and observed use-wear on the surface of 
the tool. It is the archaeologist who makes the tool 
and who performs the activity. In this way, the 

material consequences of cutting fresh wood can 
be make explicit, and used to discriminate other 
activity also performed by the archaeologist, for 
instance, cutting dry bone. 

Regrettably, not all social activities performed 
in the past can be replicated in the present. We 
cannot replicate human groups, social reproduc-
tion processes, or coercive actions, among many 
others. What cannot be replicated, in many oc-
casions can be observed. Ethnoarchaeology has 
been defined as the observation in the presence 
of actions that were probably performed in the 
past. That is to say, it is not a source of analogies, 
because the observed action is not like the action to 
be inferred, but a source for hypothesis. “Modern” 
hunter-gatherers are not necessarily like prehis-
toric societies whose economic basis was also 
based on hunting and gathering (Binford, 1968, 
1981, 2001a; David, 1992; David & Kramer, 2001; 
Gándara, 1990, 2006; Gould, 1980; Estevez & 
Vila, 1995; Vila, 2006; Wylie, 1985;  Yellen, 1977). 
If we use modern ethnographic data to explain by 
analogy transfer ancient archaeological traces, we 
are forgetting change, and social dynamics. This 
is a serious mistake. However, ethnographic and 
historically preserved ancient written sources can 
be used as observational situations, in which some 
causal events took place and they were described. 
Ethnographical data and historical descriptions 
are individual instances of the general event the 
machine should learn. Remember that the task 
of the automated archaeologist is to find percep-
tual properties that are coherent across different 
realizations of the causal process. Therefore, the 
basic problem is distinguishing the social invari-
ants from historical and contextual variability. 
Here the invariance is a predicate about social 
action that assigns probabilities (including 1 or 
0) to observable outcomes in a series (the more 
exhaustive possible) of historical situations.

The obstacle that constitutes the basis of the 
inverse problem is that the needed errors to gen-
eralize the input-output mapping are not always 
provided explicitly in the data (Jordan & Jacobs, 
1992), because:
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• That specific cause-effect relationship has an 
unobservable nature. For instance, I cannot 
see “social power,” but its effects.

• The causal process is finished in the present. 
For instance, Aristotle wrote his Metaphys-
ics more than 2,000 years ago. I do not 
know if he wrote the book, because it is a 
past action. However, I can infer he is the 
author because some copies of the book and 
some contemporary witnesses wrote about 
Aristotle and his works.

• The causal process is very slow, and I am 
a finite observer with a short observation 
span. For instance, mountains and valleys 
are actual phenomena originated many years 
ago by the joint effect of geological process, 
which may be acting here and now, but at 
a so slow scale, that I cannot perceive its 
effects during my life span.

• Causal-effect relationships may be holistic 
(global). I cannot see how human society 
changes and evolves, because there are 
more than six thousand million people, and 
I cannot perceive how social changes affect 
all of them.

Whether causal prediction is possible has to do 
with historically or ethnographically confirmed 
or disconfirmed expectations about what took 
place. It is not necessarily related to the amount 
of ethnographic observations or historical de-
scriptions. We have already insisted that inverse 
reasoning has to do with co-variation detection 
that leads to improved statistical prediction, rather 
than with association in the sense of mere occur-
rence. The use of ethnographic data as a source 
of positive examples of the event to be learnt is 
heavily dependent on the initial hypothetical 
model constructed from prior knowledge. In other 
words, the process of solving archaeological prob-
lems should be based on a previous theory about 
social processes, and the statistical properties of 
observed events in experimental replication or 
ethno-historical sources. 

I am assuming that the predictability of causes 
given an observation of some effects depends most 
directly on confirmations and disconfirmations of 
predictions, rather than on the mere accumulation 
of data. Social action has an intrinsic regularity 
because collective action is by definition redun-
dant. 

Historical predictability critically depends 
on the ability to accommodate variability in the 
social domain. If the observed cases for a social 
event are highly variable with respect to some 
well-defined features, then predictions whose 
strength is extreme, and which provide evidence 
for the causing social action, will acquire more 
strength than they would if the experimental rep-
lications or the observed cases in well-described 
historical situations were less variable. As a 
result, archaeologically observed evidence with 
an extreme strength will provide more evidence 
for its hypothesized cause (reflected in higher 
support level) in the former case. The greater the 
overlap in the features of the material evidence 
generated by other causal processes, the more 
difficult it is to generalize positive instances of 
the relationship. The number of alternative causes 
also affects the quality of the generalization. Both 
category overlap and the number of categories will 
contribute directly to the degree of competition 
between alternative possible categorizations of 
instances.

AN iNtRoduCtioN to mAChiNE 
lEARNiNg AlgoRithmS

That concludes the prerequisites for program-
ming an automated archaeologist able to learn 
to solve archaeological problems. If our aim is 
to program an intelligent robot, then the ques-
tion is to implement learning capabilities in the 
machine. Programming computers to make infer-
ences from data is a cross between statistics and 
computer science, where statisticians provide the 
mathematical framework of making inference and 
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computer scientists work on the efficient hardware 
and software implementation of the inference 
methods on computers.

We can formalize its inferential task in the 
following terms:

GIVEN:
 An initial description of a theoretical en-

tity
 An instance of this entity
 An explanation of the association between 

the concept and its instance
 Some operating criteria
DETERMINE:
 A generalization of the instance that substi-

tutes initial description and it is related to 
the explanation and operating constraints. 

In other words, the idea is that the automated 
archaeologist will look for common features be-
tween positive examples of the causal relationship 
to be predicted, and common differences between 
its negative examples. This task is exactly like an 
example of a truth-function learning problem

1 1 0 1 1  1
1 0 0 0 0  0
0 1 1 1 0  1
1 1 0 0 1  0
0 0 0 0 0  ?

Concept learning problems have the same 
form, except that target outputs are either “yes” 
or “no”(or “true”=1 and “false”=0). Inputs that 
map onto “yes” are treated as positive examples 
of a particular concept. Inputs that map onto “no” 
are treated as negative examples (i.e., counterex-
amples). The process of finding a solution to such 
a problem is naturally viewed as the process of 
calculating the communalities among positive 
examples. As such, it is a variation of the philo-
sophical theories seeing induction as a process 
involving the exploitation of similarity. 

Let us consider an imaginary case. An auto-
mated archaeologist has a sample of instances 
of historical hunting events, known as the train-
ing set. Each member of the training set is fully 
described in terms of some attributes, and the 
robot is told which members of the set can be 
interpreted as the consequence of an opportunistic 
hunting event or a systematic one. Those which 
are examples of opportunistic hunting are called 
positive instances of the concept “opportunistic 
hunting,” and those which are not are called nega-
tive instances. The learning problem implies to 
generate a correct predictive formula, which uses 
the given attributes for bone assemblages gener-
ated by a human group practicing some form 
of opportunistic hunting. If the attributes were 
inappropriate for describing the domain, then 
it would not be possible to generate satisfactory 
hypotheses. It is important to take into account 
that the robot is looking for the existence of such 
an association. It is not imposing an association. 
Either there is an association or there is not. If 
there is, it must be possible, at least in principle, 
to say what association is, that is, to give it a 
formal specification. 

The same approach has been followed for 
solving spatial problems (Gahegan, 2000, 2003). 
If we have some data providing evidence (positive 
examples) of a relationship between a location and 
some value, then, provided this relationship is use-
ful in predicting the desired outcome, a computer 
program will attempt to learn this pattern. Even 
if the relationship changes over space, that too 
can be learned, provided such spatial variability 
be encoded in the spatial examples presented. 
In order to be of use, the spatial values must 
help to characterize the phenomena of interest. 
This can be achieved if the training sample is 
randomly distributed within the spatial domain, 
and hence represents some measure of likelihood 
of occurrence for the targets. After learning, this 
will predispose the automated archaeologist to 
assume that an example belongs to category C if 
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its spatial location was helpful in characterizing 
C during the training phase. 

These approaches are usually called supervised 
learning, on the grounds that known instances of 
a cause-effect relationship are like information 
given to the robot by a teacher or supervisor. In 
this paradigm, an agent learns to classify stimuli 
as members of contrastive categories through trial 
and error with corrective feedback (the teacher) 
(Gureckis & Love 2003; Perlovsky, 2001). We 
may think of the teacher as having knowledge of 
some domain, represented by a set of examples of 
an input-output mapping—experimental replica-
tions and/or ethno-historical data. We can build 
our learning system with the fixed goal of coming 
to behave in the same way as the teacher, generat-
ing the same mapping from perceptual situations 
to epistemic actions, even when the teacher is no 
longer present to be observed (Figure 3.1).

Suppose now that the teacher and the intel-
ligent machine are both exposed to a single case 
or example drawn from what is already known 
of the domain. By virtue of her or his previous 
knowledge, the teacher is able to provide with a 
desired response for that training instance. An er-
ror is defined as the difference between the desired 
response and the actual response of the learner 
agent in absence of the knowledge provided by 
the teacher. This adjustment should be carried out 
iteratively in a step-by-step fashion with the aim 
of eventually making the learner agent emulate 

the teacher. The emulation is presumed to be 
optimum in some statistical sense. In this way, 
knowledge of the environment available to the 
teacher is transferred to a problem solver through 
training as fully as possible. When this condition 
is reached, we may then dispense with the teacher 
and let the automated archaeologist deal with new 
observations completely by itself.

Obviously, the aim of machine learning is 
rarely to replicate what the teacher teaches but 
the prediction for new cases. It is usually quite 
easy to find rules to discriminate or separate data 
when we know their origin; it is much harder to 
develop decision criteria that hold up on new 
cases. That is, the automated archaeologist has 
to be able to generate the right output for an input 
instance outside the original set of examples, one 
set of perceptual properties for which the correct 
output is not given explicitly. 

For best generalization, the automated ar-
chaeologist should match the complexity of the 
hypothesis with the complexity of the function 
underlying the data. If the hypothesis is less com-
plex that the function, it is underfitting the model. 
If the hypothesis is too complex, or the data is 
not enough to constrain it, the machine may end 
up with a bad hypothesis. If there is noise, a too 
complex hypothesis will be based not only on 
the underlying function but also on the noise in 
the data. This is called overfitting. In such a case, 
having more examples, or known instances helps 

Figure 3.1. A flow diagram showing the mechanism of supervised learning
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but only to a certain point (Alpaydin, 2004). Con-
sequently, in all inverse engineering or inductive 
algorithms that are trained from example data, 
there is a trade-off between three factors:

• The complexity of the hypothesis we fit to 
data, 

• The amount of training data, and
• The generalization error on new exam-

ples.

As the amount of training data increases, the 
generalization error decreases. As the complexity 
of the model increases, the generalization error 
decreases first, and then starts to increase.

An intelligent machine can measure the gen-
eralization ability of a hypothesis, namely the 
quality of its inductive bias, if it has access to 
data outside the training set. We simulate this by 
dividing the training set we have into two parts. 
We use one for training (i.e., to find a hypothesis), 
and the remaining part is called a validation set 
and is used to test the generalization ability. 
Assuming large enough training and validation 
sets, the hypothesis that is the most accurate on 
the validation set is the best one (the one that has 
the best inductive bias). This process is called 
cross-validation.

Consequently, what a machine is capable of 
learning is influenced by what it is and is not ca-
pable of predict. This general principle partially 
coincides with Binford’s suggestion that to develop 
trustworthy means of knowledge of the past, we 
need midrange investigations, that consist of 
realistic studies designed to control the relations 
between the dynamic properties of the past and 
the static properties of the materials, common to 
the past and to the present (Binford, 2001b). This 
affirmation seems to agree with the idea that we 
propose here: we must construct a causal model 
that allows predicting when a concrete social ac-
tion is the cause of a given archaeological artifact. 
Nevertheless, differences between middle range 
research and predictive learning as practiced by 

our automated archaeologist are very clear and 
relevant, as we will see in the next pages.

SimPlE RulE iNduCtioN 
mEthodS

The development of inductive learning tools is 
driven by the need to address a range of complex, 
nondeterministic problems, where a brute-force 
search for a truly optimal solution becomes 
computationally intractable. This need for an 
approximation solution is the consequence of 
incomplete or sparse input data, complexity of 
the explanation to be learnt or both. 

The most basic inductive algorithms are 
designed to find a conjunctive description for a 
single concept C that covers positive instances 
of C and that fails to cover negative instances. 
In this way, we can represent the solution to 
an inverse problem as a logical conjunction of 
Boolean features, values of nominal attributes, 
limits on the values of numeric attributes, or some 
combination of them. It is usual to refer to each 
component of such conjunction as a condition 
or a test. Briefly, if the new instance matches all 
conditions in the concept description, it is labeled 
as a positive instance of the concept C, otherwise 
it is labeled as negative.

For instance:

• Given: A set of positive training instances 
for the activity “producing pottery contain-
ers destined to the transport of liquids.”

• Given: A set of negative training instances 
for the activity “producing pottery contain-
ers destined to the transport of liquids;” for 
instance, some instances of pottery contain-
ers destined to storing dry goods.

• Find: A logical conjunction that, to the extant 
possible, correctly explains the functionality 
of novel test cases as pottery vases that were 
produced in order to transport liquids or as 
containers for other products.
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Algorithms that address this task receive as 
input a set of positive and negative instances for 
some class. In response, they must generate an 
intentional description—stated as a logical con-
junction—for use in predicting future instances. 
Note that the goal is not necessarily to find a 
conjunction that perfectly partition the training 
cases into positive and negative instances, but 
to induce a description that accurately classifies 
novel instances.

One can use a simple trick to extend this 
scheme to multi-class induction, which requires 
one to learn descriptions for a set of N concepts 
rather than for a single concept. For each class C, 
one treats all instances of the other N-1 classes 
as negative instances of C. Thus, one repeats the 
basic induction task N times, once for each class. 
However, this approach can produce descriptions 
that do not match (and thus fail to classify) some 
instances and that all match (and thus conflict) 
on other instances (Langley, 1996).

One can easily identify some major drawbacks 
of these simple approaches, the most obvious 
involving their inability to handle situations in 
which no logical conjunction is consistent with 
the training data. In noisy domains, even one 
mislabeled class or feature can seriously derail 
either technique in its search for consistent de-
scriptions. In some cases, the effect of noise can 
be even worse, causing the method to eliminate all 
hypotheses from consideration. Similar problems 
arise in domains where the target concept is nearly 
but not perfectly described by a logical conjunc-
tion. These problems suggest the need for more 
robust algorithms that make weaker assumptions 
about the nature of training data.

A simple way to avoid some of these draw-
backs, especially the sensitivity to noise, is by not 
performing an exhaustive search, but a heuristic 
one. Heuristic approaches to logical concept 
induction carry out a partial search through the 
description space, using an evaluation function 
that measures the fit to the training data, and selects 
the best hypotheses at each level. The resulting 

algorithm is more robust in the presence of noise 
and target concepts that violate the conjunctive 
assumption. 

This method accepts as input sets of positive 
and negative instances, along with two sets of 
concept descriptions, one initialized to the empty 
set and the other to a set containing a single “null” 
description with no conditions. The aim of this 
preliminary hypothesis is to help in the process 
of specifying candidate descriptions that might 
still be improved. At each level of its search, the 
heuristic algorithm considers all specializations 
of the initial state of the hypothesis that involve 
the addition of one condition. For each such 
specialized description S, it is used an evalua-
tion function to measure S’s degree of fit to the 
training data. If the score for S is greater than 
the score for its parent H, the algorithm adds the 
hypothesis S to a set of new descriptions that it 
should consider for further specialization later. 
If none of the specializations of H score better 
than their parent, then the new version of the 
initial hypothesis is accepted, since it cannot be 
improved further. 

After considering all specializations of the 
current conceptual descriptions, the algorithm 
checks to see whether any of them have scored 
better than their parents have. If not, the algorithm 
simply returns the parent description with the 
highest score; otherwise, it continues its search. 
The descriptions generated by this method are not 
guaranteed to cover all positive instances and no 
negative instances, nor would this be desirable in 
domains where the data contain noise or they can 
only be approximated by a logical conjunction. 
Nor are the descriptions it generates guaranteed 
to be minimal, in that some strictly more general 
descriptions may exist. These are the prices to 
be paid for carrying out an efficient heuristic 
search rather than an intractable exhaustive one 
(Alpaydin, 2004; Han & Kamber, 2001; Hand et 
al., 2001; Langley, 1996; Mitchell, 1997; Weiss & 
Kulikowski, 1991; Wittek & Frank, 2005).
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One of the most important applications of 
this approach is the AQ approach by Michalski 
and colleagues (Kaufman & Michalski, 2000; 
Michalski & Kaufman, 2001; Michalski, 2004). 
AQ or Aq stands for algorithm quasi-optimal, as 
originally developed in 1969, the algorithm cre-
ates approximately or strictly optimal solutions 
of the general covering problem, which subsumes 
learning rules from examples.

Of related interest is the rule induction method 
by Clark and Niblett (1989). This algorithm induc-
tively learns a set of propositional “if...then...” rules 
from a set of training examples. To do this, it per-
forms a general-to-specific beam search through 
rule-space for the “best” rule, removes training 
examples covered by that rule, then repeats until 
no more “good” rules can be found. The original 
algorithm defined “best” using a combination of 
entropy (see next section) and a significance test. 
The algorithm was later improved to replace this 
evaluation function with the Laplace estimate, 
and also to induce unordered rule sets as well 
as ordered rule lists (“decision lists”). See also 
Agrawal et al. (1993) for a related algorithm to 
extract association rules.

These rule inductive methods have been used 
in archaeology from time to time. Mephu Nguifo 
et al. (1998) show the use of this kind of tech-
niques in the empirical design of a typology of 
archaeological ceramics from the city of Kerma 
(Sudan). The archaeological ceramics under 
study were found in the cemetery of the city of 
Kerma (Sudan). They are dated from the Ancient 
and Middle Kerma periods, from 2500–1800 
B.C. The overall Kerma ceramic typology be-
ing already known, the archaeological problem 
was how to obtain, through these finds, a more 
detailed view of the variation of ceramic types 
according to time, although the definition of these 
types was not precisely known. Assuming that 
the north area of the cemetery was the first to be 
used, and that, as time went, burials progressed 
towards the south, the ceramics have been dated 
relatively by successive excavation “sectors” 

(horizontal stratigraphy). The task of the machine 
learning program was to discriminate between 
sectors. The authors define conjecture as a set 
of examples and counterexamples of a concept 
(here, of a class or “archaeological sector”) to be 
learned. For instance, a conjecture about class 1 
is all the positive instances of class 1, that is, the 
ceramics described by the archaeological expert 
(“the teacher” in a supervised learning approach) 
as belonging to class 1, together with the negative 
instances of this class, that is, all the ceramics of 
the other classes. Similarities must be based on 
attributes which are present at the same time in at 
least 16 examples and in less than 17 counterex-
amples of a class. Extracted similarities are called 
“regularities.” A regularity is valid if it holds for 
‘enough’ positive instances. It is pseudocoherent 
if it holds for ‘few’ counterexamples. An example 
of a regularity extracted for the discrimination 
of sector 1 is: 

The set of attributes: profile simple AND height 
of top part of body height of lower part of body 
AND exterior of base non stable (i.e., eggshaped, 
pointed or rounded) AND rim slope inferior to 20_ 
is verified in 20 objects, with at least 10 belong-
ing to sector 1, and at most 4 belonging to the 
other 8 sectors.

 
When the regularities extracted for a given 

archaeological sector share a common set of at-
tributes, this set can be said to define a prototype. 
The prototype of a given sector thus is a fictitious 
object, which shares a number of attributes with 
the objects belonging to this sector. 

The system classifies new objects by testing 
their behavior with regard to regularities. If these 
objects satisfy a number of conditions, they are 
recognized as examples of a class. If not, they 
are refused. The conditions consist in numerical 
thresholds to be satisfied. They concern the per-
centage of regularities verified by an object. 

In a fairly similar way, Gey has used rule as-
sociation methods to the classification of western 
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European Bronze Age axes (1800-700 B.C.). 
The idea was again to test existing typologies 
for accepting or rejecting them in terms of their 
coherence and predictive ability (Gey, 1991). 
Around 100 axes were processed assigned to all 
identifiable periods within Bronze Age. Artifacts 
were described in terms of shape, composition, 
decoration, and so forth. The data were introduced 
as a semantic network in which an arc between 
two successive nodes represents a link between 
an attribute and its value for an individual axe. 
This representation format can be easily trans-
lated to triplets <entity><relation><entity>. 
For instance:

AXE No. 1 HAS   BODY
BODY  HAS   PLANE SUR-
FACE
EXTREME SAME_HEIGTH RIM
.../...

Shape descriptions are not the only elements 
in the system. Taxonomies and axioms are also 
included as meta-knowledge allowing the system 
to use terms like “extreme,” “rim,” “surface,” 
etc. as constitutive elements of an axe. Axioms 
represent known relationships between concepts; 
they are represented as rules:

IF
 (rim height ?x) AND (extreme height ?x)
THEN
 (Rim) SAME_HEIGTH (Extreme)

IF
 (edge) STATE (used)
THEN
 (object)  IS_A  (tool)
IF
  (edge)  STATE (new)] AND [(hole) INTEN-
TIONAL (no)]
THEN

 object) IS_A (premonetary_item)

Using semantic networks, taxonomies and 
rules, the system looks for similar objects and 
generalizes from such equivalence classes. Classes 
are represented using expressions like:

(axex   relation   axey)

Where the term “relation” refers to three dif-
ferent classification criteria:

• A spatiotemporal relationship
• A technological relationship
• A functional relationship

In this way, the system calculates three differ-
ent classifications: a first one in which object ag-
gregates contain contemporaneous axes, another, 
in which axes have been produced in the same way, 
and the third one in which axes were used in the 
same way. In each of the three cases, the aim is 
to calculate the intersection and/or co-occurrence 
of descriptions between related axes. 

In art history, Marie-Salomé Lagrange and 
Monique Rénaud (Lagrange, 1992; Lagrange 
& Rénaud, 1987; Sallantin et al., 1991) followed 
a similar procedure, generalizing a training set 
containing the architectonic descriptions of me-
dieval churches to find a conceptual description 
of Cistercian buildings.

A different approach was followed by Nicholas 
Findler to form kinship concepts by processing 
examples and counter-examples of patterns of 
social interaction. In this case, the rule to be in-
duced is essentially the simplest relation applicable 
between each pair of individuals who are instances 
of allowed social interactions and relations. For 
example, A could marry B, C, D,... but could not 
marry U, V, W,... A possible derived rule may for 
example be that a male can marry an unrelated 
unmarried female of the same tribe, a patrilateral 
cousin or aunt but not a matrilateral cousin or aunt. 
The program looks at the labels in the exemplary 
and counter-exemplary cases. It then discards from 
consideration those labels, that is, rule components 
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that have “uninformative” values (for example, if 
all marriage statuses—married, not-yet-married, 
no-longer-married—appear in the central male 
members’ labels in the exemplary cases, mar-
riage status is irrelevant for the rule). On the other 
hand, if only two out of three values appear, these 
become a rule component as long as the counter-
example cases have only complementary values. It 
also means that whenever both the exemplar and 
counter-example cases show an identical value, 
that value becomes irrelevant. It can happen 
that combinations of label values matter, which 
the user must flag as a special property, and the 
program will treat it accordingly. For example, 
only tribal chiefs can have more than one wife). 
In this way, the hypothesis of the above marriage 
rule can be established (Findler, 1992; Findler & 
Dhulipalla, 1999).

Mennis and Liu (2003) have used the same 
general approach to induce spatiotemporal rules. A 
spatiotemporal association rule occurs when there 
is a spatiotemporal relationship in the antecedent 
or consequent of the rule. Whereas non-spatial 
association rule mining seeks to find associations 
among elements that are encoded explicitly in a 
database, spatial association rule mining seeks 
to find patterns in spatial relationships that are 
typically not encoded in a database, but are rather 
embedded within the spatial framework of the 
georeferenced data. These spatial relationships 
must be extracted from the data prior to the ac-
tual association rule mining. There is therefore a 
trade-off between preprocessing spatial relation-
ships among geographic objects and computing 
those relationships on the fly. Pre-processing 
improves performance, but massive data volumes 
associated with encoding spatial relationships for 
all combinations of geographic objects prohibits 
the storage of all spatial relationships. As a case 
study, the authors used association rule mining 
(Agrawal et al., 1993) to explore the spatial and 
temporal relationships among a set of geographic 
variables that characterize socioeconomic and 
land cover change.

iNduCiNg dECiSioN tREES

Concept hierarchies provide a framework for 
memory organization, and a considerable amount 
of machine learning research has taken this ap-
proach. Such hierarchies can be represented as a 
decision tree consisting of nodes and branches. 
Each node represents a separate concept, typi-
cally with its own associated intentional defini-
tions. The links connecting a node to its children 
specify an “is-a” or subset relation, indicating 
that the parent’s extension is a superset of each 
child’s extension. Typically, a node covers all of 
the instances covered by the union of its descen-
dents (Langley, 1996; Mitchell, 1997; Weiss & 
Kulikowski, 1991; Wittek & Frank, 2005). In fact, 
such a decision tree can be seen as a collection 
of rules, with each terminal node corresponding 
to a specific decision rule. 

A concept hierarchy uses predictive features 
or descriptions to sort new instances downward 
through the tree. One can view these as “tests” 
that discriminate among the concepts stored at 
each level, although such tests need not be logical 
in nature. For instance, consider the simplest and 
most widely used form of concept hierarchy—the 
univariate decision tree. This organization divides 
instances into mutually exclusive sets at each 
level, splitting on the values of a single predictive 
feature (thus the term univariate). Depending on 
whether the result of a test is true or false, the tree 
will branch right or left to another node. At each 
level, the algorithm uses the predictive features 
on the alternative nodes to select one to expand, 
then proceeds to the next level. This continues 
until reaching a terminal node or otherwise de-
ciding the sorting process has gone deep enough. 
At this point, the process uses the predictable 
features associated with the current node to infer 
attributes missing from the instance, such as the 
class name. The details of sorting and predicting 
depend on the nature of the intentional descrip-
tions stored with the nodes. When a terminal 
node (sometimes referred as a leaf) is reached, 
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a decision is made on the class assignment. As a 
result, each internal node contains a very simple 
description for use in sorting. Only terminal nodes 
include a predictive feature, which specifies the 
class to predict upon reaching that node. Most 
presentations of decision trees place the values 
of the discriminating attribute on the branches 
leading into nodes, and the attribute itself on the 
node from which they emanate.

In Figure 3.2, each node represents a single test 
or decision. In this case, we have a binary tree, 
because the decision can be either true or false. 
Circle 1 is the root node and circle 2 is the only 
non-terminal node. Squares are all terminal nodes. 
For example, suppose that this tree represents a 
conceptual hierarchy for determining the social 
personality of people buried in some graves: C1 
predicts that the burial is the grave of a rich person, 
and C2 predicts that the burial is the grave of a 
poor person. Node 1 is the test of the quantity of 
labor necessary for building such a burial, and 
node 2 is the test of a big amount of valuable grave 
goods. The tree partitions the samples into three 
mutually exclusive groups, one for each terminal 
node. There is a first group (A) of rich burials in 
complex graves associated with great amounts of 
labor in their building. Another group (B) of poor 
people buried in simple graves (low quantity of 
labor invested in their building), and without a big 

amount of grave goods; and finally, a group (C) 
of burials of rich people in simple graves with a 
big amount of valuable grave goods.

Non-binary decision trees are also widely 
used. In these trees, more than two branches 
may leave a node, but again only one branch may 
enter a node. Figure 3.3 illustrates a non-binary 
decision tree: node 2 has three branches. In this 
type of tree, a test performed at a node results in 
a partition of two or more disjoint sets that cover 
every possibility, that is, any new case must fall 
into one of the disjoint subsets. For binary-valued 
tests, this is equivalent to a true or a false con-
clusion being reached. In the figure, the values 
of node 2 are broken into three disjoint sets, for 
example, test values that are normal (v3), low 
(v4), and high (v5).

The process of learning the structure of a 
decision tree or the equivalent rules from data 
is known as tree or rule induction (Breiman et 
al., 1984; 1993, Biggs et al., 1991; Buntime & 
Niblett, 1992; Gilles, 1996; Quinlan, 1986; Wittek 
& Frank, 2005). 

A tree may be induced by selecting some 
starting feature, splitting that feature into disjoint 
sets, and then repeating the process for all sub-
sequent nodes. Nodes become terminal and are 
not split further when all members of the sample 
belong to one class. Alternatively, nodes become 
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terminal when the number of cases in the remain-
ing group falls below some minimum threshold, 
and the node is assigned to the class having the 
greatest frequency at that node. The procedure 
is top-down. The first level decision tree corre-
sponds to the hypothesis that the single attribute 
chosen for the root is sufficient for classifying all 
objects into positive and negative instances. This 
is simple and general, and will usually be false. 
The discovery of counter examples leads to the 
construction of more complicated and specific 
decision trees.

The simplest technique for splitting the nodes 
into disjoint groups is to partition the data by 
the distinct values of the feature. The following 
explanation may be difficult for some readers. It 
can be skipped and the rest of the chapter is easily 
understandable. There is plenty of commercial 
software that makes the calculations, and the user 
only needs to concentrate on results. Of course, it 
would be interesting if the user understands some 
of the logical steps followed by the algorithm. 

In the case of non-binary trees, if all the values 
of cases v1 are members of C1, that node becomes 
a terminal path. The cases having v2 include cases 
of both C1 and C2, so further splitting of the v2 
cases must occur. Some test is selected for node 
2. This test can assume three distinct values, v3, 
v4 and v5. A branch from node 2 is created for 
each of these values. If the cases of each group (v2 
& v3, v2 & v4, v2 & v5) belong to a single class, 
they all become terminal nodes.

After any branch, a decision must be made 
about the next node to split. The basic approach 
to selecting a variable is to examine each vari-
able and evaluate its likelihood for improving 
the overall decision performance of the tree. The 
underlying concept of any split evaluation is to 
select a variable and cutoff that will produce 
the best tree. However, the evaluation function 
predicts solely based on splitting a single node, 
without testing possible splits of successor nodes. 
Thus, the evaluation function is a heuristic that 

tends to make good judgments with incomplete 
information.

The most widely used node-splitting evalu-
ation functions work by reducing the degree of 
randomness or impurity in the current node. The 
most popular evaluation functions are the entropy 
function and the Gini function. The overall goal 
is to reduce the impurity and randomness of the 
classes within the current node and future nodes. 
Because these numbers represent impurity, the 
smaller the number, the better:

ENTROPY:         -Σ pj log pj (1)

GINI FUNCTION:       1 -Σ pj
2  (2)

Given a means of computing the impurity of 
a node, the learning system selects the next vari-
able or test for splitting as the one that reduces 
the impurity the greatest. In a binary tree, the 
reduction in impurity for a given split can be 
written in the following way:

∆i(n) = i(n) – pl i(nl) – pr i(nr)  (3)

Where n is the node being split; pl and pr are 
the probabilities of branching left and right; i(n) 
is the impurity of the current node n; and i(nl) and 
i(nr) are the impurities of the left and right branch 
nodes. The probabilities of branching left or right 
are simply the percentages of cases in node n that 
branch left or right.

For a non-binary tree, one must consider the 
impurity of each branch and the likelihood of 
taking that branch. The likelihood of a branch is 
merely the percentage of cases from the parent 
node that take that branch. The impurities of each 
branch node are summed over all branches, and 
the reduction in impurity is found by subtracting 
this sum from i(n) as indicated in the following 
equation:

∆i(n) = i(n) –Σ pk i(nk)   (4)
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For either type of tree, many different splits 
are examined, and the variable selected for 
splitting is the one with the greatest reduction in 
impurity. For a non-binary tree, the possible split 
of a variable is immediately determined by the 
distribution of values of that variable in the node 
being split. The task of selecting a node is reduced 
to a simple evaluation of impurity reduction for 
that variable. For binary trees, a small amount of 
search is used to examine many different splits. For 
each split considered, the reduction in impurity is 
evaluated. The splits that are considered depend 
on whether the variable is ordered or categorical. 
For ordered variables, splits for every value found 
in the sample will be considered. For categorical 
variables, every possible way of splitting the 
variable into two sets is considered.

Let us see an archaeological example. Remem-
ber that we are following a supervised learning 
approach to inverse reasoning, therefore we need a 
set of positive and negative examples of the concept 
we want to learn. It should be taken into account 
that Inductive Decision Trees do not generate 
explanatory hypothesis from data alone. When 
generating possible explanations, such programs 
select at each stage an attribute or feature from a 
set of attributes which is given in advance. The 
background assumption, which is a substantial 
one, is that this set of attributes is appropriate for 
describing the domain in question. If the attributes 

were inappropriate for describing the domain, then 
it would not be possible to generate satisfactory 
hypotheses (Gilles, 1996). In this example, we 
want to learn a decision rule for determining the 
chronology of some pottery data set. Stratigraphic 
and radiocarbon data have allowed the definition 
of the following training data:

size Painted   
decoration 

Engraved 
decoration chronology

big presence presence late

big presence absence late

big absence presence late

big absence absence middle

medium presence presence late

medium absence presence middle

medium absence absence middle

small presence presence early

small absence presence early

small absence absence early

Here we want to generalize the features of 
potteries with early, middle and late chronolo-
gies based on information about the size of the 
vases, and their decoration. The calculation of 
entropy allows defining “size” as the attribute 
with the greater amount of information (0,971), 
therefore we will split the root node in the fol-
lowing way:

Figure 3.3. A non-binary decision tree for discovering the relationship between pottery and time (1st 
part)

SIZE 

  BIG           MIDDLE  SMALL 
Presence, presence, late    Presence, presence, late  Presence, presence, early 
Presence, absence, late    absence, presence, middle absence, presence, early 
absence, presence, late    absence, absence, middle  absence, absence, early 
absence, absence, middle 
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The right node is clearly a terminal node. 
That is to say, we have already obtained a deci-
sion rule:

If size = small, Then Chronology = Early. 

We have to split the other nodes to obtain 
additional rules for generalizing the visual char-
acteristics of late and middle potteries.

The big sized vases node should be split ac-
cording to the kind of decoration of the potteries. 
Using the entropy measure, both attributes give 
a similar value in the increase of information. 
In the case of the middle sized potteries node, 
the increase of information using the entropy 
of painted decoration is greater than using the 
engraved decorations. Consequently, we can use 
this attribute in the first place.

Here we have three new decision rules: 

If  size = big AND painted decoration= Pres-
ence, Then Chronology = Late

If  size = middle AND painted decoration= 
Presence, Then Chronology = Late

If  size = middle AND painted decoration= 
Absence, Then Chronology = Middle

One node needs, however, additional split-
ting. Given that the only remaining attribute is 
“engraved decoration,” we obtain the following 
complete tree (see Figure 3.5).

This apparently simple algorithm was initially 
proposed by Hunt (1962; Hunt et al., 1966). Its 
modern popularity is due to the Ross Quinlan, 
who ameliorated it in the C4.5 program (Quinlan, 
1986, 1993). There are some inherent weaknesses 
in the splitting technique that can lead to poor 
predictions. The obvious difficulty arises with 
continuous variables. For the continuum of pos-
sible values that such features can assume, it is 
unreasonable to base predictions solely on the 
values that happen to appear in a small sample. In 
some cases, the most direct approach is to break 
the continuous variable into discrete intervals. 
Another more subtle problem with splitting by 
attribute value is that it tends to fragment the 
tree into many smaller groups. The smallest tree 
among several that have equal error rates will 
usually do better in prediction. The smaller tree 
has fewer tests to perform and has larger samples 
supporting the terminal nodes. Thus with a lim-
ited sample, fragmentation is of concern, and one 
would like to avoid committing the tree to consider 

SIZE

BIG MIDDLE SMALL
Presence, presence, late Presence, presence, late Presence, presence, early
Presence, absence, late absence, presence, middle absence, presence, early
absence, presence, late absence, absence, middle absence, absence, early
absence, absence, middle

PAINTED DECORATION PAINTED DECORATION

Presence Absence Presence Absence

ENGR. DEC. ENGR. DEC. ENGR. DEC. ENGR. DEC.

Pres. Late Pres. Late pres. Late pres. middle
Abs. Late Abs. Middle abs. middle

Figure 3.4. A non-binary decision tree for discovering the relationship between pottery and time (2nd  
part)
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a complete range of values for a test, when a far 
narrower range, such as an interval of values 
greater than some threshold, is really of interest. 
On the other hand, trees that are split by value for 
non-continuous variables are often more natural 
and more intuitively understandable.

Much of the recent research has explored 
variations and extensions of the basic divisive 
induction of decision trees. Breiman et al. (1984) 
describe approaches for creating binary trees 
from numeric attributes. Their CART algorithm 
creates trees with n branches, each with an arbi-
trary subset of nominal values. Bel et al. (2005) 
adapted the standard CART algorithm to the use 
of spatial variables. The authors suggest weight-
ing the samples such that clustered data have less 
weight than sparse data. Weighted methods are 
aimed at reducing the bias of the regression tree 
by taking into account the spatial redundancy of 
the data. This implies that the equivalent num-
ber of independent data is reduced, hence that 
the variance of the classification and regression 
parameters is increased. 

Another of the most popular and easily 
available decision tree methods has been called 
CHAID. To determine the best split at any node, 
it is possible to merge any allowable pair of cat-
egories of the predictor variable (the set of allow-
able pairs is determined by the type of predictor 
variable being studied) if there is no statistically 
significant difference within the pair with respect 
to the target variable. The process is repeated until 
not any other non-significant pair is found. The 
resulting set of categories of the predictor vari-
able is the best split with respect to that variable. 
Biggs et al. (1991) suggest finding the best split by 
merging similar pairs continuously until a single 
pair remains. The set of categories with the largest 
significance is taken to be the best split for that 
predictor variable. This process is followed for all 
predictor variables. The predictor that gives the 
best prediction is selected, and the node is split. 
The process repeats recursively until one of the 
stopping rules is triggered. 

Because a decision tree is induced by gradu-
ally growing the tree, it is quite natural to try 

Figure 3.5. A non-binary decision tree for discovering the relationship between pottery and time (3rd  
part)

SIZE 

BIG          MIDDLE

  

SMALL 

PAINTED DECORATION   PAINTED DECORATION 

PRESENCE ABSENCE   PRESENCE    ABSENCE 

     ENGRAVED DECORATION

PRESENCE

  

ABSENCE 
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to stop when it is determined that further splits 
are not likely to be significant. Significance can 
be measured by a standard statistical test, such 
as a chi-square test. Once a node split has been 
selected, the distribution of classes at that node 
can be compared with those at the resultant split 
nodes. When the statistical test indicates that 
further splitting is not significant, no further split-
ting on that node need be carried out. However, 
it is quite possible that while the immediate split 
is not significant, some additional descendant 
splitting will turn out to be significant. We need 
consequently more efficient ways for pruning the 
decision tree.

Among the modern procedures of decision 
trees induction it should be mentioned the random 
forest algorithm (Breiman, 2001; Shi & Horvath, 
2006). A random forest is a classifier that consists 
of many decision trees and outputs the class that 
is the mode of the classes output by individual 
trees. Each tree is constructed using the follow-
ing algorithm:

1. Let the number of training cases be N, and 
the number of variables in the classifier be 
M.

2. We introduce the number m of input vari-
ables to be used to determine the decision 
at a node of the tree; m should be much less 
than M.

3. Choose a training set for this tree by choos-
ing N times with replacement from all N 
available training cases (i.e., take a boot-
strap sample). Use the rest of the cases to 
estimate the error of the tree, by predicting 
their classes.

4. For each node of the tree, randomly choose 
m variables on which to base the decision 
at that node. Calculate the best split based 
on these m variables in the training set.

5. Each tree is fully grown and not pruned (as 
may be done in constructing a normal tree 
classifier).

The advantages of random forest are:

• For many data sets, it produces a highly 
accurate classifier.

• It handles a very large number of input 
variables.

• It estimates the importance of variables in 
determining classification.

• It generates an internal unbiased estimate of 
the generalization error as the forest building 
progresses.

• It includes a good method for estimating 
missing data and maintains accuracy when 
a large proportion of the data are missing.

• It provides an experimental way to detect 
variable interactions.

• It can balance error in class population 
unbalanced data sets.

• It computes proximities between cases, use-
ful for clustering, detecting outliers, and (by 
scaling) visualizing the data.

• Using the previous algorithm, it can be 
extended to unlabeled data, leading to un-
supervised clustering, outlier detection and 
data views.

• Learning is fast.

Inductive decision trees are increasing their 
applicability in archaeology. Modern applications 
range from sex determination of buried human 
bodies (McBride et al., 2001) to the discrimina-
tion of geo-archaeological soil data (Farrigton & 
Taylor, 2004). In any case, it is in archaeometry 
where these methods have found its greatest popu-
larity in the recent years (Baxter, 2006; Baxter & 
Jackson, 2001; Nance, 2000).

Grudzinski and collaborators (Grudzinski 
et al., 2003; Grudzinski & Karwowski, 2005) 
also have applied these methods for chronology 
estimation of archaeological artifacts, using spec-
troscopic analysis of glass composition. The glass 
composition has been measured usually in several 
places: on the original surface of the artifact and 
on the broken parts. Therefore, several instances 
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in the original database correspond to the same 
glass object. The measurements of chemical com-
pound concentrations were made using the Energy 
Dispersive X-ray Fluorescence Spectroscopy. 
Concentration of the following 26 compounds 
was measured: Na2O, MgO, Al2O3, SiO2, SO3, 
K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, CoO, 
NiO, CuO, ZnO, SeO3, Br2O7, Rb2O, SrO, ZrO2 
MoO3, CdO, SnO2, Sb2O3, BaO, and PbO. The 
original database consists of the description of 555 
glass samples. There are approximately 4 samples 
per glass object. Samples of uncertain chronology 
have been excluded from the database.

Three main chronological periods are of inter-
est to archeologists:

1.  LT C1 - La Tène C1 period, 260 - 170 
B.C.

2.  LT C2 - La Tène C2 period, 170 - 110 B.C.
3. LT D1 - La Tène D1 period, 110 - 50 B.C.

A preliminary study was performed on the data 
containing measurements made on both original 
surface and the broken parts. The authors used the 
1R algorithm for decision trees (Witten & Frank, 
2005). This algorithm has the characteristics of 
being based in one single attribute, the one with 
most discriminative power, building all rules that 
may be based on that algorithm, and defining the 
intervals where samples from a single class are 
prevalent:

IF MnO < 2185.205 THEN La Tène C1 period, 
260-170 B.C.

IF 2185.205< MnO< 9317.315 THEN La Tène C2 
period, 170-110 B.C.

IF MnO ≥ 9317.315 THEN La Tène D1 period, 
110-50 B.C.

These rules predict correctly 100 out of the 
143 training samples, and 93 out of 140 test 
samples.

For a second experiment, only samples with 
measurements on the glass surface were selected. 

C4.5 decision tree was used. Resulting rules are 
listed below:

If ZrO2 > 296.1 Then La Tène C1 period, 260-
170 B.C. (16/0)

If Na2O ≤ 36472.22 Then La Tène C1 period, 
260-170 B.C. (2/0)

If Sb2O3> 2078.76 Then La Tène C2 period, 170-
110 B.C. (12/1)

If CdO =0 & Na2O ≤ 27414.98 Then La Tène C2 
period, 170-110 B.C. (12/1)

If Na2O > 27414.98 & NiO ≤ 58.42 Then La Tène 
D1 period, 110-50 B.C. (10/0)

If NiO > 48.45 & CdO =0 & BaO =0 & Br2O7 
≤ 53.6 & Fe2O3 ≤ 12003.35 & ZnO ≤ 
149.31 Then La Tène D1 period, 110-50 
B.C. (7/0)

These rules predict correctly 54 out of 68 test 
cases, using 10 features (numbers appearing in 
brackets: covered cases/Number of mistakes).

For the third experiment, only samples with 
measurements on the broken parts were selected. 
The C4.5 decision tree produced 6 rules listed 
below:

If ZrO2 > 199.38 & CdO = 0 Then La Tène C1 
period, 260-170 B.C. (19/0)

If NiO ≤ 62.23 & CaO ≤ 114121.35 Then La Tène 
C1 period, 260-170 B.C. (6/0)

If CuO ≤ 5105.37 & MnO > 2546.77 & ZnO ≤ 
126.29 Then La Tène C2 period, 170-110 
B.C. (15/0)

If SnO2 > 61.98 & Br2O7 ≤ 64.08 Then La Tène 
D1 period, 110-50 B.C. (10/1)

If Sb2O3 ≤ 8246.11 & CuO ≤ 2042.19 & Al2O3 
> 11525.69 Then La Tène D1 period, 110-50 
B.C. (20/0)

Robert Reynolds (1999) has used ID3 decision 
trees in a more interpretative way. In his study 
of chiefdoms and state formation in the Valley of 
Oaxaca (Mexico), each site, for each region and 
time period, was described in terms of over 100 



  ��

Computer Systems that Learn

variables relating to the environment, agriculture, 
economy (e.g., craft production and trade), and 
architecture variables. Using these data, the goal 
was to induce general trends in settlement deci-
sion making using decision trees. The author was 
interested in predicting correctly whether or not 
a site is likely to have evidence for conflict and 
raiding in a given time period for a given region 
of the valley. He used decision trees for such 
a prediction. The most important variables for 
understanding prehistoric site location decisions 
will be found higher up on the tree, while second-
ary or tertiary variables tend to be found lower 
down. The expectation, therefore is that need for 
defense from raiding will gradually “climb the 
tree” over time. Additionally, the location of sites 
that are targets for raiding should shift over time 
in ways that are consistent with the predictions 
made by the model.

Variables used by Reynolds in this study were: 
environmental zone (low, alluvium, high alluvium, 
lower piedmont, high piedmont, mountains), slope 
(flat, shallow, moderate, steep), hilltop or ridge top 
(yes, no), soil character (alluvium, bedrock), site 
located on the boundary between the Loam and 
the Swampy Region (yes, no), water source (main 
river, tributary stream, arroyo, spring, well), depth 
to water table (real number indicating distance), 
type of irrigation (none, well, valley floor canal 
irrigation, piedmont canal irrigation, flood water 
farming, terracing) and land use type (percent-
age of arable land). Instead of other approaches, 
Reynolds does not include time as a dependent 
variable for developing the tree, and consequently, 
there are neither branches nor nodes for different 
phases. He prefers to develop a separate analysis 
for each historical phase, and hence a separate 
tree for each historical moment. The assumption 
is that the more frequent and complex the pattern 
of raiding, the more complicated the tree becomes. 
The results show that in the oldest period the tree 
is very simple and that factors most influencing site 
location are environmental zone and water source: 
four sites located in the low of high alluvium were 

not attacked; three sites whose water source is a 
main river or a tributary river were not attacked, 
too. That is to say, at this period almost all of the 
village sites were located in similar environmental 
settings for agricultural reasons. The complexity 
of decision tree increases in the second period, 
but again environmental zone and water source 
were the more important factors for site location. 
There is no interest in increasing the defensibility 
of sites, what indicates lower levels of raiding. The 
sites with evidence of raiding are those which seem 
marginal, and with lower productivity levels than 
other. Conflict only affects to weakest settlements. 
The third period shows an intensification of raid-
ing, and now slope is the second most important 
factor for site location. The increase in the tree 
complexity shows the complexity of site location 
decisions, because people should make front 
to many problems, water source, productivity, 
defensibility, etc. for locating their homes in the 
most appropriate location. At the fourth period, 
when the political organization adopts the form 
of a complex chiefdom, defensibility of the site 
becomes of the top most importance, and the main 
factor to understand site location, but not the only 
one. Now, 9 variables should be taken into account 
for appropriate spatial decisions. The assumption 
is that as social structure and settlement choice 
become more sophisticated, the patterns of war-
fare and response may become more predictable 
in terms of such environmental factors.

Decision trees seem also relevant to paleo-
ecological research (Lenihan & Neilson, 1993). 
Nevertheless, Jeraj, Szerasko and colleagues 
(Jeraj et al., 2004) reveal how the binary nature 
of most decision trees seems not well adapted 
to stratigraphic correlations. The authors used 
pollen data for studying spatial and temporal 
correlations among different trees, shrubs and 
herbs growing around the study area during Early, 
Mid and Late Holocene. They try to find regu-
larities and/or dependencies among coexisting 
plant species through time, with a focus on the 
period between 8400-3500 BP, to detect changes 
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in the environment caused by human action. The 
decision tree looked for the relationship between 
time, stratigraphic depths (between 80 and 500 
cm.) from where pollen samples were taken, and 
vegetation variation, relative pollen frequencies of 
pinus, picea, abies, betula, fagus, alnus, corylus, 
quercus, tilia, carpinus, other arboreal and non 
arboreal pollen species at specific stratigraphic 
depths. The project was based on the application 
of a variation of Quinlan’s C4.5 algorithm called 
J4.8 (Wittek & Frank, 2005). The unexpected 
relevance of frequencies of betula differentiate 
the temporal evolution of vegetation changes in 
two different branches, what is not correct from 
the point of view of quantitative differences be-
tween different species. The procedure does not 
take into consideration quantitative variation, 
over emphasizing lower contribution species. As 
an alternative, instead of binary decision trees, 
regression trees could give an answer to this 
problem. These regression trees are a variation of 
the standard inductive tree where the dependent 
attribute is a continuous variable. This method 
has been used in paleoecology, in order to predict 
the association between the frequencies of fossil 
findings and environmental variables (Mannila 
et al., 1998).

This paleoecological case is an interesting ex-
ample of using the wrong method for solving the 
wrong kind of problem. It should make us rethink 
the very idea of machine learning. We are not 
looking for just a new statistical tool for exploring 
the data, but we are looking for inducing explana-
tory predictions for new observations. Decision 
trees should be used as practical generalization 
procedures, and not as an exploratory technique. 
Induction and prediction are only as good as the 
training data. If there is no interpretive regularity 
in the data set, the machine learning approach 
will generalize nothing. We should also take into 
account that the methods we have been reviewing 
up to here need some prior knowledge, a teacher 
or a supervisor, in order to be capable of general-
ize some particular instances into a prototypical 

description of the input-output causal process. 
Machine learning methods will have a chance 
for success, only if the database is a real training 
data set, with observations well correlated to the 
phenomenon or process to be induced.

An example of what happens when these as-
sumptions are not considered can illustrate this 
discussion. Fernández Martínez and García de 
la Fuente (1991) looked for possible associations 
and dependencies between 25 features describing 
389 burials from a Meroitic cemetery in Egypt 
(3rd-1st centuries B.C.). These features refer to 
chronology, preservation, qualitative descriptive 
characteristics of the burial itself, presence/ab-
sence of architectonic elements, size, position of 
the body, skull, hand, and legs, presence/absence 
of different kinds of grave goods, quantity of 
grave goods, etc. The idea was to use each of these 
variables successively as the dependent attribute 
or knowledge to be predicted in terms of the rest. 
The failure of the ID3 algorithm application in this 
context consisted in the poor predictive value of 
the different rules. For instance, the rules predict-
ing the chronology of a burial in Period 1 were 
only true in nine out of 52 cases. It is not that the 
method does not extract enough knowledge, but 
it extracted too much knowledge, revealing an 
excessive degree of variability. The failure is in 
fact a failure of generalization. Cemetery data 
contained only the descriptions of burials, and it 
was impossible to extract predictive knowledge 
that was enough general to be applied to other 
burials even from the same cemetery and time 
period.

The success or failure of the simple methods 
of machine learning we have reviewed up to here 
are not a consequence of their algorithm, but a 
consequence of the learning approach considered. 
Applying ID3, C4.5 or related algorithms to your 
excavation data is a futile task, because your 
data are not knowledge to be transformed into 
predictions, it is perceptual knowledge waiting 
to be explained in causal terms. You should use 
laboratory replicated true causal relationships, 
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or observed causal events in an exhaustive set of 
different situations to obtain predictions before 
explaining. Only once you have obtained the 
knowledge, you or your automated machine will 
explain observed data. After all, a problem solver 
should know the solution beforehand if it pretends 
to solve the problem at hand.

Furthermore, it is important to consider that 
machine learning is not the only solution to a com-
plete automated explanatory machine. After all, 
it is based on the correlations of observables, and 
any hypothesis always contains non-observational 
entities. Specifically if this hypotheses pretends 
explains something beyond a mere description of 
present regularities.

ClASSiFiCAtioN ANd 
CluStERiNg

What can we do when the intelligent robot has 
only input data? When there is no external teacher 
to oversee the learning process, machine learning 
textbooks refer to a different way of acquiring 
knowledge so called unsupervised or self-orga-
nized learning methods. In such an unsupervised 
or self-organized task, the goal is to identify 
clusters of patterns that are similar, and using 
them to generate potential generalizations. The 
learner agent will suppose there is a structure to 
the input space such that certain patterns occur 
more often than others do, and it would look for 
what generally happens and what does not.

That is to say, a set of explanations will be 
modeled by first describing a set of prototypes, 
then describing the objects using these proto-
typical descriptions. Each description gives the 
probabilities of the observable features, assum-
ing that what has been perceived belongs to a 
group composed of similar looking percepts. 
The prototype descriptions are chosen so that 
the information required to describe objects in 
the class is greatly reduced because they are 
“close” to the prototype. This information reduc-

tion arises because only the differences between 
the observed and expected (prototypical) values 
need to be described. It takes a certain amount of 
information (in bits) to describe the information 
required to state the probabilities of the features, 
given that a new observation belongs to the group 
of similar objects. However, these probabilities 
reduce the information needed to describe the 
objects by first describing each object’s prototype 
membership, then describing how each particular 
instance differs from the general category (Chee-
seman, 1990).

With unsupervised learning, we are not dis-
covering how to instantiate a specific input-output 
function. Whereas supervised learning involves 
learning some mapping between input and output 
patterns, unsupervised learning can be viewed 
as describing a mapping between input patterns 
and themselves –i.e., input and output are identi-
cal (Chater, 1995; Van Overwalle & Van Rooy, 
1998). Once the system has become tuned to the 
statistical regularities of the input data, it develops 
the ability to form internal representations for en-
coding features of the input and thereby to create 
new categories automatically. Prediction ability 
is dictated solely by the statistical properties of 
the set of inputs, and the kind of the statistical 
rule that governs clustering. 

However, before considering another way of 
learning, the automated archaeologist can always 
adapt a supervised method to an unsupervised 
task through a simple transformation. Given k 
attributes, one runs the algorithm k times, in each 
case with a different feature playing the role of 
the class attribute one aims to predict. The result 
is k different classifiers, each designed to predict 
accurately one attribute as a function of the others 
(Langley, 1996).

This distinction between supervised and 
unsupervised or self-organized learning lead 
us directly to the concepts of classification and 
clustering, because we always can understand the 
learning task as the partition of an observations 
set according to the similarity criterion and gen-
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erating class descriptions from these partitions. 
Classification is a form of categorization where 
the task is to take the descriptive attributes of an 
observation (or set of observations) and from this 
to label or identify the observation within a dif-
ferent phenomenological domain. The descriptive 
attributes may be themselves drawn from different 
data domains, each domain effectively contrib-
uting an axis to a combined feature space of all 
possible object descriptions. Hence, the task of 
the classifier is somehow to partition this feature 
space into disjoint regions that each represents a 
particular class, cluster, or pattern.

The classification problem is just like the su-
pervised learning problem: known cases illustrate 
what sort of object belongs in which class. The 
goal in a classification problem is to develop an 
algorithm which will assign any artifact, repre-
sented by a vector x, to one of c classes (chronology, 
function, origin, etc.). The problem is to find the 
best mapping from the input patterns (descriptive 
features) to the desired response (classes). Some 
finite or infinite set of patterns (binary or real 
valued vectors) is to be partitioned into classes; a 
particular problem is then specified by a set of se-
lected training patterns, which are given together 
with their corresponding class names, and the goal 
is to classify all patterns as correctly as possible. 
Machine learning, however, differs from statistical 
classification and clustering in different ways. It is 
(in comparison at least) robust in the presence of 
noise; it is flexible as to the statistical types that 
can be combined; it is able to work with feature 
spaces of very high dimensionality; it requires less 
training data, and it makes fewer prior assumptions 
about data distributions and model parameters 
(Gahegan, 2000, 2003). Using a machine learning 
approach to generalization and induction, we are 
attempting to learn a classifier, as distinct from 
imposing or conditioning the classifier. By doing 
it, we are avoiding some problems whilst making 
others. Specifically, parametrically based classi-
fiers, such as discriminant analysis, suffer from 
a number of drawbacks. Firstly, they assume that 

values for each data dimension fit a predetermined 
distribution. This usually implies that categories 
are both unimodal and symmetric. Unimodality 
is a particularly demanding constraint in prac-
tice, since each class must be constructed from 
a single region in feature space. Classes should 
be recognized as such and each distinct region 
must be defined separately, via its own training 
examples. Secondly, a large number of training 
examples are needed to construct the probability 
density function with defensible confidence.

The purpose of the classification problem is 
to estimate the probability of membership of the 
instance in each class. The objective is to build 
a model with significant predictive power. It is 
not enough just to find which relationships are 
statistically significant. That explains why classi-
fication and prediction are frequently interrelated. 
A prediction of an historical event is equivalent 
to a classification within a given set of events. 
A prediction of flint knives implies a distinction 
between longitudinal and transversal use-wear 
traces, for instance. Conversely, a classification 
of flint tools also means a prediction of their past 
function. There are exceptions, of course, where 
such a relation does not exist.

For classification problems, the supervised task 
assumes that each training instance includes an 
attribute that specifies the class of that instance, 
and the goal is to induce a concept description 
that accurately predicts this attribute. Cluster-
ing is just the statistical way of speaking about 
self-organized or unsupervised learning: clus-
tering algorithms partition the input space so 
that diversity may be explicitly recognized and 
encoded. Clustering is the process of grouping 
input samples in similarity classes. This approach 
is popular within statistics: principal component 
analysis, cluster analysis, and so forth, are good 
examples. Such methods are based on some dis-
tance measure. Each object is represented as an 
ordered set (vector) of features. “Similar” objects 
are those that have nearly the same values for 
different features. Thus, one would like to group 
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samples to minimize intra-cluster distances while 
maximizing inter-cluster distances, subject to the 
constraints on the number of clusters that can 
be formed. Another approach to unsupervised 
learning, beyond classical statistical procedures 
are vector quantization methods, a general 
term used to describe the process of dividing 
up space into several connected regions, using 
spatial neighborhood as an analogue of similar-
ity (Kohonen, 2001). Every point in the input 
space belongs to one of these regions, and it is 
mapped to the corresponding nearest vector. For 
example, the attributes for “object A” are mapped 
to a particular output unit or region, such that it 
yields the highest result value and is associated 
with that object, while the attributes for “object 
B” and so forth. are mapped to different regions 
(Engel & Van der Broeck, 2001).

One way of understanding the relationship 
between clustering and unsupervised or self-orga-
nized learning is considering Thornton’s “fence-
and-fill” approach (Thornton, 2000): carving up 
the input space into simple blocks (with “fences”), 
and treating every point in the block the same way 
(“fill”). A particularly simple case of fence-and-fill 
learning is dividing the input space by straight 
lines; if this is successful, the problem is said to 
be linearly separable. It works like this: 

1. Use the chosen fence-and-fill method to 
process the current input data, that is, to 
find regions of uniformly labeled stimuli. 

2. Recode the current input data to draw identi-
cally labeled data points closer together. ... 

3. Assign the derived data to be the current 
data and apply the procedure recursively 
until data are generated that can be satisfac-
torily processed solely by the fence-and-fill 
method. 

Geometrically, our automated archaeologist 
should be able to fit shapes of the decision bound-
aries between the classes formed by lines that are 
parallel to the axes, yielding rectangular-shaped 

regions. By fitting enough appropriately sized 
rectangles, one can approximate any shape and 
cover any class. The effectiveness and efficiency 
with which learning systems can cover the data 
with rectangular-shaped regions will determine 
the performance of such systems (Weiss & Ku-
likowski, 1991).

As Thornton notes, unsupervised learning does 
not have to assume that the clusters it develops at 
each stage are meaningful in themselves, just that 
they are going to be useful in deriving a yet-more-
accurate cluster at the next step. Thornton does 
not prove that this kind of “proto-representational 
learning” will do any better than supercharged 
fence-and-fill, much less than appropriately cho-
sen pick-and-mix, but I agree that it does have a 
better feel to it that the former, and avoids the 
latter’s need for expert priming.

Consequently, in a purely clustering or un-
supervised approach the system would require 
some estimate of the dispersion of the dimensions 
defining each category before classification could 
be justified. A new object would then be classified 
as an A or B as a function of the average distance 
from the central tendency of each of the dimen-
sions underlying category A and category B, and 
the dispersion of each of the dimensions around 
their central tendencies. In addition, knowledge 
of the dispersion of A and B can be used to decide 
whether a novel instance is so unlikely to belong to 
either known category that a new category concept 
should be formed to accommodate it.

Archaeologists have been doing clustering 
to achieve some kind of classification for years, 
instead of a real conceptual learning (Adams & 
Adams, 1991; Clarke, 1968; Dunnell, 1971; Doran 
& Hodson, 1975; Forsyth, 2000; Spaulding, 1953; 
Vierra, 1982). It is important to understand the 
difference between clustering and classification. A 
good classification should both impose structure 
and reveal the structure already present within the 
data. With the exception of data reduction tasks, 
classification techniques are generally favored 
in analysis since the user retains control over the 
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classes imposed. The outcome from a clustering 
of a set of data may have little meaning since the 
resulting clusters are not associated (by design) 
with any concept arising from the domain of 
study (although they may be because of inherent 
structure in the data).

Nevertheless, the acquisition of explanatory 
knowledge cannot be reduced to clustering, be-
cause such methods are limited by the natural 
grouping of the input data, and they are based 
on restricting knowledge production to finding 
regularities in the input. Such regularities are not 
generalizable out of the specific limits of the input 
data used. In both cases, a description of the cur-
rent observation is taken as input and represented 
by a model of perceptual feature dimensions. 
Categories and concepts are represented as one 
or more associated clusters. Initially, the system 
has only one cluster that is centered upon the first 
input pattern. As new observations are presented, 
the system attempts to assign these new items to 
an existing cluster. When a new item is assigned 
to a cluster, the cluster updates its internal rep-
resentation to become the average of all items 
assigned to the cluster so far. Using supervised 
classification the system creates a new cluster in 
response to a surprising misclassification; whereas 
in an unsupervised clustering approach, a new 
cluster is created when the model encounters a 
surprisingly novel observation. Another important 
difference lies on the fact that supervised learning 
can be characterized as intentional, in that the 
automated archaeologist should actively search 
for rules (using, for instance, some variation of 
hypotheses testing), on the other hand, unsu-
pervised learning is usually seen as incidental, 
undirected, observations driven, and incremen-
tal accrual of information. Humans seem more 
likely to aggregate observations in memory in an 
unsupervised way, whereas we are more likely 
to segregate observations and deal with excep-
tions using supervised learning mechanisms. 
Unsupervised learning is best matched with 
linear category structures because the optimal 

clustering solution for a linear category structure 
involves one cluster per category. On the other 
hand, nonlinear categories and concepts are not 
well matched to an unsupervised induction task 
because nonlinear category structures can only 
be captured with multiple clusters per category 
(Gureckis & Love, 2003; Love, 2002).

If, for example, all possible descriptive pat-
terns are provided as well as a number of cases, 
where the concept C is not present, then learn-
ing will be relatively simple. This however, will 
only be possible if there is some kind of teacher, 
which prepares the training data on purpose. 
On the other hand, if some descriptive patterns 
are not provided in the training data, we cannot 
expect the learner to know about it. The solution 
seems to assume that the training examples are 
chosen randomly, according to the same but still 
unknown probability distribution according to 
which the objects are chosen for classification. 
That is, if there are some frequently occurring 
descriptive patterns that the learner needs to know 
about to avoid a large classification error, then the 
probability to have those patterns included in the 
training examples is also high. Furthermore, if a 
particular feature vector were very rare, so that 
it does not occur among the training examples, 
then the error, which may be caused by not know-
ing about it, would be very small. Overall, these 
probabilistic assumptions allow successful learn-
ing, at least if the concept space of the learning 
task is not too large.

If the automated archaeologist does not have 
such previous knowledge, that is to say, if it cannot 
distinguish positive and negative instances of the 
explanation to be learnt, the explanation cannot 
be possible. Consequently, we should assume 
that the starting point must always be the fact 
that knowledge needed to solve archaeological 
problems should not only be based on mere cor-
relation or regularity. Archaeological training sets 
must be built using laboratory replicated tools to 
experiment the causal association between per-
ceptual features and causal actions. Additionally, 
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when the causal action is not replicable, we can 
rely on observing how the causal relationship 
varies in different social situations, known from 
ethnological and/or historical sources. 

PREdiCtiNg ComPlEx 
RElAtioNShiPS

Although a machine learning approach seems 
quite appropriate in the case of archaeological 
research, we should take into account that induc-
tive techniques that rely “only on the input” are of 
limited utility and that an automated archaeologist 
must incorporate devices that compare the expla-
nations generated using different mechanisms. 
The obvious difficulty is that an archaeological 
explanation cannot be analyzed in terms of simple 
associations. Explanation is an inference process 
whose very nature is beyond a mere mapping 
out of the statistical correlation present in the 
descriptive features of material traces. Rather 
they involve identifying and disentangling the 
relationships that exists in the data, utilizing 
available knowledge about the process that gener-
ated those effects.

Just aggregating over many observations is not 
enough to learn an appropriate explanation, be-
cause of the large input space and the ambiguities 
implicit in it. Consequently, inverse reasoning can 
be dangerous as a general explanatory mechanism 
because it leaps from a few experiences to general 
rules of explanation. If the experiences happen to 
be untypical, or the conditioning system misiden-
tifies the relevant conditions, predicted behavior 
may be permanently warped. Even animals and 
humans are vulnerable to inappropriate learning. 
Human archaeologists can be victims of self-
reinforcing phobias or obsessions, instilled by a 
few experiences. 

To avoid these difficulties, the solution to 
inverse problems has to work in one of two quite 
different ways. As we have seen in preceding 
sections, it may exploit explicit commonalities 

between observed inputs or we have to look for 
implicit relationships between them. An alterna-
tive way to drawing the explicit/implicit distinc-
tion is thus to say that learning can be approached 
in a relational or in a non relational form, since 
in one case we have the exploitation of relational 
regularities in the data, while in the other we have 
the exploitation of non relational regularities (as-
sociations and similarity effects). Following this 
argument to its logical conclusion, we can identify 
two distinct styles of inverse reasoning:

• Non-relational learning: Learning oriented 
toward the exploitation of non-relational 
regularity (standard statistical classifica-
tion). The subject learns about the properties 
of a single stimulus.

• Relational learning: Learning oriented 
toward exploitation of relational regularity 
(non standard classification). It is the most 
common type of learning in natural and 
artificial agents: A subject learns about the 
relationship between two stimuli, or between 
a stimulus and a response.

 “Relation” is a difficult to define word. Within 
statistics, we say that two variables are related 
when they co-vary. That means that they do not 
share the same values, but when values in one vari-
able are high, so are in the second variable (posi-
tive relationship), or alternatively, when values in 
one variable are high, they are low in the second 
variable (negative relation). This connection may 
be constant among all values (monotonic relation), 
or it may be different for different objects (non-
monotonic relation). In general, we say that two 
objects are related when they are not similar, but 
there is something connecting them: the paper 
and the pencil are very dissimilar, but they are 
related when we use them to write a letter.

For instance, consider an arrow point and a 
human skeleton. These are objects with different 
shape, size, texture, and composition. Neverthe-
less, there is something relating them: they have 
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appeared at the same location: in a burial, the ar-
row point was found inside one of the bones. Both 
elements are related because they constitute part 
of the same event, the death of this individual.

We can perceive many sorts of relations be-
tween effects of social actions. For example, let 
us imagine the automated archaeologist studies 
an “historical crisis:” the human abandonment 
of certain geographic area during some centu-
ries. The intelligent robot needs to find out what 
process is responsible for that abandonment: 
why people left their villages and houses. The 
cognitive robot will study the cause from what it 
knows about its effects: the sites that have been 
abandoned during the period of reference, but were 
occupied in the immediately previous period. Let 
us suppose that the automated archaeologist has 
archaeological data about 25 sites. Five of them 
were not abandoned nor show any evidence of 
whatever “crisis.” The other 20 archaeological 
sites neither behaved in the way it was expected 
and were left, that means, there are no artifacts 
nor built structures with a date in this period. In 
both kinds of sites, an archaeological record can 
be assigned to the period prior to the “crisis,” that 
is to say, the period in which the social dynamics 
that will conclude in the abandonment of certain 
sites were already acting. The automated archae-
ologist will analyze then two events: the way in 
which the sites of period A (before abandonment) 
were occupied and the way in which sites of pe-
riod B (during and/or after abandonment) were 
occupied or left. The purpose is not to create a 
classification or typology of archaeological settle-
ments, but to use the differences between both 
events, with the intention of finding out how an 
event happened. The hypothesized cause is not a 
climatic change, but the internal dynamics of that 
society, characterized by cycles of concentration 
and dispersal of settlement as a reaction to the 
increase in social division of labor. The sequence 
of sites from period A to period B constitutes a 
process (p) that, in absence of interactions with 
other processes (for example, climatic change from 

A to B), should remained uniform with respect 
to the characteristic Q (settlement). In presence 
of other processes (increasing division of labor 
between producers and non-producers) manifest 
a modification of Q (settlement) in Q’ (non-settle-
ment= abandonment) at the end of the A period 
(first event), and this modification is transmitted to 
the B period (second event). The historical trajec-
tory experiments a change of state from the first 
to the second event in the temporal chain. The 
social action is causal in the sense in that it is able 
to transmit its own structure through time.

If the learning task is relational, we know 
that particular outputs are contingent on relation-
ships described among the inputs, and that the 
resulting classification is probably not correlated 
to particular values of each input feature, and 
therefore should not cluster together in traditional 
similarity terms. If, on the other hand, the task 
is non-relational, some of the individual features 
describing the input are associated with particular 
outputs; thus, instances of the same concepts tend 
to share features and to cluster together. From this 
fact, we may conclude that non-relational learning 
tends to produce clustering and relational learn-
ing tends to eliminate it. The basic rule is that 
the more clustering the instances of an explana-
tion exhibits, the more probable a non-relational 
learning task implies. 

The number of potential relationships in a 
given scenario is generally unbounded, implying 
that the number of possible relational regularities 
is infinite. Given the fact that everything may 
be related to everything, this is, in principle, 
an infinitely hard operation (Thornton, 2000). 
Does it mean that relational learning is out of the 
automated archaeologist range? To identify and 
disentangling the non-explicit relationships, we 
should use available knowledge about the process 
that generated those effects, because they are not 
always apparent. If learning proceeds construc-
tively on the identification of certain relationships, 
then those relationships presumably need to be 
explicitly identified. This conjures up an image 
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of a machine that is going to using what it knows 
to learn what it does not yet know. It might use 
certain known relationships to attempt to exploit 
certain unknown relationships. 

The machine learning community has made 
vast strides, progressing from the simple rule-
based and plain inductive approaches to sophis-
ticated concept formation approaches. Most 
modern research in machine learning is concerned 
developing theories that provide relational expla-
nations of events and empirical laws. For example, 
the BACON program (Langley et al., 1987) takes 
as input a set of independent terms and request 
the corresponding values of related dependent 
terms. BACON contains elementary processes 
for the discovery of simple physical laws. These 
laws typically involve the establishment of a pre-
defined relationship between two variables:

INCREASING: If the values of X increase as the 
values of Y increase, then define the ratio 
X/Y and examine its values

DECREASING: If the values of X increase as 
the values of Y decrease, then define the 
product XY and examine its values

CONSTANT: If the values of X are nearly constant 
for a number of values, then hypothesize 
that X always has this value.

The program constructs a simple factorial 
design experiment involving all combinations of 
independent values, and proceeds to collect the 
co-occurring independent and dependent values, 
once it knows how to differentiate between the 
independent and the dependent factors. As it finds 
laws at each level, the program places conditions 
on these laws corresponding to the values of the 
terms that it has not yet varied. As it incorporates 
these terms to higher-level laws, the conditions 
are generalized. Thus, BACON gradually expands 
the scope of its relational learning as it moves to 
higher levels of description.

Using these mechanisms, a program like BA-
CON has rediscovered a wide range of laws from 

the history of physics and chemistry (Langley 
& Zytkow, 1989). The same approach would be 
applicable in archaeology for discovering similar 
regularities (Barceló, 1997).

BACON states all relational regularities as 
either simple constancies or linear functions 
between two variables. Some other programs 
go beyond this limitation, either by taking into 
account more complex functional definitions, or 
by including hidden or non-observational terms. 
The FAHRENHEIT system (Langley & Zytkow, 
1989) follows the same basic strategy in BACON, 
but it defines two additional theoretical terms for 
each law discovered at the lower level. The sys-
tem treats these terms as dependent variables at 
the next higher level and attempts to relate their 
values to those of the varied independent term. 
That is to say, FAHRENHEIT is able to consider 
relationships between linear relations. 

Valdés-Pérez (1995, 1996a, 1996b, 1999) has 
programmed systems, which formulate mecha-
nistic hypotheses conjecturing unseen entities. 
It uses constrained-generation algorithms for 
generating non-redundant hypotheses under a 
bias for simplicity (fewer steps and conjectured 
entities). He describes his system as carrying out a 
heuristic breath-first tree search with complicated 
node generators and node evaluators (Valdés-
Pérez, 1995).

After such a pioneering work, some new devel-
opments were published successively by authors 
like Falkenheimer (1990), Karp (1990), Rajamoney 
(1990), Darden et al. 1992, Giza (2002), and Alai 
(2004). The idea was in all cases moving beyond 
trivial inductivism and advancing towards a true 
relational learning.

This modern work on rule discovery in 
scientific databases illustrates the power of 
computational methods to circumvent human 
limitations. Humans are not good at searching 
massive databases and manipulating sets of rules 
with many features to make predictions. Cognitive 
science research has shown that humans have a 
tendency to focus too rapidly on one hypothesis 
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before doing a systematic search of a hypothesis 
space. Discovery programs that are more sys-
tematic and more thorough than humans are an 
aid to scientists.

SomE limitAtioNS oF 
SuPERviSEd lEARNiNg

Working with fuzzy and rough sets, instead of 
formally true logical propositions allows the 
reduction of the supervised learning exigencies. 

The fact that explanations can be formulated 
as vague concepts is only part of the alternative to 
formal induction. Because any robot explanation 
is the cumulative product of an extensive event 
history, it cannot be understood solely by appeals 
to what is observable at a given moment. Actual 
observations directly guide explanations but the 
automated explanation is the result of the pres-
ent state of the knowledge domain acting on the 
computer agent that should have been changed 
by an even-richer history of previous observa-
tions. That means that the robot perceived world 
should be known in terms directly related to the 
automatic archaeologist’s current possibilities for 
future explanations.

In such circumstances, the pattern of feature 
values for each case cannot be easily associated 
with the correct prediction or decision. Fur-
thermore, when archaeological problem solving 
operates in a stationary problem domain (i.e., 
knowledge whose characteristics do not change 
with time), the essential nature of the domain 
can, in theory, be learned through a training 
session with a set of data that is representative of 
the domain. Frequently, however, the domain of 
interest is non-stationary, which means that the 
parameters of the information-bearing signals 
vary with time. In situations of this kind, the 
traditional methods of supervised learning may 
prove to be inadequate because the system is 
not equipped with the necessary means to track 
the variations of knowledge it needs to build its 

predictions. To overcome this shortcoming, it is 
desirable to relate learned knowledge to varia-
tions in training data. In other words, the learning 
process should never stop, with learning going 
on while explanation and predictions are being 
performed by the system.

While maintaining the rational basis of trial-
and-error mechanisms characterizing supervised 
learning algorithms, we need a lightened version 
of the teacher. Scientific explanation has often be 
characterized as a process of error correction in 
which an internal hypothesis or control strategy 
is formulated and tested, errors are made, and the 
errors are used to improve the hypothesis. The 
notion of an error implies the notion of a goal, 
and it can be described as a heuristic process that 
is driven by errors. When the automated archae-
ologist learns, it changes the way information is 
processed by the problem solver. Thus, it is much 
easier to learn if the problem solver responds to 
these changes in a graded, proportional manner, 
instead of radically altering the way it behaves. 
These graded changes allows the system to try out 
various new ideas (ways of processing things), and 
to get some kind of graded, proportional indica-
tion of how these changes affect processing. By 
exploring many little changes, the problem solver 
can evaluate and strengthen those that improve 
performance, while abandoning those that do not. 
Learning is a kind of heuristic reasoning, because 
it depends on using a number of weak, graded 
signals as “traces” for exploring possibly useful 
directions to proceed further, and then building 
on those that look promising.

This alternative version of learning is often 
referred to as reinforcement learning because 
of its similarity to models used in psychological 
studies of behavior-learning in humans and ani-
mals (Alpaydin, 2004; Donahoe & Palmer, 1994; 
Kaelbling, 1993; Sutton & Barto, 1998). It is also 
referred to as “learning with a critic” (Figure 3.6). 
Instead of a well-organized database of positive 
and negative instances, the intelligent machine 
will need some external knowledge, also obtained 
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in laboratory replication or controlled observa-
tion conditions converting a primary reinforce-
ment signal received from the training data into 
a higher quality reinforcing knowledge element 
called the reinforcement heuristic signal. Such a 
system should be designed to learn under delayed 
reinforcement, which means that the automated 
archaeologist observes a sequence of observations 
acquired in describable circumstances, which 
eventually result in the generation of the heuristic 
reinforcement signal. The goal of learning is to 
minimize a cost-to-go function, defined as the 
expectation of the cumulative costs of actions 
taken over a sequence of steps instead of simply 
the immediate cost. It is motivated by an old 
psychological concept, the Law of Effect, which 
states: “applying a reward immediately after the 
occurrence of a response increases its probability 
of reoccurring, while providing punishment after 
the response will decrease the probability” (Sutton 
& Barto, 1998).

The procedure identifies within input data, 
properties enabling the prediction and interpre-
tation of those data. When those properties are 
perceived and responses occur in their presence 
followed by some kind of reinforcing, cause-effect 
relations are selected. Some inputs become able to 
function as what Donahoe and Palmer (1994) call 
reinforcers, as they acquire the ability to evoke 
cause because of previous success in a prediction 
task. Reinforcers bring the behavior that precedes 
them under the control of the environments in 
which those behaviors took place. Consequently, 
the appropriate response occurs when the input 
contains features that have acquired the ability 
to guide the response. At an explanatory level, if 
such inputs are present, problem solving occurs. 
The cumulative effects of selection by reinforce-
ment are effect-cause relationships whose effect 
components have been enriched by concurrently 
selected contexts of application. The legacy of 

Figure 3.7. A flow diagram showing the mechanism of reinforcement learning
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experience is the accumulation of an ever-larger 
repertoire of effect-cause relations. These relations 
are selected by reinforcers, which are themselves 
increasingly the product of previous selections. 

Feedback provides information regarding the 
quality of the explanatory response. It may be as 
simple as a binary pass/fail or a more complex 
numeric evaluation. There is no specification as 
to what correct response is, only how well the 
particular response worked. The general idea 
is also related to so called Hebbian learning 
(Hebb, 1949). Co-active representations become 
more strongly linked, if a given bit of knowledge 
consistently participates in the firing of another 
bit of knowledge. Consequently, the connection 
between both should be in some way strengthened. 
In the same sense, positive exemplars receive 
some kind of reinforcement, whereas negative 
ones are inhibited.

This setting allows for effective function learn-
ing, but differs from a system trying to learn from 
direct supervision alone. The system, finding itself 
in a particular input situation, must learn a general 
prediction. It then receives a reinforcement value 
from what it already knows, indicating how valu-
able the current world state is. The system cannot 
deduce the reinforcement value that would have 
resulted from executing any of its other actions. 
In addition, if the observed state of the world is 
noisy, as it will be in general, the mere perfor-
mance of explanation in a situation may not give 
an accurate picture of the reinforcement value for 
that epistemic action (Kaelbling, 1993). Learning 
does not appear as a process of accumulations 
of representations of the problem domain; it is a 
continuous process of transformations of problem 
solving behavior through continuous change in 
the capacity of the system to synthesize all. In this 
way, the search for solutions to an inverse problem 
can still be viewed as a process of generalizing 
observed empirical associations, but taking into 
consideration that they should be subjected to 
the constraints imposed by the chosen predictive 
model (Weiss & Kulikowski, 1991). The most 

important feature of this definition is its claim 
that learning cannot be described in isolation. The 
learner always attempts to improve the behavior 
of some performance element, which is affected 
only indirectly through the knowledge base it 
uses to control its interactions with what it sees. 
That is to say, the problem solving procedure 
equals to the cumulative products of selection 
after a learner has been exposed to a series of 
mere differential contextual discriminations. 
Here the idea of “contextual discrimination” is a 
somewhat diminished version of the set of posi-
tive and negative instances. That is, the predicted 
cause-effect relation depends more on the context 
in which the guiding input appears than on the 
input itself (Donahoe & Palmer, 1994). 

What the automated archaeologist is doing is 
making minor adjustments in the present state 
of its knowledge in order to be more attuned to 
its accumulated past experiences. Each of these 
adjustments is neither “true” nor important in 
itself, but after a series of such changes, a new 
knowledge emerges. In other words, scientific 
knowledge is created by improving explana-
tory performance in a well defined environment 
through the acquisition of knowledge resulting 
from experiences in that environment (Holland et 
al., 1986; Kaelbling, 1993; Langley, 1996). Many 
practical mathematical problems are solved by 
successive approximation, using procedures that 
improve rouge guesses. Applying such refine-
ments repeatedly gives ever better approximate 
answers.

A biologiCAl mEtAPhoR: 
AdAPtivE ANd gENEtiC 
AlgoRithmS

A term very useful to characterize this new ap-
proach to machine learning is adaptation. It means 
here that learning does not proceed unidirectional 
and uniformly; instead it proceeds preferentially 
though steps that specific information indicates 
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might be on the best path to what we want to 
learn. Learning provides the specific knowledge 
bits that serve to narrow prediction options and 
thus provide useful constraints on archaeologi-
cal problem solving. In so doing, the process of 
formulating predictions from past experience 
adopts the form of explanation learning. Learning 
is then characterized in terms of the modification 
of responses to subsequent inputs as a function 
of prior activation history. This can be thought as 
a form of self-regulation (O’Reilly & Munakata, 
2000).

Adaptive learning methods are iterative solu-
tion techniques that handle a population of indi-
viduals, which are evolving according to a given 
strategy. At each iteration, periods of self-adapta-
tion (random changes) alternate with periods of 
translation (crossover), and periods of competition 
(selection). The adaptability of an individual solu-
tion to a specific problem represents its ability to 
survive in an uncertain environment.

Research on adaptive learning mechanisms 
has been inspired by an analogy with the theory 
of evolution, and the basic representation and 
operators reflect this history. They have con-
tributed to so called “genetic algorithms,” which 
imitate how hypothesis are generated, evolve, 
and compete until the best fitted wins and is 
selected as the best one to solve the problem at 
hand (Beer, 1990; Goldberg, 1989; Michalewicz, 
1996; Mitchell, 1996; Nolfi & Floreano, 2001; 
Reynoso & Jezierski, 2002).

The fitness of each member of the population 
is computed using an evaluation function, called 
the fitness function measuring how well each in-
dividual performs with respect to the task. Its best 
members are rewarded according to their fitness, 
and poorly performing individuals are punished 
or deleted. Over generations, the population im-
proves the quality of its set of solutions. Although 
such learning algorithms are not guaranteed to 
yield an optimal global solution, they generally 
produce high-quality solutions within reasonable 
amounts of time.

Genetic algorithms usually require specialized 
knowledge representations (encodings) to facili-
tate their operation. Knowledge is represented as 
strings of symbols that correspond loosely to chro-
mosomes. For example, the instance: the archaeo-
logical remains of a prehistoric hut, characterized 
by the presence of two hearths, a great quantity 
of bovid bones, the presence of arrow points, and 
the absence of axes might be represented by the 
vector: 1, 1, 1, 0, with ones and zeros indicating 
the presence or absence of Boolean features. The 
encodings typically take the form of position-de-
pendent bit strings in which each bit represents a 
gene in the string chromosome. 

Let us imagine the automated archaeologist 
has access to a number of archaeological sites de-
scribed by the presence of following features:

FLORE: 1. Pine, 2. Oak, 3. Birch, 4. Wheat
FAUNA: 1. Rabbit, 2. Sheep, 3. Cow, 4. Deer, 5. 

Gull 6. Duck 
HEARTH: Amount of hearths identified at each 

site (in units)
TYPE: Presence/Absence of the following tool 

categories: 1. axe, 2. scraper, 3. arrow point, 
4. crucible, 5. hammer

SITE: 1. In the plain, 2. on the top of a hill.
ECONOMIC ACTIVITY: Predominant economic 

activity: 1. hunting, 2. herding, 3. vegetable 
gathering, 2. tool manufacturing

The task is to learn the explanatory concept 
“economic activity,” defined in terms of the ob-
servable features associated with a characteristic 
archaeological record of “hunting,” “herding,” 
and so forth. An automated archaeologist can 
solve this generalization problem in the direct 
crisp way of rule association. Using a genetic 
algorithm the goal is the same, but the procedure 
is a bit different.

The idea is to randomly generate and succes-
sively modify using mutations and crossovers 
different predictive rules, until a fitness criterion 
suggests that the hypothesis is effective enough 
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and not any other genetic modification will make 
it more adapted to the problem at hand. Cross-
over involves exchanging information through 
the transfer of some part of their representation 
to another individual. This process creates new 
individuals that may or may not perform better 
than the parental individuals may. Crossing over 
individuals and exchanging bit string parts are 
usually chosen randomly. The net effect is an 
increase in the overall population. Mutation, a 
simple probabilistic flipping of bit values in the 
encoding, affects an individual only and does not 
increase the overall population size. This random 
effect provides the ability to escape local minima, 
a common problem associated with the gradient 
descent methods. Because the probability of 
mutation is generally very low and copies of the 
most fitted individuals result from reproduction, 
this randomness permits high quality solutions 
to emerge that would otherwise be unattainable. 
However, typical adaptive algorithms do not rely 
heavily on mutation, using it mainly as a backup 
to preserve some diversity in the population 
(Langley, 1996).

On each cycle, a genetic algorithm uses an 
evaluation function to measure the quality of the 
current description with respect to the training 
data, giving each competitor an associated score. 
The method then uses the crossover operator to 
generate successors for the initial hypothesis. In 
each case, it selects two descriptions as parents, 
drawing them at random from the hypothesis 
set with probability in direct proportion to their 
relative scores. For each pair of parents, the 
crossover operator selects a crossover point (or a 
set of attributes), generates two new descriptions, 
and adds them to its set of revised hypotheses. 
The algorithm then mutates each feature in each 
description with some (low) probability. The 
algorithm evaluates each of the resulting set of 
descriptions on the training data in turn, creates 
yet another set of children hypotheses, and so on, 
continuing the specified number of iterations.

The use of genetic operators results in varying 
population of hypotheses over time. Some gen-
eralizations have lower fitness than their parents 
do, but on average the entire population’s overall 
fitness as well as that of the best hypotheses im-
proves with successive generations. If properly 
designed, the learning system eventually settles 
on a set of highly fit, near optimal rules with 
similar bit strings.

The algorithm works in the following way:

FIRST STEP: random definition of predictive rules 
by randomly linking the decision attribute 
(“economic activity at the site”) and the 
conditional attributes (flora, fauna, presence 
of hearths, and presence of tool type).

SECOND STEP. Evaluate random rules by calcu-
lating its efficiency (or predictive power). 

THIRD STEP. If predictive power is not high 
enough (user configured threshold), the 
program should rank the rules according 
to its probability for firing 

 
 p = e / E     (5)

 where e is its rank, and E the sum of ranks 
for all other rules.

FOURTH STEP. Rules retained in memory cross 
between them generating new composite 
rules. A new “generation” of rules is then 
generated, taking into account the rank of 
each rule: highest ranked rules have more 
probabilities for taking part in a new com-
bination. Crossover operator is extensively 
used, and low degrees of random mutation 
are also allowed.

Repeat third and fourth step until some rules can 
pass the user-configured threshold. Each 
repetition corresponds to a new genera-
tion formed by a weighted combination of 
all rules existing in memory at the former 
step.
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By using this adaptive and heuristic approach, 
archaeological problem solving is most strongly 
guided by the particular inputs that were present 
when predictions succeed. These inputs include 
not only the nominal discriminative features, but 
also the contexts in whose presence the discrimina-
tive features occur. As prediction proceeds, those 
inputs that are less reliably present lose their ability 
to guide the response. The more reliable inputs 
increasingly block the ability of the less reliable 
inputs to guide explanation. To insure that the 
guidance of explanation is restricted to a given set 
of inputs, the response must be reinforced when 
a particular subset of stimuli is present, and not 
reinforced (or differently reinforced) when other 
stimuli are present.

Papaioannou et al. (2001) describes a semi-
automatic system for the reconstruction of ar-
chaeological finds from their fragments using a 
genetic algorithm to estimate the correct relative 
position between fragments, clustering those 
fragments that belong to the same entity. After 
having generated all possible pairs of valid frag-
ments combinations, each pair of combinable 
fragments is examined in order to determine the 
relative orientation that corresponds to a best fit, 
estimating the minimal matching error per facet 
pair. When all optimal pairwise (fragment facet by 
fragment facet) matching error values have been 
calculated and stored in a look-up table, the third 
stage (full reconstruction) selects those fragment 
combinations that minimize a global reconstruc-
tion error, which acts as a fitness function. This 
reconstruction error equals the sum of matching 
errors of a given set of fragment pairs. External 
constraints may contribute to this stage as well, 
in order to reduce the time needed to produce a 
correct fragment clustering by eliminating a large 
number of combinations. 

Related applications, also using a genetic 
algorithm for calculating the best match in ob-
ject shape reconstruction has been published 
by Kampel and Melero (2003), and Chaouki 
and Gaildrat (2005). Yao et al. (2001) have used 

genetic algorithms in geophysical surveying for 
improving the location of underground tombs 
using ground penetrating radar method to survey 
Chinese Yin Mountain ancient sites. Assuming 
that the original shape of an ancient building in 
this region was mostly similar to a hyperbolic 
curve, a genetic algorithm implements optimal 
curve fit, and the fitness criterion was established 
as least squared error method.

Michael L. Gargano has used genetic al-
gorithms to build taxonomies and for solving 
seriation problems (Gargano & Edelson, 1996; 
Gargano & Lurie, 2006). The problem of trying to 
chronologically order graves in a cemetery where 
each grave contains (or does not contain) a number 
of different stylistic artifacts (e.g., pottery, jewelry, 
etc.) of a period has traditionally been called the 
Petrie Seriation problem. The authors propose an 
order based hybrid evolutionary modified life cycle 
model to solve this problem. The problem can be 
modeled mathematically by an incidence matrix 
whose rows are the graves and whose columns 
are a particular artifact type. A chronological 
ordering of the graves is established by finding a 
permutation of the rows of the incidence matrix, 
which minimizes the total temporal range of an 
artifact type summed over all types of artifacts 
(i.e., columns). The temporal range of an artifact 
type is the span from the first appearance to 
the last appearance of a 1 in the column of the 
incidence matrix corresponding to that artifact 
type. This search problem is characterized by a 
solution space which is generally unstructured 
(e.g., multimodal) and is intractable for a large 
number of graves. The solution offered by Gargano 
and colleagues suggest creating and evolving a 
population of potential solutions (i.e., sequences 
of row permutations of the incidence matrix) so 
as to facilitate the creation of new members by 
swarming, mating and mutating, or local search. 
Fitness (or worth) is naturally scored by the Petrie 
range index of the permuted incidence matrix. 
In each column j the first row rf and last row r1 
containing a 1 are noted. The Petrie index for that 
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column is  r1 – rf  + 1. The Petrie range index for 
the matrix is the sum of these over all columns. 
This will be the fitness of a permutation (i.e., a 
possible solution). The smaller the Petrie range 
index, the better the fitness is (i.e., the better the 
solution). This method is a hybrid combining 
swarm methods, genetic algorithms, and local 
search. An individual population member passes 
through three phases that are iterated until a satis-
factory solution is obtained. As in many processes 
in nature, each individual member goes through 
different life cycle paradigms as it evolves. In this 
adaptive search heuristic, a member goes from a 
swarm search to a genetic search to a local search 
and back again reiteratively. 

