

CYBERINFRASTRUCTURE
TECHNOLOGIES AND APPLICATIONS

No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or
by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no
expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of information
contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.

CYBERINFRASTRUCTURE
TECHNOLOGIES AND APPLICATIONS

JUNWEI CAO
EDITOR

Nova Science Publishers, Inc.
New York

Copyright © 2009 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.

For permission to use material from this book please contact us:
Telephone 631-231-7269; Fax 631-231-8175
Web Site: http://www.novapublishers.com

NOTICE TO THE READER
The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
information contained in this book. The Publisher shall not be liable for any special,
consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or
reliance upon, this material. Any parts of this book based on government reports are so indicated
and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in
this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage
to persons or property arising from any methods, products, instructions, ideas or otherwise
contained in this publication.

This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert
assistance is required, the services of a competent person should be sought. FROM A
DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

Cyberinfrastructure technologies and applications / Junwei Cao (editor).
 p. cm.
 ISBN 978-1-60741-208-3 (E-Book)
 1. Cyberinfrastructure. I. Cao, Junwei, 1970-
 QA76.9.C92C93 2009
 004--dc22 2008037243

Published by Nova Science Publishers, Inc. � New York

CONTENTS

Preface vii
Chapter 1 Parallel Dense Linear Algebra Software in the Multicore Era 1

Alfredo Buttari, Jack Dongarra, Jakub Kurzak and Julien Langou
Chapter 2 Sharing Scientific Instruments for Higher Education and Research in China19

Jie Yin, Yuexuan Wang and Cheng Wu
Chapter 3 An Interoperable Information Service Solution for Grids 41

Anand Padmanabhan, Eric Shook, Yan Liu and Shaowen Wang
Chapter 4 Performance-oriented Workload Management for Multiclusters and Grids 61

Ligang He and Stephen A. Jarvis
Chapter 5 Virtualizing Scientific Applications and Data Sources as Grid Services 81

Siegfried Benkner, Gerhard Engelbrecht,
Martin Köhler and Alexander Wöhrer

Chapter 6 Grid Resource Broker for Scheduling Component-Based Applications on
Distributed Resources 113
Xingchen Chu, Srikumar Venugopal
and Rajkumar Buyya

Chapter 7 CROWN: A Service Grid Middleware for e-Science 127
Jinpeng Huai and Chunming Hu

Chapter 8 Semantics-Enabled Service Discovery Framework in a Pan-European
Pharmaceutical Grid 151
Changtao Qu, Falk Zimmermann, Kai Kumpf , Richard Kamuzinzi,
Valérie Ledent and Robert Herzog

Chapter 9 Service Composition Automation with AI Planning 179
Maozhen Li, Bin Yu and Man Qi

Chapter 10 Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 199
Wei Tan, Yushun Fan, Ian Foster and Ravi Madduri

Contents vi

Chapter 11 Federal Management of Virtual Organizations with Trust Evaluation 223
Zhen Wang and Junwei Cao

Chapter 12 Community-Scale Cyberinfrastructure for Exploratory Science 243
Peter Bajcsy, Rob Kooper, Luigi Marini and Jim Myers

Chapter 13 Cyberinfrastructure for Biomedical Applications: Metascheduling as an
Essential Component for Pervasive Computing 263
Zhaohui Ding, Xiaohui Wei, Osamu Tatebe, Peter W. Arzberger,
Philip M. Papadopoulos and Wilfred W. Li

Chapter 14 The Bridhing Domain Multiscale Method and Its High Performance
Computing Implementation 295
Shaoping Xiao, Jun Ni and Shaowen Wang

Chapter 15 Cyberinfrastructure for Agricultural Data and Knowledge
Sharing in China 317
Chunjiang Zhao, Yuxin Wan, Huarui Wu and Wen Zhang

Index 331

PREFACE

Cyberinfrastructure was proposed in a report of the NSF Blue-Ribbon advisory panel in

2003. Cyberinfrastructure will provide a unified environment to access and manage cyber
resources, e.g. supercomputers, data archives, software services, scientific instruments and
virtual organizations. In this book, the authors review latest research and development and
discuss new technologies and applications involved in building Cyberinfrastructure. The
purpose of this book is to provide a detailed summary of early experiences, practices and
lessons leaned in building Cyberinfrastructure from multiple perspectives: software
development and maintenance, resource integration and sharing, cyber environment
construction, operation and management, testing and troubleshooting, application enabling,
security and QoS ensuring. Consequently, this book can serve as a valuable source of
reference and indispensable reading for researchers, educators, engineers, graduate students,
and practitioners in the field of design and implementation of Cyberinfrastructure systems.

Chapter 1 - The recent emergence of multicore and hybrid microprocessor designs marks
the beginning of a forced march toward an era of computing in which research applications
must be able to exploit parallelism at an unprecedented scale. This chapter presents a new
generation of dense linear algebra libraries that achieve the fastest possible time to an
accurate solution on multicore systems by efficiently using all the processors that such
systems will make available. To work within this design space and leverage the power of
million way parallelism, it is necessary to combine new, highly parallelizable algorithms, a
programming and execution model that can exploit massive task parallelism, and a flexible
memory management facility that can help optimize data locality across a range of different
platforms. The design space is also conditioned by the fact that, in order to support the
broadest possible range of Computational Science, the resulting library frameworks must be
able to scale both up and down, running at all levels of the platform development chain.

Chapter 2 - Cyberinfrastructure (CI) for instrument sharing is an infrastructure that aims
to facilitate effective resource sharing of expensive scientific instruments, e.g., telescopes and
observatories, through a system of grid services. This cyberinfrastructure consists of three
components: an instrument pool alliance, instrument pools, and physical instruments. When a
user submits an experiment to the CI environment,the instrument pool alliance is responsible
to allocate instruments in related instrument pools to conduct the experiment. After the
experiment is finished and results are returned, the user will appraise performance of
corresponding services.

Junwei Cao viii

In this chapter, fuzzy random scheduling algorithms are proposed in instrument pools
when a job is submitted to one of instruments within a pool. The randomness lies in the
probability of which instrument be chosen for an experiment and the fuzziness origins from
vagueness of users’ feedback opinions on experimental results. Users’ feedback information
is utilized to improve overall quality of service (QoS) of an instrument CI. Several algorithms
are provided to increase utilization of instruments providing higher QoS and decrease
utilization of those with poor QoS. This is demonstrated in details using quantitative
simulation results included in this chapter.

Chapter 3 - Information services are a critical piece of Grid infrastructure, they collect,
aggregate, and organize sources of Grid resource information, and provide the information to
applications to schedule computational tasks, and enable Virtual Organizations (VO) to share
distributed computing resources. To be successful an information provider needs to be able to
aggregate diverse information from numerous sources, publish information into different Grid
monitoring systems, function under different Grid deployments, and be adaptable to different
information schemas. Addressing these challenges would provide a platform for an
interoperable information service.

In this chapter, the authors present the Modular Information Provider (MIP) that address
the aforementioned challenges and eliminates the shortcomings of the existing Grid
information providers. MIP adopts a XML-based data model to enable robust schema
validation as well as to support the latest generation of service-oriented Grid monitoring
software.

MIP provides a critical capability for production Grid environments focusing on
achieving Grid interoperability and manageability. To validate this we conduct experiments
on the Open Science Grid and Grid Australia. These experiments demonstrate MIP's Grid-
independent approach is successful and can easily adapt to different software stacks and the
heterogeneous configuration of several sites on a Grid. We use GISolve, a TeraGrid science
gateway as an example to demonstrate how MIP is useful from the perspective of Grid
application. GISolve provides a geospatial problem solving platform that hides the
complexity of Grid information services based on MIP, which enables GISolve applications
to access multiple Grids seamlessly. The authors illustrate how MIP is integrated within
GISolve so that GISolve applications can benefit from the interoperable information service
MIP provides.

Chapter 4 - This chapter addresses the dynamic scheduling of parallel jobs with QoS
demands (soft-deadlines) in multiclusters and grids. Three performance metrics (over-
deadline, makespan and idle-time) are combined with variable weights to evaluate the
scheduling performance. These three metrics are used for measuring the extent of jobs’ QoS
demands compliance, resource throughput and resource utilization, respectively. Therefore,
clusters situated in different administrative organizations can utilize different weight
combinations to represent their different performance requirements. Two levels of
performance optimisations are applied in the multicluster. At the multicluster level, a
scheduler, (which the authors call MUSCLE), allocates parallel jobs with high packing
potential to the same cluster; MUSCLE also takes the jobs' QoS requirements into account
and employs a heuristic to allocate suitable workloads to each cluster to balance the
performance. At the local cluster level, a workload manager, called TITAN, utilizes a genetic
algorithm to further improve the scheduling performance of the jobs sent by MUSCLE. The
extensive experimental studies are conducted to verify the effectiveness of the scheduling

Preface ix

mechanism in MUSCLE; the results show that comparing with the traditional workload
allocation policies in distributed systems (Dynamic Least Load and Weighted Random), the
comprehensive scheduling performance (in terms of over-deadline, makespan and idle-time)
of parallel jobs is significantly improved and well balanced across the multicluster.

Chapter 5 - Service-oriented Grid computing promises to change the way scientists will
tackle future research challenges by offering advanced data and application services,
providing transparent access to distributed heterogeneous data sources and to high-end
computing facilities for performing computationally demanding and data-intensive modeling,
simulation and analysis tasks. In this article the authors describe the Vienna Grid
Environment (VGE), a service-oriented Grid infrastructure based on standard Web Services
technologies for virtualizing scientific applications and data sources as Grid services that hide
the details of the underlying software and hardware infrastructure. The VGE service provision
framework adopts a component-based approach which supports the configuration of
application and data services from a set of basic service components providing capabilities
like job or query execution, data transfers, QoS negotiation, data staging, and error recovery.
VGE relies on a business-oriented model to Grid computing based on a flexible QoS
infrastructure, dynamic negotiation of service-level agreements, and on-demand access to
Grid services. VGE has been developed and utilized in the context of several European
projects for the realization of Grid infrastructures within medical and bio-medical application
domains.

Chapter 6 - This chapter presents the design and implementation of seamless integration
of two complex systems component-based distributed application framework ProActive and
Gridbus Resource Broker. The integration solution provides: (i) the potential ability for
component-based distributed applications developed using ProActive framework, to leverage
the economy-based and data-intensive scheduling algorithms provided by the Gridbus
Resource Broker; (ii) the execution runtime environment from ProActive for the Gridbus
Resource Broker over component-based distributed applications. It also presents the
evaluation of the integration solution based on examples provided by the ProActive
distribution and some future directions of the current system.

Chapter 7 - In the past few years, the Grid computing paradigm has emerged as an
instance of cyber infrastructure, promising to enable resource sharing and collaborating across
multiple domains. In the research community there has been an intense interest in designing
and studying of such system.

CROWN (China R and D Environment Over Wide-area Network) project is an e-Science
project funded by China Natural Science Foundation Committee, and China 863 High-tech
Program. The main goal of CROWN project is to empower in-depth integration of resources
and cooperation of researchers nationwide and worldwide. CROWN was started in late 2003.
The main goal of CROWN project is to build the middleware infrastructure and wide area
testbed to support computation intensive, data centric e-Science applications.

Recently, with the evolution of Web services, the service-oriented architecture has
become a significant trend for grid computing, with OGSA/ WSRF as the de facto standards.
CROWN has adopted the service-oriented architecture, connecting large amount of services
deployed in universities and institutes. Up till mid 2007, lots of applications in different
domains have been deployed into CROWN grid, such as gene comparison in bioinformatics,
climates pattern prediction in environment monitoring, etc. The long-range goal for CROWN

Junwei Cao x

is to integrate home user resources in a fully decentralized way with a robust, scalable grid
middleware infrastructure.

In this chapter, based on a proposed Web service-based grid architecture, a service grid
middleware system called CROWN is introduced. As the two kernel points of the
middleware, the overlay-based distributed grid resource management mechanism is proposed,
and the policy-based distributed access control mechanism with the capability of automatic
negotiation of the access control policy and trust management and negotiation is also
discussed in this chapter. Experience of CROWN testbed deployment and application
development shows that the service-oriented middleware can support the typical scenarios
such as computing-intensive applications, data-intensive applications and mass information
processing applications.

Chapter 8 – The authors present the design and implementation of a semantics-enabled
service discovery framework in a pan-European pharmaceutical Grid: SIMDAT, an industry-
oriented Grid environment for integrating thousands of Grid-enabled biological data services
and analysis services. The framework consists of three major components: the OWL-DL-
based biological domain ontology, OWL-S-based service annotation, and semantic
matchmaker based on the ontology reasoning. Built upon the framework, workflow
technologies are extensively exploited in the SIMDAT to assist biologists in
(semi)automatically performing in silico experiments. They present a typical usage scenario
through the case study of a biological workflow: IXodus.

Chapter 9 - Grid computing is rapidly evolving into a service-oriented computing
infrastructure that facilitates resource sharing and large-scale problem solving on the Internet.
It is envisioned that many resources on the grid would be exposed as services for a wider use
by the community. Service discovery and composition has thus become a vitally important
component in utilizing grid facilities. This chapter focuses on service composition. One
challenge in service composition is how to automate the composition process in terms of a
large number of services (atomic services or component services) and a variety of user
requests. A novel Hierarchical Two Directions Partial Order Planning (H2POP) algorithm is
presented for discovery of composite services which are dynamically composed from
component services. A use case is given to illustrate the application of the H2POP algorithm
for travel planning service composition automation.

Chapter 10 - With the emergence of Service Oriented Computing, workflow has become
an important method to compose services and reuse existing resources in the
Cyberinfrastructure (CI) and the Grid. In this chapter, the authors first summarize research
activities in the field of workflow in service oriented computing. They discuss five major
research topics, i.e., languages and tools for service orchestration, automatic service
composition, mediation-aided service composition, verification of service workflow, and
decentralized execution of workflow. Although some of this work was originally targeted at
the area of business process management, they can be adopted by the CI community with
some modification or enhancement. In the second part of this chapter, the authors introduce a
service-oriented workflow execution system, WS-Workflow, and explain the key modules in
this system, including the data-driven composition module, the mediation-aided composition
module, and the model fragmentation module. This system has been used in many projects to
facilitate the flexible workflow composition and decentralized execution.

Chapter 11 - Dynamical and flexible resource aggregation tools are required in 21st
century research. Scientists need to aggregate various digital equipments and cooperate with

Preface xi

each other in different organizations through Virtual Organizations (VO) on the Internet in a
flexible and dynamical way. In this cooperation and resource sharing process, trust evaluation
is of great importance for flexible VO management. Traditional tools such as VOMS for grids
are short in dynamism and trust evaluation. In this chapter, the authors propose a new scheme
providing federal VO membership management based on trust evaluation, with which
researchers can achieve appropriate trust relationships with each other and establish a
particular VO dynamically to aggregate resources for their own purposes.

Chapter 12 - This chapter presents some of the key aspects of Cyberinfrastructure (CI)
research and development targeting community-scale exploratory science. The motivation
comes from the fact that successful software for CI is increasing scientific productivity of a
single investigator, small groups of scientists as well as dispersed teams spanning multiple
institutions. Community scale scientific activities and their informatics requirements are
driving the development of new CI solutions. It becomes critical to follow CI design
principles based on past, present and future efforts. In addition, data- and hypothesis-driven
explorations are fundamental scientific activities leading to discoveries. In this work, our
focus is on informatics requirements and CI design principles behind existing software. We
have included our experiences and described several prototype CI solutions to support
exploratory science.

Chapter 13 - Biomedical, translational and clinical research through increasingly complex
computational modeling and simulation generate enormous potential for personalized
medicine and therapy, and an insatiable demand for advanced cyberinfrastructure.
Metascheduling that provides integrated interfaces to computation, data, and workflow
management in a scalable fashion is essential to advanced pervasive computing environment
that enables mass participation and collaboration through virtual organizations (VOs). Avian
Flu Grid (AFG) is a VO dedicated to members from the international community to
collaborate on antiviral drug discovery for potential pandemic influenza viruses. The complex
and dynamic drug discovery workflow requirement in the AFG-VO is met through innovative
service oriented architecture with metascheduling playing a key role. The community
scheduler framework (CSF4) is a web service resource framework (WSRF)-compliant
metascheduler with an extensible architecture for customized plugins that provide cross site
scheduling, workflow management, and data-aware scheduling on the Grid Datafarm (Gfarm)
global filesystem. The Opal web service toolkit enables existing scientific applications to be
deployed as web services, accessible by various types of clients including advanced workflow
management tools such as Vision and Kepler. Molecular dynamics and virtual screening
applications exposed as Opal based services are metascheduled using CSF4 to access
distributed resources such as the Pacific Rim Applications and Middleware Assembly
(PRAMGA) grid and the TeraGrid. Emerging trends in multicore processors, virtualization
and Web 2.0 continue to shape the pervasive computing environment in the years to come
and pose interesting opportunities for metascheduling research and development.

Chapter 14 - This chapter presents a study on the feasibility of applying high performance
computing (HPC) to the Bridging Domain Multiscale (BDM) method, so that featured
scalable multiscale computations can be achieved. Wave propagation in a molecule chain
through an entire computational domain is employed as an example to demonstrate its
applicability and computing performance when multiscale-based simulations are conducted in
a large-scale parallel computing environment. In addition, the conceptual idea and computing

Junwei Cao xii

framework using Grid computing technologies is proposed to enhance future multiscale
computations in nanotechnology.

Chapter 15 - During the last decade, billions of national investment has been spent in
China on building agricultural information systems for data collection, integration, analysis
and processing. Each province has built its own technology platform for information sharing
and access. However, since data sources are separate and corresponding applications are
developed by different organizations, cross-domain data and knowledge sharing becomes
very difficult. A Cyberinfrastructure (CI) for agricultural data and knowledge sharing in
China is proposed in this work and funded by the Ministry of Science and Technology of
China under the national 863 high-tech R and D program. In this work, related work is
summarized and our system structure is described in details. Heterogeneity of different
operating systems and databases has to be addressed. System performance can be improved
by avoiding large-scale data transferring by introducing an application server within each
domain for local data processing.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 1

PARALLEL DENSE LINEAR ALGEBRA
SOFTWARE IN THE MULTICORE ERA

Alfredo Buttari1, Jack Dongarra2,
Jakub Kurzak3 and Julien Langou4

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, Tennessee

2 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, Tennessee

Oak Ridge National Laboratory, Oak Ridge, Tennessee
University of Manchester, Manchester UK

3 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, Tennessee

4 Department of Mathematical and Statistical Sciences,
University of Colorado Denver, Denver, Colorado

ABSTRACT

The recent emergence of multicore and hybrid microprocessor designs marks the
beginning of a forced march toward an era of computing in which research applications
must be able to exploit parallelism at an unprecedented scale. This chapter presents a new
generation of dense linear algebra libraries that achieve the fastest possible time to an
accurate solution on multicore systems by efficiently using all the processors that such
systems will make available. To work within this design space and leverage the power of
million way parallelism, it is necessary to combine new, highly parallelizable algorithms,
a programming and execution model that can exploit massive task parallelism, and a
flexible memory management facility that can help optimize data locality across a range
of different platforms. The design space is also conditioned by the fact that, in order to

1 E-mail address: buttari@eecs.utk.edu
2 E-mail address: dongarra@eecs.utk.edu
3 E-mail address: kurzak@eecs.utk.edu
4 E-mail address: julien.langou@ucdenver.edu

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 2

support the broadest possible range of Computational Science, the resulting library
frameworks must be able to scale both up and down, running at all levels of the platform
development chain.

INTRODUCTION

The recent emergence of multicore and hybrid microprocessor designs marks the

beginning of a forced march toward an era of computing in which research applications must
be able to exploit parallelism at an unprecedented scale. This confronts the scientific software
community with both a daunting challenge and a unique opportunity. The challenge arises
from the disturbing mismatch between the design of systems based on this new chip
architecture — hundreds of thousands of nodes, a million or more cores, reduced bandwidth
and memory available to cores — and the components of the traditional software stack, such
as numerical libraries, on which scientific applications have relied for their accuracy and
performance. So long as library developers could depend on ever increasing clock speeds and
instruction level parallelism, they could also settle for incremental improvements in the
scalability of their algorithms. But to deliver on the promise of tomorrow’s petascale systems,
library designers must find methods and algorithms that can effectively exploit levels of
parallelism that are orders of magnitude greater than most of today’s systems offer. This is an
unsolved problem. Yet this problem also presents a rare opportunity because, in the wake of
the multicore revolution, we are now compelled to rethink essential components of our
software infrastructure that the normal constraints of business as usual otherwise render more
or less untouchable.

The goal is to create a new generation of dense linear algebra libraries that achieve the
fastest possible time to an accurate solution on multicore systems by efficiently using all the
processors that such systems will make available. To work within this design space and
leverage the power of million way parallelism, it is necessary to combine new, highly
parallelizable algorithms, a programming and execution model that can exploit massive task
parallelism, and a flexible memory management facility that can help optimize data locality
across a range of different platforms. The design space is also conditioned by the fact that, in
order to support the broadest possible range of Computational Science, the resulting library
frameworks must be able to scale both up and down, running at all levels of the platform
development chain. To achieve this goal, special focus must be put on the following four
objectives:

• Explore new, highly parallelizable algorithms: Novel work [1–3] shows that a wide

range of dense linear algebra algorithms can be expressed as algorithms by tiles. The
PLASMA project (Parallel Linear Algebra Software for Multicore Architectures)
shows how this new approach can be applied to Cholesky, LU and QR factorizations
[1–3], greatly improving parallel performance of these operations on multicore
processors. It is reasonable to expect that this concept can be extended to a broad
range of linear algebra algorithms reduction to bi-diagonal, tri-diagonal and
Hessenberg forms, eigensolver algorithms like QR iterations etc.

• Develop an algorithm description abstraction for expressing parallelism: Building
on the well established concepts from dataflow architectures, it is possible to develop

Parallel Dense Linear Algebra Software in the Multicore Era 3

high-level abstractions for algorithm description that make task dependencies explicit
and therefore facilitate scheduling on multicore systems. Since all the information
about parallelism in the algorithm is contained in its dependency graph, which is a
Direct Acyclic Graph (DAG), graph-based algorithm definition can replace
programming language definition. This language independent approach will greatly
improve the process of development and maintenance of the numerical library.

• Implement scalable methods of dynamic task scheduling and synchronization for
multicore systems: With heterogeneity becoming pervasive both at the chip level, as
well as in supercomputer installations, it is necessary to develop scalable
mechanisms for dynamic scheduling of tasks with lightweight synchronization,
assuring load balance and exploiting communication overlapping. The goal here is
not to reinvent such a system, but rather to leverage best existing practices to
construct an event driven task scheduling system to carry out execution of the task
graph at runtime.