Genetic algorithms have also been used to 
discovery the underlying spatial trend among a 
series of locations. The method allows detecting 
relevant clusters in spatial coordinates (Conley 
et al., 2005). 

Since 1979, Robert G. Reynolds has been ap-
plying genetic algorithms to a more social based 
research (Reynolds, 1979, 1986). The idea was to 
investigate motivations of economic and social 
change in the evolution from a hunter-gatherer 
to agriculture society. In these early applica-
tions, Reynolds used a theoretical background 
from Kent Flannery’s theory about the origins of 
agriculture. It simulates a hunter-gatherer group 
from the Oaxaca Valley (Mexico). In this area, 
certain resources were more abundant and easier 
to manage in specific seasons. The human group 
should adapt his economic strategy to the annual 
cycle of natural resources. The adoption of agricul-
tural methods for producing subsistence produces 
conflicts in the management and planning of other 
activities, which depend also on the annual cycle. 
Agriculture needs some labor resources, which 
traditional were invested in other activities that 
should be performed at the same period of the 
annual cycle. In this way, agriculture prevents 
working in other activities, which are also basic 
for human survival. Reynolds programmed a 
computer system that calculated the way in which 

members of this group would organize their eco-
nomic activities looking for a balance between 
agricultural labor investment and investment of 
labor in other activities. If the model were right, 
then material predictions made by the program 
would be like archaeological field observations: 
the quantities of food remains identified at the 
archaeological site should be similar to predictions 
of food consumed made by the program.

The program simulated a group with five or 
six human agents (according to archaeological 
estimations at the Guilá Naquitz site), which have 
access to 10 alternative different economic strate-
gies, or subsistence activities, during a period of 
four months. It is assumed a dedication of 10 days 
for each one. Therefore, the group should repeat 
some of them during the simulated period. The 
more it applies a determined strategy, the more 
the activity will influence the predicted contents 
of the generated archaeological record. Each time 
a group member performs one of these activities, 
she/he acquires some quantity of food. An esti-
mation of the quantities of proteins and calories 
generated by all activities can be used to estimate 
the degree and quality of subsistence. Another 
important parameter was the amount of work 
necessary for obtaining this food. The program 
uses an estimation of proteins and calories per 
area unit where the human group is looking for 
resources. The program also requires informa-
tion about the degree of “concurrence” between 
different activities. That is to say, it should know 
what strategies are available simultaneously, 
given the environment circumstances in this very 
moment. Given all those parameters, the aim of 
the simulation is to estimate and to measure the 
importance order and contributions of the dif-
ferent activities. 

A genetic algorithm randomly assigns a rank 
order and an intensity value to each of the 10 
activities. Using as constraints some knowledge 
about the group and the environment, this rank 
order and intensity value will be gradually modi-
fied, until arriving to equilibrium;
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1. A population of ordered sequence of activi-
ties is generated.

2. The efficiency of the sequence is calcu-
lated, reconstructing the decision process 
that would have allowed its adoption in the 
circumstance at hand.

3. The extracted decision rule is used to gener-
ate new economic decisions. 

4. Such decisions imply a new modification of 
the initial sequence of activities.

This way of using genetic algorithms for 
social simulation evolved in its turn into fully 
“cultural algorithms,” which is the name used 
by Reynolds in his last publications (Lazar and 
Reynolds, 2005; Reynolds, 1999; Reynolds & 
Chung, 1997; Reynolds & Peng, 2005; Reynolds 
& Saleem, 2005).

lEARNiNg iN uNCERtAiN 
CoNtExtS

Although it has been argued that inverse engineer-
ing methods provides knowledge allowing the 
solution of archaeological problems, we have to 
take into account that such a solution can never 
be certain because we cannot know the past with 
certainty. Absolute truth is not to be found in any 
empirical science, most especially in historical 
science. What distinguishes the historical sciences 
from purely laboratory sciences is their inability 
to know with near certainty the sequence of 
events that led to the complexity we see today in 
the present. Although uncertainty has long been 
recognized as being important in archaeology, it 
is still a problematic issue. It is not always clear 
what the term means, how it should be discussed, 
used, and measured, what its implications are. 
In general, the assumption seems to be that our 
knowledge or dataset on the phenomena under 
discussion is in some way imperfect.

Learning in an archaeological context is fast 
always uncertain because some indeterminacy 

may appear between actions of human activity and 
the visual and structural properties of the material 
consequences of such an activity. In particular, 
uncertainty about the initial conditions on which 
the basic process act limits the completeness of 
our understanding. With only a partial knowledge 
of the past, historical science provides a plausible 
account of the present, but the observed present 
may not be the only outcome of hypothesized 
events and processes. Good historical science 
is sufficient to account for the present, but the 
present is not a necessary consequence of what 
we know about the past.

Sometimes a social action happens, but the 
expected material consequence does not take place 
as expected. Other times, the entity we study does 
not seem to have experienced any perceptible 
change allowing the automated archaeologist to 
know if some social action or sequence of social 
actions had any causal influence. Even more:

 
• Diverse actions can determine the existence 

similar material effects.
• The same action not always will determine 

the same material effects.

There is always room for individual varia-
tion within collective action, and we should be 
aware that human work depends on the concrete 
circumstances in which it takes place, that is to 
say, of the social actions that simultaneously are 
being performed. For instance, social agents who 
elaborate pottery to contain liquids, not always 
will produce vessels with the same shape, size, 
composition, and texture, neither they should not 
use these containers in the same place nor waste 
them in the same way. Furthermore, the conse-
quences of single action may have been altered by 
the consequences of successive actions, in such a 
way that effects may seem unrelated to causes. 

The challenge is to derive a consistent map-
ping from a potentially infinite set of social ac-
tions trough time to a relatively small number of 
observable outcomes in the present. As a result, 
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causal explanations generated by the automated 
archaeologist are necessarily as ambiguous as the 
stimulus (description/measurement of archaeo-
logically observable features) they presumably 
encode. It is therefore difficult to understand how 
the information acquired by an intelligent machine 
could generate a problem solving procedure. This 
trouble is because the spatiotemporal pattern of 
empirical features the robot sensors capture does 
not sufficiently constrain a possible causal inter-
pretation of them. It is difficult to decide among the 
large number of possible explanations that could 
fit the variation of input data equally well. Put 
another way, it is difficult to know what the real 
underlying causes of the automatic archaeologist 
perceptions are, and what are mere coincidences 
or appearances (i.e., noise). The problem is that 
an infinite number of possible visual features 
can correspond to a particular material effect of 
a social action, and even this material outcome 
can be related in many different ways with many 
causing social actions. There are millions of rea-
sons why a knife is so long, why this wall is made 
of adobe and not of stones, why this decorative 
element was painted in red, etc. 

As a result, any mechanism of perceptual 
recognition is unlikely to be successful, simply be-
cause the output in response to a given stimulus can 
signify any of an infinite combination of features 
in the real world. It is thus impossible to derive by 
a process of logic the combination of these factors 
that actually generated the stimulus.

Archaeological problem solving is even more 
difficult because what the robot has archaeo-
logically perceived is not a “photograph” of the 
material effects of social action. There is not any 
direct, mechanic or necessary connection between 
cause and effect, that is, between the observation 
of physical properties and human work responsible 
of those characteristics. Even worst, the automated 
archaeologist does not have direct evidence for 
social actions performed in the past, so it is really 
a problem how to predict a social action given the 
presence of its effect. Consequently, regardless 

of how much evidence is present, the archaeolo-
gist, be a human or a machine, cannot read social 
causes directly from what has been preserved of 
the material consequences of causes that took 
place in the past. Determining whether the various 
frequencies of items in an assemblage or deposit 
have resulted from differential distribution, dif-
ferential preservation, or both is the problem. 
The actual combination of processes that could 
have given rise to specific physical properties of 
the archaeological record is nearly infinite, and 
so one cannot expect to find many simple corre-
spondences between lists of observables and the 
characteristics of their formation processes. One 
can hardly argue that uniformitarian principles 
may be formulated concerning the social scope 
of human communities, given the profoundly 
varied nature of social action. In fact, even recent 
methodological advances provide little or no ba-
sis for connecting such inferences to other than 
non-human process or differential representation 
and damage morphology. Current middle-range 
research has only produced simple inferences 
about the supposed universality human behavior. 
There are many actions and processes; both so-
cial and natural having acted during and after a 
primary cause, and also primary causes act with 
different intensities and in different contexts, in 
such a way that the effects may seem unrelated 
to their causes.

An additional difficulty in inverse engineer-
ing concerns the amount of noise in the training 
data. Increased amounts of noise tend to make 
learning more difficult overall. In some cases, 
the presence of noise is the result of the number 
of irrelevant features or attributes. If the concept 
to be acquired contains many such features, the 
learning system can have difficulty distinguish-
ing them from the relevant features that it should 
use in making predictions. In other cases, noise 
arises because the learner has access to incorrect 
feedback. In any case, the perceptual abilities of 
any human or machine will always be insufficient 
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to characterize completely the state of the external 
environment (Kaelbling, 1993).

A related issue involves the consistency of the 
knowledge domain over time. In some cases, a 
learned concept may suddenly cease to be valid, 
though it may retain partial overlap with the new 
situation. Such cases of concept drift can be dif-
ficult to distinguish from noise.

Both vagueness and ambiguity present major 
problems for machine learning. Up to the point 
that supervised learning approach to solving 
inverse problems may be too heavy in many cir-
cumstances. An algorithmic answer to the inverse 
problem seems to imply the necessity of formal 
logics, and this can be misleading in most social 
science situations, because of the complexity of 
the input-output relationship to be learnt. For 
example, vastly different social actions may have 
produced the same material consequences, at least 
within the accuracy limit of our observations. 
Furthermore, the circumstances and contexts 
(social and natural) where actions were performed 
and the processes (both social and natural) hav-
ing acted on that place after the original cause, 
may have altered the original effects of primary 
actions. Therefore, a hallmark of most inverse 
problems is that, if nontrivial and soluble at all, 
they have multiple solutions. That means that 
they are affected by the non-uniqueness that may 
arise. Non-uniqueness means that the true input-
output mapping cannot be selected from among 
a large set of possible mappings without further 
constraints imposed. While a forward problem 
has a unique solution, the inverse problem may 
have many solutions or no solution at all. In fact, 
the solution of an inverse problem is not a model 
but a collection of models that are consistent with 
both the data and the a priori information.

The fact that we cannot predict the precise 
material outcome of a single causal action, does 
not mean that an archaeological feature cannot 
be analyzed as caused by a series of social ac-
tions and altered by other series (or the same). 
Although we do not know what single actions 

have produced precise material consequences, we 
can relate the variability of observable features 
(shape, size, content, composition, and texture) 
with the variability of social actions through time 
and space. Consequently, we should infer the 
variability of social action from the variability 
of the archaeological record, and we must infer 
social organization from the variability of inferred 
social actions.

What we need are inverse reasoning methods 
that allow an automated archaeologist to predict 
a cause even when it is not tied universally and 
directly with its effect. Rather than assuming 
that data are generated by a single underlying 
event, it should be assumed that the environment 
could be modeled as a collection of idiosyncratic 
“processes,” where a process is characterized by 
a particular probabilistic rule that maps input vec-
tors to output vectors (Jordan & Jacobs, 1992). In 
other words, the automated archaeologist should 
be able to generate abstractions that may not 
exist explicitly in the sensor input, but which 
capture the salient, invariant visual properties of 
a generic causal model used as a solution to the 
perceptual problem. Therefore, what we need is a 
heuristic classification machine (Clancey, 1984), 
a classifier which has the smallest probability of 
making a mistake. 

Up to now, we have used standard logics for 
answering the inductive problem. The prediction 
that a material effect has been generated by a so-
cial action has been presented as a formal proof 
for the expression:

“percept a is member of category A”

That means that standard machine learn-
ing methods use the mechanism called logical 
implication. Suppose we have five attributes to 
determine explanation A. The logical implication 
needed is:

IF      object i  has attribute 1
AND attribute 2
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AND  attribute 3
AND attribute 4
AND attribute 5
THEN
   object i  is an instance of category A.

Let us call this rule “prediction P.” Archaeo-
logical descriptions (attributes) are elements of 
P because they are used in the prediction. A 
predictive element, such as attribute 5 may have 
any number of instances. However, an element 
must have only one instance in each prediction. 
Suppose now that given an incomplete observa-
tion of the true causal-effect relationship only 
two attributes have been measured, instead of 5. 
Following formal modus ponens the previously 
induced rule cannot be fired and object i cannot 
be assigned to category A. If we consider items 
one through five to be of equal importance, and 
we have to delete attribute 3 to 5 (because only 
attributes 1 and 2 are present in the observation), 
the explanation will be impossible because we the 
automated archaeologist has not enough descrip-
tive information.

This problem can be defined as the brittleness 
problem, that is, the inability of machine learning 
programs to give a “partial answer” in a graceful 
way (Sypniewski, 1994). The cause of brittleness in 
automated explanation is the use of an inadequate 
assumption about data. If we assume all necessary 
truths to express the idea of logical necessity are 
equally important to a proof, we are saying, in 
effect, that unless we can demonstrate all neces-
sary truths we cannot prove what we are trying 
to prove. This is the problem of brittleness.

To solve the problem we can consider that any 
element of P can be used in the prediction. We 
do not need that all attributes be present, but the 
necessary elements for predicting the explana-
tion given the observation. No reason exists why 
we cannot use the accidental elements of P, but 
they cannot substitute for one or more missing 
necessary attributes. This scenario provides a 
first glimpse into the definition of relevance. 

Some elements of P, while legitimate members 
of the prediction do not contribute to it (they are 
missing in the observed data set). If we remove all 
members of P that are accidents or are unneces-
sary for predicting, we are left with P1, which is 
composed of the necessary elements of P; all of 
them contribute to the prediction. The theory of 
relevance says that not all members of P1 neces-
sarily contribute to the predictive mechanism in 
the same way or to the same extent. The extent 
of that contribution is proved by the importance 
weight of every attribute or element (Ei). Any 
Ei that has a larger importance weight than an 
Ej is more important to a particular P than Ej. 
A predictive element that is irrelevant has an 
importance weight of 0.0; the same value has an 
attribute with missing value.

It is important to realize that no item of data 
has an intrinsic importance weight. All weights 
are relative to some P. Also, note that a particular 
situation may provide elements whose combined 
importance weights exceed 1.0. In those cases 
more data are available than is strictly necessary 
for a prediction.

The degree to which an attribute contributes 
to predict an explanation should be determined 
empirically. When we replicate in the laboratory 
(experimentation) or we control a series of obser-
vations (ethno-historical sources) the training data 
we need for learning the causal explanations, we 
will gather information about the elements of a 
prediction. If we introduce this material into a 
matrix, we see that some bits of information fill 
one cell of the matrix and some bits fill more 
than one cell. The number of cells filled with a 
particular piece of data or knowledge is a rough 
gauge of the importance of that particular piece 
of data or knowledge. As a rule, the more often 
a particular piece of data or knowledge appears 
in our hypothetical grid or matrix, the less im-
portant it is. We can say that if two predictions 
differ only by one item of data or knowledge, then 
this piece of knowledge is the most important 
item for that prediction. Consequently, a strong 
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importance weight is equivalent to a branch point 
in a decision tree. 

Accordingly, the solution of archaeological 
inverse problems should be approached within 
a probabilistic framework (Kaipio & Somersalo, 
2004; Tarantola, 2005). At one level, the major 
task of the system may be described as reducing 
uncertainty about the knowledge domain. In order 
to accomplish this, the system must learn about 
the variability characteristic of various proper-
ties and relationships, gaining knowledge of what 
falls inside the range of permissible variation for 
a category and what falls outside, in the region 
of the unclassifiable or intrinsically uncertain. In 
this way, our computational system will be able 
to learn partially predictive rules even if some 
irreducible amount of error variance cannot be 
accounted for.

Statistical inversion theory reformulates 
inverse problems as problems of statistical infer-
ence by means of Bayesian statistics. In Bayesian 
statistics, all quantities are modeled as random 
variables. The randomness, which reflects the 
observer’s uncertainty concerning their values, is 
coded in the probability distributions of the quanti-
ties. From the perspective of statistical inversion 
theory, the solution to an inverse problem is not 
a single estimate but a probability distribution 
of the quantity of interest, which can be used to 
produce estimates when all information avail-
able has been incorporated in the model. In other 
words, learning the mapping

m : A  B 

amounts to learning the probability distribution 
P(a,b) of the observation/explanation pairs. There 
are at least two different ways of doing this. One is 
to let the system model the average mapping from 
observations to explanations and then apply some 
distribution with this function as its mean value. 
The parameters of the distribution may vary with 
the stimuli so that the system can be more or less 
certain of whether the mean value is appropriate. 

Another approach is to let the system estimate 
the distribution of the observation/explanation 
pairs in an analytic form. In this way, since P(a | 
b) = P(a,b) / P(b), the conditional distribution (a 
posteriori density) can be calculated once some 
entity has been observed.

The basic and most general idea is quite simple 
(Tarantola, 2005): we should start with a probabil-
ity distribution representing the a priori informa-
tion, and the use of observations will narrow this 
distribution. The automated archaeologist begins 
by defining some probabilistic rules that randomly 
generate models of the system under study. These 
probabilistic rules should encapsulate all avail-
able a priori information on the system: the more 
a model is (a priori) likely, the more frequently it 
should appear in the random sample. Any possible 
model should eventually appear, but very unlikely 
models should appear very infrequently. Here, a 
priori information means information that is in-
dependent of the data used to modify this a priori 
information. The intelligent machine should use 
these probabilistic rules to generate many mod-
els. An explanatory theory should be introduced 
that, given a particular model of the system, is 
able to predict the result of some observations. 
Once all this knowledge is available, the problem 
solver runs a prediction for all the models of the 
(a priori) sample. For each of the models, this 
prediction of the observations is compared with 
the actual observations, and a sensible criterion 
is applied to decide which models of the a priori 
sample can be kept (because they fit the data) or 
must be discarded (because they are unfit). The 
few models that have been kept represent the most 
general solution of the inverse problem.

This solution is too abstract to be of interest 
to solve practical problems. Therefore, we will 
study alternative ways to deal with uncertainty in 
training data and explanatory concepts through 
fuzzy numbers and rough sets.

Fuzzy logic deals with uncertainty. It holds 
that all things are matters of degree. It measures 
the degree to which an event occurs, not whether 
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it occurs. Mathematically fuzziness means multi-
valuedness or multi-valence and stems from the 
Heisenberg position-momentum uncertainty 
principle in quantum mechanics. Multi-valued 
fuzziness corresponds to degrees of indetermi-
nacy or ambiguity, partial occurrence of events 
or relations. In 1965, Lofti Zadeh introduced the 
concept of fuzzy set, as a way to represent the 
logical nature of categories (Zadeh, 1965; Zadeh et 
al., 1996). Fuzzy sets are constituted by elements; 
however, those elements are not crisp instances of 
the categories, but elements that belong only to a 
certain degree. The essence of fuzzy logic is then 
the notion of fuzzy membership as a continuous 
value measuring the degree to which element x 
belongs to set A (Bezdek & Pal, 1992; Cox, 1993; 
Dubois et al., 1994; Kosko, 1992, 1993; Ragin, 
2000; Smithson, 1988; Tanaka, 2004). 

Degrees of truth are often confused with the 
conditional probabilities of the causal statement of 
the form P(Y|X), where Y is the cause we would 
like to condition on X, which is the set of effects we 
have observed in experimental or ethno-historical 
circumstances. However, they are conceptually 
distinct. Fuzzy truth represents membership in 
vaguely defined sets, not likelihood of some event 
or condition. To illustrate the difference, consider 
this scenario: an archaeological artifact has been 
found in the remains of a house with two adjacent 
activity areas: room A and an open court. The 
artifact should be either “in room A” or “not in 
room A.” What does happen if the artifact has been 
found in an imprecise area between room A and 
the open court? It may be considered “partially 
in room A,” and also “partially in the courtyard.” 
Quantifying this partial state yields a fuzzy set 
membership. With only a part of it in the court, 
we might say the artifact is 99 percent “in room 
A” and 1 percent “in the court,” for instance. 
No prediction will resolve the artifact to being 
completely “in room A” or “not in room A,” as 
long as it has been found somewhere in between. 
Fuzzy sets are based on vague definitions of sets, 
not randomness.

Fuzzy logic permits ambiguous instances to 
be included in a fuzzy set through a membership 
value. The degree of membership is given by the 
membership function, which has a value between 
0 and 1. The interpretation is that 0 means no 
membership (or that the instance is certainly not 
in the set) and 1 notes complete membership (or 
that the instance is certainly in the set). A value in 
between denotes a partial or uncertain member-
ship. Fuzzy logic thus overcome a major weak-
ness of crisp sets: they do not have an arbitrarily 
established boundary separating members from 
non-members. I do not think that archaeological 
predictive explanations have to be intrinsically 
fuzzy, but predictions will only be computed if 
explanations are described in a fuzzy way. If we do 
not know how an instance relates with its concept, 
the relationship is not fuzzy or any other kind. 
We should know something about the nature of 
the relationship, before saying that it is crisp or 
fuzzy. Fuzziness is just one kind of relationship, 
with a so complex function, full of local values, 
that it cannot be expressed in any other way. 

Let us imagine that P, a proof for a predictive 
assignment, is a set. Then P = {attribute 1, attribute 
2, attribute 3, attribute 4, attribute 5}, where each 
attribute or descriptive feature are the elements 
of proof needed to prove P (for example, to prove 
this artifact is a knife and was used during late 
Paleolithic times). We can assume that “Paleolithic 
knives” (P) is a fuzzy set, and consequently, each 
element has a membership value. Given the fact 
that P is fuzzy, the membership value for each 
element is a continuous number between 0 and 1, 
meaning the importance weight of that attribute 
in the logical implication described by P. In this 
case, fuzziness is only a general methodology to 
compute the sum of partial implications. 

We can translate logical implications (proof 
of predictive assignments) using fuzzy rules, 
where the output of the rules is a fuzzy set, whose 
members are the elements of the prediction. Each 
element, as a member of a fuzzy set, has a fuzzy 
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membership value or importance weight. For 
instance, 

IF object i’s VASE PROFILE is concave  
(0.875) 

  object i’s VASE RIM has shape B  (0.358)
 object i’s VASE MAXIMUM DIAMETER 

is on top of the pot   (0.47)
THEN 
   object i  was produced by ACTION A 

The values in the rule’s antecedent are fuzzy, 
because they belong to a fuzzy set. These values 
are not the confidence we have in that informa-
tion, but the importance this prediction has in 
explanation A‘s logical implication. To evaluate 
these rules, a fuzzy logic algorithm computes the 
degree to which each rule’s situation applies. The 
rule is active to the degree that the IF part is true; 
this in turn determines the degree to which each 
THEN part applies. Since multiple rules can be 
active simultaneously, all of the active rules are 
combined to create the result. At each cycle, the 
full set of logical implications is scanned to see 
which fires. A rule or logical implication will fire 
when its condition made up of a (fuzzy) logical 
combination of its antecedents, results in a non-
zero value. Each rule therefore samples its inputs 
and calculates the truth value of its condition from 
the individual importance weight of each input. In 
these way, the fuzzy membership function of each 
element acts as a kind of restriction or constraint 
on the classification process. 

Translating crisp-set membership values (only 
zero or one) to fuzzy-set membership values 
(anything from zero to one), we can transform 
necessary conditions for firing a rule into mere 
sufficient conditions. Fuzzy systems directly en-
code structured knowledge in a numerical frame-
work, where each rule stands for an input-output 
transformation, where inputs are the antecedent 
of fuzzy rules, and outputs are their consequent. 
In our case, inputs are the descriptive features we 
can measure on fragments of broken artifacts, and 

outputs are an assignation of the fragment to an 
artifact or class of artifacts. Most fuzzy systems 
represent inputs and outputs as membership func-
tions whose interactions are the bases for rules. 
The fuzzy input and desired output ranges are 
based on fuzzy set values and they are used to 
create a matrix called fuzzy associative memory. 
When actual input values enter the system, the 
entire memory fires at once, producing multiple 
outputs. Each input’s membership in the fuzzy 
input sets must be calculated -this is called the 
truth value or importance weight-. The informa-
tion from all inputs is then applied to the rule base, 
which results, for each system output, in several 
fuzzy outputs. Since system inputs have multiple 
fuzzy values and each can be involved in the trig-
gering of multiple rules, since each rule can have 
several fuzzy input values for its antecedents and 
each rule also can produce several outputs, and 
since each output itself has multiple fuzzy values, 
this process become quite complex.

Fuzzy logic is an organized and mathemati-
cal method of handling inherently imprecise 
concepts. Fuzzy logic and probability refer to 
different kinds of uncertainty. Fuzzy logic is 
specifically designed to deal with imprecision of 
facts (fuzzy logic statements), while probability 
deals with chances of that happening (but still 
considering the result to be precise). However, 
this is a point of controversy. Many statisticians 
are persuaded that only one kind of mathemati-
cal uncertainty is needed and thus fuzzy logic 
is unnecessary. On the other hand, Bart Kosko 
(1993) argues that probability is a subtheory of 
fuzzy logic, as probability only handles one kind 
of uncertainty. He also claims to have proven a 
derivation of Bayes’ theorem from the concept 
of fuzzy subsethood. 

An alternative to fuzzy logic is rough sets 
theory, based on a mathematical concept given by 
Pawlak (1991) (see also Ziarko, 1994). The primary 
notion of the theory of rough sets is the idea of 
approximation space: a partition of the domain 
of interest into disjoint categories. The partition 
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formally represents our knowledge about the do-
main, for example, in terms of features of objects 
belonging to the domain. Assume the intention is 
to discover rules predicting the ancient use of a 
tool, depending on attributes describing its shape, 
size, and texture. The attribute “use” is selected as 
a decision attribute (or dependent attribute). The 
rest of the attributes, “circularity,” “irregularity,” 
“volume,” “coarseness,” “decoration,” etc. are 
then the condition attributes (independent attri-
butes). The building of an approximation space 
implies forming equivalence classes among those 
traces. They are groups of objects in which the 
condition attribute values are the same.

An indiscernibility relation exists between two 
objects when all their attribute values are identical 
with respect to the attributes under consideration, 
and thus cannot be discerned (distinguished) 
between by regards of the considered attributes. 
The discernibility function f(B) computes the 
minimal sets of attributes required to discern any 
equivalence class from all the others. Similarly, 
the relative discernibility function f(E,B) com-
putes the minimal sets of attributes required to 
discern a given class E from the others. We can 
then build a discernibility matrix. This is a chart 
where equivalence classes appear on each axis and 
the values in the chart represent the attributes that 
distinguish each class from each other. 

Classes are considered vague classes if there 
is more than one value for the decision attribute. 
The lower approximation of X is the collection 
of objects classified with full certainty as mem-
bers of the set X. The upper approximation of X 
is the collection of objects that may possibly be 
classified as members of the set X. The boundary 
region comprises the objects that cannot be clas-
sified with certainty to be neither inside X, nor 
outside X. Any subset defined through its lower 
and upper approximations is called a rough set. 
The rough membership function (RMS) expresses 
how strongly an element x belongs to the rough 
set X in view of information about the element 
expressed by the set of attributes B.

However, not all of the attributes may be 
necessary to form the equivalence classes. One 
problem is whether some of the attributes in a 
decision system are redundant with respect to the 
object classifications. If an attribute set preserves 
the indiscernibility relation, then the attributes 
that form the set are said to be dispensable. All 
minimal subsets, in terms of size, of attributes 
that preserve the relation are called reducts, and 
we can define the full set of reducts in terms of 
the discernibility matrix. 

Besides the full reducts defined above, we 
can define reducts that are relative to a particular 
object. We call these object-related reducts. If 
indiscernibility is relative to an object x, two other 
objects y and z are considered to be indiscernible 
in comparison with x. Reducts that are related to 
a particular object x are called x-relative reducts, 
since they contain the minimum information 
needed to select that particular object from other 
objects in the original training data set. What this 
implies is that a relative reduct contains enough 
information to discern objects in one class from 
all the other classes in the information system.

Learning with rough set methodology implies 
the computation of the full set of reducts, chosing 
the set of minimal ones, and pruning the data 
table vertically. Then the object related reducts 
are computed and the exhaustive decision rule 
system is generated. The goal of the rough sets 
learning method is to be able to find important 
dependencies in the data set, even when there is a 
degree of inconsistency and vagueness in it. Rules 
represent dependencies in the dataset, which can 
be used to classify new objects not in the original 
information system. To transform a reduct (rela-
tive or not) into a rule, one only has to bind the 
condition attribute values of the object class from 
which the reduct originated to the corresponding 
attributes. Then, to complete the rule, a decision 
part comprising the resulting part of the rule is 
added. This is done in the same way as for the 
condition attributes.



  ���

Computer Systems that Learn

It must be emphasized that the concept of 
rough set should not be confused with the idea 
of fuzzy set, as they are fundamentally different, 
although in some sense complementary, notions. 
The idea behind rough sets is to approximate a 
set of interest in terms of other sets. Fuzzy sets 
are good approaches for problems with multiple 
membership grade requirements, where judg-
ment on set membership grades is possible, and 
where the ability to deal with vague predicates 
is required. They are very good for real-valued 
data. On the other hand, rough sets with the three-
valued simplicity, lower, upper, and boundary 
approximation sets, work well on discrete and 
categorical data. Rough sets can be useful even 
with missing data, changes of scale, and problems 
where membership grades are hard to define, and 
problems requiring changes in the partition.

Both fuzzy and rough sets approaches have 
been used in archaeological research. Lazar and 
Reynolds (2002) have applied rough sets to the 
study of ancient societies of Highland Meso-
america, Valley of Oaxaca. The authors employed 
rough set concepts in order to represent the domain 
knowledge. The hypotheses are represented as 
sets of decision rules and the extracted rules are 
represented in terms of rough sets. 

The goal was to predict the occupation of a 
terrace in the Monte Albán archaeological site for 
each archaeological period in order to answer the 
questions. The analyzed database contains over 
2,000 residential sites at the Monte Albán urban 
center. Each site is comprised of one or more com-
ponents occupied in one or more archaeological 
phases, spanning a period from approximately 
9000 B.C. to 1500 A.D. Thus, the total spatial 
and temporal scope is so vast as to make manual 
interpretation a difficult if not impossible task. 
In addition, each temporal and spatial instance 
of a site component can be described in terms of 
several hundred variables of different types. 

The problem to solve here is to discern the 
differences between the sites occupied in early 
I and late I periods in terms of the location and 

cultural attributes. The experts provided a list 
with the diagnostic pottery types for these two 
periods. Predominant type from Early I period, 
from 500 B.C. to 300 B.C., is named Ia, and ce-
ramic types from Late I period, from 300 B.C. 
to 200 B.C., combines Ib and Ic since a clear 
distinction between Ib and Ic cannot be made 
with the available data. Two binary variables 
were constructed for Early I and Late I for each 
site. A zero means that the site was not present in 
the respective period, and 1 means present. Since 
there are not any sites present in Early I period 
and absent in Late I period, the authors recoded 
the two variables in the following way:

 
0 means the site is present in both early I and 

late I, 
1 means the site is present in late I, but not in 

early I, 
2 means the site is present neither in early I 

nor in late I, and 
3 was designated for site present in early I and 

not in late I. 

This configures the decision attribute. Only 
the sites with values 0 and 1 for the decision 
attribute were selected for further processing. 
Out of the 92 attributes, only 74 were selected 
because some of them were not significant for the 
concrete problem. For this experiment, 875 sites 
were processed, 306 sites with a 0 value, and 569 
with a 1 value for the decision attribute. 

The reducts gives an idea about the most 
important variables, related to the decision the 
researchers want to make. They are related pri-
marily with location; that is, east square number 
and area designation, with elevation, vegetation, 
structures presents in the site and tools. The 
authors picked the 20 attributes in the smallest 
reduct, and using the object-related reducts, they 
generated an exhaustive set of decision rules. It 
contained 16,574 rules. The rules were divided 
in two subsets, one for decision attribute value 
0, and one for the decision attribute 1. After that, 
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they performed a quality-looping filter and kept 
approximately 20 rules for each class. Some of 
the rules are shown below:

IF east square No.10, AND damage due to 
erosion and plowing (none), AND plaster 
floor or floors visible on the surface(present), 
AND pottery density (sparse to light),

THEN the site is present in both early I and late 
I.

IF “barranca” or wash adjacent (absent), AND 
special resources (none), AND presence of 
well-defined structure or structures less 
than 1 meter (present), AND plaster floor 
or floors visible on the surface (present),

THEN the site is present in both early I and late 
I.

IF east square No.10, AND area designation (2), 
AND damage due to erosion and plowing 
(none), AND plaster floor or floors visible 
on the surface (present),                                                                    

THEN  the site is present in both early I and late 
I.

IF elevation of the terrace in meters above the 
valley floor, is up to 375, AND “barranca” 
or wash adjacent (absent), AND vegetation 
(grass and brush), AND prevailing wall 
orientations (none), AND number of whole 
or fragmentary “manos” (1),

THEN the site is present in both early I and late 
I.

There are not many other applications of this 
uncertainty tool in archaeology. Of related inter-
est can be the prediction of soil characteristics 
based on chemical, biological and mineralogical 
composition (Ding et al., 2006).

Fuzzy sets have more applications in archae-
ology, probably because it is a more general ap-
proach than rough sets. The idea is that of learning 
instead of general rules, fuzzy definitions for 
archaeological classes of artifacts (Borodkin & 
Garskova, 1995; Canal & Cavazzoni, 1990; Pop 
et al., 1995).

Barceló (1996) has used fuzzy functions to 
predict the shape of phoenician pottery vases from 
the observation of broken sherds. Determining 
shape from part of a vessel is limited by the fact 
that potters made vessels for different purposes 
starting with a few basic shapes. Since potters 
worked by combining standard elements—base, 
bodies, rims, handles and so on—it has not always 
been possible to infer the complete shape from the 
fragments present in a deposit, because rims and 
bases of similar size and shape might actually have 
come from vessels of differing size and shape. If 
one is trying to study pottery shapes using only 
fragmented material, then the definite absence of 
certain features may become as important a point 
to record as their presence. The usual assumption 
that all attributes have equal relevance is wrong 
in that case. The solution was to consider that 
the explanation (the shape of the whole pot) is a 
fuzzy set, and building predictive rules in terms 
of fuzzy sets.

Another application of fuzzy methods to 
build typologies has been published by Hermon 
and Nicolucci (2002, 2003). The idea is to study 
archaeological artifacts as object classes with 
no exactly defined boundaries between them. 
For example, the descriptive variable “angle of 
retouch,” extensively used in definitions of flint 
tool types, may have several potential values, 
like “abrupt,” “semi-abrupt” or “low,” which 
not always correspond to exact angles, or, even 
if so, when translated into real work, few are 
the typologists who actually measure them. The 
problem becomes more serious if these variables 
are used as defining criteria of types, sometimes 
with a blur boundary between them: a scraper 
versus a retouched flake, or truncation. The 
authors introduce the idea that “several truths” 
are possible, and they build a typology so that 
an item can be fuzzy assigned into more than 
one category. If there are some doubts for the 
explanation of an item, there is no need to firmly 
decide, but instead this doubt can be expressed by 
assigning the element to more than one single and 
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crisp category. Hermon and Nicolucci calculate a 
fuzzy “reliability” index for each artifact taking 
into account the spread of possibilities assigned 
to each item (the number of different assignments, 
considered possible for that item). In this way, an 
archaeological inventory list would emphasize 
alternative classifications and it would be based 
on the reliability index for each element. There 
are several immediate implications to the use of 
fuzzy membership rules: problematic ascriptions 
are easily identified (low reliability index) and can 
be further excluded prior drawing conclusions 
from the analyzed assemblage. Moreover, modal 
categories can be easily identified and decided 
upon their integration into a single type.

Hermon and Niccolucci approach has been 
also applied to other categories of archaeological 
research, notably to the analysis of survey data 
and the definition of chronological maps that 
express the level of confidence on survey data 
(Farinetti et al., 2004).

Nicolucci and colleagues (Crescioli et al., 
2000; Nicolucci et al., 2001) suggest the necessity 
of fuzzy logic to estimate how much a funerary 
sample is representative of the community. The 
authors show how some attributes of burials can be 
transformed into fuzzy entities: gender and age of 
the deceased, burial in a tomb, and the chronology 
of the burial. Such entities are in fact fuzzy labels 
and fuzzy values. A fuzzy label in this context 
is a nominal element and a number in [0,1]. The 
nominal elements are chosen from the common 
domain, so different instances of the fuzzy label 
consist of the same nominal elements, possibly 
with different coefficients. Regarding fuzzy val-
ues, the required function is approximated by a 
piecewise linear function. This fuzzy description 
is only used for data query, and not for predicting 
relationships. That is to say, the authors estimate 
demographic trends (numbers of individuals) as 
a weighted addition of fuzzy categories.

Beaver (2004) has also used fuzzy sets for 
interpreting bone density measures, meat utility 

indexes and percentage of survivorship of animal 
bones in archaeological contexts. The key con-
tention is here that the relationship between the 
frequency of different skeletal parts, their utility 
and their survivorship in the archaeological record 
are not the result of deterministic linear or cur-
vilinear relationships distorted by noise, but they 
are the result of a limiting relationship between 
the causal and outcome variables.

Spatial analysis has also been an area of ap-
plication for fuzzy logic. Archaeologists have 
been very interested in considering imprecise 
locations of archaeological sites and/or imprecise 
chronologies in terms of fuzzy membership rules 
(Borodkin, 1999; Ergin et al., 2004; Foody, 2003; 
Hatzinikolaou et al., 2003; Loots et al., 1999; 
Reeler, 1999). Using these tools and methods, 
site location prediction is made possible, even in 
the case of imprecise training data. For instance, 
Hatzinikolaou et al. (2003) used a general database 
with archaeological sites in the island of Melos 
(Aegean Sea), where the sites were grouped in two 
major categories, according to the classification 
of a site survey:

• Settlements
• Special purpose sites, including agricultural 

units, mining units and observatories

The decision attribute is the nature of the site, 
whereas the conditional attributes are expressed as 
different GIS thematic layers with spatial informa-
tion about the geographical location of streams, 
springs, agricultural land, obsidian sources, slope, 
hills, bays, capes. The geographical location (x, y) 
of the main center in the island (Philakopi) was 
also entered as another conditional attribute. All 
those attributes were fuzzified using the imprecise 
category of “distance,” with just two fuzzy val-
ues: “short” and “long.” Using the percentage of 
certainty assigned by a group of human experts 
about the relevance of such attributes, fuzzy 
predictive rules were extracted:



���  

Computer Systems that Learn

•	 If the distance from a stream is short and 
distance from agricultural land is short and 
slope is smooth then it is a settlement with 
60 percent certainty

•	 If the distance from a stream is short and 
distance from a bay is short and slope is 
smooth then it is a settlement with 80 percent 
certainty

•	 If it is a hill and distance from a bay is short 
then it is a settlement with a 70 percent 
certainty

•	 If distance from a spring is short and distance 
from agricultural land is short and slope 
is smooth then it is a settlement with a 60 
percent of certainty

•	 If distance from a cape is short and it is 
visible from Phylakopi then it is a special 
purpose site with 85 percent certainty

•	 If distance from agricultural land is short 
and slope is smooth and distance from a 
spring is short, then it is a special purpose 
site with 85 percent certainty

Leonid Borodkin (1999) has published a very 
interesting work that goes well beyond passive 
classification of observed data. The goal of his 
project was to determine the “fuzzy boundaries” 
within which two distinctive types of economic 
development: the manorial and the peasant types. 
The conditional attributes used considered the 
range and intensity of hired labor, the nobility’s 
role in landownership, the availability of land, 
and certain characteristics differentiating peas-
ant households:

•	 The proportion of peasant households with 
one horse or with none;

•	 The proportion of peasant households with 
four or more horses;

•	 The ratio of nobles’ land to all cultivated 
land;

•	 The ratio of hired agricultural laborers to 
all local workers in agriculture;

•	 The number of agricultural workers per 
cultivated area;

•	 The ratio of sold land (privately owned) to 
all privately owned land;

•	 The ratio of lands rented by peasants to 
peasant parcels of land;

•	 Average wages of day laborer.

Working from these variables, the author 
divided Russian provinces into two groups, de-
pending on the predominant kind of economic 
system. Baltic provinces were assigned to the 
manorial variant and the Steppe provinces served 
to characterize peasant variant, given historical 
descriptions. These two groups provided the 
decision attribute the system generalized in a 
fuzzy way, given a fuzzy membership value for 
each one.

Arkadiusz Salski and colleagues (Salski, 1992, 
1996, 2002; Salski & Kandzia, 1996; Salzki et 
al., 1996) have applied these ideas of uncertain 
reasoning in environmental studies. Environ-
mental data or classes of ecological objects can 
be defined as fuzzy sets with not sharply defined 
boundaries, which reflect better the continuous 
character of nature. Ecological data are often 
presented with a semblance of accuracy when 
exact values cannot be ascertained. They can be 
estimated subjectively (e.g., the plants cover about 
20 percent of the surface area) or inter- or ex-
trapolated. Using the usual sharp cluster analysis, 
these difficulties often cannot sufficiently be taken 
into account. Conventional clustering methods, 
which definitely place an object within only one 
cluster, are not particularly useful for a classifica-
tion of ecological data. With fuzzy clustering, it 
is no more essential to definitely place an object 
within one cluster, since the membership value 
of this object can be split up between different 
clusters. In comparison to conventional cluster-
ing methods the distribution of the membership 
values thus provides additional information; the 
membership values of a particular object can be 
interpreted as the degree of similarity between 
the object and the respective clusters (Salski & 
Kandzia, 1996).
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For a general overview of fuzzy methods in 
paleoecology, see Jackson and Williams (2004).

diRECtEd gRAPhS ANd 
PRobAbiliStiC NEtwoRkS 

Let us transform into a graphical model the previ-
ous example on the chronological statement of a 
series of potteries based on size and decoration 
(Figure 3.7). The idea is to transform the origi-
nal decision tree (Figure 3.3), where arcs had no 
meaning at all, into a directed graph, where an 
arrow will denote an influence. “Big size influ-
ences late chronology” means that knowing the 
right size of the vase (“big”) would directly affect 
the automated archaeologist’s expectation about 
the value of chronology (“late”). Here we are 
assuming that “influence” expresses knowledge 
about “relevance.” 

When an influence diagram like this receives 
probabilistic information about the degrees of 
influence between variables, it becomes a Bayes-
ian Network. Bayesian networks are directed 
acyclic graphs whose nodes represent variables, 
and whose arcs encode the conditional dependen-
cies between the variables (Castillo et al., 1997; 
Jordan, 1999, 2001; Neapolitan, 1990, 2003; Pearl, 
1988). The arcs in a Bayesian network specify 
the independence assumptions that must hold 

between the random variables. These indepen-
dence assumptions determine what probability 
information is required to specify the probability 
distribution among the random variables in the 
network: two variables are independent if all the 
paths between them are blocked (given the edges 
are directional). If node Xi has no parents, its 
local probability distribution is said to be uncon-
ditional, otherwise it is conditional. In this way, 
conditional independence is represented by the 
graphical property of d-connection:

1. X and Y are d-connected by S if and only 
if there is an active path between X and Y 
given S. Intuitively, X and Y are d-connected 
if and only if information can “flow” from 
X to Y

2. X and Y are d-separated given S if and only 
if X and Y are not d-connected given S.

3. X and Y are independent given S if and only 
if X and Y are d-separated given S and X and 
Y are not d-connected given S

The main use of probabilistic or Bayesian 
networks is when the user knows some evidence 
that has actually been observed, and wishes to 
infer the probabilities of other events, which have 
not yet been observed. For instance, what is the 
probability that in later assemblages only big sized 
vases were present? That means to compute every 
hypothesis’s belief (the node’s conditional prob-
ability) given the evidence that has been observed 
so far. This process of computing the posterior 
distribution of variables given evidence is called 
probabilistic inference.

We need archaeological observations to define 
such conditional probabilities. Using the data, 
we know that the probability of finding big sized 
potteries in late contexts is 0.75, whereas the prob-
ability of finding medium sized potteries in the 
same assemblages is only of 0.25. What are then 
the chances that big sized vases be the dominant 
pottery type at that chronological moment, con-

Figure 3.7. An influence diagram showing the pot-
tery-chronology relationship from Figure 3.3

Medium size Big size

Late chronology
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ditioned on the chance that other sizes were also 
present at the same time?

For decades, Bayes’ theorem has been used 
to perform probabilistic inference in this type of 
situation (Buck et al., 1996). It allows to update 
the values of all the other probabilities in the 
graphical model, and to answer probabilistic 
queries about them.

The probability of a joint event is determined 
by:

P (E1 , E2 ) = P (E1) P (E1 | E2 )  (6)

It can also be expressed as:

P (E1 , E2 ) = 1 2

1

( , )
( )

P E E
P E

   (7)

Suppose our automated archaeologist is 
studying a prehistoric cemetery and is trying to 
infer the social status of buried people. Several 
archaeological observables are related through 
inference chains. For instance, whether or not 
an individual can be conceptualized as a “rich 
man” or member of some social elite has a direct 
influence both on whether his body was cremated, 
and on the amount of labor that was invested in 
the burial rite. In turn, the probabilities for those 
events have a direct influence on whether there are 
decorated urns to contain the cremated remains 
of the individual. In addition, the amount of labor 
that invested in the burial rite has a direct influ-
ence on the visibility of the burial. In this situa-
tion, the automated archaeologist would need to 
do probabilistic inference involving features that 
are not related via a direct influence. It would de-
termine, for instance, the conditional probability 
both of cremation and a great quantity of grave 
goods (what supposes a huge amount of labor) 
when it is known that the individual was a “rich 
man,” there is a decorated urn in the grave, and 
the grave was very visible. Alternatively, having 
observed the poor visibility of the grave, the ab-
sence of cremation, and the absence of decorated 
urn it would be necessary to infer the conditional 

probability of the social status of the inhumated 
individual, and the amount of labor invested in 
the rite. Yet, the cremation or inhumation of the 
body has no influence on the visibility of the 
grave. Therefore, the conditional probabilities 
cannot be computed using a simple application 
of Bayes’ theorem (Figure 3.8).

Obviously, in order to fully specify the Bayes-
ian network and thus fully represent the joint 
probability distribution, it is necessary to further 
specify for each node X the probability distribution 
for X conditional upon X’s parents (Figure 3.9). 
That is to say, one must give the prior probabilities 
of all root nodes (nodes with no predecessors) and 
the conditional probabilities of all non-root nodes 
given all possible combinations of their direct 
predecessors. If the variables are discrete, as in 
this case, it can be represented as a table, which 
lists the probability that the child node takes on 
each of its different values for each combination 
of values of its parents. The skeptic might still 
wonder how the numbers that are still required 
are obtained. In this case, it has been done just 
by measuring the frequency of different kinds 
of burials. The problem is with the non-observ-
able or conceptual nodes, like the “rich man.” 
In such cases, we should base our analysis in 
prior knowledge (ethno-archaeological analogy, 
for instance), or accept that such probabilistic 
values can be elicited from an expert in terms of 
beliefs or accepted uncertainty. We have already 
commented some aspects of this problem in the 
section on fuzzy logic.

John O’Shea (2004) has followed this ap-
proach in his analysis of ship archeology. This 
author uses a Bayesian network to estimate the 
character of wreck sites. After establishing the 
likelihood that some observable features would 
be found with a sail or steam boat, respectively, 
the network estimates the probability that each 
element would be present, if the site represents a 
true wreck site or if it is a secondary debris ac-
cumulation. With this information, the program 
estimates the probability that each feature will or 
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Figure 3.8. An influence diagram showing the dependences between variables in a burial archaeological 
analysis 

“Rich man” 

 cremation 

Labour invested 

  Decorated urn 

Grave visibility    

P (“high status”) =0.2

Probability of cremation Probability of high amount of
conditional on high status = 0.25 labor conditional on high status= 0.003

Probability of cremation Probability of high amount of
conditional on low status = 0.05 labor conditional on low

status= 0.0005

Probability for decorated urn Probability for high visibility
Conditional on presence of cremation conditional on high amount
and high amount of labor = 0.75 of labor = 0.6

Probability for decorated urn Probability for high visibility
Conditional on presence of cremation conditional on high amount
Conditional on low amount of labor = 0.75 of labor = 0.02

Probability for decorated urn
Conditional on absence of cremation
and high amount of labor = 0.5

Probability for decorated urn
Conditional on absence of cremation
and low amount of labor = 0.05

Figure 3.9. Estimating the probability distribution for X conditional upon X’s parents in a Bayesian 
network
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will not appear in the archaeological assemblage. 
It is then simply a matter of filling in the blanks to 
indicate what kind of site it is, and which features 
are, or are not, observed.

We can make a step beyond and consider that 
such a network of variables and directed edges 
represents cause-effects relationships (Glymour, 
2001; Pearl, 2000;  Sloman, 2005; Woodward, 
2003). In this case, we are assuming that there is 
an arrow from X to Y in a causal graph involving 
a set of variables V just in case X is a direct cause 
of Y relative to V. The model consists in the causal 
graph together with the probability distribution 
of each variable conditional on its direct causes. 
Probabilistically speaking, if X causes Y, the oc-
currence of X will change the probability that Y 
will occur. When we see that X is correlated to Y, 
that is to say, the probability if X is consistently 
related to the probability of Y, we can conclude 
that X caused Y (or vice-versa).  

There is a problem, nevertheless. Other events 
might also be causally related to Y, and some 
other event Z might be a common cause of both 
X and Y. Although X does not cause Y, whenever 
Z occurs both X and Y will occur together. For 
example, I may notice that when sheep bones 
are found at an archaeological site, some pottery 
vases are also found in the same context. It could 
be that the herding of sheep is causally related to 
the presence of pottery containers for milk pro-
cessing, for instance. It could be, however, that 
sheep bones and pottery sherds appear together 
at garbage pits. Pottery vases were not containers 
for milk, but they were transformed into garbage 
when they finished its active life. Both become 
refuse material, and this might be responsible for 
the spatial correlation between the two events. 
X would be correlated to Y and yet it would be 
wrong to conclude that there was a causal relation 
between them. 

Clearly, what we need in these cases is to have 
some way of considering the probability of X and 
Y relative to the probability of Z. Consider the 
case of the location of the sheep bones and the 

pottery sherds. How could I find out which causal 
hypothesis is correct? I could observe the rela-
tive probabilities of the three events. If I observe 
pottery sherds only appearing near sheep bones 
at archaeological sites, and not near bovid or pig 
bones, I conclude that the function of the pottery 
related to the use of the sheep is the cause of this 
particular spatial location. If I observe that pottery 
sherds appear with any other kind of material, but 
always fragmented, I could conclude that refuse 
is the cause. Alternatively, I might observe that 
both factors contribute independently to the loca-
tion of such traces. We can represent this sort of 
reasoning more formally as follows. If X, Y, and Z 
are the only variables and X is only correlated to 
Y conditional on Z, Z “screens off” X as a cause 
of Y, and Z rather than X is the cause. If X is cor-
related to Y independent of Z, then Z does not 
screen off X and X causes Y. For each causal link 
Cause  Effect, the probability distribution of Y 
conditional on X and Y’s other causes Z1, . . . , Zk 
should be provided; this can be used to determine 
the degree to which changing the value of X from 
x to x’ brings about the value y of Y.

The Markov assumption is a generalization of 
the “screening off” property we just described. 
It says that if the edges of the graphs represent 
causal relations, then the various possible values 
of any variable, X, are independent of the values 
of any set of variables in the network that does not 
contain an effect (a descendant of X), conditional 
on the values of the parents of X. A probability 
distribution in a directed acyclic graph satisfies 
the Markov condition if the probability of each 
variable/node is independent of its non-descen-
dents conditional on its parents. That means, 
variables are independent of their non-effects, 
and conditional on their direct causes. 

Consequently, in a causal graph two nodes 
are d-connected if either there is a causal path 
between them or there is evidence that renders 
the two nodes correlated to each other. To put it 
another way, if two things can cause the same 
state of affairs and have no other connection, 
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then the two things are independent. This fact 
leads to a Causal Faithfulness assumption: the 
only independencies are those predicted by the 
Markov assumption. Both assumptions encode 
the intuition of screening off. Given the values 
of the direct causes, learning only the value of a 
non-effect does not help in the prediction.

For instance, suppose the automated archaeolo-
gist has observed an archaeological object with 
shape s. There are two possible causes for this: it 
was manufactured either to cut or to scrap. Which 
is more likely?

In this example, the two causes “compete” to 
“explain” the observed data. Hence, cutting and 
scrapping become conditionally dependent given 
that their common child, shape s, is observed, 
even though they are marginally independent. 
Here we have evidence of an effect (shape s), and 
want to infer the most likely cause. This is called 
diagnostic, or “bottom up,” reasoning, since it goes 
from effects to causes; it is the basis of the inverse 
reasoning approach presented in this chapter. 
Bayes nets can also be used for causal, or “top 
down,” reasoning. For example, we can predict 
the probability that an artifact will have shape s 
given the amount of evidence for scrapping or 
cutting activities at place. Hence, Bayes nets are 
often called “generative” models, because they 
specify how causes generate effects. The graph 
allows an automated archaeologist predict the 
causal consequences of an historical event with-
out actually having to perform it. The coherence 
of probabilistic inference throughout the causal 

graph allows a wide range of predictions: transitive 
causal inferences become possible. If A causes B 
and B causes C then A will cause C. 

There are many distinct causal maps repre-
senting exactly the same set of independence 
relations, and thus the same set of distributions. 
Just as one might want a procedure that computes 
probabilistic inferences across d-separated di-
rected edges, one might want an algorithm that 
computes all the graphs that represent a given set 
of independence relations. The causal inductive 
procedure consists in finding the class of directed 
graphs—or under some approaches the ‘best’ 
directed graph—whose probabilistic independen-
cies implied via the causal Markov assumption 
are consistent with independencies inferred from 
the data. That means that a causal graph will be 
constructed by considering the patterns of asso-
ciations among events and by assuming that these 
patterns of association indicate causal structure in 
a reliable way. The input is a set of independence 
relations over a set of variables and its output is a 
set of graphs or networks over d-separated vari-
ables, or Markov equivalent (Neapolitan,  2003; 
Pearl, 2000; Spirtes et al. 2000).

Suppose we have a population involving three 
variables X1, X2, X3, and suppose the indepen-
dence relations in this population are as given 
in Box 3.1.

There are nine influence graphs supporting 
the Markov assumption that might have pro-
duced data with these independencies. Their 
only shared feature is that each has some direct 
connection between X1 and X3 and between X2 
and X3. Adding some formal constraints, like 
the faithfulness condition—all independencies 
in the data are implied via the causal Markov 
condition—the set of nine can be reduced to a 
singleton: Xa Xb   Xc . In this example, we have 
managed to infer that both X1 and X2 are direct 
causes of X3 from a single marginal independence 
between X1 and X2. Other constraints can also 
be applied, such as:

Figure 3.10. An influence diagram showing the 
relationship between cause and effect

Scrapping

Shape
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• Ninimality (no subgraph of the causal graph 
also satisfies the causal Markov assump-
tion),

• Linearity (all variables are linear functions 
of their direct causes and uncorrelated error 
variables), 

• Causal sufficiency (all common causes of 
measured variables are measured), 

• Context generality (every individual pos-
sesses the causal relations of the popula-
tion), 

• No side effects (one can intervene to fix the 
value of a variable without changing the 
value of any non-effects of the variable), 
and 

• Determinism. 

However, these extra assumptions are less 
central than the causal Markov assumption. 
Approaches differ as to which of these extra 
assumptions adopt and the assumptions tend to 
be used just to facilitate the inductive procedure 
based on the causal Markov assumption, either 
by helping to provide some justification for the 
inductive procedure or by increasing the efficiency 
or efficacy of algorithms for causal induction.

Due to the existence of the causal Markov 
counterexamples, we cannot be sure that the in-
duced graph will represent the real causal relations 
amongst the variables. Hence, the induced causal 
graph should be viewed as a tentative hypothesis, 
in need of evaluation, as occurs in the hypothetic-

deductive method. Evaluation takes place in the 
prediction and testing stages. If the hypothesis is 
disconfirmed, rather than returning to the induce 
stage, local changes are made to the causal graph 
in the amend stage, leading to the hypothesis of a 
new causal theory (Williamson, 2005).

Learning the structure of a Bayesian network 
(i.e., the graph) is another example of machine 
learning under uncertain conditions. Beginning 
with statistical data and background knowledge, 
an automated archaeologist must discover all 
the possible causal structures that might have 
generated these data. Assuming that the data is 
generated from a Bayesian network, an optimiza-
tion based search method will find the structure 
of the network. However, the fewer assumptions 
it makes constraining the class of possible causal 
structures, the weaker inferential results.

We can see how this approach is different to 
most inductive procedures so far reviewed (Bowes 
et al., 2000). Instead of logical rules, a causal in-
duction approach can distinguish different kinds 
of relationships between variables:

• Either A causes B or B causes A, but the 
direction is indeterminate; that is to say, 
the variables are associated but the causal 
nature of the association is undetermined;

• A (genuinely) causes B (common cause ruled 
out);

• A hidden common cause has been detected 
and the procedure cannot go further;

All Possible Independences among 
X1, X2, X3

Not In 
Population

In
Population

X1 _||_ X2 +

X1 _||_ X3 +

X2 _||_ X3 +

X1 _||_ X2 | X3 +

X1 _||_ X3 | X2 +

X2 _||_ X3 | X1 +

Box 3.1.
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• A potentially causes B (common cause not 
ruled out).

Causal inference algorithms produce fewer 
and more concise relationships between variables 
than association rules. They reveal underlying 
causal structure among variables, not just ap-
parent surface associations. The ability to reveal 
the existence of hidden common causes outside 
of known data is a promising tool. With caus-
ally sufficient data, the intelligent machine will 
compute conditional probabilities allowing the 
representation of causal effects generated by the 
modification of one variable on other variables 
in the set. This provides much more useful func-
tionality than association rules. Furthermore, the 
causal structure revealed by the Bayesian network 
combined with the minimal set of conditional 
probabilities is clearer than a potentially big num-
ber of association rules. The more rigid statistical 
basis for causal inference leaves less to the user 
to determine which discovered relationships are 
valid and which are not. 

In spite of their remarkable power and potential 
to address inferential processes, there are some 
inherent limitations and liabilities to Bayesian 
networks. The main problem refers to the quality 
and extent of the prior beliefs used in Bayesian 
inference processing. A Bayesian network is 
only as useful as its prior knowledge be reliable. 
Either an excessively optimistic or pessimistic 
expectation of the quality of these prior beliefs 
will distort the entire network and invalidate the 
results. Related to this concern, there is the se-
lection of the statistical distribution necessary to 
model the data. Selecting the proper distribution 
model to describe the data has a notable effect on 
the quality of the resulting network. It is impor-
tant to remark that local probability distributions 
contain information relevant to the individual 
causal links, but no information bearing on the 
truth or falsity of the causal Markov condition. 
If, for example, the hypothesized model predicts 
that C causes E, and an experiment is performed 

which shows that changing the value of C does 
not change the distribution of E, controlling E’s 
other direct causes, then this evidence alone may 
be enough to warrant removing the arrow from 
C to E in the causal model. Finding out that the 
dependence between C and E is explained by 
non-causal relationships between the variables 
might also lead to the retraction of the arrow 
from C to E. The causal Markov assumption may 
motivate adding a new common cause variable 
or a new arrow if two variables are not found to 
be screened off by their current common causes. 
Finding physical mechanisms may suggest add-
ing new arrows, while agency considerations 
may warrant changing directions of arrows. The 
point is that the same procedures that were used 
to draw predictions from a causal model may be 
used to suggest alterations if the predictions are 
not borne out.

There are not many applications of this tech-
nology in archaeology or in any related social 
sciences (Buck et al., 1996; Dellaportas, 1998; 
Fan & Brooks, 2000). There are, however, some 
relevant examples in ecological modeling to 
depict the influence of habitat or environmental 
predictor variables on ecological response vari-
ables (Marcot et al., 2006). In such uses, Bayesian 
networks predict the probability of ecological 
responses to varying input assumptions such as 
habitat and population-demographic conditions. 
A standard prototypical example would be the 
following one. Imagine a Bayesian network built 
around five random variables “hunting-gathering,” 
“agriculture,” “wild Animal bones,” “store pits” 
(Figure 3.11).

In such a model, “hunter-gatherer,” and “agri-
culture” are independent. This is to say that there 
is no event, which affects both the inference that 
a settlement has hunter and gathering traces and 
agriculture ones. As well, “agriculture” and “wild 
animal bones” are independent given “hunting-
gathering,” because the presence of wild animal 
bones is hardly the consequence of agricultural 
activities. 
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diRECtioNS FoR FuRthER 
RESEARCh

This chapter has presented the very basics of 
the mechanization of inductive explanation. The 
classical concept of induction has been reviewed 
from the point of view of “inverse reasoning.” 
As such, the chapter forms an ensemble with the 
previous one, where more “deductive” or “abduc-
tive” aspects of reasoning were presented.

In the same way as in the previous chapter, 
here I have only sketched the subject. Both from 
the theoretical and the technological point of view 
there is much more to be said. I have followed the 
approach by Holland et al. (1986) among others, 
which understand “induction” in terms of iterative 
knowledge revision and modification and not as a 
single-step operation of generalization, as it was 
traditionally analyzed in classical predicate logics. 
The prospect for a true mechanized explanation 
has been explored, but there is much more to be 
explored. Only the simplest algorithms have been 
reviewed. Computer scientists are intensively 
exploring this subject and there are many new 
mechanisms and technologies for knowledge ex-
pansion through iterative and recursive revision. 
The huge number of publications make impos-
sible that we can review the entire field in a single 
chapter. The purpose was only to introduce the 
newcomer reader to this fascinating domain. Free 
computer programs like Weka or Tanagra can be 

explored to discover how to extract meaning and 
knowledge from archaeological data.

Bayesian networks and probabilistic causal 
models are among the most interesting new 
methods for inducing explanations from ob-
servations. This chapter contains only a very 
sketchy introduction. There are many computer 
programs to advance in the archaeological ap-
plications. The reader is addressed to the free 
program GeNie to learn more about that. The 
theoretical aspects of causal modeling, and the 
way that modern inductive reasoning is related to 
discovering causal explanations has only begun 
to be explored by authors like Glymour, Pearl, 
Sloman, Spirtes, Williamson, and Woodward. In 
most cases, however, these authors do not have 
a true historical approach. In this aspect, there 
is much to be studied from the point of view of 
historians and archaeologists. 

In any case, if the inverse problem idea is 
correct, we can rephrase the general explanatory 
problem in the social sciences more specifically. 
How does an automated archaeologist recover 
causal explanations from observed data? How can 
it learn a new cause-effect relationship? Hume 
posed the most famous of these problems, that 
we only directly perceive correlations between 
events, not their causal relationship. How can 
a robot make reliably correct inferences about 
whether one event caused the other, and how can 
it dynamically correct errors when we make them? 

Figure 3.11. A directed graph representing factor explaining the presence of store pits at an archaeologi-
cal site, conditional on the economic activities that took place there.

Hunter gatherer Agriculture

Wild Animal Bones

Store Pits
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Causation is not just association, or contiguity 
in space, or priority in time, or all three. The 
problem is that our evidence is usually reduced 
to such correlations. It can get worse. In many 
cases, we make inferences about causes that are 
themselves unobservable. We not only assume that 
one event causes another, but we assume that this 
happens because of unobserved, and sometimes 
unobservable, intervening causes. Moreover, 
causal structures rarely just involve one event 
causing another. Instead, events involve many 
different causes interacting in complex ways. 
A system for recovering causal structure has to 
untangle the relations among those causes, and 
discount some possible causes in favor of others. 
Finally, many causal relations may be stochastic 
rather than deterministic. Given the “noise” in the 
data, the evidence for even deterministic causal 
relations will usually be probabilistic. Even if 
one event does deterministically cause another 
it is unlikely that we will always observe the two 
events co-occur. The system must be able to deal 
with probabilistic information.

I am proposing that to build an automated ar-
chaeologist, we make certain assumptions about 
how patterns of events indicate causal structure. 
Broadly speaking, there are some assumptions 
necessary to solve the general problem of discov-
ering causal relations. First, we might propose 
what we will call substantive assumptions. Some 
perceptual features of events might be taken 
to indicate causal structure. Alternatively, we 
might propose what we will call formal causal 
assumptions, which posit constraining relations 
between causal dependencies and patterns of 
associations. These assumptions would say that 
certain patterns of association or contingency 
among events reliably indicate causal relations. 
It is important to realize that this sort of account 
would NOT reduce causal structure to patterns 
of association or define causal structure in terms 
of association or probability. The idea is that an 
automated archaeologist should make certain 

fundamental assumptions about how patterns of 
contingency are related to causal processes, in 
much the same way that our human visual system 
makes assumptions about how two-dimensional 
sensory information is related to three-dimen-
sional space. Those assumptions may turn out to 
be wrong in individual cases, just as they may turn 
out to be wrong in the visual case. Overall, these 
assumptions may lead to accurate representations 
of the causal structure of the world.

Some of the troubles prefigured at the end of 
the previous chapter have not been solved. Inverse 
reasoning methods are still based on a linguistic 
assumption. The minimum units of meaning are 
still propositional sentences. This is a limitation. 
We have to explore an alternative to inverse rea-
soning that is not based on words or sentences, 
but on numbers and vectors. Next chapter offers 
an introduction to it.

REFERENCES

ADAMS, W.Y., & ADAMS, E.W. (1991). Ar-
chaeological typology and practical reality. 
Cambridge,UK: Cambridge University Press.

AGRAWAL, R., IMIELINSKI, T., & SWAMI, A. 
(1993). Mining association rules between sets of 
items in large databases. In ACM SIGMOD Int. 
Conference on Management of Data (pp. 207-216). 
Washington DC, USA.

ALAI, M. (2004). A.I., scientific discovery and 
realism. Minds and Machines, 14, 21–42.

ALPAYDIN, E. (2004). Introduction to machine 
learning. Cambridge, MA: The MIT Press.

ARKIN, R.C. (1998). Behavior-based robotics. 
Cambridge, MA: The MIT Press.

BARCELó, J.A. (1996). Heuristic classification 
and fuzzy sets. New tools for archaeological 
typologies. Acta Praehistorica Leidensia, 28, 
155-164.



���  

Computer Systems that Learn

BARCELó, J.A. (1997). Arqueología automática. 
El uso de la inteligencia artificial en arqueología 
Sabadell (Spain): Editorial Ausa, (Cuadernos de 
Arqueología Mediterránea, 2). 

BAXTER, M.J. (2006). A review of supervised and 
unsupervised pattern recognition in archaeometry. 
Archaeometry, 48(4), 671–694.

BAXTER, M.J., & JACKSON, C.M. (2001). Vari-
able selection in artefact compositional studies. 
Archeometry, 43(2), 253-268.

BEAVER, J.E. (2004). Identifying necessity and 
sufficiency relationships in skeletal-part representa-
tion using fuzzy-set theory. American Antiquity, 
69(1), 131-140.

BEER, R.D. (1990). Intelligence as adaptive behav-
ior: An experiment in computational neuroethol-
ogy. New York: Academic Press.

BEL, L., LAURENT, J.-M., BAR-HEN, A., AL-
LARD, D., & CHEDDADI, R. (2005). A spatial 
extension of CART: application to classification of 
ecological data. In P. Renard, H. Demougeot-Re-
nard, & R. Fridevaux (Eds.), Proc. Vth Eur. Conf. 
Geostatistics for Environmental Applications (pp. 
99-109). Berlin: Springer.

BEZDEK, J.C., & PAL, S.K. (1992). Fuzzy systems 
for pattern pecognition. Piscataway, NJ: IEEE 
Press.

BIGGS, D., DE VILLE, B., & SUEN, E. (1991). A 
method of choosing multiway partitions for clas-
sification and decision trees. Journal of Applied 
Statistics, 18, 49-62.

BINFORD, L. R. (1968). Methodological consid-
erations of the archaeological use of ethnographic 
data. In L.R. Binford (Ed) An archaeological 
perspective. New York, Academic Press.

BINFORD, L.R. (1981). Behavioural archaeology 
and the Pompeii premise. Journal of Archaeologi-
cal Research, 37, 195-208.

BINFORD, L.R. (2001a). Where do research 
problems come from? American Antiquity, 66(4), 
669-678.

BINFORD, L.R. (2001b). Constructing frames of 
reference: An analytical method for archaeological 
theory building using hunter-gatherer and environ-
mental data sets. University of California Press.

BORODKIN, L. (1999). Defining agricultural 
regions in Russia: Fuzziness in multivariate clas-
sification of historical data. History and Computing, 
11(1-2), 31-42.

BORODKIN, L.I., & GARSKOVA, (1995). Ana-
lytical procedure for multidimensional hierarchical 
data. In Statistical Analysis of Burial Customs of 
the Sarmatian Period in Asian Sarmata (6th -4th 
Centuries B.C. pp. 63-114.). Napoli: Istituto Uni-
versitario orientale.

BOWES, J., NEUFELD, E., GREER, J.E., & 
COOKE, J. (2000). A Comparison of Association 
Rule Discovery and Bayesian Network Causal 
Inference Algorithms to Discover Relationships 
in Discrete Data. In Advances in Artificial Intel-
ligence: 13th Biennial Conference of the Canadian 
Society for Computational Studies of Intelligence, 
AI 2000, Montréal, Quebec, Canada, May 2000. 
Proceedings Berlin: Springer Lecture Notes in 
Computer Science, Vol 1822.

BREIMAN, L. (2001). Random forests. Machine 
Learning, 45(1), 5-32.

BREIMAN, L., FRIEDMAN, J.H., OLSHEN, 
R.A., & STONE, C.J. (1984). Classification and 
regression trees. Belmont, CA: Wadsworth. 

BUCK, C.E., CAVANAGH, W.G., & LITTON, 
C. (1996). Bayesian approach to intrepreting ar-
chaeological data. London: John Wiley. 

BUNGE, M. (2006). Chasing reality: Strife over 
realism. University of Toronto Press.



  ���

Computer Systems that Learn

BUNTINE, W., & NIBLETT, T. (1992). A further 
comparison of splitting rules for decision-tree 
induction. Machine Learning, 8, 75-86.

CANAL, E., & CAVAZZONI, S. (1990). Antichi 
insediamenti antropici nella laguna di Venezia: 
analisi multivariata di tipo fuzzy C-means cluster-
ing. Archaeologia e Calcolatori, 1,. 165-177.

CASTILLO, E., GUTIéRREZ, J.M., & HADI, A.S. 
(1997). Expert systems and probabilistic network 
models. New York: Springer-Verlag.

CHAOUKI M., & GAILDRAT, V.,(2005). Auto-
matic classification of archaeological potsherds. 
In The 8th International Conference on Computer 
Graphics and Artificial Intelligence, 3IA’2005 (pp. 
135-147) Limoges, France, 11 mai 12 mai 2005. 
Edited by Dimitri Pléménos, MSI Laboratory.

CHATER, N. (1995). Neural networks: The 
new statistical models of mind. In J.P. Levy, D. 
Bairaktaris, J.A. Bullinaria & P. Cairns (Eds.), 
Connectionist models of ,emory and language. 
London: UCL Press.

CHEESEMAN, P. (1990). On finding the most 
probable model. In J. Shrager & P. Langley (Eds.), 
Computational models of scientific discovery and 
theory formation. San Francisco, CA: Morgan 
Kaufmann.

CLANCEY, W. (1984). Heuristic classification. 
Artificial Intelligence, 27, 289-350.

CLARK, P., & NIBLETT, T. (1989). The CN2 
induction algorithm, Machine Learning, 3(4), 
261-283.

CLARKE, D.L. (1968). Analytic archaeology. 
London: Methuen and Co.

CONLEY, J., GAHEGAN M., & MACGILL, J. 
(2005). A genetic approach to detecting clusters 
in point datasets. Geographical Analysis, 37(3), 
286-314.

COX, E. (1993). The fuzzy systems handbook. 
A practitioner’s guide to building, using and 

maintaining fuzzy systems. New York: Academic 
Press.

CRESCIOLI, M., D’ANDREA, A., & NICOLUC-
CI, F. (2000). A GIS-based analysis of the Etruscan 
cemetery of Pontecagnano using fuzzy logic. In 
G. Lock (Ed.), Beyond the map: Archaeology and 
spatial technologies. Amsterdam (Holland); IOS 
Press.

DARDEN, L., MOBERG, D., THADANI, S., & 
JOSEPHSON, J. (1992). A computational approach 
to scientific theory revision: The TRANSGENE 
experiments (Tech. Rep. 92-LD-TRANSGENE). 
Laboratory for Artificial Intelligence Research. 
Columbus, OH: Ohio State University. 

David, N. (1992). Integrating ethnoarchaeology: A 
subtle realist perspective. Journal of Anthropologi-
cal Archaeology, 11, 330-359.

DAVID, N., & KRAMER, C. (2001). Ethnoar-
chaeology in action. Cambridge, UK: Cambridge 
University Press.

DELLAPORTAS, P. (1998). Bayesian classification 
of Neolithic tools, Applied Statistics, 47, 279-297.

DING, J.M., WANG, Y.H., & DING L.X. (2006). 
Significance of expansive soil classification indexes 
analysed by rough sets. Rock And Soil Mechanics, 
27(9),  1514-1518.

DONAHUE, J.W., & PALMER, D.C. (1994). 
Learning and complex behaviour. Boston, MA: 
Allyn and Bacon.

DORAN, J., & HODSON,F.R. (1975). Mathematics 
and computers in archaeology. Edinburgh, UK: 
Edinburgh University Press, 

DUBOIS, D., PRADE, H., & SMETS, D. (1994). 
Partial truth is not uncertainty. fuzzy logic versus 
posibilistic logic. IEEE Expert. Intelligent Systems 
and their applications,9(4), 15-19.

DUNNELL, R. (1971). Systematics in prehistory. 
New York: The Free Press.



���  

Computer Systems that Learn

ERGIN, A., KARAESMEN,E., ICALLEF, A., & 
WILLIAMS, A.T. (2004). A new methodology for 
evaluating coastal scenery: Fuzzy Logic Systems. 
Area, 36, (4).

ESTEVEZ, J., & VILA, A. (1995). Etnoarque-
ología: el nombre de la cosa. In J. Estevez & A. Vila. 
Treballs d’Etnoarqueologia (Eds.), Encuentros en 
los conchales fueguinos (pp. 17-23). 1. CSIC-UAB, 
Bellaterra (Spain). 

FALKENHEIMER, B.C. (1990). Explanation and 
theory formation. In J. Shrager & P. Langley (Eds.), 
Computational models of scientific discovery and 
theory formation. San Francisco, CA: Morgan 
Kaufmann. 

FAN, Y., & BROOKS, S. (2000). Bayesian modeling 
of prehistoric corbelled domes. The Statistician, 
49, 339-354.

FARINETTI, E., HERMON, S., & NICOLUCCI, 
F. (2004). Fuzzy logic application to survey data 
in a GIS environment. In Beyond the artefact. 
Computer applications in archaeology. Budapest 
(Hungary): ArcheoLingua. 

FARRINGTON, O.S., & TAYLOR, N.K. (2004). 
Machine learning applied to geo-archaeological 
soil data. In Magistrat der Stadt Wien-Referat Kul-
turelles Erbe-Stadtarchäologie Wien (Ed.), Enter 
the past. The e-way into the four dimensions of 
cultural heritage (pp. 456-459). Oxford: Archaeo-
Press (BAR International Series, 1227), 

FERNáNDEZ MARTíNEZ, V., & GARCíA DE 
LA FUENTE, M. (1991). El tratamiento infor-
mático de datos funerarios cualitativos: análisis 
de correspondencias y algoritmo ID3 de Quinlan. 
Complutum, 1, 123-131.

FINDLER, N.V. (1992). Automatic rule discovery 
for field work in anthropology. Computers and the 
Humanities, 25,285-392.

FINDLER, N.V., & DHULIPALLA, S., (1999). 
A decision support system for automatic rule 

discovery in anthropology. Social Networks, 21, 
167-185. 

FOODY, G.M. (2003). Uncertainty, knowledge 
discovery and data mining in GIS. Progress in 
Physical Geography, 27(1), 113-121.

FORSYTH, H. (2000). Mathematics and comput-
ers: The classifier’s ruse. In G. Lock & K. Brown 
(Eds.), On the theory and practice of archaeological 
computing(pp. 31-39). Oxford, UK: Oxford Uni-
versity Committee for Archaeology.

GAHEGAN, M. (2000). On the application of 
inductive machine learning tools to geographical 
analysis. Geographical Analysis, 32(1), 113-139.

GAHEGAN, M. (2003). Is inductive machine 
learning just another wild goose (or might it lay the 
golden egg)? International Journal of Geographi-
cal information Science, 17(1), 69-92.

GANDARA, M. (1990). La analogía etnográfica 
como heurística: lógica muestrela, dominios 
ontológicos e historicidad. In Y. Sugiera & M.C. 
Sierra (Eds.), Etnoarqueología: Primer Coloquio 
Bosch-Gimpera. México: UNAM.

GANDARA, M. (2006). La inferencia por analogía: 
más allá de la analogía etnográfica. In Etnoarque-
ología de la Prehistoria. Más allá de la analogía 
(pp. 14-23). Treballs d’Etnoarqueologia, No. 6, 
CSIC-UAB, Barcelona (Spain).

GARGANO, M.L., & EDELSON, W. (1996). A 
genetic algorithm approach to solving the archaeol-
ogy Seriation problem, Congressus Numerantium, 
119, 193-203.

GARGANO, M.L., & LURIE, L. (2006). A hybrid 
evolutionary approach to solving the archaeologi-
cal Seriation problem. Congressus Numerantium, 
180, 43-53.

GEY, O. (1991). COCLUSH: Un générateur de 
classification d’objets structure’s suivant différents 
points de vue. Actes des 6 Journeés Françaises de 
l’Apprentissage.



  ���

Computer Systems that Learn

GIBBINS, P. (1990). BACON bytes back. In J. E. 
Tiles, G.T. McKee, & G.C. Dean Evolving knowl-
edge in natural science and artificial intelligence. 
London, UK: Pitman.

GILLIES, D. (1996). Artificial intelligence and the 
scientific method. Oxford, UK: Oxford University 
Press.

GIZA, P. (2002). Automated discovery systems 
and scientific realism. Minds and Machines, 12, 
105–117,

GLYMOUR, C. (2001). The mind’s arrows. Bayes 
nets and graphical causal models in psychology. 
Cambridge, MA: The MIT Press.

GOLDBERG, D.E. (1989). Genetic algorithms 
in search. Optimization and machine learning. 
Redwood City, CA: Addison-Wesley.

GOULD, R.A. (1980). Living archaeology. Cam-
bridge, UK: Cambridge University Press.

GRUDZINSKI, K., KARWOWSKI, M., & DUCH, 
W. (2003). Computational Intelligence Study of 
the Iron Age Glass Data. International Confer-
ence on Artificial Neural Networks (ICANN) and 
International Conference on Neural Information 
Processing (ICONIP). Istanbul, June 2003, 17-20. 
Retieved Agust 2007 from http://www.fizyka.ukw.
edu.pl/publikacje/a_s_p.pdf

GRUDZINSKI, K., & KARWOWSKI, (2005). The 
Analysis of the Unlabeled Samples of the Iron Age 
Glass Data. In Intelligent Information Processing 
and Web Mining, Proceedings of the International 
IIS: IIPWM’05 Conference held in Gdansk, Po-
land, June 13-16, 2005., Edited by Mieczyslaw A. 
Klopotek, Slawomir T. Wierzchon, and Krzysztof 
Trojanowski. Berlin: Springer (Advances in Soft 
Computing Series). 

GURECKIS, T.M., & LOVE, B.C. (2003). Hu-
man unsupervised and supervised learning as a 
quantitative distinction International Journal of 
Pattern Recognition and Artificial Intelligence, 
17(5), 885-901.

HAN, J., & KAMBER, M. (2001). Data mining. 
Concepts and techniques. San Francisco, CA: 
Morgan Kaufmann.

HAND, D., MANNILA, H., & SMYTH, P. (2001). 
Principles of data mining. Cambridge, MA: The 
MIT Press. 

HATZINIKOLAOU, E., HATZICHRISTOS, T., 
SIOLAS, A., & MANTZOURANI, E. (2003). 
Predicting archaeological site locations using GIS 
and fuzzy logic. In M. Doerr & A. Sarris (Eds.), 
The digital heritage of archeology. Computer ap-
plications and quantitatiuve methods in archaeol-
ogy 2002 (pp. 169-178). Archive of Monuments 
and Publications. Hellenic Ministry of Culture, 
Heraklion (Greece).

HEBB, D.O. (1949). The organization of behavior. 
New York: John Wiley.

HENSEL, E. (1991). Inverse theory and ap-
plications for engineers. Englewood Cliffs, NJ: 
Prentice-Hall.

HERMON, S., & NICCOLUCCI, F. (2003). A 
fuzzy logic approach to typology in archaeological 
research. In M. Doerr & A. Sarris (Eds.), The digital 
heritage of archeology. Computer applications 
and quantitatiuve methods in archaeology 2002. 
Edited by. Archive of Monuments and Publications. 
Hellenic Ministry of Culture, Heraklion (Greece), 
(pp. 307-312).

HERMON, S., & NICCOLUCCI, F. (2002). Esti-
mating subjectivity of typologists and typological 
classification with fuzzy logic. Archeologia e 
Calcolatori, 13, 217-232.

HITCHCOCK, C., & SOBER, E. (2004). Prediction 
versus accomodation and the risk of overfitting. 
British Journal for the Philosophy of Science, 
55, 1-34.

HOLLAND, J.H., HOLYOAK, K.J., NISBETT, 
R.E., & THAGARD, P.R. (1986). Induction. 
Processes of inference, learning, and discovery. 
Cambridge, MA: The MIT Press.



���  

Computer Systems that Learn

HÜLLERMEIER, E. (2007). Case-based ap-
proximate reasoning. New York/Berlin: Springer-
Verlag.

HUNT, E. B. (1962). Concept learning: An informa-
tion processing problem. New York: John Wiley.

JACKSON, S.T., & WILLIAMS, J.W. (2004). 
Modern analogs in quaternary paleoecology: 
Here today, gone yesterday, gone tomorrow? An-
nual Review of Earth and Planetary Sciences, 
32,  495-537.

JENSEN, F. V. (2001). Bayesian networks and 
decision graphs. Berlin: Springer. 

JERAJ, M., SZERASKO, D., TODOROVSKI, 
L., & DEBALJAK, M. (2004). Machine learning 
methods to Paleocological data. In 4th European 
Conference on Ecological Modelling September 
27 - 29, 2004, Bled, Slovenia. Retrieved February 
2007 from http://www-ai.ijs.si/SasoDzeroski/ECE-
MEAML04/presentations/039-Jeraj.pdf

JORDAN, M. I. (Ed.) (1999). Learning in graphical 
models. Cambridge, MA: The MIT Press.

JORDAN, M.I., & JACOBS, R.A. (1992). Modular-
ity, unsupervised learning, and supervised learn-
ing. In S. Davis (Ed.), Connectionism: theory and 
practice. Oxford:University Press.

KAELBLING, L.P. (1993). Learning in embedded 
systems. Cambridge, MA: The MIT Press.

KAIPIO, J., & SOMERSALO, E., (2004). Statisti-
cal and computational inverse problems. Berlin: 
Springer.

KAMPEL, M., & MELERO, F.J. (2003). Virtual 
vessel reconstruction from a fragment’s profile. 
In D. Arnold, A. Chalmers, & F. Nicolucci (Eds.), 
VAST2003 4th International Symposium on Virtual 
reality, Archaeology and Intelligent Cultural heri-
tage (pp. 79-88). The Eurographics Association, 
Aire-la-Ville (Switzerland).

KARP, P.D. (1990). Hypothesis formation as design. 
In J. Shrager & P. Langley (Eds.), Computational 

models of scientific discovery and theory forma-
tion (pp. 275-317). San Francisco, CA: Morgan 
Kaufmann.

KAUFMAN, K., & MICHALSKI, R. S. (2000). 
An adjustable rule learner for pattern discovery 
using the AQ methodology. Journal of Intelligent 
Information Systems, 14, 199-216.

KESELMAN, Y., & DICKINSON, S. (2005). 
Generic model abstraction from examples. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 27(7).

KIRSCH, A. (1996). An introduction to the 
mathematical theory of inverse problems. Berlin: 
Springer. 

KOHONEN, T. (2001). Self-organizing maps (3rd 
ed.).Berlin: Springer.

KOLODNER, J. (1993). Case-based reasoning. 
San Francisco, CA: Morgan Kaufmann.

KOSKO, B. (1992). Neural networks and fuzzy 
systems. A dynamical systems approach to ma-
chine intelligence. Englewood Cliffs, NJ: Prentice 
Hall. 

KOSKO,B. (1993). Fuzzy thinking: The new science 
of fuzzy logic. New York: Hyperion.

LAGRANGE, M.S. (1992). Symbolic data and 
numerical processing: A case study in art history 
by means of automated learning techniques. In 
J.C. Gardin & C. Peebles (Eds.), Representations 
in archaeology (pp. 330–356). Bloomington, IN: 
Indiana University Press, 

LAGRANGE, M.S., & RENAUD, M. (1987). 
trinita: un étude de cas en histoire de l’ art à l’aide 
d’un programme d’apprentissage. Document de 
Travail n° 7. C.N.R.S.-U.P.R., 315, Paris (France).

LANGLEY, P. (1996). Elements of machine learn-
ing. San Francisco, CA: Morgan Kaufmann.

LANGLEY, P., SIMON, H.A., BRADSHAW, G.L., 
& ZYTKOV, J.M. (1987) Scientific discovery. Com-



  ���

Computer Systems that Learn

putational explorations of the creative process. 
Cambridge, MA: The MIT Press.

LANGLEY, P., & ZYTKOW, J. (1989). Data-driven 
approaches to empirical discovery. Artificial Intel-
ligence, 40, 283-312.

LAZAR, A., & REYNOLDS, R.G. (2002). Heu-
ristic knowledge discovery for archaeological data 
using cultural algorithms and rough sets. In A. 
Ruhul, S. Sarker, Hussein A. Abbass, & Charles 
S. Newton (Eds.), Heuristics and optimization for 
knowledge discovery (Vol. 2.) Hershey, PA: Idea 
Group Publishing.

LAZAR, A., & REYNOLDS, R.G. (2005). Evo-
lution-based learning of ontological knowledge 
for a large-scale multi-agent simulation. In M. 
Grana, R.J. Duro, A.D. Aryou, & P.P Wang, (Eds,), 
Information processing and evolutionary algo-
rithms-from industrial applications to academic 
speculation. Berlin: Springer-Verlag.

LENIHAN, J.M., & NEILSON, R.P. (1993). A 
rule-based vegetation formation model for canada. 
Journal of Biogeography, 20(6), 615-628.

LOOTS, L., NACKAERTS, K., & WAELKENS, 
M. (1999). Fuzzy viewshed analysis of the hel-
lenistic city. Defence system at sagalassos. In L. 
Dingwall, S.Exon, V. Gaffney, S. Laflin & M. 
Van Leusen (Eds.), Archaeology in the age of 
internet. Computer applications and quantitative 
methods in archaeology 1997 (pp. 63-65). Oxford: 
ArcheoPress.

LOVE, B. C. (2002). Comparing supervised and 
unsupervised category learning. Psychonomic 
Bulletin & Review, 9, 829-835.

MANNILA, H., TOIVONEN, H., KORHOLA, 
A., & OLANDER, K. (1998) Learning, mining, 
or modeling? A case study from paleoecology. In 
A. Setsuo & M. Hiroshi (Eds.), Discovery science 
(Vol. 1532, pp. 12-24). Berlin: Springer

MARCOT, B.G., STEVENTON, J.G.D., SUTHER-
LAND, G.D., & MCKANN, R.K. (2006). Guide-

lines for developing and updating Bayesian belief 
networks applied to ecological modelling and 
conservation. Canadian Journal of Forestal Re-
search, 36, 3063-3074.

MCBRIDE, D.G., DIETZ, M.J., VENNEMEYER, 
M.T., MEADORS, S.A., BENFER, R.A., & 
FURBEE, N.L. (2001). Bootstrap methods for 
sex determination from the Os Coxae using the 
ID3 Algorithm. Journal of Forensic Sciences, 
46, 427-431.

MENNIS, J., & LIU, J. (2003). Mining association 
rules in Spatiotemporal data, Proceedings of the 
7th International Conference on GeoComputation, 
Southampton UK: University of Southampton. 

MEPHU NGUIFO, E., LAGRANGE, M.-S.,  
RENAUD, M., & SALLANTIN, J. (1998). PLATA: 
An application of LEGAL, a machine learning 
based system, to a typology of archaeological ce-
ramics. Computers and the humanities, 31(3), 169-
187. 

MICHALEWICZ, Z. (1996). Genetic algorithms 
+ data structures=evolution programs. Berlin: 
Springer.

MICHALSKI, R. S., Generating Alternative Hy-
potheses in AQ Learning, Reports of the Machine 
Learning and Inference Laboratory, MLI 04-6, 
Fairfax (VA): George Mason University.

MICHALSKI, R. S., & KAUFMAN, K. (2001). 
Learning patterns in noisy data: The AQ approach. 
In G. Paliouras, V. Karkaletsis & C. Spyropoulos 
(Eds.), Machine learning and its applications (pp. 
22-38). Berlin: Springer.

MITCHELL, M. (1996). An introduction to ge-
netic algorithms. Cambridge, UK: Cambridge 
University Press.

MITCHELL, T.M. (1982). Generalization as search. 
Artificial Intelligence, 18, 203-226.

MITCHELL, T.M. (1987). Machin Learning. 
WCB/MCGraw Hill.



���  

Computer Systems that Learn

NANCE, J.D. (2000). Elemental composition stud-
ies of lithic materials from western Kentucky and 
Tennessee. Midcontinental Journal of Archaeol-
ogy, 25, 83-100.

NEAPOLITAN R.E. (1990). Probabilistic reason-
ing in expert systems. New York: Wiley. 

NEAPOLITAN, R.E. (2003). Learning Bayesian 
networks. Upper Saddle River, NJ: Prentice Hall. 

NICOLUCCI, N., D’ANDREA, A., & CRESCIOLI, 
M. (2001) Archaeological applications of fuzzy 
databases. In Z. Stancic & T. Veljanovski (Eds.), 
Computing archaeology for understanding the 
past (pp. 107-116). Oxford: ArcheoPress.

NOLFI, S., & FLOREANO, D. (2000). Evolution-
ary robotics. The biology, intelligence, and tech-
nology of self-organizing machines. Cambridge, 
MA: The MIT Press.

O’SHEA, J. (2004). The identification of shipwreck 
sites: A Bayesian approach. Journal of Archaeo-
logical Science, 31, 1533-1552.

PAPAIOANNOU, G., & KARABASSI, E.A. 
(2003). On the automatic assemblage of arbitrary 
broken solid artefacts. Image & Vision Computing, 
21(5), 401–412.

PAWLAK, Z. (1991). Rough sets: Theoretical 
aspects of reasoning about data. Dordrecht (Hol-
land): Kluwer Academic Publishers.

PEARL, J. (1988). Probabilistic reasoning in 
intelligent systems. San Mateo, CA: Morgan 
Kaufmann.

PEARL, J. (2000). Causality. Models, reasoning 
and inference. New York: Cambridge University 
Press. 

PERLOVSKY, L.I. (2001). Neural networks and 
intellect. Using model-based concepts. New York: 
Oxford University Press.

PIERCE, C. (1878). Deduction, induction and hy-
pothesis. Popular Science Monthly, 13, 470-82.

PIZLO, Z. (2001). Perception as viewed as an 
inverse problem. Vision Research, 41(25), 3145-
3161.

POP, H.F., DUMITRESCU, D., & SARBU, C. 
(1995). A study of roman pottery (terra sigillata) 
using hierarchical fuzzy clustering. Analitica 
Chimica Acta, 310, 269-279.

POPPER, K. (1963). Conjectures and refutations: 
The growth of scientific knowledge. London: Rout-
ledge & Kegan Paul.

QUINLAN, J. R. (1986). Induction of decision 
trees. Machine Learning, 1, 81-106.

QUINLAN, J.R. (1993). C4.5: Programs for 
machine learning San Francisco, CA: Morgan 
Kaufmann.

RAGIN, C. (2000). Fuzzy-set social science. Chi-
cago, IL: University of Chicago Press. 

RAJAMONEY, S. (1990). A computational ap-
proach to theory revision. In J. Schrager & P. 
Langley (Eds.), Computational models of scientific 
discovery and theory formation (pp. 225-253). San 
Francisco, CA: Morgan Kaufmann.

REELER, C. (1999). Neural networks and fuzzy 
logic analysis in archaeology. In L. Dingwall, S. 
Exon, V. Gaffney, S. Laflin & M. van Leusen (Eds.), 
Archaeology in the age of the internet. Edited by. 
Oxford: ArcheoPress. 

REYNOLDS, R.G. (1979). An adaptive computer 
model of the evolution of agriculture in the valley of 
Oaxaca, Mexico, Ph.D. Thesis, University of Michi-
gan, Ann Arbor, MI: University Microfilms.

REYNOLDS, R. G. (1986) An adaptive computer 
model for the evolution of plant collecting and early 
agriculture in the eastern valley of Oaxaca. In K. 
V. Flannery (Ed.), Guila naquitz: Archaic forag-
ing and early agriculture in Oaxaca, Mexico (pp. 
439-500).. New York: Academic Press.



  ���

Computer Systems that Learn

REYNOLDS, R.G. (1999) The impact of raiding 
on settlement patterns in the northern valley of 
Oaxaca: An approach using decision trees. In T.A. 
Kohler & G.J. Gumerman (Eds.), Dynamics in hu-
man and primate societies. Agent based modeling 
of social and spatial processes. Oxford University 
Press (Santa Fe Institute Studies in the Sciences 
of Complexity).

REYNOLDS, R.G., & CHUNG, C. (1997). A cul-
tural algorithm to evolve multi-agent cooperation 
using cultural algorithms. In P. J. Angeline, R. G. 
Reynolds, J. R. McDonnell, & R. Eberhart (Eds.), 
Evolutionary Programming VI (pp. 323-334).  New 
York: Springer.

REYNOLDS, R. G., & PENG, B. (2005). Knowl-
edge learning and social swarms in cultural 
algorithms, Journal of Mathematical Sociology, 
29,  pp. 1-18.

REYNOLDS, R.G., & SALEEM, S. (2005). The 
impact of environmental dynamics on cultural 
emergence. In L. Booker, S. Forrest, M. Mitchell, 
& R. Riolo (Eds.), Perspectives on adaptation in 
natural and artificial systems: Essays in honor of 
John Holland (pp. 253-280). New York: Oxford 
University Press..

REYNOSO, C., & JEZIERSKI,E. (2002). A ge-
netic algorithm problem solver for archaeology. In 
G. Burenhult (Ed.), Archaeological informatics: 
Pushing the envelope CAA 2001 (pp. 507-510). 
Oxford: ArchaeoPress.

RUSSELL, B. (1967) (1912). The problems of phi-
losophy. Oxford, UK: Oxford University Press.

SABATIER, P.C. (2000). Past and future of inverse 
problems Journal of Mathematical Physics, 41, 
4082-4124

SALLANTIN, J., SZCZECINIARZ, J.J., BAR-
BOUX, C., LAGRANGE, M.S., & RENAUD, M. 
(1991). Théories semiempiriques: conceptualisation 
et illustrations. Revue d’Intelligence Artificielle, 
5(1), 9–67.

SALSKI, A. (1992). Fuzzy knowledge-based mod-
els in ecological research. Ecological Modelling, 
63, 103-112.

SALSKI, A. (1996). Fuzzy approach to ecologi-
cal modelling and data analysis. In Proceedings 
of FUZZY’96, Fuzzy Logic in Engineering and 
Natural Sciences (pp. 316-325). Zittau (Poland).

SALSKI, A. (2002). Ecological applications of 
fuzzy logic. In F. Recknagel (Ed.), Ecological 
informatics (pp. 3-14). Berlin: Springer.

SALSKI, A., & KANDZIA, P. (1996). Fuzzy sets 
and fuzzy logic in ecological modelling. EcoSys, 
4, 85-97.

SALSKI, A.,  FRäNZLE, O., & KANDZIA, P. 
(Eds). (1996) Fuzzy logic in ecological modelling. 
Ecological Modelling, special issue, 85(1).

SHI, T., & HORVATH, S. (2006) Unsupervised 
learning with random forest predictors. Journal 
of Computational and Graphical Statistics, 15(1), 
118-138.

SLOMAN, S. (2005). Causal models. How people 
think about the world and its alternatives. New 
York: Oxford University Press.

SMITHSON, M. (1988). Fuzzy set theory and the 
social sciences: The scope for applications. Fuzzy 
sets and systemsk, 16, 4.

SPAULDING, A.C.M. (1953). Statistical techniques 
for the discovery of artifact Types. American An-
tiquity, 18, 305-313.

SPIRTES, P., GLYMOUR,C., & SCHEINES, R. 
(2000). Causation, prediction and search. New 
York: Springer. 

STARY, C., & PESCHL, M.F. (1995). Towards 
constructivist unification of machine learning and 
parallel distributed processing. In K.M. Ford, C. 
Glymour & P.J. Hayes (Eds.), Android epistemol-
ogy. Menlo Park/Cambridge/London: AAAI Press 
/The MIT Press. 



��0  

Computer Systems that Learn

SUTTON, R. S., & BARTON, A.G. (1998). Rein-
forcement learning: An introduction Cambridge 
MA: The MIT Press.

TANAKA, K. (2004). An introduction to fuzzy logic 
for practical application. Berlin: Springer.

TARANTOLA A, (2005). Inverse problem theory. 
Society for Industrial and Applied Mathematics. 
Retrieved February 2007 from http://www.ipgp.
jussieu.fr/%7Etarantola/Files/Professional/SIAM/
index.html

TAWFIK, A. Y., (2004). Inductive reasoning 
and chance discovery. Minds and Machines, 14, 
441–451,

THORNTON, C. (2000). Truth from trash. How 
learning makes sense. Cambridge, MA: The MIT 
Press. 

VALDES-PĚRZ, R.E. (1995). Machine discovery 
in chemistry: New results. Artificial Intelligence, 
65(2), 247-280.

VALDES-PĚRZ, R.E. (1996a). Computer science 
research on scientific siscovery Knowledge Engi-
neering Review, 11, 57-66.

VALDES-PĚRZ, R.E. (1996b). A new theorem 
in particle physics enabled by machine discovery. 
Artificial Intelligence, 82(1-2), 331-339,

VALDES-PĚRZ, R.E. (1999). Discovery tools 
for science applications.  Communications of the 
ACM, 42(11), 37-41.

VAN OVERWALLE, F., & VAN ROOY, D. (1998). 
A connectionist approach to causal attribution. In S. 
J. Read & L. C. Miller (Eds.), Connectionist Models 
of Social Reasoning and Social Behavior (pp. 143-
171). London: Lawrence Erlbaum Associates.

VIERRA, R. K. (1982). Typology, classification, 
and theory building. In R. Whallon and J. A. 
Brown (Eds.), Essays on archaeological typology 
(pp. 162-175). Evanston, IL: Center for American 
Archaeology Press.

VILA, A. (2006). Propuesta de elaboración de la 
metodología arqueológica. In Etnoarqueología 
de la Prehistoria: más allá de la analogía (pp. 
61-76). Treballs d’Etnoarqueologia, 6. CSIC-UAB 
(Barcelona, Spain).

WEISS, S.M., & KULIKOWSKI, C.A. (1991). 
Computer systems that learn. San Francisco, CA: 
Morgan Kaufmann.

WHITE, R. (2003). The epistemic advantage of pre-
diction over accomodation. Mind, 112, 653-683.

WILLIAMSON, J. (2004). A dynamic interaction 
between machine learning and the philosophy of 
science. Minds and Machines, 14, 539–549.

WILLIAMSON, J. (2005). Bayesian nets and 
causality: Philosophical and computational foun-
dations. New York: Oxford University Press. 

WITTEK, I.H., & FRANK, E. (2005). Data mining: 
Practical machine learning tools and techniques 
(Second Edition). San Francisco, CA: Morgan 
Kaufmann.

WOODBURY, K.A. (2002) Inverse engineering 
handbook. Boca Raton, FL: CRC Press.

WOODWARD, J. (2003). Making things happen. 
A theory of causal explanation. New York: Oxford 
University Press.

WYLIE, A. (1985). The reaction against analogy. 
Advances in Archaeological Method and Theory, 
8, 63-111.

YAO, M., MENG, H.Y., ZHANG, L., HUANG,Y., 
PEI, M., HUANG, Z.J. et al.(2001). Towards im-
provement in locating of underground tomb relics 
using EM radar signals and genetic algorithms, 
Genetic And Evolutionary Computation Confer-
ence Late-Breaking Papers (pp. 493-498). San 
Francisco, CA.

YELLEN, J.E. (1977). Archaeological approaches 
to the present: Models for reconstructing the past. 
New York: Academic Press.



  ���

Computer Systems that Learn

ZADEH, L.A. (1965). Fuzzy sets. Information and 
Control. 8, 338-353.

ZADEH, L.A., KLIR, G.J., Yuan, B (eds.). (1996). 
Fuzzy sets, fuzzy logic, and fuzzy systems: Selected 
Papers by Lotfi A. Zadeh (Advances in Fuzzy Sys-
tems - Applications and Theory, Vol 6. Singapore: 
World Scientific.

ZIARKO, W. (1994). Rough sets, fuzzy sets and 
knowledge discovery. Berlin: Springer.

ZYTKOW, J.M., BAKER, J. (1991) Interactive 
mining of regularities in databases. In. G. Pia-
tetsky-Shapiro & W.J. Frawley (Eds.), Knowledge 
discovery in databasesMenlo Park, CA: AAAI 
Press/The MIT Press.



���  

Chapter IV
An Introduction to 
Neurocomputing
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SimulAtiNg thE bRAiN

Let’s build an automated archaeologist! 
It is not an easy task. We need a highly complex, 

nonlinear, and parallel information-processing 
“cognitive core” able to explain what the robot 
sees, in terms of causal factors, which not always 
have an observable nature. 

Of course, such a “cognitive core” should 
not run like a human brain. After all, automated 
archaeologists do the same tasks as “human ar-
chaeologists,” but not necessary in the same way. 
Nevertheless, there is some similitude in the basic 
mechanism. My suggestion is that an archaeolo-
gist, human or “artificial,” will perceive archaeo-
logical data and, using some basic principles of 
learning, as those presented in previous chapter, 
will develop ways of encoding these data to make 
sense of perceived world. Consequently, we may 
try to build our artificial archaeologist based on 
the idea of learning and the ability to adapt flex-
ibly epistemic actions to different archaeological 
problems waiting for a solution.

How much should be programmed in its final 
form into such a cognitive core and how much 
will have to be learnt by interacting with some 
environment, including teachers and other agents? 
Projects aiming to develop intelligent systems 

on the basis of powerful and general learning 
mechanisms start from something close to a 
“Tabula rasa,” however, they risk being defeated 
by explosive search spaces requiring evolution-
ary time-scales for success. Biological evolution 
enables animals to avoid this problem by provid-
ing large amounts of “innate“ information in the 
genomes of all species. In the case of humans, 
this seems to include meta-level information 
about what kinds of things are good to learn, 
helping to drive the learning processes as well 
as specific mechanisms, forms of representa-
tion, and architectures to enable them to work. 
Is it possible to use these ideas for building an 
“intelligent” machine?

Like its human counterpart, the cognitive core 
of our automated archaeologist should be made 
of specialized cells called neurons (Figure 4.1). 
Artificial and biological neurons are relatively 
similar, and both have the same parts, also called 
the cell body, axon, synapse, and dendrite (Bechtel 
& Abrahamson, 1991; Dawson, 2004; Ellis & 
Humphreys, 1999; O’Reilly & Munakata, 2000; 
Quinlan, 1991). 

Each neuron connects as well as accepts con-
nections from many other neurons, configuring 
a network of neurons. Those connections are 
implemented by means of dendrites, while syn-
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apses are a gateway linked to dendrites coming 
from other neurons. 

We can think about the essential function of 
each neuron in the network from a computational 
perspective in terms of a detector. First, a detector 
needs inputs that provide the information on which 
it bases its detection. In human brain, information 
is expressed in the timing and the frequency neu-
rons communicate among them through electrical 
pulses. By combining or integrating activation 
signals or pulses over all the incoming connec-
tions (dendrites), each neuron creates some sort 
of aggregate measure. As a result, the neuron 
produces a new composite signal, the output, 
transmitted to other neurons, continuing the infor-
mation-processing cascade through a network of 
interconnected neurons (Figure 4.2). The chaining 
of multiple levels of detectors can lead to more 
powerful and efficient detection capabilities than 
if everything had to work directly from the raw 
sensory inputs. However, this chaining implies 
that the transformation operation is complex 
because different signals arrive from different 
sources through different connections, and each 

connection modifies the information in a particular 
way. This style of computing—transforming one 
pattern into another by passing it through a large 
configuration of synaptic connections—is called 
parallel distributed processing. As the original 
input pattern distributed across many neurons 
pass inward from one specialized neural popula-
tion to the next, and to the next and the next, the 
original pattern is progressively transformed at 
each stage by the intervening configuration of 
synaptic configurations. 

On a neural network, the overall pattern of si-
multaneous activation levels across the assembled 
neurons of a given population is the primary unit 
of representation, and the primary vehicle of se-
mantic content. Such patterns are often referred 
to as “activation vectors” because they can be 
usefully and uniquely characterized by a sequence 
of n numbers, where n = the number of neurons in 
the representing population. Consequently, con-
cepts may be represented as ephemeral patterns 
of activation across an entire set of units rather 
than as individuated elements or symbols. These 
stable patterns then determine further process-

Figure 4.1. Schematic representation of a neuron
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ing, because when activated, they constitute the 
system’s recognition and concurrent understand-
ing of its objective situation, an understanding 
that produces the system’s subsequent behavior. 
Different patterns capture different aspects of the 
content of the concepts in a partially overlapping 
fashion. Alternative concepts are simply alterna-
tive patterns of activation. Information processing 
is the process of evolution in time of conceptual 
spaces. The primary advantage of a distributed 
representation is its ability to capture naturally 
the similarity structure of the represented domain 
(similar entities can share a greater number of units 
in the representation than dissimilar entities). 

To say that a connectionist explanation is sub-
symbolic is to say that the activation values of its 
individual neurons do not represent interpretable 
features that could be represented as individual 
symbols. Instead, each neuron is viewed as indi-
cating the presence of a micro-feature. Individu-
ally, a micro-feature is unintelligible, because its 
“interpretation” depends crucially on the context 
(i.e., the set of other micro-features simultaneously 
present, Clark, 1993). However, a collection of 
micro-features represented by a number of dif-
ferent neurons can represent a concept that could 
be represented by a symbol in a classical model 
(Dawson, 2004).

Neurocomputing is the equivalent of learning. 
It consists in the modification of the synaptic gaps 

according to some adjustment process sensitive 
to successful and erroneous performance. In 
general, upon repeated presentation of various 
real examples and under the steady pressure of a 
learning rule or algorithm that makes small ad-
justments in the network’s synaptic connections, 
the network slowly but spontaneously generates 
a set of internal representations, one for each of 
the several features it is required to detect. The 
overall result is that after learning the network 
contains a number of processors chained together 
in such a way as to produce the appropriate outputs 
given a set of inputs. During learning, a network 
will typically develop a way of organizing its 
representations so that different inputs come to be 
represented as belonging to partitioned classes or 
groups, which may themselves be hierarchically 
ordered into various subgroups. 

Information is stored in the memory by 
strengthening the connections between those units 
that co-occur and weakening the connections 
between pairs of units in which one is on and 
the other is off. Consequently, memory refers to 
the relatively enduring neural alterations induced 
by the interaction of the system outputs with its 
inputs coming from an external environment. 
When a particular activity pattern is learned, it 
is stored in the brain (artificial or natural) where 
it can be recalled later when required. Retrieval 
is assumed to occur when a previously active 
pattern is reinstated over the set of neurons. As 
a result, when a new input signal enters the net-
work of interconnected, the signal is transmitted 
along defined connections, to activate a specific 
subset of neurons, which represent the explana-
tory concept. 

In this way, a neural network is a distributed 
memory system that learns by association. Each 
memory trace is distributed over many different 
connections, and each connection participates in 
many different memory traces. The traces of dif-
ferent mental states are therefore superimposed in 
the same set of neural connections. The neurons 
themselves can be seen as knowledge micro-

Figure 4.2. Schematic representation of neuron 
activity
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features. A particular situation is represented by 
turning on those micro-features that constitute a 
description of the represented situation or unit of 
knowledge. Certain collections of micro-features 
might represent the physical characteristics of the 
situation, such as the color or size of an object being 
viewed, whether some particular object is present, 
and so on. Other micro-features represent more 
abstract relational aspects of a situation, such as 
whether similarity or spatial neighborhood. 

The term “connectionism” has been used to 
refer to reasoning and cognitive activity within 
this kind of interconnected neural networks. 
Connectionist systems are automatic problem 
solvers, which do not contain “words,” “images,” 
or surrogates for the external word. They are 
made of many little parts (“artificial” neurons), 
each mindless by itself, passing activation or 
inhibition signals to each other and all of them 
competing for the right to act and cooperate to 
send an output signal that can be understood as 
the solution to the problem. Each neuron by itself 
can only do some simple thing that needs no mind 
or thought at all: receive an input from all other 
units in a connected network and calculate an 
output. These artificial neurons accept a bunch 
of numbers (input), and learn to respond to this 
by producing a number of its own (output). Yet, 
when we join these units inside a network, this 
leads to an appearance of intelligent behavior. 
Vast representational power thus results from 
very modest resources.

Connectionist systems show how a system 
might convert a meaningful input into a mean-
ingful output without any rules, principles, infer-
ences, or other sorts of meaningful phenomena 
in between. A neural network does not contain 
explicitly represented data structures. Nor does it 
contain explicitly formulated production rules or 
procedures, which apply uniformly to all instances 
of a given class. Any apparent rule activation is 
an emergent phenomenon, to which only the ideal 
case of the system will normally conform. The 
system’s knowledge is embodied as a superposi-

tion of individual instances of learning, each of 
which will cause a slight adjustment to the con-
nection weights between the internal units. Recall 
is not a matter of looking up the required item in 
accordance with hierarchical membership criteria; 
it is more a case of the symbol being recreated 
if a sufficient number of the units involved in its 
representation are brought into play.

In these circumstances, “cognition” appears 
as the emergence of global states in a network of 
simple components. Neurons mediate between the 
reception of external stimuli (“observables”) and 
the execution of behavioral responses (“percep-
tions”). They have no thoughts and no feelings, 
yet out of them emerge intelligent actions. They 
are cognitive procedures that act as complex as-
sociations between input signals (empirical data) 
and conceptual or behavioral output. Almost all 
knowledge is implicit in the structure of the de-
vice that carries out the task, rather than explicit 
in the states of units themselves. Knowledge is 
not directly accessible to interpretation, but it 
is built into the processor itself, in such a way 
that it determines the course of processing. The 
automated system learns through tuning of con-
nections, rather than formulated and stored as 
declarative facts (Rumelhart, 1989). 

The claim underlying this principle is that a 
number of loosely coupled processes running 
in parallel can control explanation. It postulates 
that an explicit process that controls all others 
is unnecessary. Those parallel, loosely coupled 
processes correspond to non-hierarchical obser-
vation-explanation couplings with comparatively 
little internal processing. This principle contrasts 
with the traditional view of categorization as a 
process of mapping a sensory stimulus onto an 
internal representation. The principle of explain-
ing-as-learning coordination states that problem 
solving is to be conceived as sensing-action co-
ordination. Note that sensing-acting coordination 
does not mean simply “explanation.” Explanation 
must be directly guided by the sensory input. 
Perception and problem solving must now be 
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interpreted from a perspective that includes 
data acquisition and problem solving processes, 
especially, learning and prediction. Whatever 
explanation we are analyzing, we should focus on 
how the input and knowledge-producing systems 
are coordinated. Embodiment plays an important 
role in this coordination.

An archaeological example will help to under-
stand this mechanism for knowledge representa-
tion. Imagine the automated archaeologist should 
learn to identify different kinds of lithic tools, and 
specify, among other things, which work activity 
was performed by some prehistoric people us-
ing those tools (Figure 4.3). Here, we design an 
automated archaeologist whose “brain” contains 
a preliminary subpopulation of neurons to store 
descriptive features:

shape, size, use-wear, and so forth. Only rela-
tively few neurons are directly connected to the 
real world as “sensory devices,”channels through 
which empirical data are presented to the system, 
with the rest gaining their inputs in later stages 
of processing from other neurons in the network. 
Those are the input neurons and together encode 

what the machine visually knows of each tool in 
a vector, that is, a series of numbers indicating 
the intensity of some physical properties. There 
is one input vector for each observed exemplar. 
A second subpopulation of neurons provides 
a vector encoding of the possible solutions to 
the problem: arrow point, scraper, and so forth. 
(Figure 4.4). There are different ways to produce 
such an encoding: each output neuron is a repre-
sentation for each concept or possible solution, 
or a single concept is represented in a distributed 
way through different neurons. That is, we may 
have four distinct units, one for “knife,” another 
for “arrow point,” and a third one for “scraper.” 
This way of encoding the solution is called local-
ized representation. 

Alternatively, we can have some neurons 
specialized in detecting different aspects of 
the solution. For instance: “longitudinal move-
ment,” “transversal movement,” “work on hard 
material,” “work on soft material.” The solution 
will be a knife, if some input units activate the 
output units: “longitudinal movement,” “work on 
a soft material,” because these are the distinctive 

Figure 4.3. The basics of neurocomputing for archaeological reasoning
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features of using a knife. This is a distributed 
representation. In distributed representations, 
any particular content is encoded by means of a 
set of simultaneously activated neurons, each of 
which can participate in the encoding of more than 
one distinct content. The main characteristic of 
connectionist systems is their use of distributed 
representations, where each neuron responds to 
a variety of different input stimuli, and the fact 
that many neurons should be active for each input 
stimulus. 

Neural networks process numeric data in a 
fairly limited range. This presents a problem if 
data is in an unusual range, if there are missing 
data, or if data are non-numeric. Fortunately, there 
are methods to deal with each of these problems. 
Numeric data are scaled into an appropriate 
range for the network, and missing values can 

be substituted for using the mean value (or other 
statistic) of that variable across the other avail-
able training cases (see Bishop, 1995; Hagan et 
al., 1996). Handling non-numeric data is more 
difficult. The most common form of non-numeric 
data consists of nominal-value variables such 
as Gender={Male, Female}. Nominal-valued 
variables can be represented numerically (pres-
ence/absence, 1 or 0), however, neural networks 
do not tend to perform well with nominal vari-
ables that have a large number of possible values. 
Unconstrained text fields (such as names) cannot 
be handled and should be discarded. Other kinds 
of non-numeric data must either be converted to 
numeric form, or discarded. Dates and times, if 
important, can be converted to an offset value 
from a starting date/time. Frequency values can 
easily be converted.

Figure 4.4. An idealized representation of an artificial neural network in archaeology
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The central idea is that if a network forms 
distributed internal representations that encode 
input features in a combinatorial fashion, then 
novel stimuli can be processed successfully by 
activating the appropriate novel combination of 
representational neurons. Nevertheless, gener-
alization depends on being able to recombine 
representations that systematically encode the 
individual elements independent of their specific 
training contexts (O’Reilly & Munakata, 2000, 
p. 180). Therefore, although the combination is 
novel, the constituent features are necessarily 
familiar and have been trained before to produce 
or influence appropriate outputs, such that novel 
combination of features should also produce a 
reasonable output. 

It should be stressed the role of neural networks 
in the interpretation of archaeological data, in that 
the user does not need to explain the reasoning 
behind an interpretation. The network simply acts 
as a bridge from data to interpretation. Neural 
networks bear little resemblance to verbal rep-
resentation. They are composed of elements that 
are interconnected, rather than ordered in strings 
and often these units are not even symbols in the 
ordinary sense. Consequently, it is relatively dif-
ficult to work with them. However, these technical 
difficulties provide many practical advantages. 
When using neural networks as inverse engineer-
ing and problem solving tools for archaeological 
research, we obtain:

• The capacity for recognizing features or 
patterns through a veil of noise and distor-
tion, or given only partial information.

• The capacity for seeing complex analo-
gies.

• The capacity for recalling relevant informa-
tion instantly, as it bears on novel circum-
stances.

• The capacity for focusing attention on dif-
ferent features of empirical data.

• The capacity for trying out a series of dif-
ferent cognitive “takes” on a problematic 
situation.

• The capacity for recognizing subtle and 
indefinable empirical properties.

Most successful applications of neural net-
works involve pattern recognition, statistical 
mapping, or modeling. Successful applications 
can include signal validation, process  monitoring, 
diagnostics, signal and information processing, 
and control of complex (often nonlinear) systems. 
Bailey and Thompson (1990) have cited a survey 
of successful neural-network applications devel-
opers and have given the following heuristics for 
successful applications:

• The problem requires qualitative or complex 
qualitative reasoning.

• The solution is derived from highly inter-
dependent parameters that have no precise 
quantification.

• The phenomena involved depend upon 
multiple-interacting parameters.

• Data are readily available but are multivari-
ate and intrinsically noisy or error-prone.

• There is a great deal of data from specific 
examples available for modeling.

• Some of the data may be erroneous or miss-
ing.

• The phenomena involved are so complex 
that other approaches are not useful, too  
difficult, or too expensive.

• Project development time is short, but suf-
ficient network training time is available.

how A NEuRAl NEtwoRk 
woRkS

We can build artificial neurons as pieces of hard-
ware with physical electrical interconnections, or 
just as software elements able to do input-output 
computations, and with computable connections 
implemented as arithmetic or algebraic operations. 
Let us consider the second case.
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For a computing system to be called “artifi-
cial neural network” or “connectionist system,” 
it is necessary to have a labeled directed graph 
structure, consisting of a set of nodes (vertices) 
and a set of links connecting pairs of nodes. It 
is the pattern of interconnections what it is rep-
resented mathematically as a weighted, directed 
graph in which the vertices or nodes represent 
basic computing elements (neurons), the links or 
edges represent the connections between neurons, 
the weights represent the strengths of these con-
nections, and the directions establish the flow of 
information. 

The nodes of the graph are either input vari-
ables, computational elements, or output variables. 
Activation values indicate instances. The meaning 
of nodes (their labels) plays no direct role in the 
computation: a network’s computation depends 
only on the activation values of nodes and not on 
the labels of those nodes. However, node labels 
play an important indirect role, because the nature 
of the input to the model depends on the labels and 
the output of a model depends on its input.

To complete specification of the network, we 
need to declare how the nodes process information 
arriving at the incoming links and disseminate 
the information on the outgoing links. The influ-
ence diagram of Figure 4.5 provides a functional 
description of the information flow between the 
various elements that constitute the model of an 
artificial neuron. 

In the diagram, each node’s activation is based 
on the activations of the nodes that have con-
nections directed at it, and the weights on those 
connections. The total input to the unit is simply 
the weighted sum of the separate inputs from each 
of the individual units. A typical node Vk has an 
associated node signal Im, which can be interpreted 
as the activation value for that particular neuron. 
A typical directed link originates at node m and 
terminates on node k; it has an associated weight 
wk, which specifies the strength of the connec-
tion. Its role is to modify the intensity of input 
signals coming through this particular link. It 
may be regarded as a factor by which the effects 
of a signal from one unit to another are amplified 
or attenuated. In that way, the scalar input Im is 
multiplied by the scalar weight w to form Vk. We 
can modify the activity of the neural network 
in such a way that some information “weights” 
more heavily into the firing of some neurons than 
do others. Thus, by shaping the weights, we may 
shape the functioning of the neurons. 

The incoming weighted input signal goes into 
a transfer or activation function F, which maps 
the current state of activation to an output signal 
U. According to the integrate-and-fire model of 
neural function (O’Reilly & Munakata, 2000, p. 
24), each neuron fires, that is to say, it sends an 
output value in response to the incoming input, 
if the integrated series of signals arriving from 

Figure 4.5. Functional description of the information flow between artificial neurons
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other neurons in the network exceeds a certain 
threshold. Instead of directly communicating the 
value of the integrated inputs, neurons have a fir-
ing criterion that is applied first. The threshold is 
there so that subsequent neurons are not constantly 
bombarded with the information that has not 
enough intensity to be concerned. The activation 
or transfer function executes this firing criterion 
and produces the neuron’s output signal. It may 
be a linear, a threshold, or a nonlinear sigmoid 
function. A simple step activation function may 
be used (i.e., the neuron’s output is 0 if the sum 
of all incoming input is less than or equal to zero, 
and 1 if the input is greater than 0), although this 
function is rarely used in artificial neural networks. 
A much more convenient mathematical form for 
the activation function is the sigmoid logistic 
nonlinearity:

oi = 1 / (1 + e-(vk + θj)/θ0)   (1)

This transfer function takes the weighted sum 
of all incoming inputs vk squashes the output into 
the range 0 to 1. The parameter θj serves as a 
threshold or bias (learning rate), and it is usually 
fixed by the user.

To complete this model of an artificial neuron, 
we need to include some biases or “offset.” The 
bias gives the network an extra variable, and so 

you might expect that networks with biases would 
be more powerful (Hagan et al., 1996).

Artificial neurons are connected among them 
to form a connective system, defined by the paral-
lel distributed flow of activation signals through 
weighted interconnections. When arranged in an 
ordered set of neurons called layer, the mecha-
nism is a bit more complex, because we might 
consider the transformations of the input into an 
output in terms of successive steps. In such mul-
tilayered neural networks, the weights of a layer 
are associated with the neurons that follow them. 
Therefore, a layer consists of a set of weights and 
the subsequent neurons that sum the signals they 
carry. Successive layers augment the original 
input pattern, producing a recoding (that is, an 
internal representation) of the input patterns in 
some middle (also called hidden) layer in which 
the similarity of the patterns between units can 
support any required mapping from the input to 
the output units. Consequently, activation value in 
each unit of the hidden layer is a non-decreasing 
nonlinear function of the product of the input (in 
the feeding layer) and the connection weight.

Consider the next diagram (Figure 4.7). It 
shows a graph, whose nodes (artificial neurons) 
have been organized in three layers, and activation 
links connect only neurons between layers and not 
within a layer. It is the most typical organization 
of a neural network, but not the only one, as we 
will see later. 

Figure 4.6. Neuron activation: Sigmoid logistic 
nonlinear transfer function 
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In this case there is an input layer of nodes 
which receives input directly from the environ-
ment through dedicated synaptic connections 
(not depicted in the figure), and typically repre-
sents something like pre-processed sensory or 
empirical data. There is an output layer of units, 
containing the potential responses; and finally, 
one layer of intermediate nodes (also called hid-
den units). By the use of such a “hidden layer,” 
simple connectionist networks do not merely store 
input-output pairs. They allow the emergence of 
a specific internal structure that generalizes the 
input-output mappings.

This arrangement of artificial neurons in three 
consecutive layers can be understood in the follow-
ing way. An input stimulus from the environment 
produces some activation level in a given input 
unit, which then conveys a signal of proportional 
strength along its connection onto the hidden 
units. These connections stimulate or inhibit the 
hidden units, as a function of the strength of the 
signal, and the efficiency or “weight” of each 
synaptic connection. A given hidden unit simply 
sums the pattern of activations arriving from the 
input layer. Which pattern emerges, for a given 
input, is strictly determined by the configuration 
of synaptic weights connecting the hidden units. 
The units in this second or “hidden” layer project 
in turn to a third population of units, the output 
layer, which simulate the response containers. 
In this last layer of the network, the global effect 
is that an activation pattern across the hidden 
neurons produces a distinctive activation pattern 
across the output neurons. As before, exactly what 
pattern-to-pattern transformation takes place is 
fixed by the configuration of synaptic weights 
meeting the output neurons. 

The neurons in the input layer may be thought 
of as “sensory” units, since the level of activation 
in each is directly determined by aspects of em-
pirical data. The theoretical definition of a neural 
input is a variable that cannot be influenced by 
any inner activity of the system (Aleksander & 
Morton, 1993, p. 222). You may see the input layer 

as the retina in your eyes, where the raw sensory 
information is turned into patterns of signals. It 
is there where the raw external information is 
turned into quantitative or qualitative vectors. 
However, rather than representing information 
as precisely as possible, each neuron in the input 
layer is sensitive to (activated by) a different set 
of input signals (its receptive field). The receptive 
field of a neuron generally refers to the spatial 
and temporal distribution of inputs that affect the 
firing of that neuron. More generally, this term 
refers to the set of inputs that activate a given 
neuron. Input signal is given in terms of a fixed 
set of representational primitives, i.e., a fixed set of 
features to which its artificial neurons are seen as 
sensitive. Such features may include visual ones, 
like color or size, and non-visual ones, like names 
or compositional data, or any other information 
about the archaeological record you can imagine. 
There should be as many neurons in the first layer 
as categories to recognize (DeCallataÿ, 1992). We 
may refer to that configuration of stimulation levels 
as the input vector, since it is just an ordered set 
of numbers or magnitudes. In this architecture, 
the fact that a particular unit is active is not very 
informative; but if a high percentage of the units 
that are sensitive to a particular input are active, 
the presence of that input can be inferred with 
high confidence. 

The third layer (output) is devoted to the final 
recognition of the “solutions.” Mathematical theo-
ry tells us that we should see output as a separate 
set of state variables that are influenced both by 
input and inner state variables. According to this 
idea, and given that our automatic archaeologist 
should respond with the social causes when it 
is asked about an archaeologically observable 
effect, these output units contains explanatory 
concepts: chronologies, functions, social catego-
ries, descriptions of social processes or social 
relationships, and so on. 

Intermediate layers in a neural network are 
needed for technical reasons. They represent the 
network inner state. An inner state is said to be 
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the instantaneous snapshot of all the system’s 
state variables, a state variable being any variable 
that has not been designated an input or output 
variable. We also need a further partition of the 
inner state into conscious and unconscious state 
variables. Conscious state variables, through the 
process of learning, are those that take part in 
an available representation of the world. Other 
(hidden units) are the auxiliary state variables 
that may be needed to label events internally. In 
this case, it is useful to imagine that the network 
consists of two classes of neurons, with one class, 
the visible units, corresponding to the possible 
solutions to the problem (competing hypotheses), 
and the remaining hidden units are used to help 
storing the input-output patterns. 

Hidden neurons are complex features detec-
tors, which may be seen as representational or 
coding devices. That is, a single hidden unit can 
be conceived of as standing for something. In this 
sense, hidden units are thought of as recoding the 
inputs or internal representations of the input. 
Since the output nodes are typically fed only by 
the hidden units, these internal representations as-
sume a great importance. Because the behavior of 
hidden units depends on how they are connected to 
the input nodes, we can sometimes tell something 
about how a given network parcels up a particular 
problem by understanding what its hidden units 
are doing. It is generally accepted that to solve 
certain problems that are not linearly separable, it 
is necessary to use a net with one layer (or more) of 
hidden units. Nets with no hidden layers are used 
only for solving linear problems, where output 
concepts are well defined and separated. 

The following cases follow this model. Let us 
begin with an already familiar example. Imagine 
we are analyzing a prehistoric tool, an arrow point 
(Figure 4.4). We use several variables to describe 
it: presence/absence of a long tail, presence/ab-
sence of a retouched edge, presence/absence of 
a pointed shape, presence/absence of parallel 
edges, presence/absence of rectangular shape, 
and so forth. Each attribute constitutes a specific 

activation level (1,0) for its corresponding neuron 
in the input layer. 

The output layer contains three possible an-
swers: knife, arrow point, and scraper. We can use 
a similar distributive approach having a different 
neuron for each feature defining a prototypical 
knife, arrow point, or scraper, or more easily, just 
three output neurons, one for each hypothesis.

In this example, activations only flow forward. 
All “neurons” in the input layer are connected with 
all units in the intermediate “hidden” layer, and 
all units in this hidden layer are connected with 
the neurons in the output layer. No connection is 
allowed within a layer. In this way, an automatic 
archaeologist will be able to integrate information 
from many different sources into a single signal, 
expressed as the intensity of an activation level of 
some neuron in the system. Consequently, neurons 
exhibit measurable tuning curves, which mean 
that they respond in a graded fashion to inputs 
within a range of different parameter values. In 
this case, the activity pattern of input neurons cor-
responds to the measures we have taken from the 
real object. The activity pattern of output neurons 
corresponds to a double transformation of the input 
signal: first from the input to the hidden layer, and 
secondly from the hidden layer to the output. Hid-
den units here represent the particular nonlinear 
function between morphological features and 
inferred functional classes, for instance. It would 
be even possible to understand the output neurons 
activation level as the probability value for each 
explanatory concept. In other words, this neural 
network is able to answer a functional archaeologi-
cal problem: given a description of lithic tools in 
vector format (1s and 0s), the system will produce 
as an answer the probability that the tool be a 
knife, an arrow point, and/or a scraper. Provided 
the correct connection weights among the units, 
a “solution” will emerge among the output units 
in response of different input signals.

Suppose now that our automatic archaeologist 
is able to study the archaeological record without 
digging (this example is based on a real appli-
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cation by Gorman and Sejnowski, 1988). That 
means that the system has some remote sensing 
device producing an input signal to be translated 
into meaningful output: there is a buried wall or 
not, there is a buried pavement floor or not. The 
difficulty is twofold: signals from different ar-
chaeological structures may be indistinguishable 
from magnetic or electrical signals transmitted 
by the georadar or other remote sensing device. 
Inputs from each type show wide variation in 
the character of the remote signal, since walls 
and floors come in various sizes, shapes, and 
orientations relative to the incoming input sig-
nal. A neural network can be built to solve this 
problem. A given input signal (from geo-radar, for 
instance, or magnetic surveying) is run through a 
frequency analyzer and is sampled for its relative 
energy levels at a finite number of frequencies 
(for instance, 30 levels). These values, expressed 
as fractions of 1, are then entered as activation 
levels of the respective 30 neurons of the input 
layer. From here, they are propagated through 
the network, being transformed by successive 
weights. The result is a pair of activation levels 
in two units at the output layer. We need only 
two units, for we want the network eventually 
to produce an output activation vector at or near 
<1,0> when a wall signal is entered as input, and 
an output activation vector at or near <1,0> when 
a pavement floor signal is entered as input. 

The next example comes from rock-art stud-
ies (Barceló, 1995). In this case, the network 
should be able to explain geographical diversity, 
chronological variability and social variation from 
a series of engraved decorations. Input neurons 
contain the values of some descriptive indexes: 
the number of symbols engraved; the number of 
anthropomorphic figures, and so forth. Output 
units are a binary representation of truth values 
(1,0) for explanatory concepts: geographical region 
(four regions), chronology (four temporal phases), 
presence of imported items among symbols 
engraved. More about this example and others 
appear in the next chapters.

Neural networks can be used not only for 
object classification. Complex social interpreta-
tions can also be implemented using this family 
of nonlinear algorithms. You only need a finite 
group of competing hypotheses as the output, and 
a finite set of input units to represent distinctive 
empirical features of known instances for each 
hypothesis. For instance, how we can infer the 
social nature of a cemetery? The answer implies 
building a set of theoretical social types as output 
units, and some features describing the shape, the 
content, and location of graves. 

To sum up, all these networks have to be seen 
as a way to implement input-output functions, 
where the input is given by the presence/absence 
or intensity of some observable properties in a real 
environment and their relationships. The output is 
seen as an estimation of those properties explain-
ing the existence of entities. Therefore, one of the 
main advantages of neural networks is that the 
problem space should not be “stored” physically 
in the neurons, but specified by states of neural 
activity that are the result of the neural system’s 
internal organization and dynamics.

Rumelhart and Todd (1993) proposed a general 
semantics to work with this kind of networks. The 
model has one bank of input nodes to represent 
the range of possible subjects, another input bank 
to represent relations (such as is-a, has-a, can), 
and four banks of output nodes, which represent 
entities, properties, qualities, and actions (Figure 
4.8).

Each input or output node represents a single 
entity, property, relation, quality, or action. In 
archaeology, the nodes for entities may represent 
artifacts or any material item to be recognized 
in the archaeological record. They can be used 
also to represent people and social categories. 
Relational nodes answer positively or negatively 
to relational terms as: can, is-a, are and have, or 
even more complex relationships like: is-made-of, 
is the consequence-of, generates, and so forth. 
The nodes for properties represent components 
of entities (i.e., wood, pottery, bone, etc.). The 
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node for qualities may represent adjectives such 
as red, green, big, far, near. The nodes for actions 
may be used to represent human activity, that is, 
“work:” cutting, building, killing, butchering, and 
so forth. For instance, the expression “a scraper 
has a transversal retouched edge and it was used 
to process leather” will be represented with posi-
tive values (1s) at those entity neurons in the input 
layer representing “scrapers.” Relation neurons 
containing “has,” and output neurons containing 
the entity value “leather,” the properties neurons 
“transversal edge” and “retouched edge,” and the 
action neurons “scrapping.” The expression “an 
Empire is a social organization based on territorial 
expansion and taxation” will be represented with 
positive values (1s) at those entity neurons in the 
input layer representing “Empires,” and relation 
neurons containing “is-a,” and output neurons 
containing the entity value “social organization,” 
the properties neurons “territorial expansion” and 
“taxation,” and the action neurons “aggressive,” 
“coactive.”

how A NEuRAl NEtwoRk 
lEARNS

Once we have specified the input and output con-
tents, it is time to run the network. Typically, the 
aim of a neural network is to take a set of input 
patterns and associate each input pattern with a 
given output pattern, by spreading excitations 
and inhibitions (positive and negative numbers) 
among interconnected nodes. However, a neural 
network is nothing and does nothing if it has not 
been previously trained to solve problems. Learn-
ing in such a neural network means to correlate 
input with output patterns by slightly changing 
the values of the connections’ weights, so that the 
application of a set of inputs produces the desired 
(or at least consistent) set of outputs. The network 
is able to identify the class of that particular pat-
tern because of the information it has extracted 
from some training data.

The easiest way to train a neural network is by 
feeding it with multiple sets of experimental data 

Figure 4.8. An ideal model for a universal neural network 
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(laboratory replications) or controlled observa-
tions (ethno-archaeological or historical sources) 
in which the outcomes are known (supervised 
learning task). That means that before using 
the network, it must first undergoing a training 
or learning session, during which a set of input 
patterns is repeatedly presented to the network, 
along with the category to which each particular 
pattern belongs. The more known data presented 
to the network, the better its performance will be. 
In the human brain, the initial strengths of the con-
nections reflect the cumulative effects of natural 
selection. In an artificial neural network simula-
tion, the initial weights are typically assigned 
small, randomly assigned values at the beginning 
of learning. Thereafter, the connections weights 
change based on the degree of correspondence 
between the activation of the relevant output units 
by the environment and the activation required for 
the supervised learning task. A large discrepancy 
between the output of the network activated by 
the training stimuli and the output required for 
the reinforcing stimulus produces large changes in 
the connection weights within the network. Con-
versely, when the discrepancy between the output 
produced by the environment and the required 
output is small, the weights change very little. 
This is consistent with selection by reinforcement 
in that the change in connection weights reduces 
the discrepancy between the output produced by 
the environment and the target output required 
for the reinforcing stimulus.

When a network runs in training mode, both 
activations and weights will change on each 
learning trial. After training, the network can be 
tested by presenting inputs and observing their 
effects on activations alone. It is important to 
understand that although both weights and activa-
tions can change in response to inputs, their roles 
are distinct. Activation values are the vehicle for 
temporary state changes in a network that should 
tell us which one of a set of possible input patterns 
has just been processed. Weights are the vehicle 
for more enduring changes in a network that 

make it capable of processing all of the various 
input patterns on which it has been trained. One 
similarity between activations and weights is that 
their changes are determined locally; that is, they 
are based solely on information that is directly 
available to a particular unit or connection. In 
the case of a weight change, the outputs of each 
of the two units between which the connection 
is being adjusted count as local.

In doing so, the network weights gradually 
converge to values such that each input vector 
produces the desired output vector. It is the net-
work, which self-adjusts to produce consistent 
responses. By adapting its weights, the neural 
network works towards an optimal solution based 
on a measurement of its performance. 

To get a better idea of how this looks like, 
we will come back to the arrow point example 
(Figure 4.4). We want that our automatic archae-
ologist be capable of distinguishing arrow points 
from scrapers, because both shapes are related to 
different uses. First, we should circumscribe the 
domain by fixing on a prototypical stone arrow 
point, and a prototypical scraper. These ideal 
prototypes will be used as the “solution” to the 
problem. Both kinds of lithic tools will be de-
scribed in terms of a fixed set of representational 
primitives (input neurons). Next, we select some 
arrow points from our excavation data, which 
we know are approximate to an ideal arrow, and 
some scrapers, which we know are approximate 
to an ideal scraper. None of which quite matches 
its respective prototype. Now assign each indi-
vidual artifact a category (arrow or scraper). Give 
the network a series of experiences of individual 
stone tools by activating simultaneously the units 
that correspond to the tool description and the 
unit containing the category. After each such 
exposure, allow the system to deploy a learning 
rule to lay down a memory trace in the form of 
a pattern of altered connectivity and to facilitate 
recall of the last description. After 50 or so such 
runs, the system will learn to relate the descrip-
tion with the category, although it has never 
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been exposed to a prototypical arrow point or a 
prototypical scraper, but only to the excavation 
data, which are incomplete or distorted instances 
of the ideal type. The neural network extracts 
the pattern common to all the slightly distorted 
or incomplete inputs, producing a general idea 
of the prototypical member of the set of which 
the inputs were instances. The process is called 
“training the network,” and it is executed by an 
auxiliary computer programmed to feed samples 
from the training set into the network, monitor its 
responses, and adjust the weights according to the 
special rule after each trial. Under the pressure 
of such repeated corrections, the behavior of the 
network slowly converges on the behavior we 
desire. That is to say, after several thousands of 
presentations of recorded inputs and subsequent 
adjustments, the network starts to give the right 
answer close to ninety percent of the time.

Remember the remote sensing example. We 
wanted to build an automated archaeologist able 
to distinguish buried walls from buried floors 
and from random noise captured by a geophysical 
surveying. It would be a miracle if the network 
made the desired discrimination immediately, 
since the connection weights that determine its 
transformational activity are initially set at ran-
dom values. At the beginning of this experiment, 
then, the output vectors are sure to disappoint 
us. Nevertheless, if we proceed to teach the 
network by presenting successively a large set 
of recorded samples of various (genuine) buried 
walls remotely sensed signals, from walls of vari-
ous sizes and orientations, and a comparable set 
of genuine buried floors signals, the system will 
be able at the end to recognize appropriately the 
incoming input. 

Unsupervised learning occurs when the 
network learns in the absence of any form of 
externally provided feedback (Hinton & Becker, 
1992, p. 5). Unsupervised training requires no 
target vector for the outputs, and hence, no com-
parisons to predetermined ideal responses. As 
an example, consider a paleontologist wishing 

to determine whether a set of bone fragments 
belong to the same dinosaur species or need to 
be differentiated into different species. For this 
task, no previous data may be available to identify 
the species for each bone fragment. The scientist 
has to determine whether the skeletons (that can 
be reconstructed from the bone fragments) are 
sufficiently similar to belong to the same species, 
or if the differences between these skeletons are 
large enough to warrant grouping them into dif-
ferent species. This is an unsupervised learning 
process, which involves estimating the magnitudes 
of differences between the skeletons. One scien-
tist may believe the skeletons belong to different 
species, while another may disagree, and there 
is no absolute criterion to determine it correct. 
The training set consists solely of input vectors. 
A training algorithm modifies network weights 
to produce consistent output vectors; that is, both 
application of one of the training vectors and ap-
plication of a vector that is sufficiently similar to 
it will produce the same pattern of outputs. The 
training process, therefore, extracts the statistical 
properties of the training set and clusters similar 
vectors into classes. The resulting model is a 
network that just looks at the world, and without 
any further instructions, constructs an internal 
representation. 

The diverse approaches to neurocomputational 
learning of patterns can be categorized into two 
general paradigms:

• Associative mapping in which the network 
learns to produce a particular pattern on the 
set of input units whenever another particular 
pattern is applied on the set of input units. 
The associative mapping can generally be 
broken down into two mechanisms: 
	 Auto-association: An input pattern is 

associated with itself and the states of 
input and output units coincide. This 
is used to provide pattern completion, 
that is, to produce a pattern whenever 
a portion of it or a distorted pattern is 
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presented. In the second case, the net-
work actually stores pairs of patterns 
building an association between two 
sets of patterns. 

	 Hetero-association: Is related to two 
recall mechanisms: 
• Nearest-neighbor recall, where 

the output pattern produced 
corresponds to the input pattern 
stored, which is closest to the 
pattern presented, and 

• Interpolative recall, where the 
output pattern is a similarity 
dependent interpolation of the 
patterns stored corresponding to 
the pattern presented. Yet another 
paradigm, which is a variant asso-
ciative mapping is classification, 
that is when there is a fixed set of 
categories into which the input 
patterns are to be classified. 

• Regularity detection in which units learn to 
respond to particular properties of the input 
patterns. Whereas in associative mapping 
the network stores the relationships among 
patterns, in regularity detection the response 
of each unit has a particular ‘meaning.’ This 
type of learning mechanism is essential for 
feature discovery and knowledge representa-
tion. 

As it occurs in other machine learning do-
mains, neurocomputational algorithms may be 
categorized as supervised or unsupervised. For 
supervised learning, the performance is explic-
itly measured in terms of a desired signal and an 
error criterion. For the unsupervised case, the 
performance is implicitly measured in terms of a 
learning law and topology constraints. Supervised 
learning requires pairs of data consisting of input 
patterns and the correct outputs, which are some-
times difficult to obtain. Unsupervised training 
classifies input patterns internally and does not 
exceed expected results. The data requirements 

for unsupervised training are thus much easier 
and less costly to meet, but the capability of the 
network is significantly less than for supervised 
learning.

thE bACkPRoPAgAtioN 
lEARNiNg AlgoRithm

Backpropagation is a special case of supervised 
learning algorithm. To use this approach, we need 
a feed forward network formed by a minimum 
of three layers: 

• An input layer of descriptive features (mea-
sures, observations),

• An output layer for representing “solutions,” 
that is to say, concepts or theoretical entities, 
and 

• A hidden layer of units to store the connection 
weights among input and output units.

Once you have decided that you have a prob-
lem, and it can be solved using neural networks 
because it implies some input-output relationship, 
you will need to gather data for training purposes. 
The training data set includes a number of cases, 
each containing values for a range of input and 
output variables. For instance, consider a network 
with three units in the first layer, representing 
some measures of length, height, and width of 
archaeological artifacts. 

   LENGTH HEIGHT WIDTH
ARTIFACT 1 12.5  9.8  25.6
ARTIFACT 2 13.5  8.7  22.6
ARTIFACT 3 10.1            10.2  13.2
ARTIFACT 4 12.1   9.5  25.4
ARTIFACT 5 14.5   7.5  20.0

Here, we are working with a three input unit 
model (one for each variable), and we know five 
successive states of activation, one for each obser-
vation or artifact. The output of the network will 
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give us the solution to the problem: the chronology 
for those artifacts. They already known values 
will be stored in another (output) unit.

    CHRONOLOGY
ARTIFACT 1   11th Century
ARTIFACT 2   10th 
ARTIFACT 3   7th

ARTIFACT 4   11th

ARTIFACT 5   9th

Let us see how a backpropagation model oper-
ates. Present description of the algorithm is based 
on the original paper by Rumelhart, Hinton and 
Williams (1986), and the vector notation used by 
Stone (1986). More mathematical details appear in 
Caudill and Butler (1992), Haykin (1999), Bishop 
(1995), Hagan et al. (1996), Mehrotra et al. (1997), 
Fine (1999), Reed and Marks (1999), and Principe 
et al. (2000) among others.

The basic learning procedure is a two-stage 
process. First, an input is applied to the network; 
then after the system has processed for some time, 
some neurons are informed of the values they 
ought to have at this time. If they have attained 
the desired values, then the weights are changed 
according to the difference between the actual 
value the units have attained and the target for 
those units. This difference becomes an error 
signal. This error signal is sent back to those units 
that impinged on the output units. Each such unit 
receives an error measure that is equal to the er-
ror in all of the units to which it connects times 
the weight connecting it to the output unit. Then, 
based on the error, the weights into these “second 
layer” units are modified, and the error is passed 
back another layer. This process continues until the 
error signal reaches the input units or until it has 
been passed back for a fixed number of times. Then 
a new input pattern is presented and the process 
repeats. Such a procedure will always change its 
weights in such a way as to reduce the difference 
between the actual output values and the desired 

output values. The following presentation may be 
too difficult for some readers. It can be skipped 
and the rest of the chapter is easily understand-
able. There is plenty of commercial software that 
makes the calculations, and the user only needs 
to concentrate on results. Of course, it would be 
interesting if the user understands some of the 
logical steps followed by the algorithm. The same 
remarks should be made for the presentation of 
the other algorithms. The reader is advised to read 
applications Chapters V, VI, and VII to understand 
some of the procedures presented here:

Step 1. Select the unit with the highest output.

Step 2. If this unit has output greater than or equal 
to the accepted treshold, and all other units have 
output less than the reject threshold, assign the 
class represented by that unit.

Step 3. Calculate actual outputs layer-by-layer, 
starting on the first hidden layer. The net value 
of each neuron in it is calculated as the weighted 
sum of inputs. The net input is then passed through 
the activation function F to produce output val-
ues for each neuron in the first hidden layer. In 
backpropagation, we usually assume a sigmoid 
logistic nonlinearity. We assume that each unit 
provides an additive contribution to the input of 
units to which it is connected. In such cases, the 
total input to the unit is simply the weighted sum 
of the separate inputs from each of the individual 
units. That is, the inputs from all of the incom-
ing units are simply multiplied by a weight and 
summed to get the overall input to that unit:
 
netj = Σwij oi    (2)

The outputs from neurons in this layer serve as 
inputs to the next layer (usually the output layer, 
or a second hidden layer). The process is repeated 
to obtain the output vector at this layer). 
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Step 4. Adapt weights. Use a recursive algorithm 
starting at the output nodes and working back to 
the hidden layer. Adjust weights by:

wij (t+1)= wij (t) + ηδj xi   (3)

 In this equation wij (t) is the weight from 
hidden unit i from an input to unit j at time t. xi 
is either the output of unit i or is an input, η is 
a scalar constant, which determines the rate of 
learning, and δj is an error term for unit j (it can 
be seen as the difference between the desired and 
actual output on input i). If unit j is in the output 
layer, then:

δj = yj (1 – yj)( dj - yj)   (4)

where dj is the desired output of unit j and yj is 
the actual output produced in Step 3. If unit j is 
an internal hidden layer, then:

δj = xj (1 – xj) Σδk wjk   (5)

where k is over all units in the layers above unit 
j. Internal unit thresholds are adapted in a similar 
manner by assuming they are connection weights 
on links from auxiliary constant-valued inputs. 
Convergence is sometimes faster if a momentum 
term is added and weight changes are smoothed 
by:

wij (t+1)= wij (t) + ηδj xi + α (wij (t) - wij (t-1) )
      (6)

where 0 < α <1.

Step 5. Repeat by going to step 2. Take another 
vector input representing the next empirical obser-
vation, and start the iterative processing again.

This algorithm can be considered as an iterative 
process of correction and progressive refinement 
of an initial matrix of random neural weights. 
The general idea of this form of weight updating 

is gradient descent. Weight changes at each step 
are of course minuscule. However, having nudged 
one weight in a profitable or error reducing direc-
tion, we repeat the entire process just described. 
Proceeding stepwise in this fashion, through every 
one of the network’s connections, produces an 
ever-so-slightly better performance at the output 
vector. Next, we repeat this lengthy procedure with 
a second input-output pair, then a third, a fourth, 
and so on. That means proceeding in the direc-
tion of the steepest descent of error as a function 
of the weights, to find a global minimum of that 
function, and minimizing the mean square error 
between the calculated output and the observed 
one in an experimental situation. 

Fortunately, we can assign the entire business 
of vector presentation, error calculation, and re-
peated weight adjustment to a conventional serial 
computer, and then just stand back and watch the 
process unfold automatically. All of the input vec-
tors in the training set are paired with their own 
output vectors and stored in the computer’s mem-
ory, and the computer is programmed to present 
each one to the student neural network, compute 
the error involved in each output, and adjust the 
weights according to the principles just outlined. 
After each presentation of each input-output pair, 
the computer nudges all of the network’s weights 
to slightly happier configuration.

We instruct the computer to keep repeating 
this procedure, for all the input-output pairs in 
the training set, until the mean squared error of 
the network’s output performance is made as 
small as possible. Depending on the complexity 
of the network, this can take hours, days, or even 
weeks of furious computing on the best available 
machines. Nevertheless, it regularly leaves us 
with a network that has genuinely learned the 
skill or transformational capacity in question. Do 
not be afraid. With a typical desktop computer, 
learning a three-layered network with 20 input 
variables and 7 output units using a databset 
with 300 training pairs takes less than 3 minutes! 
However, if you train the network with images 
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(bitmap pictures), training is far more longer (see 
Chapter VI, p. 212)

how good ARE NEuRAl 
NEtwoRk ANSwERS?

A key question in neurocomputing applications 
is how to interpret output values. The standard 
practice is to adopt some activation thresholds or 
confidence levels that must be exceeded before 
the unit is deemed to have made a decision. The 
output neurons have continuous activation values 
between 0.0 and 1.0, which should be understood 
in terms of intensities: a strong signal if the case 
is the proper answer and a weak signal if it does 
not. These graded signals can convey something 
like the extent or degree to which something is 
true.

For a binomial (two-class) problem, we can 
use a network with a single output, and binary 
target values: 1 for one class, and 0 for the other. 
We interpret in this way the network’s output as 
an estimate of the likelihood that a given pattern 
belongs to the ‘1’ class. In order to assign a class 
from the outputs, the network must decide if the 
outputs are reasonably close to 0.0 and 1.0. If 
they are not, the class is regarded as undecided. 
For a One-of-N (multiple class) problem, a class 
is selected if the corresponding output unit is 
above the accepted threshold and all the other 
output units are below the reject threshold. If this 
condition is not met, the class is undecided. For 
example, if accept/reject thresholds of 0.95/0.05 
are used, an output neuron with an output level in 
excess of 0.95 is deemed to be on, below 0.05 it 
is deemed to be off, and in between it is deemed 
to be undecided. On first reading, we might ex-
pect that those networks, whose outputs arrive 
at threshold minimums (0.5) can be used as a 
“winner takes all” network. Actually, this is not 
the case for one-of-N encoded networks (it is 
the case for two-state). You can actually set the 
accept threshold lower than the reject threshold, 

and only a network with accept 0.0 and reject 
1.0 is equivalent to a winner-takes-all network. 
This is true since the algorithm for assigning a 
class is actually:

Select the unit with the highest output. 
If this unit has output greater than or equal 

to the accept threshold, and all other units have 
output less than the reject threshold, assign the 
class represented by that unit. 

With an accept threshold of 0.0, the winning 
unit is bound to be accepted, and with a reject 
threshold of 1.0, none of the other units can pos-
sibly be rejected, so the algorithm reduces to a 
simple selection of the winning unit. In contrast, 
if both accept and reject thresholds are set to 0.5, 
the network may return undecided (if the win-
ner is below 0.5, or any of the losers are above 
0.5). This procedure allows us to set some subtle 
conditions. For example, accept/reject 0.3/0.7 can 
be read as selecting the class using the winning 
unit, provided it has an output level at least 0.3, 
and none of the other units have activation above 
0.7. In other words, the winner must show some 
significant level of activation, for a decision to 
be reached.

Let us see an example. We are recognizing 
prehistoric tools in terms of their past function. 
The hypothesis to test is that the angle between 
linear use-wear traces and the edge of the tool 
should be the main feature allowing differentiation 
between “cutting” and “scraping,” because it is the 
only feature related to the direction of the move-
ment performed with that tool when it was used. 
Theoretically, we should imagine that an angle 
between 45 and 90 degrees should correspond to 
transversal movement, whereas an angle between 
0 and 45 correspond to longitudinal movement. 
Ideally, scrapping is a transversal movement and 
angle values should be around 90 degrees. Cutting 
is a longitudinal movement, and its angle values 
should be around 0. In the middle (45), we should 
imagine an indeterminacy area. 
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 Barceló and Pijoan-López (2004) have built 
a very simple neural network connecting a single 
neuron in the input layer (ANGLE) with two neu-
rons in the input layer: Knives used for cutting 
(1= Yes, 0 = No) and scrapers used for scrapping 
(1= Yes, 0 = No). Experimental data were used 
to teach the network using the backpropagation 
algorithm. The diagram below shows, schemati-
cally, both outputs (longitudinal, transversal), as 
a function of its input (this is a 1-D representation 
of the n-D input) (Figure 4.9). 

Here a cut point appears at angles around 46.5 
degrees. In the interval below 46 degrees, tools 
whose use-wear traces seem to be parallel to the 
tool’s edge, expectations for longitudinal move-
ment are very high, and the output signal sent by 
the output neuron is higher than 0.5. In the same in-
terval, transversal movement hardly arrives at the 
0.5 threshold. The situation is only a bit different 
for higher angle values, when the use-wear traces 
main angle is transversal to the tool’s edge. In this 
case, output intensities for longitudinal movement 
are only slightly below the 0.5 threshold, while, 
output values for transversal movement, only ar-
rives at the 0.5 level, never beyond. Consequently, 
the network predicts transversal movement better 
than longitudinal one (62.132 percent of correct 
transversal classifications and 48.5 percent of 

correct longitudinal classifications). Longitudinal 
expectations decrease smoothly as long angle 
increases: from 0.6 output signal corresponding 
to mostly parallel angles (around 25º) to 0.4 at 
orthogonal angles (higher than 64º). Transversal 
movement expectations are exactly the opposite; 
their output intensity values increase as long as 
the angle becomes more orthogonal.

This highlights the intrinsically probabilistic 
nature of the visual recognition problem, like all 
other classification problems. However, the inter-
pretation of output values as intensities does not 
mean that we can use them as probability estima-
tions. If we need probabilities to tell us how sure 
(in a formal sense) it is archaeological recognition, 
then the network’s output unit activations should 
be restricted to fulfill the necessary conditions 
(Bishop, 1995; Principe et al., 2000). We have to 
assume that the network has a sufficient number of 
processing units (neurons) to produce the required 
map from input space to targets. We also have to 
assume that training data is sufficient and that 
the training does indeed take the learning system 
to the global minimum. The final requirement 
is that the outputs are between 0 and 1 and that 
they all sum to 1 for every input pattern (so that 
each output can represent the probability that the 
input is in the specified class). To guarantee that 

Figure 4.9. Representation of the intensity of the output depending on the input
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the outputs sum to 1, we may follow Principe et 
al. (2000) suggestion, and substitute the standard 
activation function for the so called softmax ac-
tivation function:

kexp(net input at output unit  )
exp(net input at output unit  )j j

output =
∑

      (7)

where the denominator sums over all network out-
puts. For the two-class case there is not any relevant 
difference, since the probability requirements are 
still met. The probability of class 1 corresponds 
to its output value, and the probability of class 2 
is one minus the value of its output.

This softmax function is similar to the previ-
ously presented sigmoid logistic nonlinear, except 
that the outputs are scaled by the total activation 
at the output layer (so that the sum of the outputs 
is 1). It is important to realize that this normaliza-
tion of activity can be interpreted as competition, 
because if one neuron produces a larger output, 
the others are forced to be lower, since the sum 
is constrained. In fact, any normalization, such 
as the one imposed in statistics by the probability 
density function (the area under the curve has to 
be 1) enforces competition.

The responses of the neural network to input 
do not “encode” any particular attribute of the 
data. Rather, the output layer will make sense 
only when considered as one component in a 
causal chain that generates responses entirely ac-
cording to the probability distribution of the past 
significance of the same or related input vectors. 
That means that neural network can be viewed 
as a probabilistic model (Chater, 1995). In these 
circumstances, we may see network output as 
an approximate prediction with the addition of 
random noise. 

To sum up, neural networks use of probabil-
ity theory and prior knowledge expressed in the 
form of conditional probabilities between causes 
and effects. The elicitation of these conditional 

probabilities is however, the weakest point of 
these networks. Stassopoulou and Petrou (1998) 
suggest that an appropriate link between Bayesian 
networks (Chapter III) and multi-layered neural 
networks will solve the problem. They affirm that 
there is a direct correspondence between a linear-
ized Bayesian network and the backpropagation 
architecture, because one can easily work out the 
relationship between the weights of the neural 
network and the elements of the conditional prob-
ability matrix of the Bayesian network.

whEN thE NEuRAl NEtwoRk 
doES Not lEARN

Some times, even after many iterations, the neural 
network does not learn. Minimum square error 
blocks around 0.40 or something like that, and the 
difference between desired and calculated outputs 
does not reduce any more. The fact that a network 
does not learn may seem at odds with the well-
established claim that a multi-layered network, 
given sufficient units, can learn an input-output 
whatsoever. For virtually any given function one 
might represent as an input-output relationship, the 
theory says, it exists some backpropagation trained 
network with some configuration of nodes and 
weights that can approximate it (Hadley, 2000). 
However, the proofs of Hornik et al. (1989) apply 
only to theoretical and unreal models that have 
an arbitrary number of hidden nodes. Such proofs 
do not show that a particular network with fixed 
resources can approximate any given function. 
Rather, these kinds of proofs show that for every 
function within some very broad class there exists 
some possible connectionist model that can model 
that function. The mathematical proofs do not 
guarantee that any particular network can learn 
that particular function given realistic numbers 
of training examples or with realistic numbers 
of hidden layers. They in no way guarantee that 
multilayer feed-forward networks can generalize 
from limited data. Not any actually instantiated 
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network can literally be a universal function 
approximator, since the ability to approximate 
any function depends (unrealistically) on having 
infinite resources available (Marcus, 2001, pp. 
28-29). In this section, we will consider then what 
neural networks are doing wrong when they do 
not work properly.

How many weights and training examples does 
a feed-forward neural network need for recogniz-
ing a single isolated class? Delineating a bounded 
region in a D-dimensional space requires approxi-
mately two hyperplanes per dimension. Therefore, 
a feed-forward neural network needs an order of 
2D2 weights to define 2D hyperplanes for each 
bounded classification space region. To establish 
a minimal training requirement for learning an 
isolated bounded region, the required number 
of training samples is larger than the number of 
weights, otherwise the network tend to memorize 
exactly all the training and fail to “generalize” or 
to classify correctly any new sample. At least an 
order of magnitude more training samples than the 
number of weights in a neural network is required 
for a robust generalization. This requirement can 
be prohibitive in archaeological problems were 
training data are described by hundreds of vari-
ables (Reed & Marks, 1999; Perlovsky, 2001).

If the quantity of training instances, and the 
topology of the network are coherent but the net-
work does not learn, we have to look elsewhere. 
The first reason for bad running is in the topology 
of the network. The overriding issue is that, at 
present, there are almost no guidelines for when 
a network’s architecture is appropriate and when 
it is not (see, for instance Ripley, 1993, pp. 54-58). 
Model selection is an important issue, because, 
if we use an over simplified network, it will not 
be able to adequately represent the input–output 
mapping underlying the data. On the other hand, if 
we use a too complex one, it will extract features 
from the training set which are peculiar only to 
that set, and will not generalize well when faced 
with new data (Penny & Roberts, 1999).

One of the central issues in neurocomputing 

is how to set appropriately learning parameters, 
specially the number of hidden processing ele-
ments or neurons. There are two extreme cases. 
Either the network has too many hidden units to 
do the job, or it has too few. Understanding each 
case is important, because correctly setting the 
number of neurons is still a difficult task at our 
present state of knowledge. The biggest problem 
is that the redundant units may have detrimental 
effects on testing performance (with data that the 
system has not seen before). 

The number of hidden layers and the number 
of hidden neurons in each layer of a feed-forward 
neural network are usually determined by a 
manual trial-and error process. Beginners tend to 
stick with small networks and reduce the size of 
the application accordingly. Those with consider-
able experience with neural networks are usually 
willing to let the nature of the problem decide 
the size of the network. With the neural network 
simulation software available for personal com-
puters and workstations today, a neural network 
with a thousand neurons and perhaps a hundred 
thousand connections may no longer be a practical 
upper limit for non-statistical paradigms such as 
backpropagation or counter-propagation.

However, as we make bigger and bigger 
networks with more and more layers and more 
and more units per layer, the learning will get 
slower and slower. Even for networks of fixed 
depth, the learning time (in a serial simulation) 
is approximately proportional to the cube of the 
number of connections (Hinton, 1986; Hinton & 
Becker, 1992). The poor scaling is caused by the 
fact that the backpropagation process couples all 
the weights, even in a loosely connected network. 
Therefore, the number of hidden neurons should 
be the most reduced possible, given the charac-
teristics of the mapping to be learned. There are 
several reasons (Zeidenberg, 1990, p. 113). The 
first is parsimony: both the amount of computer 
space and the amount of complexity are reduced 
with a reduction in the number of neurons. In 
addition, with fewer units, each unit is forced to 
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compute efficiently; no units are wasted, and it is 
often easier to interpret what each unit is compet-
ing. Another reason for keeping the number of 
hidden units to a minimum is that generalization 
performance tends to be better when fewer hidden 
units are present. The disadvantage of using fewer 
units is that local minima are harder to avoid, and 
the amount of training time is increased.

Genetic algorithms may provide an effective 
way to evolve the topology of the neural network. 
We can first represent a feed-forward neural 
network as a genotype with chromosomes rep-
resenting the number of layers, number of nodes, 
connectivity, and other information about the 
network. A genetic algorithm can be employed to 
evolve the initial topology into other topologies 
until the best topology (in terms of, for example, 
network complexity, and learning speed) is ob-
tained. The system should consist of two major 
components: a genetic algorithm engine and a 
neural network engine. The genetic algorithm 
engine encodes neural network topologies as 
genotypes and evolves them through genetic 
operators. The evolved genotype is then decoded 
into a neural network by the network decoder 
(generator) and is then fed to the neural network 
engine for training. Based on the given training 
patterns, the engine will train the given neural 
networks and the resulting networks will then be 
tested with the given testing patterns. Various 
statistics such as the size of the network, learning 
speed, and classification error will be recorded 
and passed back to the genetic algorithm engine 
for fitness evaluation. Networks with high fitness 
will be selected and further processed by vari-
ous genetic operators. The whole process will be 
repeated until a network with fitness value higher 
than the specified requirement is found (Leung, 
1997; Zhou & Civco, 1996,).

Beyond the problems derived from complexity 
and the number of neurons and layers, it is never 
obvious why the neural network may fail to gen-
eralize a given input-output mapping. This point 
ties in with the allied point that, with complex 

networks, it may be quite unfeasible to attempt to 
interpret how the neural network is solving a given 
problem. In other words, the hidden neurons may 
become sensitive to extremely subtle and complex 
regularities in the input-output pairings that are 
difficult or impracticable to describe (Quinlan, 
1991, p. 70). 

If the network does not learn, we have to 
suspect not only on the network parameters, 
but especially on data. We have to keep in mind 
that neurocomputational learning is a stochastic 
process that depends not only on the learning 
parameters, but also on the initial conditions. The 
key to success of a neural network based system 
is the reliability of the data that is presented to it 
during the training stage of the system’s develop-
ment. Since neural networks learn from the data, 
the data must be valid for the results to be mean-
ingful. A successful neural network requires that 
the training data set and training procedure be 
appropriate to the problem. This includes making 
the training data set representative of the kinds 
of patterns the operational network will have to 
recognize. In order to have extrapolation and 
interpolation capabilities, neural networks must 
be trained on a wide enough set of input data to 
generalize from their training sets. All data that 
in any way are related to the application should 
be reviewed and purged of any data that are 
considered unreliable or impractical for technical 
or economic reasons. Furthermore, the training 
set must span the total range of input patterns 
sufficiently well so that the trained network can 
generalize about the data. 

A very important step prior to neural training 
is preprocessing of the data. For each feature, 
the empirical probability distribution should 
be analyzed. If the distribution is skewed, it is 
recommended using nonlinear transformations 
(e.g., taken logarithms) to make it more symmet-
ric. Outliers can be detected e.g. using box plots 
or statistical tests. These extreme values can be 
interesting in some applications, but they should 
be removed prior to training the neural network 
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because they will severely distort the input-output 
function and can hide the global relational struc-
ture. The correlation among features is another 
important aspect. If several features are highly 
correlated, this may introduce unwanted emphasis 
of this aspect of the data. The Pearson correlation 
coefficient and scatter plots can be used to detect 
correlation. Some features can then be discarded. 
Finally, for meaningful distance calculations, the 
means and variances of the features should be 
made comparable. This is commonly done using 
the z-transformation to have zero mean and unit 
variance for all inputs and thus provide an equal 
weighting in distances.

One of the most usual problems is that of un-
balanced data sets (Barceló et al., 2000). Since a 
network minimizes an overall error, the proportion 
of types of data in the set is critical. A network 
trained on a data set with 900 good cases and 100 
bad ones will bias its decision towards good cases, 
as this allows the algorithm to lower the overall 
error (which is much more heavily influenced by 
the good cases). If the representation of good and 
bad cases is different in the real population, the 
network’s decisions may be wrong. Often, the 
best approach is to ensure even representation 
of different cases, then to interpret the network’s 
decisions accordingly.

When there is not enough input for learning 
input-output pairs, spurious areas are created that 
produce in-class responses in regions of the input 
space that do not contain any training data (and 
therefore are “do not care” regions given the train-
ing data). Putting it another way, the machine may 
not perform very well on data with which it was 
not trained. If inadequate data are used, correla-
tions become difficult to find. Training time may 
become excessive when not enough kinds of data 
exist to make proper associations. This is often the 
case with backpropagation networks with a very 
large number of hidden neurons. The negative 
consequence is memorization of the individual 
values, and the network may train apparently well 
but it tests poorly on new data. 

If there is uncertainty whether specific data are 
important, it is usually best to include it because 
a neural network can learn to ignore inputs that 
have little or nothing to do with the problem, if 
enough examples are provided. Using too much 
or too many kinds of data is seldom a problem if 
there is adequate data. 

If an inadequate number of training examples 
are available, creating a data set from simulator 
runs or using expert evaluations of situations may 
be necessary and acceptable. Several experts can 
rate examples, and a single network might be 
trained on the aggregated result of the expert’s 
views. Alternately, a network might be suited for 
each expert’s opinion to see which network gives 
the best results after training.

Another possible reason for bad learning lies 
on the fact that neural network’s acquired dis-
criminatory capacities are maximally tuned to 
solving the recognition problems that it typically 
or most frequently encounters. If, during training, 
the network encounters data of type A much less 
frequently than data of type B, then if there are 
any systematic differences between both types, 
the network will suffer a performance deficit 
where data of type A are concerned (Churchland, 
1995, p. 52). This phenomenon has been called 
catastrophic interference (McCloskey & Cohen, 
1989). For instance, if the network is learning to 
recognize different artifact function, it does no 
good to learn the visual evidence for instruments 
used to “cut” if in so doing, it forgets instruments 
used to “scrap.” A process is needed for teaching 
the network to learn an entire training set without 
disrupting what it has already learned. 

An additional problem with training data, the 
curse of dimensionality, occurs when too many 
input variables are provided to the network. The 
risk of ending up with an input-output rule that 
generalizes poorly on novel data increases with 
the number of dimensions of the input space. The 
problem is caused by the inability of existing 
learning algorithms to cope adequately with a 
large number of (possibly irrelevant) parameters 
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describing training data (Egmont-Petersen et al., 
2002). We can state the hypothesis that artificial 
neural networks trained through backpropagation 
depend on correlations between input and output 
variables. They show that the backpropagation 
algorithm has very poor generalization ability 
for statistically neutral problems. Statistically 
neutral in this context means that no knowledge 
of the expected output value can be drawn from 
the knowledge of a single input variable. That 
means that earning in associative networks is 
strongly affected by the relationships between 
members of the input population. In order for the 
neural network to be effective, the input patterns 
must be linearly independent of each other. This 
entire means essentially that for a set of vectors 
to be linearly independent, no one vector can be a 
weighted average of the others (Quinlan, 1991, p 
55). Highly correlated inputs would tend to limit 
the efficiency of learning. Those cases that are 
frequent during the learning phase will leave a 
greater “impression” in the set of weights than 
those that are infrequent (Ellis & Humphreys, 
1999; Olden et al., 2004). 

Neural networks tend to learn the easiest 
features they can. A mostly quoted illustration 
(possibly apocryphal) of this is a vision project 
designed to recognize automatically military 
weapons. A network was trained on a hundred 
aerial photographs including weapons, and a hun-
dred not. It achieved a perfect  score. When tested 
on new data, it proved hopeless. The reason? The 
pictures of weapons were taken on dark, rainy 
days; the pictures without on sunny days. The 
network learnt to distinguish the (trivial matter 
of) differences in overall light intensity. To work, 
the network would need training cases including 
all weather and lighting conditions under which 
it is expected to operate, not to mention all types 
of terrain, angles of shot, distances.

Networks often fail to learn partitions that 
reflect the deep facts about the training cases. 
These are cases in which the target input-output 
mapping to be learned is based on the recognition 

of a feature that is more than first-order, that is, 
which cannot be defined directly in terms of the 
primitive attributes appearing in the training ex-
amples. In domains organized around interacting 
rules and features, it can be fatal to allow the net 
to deal with the complex cases early in its train-
ing. In such circumstances, the neural network 
tries to account for the regularities governed by 
the complex (second order) features, without yet 
knowing the basic (first order) ones. Under these 
circumstances, the second order features are 
effectively unlearnable and the first-order ones 
are obscured by the wild hypothesis thrown up 
in the attempt to cover the second order cases 
(Clark, 1993).

The topology of the network and the nature 
of training and testing data are not the only 
reasons for the wrong functioning of a neural 
network. The backpropagation method is still 
not without its drawbacks. It has been observed 
that an excessive number of running cycles on 
the training data to insure the lowest minimum 
square error, sometimes decreases performance 
on the test data, because minimizing the error 
measure on a training set does not imply finding 
a well-generalizable input-output rule. We call 
this problem the danger of overfitting the map f 
to the particular examples at hand (Ripley, 1993). 
To be successful, the automated archaeologist 
should learn the kind of knowledge enabling it 
to extend its success to other cases. That is, it 
should not learn only regularities and features in 
the training data set, but regularities and features 
that will work in other cases (Clark, 1993, p. 136). 
When overfitting begins to occur, the validation 
performance starts to decrease; at this point the 
neural network is trying to minimize training 
error on patterns that cannot be generalized to 
the validation set. It will be able to fit any type 
of limited data points (e.g., training data) with 
arbitrary accuracy but will fail to extrapolate well 
to unseen new observations. This can make the 
forecaster unstable and therefore of questionable 
value in real-world applications. If a neuron model 
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drastically overfits the data in D1, we would not 
expect the theory to predict D2 accurately. After 
all, overfitting is undesirable precisely because it 
leads to unreliable predictions. 

Neural networks may have a tendency to overfit 
the training data and to match their discriminant 
surfaces too closely to the training data. This 
tends to happen with large networks in particular, 
and it is not exclusive of supervised learning ap-
proaches, but also unsupervised and clustering 
methods can also overfit the training data. In 
this latter case, however we have the advantage 
that a defined region or cluster can contain more 
than one generator, thereby absorbing any surplus 
learning capacity so that it does not interfere with 
convergence.

One way to avoid overtraining is to test periodi-
cally predictive performance using some valida-
tion test data while training is still in progress. 
It is supposed that when a neural network’s clas-
sification performance is tested on “unseen” data 
(i.e., data not used in training) at regular intervals 
during the training process and the accuracy for 
predicting the output given some similar input 
should improve. However, this may be forcing the 
neural network to fit the noise in the training data. 
To avoid this problem, a neural network should 
periodically stop the training, substitute the test 
data for one cycle of activations, and record the 
sum square error. When the sum square error 
of the test data begins to increase, the training 
should be stopped. Indeed, if the weights at the 
previous monitoring are available, they should 
be used (Caudill, 1991). 

After each small step of learning (in which 
performance of the network on training data im-
proves), one must examine whether performance 
on test data also improves. If there is a succession 
of training steps in which performance improves 
only for the training data and not for the test data, 
overtraining is considered to have occurred, and 
the training process should be terminated. The 
limitation of this approach, however, lies in the 
fact that in evaluating model fitting and forecasting 

performance, only overall performance measures 
such as the sum of squared error (SSE) or the 
mean squared error (MSE) are used. 

Although these measures are useful in reflect-
ing the general modeling and forecasting perfor-
mance, they do not provide full insights on how 
and why the overfitting problem arises within 
the specific forecasting model. In other words, 
the overall accuracy measures do not delineate 
a complete picture on the learning and general-
izing ability of a model. Therefore, conclusions 
from a particular application may not be able to 
generalize to other forecasting situations or even 
to other data sets from within the same problem 
domain. Furthermore, overall error measures do 
not provide insights concerning how to improve 
forecasting performance.

An additional problem faced by neural net-
works is the tendency to land in local minima, 
that is, states that are stable but do not represent 
the best solution to the constraints. It is a “cul-
de-sac,” in which for any new learning iteration, 
the network will be permanently stuck at the 
point. This is the same problem faced by those 
human archaeologists, who may persist in some 
erroneous conclusions. Networks often persist in 
ignoring or outright misinterpreting salient data 
until they have escaped the initial configura-
tion into which the learning algorithm initially 
pushed it. Both human and machines persist in 
such behavior until they have assumed a more 
penetrating conceptual configuration, one that 
responds properly to the ambiguous data (Church-
land, 1991). These frustrations finish only when 
the other weights in the network have evolved to 
a configuration that finally allows the learning 
algorithm to appreciate the various examples it 
has been “mishandling” and to pull the miscreant 
weights towards more useful values. This fact il-
lustrates that the learning curve is often obliged 
to take a highly circuitous path in following the 
local error gradient downwards in hopes of find-
ing a global error minimum.
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Perhaps the “easiest” way to deal with a neural 
network that is stuck in local minima is to start 
over by reinitializing the weights to some new 
set of small random values. Geometrically, this 
changes the starting position of the network so that 
it has a new set of obstacles and traps to negotiate 
to proceed until the bottom of the error surface. 
It is expected (but certainly not guaranteed) that 
as a result of starting from a new position there 
will be fewer obstacles in reaching the global 
minimum of the error surface. The difficulty is 
that the user must be willing to forego any progress 
in training and start over on a path that may be no 
better, or even worse, than the first path. A less 
drastic approach is to “shock” the neural network 
by modifying the weights in some small random 
or systematic way. Again, it is expected (but not 
guaranteed) that a small move in the error surface 
will provide a path to the global minimum. A good 
rule of thumb is to vary each weight by adding a 
random number of as much as 10 percent of the 
original weight range (e.g., if the weights range 
from -1 to +1, add random values to each weight 
in the range -0.1 to +0.1). Generally, this technique 
is used when the network has learned most of the 
patterns before stalling, whereas starting over is 
used when the network has been unable to learn 
very few of the patterns. Such changes should 
be made only after a certain number of learning 
iterations (Caudill, 1991).

In general, the following rules of thumb are 
useful to ameliorate the results of a neural network 
that seems to learn poorly:

• If the results of the training set are adequate 
but testing results are bad: 
 The network may be too large and 

prone to over-fitting the training data. 
Things to try: 
 Obtain more data 
 Reduce the number of input col-

umns determining which ones are 
the most important 

 Reduce the number of hidden 
neurons 

 Try a simpler network architec-
ture 

	 The training data may not be repre-
sentative of the testing data. Things 
to try: 
 Randomize the data set.
 If randomization is not possible, 

try partitioning the data sets dif-
ferently. 

• If the results of the training set are also 
inadequate: 
	 The network may not be large or 

powerful enough. Things to try: 
	 Increase the number of hidden 

neurons 
	 Try a more complex network 

architecture 
 Try adding a second hidden 

layer 
 Try a more advanced learning 

algorithm 
	 The data may not contain relevant 

information. Things to try: 
	 Include additional input columns 

that are relevant 
	 Remove inputs columns that are 

not likely to be relevant 
	 Preprocess your data to make the 

neural network’s job easier 
• For example, the percentage change of a 

particular input from one time sample to the 
next might be more relevant to the desired 
output than the raw value of that input. 

Many years applying neural networks to ar-
chaeological problems has allowed me to suggest 
some addition al advices about how to organize 
and pre-process data in order to obtain the best 
results when using backpropagation networks:

• For continuous inputs, look at the data’s 
range and distribution. Consider eliminating 
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inputs with all data concentrated in a single 
narrow range. For discrete inputs (yes/no or 
categorical), look at the distribution across 
various outcomes and consider eliminating 
variables where almost all outcomes are the 
same. In many cases, these variables will 
make the solution more erratic. 

• Combine highly correlated inputs together 
into a single composite. Evaluate cross-cor-
relations between inputs. For categorical 
data, this may involve creating a derived 
variable representing input combinations. 
For continuous variables, this may involve a 
simple average. This also provides a method 
for addressing missing data. Experience has 
shown that the existence of a high degree of 
redundancy in the data from the monitored 
variables of a complex process or system can 
and usually does have an adverse influence 
of the results of neural network modeling. 

• Remove conflicting and duplicated data. 
• Neural networks are very sensitive to abso-

lute magnitudes. If one input ranges from 
1,000 to 1,000,000 and a second one ranges 
from 0 to 1, fluctuations in the first input 
will tend to swamp any importance given 
to the second, even if the second input is 
much more important in predicting the de-
sired output. To minimize the influence of 
absolute scale, all inputs to a neural network 
should be scaled and normalized, so that 
they correspond to roughly the same range 
of values. Common chosen ranges are 0 to 
1 or  -1 to +1. 

• Look inside to determine which variables 
are the most influential or predictive and 
try to eliminate them. Although it seems 
paradoxical, it turns out that sometimes 
the most predictive variable often relates to 
some indirect route to the output. The most 
predictive variable masks more subtle and 
predictive variable combinations. We often 
see this when dealing with very noisy data, 

as found in image analysis (Gevrey et al., 
2003; Olden et al., 2004)

We should look inside our data to obtain a feel 
for why the network makes mistakes. It is easy to 
select a dozen or so examples where the network 
prediction was unacceptable and review the data. 
We can then search for all other examples with 
similar inputs and look at the network hidden and 
output layers; graphing them in Excel as bar or line 
charts. Coupled with a ranking of each variables 
influence, we will look for clues as to how correctly 
and incorrectly classified inputs may differ. Often, 
this leads to a better problem understanding, and 
suggests areas where additional data (inputs) may 
be useful, or raises concerns regarding the neural 
network’s operational use. It also suggests methods 
in which we might combine or re-code variables 
at the input stage (Klimasauskas, 2002).

If problems continue, and the network cannot 
learn, the last way of solving the trouble is to give 
up on it. An important requirement for the use 
of a neural network is that the user knows (or at 
least strongly suspect) that there is a relationship 
between the proposed known inputs and unknown 
outputs. This relationship may be noisy but it must 
exist (Barceló et al., 2000). We certainly would 
not expect that the factors given for skeletal clas-
sification or use-wear determination, for instance, 
could give an exact prediction, as archaeological 
interpretations are clearly influenced by other 
factors not represented in the input set, and there 
may be an element of pure randomness. It could 
be argued that certain features simply cannot 
be learned by connectionist means on the basis 
of certain bodies of training data, and hence 
that the only solution is to give up. There is no 
guarantee the network will succeed in learning 
to discriminate any kind of input, because there 
is no guarantee that inputs will differ in any 
systematic or detectable way. 
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AltERNAtivE SuPERviSEd 
lEARNiNg AlgoRithmS: RAdiAl 
bASiS FuNCtioNS

We can ameliorate the results of a backpropa-
gation neural network if we add a preliminary 
unsupervised classification of input data to re-
duce the original variability of the input-output 
relationship. While the backpropagation algorithm 
performs a global mapping (i.e., all inputs cause 
an output), we should experiment with an alterna-
tive topology where the network divides the input 
vectors into similarity classes before calculating 
outputs. These classes represent the receptive 
fields for successive layer neurons, and they act 
as a filter between input data and the hidden layer 
(Figure 4.10). 

A network is presented with a series of input 
patterns and before calculating the outputs, it must 
divide them into clusters of similar patterns. The 
hidden layer contains as many hidden neurons as 
similarity classes should be used to divide input 
vectors. There are many well-known algorithms 
to accomplish this task (Haykin, 1999). In this 
section we follow the suggestion by Principe et al. 
(2000, p. 247) to use K-means clustering, which 
is a kind of competitive learning algorithm. 

Consequently, hidden units cannot use the 
usual sigmoid logistic but linear activation func-

tion. An appropriated activation rule should assure 
that on a given trial just one hidden neuron will 
“win” the others in the hidden layer: the activa-
tion of the unit with the greatest net input will go 
to 1, and the other unit’s activation will go to 0. 
That is the winning unit takes all the activation 
and inhibits the others. The response surface of a 
single hidden neuron will be therefore a Gaussian 
(bell-shaped) function peaked at the centre, and 
descending outwards (Haykin, 1999; Principe 
et al., 2000; Schwenker et al., 2001). The name 
of this activation function, radial basis function 
(RBF), comes from the fact that the output sent by 
such a neuron is a function of the distance (radius) 
from the input to the center of the similarity class 
(cluster) it belongs. 

A typical mistake when evaluating this kind 
of network is to consider that the purpose of such 
a model is the classification of training data. This 
classification or clustering is only a requisite to 
find the best structure for the hidden layer, and 
has nothing to do with the networks output. The 
RBF network clusters the data (based on a user 
configured number of optimal centroids), and then 
classify the input vectors based on those clusters. 
Once the transition from input to the hidden layer 
has been calculated through the clustering of 
similar inputs into homogenous receptive fields-, 
the weights from the hidden to the output layer 

Figure 4.10. An alternative kind of network where the input is divided into similarity classes before 
calculating outputs
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can be optimized using a supervised learning 
algorithm. This latter transition is usually defined 
as a standard backpropagation algorithm, or it 
can be represented as a layer of linear neurons 
performing a linear transformation of the hidden 
node outputs (see Bishop, 1995; Haykin, 1999; 
Hinton & Becker, 1992). 