• Design a unified approach for different memory architectures: It is also necessary to
develop a unified approach for different memory architectures including symmetric
multiprocessors (SMP), non-uniform memory access architectures (NUMA),
distributed memory systems and processors with scratchpad memories (e.g., Cell
processor). Initial results indicate that a similar execution model is applicable to
SMP-like multicore processors, NUMA-based systems and the Cell processor. The
purpose of this effort is to cover these types of memory architectures with a unified
approach and also extend the model to distributed memory architectures.

The rationale for these objectives derives in large measure from an analysis of the major

factors that blocked the road to further performance improvements for serial programs using
traditional microprocessor designs.

BACKGROUND

The familiar story of exponential growth in uniprocessor performance during the last

decades of the twentieth century has now been overtaken, as we begin the twenty-first, by a
more sobering story of how the seemingly relentless increases in the serial performance
finally came to an end. It is not that the phenomenon known as Moore’s law [4, 5] has
reached its limit, but rather that the ability of engineers to exploit the increasing number of
components on a chip for the purpose of accelerating serial performance has been effectively
blocked. The essence of the situation boils down to a simple, informal equation: Power Wall
+ ILP Wall + Memory Wall = Brick Wall for serial performance [6]. Since these “walls”
constrain the microprocessor design space that the High Performance Computing community
must soon confront, it is important to briefly survey the factors they bring into play.

The “power wall” represents an intractable physical barrier — too much heat, too much
power consumption, and too much leaking voltage — to further increases in clock speeds.
The explosive improvements in the performance of microprocessors we have witnessed over
the past decade depended directly on a 4000-fold increase in clock speeds over that same
period of time [7]. But power dissipation is proportional to processor clock frequency, and, as

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 4

a result, when clock rates rise above 3 GHz, the heat generated and the power leakage at the
gates becomes unmanageable, putting an end to performance improvements along this path.

At the same time, opportunities for improving the speed of a single thread of control,
which was the primary source of performance acceleration in the twentieth century, are also
blocked by the exhaustion of techniques based on instruction level parallelism (ILP). This is
the “ILP wall.” ILP based techniques increase overall execution speed by employing
superscalar execution with multiple instruction issue and mechanisms such as branch
prediction and speculation. The major advantage of this approach is that serial programs,
taking no explicit account of parallelism, can receive the benefits of ILP-based speed up by
simply being recompiled. But these techniques, which lead to the dominance of large
monolithic processors, have now reached the point of diminishing returns in both issue width
and pipeline depth; they have saturated their design space, leaving little instruction level
parallelism left to be exploited. The “free ride” is over in the sense that software developers
who want to receive the performance benefits of greater parallelism must, from here on,
explicitly program for it in the form of task or data parallelism — very much a non-trivial
task.

Finally, physical limits on the number and bandwidth of pins on a single chip means that
the gap between processor speed and memory access time, which was already wide, will
continue to widen. Moreover, further increases in the number and sophistication of levels of
caches has also reached the point of diminishing returns. These phenomena, taken together,
constitute a “Memory Wall” with which the scientific software community must find some
way to cope.

In order to deal with the emergence of these limitations, around 2004 the microprocessor
industry took a historic turn towards designs with multiple processing units in a single chip
[8]. Chips following this design are better able to deal with power and heat dissipation issues
that arise at high clock speeds. But from the point of view of increased performance, the most
important consequence of this new design paradigm is that it shifts the focus from instruction
level parallelism to thread level parallelism (TLP) and data level parallelism (DLP). The
advantage of the multicore approach is a consequence of “Pollack’s Rule,” which holds that
performance increases are roughly proportional to the square root of increases in complexity
[9]. In other words, if the chip area is doubled to build a large monolithic processor, a
performance increase of only 40% can be expected. If it is used, however, to build two
smaller cores, then in principle, i.e. if TLP and/or DLP can be efficiently exploited, the
performance can be doubled. This fact has generated a new corollary of Moore’s law,
according to which the number of cores is expected to double with each new generation of
chips, roughly every two years. Dual-core commodity chips are already common, quad-core
machines are available and 8-core machines are expected in 2008.

It also is worth noting that future chips are likely to go beyond simple multicore designs,
bringing in heterogeneous cores, such as superscalar cores to handle control tasks and very
long instruction word (VLIW), or single instruction multiple data (SIMD) cores to handle
compute and data intensive tasks. The Sony/Toshiba/IBM Cell processor is an example of a
commercially successful processor of this type. Future designs may also offer a
reconfigurable memory system, where the memory attached to a core can act as either a
coherent cache or private scratchpad memory. It is interesting to note that, in this respect, the
STI Cell processor represents the extreme approach, basically being a distributed memory
system with global address space. Solutions based on graphics processing units (GPUs) and

Parallel Dense Linear Algebra Software in the Multicore Era 5

field-programmable gate arrays (FPGAs) are also likely to come into the picture. Mixed
hardware configurations have already appeared (e.g., Los Alamos RoadRunner, Cray
BlackWidow).

As has been widely observed, accessing the power of these new designs will require a
paradigm change in the programming community. Though a great deal of research has been
directed to the development of auto-parallelizing compilers, these tools, which would relieve
programmers of the need to recast their serial programs into a parallel form, have so far
proved themselves to be efficient only in a highly restricted set of applications. Thus, high
performance can be extracted from multicore architectures only if TLP can be exploited at the
programming level. Software for multicore architectures must be designed with parallelism in
mind and algorithms have to be reformulated or rewritten in order to exploit TLP or DLP.

Given the constraints just discussed, we believe that DLP is not a viable option going
forward for dense linear algebra. In fact, in this context, dense linear algebra suffers from the
legacy of the data-parallel model, which emphasizes asymptotic performance and isoscaling.
This model relied on the fact that the impact of inefficient operations could always be
overcome if the size of the systems could be increased sufficiently. Basically, because of the
surface to volume effect, good performance could always be achieved if a large enough
problem was used. But the explosion in computing power promised by the multicore
revolution is unlikely to be followed by a concomitant explosion in memory capacity,
memory bandwidth or the speed of interconnections between nodes in distributed memory
architectures. These phenomena will render the data-parallel model incapable of delivering
high performance on these new architectures and, consequently, it will be replaced a TLP-
based approach.

Given these facts about the multicore design space, the traditional approach to dense
linear algebra libraries must be changed. Traditionally, the class of problems under
investigation is approached from the lower end of parallelism, by parallelizing the fastest
sequential algorithm. However, the fastest serial algorithms may not be the best to parallelize.
Frequently, alternatives exist, which, although slower sequentially, deliver faster time to
solution when parallelized. This calls for the rethinking of not only programming models, but
also algorithms. With parallel hardware becoming ubiquitous, it is time to approach
parallelism from the high end and aim for maximum parallelism. It is time to replace the
question “On how many processors can the algorithm run efficiently?” with the question
“How efficiently can the algorithm run on all available processors?” The key to achieving this
goal is the emphasis on strong scaling and the replacement of the data-parallel model with the
task-parallel model and the employment of the following techniques:

• Asychronicity and Dynamic Scaling: The state-of-the-art software for dense linear

algebra, such as LAPACK (Linear Algebra Package) and ScaLAPACK [10, 11]
employs the fork-join parallel execution, a heavily synchronous approach, stemming
from the data-parallel model. This solution allowed for writing of hundreds of
thousands of lines of LAPACK and ScaLAPACK code in tractable and maintainable
manner — a true marvel of software engineering. Unfortunately, today it is also the
cause of rapidly declining performance of these libraries on new generations of
processors. Not only is this approach incapable of exploiting heterogeneous systems,
but also proves inadequate for delivering performance on homogeneous systems.
Basically, parallel code written in such a manner enforces nonexistent dependencies,

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 6

which prevents flexible scheduling of operations and causes unnecessary stalls.
Alternatively, the producer/consumer philosophy can be applied, replacing collective
operations with point-to-point communication and synchronization. Dense linear
algebra is inherently well suited for dynamic execution. It is rich in diverse types of
operations, with different performance characteristics, in terms of computation and
memory intensity, and different levels of parallelism. Historically, the performance
of dense linear algebra algorithms was improved by applying the concept of a look-
ahead [12–16], which is nothing else than a manual adjustment of the order of
operations, and can be seen as a very modest attempt at dynamic scheduling.
Dynamic scheduling also addresses the problem of efficient execution in
heterogeneous environments. One problem associated with dynamic execution is the
overhead of task scheduling and synchronization. It is not a fundamental problem,
however, but rather an issue of implementing efficient mechanisms to carry out this
job. So far, dynamic scheduling has proven its benefits for multicore processors in a
shared memory arrangement [1, 2, 17, 18]. It has also recently been applied to dense
linear algebra algorithms on distributed memory systems [19], showing similar
potential.

• Fine granularity: Overgrown caches are likely to become the thing of the past, as
they have proven to bring diminishing returns in performance gains [20]. It has been
argued that, in a power-efficient design, increase in the resource size, such as the
cache, is only justifiable if it results in a proportional increase in performance. This is
known as the “kill if less than linear” (KILL) rule of chip design [21]. Designs like
the STI Cell processor, the Intel Polaris prototype and the Tilera chip already follow
this path. On the other hand, fine granularity of operations is known to inhibit
performance of dense linear algebra operations. It has been recognized that one of the
reasons for this is of a technical nature — existing BLAS implementations, such as
GotoBLAS [22], are not tuned for efficiency on small data sets [17]. There is
however a more fundamental problem. The surface to volume ratio may not take
effect for the underlying BLAS if the size of the elementary operation is too small.
Nevertheless, finer granularity creates more parallelism, and parallelism will be the
key to unlocking the performance of massively parallel chip multiprocessors.
Obviously, caution has to be given when adjusting the level of granularity to the
specifics of a particular architecture, which is a great area for exploration of auto-
tuning techniques.

• Locality of reference: Locality of reference is a broad problem that can be tackled at
many levels. One important aspect is the use of specialized data structures oriented
towards maximizing locality of reference for linear algebra operations, such as the
block data layout (BDL) [23, 24]. Another issue is affinity of data to processing units,
typically strictly enforced for distributed memory systems, rather loosely enforced
for shared memory systems, and basically meaningless for the Cell processor. It can
be observed that affinity can be traded for the scheduling flexibility, in principle on
any kind of system. Overall, it seems that distributed memory systems were granted
the benefits of block data organization, but not shared memory systems. On the other
hand the shared memory systems enjoyed the profits of dynamic scheduling, but not
the distributed memory systems. It seems a natural thing to treat both classes with the
same generosity.

Parallel Dense Linear Algebra Software in the Multicore Era 7

METHODOLOGY
New Algorithms

Commonly used linear algebra algorithms rely on the concept of block operations [11] to
achieve high performance on modern architectures. Based on the observation that linear
algebra operations can be described as the application of a sequence of operators, block
operations leverage the idea that operators can be accumulated in sets and applied at
once. A block algorithm can, thus, roughly be described as a sequence of two main steps:

Panel reduction: at this step a set of nb (commonly referred to as the block size) operators
are computed for a small portion of the matrix. This step typically involves Level-2 BLAS
operations, which are memory bound operations and cannot be efficiently parallelized on
shared memory machines due to the disproportion between CPU-memory bus bandwidth and
CPU performance that characterizes virtually all modern architectures.