We can understand how this network behaves 
by following an input vector x through the network 
to the output y. If we present an input vector to 
such a network, each neuron in the radial basis 
layer will output a value according to how close 
the input vector is to each neuron’s weight vec-
tor. If an input vector (x) lies near the center of 
a receptive field, then that hidden node will be 
activated (Figure 4.11). 

Radial basis functions at the hidden layer allow 
the network to extract properties that are nonlinear 
functions of the raw input. In this way, hidden layer 
neurons attempt to tune their activation profiles 
so that particular units respond maximally to par-
ticular patterns in the input set. On the negative 
side, the kind of neural network we are reviewing 
here is not inclined to extrapolate beyond known 
data: the response drops off rapidly towards zero 
if data points far from the training data are used. 
In contrast, a backpropagation network becomes 
more certain in its response when far-flung data is 

used. Whether this is an advantage or disadvantage 
depends largely on the application, but overall 
the backpropagation’s uncritical extrapolation is 
regarded as a bad point: extrapolation far from 
training data is usually dangerous and unjustified. 
In other words, the RBF networks may give an 
“I don’t know” answer, thus hinting the user to 
disregard the output.

uNSuPERviSEd lEARNiNg 
AlgoRithmS: SElF-oRgANizEd 
mAPS

Up to now, we have considered neurocomputa-
tional approaches to supervised learning. It is 
time to consider its alternative. In unsupervised or 
self-organized learning, networks of neurons are 
trained without a teacher or a feedback between 
trial and error. They learn by evaluating the simi-
larity between the input patterns presented to the 
network. As we argued in Chapter III, transfer-
ring the principles of unsupervised learning into 
data analysis can be done by letting input vectors 
organize themselves into homogenous groups 
(self-organized). It means to adjust iteratively 
similarity relationships as distances in a high 
dimensional space and producing a low dimen-

Figure 4.11. Typical structure of a radial basis function neural network
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sional projection that preserves the topology of 
the input space as good as possible. 

There are different ways of self-organizing a 
neural network. Most of these algorithms imple-
ment a kind of competition among neurons, in such 
a way that only those receiving the most similar 
input are activated in detriment of others receiving 
signals that are not as similar. Competitive learn-
ing is intrinsically a nonlinear operation. It can be 
divided into two basic types: hard and soft. Hard 
competition means that only one neuron wins; soft 
competition means that there is a clear winner, but 
its neighbors also shared a small percentage of the 
system resources (Rumelhart & Zipser, 1986). In 
the brain, competition between neurons leads to 
the selection of certain representations to become 
more strongly active, while others are weakened 
or suppressed. In analogy with the evolutionary 
process, the “survival of the fittest” idea is an 

important forced in shaping both learning and pro-
cessing to encourage neurons to be better adapted 
to particular situations, tasks, environments and 
so on (O’Reilly & Munakata, 2000).

Self-organization amounts to the use of 
competition between a set of receiving units 
as a way of conditioning the responses of these 
units. Thus, a given unit will become active to 
the extent that it is more strongly activated by 
the current input pattern than other units are. A 
self-organized map (SOM) is an unsupervised 
learning technique invented by Teuvo Kohonen. 
This algorithm reduces the dimensions of input 
data using soft competition among neurons at the 
output layer (Kohonen, 2001). Vector quantiza-
tion is the process of dividing space into several 
connected regions, a task similar to clustering. 
That is to say, an appropriate algorithm divides 
the input space into local regions, each of which 
is associated with an output unit or neuron.

Figure 4.12. A self-organized map
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The basic architecture of this kind of neural 
network consists in just two layers of neurons or 
processing units: input and output, without any 
hidden layer. It is the output layer, which is usu-
ally called self-organized map or SOM for short 
(Figure 4.12). It is a planar (bidimensional) rep-
resentation of interconnected neurons quantizing 
the input space, where neighboring regions in the 
input space are neighbors in the discrete output 
space. Every input unit is fully connected to the 
array of output units, which are also connected 
between themselves in terms of neighbor relation-
ships (lateral connections). The strength of links 
between output units is directly proportional to 
the distance between them (nearest neighbors are 
strongest, while more distant nodes are linked 
more weakly). 

The activation of these output neurons depend 
on the values coming from the input neurons, 
which contain external information (measures, 
descriptive features) like their counterparts in 
supervised learning (backpropagation networks), 
but also on the particular intensities arriving 
laterally from neighboring neurons. Remember 
that this is a competitive learning mechanism, 
in which an activated neuron strongly activates 
those units near it and inhibits those not so near. 
This inhibition is reduced as distance continues 
to increase, until there is no effect at all. 

The use of “lateral” connections in the output 
or self-organized layer makes output values be-
come ordered so that similar models are close to 

each other and dissimilar models far from each 
other, as if some meaningful nonlinear coordi-
nate system for the different input features were 
being created over the network. Given that not 
only the winning neuron but also its neighbors 
on the output layer are allowed to self-organize, 
neighboring neurons will gradually specialize to 
represent similar inputs, and the representations 
will become ordered on the output neurons lat-
tice. A kind of a division of labor emerges in the 
network when different neurons specialize to 
represent different types of inputs. 

The specialization is enforced by competition 
among the neurons, what implies that the results 
offered by this unsupervised learning algorithm 
depend on the particular relationships allowed 
between the neurons in the output layer. We can 
organize them in different ways. The simplest way 
is as a line of elements, so each element only has 
two neighbors (the preceding and the following 
unit) (Figure 4.13). 

A one-dimensional SOM can be thought of as 
a string of neurons, where each one is restricted to 
be near its two neighbors. In most cases, however, 
the output layer is more complex than a simple 
output vector. Output units can be organized as 
individual cells in a 2D space. There are two 
main options: 

1. Allowing for rectangular connections 
between neurons: A non-border neuron 
has eight neighbors in a rectangular pattern 
(Figure 4.14). 

2. Allowing for hexagonal connections be-
tween neurons: A non-border neuron has 
six neighbors in a hexagonal pattern (Figure 
4.15). 

In this way, the output layer represents regions 
or clusters in a kind of solution space, which has 
the characteristics of those spatial representations 
we are used to (maps). Feature-detecting units are 
arranged in spatial configurations in which nearby 
units represent similar inputs. For example in a 

Figure 4.13. A simple one-dimensional self-or-
ganized map
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classification problem, the attributes for “object A” 
are mapped to a particular output unit or region, 
such that it yields the highest result value and is 
associated with that object, while the attributes 
for “object B” are mapped to different regions. 
New inputs can be mapped by simply running the 
new data through the map in a “testing” or “pro-
duction” set and finding the winning processing 
element for each input. This winning processing 
element’s location will determine which natural 
cluster it belongs.

Typically, a self-organized map is created of 
size N x N (where N is dependent upon the number 
of data points and the “resolution” of your desired 
mapping) and each logical cluster of input data is 
located in subsets of neurons in that N x N map. 
These dimensions determine not only the number 
of clusters, but also the distance between clusters 
derived by the SOM. For instance, a cluster can 
be in the top left region of the output layer -say 

neurons (1,1) (1,2) (1,3) (2,1) and (2,2)-. Since 
clustering is unsupervised, there is no predefined 
number of clusters in the dataset and the clustering 
is left to the interpretation of the user. However, 
clusters of output units only reflect the ordering 
of the input patterns. If the various input points 
are distributed on a curved surface (for instance, 
archaeological sites on a real topographic surface, 
whose input values are x,y,z) they will be mapped 
onto the output layer on a flat plane. Distances 
between points will not be preserved, but their 
topology will. Input vectors that were adjacent 
to each other will still be adjacent to each other. 
This property has been called: topology-preserv-
ing mapping.

A self-organized map can be described as 
a nonlinear, ordered mapping process of high-
dimensional input data onto a low-dimensional 
output array. During training, the map learns the 
position of the input data points and self-organizes 

Figure 4.14. A bidimensional self-organized map with rectangular partial neighborhood
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Figure 4.15. A bidimensional self-organized map with hexagonal full neighborhood
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following two goals: data representation and data 
set topology representation. Commonly, the Eu-
clidean distance between the weight vector of the 
output neuron and the input vector serves as the 
activation function. In the next step, the weight 
vector of the node showing the highest activation 
(i.e., the smallest Euclidean distance) is selected 
as the winner and is modified to resemble more 
closely the presented input vector. Pragmatically 
speaking, the weight vector of the winner is moved 
towards the presented input signal by a certain 
fraction of the Euclidean distance as indicated by a 
time-decreasing learning rate. Thus, this neuron’s 
activation will be even higher the next time the 
same input signal is presented. Furthermore, the 
weight vectors of nodes in the neighborhood of 
the winner are modified accordingly, yet to a less 
strong amount as compared to the winner. This 
learning procedure finally leads to a topologically 
ordered mapping of the presented input signals, 
that is, similar input signals are mapped onto 
neighboring regions of the map.

The learning procedure is as follows (Fort, 
2006; Honkela, 1997; Kohonen, 2001; Kaski, 1997; 
Koua & Kraak, 2004; Kulkarni, 2001):

Step 1. Initialize elements of the weight matrix W 
to small random values. Element wij of matrix W 
represents the connection strength between unit j 
of the input layer, and unit i of the output layer. 

Step 2. Present the input vector x=(x1 ,x2 ,…,xn )
T, 

and compute the activation of each output neuron, 
according the basic dot product.

Output = Σ wij – xj   (8)
 

Remember that all input units are connected 
to all output units, so we will obtain an output 
value for all units in the output layer.

Step 3. Select the output unit with the maximum 
activation level. This is the unit whose weight 

vector is most similar to the input vector. That 
means that for any input vector x=(x1 ,x2 ,…,xn 
)T, we should compute the degree of mismatch 
for each unit in the output layer. The degree of 
mismatch is:

vi = Σ (wij – xj )
2   (9)

The weight with the shortest distance (lowest 
mismatch) is the winner. If there is more than one 
with the same distance, then the winning weight 
is chosen randomly among the weights with the 
shortest distance. 

Step 4. Adapt all weight vectors, including those 
of the winning neuron, within the current neigh-
borhood region. Those outside this neighborhood 
are left unchanged. The weight that is chosen is 
rewarded by being able to become more like the 
selected sample vector. In addition to this reward, 
the neighbors of that weight are also rewarded 
by being able to become more like the chosen 
sample vector. We can use the following general 
update rule:

Wnew = Wold + training constant (input - Wold)
      (10)

At each time step, this rule is applied to the 
maximally responding unit and to all the units 
within the neighborhood of that unit. That is, 
we have to weight the effects of output units 
surrounding distances. The neighborhood could 
be homogenous (all neurons within this region 
should be updated by the same amount) or the 
effective change in the weight vectors within 
the neighborhood could be weighted, so that 
neurons close to the centre of the neighborhood 
are proportionally changed more than those at 
its boundary. The amount the output units learn 
will be governed by a neighborhood kernel h, 
which is a decreasing function of the distance 
of the units from the winning unit on the output 
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layer. If the locations of units i and j on the map 
grid are denoted by the two-dimensional vectors 
ri and rj, respectively, then

hij (t) = h (||ri – rj ||;t)   (11)
 
where t denotes time. When considering neighbor-
hood, the weight update rule is then

wi (t+1) = wi (t) + hci (t)[x(t) – wi (t)] (12)
 
where x (t) is the input at time t and c = c(x(t)) is 
the index of the winning unit. That means that 
the amount of neighbors decreases over time. 
This process is similar to coarse adjustment fol-
lowed by fine-tuning. The individual function 
used to decrease the radius of influence has no 
importance as long as it decreases. In practice, 
the neighborhood kernel is chosen to be wide in 
the beginning of the learning process to guarantee 
global ordering of the map, and both its width and 
height decrease slowly during learning.

Step 5. Repeat Steps 2 to 4 for all input samples. 

Without mathematical details, the algorithm 
goes through the following sequence. It chooses 
at random a given input. Then it selects from all 
output neurons organized in a lattice at the output 
layer the “best match” for the chosen input (i.e., 
selecting the one with the minimum Euclidean 
distance). Let us call that selected neuron the 
“winner.” Next, the algorithm adjusts the winner’s 
components according to the remaining difference 
between its current values and those of the current 
input. At the same time, all the other neurons on 
the output layer are also adjusted proportionally 
to their physical distance to the winner location. 
In each step, the operator decreases how much 
and how far away from the winner the adjust-
ment is done. 

Over the course of many repeated training 
steps, this leads to a replication of major topologi-
cal structures existing in high-dimensional space. 

One could also interpret the training process as 
density mapping, since larger congregations of 
input vectors in attribute space will cause the 
reinforcement of neuron weights for a large num-
ber of neighboring neurons. The opposite is true 
for portions of the attribute space that are barely 
occupied by actual input vectors. After neural 
network training, every one of these neurons is 
associated with an n-dimensional vector. 

The result is a two dimensional grid containing 
a representation of high dimensional prototype 
vectors. However, it remains a challenging task 
to interpret such an output, because it remains 
a non-trivial task to elicit the features that are 
the most relevant and determining ones for a 
group of input data to form a cluster of output 
nodes. We need methods allowing the automatic 
assignment of labels describing every neuron 
in output layer or self-organized map. A simple 
approach consists in labeling each output neu-
ron by assuming what relates the nearest input 
data vectors. Output neurons may be assigned 
multiple labels if they respond to multiple input 
vectors, thereby providing a measure of confusion 
between categories and concepts when the same 
input is grouped into multiple categories, each 
corresponding to a unique concept. This method, 
however, requires heavy manual interaction by 
examining each dimension separately and does 
thus not offer itself to automatic labeling self-
organized output neurons.

Imagine we want to test a traditional typology 
with the neural network. Once the network has 
learnt how to organize similarity relationships 
between a number of initial artifacts, we fed the 
network with a new data sets containing arrow 
points of a known functional and chronology 
(Figure 4.16). 

Furthermore, we can build a three-dimensional 
histogram on the output self-organized map to 
show how these known input vectors appear 
clustered on the SOM layer. The data histogram 
visualization shows how many vectors belong to 
a cluster defined by each neuron (Figure 4.17). We 
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will proceed in this way, until we know the mean-
ing of each neuron in the self-organized layer.

Because the self-organized map reflects the 
topology of the input data, visual inspection of the 
output layer should provide a cursory but effective 
indication of category clustering. Output values 
can be seen as z values (height) ordered spatially 
(x,y). The height is calculated as the sum of the 
distances to all immediate neighbors normalized 
by the largest occurring height. This value will be 

large in areas where no or few data points reside, 
creating mountain ranges for cluster boundaries. 
The sum will be small in areas of high densities, 
thus clusters are depicted as valleys. This graphi-
cal representation leads to an interpretable, 3-di-
mensional landscape of the self-organized map. 
This diagram is called Unified Distance Matrix 
or short U-matrix (De Bodt et al., 2002; Kaski et 
al., 1998; Kohonen, 2001; Takatsuka, 2001; Ultsch, 
2003; Ultsch & Moerchen, 2005).

Figure 4.16. Testing a Kohonen self-organized map using archaeological data (Nenet 1.1. software 
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html)

Figure 4.17. A 3 dimensional histogram on the output self-organized map from previous example (Nenet 
1.1. software http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html)
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The U-matrix should be understood as the 
cluster structure revealed by all the variables 
together. The contribution of a variable can be 
measured as the share of the distances stemming 
from the variable. If the share is large in a certain 
area, the variable explains well the local cluster 
structure. A large share implies also that the types 
of data that nearby locations on the map represent 
differ predominantly in the values of the variable. 
Neurons that are in a meaningful cluster will be 
close to each other (because of the higher input 
density) and will be surrounded by neurons that 
are farther apart because of the lower input density 
between clusters. Thus, the U-matrix display will 
show low values inside a cluster and high values 
between the clusters. 

To explore the similarity structure within the 
input data set we should interpret the landscape 
of the U-matrix in visual terms. Given an n-di-
mensional data set, the question is if there exists 
any structure in form of subsets that is, clusters 
of data that are very similar to each other. The 
U-matrix should be interpreted as follows: if a 
subset of input data falls into a valley surrounded 
by walls then this indicates a cluster containing 
similar vectors. In other words, there are valleys 
where the vectors in the lattice are close to each 
other and hills or walls where there are larger 

distances, indicating dissimilarities in the input 
data. The dissimilarity among the different clus-
ters is indicated by the height of the walls or hills 
on the U-matrix. On the map display, each scaled 
distance value determines the grey level or color 
of the point that is in the middle of the correspond-
ing neurons in the output layer. The light shading 
typically represents a small distance, and the dark 
shading typically represents a large distance. A 
black band of neurons is developed when cases 
are distant in weight, hence the cases being very 
dissimilar. This type of visualization is useful as 
long as clear cluster boundaries exist. The location 
of cases within and the corresponding make-up 
of the U-matrix are defined by the values of the 
component planes (variables).

To illustrate this visual approach to under-
standing the U-matrix, I will use Databionic 
ESOM Tools. In its U-matrix display, the cluster 
structures in the data are visualized as grey levels 
depicting the distances between model vectors 
connected to neighboring locations on the map 
lattice. It is the result of the self-organized cluster-
ing of artificially simulated 212 input items, which 
were measured according to three variables (C1, 
C2 and C3). The network contains then 3 input 
neurons, and 50x50 neurons in the self-organized 
output layer (Figure 4.19).

Figure 4.18. Ideal display of the U-matrix for a 40x40 units self-organized map
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In this case, the grey gradient has been inverted 
for depicting results much clearer. The smallest 
height is mapped to the darkest value (black), the 
largest to the brightest (white). Darkest areas con-
tain the identified clusters, separated by neurons 
where values are higher, and represented as grey 
or white. We can identify tentatively eight different 
clusters in the original data set of 212 items.

We also can explain the contribution of each 
input variable into the final clustering. The soft-
ware allows us to update the U-matrix using each 
time a different variable or component (Figure 
4.21). Here you have the result for each of the three 
input variables C1, C2, C3. In those images, we 

see how different variables combinations generate 
different clustering structures.

Finally, given that individual cases can be 
named and labeled, we can convert an U-matrix 
with bestmatches depicted into a matrix with 
cluster symbols.

RECuRRENt NEtwoRkS

The networks considered up to this point have no 
feedback connections, that is, they do not have 
“inverse” connections where weights extend from 
the outputs of a layer to its inputs. Backpropaga-

Figure 4.19. 50 x 50 neurons U-matrix, after processing 212 objects, using three different measures. 
Simulated data. (Using the Databionic ESOM Tool: http://databionic-esom.sourceforge.net)

Figure 4.20. Different U-matrix solutions corresponding to each of the three variables defining the 
original input data set. (Using the Databionic ESOM Tool: http://databionic-esom.sourceforge.net)
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tion is not a true feedback, because the inverse 
flow of errors does not arrive to the input. We 
say these networks have a feed-forward struc-
ture: signals flow from inputs, forwards through 
any hidden units, eventually reaching the output 
units. This kind of neural networks is so much 
widely applied, that some users identify the phrase 
“neural networks” to mean only feed-forward 
networks. The dynamics of feed-forward nets is 
straightforward: inputs are applied to the input 
neurons and subsequent layers evaluate their 
neuron outputs until the output layer is reached. 
This whole process is referred to as a forward 
pass. Conceptually, neurons in successively 
higher layers abstract successively higher-level 
features from preceding layers (Mehrotra et al., 
1997, p. 20). The lack of feedback ensures that 
the networks are unconditionally stable. They 
cannot enter a mode in which the output wanders 
interminably from state to state, never producing 
a usable output. 

Networks with feedback connections and/or 
inter-layer connections are said to be recurrent 
(Amari, 1993; Maes, 1989,). They are based on 
bidirectional excitatory connectivity (also known 
as recurrence). Such a system does not need a 

control structure. Who does what at what moment 
does not require an explicit decision. The schedule 
is, in a sense, a byproduct of the interactions of 
units with each other and the world. The notion of 
attractor provides a unifying framework for un-
derstanding the effects of bidirectional excitatory 
connectivity. An attractor is a stable activation 
state that the network settles into from a range 
of different starting states. The ranges of initial 
states that lead to the same final attractor state 
comprise the attractor basin. For example, we 
can think of pattern completion as the process 
of the network being attracted to the stable state 
of the complete pattern from any of a number 
of different partial initial states. Thus, the set of 
partial initial states that lead to the complete state 
constitute the basin of attraction.

We can relate the notion of attractor to con-
straint satisfaction ideas. Neural connections and 
synaptic weights literally constrain the possible 
stable configurations into which the network can 
settle. Specifically, the tendency of the activation 
updates to maximize some general parameter of 
the network means that the network will tend to 
converge on the most stable states possible given 
a particular set of input constraints. These most 
stable states correspond to attractor states. If we 
regard the network’s final stable state as a solution, 
then the connections between inputs and outputs 
will represent conceptual constraints on the solu-
tion, and the stable state should be the state of the 
network that best satisfies these constraints.

Such a constraint satisfaction is a form of paral-
lel search, where the network searches through a 
number of different possible states before finding 
one that satisfies the constraints optimally. The 
search proceeds in parallel instead of sequen-
tially, visiting a huge number of distinct states in 
sequence. Although many stimuli (e.g., familiar 
ones) will result in the rapid settling of the net-
work into a relatively optimal state in response to 
that stimulus, others may require more extended 
iterative “searching” for an appropriate activity 
state. In either case, the resulting activity state 
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Figure 4.21. An ideal representation of clustering 
structure on a self-organized output layer
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will not typically be the same each time the same 
stimulus is presented, due to a number of factors 
(e.g., learning, habituation, and sensitization). 
(O’Reilly & Munakata, 2000, p. 210).

The main advantage of recurrent networks 
is the possibility to include the previous state of 
the network in calculating the output. A purely 
feed-forward system cannot generate any vector 
sequences on its own. It is wholly dependent 
on its input. A recurrent network can generate 
complex sequences of activation vectors all by 
itself. It can be trained to discriminate a standard 
sequence of physical configurations. A recurrent 
network’s primary unit of representation is not the 
point in activation space, but rather the trajectory 
in activation space. It is a temporally extended 
sequence of activation patterns. The virtue of such 
trajectories is that they can represent objective 
phenomena with a temporal profile. 

Recognition occurs when something close 
to a prototypical activation vector unfolds the 
relevant population of neurons. The activation 
vectors carve out, over time, a special line, or 
path in the relevant space. That is to say, recur-
rent networks represent the world as unfolding 
in time, as something that contains prototypical 
processes, structured sequences, and standard 
causal pathways. Perceptual discrimination in 
these cases often consists in the perceptually initi-
ated activation of an appropriate vector sequence, 
whose unfolding, however, is owed primarily to 
the recurrent activity of the trained network it-
self rather than to the external stimuli it receives 
(Churchland, 1995, 1998).

Therefore, we should consider a recurrent 
network as receiving an input sequentially and 
altering its response appropriately depending upon 
what information was received at previous steps 
in the sequence (recurrent activation). It does this 
by feeding a pattern achieved on a higher layer 
back into a lower layer, where it functions as a 
type of input. This is a sequential task, where a 
sequence of discrete events has to be learnt. The 
central problem in learning sequential tasks is 

developing useful context representations that 
capture the information from previous events 
that is needed to produce an appropriate output 
or interpretation at some later period in time. In 
the simplest case, the only prior context neces-
sary to predict the next step in the sequence is 
contained in the immediately preceding time 
step. An example of this is one where the context 
representation literally contains a copy of all prior 
states. Obviously, such a strategy is impossible 
with limited capacity memory systems.

Two closely related types of neural network 
models were developed by Jordan (1986) and 
Elman (1990, 1992), and are often called Jordan 
and Elman networks. The category that includes 
both models is known as a simple-recurrent 
network. 

This kind of neural network differs from 
feed-forward networks in that it has one or more 
additional layers of nodes, known as context 
neurons, which consist of units that are fed by the 
hidden layer but that also feed back into the (main) 
hidden layer. It is a three-layer network with the 
customary feed-forward connections from input 
neurons to hidden neurons, and from hidden to 
output ones. There is an additional set of units 

Figure 4.22. Recurrent flow of activations in a 
Jordan-Elman network

Output units 

Hidden units 

Input units 
Context units 

1.0
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called context neurons, which provide for limited 
recurrence (and so this may be called a simple 
recurrent network). These context units are acti-
vated on a one-for-one basis by the hidden units, 
with a fixed weight of 1.0. In a Jordan network, 
the prior state was derived from the output units 
on the previous time cycle. In an Elman network, 
the prior state comes from the hidden neuron pat-
terns on the previous cycle. Because the hidden 
units are not taught to assume specific values in 
the course of learning a task, they can develop 
representations encoding the temporal structure 
of that task (Figure 4.22). In other words, the 
hidden units learn to become a kind of memory, 
which is very task specific.

The result is that at each time cycle, the hidden 
unit activations are copied into the context units; 
on the next time cycle, the contexts combine with 
the new input to activate the hidden units. The 
hidden units therefore take on the job of map-
ping new inputs and prior states to the output; 
and because they themselves constitute the prior 
state, they must develop representations, which 
facilitate the input/output mapping.

A more complex example of recursive net-
works is the Hopfield network (Caudill & Butler, 
1992; Haykin, 1999; Hopfield, 1982; Mehrota et 
al., 1997; Principe et al., 2000). It consists of a 
number of artificial neurons connected to every 
other neuron in the network. It is important that 
the weights connecting two units be at least 
roughly symmetric, so that those of the other 
unit reciprocate the influences of one unit. This 
symmetry enables the network to find a single 
consistent state that satisfies all of the units. If 
the weights were not symmetric, then one unit 
could be “satisfied” but the other “unsatisfied” 
with the same state, which would obviously not 
lead to a consistent global state.

The network has connections that allow activa-
tion to pass forward or backward: each unit sends 
its activation to each other neuron, and receives 
from all other ones. Importantly, the weights are 
symmetrical in that wij is equal to wji. A novel 
feature of the network is its asynchronous changes 
in the activation states of units. Each unit will 
adjust its state randomly in time at some average 
attempt rate. 

Figure 4.23. An ideal model for a full recurrent network, where all neurons are connected to all other 
networks, without layers
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The mathematics of full recurrent networks is 
usually very complex. Do not panic! I am offer-
ing here only some very general ideas. Although 
the reader may not understand the mathematics, 
the way this technology works is very intuitive. 
Practical examples of this technique appear at the 
end of Chapter VIII and in Chapter IX. 

This kind of recursive neural networks differs 
from the feed-forward ones in operation. Their 
inputs are applied simultaneously to all neurons 
and consist of a set of starting values, which can 
be either binary (0 or 1) or bipolar (-1 or + 1). The 
network cycles through a succession of states, until 
it converges on a stable solution. The output of the 
network is given by the value of all the neurons 
in this steady state. The activation rule is simple: 
unit i will be on and have an output of 1 only if 
the sum of its weighted input exceeds a threshold, 
otherwise it will have an output of 0. The learning 
rule is not the major focus of interest. Hopfield 
(1982) was primarily concerned to show that the 
collective action of the units, given some set of 
weightings, could be understood as analogous to 
energy minimization, when energy is expressed 
by some global measure. The standard form of 
the network energy function is as follows:

E= - ½ΣΣ xi wij xj   (14)
       

j     i

where xi and xj represent the sending and receiv-
ing unit activations, respectively, and wij is the 
weight connecting them. Note that each unit in the 
network appears as both a sender and a receiver 
in the double sum term. The change in the total 
“energy” E of the system that would result from 
a change in activation of neuron i, is given thus:

∆E= -∆xi Σwijxj    (15)

The simple act of updating activations in the 
network generates the same kind of settling into a 
lower energy state by satisfying more constraints. 
The repeated application of the activation rule 
effectively reduces E to a minimum, as each ap-

plication of the rule will either leave E unchanged 
or reduce it. If activation state does not change, the 
global energy remains constant. If the activation 
state changes from 1 to 0 (∆xi is -1), its total input 
(Σwijxj) is negative, thus the product of these two 
terms is positive and by the above equation there 
is a reduction in E. If the unit changes from an 
activation of 0 to 1(∆xi is 1), its total input must 
be positive, again the product of these terms is 
positive and again E is reduced. The interactions 
between components impose the constraints on 
this system, and part of its energy is a function of 
how strong these constraints are and to what extent 
the system is obeying them or not. A system that 
is not obeying its constraints has higher energy, 
because it takes energy to violate the constraints. 
A system that has satisfied the constraints is at a 
lower level of energy, and nature always tries to 
settle into lower energy state by satisfying more 
constraints.

Training a Hopfield net involves lowering the 
energy of states that the net should “remember.” 
This allows the net to serve as a content address-
able memory system, that is to say, the network 
will converge to a “remembered” state given only 
part of the activation state. 

A Hopfield network is created by supplying 
input data vectors, or pattern vectors, correspond-
ing to the different classes. These patterns are 
called class patterns. In an n-dimensional data 
space, the class patterns should have n binary 
components {1,-1}. The network is then used to 
classify distorted patterns into these classes. When 
a distorted pattern is presented to the network, 
then it is associated with another pattern. If the 
network works properly, this associated pattern is 
one of the class patterns. In some cases (when the 
different class patterns are correlated), spurious 
minima can also appear. This means that some 
patterns are associated with patterns that are not 
among the pattern vectors. 

For example, let us build a four-neuron Hopfield 
recursive network. That means 4 neurons fully 
interconnected, what produces a 4 x 4 weight 
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matrix. The purpose of the network is to be used 
as an associative network to link a class pattern 
to each input pattern. The initial state of its weight 
matrix will be:

  0 0 0 0
  0 0 0 0
  0 0 0 0
  0 0 0 0

This initial matrix is empty (all zeros), because 
at the beginning the network has no knowledge. It 
should learn to recognize some pattern. We will 
enter an imaginary pattern vector correspond-
ing to the characteristics of some archaeological 
artifact coded in binary terms. We have four 
input variables A= 1, B= 0, C=0, D=1. We use 
this single input to train the network. Using the 
previous recursive algorithm, the weight matrix 
finally finds a stable configuration:

  0 -1 -1 -1
 -1  0  1 -1
 -1  1  0 -1
  1 -1 -1  0

Now, if we reenter the input pattern 1001, 
the output will be “1001.” The auto-associative 
network echoes the input when it recognizes it. 
If we enter the pattern 1000, the output will now 
be “1001.” The neural network did not recognize 
“1000,” but the closest thing it knew was “1001.” It 
figured you made an error typing and attempted a 
correction! Now, notice a side effect. Enter “0110,” 
which is the binary inverse of what the network 
was trained with (“1001”). Hopfield networks 
always get trained for the binary inverse too. 
Therefore, if you enter “0110,” the network will 
recognize it. Likewise, if you enter “0100” the 
neural network will output “0110” thinking that 
is what you meant. One final test: we try “1111,” 
which is totally off base and not close to anything 
the neural network knows. The neural network 

responds “?0000?,” it did not try to correct, it has 
no idea what you mean!! 

The importance of Hopfield networks in 
practical application is limited due to theoretical 
limitations of the network structure but, in certain 
situations, they may constitute interesting models. 
Hopfield networks are typically used for classifica-
tion problems with binary pattern vectors. As we 
saw in the previous example, a binary Hopfield 
neural network can associate an input pattern to 
a previously learnt one. The learnt pattern asso-
ciated to the input one is characterized by some 
proximity properties induced by the used metrics. 
Similarly to human memory, a Hopfield network 
is able to associate an output Y to a certain input 
X without the use of a difficult deductive process; 
it should also be able to associate the right output 
Y = X to the input X corrupted by noise. The data 
and information necessary for a correct associative 
process should already be stored in the memory; 
that is, memory contains the prototypes of all 
the possible outputs Y that the network is able to 
recall. The network should also be able to:

• Associate an output prototype Y which is 
somehow “similar” to an input prototype 
X;

• Associate the right output prototype Y to 
incomplete input data X; and

• Associate a clear output prototype Y to a 
vague input X.

We shall say that an Hopfield system has a 
capacity m if it is able to recall m prototypes 
(outputs): i = 1, 2, …, m , corresponding to dif-
ferent inputs.

More complex neural architectures and recur-
sive algorithms will not be fully discussed here. 
Among them, we can mention ART Networks 
(Grossberg, 1988). ART stands for adaptive 
resonance theory. ART networks operate using 
a resonance process between inputs coming from 
the outside—sensory neurons receiving external 
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stimuli—and those coming from the inside, that 
is, signals generated by a priori models. ART is 
a theoretical principle of the structure of adap-
tive robust feedback connections between two 
different layers. The output layer is cognitively 
“higher” than the other is. A single neuron at the 
output layer encodes patterns of neuron activities 
from the input layer, which has a lower cognitive 
level. Output neurons are conceptual units: they 
recognize an individual input in the lower level 
neuron activities. The lower level input pattern 
activates the higher-level output neurons, the 
synaptic connections of which it matches. The 
term “resonance” refers to a coherent dynamic 
state that arises from matching between an input 
lower level pattern and a stored prototype pattern. 
The stored pattern is represented at the synaptic 
connections from the output to the input layer 
and is activated by an output neuron. Perception 
corresponds to the resonant state between the 
concept and the data. When resonance occurs, 
both the bottom-up filter (recognized input) and 
the top-down prototype (conceptual output) are 
updated.

During a cycle of activity through an ART 
network, some external signal activates a particu-
lar pattern of activation in a set of input neurons, 
and this activity has the effect of inhibiting an 
additional arousal unit. Activation is then mapped 
from the input units through a set of learned 
weights to higher level output neurons, where a 
pattern of activity may be generated. These output 
units are competitive, so tending to favor a local 
representation of the input pattern. Activity in 
output neurons is subsequently recycled down 
through an additional set of weights to adjust 
activity in the input units, with there being inhi-
bition of activity that mismatches that generated 
from the output layer. If there is no mismatch, a 
stable pattern of activity is generated in which 
the model “resonates” to the input. Normally, 
there are some changes over time in the activity 
values in the two layers of neurons (so that dif-
ferent representations, X* and Y*, are respectively 

generated in the input and output units). If the 
initial representation (Y) in the higher level output 
neurons does not provide a good match to the input 
representation (X), then the top down feedback 
will inhibit the input representation. When this 
occurs, the orienting unit (A) is reactivated. This 
provides a non-specific signal that re-sets the 
classifier units, enabling a different classifier unit 
to “win” any competition if the same stimulus is 
subsequently presented.

Learning in ART networks involves changing 
the two sets of weights, from the input to the out-
put layers, and from the output back to the input 
units: the bottom-up and the top-down weights. 
The weights are changed at a rate that reflects the 
activation values in (respectively) either the input 
or the output units (for the bottom-up and top-
down weights). These changes operate relatively 
slowly (determined by a rate of change parameter), 
and so only come into effect when the network 
reaches a stable (resonating) change.

Applying this last kind of neural networks 
is even more difficult than other recursive algo-
rithms. The reason is that they are more interesting 
as a model of brain functioning, than a practical 
algorithm for learning and classifying.

diRECtioNS FoR FuRthER 
RESEARCh 

In this chapter, only an introduction to neurocom-
puting has been presented. The most simple and 
frequently used algorithms have been explained, 
but there are many other alternatives. Given that 
the core of the book is not on neural networks 
alone, but they are only one technique to imple-
ment methods of automated learning in archae-
ology, more complex architectures and learning 
algorithms have not been presented. In any case, 
I suggest the reader to look for information about 
probabilistic neural networks and Oja’s Princi-
pal Component Analysis-type learning. Some 
authors are also working with different learning 
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algorithms adapted to network topologies without 
hidden neurons. These new algorithms seem to 
provide similar results as backpropagation in 
less time, and have fewer tendencies to bad con-
vergence. Questions of space justify why I have 
not presented them in this chapter (Principe et 
al., 2000). The theory of recurrent networks also 
merits more investigation. The reader will find 
a bit more material about that at the end of the 
chapter on spatiotemporal analysis. In the recent 
years, many efforts are being addressed to expert 
systems and rule-based interfaces linked to neural 
networks. These hybrid systems contribute to 
reduce the “black box” character of any neural 
networks. 

Many complex neurocomputational algo-
rithms have not being designed as practical tools 
for classification or prediction, but as a models of 
brain functioning. Obviously, we are not interest-
ing in simulating the archaeologist’s brain. This 
is not a book on psychology, but on Archaeology 
and, perhaps, of philosophy of science. Therefore, 
I am not exploring how computer calculations 
mimic brain mechanisms, but on finding practical 
algorithms for computing nonlinear relationships. 
The reader can use the bibliographic references 
given throughout the chapter for studying al-
gorithms that are more complex but they may 
seem out of purpose for the present discussion. 
Scientific reasoning is a kind of “artificial” way 
of reasoning for obtaining very specific kind of 
results. Therefore, simple and well documented 
algorithms like backpropagation (or radial basis 
functions), self-organized maps, simple recur-
rent networks or Hopfield algorithms are much 
more convenient than complex mechanisms that 
seem to act in the same way as our brain process 
information, but give too complex models of 
input-output relationship. 

Neural networks technology opens to archae-
ologists an entirely new domain. Nevertheless, 
neural networks cannot provide the solution to 
archaeological problems by working individu-
ally. In this sense, they should be seen as a new 

development within a rich and varied history 
of statistical models of scientific discovery and 
explanation. However, this techniques allow that 
learning the relationship between visual features 
and social explanations be no more conditioned by 
the nature of standard statistical tools, which tend 
to impose linear relationships, nor by the verbal 
nature of descriptive features. Modern views on 
social causality, which is described as a nonlinear, 
probabilistic and non-monotonic relationship fit 
exactly the neural network analogy. What we 
need to investigate now is not exactly new algo-
rithms, but new ways of applying those methods 
to archaeological problems. We are far from those 
days in which archaeologists used pencil, paper, 
and common sense to interpret their data. We 
should think in terms of vectors and activations 
to understand how explanations are related to 
visual inputs. Furthermore, even in the case of 
self-organized neurocomputational algorithms, 
archaeological reasoning can be implemented in 
a way that transcend trivial clustering, incorpo-
rating experiments, controlled observations and 
simulated conditions.
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FRom obSERvAblE EFFECtS to 
uNobSERvAblE CAuSES

As we have discussed in previous chapters, an 
artificial neural network is an information-pro-
cessing system that maps a descriptive feature 
vector into a class assignment vector. In so doing, 
a neural network is nothing more than a complex 
and intrinsically nonlinear statistical classifier. It 
extracts the statistical central tendency of a series 
of exemplars (the learning set) and thus comes 
to encode information not just about the specific 
exemplars, but about the stereotypical feature-
set displayed in the training data (Churchland, 
1989; Clark, 1989, 1993; Franklin, 1995). That 
means, it will discover which sets of features 
are most commonly present in the exemplars, or 
commonly occurring groupings of features. In 
this way, semantic features statistically frequent 
in a set of learning exemplars come to be both 
highly marked and mutually associated. “Highly 
marked” means that the connection weights about 
such common features tend to be quite strong. 
“Mutually associated” means that co-occurring 
features are encoded in such a way that the acti-
vation of one of them will promote the activation 
of the other. 

As a learning mechanism, a neural network 
looks as if it explicitly generates and stores pro-
totypes of, for example, the typical stone knife 
of this period, the typical burial practice in this 
community, the typical social organization in 
this period and place. However, there are no 
such explicit, stored items. What exist are sets 
of connection weights and synaptic efficacies, 
respectively. The prototype is not a thing stored 
at some specific place within the network; it is 
not an ideal representation of reality waiting to 
be retrieved by a stimulus. The extraction of the 
prototype arises as an emergent consequence of 
the proper selection of some characteristic features 
or input variables.

A prototype as formed within a neural network 
is by definition “general,” in the same sense in 
which a property is general: it has many instances, 
and it can represent a wide range of diverse ex-
amples. However, this property does not mean 
that prototypes are universal generalizations. No 
prototype feature needs to be universal, or even 
nearly universal, to all examples in the class. 
Furthermore, prototypes allow us a welcome de-
gree of looseness precluded by the strict logic of 
universal quantifier: not all Fs need to be Gs, but 
the standard or normal ones are, and the non-stan-
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dard ones must be related by a relevant similarity 
relationship to these that properly are G.

Different neurons represent different “proto-
typical values” along the continuum, and respond 
with graded signals reflecting how close the cur-
rent exemplar is to their preferred value. Note 
that what is really being stored is the degree to 
which one neuron, representing a micro-feature 
of the final concept or prototype, predicts another 
neuron or micro-feature. Thus, whenever a cer-
tain configuration of micro-features is present a 
certain other set of micro-features is also present 
(Rumelhart, 1989). This is important, because it 
means that the system does not fall into the trap of 
needing to decide which category to put a pattern 
in before knowing which prototype to average. The 
acquisition of the different prototypes proceeds 
without any sort of explicit categorization. If the 
patterns are sufficiently dissimilar, there is no 
interference among them at all. 

It is clear that a single prototype represents 
a wide range of quite different possible inputs: 
it represents the extended family of relevant 
features that collectively unite the relevant class 
of stimuli into a single category. Any member of 
that diverse class of stimuli will activate the entire 
prototype. In addition, any other input stimulus 
that is similar to the members of that class, in part 
or completely, will activate a pattern that is fairly 
close to the prototype. Consequently, a prototype 
vector activated by any given visual stimulus will 
exemplify the accumulated interactions with all 
the possible sources of the same or similar stimuli 
in proportion to the frequency with which they 
have been experienced.

The ability to represent both prototypical infor-
mation and information about specific instances 
is the basis of the neurocomputing success. We 
can activate two properties, and discover which 
outputs are most likely to fit that scenario. The 
network will initially produce higher activations 
in the output units which posses any of these 
properties, with those sharing both properties 

getting the highest activations. The units for the 
most widely shared properties also become the 
most active. Thus the network not only identifies 
which outputs shared the initial pair of properties, 
but what their other properties were likely to be, 
and which among those not possessing the initial 
pair show the best fit with those who did satisfy 
the initial pair of properties. 

This is an important property of the model, but 
the importance of this property increases when we 
realize that the model can average several patterns 
in the same composite memory trace. Thus, one 
neural network can be trained to exhibit behavior 
appropriate to knowledge of a number of distinct 
prototypes, such as an arrow point, a settlement of 
a particular kind, or a kind of social organization. 
Interestingly, if the input is indeterminate between 
a stone knife and a stone scraper, for instance, the 
neural network will generate an overall pattern, 
as if it had an idea not just of knives and scrap-
ers but also on stone tools. We see then that the 
talent of the system is used to generate a typical 
set of properties associated with some descrip-
tion, even though all the system directly knows 
about are individuals, none of whom needs to be 
a perfectly typical instantiation of the description 
in question.

This way of representing concepts is the 
consequence of graded learning in a neural 
network: a new concept emerges as the result of 
a number of different learning situations or the 
gradual differentiation of a single concept into 
two or more related ones. Therefore, as activa-
tion spreads from input to output, outputs grade 
according to how well they exemplify the exist-
ing training exemplars. Considering that several 
different prototypes can be stored in the same set 
of weights, a typical single prototype model may 
represent instances as sets of attributes (proper-
ties or features) with some numeric measure 
of both the importance of the attribute to that 
concept (sometimes called its weight) and the 
extent to which the attribute is present. In this 
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way, neural networks adopt a probabilistic view 
to categorization. The idea of defining necessary 
of sufficient properties is replaced with that of 
the probable properties for a member of a given 
class. A probabilistic view accounts for graded 
class membership, since the “better” members 
will be those exhibiting more of the character-
istic properties. Instead of representing several 
concrete instances in memory, we judge category 
membership by degree of connection to an abstract 
model or prototype. 

An intriguing problem is in what way similarity 
is represented in a neural network. Some authors 
argue that similarities are not computed at all in 
the neural network, because they do not involve 
matching to a stored representation. The only 
thing to be “matched” within a network appears 
to be weight vectors, but they are not matched, 
that is, brought into correspondence with the in-
put. The fact that similar inputs tend to produce 
similar outputs is a causal story, due to similarity 
between inputs in the sense of overlap of input 
representations and, thus, similar activation flow 
through the network (Curchland, 1989; Hahn & 
Chater, 1998). 

More than an analogy with a universal data-
base, our automated archaeologist should act as 
any of us by using an associative memory. This is 
a device storing not only associations among indi-
vidual perceptual representations, but organizing 
“conceptual” information not directly derived 
from the senses (Kosslyn, 1994, p. 215). 

Neural networks are used as associative memo-
ries. Pattern associators are constructed from the 
neurons and modifiable connections defined in the 
neural architecture. During a learning stage, the 
activation states of the input processing neurons 
are used to represent patterns to-be recalled. The 
connection weights are then modified to store 
the association between the two patterns. It is a 
distributed representation because this associa-
tion is stored throughout all the connections in 
the network, and because one set of connections 

can store several different associations. During 
the recall stage, a cue pattern is presented to the 
network by activating the input units. This causes 
signals to be set through the connections in the 
network and to activate the output processors. If 
the associative mechanism runs properly, then 
the pattern of activation in the output neurons 
will be the pattern that was originally associated 
with the cue pattern (Dawson, 2004). Therefore, 
the automated archaeologist will acquire some 
visual input in form of a vector of activity to the 
input neurons (feature detectors), which will be 
used as a cue pattern to retrieve its associated 
explanation, represented as a vector of activity 
in the memory’s output neurons. The advantages 
are obvious:

• An automated archaeologist solves problems 
by recognizing something, and with the help 
of that result, recognizing further:

• When a previously stored (that is, “famil-
iar”) pattern is “seen” by the system, it is 
amplified, and it responds with a stronger 
version of the input pattern.

• When an unfamiliar pattern is “seen” by the 
system, it is dampened, and the response of 
the machine is shut down. This is a kind of 
unfamiliar response.

• When part of a familiar pattern is “seen,” 
the system responds by “filling in” the miss-
ing parts. This is a kind of recall paradigm 
in which the part constitutes the retrieval 
cue, and the filling in is a kind of memory-
reconstruction process.

• When a pattern similar to a stored pattern 
is “seen,” the system responds by distorting 
the input pattern toward the stored pattern. 
This is a kind of assimilation response in 
which similar inputs are assimilated to 
similar stored events

• Finally, if a number of similar patterns have 
been stored, the system will respond strongly 
to the central tendency of the stored patterns, 
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even though the central tendency itself was 
never stored.

Such an associative memory, however, is not 
limited to the association of only those specific 
individual objects that the robot has seen before. 
If such were the case, the mechanisms underlying 
archaeological automatic explanation would be of 
limited use. As archaeologists, we must identify 
a range of novel visual data as corresponding to a 
given type of object. Generalization is part of our 
ability to identify objects and events; we typically 
can identify social actions having been performed 
in the past even when the visual appearance of 
its material consequences in the present does 
not exactly matches what we know of previously 
memorized cause/effect associations. The capa-
bility for archaeological recognition implies then 
the existence of some previous form of learning, 
in which the abstract potentially explanatory 
categories have been created and defined. The 
goal of recognition is to perform these identifi-
cations correctly, in the sense that identification 
reflects a meaningful property of the world that 
is independent of the particular data that is being 
interpreted.

We call this approach to archaeological reason-
ing category-based because explanatory elements 
are accessed through a process of categorization. 
It implies that the input reaching the automated 
archaeologist sensors is sorted out into discrete, 
distinct categories whose members somehow 
come to resemble one another more than they 
resemble members of other categories (Harnad, 
1987). We have already seen that the categoriza-
tion (or pattern recognition) approach proposes 
that two operations are involved. First, the system 
classifies an observable as being a member of a 
large number of known categories according to 
its input properties. Second, this identification 
allows access to a large body of stored informa-
tion about this type of object, including its func-
tion and various forms of expectations about its 
future behaviors. This two-step schema has the 

advantage that any explanatory property can be 
associated with any object, because the relation 
between the form of an object and the informa-
tion stored about its function, history, and use 
can be purely arbitrary, owing to its mediation 
by the process of categorization. That means 
that the responses of the automated archaeolo-
gist to the incoming input are not dependent of 
any particular attribute of the input. Rather, the 
solution to the archaeological problem will make 
sense only when considered as one component in 
a causal chain that generates responses entirely 
according to the probability distribution of the 
past significance of the same or related input. 
The answer provided by the intelligent machine 
exemplifies not the stimulus or its sources as 
such, but the accumulated interactions with all 
the possible sources of the same or similar stimuli 
in proportion to the frequency with which they 
have been experienced (see Chapter I).

idENtiFiCAtioN-bASEd ANAlySiS 

The easiest way of creating an associative memory 
for archaeological explanations is by assuming 
that there is a roughly fixed set or vocabulary 
of “supposed” descriptive regularities shared 
by a single population of objects, which are also 
distinctive enough. Partial identification of in-
dividualized parts of the input is carried out by 
lower-order neurons, processed, and eventually 
decoded by middle- and higher-order neurons. 
In this way, low-level neurons would respond 
selectively when particular local configurations 
are presented. Higher-level neurons represent 
particular solutions or explanatory concepts, 
looking for particular combinations of identi-
fied components from the low-level units. At the 
highest level, a decision mechanism selects the 
concept corresponding to that represented by 
the cognitive detector activated by the highest 
quantity of partial identifications. 
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In many cases, however, input neurons are 
not proper visual units, because the appropriate 
primitive visual features captured by the auto-
mated archaeologist sensors do not stimulate 
them. Instead, it is the human user, who feeds the 
network with an interpreted input, in which each 
feature contains the result of a previous inference. 
In this way, the receptive field of low-level neurons 
does not encode the salient features of the input 
image, but the previous knowledge the user has 
about the features characterizing the archaeo-
logical evidence. This kind of neural network is 
mostly similar to an expert system, as presented 
in Chapter II. The analysis of rock-art can be used 
as an appropriate example of identification-based 
analysis. Some other examples will be presented 
later in the chapter.

One of the first neural networks applied to ar-
chaeological data is a classification of Late Bronze 
Age warrior decorated stelae, dated between 1100 
B.C. and 7th century B.C. in south-western Iberian 
Peninsula. In a preliminary experiment (Barceló, 
1995a) input vectors contained:

• Total number of iconographic motives in a 
stela

• Iconographic relevance of human figure
• Iconographic relevance of the figure of a 

shield
• Number of “prestige” items in a stela
• Degree of schematism

Here the descriptive concepts “iconographic 
complexity,” “relevance of human figure,” “rel-
evance of shield,” and so forth were neither “seen” 
nor “recognized” by the machine. They were 
introduced in their final form as already identified 
terms. Additionally, for each representation, the 
chronology, the geographical situation, and the 
number of engraved imported items were also 
identified:

• Four chronological phases (Late Bronze Age 
II, Late Bronze Age III, orientalizing the 
historical Tartessos period, Post-Coloniza-
tion period).

• Four geographical regions: Tajo Valley, Gua-
diana Valley, Zújar valley, and Guadalquivir 
valley).

• A so called “degree of colonization” mea-
sure, deduced from the quantity of imported 

Figure. 5.1a. Graphical representation of a Late Bronze Age Warrior Stela, compared to the vectorial 
notation for input and output (Barceló 1995a).
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items depicted in the rock slab: >3, >5, >7, 
>9).

Some of the exemplars were chronologically 
ambiguous, because the items engraved had no 
clear chronological adscription. In those cases, 
exemplars were assigned a chronological output 
of 0.5 for two different consecutive phases.

The typical question that the automated ar-
chaeologist was supposed to solve is “are the 
iconographically most complex representations 
situated in the regions and chronological phases 
where Phoenician colonization was strongest?” 
This is a typical supervised learning example. 
In archaeological terms, the network has to gen-
eralize the relationship between iconography, 
geography, and chronology. The network was 
trained using only 38 exemplars.

The network converged to a MSE = 0.1176, 
classifying correctly 96 percent of training ex-
emplars. Predicted output allowed in most cases 
the correction of ambiguous chronological de-

termination. For instance, a monument assigned 
simultaneously to the colonial and post-colonial 
period (0.5 for the desired output), obtained 0.7 
for the colonial and 0.3 for post-colonial times, 
which is perfectly sound according to archaeo-
logical knowledge.

A test set of 12 exemplars were used to vali-
date training. The automated archaeologist made 
some important mistakes when trying to predict 
the region, the number of imported items, and 
the chronology. However, it only misclassified 
contiguous regions. The program was also able to 
learn both extremes of the temporal range, having 
less good results for the intermediate phases. 

All these negative results coincide with what 
we can expect from archaeological research in the 
area. We can explain chronology using similarities 
and iconographic data. The concept of “coloniza-
tion,” however, cannot be represented exclusively 
in terms of similarity between individual rock-
art representations, because not all exemplars in 
the same region, with the same chronology and 

Figure. 5.1b. Graphical representation of another Late Bronze Age Warrior Stela, compared to the 
vectorial notation for input and output (Barceló 1995a).
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with the same number of imported items are 
similar in iconographic structure. In the same 
phase and in the same region, the iconography 
of rock-art is different, although the historical 
consequences of the colonization process were, 
probably, identical.

A successive experiment using the same data 
(Barceló, 1995b, 1997) presented a more elabo-
rated approach, still based on externally identified 
inputs and outputs.

The 30 first neurons represent the binary de-
scriptive information, according to the following 
variables:

1. MOTIVES: presence of shield  
2. MOTIVES: presence of sword  
3. MOTIVES: presence of spear 
4. MOTIVES: presence of a “mirror like” 

object (or musical instrument?)
5. MOTIVES: presence of human figure 
6. MOTIVES: presence of comb 
7. MOTIVES: presence of fibula
8. MOTIVES: presence of chariot
9. MOTIVES: presence of helmet 
10. MOTIVES: presence of more than one hu-

man figure
11. MOTIVES: presence of animal figures
12. MOTIVES: presence of bow and/or arrow 
13. MOTIVES: presence of series of points 

(unknown meaning)
14. MOTIVES: presence of hair band
15. ICONOGRAPHIC STRUCTURE: Shield 

and human figure symmetrically in hori-
zontal plane. 

16. ICONOGRAPHIC STRUCTURE: Shield 
and human figure symmetrically in vertical 
plane 

17. ICONOGRAPHIC STRUCTURE: Shield 
secondary positioned with respect to human 
figure

18. ICONOGRAPHIC STRUCTURE: Sword 
parallel to spear and flanking a central ele-
ment 

19. ICONOGRAPHIC STRUCTURE: Sword 
parallel and joint to spear 

20. ICONOGRAPHIC STRUCTURE: Sword 
crossed on human figure 

21. ICONOGRAPHIC STRUCTURE: Sword 
and spear independent 

22. ARTIFACT DETAILS: Shield with V marks 
in all circles 

23. ARTIFACT DETAILS: Shield with outer 
circle with V marks, and interior without.

24. ARTIFACT DETAILS: Shield with outer 
circle without V marks, and interior with

25. ARTIFACT DETAILS: Shield with smooth 
concentric circles 

26. ARTIFACT DETAILS: Shield with parallel 
lines 

27. ARTIFACT DETAILS: Shield with radial 
disposition 

28. ARTIFACT DETAILS: Round smooth 
shield, without marks 

29. ARTIFACT DETAILS: Horned helmet
30. ARTIFACT DETAILS: Crested helmet 

These are typical external identifications, 
because the automated archaeologist does not 
know how to distinguish a shield from a human 
figure or the representation of a chariot or a sword. 
All those terms are introduced from outside in 
its definitive form by the human user, who has 
learnt to discriminate the representation of human 
figures and the recognition of objects and motives 
in the engraved lines.

The output layer has eight units. 

1. CHRONOLOGY: LATE BRONZE AGE 
II

2. CHRONOLOGY: LATE BRONZE AGE 
III 

3. CHRONOLOGY: PHOENICICAN CO-
LOIZATION PERIOD

4. CHRONOLOGY: POST-COLONIZATION 
PERIOD 

5. GEOGRAPHY: Tagus valley
6. GEOGRAPHY: Guadiana valley
7. GEOGRAPHY: Zújar valley
8. GEOGRAPHY: Guadalquivir valley
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Again, these concepts are not generated by the 
system, but known to it in their final form.

The network has a three-layer feed forward 
topology with ten intermediate neurons (in the 
hidden layer). The network contains a total of 48 
units or neurons. An initial set of 33 exemplars, 
with well-known chronology was used in the 
training mode, for 2,000 epochs.

In all training cases, the program assigned 
the correct chronology to the different rock-art 
representations. For instance, in the case of the 
Ategua Stelae, the network correctly determined 
chronology, although with some indeterminacy 
(Neuron 3: Colonial Period; Neuron 4: Post-ori-
entalizing Period), and provenience: Guadalquivir 
(Neuron 8) (Figure 5.2).

In the case of the Arroyo Bonaval exemplar, 
the network correctly determined chronology 
also with some indeterminacy (Neuron 1: Late 
Bronze Age II; Neuron 2: Late Bronze Age III), 
and concluded correctly the region of provenience 
(Tagus valley: Neuron 5). Categorization was not 
perfect, however, when differences are too few 
between competing categories. 

Once trained, the network has been used to 
classify fragmented rock-art monuments (Figure 
5.3). The idea was to study the relevance of each 

variable, either jointly, or separately. The neural 
network is not activated with the full descriptions 
of the representation, but with some hypothetical 
descriptions, of the type: 

• What would happen if the representation 
contained only a crest helmet? 

• What would happen if the representation con-
tained only a shield of concentric circles?

• What would happen if the representation 
contained only a mirror and a chariot?

Results are very interesting. As we supposed, 
the more usual attributes (sword, shield, etc., en-
graved in most rock-art representations) have poor 
discriminating power. Shield typology helps a little 
in distinguishing between chronological periods. 
On the other hand, the appearance of an isolated 
human figure, without other elements, suggests 
a late chronology (Post-Colonial times).

Iconographic variables, that is to say, those 
that describe the way in which the elements rep-
resented in the stelae are arranged provided little 
information. The most interesting feature comes 
from the way in which the sword and the spear are 
associated: when these elements flank the central 
figure (a human figure or a shield), the network 

Figure. 5.2. Using a neural network to estimate the provenience and chronology of two Late Bronze Age 
Warrior Stelae (Ategua and Arroyo Bonaval) (Barceló 1995b)

Arroyo BonavalAtegua
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suggests it is an old exemplar, with a chronology 
in the Late Bronze Age II or Late Bronze Age III. 
The most probable chronology is a later one (Post-
Colonial times) when the sword and the spear are 
depicted parallel and together. A sword crossing 
a human figure is an ambiguous feature, because 
it can be assigned both to the Orientalizing and 
to the Post-orientalizing periods.

Diverse simulations have been made to study 
how the neural network responds to contradictory 
stimuli or stimuli that are reinforced. I will com-
ment here only some of the most evident results. 
For example, when activating two contradictory 
variables in the input layer, as they are “fibula 
(safety-pin)” and “ICONOGRAPHIC STRUC-
TURE: Shield and Human Figure symmetrically 
in vertical plane,” chronological indeterminacy 
increases, since a rock-art representation with 

those two variables in its description could not be 
assigned, with clarity, to a chronological period. 
In the case of “mirror” and “horned helmet” 
activated in the input layer, we observe that the 
joint result is similar to that we obtained when 
processing each one of the variables separately. 
The same happens in the activation of the variables 
“chariot” and “shield with V marks,” or “chariot” 
and “human figure,” although in the first case, the 
chronological fixation of the second variable re-
duces the indeterminacy of the variable “chariot.” 
In other words, when the activated variables are 
contradictory, in some cases ambiguity really 
increases. On the contrary, whenever the network 
is activated with associated variables (present in 
contemporary monuments), the results obtained in 
the individual activation remain without relevant 
modifications, or they are reinforced. 

5.3. Different activations of the trained neural network with fragmented monuments depicting only one 
feature (Barceló 1995b)

presence of human figure

crested helmet horned helmet

Presence of more than one human figure
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The validation of all these results will depend 
on the trust we have on the ability of the neural 
network to learn. Certainly, we have based the 
reliability of the approach on the results of the 
first turn of simulations, that is to say, the experi-
mentations with those rock-art representations, 
which were already interpreted. In all cases, the 
neural network provided the chronological and 
geographical associations that were expected from 
current archaeological knowledge. Nevertheless, 
the data used in the supervised learning phase 
can be partial or incomplete, or, the results of the 
archaeological investigation can surpass quickly 
what is known at a specific moment. For that 
reason, it is essential to insist on the fundamental 
character that the selection of initial data has. 

A modern version of this kind of analysis is 
Di Ludovico and Ramazzotti’s (2005) study of 
ancient glyptic, in particular the scenes cut on 
the surfaces of the cylinder seals dating to the 
Mesopotamian prehistory, specially the Ak-
kadian, the Post-Akkadian and Ur III periods. 
The aim of the investigation was to understand 
the figurative organization of depicted scenes, 
what requires an in-depth study of their very 
complex iconographic lexicon. The whole study 
is mainly based on the idea that figurated scenes 
are expression of a formal language, which can 
be understood, in its essential outlines, by the 
simulating interaction of the elements isolated in 
it by a process of shape deconstruction. The first 
step of the analysis is the ideal breaking up of 
every scene in numerous pieces as the minimum 
signifying elements, which can be recognized in 
them: number of figures, sex, directions towards 
which they are oriented, their poses, their dresses, 
the objects serving as their attributes, etc.). In this 
way, each kind of feature empirically noticed has 
been translated into variables, the number of which 
agreed with the possible theoretical combinations 
between the features and the contexts to which 
they could belong.

Each seal has been translated into a string of 
611 presence/absence attributes. A self-organized 

map neural network (Chapter IV) has led to the 
drawing of a multi-dimensional clustering in 16 
classes. A test of the map related to the chronologi-
cal distribution of the seals has pointed out how 
the classes have been divided coherently with the 
three traditional historic periods. The neural net 
has outlined inputs that can be partly related to 
the specific production of each period and partly 
to overlapping or transitional phases.

Another example of an identification-based 
analysis using neural networks, come from lithic 
use-wear studies. Van den Dries (1998) has tried 
to classify functionally lithic tools using sub-
jectively identified use-wear descriptors. Such 
descriptors are qualitatively defined, and identified 
by a human expert in the microscope image; the 
researcher “sees” striations, polished areas, scars, 
particles, undifferentiated background. Even the 
“intensity” of a trace has also been determined 
subjectively, introducing attributes like “poor,” 
“high,” “developed,” “greasy,” and so forth. As 
in the previous rock-art example, input neurons 
are not proper visual units, because they are not 
stimulated directly by the input luminance values 
captured by the automated archaeologist sensors. 
Instead, it is the human user, who feeds the network 
with an interpreted input, in which each feature 
contains the result of a previous inference. The 
neural network (called WARP) has been trained 
to recognize the action that produced some degree 
of “polish” on the surface of the tool, provided the 
user is able to distinguish features like: distribu-
tion, texture, brightness, topography and the width 
of the polish. Those variables were translated into 
a presence/absence format, producing 31 binary 
variables like:

DISTRIBUTION A: scintillation
DISTRIBUTION C: reticulated
DISTRIBUTION E: thin line along the edge
TEXTURE A: smooth & matt
TEXTURE B: rough & greasy
BRIGHTNESS A: very bright
BRIGHTNESS C: dull
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TOPOGRAPHY A: domed
TOPOGRAPHY B: flat
WIDTH A: 0-250 micron
WIDTH B: 251-500 micron
WIDTH C: 501-750 micron

Since WARP was meant to interpret wear 
traces generated by working activities with the 
tool, the output neurons represent the worked 
materials:

MATERIAL 1: dry hide
MATERIAL 2: fresh hide
MATERIAL 3: hard wood
MATERIAL 4:  soft wood
MATERIAL 5: dry bone
MATERIAL 6: soaked bone
MATERIAL 7: dry antler
MATERIAL 8: soaked antler
MATERIAL 9: cereals
MATERIAL 10: butchering meat and fish
MATERIAL 11: pottery
MATERIAL 12: stone
MATERIAL 13: soil
MATERIAL 14: siliceous plants
MATERIAL 15:  non-siliceous plants

The training set consisted of 160 examples of 
experimentally replicated tools used in laboratory 
to process the actions mentioned on the output 
neurons list.  

Circa 38 exemplars (26.4 percent) were not 
correctly learnt. Some difficulty could have been 
expected because repeated attempts confirmed 
that the data contained various contradictory 
facts on which it would be difficult to train the 
network. For instance, the reference collection 
contained facts with a similar texture but a dif-
ferent functional interpretation and facts with a 
different texture but the same kind of use. This 
means that in one case WARP must learn that the 
use-wear features (attributes) A, B, and C relate 
to worked material X, while in another example 
these traces relate to material Y, while in another 

example these traces relate to material Y. It is for a 
neural network even more confusing that material 
X can also be associated with attributes D, E, and 
F, while this does not hold for material Y.

It turned out that the network failed to learn 
25 percent of the examples because it was more 
rigorous than necessary. Many answers were not 
wrong, but a matter of degree of certainty. Most 
of the differences resulted from the fact that the 
answers were not very persuasive. Consequently, 
many of them had a score that just misfit the train-
ing tolerance. Still, most answers corresponded 
with the expected answer and pointed at the right 
worked material. In fact, all “mistakes” included 
the right worked material in the answer. Moreover, 
eight of the “mistakes” consisted of two outputs 
with equal scores on similar materials like cereals 
and siliceous plants.

Subsequently, WARP was tested with 16 
randomly selected testing data. Considering the 
degree of answer overlapping, only four (25 per-
cent) were wrong. Van den Dries compared the 
performance of the network on experimental data, 
and on archaeological data (interpreted by a hu-
man analyst). Despite some unfortunate guesses, 
WARP performed rather well.  

AN AutomAtEd ARChAEologiSt, 
whiCh uNdERStANdS SCiENtiFiC 
tExtS 

As another example of non-visual explanation, let 
us consider the classification of texts and docu-
ments, according to the words used to describe 
them. Given that most archaeological evidence is 
still described verbally, this can be a good example 
for evaluating artificial intelligence applications 
in archaeology. Consider a very large collection 
of textual descriptions of archaeological traces, 
such as the excavation field book, a site excavation 
monograph, or an encyclopedia. 

WEBSOM is a method for organizing miscel-
laneous text documents onto meaningful maps 
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for exploration and search (Kohonen, 2001). This 
method orders a collection of textual items, say, 
documents according to their contents, and maps 
them onto a regular two dimensional array of 

map units. It is based on the SOM (self-organized 
map) algorithm (Chapter IV) to automatically 
organize the documents onto a two-dimensional 
grid (a U-Matrix), which serves as a graphical 
map display showing related documents close to 
each other. Documents that are similar based on 
their whole contents will be mapped to the same 
or neighboring SOM neurons, and at each unit, 
a link connects to the document database. Thus, 
the program can be used to locate interesting 
documents on the output map using a content-
directed search. 

WEBSOM encodes original documents as a 
histogram of word categories based on the simi-
larities in the contexts of the words. This encoded 
information is used to learn the self-organized 
map on which nearby neurons refer to similar 
documents. Input data (stored documents) are 
represented as binary vectors whose compo-
nents or input neurons correspond to words of a 
vocabulary. The value of the component is one 
if the respective word is found in the document; 
otherwise, the value is zero. Instead of binary 
values, real values can be used in which each 
component corresponds to some function of the 
frequency of occurrence of a particular word in 
the document. Each document is represented as a 
linear combination of the low-dimensional (typi-
cally between 100 and 200-dimensional) latent 
representations of the document vectors. If similar 
words can be clustered together, documents can 
be represented as histograms of word clusters 
rather than of individual words. 

While the searching can be started by locating 
those documents that match best with the search 
expression, further relevant search results can be 
found on the basis of the pointers stored at the 
same or neighboring map units, even if they did not 
match the search criterion exactly. For instance, 
imagine the user has clicked an output layer region 
with the label ‘bell-beaker,’ obtaining a view of a 
section of the map with articles on archaeology in 
Western Europe around 2100 B.C., various shapes 
of potteries, individual burials, early metallurgical 

COMPARISON WITH TRAINING DATA

TRAINING DATA NEURAL NETWORK 
INTERPRETATION

soaked antler dry antler/fresh bone

medium hard wood soft wood

shell soft plants

soft wood soft wood

soaked antler hard wood

soft wood dry hide

soft wood fresh bone

soft wood fresh bone

fresh hide fresh hide

fresh hide fresh hide

fresh hide fresh hide

hide with ochre soft wood/dry antler

soft wood soft wood

fresh hide fresh hide

dry bone fresh bone/dry antler

   COMPARISON WITH ARCHAEOLOGICAL MATERIAL

HUMAN EXPERT 
INTERPRETATION

NEURAL NETWORK 
INTERP.

1 dry hide fresh hide

3a dry hide fresh hide

3b bone butchering

5 hide? fresh hide

6 bone butchering

10 fresh hide fresh hide

19 wood hard wood/soft wood

20 fresh hide fresh hide

31 hide fresh hide

34 antler soaked antler

Table 5.1. The actually worked materials and 
archaeological artifacts (linear band ceramic 
objects. Neolithic) compared with the interpreta-
tions of the Neural Network (Van den Dries 1998 
pp. 96-97)
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prototypes, and so forth. Searches performed on 
the map could confirm that also megalithic buri-
als and dolmens can be found nearby. A topic of 
interest is thus displayed in a context of related 
topics. Examples have been published on seven 
million documents classification, viz. of all of 
the patent abstracts in the world that have been 
written in English and are available in electronic 
form (Kaski et al., 1998). In this case, the output 
map consists of about one million models (nodes). 
Another example using the Encyclopedia Britan-
nica has been reported by Lagus et al. (2004). 
The collection consisted of about 68,000 articles 
from this publication, and additionally summa-
ries, updates, and other miscellaneous material 
of about 43,000 items. Some of the articles were 
very long, and split into several sections. In total, 
about 115,000 text items were obtained, and each 
was regarded as a document to be organized by 
the WEBSOM. The total vocabulary consisted 
of 325,275 different words. 

In this line of research, innovative technolo-
gies and methodologies have been developed 
that enable the exploration of large informa-
tion repositories containing cultural heritage 
knowledge on a global scale. Díaz-Kommonen 
and colleagues (Avilés Collao et al., 2003; Díaz-
Kommonen & Kaipainen, 2002) describe how to 
convert historical written sources into automated 
explanatory mechanisms. The authors have ex-
tracted a semantic space from two historical texts: 
A Description of the Northern People, 1555, and 
the Carta Marina of 1539. The semantic space 
is built from the analysis of relationships among 
linguistic object-such terms, sentences, or docu-
ments in, the entire documents collection. Through 
the pattern of co-occurrences of words, a latent 
semantic indexing algorithm is able to infer the 
structure of relationships between documents 
and terms. 

thE ARChAEologiCAl ANAlySiS 
oF viSuAl mARkS

At the beginning of the book, I argued that ar-
chaeology is a quintessentially visual discipline. 
Among all archaeological features, some of them, 
the most important for the recognition and/or 
explanation of the item, have a visual nature, 
that is to say, have something to do with how 
light arrives to the archaeologist’s eyes or to the 
robot sensors. Mechanisms used to “automate” 
archaeological inference and reasoning can be 
based on this premise. Tasks such as identifying 
a pottery type, identifying decorative patterns or 
use-wear in archaeological materials, recognizing 
archaeological structures in a satellite or aerial 
image, identifying layers or buildings at the site, 
interpreting burials or settlement patterns can 
be considered to be within the purview of visual 
analysis.

Identification-based analysis or textual clas-
sification is a tricky way of solving this problem. 
In fact, it is not a visual analysis, because the 
original visual input is being “described” in non-
visual terms (words). When processing rock-art 
paintings we fed the neural network not with the 
original images of those archaeological elements, 
but with subjectively defined descriptors like 
“zoomorphic representation,” or “anthropomor-
phic,” and so forth. Low-level recognitions are 
assumed to be known, but no criteria are given 
about their reliability. Is a “shield” really a “shield” 
or another iconographic symbol? If we program 
the automated archaeologist in such a way that it 
process the visual input by itself, many sources 
of subjectivity will be avoided.

Human beings have the ability to recognize 
and classify images, identifying interesting pat-
terns and single objects in them. Computers and 
robots can do it, too. Computer vision has been 
defined as a process of recognizing elements of 
interest in an image, and it can be described as 
the automatic logical deduction of structures or 
properties of the three-dimensional objects from 
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either a single image or multiple images and the 
recognition of objects with the help of these prop-
erties (Kulkarni, 2001). As such, computer vision 
should be considered as an interpretive process. 
Any reasonable sophisticated visual system must 
involve a set of processes that extract a variety of 
types of information from the input image about 
the visual scene it comes from. This information 
is captured in a variety of internal intermedi-
ate-level representations (neural networks, for 
instance) which form the basis for higher-level 
recognition processes. 

The first task is to decide what sort of distinc-
tive visual marks an automated archaeologist 
should seek to understand why what it sees is 
what it seems to be. Observable properties can be 
reduced to the size, shape, texture, composition, 
and location of material consequences of social 
activity. Relevant questions to an automated 
archaeologist are then:

• How can it be discovered what makes such 
a shape a container? 

• How can it be discovered what makes that 
use-wear texture a knife?

• How can it be discovered what makes an 
artifact with that composition a foreign 
production?

• How can it be discovered what makes such 
locations an activity area? 

The automated archaeologist should find the 
social cause (production, use, distribution) of what 
it “sees.” Production, use, and distribution are the 
social processes, which in some way have caused 
observed differences and variability among 
characteristic features. Unfortunately, there is 
no universal method of searching for informative 
visual marks. Features can be extracted from any 
real image almost ad infinitum, but one usually 
fails to formalize the significant criterion for those 
features. An additional difficulty is that different 
features will almost definitely be of importance 
for different classifications (Shelley, 1996).

The approach we adopt here to build an auto-
mated archaeologist able to recognize the visual 
appearance of archaeological evidence is based 
on current computational theories of visual per-
ception that tend to break down the perception of 
meaningful stimuli into three functional stages. 
It is now common to categorize visual process 
into low, intermediate, and high levels. Low-level 
information is typically about the spatial relation-
ships among primitive, two-dimensional visual 
features such as observed shape, texture, and 
composition variability patterns. Intermediate 
information describes the properties arising from 
forms of organization of the low-level primitives, 
such as texture or shape differences, and may in-
clude descriptions of the three-dimensional spatial 
relationship (location) among visual properties. 

In his most influential essay, David Marr (1982) 
suggested that there are different mechanisms by 
which any sensing agent (a human or a machine) 
transforms visual data into an identification of 
the cause of visual variation. He saw perception 
essentially as building larger and larger structures 
from elementary sensory features. First, primitive 
visual features (e.g., location of shape and texture 
components) are extracted from empirical data. 
Second, these features are used to construct a de-
scription of the structure of the input information 
(texture and/or compositional variation). Third, 
the constructed description is matched against 
stored descriptions. The line between perception 
and cognition should be drawn between stages 
two and three. Specifically, cognitively derived 
expectations and beliefs do not interact with vi-
sual processing up to the construction of a visual 
description, but may influence the matching stage, 
perhaps by modulating the threshold amount of 
activation necessary to trigger a match to a par-
ticular object type. 

The idea is then to build the automated archae-
ologist “brain” in terms of a hierarchy of feature 
detectors and specialized problem-solvers. At the 
lowest level in the hierarchy, there is what we have 
called input units, or visual feature detectors. 
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These detectors encode primitive visual features, 
namely, shape or texture basic parts. The retinal 
units provide a vector description of the stimulus in 
terms of a spatial co-ordinate system. These units 
activate all appropriate mapping units to which 
they are connected, and in turn, the mapping units 
activate all of their super ordinate object-based 
units. The receptive field properties of low-level 
detectors would encode the salient features of the 
input image in order to generate a preliminary 
model of the external world. This first level en-
codes information, which will be processed and 
eventually decoded by middle and higher-order 
mechanisms. The middle-level contains mapping 
mechanisms building a mapping between image 
defined and explanation-centered descriptions. 
What the mapping mechanisms are doing is to 
impose a frame of reference on the visual fea-
tures, so that these features can be matched up 
with the same features specified in the definition 
of explanations. Specialized problem-solvers 
(higher-level mechanisms) represent particular 
solutions or explanatory concepts looking for 
particular combinations of features from the 
feature detectors. At the highest level, a decision 
mechanism selects the concept corresponding to 
that represented by the specific problem-solver 
activated by the highest quantity of features. 

When building a neural network in an archaeo-
logical domain, visual input activates a first layer 
of neurons and this activation propagates through 
the network, using the connections among neurons 
at other layers. At higher layers, a given neuron 
embodies certain local hypothesis about a part of 
an object in an image. In moving from lower to 
higher levels of neurocomputing, it is interesting to 
consider the application of constraint satisfaction 
to perceptual processing. The pattern of activation 
changes dynamically over time, and eventually 
settles into a stable pattern in which some nodes 
are highly active, and other not.

This approach to nonlinear pattern matching 
suggests that, instead of casting object recogni-

tion as a massive dynamic search problem, we 
can think of it in terms of gradual sequences 
of transformations (operating in parallel) that 
emphasize certain distinctions and collapse 
across others. If the result of this sequence of 
transformations retains sufficient distinctions 
to disambiguate different possible explanations, 
but collapses across irrelevant differences pro-
duced by individual variability, then functional 
determination has been achieved. This approach 
is considerably simpler because it does not try to 
recover the complete 3-D structural information 
or form complex internal models.

Archaeological visual explanation is then a 
gradual process that proceeds from the general 
to the specific and that overlaps with, guides, and 
constrains the derivation of a causal explanation 
from an image or visual representation of some 
archaeological evidence (Figure 5.4). 

The overall explanatory process is thus broken 
down into the extraction of a number of different 
observable physical properties (low-level analysis: 
shape, texture, composition and location), fol-
lowed by a final decision based on these properties 
(high-level analysis) (Figure 5.5). 

Figure. 5.4. A schema showing the process of 
visual interpretation

low-level interpretation of picture elements

object recognition

high-level image interpretation

raw visual data

image segmentation
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diRECtioNS FoR FuRthER 
RESEARCh

The purpose of this chapter was only to introduce 
different archaeological domains where neural 
networks technology can be applied. Given the 
quintessential “visual” character of archaeological 
data, and the numeric and “vector” nature of neural 
networks, this chapter seemed necessary. I have 

also included some examples of “non-visual” data 
processing, where the neural network was used 
as a supplement to more traditional approaches. 
Suggestions for further research appear in the 
following chapters. Especially relevant is also the 
last chapter, where some of the theoretical aspects 
on associative memories, here only sketched, are 
fully developed.

Figure.5.5. Flowchart of visual information processing
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Shape Analysis
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why ARChAEologiCAl 
EvidENCE hAS “ShAPE”?

In order to be able to acquire visual informa-
tion, our automated “observer” is equipped with 
range and intensity sensors. The former acquire 
range images, in which each pixel encodes the 
distance between the sensor and a point in the 
scene. The latter are the familiar TV cameras 
acquiring grey-level images. That is to say, what 
the automated archaeologist “sees” is just the 
pattern of structured light projected on the scene 
(Trucco, 1997). To understand such input data, 
the spatial pattern of visual bindings should be 
differentiated into sets of marks (points, lines, 
areas, volumes) that express the position and 
geometry of perceived boundaries, and retinal 
properties (color, shadow, texture) that carry ad-
ditional information necessary for categorizing 
the constituents of perception. 

Currently, recognition of archaeological 
artifacts is performed manually by an expert. 
Generally, the expert attempts to find already 
recognized artifacts that are perceptually similar 
to the unclassified artifact. In order to recognize 
such artifacts, the human expert usually searches 
through a reference collection. A reference collec-
tion is a collection of reference artifacts, which is 

usually published as a set of formalized descrip-
tions together with line drawings of the artifacts. 
Manual comparison of excavated artifacts with 
artifacts from a reference collection is a highly 
intuitive and uncontrollable process. In order to 
overcome these drawbacks, an automated archae-
ologist will use a kind of content-based shape 
retrieval system to find geometrically similar 
artifacts. Here “shape” appears as the key aspect 
for the mechanization of visual perception.

The attempts at defining the term shape usu-
ally found in the related literature are often based 
on the concept of “object properties invariant 
to translation, rotation and scaling” (Dryden & 
Mardia, 1998; Palmer, 1999; Small, 1996). While 
such definitions manage to capture an important 
property of shapes as perceived by humans, 
namely what relates the different appearances of 
the same object seen from different perspectives, 
they do not clearly specify what a shape is. An 
alternative and less conventional definition of 
shape has been advanced by Costa and Cesar 
(2001, p. 266): a shape can be understood as any 
“single,” “distinct,” “whole” or “united” visual 
entity. Fortunately, these terms can be formalized 
using the mathematical concept of connectivity, 
which leads to the following definition:

SHAPE is any connected set of points.
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Consequently, shape is not an intrinsic prop-
erty of observed objects, but it arises in images 
in different contexts: linear separation between 
regions of relative light and dark within an image, 
discontinuity in the surface depth, discontinuity 
in surface orientation, markings on the surfaces, 
and so forth, usually called “interfacial boundar-
ies:” surfaces and/or contours. In other words, 
“shape” is the characteristic that delimits distinct 
spatial areas which appear when visual appear-
ances are “significantly different” from one area 
to the next. 

Shape analysis is more a task of discovery 
than plain description. It is essentially the opera-
tion of detecting significant local changes among 
luminance values in a visual scene. The method 
for “finding” connected sets of points in the im-
ages that represent archaeological observables 
can be approached by calculating the luminance 
gradient in the data array, that is, the direction 
of maximum rate of change of luminance values, 
and a scalar measurement of this rate. Following 
an earlier algorithm by Marr and Hildreth (1980), 
the automated archaeologist can extract shape 
information in a data array by finding the position 
of maximum variation in the map of luminance 
(grey or RGB-color levels). First-order differ-
ential operators compute the variation levels of 
such intensity function, and the algorithm finds 
the connectivity by detecting the highest value 
in the first derivative of the intensity function. 
A more economical algorithm for finding edges 
would be to detect zero-crossings of the second 
derivative of the intensity function. The second 
derivative of a function is just the slope of its 
previously calculated first derivative. The second 
derivative thus computes “the slope of the slope” 
of the original luminance function. Notice that 
in this second derivative function, the position of 
the interfacial boundary corresponds to the zero 
value in between a highly positive and a highly 
negative value. In any case, these are not the only 
ways of finding interfacial boundaries. There is 
huge literature, indeed an industry, concerned 

with “edge detection” algorithms (Costa & Cesar, 
2001; Heideman, 2005; Martin et al., 2004; Palmer, 
1999; Sonka et al., 1994). 

Nevertheless, conventional shape analysis 
techniques, being sensitive to (image) noise and 
intensity variations, often do not give us the 
true boundaries of objects in images. It is now 
generally acknowledged that, without a higher-
level information of the object itself (such as the 
geometry of the object), such techniques produce 
erroneous results. Consequently, it seems a good 
idea to build an optimal edge detector by train-
ing a neural network with a certain predefined 
network structure with examples of edge and 
non-edge patterns. 

In any case, we are not interested in the me-
chanical procedure of extracting shape connectiv-
ity among visual input, but in explaining shape 
information. Consequently, we are considering a 
higher-order definition, in which “shape” refers to 
the visual individualization of objects. The fact 
that a machine be able to individualize what it 
sees carries important clues about the structure 
of what is visible, and therefore it is the prime 
carrier of information in computer vision. 

diRECt ShAPE RECogNitioN

Let us consider the case, in which input neurons 
represent a matrix in which each row, and each 
column identify a point in the image and cor-
responding input neurons contain the intensity 
of light (grey or color level) at that point (pixel). 
In the case of bitmap images (black and white 
pictures), this is rather simple (Figure 6.1).

Díaz and Castro (2001) have used this approach 
to analyze the shape of rock-art symbols. The 
input data are real images (bitmaps), described 
in binary terms (1,0) (Figure. 6.2). 

The neural network outputs the explanatory 
label of this visual input: abstract forms, zoo-
morphic and anthropomorphic motives. In this 
case, shape appears as an a priori defined verbal 
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Figure. 6.1. A bitmap image used to feed the in-
put. Note that each pixel in the image (a number 
indicating the grey level associated with that pixel) 
activates one neuron in the input layer.

Figure. 6.2. A bitmap image of a rock-art symbol used to feed a neural network (Díaz and Castro 2001) 
Reprinted with permission from Damián Castro. 

category. The neural network proceeds using a 
training set and the backpropagation algorithm to 
generalize known instances of rock-art symbols 
from visual data. In a related paper, the authors 
have also explored the possibilities of using Ko-
honen networks to clustering bitmap images of 
rock-art. Given a sample data for an archaeological 

site, the unsupervised network was able to group 
most of the rock-art symbols in three main groups 
according to the elements complexity, but with 
some other assigned to single-element clusters, 
interpreted as marginal symbols (Castro & Díaz, 
2004).

A very similar neural network has been used 
to recognize written characters in ancient docu-
ments, in numismatics and in epigraphy (Ailloli 
et al., 1999; Kashyap et al., 2003; Vezzosi et al., 
2002). Assume that we want a network to recognize 
two patterns “T” and “H” (Figure 6.3). We might 
use an array of, say, nine sensors, each recording 
the presence or absence of ink in a small area of 
a single digit. The network would therefore need 
nine input units (one for each sensor), 2 output 
units (one for the “T” and another for the “H”) 
and a number of hidden units. The associated 
patterns are all black and all white respectively, 
as shown in Figure 6.3. 

In a real case, we would need a bigger array 
of sensors, say, 256 sensors or more, for encod-
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ing the digitalized image of each character. For 
instance, Kashyap and his collaborators report 
an artificial neural network for studying ancient 
Indian documents written in Kannada, a language 
of southern India, which is as old as 5th century 
A.D. (Kashyap et al., 2003). It constitutes an his-
torical problem because fonts have evolved over 
the centuries, and it is difficult now to recognize 
the written characters in ancient documents. Char-
acters from known texts dated from 3rd century 
B.C. to the present day are used for supervised 
learning. Data used for analysis were scanned 
epigraphic texts obtained from the Department 
of Epigraphy, Archaeological Survey of India, 
Mysore. Each letter was then converted to bitmap 
images. These images were scaled horizontally 
and vertically in proportion to fit a grid size of 
10x14 pixels. This was followed by converting 
gray scale images to monochrome images. A 
preliminary neural network was trained using 
the backpropagation algorithm to identify ancient 
characters in terms of how well scanned images 
fit the known shape. The test character fed to 
the network was subsequently fed to a second-
ary probabilistic mechanism, which had prior 
data of known characters belonging to different 
centuries. The age of the character is the output 
of this second component.

Although in some simple cases this way of 
encoding shape information in terms of an ex-
haustive sampling of pixel values can be useful, 
in the more usual archaeological cases it does not 
work easily. Assuming that each pixel is an input 
neuron, we would need too many neurons in the 

input layer, and too many training exemplars to 
arrive to a gross approximation to original vari-
ability. Consider a low resolution image (640 x 480 
pixels). Given that the image  should be stored in 
the input layer, we need a computing neuron for 
each pixel; that means 307200 neurons in the input 
layer.  We need a very powerful computer to run 
such a network. Even in the simple binary case 
reported by Díaz and Castro (2001), the network 
needed 24 hours of training for recognizing pat-
terns in one of the shape explanatory categories: 
abstract, zoomorphic, anthropomorphic motives. 
Pixel-based shape input imposes a drastically 
reduction of the preliminary visual resolution 
so that neurocomputations can be generated in 
acceptable time.

Some essays have been published to reduce the 
complexity of neural network with digital images 
as input. Ji et al. (2005) have suggested using as 
input some measures (area, perimeter, area ratio, 
etc.) related to the area of the window in which 
the object lies, and not the full visual input. 

If a fully distributed representation of the 
image in the input layer is computationally too 
demanding, we can encode the visual input in form 
of discrete shape parameters. This is a localized 
approach, which implies describing the shape in 
terms of geometric components, instead of using 
directly the visual information contained in the 
perceptual input. Feature based methods of shape 
description have been the typical approach used 
in classical classification frameworks. They can 
be divided into four categories according to the 
type of shape features used: (1) global features, 

Figure. 6.3. Distributed representations of visual input for recognizing written characters 
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(2) global feature distributions, (3) spatial maps, 
and (4) local features. The first three categories 
represent a shape using a single descriptor. As an 
example we can quote Maloof and Michalski’s 
(1997) use of symbolic shape descriptors. An 
archaeological example of this approach is 
Camiz and Venditti (2004), who have explored 
the possibilities of the automated classification of 
complex-shaped objects, like Egyptian scarabs. 
The authors suggest a qualitative code of shape 
information and stylistic features, and compare 
multiple correspondence analysis with neural 
networks.

This way of qualitatively describing shape is 
typical in bone analysis (both physical anthropol-
ogy, archaeozoology and paleontology). Bell and 
Jantz (2002) have published the results of an in-
teresting project to classify human bones remains 
using a neural network. The database contained 
shape descriptions of skulls representing 559 in-
dividuals from 25 sites occupied by the Arikara 
Indians located in the Middle Missouri region 
of South Dakota. Years represented ranged from 
AD 1600-1817. For each individual, 66 cranial 
features were reported. The output variables to 
be discriminated using shape differences were 
phase, period, and geographic location (bank of 
the river on which the site was located). That is 
to say, the goal was to distinguish the anatomic 
features of individuals from sites at both banks 
of river Missouri at different periods, given the 
assumption of different human populations at both 
areas, separated by the river. At a threshold of 75 
percent, the neural models were able to predict 
period slightly better than chance (looking at the 
average percentage of correctly classified items). 
At the 0.60 threshold, geographic location was also 
predicted better than chance. Male and female 
skulls did not show any statistically significant 
differences. Thus, results suggest that the river 
was an effective barrier between sites and peoples 
since cranial measurements were sufficient to 
distinguish them.

Corsini and Schmitt (Corsini et al., 2005; 
Schmitt et al., 2001) have also used neural network 
based shape analysis to distinguish variability on 
the human skeleton. The authors have explored 
the potentiality of neural networks to predict 
age-at-death from shape morphology of human 
bones recovered from archaeological sites. They 
applied a neural network on the indicators from 
the pubic symphysis and the sacropelvic surface 
of the illium on 677 individuals from identified 
dry bone collections. In this study, neural inputs 
are discrete values (observation of the indicator, 
sex and collection). The output is a continuous 
numeric function of the age at death of individuals 
that the authors intent to map into age categories. 
The system obtained reliable classification that 
distinguishes three age intervals: 20-29, 32-59, 
and over 60 years old.

Morphometry is a way of describing the shape 
using relational geometric indexes as indicators. 
Among them, we can enumerate:

• Circularity:  The degree of circularity of a 
solid. That is how much this object is similar 
to a circle. Where 1 is a perfect circle and 
0.492 is an isosceles triangle. This shape is 
expressed by: 

 
2

4 s
p

 s: object area
   p:  object perimeter

• Quadrature: The degree of quadrature of 
a solid, where 1 is a square and 0.800 an 
isosceles triangle. This shape is expressed 
by:

 4
p

s

• Irregularity: Measurement of the irregu-
larity of a solid. It is calculated based on 
its perimeter and the perimeter of the sur-
rounding circle. The minimum irregularity 
is a circle, corresponding at the value 1. A 
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square is the maximum irregularity with 
a value of 1.402. This shape is expressed 
by:

 
cp

p

• Elongation:  The degree of ellipticity of a 
solid, where a circle and a square are the 
less elliptic shape. This shape is expressed 
by:

 D
d

 D: maximum diameter within an object
  d:  minimum diameter perpendicular at D

Alternatively, we can rely on the fact that the 
outer frame of the observed object may be enough 
to specify the type it belongs. In this approach, the 
outer frame, usually called contour or silhouette, 
is used as the most basic building block of visual 
shape. Contours provide a relatively compact way 
of representing the shape of an object, with the 
assumption that the region between the edges 
defining the contour is relatively homogenous. 
This is an increasingly used descriptive method 
in archaeology (Bendels et al., 2006; De Napoli 
et al., 2003; Halir & Fluzer, 1997; Kampel, Mara 
& Sablatnig, 2006; Kampel & Sablatnig, 2003; 
Leitao & Stolfi, 2002, 2005; Leymarie, 2003; 
Papaioannou & Karabassi, 2002; Papaioannou et 
al., 2001, 2003; McBride & Kimia, 2003;  Mara & 
Sablatnig, 2005, 2006; Uçoluk & Toroslu, 1999; 
Willis et al., 2002). 

For shape recognition, coordinates of detected 
contour points are in the input and interpreted 
“shapes” in the output. The problem is that we 
would need infinite coordinates to describe the 
outer frame of even the simplest object. We need to 
assume that the shape of any object is essentially 
captured by a finite subset of its contour points, so 
the input of the network contains just a selection 
of the points constituting the object’s contour.

From here, there are two possibilities: 

• Selected points along the contour should 
correspond to key-points, such as maxima 
of curvature or inflection points. “Salient” 
means that the point is in some way “special” 
or “distinct from its neighbors.” Attempts to 
define what a salient point (SP) is suffer from 
the problem that an isolated pixel cannot be 
special by itself, but only in comparison to 
its neighbors. Hence, saliency makes sense 
only with respect to the surroundings. A 
suggested method is based on finding points 
of inflection (i.e., curvature zero-crossings) 
on a curve at varying levels of detail. The 
curvature k of a planar curve, at a point on 
the curve, is defined as the instantaneous 
rate of change of the slope of the tangent at 
that point with respect to arc length (for the 
general procedure, see Bebis et al., 1998, see 
also Heideman 2005), 

• Selected points along the contour should not 
only correspond to key-points. We can select 
any points (usually 100 or more), provided 
we are sampling the shape with roughly 
uniform spacing (for the general procedure, 
see Belongie et al., 2002).

Let we consider some examples using this way 
of describing shape. In an archaeozoological and 
paleontological application, Paul Gibson (1993a, 
1993b, 1996) has used neural networks and back-
propagation learning to create a system for the 
ageing and interpretation of archaeozoological 
material. He has used modern day data for training 
the network. One approach to age-estimation is 
based on the eruption and wear stages of animal’s 
teeth. A mammal dentition changes through a set of 
distinguishable stages as along as the animal ma-
tures. Archaeozoological analysis uses diagrams 
for each tooth that represent idealized wear stages. 
A tooth in a given mandible is compared against 
the diagram and the diagram that best matches with 
the tooth suggests the wear stage. This analysis 
results in a tooth wear stage value. These values 
are then used to produce a mandible wear stage 
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value that represents the relative age of the sample. 
A sample of 22 modern sheep mandibles with 
varying stages of attrition and a number of tooth 
abnormalities was selected as training set. Such 
a data set had a combination of missing teeth, 
unerupted teeth, teeth in early stages of wear, 
and teeth in moderate stages of wear. Mandibles 
were “presented” to the computer as pre-processed 
images acquired through a video digitizer with 
a frame buffer of 640x480 pixels with 16 grey 
levels. Light and orientation of the mandibles and 
of the camera were strictly controlled. Sub-images 
were extracted from original ones, in such a way 
to obtain arrays of 120x80 pixels, which implied 
9600 neurons in the input layer. From the tooth 
image, the neural network must identify which 
teeth are present as an indicator for the application 
of wear stage models. This means identifying the 
borders of the tooth and mapping their outline to 
one of the tooth descriptors. An algorithm was 
created that highlighted the approximate border 
of the teeth based on background information. 
The neural network was trained to distinguish 
between different teeth silhouettes. Each output 
from the network represented all possible wear 
stages. For example, for a tooth at wear stage “A” 
the network was taught to produce a “1” output 
for the first neuron in the output layer and “0” 
in the rest. The system was measured against 
estimations made by human experts and found 
to have an overall performance of 65 percent 
agreement. Like the human experts, the neural 
network appeared to have problems in assessing 
early wear stages whilst having greater success 
with later stages.

Eastham and Gwynn used neural networks 
in a similar way, for identifying bird egg-shells 
found at archaeological sites. Using a reference 
collection of photographs, the system was able to 
identify around 17 different species of birds, whose 
eggs were used by the neolithic populations  of  
northern Britain (Eastham & Gwynn, 1997).

Sam Redfern has approached the recognition 
of megalith burial monuments, based on their 

morphological and topographic measurements 
made using aerial photography data. The goal of 
the analysis was a typology of 125 archaeologi-
cal enclosures and sub-circular features visible 
in vertical aerial photographs of the Bruff area 
(Ireland). A set of morphological and topographic 
measurements regarding each of these monuments 
was generated using image-processing tools: cir-
cularity, rectangularity, elongation, area, slope, 
and aspect. The first four of these are generated 
from the objective outline tracing of a monument, 
while the last two are generated from the digital 
elevation model (DEM) of a monument, which is 
created through the application of digital photo-
grammetry techniques to stereo images. The data 
generated were submitted to an agglomerative 
cluster analysis using Ward’s method in order to 
define objectively typological groups. This re-
sulted in the definition of six groups, five of which 
were further divisible into sub-groups. A neural 
network was designed to calculate the mapping 
between remotely sensed topographic and shape 
features and explanatory morphological types. 
The neural network should learn the underlying 
patterns in the data, and then should be capable 
of accurately predicting a typological class given 
only a set of input values. Following investigations 
into the most suitable neural architecture for the 
task, it was found that a hierarchical collection 
of networks was most useful (Redfern, 1998a, 
1998b, 1999).

Lohse is working on an archaeological auto 
classification system, which uses neural network 
technology to classify stone arrow points based 
on the geometrical information of their contours. 
The input layer consists of information pulled 
from an image of a projectile point, while the 
output layers give the classification of that tool, 
and a related information set. That is to say, the 
output contains a localized representation of 
archaeological types (“simple lanceolate,” “side 
notched,” “corner notched,” etc.). Through train-
ing, the neural network can replicate the actions of 
archaeological experts in identifying types. When 
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the silhouette of a new unknown lithic point is 
fed to the system, it answers with an estimate of 
the best match for such an item. The initial ap-
plication uses projectile point specimens drawn 
from the Pacific Northwest cultural area, but the 
system is extensible to other cultural areas and 
other artifact classes (Lohse et al., 2004). 

Bignon et al. (2005) use a 3D scanner to acquire 
three-dimensional coordinates of specific salient 
points along the contour of animal bones (prehis-
toric horse metapoda). The authors observed that 
contour coordinates, contrarily to distances, are 
sensitive to translation and rotation of the reference 
system. Accordingly, each object was therefore 
scaled to unit centroid size, centered and rotated 
in order to minimize its deviations from a refer-
ence object. The whole data set is represented by a 
size measure, a reference object called consensus 
corresponding to the mean object over the whole 
sample, and a residual matrix containing the shape 
parameters of each object. A feed forward neural 
network has been built for establishing the relation-
ship between shape and geographic origin of the 
archaeozoological samples (three distinct areas: 
Switzerland Plateau, Paris Basin, and Charente, in 
France). The research tries to test the possibility 
of large migrations of wild horses between the 
North and the South of Western Europe during the 
Late Glacial, by determining whether the shape 
of bones from different areas have also different 
anatomical shapes. A neural network (input=shape 
parameters; output=region and/or site) has been 
used here to estimate the classification rates be-
tween regions and/or sites. Almost all horse bones 
are clearly separated between a northern group 
(Paris Basin) and a southern group (Switzerland 
Plateau and Charente). The latter group also shows 
important differences in shape, although unrelated 
to the preceding ones. Even if the observed dif-
ferences are less genetically determined than the 
authors believe (and more under the influence of 
mechanical constraints), they clearly evidence a 
regional population fragmentation pattern for the 
studied Late Glacial horses of Western Europe. 

The fragmentation of the Magdalenian E. caballus 
arcelini into regional populations would not be 
surprising, since present day large ungulates in 
the tundra display the same pattern. Today, this 
appears to be dependent on the existence of high 
demographic density and of course, from the 
absence of large scale migrations.

Zweig (2006) has classified whole vessels from 
the site of Tel es-Safi (the biblical Philistine town 
of Gath) and pottery sherds from Tel Batash (the 
biblical town of Timnah) defining the borders of 
different parts, such as lip, rim, shoulder, and 
base. Contours were automatically subdivided into 
elemental sections using different methods. Two 
of them were based on curve peaks; one was based 
on inflection points, and another on curvature 
changes in relation to the horizontal axis. Many 
attributes were calculated for each section, such 
as average curvature, average thickness, curvature 
skew, curvature kurtosis, section relative length, 
and so forth. Neural Networks were set to cre-
ate prediction models for the various presumed 
functions and the temporary stratum number in 
which they were found. This actually created a 
set of fuzzy variables that defined the likeness of 
the vessel to the predicted trait.

Van der Maaten and colleagues have developed 
a content-based image retrieval system to aid 
the classification of historical glass objects. The 
authors have developed a content-based image 
retrieval system that compares photographs of ar-
tifacts with drawings from a reference collection, 
and take as a result the most similar, according to 
a machine learning algorithm. First, a shape profile 
has to be computed from the artifact photograph 
using an edge detector. This is necessary in order 
to compute outer shape features of the artifact. 
Once the outer shape profile is extracted from the 
photograph, a number of points is sampled from 
the boundary of the shape contour. The points 
are described as shape context descriptors. Shape 
context descriptors describe the distance and angle 
of a point to all other points in a discretized log-
polar space. By means of this description, a set 
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of shape context descriptors (i.e., a shape context) 
contains global information about the shape. After 
the computation of the shape context descriptors, 
a similarity measure is computed. The similarity 
measure is based on the dissimilarity between 
two shape contexts. Subsequently, the optimal 
matching between the shape context descriptors 
of two shapes is calculated. The costs of this 
matching provide a measure for the dissimilarity 
of the two shapes. Although the system does not 
perform well on highly degraded artifacts, the 
authors think it forms an important contribution 
to archaeology. Even when the retrieved artifacts 
are not perfect matches, the system provides an 
entry into the reference collection, allowing the 
archaeologist to classify artifacts faster and with 
a lower risk of errors. In addition, the system can 
be used for automatic shape analysis of entire 
reference collections. By performing the shape 
analysis on the entire reference collection, it is 
possible to present perceptually similar artifacts 
for every artifact in the reference collection (Van 
der Maaten et al., 2006).

The same authors have also developed a fast 
and reliable system for coin classification. Al-
though the system was designed for classifying 
and sorting the heterogeneous coin collection of 
unsorted pre-Euro coins, it can be used also for ar-
chaeological and numismatic collections. COIN-
O-MATIC performs automatic classification of 
coins in five stages: segmentation, feature extrac-
tion, pre-selection, classification, and verification. 
Segmentation is the separation of the coin from 
the background of the coin photograph. Feature 
extraction is the transformation of the segmented 
coin into an efficient and coin-specific represen-
tation. The coin stamp information is translated 
into edge-based statistical distributions, and used 
to train a classifier. Pre-selection is the selection 
of possible coin classes based on some of these 
edge-based statistical distributions. Classification 
is the process of mapping the feature representa-
tion onto one of the selected coin labels, based on 
information gathered from the training process. 

Verification is checking whether two coin images 
have identical labels, based on visual comparison. 
Verification is necessary because the test sets 
contain unknown coins that are not available in 
the training set. The classification stage contains 
no explicit way to handle unknown coins (Van 
der Maaten & Boon, 2006).

Some other neurocomputing applications of 
shape recognition are only indirectly related to 
archaeology. For instance, we should mention 
that feed forward neural networks and the back-
propagation algorithm have been used to classify 
different properties of wheat grains based on 
image morphology (Wang et al., 2002). Other 
relevant applications identify mineral inclusions 
and petrographic information from thin sections of 
geologic or archaeological samples (Fueten, 1997; 
Fueten et al., 2001; Thompson, Fueten & Blockus, 
2001). Those examples give us a clue about how 
to apply neural networks for shape identification 
in paleobotanical or archaeometric analysis (for 
instance, microscopy recognition).

AdvANCEd mEthodS oF ShAPE 
ANAlySiS ANd iNtERPREtAtioN

Shape cannot be reduced to a bi-dimensional 
geometrical parameter. Archaeological observ-
ables are three-dimensional entities, and their 
bi-dimensional contour is but a crude surrogate 
of their real shape. Interfacial boundaries of real 
objects have the appearance of surfaces, more 
than curves. We may need then more sophisticated 
mechanisms for analyzing archaeological shapes 
in all their complexity. The advantages of using 
neural network for such a task are diverse (Peng 
& Shamsuddin, 2004):

• Neural networks with backpropagation 
technique are able to estimate the depth (z) 
of an object with higher accuracy than other 
methods. It also means that neural networks 
are able to reconstruct object from 2D image 
to 3D after training.
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• This type of reconstruction is able to pro-
duce more points of an object or surface. 
Therefore, a neural network is able to recon-
struct more complex object with smoother 
surface.

• Even with scattered or unorganized data of 
an object is provided, neural networks are 
able to regenerate the object when outliers are 
removed and the smoothness of the surface 
is maintained.

3D objects can be described using a variation 
of bidimensional feature based methods of shape 
description. Examples of such global descriptors 
are the statistical moments of volume, volume-to-
surface ratio, or the Fourier transform of a surface. 
Other global features for 3D shape are bounding 
boxes, cords-based, moments-based and wavelets-
based descriptors, convex-hull based indices like 
hull crumpliness (the ratio of the object surface 
area and the surface area of its convex hull), hull 
packing (the percentage of the convex hull volume 
not occupied by the object), and hull compactness 
(the ratio of the cubed surface area of the hull and 
the squared volume of the convex hull).

Neural networks can be used to build connected 
surfaces from edge and vertices input informa-
tion. In general, such programs rely on coordinate 
information (x,y,z or longitude, width, height), 
that is to say, the spatial location of interfacial 
boundaries for interpolating a geometric mesh  
(see Gu & Yan, 1995; Peng & Shamsuddin, 2004; 
Piperakis & Kumazawa, 2001).

The difficulty involved in the problem of sur-
face reconstruction from unorganized x,y,z points 
is in obtaining correct connectivity among the 
sample points. Correct connectivity can give us 
a reconstructed geometric model that faithfully 
represents the shape and topology of the original 
object from which the set of sample points were 
drawn. Different neurocomputational approaches 
try to solve this problem. Yu (1999) introduced 
the technique for surface reconstruction from 
unorganized points by applying Kohonen’s self-

organized map. This is a top-down approach 
where a geometric model with correct topology 
(connectivity) has already been given in advance 
with some help from the user, for example, the 
user can decide from the sample points whether 
the original object is topologically equivalent to 
a sphere or a torus. A similar approach has been 
published by Barhak and Fischer (2001), Knopf 
and Al-Naji (2001), Knopf and Kofman (2002).

In addition to point coordinates and geometric 
interpolation models, shading is a very useful 
cue for reconstruction of surface shape (Cho & 
Chow 1999; Wei & Hirzinger, 1996). The bright-
ness of a point in an image I (x,y), is a function of 
the incident illumination and the corresponding 
surface normal n(x,y), given by the image ir-
radiance. There are infinite numbers of normal 
vector fields that can give rise to an intensity im-
age. This makes the problem extremely difficult. 
The problem would be better posed by enforcing 
additional constraints such as integrability by dif-
ferent means. Most shape from shading methods 
have been based on minimizing the average er-
ror in satisfying the image irradiance equation. 
This includes direct reconstruction of height by 
enforcing differential smoothness constraints, 
using line drawing interpretation to reconstruct 
piecewise smooth surfaces or using only local 
differential conditions.

Ben-Arie and Nandy (Ben-Arie & Nandy, 
1998; Nandy & Ben-Arie, 2001) have proposed 
a neurocomputational method for extracting 3D 
shape information from shading. The input array 
in their system has a local receptive field in the 
image domain. The array of output units defines 
the reconstructed surface function corresponding 
to the local receptive field. The network should 
be able to estimate relative surface heights of 
neighboring pixels under varying conditions of 
illumination as well as variations of the surface 
type from being concave or convex, or ellipsoids, 
cylinders or hyperboloids.  

Mostafa et al. (1999) presents a framework 
for integrating multiple sensory data, sparse 
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range data, and dense depth maps from shape 
from shading in order to improve the 3D recon-
struction of visible surfaces of 3D objects. The 
integration process is based on propagating the 
error difference between the two data sets by 
fitting a surface to that difference and using it to 
correct the visible surface obtained from shape 
from shading. A feed-forward neural network is 
used to fit a surface to the sparse data.

dEComPoSiNg ShAPE

The alternative to 3D shape modeling is volumetric 
representation, which describe an object as a set 
of primitives plus a set of spatial connectivity rela-
tions among them. It implies both a decomposition 
approach and a constructive framework, which 
describe the shape of an object as a combination 
of primitive elements. This different approach is 
based on the idea that the shape of an object has 
an important aspect that cannot be captured by the 
description of its coordinates, edges, and interfa-
cial boundaries: the fact that most complex objects 
are perceived as being composed of distinct parts. 
As we will use the term, a part is a restricted por-
tion of an object that has semiautonomous status 
in visual perception. For instance, “a chair has 
four legs, a set, and a back.” In addition to such 
decomposition in parts, object perceptions include 
the spatial relations among them (Palmer, 1999, p. 
348). The part decomposition approach assumes 
that each object can be decomposed into a small 
set of generic components that combine to form 
units depending on the relationships between the 
components. 

Consider the decomposition schema for a 
figurine; it has several parts as a head, a neck, 
a body, two arms, two legs. Each part has a 
characteristic shape and size: the head may be 
geometrically represented as a small triangular 
block, the neck a short cylinder, the body a large 
rectangular block, and the arms and legs long and 
slim cylinders. The parts are arranged in more 

or less specific locations. The head is attached to 
one end of the neck, and its other end is attached 
to the body. The legs are attached to the bottom 
of the body to support it. All such information 
must be represented in order to recognize some 
visual input as an instance of a figurine. 

In such a decomposition-based approach, the 
input variables are grouped into sets, where the 
relationships within each set are more accurately 
modeled than those across different sets. We refer 
to each such set as a part. For example, parts 
of a figurine’s face, such as the eyes, nose, and 
mouth, can be considered as parts and modeled 
separately. However, it should be emphasized 
that parts need not have a natural meaning to us 
(such as a nose or an eye), but could be defined 
as a group of geometric units, that satisfy certain 
mathematical properties. In addition, these parts 
do not have to be composed from disjoint groups 
of variables; a variable can be re-used in multiple 
parts. A parts-based approach selects each part 
to represent a small group of variables that are 
known to be statistically dependent. Such an ap-
proach avoids devoting representational resources 
to weak relationships and instead allocates richer 
models to the stronger relationships (Schneider-
mann & Kanade, 2004). 

A more formal decomposition may be obtained 
by a hierarchical graph representation that cap-
tures local curvature, distance between features 
and angles between features. Automated shape 
analysis of archaeological objects may be based on 
the decomposition of object shapes into discrete 
parts, followed by the identification of those parts 
and their spatial and temporal relationships. We 
have not to forget, however, that the relationship 
between parts (their configuration) is equally 
important. The intrinsic or extrinsic features of 
other parts may influence the internal descrip-
tions of the parts themselves. The perception 
of shape will then depend critically not only on 
the part structure of objects and how its various 
parts are related to one another in terms of their 
relative positions, relative orientations, relative 
sizes, and so forth.
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The hypothesis that parts have their own mean-
ing and function to understand the complexities 
of a distinct shape, has led many researchers to 
assume that all shapes can be specified in terms 
of sets of parts; the idea of an alphabet of shape 
is then a prevalent one. Biederman (1987, 1995) 
called the primitive 3D components geons, which 
is a shortened form of geometric units. Each 
geon corresponds to an elementary universal 
shape component (e.g., a brick, a cylinder, a 
curved cylinder), and all shapes are represented 
by combinations of geons. Biederman defined a 
set of 36 qualitatively different universal geons 
by making distinctions in some variable dimen-
sions: cross-sectional curvature, symmetry, axis 
curvature, and size variation. This produces a 
relatively small set of distinct primitive volumes 
from which a huge number of object representa-
tions can be constructed by putting two or more 
together. Because complex objects are conceived 
in Biederman’s theory as configurations of two 
or more geons in particular spatial arrangements, 
they are encoded as structural descriptions that 
specify both the geons present and their spatial 
relationships. If geons are the alphabet of com-
plex 3-D objects, then spatial relations among 
geons are analogous to the order of letters in 
words. Biederman uses structural descriptions 
in which 108 qualitatively different relations can 
be represented between two geons. Some of this 
connections concern how they are attached (e.g., 
SIDE-CONNECTED and TOP-CONNECTED); 
others concern their relational properties, such as 
relative size (e.g., LARGER-THAN, SMALLER-
THAN). With these geon relations, it is logically 
possible to construct more than a million different 
two-geon objects. Adding a third geon and its re-
lations to the other two geons pushes the number 
of combinations into the trillions.

Although geons are themselves volumetric 
entities, Biederman theory proposes that geons are 
identified directly from image-based features such 
as edges and vertices. Hummel and Biederman 
(1992) have built a complex neural architecture 

to represent how shape analysis can be performed 
automatically. The network has seven layers of 
neurons, and each one deals with a different class 
of visual or spatial feature. The First layer, L1, has 
a cluster of units for each region of an input array. 
Within a cluster, there are some units responding 
to the orientation of edges, some to their curvature, 
and some to the termination of an edge. Units in L1 
feed units in L2, each of which responds to edge 
groupings defining vertices, axes of parallelism, 
axes of symmetry, and elongated blobs. Both L1 
and L2 are retinotopic in the sense that adjacent 
clusters of cells deal with adjacent regions of the 
input array. Together sets of units in L1 and L2 
represent the set of representational, volumetric 
primitives (geons), and units in L3 respond to 
properties of those geons such as their location, 
orientation, type of major axis and so forth. In 
L4 and L5 units code various spatial relations 
among geons ranging from location to “above.” 
The units of L6 receive input from L3 and L5 
and so code a geon and its relations with others. 
Finally L7 units integrate the geons signaled by 
L6 and so respond to whole objects constituted 
by geon assemblies. 

This kind of shape-decomposition approaches 
can be very useful as a general method of shape 
analysis for archaeological research. Some im-
provements and advances, however, have been 
proposed. Edelman (Edelman, 1994, Edelman 
& Intrator, 2000, 2002) has suggested giving 
up the classical compositional representation of 
shape by a fixed alphabet of crisp “all-or-none” 
explicitly tokened primitives (such as geons) in 
favor of a fuzzy, super positional coarse-coding 
by an open-ended set of image fragments. This 
alternative approach has met with considerable 
success in computer vision. For example, the sys-
tem described by Nelson and Selinger (1998) starts 
by detecting contour segments, and determines 
whether their relative arrangement approximates 
that of a model object. Because none of the in-
dividual segment shapes or locations is critical 
to the successful description of the entire shape, 
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this method does not suffer from the brittleness 
associated with the classical structural descrip-
tion models of recognition. Moreover, the toler-
ance to moderate variation in the segment shape 
and location data allows it to categorize novel 
members of familiar object classes (Nelson & 
Selinger, 1998).

Leow and Miikkulainen (1997) take a more 
or less similar approach based on the representa-
tion of structure in terms of schema hierarchies, 
implemented as laterally and vertically connected 
topological maps. They are interested not only 
in direct object recognition, but in scene under-
standing. The authors address the problem of 
recognizing different shapes, when a single input 
contains more than a single object. For instance, 
imagine that the visual input is a picture of some 
excavated area, showing the shape of a prehis-
toric dwelling in terms of remains of the walls, 
floors, and fallen roof elements. Pottery sherds 
and animal bones appear also in the scene. Is it 
possible to program a computer system, so it can 
be able to recognize the different “components” 
of this archaeological scene? Furthermore, such 
computer system must be able to process different 
scenes where the same components may appear in 
different spatial order, or some new components 
may be present. In order to solve this complex 
visual problem, the machine must be able to 
represent knowledge about the spatial structure. 
Leow and Miikkulainen’s VISOR system (visual 
schemas for object recognition) accepts as input 
a modified picture containing edges and closed 
contours present in the original visual image. It 
contains three different subsystems: (1) the low-
level visual module (LLVM) extracts positional 
and visual features information for the image 
(length, breadth, closure, vertical tilt, horizontal 
tilt, degree of expansion, curvature); (2) the schema 
module matches decomposition schemas with 
inputs, and (3) the response module generates the 
object and scene labels expected by the environ-
ment. Each module corresponds to a level in the 
schema hierarchy, with the scene schemas at the 
top, and the object schemas at the bottom. 

limitAtioNS iN ShAPE ANAlySiS 
ANd RECogNitioN

Direct methods for shape recognition can generate 
oversimplified results, given that most original 
visual information is not taken into account when 
limiting visual input to shape geometry. Multi-
resolution image representation and processing 
is a well-known image analysis methodology 
that has been used by many researchers to solve 
this kind of troubles (see Belongie et al., 2002; 
Young et al., 1997,). A multi-resolution image 
representation can be viewed as an image pyra-
mid. An image pyramid is a data structure that 
includes the original full resolution input image 
as its base level, together with several increasingly 
lower resolution copies comprising the ascending 
levels of the pyramid. The search can start at a 
very coarse resolution level, on which the size 
of the data representation is small compared 
to the full resolution input. Matching results at 
each level guide the process at the next higher 
resolution level (lower level in descent through 
the image pyramid). This multilayer process is 
also called top–down matching, or hierarchical 
matching. In top-down matching, a coarse-to-
fine matching strategy is used in which fine 
features, at higher resolution, are matched by 
using constraints induced by results of the coarse 
matching obtained at the lower resolution levels. 
The recursive constraints speed up the matching 
process, since they narrow the searching space 
at subsequent higher resolution levels containing 
features that are more abundant. All top–down 
matching procedures perform the matching in 
a hierarchical manner. Generally, hierarchical 
structures capture details about the objects of in-
terest in sequentially increasing resolution levels. 
A major problem associated with this strategy 
is that if an error occurs at an early stage, then 
this low-resolution error is propagated into each 
subsequent higher resolution level and finally a 
mismatch would occur. This mismatch cannot be 
corrected by using the information at another level, 
because the information flows top–down in a feed-
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forward manner and there is no feedback from 
higher resolution levels. To address this problem, 
a technique called coarse-and-fine matching has 
been proposed, where top-down and bottom–up 
matching are concurrently performed for each 
pair of levels of the image pyramid in order to 
find the best matched features at each level pair 
simultaneously (Ullman, 1996). 

All the examples presented up to now are based 
on the assumption that certain simple properties 
remain invariant under the transformations in the 
perception of an object. That is, we may believe 
that shape constancy occurs simply because we are 
able to recognize the same object from different 
perspective views by using different features. A 
vase can be seen from above or from the bottom, 
from the right or from the left, and if the object 
is not a perfect sphere, its 3D interfacial bound-
aries (contours or surfaces) will look different. 
To identify such a pot as an ancient container of 
wine, an intelligent robot should assume that for 
each shape definition stored in memory, there is 
a set of allowed transformations the object may 
undergo, as changes in position, scale, or orienta-
tion in space. The fact that each shape description 
should cover the range of possible viewing angles 
introduces a great deal of complexity in shape 
recognition, because to represent the entire object 
a huge number of descriptions for the same object 
are required. Therefore, an object should be rep-
resented for recognition purposes by a number of 
its views, rather than a single 3D representation. 
The implication is that combinations of a small 
number of stored views can approximate novel 
views, from new viewing directions.

Several novel network architectures have 
been developed specifically to cope with con-
comitant object variations in position (in-plane 
or out-of-plane), rotation, scale, or illumination. 
It is clear that a distinction needs to be made 
between invariant recognition in 2D (projection 
or perspective) images and in 3D volume images. 
An interesting approach that performs object 
recognition, which is invariant to 2D transla-

tions, in-plane rotation and scale, is the neural 
what-and-where filter (Carpenter et al., 1998). It 
combines a multi-scale oriented filter bank (what) 
with an invariant matching module (where). 
Other approaches rely on learning the variations 
explicitly by training. The general strategy seems 
to be the construction of different templates for 
each shape in every possible position, orientation, 
and size. The template with the best match to the 
target will be a reasonable approximation to their 
true “similarity” within this shape similarity 
scheme. Kulkarni explains how to use such kind 
of neural networks. A three-layered feed-forward 
network with backpropagation algorithm would 
use images with different degrees of rotation to 
train the network. During the training process, 
the rotated and scaled images would be used as 
input images. In general, such models work well 
with images with rotational and translational dif-
ferences, but not quite well in recognizing objects 
with different scales (Kulkarni, 2001; Langner, 
2001). Model-based object recognition solves the 
problem of invariant recognition by relying on 
stored prototypes at unit scale positioned at the 
origin of an object-centered coordinate system. 
Elastic matching techniques are used to find a cor-
respondence between features of the stored model 
and the data and they can compute the parameters 
of the transformation the observed instance has 
undergone relative to the stored model.

A major disadvantage of these approaches is 
that object variations in rotation and scale have 
to be learned explicitly by the classifier. It calls 
for a very large, complete training set and a clas-
sifier that can generalize well (see discussion in 
Egmont-Petersen, 2002). An example has been 
proposed by Ullman (1996). His general idea is 
that given an input shape and a candidate model, 
a correspondence is first established between 
them. This means that a small number of features 
(including point wise features and lines) are 
identified as matching features in the image and 
the model. Based on the corresponding features, 
the transformation separating the model from 
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the image is uniquely determined. The recovered 
transformation is then applied to the model. The 
image generated by the transformed model is 
then compared with the viewed object. Based 
on the degree of match, the candidate model is 
selected or rejected. To be accepted, the match 
must be sufficiently close, and better than that of 
competing models.

diRECtioNS FoR FuRthER 
RESEARCh

I have just reviewed some basic aspects on the 
way shape information can be fed into a neural 
network to recognize the perceived archaeological 
object. It is impossible, however, to give in a few 
pages an exhaustive account of intelligent and 
automated shape analysis. Further details can 
be read in Caelli and Bischof (1997), Loncaric 
(1998), Belongie et al. (2002), Egmont-Petersen 
(2002), Osada et al. (2002), Rolls and Deco (2002), 
Tangelder and Veltkamp (2004).

Over the years, object recognition has attracted 
attention in many computational disciplines, 
including (but not limited to) robotics, computer 
vision, psychology, and artificial intelligence. 
A number of computational methods have been 
developed for extracting “meaning” from visual 
input (Bicici & St. Amant, 2003). These methods 
are based on shape analysis, as presented along 
this chapter, but also on knowledge about the way 
the object was used, the naive physical rules that 
govern the objects. DiManzo et al. (1989), for 
instance, regarded object recognition as the abil-
ity to integrate shape and function with the help 
of planning. It suggests that reasoning about the 
functionality of archaeological objects requires 
a cross-disciplinary investigation ranging from 
recognition techniques used in computer vision 
and robotics to reasoning, representation, and 
learning methods in artificial intelligence.

A different line of research is active vision. 
Active vision refers to the process of exploring 

an image or scene for relevant features, just as 
biological organisms do. The advantages of such 
systems are obvious, including attentive focus, 
which excludes processing of areas of the im-
age that are irrelevant, and providing an elegant 
method of handling variance in location, scale, 
and rotation. Related to this new line of research 
are those approaches to object recognition, based 
not only on shape information, but also on the 
direct interaction between the user and the object. 
Haptic exploration, grasp planning, and physical 
perception through observing changes in objects 
are some of the techniques used in this area.

It can be difficult to apply in archaeology 
many of the examples mentioned here. Specially, 
in the active vision approach, archaeologists 
should realize that the only way to explain ar-
chaeological traces is by experimentation and 
careful replication of ancient techniques and 
production/use behaviors. In such a way, shape 
analysis, as any other way of visual analysis, 
can be seen as a constraint satisfaction problem 
where the mappings between form and meaning 
are actually many-to-many and recovering an 
object by matching previously recognized ones 
leads to combinatorial growth. 

There are fast infinite suggestions for further 
research here. The domain of computer vision is 
one of the most dynamic in the recent years, and 
there is no day without a new algorithm or a new 
approach that brings some improvements. The 
reader is advised to not considering the methods 
here presented as the best ones, because the field 
is evolving at fast speed. Publications like Pat-
tern Recognition, the International Journal of 
Pattern Recognition and Artificial Intelligence, 
and the IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 
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tExtuRE 

what is the “texture” of an 
Archaeological Evidence?

In this section, we will consider archaeological 
textures as the archaeological element’s surface 
attributes having either tactile or visual variety, 
which characterize its appearance. The surfaces 
of archaeological objects, artifacts, and materi-
als are not uniform but contain many variations; 
some of them are of visual or tactile nature. Such 
variations go beyond the peaks and valleys char-
acterizing surface micro-topography, which is the 
obvious frame of reference for “textures” in usual 
speaking. Archaeological materials have varia-
tions in the local properties of their surfaces like 
albedo and color variations, uniformity, density, 
coarseness, roughness, regularity, linearity, direc-
tionality, frequency, phase, hardness, brightness, 
bumpiness, specularity, reflectivity, transparency, 
and so on. Texture is the name we give to the 
perception of these variations. What we are doing 
here is introducing a synonym for “perceptual 
variability” or “surface discontinuity.” It is a 
kind of perceptual information complementing 
shape information.

Texture has always been used to describe ar-
chaeological materials. Maybe the most obvious 
texture example in archaeology is the surface 
irregularities due to the characteristics of the raw 
material. We can distinguish between different 
archaeological materials, because of the appear-
ance of the raw material they are made of. For 
example, based on textural properties, we can 
identify a variety of materials such as carved 
lithic tools, stripped bones, polished wood, dry 
hide, painted pottery, and so on. 

Furthermore, texture patterns are not only 
intrinsic to the solid itself. Beyond those physi-
cal, geological, or biological characteristics of the 
raw material, some visual features of an artifact’s 
surfaces are consequences of the modifications 
having experimented that object along its history. 
After all, the surface of solids plays a significant 
role in any kind of dynamic processes. This study 
is usually called tribology: the science and tech-
nology of interacting surfaces in relative motion 
and the practices related thereto. Solids are rigid 
bodies and resist stress. When a force is applied, 
a solid deforms; the deformation determines its 
perceptual appearance largely. As a result, solid 
surfaces appear usually heterogeneous. The solid 
surfaces are generally not equipotential, because 
surface energy varies from point to point, given 
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the number of asperities and irregularities (Lüth, 
1993; Rao, 1972). That means that when a surface 
interact with another surface, texture is more 
intense, higher points have more intense effects 
(higher energy) than lower areas. When a surface 
is plane and uniform, there is a low quantity of 
texture, because all surface points have the same 
interfacial contribution, that is, all points have the 
same potential to induce changes on a contacting 
surface (energy).

When we analyze macro or microscopically  
an object’s surface, we should recognize some 
differential features (striations, polished areas, 
scars, particles, undifferentiated background) 
which are the consequence of an action (human 
or bio-geological) having modified the original 
appearance of that surface (Figure 7.1). Conse-
quently, the main assumption is that artifacts 
have surface properties because of the way they 
have been made, or the way they have been used. 
That is, we should distinguish two kinds of per-
ceptual appearances, one of them is inherent to 
the artifact raw material, and the other one is the 
result of modifications on the surface generated 
by work activities. 

   For instance, making and/or using an instru-
ment make important alterations in its surface 

features, so we can use a description of such 
changes to understand how the object was made 
and/or used. Texture variations due to human 
work are observable, and may vary according to 
different causal factors, among them:

• Movement: longitudinal (cutting), transver-
sal (scrapping)

• Surface of friction: the effects of worked 
material (wood, bone, shell, fur, etc.)

In the same way, decoration should be under-
stood in its physical nature, and not only stylisti-
cally. Engraved, carved or painted, decorative 
patterns are man-made modifications on the 
surface of some objects, and they can be consid-
ered as an example of induced texture (Maaten 
et al., 2006)

Preservation also alters surface features. It 
implies a third factor for texture origin: original 
visual appearances of raw material and man 
made surface modifications should not only be 
taken into account, but also taphonomic and post 
depositional modifications.

Therefore, it is easy to see that the problem of 
texture variation is a complex one. Texture analysis 
mainly aims to represent computationally an intui-

Figure 7.1. Altered surface properties as an example of archaeological texture in a lithic tool (Photo-
graph by the author’s research team)

ORIGINAL UNALTERED 
SURFACE 

ALTERED SURFACE  

AFTER  

HUMAN WORK 
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tive perception of visual irregularities and varia-
tions and to facilitate their automatic processing. 
The process of texture analysis needs some kind 
of numeric descriptions of texture, called texture 
features. They are perceived as a combined effect 
of light, shadow, topography, and edge. 

describing texture

A robot with appropriated sensors can describe 
perceived textures in terms of the particular dis-
persion of luminance values in a surface, because 
light reflects according to surface attributes. That 
means that texture should be analyzed as a conse-
quence of anisotropic reflection. The underlying 
assumption is that light waves undergo reflection 
when they encounter a solid interface (surface), 
and this reflection is irregular depending on the 
heterogeneity of the surface. When human archae-
ologists examine an object’s surface features by 
looking through (naked) eye or using any vision 
enhancement device (microscope), what we are 
seeing are irregularities in luminance distribution, 
and we infer surface irregularities in terms of 
perceived luminance variations. The automated 
archaeologist does the same. It “sees” dark and 
bright areas coinciding with differentiated areas in 
the same surface; areas that have different visual 
features (Adán et al., 2003; Barceló et al., 2001; 
Pijoan-López et al., 1999).   

Therefore, texture can be measured according 
to wavelength variability. In this case, we may 
distinguish two kinds of variations:

• Roughness includes wavelength irregulari-
ties of a surface. It defines how that surface 
feels, how it looks, how it behaves in a contact 
with another surface. For instance, in the 
case of human instruments use-wear, and 
according to the size of those wavelength 
irregularities, we can speak about the 
more widely spaced (longer wavelength) 
deviations (waviness), or the finest (short-
est) wavelength deviations (roughness). 
The main parameter is here spacing, which 
refers to the distance between individuated 
areas with different perceptual features. The 
features that determine a spacing parameter 
usually relate to peaks and valleys or to 
average wavelengths, and so forth.

• Lay refers to the predominant direction of the 
surface texture. Ordinarily lay is determined 
by the particular production method and 
geometry used. Turning, milling, drilling, 
grinding, and other cutting processes usu-
ally produce a surface that has lay: striations 
or peaks and valleys in the direction that 
the tool was drawn across the surface. It is 
important to distinguish between the lay (or 
the lack thereof) of the raw material (stone, 

Figure 7.2. Texture differences between lithic tools used in different ways. A: Original andesite texture 
before using; B: Result of the alteration in surface A when the tool was used  scrapping fur. C: A differ-
ent raw material (obsidian) with texture features produced  through wood scrapping (Photographs by 
the author’s research team).

A     B    C 
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wood, bone, etc.), and the directionality of 
the wavelength irregularities which define 
roughness. This second source of direction-
ality is related to the work movement made 
with the artifact. For instance, a smooth fin-
ish will look rough if it has a strong lay. A 
rougher surface will look uniform if it has 
no lay (it will have more of a matte look).

Generally, there are two major approaches 
to translate image features into a numeric de-
scription of texture variation: the macro-texture 
approach and the micro-texture approach. The 
macro-texture approach makes more emphasis on 
the space-organization of the visual constituents 
of an archaeological solid’s surface. Such “con-
stituents” are in fact texture primitives: regions 
in the image with uniform gray levels. Textures 
can be understood then as complex visual pat-
terns composed of entities, or sub-patterns, that 
have characteristic brightness, color, slope, size, 
and so forth. Thus, texture can be regarded as a 
similarity grouping in an image. The idea then 
seems to be that of decomposing the luminance 
of the analyzed surface into regions that differ 
in the statistical variability of their constitutive 
visual features. Archaeological use-wear on the 
surface of lithic tools, for example, fast always 
shows an irregular pattern of different areas, 
each one with different shape edges and differ-
ent luminance values. The textural character of 
the surface usually depends on the spatial size of 
such texture primitives, in such a way that coarse 
texture can be decomposed in large areas, while 
small areas give fine texture surfaces. Leung 
and Malik (2001) have developed further this 
decomposition approach by building a small, finite 
vocabulary of microstructures, which they call 3D 
textons. Once such a universal vocabulary of 3D 
primitive components of texture are defined, the 
surface of any material such as marble, concrete, 
leather, or rug can be represented as a spatial ar-
rangement (perhaps stochastic) of symbols from 
this vocabulary.

Macro-texture analysis demands combining 
pattern segmentation for the discrimination of 
different textures, and texture description, for 
the processing of the basic micro-patterns and 
the exact location of the texture constituents 
boundaries. Whenever a machine vision system 
is expected to perform this texture discrimination 
task, it has to solve the problem of segmenting 
the input image into statistically differentiated 
regions, locating the borders between different 
areas with homogenous visual features. In the 
case of use-wear textures on lithic tools, our goal 
is to segment those texture elements, in order to 
be able to study their variability in shape and 
spatial location. The input for such a task is a 
digitized microscopic image of the tool’s active 
surface (Figure 7.3). 

In the resulting matrix of grey values, a group 
of related pixels can be considered as a texture 
minimal unit, sometimes called texel—texture 
element—if a set of local statistics or other local 
properties of the average density function are con-
stant, slowly varying, or approximately periodic. 
Surface alteration features are then represented 
as distinct areas with particular luminance in-
tensity. By using image analysis, specific areas 
corresponding to concrete thresholds, within the 
usual grayscale of 256 values, can be separated 
from their neighboring zones. In this way, texture 
is characterized not only by the gray value at a 
given pixel, but also by the gray value pattern in 
a neighborhood surrounding the pixel (Jain & 
Karu, 1996). Thanks to this, it is possible to extract 
quantitative texture information from the digital 
image that remits us to certain characteristics of 
the surface alteration. 

Once the texture elements are identified in 
the image, there are two major approaches for 
analyzing the texture. One computes statistical 
properties from the extracted texture elements 
and utilizes these as texture features. The other 
tries to extract the placement rule that describes 
the texture. The latter approach may involve 
geometric or syntactic methods of analyzing 
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texture. Those methods can be synthesized in 
the following list:

• Area measurements: Total number of pixels 
with the same luminance or range of lumi-
nance. The edge is defined by the proximity 
of a grey level. Normally a simple operation 
of threshold is enough to define the area or 
areas of a discrete texel. In use-wear analysis, 
we can take area measurements to extract 
the extension of a micro-polish, the micro-
scars size, and the linear features length. 
In the analysis of pottery thin-section, it is 
used for measuring the size of each mineral 
particle in the fabric.

• Texels perimeter: We can take the infor-
mation about the size of a mineral particle 
or a linear feature length. This variable is 
used for calculating different ratios of the 
variables related to the perimeter shape.

 The Euler-Poincaré characteristic measures 
the ratio between the micro-topography and 
the micro-polish extension. This variable is 
not necessary in the thin-section analysis.

 The frequency and entropy of brightness 
within a texel is calculated using an histo-
gram of grey levels

 The frequency and entropy of contrast: local 
change in brightness (ratio between average 

brightness within the texel and the neigh-
boring texels. It is used as an intermediate 
calculus to describe coarseness.  

• Perimeter shape and orientation: To 
introduce the category of shape we can use 
the natural geometric shapes as indicators, 
to define the pattern of the geometric model 
of the sample, using the same relational 
geometric indexes used in shape analysis: 
circularity, quadrature, irregularity, and 
so forth. All those shape measurements 
measure the tendencies of the geometric 
pattern for describing the orientation and 
shapes of the micro-polish and the linear 
features, both in the use-wear analysis and 
mineral particles in thin-section analysis.

• Orientation: The orientation given by the 
angle of the detected linear features with the 
tool’s edge is used in use-wear analysis to 
define the direction of the movement done 
with the tool.

• Topology of texture: Those measures are 
measured from relationships and associa-
tions between texels, and not at each texel.

• Randomness: Entropy of the number of 
textels within a modified surface. It can be 
used in use-wear for discriminating the area 
of the micro-polish from background.

Figure 7.3. Visual input for texture analysis. Micro-photograph of a stone tool (Photographs by the 
author’s research team).
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• Linearity: Linear features can be repre-
sented using linear equations: y =a + bx, 
where y and x are co-ordinates, and a and b 
linear coefficients. We use both coefficients 
as quantitative variables in our study. We 
can also include some other numerical at-
tributes such as the quantity of lines, and 
their longitude. The width of linear features 
can be measured on the three-dimensional 
representation, and included in the image 
quantification.

• Directivity: Entropy of the edge-direction 
histogram. Directional textures have an even 
number of significant peaks, direction-less 
textures have a uniform edge-direction his-
togram. This can be used in the description 
of linear features orientation.

• Size: Number of pixels corresponding to 
each contour in the image. It allows the 
study of micro-polish topography.

The advantage of this macro-textural approach 
is that it provides an understandable description of 
visual features variation in a surface; however, it 
faces at least two complex problems, one of which 
is the need to identify the textural primitives 
while the other is the description of the spatial 
relationships between these primitives. Addition-
ally, when extracting primitive texture elements, 
it should be taken into account that detected 
relevant areas depend on the specific luminance 
intervals used or thresholds. It is easy to see that 
the elements of texture vary according to the 
concrete interval we analyze in the same image. 
The criterion for selecting a concrete luminance 
interval lies in our previous knowledge about the 
characteristics of surface alteration. 

The micro-texture approach measures textures 
without identifying textural primitives. It is based 
on the pioneering work of Haralick (1979), which 
subsumes luminance reflection in the spatial varia-
tion of pixel intensities (gray values) across an 
image (macro- or microscopic) of some area of the 
studied surface. This is the basis for the so called 

statistical approach to texture analysis: texture 
properties are represented as a bi-dimensional 
mapping of points (pi,qi) with a specific luminance 
value (ri). The resulting function is then pxqxr. 
Texture is then described as the relationships of 
luminance values in one pixel with luminance 
values in neighboring pixels. This approach has 
been useful in a variety of applications and it is 
subject of intense study by many researchers (Jain 
& Karu, 1996; Julesz, 1981; Malik & Perona, 1990; 
Materka & Strzelecki, 1998; Martin et al., 2004; 
Ruiz del Solar, 1998; Song, 2003; Turceryan & 
Jain, 1998). 

There are two ways of studying the spatial 
variation of luminance effects across the surface 
(Adán et al., 2003):

• First-order statistics measure the likelihood 
of observing a gray value at a randomly cho-
sen location in the image. First-order statis-
tics can be computed from the histogram of 
pixel intensities in the image. These depend 
only on individual pixel values and not on 
the interaction or co-occurrence of neigh-
boring pixel values. The average intensity 
in an image is an example of the first-order 
statistic. Consequently, texture features 
are computed based on tonal features such 
as mean, variance, skewness, and kurtosis 
of grey levels along with texture features 
computed from grey level co-occurrence 
matrices.

• Second-order statistics are defined as the 
likelihood of observing a pair of gray values 
occurring at the endpoints of a dipole (or 
needle) of random length placed on the image 
at a random location and orientation. These 
are properties of pairs of pixel values. Julesz 
(1981) conjectured that two textures are not 
distinguishable if their second order statis-
tics are identical. Therefore, second-order 
statistics are usually much more important 
than first-order variation.
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There are other ways to describe texture 
features using numbers. We can mention model 
based texture analysis, using fractal and sto-
chastic models, and attempting to interpret an 
image texture by use of, respectively, a genera-
tive image model and a stochastic model. The 
parameters of the model should be previously 
estimated and then used for image analysis. In 
practice, the computational complexity arising in 
the estimation of stochastic model parameters is 
the primary problem, although the fractal model 
has been shown to be useful for modeling some 
natural textures. Transform methods of texture 
analysis, such as Fourier, Gabor, and wavelet 
transforms, represent an image in a space whose 
co-ordinate system has an interpretation that is 
closely related to the characteristics of a texture 
(such as frequency or size). Spectral techniques 
are based on properties of the Fourier spectrum 
and describe global periodicity of the grey levels 
of a surface by identifying high energy peaks in 
the spectrum.

Any approach to image-based texture analy-
sis should take into account the fact that texture 
measured in an image of the object is not the 
same as the object’s texture. Luminance varia-
tions and distinguishing differentiated texture 
elements are an effect of the perceptual acquisi-
tion mechanism (the microscope, the eye, the 
sensor), and consequently images not only show 
features of the object being analyzed but they 
mix this variation with variability coming from 
the context of observation and the mechanical 
characteristics of the observation instrument. 
There are always shadows and reflections, which 
are not the result of original irregularities at the 
surface, but generated by the light source, the 
instrument, or other objects in the scene. That 
means that an image texture not only contains 
the object surface irregularity data, but additional 
information which in the best cases is just random 
noise, and in many other cases makes difficult to 
distinguish what belongs to the object from what 
belongs to the observation process.

Modeling the physical process having modi-
fied the surface of an ancient tool is then very 
difficult. The automated archaeologist should rely 
on the assumption that texture can be character-
ized in terms of the bi-dimensional variations in 
the luminance intensities present in an image of 
the object whose texture we (or the robot) want 
to analyze. To recognize an artifact based on 
the original texture of its raw material, or use-
induced modifications on its surfaces, the robot 
should be capable to delete all image features 
that are not related to surface variations. This 
is called a texture classification problem. The 
goal of texture classification involves deciding 
what texture category an observed image of an 
archaeological material belongs. In order to ac-
complish this, the automated archaeologist needs 
to have an a priori knowledge of the classes to 
be recognized. Once this knowledge is available 
and the texture features are extracted, one then 
uses classical pattern classification techniques in 
order to do the classification.

The conventional method of texture classi-
fication involves two main steps. The first step 
is obtaining prior knowledge of each class to be 
recognized. Normally this knowledge encom-
passes some sets of texture features of one or all 
of the classes. Once the knowledge is available 
and texture features of the observed image are 
extracted, then classification techniques can be 
used to make the decision. That is the second 
step. There are many examples of using neural 
networks as a classification tool for this task. Those 
examples range from meat quality determination 
based on lamb chop images, to use-wear detection 
in machine parts or ceramic tiles (Acebrón-Lin-
uesa et al., 2002; Chandraratne et al., 2003; Jain 
& Karu, 1996; Kulkarni, 2001; Ruiz del Solar, 
1998). More related to archaeological analysis is 
the essay of distinguishing decorative patterns in 
textiles (Bhakar et al., 2004; Mayorga & Ludeman, 
1991, 1994; Valiente-González, 2001).

Van der Maaten et al. (2006; Van der Maaten 
& Boon, 2006) approached texture analysis in a 
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numismatic investigation. Coins often contain 
very detailed pictures, which can be considered 
as the texture of the coin. The authors encode 
texture information using a procedure based 
on the Gabor wavelet. The training set contains 
692 different coin types with 2,270 different 
coin faces. The system classifies approximately 
78 percent of the coins in the test set correctly. 
Usually, misclassifications are due to very dirty 
coins or due to unknown coins.

Texture has also been used to identify vegetal 
remains from pollen data. Li and Flenley (1999) 
built a neural network for detection of light mi-
croscope images of pollen grains. The input data 
employed were Haralick texture measures, (i.e., 
angular second moment, contrast, entropy, inverse 
difference moment, and variance; masks with a 
3×3 and 5×5 windows); and matrix measures. The 
authors compared neural network classification 
with some previously published statistical clas-
sifiers. Although both types of classifiers may 
work, the neural network results were apparently 
superior to the statistical methods in three ways: 
high success rates (100   percent in this case), 
small number of samples needed for training, 
and simplicity of features.

In material sciences, texture analysis of thin 
sections is used to identify the composition 
of some items. Marmo et al. (2005) have used 
more than 1,000 thin-section photos of ancient 
(Phanerozoic) carbonates from different marine 
environments (pelagic to shallow-water) to auto-
matically identify carbonate textures unaffected 
by post depositional modifications (recrystal-
lization, dolomitization, meteoric dissolution, 
and so on). The methodology uses, as input, 256 
grey-tone digital image and by image processing 
gives, as output, a set of 23 values of numerical 
features measured on the whole image including 
the ‘‘white areas’’ (calcite cement). A feed-forward 
neural network takes as input these features and 
gives, as output, the estimated class. Principal 
component analysis (PCA) was used to reduce 
the dimensionality of feature spaces. The reduced 

feature space, with geometric variables and texture 
features, was used to feed the input layer, rather 
that visual data directly. The authors used 532 im-
ages of thin sections to train the neural network, 
whereas to test the methodology 268 images 
taken from the same photo collection were used 
and 215 images from San Lorenzello carbonate 
sequence (Matese Mountains, southern Italy), 
Early Cretaceous in age. The neural network has 
shown 93.3 percent and 93.5 percent of accuracy 
to classify automatically textures of carbonate 
rocks using digitized images on the 268 and 215 
test sets, respectively.  

Drolon et al. (2003) have analyzed geological 
textures using also neural network technology. 
The shape of sedimentary particles has been 
recognized for a long time as being an important 
parameter in helping to improve the understand-
ing of the geologic processes. The shape of quartz 
grains reflects the genesis of a given source and 
is distinct from the shape of quartz grains from 
other sources. Thus, it gives sedimentology infor-
mation about the physical agent having fashioned 
the grain, about its transport and deposit condi-
tions. The basic idea consists of characterizing 
the contour by one or several parameters, linking 
these parameters to a studied physical property: 
elongation, angularity, roughness, or roundness, 
and more generally the degree of wear of the 
particle. The notion of texture depends partly on 
the scale of observation. For this reason, most 
authors have attempted to isolate its different 
constituents which are the global aspect (texel 
sphericity, elongation) and details (angularity, 
roughness, or roundness) by characterizing them 
by independent coefficients. This decomposition 
in different levels of the information on the shape 
suggests that the notion of scale of observation 
is essential to characterize a particle. By using 
the harmonic wavelet transform, the authors 
developed a new shape descriptor, the multi-
scale roughness descriptor, which proves to be 
perfectly adapted to the description of particles. 
This descriptor acts as a mathematical microscope 
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and allows the analyses of the contour of a grain 
and its roughness at different scales of resolu-
tion. Coefficients provided by this descriptor are 
invariant under translation, rotation, change of 
scale of the contour, and can therefore be used 
to compare sands stemming from a wide range 
of sedimentary environments. The basic idea is 
to use a feed-forward neural network to model 
wear and erosion phenomena acting on quartz 
grains. The network, which uses sigmoid func-
tions, consists of 18 input units, six hidden units, 
and three output units, corresponding to the three 
classes (eolian, marine, and non worn). The da-
tabase has been randomly divided into two sets: 
one for training the network (89 samples) and 
the other for testing the classifier (91 samples). 
After learning, the network classifies correctly 
100 percent of samples. The network recognizes 
relatively well eolian and non-worn grains, with 
a classification rate superior to 93 percent. On 
the other hand, it has more difficulty to recog-
nize grains of marine type (average rate of 87.5 
percent of classification), and has a tendency to 
classify them as eolian (9.38 percent of grains). 
Nevertheless, the global correct classification rate 
(92.22 percent) indicates that the statistical model 
built by the network is perfectly valid. By using 
a neural network, it seems therefore possible to 
model wear phenomena acting on particles and 
thus to reconstitute the history of sands in sedi-
mentary basins.

Related applications have been published by 
Kalliomäki et al. (2005) and Martínez-Aljarín et 
al. (2005).

the Analysis of use-wear in 
Prehistoric lithic tools

Archaeologists studying lithic remains usually 
wish to determine whether or not these stones 
have been used as tools and how they were used. 
The best way to do this is through the analysis of 
macro and microscopic traces of wear generated 
by the use of the tool. An identification-based 

neural network solution to this problem (Van 
den Dries, 1998) was presented in Chapter V. 
Although. Van den Dries’ results are impres-
sive, we may question the use of qualitative 
presence/absence variables to describe texture. 
The network associated a subjective descrip-
tion of texture (TEXTURE A: smooth & matt, 
TEXTURE B: rough & greasy, BRIGHTNESS 
A: very bright), with an objective description of 
explanatory categories (experimental replication). 
Such recognition is then as subjective as its initial 
description, because it follows personal criteria, 
only relevant to the actual observer. The problem 
is that it is difficult to know if a texture pattern 
is “greasy” or “very brilliant.” It is based on the 
assumption that there is a fixed set or vocabulary 
of “supposed” basic texture elements, distinctive 
enough, and easily identifiable. 

If we want to go beyond this kind of identi-
fication-based analysis, we should find a way to 
introduce in the network luminance intensity data 
directly and not through a subjective identifica-
tion. The PEDRA system is an example of how 
using macro and micro-texture analysis for the 
texture classification of lithic tools according to 
use-wear (pedra means “stone” in Catalan lan-
guage, Adán et al., 2003; Barceló & Pijoan-López, 
2003; Pijoan-López et al., 2002; Pijoan-López, 
2007; Toselli et al., 2002). Instead of “types of 
use-wear,” a computational system was designed 
based on image segmentation techniques associat-
ing pixels with the same grey level and defining 
areas with comparable luminance variance. The 
underlying idea was that extracted texels or tex-
ture elements corresponded to bumps or “large 
plateaux” seen on the lithic surface. Different 
gray-level thresholds were explored to obtain 
different image segmentations, but we selected 
finally 120 grey levels as the threshold to separate 
a texel from the tool’s background.

In previous experiments with lithic tools (Pi-
joan-López et al., 2002; Toselli et al., 2002), we 
had observed that texels have different shapes 
when generated by different processes. Texels are 
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different depending on the movement made with 
the tool (longitudinal or transversal), and accord-
ing to the surface of friction (wood, shell and fur). 
For instance, surfaces of tools used for processing 
“hide” have more texels, but smaller than tools 
used for processing “wood.” The tendency to dif-
ferentiate textures generated by friction over hard 
and soft worked materials has been confirmed 
through experimental tests. For instance, we have 
found that shell and wood processing generate 
similar texture, very different to that generated 
when processing dry hide. Specifically, the texels 
on hide-generated textures are glossier than the 
texels associated with wood processing. Generally, 
alterations by use related to fur processing are the 
darkest in the series. Results for shell processing 
are between both (Figure 7.4).

To measure the differences between textures 
features associated to the kinematics (movement) 
of the working action, we should take into account 
other attributes: the angle of the major axis to the 
edge of the tool, and the shape of the texel, spe-
cifically its elongation, which is a “deformation” 
feature associated with kinematics (Barceló et al., 
2001; Toselli, 2004). Texture is a phenomenon 
generated by a dynamic process. Consequently, 
the direction of the energy flux produced by move-
ment determines the shape of texture elements. 
If the movement is longitudinal (“cutting”), then 
the energy generated by this movement will tend 

to create elongated texels, and their orientation 
according to the original movement is clearer. 
Transversal movement (“scrapping”) is much 
more irregular, and consequently energy flux is 
less focused at a single direction (Figure 7.5). The 
consequence is a higher dispersion and variability 
of texel shapes: elongated, and circular texels 
appear together.

In our experiments, not all texels were good 
indicators of the working movement, because not 
all of them were oriented to the direction of move-
ment (transversal or longitudinal). Given that the 
texel’s major axis can be in some cases parallel 
to the tool’s edge or parallel to the x axis of the 
canvas, we observed that the longest texels were 
also the best oriented according to the working 
movement (along the edge of the tool when cut-
ting, across the edge of the tool when scrapping). 
That means that surfaces of tools have parallel 
texels to the x axis when they were submitted to 
a longitudinal working movement and to the y 
axis when they experimented transversal working 
movement. In the same way, the more elongated 
the texel’s shape, the more parallel to the major 
axis (Toselli et al., 2002).

We have designed a neural network for the 
texture classification of lithic tools according to 
their use (movement and worked material) (Fig-
ure 7.6). We wanted to verify whether the shape, 
composition, and size features are related to work 

Figure 7.4. Determining use-wea texels using luminance thresholds. In this example, 120 grey levels 
have been selected as threshold.
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kinematics and the nature of worked material. It 
is the same goal explored by Van der Dries, but 
substituting the qualitative subjective texture input 
with objective quantitative measures of shape and 
luminance composition of texels. 

Statistical analysis (Pijoan-López, 2007) has 
proved that there is no clear-cut rule that relates 
the shape and geometry of the texture elements 
and the work activity performed by the tool. It is 
important to remember that what we are describ-
ing as texture is just a light effect, that is to say, 
an indirect evidence of some irregularities on the 
active surface of the tool. The shape parameters of 
such texture constituents correspond to the edge 
or interfacial boundary defined by light reflection, 
and consequently they do not fit necessarily with 
the real texture. Neural network should allow us 
to discover whether there is enough evidence to 
establish some degree of nonlinear relationships 
between light reflection variability and micro-
topographic features on the active surface of the 
lithic tool. Observed image texture depends on 
factors such as scene geometry and illumination 
conditions. Certain properties of flint surfaces 
have effects on the appearance of use-wear. Be-
cause grey values depend on shadows, and shad-
ows depend on the position of light sources, if we 

do not care, the same object surface may have very 
different texels associated. In our experiments, 
we have controlled light sources, and the influ-
ence of the image acquisition device to be able 
to understand observed patterns, but additional 
control is necessary to select the luminance in-
tervals selected for texel extraction. 

We have replicated in laboratory more than 
100 lithic tools using the same kind of flint. Three 
microphotographs were taken for each tool from 
different areas of the working surface. Texels were 
individually measured for their area, perimeter, 
axis length, and so forth.

A feed-forward neural network has been built. 
Input neurons read central tendency measures 
(mean and standard deviation) of all texels seg-
mented at each microphotograph, obtaining a 
dataset of 496 microphotographs, described in 
terms of:

• Mean of Elongation/ Std. dev. of Elonga-
tion

• Mean of Circularity/ Std. dev. of Circular-
ity

• Mean of Quadrature-Thinness/ Std. dev. of 
Quadrature-Thinness

• Mean of Ratio Compactness-Thinness/ Std. 
dev. of Ratio Comp.-Thin.

Figure 7.5.  Longitudinal and transversally generated original surfaces (Photographs by the author’s 
research team)

Edge’s axis    Edge’s axis 

 LONGITUDINAL (cutting)  TRANSVERSAL (scrapping)
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• Mean of Compactness/ Std. dev. of Com-
pactness,

• Mean of Irregularity/ Std. dev. of Irregular-
ity

• Mean of Rectangularity/ Std. dev. of Rect-
angularity,

• Mean of Ratio Perimeter/Elongation/Std. 
dev. of Rt. Per./Elong.

• Mean of Feret diameter/ Std. dev. of Feret 
diameter

• Mean of Minimum rectangularity/ Std. dev. 
of Minimum rectangularity

Central tendency values of composition 
among all texels identified at a single micropho-
tograph:

• Mean of luminance means within a texel/ 
Std. dev. of lum. means 

• Mean of luminance std.dev. within a texel/ 
Std. dev. of lum. st. dev. 

• Mean of luminance modes within a texel/ 
Std. dev. of lum. modes

• Mean of luminance min.values within a 
texel/ Std. dev. of lum. min.va.

Central tendency values of size among all texels 
identified at a single micro-photograph size:

• Mean of Area of all texels within the image 
/ Std. dev. of Area 

In a preliminary investigation, we analyzed 
the relationship between texture variation at a 
single microphotograph and the experimented 
activity (cutting or scrapping bone, shell, meat, 
dry or fresh hide, dry or fresh wood). Therefore, 
the network has seven output units and a hid-
den layer with 144 neurons. Learning algorithm 
was backpropagation. Results are interesting. 
When comparing training data with network 

Figure 7.6. A neural network to recognize visual textures as use-wear patterns in lithic tools
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interpretation (see Table 7.1.), it is easy to see 
that the neural network correctly classifies most 
replicated tools according to the worked material. 
Only “bone” and “fresh wood” get a percent-
age of right classifications less than 50 percent. 
However, even these errors are understandable. 
Bone can be misclassified with shell, shell with 
bone, fresh wood with dry wood, butchery with 
fresh hide, but only similar worked materials can 
be confounded. Misclassification is just a result 
of hardness overly.

When comparing test data (15 percent of ex-
perimental replications not used in the training 
set) with network interpretation we obtain the 
results presented in Table 7.2.

Obviously, testing results are worst than train-
ing data results. The reason of the bad results for 
fresh hide is the size of the analyzed sample. In 
any case, errors are again within similar hard-
ness categories. This fact can be used to explain 

what the neural network is really doing. It seems 
that it is able to “generalize” texture parameters 
characteristic of each work activity, but not pre-
cisely each worked material. The network could 
not find formally defined grammars for texture 
components placement rules, but it has had some 
success in creating an associative memory for 
similar hardness categories. 

Results of texture analysis are even better, 
when analyzing the kinematics of the working 
activity. The experimental database contained 
replications of three different actions: cutting 
(longitudinal kinematics), scrapping (transversal 
kinematics), and butchery (a kind of kinematics 
that pretends to be longitudinal but given the soft 
nature of the worked material —meat—is at the 
end half longitudinal/half transversal). Using the 
same texture attributes in the input layer, three 
output units, and a hidden layer with 13 neurons, 
we obtain the results shown in Table 7.3.

Output / Desired BONE BUTCHERY DRY 
HIDE

DRY 
WOOD

FRESH 
HIDE

FRESH 
WOOD SHELL

BONE 55 0 0 6 1 3 10

BUTCHERY 8 43 4 2 5 1 0

DRY HIDE 13 4 46 6 0 6 3

DRY WOOD 13 1 12 43 1 13 4

FRESH HIDE 3 17 7 3 18 0 0

FRESH WOOD 10 1 5 6 0 28 8

SHELL 20 1 6 5 0 11 44

Performance BONE BUTCHERY DRY 
HIDE

DRY 
WOOD

FRESH 
HIDE

FRESH 
WOOD SHELL

MSE 0,1433 0,0626 0,0983 0,0962 0,0405 0,0852 0,0892

NMSE 0,7731 0,5364 0,7271 0,7844 0,8473 0,7795 0,7449

MAE 0,237 0,1455 0,1966 0,20543 0,1137 0,1910 0,1950

Min Abs Error 1,1E-05 8,2E-05 0,0006 0,0006 0,0002 2,7E-05 0,0002

Max Abs Error 1,0388 0,9980 0,9961 0,9779 0,9352 1,0341 0,9818

r 0,512 0,7116 0,5397 0,477 0,4998 0,4709 0,5119

Percent Correct 45,0819 64,1791 57,5 60,5633 72 45,1612 63,7681

Table 7.1.
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Butchery activity was correctly identified in 
all tested cases, and longitudinal and transversal 
kinematics was distinguished in a majority of 
cases! Nevertheless, these good results can be 
the consequence of a bad selection of the output 
categories. Longitudinal and Transversal kinemat-
ics have been replicated over different materials 
(shell, bone, dry wood, fresh wood, dry hide, 
fresh hide), but the third kind of kinematics was 
exclusive of a worked material (meat). It would 
be possible that the neural network had learnt to 
distinguish butchery from the other categories, 
but not the proper activity. To solve this problem 
we built a new network to distinguish only lon-
gitudinal from the transversal action, and deleted 
from the database all the butchery experiments. 
The network had the usual 35 central tendency 
inputs, 13 units in the hidden layer, and only two 
outputs. The activation function of those output 

neurons was adjusted so that it can be read as a 
probability measure (the joint activation of both 
units sum 1). The results for the experimental 
training set are shown in Table 7.4.

Using 20 percent of replicated tools not used 
for training as a test database, we obtain also ex-
cellent results, showing the ability of the network 
to learn to discriminate between the working 
activities, and hence, to discover the social cause 
behind the visual appearances of texture, excellent 
results (Table 7.5).

ComPoSitioN

what is the “Composition” of 
Archaeological Evidence?

Compositional data are a special case of categori-
cal data. It implies that some attribute be sorted out 

Output / Desired BONE BUTCHERY DRY 
HIDE

DRY 
WOOD

FRESH 
HIDE

FRESH 
WOOD SHELL

BONE 10 0 0 3 0 0 2

BUTCHERY 2 5 1 0 2 0 0

DRY HIDE 4 1 5 1 0 5 1

DRY WOOD 2 0 2 8 0 4 3

FRESH HIDE 1 6 1 0 0 0 0

FRESH WOOD 3 1 0 3 0 4 2

SHELL 6 0 1 1 0 3 13

Performance BONE BUTCHERY DRY 
HIDE

DRY 
WOOD

FRESH 
HIDE

FRESH 
WOOD SHELL

MSE 0,189 0,0605 0,0819 0,1074 0,04058 0,1057 0,1151

NMSE 0,974 0,5631 0,9590 0,8387 2,192 0,8254 0,725

MAE 0,288 0,133 0,1761 0,2202 0,1109 0,2225 0,2392

Min Abs Error 0,005 2,4E-05 0,0006 0,00289 0,0005 0,0003 0,0003

Max Abs Error 1,015 0,9161 0,9882 0,9690 0,67488 0,8836 0,86803

r 0,318 0,7056 0,3194 0,422 0,28249 0,4213 0,5303

Percent Correct 35,71 38,4615 50 50 0 25 61,904

Table 7.2.
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Output / Desired KYNEMAT(L) KYNEMAT(T) KYNEMAT(L(T))

KYNEMAT(L) 196 43 0

KYNEMAT(T) 39 125 0

KYNEMAT(L(T)) 20 13 60

Performance KYNEMAT(L) KYNEMAT(T) KYNEMAT(L(T))

MSE 0,159825824 0,147879337 0,042461323

NMSE 0,639813032 0,63808968 0,399318228

MAE 0,329403594 0,323901311 0,115223238

Min Abs Error 0,00045138 0,004611709 0,000183032

Max Abs Error 0,989362897 0,963606931 0,969773317

r 0,615687356 0,612099014 0,802275184

Percent Correct 76,8627451 69,06077348 100

Table 7.3.

Output / Desired KYNEMAT(T) KYNEMAT(L)

KYNEMAT(T) 143 86

KYNEMAT(L) 26 177

Performance KYNEMAT(T) KYNEMAT(L)

MSE 0,173922583 0,174325181

NMSE 0,730265892 0,731956322

MAE 0,360646928 0,361481759

Min Abs Error 0,000365206 0,000365206

Max Abs Error 0,962687106 0,962687106

r 0,61404546 0,61404546

Percent Correct 84,61538462 67,30038023

Table 7.4.

into discrete, distinct categories whose members 
somehow come to resemble one another more 
than they resemble members of other categories 
(Harnad, 1987). It is the kind of approach used 
when speaking about decomposition, a procedure 
describing an object in terms of a collection of 
primitive objects combined through a gluing op-
eration (see also Chapter VI). When listing and 
describing the texture elements detected on the 
surface of a tool, when we enumerate the objects 
we have found inside a grave or inside a hut, or 

when we discuss the parts of a sword or the dif-
ferent spatial areas individualized at a settlement, 
we are speaking about the composition of such 
grave, hut, sword, or settlement. 

However, not any categorization is the result 
of a true decomposition. Data should fulfill two 
conditions:

• The components should be “generic” in the 
sense that all objects can be described as dif-
ferent combinations of the same components. 
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For instance, the components of a grave-good 
set can be decomposed in pottery, metal, 
organic material; the components of a room 
can be decomposed into walls, floor, ceiling 
and empty space, a village can be decom-
posed into houses, streets, non-urbanized 
areas, and so forth. It is necessary that the 
component be explicitly defined before the 
decomposition approach.

• To be true compositional data, it is neces-
sary that a component be expressed as a 
proportion of the total sum of components, 
which defines the composition of the entity. 
Compositions should be expressed as vec-
tors of data, which sum up to a constant, 
usually proportions or percentages. To say 
that there is a wall in the room, or that 6 
vases compose the grave-good of a burial, 
is not a true decomposition of the room or 
the burial. Instead, we have to say that 13 
percent of the room consists in wall or wall-
like structures, and the remaining 87 percent 
is composed of free space. Similarly a true 
decomposition will specify that 60 percent 
of the grave-good is composed of pottery, 
a 15 percent of it is made of meat offerings, 
a 5 percent consists in metal objects, and 
20 percent is composed of textiles. In both 

cases, the components sum a constant (100), 
and composition is measured against this 
total. Each of the n components pi of each 
data point (p1, ..., pn) says what proportion 
(or “percentage”) of a statistical unit falls 
into the ith category in a list of n categories 
(Aitchison, 1986, 1994, 1997; Aitchison 
& Barceló-Vidal, 2002; Billheimer et al., 
1998). 

Compositional Analysis of 
Archaeometric data

Archaeometric data typically follow this schema 
so strictly that in most cases compositional data 
seem restricted to the listing of proportions of 
different chemical or mineralogical components 
within an archaeological sample. Here, a vector of 
chemical or mineralogical concentrations encodes 
each sample. Unsupervised and supervised neural 
networks can be implemented to process those 
vector data. In the case of unsupervised models, 
the archaeologist looks for a blind classification 
of samples based on similar compositions. The 
assumption seems to be that the same people, at 
the same place, produced archaeological artifacts 
with a similar composition in the same way. 
On the other hand, supervised approaches are 

Output / Desired KYNEMAT(T) KYNEMAT(L)

KYNEMAT(T) 40 29

KYNEMAT(L) 12 43

Performance KYNEMAT(T) KYNEMAT(L)

MSE 0,21612187 0,217864788

NMSE 0,887577423 0,894735306

MAE 0,402846942 0,406095708

Min Abs Error 0,0230306 0,0230306

Max Abs Error 0,981177104 0,981177104

r 0,4237645 0,4237645

Percent Correct 76,92307692 59,72222222

Table 7.5.
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based on prior knowledge about the production 
method, use, or provenance of the sample, asso-
ciating each chemical or mineralogical input with 
some hypothesis. The goal is to find a nonlinear 
classification rule to be used to recognize and 
explain new archaeological evidence based on 
experimental analysis.

As an example of unsupervised neural net-
works for compositional analysis, we can quote the 
classification of ancient Roman glazed ceramics 
(López Molinero et al., 2000). Inductively coupled 
plasma-atomic emission spectroscopy analyzed 
clay ceramic bodies and the chemical composition 
obtained was processed by using a self-organized 
map. The results obtained provide two types 
information: firstly, differentiation between the 
elemental chemical information, and secondary, 
a classification of ceramic samples according to 
distinct provenance. Certain chemical elements 
allowed differentiating between provenance areas, 
whereas other elements give redundant informa-
tion and do not contributed to sample differentia-
tion. The studied ceramics were 68 ancient Roman 
glazed objects belonging to collections of the 
Museum of Zaragoza (Spain). A subset of eight 
chemical elements was retained for analysis: Al, 
Ca, Fe, K, Mg, Mn, Na and Ti. Measurement data 
were normalized using the z-Gaussian transforma-
tion so that each compositional variable has a mean 
of zero and a standard deviation of 1.The same 
eight compositional chemical data were taken as 
input variables and studied by the self-organized 
map-neural network algorithm. The best results 
were obtained with a 14x14 neuron map. “Best 
results” means: (a) reduction of the number of 
conflicts, and (b) reduction of the number of empty 
spaces in neural maps. 

After training, the network showed the loca-
tion of samples in three different areas or clus-
ters. They correspond to ceramic samples with:  
non-calcareous bodies, calcareous ceramics, 
and a third group of undifferentiated ceramics. 
The identified groups and the samples ascribed 
are as follows:

• Non-calcareous bodies. This group was 
composed of samples with calcium oxide 
contents below three percent. Two subgroups 
can be differentiated. A common origin 
can be proposed for all these objects and 
this was confirmed by other archaeological 
features.

• Calcareous bodies, with a calcium oxide con-
tent above six percent. This group can also 
be divided into two subgroups. A common 
provenance for all these calcareous ceramics 
can also be proposed. The archaeological in-
formation suggests an Italian provenance.

• The third group of bodies is located on the 
edges of the map and has a wide dispersion 
of contents, particularly of aluminum and 
calcium. Their archaeological features are 
not common and consequently, it was dif-
ficult to assign their provenances. 

The influence or significance of the different 
chemical elements was obtained by deducing the 
weight values of the neurons after the learning 
step of the network was complete. So, the first 
weight component in each neuron corresponds to 
the influence of the Na concentration, the second 
weight component gives the K influence, and so on 
for the remaining input variables. A sodium map 
shows a positive influence on the left of the map 
and a negative influence on the right which means 
that samples with a high Na concentration will 
tend to be located in this area. However, samples 
with a low Na concentration will appear on the 
right of the map. The potassium provides a similar 
map to that of sodium. That is, samples with a 
high K concentration tend to appear on the left 
of the map and samples with a low K concentra-
tion on the right. From the previous arguments, 
it can be concluded that Na and K influences are 
very similar because ceramics with the same 
concentration of Na or K (relative concentration 
level, that is, low or high concentration) tend to 
be located in the same area of the neural map. 
They provide redundant information and have the 
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same capacity to distinguish between samples. 
Consequently, the sodium and potassium chemical 
compositions can be reduced as an input variable 
to one composition (Na or K) without a significant 
loss in their classification capacity. On the other 
hand, the neural maps corresponding to the con-
centrations of Cr, Cu, Ni and Zn, have a common 
characteristic. Most of the neurons have a negative 
influence. These elements are not very significant 
in the sample characterization and consequently 
their concentrations are therefore not useful for 
differentiation between ceramic samples.

Another archaeometric application of SOM 
networks is Fermo et al. (2004). In this work, 
about one hundred Etruscan pottery sherds from 
the archaeological excavation at Pian di Civita 
in Tarquinia (Central Italy), dating from the 8th  
to the 4th century B.C.,  have been analyzed by 
inductively coupled plasma optical emission spec-
trometry and flame atomic emission spectrometry. 
The aim of the investigation was to settle their 
provenance and to acquire knowledge about the 
ceramic production technology. The examined 
sherds belong to the class of the depurata pottery, 
a fine ware produced in Tarquinia over a long 
period. In order to assess the production centre 
it, archaeological samples were compared with 
so-called reference or control groups, which may 
be formed by local references (local clays or kiln 
remains) or imported, that is, non-locally made, 
objects. For this purpose, clays coming from the 
Tarquinia area and some imported objects have 
been analyzed together. The samples have been 
analyzed for fifteen elements (Ca, Al, Mg, Fe, Ti, 
Cr, Cu, Ni, Zn, Mn, Zr, Sr, Na, K, and Rb). Analysis 
by self-organized maps networks allowed a deeper 
investigation of sample similarities. Several 
network architectures were evaluated; the final 
network was chosen with an architecture of 15×15 
neurons, trained with 25 epochs. Results show 
that the class of etrusco-geometrica sherds can be 
split into different sub-groups. In fact the objects 
belonging to this class, even if quite homogeneous 
from the stylistic point of view, are characterized 

by a more variable chemical composition probably 
because the raw material used, was not subjected 
to any further depuration procedure. Combining 
results from a principal component analysis with 
those from the unsupervised neural network, the 
authors conclude that only six fragments out of 
92 analyzed had a non-local origin.

Similar applications to these ones are Novic et 
al. (2001), Chang et al. (2002),  Lletí et al. (2003),  
Beardah and Baxter (2005), Baxter (2006). In 
those cases archaeological samples were screened 
for similarities (clusters) using unsupervised 
neural networks (SOM). The neural network 
was applied in order to map original dimensional 
objects (sampled variables or components) into 
two-dimensional space (typology). 

Not only can the chemical or mineralogi-
cal composition of archaeological artifacts be 
analyzed using neural networks. Brodaric et al. 
(2000) used SOM to investigate the process of 
generalizing classes from geological field data. 
This example can also be of interest to archaeolo-
gists. The study data contained composition (rock 
type descriptions) and spatiotemporal disposition 
(structural type and measurement), each pos-
sessing several attributes, including an attribute 
denoting the dominance of the composition. Site 
descriptions typically consisted of multiple com-
positions and dispositions, many of which were 
related (i.e. dispositions were measured within 
specific compositions):

• Dominant compositions: descriptions of the 
dominant lithology at a site. 

• Dominant composition and dispositions 1: 
dominant lithology and planar structural 
feature type (omitting orientation measure-
ments). 

• Dominant composition and dispositions 2: 
dominant lithology and planar structural 
measurements. 

• Dominant composition and dispositions 3: 
dominant lithology and all structural mea-
surements. 



���  

Texture and Compositional Analysis in Archaeology

• Composition: all lithologies described at a 
site. 

• Composition and disposition: all lithologies 
and all structural measurements at a site.

Unsupervised clustering results occupied three 
distinct areas in feature space, each characterized 
by one of three main rock composition types: 
plutonic, volcanic, and sedimentary. Overlap 
is evident in all areas, however. The geological 
explanation of the overlap argues that it is dif-
ficult to observe accurately the dominant rock 
composition in complex terrain, though it would 
appear to become easier with increased exposure 
to, and thus greater scientific knowledge of, the 
study area.

Supervised learning has been mostly used to 
explain compositional data in terms of the geo-
graphical provenance of archaeological samples. 
John Fulcher (1997) has applied this framework 
in an investigation on obsidian provenance. 
Obsidian has been quarried by the indigenous 
people of Papua New Guinea for around 20,000 
years. Through the analysis of compositional data 
provenance studies, it has been tried to obtain 
some information about trading and exchange 
practices. Fulcher used proton induced x-ray 
emission (PIXE) data as input to the network and 
tried to classify into six provenance areas. Data 
were gathered from six different sites in West New 
Britain area of Papua New Guinea: Kutau, Gulu, 
Garala, Baki, Hamilton and Mopir. There were 
only a few obsidian rock samples from each site to 
be used as training exemplars (between four and 
seven). The neural network was defined with 31 
input neurons (compositions), and six outputs (geo-
graphical areas), with a hidden layer composed 
of eight neurons. After data normalization and 
careful parameter selection, the model generated 
only nine percent of misclassification rate (most of 
which could be attributed to samples form either 
Garala or Baki). These results confirm the pos-
sibilities to use neural network to test provenance  
hypothesis based on archaeometric data. 

Bell and Croson (1998) have published a very 
similar example. They analyze slag inclusions in 
iron currency. Sixteen input variables were used, 
Na2O, MgO, Al2O3, SiO2, P2O5, SO3, K2O, CaO, 
TiO2, V2O5, Cr2 O, MnO, FeO, BaO, Ni and As, and 
three output units, three geographically separate 
sites were studied, labeled as Danebury, Gretton, 
and Beckford. After some experimentation, a 
network configuration with 40 hidden neurons 
was retained. In these experiments, a radial bases 
function network was the best classifier. Com-
pared to backpropagation, this network was able 
to compensate for sparse data by extending the 
response field while the backpropagation network 
could not. The authors suggest that in archaeo-
metrical analysis, it can be useful to perform a 
principal component analysis of original data, 
and then using PCA scores and input vectors for 
the RBF.

Petrelli et al. (2001, 2003) have followed a simi-
lar approach in the study of provenance of traver-
tine from some of the most important monuments 
in Umbria (Italy). Provenance determination of 
travertine is a complex archaeometric problem due 
to the textural and chemical variability character-
izing this material. This system is based on the 
use of geochemical data obtained by chemical 
analysis of travertine samples. Extensive sampling 
was carried out from important monuments of 
different ages in different localities in Umbria, 
and in outcrop from ancient quarries or zones of 
excavation mentioned in historical documents as 
sites of extraction of the stones employed in monu-
ments. The samples were characterized by optical 
microscopy and X-ray fluorescence analysis. The 
network consists of 27 neurons, one for each ana-
lyzed chemical element. The network was trained 
using exclusively known quarry samples. To test 
the reliability of such a system, controls were per-
formed exclusively on quarry samples randomly 
chosen from the original database. Results indicate 
a good discriminative power of the system able 
to recognize the exact provenance of more than 
80 percent of samples. The system was then used 
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to determine provenance of travertine samples 
from three historical monuments. Results point 
to a local origin, from Sabina quarry and from 
different outcrops within Orvieto District, for the 
samples from the Etruscan Arch (3rd century B.C.) 
and Orvieto Cathedral (1290-1532), respectively. 
On the other hand, provenance of samples from 
Fontana Maggiore (1277-1278) cannot univocally 
be determined since all the sampled quarries may 
be considered, in different extent, as probable 
sites of provenance of the travertine employed 
in the monument.

Grudzinski et al., (2003; Grudzinski & Kar-
wowski, 2005) have compared the efficiency of 
backpropagation neural networks with other ma-
chine learning tools based on rule generalization. 
They used archaeometric data on La Tène period 
objects made of glass. In most of their experi-
ments, neural networks achieved overall results 
of 80 percent of good classifications using testing 
data; those results were, in general, better than the 
other soft-computing comparative methods.

Kadar et al. (2004) have explored the su-
pervised classification of ancient copper alloys 
fabrication techniques. Mechanical properties 
have been assessed for tin bronze archaeologi-
cal objects and the influence of the variation of 
tin composition has been monitored by a trained 
neural network.

Other archaeometric applications to prove-
nience studies are those by Ma et al. (2000), 
Ma (2003). The results show that archaeological 
evidence belongs to three categories, the Yellow 
River Valley (YR) region, the Yangtse River 
Valley (YV) region and other region (OR). This 
work reveals that the ANN seems to be more 
suitable than PCA in classifying such archaeo-
logical samples.

Not only can the chemical or mineralogical 
composition of archaeological artifacts be ana-
lyzed using supervised neural networks. Bell and 
Croson (1998) report an example of archaeological 
soils classification to determine if soil chemical 
composition has been impacted by human activ-
ity. Data associated with total acid dissolution 

were selected. Soils classified as “controls” were 
assumed to be unaffected by human activities 
while those excavated from features (waste pit, 
hearth, and residence) were classified as impacted. 
Thus, desired outputs for the networks involved a 
simple binary output. Statistical analysis show that 
overlap exists between site and control samples, 
while refuse pits and hearth samples were clearly 
delineated. Thus, construction of a decision sur-
face capable of separating them was expected to be 
difficult. The authors built a radial basis function 
network using 25 hidden units and the first two 
principal components as input (accounting for 71 
percent of variance). In this network, none of the 
test vectors was misclassified.

A back propagation neural network has been 
successfully applied in predicting paleo-soil 
sequences using well log suites from two wells 
in a Cenozoic basin in southwestern Montana 
(Link, n.d.). The training set consists of neutron 
porosity, bulk density, and resistivity logs and 
the interpreted paleo-soil section. Training is 
accomplished using well log values over a range 
of depths rather than discrete depths. The trained 
network is used to predict paleo-soil occurrences 
in a neighboring well. Network prediction results 
show good agreement with paleo-soil interpreta-
tions.

Bursik and Rogova (2006) suggest building 
hybrid information processing systems for the 
compositional correlation of geologic layers. 
This method can also be useful for archaeological 
stratigraphic correlation. The working hypothesis 
is that the system can correctly correlate layers 
from one site to another even when data are sparse. 
The authors use a feature vector comprising data 
on maximum size of mineral inclusions, bed thick-
ness, fraction of inclusions, and grading. 

diRECtioNS FoR FuRthER 
RESEARCh

Texture and compositional analysis have been 
here compared, because both derive from decom-
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positional approaches. Compositional analysis is 
much more popular in archaeology, especially 
given its direct implication in archaeometry. 
By its characteristics, it is the prime domain for 
neurocomputational applications, maybe also 
because those applications are made by chemists 
of physicists, and not by archaeologists alone. 
This is a very dynamic subfield in mathemat-
ics and classification dealing with the specific 
characteristics of compositional data vectors. 
However, there is still much to be done in this 
domain, especially in supervised and unsuper-
vised algorithms. Support vector machines is a 
relatively new classification method that should 
be explored in these domains.

The field of texture analysis seems to be poorly 
explored by archaeologists, although it has obvi-
ous interest. We need much more investigations 
on this area, both in the descriptive features, the 
data processing methods, and interpretive consid-
erations. In some aspects, we can rely on tribol-
ogy studies in related disciplines, to understand 
why and how the surface of objects is modified 
because of human activities with those objects. In 
this chapter, I have relied very much on my own 
work on use-wear analysis. The image-processing 
approach I have developed together with Jordi 
Pijoan-López take the most part of the chapter. 
We have adopted this way of describing textures 
because of its simplicity, although we know there 
are better ways to analyze texture patterns. The 
classical matrix approach by Haralick (1979) also 
merits that we explore its possible archaeologi-
cal applications. This way of measuring texture 
irregularities have been integrated into open 
source image processing software like ImageJ. 
Some commercial computer programs for im-
age processing, also include the possibility of 
integrating a neural network just by clicking a 
few buttons.

The next chapter on remote sensing applica-
tions of neurocomputing is also of interest as an 
example of texture and shape analysis.

The reader may think that there is very few 
of computational “intelligence” in these appli-
cations. What I have called shape, texture, and 
compositional analysis, is just classification or 
typology. I hope that the differences between 
the traditional approach and the one taken here 
are evident. Emphasis has been placed on super-
vised/unsupervised generalization, and not on 
using subjective experience, whose only reliability 
lies on the academic authority of the researcher. 
Experimentation and the nonlinear nature of the 
relationship between visual appearance (shape, 
texture, and composition) and archaeological 
explanation are the key aspects here.

There is a way of going beyond the apparently 
simple “classificatory” approach to the visual 
analysis presented in the last two chapters (Bicici 
& St. Amant, 2003). These methods are based on 
shape, texture, and compositional analysis but also 
on knowledge about the way the object was used, 
the naive physical rules that govern the objects. 

Some interesting studies that may serve as 
starting points are the investigations of Ernest 
Davis, who has done considerable amount of work 
towards formalizing the physical world of objects 
through commonsense physical understanding. 
One of Davis’s efforts deals with formalizing the 
kinematics of cutting solid objects. He shows the 
geometric aspects of various cutting operations: 
slicing an object in half, cutting a notch into an 
object, stabbing a hole through an object, and 
carving away the surface of an object (Davis, 
1990, 1993). 

This kind of integration of knowledge is es-
sential for a robotic system to understand not 
only how the objects are and how they look like 
but also what they are made of, and why. Much 
more investigation is necessary along these lines. 
Rivlin and colleagues have investigated object 
recognition from the description of object’s us-
age, that is, in terms of a sequence of images of a 
known object performing some action. The usage 
analysis results in several activity primitives and 
these are compared with previously known us-
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age-to-explanation mappings (Duric et al., 1996;  
Froimovich et al., 2002; Rivlin et al., 1995; Pechuk 
et al., 2005). Stark and Bowyer’s GRUFF (1996) 
is a function-based object recognition system 
that recognizes objects by classifying them into 
categories that describe the functionality they 
might serve. The system is based on computer 
vision techniques for recognizing functionality, 
and tries to achieve interactive recognition abil-
ity by observing the deformations that happen on 
objects when they are used. Green et al. (1994) 
take a comparable approach, in which kinematics 
properties are investigated. See also Bogoni and 
Bajcsy (1993), Bogoni and Bajcsy (1995), Cooper 
et al. (1995).

Peursum et al. present a method for finding and 
classifying objects within real-world scenes by us-
ing the activity of humans interacting with these 
objects to infer the object’s identity. The premise 
of this approach is that since humans interact 
differently with objects that differ in their func-
tionality, it should be possible to identify objects 
using their associated visual human interaction 
signatures. The advantage of such an approach is 
that it considers object recognition independent 
of the object’s physical structure. Furthermore, 
the system can use an evidence-based framework 
to classify objects in an incremental manner, and 
thus should be flexible enough to adapt to the 
scene as it changes over time (Peursum et al., 
2003, 2005, 2007).