Trailing submatrix update: at this step all the nb operators computed in the panel
reduction are applied at once to the rest of the matrix (i.e., the trailing submatrix). This step is
typically performed by means of Level-3 BLAS operations.

If nb is much lower than the problem size n, then most of the floating point operations are
done in Level-3 BLAS routines, which delivers high performance on memory-hierarchy
systems thanks to the so called surface-to-volume effect.

Since the gap between the processor speed and the memory access time is likely to be
increased by multicore technologies, block operations are still of key importance to achieve
high performance in linear algebra computations. However, blocking of operations poses
some limitations to fine-granularity parallelization of most of the commonly used linear
algebra algorithms. From this observation stems the necessity to either reformulate traditional
algorithms or develop new ones in order to achieve those important features discussed in
Section 2.

Some novel work from the PLASMA project in this context focuses on the definition of
“tile” algorithms [1–3] where a linear algebra operation can be described as a sequence of
tasks that operate on “tiles”, i.e., square blocks of data that can be arbitrarily small.

The Cholesky factorization represents one of the cases where the well known LAPACK
algorithm can be easily reformulated in a tiled fashion [1, 3]. Each operation that defines an
atomic step of the LAPACK algorithm can be broken into a sequence of tasks where the same
algebraic operation is performed on smaller portions of data, i.e., the tiles.

In most of the cases, however, the same approach cannot be applied and novel algorithms
must be introduced. Recent work [1, 2] proposes, for the QR and LU factorizations,
algorithms based on the well known methods for updating factorizations that were introduced
[25] and later on reformulated in terms of block-operations [26, 27], to implement out-of-core
solvers. These updating factorization methods can be used to derive tile algorithms for LU
and QR factorizations that provide very fine granularity of parallelism and the necessary
flexibility that is required to exploit dynamic scheduling of the tasks according to the
techniques described in Section 3.2. It is worth nothing, however, that, as in any case where
such fundamental changes are made, trade-offs have to be taken into account. For instance, in
the case of the LU factorization the tile algorithm replaces partial with block pairwise
pivoting which results in slightly worse stability [26]. As we suggest below (Section 3.4.2),
techniques such as iterative refinement can often be applied to remedy such problems.

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 8

High performance can be achieved when tile algorithms are used in combination with
dynamic scheduling techniques (see Section 3.2) and high data locality storage formats such
as BDL (see Section 2). Figure 1 shows the performance of the tile algorithms, with BDL and
dynamic scheduling, for the LU, Cholesky and QR factorizations compared to the
performance of the LAPACK block algorithm linked to a multithreaded BLAS library
(ACML) and to that of two vendor implementations.

Figure 1. Performance comparison between different implementations of LU, Cholesky and QR
algorithms on a quad-socket, dual-core Opteron system (ACML 4.0.0 and MKL 9.1 were used).

The applicability of this approach to a broader set of linear algebra algorithms including
two-sided, invariant transformations like reductions to Hessenberg, tri-diagonal and bi-
diagonal forms is still under investigation. Two-sided transformations are of key importance
for the solution of eigenvalue or singular value decomposition problems but are very
expensive, and the LAPACK block algorithm is rather inefficient. The reason for this
inefficiency lies in the extremely high cost of the panel reduction which, moreover, makes
these operations poorly scalable when parallelized with a fork-join paradigm (for example,
using a multithreaded BLAS library).

The design and development of novel algorithms for these operations is a rather
challenging task and the achievement of the properties discussed in Section 2 is hindered by a
number of factors:

Fine granularity Techniques have been studied in the past [28, 29] to reduce a matrix to a
block-condensed form. Earlier work [29] shows how a tiled algorithm can be used to reduce a
matrix to a block-Hessenberg form. The same approach can be applied to the reduction to
tridiagonal form. Even if such algorithms provide considerable benefits for parallelization and
for achieving fine granularity, the block-Hessenberg and block-tridiagonal forms are of no
interest to any application. For this reason, studies have been conducted [28] to reduce a
block-Hessenberg or block-tridiagonal to Hessenberg and tridiagonal forms respectively
through invariant transformations.

Asynchronicity Even if, in principle, a graph-driven execution model can be applied to
any algorithm, its efficiency is strongly dependent on the complexity of the algorithm itself.
The presence of many dependencies among the elementary tasks, i.e., many edges in the
DAG that represents the operation, limits the flexibility of the scheduling and may result in a
poor parallelization of the tasks.

Memory locality Memory locality can be improved by using specific data storage formats
like BDL or by scheduling the tasks in the DAG according to policies that maximize the
affinity of data to core memories (caches or scratchpad memories). It is very difficult to apply
these techniques to algorithms for two-sided transformations. Two-sided transformations, in

Parallel Dense Linear Algebra Software in the Multicore Era 9

fact, are characterized by a complex pattern of access to memory that make very difficult the
definition of tiled algorithms as well as the application of storage formats as BDL. Moreover,
the algorithms for two-sided transformations are rather complicated, which translates in the
presences of many dependencies and, thus, edges in the DAG. As a result, the flexibility of
the task scheduling is seriously limited when memory affinity is exploited.

Algorithm Description and Execution Environment

It can be observed that parallel performance problems frequently stem from implicit

expression of parallelism. Although today massive parallelism is mostly achieved through
message passing, applications often hide parallelism behind software middle layers. This is,
for instance, the case with ScaLAPACK, PBLAS [30], and BLACS [31], and also the case of
LAPACK running on top of multi-threaded BLAS. The alternative is to provide a means for
direct expression of parallelism at the algorithmic level based on the dataflow model. This
can be achieved by an algorithm description abstraction relying on explicit definition of tasks
and their dependencies. At the same time, such abstraction shall also facilitate unified
treatment of different memory architectures.

Similar concepts were popular two decades ago. The early 90s introduced the Parallel
Virtual Machine (PVM) model for programming distributed systems [32, 33], which was
accompanied by a number of tools for graphical development of parallel programs. Examples
include Phred [34, 35], Paralex [36], HeNCE [37–40] and CODE [41, 42] and their roots can
be traced to a yet older project called SCHEDULE [43]. Although these tools had a lot in
common, the straightforward approach taken by the HeNCE system appears particularly
appealing. It seems that many solutions introduced by the HeNCE project can almost readily
be carried over to a multicore programming framework.

The fundamental idea is an acyclic representation of the algorithm as a directed graph
with procedures attached to the nodes. These procedures can be written in any programming
language, but emphasis on commonly used imperative (procedural) programming languages,
such as FORTRAN and C, is desired to facilitate software reuse and encourage the adoption
of the technology by the community. The nodes are annotated with the list of input and output
parameters of the associated routines. The system takes care of matching parameters between
the nodes by searching the graph and handles the necessary data communication, also
attempting to maximize the overlapping of communication with computation. In addition to
simple dependency arcs, the system provides constructs to denote different types of control
flow, such as conditionals, loops, fans, and pipes. These constructs can be thought of as graph
rewriting primitives.

The system is built around a well defined textual representation of the graph, which can
be manipulated without the use of a graphical user interface (GUI). Making the graphical
interface an independent component allows for different implementations of the front-end and
ensures portability.

Solutions such as OpenMP [44] and Cell/SMP SuperScalar [45, 46] attempt to exploit
parallelism by instrumenting procedural programs with parallel constructs. In contrast, the
principle proposed here is the augmentation of parallel constructs with pieces of procedural
code.

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 10

Figure 2. Task dependency graph for tile LU and QR factorizations (left) and Cholesky factorization
(right). For clarity some dependencies are not shown.

The DAG scheduling problem poses many challenges, specifically in the context of
distributed memory environments. Dynamic scheduling is a difficult problem in general,
trading off maximum data reuse with the aggressive pursuit of the critical path. In many cases
manual instrumentation, such as hinting the critical path or enforcing certain data affinity
schemes (e.g., block-cyclic distribution), can provide a remedy. Another issue is DAG
construction and exploration. Construction and storing of the entire DAG is not a feasible so-
lution. It can be done for small problems, but in general it is not scalable. It is necessary to
explore efficient methods for online and offline DAG construction and exploration,
specifically exploration of the DAG in a “sliding window” fashion, with bounds on the
memory footprint. A plausible solution in the initial stages of the project is static partitioning
of the task graph and dynamic scheduling within each subdomain. A scalable solution for
tracking the progress of the algorithm has to rely on distributed data structures with an
emphasis on point to point producer/consumer notifications/synchronizations. Fundamental
ideas to be exploited here are: compact DAG representation and its dynamic scheduling [47],
bundle scheduling [48], work-stealing [49, 50], and alike.

Unified Approach for Different Memory Architectures

Currently, multicore processor architectures can be considered as “more of the same” due

to their resemblance to traditional shared memory systems, specifically symmetric
multiprocessor (SMP) designs. This approach is predicted to reach its scalability limits at the
size of a few tens of cores [6]. It is likely that the model will be evolving towards the
distributed memory concept. One path leads through reconfigurable memories, which may act
both as shared and private memories as required. In some application areas, it may be
beneficial to use local memories, sometimes referred to as scratchpad memories, completely
under control of the programmer. This solution is also sometimes referred to as software-
controlled cache. (The Cell processor is an example of this approach.) Owing to this trend, it

Parallel Dense Linear Algebra Software in the Multicore Era 11

seems necessary to assume the distributed memory model, not only to encompass large scale
MPP systems, but also to assure scalability at the chip level on future generations of chip
multiprocessors.

In fact the DAG-based visual programming environments of the early 90s [34–42] were
designed around the PVM communication package for distributed memory systems. On the
other hand, the ideas of asynchronous execution and dynamic scheduling are typically
associated with shared memory systems. One reason for this is the simplicity of implementing
synchronization using straightforward shared memory mechanisms like mutexes (locks).
Another is global view of the memory, where processor-to-memory affinity plays a much
smaller role. There are, however, no fundamental obstacles in implementing dynamic
scheduling in distributed memory environments. Issues that require particular attention are
synchronization and data affinity.

Synchronization relates to tracking the progress of the algorithm. It is easily implemented
by shared (centralized) progress tables on shared memory systems, an approach, that would
create bottlenecks and prevent scaling on distributed memory systems. The problem can be
remedied by the use of replicated or distributed data structures for progress tracking.
Replicated progress tables have been successfully used for minimizing synchronization
overhead on the Cell processor [3].

Processor and data affinity refer to pinning memory regions to processors, serve the
purpose of maximizing locality of reference. By creating fixed processorto-memory
associations, affinity reduces opportunities for dynamic scheduling, but does not eliminate
them completely. Good examples can be found, specifically in the context of dense linear
algebra: The High Performance Linpack (HPL) benchmark relies on fixed, block-cyclic data
distribution, yet benefits from the performance advantages of multiple-depth look-ahead [51].
More recently, experiences with dynamic Cholesky factorization on distributed memory
systems were reported by Gustavson [19]. Typically, in dense linear algebra, affinity is either
strictly enforced or not enforced at all, while advantages of both approaches could be
combined in a “flexible affinity” scheme.

The solutions for the distributed memory model should simply extrapolate to the shared
memory model. Shared memory, NUMA systems are likely to benefit from behavior similar
to message-passing, where sends and receives are replaced with memory copies (and can
sometimes be accelerated with DMA mechanisms). On the other hand, specialization of this
model to truly symmetric SMP systems may be as straightforward as replacing the copy
operations with aliasing.

Related Topics of High Importance

This section is devoted to topics that are envisioned as integral parts of the development

of efficient software for systems based on multicore technology. These include: the use of
specialized data structures (block data layout - BDL), the technique of iterative refinement for
improving numerical accuracy of computations and porting the technology to specialized
hardware (such as the Cell processor).

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 12

Block Data Layout
The use of a “standard” column-major or block-major data layout in linear algebra

algorithms leads to multiple performance problems, causing cache misses at all cache levels
and translation look-aside buffer (TLB) misses and preventing good utilization of memory
banks on architectures with bank memory organization.

The issues have long been identified and addressed by copying data to block layout
internally within BLAS. Although this is a valid performance-improving solution, it has to be
observed that the copy operation introduces overhead, which can be avoided if data is stored
in such a layout to begin with. At the same time, block data layout is a perfect match for the
“tile algorithms,” which process the input in fixed-size blocks. If input blocks are stored
continuously in the memory, a number of performance problems can be eliminated altogether.

With the right choice of block size, conflict misses and capacity misses can be completely
eliminated for a tile operation, leaving only the compulsory misses (for all levels of cache and
the TLB). Also, owing to the continuous storage of blocks in memory, block data layout
provides an opportunity to utilize the bandwidth to the fullest on systems with multiple
memory banks. This is, for instance, the case on the Cell processor, where the use of BDL
results in exactly the same number of reads/writes issued to all 16 memory banks, which
results in more than 90% of utilization of the memory bandwidth [3, 52].

Overall, the use of BDL imposes much less strain on the cache mechanisms and makes
the algorithm much less vulnerable to specific shortcomings of a particular cache system,
which historically led programmers to unappealing workarounds, like padding of the input
matrices.

A software library should, thus, rely internally on non-canonical data representation,
which may vary for different architectures and be subject to tuning and autotuning (see
Section 3.4.4). It is important to shield the average user from low level mechanisms with
convenient interfaces and memory management facilities, as well as provide the advanced
user with efficient translation tools.

Iterative Refinement

The motivation for the use of the iterative refinement technique is twofold: Short vector
SIMD processing allows us to trade accuracy for computing speed; the new class of “tile
algorithms” may, in some cases, deliver slightly lower accuracy than their traditional
counterparts.

Until recently, ILP has been exploited mainly through multiple instruction issue
(superscalar execution), a costly solution in terms of the circuitry required for dependency
tracking, register renaming, etc. In recent years, short vector SIMD processing has rapidly
gained popularity. Today it is a mandatory feature of modern processors and is almost certain
to be ubiquitous in future generations of multicore processors. Short vector SIMD processing
allows us to trade accuracy for performance, which makes mixed-precision algorithms an
attractive target, specifically in dense linear algebra, where the accuracy lost in lower
precision calculations can often be easily recovered through refinement of the solution [53].
On the first generation Cell processor, where the full (double) precision performance is
severely inhibited by arbitrary design choices, the technique was used to speed up
calculations by a factor of 10 [3, 52].

The other motivation is the use of the class of “tile algorithms,” which, in some important
cases, may deliver solutions of slightly lower accuracy. A good example of such an algorithm

Parallel Dense Linear Algebra Software in the Multicore Era 13

is LU factorization with partial pivoting, where in the “tile algorithm” the full partial pivoting
is replaced by block pairwise pivoting, which slightly affects the accuracy of the result. In this
case iterative refinement allows for quick recovery of the lost accuracy.

Cell Broadband Engine

The Cell processor follows many current trends in modern chip design: It is a multicore
processor with simple in-order execution cores, powerful SIMD capabilities and relies on
software controlled local memory model. The use of the Cell processor in computational
sciences has been severely hindered by the difficulty in programming the chip, which, in most
cases, requires manual MIMD parallelization between the cores and manual SIMD
vectorization within the cores. Despite the difficulties, the processor proves superior to other
multicore chips currently available for important classes of scientific workloads, including
problems in dense linear algebra [3, 52], sparse linear algebra [54], Fourier transforms [55],
and alike. Although the Cell architecture certainly does not provide answers to all problems
facing processor design, it may provide a glimpse into certain aspects of programming future
generations of multicores.

Very significant is the fact that the BLAS model fails miserably to deliver performance
on the Cell processor. Despite efforts to tune the execution parameters, it proved impossible
to exceed 10% of peak of a single Cell chip for a dense linear algebra workload, such as
Cholesky factorization, using the Cell BLAS library released in IBM Cell SDK 3.0 (Figure 3).
At the same time, the proposed algorithmic approach along with the asynchronous execution
model allows us to exploit the architecture to the fullest and achieve 90% of the peak
performance on a single Cell processor and also 90% of the peak of a dual-socket Cell blade
system with NUMA memory organization. This success can be attributed to the use of the tile
algorithm (Section 3.1), fine granularity of parallelization and pipelined mode of execution,
and also block data layout. Not without significance is the fact that the iterative refinement
technique (Section 3.4.2) allows us to recover the accuracy lost in single precision
calculations [3, 52].

Tunability and architecture adaptivity are mandatory features of the proposed software.
State of the art dense linear algebra algorithms have a number of tunable execution
parameters trading off utilization of different system resources. Specifically, the class of tile
algorithms introduces two important parameters: the outer block size and the inner block size.
The outer block size trades off parallelization granularity and scheduling flexibility with
single core utilization. The inner block size trades off memory load with redundant
calculations [1].

In rare cases, these parameters are fixed by architecture constraints. One such example is
the Cell processor. Here the inner blocking is mostly predetermined by the SIMD vector size,
and the outer blocking is mostly predetermined by local memory size. For most architectures,
however, the choices are much less obvious and arbitrary decisions have to be replaced by
software auto-tuning capabilities. Auto-tuning has been successfully exploited before in the
field of dense linear algebra in projects like ATLAS (Automatically Tuned Linear Algebra
Software) [56].

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 14

Figure 3. Performance of Cholesky factorization on a dual-socket QS20 Cell blade. Software Tunability
and Adaptivity.

CONCLUSIONS

The goal of the PLASMA project is to create a new generation of dense linear algebra

libraries that achieve the fastest possible time to an accurate solution on massively parallel
systems by efficiently using all of the processors that such systems will make available. To
work within this design space and leverage the power of million way parallelism, the
PLASMA software must combine together new, highly scalable algorithms, a programming
and execution model that can exploit massive task parallelism, and flexible memory
management facility that can help optimize data locality across a range of different platforms.
Advancing to the next stage of growth for computational simulation and modeling will
require the solution of basic research problems in Computer Science and Applied
Mathematics at the same time as a new paradigm for the development of scientific software is
created and promulgated. To make progress on both fronts simultaneously will require a level
of sustained, interdisciplinary collaboration among the core research communities.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Lapack working note 191: A class
of parallel tiled linear algebra algorithms for multicore architectures. Technical Report
UT-CS-07-600, Electrical Engineering and Computer Sciences Department, University
of Tennessee, 2007.

[2] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Parallel tiled QR factorization for
multicore architectures. In PPAM’07: Seventh International Conference on Parallel
Processing and Applied Mathematics, 2006.

Parallel Dense Linear Algebra Software in the Multicore Era 15

[3] A. Kurzak, J. Buttari and J. J. Dongarra. Solving systems of linear equation on the
CELL processor using Cholesky factorization. IEEE Trans. Parallel Distrib. Syst. in
press.

[4] Excerpts from a conversation with Gordon Moore: Moore’s Law. Intel Corporation,
2005.

[5] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
1965.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of
parallel computing research: A view from Berkeley. Technical Report UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences Department, University of
California at Berkeley, 2006.

[7] John L. Manferdelli. The many-core inflection point for mass market computer
systems. CTWatch Quarterly, 3(1), February 2007.

[8] D. Geer. Industry trends: Chip makers turn to multicore processors. Computer,
38(5):11–13, 2005.

[9] F. Pollack. New microarchitecture challenges in the coming generations of CMOS
process technologies. In 32nd Annual International Sym posium on Microarchitecture,
page 2, 1999.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, 1997.

[11] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. SIAM, 1992.

[12] R. C. Agarwal and F. G. Gustavson. A parallel implementation of matrix multiplication
and LU factorization on the IBM 3090. In M. Wright, editor, Aspects of Computation
on Asynchronous Parallel Processors, pages 217–221, 1988.

[13] P.E. Strazdins. A comparison of lookahead and algorithmic blocking techniques for
parallel matrix factorization. Int. J. Parallel Distrib. Systems Networks, 4(1):26–35,
2001.

[14] K. Dackland, E. Elmroth, and B. Kågström. A ring-oriented approach for block matrix
factorizations on shared and distributed memory architectures. In Sixth SIAM
Conference on Parallel Processing for Scientific Computing, pages 330–338, 1993.

[15] K. Dackland, E. Elmroth, B. Kågström, and C. Van Loan. Parallel block matrix
factorizations on the shared-memory multiprocessor IBM 3090 VF/ 600J. Int. J.
Supercomput. Appl., 6(1):69–97, 1992.

[16] R. C. Agarwal and F. G. Gustavson. Vector and parallel algorithm for Cholesky
factorization on IBM 3090. In SC’89: 1989 ACM/IEEE Conference on
Supercomputing, pages 225–233, 1989.

[17] E. Chan, E. S. Quintana-Ortí, G. Quintana-Ortí, and R. van de Geijn. SuperMatrix out-
of-order scheduling of matrix operations for SMP and multi-core architectures. In
SPAA’07: ACM Symposium on Parallelism in Algorithms and Architectures, pages
116–125, 2007.

[18] J. Kurzak and J. J. Dongarra. Implementing linear algebra routines on multi-core
processors with pipelining and a look-ahead. In PARA’06: Workshop on State-of-the-

Alfredo Buttari, Jack Dongarra, Jakub Kurzak et al. 16

Art in Scientific and Parallel Computing, 2006. Lecture Notes in Computer Science
4699, Springer, 2007.

[19] F. Gustavson, L. Karlsson, and B. Kågström. Distributed SBP Cholesky factorization
algorithms with near-optimal scheduling. Technical Report RC24342(W0709-011),
IBM, 2007.

[20] H. T. Kung. Memory requirements for balanced computer architectures. In ISCA ’86:
Proceedings of the 13th annual international symposium on Computer architecture,
pages 49–54, Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[21] A. Agarwal and M. Levy. The kill rule for multicore. In ACM/IEEE Design Automation
Conference, pages 750–753, 2007.

[22] GotoBLAS. http://www.tacc.utexas.edu/resources/software/.
[23] N. Park, B. Hong, and V. K. Prasanna. Analysis of memory hierarchy performance of

block data layout. In Proceedings of the International Conference on Parallel
Processing, 2002.

[24] N. Park, B. Hong, and V. K. Prasanna. Tiling, block data layout, and memory hierarchy
performance. IEEE Trans. Parallel and Distrib. Systems, 14(7):640–654, 2003.

[25] E. L. Yip. FORTRAN Subroutines for Out-of-Core Solutions of Large Complex Linear
Systems. Technical Report CR-159142, NASA, November 1979.

[26] E. Quintana-Ortí and R. van de Geijn. Updating an LU factorization with pivoting.
Technical Report TR-2006-42, The University of Texas at Austin, Department of
Computer Sciences, 2006. FLAME Working Note 21.

[27] B. C. Gunter and R. A. van de Geijn. Parallel out-of-core computation and updating of
the QR factorization. ACM Trans. Math. Softw., 31(1):60–78, 2005.

[28] C. Bischof, X. Sun, and B. Lang. Parallel tridiagonalization through twostep band
reduction. In Proceedings of the Scalable High-Performance Computing Conference,
1994. 23-25 May 1994, pages 23–27.