Chaigneau et al. (2004, cf. also Barsalou et al., 
2005) have proposed the HIPE model of functional 
reasoning. It uses causal modeling methods to 
represent the structure of functional senses. The 
idea is to build a causal model, a Bayesian network, 
for instance, cf. Chapter III, contains information 
about four components: the object’s history, the 
agent’s goal, the agent’s action, and the object’s 
physical structure. If the physical description of 
the object is somewhat vague, then what is known 
about the object’s history can influence predictions 
about how to conceptualize its physical structure, 
which in turn can influence the outcome. If the 

object’s history is compromised, the machine 
may infer that the object’s physical structure is 
likely to be somewhat flawed. This approach as-
sumes that a linked set of causal states—a causal 
model—supports inferences about actual and 
imagined action. 

All these new lines of research show how 
we can go well beyond description and using 
computer vision to explain the causal nature of 
archaeological evidence.
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thE ANAlySiS oF SPAtiAl 
FREquENCiES 

As we have suggested many times throughout 
the book, the general form of an archaeological 
problem seems to be “why an archaeological site 
is the way it is?” If we translate it into the spa-
tial domain, we should be asking “where social 
agents performed their actions and work pro-
cesses on the basis of the observed relationships 
between the actual locations of the social action 
material traces?,” or more precisely, “why those 
archaeological materials have been found here 
and not elsewhere?” Consequently, the automated 
archaeologist should infer where social agents 
performed their actions and work processes based 
on the observed relationships between the actual 
locations of the supposed material consequences 
of social action. This is the domain of application 
for a spatial analysis: to infer the location of what 
cannot be seen based on observed things that are 
causally related to the action to be placed. Know-
ing where someone made something based on 
what she did, is an inverse problem with multiple 
solutions, which can be solved using some of the 
methods and technologies already presented.

It is important to realize that “location” is a 
property of social acts, but it is not a cause in itself. 
Social action is produced in physical space, but it 
also contributes to the formation process of such 

space. The characteristics of space as a dimension, 
rather than the properties of phenomena, which 
are located in space, are of central and overrid-
ing concern. Consequently, “place” can only be 
understood according to what is performed at each 
place and at each moment. Social actions should 
be analyzed as conditioned and/or determined by 
other actions, because they have been performed 
in an intrinsically better or worse spatiotemporal 
location for some purpose because of their position 
relative to some other location for another action 
or the reproduction of the same action (Barceló 
& Pallarés, 1998). Some of the actions performed 
near the location increase the chances of one type 
of action and decrease the chances of others. What 
we are looking for is whether what happens in one 
location is the cause of what happens in neigh-
boring locations (Barceló, 2002, 2005; Barceló, 
Maximiano & Vicente, 2005; Mameli, Barceló 
& Estévez, 2002).

The automated archaeologist’s objective is 
then to analyze where, when and why a social 
action “varies from one location (spatiotemporal) 
to another.” Social action is never performed 
isolated or in an abstract vacuum. To solve this 
archaeological problem, the intelligent machine 
will correlate different social actions, and describe 
how the spatial distribution of material effects of 
some action, and hence the place where the action 
was originally performed, has an influence over 
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the spatial distribution of the material effects of 
other(s) action(s). 

In seeking to understand a spatial pattern in 
observed data, it is important to appreciate that 
it might arise either from region-wide ‘trends’ 
(first-order variation) or from correlation struc-
tures (second-order variation), or from a mixture 
of both. In the first order case, the spatial fre-
quencies of archaeological features vary from 
location to location due to changes in the under-
lying properties of the local environment. For 
example, frequencies of archaeological artifacts 
may be influenced by variations in terrain. In the 
second order case, frequencies of archaeological 
data vary from location to location due to local 
interaction effects between observations. For 
example, material consequences of social action 
tend to happen in areas where the social action 
has been performed. We should assume a second 
order pattern in the data is due to some process 
that varies spatially. That means that patterns arise 
due to variations in social actions performed at 
discrete locations. 

The question that also arises is whether the 
social action displays any systematic spatial pat-
tern or departure from randomness either in the 
direction of clustering or regularity. Random-
ness at the spatial level can be the result of post 
depositional alteration, and should be detected 
before social action at the spatial level can be 
explained. We need tools and methods to differ-
entiate diverse spatial ways in which an action 
can be performed at different places. Questions 
that are more interesting include: 

• Is the observed clustering due mainly to 
natural background variation in the popula-
tion from which intensities arise? 

• Over what spatial scale does any clustering 
occur? 

• Are clusters merely a result of some obvious a 
priori heterogeneity in the region studied? 

• Are they associated with proximity to other 
specific features of interest, such the location 

of some other social action or possible point 
sources of important resources?

• Is material evidence that aggregates in space 
also clustered in time? 

All these sorts of questions serve to take us 
beyond the simple detection of non-randomness. 
Discriminating between random, clustered, and 
regular patterns of observed spatial frequencies of 
archaeological features is a fundamental concern, 
because it will help us to understand the nature of 
the causal process (social actions) involved. The 
actual evidence of the presence of a social action 
should be statistically different from the random 
location of its material traces through different 
spatial and temporal locations.

To infer the cause (social action performed 
at the spatial level) from the effect (the spatial 
frequency of material evidence measured at some 
finite set of locations), we have to rebuild the real 
frequency that was generated in the past by the 
social action. This theory forms the underpin-
nings of geostatistics. Geostatistics applies the 
theories of stochastic processes and statistical 
inference to spatial locations. It is a set of statisti-
cal methods used to describe spatial relationships 
among sample data and to apply this analysis to 
the prediction of spatial and temporal phenomena 
(Fotheringham et al., 2000; Haining, 2003; Lloyd 
& Atkinson, 2004).

NEuRAl NEtwoRkS FoR 
SolviNg thE SPAtiAl 
iNtERPolAtioN PRoblEm

If the intelligent robot has not previous informa-
tion about how observed spatial frequencies of ar-
chaeological observables might have been formed, 
then estimates of the parameters defining the best 
function between input (frequency of material 
traces at the spatial level) and output (placement 
of the social action that caused such frequencies 
and spatial densities) must be generated from its 
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actual observations (archaeological frequencies). 
If such a function can be calculated, then by using 
observations of archaeological frequencies made 
at some locations, an automated archaeologist will 
estimate the frequency of archaeological evidence 
at neighbor locations and the probabilities that a 
social action was performed at some place. 

The result is an interpolated manifold (usually 
a surface), which can be understood as a proba-
bilistic map for the placement of social actions 
performed in the past. In such a map, nearer 
things appear to be more related than distant 
things (Tobler’s law), because the synchronicity 
of social actions states that, all else being equal, 
activities that occur at the same time will tend to 
increase the joint frequency of their effects. Using 
this model, the automated archaeologist assumes 
that the probability that a social action occurs at a 
specific location should be related someway to the 
frequency of its material effects (the archaeologi-
cal record) at nearby locations. Therefore, when 
the frequency of an archaeological observable at 
some locations increases, the probability that the 
social action was performed in its neighborhood 
will converge towards the relative frequency at 
adjacent locations. Then, if the machine knows 
the relationship between the social action and its 
archaeological descriptor, the density probability 
function for the location of archaeological artifacts 
can be a good estimator for the spatial variability 
of the social action.

The purpose of any geostatistical investigation 
is to predict the value of the dependent variable at 
any imaginable spatiotemporal coordinate. Given 
a sample of observed frequencies at known loca-
tions, what the automated archaeologist needs to 
generalize is a nonlinear function that represents 
the probability density function of the social 
action original spatial modality. For example, 
suppose that we know the presence or absence 
of archaeological evidence for settlement at dif-
ferent places at different historical periods. Then 
spatial-temporal interpolation would estimate the 
probability of human settlement at un-sampled 

locations and times. Nevertheless, it is important 
that although the interpolated model allows us 
to go beyond the too simple description of the 
spatial modality of social action, the complexity 
of the model and its ability to find a solution will 
depend on the complexity of the spatial process. 
We should take into account that the interpolated 
function contains both the process that gener-
ated the original frequencies prima facie, and all 
post-depositional process that altered the original 
values. That means that we can never hope fully to 
characterize the archaeological spatial process.

A neural network can be used for calculat-
ing the nonlinear relationship between spatial 
inputs and social outputs. In a multilayer neural 
network, spatial coordinates (x, y) are fed to two 
input neurons. Outputs neurons will estimate the 
probability that different action was performed 
there. Training data are necessary in the form of 
locations, where we have some idea or confidence 
that the action was performed, given the quantity 
and the nature of archaeological evidence at that 
place (output=1). 

In so doing, neural networks offer a non-al-
gorithmic approach to geostatistical interpolation 
(Dowd & Sarac, 1994; Kanevski et al., 1997; 
Matsuda et al., 2003). The purpose of all such 
interpolation methods is to discover hidden spatial 
dependencies between observed frequencies at 
different places. Although spatial dependencies 
may be considered using traditional statistical 
tools, only neural network models rely on redun-
dancy of representations in space and time. In 
other words, they normally disregard individual 
signal or pattern variables and concentrate on 
collective properties of sets of variables, for 
example, on their correlations, conditional aver-
ages, and so forth.

Additional advantages for using neural net-
works as spatial interpolators are:

• Highly non stationary spatial processes,
• Cartography of distribution functions, as 

opposed to cartography of the mean value, 
and
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• User and data-driven parameterization for 
the discrimination between a stochastic 
trend and auto-correlated residuals, car-
tography of stochastic deviations related to 
advection-diffusion models.

However, it is important that we take into 
account some important experimental studies 
recently published (Martínez et al., 2004; Willmes 
et al., 2003): neither the standard spatial interpola-
tors like kriging nor neural networks could clearly 
demonstrate an advantageous performance over 
an evolutionary optimization without meta-mod-
els. It is not surprising to observe that the predic-
tion quality differs depending on the learning 
schedule. Some studies indicate that deductively 
generated spatial models can provide unexpected 
predictions on unseen data points while models 
trained with observed data give better predic-
tions, which suggests that the construction of 
local meta-models is more practical and reliable 
than global models.

Interpolation and related methods only maxi-
mize available information from often sparsely 
distributed data. As such, it does not solve the 
archaeological problem of inferring the original 
location of the social action, nor why the materials 
are where they are, but gives us some information 
about the spatial modality of the social action 
based on the spread and density of its materials 
effects. We need to discover other aspects of 
the social action as it has been performed at a 
spatial scale. 

We discussed at the beginning of the chapter, 
that another question that also arises is whether 
the social action displays any systematic spatial 
pattern or departure from randomness either in 
the direction of clustering or regularity. Unsuper-
vised learning approaches can be very useful for 
detecting it. When archaeological data on a group 
of sites is introduced as input for the unsupervised 
network, these sites will be self-organized in 
the output in such a way that those with similar 
archaeological characteristics will be located 

close to one another on a map. Imagine we have 
the spatial coordinates (x, y) of different archaeo-
logical observables, and we want to understand 
the density of findings in terms of the intensity 
of a social action (for instance, the number of 
residential units). Based on the density of find-
ings, we can suggest the hypothetical existence 
of a number of clusters, for instance, three huts 
or activity areas. Consequently, we need as many 
units in the output layer as spatially relevant units 
we have hypothesized. When the neighborhood 
of output units is set as linear (one output unit 
after another), we can plot the output weights, 
which represent the cluster centers directly above 
the input data (Figure 8.1). In this case we have 
two channels from the input neurons (the input 
values x, y) and two channels from the output (the 
weights). We use these weights as coordinates, 
to compare the output spatial location with the 
input. What we would like to do is to plot the 
inputs (channels 0 and 1) as an x, y scatter, and 
the weights connected to a given output neuron 
as the other two x, y scatters. 

The same problem has been solved in ar-
chaeology using standard k-means clustering 
(Blankholm, 1991; Kintigh & Ammermann, 
1982). Although the k-means clustering algorithm 
and the SOM are very closely related (Openshaw 
& Turton, 1996), the ways of using them in data 
mining are probably different. Whereas in the 
k-means clustering algorithm the number of clus-
ters should be chosen according to the number 
of clusters in the data, in the SOM the number 
of reference vectors can be chosen to be much 
larger, irrespective of the number of clusters. 
The difference is that in the SOM the distance 
of each input from all of the reference vectors is 
taken into account, weighted by the neighborhood 
kernel h. This gives the spatial nature of clusters, 
that is to say, their distance and topological order-
ing. The close relation between the SOM and the 
k-means clustering algorithm also hints at why 
the self-organized map follows rather closely the 
distribution of the data set in the input space: it is 
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known for vector quantization that the density of 
the reference vectors approximates the density of 
the input vectors for high-dimensional data.

 According to Brodaric et al. (2004) this last 
approach not always works. The actual encod-
ing of site location in the input data vector to 
ensure actual nearest neighbors are proximal 
may cause them to dominate categorization, 
resulting in SOMs that reflect only geographic 
distribution of the data, and forgetting other kind 
of regularities. This aspect is out of question in 
supervised analysis (feed-forward networks that 
learn by backpropagation), but is so important in 
unsupervised approaches where distance can be 
a spatial feature and simultaneously a compara-
tive procedure. 

iNtERPREtiNg REmotE SENSiNg 
dAtA: AN ExAmPlE oF SPAtiAl 
iNtERPolAtioN

Remote sensing can be defined as the art and 
science of detecting, identifying, classifying, 
delineating, and analyzing spatial features and 
phenomena with imagery acquired from terres-
trial, aircraft and satellite sensors (Civco, 1993). 

Remote sensing has a long tradition in archaeol-
ogy (Scollar, 1990). It is an example of spatial 
interpolation problem because they are based on 
estimating the where some features can be found 
based on a finite set of local observations. 

Estimating global archaeological information 
from a handful of remote measurements is a very 
interesting approach to archaeological investi-
gation. If we are interested in interpreting the 
social history of geographical regions, we need 
some kind of “general” information about the 
way material consequences of social action were 
spread over the study area. To excavate all those 
remains is an unattainable dream: there are not 
enough archaeologists, nor time nor funding for 
doing it in a reasonable period. Observations made 
without excavation maybe are not very detailed, 
but they provide information about many of the 
elements present at the region in a global sense. 
The quality of archaeological information derived 
from these measurements varies significantly 
depending on the strength and uniqueness of the 
visual features of archaeological evidence and 
mathematical methods applied to extract this 
information. Therefore, it would be interesting 
to develop methods to understand and explain 
these kinds of data.

Figure. 8.1. A self-organized map (SOM) solving a spatial clustering problem. The diagram plots the 
output weights representing the spatial cluster centers directly above the input data.
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Interpreting remote sensing data is a relevant 
field of application for neural network technol-
ogy (Atkinson & Tatnall, 1997; Krasnopolsky & 
Shiller, 2003; Kulkarni, 2001). There are two dif-
ferent domains of application within this field:

• When remote sensing data are intensity 
measurements to be reconstructed as an 
image. This is the case of laser scanning 
(3D-scanners) or the different modalities of 
geoelectric/georadar/geomagnetic survey-
ing.

• When remote sensing data are images or 
part of an image (satellite imaging or aerial 
pictures)

In the first case, artificial neural networks 
have been successfully applied to a number 
of geophysical modeling problems, including 
parameter prediction and estimation, classifica-
tion, filtering and optimization (Al-Nuamy et al., 
2000; Baan & Jutten, 2000; Calderón-Macías et 
al., 2000; Poulton et al., 1992). In archaeological 
geophysical surveying, neural networks can be 
used to interpolate the possible nonlinear spatial 
trend among magnetic differential measurements 
obtained in an archaeological geophysical survey 
and derive estimates of feature burial depths, 
allowing a three-dimensional reconstruction of 
buried subsurface remains to be made. The neural 
network approach potentially offers several ad-
vantages in terms of efficiency and flexibility over 
more conventional data interpolation techniques. 
An example has been published by Bescoby et al. 
(2006), who demonstrate how feed-forward neural 
networks can lead to an enhanced interpretation 
of magnetic survey data, allowing the combina-
tion with other geoarchaeological data to provide 
a clearer picture of settlement evolution within 
the context of landscape change. The aim of this 
research is to model the depth and shape of source 
anomalies from the magnetic measurements, 
providing an enhanced interpretation of the data 
through a subsurface reconstruction of archaeo-

logical features. The determination of a final shape 
model for the given set of magnetic measurements 
is here achieved by utilizing a simple multi-layer 
neural network to learn the nonlinear mapping 
between measured data and sub-surface shape 
model parameters. Suitable training data were 
derived from a range of synthetic models of buried 
wall foundations of a variety of types and burial 
depths and the corresponding magnetic responses 
produced via forward modeling. The synthetic 
models were based upon known archaeological 
examples recorded in a number of trial excava-
tions conducted within the study area, in which 
surviving wall foundations were found to be the 
dominant feature of interest. Remotely sensed 
data was input into the network as a vector of 
magnetic field values, representing an effective 
2 x 2 meters area above the buried walls. The 
corresponding target data consisted of a single 
value representing the depth below the surface to 
the estimated wall features, falling at the centre 
of the input magnetic field values. Subsequent 
training pairs were derived by moving the 2 x 2 
meter input window sequentially over the mod-
eled area. 

In the second category of remote sensing data, 
the input is not an array of sensor measurements, 
but an aerial or a satellite image. Many relevant 
neural network models of remotely sensed image 
interpretation and analysis have been recently 
published (see among other Civco, 1993; Foody 
et al., 1995; Gong et al., 1996; Heermann & 
Khazenie, 1992; Lee & Lothrop, 2006; Paola & 
Schowengerdt, 1995; Wilkinson, 1997; Yoshida 
& Omatu, 1994). 

Remotely sensed images are digital pictures 
composed of pixels showing grey-level values. In 
many satellite or remote sensing cases, such values 
are the intensities of specific spectra of electro-
magnetic radiation of either form of reflection or 
emission. Because different types of objects have 
different physical nature in terms of the reflection, 
absorption, and emission, these values of two or 
more layers are used to categorize the pixels into 
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several groups. The idea is then to distinguish 
between the various categories of spatial features 
of interest to archaeologists. It can be a difficult 
task because archaeological features comprise a 
complex spatial assemblage of disparate land cover 
types—including built and/or linear structures, 
numerous vegetation types, bare soil and water 
bodies—each of which has different reflectance 
characteristics. Conventional image classification 
techniques assume that all the pixels within the 
image are pure, that is that they represent an area 
of homogenous cover of a single land cover class. 
This assumption is usually untenable with pixels 
of mixed land-cover composition. 

By using neural network approaches, the idea is 
to use image data (brightness, greenness, wetness, 
and ratio indexes) and geographical information 
(forest, grass, water, archaeological elements, etc.) 
to train an input-output nonlinear relationship 
model. The resulting network can be exported 
and used for new satellite images, were map data 
have not been interpreted, and these geographical 
values may be predicted. The input data typically 
comprises a set of multi-spectral data, although 
it may also include measures of image texture or 
ancillary data. Supplemental information such 
as soils or elevation attributes, and even non-nu-
merical data such as ground cover classes or soil 
types that might assist the classification, can be 
easily integrated. In the output layer, there is one 
unit for each class in the classification. 

Neural network analysis of remotely sensed 
imagery involves either supervised or unsuper-
vised classification. Unsupervised classification 
of imagery involves the analysis of color or black 
and white pixels of the image for the purposes 
of classifying image objects and entities, where 
tone, texture, and hue are used. Supervised clas-
sification is employed to tell whether a candidate 
image pixel is really an archaeological element or 
not by its spectral characteristics. This technique 
involves referencing the pixels to actual observed 
conditions in the ground. All supervised classi-
fiers share a common objective, to allocate each 

case of unknown spatial class membership to a 
pre-defined class based on its spectral proper-
ties. The program should select groups of pixels 
representative of the spatial ground information 
of interest, extract the appropriate spectral re-
flectance parameters for those training areas, and 
use them to classify the entire image. The idea is 
to know where archaeological sites or any other 
spatial features are to be found in the satellite 
imagery, based on decision rules generalized from 
the mapping between a subset of known ground 
locations and the spectral properties of remotely 
sensed images. In addition to the spectral infor-
mation, the spatial information of landscape can 
be integrated through a neural network classifier 
to provide improved classification accuracy over 
that obtained with spectral data alone. 

Kim and Nevatia (2004) have published an 
interesting application. Although it is not an 
archaeological example, it deals with a relatively 
similar problematic: recognition of complex 
buildings from multiple images and range data 
(DEM—digital elevation models). This procedure 
can be applied to any archaeological remote sens-
ing case, or even, to any essay of recognizing of 
interesting shape and texture features within an 
image. The authors present an approach for de-
tecting and describing complex buildings with flat 
or complex rooftops by using multiple, overlap-
ping images of the scene. The input consists of 
low-quality images. The system finds 3D rooftop 
boundary hypotheses from the line and junction 
features of the images by applying consecutive 
grouping procedures. It applies an hypothesize-
and-verify paradigm, where lower-level features 
are grouped (hypothesized) into higher level ones, 
then filtered (verified) for the purpose of minimiz-
ing the computation (otherwise, the computation 
will be exponential). Usually, the DEM data are 
generated by stereo matching of the images, and 
used as auxiliary information to provide cues 
that help reduce the search spaces and validate 
feature matches.
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In the case of un-supervised neural networks, 
the self-organized output layer is a matrix of cells 
or nodes that captures the topological relationships 
of the input data. In so doing, spectral classes 
that are adjacent in the input space are mapped 
as adjacent nodes in the SOM layer, in effect 
creating a Voronoi tessellation of cells (Baraldi 
& Parmiggiani, 1995; Martínez et al., 2001; Oka 
et al., 2000; Villmann, 1999).

As an example of unsupervised neural net-
works used to analyze archaeological remotely 
sensed images, we can mention the work by 
Cantero et al. (2005). The aim of this study is to 
self-organize a series of airborne photographs to 
detect automatically roads and buildings in an 
archaeological site formed by the remains of a 
Roman town founded during the era of Emperor 
Augustus in southwestern Spain. The main aim of 
this study was to cluster similar pixels in original 
airborne images taken in year 1956 in order to 
classify them in terms of three important areas 
in the archaeological site. 

Of course, unsupervised results are not mean-
ingful in themselves. They are just a cluster of 
similar pixels. Although a human expert might 
interpret the neural network results, these outputs 
can reveal hidden information, detect slopes and 
classify the color intensity with a better precision 
than human eye, together with the possibility of 
creating classes and arranging the information 
depending on the number of output neurons. The 
SOM network can be seen then as a mechanism 
to produce the input for a subsequent supervised 
learning study.

NEuRoComPutAtioNAl SPAtiAl 
modElS iN ARChAEology ANd 
thE SPAtiAl SCiENCES

If there is some evidence of a relationship between 
a location in the physical space and some action 
that was there performed, then we can program a 
robot to learn it. Even if the relationship changes 

over space, that can also be learned if fit is encoded 
in the spatial examples presented. 

The necessary neurocomputational model is 
formally very similar to the spatial interpolator 
presented in previous pages. The only differences 
concern the nature of variables and of the training 
set. In the interpolation problem the purpose was 
to estimate the probability of a spatial generaliza-
tion based on known locations. Now we need to 
calculate a function able to estimate the occurrence 
of historical events at unknown locations, based 
on the evidence of related events at the same or 
neighbor locations.

Neural networks are being used for this kind 
of spatial modeling applications in domains 
like ecology (Aitkenhead et al., 2004; Gong et 
al., 1996; Hilbert & Ostendorf, 2001; Lek et al., 
1996; Özesmi & Özesmi, 1999; Özesmi et al., 
2006; Yang, 2005) and geography (German et 
al., 1997; Merwin et al., 2002; Openshaw, 1994; 
Rigol et al., 2001; Zhou & Civco, 1996). In such 
examples, a neural network is trained on sets of 
dependent variables (outputs) measured at known 
spatial locations (inputs) to generalize how such 
ecological or social aspects are spatially related. 
Ecological applications showed that neurocompu-
tation was a viable technique and had advantages 
over linear models. Examples are very diverse, 
from the classification of soil structure based on 
soil sample data to the prediction of changes in 
the dominant species of grassland communities 
based on climatic input variables. Neural networks 
have been used to predict the presence, absence, 
or abundance of some species based on habitat 
variables. 

Let us see a geographical example, which can 
be easily applied to the archaeological domain. 
More archaeological examples will be presented 
later in this chapter. We can begin with the fol-
lowing general case, adapted from an ecological 
study presented in Ripley (1993, p. 89-91, see also 
Mahiny & Turner, 2003). The goal is to know the 
cause of the geographical distribution of particular 
vegetation types of some geographical features. 
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Input neurons contain the predictor variables 
(hypothetical causal factors): latitude, longi-
tude, month at which the observation was made, 
elevation, annual evaporation, annual rainfall, 
maximum of monthly mean temperature maxima, 
maximum of monthly mean temperature, average 
temperature over year, slope, aspect, topographic 
features, geology. Using a finite set of actual 
observations—the training set—the purpose is 
to generalize a vegetation index (Normalized 
Difference Index, NDI, very usual in satellite 
imaging) to estimate its most probable value at 
some precise locations of the space-time. 

Spitz and Lek (1999) have analyzed the rela-
tionship between hunting and agriculture in the 
modern world. In their model, environmental 
characteristics appear in the input (elevation, to-
pography, orientation, proximity to water source, 
proximity to a road, distance to the nearest inhab-
ited place, number of inhabitants within a radius 
of 500 m., etc.). These spatial variables are used 
to understand the relationship between changing 
conditions in habitat and the decrease of wild 
animal in ecologically damaged areas. This is a 
classical feed-forward network, with one hidden 
layer, and just one output unit, trained using the 
backpropagation learning algorithm.

Brown and Chang (2001) also offer an ecologi-
cal application of a feed forward neural network 
that can be easily understood by archaeologists. 
In this application, the output to be predicted is 
the spatial abundance of some feature (in their 
case of a grass kind), and the input is a series of 
independent spatial and environmental variables 
like: 

Latitude (in UTM)
Longitude (in UTM)
Annual water balance
Annual days above 90º F
Percent of the geographical area stable uplands 

with soils of coarse texture
Percent of the geographical area stable uplands 

with soils of fine texture

Percent of the geographical area stable uplands 
with soils of medium texture

Distance to centers of probable grass origin (Major 
genetic diversity):

Southwestern Wyoming
Southwestern New Mexico
East Texas coast

The neural network allowed understand-
ing how each spatial feature influenced on the 
dependent variable. In this case, latitude alone 
affected poorly. The climatic determinism vari-
ables performed much better, but the estimation 
was at times ambiguous, leading to examination 
of false patterns, and learning had to start over. 
Edaphic factors provided very good and consis-
tent results. Location, either absolute or relative 
to competing dispersal resources, provided the 
best estimates. That fact suggests that the pattern 
of western wheatgrass is one of invasion and not 
in equilibrium with the present day climate. The 
combination of both the relative location and 
soils provided the greatest understanding by the 
artificial neural network. In every case where 
the climatic data were added, the artificial neu-
ral network found that the signal extracted was 
ambiguous relative to the grass pattern.

As an example of an explicitly “causal” spa-
tial model, we can mention the investigation by 
Stassopoulou and Petrou (1998). The application 
they consider is that of assessing the degree of 
risk of desertification (output) of burned forest 
areas in the Mediterranean region, given some 
information (input) on the factors that influence 
desertification. The degree of land degradation 
(desertification) varies between different areas 
and depends on rock type (permeable, semi-
permeable, impermeable), ground slope (gentle, 
middle, steep), soil depth (bare, shallow, deep), 
ground aspect (south, west/east, north), animal 
grazing (slightly, moderately, heavily grazed), 
risk of erosion (low, medium, high), regeneration 
potential (low, medium, high). The authors have 
created a Bayesian network for taking into con-
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sideration these factors in order to assess the risk 
of desertification of a burned forest. As we saw 
in Chapter III, a Bayesian network links should 
be quantified by conditional probability matrices, 
which derive from available evidence. The authors 
have used a neural network approach to calculate 
such conditional probabilities, and transforming 
the spatial input-ecological output relationship 
into a causal model. Here information regarding 
location has not been integrated as factors of the 
model, but just as a way to organize the training 
set, that is, different places have been observed, in 
which the there was enough evidence the factors 
had some contribution into the observed output. 
It is interesting to see how an interpretive spatial 
model can be formulated without strict location 
information, just with the qualitative information 
available for each observed location.

Self-organized maps (SOM) have also been 
used for spatial modeling in ecological studies 
designed to investigate the spatial distribution 
of animal of vegetal species. When using pres-
ence–absence data of species distributions at 
given locations, the input vectors to a SOM are 
binary, and the connection weights after learn-
ing are between 0 and 1. Using fuzzy set theory, 
Gevrey et al. (2006) present an approach to the 
interpretation of these weights. Taking an example 
from invasive species research, they show that in 
the case of presence/absence data, a connection 
weight can be interpreted as the probability that 
an event will occur at a given location. A SOM 
was used to model the species distribution, to 
determine geographic patterns and define the 
species correlations. 

Those examples can help us to understand the 
proper nature of archaeological spatial modeling. 
The aim for our research should be that of estimat-
ing the probability of archaeological site presence 
as a function of other attributes, both geographi-
cal (including elevation, slope, vegetation, water 
resources, soil properties) or properly speaking 
“historical” (presence of other human popula-
tions, political borders, spatial social interaction, 

transportation networks, etc.). Traditionally, 
such problems have been solved using standard 
statistical techniques (Leusen, 2002; Beekman & 
Baden, 2005; Mehrer & Wescott, 2005; Wescott & 
Brandon, 1999; Zubrow & Robinson 2000). When 
data are very disperse and the spatial processes 
to be modeled are nonlinear and non-parametric, 
neural networks seem to be a better approach.

Let us review some examples of neurocomputa-
tional spatial models in archaeology. The simplest 
approach is the classification of archaeological 
sites to use the resulting classification rules as a 
basis for understanding why human settlements 
in some area are similar. Reeler (1999) reports on 
the application of a neural network/fuzzy logic 
hybrid system to spatial and other excavation data 
from Maori pa sites in New Zealand. The pa sites 
are defended sites, often situated on raised, easily 
defensible landforms where the natural defenses 
provided by the landscape were enhanced by the 
addition of artificial earthwork defenses. These 
sites were constructed primarily during the pe-
riod from about 1500 A.D. to the early 1800s. 
In the early 1800s the European colonization of 
New Zealand and the increasing availability of 
firearms led to a change in site form and by the 
start of the 20th century, pa sites were no longer 
constructed. Twenty variables were defined de-
scribing each site, based on data collected from the 
excavation reports and digitized maps of the sites. 
Some of these variables included data provided 
by the GIS used in the project, such as total site 
area and area of features, area of defenses and 
topographic type. Neural networks were trained 
using a classification of those sites into similarity 
classes. The analysis of associations made by the 
neural networks suggested ways in which sites 
might be grouped into analytical units based on 
the interplay of a number of different variables. 
These variables suggest important patterns within 
the variables extracted from the sites. Several of 
the influential variables suggest the choices made 
by the prehistoric people who built the sites. 
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Ramazzotti (1999a, 1999b) analyzed the 
storical process on the territory of ancient Uruk 
using neural networks. A great number of sur-
veyed Mesopotamian sites were described using 
chronological, culture-history, area and territorial 
variables. Eight historical periods were considered 
as output variables. The aim of the investigation 
was to discover the spatial and cultural features 
of sites belonging to each historical period. In this 
way, the main aspects of the historical process 
could be discovered and evaluating how the ter-
ritory and the morphology of towns and villages 
changed throughout the social and economical 
transformations that let to state formation.

Ducke (2003) suggests the use of feed for-
ward neural networks as a statistical system 
that maps geographic locations to archaeologi-
cal site probabilities. His idea is to look for the 
way environmental and geographical features 
of archaeological sites (terrain geometry, height, 
slope and aspect angle, distance from surface 
water, ground water level, soil texture, and soil 
quality) can be correlated to the frequency of sites 
in different environmental feature sets to gain an 
estimation of archaeological potential for a specific 
landscape. Ducke compared standard clustering 
analysis, where locations were grouped (clustered) 
into patches of similar environments according to 
their attributes. In this way, each group (cluster) 
represents a particular type of environment. After 
analyzing the distribution of archaeological sites 
over these environment types, an estimation of 
archaeological potential could be gained for the 
rest of the area. The network consists of an input 
layer with predictor variables (location attributes), 
and an output layer with just two units. Training 
data corresponds to some survey projects in the 
state of Brandenburg in northeastern Germany. 
These correspond to the two possible cases “site 
present” and “no site present.” In the published 
reports of this project, Ducke shows that the sys-
tem was able to achieve a rough classification of 
archaeological sites based on locational attributes. 

The overall picture gained from the output was 
rather “noisy.” In addition, limiting the predic-
tive model to just two output cases might not be 
what one expects of a useful model. Site absence 
is seldom recorded systematically and being sure 
about a site’s absence is even more problematic 
that being sure about a site’s presence.

Most of the above examples seem to be based 
on the traditional conception that defend the axiom 
that physical space determines human settlement, 
that is, that the location of social action is a con-
sequence of the environmental features or spatial 
properties of natural resources. This can be useful 
in some cases but it is a too trivial explanation. 
Instead, we should base our analysis on the as-
sumption that productive actions (hunting, fishing, 
gathering, herding, agriculture, etc.) determine 
the location of residential actions (settlement). We 
need descriptions of historical events at known 
locations, to estimate how the spatial location of 
some action or event influences (or influenced) 
the location of another action or event. That is to 
say, social actions are not adapted to the environ-
ment, but productive actions (hunting, fishing, and 
gathering) determine the location of residential 
actions (settlement). 

For instance, let us consider the relationship 
between geographical distance, transport time 
and degree of technological complexity (input 
variables), and the spatial probabilities of being 
located at a specific place. To calculate this non-
linear relationship, the automated archaeologist 
would need archaeological data that relate the three 
variables. In the case of a supervised model, the 
quantity of non-local materials in a site S0 with 
a known provenience from site S1 will serve as 
an estimation of the probability of interaction 
between both. In the unsupervised case, an auto-
mated archaeologist would use the same number 
of output neurons as settlements in the training set. 
The purpose of a self-organized map would be to 
transform similarities in distance, transportation 
possibilities, and degree of technological com-
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plexity into an estimation of spatial probabilities 
given in terms of the activation signal of output 
neurons at different neighborhoods.

Consider an attempt to identify optimum 
locations for a hillfort. Factors considered in the 
analysis might include distance from centers of 
population, distance from the road network, the 
suitability of underlying geology, and so forth. 
There are also some further social, economical, 
cultural, and political constraints, which differ-
entiates this problem from a simple site selection 
problem. For instance, it might be that no hillfort 
is within some pre-determined distance of any 
other hillfort site, nor it is too far from others and 
from populated areas. These non-environmental 
constraints increase the complexity of the analysis, 
since the value of a particular site can only be 
evaluated when considered with combinations of 
other selected sites. This type of problem is known 
as a combinational optimization problem since 
the number of combinations that must be con-
sidered increases dramatically with the number 
of sites to be located. Many “real world” spatial 
analysis problems are of this type. Not surprising 
that suitable functionality is not available within 
current GIS.

There are many examples of using neural 
networks to quantify spatial relationships that 
are important to explain the occurrence of social 
action at different places. For instance, White 
(1989) considered the placement of economic 
institutions as dependent from the population 
at each place, the distance among areas, and the 
pattern of connectivity (transportation) between 
such areas. Nijkmap and Reggiani (1998) consider 
different examples where transportation networks 
influence the placement of different social institu-
tions. Shellito and Pijanowski (2003) use as loca-
tion predictions different measures of “distance 
from.” In this case, the output contains the location 
of the place to be predicted (in two coordinates, 
x and y, or longitude, latitude). The network has 
in the input different variables (neurons) that 
contain the known values of the distance from 

cities with populations of less than 500 persons, 
more than 100,000 persons, local roads, places 
with special interest, and so forth. Once learned 
the relationship between spatial features and the 
geographical location of the city, such a network 
can be used to experiment with the influence of 
each spatial feature on the already known loca-
tions, or alternatively, to predict the location of 
unknown sites, based on simulated values in the 
input neurons.

There are some examples of this kind of 
explanatory spatial models in archaeology. We 
can quote the interesting study by Zupanek and 
Mlekuz (2001) who intend to understand the 
causes and consequences of social variability 
between two Roman cities: Emona and Poetovio 
in modern day Slovenia. They have approached 
social variation through a comparison of the reli-
gious backgrounds of both towns. Available data 
are in form of dedicatory inscriptions. Several at-
tributes were recorded for each monument: name 
of the deity, social class of the dedicator, date, and 
original location of the monument, and so forth. 
Two samples have been used: 77 inscriptions from 
Poetovio and only 23 from Emona. Percentage 
and numerical diagrams of deities from both 
towns show considerable differences between 
the Emona and Poetovio. For neurocomputing, 
each town, social class (citizen, soldier, and slave) 
and date (1st century, 2nd century, 3rd century) 
was used as input variables. The class of deity 
was the resulting output unit; deities were clas-
sified according to their respective origins and/or 
functions into the following groups: Roman, 
Eastern, and Local deities. Known cases (based 
on the inscription contents) were then presented 
to the neural network. Results show that in the 
Emona sample citizens in the first century had 
equal preference for local and Roman deities, 
while in the second century Roman deities were 
by far preferred. By the 3rd century, the scarce 
data indicate the growing popularity of the local 
deities. As for slaves, chiefly Roman deities are 
preferred in Emona during the first two centuries, 
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whereas an increase of local deities is detectable 
in the third century. The citizens of Poeotvio held 
Roman deities ion the highest esteem in the second 
century, with local and eastern deities coming in 
second place. In the third century, Eastern deities 
are first in line with local following and Roman 
far behind. The ratio of local deities worshipped 
by the slave class in Poetovio is similar during 
both the second and third centuries. The ratio of 
eastern deities then rises in the third century, and 
the Roman ones declines. Therefore, the religious 
backgrounds of both towns differ significantly, 
and researchers are tempted to interpret the 
difference in the sample sizes as a reflection of 
different populations in both towns. However, it 
could also be the result of varying religious habits 
in the local population, or simply a consequence 
of different economic backgrounds.

Deravignone is trying to build a neurocom-
putational spatial model of medieval settlement 
in Central Italy (Deravignone, 2006). In this 
project, a neural network calculates a nonlinear 
function between historical and archaeological 
data of ancient castles and hillforts in medieval 
Tuscany and their spatial location. Point coordi-
nates are used as input, whereas the output adopts 
the aspect of raster map. In this way, specific 
points of a territory (input) are being related to 
thematic maps containing geomorphological and 
environmental data. The spatial contexts of castles 
and hillforts documented in historical sources or 
through archaeological excavations are then used 
as training data. To use the neural network means 
to introduce the coordinates of some place in the 
input, and obtaining as a result an interpretation 
of social actions or natural process that took place 
at that location.

Recurrent networks are also an interesting 
method for spatial explanation. Let us consider 
the following simulated archaeological problem 
(adapted from Murnion, 1996). Suppose that the 
spatial frequencies of archaeological traces allow 
an estimation of the number of people having 
worked at specific locations of a surveyed area. 

We have some population estimates, measured 
in a 10 x 10 grid, where each cell has three km 
of side. We want to study the potential locations 
of residential units within such an area. We have 
some prior knowledge about social dynamics at 
that territory:

1. No social agent will walk more than one 
grid from a residential point to working 
area (location of subsistence resources), so 
the demographic base of a settlement shall 
include the grid square of that settlement 
and the surrounding eight squares.

2. Social agents will always go use the near-
est settlement to their resource catchments 
area.

3. If N possible settlement locations are equally 
distant from a grid square then the number 
of social agents going to each settlement will 
be the population of the grid square divided 
by N.

A Hopfield network can be used to solve this 
recursive problem (see Chapter IV), where each 
cell in the 10 x 10 grid is a neuron. When the 
network has stabilized to a solution, neurons 
that are “on” are considered appropriate loca-
tions for optimum settlements. The higher the 
spatial frequency of archaeological evidence at 
a site, the more likely that site is to switch “on.” 
The network cycles through various states until 
a static or dynamic equilibrium is reached. In the 
equilibrium state, the spatial frequencies of the 
sites switched “on” will be sufficient to counteract 
the negative first term of the motion equation. 
However, in this case, the automated archaeolo-
gist is only interested in the optimum locations 
for human settlement. In order to achieve this, 
the probability of i activation is increased with 
each iteration. Eventually only the optimum sites 
will remain switched on. Since there are so many 
locations competing for the proper placement of 
the settlement, the catchment area of each site will 
be small. Since large numbers of sites are “on” 
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and catchment areas are small, many sites switch 
“off.’ In the next iteration, there are few sites, so 
catchment areas are large and many sites switch 
“on.” The network oscillates repeatedly between 
many-sites/few-sites states. 

If prehistoric people living in that area decided 
to place two new settlements such that the demo-
graphic base of the two sites in total is maximized, 
then the problem becomes non-trivial. In general, 
for a twin site selection in a grid of N sites there 
will be N (N - 1) possible ways to place the two 
settlements. Using common sense, the number of 
possible choices can be reduced, for example the 
optimum locations for the two sites is unlikely 
to involve the four corner sites in the 10x10 grid 
(0,0), (0,9), (9,0) and (9,9). In a more complicated 
problem, this sort of reduction may not be possible 
and the automated archaeologist may well have to 
resort to the “brute force” method of processing 
every possible combination. An alternative sub-
optimum method would be to choose the best site 
for the first settlement and then having fixed the 
position of the first one, choose the best site from 
the remaining sites for the second settlement. This 
method is much faster but is not guaranteed to 
arrive at an optimum solution.

The reader may think that in archaeology we 
do not have enough “explanatory” variables, or 
the necessary training cases to go beyond a mere 
spatial description of archaeological evidence. 
Let us consider an example that shows how more 
explanatory social investigations can be made 
possible. It is an investigation of the origins of 
the city in the Etrurian area of Central Italy be-
tween 11th and 6th centuries BC (Barceló, Pelfer 
& Mandolesi, 2001). Research goals are:

• The archaeological correlates for generators 
of capital accumulation, and

• The archaeological correlates for restraints 
on capital accumulation.

Such correlates can be calculated by measuring 
qualitatively the presence/absence of social actions 

(settlement, resources acquisition, labor action, 
distributive/exchange activities, ritual action). 
Among others, observational inputs would be:

• Presence/absence of colonial import 
goods

• Presence/absence of indigenous import 
goods (pottery, metal)

• Presence/absence of locally produced valu-
able pottery

• Presence/absence of weapons
• Presence/absence of metallurgical activi-

ties
• Presence/absence of store buildings and 

structures
• Presence/absence rich burials 
• Presence/absence of complex residential 

structures (multi-room houses)
• Presence/absence of subsistence activities 

(farming, husbandry, etc.)

The attraction force exerted by a city core area 
is directly proportional to the number or inten-
sity of interactions between periphery locations 
and the center and the squared distance between 
both entities, and inversely proportional to the 
attraction force exerted by alternative periphery 
locations. Local factors may be understood in 
terms of locally accumulated mobile capital (for 
instance, quantity of colonial imported goods, 
presence/absence of metallurgical luxury objects). 
To represent the process of capital accumulation at 
the city, we need to estimate the volume of wealth 
accumulated directly proportional to the level of 
dominance or power of the city over the surround-
ing rural area, plus the frictional effects due to 
the cost of coercion, and inversely proportional 
to the total amount of capital accumulated at the 
periphery. The more productive is a location, and 
the more independent are their local elites, the most 
difficult is to ensure dominance and capital trans-
fers from periphery to core areas. Consequently, 
among the possible outputs or dependent spatial 
variables, we can mention:
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• SPATIAL DENSITY OR SETTLEMENT 
CONCENTRATION. It can be empirically 
measured in terms of a spatial probability 
density measure associated to each loca-
tion, based on the geographical proximity 
with neighboring locations. Concentration 
maps, however, can be misleading. The 
causal mechanism of urban emergence is 
not physical proximity, nor spatial density. 
The real cause should be explained in terms 
of the “influence” capital accumulated at a 
location has over the residence or productive 
actions performed at other locations in the 
proximity. 

• GLOBAL INTERACTION. If settlement 
concentration is a relevant variable, then 
distance is one of the main dynamic factors 
determining the process of city formation. 
Spatial Interaction is related to distance, in 
such a way that the less distance between 
social agents, the higher the probabilities 
of social interaction. The definition of such 
distances is very complex:
	 Distance produced by the diversity of 

resources at different locations
	 Distance produced by the diversity of 

production activities at different loca-
tions

	 Distance produced by the differences 
in the volume of produced goods at 
different locations

	 Distance produced by the diversity of 
non productive activities—consump-
tion—at different locations

	 Distance produced by the differences 
in the volume of non productive ac-
tivities—consumption—at different 
locations

	 Distance produced by the differences of 
the nature of social agents at different 
locations

	 Distance produced by the differences 
and diversity of social interactions 
between different locations

• DOMINANCE AND COERCION. The auto-
mated archaeologist also needs to estimate 
the inequality and directionality of interac-
tion flows. In other words, it has to integrate 
into the model the hierarchy between social 
cores and peripheries, that is to say, the dif-
ferentiation between the emergent urban 
core and the exploited rural periphery, for 
instance. This allows understanding capital 
accumulated in the center as a function 
of capital extracted from the periphery. 
Therefore, if power and dominance may 
be analyzed in terms of spatial attraction, 
then the inequality of interaction from core 
to periphery is directly proportional to capi-
tal generated in both points, and inversely 
proportional to the cost of coercion and 
domination. The neural network model can 
explains this nonlinear function.

More details about spatial modeling in the 
social domain are discussed on Chapter IX.

thE ANAlySiS oF tEmPoRAl 
SERiES ANd ChRoNologiCAl 
dAtA

Unlike object recognition and spatial analysis, 
where all observable features are simultaneously 
present in the input, there are a number of tasks, 
notably in historical research, where the obser-
vations to be explained consist of a sequence of 
individual features arranged over a limited period 
of time (Bairaktaris, 1995). Such data configure 
time series, mathematically described as:

Y = f(t), where t=t0, t1, t2, ..., tN

What has to be analyzed is how the dependent 
variable (Y) depends on time. That means that to 
process temporal data, the principle is to associate 
a previous state with some external input and to 
learn how a subsequent state is produced: 
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Old State and New Pattern  New State

Every spatiotemporal system can be defined 
by two components: one that computes the new 
internal state of the system based on the input 
and previous state, and one that computes the 
output of the system based on the new state (Kre-
mer, 2001). Therefore, the temporal problem the 
automated archaeologist wants to solve refers to 
the relationship that may exist between the past 
and the future state of a single process. In the 
case of heterogeneous, multivariate, time vary-
ing processes, the task is to discover dependency 
patterns, and their changes. Dependency patterns 
are combinations of past lagged values of a set of 
time series, which when used as arguments of a 
suitable prediction function, produce high values 
of a chosen model quality measure.

The evolution through a sequence of changes 
of state, where stable states of different natures are 
separated by the corresponding transient states, 
is a situation typical in most complex systems, 
including human societies. Historical events refer 
to the behavior of social agents under certain 
spatiotemporal states. A sequence of historical 
events s can be expressed as a tri-tuple (s, ts, 
te). The set s = {(A1, t1), (A2, t2) … (An, tn)}, is an 
ordered events set. The variable Ai (i = 1, 2, … n) 
represents the event, and its attributes <attribute 
i1, attribute i2,… attribute im>; ts and te represent 
starting and ending time; ti is the occurring time 
of an event, ts ≤ ti < te < ti < ti + 1 (i = 1, 2, … n-
1). The temporal distribution of those events is 
intimately controlled by local circumstantial and 
contextual characteristics. At different time, the 
change of the context will lead to some phenomena 
happening at same place or at different places. 
In order to find the main factors explaining the 
actual occurrence of a specific event and the 
association relationship among these local and 
circumstantial factors, we need to build a deci-
sion table (in the format of transactional records) 
(Zhai et al., 2005). According to prior knowledge, 
we assume that the behavior of the social actor is 

affected by factors f1, f2, … fn, at different time t1, 
t2, … tn. The long-term behavior of these actors 
can be regarded as a sequence of historical events 
and form a decision table including values of the 
attribute and states.

There are various ways to model this relation-
ship. One can make a recursive prescription for 
extrapolating the most recent data points based 
on the success of previous extrapolations. One 
can also parameterize the time dependences of 
the various statistical moments and time deriva-
tives of the time series of interest. Alternatively, 
one can try to find a single function that gives a 
future value of the observable as its output when 
some set of past observables is supplied as its 
input. This last model can be implemented using 
a neural network (Vemuri & Rogers, 1994).

To fit a mathematical function that closely 
resembles the temporal variation of the dependent 
variable values, an automated archaeologist should 
interpolate the observed longitudinal variation. 
In this sense, the temporal problem is identical to 
the spatial problem. Traditionally, archaeologists 
have relied on linear interpolation, based mainly 
on looking at frequency trends, moving averages, 
and certain graphical patterns, for performing 
predictions and subsequently understanding 
the temporal dynamics of the process. Most of 
these linear approaches have shortcomings. It is 
easy to see that temporal analysis should not be 
limited to fitting a regression line between the 
dependent variable values estimated at different 
time intervals. Input data should represent a sta-
tistical population, and each event is a temporal 
sample produced by a stochastic process. In the 
same way as we considered in the spatial case, a 
temporal analysis pretends to build a model of the 
stochastic process that produced the observed se-
ries. Following Wold’s theorem, this process may 
be represented by the following expression:

DATA = DETERMINISTIC COMP. + 
 STOCHASTIC COMP. + RANDOM 

COMP.
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The theorem states that a temporal process 
may be modeled as the sum of two independent 
processes: the first is deterministic and the other 
is characteristically non-deterministic (also called 
stochastic or probabilistic). The objective of the 
analysis will be to decompose the series variance 
in deterministic components and stochastic ones. 
The deterministic component reflects consistent 
effects through time, and it includes other kinds 
of systematic variation:

• SECULAR VARIATION or trend, which 
represents the general orientation followed 
by the series of samples through time.

• SEASONAL VARIATION or cycles, which 
represents fluctuations of trend at periodic 
intervals.

The stochastic component usually reflects the 
effects of serial dependency: the degree of depen-
dence between contiguous points in a sequence. 
In a time series, however the value of a variable 
in a specific time point can be independent of the 
values this variable has had before or will have 
thereafter (Badran & Thiria 1997; McDowell et 
al., 1980).

There is nearly always some degree of deter-
ministic trend in any temporal sequence of values. 
Archaeological cases are not an exception, but we 
cannot observe them, because such a temporal 
trend is hidden by sampling differences in the 
data. The purpose of temporal analysis will be, 
then to extract this deterministic component, as if 
sampling differences and error introduced by the 
way an archaeological variable has been measured 
at different time steps may be deleted.

The goal of such a temporal interpolation is to 
separate the data into a smooth component and a 
rough component:

DATA = SMOOTH + ROUGH

The rough should contain as little structure 
as possible. In our case, the percentage of total 

variance explained by the rough component 
is greater that the percentage explained by 
the smooth component, but the latter is a real 
model of deterministic temporal variation in the 
stratigraphic order. Its relevance as a source of 
variation was originally greater, but it has been 
reduced because we are not analyzing the material 
effects of social action as they were generated, 
but probably unrelated archaeological samples 
ordered stratigraphicaly.

Neural networks can be used for such fitting 
a temporal function not based on global trends 
but on information available at each discrete time 
moment. In fact, one of their main characteristics 
is that they are usually trained and tested over 
historical data. The networks generating the most 
accurate predictions are saved, modified, and 
retested over additional historical data until the 
most efficient model with respect to accuracy of 
predictions is obtained (Badran & Thiria, 1997; 
Berardi & Zhang, 2003; Castillo & Melin, 2002; 
Cawley et al., 2007; Chakraborty et al., 1992; 
Elsner, 1992; Sumpter & Bulpitt, 1998; Sharda & 
Patil, 1992; Tang et al., 1991; Vemuri & Rogers, 
1994; Weigend et al., 1990). 

Under ideal conditions, there is little differ-
ence in predictability efficiency between regres-
sion models, for instance, and neural networks. 
However, under less than ideal conditions (in 
the presence of an outlier, or in the presence of 
multicollinearity or model misspecifications), 
the neural network do a better job (Denton, 
1995). The main advantage of neural networks as 
nonlinear interpolators is that we do not need to 
specify the structure of a model a priori, which 
is clearly needed in the linear interpolation. In 
addition, nonlinear techniques can approximate 
more easily complex dynamical systems, than 
simple statistical models. Of course, there are also 
disadvantages in using these models instead of 
the more classical ones. In classical regression, we 
can use the information given by the parameters 
to understand the process, that is, the coefficients 
of the model can represent the causal influence 
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of some event in transforming a historical trajec-
tory. This is not so easy in the case of a nonlinear, 
adaptive and recursive model, because the model 
appears some times as black box, with too many 
parameters of very difficult interpretation.

For the purposes of time series analysis, a 
neural network can be thought of as a general 
nonlinear mapping between some subset of the 
past time series values and a future time series 
value. The specific mapping performed by the 
network depends on the architecture of the network 
(number of neurons, number of hidden layers, and 
the manner in which neurons are connected, and 
so on) and the values of the connection weights 
between neurons. For specific network architec-
ture, training can be thought of as the process 
of adjusting the weight parameters to achieve a 
mapping that approximates the underlying rela-
tionship between past and future values. The time 
delay can be understood as output error: the aver-
aged sum of the differences between the network 
outputs and the actual time series values they are 
supposed to predict. Training a neural network 
can be viewed as an optimization problem: the 
minimization of the time delay with respect to 
the weights (Badran & Thiria, 1997;  Vemuri & 
Rogers, 1994; Weigend et al., 1990). 

When the idea is that of approximating a 
temporal function by means of a multilayer feed-
forward neural network, the output neuron of the 
network may indicate the value of a variable to 
be predicted at time t+1 or at time t-1, while the 
inputs of the network are values of that variable 
at times < t. The network should provide directly 
the estimation of the time series at instant kh+1 
from the information at instant k+1. That means 
that the network uses a sequence of numbers 
to infer the next row of numbers in line. It uses 
historical data from a definite interval of time to 
calculate future or past possibilities beyond the 
interval used for training.   

The additional advantage of a neural network 
is the possibility of testing the interpolated tem-
poral function. To test for short-term accuracy, 

the network should be given actual time series 
values from the test data set as the input and the 
resulting output is compared with the next time 
series point. This is done for every point in the 
test data set, and an error statistic is calculated. 
The ability of the network to learn longer-term 
temporal dynamics can also be tested. To do this, 
the network is given an input vector from near 
the beginning of the test data set. The output of 
the network, which is the predicted future value, 
is then used as part of the next input vector. The 
ouput from the second interval is likewise used 
as part of the third input vector. Continuing the 
process in this way, the network recursively 
propagates the time series forward in time to test 
the validity of the learned function many time 
steps ahead. The divergence of the prediction 
from the actual time series as a function of the 
number of time steps indicates how far into the 
future the network predictions can be used. Often 
the short and long-term prediction properties of 
neural networks are very different, so this is a 
useful test to perform before making predictions 
longer than one time step into the future (Vemuri 
& Rogers, 1994).

These ideas have been organized by Peter Halls 
(Halls & Miller, 1996; Halls et al., 1999). He and 
his colleagues proposed to describe the rate and 
direction of temporal variance, in terms of a time 
curve (or “worm”) linking each observation (or 
“tode”) to its temporal neighbors. This time curve 
is controlled by the measured, or acceptable, rate 
of change. It allows predicting the nature of inter-
mediate unmeasured locations from the recorded 
data. It would also be possible to investigate the 
effects of changes to rates, confidence factors, and 
so forth, upon the relative ‘fit’ of the curve and 
so further assess the accuracy of observations. A 
curve fitting technique based on neural networks 
was proposed by the authors to generate curves 
based upon a number of temporal nodes, or todes, 
plus associated information on their relative 
precision and the effect this should have upon 
constraining the curve-fitting algorithm.
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A classical example of time analysis suitable 
for an archaeological application is the kind of 
study usually carried out in the geosciences, 
where some variable with paleoecological or 
paleo-environmental interest varies temporally 
across stratigraphy (Iloghalu, 2003; Martínez 
et al., 2004; Valdes & Bonham-Carter, 2006). 
This kind of problem has been analyzed in ar-
chaeological literature as “assemblage diversity 
through time” or “frequency seriation” (Barceló 
& Mameli, 2004; Baxter, 2001, 2003; Djindjian, 
1990; Lyman & O’Brien, 1999; 2003, 2006). 

Kroeber used frequency seriation for the first 
time in 1916 to measure the passage of time. It 
has been traditionally defined as a relative dating 
method, which relies principally on measuring 
changes in the proportional abundances measured 
among finds. Archaeological formation processes 
had been described in terms of accumulation, 
what led to general principles like Nelson’s law 
(1909): there is a direct relationship among the 
population size at a site, the site occupation span, 
and the amount of material discarded by its in-
habitants. In such a way, the changing frequency 
of archaeological materials along stratigraphic 
order measures time effects. In its simplest form, 
this approach implies a longitudinal record of 
depositional events as a mark of time. 

 Assuming that artifacts’ characteristics follow 
a bell curve, archaeologically observed frequency 
values start slowly growing to a peak and then 
dying away as other characteristics become more 
frequent. This also assumes that descriptive fea-
tures will be broadly similar from assemblage to 
assemblage within the same time span. Follow-
ing these rules, an assemblage of objects can be 
placed onto sequence so that sets with the most 
similar proportions of certain characteristics are 
always together.

The idea is then that of converting a longi-
tudinal record of hypothetically consecutive 
archaeological accumulations into a coherent 
temporal trajectory, or site formation process. It 
must be assumed that the frequency and diversity 

of items within an assemblage vary according 
to the process responsible for the accumulation. 
Other necessary assumptions are:

• Garbage disposal is a random accumula-
tion around the residential and/or domestic 
unit, 

• The nature of the accumulation does not 
change for all the history of the site,

• The amount of residues accumulated in a 
single event depends on the number of people 
generating garbage, the time during which 
they have been producing garbage, and the 
social way of disposing garbage (Varien & 
Mills, 1997, p. 143).

The frequency of archaeological observables 
and their diversity are also affected by element 
use-life through time. Schiffer (1987) labels the 
problem as the “Clarke effect” to describe “the 
statistical tendency for the variety of discarded 
artifacts to increase directly with a settlement’s 
occupation span.” This principle indicates that 
previous assumptions are over specific, and that 
real archaeological data do not follow them. 
Artifact use-life, differential temporal duration 
and the different nature of accumulations within 
the same site formation process can: (1) produce 
variation in assemblage composition that might 
be erroneously attributed to different activities, 
(2) affect seriations in non-chronological ways, 
and (3) cause archaeological frequencies to differ 
from systemic frequencies.

To address the problem posed by the Clarke 
effect, the automated archaeologist has to exam-
ine some determinants of differential temporal 
duration. It will regard archaeological assem-
blages as the interaction of temporal duration 
and stratigraphic order. An alternative would 
be to assume some characteristic or set of char-
acteristics associated with the assemblage that 
produced the apparent accumulative effect. The 
problem then becomes one of identifying the ap-
propriate characteristic or set of characteristics 
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of the accumulation, what is a theoretical, rather 
than a methodological problem.

ASSEMBLAGE= PERIOD (stratigraphic order) 
– DURATION

Furthermore, the accumulation of archaeo-
logical items in observed depositional events not 
always is the result of purposeful human activity. 
The archaeological record may be patterned, but 
it does not follow that the patterning of the items 
and the patterning of the human behavior that 
produced it are identical. An aggregation may not 
reflect past human social action nor its temporal 
duration, but rather post depositional process: 
fluvial, transport, solifluction, rodent activity, 
contemporary farming, and so forth. 

Therefore, if time in archaeology will be 
measured in terms of aggregates of individual 
elements, it is important to take into account the 
agents of modification and their considerable 
potential for variation in the traces depositional 
events ultimately may bear. For instance, a single 
depositional process can give rise to materials 
in different deposits, and a single deposit can 
contain the products of many different deposi-
tional processes. In view of these possibilities, 
one must acknowledge that most archaeological 
accumulations do not neatly bound the products 
of a discrete depositional event or process.

We will use frequency/diversity seriation to 
describe patterns of change, and to establish the 
direction and magnitude of causal relationships 
(Baxter, 2001, 2003). Data are counts of the oc-
currence of class i (archaeological evidence of 
the ith category) in assemblage j (each one of 
the j stratigraphic episodes or temporal periods). 
Plotting each frequency count against each value 
of time order yields a graphical representation of 
the sequence of states. The automatic archaeolo-
gist should be able to recall the archaeological 
items in the original temporal seriation. This 
problem involves investigating the stationarity 
of the frequency series, the existence of linear 

and/or nonlinear trends in the stratigraphically 
ordered sequence. However, the stationarity, 
lack of stationarity or discontinuities associated 
with this pattern of change are not only a con-
sequence of a social process correlated to time, 
but the result of sampling or the specificity of 
some depositional units. For instance, a discon-
tinuity in any time interval may be explained as 
a “temporal” change in the social process that 
produced the archaeological depositional event, 
or as an individual property of that depositional 
unit, where some material was accumulated dif-
ferentially due to a different function, a different 
post depositional process (preservation) or a dif-
ferent sampling procedure. 

Let us analyze a real example. First pottery 
vases appeared in the Near East once production 
economy had been consolidated, in full sedentary 
societies. Chronologically, the earliest pottery 
remains should be dated in the period ranging 
from the 9th Millennium B.P. to the beginnings 
of the 8th. Early pottery is in all those sites a 
scarce material, typologically not much diverse, 
and coarsely manufactured. The purpose of the 
investigation is not to explain how pottery was 
invented, but to discover the degree of correlation 
between time and the abundance of deposited 
archaeological materials. This analysis has been 
done with data from the Neolithic site of Tell 
Halula, located in the middle Euphrates valley 
(Barceló & Faura, 1997). 

The initial assumption was that the quantity 
of unconnected sherds in a depositional unit was 
a consequence of the diversity and repetition of 
cleaning practices performed at successive oc-
cupation floors. The investigation looks for: (1) 
determining the temporal trajectory (historical 
tendency) of rubbish accumulation all over the 
site, and (2) how the rate of change in material 
accumulations is related to economic and social 
transformation.

We used radiocarbon dates for estimating time 
order. The trouble is that radiocarbon dates cannot 
be represented as fixed points, but as intervals. 
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Consequently, we have introduced two different 
time points for each archaeological observation: 
one for the oldest extreme in the two-sigma inter-
val and another for the newest. For instance:

DEPOSITIONAL UNIT DATE Total Pottery

S7-iv -7034 5

S7-iv -6465 5

S7-vi -7727 25

S7-vi -5596 25

S7-viii -6415 35

S7-viii -6119 35

S7-xii -6779 539

S7-xii -6200 539

…/…

Radiocarbon estimates are negative years, 
given that they are “before our era” dates. Each 
frequency measure is input twice: the first rep-
resenting the oldest possible date and the second 
the newest. In such a way, all points within the 
temporal interval are assumed to provide the 
same information.

A very simple feed-forward neural network 
has been built and is shown in Figure 8.2.

The input unit contains “time” values (trans-
formed into a 0.1 scale, that is, 6200 is represented 
as 0.6200) and the output unit contains frequencies 
(also transformed). Backpropagation was used to 
learn this network (see details in Barceló & Faura, 
1997). In this case, the Neural Network learns 
correctly the negative correlation between time 

(negative values because we are in B.C. years) 
and quantity of pottery. 

Once trained, we used the network to predict 
quantities of pottery at different time moments, 
filling the holes in the observed sequence at the 
site.

We obtain a description of the accumulation 
of pottery rubbish at the Tell Halula site as it 
“moves through time.” It seems that the global 
frequency of pottery sherds accumulations after 
cleaning grows trough time. This tendency is not 
linear, however. Although at the beginning there 
are very few occupational floors with pottery, and 
it is also very scarce, at the end of the series (late 
phases), there are contemporary occupational 
floors with pottery and others without pottery. 
The better explanation for this fact is that the 
nature of accumulation (and not only quantity) 
changed with time. Not only frequency increases, 
but also the variability of depositional process. At 
the beginning of the historical trajectory, pottery 
was scarce and rubbish was placed at random; at 
the end of the sequence (once pottery manufacture 
and use consolidated), there are a lot of vessels 
in circulation; rubbish accumulation does not 
appear as a random action of discard, but as a 
result of intentional actions which vary spatially. 
Garbage accumulation becomes specialized and 
spatialized.

The abundance of pottery items at a depo-
sitional event is a consequence of some social 
and economic processes, but only some of these 

Figure 8.2. A simple neural network topology to infer temporal relationships
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processes may be positively correlated to time. 
Pottery remains have not been discovered in pri-
mary contexts, but as apparently random spreads 
of discard material. They are not the result of in 
situ fragmentation, that is, we do not have broken 
vessels, but accumulations of unconnected sherds. 
Consequently, an important problem in the inves-
tigation is to prove whether there is some correla-
tion between the quantity of pottery accumulated 
at some site and general qualitative changes not 
related to post-depositional processes. The auto-
mated archaeologist cannot propose a simple cor-
relation between pottery production/consumption 
and time, but it should limit itself to correlate time 
with rubbish formation. Rubbish is the result of 
some social actions, which are indirectly linked 
with production and consumption. Therefore, it 
can be assumed that any change in the nature 
of rubbish is related to changes in consumption 
(there is an increase of refuse material from most 
commonly used pottery), which are also related 
to changes in productive systems (technology) 
and social demand.

The previous neural network can be modified 
to fit a much more complex research situation. For 
instance see Figure 8.4. Many other variations 
can also be explored.

Although longitudinal abundance data are 
very important to archaeological research, there 
are not many other practical examples, prob-
ably because time analysis is, paradoxically, an 

under explored domain in archaeology. We need 
much more research in the domain of frequency 
seriation, both using stratigraphic ordering and 
radiocarbon estimates. 

The Tell Halula case can also be considered 
as an example of the filling of gaps in an ar-
chaeological time series by means of an artificial 
neural network. Here, a simple neural model fits a 
nonlinear function between abundance data and 
time, expressing time in absolute (radiocarbon) 
or relative (stratigraphy) terms. A somewhat re-
lated example has been published by Dergachev 
et al. (2001). The investigation is of relevance 
for obtaining a radiocarbon calibration curve, 
based the correlation between solar irradiance 
variations (Wolf index) and cosmogenic isotope 
14C. The usual procedure—the Stuiver-Pearson 
calibration curve—is based on linear regression 
between dendrochronological and 14C estimates; 
Dergachev and colleagues suggest the use of a 
neural network to fit a nonlinear curve between 
Wolf index estimates, and radiocarbon data.

Another use of neural networks as a tool to 
fill the gaps in time series is that of Cortese et 
al. (2005), which have used a similar approach 
to estimate the temporal evolution of paleotem-
peratures in northern seas. The authors extracted 
paleo-climatic information from different micro-
fossil groups. The trained networks were subse-
quently applied for reconstructions of sea surface 
temperatures through the last 15,000 years. The 

Figure 8.3. Changes in the absolute frequencies of ancient pottery in the Tell Halula site, as estimated 
by a neural network (Barceló and Faura 1997)
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reconstructed paleo-temperature was quite high 
during the Bølling–Allerød, when it reached val-
ues only found later during the warmest phase of 
the Holocene. The climatic transitions in and out 
of the Younger Dryas were very rapid and involved 
a change, which took place over 440 and 140 
years, respectively. Paleo-temperature remains at 
a maximum during the early Holocene, and this 
Radiolarian Holocene Optimum Temperature In-
terval predates the commonly recognized middle 
Holocene Climatic Optimum. During the -8200 
event, paleo-temperatures decreased, and this epi-
sode marked the establishment of a cooling trend, 
roughly spanning the middle Holocene (until ca. 
4200). Successively, since then and through the 
late Holocene, paleo-temperature follows instead 
a statistically significant warming trend. 

Bhattacharya and Solomatine (2006) have ap-
plied neural networks to model sedimentation as 
the consequence of a temporal process. Paruelo 
and Tomasel (1997) tested the potential of neural 
networks as predictive tools in ecology. Other 
ecological examples have been reported by Spitz 
and Lek (1999).

Demographic data are typically represented in 
a manner that is both spatially and temporally dis-

crete, at well-delineated, stable, spatial locations 
and fixed moments in time. How can an automated 
archaeologist visually represent the temporal 
change of spatially fixed geographic objects, for 
example, the historical transformation of social 
attributes for a number of geographical areas? One 
answer would be to compute and explicitly visual-
ize attribute differentials using a change map, for 
example, a map of population growth from Phase 
A to Phase B. Another common approach relies on 
map comparison by creating multiple maps using 
the same underlying base map. For example, maps 
showing social features for Bronze Age and Iron 
Age would be placed side-by-side. The GeoVISTA 
(http://www.geovista.psu.edu) research group has 
extended the principles underlying such side-by-
side comparisons of distinct temporal layers to 
three-dimensional self-organized maps (Gahegan 
et al., 2002; Takatsuka, 2001). They describe two 
methods for visualizing historical change. One 
method called chronological cluster analysis cre-
ates a different SOM and visualization for every 
time interval. The other method called “temporal 
cluster analysis” trains a single SOM with data 
from all temporal periods as input then creates 
different visualizations by applying the trained 

Figure 8.4. A more sophisticated neural network topology to infer temporal relationships
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SOM to data from different time intervals. The 
primary difference between these SOM-based 
approaches and common cartographic mapping 
is that they are not bound by the existing geom-
etry of geographic space, but instead attempt a 
holistic, simultaneous representation of a large 
number of variables in attribute space. However, 
they still leave it to the human observer to detect 
changes visually.

Skupin and Hagelman (2005) propose to 
explicitly represent changing attribute values 
of spatio temporal features as movement of 
these objects across the two-dimensional SOM 
surface. The core idea of the authors is that the 
explicit delineation of n-dimensional trajectories 
in a two-dimensional display space may add to 
our understanding of demographic change. The 
demographic data set utilized in this experiment 
includes 254 areas (aggregated units: settlement, 
village, town or territory) with 32 sample socio-
economic attributes for three temporal phases, 
what makes 762 n-dimensional input vectors (n = 
32). The SOM trained output layer consists of 100 x 
100 providing the ability to replicate both “global” 
and “regional” patterns existing in the data set. 
After neural network training, every one of these 
neurons is associated with one settlement, village, 
or area (input vector), socially and demographi-
cally described. One simple form of investigating 
temporal patterns in the trained SOM layer would 
be to visualize the year corresponding to each 
location. Remember that spatial locations where 
introduce three times, one for each temporal mo-
ment. For instance, it seems that certain portions 
of the output map were “abandoned” during the 
time between phase A and phase C, as indicated 
by the lack of any post phase A observations in 
some regions of the SOM. However, this still 
does not indicate whether geographical areas 
developed in similar ways after being similar at 
some moment in time. Knowing the specific path 
taken by individual counties and groups of coun-
ties can provide such information. The location 

of a settlement, village, or territory at a particular 
point in time is understood as a temporal vertex 
within a directed graph, in which direction de-
rives from the forward motion of time. The 762 
geographical observations are thus transformed 
into 254 trajectories, with the phase A location 
forming the first vertex, and so forth. In this way, 
at each time-step or historical period, a given 
aggregation unit (e.g., a geographically defined 
area) can be conceptualized as a locus in some 
attribute space. Different moments in time would 
lead to different loci. Given the continuous nature 
of temporal change typical for most demographic 
variables (certainly at the aggregation levels at 
which population data are handled by historians 
and archaeologists) and the natural order of time, 
different loci for the same unit can be linked to 
form a trajectory. In a visualization, the most 
natural representation of that trajectory would be 
through a directed, non-branching graph. When 
one says that two areas exhibit parallel patterns 
of development, this would assume somewhat 
similar (though not necessarily identical) loci at 
the same moments in time, which over multiple 
temporal periods leads to parallel trajectories. On 
the other hand, diverging development will cor-
respond to trajectories that start with early loci in 
relative proximity, but later loci that are far apart. 
When individual loci or whole trajectories are then 
linked to additional social, political, or economic 
events, then relationships between trajectories 
and specific socioeconomic developments may 
become expressed quite explicitly.

Although multilayer feed-forward networks 
trained both in a supervised way (backpropaga-
tion) and in an unsupervised way (SOM) provide 
interesting results, it is true that the mapping 
performed is static (Gupta et al., 2000; Kremer, 
2001). In fact, they are not describing a temporal 
process, but they classify temporal patterns by 
transforming the temporal domain into a spatial 
domain. For example, consider the following 
two vectors:
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011100000
000111000

Suppose these two vectors are different but 
they were generated by the same temporal process, 
that is, they are contemporaneous. A neural net-
work can be trained to treat these two patterns as 
similar, that is to say, to infer the same time step, 
although input values are clearly different. The 
similarity is a consequence of an external teacher, 
and not of the similarity structure of the patterns 
themselves, and the desired temporal pattern does 
not generalize easily to novel patterns. 

Recently, interest has increased in the ap-
plication of neural networks to learn historical 
trajectories, and to the identification and/or control 
of dynamic systems. In such cases, it is natural 
to use the networks involving dynamic elements, 
in the form of feedback connections, which are 
known as recurrent neural networks (see Chapter 
IV). If having a feed-forward neural architecture 
is what allows one to discriminate instances of 
prototypical things, then having a recurrent neural 
architecture is what provides one with the further 
capacity to discriminate instances of prototypi-
cal processes. What is interesting for a temporal 
recognition mechanism is that recognition occurs 
when something close to a prototypical sequence 
of activation vectors unfolds across the relevant 
population of neurons, when the activation vector 
carve out, over time, a special line or path in the 
relevant space (Churchland, 1995).

Several forms of recurrent networks have 
been proposed and they may be classified as 
fully recurrent or simple recurrent networks 
(Berthouze & Tijsseling, 2006; Chappelier & 
Grumbach, 1998; Ermentrout, 1998; Kremer, 
2001; Serpen, 2004; Sumpter & Bulpitt, 1998; 
Tijsseling & Berthouze, 2001). Boné et al. (2002, 
2004) has tried to integrate the best aspects of 
recursive networks with the well-known learn-
ing properties of back propagation algorithm. 
Just by adding some delay-connections and by 
adjusting the learning algorithm to learn directly 

the delay between connections. In fully recurrent 
networks, any unit may be connected to any other 
unit in the network and individual units may be 
input units, output units, or both. A temporal 
sequence of patterns can be stored in a Hopfield 
network, for instance, by using Hebbian learning 
that partially stores each pattern and partly stores 
the association between previous patterns and 
subsequent patterns. The network can be made 
to cycle through the various stored patterns in 
order (Ellis & Humphreys, 1999).

Examples of recurrent networks include net-
works trained using: (a) backpropagation through 
time, (b) recurrent backpropagation, and (c) 
real-time recurrent learning rules. Backpropaga-
tion through time is a training method for fully 
recurrent networks which allows backpropaga-
tion with weight sharing to be used to train an 
unfolded feed-forward non-recurrent version of 
the original network. Once trained, the weights 
from any layer of the unfolded net are copied into 
the recurrent network, which, in turn, is used for 
the temporal mapping task. 

Aihara and Ichinose (1999) consider the pos-
sibility of computational dynamics with spatio-
temporal chaos in neural networks as an example 
of a relation between deterministic chaos and 
computation. Properties of excitable dynamics 
with deterministic chaos and asynchronous up-
dating in biological neurons should generate rich 
spatiotemporal nonlinear phenomena at the level 
of neural networks. Their model is able to generate 
various complex phenomena with spatiotemporal 
chaos at the level of neural networks. Such global 
chaos self-organizes through nonlinear interac-
tion among elemental neurons with their own 
chaotic dynamics at the level of single neurons, 
while the behavior of each neuron is influenced 
by the global behavior of the network due to 
sensitive dependence on perturbations and fine 
bifurcation structure in the chaotic dynamics of 
each neuron. This hierarchical feedback between 
global spatiotemporal chaos at the network level 
and elemental chaos at the single neuron level 
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produces spatiotemporal dynamics with the ability 
of computation. 

In Chapter IV, I presented a simple recursive 
architecture, which can be very interesting to our 
purpose: the Jordan and Elman network (Elman, 
1990, 1992; Jordan, 1986), which allows time to 
be represented by the effect it has on processing. 
This means giving the processing system dy-
namic properties that are responsive to temporal 
sequences. In short, the network must be given 
memory. This alternative approach uses a recur-
rent architecture in which the output from the 
network at time t is fed back as part of the input at 
time t+1. This gives the network access to its past 
states, so that associations may be learnt between 
subsequent states. A system of this type is able 
to learn temporal sequences of states as a chain 
of associations. The training regime involved 
presenting each input vector, one at a time, in 
sequence. The task for the network is to predict 
the next input. The sequence wraps around, in 
such a way that the first pattern is presented 
after the last. For instance, imagine that some 
archaeological context can be described in terms 
of the presence/absence of four different Boolean 
variables. The contexts are input to the machine 
in their original stratigraphic order. 

Input  output
01101  00001
00001  01110
01110  11001
11001  11001
11001  00101
00101  ? 
 

The task is simply for the network to take 
the successive value from the input stratigraphic 
sequence and to calculate the subsequent value by 
producing it on the output layer. After each time 
step is introduced, the output is compared with 
the actual next value in the training set, and the 
backpropagation algorithm is used to adjust the 
network weights. Results: the network is not able 

to predict the precise order of specific values, but 
it recognizes that (in this corpus) there is a class of 
contexts typically following the previous ones.

Although the resulting temporal process is 
characteristically non-deterministic, it is also 
true that it is also not random or unconstrained. 
For any given sequence of temporal positions, 
there are a limited number of possible successors. 
Under these circumstances, it would seem more 
appropriate to ask whether the network has learned 
the class of valid successors at each point in time. 
We therefore might expect that the network should 
learn to activate the output nodes to some value 
proportional to the probability of occurrence of 
each value in that consecutive order. Therefore, 
to evaluate the final network performance we 
can compare the output with the probability of 
occurrence of possible successors. These values 
can be derived empirically from the training 
database; such calculation yields a “likelihood 
output vector” which is appropriate for each input 
and which reflects the context-dependent expec-
tations given the training base (where context is 
defined as extending from the beginning of the 
series to the input). Note that it is appropriate to 
use the likelihood vectors only for the evalua-
tion phase. Training must be performed on the 
actual successor values, because the point is to 
force the network to learn the context dependent 
probabilities for itself.

Recursive networks also constitute an inter-
esting alternative to traditional approaches to 
evolutionary archaeology. Phylogenetic methods 
such as cladistics are routinely borrowed from 
biology and applied to material culture, assuming 
that similarity reflects homology; two artefacts 
are similar because they are ancestrally related. 
One may be descendent from the other, in which 
case the shared traits are inherited through verti-
cal transmission. Or they may be descend from 
a ‘common ancestor’ in which case the common 
ancestor is depicted as a branching point (Lipo et 
al., 1997; Lyman & O’Brien, 2003; Mace, Holden, 
& Shennan, 2005; Maschner, 1996; O’Brien et 
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al., 2001; Shennan, 2000; Shennan & Wilkinson, 
2001). However, artifacts may arise independently 
yet be similar because they are alternative solutions 
within similar design constraints. Thus, similarity 
needs not reflect homology. Furthermore, whether 
or not two artifacts “share a common ancestor” 
can be quite arbitrary. The statistical approach to 
evolutionary seriation is then misguided. Recent 
advances in using graph models can revert this 
situation (Gabora, 1995; Lipo 2006). Even more 
interesting would be the use of genetic algorithms 
(cf. Chapter III, p. 106ff) or “cultural algorithms,” 
cf. Reynolds, 1999, Franklin & Bergerman, 2000), 
Bayesian networks (see also Chapter III, p. 122ff) 
or even recurrent neural networks, as we have 
presented here.

uNdERStANdiNg thE 
FutuRE: towARdS hiStoRiCAl 
PREdiCtioN

Time fluctuations are due to an almost infinite 
variety of social actions produced by agents that 
act independently from each other, and reproduce 
their actions without any apparent relationship 
with what they did before. However, even in the 
middle of the apparently chaotic changes of social 
activities through time, an automated archaeolo-
gist may see some appearance of order. If it can fit a 
neural network to the observed temporal variation 
among data, can an intelligent machine not only 
“predict” the next time step, but also “explain” 
how social action will be in the future? 

This task is the forecasting side of any kind of 
historical research. For purposes of this discussion, 
a forecast is simply a statement that a particular 
event—ideally one that has been specified un-
ambiguously—will occur (or might occur, with 
some unambiguous probability) at a point in the 
future (Schrodt, 2002, 2004). The “event” is usu-
ally the value of a continuous variable but they 
can also concern a discrete occurrence chosen 
from a relatively small set of possible events (e.g., 

Barcelona Football Club will or will not win the 
Championship; I will or will not lose my job after 
writing a book like this). As observed by Weigend 
et al. (1990), understanding the future, hinges on 
two types of knowledge: knowledge of underly-
ing laws, and the discovery of strong empirical 
regularities on observations of a given system. 

 There are two different types of forecasting 
with very different properties. Unconditional 
forecasts seek simply to predict the future under 
a ceteris paribus condition. The exercise is one 
of simple extrapolation: if things continue on the 
current track, then X, Y and Z will occur. This 
is the classical crystal ball problem; the most 
appropriate natural science analogy would be 
meteorology. Of greater interest is the contingent 
forecast—the “what if” question. The appropri-
ate natural sciences analogy here is chemistry 
(or applied physics, “engineering”), where vari-
ables are continually manipulated to establish 
true causal relationships. In other words, there 
are two kinds of historical predictions. The first 
one supposes to predict the future occurrence 
of some event from fixed factors; that is, “given 
these circumstances, what will happen?’” The 
second one could be expressed as “if this is what 
characterizes this condition, and this is how the 
circumstances have changed, so what will hap-
pen?”  (Schrodt, 2004)

The single greatest criticism of unconditional 
forecasting is that it can be trivialized as mere 
“data-mining:” take a very large number of vari-
ables, cram them into a generic model, crunch the 
numbers, and then accept the results irrespective 
of whether they make any theoretical sense. The 
data-mining approach is tempting because it is 
easy, it looks impressive, and it actually works 
in applications where one is interested only in 
unconditional forecasts to the exclusion of ex-
planatory theory or manipulation of the underlying 
variability. Contingent forecast is a much more 
difficult problem because contingent forecasts will 
only be correct if the model has identified true 
causal mechanisms; correlation is not sufficient. 
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For example, suppose a hypothesis indicates that 
infant mortality is a strong correlate of techno-
logical evolution, but in fact, infant mortality is 
simply a surrogate indicator for a cluster of other 
variables that are the “true” causes. In these cir-
cumstances, efforts to determine the degree of 
infant mortality in cemetery data will have only 
limited effects on predict the technological level 
of that society. This confusing of correlation and 
causality is probably one of the main reasons that 
forecasting has gotten such a bad name.

 How does our intelligent robot go about mak-
ing such historical predictions? Ideally, it must 
use past data to construct a set of basic rules, 
like Newton’s laws, that can be used to make 
predictions under very general circumstances. 
Unfortunately, this approach cannot always be car-
ried out in practice. In some cases, the underlying 
principles are not known or are poorly understood 
because the system of interest is very complicated. 
This is the case in the social sciences, in which 
relationships between various parameters are 
not known, and some of the relevant parameters, 
such as intention or goal-oriented action, may not 
be accessible to the automated archaeologist or 
quantifiable. Another problem with this approach 
is that often, even when the basic laws are known, 
direct solution of the equations is not possible 
without detailed information about initial values 
and boundary conditions.

To use a neural network for historical predic-
tion means that the temporal problem is solved by 
using error-correction learning since the training 
examples are drawn from previous, present of 
future realizations of the historical process itself 
(Weigend et al., 1990). Let t’(n) denote the one-
step prediction produced by the neural network 
at time n. An error signal e(n) is defined as the 
difference between t(n) and t’(n), which is used to 
adjust the free parameters of the neural network. 
Based on a quantification of such error signals, 
predictions may be seen as a form of model build-
ing in the sense that the smaller the automated 

archaeologist makes the prediction error e(n) in a 
statistical sense, the better the network serves as 
a model of the physical or social process respon-
sible for generating the data. When this process 
is nonlinear, the use of a neural network provides 
a powerful method for solving the prediction 
problem, because of the nonlinear processing 
units that could be built into its construction. The 
only possible exception to the use of nonlinear 
processing units, however, is the output unit of the 
network: if the dynamic range of the time series 
is unknown, the use of a linear output unit is the 
most reasonable choice.

A typical example of historical prediction 
though a neural network is Patricia Cerrito’s 
forecasting of the success or failure of historical 
revolutions (Cerrito, 1996). She looks for the iden-
tification of patterns in the historical development 
of revolutions. She defines a revolution as a public 
uprising against the established government, 
which may have success (change the established 
government) or not. Seven variables are considered 
as initial conditions at the start of any rebellion: 

Opponent
  1= established government is an external 
 force 
  0= established government is an internal 
 force
Ideals
       2= republican or democratic government 
       1= dictatorship 
        0= no plan (or overthrow existing order only)
Outside pressures
 1= external force supporting rebels 
      -1= external force supporting existing order 
       0= no external force
Economic stability of rebels
      2= very strong 
      1= strong 
     -1= weak 
     -2= very weak
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Economic stability of established order
 2= very strong 
 1= strong 
      -1= weak 
      -2= very weak
Stability of government of rebels
        2= very strong 
  1= strong 
 -1= weak 
 -2= very weak
Stability of government of existing order
   2= very strong 
         1= strong 
  -1= weak 
  -2= very weak
    1= established government is an external 
  force 

To complete the model, an output variable must 
also be defined. Its values are Y=1 if the rebellion 
is successful and Y=0 otherwise.

The author used historical data from well stud-
ied revolutions, from the American Independence, 
to Soviet Revolution. The complete list of histori-
cal events used for training the neural network 
are: Maccabees (Judea), Zealots (Judea), Medieval 
England Magna Carta, Cromwell 1649, Scot-
tish Rebellion of Bonnie Prince Charlie, French 
Revolution 1789, American Independence, South 
America Independence Wars, French Revolution 
1848, German Revolution 1848, Hungary 1848, 
Bohemia 1848, Italy 1848, American Civil War, 
Various Indian Rebellions in United States, Mexi-
can Revolution, Russian Revolution of 1917, Irish 
Rebellion of 1921, Spanish Civil War (1936-1939), 
the Frente Sandinista in modern Nicaragua.

The purpose of the analysis was not a classifica-
tion of social facts but predicting the consequences 
of social uprisings. As Cerrito explains in her 
analysis (1996), once learned using the appropriate 
data from historical sources, the Neural network 
was able to predict the most probable outcome 
of recent social uprisings in Eastern Europe (the 
example of Bosnia, for instance), when introduced 

a description of political situation and social cir-
cumstances in the input.

Of related interest is Lagazio and Russett (2004; 
Lagazio, 2006) work, which used backpropagation 
neural network for predicting interstate conflict in 
actual times. The historical event to be predicted 
(dispute), or network output, is one if a militarized 
interstate dispute had begun and is zero otherwise. 
Only the initial year of the militarized conflict is 
included because the authors’ concern is to predict 
the onset of a conflict. Input variables include al-
lies, geographical contingency, distance between 
the two states’ capitals, political information (if 
either one or both states in the dyad are a major 
power). Democracy is another input variable 
coded as a 21-point scale variable measuring the 
level of democracy in the less democratic state in 
each dyad. Dependence is a continuous variable 
measuring the level of economic interdependence 
(dyadic trade as a portion of a state’s gross domestic 
product) of the less economically dependent state 
in the dyad. Their model correctly recognized 
82.4 percent and 64 percent of cold war era and 
pre-cold war era military disputes respectively; 
it also correctly predicted 72.2 percent and 65.5 
percent  of cold war and pre-cold war era non-
military disputes respectively. This is an example 
of mixed predictive power from the backpropaga-
tion algorithm.

Let us present some examples of automated 
systems that try to explain future behavior of 
dynamic systems. Mann and Benwell (1996) built 
a neural network able to predict the probability 
of land degradation in the future. Degradation 
is multifactor in origin, spatially heterogeneous, 
temporally variable, and affected by land manage-
ment. Thus, any measure of land condition must 
reflect a large number of contributing factors, and 
a parametric expression for such a measurement 
would be obscure. The neural network had 31 input 
neurons about ecological features, topography, 
grazing at different periods, rabbit population, 
frequency of burns in 25 years, and so forth. The 
purpose of the neurocomputational approach was 
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to predict the percentage of bare ground (degraded 
land) at different time steps. The network output 
was a kind of “thermometer” encoding scheme 
where ten outputs encoded the ten intervals 
of bare ground percentage (between 0 and 10, 
between 10 and 20, etc.). Time information was 
not explicitly coded as a factor, but an historical 
database consisting in ecological records from 164 
sites was available, totaling 1276 observations. 
The resulting neural model correctly predicted 
the training data, and correctly generalized to 
test information gathered for additional sites. The 
model was then used to interpolate non-recorded 
years, obtaining a characteristic nonlinear map-
ping of time/land degradation. Such a mapping 
was then used to simulate ecological history, 
simulating, for instance, the occurrence of a big 
fire, the temporal dynamics of natural recovery 
of degraded land in those circumstances.

Openshaw and Turner (2000) used a neural 
network for forecasting global climatic change 
impacts on Mediterranean agricultural land use 
in the 21st Century. The authors employed a mix of 
GIS, neurocomputing, and fuzzy logic technolo-
gies to attempt the prediction of agricultural land 
degradation risk under various climate change 
scenarios. 

Due to the extreme complexity of any social 
system, few predictive models have been built 
which truly represent the dynamics of settlement 
growth and which can provide consistent results 
with what we know about such changes. The 
goal of these models is to establish functional 
relationships between a set of spatial predictor 
variables that are used to predict the locations of 
temporal change on the landscape. The variable 
values and actual instances of land use change are 
typically observed from historical data and used 
to establish functional relationships that can be 
used to extrapolate land use change probabilities 
into the future. Examples of this line of research 
come from the simulation and prediction of the 
changing pattern of land uses (Almeida & Gleriani, 

2005; Diappi et al., 2002, 2004; Li & Yeh, 2002; 
Liu et al., 2005; Pijanowski et al., 2002).

Neural networks designed to predict land use 
dynamics are supervised learning models using 
historical data to predict the future use of some 
specific area. This means that the network learns 
from a set of spatiotemporal events where land 
use at different moments of the past is known, the 
connections between the final state at time t+1 (the 
target) and the local and neighboring conditions 
at time t. The input describes the urbanized state 
of the area and of its neighborhood at the time t, 
the output variables represent only the cell state at 
the time t+1. Once the learning and testing phase 
has been concluded, the averaged weight matrix 
is processed with a data set of cells “potentially” 
in urbanization in the next time lag. The resulted 
pattern shows a probable scenario where prevail-
ing urbanization process may take place.

Some of these examples make evident the 
strong relationship between time and space. Time 
and space are not different ways of considering 
the nature of social activity. Temporal processes 
influence the spatial position of social acts, in the 
same way the spatial processes influence the tem-
poral reproduction of the same actions. Therefore, 
the analysis of archaeological events necessarily 
implies to consider both space and time, because 
things happen at precise locations and moments. 
The intentionality of social actions performed in 
the past should be explained not only in terms of the 
spatiotemporal “influence” an action performed 
at some place and at some moment has over all 
actions in the same spatiotemporal proximity. That 
means that any archaeological pattern existing at 
one moment of time is the result of the operation 
of processes that have differential spatial impacts. 
A spatiotemporal analysis will be based on an 
examination of:

• How the spatial distribution of an action has 
an influence over the spatial distribution of 
other(s) action(s), 
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• How the temporal displacement of an action 
has an influence over the spatial distribution 
of other(s) action(s),

• How the temporal displacement of an action 
has an influence over the temporal displace-
ment of other(s) action(s), and

• How the spatial distribution of an action has 
an influence over the temporal displacement 
of other(s) action(s).