[29] Michael W. Berry, Jack Dongarra, and Youngbae Kim. A parallel algorithm for the
reduction of a nonsymmetric matrix to block upper-hessenberg form. Parallel
Computing, 21(8):1189–1211, 1995.

[30] PBLAS: Parallel basic linear algebra subprograms. http://www.netlib.
org/scalapack/pblas qref.html.

[31] BLACS: Basic linear algebra communication subprograms. http://www.netlib.
org/blacs/.

[32] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
Pract. Exper., 2(4):315–339, 1990.

[33] A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel
Computing. MIT Press, 1994.

[34] A. L. Beguelin. Deterministic Parallel Programming in Phred. PhD thesis, University of
Colorado at Boulder, Department of Computer Science, 1991.

[35] Adam Beguelin and Gary Nutt. Visual parallel programming and determinacy: A
language specification, an analysis technique, and a programming tool. Technical
Report CS-93-166, Carnegie Mellon University, School of Computer Science, 1993.

[36] Ö. Babaoğlu, L. Alvisi, A. Amoroso, R. Davoli, and L. A. Giachini. Paralex: An
environment for parallel programming in distributed systems. In ICS’92: 6th
International Conference on Supercomputing, pages 178–187, 1992.

Parallel Dense Linear Algebra Software in the Multicore Era 17

[37] A. L. Beguelin and J. J. Dongarra. Graphical development tools for network-based
concurrent supercomputing. In SC’91: 1991 ACM/IEEE Conference on
Supercomputing, pages 435–444, 1991.

[38] A. L. Beguelin, J. J. Dongarra, A. Geist, and R. Manchek. HeNCE: A heterogeneous
network computing environment. Scientific Programming, 3(1):49–60, 1993.

[39] A. L. Beguelin, J. J. Dongarra, A. Geist, and V. Sunderam. Visualization and debugging
in a heterogeneous environment. Computer, 26(6):88–95, 1993.

[40] A. L. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, K. Moore, P. Newton, and V.
Sunderam. HeNCE: A Users’ Guide, Version 2.0. Netlib, June 1994.

[41] J. C. Browne, M. Azam, and S. Sobek. CODE: A unified approach to parallel
programming. Software, 6(4):10–18, 1989.

[42] P. Newton and J. C. Browne. The CODE 2.0 graphical parallel programming language.
In ICS’92:6th International Conference on Supercomputing, pages 167–177, 1992.

[43] J. J. Dongarra and D. C. Sorensen. A portable environment for developing parallel
FORTRAN programs. Parallel Comput., 5(1–2):175–186, 1987.

[44] OpenMP. http://www.openmp.org/.
[45] Cell Superscalar. http://www.bsc.es/ → Computer Sciences → Programming Models

→ Cell Superscalar.
[46] SMP Superscalar. http://www.bsc.es/ → Computer Sciences → Programming Models

→ SMP Superscalar.
[47] M. Cosnard and E. Jeannot. Compact DAG representation and its dynamic scheduling.

J. Parallel Distrib. Comput., 58(3):487–514, 1999.
[48] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: A programming model for

the Cell BE architecture. In SC’06: 2006 ACM/IEEE Conference on Supercomputing,
page 5, 2006.

[49] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y.
Zhou. Cilk: An efficient multithreaded runtime system. In PPOPP’95: Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 207–
216, 1995.

[50] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720–748, 1999.

[51] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: past, present
and future. Concurrency Computat.: Pract. Exper., 15:803–820, 2003.

[52] J Kurzak and J. J. Dongarra. Implementation of mixed precision in solving systems of
linear equations on the CELL processor. Concurrency Computat.: Pract. Exper.,
19(10):1371–1385, 2007.

[53] A. Buttari, J. J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak. Mixed
precision iterative refinement techniques for the solution of dense linear systems. Int. J.
High Perform. Comput. Appl., 21(4):457–466, 2007.

[54] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dennel. Optimization of
sparse matrix-vector multiplication on emerging multicore platforms. In SC’07: 2007
ACM/IEEE Conference on Supercomputing, 2007.

[55] A. C. Chowg, G. C. Fossum, and D. A. Brokenshire. A programming example: Large
FFT on the Cell Broadband Engine, 2005.

[56] ATLAS. http://math-atlas.sourceforge.net/.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 2

SHARING SCIENTIFIC INSTRUMENTS FOR HIGHER
EDUCATION AND RESEARCH IN CHINA

Jie Yin1, Yuexuan Wang2 and Cheng Wu3
1 National CIMS Engineering and Research Center;
Tsinghua University, Beijing 100084, P. R. China

2 Institute for Theoretical Computer Science;
Tsinghua University, Beijing 100084, P. R. China

3 National CIMS Engineering and Research Center;
Tsinghua National Laboratory for Information Science and Technology;

Tsinghua University, Beijing 100084, P. R. China

ABSTRACT

Cyberinfrastructure (CI) for instrument sharing is an infrastructure that aims to
facilitate effective resource sharing of expensive scientific instruments, e.g. telescopes
and observatories, through a system of grid services. This cyberinfrastructure consists of
three components: an instrument pool alliance, instrument pools, and physical
instruments. When a user submits an experiment to the CI environment,the instrument
pool alliance is responsible to allocate instruments in related instrument pools to conduct
the experiment. After the experiment is finished and results are returned, the user will
appraise performance of corresponding services.

In this chapter, fuzzy random scheduling algorithms are proposed in instrument
pools when a job is submitted to one of instruments within a pool. The randomness lies in
the probability of which instrument be chosen for an experiment and the fuzziness origins
from vagueness of users’ feedback opinions on experimental results. Users’ feedback
information is utilized to improve overall quality of service (QoS) of an instrument CI.
Several algorithms are provided to increase utilization of instruments providing higher
QoS and decrease utilization of those with poor QoS. This is demonstrated in details
using quantitative simulation results included in this chapter.

1 E-mail address: yinjie05@mails.tsinghua.edu.cn
2 E-mail address: wangyuexuan@tsinghua.edu.cn
3 E-mail address: wuc@tsinghua.edu.cn

Jie Yin, Yuexuan Wang and Cheng Wu 20

INTRODUCTION

With the development of scientific research, more and more research activities require

multidisciplinary collaboration. There are some large scale research tasks that need the
coordination of resources from different management domains, for example, computational
resources, storage resources, especially instrument resources. In this situation, how to
organize and coordinate geographically distributed instruments is of very importance. How to
connect expensive instruments and provide public sharing access of them, which can increase
the utilization ratio of these instruments and eliminate the inconveniences brought by
geographical distances, are very challenging issues.

Cyberinfrastructure for Instrument Sharing

Current situation in China is that there are some instruments, like microscope, mass

spectrograph, Raman spectra, high resolution X-ray diffract meter etc, in some university or
research institutes. On one hand, there are some users want to carry out their experiments but
do not have corresponding instruments. What they can do is to contact the universities or
institutes that have the instruments they require and reserve them for a proper time and
duration. When time approaches, they go to the place where the instruments are located and
conduct their experiments. This process of using geographically distributed instruments is
time and cost consuming. On the other hand, there are some universities and institutes that
have low utilization of their expensive instruments. The high maintenance cost became a
burden for them. A new technology and management method is urgently required to address
this issue.

Grid technologies [19, 20] can be adopted to address corss-domain resource sharing
issues. It connects all resources and information distributed on the web into a loosely
organized infrastructure, which can provide powerful computational ability, large amount of
storages, transparency access, and information aggregation and sharing. In order to share
scientific instruments among national universities in China, Ministry of Education of China
funded a project, China Education and Resource System (CERS) [15, 31]. In CERS, grid
technologies are used to connect some expensive instruments geographically distributed in
universities all over the country. With advanced computing and information technologies,
CERS aims at high level instruments sharing and coordinated working and an infrastructure
to enable such activities, which is know as Cyberinfrastructure (CI) [16, 26] for instrument
sharing [1-10, 31, 33]. The instrument CI runs on the basis of economic rules. It encourages
instrument owners to provide their resources for sharing and charges from users for
maintenance purposes.

Research Background

Several aspects of related research background on Cyberinfrastructure are included in this

section, including CI architecture, resource scheduling, information management, etc.

Sharing Scientific Instruments for Higher Education and Research in China 21

CI Architecture
The architecture of the instrument Cyberinfrastructure is proposed in [1], as shown in

figure 1. The architecture is divided into eight layers, including the portal, application,
simulation and modeling, middleware, resource encapsulation, protocol, resource and
network layers. Basic functions of these layers are described below.

Figure 1. CI architecture.

The bottom layer is based on China Education and Research Network (CERNET) [11]
that provides a network infrastructure to enable access of resources in the instrument CI and
remote access ability to geographically distributed instruments.

The second and third layers from bottom, which are resource and protocol layers
respectively, provide some key technical supports for the construction and operation of
instruments, including instrument model database, instrument resource database, basic
protocols and related specifications.

Instrument model database provides virtual mapping of remote instruments during the
runtime. Instrument resource database provides information about all instruments shared in
CI, their state information, operation and training information etc. Basic protocols refer to
protocols that should be complied by all related staffs for the CI construction. Basic network
protocol, multi agent protocols and related technical standards and specifications belong to
basic protocols.

The fourth layer from bottom is resource encapsulation. In this layer, the local resources
are encapsulated into global resources that accessible in the CI. The heterogeneity of different

Jie Yin, Yuexuan Wang and Cheng Wu 22

kind of instruments is smoothed by grid technology and it provides a transparent way for
users to access. The management system in resource encapsulation level provides control and
management of encapsulated resources and real time monitor for the resources, which
provides the basis for resource location and scheduling optimization.

Grid middleware level provides basic functions for instrument sharing and service
coordination using grid techniques. These functions include remote manipulation and
management for instruments, coordinated allocation of instruments, storage access,
information security, quality of service, advance reservation of instruments, agent transaction,
appraisal of instrument sharing and application of open funding etc. They also include
language, compiler, library, application program interface and developing environment for
the cyberinfrastructure.

Simulation and modeling level is the level that simulates the distributed model, which
includes the simulator and visualized model, of the cyberinfrastructure. Using visualized
method, it can design and modify the model of instruments and their workflow process and
provide visualized output like verification and model files. Simulation models have the
similar functions with related remote instruments. They can telecommunicate with remote
instruments through cyberinfrastructure. When users operate the simulation models, they
operate the real instruments.

Application level provides following functions, like application of instruments shared in
the cyberinfrastructure, collection of statistic information, scheduling of instrument resources,
scheduling of jobs, approval for application of open funding, appraisal for instrument sharing
and management for costs. Scheduling of instrument resources and scheduling of jobs are the
two vital parts. The principle for resource scheduling is to minimize the total costs, maximize
the profit, near distance first, fast response time first, high QoS first and high utilization first.
The job scheduling can also manipulated by human through user interface. The job
scheduling includes parse of job requests, choose suitable resources according to the jobs,
processing of jobs and tasks management, accept or reject to process user jobs according to
current work load in the cyberinfrastructure, monitoring remote instruments and running of
jobs.

Cyberinfrastructure portal provides uniform and secure user interface on web for users,
which can provide a uniform interface for users to access related services taking into no
account of his location and identity, which is realized by role based information agents. These
information agents record tastes of all users, like interface style, interesting contents that
every user caring about, notification of some subscribed contents, sending and receiving of
instructions, filtration and searching of information etc.

Resource Scheduling

The essence of resource scheduling is to distribute m independent jobs on n available
resources, which may be heterogeneous. The goal of scheduling is to minimize the span time
of jobs and at the same time makes utilization ratio of all available resources high. In the
cyberinfrastructure, scheduling methods are used to optimize the utilization of resources. In
[32], the process of how to schedule an instrument when resource scheduling model receives
this request is discussed.

• The user submit his experiment request to Grid Resource Allocation Manager

(GRAM);

Sharing Scientific Instruments for Higher Education and Research in China 23

• GRAM notifies GRIS (Grid Resource Information Service);
• GRIS searches for the instrument or instruments needed, then submit the location

information to GIIS (Grid Index Information Service);
• The instrument agent is notified;
• The instrument agent negotiates with instrument pool and select a suitable

instrument;
• The scheduling result is returned;
• Notify the users when the remote task finished and resource scheduling model

finished this job scheduling.

Resource scheduling issues for clusters and grids has been discussed for many years.

Especially, using historical QoS data to improve scheduling performance has been proved to
be very effective. In a parallel and distributed computing environment, QoS data can be
defined easily using quantitative values, e.g., job execution time [28], queue waiting time
[29], data transfer time [18], CPU workloads [32], which can be modeled and analyzed using
performance prediction technologies [30] and utilized to improve resource scheduling
performance. However, it is difficult for users to characterize instrument performance
quantitatively since various criteria (e.g. time, cost and precision) may play different roles in
different experiments. In general, users can only provide an overall impression of instrument
QoS. The fuzzy random theory is adopted here, which is suitable and straightforward when
applied to the scheduling scenarios involved in an instrument cyberinfrastructure, though not
necessarily providing the best scheduling solution. A similar work using fuzzy methods for
grid scheduling can be found in [17], but the exact model and algorithms are different.

Information Management

In the cyberinfrastructure, the design of grid components should be adjustable according
to different application requirements. Information management system plays an important
role in the system and it is the base for resource scheduling and monitoring, like MDS4 in
Globus and Matchmaker in Condor. It is a better way to improve the function of information
management system by setting up classification mechanism. According to the information
management problems in the cyberinfrastructure, [5] combined MDS4 in Globus Toolkits4
with UDDI registration center in Web Service and proposed a two-level information
management system. The classification mechanism is imported into the proposed system,
which increased the searching efficiency when there is much resource information presented.

UDDI and MDS can realize the management of information independently but also has
their inefficiency. UDDI can locate a specific type of instrument resource services quickly but
can not provide support for the dynamic information in these services. MDS4 is a bit
different. It can reflect the availability and change of resource states well but has no
classification mechanism. So when the number of services of instrument resource increased
and the hierarchy of information service increased, the service searching process will take
quite a long time. So the two-level information management mechanism that takes both
advantages of UDDI and MDS will enhance the ability for information management in the
cyberinfrastructure.

To be accordance with the two-level, which are UDDI level and MDS level, in the
cyberinfrastructure, there are two phases in the release and discovery of resource service
information. In UDDI level, the information about service description and type of resources is

Jie Yin, Yuexuan Wang and Cheng Wu 24

managed here and in MDS, basic index service is imported and detailed instance information
about resource service is managed. Information about instrument resources needs to be
released when the resources join the cyberinfrastructure at the first time and provide services
there. First the instruments need to find a suitable classification they belong to according to
manual of information management system and provide related static information about these
resources. If they are new instruments and not in the index of the cyberinfrastructure, the
system administrator will create related service information data for them in UDDI
registration center, and then with the help of system administrator the runtime instance of
resource service will to pointed to a specific index service and register there.

RELATED WORK

There are several projects most related to the work described in this chapter and detailed

introduction are given below.

NEES

The first project focus on the cyberinfrastructure is NEES [12], which was set up in 1999

and got support from National Science Foundation. The object of this project is to accelerate
the research of earthquake engineering through the cyberinfrastructure and lower the damages
caused by earthquake. One key function of NEESGrid is the integration of instruments, which
integrates many earthquake detectors, like all kinds of sensors, remote control instruments,
remote monitoring instruments etc, into the cyberinfrastructure for instruments. This
cyberinfrastructure facilitates researchers doing remote design, execution and monitoring
earthquake simulation experiments. NEESGrid is not only an infrastructure for network
interconnection in experiment instruments and monitoring instruments, it also provides a
platform for all earthquake engineering researchers in US to work coordinately, to share these
expensive scientific and engineering instruments and research products, which is supposed to
be a new problem solving pattern for difficult and complex problems.

XPort

XPort [13] is another scientific project supported by US government. The object of this

project is to provide remote operations for geographically distributed scientific instruments.
Under the support of grid technologies, the remote operations towards several expensive X-
ray crystallizers are realized. The manipulation and operation of these instruments, the
acquisition, filtration and analysis of data are also specified. Users only need to post the
crystals they want to research to the location where a near crystallizer located, they can gain
the interior image of their specimens in their own laboratories. XPort greatly simplified the
analysis process for the structure of huge molecule crystal. It not only enable enables the
users to use remote expensive instruments, thus increases the utilization ratio of these
instruments, but also provides a coordinated research platform to facilitate team research,

Sharing Scientific Instruments for Higher Education and Research in China 25

which integrates some former isolated research groups and boosts the development of some
interdisciplinary research.

CancerGrid

CancerGrid project [14] is a medical instruments testbed supported by Cambridge

University UK and West England Cancer Web. This project started in 2005 and currently has
provided cancer related medical services for more than 1.6 million persons. The system can
support real time transportation, storage and searching of radiation images and multi-part
video conferences. It can also provide remote access to physical therapy simulation
computational program to provide assistant clinical diagnoses by data mining in the patient
case records. With the support of CancerGrid, patients who lived locally distributed can get
diagnosis and therapy from authorized experts.

CERS

From 2004, Tsinghua University had cooperated with some other universities in China to

do research on the field of the cyberinfrastructure. As a sub project of CERS, we invited the
participation of more than thirty universities to share their expensive instruments. It provides
following functions, like entrance application, instrument information service, instruments
reservation, job scheduling, cost management, assessment and evaluation and statistical
analyse. Our work is under the support of this sub project.

SCHEDULING INTRUMENT SHARING

This work focuses on scheduling remote access of scientific instruments with

consideration of quality of service (QoS) issues. A layered model of instrument pools is
introduced. In our previous work the role of human was not taken into account and there was
no QoS feedback mechanism to reflect whether users are satisfied with experimental results.
In this chapter the feedback information regarding instrument QoS is considered to be a fuzzy
variable with one of the following linguistic values, terrible, bad, normal, good and excellent.
The probability whether an instrument could be chosen for a job is dynamically adjusted
according to users’ QoS feedback information. As a result, utilization of instruments
providing higher QoS according to users’ feedback is increased so that QoS of an instrument
cyberinfrastructure as a whole is dramatically improved. This is quantitatively illustrated
using detailed modeling and simulation results included in this section.

Scientific Instrument Sharing

As shown in figure 2, in an instrument cyberinfrastructure, similar instruments are

organized into an instrument pool and different instrument pools constitute an instrument

Jie Yin, Yuexuan Wang and Cheng Wu 26

pool alliance. When a user wants to do experiment via the instrument cyberinfrastructure, he
submits the job to the instrument pool alliance, which analyses the job and verifies whether it
can be accomplished with existing pools within it. If the job can be fulfilled, the instrument
pool alliance will submit it to the required instrument pools by order of the job’s inherent
requirements. When an instrument pool receives a job, it will find an available instrument to
do it.

Figure 2. The process of invoking a service in the cyberinfrastructure.

Every instrument in figure 2 belongs to a certain instrument pool and can join and leave
the pool dynamically. All instrument pools have their images in the instrument pool alliance
and can also join and leave the pool alliance dynamically. When a user wants to do an
experiment and submits it to the instrument pool alliance in Step 1, the instrument pool
alliance will check whether the instrument cyberinfrastructure has the required instruments
needed to fulfill the experiment. If not all resources needed are presented, the pool alliance
will reply the user with refusal information in Step 2. Otherwise the alliance will decompose
the experiment into parts and submit the related parts to corresponding pools in Step 3. All
the related pools will find suitable resources and submit job parts to chosen instruments in
Step 4. In Step 5, chosen instruments return results of the experiment to pools after the
experiment was done and the pools return results to the pool alliance in Step 6. The pool
alliance composes all middle results and returns a final result to the user in Step 7. In Step 8,
the user feed back his opinion about the experimental result, which is important to improve
QoS of the instrument cyberinfrastructure as discussed later.

Fuzzy Random Scheduling

As we mentioned before, instrument QoS can be hardly described using explicit

parameters. In this section, we introduce a fuzzy random theory to characterize users’
feedback QoS information.

Sharing Scientific Instruments for Higher Education and Research in China 27

Fuzzy Random Theory
The fuzzy random theory is an emerging field in uncertain theory, a branch of modern

mathematics. It takes two aspects of uncertain factors, randomness and fuzziness,
respectively, into account and has attracted many research interests. Some key concepts of the
fuzzy random theory are given in this section. The detailed introduction can refer to [24].

A fuzzy random variable is a measurable function from a probability space to the set of
fuzzy variables. In other words, a fuzzy random variable is a random variable taking fuzzy
values. The notion of fuzzy random variable was first introduced by Kwakernaak in [22] and
[23]. This concept was developed in [21], [25] and [27] by different requirements of
measurability. Definition of fuzzy random variable is as follows [25]:

A fuzzy random variable is a function ξ from a probability space (Ω, A, Pr) to the set of
fuzzy variables such that Cr{ξ(ω)∈B} is a measurable function of ω for any Borel set B of R,
real number domain. Ω is a nonempty set, A is algebra over Ω and Pr is probability measure.
Cr is credit of a fuzzy variable, which is similar to probability of a random variable.
Definition of the expected value of a fuzzy random variable ξ introduced in [25] is as follows:

0

0

[] Pr{ | [()] } Pr{ | [()] }E E r dr E r drξ ω ξ ω ω ξ ω
+∞

−∞

= ∈Ω ≥ − ∈Ω ≤∫ ∫ (1)

providing that at least one of the two integrals is finite.

From the definition above, expected value of a fuzzy random variable is a scalar value. In

Equation (1), ()ξ ω is a fuzzy variable and E in the left of the equation is the expectation of a
fuzzy random variable, while E on the right is the expected value of a fuzzy variable. In most
real world instances, the expectation calculation of a fuzzy random variable can be simplified.

Scheduling Models

The fuzzy random scheduling model refers to the schedule process of Step 4 in figure 2,
which is an essential step in an instrument cyberinfrastructure for resource sharing. The
scheduling model described in this work take users’ feedback information into account and
try to satisfy user requirements better.

Consider an instrument pool with N instruments in it, as shown in figure 3.

Figure 3. Job scheduling in an instrument pool.

Jie Yin, Yuexuan Wang and Cheng Wu 28

When a new experiment is submitted to an instrument pool, the probability that the
experiment runs on each instrument is pi ([1,]i N∈). It is obvious that the following equation
holds:

1

1
N

i
i

p
=

=∑ (2)

when an experiment is submitted to any chosen instrument, there are many factors which
have influence on users’ appraisals, for example the cost of experiment this instrument
charges for, the execution time and waiting time, whether the result from this instrument is
reliable and whether the precision of the instrument can satisfy the experiment requirement.
All these factors differ with different instruments and can be looked as a virtual parameter of
the instrument. In this work, this parameter is named as QoS of instrument and denoted by q,
and qi means the QoS of the ith instrument in an instrument pool according to a specific
experiment. The QoS of the same instrument will be different when the users’ constrains
changed. The pool adjusts the probability pi according to the user appraisal, Q, to the
experiment after he received his result from the instrument cyberinfrastructure. Both variables
q and Q are fuzzy variables because a user can not depict how he satisfied with a result
accurately. Only vague linguistic values like terrible, bad, normal, good and excellent can
express his appraisal towards the result from the instrument cyberinfrastructure.