Predicting the future implies that social action 
can generate the reproduction of similar actions, 
or it can prevent any other similar action in the 
same spatiotemporal vicinity. Some of the actions 
performed here and now increase the chances of 
one type of action and decrease the chances of 
others there and then. The automated archaeolo-
gist is looking for whether what happened in the 
past is the cause of what will happen in a neigh-
boring future (Barceló, 2002). Its analysis then 
pretends to examine if the characteristics in one 
spatiotemporal location have anything to do with 
characteristics in a neighboring location, through 
the definition of a general model of spatiotemporal 
dependencies.

A neural network does not discover always an 
historical trend. The inputs to the network may not 
contain sufficient information about the temporal 
sequence in order to predict that time point. That 
is, the input vector, t(k),...,t(k-m), may be very 
distant in the time from the prediction horizon, 
and it may not have any relation with that histori-
cal moment of the trajectory. A neural network 
has only sense when a relation exists between 
the information available at current instant and 
the prediction horizon. However, in many cases, 
it will forecast the future of a system with very 
few errors. It is unclear what is being estimated 
when neurocomputational smoothing functions 
are fitted to time series data. No simple paramet-
ric function is employed, and the use of different 
learning algorithms could easily yield markedly 
dissimilar functions. This criticism is especially 
relevant in our case. If an automated archaeolo-

gist arrives to compute the existence of trend in 
the historical data using a neural network, should 
we conclude that it has discovered the source of 
variation related to time? 

diRECtioNS FoR FuRthER 
RESEARCh

Archaeology is one among the other GeoSciences. 
In fact, there are not many differences between 
geography and our discipline. Maybe, the only 
way of differentiating both sciences is because 
archaeology studies “finished” social actions, 
whereas in geography the action is still being 
performed. Therefore, in the case of archaeology, 
the spatiality and the temporality of social actions 
cannot be observed but inferred from indirect 
evidence. Archaeologists cannot see the social 
actor, and everything should be explained from 
some of the consequences of what he and she did. 
This strong similarity between both disciplines 
makes that geographers and archaeologists can 
learn from the other discipline.

We have seen in this chapter that neurocom-
putational applications in geography and other 
geosciences are more numerous and interesting 
than in archaeology. Archaeologists have only 
applied some simple techniques in very trivial 
problems. However, there is considerable room 
for improving these applications. After all, the 
nature of the spatial problem is nearly the same. 
Only data are somewhat different.

We need more theoretical investigations on 
the assumptions of spatial models. The very idea 
of spatial causality has to be analyzed, because 
we do not know if “space” can be integrated 
in an explanation as a causal factor, or is it a 
descriptive dimension of human action. Only 
by developing these theoretical questions, new 
neurocomputational and artificial intelligence 
techniques will prove their utility. In this chapter, 
I have advanced some elements for modeling 
the spatial modalities of social actions as a kind 
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of input-output mechanism. Further research is 
needed, however. In the same way, the “spatial” 
nature of self-organized maps has to be further 
explored to build more sophisticated representa-
tions of social “spaces.”

We can complaint about the underdeveloped 
nature of spatial questions and tools in archae-
ology, but temporal analysis is even in a worst 
condition. This is a paradox, given that the very 
name of our discipline archeo-logy implies the 
notion of time. What is time? How a temporal 
model should be defined? These questions still 
wait to be asked.

The research domain that can interest more to 
present day archaeologists is the linking between 
neural networks and geographical information 
systems. I am not referring to the simple GIS 
systems usually available, that are no more than a 
database and some cartographic representations, 
but complex spatiotemporally related knowledge 
bases. In the same way that a lot of effort is doing 
nowadays in temporal GIS, we need to integrate 
data about how spatial and temporal locations 
of social action vary in a neurocomputational 
framework. Such integration would provide the ad-
vantages of nonlinearity, non-assumptions based 
and non-monotonic character of neural networks 
to the domain of spatial and temporal processing 
(www.geovista.org, Gahegan et al, 2002).

A similar approach is being developed in ge-
ography, especially around the GeoVista project 
and its GeoVista Studio software program.
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An Automated Approach to 

Historical and Social 
Explanation
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NEuRoClASSiFiCAtioN AS 
SoCiAl ExPlANAtioN

Since the beginning of the book, we know that 
solving archaeological problems implies answer-
ing a double causality question:

• Given the perception of visual inputs, the 
automated archaeologist should explain 
what social activity produced in the past 
the evidence perceived in the present. 

• Once it knows what social activity was 
performed, where, and when, the automated 
archaeologist should explain why such activi-
ties were performed there and then, and in 
what way. 

It is obvious that answering the first question 
is a condition to solve the second. In the same 
way as human archaeologists, the automated ar-
chaeologist needs to know what, where and when 
before explaining why some social group made 
something, and how. That is to say, only after 
having explained why archaeological observables 
are the way they are in terms of the consequence 

of some social activity or bio-geological process 
performed in the past or in the present, the au-
tomated archaeologist will try to explain more 
abstract causal processes. 

In previous chapters, we have been dealing, 
for the most part, with the first kind of problem. 
Automated discovery programs allow describing 
the action or process, which most probably caused 
the actual appearance of the archaeological record. 
Nevertheless, the automated archaeologist has 
not yet discovered why that activity took place 
there and then. Things become a bit more difficult 
when the automated archaeologist moves from the 
explanation of objects to the explanation of action 
and social behavior, because it should take into 
account people and people motivations.

The simplest way of understating social behav-
ior is by classifying it. That means an automated 
archaeologist will explain people and social 
acts by recognizing them as members of some 
previously defined classes of people or events. 
Social explanation would then consist in the ap-
prehension of the individual case as an instance 
of a general type, a type for which the intelligent 
machine should have a detailed and well-informed 



���  

An Automated Approach to Historical and Social Explanation

representation. Such a representation allows the 
system to anticipate aspects of social activity so 
far unperceived. 

It is usual in the social sciences to classify 
people according to social attributes. Computa-
tional intelligence tools can help in such a clas-
sification. In the social sciences, a neural network 
can classify a population into homogenous groups 
using factors such as age, sex, and other socio-eco-
nomic variables to infer social status or position. 
A classical example is that of Meraviglia (1996, 
2001) on social mobility, where input variables 
“gender,” “father’s education,” “father’s class posi-
tion when age of respondent is 14,” and so on, are 
used to predict “son’s (or daughter’s) current class 
position.” Although this can be a good example 
of social explanation, no any causal explanation 
should be generated in that way. After all, we 
have already examined many examples of causal 
explanation based on alternative approaches, and 
we will present some other ways at the end of the 
chapter. In any case, we can explore the explana-
tory possibilities of “social classification” beyond 
trivial associations.

The most obvious way of classifying people to 
understand social dynamics in archaeology can 
be done in burial analysis. By studying the differ-
ences between graves according to the material 
remains of funerary rituals, an automated archae-
ologist can understand how social personality was 
built by a human group in the past. Wealth and 
poverty in acient times, prehistoric social elites 
and inequality, past evidence of social marginality 
can be discovered by studying the quantity and 
diversity of archaeological grave goods, ways of 
body manipulation, etc. In general, the quantity 
of labor invested in a funerary ritual is a good 
estimation of the social importance of the buried 
individual.

Davino et al. (1999) have studied the Iron Age 
Italian cemetery of Sala Consilina. 173 graves were 
selected and described using as input variables the 
following nominal variables: preservation, burial 
length, sex/age, depth, quantity of grave goods, 

most frequent grave goods category (clay, met-
als), and type (according to the presence/absence 
of weapons and other features). The goal was to 
calculate a classification rule for age/sex, based on 
grave attributes. A neural network was so created 
using 24 inputs (one for each qualitative value), 
three outputs (male, female, and child), and one 
hidden layer made of eight units. The network 
was trained with 110 graves whose skeletons were 
determined according sex and age, and used using 
the remaining 63. With training data, the network 
obtained 90.26 percent of correct classification, 
so it was used with the unclassified data, and was 
able to determine 39 male burials, 15 female, and 
nine children.

Although rather simple, this example is not 
trivial. It explains how we can explain the dif-
ferent social personality of women and men in 
Italian peninsula during 9th-7th centuries B.C. The 
limitations of the approach lie on the supervised 
nature of the neural network. The only “known” 
category to be predicted is “sex” or “age,” because 
there is an independent instrument for measuring 
them (physical anthropology analysis). If we could 
find additional known categories, a social clas-
sification approach would be very interesting for 
understanding social personality. For instance, if 
we estimate the quantity of labor invested in mak-
ing some burials, we would build an input-output 
function relating the presence/absence of some 
funerary symbols, predicting how they relate (in 
a nonlinear way) with social status, measured in 
terms of the quantity of labor invested in the burial. 
Additionally, we can use general information 
about a human group (productive mechanisms, 
degree of inequality, kinship, exchange, etc.) and 
build a neural network correlating observed ma-
terial culture items (archaeological record) with 
interpreted social categories.

On the other hand, we can follow an unsu-
pervised approach, that is to say, trying to build 
a general classificatory framework to explain 
observed differences. Let us consider the follow-
ing simulated example. Suppose the automated 
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archaeologist investigates a Late Bronze Age 
cemetery from Western Europe. 65 graves have 
been identified from three different historical 
phases, which can be ordered consecutively 
(Phase A, Phase B, Phase C). Hypothetically, this 
society evolved slowly towards increasing com-
plexity and inequality, in such a way that during 
the two first phases, burials are relatively similar 
and homogenous, and that beginning in Phase C, 
social elites appear, together with social exclusion 
practices. We want to explore this situation with a 
description of grave goods discovered at different 
burials (six different kinds of pottery vases, the 
quantity of bronze, gold and iron, the quantity 
of animal bones, and the typology of the burial 
itself (type of ritual, type of grave). Given that 
this is an unsupervised analysis, we will build a 
self-organized map. I have used for this example 
the Databionics ESOM freeware tool.

The network contains 17 input units (one for 
each variable describing the archaeological record 
of burial practices documented at the simulated 
site). The SOM layer has been defined as an array 

of 20x20 neurons in a rectangular neighborhood 
configuration (see details on Chapter IV). After 
50 iterations, the corresponding U-Matrix is the 
following one (Figure 9.1).

As it was presented in Chapter IV, the U-ma-
trix should be understood as the cluster structure 
revealed by all the variables together. It should be 
interpreted as follows: a group of similar burials 
falls into a light grey or white in the U-matrix sur-
rounded by black areas. The dissimilarity among 
the different clusters is indicated by the intensity 
of grey level on the U-matrix. In this case, we can 
suggest a minimum of six groups. 

Let us explain this social clustering by activat-
ing relevant components separately. A common 
first step in investigating unsupervised classifica-
tion results is to inspect vector weights for all the 
neurons, one component plane (i.e., variable) at 
a time. Through these component planes we can 
realize emerging patterns of data distribution on 
SOM’s grid (Kohonen, 2001), detect correlations 
among variables and the contribution of each one 
to the SOM differentiation. 

Figure 9.1. Self-organized map of simulated burial data (U-Matrix)
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Figure 9.2 gives three of the component planes 
in a grey level representation, where the darker 
the color, the higher the contribution of that factor. 
In the case of “bronze” and “iron,” both prestige 
items, there is a region in the self-organized map 
were burials classified there show high values. It 
coincides with the detected cluster in the inferior 
left sector of the U-matrix (Figure 9.1), represented 
as a light-grey area. If we consider now some 
non-prestige items like “decorated pottery,” they 
concentrate on another region of the SOM, which 
distinguishes itself from the group of social elite 
burials.

In this way, the SOM layer configures a con-
ceptual space for social categories. We can label 
different areas using appropriate social classifica-
tion labels. That means that, by relating component 
displays, an automated archaeologist can explore 
and make interpretations of relationships and pat-
terns in the dataset. New knowledge can be found 
by this hypothesis formulation, exploration, and 
by the association between several representa-
tions of attributes.

The treatment of the dead during conflict may 
vary significantly with the conventional behaviors 
associated with mortuary customs. Stephanie 
Spars (2005) has investigated the relevance of so-
cial variability among burials in time of conflicts. 

She intends to explore the treatment of war dead 
across time, space, and culture by identifying 
characteristics of anomalous sites/behaviors at 
burial sites within conflict areas and suggesting 
possible explanations for those deviations from 
normative practice. She has build a SOM neural 
network using as input the military or civilian 
status of the individual, the presence of norma-
tive container associated with the individual, the 
cause of death (related to combat, extrajudicial, 
disease, natural), the mutilation of the corpse, the 
normative position of the body, presence of ritual 
markers, grave marker, cloth, presence/absence of 
grave goods, permanent or temporary cemetery, 
intentional obscuration. The author analyzed five 
datasets from seven different conflict episodes 
spanning from the 15th century to the late 20th cen-
tury. Each data set represents a different century, 
type of conflict, culture (including social and/or 
political groups), and grave type. The five data sets 
are: the battle of Towton mass grave (Medieval 
England); the Snake Hill mass grave (Canada, 
War of 1812); the remnants of four graves from 
the American Civil War battle of Antietam; six 
individual graves from Ox Hill, Virginia, dated 
on U.S. Civil War; the battle of Little Big Horn 
(Custer Battlefield) graves; four mass graves in 
three provinces of Spain from the Spanish Civil 

Figure 9.2. Self-organized map of simulated burial data (component planes)

Decorated PotteryBronze Iron
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War (1936-1939); graves from the United Nations 
military engagement in the Korea peninsula; and 
several small graves from conflicts in the Balkans, 
one site in Bosnia-Herzegovina and another site in 
Croatia. Additional data sets contain a description 
of normative burials at each historical situation. 
The SOM method was used to create clusters 
of data, representing the three conflict types, 
friendly, neutral, and hostile, and to examine cor-
relations between variables within the data set as 
a whole. Standard statistical clustering methods 
produced good differentiation of normative versus 
conflict burials, although these tools showed their 
incapability of extracting mining from the diver-
sity of data, geographic regions, and conflict type. 
The SOM also shows clearly two main groups: 
normative burials vs. conflict burial, based on 
cemetery type. These two parts are then further 
divided into six smaller clusters, which identify 
subtle variations in both normative and conflict 
behavior, based on the presence/absence of ritual 
markers (characteristic of 19th century American 
data), and on the relevance of hostile burials, that 
is, civilians killed extra-judicially without any 
normative grave goods or markers.

Those examples allow us to consider how 
SOM clustering of social groups provides a good 
representation of the natural levels of fuzziness 
that seem to characterize social data (Astrom & 
Vencatasawmy, 2001; Lobo et al., 2004; Open-
shaw, 1994). Many social features vary in size 
and thus the level of precision and resolution of 
the data varies geographically. The main problem 
in social classifications is the “sense” that cluster 
labels should have, that is, their correspondence 
with what we know about socio-economic and 
demographic structure, and on the degree to which 
the variables and data selected as input deliver 
results that are perceived to be useful at the end 
of the process (Openshaw et al., 1995). 

Going a bit beyond social groups in the past, a 
similar approach has been used to build a universal 
conceptual map of the concepts of welfare and 
poverty (Kaski & Kohonen, 1996; Kohonen, 1989). 

Here the data consisted of World Bank statistics 
of countries in 1992. Altogether, 39 indicators 
describing various quality-of-life factors, such as 
state of health, nutrition, educational services, etc, 
were used. The complex joint effect of these fac-
tors can be visualized by organizing the countries 
using the self-organized map. Countries that had 
similar values of the indicators found a place near 
each other on the map. 

Social scientists are using self-organized net-
works in this way for categorizing social groups. 
Winter and Hewitson (1994) used social data from 
South African census to investigate racial and 
economic separation after the apartheid era. The 
resulting SOM layer was used as a classification 
of the spectrum of social characteristics. Among 
the overall patterns that emerge in this layer, the 
racial stratification is readily noticeable in the 
U-matrix: the “white” group is dominant in the 
lower right hand side of the image but is noticeably 
absent to the center of the image. By contrast, the 
“colored” group dominates the center. 

Diapi et al. (1999) have used a neural network 
approach to study how various social factors (i.e., 
criminality, low cultural level, youth unemploy-
ment, low housing quality) affect sustainability. 
In their model, the authors used three kinds of 
indicators: the first group of features is used to 
estimate how the quality of human life is sup-
ported by the functional-environmental structure 
that offers possibilities for social interaction, but 
also risks of social and environmental degrada-
tion. The second group concerns the complex 
relationships between residence, labor, and 
income of the population, and the third group is 
designed to measure the economic vitality of the 
community, the efficiency of the urban structure. 
Negative externalities include the risks of eco-
nomic stagnation, reduction of investments and 
building degradation. 

Ponthieux and Cottrell (2001) proposed to use 
the Kohonen algorithm first to describe how the el-
ements of living conditions at modern households 
are combined, and secondly to classify households 
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according to their living conditions. The main 
interest is to analyze not only quantitative dif-
ferences in the “levels” of living conditions, but 
also qualitative differences within similar “levels.” 
Living conditions are described by variables about 
the dwelling itself, and about the environment. 
In a first step, the authors classify only the mo-
dalities, in order to obtain a good description of 
living conditions: how the characteristics of the 
environments and the opinion of people about 
their homes are combined. In a second step, the 
authors classify the observations, searching for 
a consistent grouping of households described 
only by their living conditions. The classifications 
obtained tend to confirm that beyond differences 
in the “level” of (bad) living conditions, there are 
significant within level differences in the nature of 
the difficulties. At first glance, the resulting SOM 
layer shows a first social category grouping very 
serious living conditions (low standard dwelling, 
absence of very common durable goods, and priva-
tions in elementary consumptions), a second one 
corresponding mainly to other problems relating to 
the dwelling and environmental disadvantages and 
a last group, at the “frontier” between “negative” 
and “neutral” conditions, characterized by the in-
ability to afford one week’s holidays or replacing 
worn out furniture that suggest a particular status 
for these items. Similar investigations have been 
published by Koua and Kraak (2004), Lobo et al. 
(2004), Silva et al. (2004), Skupin and Hagelman 
(2005), Ju et al. (2006). 

All those examples contribute to emphasize 
a very important aspect of the “classification as 
explanation” approach. Even in the case of un-
supervised learning, we need some prior knowl-
edge in order to experiment with the resulting 
classification and be able to transform it in a real 
conceptual space. In all those cases, authors had 
some knowledge that allowed making relevant 
questions to the classification, for instance: “where 
in the self-organized map can be placed “poor” 
countries, or “negative living conditions.” In the 
case of archaeological explanation, it is important 

to consider this fact. Applying artificial intel-
ligence algorithms to excavation data is a futile 
task, because observed data are not knowledge to 
be transformed into explanations, it is perceptual 
knowledge waiting to be explained in causal terms. 
If we want to create a conceptual map, then we 
need an exhaustive list of observations, in such 
a way that all variation is included. We need to 
know what “poor” means, before recognizing 
some elements of the archaeological record as 
“poor,” or “rich,” or anything similar. That is, 
we need observed causal events in an exhaustive 
set of different situations to obtain predictions 
before explaining. Only once you have obtained 
the knowledge, you or your automated machine 
will explain observed data.

towARdS A 
NEuRoComPutAtioNAl 
APPRoACh to SoCiAl dyNAmiCS 

Besides being valuable tools for pattern recogni-
tion and functional inference, neural networks 
possess another interesting property: they can be 
viewed as complex systems, in which the low-level 
interaction of many simple components produces 
some observable order without any intervention 
of a higher order factor. Consequently, if we in-
terpret highly interconnected neurons as social 
agents, and connections as interaction flows 
between people, we will have a model of social 
dynamics, whose behavior is described not by a 
system of coupled differential equations, but by 
a neural network. 

When using the neurocomputational analogy, 
we are implicitly assuming that at some level of 
the abstraction, the functioning of society may 
be regarded as analogous to the functioning of 
a nervous system (Makarenko, 2006; Minsky, 
1985; Nijkamp & Reggiani, 1998; Parisi & Nolfi, 
2005; Puljic & Kozman, 2005; Schrodt, 2004; 
Szilagyi, 1991). Whereas, the nervous system is 
composed of individual neurons connected by 
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synapses, and the state of each neuron depends 
on the signal arriving across synapses from other 
neurons, society is composed of individuals (or 
social roles), interlinked by social relationships. 
People’s feelings, cognitions, and actions depend 
on the social context of each individual, which in 
turn is composed of other individuals. 

Obviously, the neural network is only an anal-
ogy: social agents clearly do more than adding 
information they see and listen. However, the 
organizational structures of human societies re-
semble neural networks more than they resemble 
regression or expected utility equations. Neural 
and social networks have several common fea-
tures. Both can be represented by a labeled directed 
graph structure, consisting of a set of nodes and 
a set of links connecting pairs of nodes. It is the 
pattern of interconnections what it is represented 
mathematically as a weighted, directed graph. 
The vertices or nodes represent basic comput-
ing elements (social agents), the links or edges 
represent the connections between agents (social 
relationships), the weights represent the strengths 
of these connections, and the directions establish 
the flow of information. The meaning of nodes 
(the “personality” of each social agent) plays no 
direct role in the computation: the social model is 
based only on the activation values of social agents 
and not on the individual characteristics of each 
one. However, labeling social agent nodes play 
an important indirect role, because the nature of 
the input to the model depends on the labels and 
the output of a model depends on its input.

To model a human society using this particu-
lar kind of network, we need to declare how the 
social agents process information arriving at the 
incoming links and disseminate the information 
on the outgoing links. Connections in network 
models represent influences arriving at each site 
from the rest of the sites in the network. That is, 
social agents mutually influence each other as par-
ticipants in a group. People continuously develop 
their relationships by connecting or disconnecting 
with others. The competition for connection space 

is intense, and success in finding and maintaining 
a connection depends on the activation of relation-
ships. Therefore, by using a neurocomputational 
model of a society in which inhibitive links and 
excitative ones can coexist, it can be shown how 
the sole structure of social influence can originate 
stabilization or endogenous fluctuations in the 
state of the agents. In this way, non-convergent 
dynamics are derived from a quantitative effect, 
which is the number of neighbors. At the level of 
the individual agent, the network’s architecture 
of connections and the weights of the individual 
connections can change because of the agent’s 
interactions with the external environment, and 
these changes translate into changes in behavior 
(learning). At the population level, a social agent 
is a member of an evolving population of indi-
vidually different agents and the architecture of 
connections and/or the connection weights of the 
agent’s neural network are encoded in the agent’s 
inherited class membership. Social identity and 
group membership reproduce selectively and 
with the constant addition of new variants (social 
change, social mobility) and it results in neural/
behavioral changes in successive generations of 
agents (evolution). This neural representation of 
social dynamics may serve then as a bridge be-
tween micro-and macro-levels of descriptions of 
social reality. The stable solutions of the system 
of interconnected people could represent stable 
formations in society. The network parameters like 
“energy,” “learning rate,” “temperature” could 
be translated as ideas of social energy and social 
temperature, that is to say, as emergent social 
properties produced by the interactions between 
individuals. Changes in society would then be 
explained as redistributions of the connections 
between the units (Szilagyi, 1991). 

There are different levels of abstractions for 
neural and social network models. One abstraction 
would represent a human society as a multilayer 
organization: the input layer consists of informa-
tion that enters from the external environment 
(Schrodt, 2004). This information is well orga-
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nized (the number of neurons and input channels), 
but each social agent at the middle layer (or layers) 
integrates different information and knowledge 
about other people and circumstances, weighing 
the reported information positively, negatively or 
ignoring it altogether. Each of these social agents 
has access to all of the collected information, but 
they use it differently. For example the member 
of a social and political elite interested in recom-
mending military activity in a conflict might posi-
tively weight information on power disparities, 
negatively weight the presence of social conflict 
in his/her collectivity, and ignore information 
on the cause of social conflict. These individuals 
are finally involved in some collective behaviors 
(output units), which modify the environment 
and the knowledge each individual has about the 
other people and their circumstances. Activation 
would flow from knowledge to behavior, from 
information to activity in different cycles, modify-
ing interaction flows between individual at each 
time step, modifying potential behavior, and even 
the relationships between the individuals. In this 
particular example, and contrary to what happens 
in the majority of feed-forward networks, the units 
representing social agents (neurons at the middle 
layer or layers) are all interconnected by weighted 
links that simulate power relationships.

Alternatively, a human society can also be rep-
resented using a competitive network (Situngkir, 
2003). In such a neural network, every neuron 
represents human actions and the social system 
evolves in the way each agent competes to sur-
vive, while the winning agents are imitated by the 
losing ones. The bounded input and mechanism 
to produce certain behaviors can be viewed as a 
legitimization of the norms or morality. 

Bellomo et al. (2007) offer a much more de-
veloped analogy. They describe a social system 
as constituted by a large population of interacting 
individuals. Their number is constant in time. 
Individuals are divided into several social levels 
characterized by different social states, where the 

lowest level corresponds to extreme poverty and 
the highest to the maximum level social state. 
The key point in this model is that interactions 
modify social status. They have to be precisely 
regarded not as individual based interactions, but 
as the output of complex mechanisms such as 
social conflicts, welfare politics, taxation politics, 
economical decisions, and so on. The overall 
wealth is known and is preserved, as a global 
quantity, in the evolution. Political management 
may operate in different ways. Specifically, it is 
important in modeling to distinguish between 
interactions where high-level classes operate to 
help low-level classes to improve their state, or 
in contrast, situations where high-level classes 
exploit lower level classes.

Based on what is now known about the proper-
ties of neural networks, these different approaches 
provide at least three advantages in explaining 
social activity (Schrodt, 2004). First, in contrast 
to a finite set of social principia or laws, a human 
society represented as a neural network has some 
associative recall, error correction, insensitivity to 
missing information, and resistance to systemic 
failure. Because in social groups individuals may 
fail randomly—inexperienced or incompetent 
leaders, blindness for long term consequences of 
each action, insistence on self-profit above any 
other “rational” decision or the effect of isola-
tion, this property of insensitivity to individual 
failure is particularly important. Those capabili-
ties derive from the networked structure of the 
organization, not from the cognitive capabilities 
of its individual members. Second, a network 
structure is an effective means of dealing with 
social organization bandwidth limitations. Units at 
the input level act as feature detectors: in deciding 
whether to raise concerns about an issue, agents 
at the middle layer can use their high bandwidth 
associative and sub-cognitive capabilities to infer 
complex motives, draw historical analogies, and 
deal with multiple counterfactuals and contingen-
cies. They weight the information coming from 
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the exterior and continually adjust those weights. 
On the contrary, the information that must be 
transmitted through the limited organizational 
bandwidth is simple: one needs only to know 
whether individuals are sending “on” or “off” 
signals, and the only decision one must transmit 
is one’s own resulting state. 

Let us review some analogies between neural 
networks and social dynamics. A very simple 
example is Hinton’s model of kinship knowledge 
and reasoning (Hinton, 1986). A neural network 
was designed and trained, so it learned how an 
individual could be socially related to another 
individual. Consider for instance the case of kin-
ship where a kind of automated anthropologist 
has to calculate that person1 is-the-mother-of 
person2. Hinton designed a multi-layered network 
to carry out a reasoning task involving the kin-
ship relations between 24 individuals. The input 
contains two neurons, one for depicting people, 
and another for containing the different social 
relationships (mother, father, son, daughter, etc.). 
The output neuron should contain the name (or 
label) of the person that maintains the relation-
ship with the person introduced in the input. The 
input units use a localized encoding for person1 
and the relationship (one neuron for each possible 
relationship). The fact that the 24 units coding for 
person1 must feed their activity pattern through 
a bottleneck of six units forces the network to 
find a distributed representation of the different 
individuals that extracts the relevant features for 
inferring person2. Backpropagation learning was 
used to train the network on available triplets 
<Person1, relationship, Person2>. Given some 
combination of person1 and relationship as input, 
the system is expected to signal the appropriate 
person2 (or set of such individuals) which fits this 
description. The ability to respond correctly to new 
cases indicates that the network has found a way 
of representing, in its weights, the relationships 
among the family members.

This anthropological example can be very 
relevant in an archaeological investigation where 
the social agents are not observable, but inferred 
from indirect evidence or from ethnological anal-
ogy. For instance, in our ethno-archaeological 
research in Tierra del Fuego (the southernmost 
part of America), we have ethnographical and 
ethno-historical data on the way indigenous Ya-
mana populations performed labor, what men and 
women did, and even, the labor activities carried 
on by children and seniors. We can configure a 
network with the following neurons in the input 
layer:

• One unit for each described labor activity: 
hunting, butchering, cooking, cleaning, tool 
manufacture, baby care, education, health, 
etc.

• Some other units for describing the quantity 
of work (time, task complexity, number of 
people involved) for each activity.

• Four different units for social agents that 
performed that action: man, woman, boy, 
girl.

In the output layer, we would need:

• Some units for representing the social agents 
that took some benefit by the action: man, 
woman, boy, girl.

• A unit for measuring the social value that 
Yamana Society gave to this action (irrel-
evant, important, basic, etc).

The purpose of the network would be to 
generalize the relationship between quantity of 
work, social value, and the nature of the agent 
that made the action. Preliminary results for such 
an investigation have already been published 
(Barceló et al., 1999, 2006). This work is being 
done by a joint research team of the Universitat 
Autònoma de Barcelona and the Institució Milà i 
Fontanals (CSIC), Spain, under the coordination 
of Jordi Estévez and Assumpció Vila.
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The <agent, relationship, agent> triplet can 
also be expressed in terms of an influence dia-
gram, giving weight to the influences in term of 
Bayesian functions, as we discussed at the end of 
Chapter III. It would be interesting to integrate a 
Bayesian network with a neural network. Kim et 
al. (1999) have explored how to build influence 
diagrams using neural networks. Their results 
show, however, that it may be an appropriate 
way to solve the problem in the topological level, 
but the generated causal representations are not 
usually well-formed influence diagrams. It needs 
further modification to be applicable to real deci-
sion problems. 

Neural weighted links can do much more than 
represent interpersonal connections. A relevant 
example is the analysis of the social organiza-
tion of a medieval peasant community before 
the Hundred Years’ War perfomed by Villa and 
Boulet (2007). The authors use textual data about 
agrarian contracts from the Castelnau-Montratier 
seignory (Lot, South West of France) between 
1240 and 1350. Based on this database, the authors 
constructed a weighted graph having 226 vertices 
(the peasants) which are linked together if they 
appeared in the same contract. The weights were 
simply the number of common contracts in which 
two peasants appeared together. The aim of the 
investigation was to extract social tendencies 
in the graph linking “economically” medieval 
peasants, using a variant self organizing map, 
the Dissimilarity SOM algorithm, which is able 
to process non-vector data, only described by a 
dissimilarity measure. Every class found by the 
dissimilarity SOM corresponds to one or several 
connected communities. Results emphasize the 
fact that family links are more important than 
geographical ones. 

In Geography, the data needed for a social 
interaction explanation at the spatial level consists 
of a Flow Matrix, which indicates the start and 
end of some social movement or transference 
(Nijkamp & Reggiani, 1992). 

TO DESTINATION

FROM Location 1 Location 2 Location 3

Location 1 a b c

Location 2 d e f

Location 3 g h i

Matrix values represent here intensities (a 
measure of the frequency and/or importance of 
interaction). Total flows leaving location 1 is the 
row sum (a+b+c), whereas total movements to 
location 2 is the column sum (a+d+g). The key 
inputs to a spatial interaction model are then, the 
sum of flows (Oi), the sum of movements (Dj), the 
observed matrix of flows(Tij), and the cost of travel 
(or distance) between locations(cij):

Tij = Oi Djcij
 β

A neural network set up for this problem would 
include three input neurons (flow produced, flow 
attracted and flow length), one hidden layer with 
and one output layer, the observed flows (Open-
shaw, 1994, 1997; White, 1995). In our case, Tij 
is the output value, Oi Dj cij are the inputs and β 
is a bias unit. 

In archaeology, it is not easy to distinguish 
between “from” and “to.” We may build distance 
models and neighborhood relationships, but we 
lack the “directionality” component on any flow 
or transference action. However, we may consider 
that any attraction force is directly proportional 
to the number or intensity of interactions between 
“peripheral social locations” and a “central core 
location,” and inversely proportional to the at-
traction force exerted by alternative periphery 
social locations. Therefore, if we can distinguish 
between people located at the periphery and the 
centre, then we can use a variation of the same 
flow matrix. Consequently, in the archaeological 
case, Tij can be described in the following terms: 
it is the amount of similarity or frequency of 
interactions from origin i to destination j. cij is 
the cost or distance between i and j (geographical 
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or “social” distance, i.e., dependence). Oi is the 
size of peripheral locations, Dj is the size of core 
areas (Barceló, 2001). According to Black (1995), 
such a the network would have three inputs: (a) 
number of flows produced at each site; (b) number 
of flows attracted at each site; (c) flow length. 
The network also has one output, (d) number of 
observed flows.

Other examples of neurocomputational 
models of social interaction at the spatial level 
have been published by Manfred Fischer and 
colleagues (Fischer & Gopal, 1993; Fischer & 
Reismann, 2002; Gopal & Fischer, 1996). The 
authors tried to predict the intensity of interac-
tion between social entities. The input is a 32x32 
matrix, whose values represent distances between 
spatial locations. As we have seen, those can be 
measured as geographical distances or as any 
other measure of difference between two social 
units. The output is also a 32x32 matrix showing 
the intensity of interaction flows. In this applica-
tion, this is actually a measure of interregional 
telecommunications flow, but for our purposes, it 
can be any other measure of interaction strength. 
The idea is that a feed-forward neural network 
can learn a mapping between geographical dis-
tance (or similarity/difference relationships), and 
the intensity of interaction. Obviously, this is a 
supervised approach, so we would need observed 
instances where some distance measure is related 
to some interaction strength. An archaeological 
adaptation of this example would be using geo-
graphical distances and measures of differences 
in the frequency of different artifact categories 
(imported pottery, imported raw materials, locally 
made metallurgy, etc.) as input, and estimations of 
the interaction strength between both settlements 
based on the quantity of objects with a similar 
origin. Many variations from this assumption 
can be imagined.

Klüver and Stoica (Klüver et al., 2005; Stoica 
& Klüver, 2007) describe a computational model 
for the simulation of the emergence of social order. 
The model is theoretically based on the theory of 

social typifying by Berger and Luckmann. Social 
order is the result of mutual typifying processes 
of at least two interacting agents. Social rules 
emerge via “habitualization,” that is, by the itera-
tive application of the same action strategies the 
agents have successfully used during previous 
interactions. “Successfully” refers to the fact 
that the agents try to make the best of the action 
situation. They do not simply try to maximize 
their own profit but they try to obtain rules of 
interaction that can be accepted by both agents. 
This process of establishing mutually obligatory 
rules of interaction is not necessarily symmetric, 
because emerging social order may frequently 
be a hierarchical one. Klüver’s model consists of 
interacting artificial individuals (agents), each 
one represented by two neural networks, an ac-
tion net, and a perception net. The action network 
whose task is the generation of adequate rules of 
action is a multilayered feed-forward network. 
The input layer of the action network represents 
the personality of each agent, written as a vector 
Xi = (x1, …, x5). The output layer Y = (y1, …, y5) 
represents components of social activity such as 
coming near, escaping, working together to pro-
duce the same item, stealing, exchanging, paying 
tribute, obeying or disobeying an order, and the 
like. These vectors are social rules in the sense 
“if A meets B, then A acts according to the vec-
tor YAB” and vice versa. When A for the first time 
meets B, both have to evaluate the other, that is, 
they have to find mutually a behavior YA and YB 
that is suitable for oneself and for the other. The 
neurocomputational models representing agent A 
and agent B start with random weight matrices 
with the described restrictions. “Starting” means 
that each activation network gets its respective 
X-vectors as input, that is the X-vectors of their 
own personalities and social characteristics and 
generate a Y-vector of possible social actions. A 
behavior that is satisfying for both is reached when 
the relation between the personalities is nearly 
the same as the relation between the actions. The 
reason for this definition is that a person tends to 
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act rather “strongly” in those characteristics where 
he or she is good or even superior in relation to 
others; in turn, other agents accept this type of 
action if they perceive that the first agent is indeed 
superior in this respective aspect. To be sure, an 
agent may be in error whether he is indeed good in 
some aspects. Then the mutual adjusting process 
forces the agent to correct his internal structure, 
the weight matrix, at least in this aspect. If this 
is the case, i.e., if the first actions are not satis-
factory, the backpropagation algorithm is used 
for the changing of the internal structure of both 
agents. Now this process of establishing rules of 
interactions is repeated with the other agents. As 
a result, we have a social group where each agent 
is connected with each other agent by a specific 
Y-vector YNM for two persons N and M. The set 
of all Y-vectors is the social order of this group, 
generated by the perception and evaluation of 
the other agents.

The perception network (PN) is a hetero-as-
sociative net with two or more layers. The input 
layer of the PN of a person A is the X-vector of 
a person B, which the person A meets. The out-
put layer is the Y-vector of A with respect to the 
person B. YAB is again the action vector of A with 
respect to person B. A and B mutually generate 
action vectors Y with respect to one another, as 
was described above. These vectors are rules of 
interaction insofar as A and B always act according 
to their vectors when they meet again. When these 
rules are established, the PNs of both agents are 
trained to associate the X-vector of the other agent 
B with the own vector YAB (in the case of A); the 
same is the case after A has established a mutual 
rule with C, D, and E. A then has four rules at its 
disposal that are “stored” in its PN by the training 
processes of associating a certain X-vector with 
the corresponding action vector. When A meets 
a new person F, there are two possibilities: 

1. F is not similar to any member of the group 
(in the perception of A). In this case, the PN 
of A will not recognize F; A and F will have 

to establish specific rules of behavior accord-
ing to the procedure described previously.

2. F is similar to a member of the group, say 
D. Then the PN of A will generate the vector 
YAD when receiving the X-vector of F. In this 
case, F will be perceived by A as the same 
type as D, although F is not identical with 
D (F is another person or agent).

When A acts with YAD, F has to adjust his own 
Y-vector with respect to A; the adjusting process 
is not mutual but only the task of the newcomer 
F. The reason for this is the consideration that 
members of an already established group only 
typify a newcomer, whereas the newcomer has to 
adjust his behavior with respect to all members of 
the group. Now the rules of interaction become 
general rules in the sense that they are valid not 
only for a particular agent B but also with respect 
to all other agents that belong to the same type as 
B. In sociological terms, the rules are valid for all 
agents that belong to the same social type, that 
is, that occupy the same social role. Nevertheless, 
that is just one possibility of interpretation. In any 
case, the agents now are able to typify, that is, to 
abstract from individual peculiarities of other 
agents and to perceive them as representatives 
of a certain type. Y-vectors mean, as described, 
social rules of interaction. The group is socially 
structured in the sense that each actor knows how 
to behave toward another actor when meeting him 
again. This is done by the PN. In addition, it is 
possible to generate a social structure of the group 
in the sense that the group members are placed 
onto a social hierarchy. The model described so 
far represents the emergence of social structure 
in a group of actors or agents respectively. 

Bainbridge took a different approach (Bain-
bridge, 1995; Bainbridge et al., 1994). He has 
built one particular kind of network, based on 
maximization of variance across categories in a 
category (varimax nets), to study how religious 
beliefs emerge in a human population. The key 
idea in this approach is that humans seek expla-
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nations because they are valuable. Tragically, 
many of the rewards that humans seek are very 
difficult to obtain. Bainbridge assumed that when 
the individual does not have access to the reward 
it needs, he or she turns towards religion, because 
religions are postulates of reward that are not 
readily susceptible to unambiguous evaluation. 
Bainbridge built a scenario of 24 individuals 
exchanging rewards. The idea of such a neural 
network was to simulate the impossibility of 
most individual human beings to create religion 
in isolation from other believers. The simulated 
individuals (neurons) learn that gods can be good 
exchange partners in some conditions. This is a 
somewhat strange example: the neural networks 
should learn something that does not exist, but 
in some circumstances, what cannot be proved 
(religion, supernatural beings) is the only learn-
able category. 

Nowak and colleagues (Nowak & Vallacher, 
1998, 2002; Nowak et al., 1998) have applied the 
theory of recursive neural networks to the analysis 
of social interaction. This theory explicitly goes 
beyond what we have seen up to now, allowing 
the explanation of how patterns of incoming 
information about the social environment can 
produce dynamics of interactions between indi-
viduals. As we discussed in precedent chapters, 
a recursive neural network is characterized by 
massive feedback loops between neurons, with-
out separate layers. Every neuron is connected 
to every other neuron. The central idea of this 
kind of neural network model is that the relation 
between individuals or specific tokens of informa-
tion is bidirectional. In the social interpretation 
of such a neural topology, “learning” the social 
environment would correspond to the formation 
or dissolution of relationships (i.e., connections) 
among individuals (i.e., neurons) in a group. 
Positive connections represent relationships in 
which the two individuals influence one another 
to have similar behavior, moods, attitudes, and 
so forth, whereas negative connections represent 
reactance-like influences between the two indi-

viduals. If the interaction between two individuals 
is positive, it means that one unit reinforces the 
other’s activity (cooperation). Positive connections 
typically correspond to relations with positive 
valence (i.e., friendship, solidarity, reciprocity, 
help, collaborative work), and negative connec-
tions correspond to relationships with negative 
valence (dislike, hostility, resentment, etc.). In 
case of a negative matrix element, one unit tries 
to suppress the other’s activity (competition). In 
some situations, however, the sign of connection 
represents strategic decisions concerning coalition 
formation, rather than an affective quality. It is 
also imaginable that coercion can be modeled as 
a positive connection from the dominated to the 
dominant, balanced with a negative connection 
from the dominant to the dominated. In reality, 
of course, everyone is influenced by more than 
one other person. Social interactions rarely are the 
sole source of personal change. Each individual’s 
activity depends on many other factors. The joint 
effect of all such factors has been represented by 
Nowak et al. as a random influence on each indi-
vidual. In recursive neural networks, such random 
influences are commonly referred to as noise. The 
introduction of noise can qualitatively change the 
dynamics of processes in networks. In particular, 
it can make a given individual change his or her 
opinion in a way that is contrary to social influ-
ence. The greater the proportion of outside and 
random influences on agent’s activity, the weaker 
the role of equilibriums produced by the structure 
of social relations within the group.

To analyze recursive neural networks as mod-
els of dynamic social networks, it is important to 
distinguish two fundamentally different types 
of dynamics. The first type occurs in neural net-
works during recognition and involves changes 
in states of neurons, with the connections among 
neurons remaining stable. Such network dynamics 
correspond to the convergence of the state of the 
network to one of its attractors. It may be described 
socially as social agents trying to adjust their 
activity to the total influence they receive from 
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interactions with other people, from the environ-
ment, and random influences. The general rule is 
that if the sum of all inputs from other neurons 
exceeds a certain threshold, the neuron adopts an 
excited state. Otherwise, it adopts a low value, 
corresponding to a non-excited state. Interpreted 
in terms of social networks, the dynamics of the 
neurons correspond to individuals’ changing their 
activity because of influence through existing 
social ties with other individuals. The model of a 
social group then undergoes evolution, with each 
social agent (neuron) adjusting to the influence 
(activation) arriving from other social agents in 
the group. Eventually, the dynamics of the group 
reaches some equilibrium state, so called attrac-
tor, in which the network’s flow of activations 
stabilizes.

The second type of dynamics occurs during 
learning and involves changes in the connections 
with the neurons remaining stable. The dynamics 
of connections are defined in terms of a learning 
algorithm that guarantees that the desired con-
figuration of links and weights functions as an 
attractor. In the social interpretation, such dynam-
ics correspond to the formation and dissolution of 
social relation based on the concrete behavior of 
individuals. Because such changes converge on 
attractors, only certain configurations of social 
activity and so forth are likely to be observed for 
a given social relationship.

The assumption is that if two individuals are 
in the same state simultaneously, the connection 
between them will become more positive, whereas 
if two individuals are in a different state at the same 
time, the connection between them will become 
more negative (inhibitory). Suppose the neurons 
represent different social categories (men, women, 
boys, girls), and we have some ethnographic or 
archaeological information about social inequali-
ties on different issues among them. For instance, 
we know the time individuals from each category 
dedicate to different productive and reproductive 
activities or the relationship quantity of labor/re-
ceived benefit from labor. Such social information 

will be represented as different activations pattern. 
The purpose of the analysis is to create a recursive 
network that finds such attractors (each social 
situation in which we have measured some degree 
of inequality), in terms of positive and negative 
connections. Through the appropriated learning 
algorithm, it will be established a structure for the 
network such that the above configurations would 
correspond to an attractor. We assume that the 
connection between two elements is proportional 
to the correlation between their respective states. 
To allow for variation in the strength of different 
equilibriums, one can introduce a weight for each 
pattern, such that the more important patterns 
have higher weights. In the social interpretation, 
the greater the proportion of issues on which 
individuals share the same inequalities, the more 
positive the relationship between the individu-
als, and hence the more positive the influence 
they have over one another. In effect, the social 
position of every individual are anchored on the 
similarity of labor activities with which he or 
she has positive social relations. If the number 
of situations in which there is some inequality 
increases, a negative social relationship develops. 
As differences in labor appear are discovered, the 
positive ties will weaken and eventually negative 
ties will develop. The strength of negative ties 
is proportional to the number of dissimilarities 
minus the number of similarities. Influence to the 
context of such inhibitory connections is likely 
to be manifest as reactance. 

Louzon and Atlan (2007) take a different ap-
proach to the complex systems analogy between 
human societies and neural networks. Instead of 
reproducing social interaction in terms of neuron-
weighted connections, they intend to show that 
“intentional” activity within such a model is not 
required to explain what we spontaneously attri-
bute to conscious decisions. The social properties 
that we saw emerged from social interaction pat-
terns were in fact the result of relatively simple 
constraints, deterministic or stochastic at the level 
of the individual parts. The architecture of the 
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network and some learning rules are established 
directing the process of social order emergence. 
Only the detailed evolution of the units and con-
nections is not explicitly programmed and is 
self-organized in that sense. Thus, some internal 
dynamics leads to the detection of non-obvious 
hidden rules or regularities in the data. A step 
further would be the building of self-organized 
social networks able to create the meaning of 
their agent behavior in the form of functional 
goals not previously programmed and achieved 
further repeatedly, even with possible variations. 
The authors suggested that some memory device 
should be used so that the functional meaning of 
social activity within the network would result 
from self-observation, i.e. an internal comparison 
between previous states and the current one. This 
kind of self-organization would be appropriately 
“intentional,” at least in the minimal sense of 
an intentional action directed by an internally 
specified goal. Such intentionality is obviously 
limited when compared with human intentional-
ity with all its aspects of long term planning, and 
the so-called creative intelligence. In this study, 
the meaning of “intentions” has been limited to 
conscious decisions to act towards goals, defined 
as such by the previous self-organized functioning 
of the network. 

Louzon and Atlan describe a network that de-
fines its own goals. It is achieved by transforming 
non-intentional causal sequences of states into 
procedures to reach a goal. Practically, the model 
is made of two related networks. The first one is 
a self-organized recurrent network. It evolves 
from any input initial state towards a steady state, 
defined as its output (a stable attractor exhibiting 
some macroscopic structure). As in the case of 
standard pattern recognition systems, this final 
state may be associated with some functional 
behavior, provided some observer may be aware 
of it and find it meaningful. In this model, this 
observer is the system itself. This is partially 
achieved by the storage of a link between final 
and original states. One more element is needed, 

as a kind of satisfaction function, to weigh the 
value of different outputs, in order to choose 
and define them as interesting (or desired goals). 
The second network assumes the function that is 
working as non-supervised learning network. The 
satisfaction function is provided from inside by 
the self-organized recurrent neural network and 
the most frequent occurrences of what has been 
learned in the first network. More precisely, it re-
sults from the history of exposures of this network 
to random external inputs from its environment 
and of responses to these inputs produced by its 
internal evolving structure. It is this history, which 
provides the satisfaction function in a dynamic 
way. The set of states kept as “desired” goals is 
the set of most frequently learned goals at each 
stage of this history.

 This example is indeed compatible with a 
worldview where free will is seen as an illusion 
based in our ignorance of the real causes of our 
voluntary actions. Nevertheless, it does not ex-
clude a sort of negative free will, based on the 
capacity to consciously inhibit and prevent some 
actions, initiated unconsciously, in the process of 
their execution.

bEyoNd thE “NEuRAl” 
ANAlogy: buildiNg AN 
ARtiFiCiAl SoCiEty

Neurons after all, are not people. In human organi-
zations, the information transmitted from person 
to person is frequently more complicated than a 
yes/no decision, or an intensity measure, a weight. 
The neural network analogy indicates that we can 
reduce human transmission bandwidth to be as 
narrow as a single bit without impeding robust 
decision-making, and the emergence of many 
interesting social properties. The doubt, however, 
remains whether the neural interconnectivity is 
the proper analogy for representing how people 
contact other people, exchange information in a 
collective way, and modify its activity because 
of the activity of other social agents.
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For this reason, we have to explore those com-
puter models, in which social agents and all other 
factors are not represented by a single neuron, but 
by a full expert system or even more, by a full 
neural network. In this way, we can move from 
the simple network of interconnected units, to a 
full artificial society.

Artificial Life is an attempt of studying all 
phenomena of life by reproducing them in arti-
ficial systems, either simulated in a computer or 
physically realized in robots and other physical 
artifacts (Bonabeau, 2002; Conte & Gilbert, 
1995; Gilbert, 1998, 2000; Edmonds, 1998, 2000; 
Klüver et al., 2003; Thalmann, 2001). In those 
simulations, an agent is just any entity capable of 
self-controlled goal directed activity. The goals 
of the agent must be inherent to the agent, rather 
than being assigned according to a pragmatic 
‘stance’ of an observer. A goal-directed action is 
under an agent’s control if (i) the goal normally 
comes about as the result of the agent’s attempt to 
perform the action, (ii) the goal does not normally 
come about except as the result of the agent’s ac-
tion, and (iii) the agent could have not performed 
the action (Wobcke, 1998). 

Simulated agents are “living” in a simulated 
environment that is an abstraction of the original 
environment and thus part of the model (Castel-
franchi, 2000; Klügl et al., 2005). This global 
entity may carry some global state variables like 
its own dynamics. These dynamics also can be so 
complex, for example, containing production of 
new entities, that one may assign some form of 
behavior with the simulated environment. Every 
environmental dynamic that is model-specific can 
be counted to it. 

The simulated environment is unique for a 
specific multi-agent simulation. The most basic 
form of a simulated environment is an “empty 
world.” In this case, the simulation model itself 
just consists of a society of simulated agents; the 
simulated environment possesses no specific state, 
nor dynamics. Such an empty simulated environ-
ment may only be used in very abstract simulation 

models. Any simulation model replicating detailed 
aspects of the real world requires a reproduction 
of some aspects of the agents’ context. As the real 
world constrains the structure and behavior of 
the real agents, the simulated context plays that 
role for the simulated agent system. The percep-
tions of the simulated agents need to have some 
origin in all factors external to that agent, and it 
has to be represented in a specific environmental 
model. Thus, complex agent models require rich 
contextual models that cannot be abstracted to the 
empty environment without loosing the necessary 
complexity of the simulated agents.

Virtual social agents “live” in an environment 
populated by many other agents, so the successful 
completion of their tasks is subject to the decision 
and actions of others. On the one hand, agents 
may interfere with each other due to a mere side 
effect of their activities. Coordination, in a sense, 
occurs when agents adapt their activities in the 
face of those interactions. Coordination makes 
autonomous agents act as a distributed system, that 
is to say, as a society of autonomous problem solv-
ing agents from whose interactions coordinated 
activities emerge (Sawyer, 2005; Sun, 2006).

The model should consist then of intentional 
agents, making choices that depends on their 
individual preferences, expectations, and beliefs 
as well as upon incomplete knowledge of the en-
vironment. Patterns of cooperation emerge from 
individual choices at certain threshold values. 
An agent will cooperate with the fraction of the 
group perceived as cooperating exceeds a critical 
threshold. Critical threshold depend on group size 
and the social organizational structure emerging 
from the pattern of interdependencies among 
individuals. The potential for cooperative solu-
tions of social dilemmas increases if groups are 
allowed to change their social structure. 

An artificial prehistoric society is then a com-
plex set of computational reactive units simulat-
ing how a group of people behaved in the past. 
There are an increasing number of examples in 
the specialized literature. Most of them are based 
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on pioneering work by Jim Doran, whose EOS 
system simulated the emergence of social order at 
the end of Middle Paleolithic Times (Doran, 1997, 
1999, 2000; Doran et al., 1994; Doran & Palmer 
1995a, 1995b). This is a computer exploration of 
the explanatory model specified by Paul Mellars 
for the growth of social complexity around the 
time of the last glacial maximum in Southwestern 
France. Mellars’s model relates changing features 
of the natural environment to the emergence 
within the human population of centralized deci-
sion-making and other related social phenomena. 
The main features of the system are:

• A two-dimensional simulated environment 
or “landscape” with a population of mobile 
agents and changing resources providing 
“energy” for the agents. If an agent does 
not sufficiently regularly acquire energy by 
“harvesting” and “consuming” resources, its 
energy level falls below its target satisfac-
tion level and if the level falls to zero then 
the agent “dies,” that is, disappears from 
the simulation. Agents can also be “born” 
during a simulation trial.

• The agents are structured as production 
systems with rules that “reactively connect 
environmental resources with social actions 
(hunting, gathering, consumption). In ad-
dition, there are other rules implementing 
inter-agent communication, generating, 
maintaining, and updating simple plans for 
execution. In fact, inter-agent relationship is 
expressed by beliefs within the social models 
of the agents concerned. For example, to say 
that Agent X and Y are in a leader/follower 
relationship means that Agent X believes that 
Agent Y is its leader and vice versa. This 
relationship comes into existence whenever 
one agent agrees to join another’s plan.

• A variety of adjustable parameters, includ-
ing those that specify the behavior of the 
resources in the environment.

Although very simple in their contents, the 
collective execution of agent plans implies that 
each individual plan affects the plans of other 
agents, and is affected by them in a recursive 
way. For instance, by observation of which 
agent first acquired each resource, agents came 
to recognize particular resources as “owned” by 
particular agents or groups. Agents then plan first 
for the acquisition of their own resources. Since 
resources are immobile, this implied that a form 
of territoriality was displayed. 

Successive ameliorations of the model lead 
to consider an alternative explanation to that of 
Mellars, put forward by Clive Gamble. Although 
both authors seemingly disagree about what 
actually happened, when building the computer 
model there is no conflict between their views of 
the processes involved, because they are propos-
ing different socio-cultural reactions to different 
environmental circumstances. In the new system, 
the environment has been programmed with 
lowering resource availability, without resource 
concentration and with unpredictable variation 
in richness of individual resources, which leads 
to greater number of alliances. Consequently, 
agents must be able to plan the coordination of 
many agents, and not to simple acquire complex 
resources, as in the previous version. This requires 
them to undertake a more complex form of plan-
ning. Agents decide the resources to target, the 
number of agents needed to acquire them, and 
then seek to make an agreed allocation of agents 
to resources. 

As simulated, agents create and execute plans 
of behavior concurrently and asynchronously. 
The adoption of plans for execution is a complex 
matter. Agents select and invite other agents to 
join the plans they have created, selecting first 
their own followers and allies. Agents adopt those 
plans that they judge most potentially beneficial 
to themselves in terms of their own current be-
liefs: either they persist with their own plan, or 
they join another agent to execute its plan. The 
effect is that, with some delay, the more highly 
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rated plans are adopted wholly or partially for 
execution by groups of agents. One of the agents 
in each group is the originator of the plan, and is 
therefore viewed by the others in the group as, 
potentially, a leader. After multiple instances of 
cooperation between two agents, an alliance will 
be formed. When two agents are in an alliance, 
they exchange information about their needs, and 
give priority to incorporating one another in their 
plans. In these new conditions, an instance of a 
leader/follower relationship, however, will come 
into being when cooperation is consistently “one-
way.” If Agent X is constantly recruited to Agent 
Y’s plans over a limited period, then both X and 
Y will come to see themselves as in a leader/fol-
lower relationship with Y as the leader. Note that 
a leader/follower relationship can evolve from an 
alliance, and that both types of relationship can 
break down if the agents involved lose contact 
with one another for a sufficient time.

Running this computer model of an artificial 
society simply amounts to instantiate the simu-
lated populations of people, letting the agents 
interact, and monitoring what emerges. What 
emerges from the collective execution of rules 
packaged in form of agents is a gradual updating 
of agent’s beliefs and the concomitant modifica-
tion of their plans, arriving at some form of social 
order. This should be conceived as any form of 
systemic structuring which is sufficiently stable, 
to be considered the consequence of social self-
organization and self-reproduction through the 
actions of the agents, or consciously orchestrated 
by (some of) them (Castelfranchi, 2000; Sawyer, 
2000). It can be studied as a non-accidental and 
non-chaotic (thus, relatively predictable, repeated 
and stable) pattern of interactions in a given 
system of interfering agents. Dynamic social 
order occurs when the stable macro-pattern or 
equilibrium is maintained thanks to an incessant 
local (micro) activity of its units, able to restore 
or reproduce the desired features. In any case, 
the basic point is that social order is not the sum 

of single intentions, but the collective result of 
nonlinear interactions.

 In the case of EOS, a group of 16 agents was 
subjected to the following resource regime: a 
brief initial period of ample available resource 
energy followed by a substantial period of very 
low available resource energy and then sustained 
ample resource energy again. The resources were 
spatially semi-distributed: randomly scattered 
over an area of 500x500 distance units within a 
1,000x1,000 environment. Resources could be 
harvested by a single agent, and renewed every 30 
cycles. Each agent consumes one energy unit per 
cycle. They all begin with energy levels of 1,000 
and they all have a fixed target satisfaction level of 
1,000. Agent’s awareness range is set at 200 units 
of distance, and an agent’s movement in each cycle 
is at most 50 units. In the initial phase (200 runs) 
the agent community survives easily without any 
complex activity nor alliance. As the reduction in 
resources impacts, from about 500 cycles, agents 
begun to build more elaborate coordination plans 
and leadership structures appear. Soon after 1,000 
cycles, deaths began to cause instability in the 
structures. However, the agents continue with 
high levels of coordination planning, even long 
after resource availability has returned to normal, 
because their current energy levels have dropped 
well below their target level with the result that 
a very substantial hierarchy peak occurs around 
2,500-3,000 cycles. Hierarchy persists, with some 
decline, over the next 5,000 runs. 

Many other experiments have been run with 
this artificial society, although the implications of 
all the variants of the model have been nowhere 
near fully explored (Doran, 1997). In any case, this 
agent-based simulation is far more sophisticated 
than traditional explanations of hunter-gatherer 
societies. Doran’s approach has been pursued by 
many other scholars, which have modeled differ-
ent hypotheses about foraging behavior and social 
reproduction in small-scale societies. For instance, 
Parisi and Nolfi (2005) simulate a collection of 
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agents living in the same environment, which 
contains food elements randomly distributed. A 
neural network controls each agent’s behavior. 
Input units encode the position of the single 
food element nearest to the agent. Output units 
represent the agent behavior possibilities in the 
environment. The neural networks of all agents 
have the same architecture but at the beginning 
of the simulation, each individual agent is as-
signed a genotype encoding a different random 
set of connection weights for the agent’s neural 
network. Each agent lives for a total number of time 
units (input/output cycles of its neural network) 
which is identical for all individuals. At birth, 
each individual has zero energy but its energy is 
incremented by one unit each time the individual 
by moving in the environment reaches (eats) a 
food element. When the energy of the individual 
reaches a threshold, the individual generates a new 
individual (offspring) which inherits the same 
genotype of its (single) parent, with the addition 
of some random changes to the quantitative value 
of some of the weights. The offspring is placed 
near its parent and the parent’s energy returns 
to zero. At the beginning of the simulation, the 
agents are not very good at reaching food because 
of the random connection weights. The selective 
reproduction of those individuals better able to 
reach food and to increase their energy, and the 
constant addition of new variability to the pool 
of genotypes because of the random variations 
in the inherited connection weights, lead to an 
improvement in the average ability to reach food 
in the population with each successive generation. 
After an initial transient phase, population size 
stabilizes at a value reflecting the quantity of food 
present in the environment (carrying capacity). 
Food is periodically re-introduced to compensate 
for the food eaten, and the carrying capacity of 
the environment, and therefore, population size, 
are functions of the length of the interval between 
successive food re-introductions. The results of 
the simulation show that if food is re-introduced 
sufficiently frequently, the population distributes 

itself homogeneously in the environment. How-
ever, if food is reintroduced less frequently, an 
interesting collective phenomenon emerges with 
respect to the spatial distribution of the agents: 
one observes oscillatory migratory waves of the 
agents in the environment. Agents may concen-
trate in a particular zone of the environment but, 
after a while, the population leaves the zone and 
disperses in the environment, with different in-
dividuals going in different directions. When the 
agents reach the wall that limits the environment, 
they remain near the wall for a while and then 
they slowly return to the initial zone in which 
they concentrate again. This oscillatory move-
ment repeats itself periodically until the end of 
the simulation.

The agents in this simulation do not even 
perceive each other. Their respective neural net-
works are able to perceive only the food elements 
and made movement decisions consequently. It 
responds to input from the nonsocial environment 
(food) with output behavior, which is uniquely 
directed to the nonsocial environment (eating the 
food). However, such output behavior alters the 
physical environment, and hence the input the 
neural network will receive on the next cycle. In 
this way, individual agents can have an indirect 
influence on other individuals since each agent 
responds to an environment altered by the behavior 
of other agents. This can produce emerging col-
lective phenomena in the spatial distribution of 
the population. The agents periodically modify 
their output behavior (spatial aggregation and 
disaggregation) when they learn to predict how 
the action at a previous step modifies the input at 
the next step. Many individuals can end up near 
each other simply because they tend to approach 
the same localized resource such as food or a 
water source. In these circumstances too, the 
agents’ behavior resulting in social aggregation 
has not evolved for that function. Each individual 
approaches food or water for eating or drinking, 
not for social purposes. However, even if it is a 
simple by-product of learning nonsocial behaviors, 
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social aggregation can be a favorable pre-condi-
tion for the emergence of social behaviors such as 
communication and economic exchange among 
individuals that happen to find themselves near 
each other. In other circumstances, however, social 
aggregation may not be simply a by-product of 
behavior emerged for other purposes but is the 
result of behavior which has emerged exactly 
because it produces spatial aggregation.

Of related interest are simulations of homi-
nid behavior, using relevant archaeological and 
paleoecological data to test specific hypotheses 
(Janssen et al., 2005; Mithen & Reed, 2002; 
Newton, 2007; Premo, 2005; Reynolds et al., 
2001; Sept et al., 2007). Additional experiments 
on small-scale societies have been published by 
Lake (2000a, 2000b), Costopoulos (1999, 2001, 
2002), and Read (2003). Also, within the same 
domain, Brantingham (2003) has simulated how 
raw material procurement by a hunter-gatherer 
society is dependent only upon random encounters 
with stone sources and the amount of available 
space in the mobile toolkit. Bentley et al. (2005) 
have tried to follow from raw material acquisi-
tion to full economic exchange networks within 
a similar agent-based approach. 

Going beyond forager behavior, and moving 
towards the explanation of the emergence of social 
complexity, we can mention the studies by Caldas 
and Coelho (1999). These authors have shown 
with their simulation that what we call today 
“institutions” were in fact solutions to recurring 
problems of social interaction in small-scale 
societies, and should be understood as precondi-
tions for social life, unintended outcomes, and 
human devised constraints. Younger (2005) has 
simulated the emergence of violence in this kind 
of societies. In this model, a population of 100 
agents inhabited a landscape of 20x20 squares 
containing five sources of food. Agents moved 
about the landscape in search of food, shared, 
stole, mated, produced offspring, and ultimately 
died of old age. Violence and revenge reduced the 
survival probability and, for surviving popula-

tions, replaced hunger as the second leading cause 
of death after old age. Excluding large segments 
from violence and revenge significantly improved 
survival rates. Tolerance to transgressions reduced 
the number of agents killed in revenge attacks. 
Higher population density increased the number 
of revenge deaths but also increased the survival 
rate of the total population. Decreasing the food 
supply for a fixed initial set of agents resulted in 
more deaths due to violence and revenge. Flight 
from known aggressors enhanced the survival of 
the total population, at the expense of social cohe-
sion. When killing had a positive social value the 
survival rate increased as the number of revenge 
killings decreased. 

Artificial societies are also being programmed 
for studying the origins of agriculture. Some 
researchers have reconstructed the dynamics of 
landscape change during the Mesolithic period, 
just before the spread of agriculture (Ch’ng & 
Stone 2006). Alexandra Figueiredo and Gonçalo 
Velho (2001) have programmed a system based 
on three different kinds of agents: cattle, hunters, 
and farmers. These agents compete for natural 
resources (plants). The success of each type of 
agent is determined not only by the availability of 
the natural resource but also by the capability of 
other agents to gather those resources for them-
selves. Running the model consists of creating a 
landscape and introducing initial populations of 
animal and hunters. The initial group of hunters 
follows the cattle around killing them whenever 
possible. The killing rule relates the energy of the 
animal to the number of humans in spatial units 
around it. So the kills are determined by the pat-
terns of movements of animals and hunters. As 
the animals follow the concentration of plants, 
and hunters the concentration of animals, the two 
groups move close together. Farming disturbs 
the natural availability of resources. Farmers 
are located in the same locations were animals 
eat. Cattle are competitors for farmers, hunters 
are competitors for hunters, farming increase the 
number of cattle. Vaart et al. (2006) used a similar 
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approach to understand the consequences of the 
different social mechanisms related to the man-
agement of wild preys and domesticated cereals. 
Parisi et al. (2003; Cecconi et al., 2006) follow 
a different approach within the same problem 
using cellular automata, which can be seen as a 
simplified version of an agent-based model. They 
have simulated the agricultural colonization of 
Europe from the VII to the IV millennium, and 
its possible similarity with the prehistoric dif-
ferentiation of European languages. A similar 
simulation has been developed by Drechsler and 
Tiede (2007) in the case of the spread of Neolithic 
herders within the Near East, towards the Arabian 
Peninsula. In the model, environmental local 
features influence a global innovation diffusion 
pattern. Here, computational agents represent 
mobile populations. The spreading process itself 
is simulated by a repeated generation of random 
agents in space. The random component represents 
the archaeologically incomprehensible decisions 
that lead to human displacements. Because it is 
more likely that “wandering groups” populate 
nearby places than far away places, the possibility 
for the adoption on an innovation like agriculture 
is highest in the direct neighborhood of prior ac-
ceptance of innovation. Therefore, the random 
agents cluster spatially more frequently around the 
“parent” nodes. The spreading surface represents 
a combination of environmental parameters that 
are considered fundamental to the dispersal of 
Neolithic herders across the Arabian Peninsula. 
These parameters were evaluated for their influ-
ence on the movement of human groups, reclassi-
fied, and combined to obtain a spreading surface 
that represents local resistance to the process of 
spreading. As a result:

• Every place in each generation decreases the 
underlying raster value simulating the drain 
on resources and its exploitation value.

• The number of descendants at each place 
in each generation depends on the value of 
the underlying raster. The higher the value 

(“better conditions”), the greater will be the 
number of descendents in the next genera-
tion.

• The actual spreading distance (“how far a 
new generation will go”) also depends on 
the underlying raster value. The lower the 
raster value at a specific point, the higher 
the spreading distance.

Kuznar and Sedlmeayer (2005) have devel-
oped a flexible agent-based computer simulation 
of pastoral nomad/sedentary peasant interaction 
that can be adapted to particular environmental 
and social settings. The authors focus on how 
environmental and material factors condition 
individual agent response, allowing the model-
ing of how collective behaviors (mass raiding, 
genocide) can emerge from individual motives and 
needs. Many factors influence tribal conflict in the 
modern world (ethnicity, global politics). However, 
these simulations reinforce the analyses of some 
social scientists that argue such conflicts are the 
inevitable result of the breakdown of land use in 
the face of growing populations, marginal habitats, 
and an unprecedented ecological crisis. 

Bentley et al. (2005) have explored how an 
exchange network coevolves with the changing 
specializations of the agents within it. Through 
simulation, the authors keep track of who is 
connected to whom through a mapping of the 
network and the specializations of each agent, 
and they test the effects of simplified individual 
motivations for exchange, the make-up of the 
initial population of agents, and abstract repre-
sentations of basic ideological dispositions such 
as the belief in private ownership. The aim was to 
test whether specialization and wealth inequalities 
are natural, self-organizing qualities of a small-
scale economy.

An interesting phenomenon that can be stud-
ied with these methods is the emergence of spe-
cialization, in which different individual agents 
spontaneously assuming different roles in the 
execution of the task (Parisi & Nolfi, 2005). The 



���  

An Automated Approach to Historical and Social Explanation

most effective strategy includes primitive forms 
of “situated” specialization in which identical 
individuals play different roles according to the 
circumstances such as leading or following the 
group. These forms of functional specialization 
seem to be due to the need to reduce interference 
between potentially conflicting sub-goals such as 
moving toward the rest of the group to maintain 
aggregation and moving toward the target. Imag-
ine a group of agents that has to reach a target in 
the environment but to be rewarded they must 
approach the target by maintaining reciprocal 
proximity. If the agents are initially dispersed in 
the environment, they may be unable to perceive 
each other and therefore they may be unable to 
aggregate and then move together toward the 
target. The solution is to evolve some signaling 
behavior that allows the group to aggregate.

Within the research domain of agricultural so-
cieties, the VIRTUAL ANASAZI project (Axtell 
et al., 2002; Dean et al., 2000; Gummermann et al., 
2003) is another example of agent-based modeling 
designed to investigate where prehistoric people 
of the American Southwest would have situated 
their households based on both the natural and 
social environments in which they lived. The idea 
was to define nuclear families (households, the 
smallest social unit consistently definable in the 
archaeological record) as agents, and loosed them 
on landscapes, which have been archaeologically 
studied for different historical periods, and plenty 
of paleo-productivity data exist. The model is 
used to predict individual household responses 
to changes in agricultural productivity in annual 
increments based on reconstructions of yearly cli-
matic conditions, as well as long-term hydrologic 
trends, cycles of erosion and deposition, and de-
mographic change. The performance of the model 
is evaluated against actual population, settlement, 
and organizational parameters. By manipulating 
numbers and attributes of households, climate 
patterns, and other environmental variables, it is 
possible to evaluate the roles of these factors in 
prehistoric culture change. Here, the household is a 

theoretical construct but it moves on a historically 
defined environment, which is the most precise 
available archaeological data allow.

Simulated population levels closely follow 
the historical trajectory. In the first 200 years, 
the model understates the historical population, 
whereas the peak just after 1100 A.D. is somewhat 
too high in the model. The historical clustering 
of settlements along the valley zonal boundaries 
is nicely reproduced. Although the ability of the 
model to predict the actual location of settlements 
varies from year to year, the progressive movement 
of the population northward over time, clear in the 
historical data, is also reproduced in the simula-
tion. Long House Valley was abandoned after 
1300 A.D.. The agent model suggests that even 
the degraded environment between 1270 and 1450 
could have supported a reduced but substantial 
population in small settlements dispersed across 
suitable farming habitats located primarily in areas 
of high potential crop production in the northern 
part of the valley. The fact that in the real world 
of Long House Valley, the supportable population 
chose not to stay behind but to participate in the 
exodus from the valley indicates the magnitude 
of socio-cultural “push” or “pull” factors that in-
duced them to move. Thus, comparing the model 
results with the actual history helps differentiate 
external (environmental) from internal (social) 
determinants of cultural dynamics. It also provides 
a clue—in the form of the population that could 
have stayed but elected to go—to the relative 
magnitude of those determinants. 

The evolution of the Virtual Anasazi project 
can be seen in the very similar “Village Ecody-
namics” project by Tim Kohler and his colleagues 
(Johnson et al., 2005; Kohler, 2003;  Kohler & 
Carr, 1997; Kohler & Yap, 2003; Kohler et al., 
2000, 2005, 2007). The authors began by entering 
paleoenvironmental data on a digitized map of 
the area, and then placed the agents—simulated 
households—randomly on the map. The pri-
mary area of research is the study of the effect 
of exchange relationships upon the formation of 
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larger social groups. Since agricultural yields 
varied greatly from year to year, farmers needed 
to adapt mechanisms to reduce their uncertainty 
of future yields. One such mechanism thought to 
be important is reciprocity between households. 
After a reasonable model of agent planting was 
constructed, agents were endowed with balanced 
reciprocity behaviors and adaptive encodings of 
exchange, placing the households into a social 
and an economic network or other (related and 
unrelated) households. This network is flexible 
enough to evolve according to agent interactions 
and changes in the world environment. The authors 
are also trying to include the natural production 
and human degradation of what they consider 
critical natural resources into the agent-based 
simulation modeling of household settlement 
patterns. By demonstrating the ease with which 
populations could have depleted fuels in this en-
vironment, for instance, the simulation builds a 
context in which changes in food preparation, craft 
production, architecture, frequency of axes, and so 
forth, which might be responsive to fuel scarcity, 
become more plausibly interpreted as having been 
intended to do so (Johnson et al., 2005).

In recent simulations, the authors have extend 
the previous model by adding the ability of agents 
to perform symmetrically initiated or asymmetri-
cally initiated generalized reciprocal exchange 
(Kobti & Reynolds, 2005; Reynolds, Kobti & 
Kohler, 2004a, 2004b, 2005). According to this 
model, the decision made by the group is not a 
consensus based upon the weights and opinions 
of the members, but the individual knowledge 
is pooled and used by a central decision maker 
to produce a decision (Reynolds & Peng, 2005). 
Selected individuals contribute to the cultural 
knowledge, which is stored and manipulated 
based on individual experiences and their suc-
cesses or failures. 

A small world social network emerged and the 
resultant agent populations were shown to be more 
resilient to environmental perturbations. When 
allowing agents more opportunities to exchange 

resources, the simulation produced more complex 
network structures, larger populations, and more 
resilient systems. Furthermore, allowing the 
agents to buffer their requests by using a finite 
state model improved the relative resilience of 
these larger systems. Introducing reciprocity that 
can be triggered by both requestors and donors 
produced the largest number of successful dona-
tions. This represents the synergy produced by 
using the information from two complementary 
situations within the network. Thus, the network 
has more information with which it can work and 
tended to be more resilient than otherwise.

Researchers at the University of Chicago and 
Argonne National Laboratory (Altaweel et al., 
2006; Altaweel & Christiansen, 2005; Christian-
sen & Altaweel, 2004, 2006a, 2006b) have mod-
eled the trajectories of development and demise 
of Bronze Age settlement systems for both the 
rain-fed and irrigated zones of Syria and Iraq. 
Investigators intend to demonstrate that urban 
systems of ancient Near Eastern cities co-evolved 
in an intimate relationship with their social and 
economic environment, primarily by means of the 
aggregation through time of smaller fundamental 
units (e.g., households). The model allows for the 
scaling up of a settlement from a single household 
to a village, and ultimately to an urban center with 
its appropriate array of subsidiary and neighbor-
ing settlements. Agrarian production (specifically 
in light of environmental stresses) and social 
interaction is modeled at a mutually consistent, 
fairly detailed level that will support a realistic 
representation of feedback processes, nonlinear 
behavior mechanisms, and some degree of self-
organization in Bronze Age settlement systems. 
Emphasis is on the development of the household 
model and its transformation into higher-order 
settlements. Everyday decisions in farming are 
also being incorporated into the model (e.g., when 
to plant, whether to fallow or crop annually, etc.), 
as well as social factors such as the pooling of 
resources. Moreover, the full model includes 
mechanisms that allow for the growth of social 
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differentiation and that enable some households 
to grow and others to become subordinate.

Some other relevant applications of agent-
based methodologies for building historical arti-
ficial societies have been published in the domain 
of Roman History. Bob Reynolds and colleagues 
(Reynolds & Lazar, 2002; Reynolds, Lazar & Kim, 
2002) are designing a computational model of the 
origins of the Zapotec State, centered at Monte 
Alban, in the Valley of Oaxaca, Mexico. Graham 
(2005, 2006) has tried to understand the geography 
of the Roman Empire from the point of view of a 
person traveling through ancient roads. The author 
takes the lists in the historical written Itineraries, 
and recast them as networks of interconnected 
cities. The purpose is to know whether there are 
any significant differences between provinces’ 
connective network topography in terms of the 
transmission of information. One agent is given 
a piece of ‘knowledge,’ which it may or may not 
share with those it encounters. The rate at which 
knowledge is transmitted therefore depends on the 
chance of transmission in any given encounter, 
and on the topology of the itinerary network. By 
controlling for the different variables, significant 
differences in how the different provinces’ net-
works facilitated the transmission of information 
may be inferred. 

By implementing social events as compu-
tational agents and their mutual influences as 
interactions, the automated archaeologist assumes 
that collective action is accentuated by continuous 
transitions and transformations between subjects. 
The explanatory model also takes into account 
needs, motivations, goals, behavior, signs, tools, 
rules, community, division of labor, and the em-
bedded hierarchical levels of collective motiva-
tion-driven activity and individual goal-driven 
action. The term contradiction can be used then to 
indicate a misfit within the components of social 
action, that is, among subjects, needs, motivations, 
goals, actions and operations, and even mediat-
ing artifacts (division of labor, rules, institutions, 
etc.). The explanatory framework assumes there 

is a global tendency to resolve underlying tension 
and contradictions by means of changing the way 
of performing the activity and transforming the 
context and circumstances in which the activity 
took place. 

Social agents are not static entities, with a 
precise position, nor a fixed impulse. They have 
always different possibilities for action, according 
to the characteristics of the context and circum-
stances in which the action or actions takes place. 
Social action is the joint result of the modalities 
of the action, the other social agents who act in 
their spatiotemporal neighborhood, the forms of 
collaboration or lack of collaboration between 
social agents, the power relations which prevent 
to conduct certain actions or force to execute 
others, and so on. 

A multi agent-based simulation has important 
advantages compared to more traditional simula-
tion techniques:

• It supports modeling and implementation 
of pro-active behavior, which is important 
when simulating humans (and animals) able 
to take initiatives and act without external 
stimuli. In short, it is often more natural to 
model and implement humans as agents than 
objects.

• It supports distributed computation in a very 
natural way. Since each agent is typically 
implemented as a separate piece of software 
corresponding to a process (or a thread), it 
is straightforward to let different agents run 
on different machines. This allows for better 
performance and scalability.

Since each agent typically is implemented as 
a separate process and is able to communicate 
with any other agent using a common language, 
it is possible to add or remove agents during a 
simulation without interruption. It is even pos-
sible to swap an agent for the corresponding 
simulated entity, for example, a real person during 
a simulation. This enables extremely dynamical 
simulation scenarios.
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Nevertheless, an important criticism can be 
mentioned about those examples of artificial 
societies. Most of these examples have been 
considered as nothing more than a traditional 
“rational-choice” explanation where each agent 
individually assesses its situation and makes 
decisions based on a fixed set of condition-ac-
tion rules (Gulyas, 2002). That makes many 
agent-based models nothing more than a discrete 
planning for expressing descriptions of intended 
courses of action. It seems as if some designer 
(be a human or a god) needs to know the society 
before modeling it. Environmental determinism 
appears then as an obvious consequence, but 
only because it is easier to model such a system, 
given that archaeologists have more data about 
the landscape itself, than about how people lived 
at such landscape. Social dynamics is a more 
complex problem, and the diversity of hypothesis 
makes more difficult to find the proper simulation 
approach. In any case, there are many artificial 
societies replicating complex social interactions, 
like the emergence of inequality and hierarchy, 
conflict, class struggle, coercion, and so on. 

 Among the agent-based models that explicitly 
take into account social inequality and conflict, 
we can mention Smith and Choi (2007), who 
have simulated the emergence of inequality in 
small-scale societies. The model is predicated 
on the assumption that a limited number of 
asymmetries, such as differential control over 
productive resources, can explain the emergence 
of institutionalized inequality. They also draw 
on contemporary evolutionary theory in order to 
avoid the pitfalls of naïve functionalism and teleol-
ogy. Their approach is not to deny any possibility 
of collectively beneficial outcomes or directional-
ity to sociopolitical evolution, but rather to show 
how it emerges from the interaction of individual 
agency, social structure, and environmental con-
straints. In their computer simulation, some agents 
(depicted as “patrons”) control limited areas with 
greater per capita resource endowments, and 
can trade access to these for services from less 

fortunate agents (depicted as “clients”). There is 
also an additional set of isolated agents which 
simply defend richer patches for their exclusive 
use, while others (depicted as “doves”) share any 
resources on their patch with other non-territorial 
agents (doves or clients). In the initial simulation, 
all agents are doves, randomly distributed over 
an heterogeneous environment, so each agent has 
different probabilities to become a patron or a cli-
ent depending on its behavior and the productivity 
of the area it is placed. Under default parameter 
values, non-territorial strategies dominate, split 
equally between dove and client types, and iso-
lated and patron types are about equally repre-
sented in the remaining areas. However, a stable 
patron-client regime emerges in about one third 
of all runs, and takes over the population about 
10 percent of the time. Obviously, environmental 
heterogeneity is critical, as Patrons capitalize 
on their relatively rich patch endowments to 
participate in exchanges with clients, and hence 
variation in property endowment, provides the 
initial opportunity for the emergence of inequality. 
Yet this is not sufficient, nor can this be glossed 
as “environmental determinism,” since alterna-
tive strategies, interacting with similar resource 
heterogeneity do not generate socioeconomic 
inequality. Demographic parameters have also a 
strong effect on the relative success of territorial 
and non-territorial strategies. When mortality 
is high or reproductive rate low, the initial (all-
dove) population expands slowly so that isolated 
and patron agents are able to spread and control 
rich patches, effectively keeping dove and client 
numbers low at equilibrium. Conversely, low 
mortality or high reproductive rate allows doves 
to proliferate rapidly, and territorial agents are 
locked out (with clients arising in modest numbers 
through mutation and drift). Increased mutation 
rates are favorable to the spread of client and 
patron strategies, but only because this retards 
the initial proliferation of doves.

Although the model may be considered as 
too restricted and limited, it allows exploring 
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the hypothesis that a limited number of asym-
metries can explain most cases of emergence 
of institutionalized inequality. These might 
include asymmetries in control over productive 
resources, control over external trade, differential 
military ability (and resultant booty and slaves), 
or control of socially significant information. As 
the simulation suggest, these asymmetries need 
not be employed coercively, as long as they are 
economically defensible and can provide an ad-
vantage in bargaining power sufficient to allow 
the concentration of wealth and/or power in the 
hands of a segment of the social group or polity. 
The modeling indicates that such asymmetries 
can be self-reinforcing, and thus quite stable to 
moderate perturbations over time. Because most 
of the social transactions based on them are mu-
tual rather than coercive, it may be suggested that 
such systems are likely to be more stable than the 
stratified social systems (e.g., nation states) that 
eventually succeed them.

Dwight Read (2002, 2003) has followed a very 
similar approach and shows how competition is 
shown to play a critical role in the way interac-
tion—among decision-making, demographic 
parameters, and social units that organize resource 
ownership and procurement—either promotes or 
inhibits change in social organization. 

Specially relevant for evaluating the possibili-
ties of studying alternative approaches to social 
explanation, Cioffi-Revilla’s computational theory 
for the emergence of social complexity accounts 
for the earliest formation of systems of government 
(pristine polities) in prehistory and early antiquity. 
The theory is based on a fast process of stressful 
crises and opportunistic decision-making through 
collective action. This core iterative process is 
canonical in the sense of undergoing variations 
on a main recurring theme of problem solving, 
adaptation and occasional failure. When a group 
is successful in managing or overcoming serious 
situational changes (endogenous or exogenous to 
the group, social or physical) a probabilistic phase 
transition may occur, under a well-specified set of 

conditions, yielding a long-term (slow) process of 
emergent political complexity and development. 
A reverse process may account for decay. For-
mally, the canonical theory is being implemented 
through an agent-based model. Empirically, it is 
testable with the datasets on polities developed by 
the Long-Range Analysis of War (LORANOW) 
Project (Cioffi-Revilla, 2004, 2005).

Some other ways of avoiding the “environ-
mental determinism” and “rational choice” as-
sumptions can be mentioned. Saam and Harrer 
have simulated the way social norms controlling 
aggression reduce social inequality. Their results 
show that this hypothesis holds only in quite 
egalitarian societies (Saam & Harrer, 1999, see 
also Verhagen, 2001). Suleiman and Fischer (2000) 
studied how hierarchical decision-making can 
affect inter-group conflicts. Pedone and Conte 
(2001) have analyzed the dynamics of status 
symbols in hierarchically ordered societies. Imp-
ullitti and Rebmann (2002) have investigated the 
consequences of wealth distribution in artificial 
societies. Different authors are simulating the 
emergence of violence, conflict and war (Cle-
ments & Hughes, 2004; Ilachinski, 2004; Taylor 
et al., 2004; Younger, 2005), and there are also 
some published simulation on the emergence of 
gender stratification (Robinson-Cox et al., 2007). 
Consequently, the lack of more “social” and 
conflictive aspects is not a shortcoming of the 
technique, but more of a subjective decision from 
the modelers themselves, who in many cases build 
the computational surrogates of social agents as 
rational individual.

A more sophisticated artificial society is being 
built by the “NewTies” project, in which societies 
of agents are expected to develop autonomously 
because of individual, population, and social 
learning. These societies are expected to be able 
to solve environmental challenges by acting 
collectively. The challenges are intended to be 
analogous to those faced by early, simple, small-
scale human societies (Gilbert et al., 2006).
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Building artificial societies inside a computer 
allows us to understand that social reality is 
not capricious. It has been produced somehow, 
although not always the same cause produces 
the same effect, because social actions are not 
performed isolated, but in complex and dialecti-
cal frameworks, which favor, prevent, or modify 
the capacity, propensity, or tendency the action 
has to produce or to determine a concrete effect. 
Obviously, the automated archaeologist should 
take into account the existence of weak or strong 
activities, partial implications, or the appearance 
of self-determination, when the instability be-
tween the components of social activity causes a 
qualitative or quantitative change in the way the 
activity is performed or in related activities. The 
assumption is, however, that indeterminacy is out 
of the social worlds. By definition, everything a 
human does (and did) is determined in some way 
by something. Everything that exists, has existed, 
or will exist has, has had, or will have a cause, 
by complex or apparently weak that this one is or 
can seem to an independent observer.

diRECtioNS FoR FuRthER 
RESEARCh

This way of understanding social dynamics is 
still in its infancy. Although many social kinds 
of social behavior have been already simulated, 
there are many, many aspects of the methodology 
that still wait to be investigated.

We need new investigation looking for al-
ternative ways of exploring social mechanisms. 
Agent-based or distributed simulation is a rather 
new technology that has allowed going beyond 
traditional simulations in terms of linear systems. 
This technology has generated the actual efferves-
cence to the discipline. However, in some aspects, 
it is a kind of coming back to traditional computer 
programming in terms of rules and expert systems. 
Of course, I am not saying that anything created 

20 years ago is necessarily out-fashioned, but we 
know the theoretical and practical limitations 
of such mechanisms. Although in some small 
simulations current technology performs quite 
well, if we would like to simulate full-scale social 
systems, we need better implementations, using 
neural networks as agents, or hybrid systems 
integrating the best from all worlds.

Obviously, the problems are not only method-
ological and technical. Once we know that simulat-
ing a society is possible, we need to review all we 
thought to know about social dynamics. The real 
matter is not only “how to simulate?,” but rather 
“what needs to be simulated?.” Too many aspects 
of social knowledge were taken for granted, and 
most of them were never analyzed as mechanisms. 
Social mechanization has still a bad reputation, 
and simulation approaches inspire fear to many 
scientists. Many of them think that not everything 
is mechanizable, others think that there is noth-
ing to be gained by such efforts. Consequently, 
theoretical and even philosophical work on these 
subjects is the most necessary.
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…by performing better and cheaper, the robots 
will displace humans from essential roles. Rather 
quickly, they could displace us from existence.
 
I’m not as alarmed as many by the latter pos-
sibility, since I consider these futures machines 
our progeny, “mind children” built in our image 
and likeness, ourselves in more potent form. Like 
biological children of previous generations, they 
will embody humanity’s best chance for a long term 
future. It behaves us to give them every advantage 
and to bow out when we can no longer contribute. 
(Moravec, 1998, p. 13)

thE AutomAtEd 
ARChAEologiSt AS A timE
mAChiNE

We have already argued that an automated ar-
chaeologist cannot understand past social actions 
by enumerating every possible outcome of every 
possible social action. The need to insert all the 
world within the automated archaeologist’s brain 
and then maintain every change about is impos-
sible. However, if we cannot introduce the world 
inside the robot, we may introduce the robot 
inside the world. What the automated archaeolo-
gist would need then is to be situated in the past, 

and then using observation and attention to learn 
from human action, because of the complexities 
of the past, which resist modeling. It leads to a 
modification of the aphorism espoused by Rod-
ney Brooks (1989): “the past itself should be its 
own best model.” Consequently, the automated 
archaeologist must travel to the past to be able 
to understand why it happened. Only by being 
situated directly in the past, the automated ar-
chaeologist would understand what someone did 
and why she did it there or elsewhere. 

This is the classical time machine analogy. If 
situated in the past, the automated archaeologist 
would interact with the precise context in which 
social activity was performed because it would 
be an integral part of it. Wonderful! Now, the bad 
news. There is no way of actually going back into 
the past to test a historical hypothesis. The auto-
mated archaeologist exists only in the present, then 
any activity or action or behavior that happened 
in the past is now out of its reach. It cannot see in 
the present what was performed in the past. It can 
examine only what it perceives within the present, 
the material objects that surround it, here and now, 
and, only from these objects, the cognitive robot 
should infer what it has undergone. Of course, 
the automated archaeologist can perceive the ef-
fects of social activity performed in the past, but 
these are its actual effects. Social activity in the 
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past cannot be perceived in the present, and then, 
our machine cannot be situated in the context in 
which the action was performed.

The impossibility of seeing the past affects 
not only archaeologists but also any discipline 
dealing with cause and effect. The past should 
be transferred to the present if someone pretends 
to explain the cause of an effect observed in the 
present. When a pediatrician asks the child’s 
father what his son ate yesterday, she is doing 
“history,” because she investigates a temporal 
dimension to solve a why question: why the child 
has now stomachache. The pediatrician uses what 
the father says (a narration in the present about 
something he saw in the past) to “see” in the pres-
ent what the child’s ate yesterday. Like medical 
histories, social researchers have at their disposal 
texts containing narrative memories existing in 
the present, but written in the past by real (or 
supposed) witnesses of past events. In so doing, 
historians are not traveling themselves to the past, 
but they build a surrogate of the past, which they 
interrogate. They are situated in a virtual world 
extracted from a narration -supposed to be true-
, written (or told) by an individual having seen 
someone doing something in the past, or explain-
ing her intentions when acting. The past is then 
accessible through the filter of a surrogate built 
indirectly from personal narratives, written or told 
in the past and preserved in our present. 

In Archaeology, we do not have any personal 
witnesses. We do not have descriptions of past 
facts, or explanations of motivations, intentions, 
nor goals. The only we have are some material 
traces for some (not all) outcomes of social ac-
tivities performed in the past. Even in the case of 
human bodies found in burials, we do not have the 
actors of past activities; they are, in some sense, 
products, or material consequences of what others 
did with them. Even in those circumstances, the 
past can be transferred, partially, to the present.

In general, the automated archaeologist as-
sumes that some initial event in the past has been 

modified, and what it perceives in the present 
is just some of those modifications, which have 
been preserved in some way. In that sense, ar-
chaeological sites can be considered as puzzling 
traces (effects) of long-past events, because all 
outcomes of social activity have been created 
and transformed during the development of some 
activity and they carry with them a historical 
residue of that development.

Michael Leyton (1992, 2005) argues that a 
trajectory of changes (a history) can be described 
as a discontinuous sequence composed of a mini-
mal set of distinguishable actions. The key idea 
is that what appears to be different in the present 
speaks about some action in the past that gener-
ated such a difference. Variability in the present 
is understood as having arisen from variability 
in the formation processes. In an archaeological 
data set with no variability, nor any differences 
among its elements, the best hypothesis is that 
the corresponding causal process has the least 
amount of variation. If a property is invariant 
(unchanged) under an action, then one cannot 
infer from the property that the action has taken 
place. Any cognitive agent (be a human or a 
machine) cannot explain the history of water in 
a lake, because water is spatially and temporally 
undifferentiated. However, if we can distinguish 
variation (curvature, or surface irregularity) along 
the basin lake perimeter, we can follow the geo-
logical transformation of this landscape. There-
fore, the automated archaeologist should regard 
the complexity of the spatiotemporal trajectory 
of visually apparent differences as a measure of 
the amount of social activity needed to produce 
perceivable variation.

The automated archaeologist will use per-
ceived “variation” in shape, size, texture composi-
tion and spatiotemporal location values to “run 
time backwards” and explain how those variations 
were caused. Distinctions between successive 
stages of an archaeological trajectory of changes 
and modifications point to a past event where 
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variation did not exist; sufficiently far back, no 
difference existed. An automated archaeologist 
will explain a trajectory of changes by imposing 
a temporal slicing on archaeologically perceived 
discontinuities. The intention for such a slicing will 
be to represent visually the transitions between 
events. In this way, the automated archaeologist 
would simulate the actual occurrences of the 
events in an historical sequence. Such a trajectory 
of events would be “explanatory” because the 
same occurrence of an event within the trajec-
tory, and its spatiotemporal relationship with the 
preceding and successive event would serve as the 
explanandum of what happened in the past.

The true nature of social activity is expressed 
in such directivity of the sequence chain of hu-
man induced changes between spatiotemporal 
successive events. Directivity is the result of 
interpreting a persisted state or the discovery of 
an order in a sequence or trajectory of multiple 
different states. Consequently, the explanation of 
specific social activities should be studied in terms 
of their causal contributions to final states, and 
not as the immediate effect of some individual 
decision. This only means that social events are 
always understood in historical terms, that is, 
according to what changed at each place and at 
each moment. 

Therefore, it should be assumed that the past 
will be “seen” within the present, if and only if 
some different states within the present can be 
distinguished, and these states are ordered ac-
cording some kind of temporal directivity. This 
last assumption is very important, because not 
any observed difference in the present speaks 
about the past. 

That means that historical (and archaeological) 
explanation depends on the actual occurrences of 
the events in the explanatory sequence. There is 
no single law that constrains these occurrences; 
it is the same occurrence, which serves as the 
explanandum. 

“SEEiNg” thE PASt iN thE 
PRESENt

What our time machine should perceive at an 
archaeological site are not stones, walls, build-
ings, pottery sherds, animal carcasses, but a 
chronologically ordered sequence of changes 
and modifications acting over the consequence 
of former changes and modifications (Barceló 
2007). Consequently, the intelligent robot should 
be programmed to look for material entities 
whose changing properties it may assume it is 
able to trace. 

In order to be able to acquire visual informa-
tion (shape). our automated “observer” is equipped 
with range and intensity sensors. The former ac-
quire range images, in which each pixel encodes 
the distance between the sensor and a point in 
the scene. The latter are the familiar TV cameras 
acquiring grey-level images. That is to say, the 
automated archaeologist may use a CCD camera to 
observe a pattern of structured light projected on 
the scene (e.g., a beam of laser light, or a grid of 
lines). The resulting data is only a spatial pattern 
of visual bindings, which can be subdivided into 
sets of marks (points, lines, areas, volumes) that 
express the position and the shape of perceived 
boundaries, and their visual properties (texture). 
In addition, the automated archaeologist should 
acquire information on the frequency variation 
of different materials (composition) at different 
spatiotemporal locations. 

The job of the automatic archaeologist sensors 
is not to provide with a representation of the world 
in abstract but to generate the information that 
the robot needs to interact with the world. The 
spatial location of archaeological features, and 
the characteristics relevant to its explanation, 
must be recognized and represented in the robot’s 
“brain” in such forms that they can be used in the 
planning of epistemic actions. Perceptual features 
are treated as evidence and their estimation ac-
curacy should be directly correlated to their power 
to resolve alternative hypotheses. That accuracy in 
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turn depends upon feature extraction methods. It 
can be carried out by means of specialized feature 
detectors, which pick up information specifying, for 
instance, some shape invariants of real objects in 
the external word (lines and angles). Other detectors 
may capture both the feature and other parameters. 
By this account, hierarchies of feature detectors are 
combined together in ways given by coactivity of 
the underlying detectors and necessary knowledge 
structures necessary to integrate them. Complex 
association structures are formed when simple 
feature detectors and prior knowledge structures 
become associated through repeated sequential 
fixations of the corresponding features.

The next step implies going beyond the partition 
of perceived input into a set of non-overlapping, 
uniform connected conceptual entities. Events 
themselves are higher-level entities, integrated 
in historical trajectories, which should be con-
structed using mechanisms that are more complex. 
Subsequent levels of processing are needed to 
represent the higher-level correlations that arise 
when archaeological events are finally categorized. 

Information processing in a robot should be orga-
nized on different levels of cognition, covering 
the handling of sensor streams, holistic processes 
(neural level), knowledge processing, and dealing 
with mathematical models, in a kind of subsumption 
architecture (Brooks 1999, Rachermacher 1996).

Seeing the past in the present is then a gradual 
task that proceeds from the general to the specific 
and that overlaps with, guides, and constrains the 
derivation of a causal explanation from the visual 
input acquired at the archaeological site and at 
the laboratory. The overall explanatory process is 
thus broken down into the extraction of a number 
of different observable physical properties (low-
level analysis), followed by a final decision based 
on these properties (high-level analysis). Low-
level processes typically concern the extraction of 
relevant features (form and frequency, shape and 
composition) characterizing the individuality of 
each archaeological event (see Figure 10.1).

Each level is implemented by a distinctly 
engineered layer. That is to say, explanatory-

Raw visual data: 
FORM-FREQUENCY DATA 

Geomechanical properties, mineral grades, soil morphological 

frequency of bones, etc 
 

Image segmentation 
IDENTIFYING DISTINCTIVELY SHAPED, TEXTURED AND 

COMPOSED REGIONS OF PHYSICAL SPACE 
 

Low-level interpretation of perceived variation 
STATISTICAL ANALYSIS: 

Synchrony, spatial proximity, and element connectedness variation 
 

Archaeological event recognition 
 

High-level historical interpretation 

Figure 10.1. The gradual process of seeing the past in the present and recognizing it.
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achieving tasks should be represented as sepa-
rate layers of the same mechanism. In its purest 
sense, the explanatory device should permit 
communication between layers, but they will be 
heavily restricted. We can imagine a first layer 
processing signals. It is a series of mechanisms 
receiving information from sensory systems and 
filtering out “features.” The second layer would 
be the feature level. Here features would be ag-
gregated “to arrive at the basic building blocks 
of level 3 of the hierarchy considered, namely 
concepts and notions to be communicated to a 
higher level of representation. Layer four deals 
with knowledge processing, where the information 
content from level two is further interpreted and 
reduced, leading to symbolic concepts. Layer five 
is the theory level, which represents information 
in the form of formal theories or models, often 
using mathematical tools.

Initially, low-level processing is activated 
when it is stimulated by the “recognition” of 
spatiotemporally distributed discontinuities in 
shape, texture, and composition. This layer then 
activates all appropriate higher-level mechanisms 
to which they are connected, and in turn activates 
all of their super ordinate explanatory processes. 
In the case of a neural network approach, the 
receptive field properties of low-level neurons 
would encode the salient features of the input data 
in order to generate a preliminary model of the 
external world. This encoded information would 
then be processed and eventually decoded by 
middle-and higher-order neurons. In this way, fea-
ture detectors (low-level neurons) would respond 
selectively when particular local configurations 
are presented. Cognitive detectors (higher-level 
neurons) represent the outcomes of particular 
simulations of hypothetical causal processes. At 
the highest level, a decision mechanism selects 
the concept corresponding to that represented by 
the cognitive detector activated by the highest 
quantity of features.

In principle, the automated archaeologist 
can see the past in the present without semantic 

criteria for comparison. That is to say, it can be 
programmed so that its ability to discriminate 
among archaeological events will depend on 
low-level, data-driven mechanisms that use visual 
features sensed at the site. It should be stressed, 
however, that visual features give not a clean line 
to distinguish the effects of social action. 

“CoNCEPtuAliziNg” thE PASt iN 
thE PRESENt

The problem the automated archaeologist must 
solve can be defined in formal terms as the trans-
formation of an incoming sensory vector into 
an appropriate conceptual vector, which should 
be consistent with a hypothetical causal model 
of the input vector (Churchland 1995). That is, 
given a description of archaeologically observable 
features and a set of already known mechanisms 
corresponding to hypothetical social activities, 
actions, and/or behavior models known to the 
automatic archaeologist, it should assign correct 
causal explanations to what it has seen in the 
present, as they were the material consequences 
of social actions performed in the past. 

We can say then that an automated archaeolo-
gist “perceives” some reality because it recognizes 
input information according to previously learnt 
categories. The goal of explanation is to perform 
relevant associations between input and output 
correctly, in the sense that the recognition reflects 
a meaningful property of the world in terms of 
what has been already learnt of its formation 
process through previous experiments or con-
trolled observations, and which is independent 
of the particular data that is being interpreted. 
First, a visual sub-system has classified the 
percept as being a member of one of a large 
number of results from known causal processes 
according to visible properties, such as its shape, 
size, color, and location, and relations between 
them. Second, this identification allows access 
to a large body of stored information about this 
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type of object, including its function and various 
forms of expectations about its future behaviors. 
This two-step schema has the advantage that any 
functional property can be associated with any 
object, because the relation between the visual 
characteristics of an object and the information 
stored about its function, history, and use can be 
purely arbitrary, owing to its mediation by the 
process of categorization.

Minsky (2000) believes that we all have pow-
erful “commonsense” knowledge that helps us to 
predict the possible behavior of what we see. He 
claims that: “The secret of what X means to us 
lies in how our representations of X connect to 
the other things we know.” He also mentions the 
need for classifying objects according to what 
they can be used for or which goals they can help 
us achieve (Minsky 1991). This procedure seems 
to ascribe to any cognitive machine an organized 
“library” of internal representations of various 
prototypical perceptual situations, to which the 
results of perceptions are associated. Explanatory 
understanding consists then in the apprehension 
of the problematic case as an instance of a gen-
eral type. Such a representation would allow the 
machine to anticipate aspects of the case so far 
unperceived, and to deploy practical techniques 
appropriate to the case at hand. Consequently, 
automated understanding can be understood as 
the generator of a set of descriptions of the actual 
physical world that might be sufficient (perhaps 
in concert with other contextual information) to 
identify instances of social actions performed in 
the past, according to what the robot knows about 
them from the laboratory experiments, computer 
simulations or ethnoarchaeological analogies.

The suggestion that scientific reasoning might 
simply consist in a sequence of input-output or 
perception-action associations has been devel-
oped, among others, by Howard Margolies (1987) 
and Paul Churchland (1989) (see also Abelson and 
Lalljee 1988, Latour and Teil 2005). Scientific 
reasoning does not involve any introspection 
into the process of thinking, but rather is itself a 

process of pattern recognition. A priori models 
account for any deterministic variability, whereas 
deviations from the model are random and sta-
tistically independent for different subsets. They 
represent an expected, deterministic aspect of 
the data, although the deterministic uncertain-
ties can be implemented in terms of unknown 
model parameters. Models should be specified a 
priori; the adaptation or learning is achieved by 
estimating model parameters from the available 
data. Perlovsky (2001, pp. 161) has suggested 
that understanding is only possible through the 
combination of sophisticated a priori knowledge 
with adaptive learning in the presence of per-
ceptual uncertainties of a diverse nature. That 
is to say, an automated archaeologist should be 
able to integrate what it knew before experience 
(predefined rules) and what it should learn through 
intervention in the real world.

However, it is important to remark that the 
inner knowledge to be learnt by the robot is 
not a store of associations constituted as a large 
database (Typology), but concepts (input-output 
functions) created from a variety of experiences. 
It is the nonlinear and adaptive way of learning 
what allows for the formation of scientific con-
cepts. Automated conceptualization shares three 
characteristics with explanatory concepts formed 
by humans: (a) the boundaries of learned concepts 
should be fuzzy in that no single feature is required 
to distinguish one concept from another; (b) the 
formation of learned concepts should be path-de-
pendent in that the final properties of the concept 
vary with the details of the learner’s selection 
history, and (c) the cumulative effect of selection 
should cause the epistemic system to function as 
if a general concept has been formed.

This is a depictive representation of archaeo-
logical explanations. A depictive representation is 
a type of picture, which specifies the locations and 
values of configurations of points in space-time 
(Kosslyn 1994). In a depictive representation, each 
entity is represented by a pattern of points, and 
the spatial relations among these patterns in the 
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conceptual space correspond to the similarities 
among the concepts themselves. Furthermore, de-
pictive representations do not represent predicates 
explicitly; instead, the relation between arguments 
emerges from the spatial positions of the depicted 
objects and parts. In this form of representation, 
the basic element is a point placed on a certain 
location, as opposed to an abstract symbol. This 
is precisely the definition of a conceptual space. 
The intuition around this word is a spatial anal-
ogy: a concept can be represented in terms of its 
relationships to the most relevant concepts that 
are located in the neighborhood in the ordered 
“representation space” (Kohonen 2001, Aisbett 
and Gibbon 2001). 

According to Gärdenfors (2000), a conceptual 
space is a set of quality dimensions with a geo-
metrical or topological structure for one or more 
domains. The key notion in this framework is that 
of a conceptual dimension. The fundamental role 
of such dimensions is to build up the domains 
needed for representing concepts, that is to say, 
they correspond to the different ways stimuli are 
judged to be similar or different. The dimensions 
form the framework used to assign properties to 
objects and to specify relationships among them. 
Thus, shape concepts, for instance, belong to one 
dimension, concepts for textures to a second, the 
composition of archaeological observables to a 
third, and so on. Additional examples of concep-
tual dimensions are sensory-derived qualities such 
as time or the three ordinary spatial dimensions 
of height, width, and depth; qualities of an ab-
stract non-sensory character, such as integrity or 
complexity; or internally derived features such as 
social inequality. A domain is represented through 
a set of integral dimensions, which are distinguish-
able from all other dimensions. Gärdenfors defines 
a domain as a set of related dimensions that are 
separable from all other dimensions. Accordingly, 
a conceptual space will be defined as collection 
of one or more domains. 

This view is also coherent with a conception 
of scientific theories as a structure that serves 

to pick a specific model out of a set of possible 
models. The outcomes of preliminary low-level 
explanations (recognitions) should be combined 
to obtain global patterns serving as new input 
patterns to higher-level inferences. Thus, our 
automated archaeologist will solve problems by 
recognizing something, and with the help of that 
result, explaining further. 

Neural networks, as used through this book, 
exemplify this approach. In the neural network, 
visual input activates the first layer of neurons 
-the input ”feature” nodes- and this activation 
propagates throughout the network via the con-
nections among neurons. In a neural network 
almost all knowledge is implicit in the structure 
of the device that carries out the task, rather than 
explicit in the states of units themselves. Knowl-
edge is not directly accessible to interpretation, but 
it is built into the processor itself. It determines 
directly the course of processing. It is acquired 
through tuning of connections as these are used 
in processing, rather than formulated and stored 
as declarative facts (Rumelhart 1989).

As it was described in preceding chapters, 
explanatory concepts become activated to a degree 
that depends both on available knowledge at each 
moment (the level of activation in all the neurons 
to which it is connected) and on the association 
between individual knowledge bits (the strength 
or weight of connections among neurons), which 
can be either positive or negative. Furthermore, 
in contrast with discrete Aristotelian logics, neu-
ral network models are more graded. Neurons 
integrate information from a large number of 
different input sources, producing a continuous, 
real valued number that represents something like 
the relative strength of these inputs (compared to 
other inputs it could have received). The neuron 
then communicates another graded signal (its 
rate of firing, or activation) to other neurons as 
a function of this relative strength value. These 
graded signals can convey something like the 
probability of the cause in some specifically 
constrained circumstances.
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Neurocomputing suggests that, instead of cast-
ing automated explanation as a massive dynamic 
search problem, we can think of it in terms of a 
gradual sequence of nonlinear transformations 
(operating in parallel) that emphasize certain 
features and collapse across others. If the result of 
this sequence of transformations retains sufficient 
information to disambiguate different possible 
explanations, but collapses across irrelevant dif-
ferences produced by individual variability, then 
explanation has been achieved. Neural networks 
implement the capability to organize explana-
tions into a memory for coordinated, interacting 
processes, not for descriptions of them per se. 

In this way, the automated archaeologist does 
not learn discrete responses to discrete facts, and 
there is no assumption that the world consists of a 
finite body of facts. Rather, the world consists of a 
rich body of information, some of which crosses 
the sensory thresholds of the problem solving 
machine. The information that is captured in 
the activation of input units in the connectionist 
processing system provides a broad spectrum 
about the environment in which the cognitive 
robot, some of which may be regarded as con-
textual, depending upon what task the machine 
is performing. It is up to the machine to learn to 
identify objects in the environment by learning 
responses to patterns. One advantage of this 
way of viewing the system’s responsiveness to 
the environment is that the particular response 
of the system may be influenced by a variety 
of different factors. Some of them may be only 
indirectly related to the problem, but they are 
able to influence the patterns of activation arising 
inside the system.

The most important characteristic of con-
nectionist systems is that they simultaneously 
evaluate multiple constraints among a number of 
sources of information (Thagard and Verbeurgt 
1998, Read and Miller 1998, Ranney and Schank 
1998). Explanation is conceived as a gradual 
process that is continuously updated rather than 
a final judgment at the end of a series of observa-

tions are assumed by the probabilistic approach. 
Each neuron represents a hypothesis of some 
sort and in which each connection represents 
constraints among the hypothesis. Additionally, 
the neurons in such a model are organized in lay-
ers, with each layer corresponding to a different 
level of analysis. The nodes can be thought of as 
representing hypotheses about the presence or 
absence specific features or concepts at that level 
(Read and Miller 1998), or alternatively, each 
active neuron can represent a “micro-feature” 
of an item, and the connection strengths stand 
for plausible “micro-inferences” between micro-
features. Any particular pattern of activity of the 
units will satisfy some of the micro-inferences 
and violate others. Links between neurons are 
excitatory when micro-features are consistent or 
support one another and inhibitory when they are 
inconsistent. Thus, for example, if explanation 
B is expected to be relevant whenever feature A 
is present, there should be a positive association 
from the neuron corresponding to the hypothesis 
that A is present to the neuron representing the 
hypothesis that B is expected. Similarly, if there 
is a constraint that whenever A is present B is not 
expected, there should be a negative connection 
from A to B. If the constraints are weak, the weights 
should be small. If the constraints are strong, then 
the weights should be large. The inputs to such a 
network can also be thought of as constraints. A 
positive input to a particular neuron means that 
there is evidence from the outside that the relevant 
feature is present. A negative input to a particular 
neuron means that there is evidence from the 
outside that the feature is not present. 

It has been argued, however, that neural net-
works are just a technology—a set of tools and 
methods which can be applied to a wide variety 
of practical and modeling tasks, and not an archi-
tecture for an intelligent agent. Neural networks 
are just a family of number crunching algorithms 
and without a theory of meaning, whether explicit 
or implicit, it would be impossible to view con-
nectionist systems as problem-solver mechanisms 
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(Christiansen and Chater 1992, Marcus 2001). 
Connectionist networks seem to allow “for the 
possibility of constructing intelligence without 
first understanding it.”

Connectionism has been equated with trivial 
“associationism,” and many scientists from dif-
ferent disciplines view connectionism as a revival 
of the radical empiricist approach that dominated 
the “dark ages” in social sciences. In that behav-
ior-functionalist era, explanation amounted to 
accounts of environmental information and of 
the observable behaviors they produced. In many 
respects, the computational approach to neural 
networks echoes this endeavor. Neural networks 
would be just rote memorizers in the tradition 
of associationism or behaviorism, incapable to 
match the performance of human in higher-level 
cognitive abilities. 

Connectionist learning has also been attacked. 
The claim that connectionist systems are capable 
of capturing sufficiently rich empirical general-
izations has been strongly contested. The general 
theme of these critiques is that neural networks 
capture some, but not all, of the empirical regu-
larities thought to be critical to understanding 
the social phenomena being modeled. Fodor and 
Pylyshyn (1988) have dismissed learning in con-
nectionist systems for being merely “frequency 
sensitive,” as if the machine was able to learn 
only the probability of occurrence of events it 
has seen. Perceptual learning in connectionist 
models merely amounts to becoming familiar 
with the statistics of input patterns. Therefore, 
despite showing holistic traits, connectionism still 
has an impoverished understanding of “context” 
which is reduced to the coincidence of contingent 
features, and according to which relationships in 
the cognitive system are established in a bottom-
up manner by simply correlation rules (Engel and 
König 1998).

Furthermore, in simple connectionist models, 
the categories to be learned (from the observer’s 
perspective) are already implicit in the features 
by which an experimenter defines the inputs for 

the program. Storing a sequence of inputs with 
given output places simple connectionist learning 
squarely back in the associationist camp (Clancey 
1997). Although the system has certain input-
output knowledge, it is incapable of expressing 
in words what this way of using explanatory con-
cepts is. A neural network is a system knowing 
its way around in a certain domain yet lacking, 
in an important sense the concepts we might use 
to describe what it knows. 

The main trouble seems to be that while the 
correlation approach at least promises to provide 
an account of how internal states of a network 
can represent propositions, it provides no ac-
count at all concerning how they can represent 
properties. Fundamentally, connectionists attach 
meaning to the states of a network on the basis 
of what those states correlate with, and there are 
serious philosophical problems concerning not 
only a connectionist semantics based on causal 
correlation but also, in general, the adequacy of 
correlation semantics as the basis of any theory of 
meaning. Since concepts are mental representa-
tions standing for situational contexts, this means 
that the correlation view provides no account of 
what it is for an internal state to correspond to 
a concept. What is learned by a neural network 
are not internally constructed experiences but 
input-output pairings provided by the experi-
menter, and what is related are not interacting 
processes but predefined features by which inputs 
are described. 

A further problem for causal/correlation ac-
counts of meaning is explaining the origin of the 
meaning of explanatory terms such as FREEDOM 
or JUSTICE, which have no real instances and 
hence cannot be learnt, or correlated to internal 
states. These symbols cannot be “grounded” by 
some state of a network, which comes to correlate 
the presence of utopia in the social environment; 
for these are never present in the environment—
they don’t exist. Problems with non-existent 
universals have plagued philosophy since Hume. 
The only proposed solution for a causal/correla-
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tion view is that the meaning of non-existents is 
composed out of the meaning of more primitive 
terms, which do exist. Therefore, the story goes, 
freedom means absence of coercion power, and 
since this can be observed and measured, “free-
dom” inherits its meaning from the contexts where 
coercion power is absent. This view presupposes 
that terms for things, which do not exist can be 
defined in terms of things that do. Therefore, it 
seems that we must conclude that every term must 
be definable in terms of other terms. 

The connectionist response to such criticisms 
is to moderate their claims about the possibili-
ties of the technology. They argue that because 
of practical limitations, the networks that they 
create should not be expected to capture all of 
the relevant empirical generalizations. However, 
because these simple systems can account for some 
interesting data, it is argued that they warrant 
serious consideration. The suggestion is that as 
networks become larger and more sophisticated, 
they will be able to account for a broader range 
of empirical phenomena. 

Sophisticated connectionist models overcome 
the limitations of the simple association mecha-
nism in at least two ways. First, their representa-
tions are structured, not only in the sense that they 
manage to represent complex structured entities 
such as causal laws, but also because they have 
an internal structure which determines how they 
are handled in the system. This internal structure 
is not, of course, syntactic structure (i.e., it is not 
the result of combining primitive symbolic tokens 
according to grammatical rules). This structure 
is a particular configuration of activation values, 
which locates the representation in the state space 
and hence determines how the system will treat 
it. Second, connectionist systems are not simple 
mechanisms for recording a set of discrete as-
sociative links between elements. The training 
process is, to be sure, one of getting the network 
to duplicate the specific regularities presented in 
the training environment. It does this, however, 
only by constructing a particular dynamical sys-

tem, whose behavior is defined only over the set 
of instances (“associations”) to which it has been 
exposed, but rather over the full range of possible 
input (or hidden) states. That is, a connectionist 
system generating an appropriate response to a 
certain fixed range of inputs is automatically one 
that generates some response to the full range 
of possible inputs. It will generate the correct 
response to the full range of possible inputs if 
the training process succeeds in discovering a 
distributing transformation from input to in-
ternal representations, which gives the space of 
internal representations the right kind of intricate 
hierarchical structure. In other words, although 
the automatic archaeologist implemented as a 
neural network has no single or literal idea of the 
meaning of, say, “chiefdom,” “hunting,” “animal 
prey,” “activity area,” or “tool,” it has some ideas 
about the circumstances in which the use of this 
concepts seems appropriate. 

There is certainly merit in this position, but 
it should be recognized for what it is: a promis-
sory note. The enthusiastic predictions about the 
future performance of an automated archaeologist 
based on larger networks should be tempered 
by the knowledge that the advantages of small 
neural networks often disappear when their size 
is scaled up.

The most important limitations of neurocom-
puting only arise when connectionism is applied to 
higher-level cognitive functions such as reasoning 
in the same way human archaeologists really do. 
The major points of controversy in the philosophi-
cal literature on connectionism have to do with 
whether connectionists provide a viable and novel 
paradigm for understanding the mind. The mere 
fact that a network can be trained to perform a 
task does not provide any understanding of how 
the mind performs the task, since it does not offer 
any insights into the inner workings of the mind. 
It should be taken into account that in this book, 
I have not pretended to simulate the real human 
archaeologist, but I have tried to look for ways 
to mechanize scientific reasoning. Although the 
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most important part of the criticism is addressed 
to the connectionist pretension to replicate human 
mind, in general, some points are also relevant in 
our restricted case.

“uNdERStANdiNg” thE PASt iN 
thE PRESENt

The automated archaeologist does not “see” the 
past as it once was. In other words, when we say 
that the automated archaeologist has perceived a 
buried “wall,” this is not entirely true. The real 
matter is that it has detected some texture varia-
tion between the nature of the sediment covering 
accumulations of stones and other material, and 
the stones that once formed part of that wall. It 
has perceived that the differences between the 
sediment area and the stone accumulation area are 
patterned, and an edge can be traced contouring 
the limits of the discontinuity between both areas. 
It will be able to understand such a discontinuity 
in terms of one component of a house, if it knows 
the specific operation that accumulated stones at 
that place and not elsewhere, and the process that 
explains the unordered accumulation of sediment 
above a previous ordered accumulation of stones. 
That is to say, if our automated archaeologist 
knows how to build a wall, and how stonewalls 
collapse and become a ruin, it will able to explain 
a perceived and measured accumulation of stones 
as a wall. Otherwise, the detected discontinuity 
will remain unexplained. 

The very idea of distributed or adaptive learn-
ing has also been attacked. This approach has been 
called the affordances view of perceptual expla-
nation, because it can be traced back to Gibson’s 
formulation of affordance theory (Gibson 1979). 
The relationship between an agent and its envi-
ronment afforded by a potential action is termed 
an affordance. On this view, the explanation of 
any observable thing reflects the actions that can 
be performed on it (and with it), given both its 

physical structure and the physical structure of 
the agent interacting with it. In other words, the 
a priori contents of the problem-solver are not 
concepts, but a kind of “pre-concepts” having 
dynamic, adaptive nature. They are a bridge 
between the mind and the experience. Concepts-
as-potentialities belong to the a priori content of 
the mind, whereas concepts-as-actualities come 
immediately close to the world of experience 
(Perlovsky 2001).

An automated archaeologist understands 
archaeological observables in terms of a priori 
affordances: relationships between observed 
properties and the inferred properties/abilities of 
people having generated those properties. The af-
fordances of any archaeological evidence become 
obvious in its use and/or formation process. Both 
involve establishing and exploiting constraints 
(between the user/producer and the material 
evidence of his/her action, the user/producer 
and the natural environment, and the material 
evidence and the natural environment). Physical 
affordances, closely related to constraints, are 
mutual relationships that involve both the agent 
and the material elements she/he manipulates (and 
the environment he/she operates). The constraints 
that are relevant in function of the archaeological 
entity fall into different categories, which would 
include the following (St. Amant 2002, Bicici and 
St. Amant 2003): 

• Spatial constraints describe the spatial 
relationships associated with a tool and its 
use in an environment. For example, to use 
a hammer one needs enough room to swing 
it. 

• Physical constraints describe physical re-
lationships in the use of the tool, such as 
weight or size. 

• Dynamic constraints describe movement- 
or force-related properties of tool use. For 
example, one needs to swing a hammer with 
appropriate speed in its use. 
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Defining archaeological affordances as func-
tional explanations is not as straightforward as 
it might seem. If the definition proposed by the 
automated archaeologist is too specific, it may 
need to include a large number of exceptions; if 
it is too general, it may end up including many 
inutile features. In the Artificial Intelligence 
literature of functional analysis, the example of 
a chair is often used to illustrate these problems. 
One functional explanation for a chair is “some-
thing that you can sit on.” However, because you 
can sit on almost anything, this definition is too 
general, including such things as floor, animals, 
and other people. At the same time, an explana-
tion such as “a chair has a sit-able structure that 
is held between a backing structure and a legged 
support structure not much taller than the legs of a 
human” is too specific. It excludes physical objects 
we might like to include, such as overturned pails 
and appropriately shaped rocks. We have already 
found these kinds of problems, and we have sug-
gested solving it in terms of conceptual spaces, 
associative memories, and potential fields.

Therefore, understanding those elements of the 
past that have been seen in the present assumes that 
the perceived strength of causes is directly stored 
in memory under the form of mental connections 
between the potential cause and the observed 
effect (Van Overwalle and Van Rooy 1998). The 
robot will only learn when perceived events violate 
their previous expectations, and it assumes that 
an increasing number of comparison cases with 
a similar outcome will cause an increase in the 
perceived influence of the context.

For this sort of cognitive task to work, the 
automated archaeologist has to know what pre-
cipitating conditions generate an increase in the 
probability of occurrence of an effect. Beyond a 
simple addition of individual random decisions, 
social activity should be defined in terms of so-
cial dispositions or capacities within a system 
of subjects, intentions, activities, actions and 
operations, some of them rational, others clearly 
indeterminate, impulsive or unconscious. The 

fact that the performance of some social ac-
tion A, in circumstances T, has a probability P 
of causing a change Y in some entity N (social 
agent, community of social agents or the nature 
itself), is a property of the social action A. It is a 
measurement of the intensity of the propensity, 
tendency, or inclination of certain events to ap-
pear in determined causal circumstances. Thus, 
the primary explanandum of archaeological 
theory is social capacities: the capacity to work, 
to produce, to exchange, to interact, to obey, to 
impose something or someone. 

This approach is based on the idea that the 
probability of an event is the inversely proportional 
relation between the occurrence of the effect and 
the capacity of the cause to produce the effect. 
Then the probability would not be more than a 
measurement of the regularity; that is, of the 
frequency whereupon the performance of a social 
action is associated with a material outcome. More 
specifically, the probability is usually identified 
with the limit towards which it tends the relative 
frequency of the effect as long as the cause has 
acted. If in a finite number of cases in which 
cause C was present the automated archaeolo-
gist has observed some effect E with a relative 
frequency hn, it can be postulated that in a greater 
number of cases not yet observed, the frequency 
of observation of the effect will tend to a value 
limit around hn. Therefore, when the number of 
observed cases increases, the probability that the 
next case be effect of the most probable cause 
will converge towards the relative frequency of 
cases with the characteristics produced by that 
cause and not by another one. What allows the 
automated archaeologist to assure that C causes 
Y in circumstances T is not the increase of prob-
ability of Y with C in T, but the fact that in T some 
Cs regularly cause E. 

Capacities are best understood as the causal 
disposition to contribute to something (Cummins 
1975, 2000, 2002, Treur 2005). For each of type of 
observable change in the materiality of archaeo-
logical evidence, a specific type of potentiality 



  ���

Beyond Science Fiction Tales

should be considered; e.g., the potentiality of a 
flint pebble with shape S to become a scraper with 
shape S’. S is the consequence of a geologic process 
responsible for the material origin of the stone, 
S’ is the consequence of a work operation which 
transformed a raw material into an instrument. In 
general, if the potentiality (occurring in a state S) 
to have state property X has led to a state S’ where 
indeed X holds, then this state property X of state 
S’ is called the fulfillment or actualization of the 
potentiality for X occurring in state S. 

“SimulAtiNg” thE PASt iN thE 
PRESENt

The implementation of such causal affordances 
or potentialities inside a machine to explain what 
it “sees, is usually called computer “simulation” 
of a causal process (Gilbert 1996, Axelrod 2005, 
Becker et al. 2005). History runs only once. How-
ever, in the computer, it can run over and over 
again. We can explore (by altering the variables) 
the entire possible range of outcomes for different 
behaviors. The simulation either may provide a 
test of the models and its underlying theory, if any, 
or may simply allow the experimenter to observe 
and record the behavior of the target system. As 
the emphasis shifts from describing the behavior 
of a target system in order to understand natural 
social systems the better to exploit the behavior 
of a target for its own sake, so the objective of the 
research changes to the observation and experi-
mentation with possible social worlds. 

Therefore, the starting point of the explanation 
of social systems by means of computer simulation 
is not the simulation of one particular system but 
the investigation of the mathematically possible 
development of specific classes of model systems 
(potentialities). This way of explaining what 
happened in the past requires the problem solver 
(human being or machine) to simulate in the pres-
ent, perhaps in very sketchy terms, a mechanism, 
which, given the properties of the constituent 

components and of the environment, gives rise 
to the phenomena of interest. “Mechanisms are 
entities and activities organized such that they are 
productive of regular changes from start or set-up 
to finish or termination conditions” (Machamer et 
al., 2000, p.3). They describe the causal process 
underlying the activity to be explained (Glennan, 
2002), and consequently translate a why-ques-
tion into a what-is-it-for question. Obviously, 
the word “mechanism” is here a parable of how 
social intentions, goals and behaviors are causally 
connected. It should explain how social activity 
worked, rather than why the traits contributing to 
these activities or workings are there (Bechtel & 
Abrahamsen, 2005; Bechtel & Richardson 1993). 
In this way, the building blocks for explanations 
in the social domain are products (people, goods, 
information), production (human labor, social ac-
tion), and events (the context in which production 
took place) organized such that they are produc-
tive of some changes, regular or irregular, from 
start-up to finish or termination conditions. The 
termination conditions are the effects explained 
by an account of the workings of the social 
mechanisms producing them. Such explanatory 
mechanisms are more than static beginning and 
end-points. The stages are dynamically connected 
via intermediate operators. It is the ability of such 
operators to produce the subsequent changes in 
the social mechanism that keep the process going 
(Carver, 2001; Darden, 2002; Machamer, 2002; 
Machamer et al., 2000). The simulation happens 
when the automated archaeologist executes this 
social mechanism in a controlled way. Running 
such a model simply amounts to instantiate 
agent populations, letting the agents interact, 
and monitoring what emerges. That is, executing 
the model—spinning it forward in time—is all 
that is necessary in order to “solve” it. Since the 
model is “solved” merely by executing it, there 
results an entire dynamical history of the process 
under study.

With the possibility of simulating virtual social 
systems, a new methodology of scientific inquiry 
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becomes possible. In this model of research, the 
target is no more a natural society but an artificial 
one, existing only in the mind of the automated 
archaeologist, and the researcher behind it. A new 
target, the artificial system, is created with its own 
structure and behavior (the simulation itself). 

By simulating social activity, an automated 
archaeologist can explain social causality at the 
micro and macro levels. In the first case, it ex-
plicitly attempts to model specific behaviors of 
specific individuals. A micro-simulation consists 
of individual agents, commonly implemented in 
software as objects. Agent objects have states and 
rules of behavior. The behavior of those individual 
units may have huge numbers of degrees of free-
dom and can be neither forecast nor traced back 
for each point of time in the future and past. At 
macroscopic scale, there are social patterns emerg-
ing from the apparently unorganized interaction 
of low-level units. The behavior of the whole 
system, that is, its dynamics is an “emergent” 
result of the strictly locally defined interactions 
between single elements. Emergence occurs 
when interactions among objects at one level give 
rise to different type of objects at another level. 
More precisely, social explanation is emergent if 
it requires new categories to describe it, which 
are not required to describe the behavior of their 
underlying components. This property allows to 
observe at some aggregate level, processes and 
characteristics which cannot necessarily been 
explained by a simple generalization from the 
behavior of a single agent, and which in turn 
may influence the agent’s behavior at the micro 
level. Theoretically and methodologically, such 
approaches allow constructing the model from the 
level of processes that are immediately empiri-
cally observable, namely the local interactions 
of single elements. 

The automated archaeologist will not study 
how social activities took place by trying to 
understand the intentions or motivations of in-
dividual agents alone, no matter how detailed 
the knowledge of those individuals might be. It 

will study a subset of social activity: collective 
action, why different people made the same ac-
tion, or different actions at the same place and at 
the same time. The negative side of this approach 
is that there is no possibility of knowing why an 
individual person made something somewhere 
at some moment. However, it does not presup-
pose the implicit randomness, subjectivity, or 
indeterminism of social action. The goal should 
be to explain the sources or causes of that vari-
ability, and not exactly the inner intentions of 
individual action. The real issue is precisely 
that intentional actions of the agents give rise to 
functional, unaware collective phenomena (e.g., 
the division of labor). 

A FiNAl CommENt oN 
AutomAtEd ExPlANAtioN

Simulating is a conscious process of recollecting 
previous experience. What is simulated depends 
on the associated context, or better, what has been 
experienced depends on the associated context. 
Isolated, inputs are not merely noted and stored; 
rather the machine learns a relationship between 
a given input and the total set of simulated experi-
ences. Reconstructing experience—simulating—
involves establishing a new coordination, which 
reuses previous perceptions, ways of expressing, 
and conceptions. Thus, automatic explanation is 
not a mere retrieving of memorized concepts but 
reestablishing an association, a way of coordinat-
ing perceptions, ideas, and actions.

That is, information is not stored in form of 
simple condition-action pairs, but according to all 
possibilities for association. Explanation can be 
described as a procedure that relates the history 
of what has previously simulated to the current 
perception. Our intelligent machine models ex-
perience as a cumulative, contextual effect and 
not as discretely stored and tagged events. That 
means that the explanation active at any particular 
moment is appropriate to the machine’s internal 
and external circumstances.
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Automated problem solving is then an action-
oriented cognitive task, cast in action-relative, 
and even, action inviting terms. That means 
that, what is archaeologically explained, will 
be always known in terms directly related to an 
agent’s current possibilities for future action. In 
such a way, the automated archaeologist perceive 
“possibilities for explanation,” when studying an 
historical situation. It does not name or identify 
blindly, but recognize circumstances to apply what 
it has previously learnt and experimented.

Thus, an automated archaeologist explains 
the archaeological record according to what it 
expects about social activity. It is able to produce 
those expectations because it has simulated the 
potentialities of such an action in terms of an 
input-output relationship. It has a memory for 
coordinated, interacting processes, not for descrip-
tions of them per se. What we call here a memory 
is an ability to act similarly to the way the robot 
has acted before. Memory is best viewed as a set 
of skills serving perception and action. That is, 
it is a capability to organize explanations into a 
configuration relating perceptions to potentiali-
ties for action.

In other words, the solutions to an archaeo-
logical problem are indexical relations between 
the problem solver and its actual activity. These 
solutions relate what the program has just been 
doing—experienced in a simulated world—and 
what is sensing now. An indexical relation is 
always relative to the robot’s frame of reference. 
The meaning of an indexical relation is a relation 
between the agent and the world formed within 
an ongoing activity. Nor are internal states stored 
pointers to things. Rather, these designators are 
ongoing historical relations between the sen-
sor and explanations, which exist only while 
the robot is learning to explain. The system’s 
history determines what produces an informa-
tive configuration and what is mere noise. The 
system’s history determines what a pattern in 
the environment is.

Anticipatory schemas play a crucial role in 
providing both the direction and context for inter-
action with the past. Perception and explanation 
can only be generated through the interaction 
between signals coming from within the “mind” 
and from the outside world. It is a fundamental 
departure from trivial inductive approaches, 
which emphasize learning from data (signals 
coming from outside). It also is contrary to the 
strict deductive approach emphasizing the role 
of previously defined rule-based (signals coming 
from within the mind of the problem-solver). Our 
approach combines the interaction of existing 
explanatory models (mental) and agent’s interven-
tion in the world. Note that one of the functions of 
the intelligent system is to “interpret” the world, 
that is, to develop internal representations of the 
world, and establish the correspondence between 
the world and the interpreter’s representations.

The automated archaeologist appears then as 
an embedded evolved associative engine capable 
of actively simulating some of the environments 
from which it has received teaching inputs. Thus, 
instead of describing the kinds of knowledge 
needed to explain archaeological observables 
according to content (e.g., implicit, declarative, 
spatial, visual, etc.), an automated archaeologist 
should distinguish the different components of 
knowledge according to the properties of their 
simulated mechanisms. The assumption is that 
knowledge to solve archaeological problems is 
not acquired, but created using basic knowledge 
of a domain that predisposes to certain types of 
hypotheses. This is the classical assumption of a 
true scientific method. 

Scientific activity is more construction than 
discovery; construction of models that must be 
adequate to the phenomena, and not of discovery 
of truth concerning the unobservable. Explana-
tions, meanings produced by the machine, will 
then be understood in terms of the computational 
mechanisms that led to its construction and guide 
its use. The meaning of an explanation resides 
in its functional role, which is determined by 
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its production mechanism and use. Explanation 
will not be fixed by definitions. Rather its role 
will depend on the history of its use. The general 
point is that the use of the concept in all possible 
contexts constitute the meaning of the concept, 
as opposed to have merely a single word standing 
for “activity area,” “chiefdom,” “knife” or any-
thing similar, regardless of the possible contexts. 
What determines the meaning of any term is the 
peculiar cluster of beliefs in which the term fig-
ures, and the peculiar pattern of inferences they 
make possible. This situational ontology implies 
that what we can archaeologically perceive are 
not context-invariant entities, but rather, they are 
individuated according to the situation’s demands 
and according to the task. Concepts, in this view, 
do not correspond to specific internal states or 
structures within the automated archaeologist. 
They must be equated with the ability to use a 
skill: that of deploying the concept in a convincing 
range of relevant situations. Even after an agent 
has learned a concept, the meaning of the concept 
very often changes because of new experiences. 
Problem solving never ends, because a solution 
is not the last state, but a particular state which 
impulses towards new states.

The approach exposed here challenges the 
received picture of an explanation as an invari-
ant structure. Solving archaeological problems 
is an activity. We have to change the way we 
understand explanatory concepts. There are not 
verbal labels we attach to some percepts by means 
of a previously existing rule but a cognitive ac-
tion, or a requisite to a next action. Explanations 
should be based on purposeful, goal-directed 
mechanisms emerging from a dynamical system 
that has been calibrated by learning (trial and 
error, experimentation, analogy) to make the 
right choices in the proper circumstances. What 
I am suggesting is that when explaining, our 
automated archaeologist conceptually navigates 
in a potential field of explanations looking for at-
tractors (goals) and repulsions (constraints). Upon 

detecting the goal, the explanation moves toward 
it, executes it and then follows until another goal 
or constraint is found. It repeats this sequence of 
actions until it has returned all attractors in the 
potential field. Since the robot does not manipulate 
propositions, any account of automated explana-
tion that would draw on connectionist principles 
would not be able to limit itself to principles of 
logical inference in describing how some belief 
was arrived at. Rather, it is necessary to rely on 
something like the notion of maximal satisfac-
tion of soft constraints to describe how the a 
machine behaves cognitively, and in evaluating 
its performance we would presumably consider 
whether the constraints it satisfied in arriving at 
its output state were the appropriate constraints. 
This would lead us into an evaluation of how an 
automated archaeologist has learnt, specifically, 
whether its training had resulted in ways that 
enabled it to respond to inputs in a manner that 
was most likely to meet its needs in the environ-
ment. This would constitute a major change, 
since epistemology has generally been pursued 
through conceptual analysis, not empirical inquiry 
(Bechtel & Abrahamsen, 2005).

This shift in perspective from knowledge as 
stored artifact to knowledge as constructed ca-
pability-in-action is inspiring a new generation 
of cyberneticists in the fields of situated robot-
ics (Anderson, 2003; Brooks, 1989, 1991, 1999; 
Brooks et al., 1998, 1999; Clark, 1993, 1997; 
Clancey, 1997; Franklin, 1995; Engel & König, 
1998; Hendriks-Jansen, 1996; Iyida et al. 2004; 
Pfeiffer & Scheier 1999; Winograd & Flores 
1986). Situated means the robot is an integral 
part of the world. A robot has its own goals and 
intentions. When a robot acts, it changes the 
world, and receives immediate feedback about 
the world through sensing. What the robot senses 
affects its goals and how it attempts to meet them, 
generating a new cycle of actions.

Situated robotics demonstrates the usefulness 
of viewing intelligent machine construction as a 
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problem of designing an interactive system-in-
its-context. That is to say, we do not simply ask, 
“What knowledge structures should be placed 
on the head of the robot?” but rather, “What 
sensory-state coupling is desired, and what 
machine specification brings this about?” These 
concerns are extremely important, because we 
can assume that building a “Marxist” robot, a 
“functionalist,” “historic-cultural,” “positivist,” 
or “structuralist” one is the wrong way. Instead 
of storing Marx, Weber, Levi-Strauss, or similar 
theoretical knowledge in the robot’s memory, we 
should build a machine able to think formally, 
and which produces knowledge rationally, that is, 
according to some goals. Of course, the “goals” 
are ideologically mediated, in the sense that a 
“marxist” robot will have some historical ma-
terialist goals, but it will proceed formally from 
observation to goal conclusion. In the same way, 
a “structuralist” robot may have different goals, 
but the knowledge it produces when trying to 
attain them, is not “structuralist,” but proceed 
following the same inference mechanism as in the 
case of attaining Marxist goals. At the end, we can 
compare the results obtained with different goals, 
and probably we will find some surprises, in the 
sense, that Marxist explanations can be integrated 
with functionalist ones in those cases in which 
they come from different, but related goals.

Goals are based on beliefs about some domain. 
Correct beliefs result in sensible behavior; incor-
rect beliefs can cause peculiar actions. When a ro-
bot analyzes its own behavior using these models, 
it creates beliefs about its own goals. Goals, beliefs, 
and intentions are then arbitrary interpretations 
of physical events. They do not exist as explicit 
sentences. Rather, the machine should be aware 
of those things that are playing a prominent role 
in constraining the global constraint satisfaction 
settling process within the brain.

What constitutes an automated consciousness 
is not just the intrinsic character of the reasoning 
system itself, but also the rich matrix of relations 

it bears to the other problem-solvers (humans 
or machines), practices, and institutions. Any 
explanatory account of robotic consciousness 
must take into account the manner in which the 
cognitive core of the agent comes to represent 
not just the gross features of the world (physical 
or simulated) but also the character of the other 
cognitive creatures with which it interacts, and the 
details of the social world in which they act. 

In so assuming, the automated archaeologist 
does not appear as a social determinist. Social 
explanation is produced in a determined way, 
but not in a deterministic way, because the causal 
process is fast never predictable in a simple way. 
Social actions are not fully predictable, rational, 
and machine-like. It also means that certain social 
actions are more probable that others, at certain 
situations. The robot is able to explain the past per-
formance of human actions and historical events, 
but it is not an oracle knowing the Truth.

This perspective tells us that we have to take 
the reasoning mechanism in its entirety into ac-
count. However, the view that the brain is the 
sole factor responsible for intelligence is hard 
to eradicate. In science, the idea of enormously 
powerful computers, of superbrains that will 
exceed human intelligence by far, is still common 
(Moravec, 1998). The idea of such a superbrain 
seems to be based on a misunderstanding of the 
nature of intelligence. Information processing is 
very powerful in virtual worlds like chess, but it 
is not sufficient to make sense of the real world. 
Information arises from data, and knowledge 
can be said to emanate from information. Then 
knowledge is information in context, organized so 
that it can be readily applied to solving problems, 
perception, and learning. 

I sustain the view that archaeological explana-
tion should be considered as a complex relational 
system that links social structure, intention, set-
tings, action, and change history. We can argue 
that archaeological functional statements should 
provide an answer to the question “how does 
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S work?” where S is a goal-directed system in 
which the material entity whose function we are 
interested in appears. That means that what has 
to be determined, is the history of social actions 
causally related with a particular observable 
property at different circumstances. The auto-
mated archaeologist must explain not only why 
the property is there, and why it has this visual 
appearance, but its disposition to contribute caus-
ally to the output capacity of a complex system of 
interrelated social agents and actions. 

Thus, an archaeological entity should be ex-
plained by the particular causal structure in which 
it is supposed to participate. The knowledge of 
some perceived material element should reflect 
the causal interactions that someone has or can 
potentially have with needs, goals, and products 
in the course of using such elements (Chaigneau 
et al., 2004; Kitamura & Mizogouchi, 1999).

Formally speaking, all “explanations” should 
be represented as complex relational structures. 
An explanation is not a simple unitary feature of 
an object. As research in artificial intelligence 
demonstrates, representing the full structure of 
a functional sense requires an integrated set of 
conceptual relations (e.g., Chandrasekaran & 
Josephson, 2000). 

Relational systems that underlie the role of 
some material element within a given social activ-
ity will be used to categorize, to name, to guide 
inferences, and to fill gaps in the explanation of 
the element’s function. The automated archaeolo-
gist will attribute meanings to observed material 
elements because it can be proved that they may 
exhibit certain behaviors under the appropriate 
conditions. Two objects will be functionally 
equivalent (or analogous) if they do the same (or 
similar) things in the same (or similar) systems 
in the same (or similar) environment. The key is 
the emphasis on the word “do.” No other features 
of the archaeological materials are relevant other 
than the fact that they do the same things under 
certain conditions, in order words, it is their be-
havior what matters. 

towARdS A “ComPutAtioNAl 
PhiloSoPhy oF SCiENCE”

The very idea of a computational philosophy of 
science has been called “the most self-contra-
dictory enterprise in philosophy since business 
ethics.” I am using a direct reference to Paul 
Thagard’s book Computational Philosophy of 
Science (1988), where he presented a challenge 
to the philosophical community: philosophical 
theories of scientific method, if they are worth 
their salt, should be represented as computer 
programs. Computational philosophy of science 
is a kind of experimental epistemology. It investi-
gates methods for representing knowledge and for 
modeling reasoning strategies that can manipulate 
that knowledge. Once one has a working system, 
one can experiment with “what if” scenarios, 
adding or removing strategies to determine their 
effects (Alai, 2004; Humphreys, 2004; Darden, 
1997; De Jong & Rip, 1997; Fernández, 2003; 
Magnani, 2004; Magnani & Dossena, 2006; 
Peschl, 1996; Shrager & Langley, 1990; Stary & 
Peschl, 1995).

Such an approach can be characterized as 
“understanding by building” (Adams et al., 
2000; Dawson, 2004; Drennan, 2005; Doyle, 
2006; Holland & McFarland, 2001; Fernandez, 
2003). It is based upon the general assumption 
that theory building would be better served by 
synthesis (simulation) than analysis (logics). 
Here, the problem-to-be-solved is translated into 
a design issue: How can we design an artificial 
archaeologist so that it will exhibit the desired 
epistemic behaviors? Making a computational 
model forces us to be explicit about exactly how 
the relevant process actually works below the 
level of consciousness. Such explicitness carries 
with it many potential advantages. As such, it 
should provide novel sources of insight into the 
archaeologist’s reasoning and behavior. It should 
allow a way to deal with complexity in ways that 
usual verbal arguments cannot, producing satis-
factory explanations of what would otherwise 
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just be vague hand-wavy arguments. Explicit-
ness can contribute to a greater appreciation of 
the complexities of otherwise seemingly simple 
process. Furthermore, by integrating cognitive 
development into robot engineering a system 
comes to know new things about its environment, 
integrates those with what it already knows, and 
utilizes that knowledge. 

It has been said that artificial intelligence is 
philosophy underneath (Agre, 2005), because 
these endeavor can be seen as an effort to work 
out and develop, through its characteristic techni-
cal means, the philosophical systems it inherits. 
Computational Intelligence formal methodology 
renders explicit the hidden difficulties and allows 
them to surface.

This approach owes much to the work of David 
Marr on computational psychology (see Marr, 
1982). According to his suggestion, theories of 
computation, and an automatic archaeology is 
just a theory of computation, are at the top of a 
three-level hierarchy. At the highest, most abstract 
level, there is the fundamental problem we want 
to solve. An intermediate level describes one 
solution to that problem, particularly in terms of 
the representations and operations required for 
the solution. The lowest description is concerned 
with the physical implementation of the algorithm 
to generate the solution.

The top level can be equated with the knowl-
edge-level (Newell, 1982), where a number of 
predisposed cognitive actions are specified. The 
knowledge level is a level of abstractions where 
we can consider what the problem solver knows, 
without necessarily knowing anything about how 
to reason. The components are goals and actions. 
You should imagine this level as containing terms, 
which are assumed to correspond to the “knowl-
edge” archaeologists deal with. Given a specific 
goal, specific input to work with, and specific 
assumptions about the world, one may hope that 
there might be only one set of computations al-
lowing a system to produce the required output. 
In other words, one assumes that it is possible to 

identify the “optimal” computation or function 
performed by any archaeologist in a given context. 
Whatever the archaeologist does, it must some-
how accomplish the same optimal computation. 
Under this view, it does not really matter how the 
archaeologist perform his or her task, because it 
is ultimately driven by the optimality criterion of 
matching expected demands for items, which in 
turn is assumed to follow general laws. The ad-
ditional difficulty is that optimality can rarely be 
defined in purely “objective” terms, and so often, 
what is optimal in a given situation depends on 
the detailed circumstances. 

For this reason, if the first level is a theory of 
what should be computed, the next level down is 
a theory of the algorithm, which specifies how a 
computation should be performed, and specifies 
the conditions where the procedure can generate 
valid results. The theory of the algorithm specifies 
an explicit set of steps that will guarantee a given 
output when provided with a given input. Such 
an intermediate level describes the performed 
function in terms abstracted from the details of 
the system’s physical implementation (the human 
brain or the mechanic hardware circuitry). Typi-
cally, many different algorithms can carry out a 
computation, so we need a lower level, where all 
the actions are described without giving an explicit 
account of what overall function is performed. 
Note that while the higher levels are about what 
the agent—human or machine—believes about 
the external world and what its goals are in terms 
of the outside world), the lower levels are about 
what goes inside an agent in order to reason about 
the external world.

Consequently, whether a theory of computa-
tion can be seen as a description of the problem, 
a theory of the algorithm is a description of a 
particular solution. The knowledge level, or the 
theory of the computation may be treated as 
paramount because it characterizes the problem 
that must be solved by a system, and until one 
understands what a system does in specific cir-
cumstances, one cannot specify the details of how 
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the system works. We can place the algorithm at 
a lower level of the hierarchy because it does not 
characterize a problem, but rather specifies a pos-
sible solution to a problem that is characterized 
at the more abstract level.

Such an implementation of knowledge within a 
computer can be seen as the action of embedding 
a model of behavior within another model, where 
the notion of embedding may be envisioned as a 
logical or causal relation. 

This book pretends to give some indications 
about the first two layers, given only some basic 
aspects of the technicalities of the lowest level. 
Given that automated archaeologists do not ex-
ist, I have preferred to discuss how to design it 
(knowledge level or theory of the computation) 
rather that its possible implementation (physical 
level).

In this book’s preface, I predicted that after 
reading it, some of you will say that we do “not 
yet” have automatic archaeologists, but we should 
hurry up to the engineering department and build 
them for having someone able to substitute us in 
the tedious task of studying ourselves and our 
past. Other readers will claim: “fortunately, such 
a machine will never exist!” “Why we need such 
an awful junk? Computers cannot emulate hu-
mans.” These critics seem to think that computer 
programs are guilty of excessive simplification, 
of forcing knowledge, or distorting it, and of fail-
ing to exploit fully the knowledge of the expert, 
but it seems to me that it is archaeology, and not 
computer programs, what is “narrow minded.” The 
saddest thing is that archaeologists do not know 
how they know what they believe to know. Does 
it mean that archaeology is even impossible for 
humans? Maybe we must re-invent archaeology. 
Simulating or reproducing the way archaeolo-
gists think today is not the guide to understand 
archaeology, because we are doing archaeology 
in the wrong way! Computable archaeology, if you 
do not like the expression “automatic archaeol-
ogy,” is the proper way of exploring new ways of 
thinking old concepts.

Computer programs do work in real science, 
not only in archaeology. Consequently, the discus-
sion is between what is considered an artificial way 
of reasoning (computer programs), and a supposed 
natural way of reasoning. Critics of computation-
alism insist that we should not confound scientific 
statements with predicate logic operations, since 
discursive practices or argumentations observed 
in a scientific text are not “formal.” By that reason, 
they are tributary, to a certain extent, from the 
narrative structure (literary) of which scientific 
texts derive. I take the opposite approach: scien-
tific problem solving stems from the acquisition 
of knowledge from a specific environment, the 
manipulation of such knowledge, and the interven-
tion in an appropriately simulated world with the 
manipulated knowledge. The more exhaustive and 
better structured the knowledge base, the more it 
emulates a scientific theory and the easier will be 
the solution to the scientific problem, and more 
adequate the interpretations we get.

Throughout the book, I have imagined an auto-
mated or artificial archaeologist as a machine able 
to act as any of us, human archaeologists, learning 
through experience to associate archaeological 
observations to explanations, and using those 
associations to solve archaeological problems. It 
should have its own “cognitive core” and should 
interact with some explicitly simulated world 
to make changes or to sense what is happening 
(Murphy, 2002, pp. 3-4).

This automated archaeologist has been de-
scribed as a cognitive robot. Ronald Arkin gives 
the following definition: “an intelligent robot is 
a machine able to extract information from its 
environment and use knowledge about its world to 
move safely in a meaningful and purposive man-
ner” (Arkin, 1998, p. 2, see also Stein, 1995). By 
substituting “moving” by “solving archaeological 
problems,” we get a perfect working definition for 
our automated archaeologist. “Intelligent” implies 
that the robot does not work in a mindless, repeti-
tive way; it is the opposite of the connotation from 
factory automation. An artificial archaeologist 
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should be then a “physically instantiated... system 
that can perceive, understand ... and interact with 
its environment, and evolve in order to achieve 
human-like performance in activities requiring 
context-(situation and task) specific knowledge” 
(European Commission Framework 6 objective 
for ‘Cognitive Systems’). Here I am assuming that 
explanations are for our automatic archaeology 
machine a form of activity (Kirsch & Maglio, 
1995). 

It is easy to see that the purpose of an an-
droid epistemology (see Ford et al., 1995 for the 
meaning of the term) is not to study machines in 
themselves, but human cognition. Everybody is 
aware of the enormous complexity of a human 
being. If we look at something comparatively 
simple like a robot, we may be surprised how 
complicated it is, all the topics and issues one has 
to think about, design, and build before anything 
goes. Therefore, I am not arguing that “natural” 
archaeology can be fully described in terms of 
an “automated” archaeology. I am suggesting 
that we can adapt our philosophy, ontology, and 
sociology as far as possible to what computers can 
do; that is to say, statistics about the counting of 
labeled occurrences. Instead of making comput-
ers intelligent, I accept the elementary stupidity 
of computers, and I build the logics and ontology 
that work at their level of stupidity. Imitating the 
Hume Machine by Latour and Teil (2005), if we 
would like to build really an automated archae-
ologist, we must take the computer for what it is 
without imposing anthropomorphic projections 
and epistemological beliefs on it. I am not talking 
about imitating human archaeologists. We have 
to work with computers and their own way of 
being in the world.

My aim throughout the book has been to 
develop in a regressive manner of reasoning 
the methodical process of the self-organization 
of information in archaeological knowledge by 
way of analyzing and reconstructing the internal 
mechanisms. This strategy involves one assump-
tion and one precondition that are worth noting.

One underlying assumption of this approach 
is that social activity is computable. This is actu-
ally a rather strong and daring assumption. Most 
dynamical systems defined in human societies 
cannot be characterized by equations that specify 
a computable function.

A necessary precondition is that archaeological 
reasoning be analyzable. In these post-modern 
days, this is a provocation. Some readers may think 
that archaeology is just what archaeologists do, 
and there is no formal basis except the personal 
subjectivities of the archaeologist. The approach 
adopted here has a distinct processualist flavor: 
there is a reality out here, and it can be analyzed 
in terms of the causal processes having generated 
it. However, I have found that there is no way to 
program an automated archaeologist, without 
taking into account some of the classical topics of 
post-processualist criticism, notably, the nature of 
context, goals, intentions, and motivations. 

The successful applications we have reviewed 
in this book points out to the possibility of building 
an intelligent system in mechanical terms, that is, 
as  a mere number crunching algorithm dedicated 
to vector transformations. Such transformation 
would imply the explicit association between 
what the system perceives, and what it assumes 
to be a probable explanation to it.

In other scientific domains, the performance 
of humans at a particular task has been used to 
design a robot that can do the same task in the 
same manner (and as well) (Bryant et al., 2001; 
Datteri & Tamburrini, 2006; Florian, 2002; King 
et al., 2004; Kovacs & Ueno, 2005; Moravec, 
1998; Murphy, 2002; Nolfi & Floreano, 2000; 
Santore & Shapiro, 2004; Tamburrini & Datteri, 
2005; Trafton et al., 2004). It has been shown 
how ‘robot scientists’ can interpret experiments 
without any human help. Such robots generate a 
set of hypotheses from what it is known about a 
scientific domain, and then design experiments to 
test them. That is, a robot scientist can formulate 
theories, carry out experiments, and interpret 
results. Consequently, the design of an automated 
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archaeologist should not be considered a mere 
science fiction tale. It is a technological reality. 
Research in cognitive robotics is concerned with 
endowing robots and software agents with higher 
level cognitive functions that enable them to rea-
son, act and perceive in changing, incompletely 
known, and unpredictable environments. Such 
robots must, for example, be able to reason about 
goals, actions, when to perceive and what to look 
for, the cognitive states of other agents, time, col-
laborative task execution, and so forth. In short, 
cognitive robotics is concerned with integrating 
reasoning, perception, and action within a uniform 
theoretical and implementation framework. The 
question of whether it is possible to such machines 
to automate the scientific process should be of 
both great theoretical interest and increasing 
practical importance because, in many scientific 
areas, data are being generated much faster than 
they can be effectively analyzed.

Intelligent robots are here, around us. I have 
never heard of a claim against wash machines 
selecting “intelligently” the best way to wash a 
specific tissue, or a photo camera with an “intel-
ligent” device measuring luminance and decid-
ing by itself the parameters to take the picture. 
So, why do we fear of a machine classifying a 
prehistoric tool and deciding “intelligently” its 
origin, function, and/or chronology? The so-
called “intelligent” machines incite instinctive 
fear and anger by resembling ancestral threats 
-a rival for our social position as more or less 
respected specialists. Nevertheless, it is important 
to remember (Chapter I) that any formal definition 
of an automaton includes both human beings and 
the “intelligent” robots within the same reference 
class. People are indeed mechanical, in both mind 
and body, but are not necessarily machines or 
material machines (Doyle, 2006).

Maybe the real question is not whether ma-
chines think but whether archaeologists do. 

diRECtioNS FoR FuRthER 
RESEARCh

What new directions in the domain of automated 
explanation of social events should be explored? 
All of them. This book suggests only some direc-
tions that the reader can explore, but everything 
is still to be made. The only I wanted to stress is 
that the mechanization of scientific explanation 
in the Humanities is perfectly possible, and that 
there are many different ways of doing it. What 
has been here presented is for the moment only 
tentative.

Therefore I cannot suggest new directions 
for further research, because all approaches here 
sketched are still open, and we must explore some 
alternative ways, which I have had no time nor 
space to cover here. 

We do not know where the solution is, but 
we have begun to formulate the question in its 
proper way.
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Abduction (abductive reasoning). It is a think-
ing procedure establishing some relation between 
different knowledge units, in such a way that the 
established relationship should not necessarily be 
based on the deep nature of the associated units, 
but on an external criterion established by the 
scientist or by merely a practical reason.

Activity Area. This is the label received by any 
distinctive part of an archaeological site where it 
has been proved that some specific activity was 
performed.

Activity Theory. It is a social theory focusing 
on social actions as practiced by human actors in 
reference to other human actors and emphasizing 
human motivation and purposefulness. It was 
originally suggested by Leont’ev.

Adaptive algorithms. Instead of being defined 
a priori from specification, this kind of computer 
programs uses external data to set automatically 
their parameters. This means that they are made 
“aware” of their output through a performance 
feedback loop, so that the program output improves 
with respect to the desired goal.

Agent-Based Modeling. It is a computational 
modeling paradigm, in which phenomena are 
modeled as dynamical systems of interacting 
“agents”. Each agent is just a computer program, 
usually implemented as an Expert System or a 
Neural Network. It is then a computer program 
made of interacting computer programs.

Analogy. We refer with this name to the cog-
nitive process of transferring information from a 
particular subject (the analogue or source) to an-
other particular subject (the target). In a narrower 
sense, analogy is an inference from a particular 
to another particular. The word analogy can also 
refer to the relation between the source and the 
target themselves, which is often, though not 
necessarily, a similarity relationship.

A Priori. It refers to the state of some internal 
model prior to the current learning experience. 
It contrasts a classical usage of the term, which 
refers to “God-given” unmodifiable contents that 
transcend all experience.

Archaeological Data. Data are composed by 
the subset of recognized elements having been 
observed at an archaeological situation. It is the 
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result of a rational thinking operation on what 
can be seen at the archaeological site. 

Archaeological Record. It is the generic set 
of all potentially sensed elements perceived at 
an archaeological situation (archaeological site 
excavation, museum collection, laboratory experi-
ment). Once those observables are recognized as 
particular elements, they become archaeological 
data.

Archaeological Site. The place in physical 
space where social action was once performed, 
and some of their material consequences are still 
preserved, although indirectly.

Archaeometry. Archaeometric data are sets 
of measurements possible on archaeological 
data. In general, they are referred as chemical 
and physical determinations of any archaeologi-
cal artifact.

Archaeozoology. The scientific study of ani-
mal bones found at archaeological sites. It includes 
taxonomic determinations, ecological inferences, 
and social practices of hunting, herding, butchery, 
and meat consumption.

Artifact. It is any material consequence of 
human intentional action. Pots and knives are arti-
facts, as huts, settlements, political territories, and 
socially modified landscapes. The unconscious 
material consequences of social action constitute 
another important category of archaeological 
data, but they are not artifacts.

Associationism. This is the name given to the 
theory that thinking and reasoning are performed 
in accordance with the law of association, only 
in terms of simple and ultimate elements derived 
from sense experiences.

Associative Memory. Content-addressed 
or associative memory refers to a memory or-
ganization in which the memory is accessed by 
its content (as opposed to an explicit address). 
Thus, reference clues are “associated” with actual 

memory contents until a desirable match (or set 
of matches) is found.

Automata. They are information-processing 
machines transforming inputs into outputs. Sim-
ply stated, an automaton is a discrete processing 
mechanism, characterized by internal states. 

Automated Archaeologist. It is a machine able 
to act as any of us, human archaeologists, learning 
through experience to associate archaeological 
observations to explanations, and using those 
associations to solve archaeological problems. It 
should have its own “cognitive core” and should 
interact with some explicitly simulated world to 
make changes or to sense what is happening. In 
this book, it has been described as a cognitive 
robot.

Bayes Theorem (also known as Bayes’ rule 
or Bayes’ law). It is a result in probability theory, 
which relates the conditional and marginal prob-
ability distributions of random variables. The 
probability of an event A conditional on another 
event B is generally different from the probability 
of B conditional on A. However, there is a definite 
relationship between the two, and Bayes’ theorem 
is the statement of that relationship.

Bayesian Network. Bayesian networks are 
directed acyclic graphs whose nodes represent 
variables, and whose arcs encode the conditional 
dependencies between the variables. The arcs 
specify the independence assumptions that must 
hold between the random variables. These inde-
pendence assumptions determine what probability 
information is required to specify the probability 
distribution among the random variables in the 
network. According to authors like Pearl and 
Glymour, they have a causal interpretation. In 
this case, we are assuming that  there is an arrow 
from X to Y in a causal graph involving a set of 
variables V just in case X is a direct cause of Y 
relative to V. The model consists in the causal graph 
together with the probability distribution of each 
variable conditional on its direct causes.
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Bronze Age. In Europe, it is a chronological 
period from 2000 B.C. until 700 B.C. It is the 
time where bronze metallurgy spreads to all this 
geographical areas. In the Near East, Bronze Age 
chronology is a bit earlier, from 4000 B.C. until 
1200 B.C..

Boolean. This adjective, coined in honor of 
George Boole, is used along the book to a measure-
ment that results in one of the truth-values ‘true’ 
or ‘false’, often coded 1 and 0, respectively.

Burial Analysis. The name usually refers to 
the archaeological study of ancient graves and 
cemeteries, including the study of human bones, 
the architecture of the graves, and the nature, fre-
quency and spatial position of grave-goods. The 
goal is to infer the social organization from the 
differences in observed funerary practices.

Case-Based Learning. It is a kind of instance-
based learning, which represents knowledge in 
terms of specific cases or experiences and relies on 
flexible matching methods to retrieve previously 
memorized cases and apply them to new situations. 
Decisions are made based on the accumulated 
experience of successfully solved cases.

Categorization. It is the process in which ideas 
and objects are recognized, differentiated, and 
understood. Categorization implies that objects 
are grouped usually for some specific purpose. 
Ideally, each group or category illuminates a 
relationship between the subjects and objects 
of knowledge. Classification and Clustering are 
kinds of categorization.

Cause (causality). It has been defined as “the 
way an entity becomes what it is”.

Chiefdom. In social evolution, this is a level 
of social organization, which is just before the 
formation of state and complex societies. Al-
though such societies have some characteristics of 
complex structures, like inequality, they are still 
far from the characteristics of full-scale complex 

societies, like class-struggle, coercitive power, 
capital accumulation, etc.

Classification. It is a form of categorization 
where the task is to take the descriptive attributes 
of an observation (or set of observations) and from 
this to label or identify the observation within a 
different phenomenological domain. The task of 
a classifier is to partition this feature space into 
disjoint regions that each represents a particular 
class, cluster, or pattern.

Clustering. It is the process of grouping input 
samples in similarity classes. Clustering algo-
rithms partition the input space so that diversity 
may be explicitly recognized and encoded. 

Computer Vision. It has been defined as a 
process of recognizing elements of interest in an 
image, and it can be described as the automatic 
logical deduction of structures or properties of 
the three-dimensional objects from either a single 
image or multiple images and the recognition of 
objects with the help of these properties.

Computational Intelligence. Computational 
Intelligence is a discipline domain within com-
puter science and cognitive studies, which is based 
on the hypothesis that reasoning can be realized 
using computation. 

Conceptual Space. This is an analogy that 
allows understanding a concept as represented 
in terms of its relationships to the most relevant 
concepts that are located in the neighborhood in 
the ordered “representation space”. Consequently, 
it is defined by a set of quality dimensions, which 
form the framework used to assign properties 
to concepts and to specify relationships among 
them.

Connectionism. Connectionism is a move-
ment in cognitive science, which hopes to explain 
human intellectual abilities using artificial neural 
networks.
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Constraint. In Artificial Intelligence, they are 
the expressly allowed values for variables. In some 
cases, problem solving methods are implemented 
as an evaluation or search that satisfies a restricted 
set of expressly allowed values.

Composition. It is said of the elements an entity 
is made of. Not any enumeration of constitutive 
elements is a composition. It is necessary that each 
component be expressed as a proportion of the 
total sum of components. Compositions should be 
expressed as vectors of data, which sum up to a 
constant, usually proportions or percentages.

Curve Fitting. This is the procedure of finding 
a curve, which matches a series of data points and 
possibly other constraints, in which the function 
must go exactly through the data points.

Deduction. In logic, it is a rigorous proof, 
or derivation, of one statement (the conclusion) 
from one or more statements (the premises)—i.e., 
a chain of statements, each of which is either a 
premise or a consequence of a statement occur-
ring earlier in the proof.

Distributed Representation. This is the most 
characteristic representation format in a neural 
network, where concepts appear as ephemeral 
patterns of activation across an entire set of units 
rather than as individuated elements or symbols. 
Different patterns capture different aspects of the 
content of the concepts in a partially overlapping 
fashion. Alternative concepts are simply alterna-
tive patterns of activation.

Emergence. It refers to the way complex 
systems and patterns arise out of a multiplic-
ity of relatively simple interactions “Emergent” 
entities (properties or substances) ‘arise’ out of 
more fundamental entities and yet are ‘novel’ or 
‘irreducible’ with respect to them.

Entropy. In information theory, it is a mea-
sure of the uncertainty associated with a random 
variable.

Epistemic Action. According to most dic-
tionaries, “epistemic” is an adjective meaning 
“knowledge”, “cognitive”; therefore, an epistemic 
action is some operation involving the creation or 
transformation of knowledge. Problem solving is 
an example of a series of epistemic actions.

Ethnoarchaeology. This is the study of mate-
rial consequences of social action as perceived 
at an observed controlled situation, like in an 
ethnographic context. It usually implies the use 
of archaeological tools and methods for studying 
social evidence whose function and origin are 
known because they have been seen how a living 
population produced and used them.

Evidence. In its broadest sense, it refers to 
anything that is used to determine or demonstrate 
the truth of an assertion. In scientific research, 
evidence is accumulated through observations 
of phenomena that occur in the natural world, or 
which are created as experiments in a laboratory. 
Archaeological evidence usually goes towards 
supporting or rejecting a hypothesis. In some 
cases, it can be used as a synonym for archaeo-
logical record, or archaeological observables.

Experimentation. This is a scientific method, 
which tests through repeated controlled experi-
ences the likelihood of some hypothesis. It is 
usually distinguished from mere observation, 
because experiences are not merely “observed”, 
but performed by the observer (the experimen-
talist).

Expert System. The name refers to a computer 
program implementing a series of Production 
Rules (If…Then pairs), which is used to solve 
diagnostic problems.

Explanandum (Latin). In a problem, it is the 
statement that needs to be explained

Explanans (Latin). In a problem, it is the 
statement that explains the problem.
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Explanation. This is a statement pointing 
to causes, context, and consequences of some 
object, process, state of affairs, etc. An explana-
tion can only be given once understanding has 
been reached. 

Function. In this book, this term refers to 
two different concepts. In logics, mathematics, 
and computer science, it is an abstract entity that 
associates an input to a corresponding output ac-
cording to some rule. In Archaeology and biology, 
it has been argued that to ascribe a function to 
something means to relate it to the “intended” 
use of something else, or the role it should play in 
bringing something about. A functional predicate 
is a logical symbol that may be applied to an object 
term to produce another object term.

Fuzzy logic. It is derived from fuzzy set theory 
dealing with reasoning that is approximate rather 
than precisely deduced from classical predicate 
logic. Fuzzy truth values represent membership 
in vaguely defined sets.

Generalization. What is true for a set of 
elements should be true for all elements that are 
similar to the prior set, or are related in some way. 
It is used as a synonym for induction.

Genetic Algorithm. This is a computing 
search technique used to find exact or approxi-
mate solutions to optimization problems. It uses 
analogies inspired by evolutionary biology such 
as inheritance, mutation, selection, and cross-
over. Genetic algorithms are implemented as a 
computer simulation in which a population of 
abstract representations of candidate solutions 
evolves toward better solutions. 

Geostatistics. It is a brand of statistics that deal 
specifically with spatial relationships. It involves 
the analysis and prediction of spatial or temporal 
phenomena, and it implies a class of techniques 
used to analyze and predict values of a variable 
distributed in space or time. 

GIS (Geographic Information System). 
This is a computer program integrating a spatial 
database and a cartographic representation, in 
such a way that spatial data are automatically 
visualized cartographically, and database queries 
can be formulated by selecting geographic areas 
in the map representation.

Goal. This is usually a synonym of an objective 
or desired outcome. We refer to goals as desired 
state of affairs of a person or of a system, that is 
to say, a state of the domain of activity of an intel-
ligent entity which she/he/it tries to achieve.

Gradient. It is the direction of maximum rate 
of some quantitative values, and a scalar measure-
ment of this rate.

Grave-Goods. The objects and materials 
placed at a grave and supposed to accompany 
the dead person.

Heuristic. This is a reasoning procedure based 
on simple, efficient rules, instead of formal proofs, 
which have been proposed to explain how people 
make decisions, come to judgments, and solve 
problems. Although such rules hardly generate 
“true” results, they allow obtaining good enough 
results under most circumstances.

Holocene. This epoch is a geological period, 
which began approximately 11,550 calendar 
years BP (about 9600 B.C.) and continues to the 
present.

Household. More than a synonym of “house”, 
we use this term in archaeology and anthropol-
ogy to indicate all activities and work operations 
usually performed at a domestic level.

Hunter-Gatherer. A kind of human society 
whose subsistence is satisfied without the cul-
tivation of plants or animal husbandry, but just 
in terms of hunting wild animals and gathering 
wild plants.

Iconography. This word literally means 
“image writing”, and is used to indicate the 
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identification, description and the interpretation 
of the content of images. Discussing imagery 
as iconography implies a critical “reading” of 
imagery that often attempts to explore social and 
cultural values.

Induction. It can be defined as the way of 
concluding that facts similar to those observed 
are true in cases not examined. Inductive learn-
ing tools are trained to recognize patterns or to 
predict outcomes by generalizing from a group 
of measurements for which the desired outcome 
is known (training data) to a larger set of cir-
cumstances.

Inequality. Applied to a social context, it refers 
to the degree of social differences in a human com-
munity, where not all individuals have the same 
access to resources or to social life means.

Inference. It is the act or process of deriving 
a consequence based solely on what one already 
knows.

Influence Diagram. This is a directed graph, 
where an arrow denotes an influence expressing 
available knowledge about the “relevance” of one 
variable to explain another. 

Input. It refers to external information enter-
ing into a system.

Intelligence. It refers to any goal-directed 
functioning.

Intention. An agent’s intention in perform-
ing an action is their specific purpose in doing 
so, the end or goal they aim at, or intend to ac-
complish.

Interaction. It is a kind of action that occurs 
as two or more entities have an effect upon one 
another. Social interaction can be broadly defined 
as social relationships generated through the 
movement of people, commodities, capital, and/or 
information over geographic space. 

Interface. In this book, the term is used to 
indicate a boundary between two entities. It has 
also been used to indicate the ways to link entities 
that may be related, but are not properly connected, 
for instance, a computer and its human user.

Interpolation. This is a method of construct-
ing new data points from a discrete set of known 
data points. 

Inverse Reasoning. Inverse problems refer 
to problems in which one has observations on 
the response, or part of the response, of a system 
and wishes to use this information to ascertain 
properties that are more detailed. Inverse reason-
ing entails determining unknown causes based 
on observation of their effects.

Kinematics. It refers to the study of movements 
that can be made using a tool or an object.

Labor. In this book, it refers to work of any 
kind.

Learning. It refers to the acquisition and de-
velopment of memories and behaviors, including 
skills, knowledge, understanding, values, and 
wisdom. It is the product of experience.

Lithics. It refers to those tools made of stone 
(flint, quartz, obsidian, etc.), which were the only 
cutting and scrapping tools before the invention 
of metallurgy. 

Localized Representation. This is the most 
usual representation format, where concepts ap-
pear as individuated elements or symbols: one 
word for each concept. 

Luminance. It is a photometric measure of the 
density of luminous intensity in a given direction. 
It describes the amount of light passing through 
or emitted from a particular area.

Machine. It is simply a device, which given a 
particular input, generates a corresponding output. 
In other words, it transforms an input signal into 
an output response.
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Machine Learning. This is a discipline con-
cerned with programming computers to optimize 
a performance criterion using example data or 
past experience.

Mapping. In mathematics and related techni-
cal fields, the term map is often a synonym for 
function. In many branches of mathematics, the 
term denotes a function with a property specific to 
that branch. In formal logic, the term is sometimes 
used for a functional predicate, whereas a function 
is a model of such a predicate in set theory.

Mechanism. It is a device designed to perform 
a particular function. When used out of its proper 
meaning, this term can be used as an analogy to 
elements or processes connected in such a way 
that they produce outputs. Throughout the book, 
the word it is used to refer to a set of computations 
designed to bring about a certain outcome.

Megalithism. We refer with this word to dif-
ferent prehistoric phenomena produced since the 
Neolithic: (a) monumentality (great monuments, 
of stone, earth, or wood); (b) multiple sepultures; 
(c) megaliths themselves (from Greek: mega great, 
lith stone). These phenomena (if they appeared) 
could have been simultaneous in specific areas or 
just one or two of them could have taken place. 
They have enough in common to be referred to 
with the same word, although in many cases they 
are different historical events. In Western Europe, 
megaliths are usually dated from 4500 to 2100 B.C. 
Some of these monuments could have remained 
at certain areas until 1000 B.C.

Mesolithic. It is the historical period that pre-
ceded the Neolithic, and the origin of agriculture 
and husbandry. In Western Europe, this period is 
usually dated from 10000 B.C to 5000 B.C.

Modeling. A model is a pattern, plan, rep-
resentation, or description designed to show 
the structure or workings of an object, system, 
or concept. Scientific modeling is the process 
of generating explanatory models of perceived 
phenomena.

Morphometry. It refers to the measurement 
and quantitative analysis of shape features.

Monotonic. In mathematics, a monotonic 
function (or monotone function) is a function, 
which tend to move in only one direction as x 
increases or decreases, and therefore is either 
entirely nonincreasing or nondecreasing.

Neolithic. This is the historical period in 
which agriculture and animal domestication were 
discovered. Its chronology is very variable in 
different parts of the world, ranging from 9000 
B.C. in the Near East, to 5000 B.C. or even 3000 
B.C. in other regions.

Neural Network. An Artificial Neural Net-
work (ANN) is an information processing para-
digm that is inspired by the way biological nervous 
systems process information. The key element of 
this paradigm is that information is processed by 
a large number of neurons working in unison to 
solve specific problems. ANNs, like people, learn 
by example, adjusting the synaptic connections 
that exist between the neurons. In more practical 
terms neural networks are nonlinear statistical 
data modeling or decision making tools. They can 
be used to model complex relationships between 
inputs and outputs or to find patterns in data.

Neurocomputing. It is the field of research 
that deals with behavior of artificial neurons and 
artificial neural networks.

Neuron. An artificial neuron is a mere input-
output computing mechanism, where the output 
is a weighted transformation of incoming input. 
Throughout the book, the terms neuron, unit, and 
node are used indistinctly to indicate the same.

Non-Monotonic. This term covers a family 
of formal frameworks devised to capture and 
represent defeasible inference, i.e., that kind of 
inference of everyday life in which reasoners 
draw conclusions tentatively, reserving the right 
to retract them in the light of further informa-
tion. Such inferences are called “non-monotonic” 
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because the set of conclusions warranted on the 
basis of a given knowledge base does not increase 
(in fact, it can shrink) with the size of the knowl-
edge base itself.

Observation. It is the activity of sensing, which 
assimilates the knowledge of a phenomenon in 
its framework of previous knowledge and ideas. 
Observation is more than the bare act of seeing: 
To perform observation, an agent must seek to 
add to its knowledge.

Output. The outcome of any function, process, 
or mechanism.

Parallel Distributed Processing. The prevail-
ing connectionist approach today was originally 
known as Parallel Distributed Processing (PDP). 
PDP was a neural network approach that stressed 
the parallel nature of neural processing, and the 
distributed nature of neural representations.

Perception. In psychology and the cognitive 
sciences, perception is the process of acquiring, 
interpreting, selecting, and organizing sensory 
information. 

Pixel. A pixel (short for picture element) is a 
single point in a graphic image. Each such informa-
tion element is not really a dot, nor a square, but 
an abstract sample. A pixel is generally thought 
of as the smallest complete sample of an image. 

Planning. It refers to the process of thinking 
about the activities required to create a desired 
future on some scale. This thought process is es-
sential to the creation and refinement of a plan, 
or integration of it with other plans. The term is 
also used to describe the formal procedures used 
in such an endeavor, the objectives to be met, and 
the strategy to be followed.

Post Depositional. All kind of disturbance 
processes that altered the original location and 
characteristics of archaeological materials after 
they were originally placed as a consequence of 
some social action.

Problem.  We have a problem, when we are 
in a situation at which an intention or goal cannot 
be achieved directly.

Problem Solving. It is any directed sequence of 
rational cognitive operations intended to achieve 
some objective.

Processualism. Processual archaeology is 
a form of archaeological theory advocating the 
study of processes, that is to say, the way humans 
did things, and the way things decayed, in terms 
of an explicitly scientific methodology. Although 
the processualists are often criticized as omitting 
the social aspects of human behavior, they were 
the first archaeologists who re-created archaeol-
ogy as the study of human behaviors and social 
processes. The critical reaction to processualism 
borne in the 1990s is called post-processualism, 
which is largely based on a critique of the scientific 
method for studying human and social phenom-
ena. The general critique is that archaeology is 
not an experimental discipline. Since theories on 
social behavior cannot be independently verified 
experimentally then what is considered “true” 
is simply what seems the most reasonable to 
archaeologists as a whole. Since archaeologists 
are not perfectly objective then the conclusions 
they reach will always be influenced by personal 
(and social, political) biases.

Prototype. It is an original type, form, or in-
stance of some entity serving as a typical example, 
for other entities of the same category. When the 
regularities extracted for a given archaeological 
data share a common set of attributes, this set can 
be said to define a prototype.

Recognition. It is a process that occurs in 
thinking when some event, process, pattern, or 
object recurs. Thus, in order for something to be 
recognized, it must be familiar. When the recog-
nizer has correctly responded, this is a measure 
of understanding.

Recursive. A data structure that is partially 
composed of other instances of the data structure. 
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Recursive functions are characterized by the pro-
cess in virtue of which the value of a function for 
some argument is defined in terms of the value 
of that function for some other arguments, as 
well as the values of certain other functions. In 
order to get the whole process started a certain 
class of functions needs to be singled out, whose 
values do not in turn depend of their values for 
smaller arguments. These are called the initial 
functions. 

Remote sensing. In the broadest sense, remote 
sensing is the short or large-scale acquisition of 
information of an object or phenomenon, by the use 
of either recording or real-time sensing device(s) 
that is not in physical or intimate contact with the 
object (satellite imaging, magnetic resonance, 
Laser ranger, etc.)

Robot. It is a mechanical or virtual, artificial 
agent, which, by its appearance or behavior, con-
veys a sense that it has intentions or agency of its 
own. The word robot can refer to both physical 
and virtual software agents.

Self-Organizing. The internal organization of 
a system increases in complexity without being 
guided or managed by an outside .

Seriation. Formally speaking, it is a way of 
situating an object within a series. In archaeol-
ogy, seriation is a relative dating method in which 
artifacts from numerous sites, in the same culture, 
are placed on chronological order.

Shape.  This term refers to the external con-
figuration of some thing — in contrast to the mat-
ter, content, or substance of which it is composed. 
In geometry, two sets have the same shape if one 
can be transformed to another by a combination 
of translations, rotations, and uniform scaling. In 
other words, the shape of a set is all the geometrical 
information that is invariant to location, scale, and 
rotation. Shape can also be more loosely defined as 
the “outline”, silhouette, contour, or surface. This 
definition is consistent with the above, in that the 
shape of a set does not depend on its position, size 

or orientation. However, it does not always imply 
an exact mathematical transformation.

Similarity. This is the degree of resemblance 
between two objects or entities. Given that resem-
blance can be defined as the correspondence in 
appearance or superficial qualities, similarity can 
be equated with a measure of correspondences 
between two entities.

Small-Scale Society. Generally, it is a society 
of a few dozen to several thousand people who 
live by foraging wild foods, herding domesticated 
animals, or non-intensive horticulture on the vil-
lage level.  Such societies lack cities as well as 
complex economies and governments.

Social Action. It can be defined in terms of 
purposeful changing of natural and social reality. 
In fact, it is the pattern of interactions between 
social agents with the world. Social actions are 
goal-directed processes that must be undertaken 
to fulfill some need or motivation. They are con-
scious (because one holds a goal in mind), and 
different actions may be undertaken to meet the 
same goal. However, an action can be an inten-
tional action without the actor having to be aware 
of the intention from moment to moment.

Soft Computing. It differs from conventional 
(hard) computing in that, unlike hard computing, 
it is tolerant of imprecision, uncertainty, partial 
truth, and approximation. In effect, the role model 
for soft computing is the human mind. The guid-
ing principle of soft computing is: “exploit the 
tolerance for imprecision, uncertainty, partial 
truth, and approximation to achieve tractability, 
robustness and low solution cost”.

Spatial Analysis. This is the study of spatial 
location of archeological observations. It tries to 
discover the existence of regularities and depen-
dencies between places in physical space where 
archaeological data have been recognized.

Supervised Learning. It is a machine learning 
technique for creating a function from training 
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data, consisting of pairs of input objects, and 
desired outputs. The aim is to predict a class label 
of the input object (called classification) after 
having seen a number of training examples (i.e. 
pairs of input and target output). To achieve this, 
the learner has to induce from the presented data 
to unseen situations.

Taphonomy. It is the study of a decaying organ-
ism over time. Although the term was introduced 
to paleontology, it can be used to describe the study 
of the transition of remains, parts, or products 
of social action, from its original context, to the 
archaeological record i.e. the creation of fossil 
assemblages. The primary motivation behind the 
study of taphonomy is to better understand biases 
present in the fossil or archaeological record.

Taxonomy. In biology, it is the practice and 
science of species determination. Taxonomies, or 
taxonomic schemes, are composed of taxonomic 
units known as taxa (singular taxon), arranged 
frequently in a hierarchical structure.

Texture. Visual properties of a surface. It 
usually corresponds to observed irregularities 
in color, shape, roughness, etc.

Truth. There is no single definition of truth 
about which the majority of philosophers agree. A 
practical definition would be “the way the world 
really is, and not what I suppose it is”.

Typology. It literally means the study of types. 
In archaeology, it refers to the taxonomy of arti-
facts according to their characteristics.

Understanding. It is a cognitive process 
related to an abstract or physical object, such as, 
evidence, person, situation, or message whereby 
one is able to think about it and use concepts to 
deal adequately with that object. Understanding 
is a set of concepts in the systems cognitive core 
along with interrelationships between them. The 
degree of understanding is related to the complex-
ity of a system and to the richness of connections 
of a given concept to the entire body of knowledge 
available to the system.

Unsupervised Learning. It is a machine learn-
ing technique where a model is fit to observations. 
It is distinguished from supervised learning by the 
fact that there is no a priori output. In unsupervised 
learning, input samples are grouped in similarity 
classes (clustering), and in so doing, prototypes 
are built as surrogates for learned concepts.

Vector. Informally speaking, any object that 
may be scaled and added. It is an array of numbers 
specifying the dimensionality of some entity.

Vector Quantization. This is a general term 
used to describe the process of dividing space into 
several connected regions, using spatial neighbor-
hood as an analogue of similarity.
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