When a user submits a job with detailed experiment specifications to an instrument
cyberinfrastructure, the instrument pool alliance will pass this job to corresponding
instrument pools. If the experiment is submitted to the ith instrument in instrument pool, qi
has the value as one of the following linguistic values, very bad, bad, normal, good and very
good. In most cases, a qi with very good value has a large probability to receive excellent
value of Q , good to good, normal to normal, bad to bad and very bad to terrible of Q.
Because the value of q to a specific experiment is not known by instrument pool and can only
be reflected by the user appraisal towards the total process of the experiment, the instrument
pool will adjust pi to make the instrument with good or very good appraisal higher utilization
ratio to satisfy users. In some urgent experiments, users may attach more importance on time
constrain. In such case instrument with shorter job execution time and waiting time will more
satisfied the users. While in some experiments, users may care more about costs.

This fuzzy random scheduling model is a close loop model, which takes the user response
into account and is believed to be able to provide higher instrument QoS.

Figure 4. System block of the cyberinfrastructure.

Sharing Scientific Instruments for Higher Education and Research in China 29

Many good scheduling strategies and algorithms can be designed on the basis of the
fuzzy random model introduced above. Most importantly, user QoS feedback information is
used in this model thus it complies with the user intentions better.

Scheduling Algorithms

The adjustment of pi from users’ appraisals is described in this section. In this work, the
algorithm to adjust pi is proportional to the expected value of fuzzy random variable preqi,
which is the prediction of the fuzzy value qi, as shown in Equation (3). The reason why the
preqi is used in Equation (3) instead of qi is that the instrument pool has no information of qi
and has to predict what the value it is through users’ appraisals.

1
[] / []

N

i i i
i

p E preq E preq
=

= ∑ (3)

In the following examples, the membership function of the fuzzy variable qi is shown in
figure 5.

Figure 5. The QoS membership function.

The distribution of preqi is as Equation (4). In Equation (4), prepk
i (1≤k≤5) means the

probability that prepi equals to kth value in equation (4). The initial values of prepk
i are the

same and equal to 0.2. Because preqi is a fuzzy random variable, we can calculate its
expected value using Equation (1).

1

2

3

4

5

" "
" "

" "
" "

" "

i

i

i i

i

i

Verygood with probability prep
Good with probability prep

preq Normal with probability prep
Bad with probability prep

VeryBad with probability prep

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

 (4)

In this example the expectation of preqi can be simplified to Equation (5).

5

1

[] k
i i i

k

E preq prep c
=

= ×∑ (5)

Jie Yin, Yuexuan Wang and Cheng Wu 30

in which ci is defined to be the center of membership function and in this case, they are 17.5,
30, 50, 70 and 82.5 respectively. It should be noted that when the membership function
changed, the expected value of preqi will also be different.

According to the users’ feedback information, the prepk
i will be adjusted by Algorithm 1.

Algorithm 1:

 switch (appraisal)
{
case “very good”:

for (i=1; i<=5; i++)
{ prepk

i = prepk
i * (1– 4 * increment); }

prep1
i = prep1

i + 4 * increment;
break;

case “good”:
for (i=1; i<=5; i++)
{ prepk

i = prepk
i * (1– 2 * increment); }

prep2
i = prep2

i + 2 * increment;
break;

case “normal”:
for (i=1; i<=5; i++)
{ prepk

i = prepk
i * (1– increment); }

prep3
i = prep3

i + increment;
break;

case “bad”:
for (i=1; i<=5; i++)
{ prepk

i = prepk
i * (1– 2 * increment);}

prep4
i = prep4

i + 2 * increment;
break;

case “very bad”:
for (i=1; i<=5; i++)
{ prepk

i = prepk
i * (1– 4 * increment); }

prep5
i = prep5

i + 4 * increment;
break;

}
In the above algorithm, the instrument that can satisfy users will have a higher probability

to be used according to Equations (3) and (5). Parameter increment is a constant number. If a
new instrument joins into the instrument pool, the following algorithm works.

Algorithm 2:

N = N + 1 ;
pN = 1 / N ;
for (i = 1; i < N; i++)
{ pi = pi * (N – 1) / N ;}
In Algorithm 2, any new instrument joining into an instrument pool will have the average

probability to be used. N is the existing number of instruments in a pool.

Sharing Scientific Instruments for Higher Education and Research in China 31

When an instrument wants to leave the pool, the probabilities are adjusted according to
Algorithm 3. In Algorithm 3, the kth instrument in an instrument pool is supposed to leave the
pool.

Algorithm 3:

totalP=0 ;
pk=0 ;
for (i=1; i<=N; i++)

{ totalP = pi + totalP ; }
for (i=1; i<=N; i++)

{ pi = pi / p ; }
for (i = k; i<N; i++)

{ pi = pi+1 ; }
N = N –1;

Algorithm 3 only allows the instrument without any experiment running on it at that time

to leave. Any instrument with job running on it is not permitted to leave. If it leaves by some
inevitable reasons, the pool will record the instrument as unstable and it will have trouble
when next time it wants to join the pool.

Performance Evaluation

In this section three case studies are given to illustrate the fuzzy random scheduling

model and algorithms introduced in Section 3.2.3. The programming language of the
simulation environment is Java.

Case Study I

A simple experiment, which requires only one instrument, is submitted to the pool
alliance. An instrument pool with N instruments, which can run the experiment, is chosen by
the pool alliance. Every instrument has the same initial probability to run the experiment. In
this example N equals to 50, and 10 of them have very good QoS and may receive users’
feedback value of excellent, 10 good, 10 normal, 10 bad and 10 terrible. Figure 6 is the result
when QoS feedback information is used to adjust probabilities of instruments in 100,000 such
experiments. The vertical axis represents the number of jobs and the horizontal axis
represents users’ feedback information in terms of vague value. It is also the same in figure 7,
9, 10, 11 and 12. For the purpose of comparison, the result without probability adjustment is
also given in Figure 6. The parameter increment is a constant and in this example the values
are 0.02% and 2%, respectively.

As shown in Figure 6, when feedback information from users’ appraisals is considered,
those instruments which can not satisfy users well will have fewer chances to be used. If the
owners of these instruments want to have more chances for their instruments to be used, they
should improve the QoS of their instruments, like decreasing the price their instruments
charge for or shortening the execution time of their instruments.

When the probability adjustment strategy is improved on the basis of Equation (3), better
results can be obtained and the occurrence of excellent experiments will increased.

Jie Yin, Yuexuan Wang and Cheng Wu 32

Figure 6. Results of user appraisals for 100,000 experiments.

There are more complicated scenarios for remote instrument access. For example, an
experiment may involve multiple instruments, which is discussed in the case study II. Also
serving more tasks will somehow decrease QoS levels of instruments, which is not considered
in this case. For example, if task arrival rate is high enough to exceed processing capability of
an instrument, responding delays will decrease QoS levels of user feedback information. This
is discussed in the case study III using detailed simulation results.

Case Study II

In this example, two instruments in two different instrument pools are required to
complete an experiment. The numbers of instruments in the two pools are N1 and N2,
respectively. Every instrument in each pool has the same initial probability to be used. The
number of instruments with different QoS values in each pool is the same. The final QoS
value of an experiment is qi

1Λqj
2 when the ith instrument in one pool works coordinately with

the jth instrument in another pool. This means the appraisal to the overall experiment is the
worse one of the two instruments. In this example N1 and N2 are both 50. The user feedback
information will have the same impact on the two instruments used.

Figure 7 includes simulation results when feedback information is used to adjust
probabilities of both instrument pools. When feedback information is used, less bad or
terrible experiments appeared. In comparison with Figure 5, no more excellent experiments
are achieved and there is no obvious QoS improvement in this case. This is caused by that the
two instruments are coupled in one experiment and the user can only provide feedback
information on the whole experiment instead of each instrument.

Case Study III

In this example 100,000 similar experiment requests are submitted to the pool alliance
and an instrument pool will be chose as the execution pool of these experiment requests.

Sharing Scientific Instruments for Higher Education and Research in China 33

Figure 7. Results of appraisals for 100,000 experiments involving 2 instruments.

Similar to the case study I, there are 50 instruments in the chosen pool. Different from
example 1, job execution times are taken into account. The execution time of the instruments
with very good QoS complies with an exponential distribution and the expected value of the
distribution is E1, E2 for good, E3 for normal, E4 for bad and E5 for very bad. For the purpose
of illustration and simulation the five expected values from E1 to E5 in this example are 1/250,
1/180, 1/150, 1/120 and 1/100, respectively. The request arrival time is supposed to be a
Poisson distribution with λ, where λ is the average arrival rate in a Poisson distribution. In this
case study, two situations are considered.

If experiment requests come beyond execution capabilities of an instrument pool, a queue
is unavoidable. In this situation, instruments with high QoS feedback are chosen first and
those with poor QoS feedback next. In the example, λ1 and λ2 are given according to this case.
λ1=5000 results in request arrivals far beyond a pool capability and λ2=1000 corresponds to a
situation that the request arrival is only slightly beyond a pool capability. The other situation
is that experiment requests are within the capability of all instruments in a pool.
Corresponding λ values are λ3=600 and λ4=100. The following simulation results are obtained
using the flow chart described in Figure 8.

One thing we should bear in mind is that too long responding time, including waiting
time in a queue and execution time on instruments, will degrade users’ appraisals towards the
results they got. With consideration of this situation, additional rules are applied.

• If T1 < RT < T2, the appraisal will degrade by one level.
• If T2 < RT, the appraisal will degrade by two levels.

In above rules, RT represents the total responding time to an experiment request. T1 and

T2 are two time limits that users can bear. We suppose that T1 and T2 are about ten to twenty
times of execution time, thus T1 =10 and T2 =20 in this example.

Jie Yin, Yuexuan Wang and Cheng Wu 34

Effects of these rules are also shown in table 1, which describes relationships between
users’ appraisals and the responding time. For example, a very good experiment in a user
impression could be downgraded to be good if responding time is longer than T1 and normal
if responding beyond T2.

Table 1. RT and corresponding user appraisal

 Level
RT Very good Good Normal Bad Very bad

< T1 Very good Good Normal Bad Very bad

[T1 ,T2] Good Norm
al Bad Very bad Very bad

> T2 Normal Bad Very bad Very bad Very bad

Figure 8. The flow chart of simulations.

In Figures 9 to 12, simulation results of the case study III are illustrated. In each figure,
simulation results with probability adjustments algorithms described in Section 3.2.3 and
those without probability adjustments are all given for the purpose of comparison. As shown
in Figures 9, when request arrival speed is far beyond a pool’s processing capability, the
probability adjustment algorithm does not work well to provide users with more excellent
service, since bad services have to be utilized anyway. Also when requests arrive too fast and

Sharing Scientific Instruments for Higher Education and Research in China 35

have to wait in a queue, a longer responding time will downgrade users’ appraisals even if an
excellent service is supposed to be provided. The only way to still ensure high QoS for users
is to let more similar instruments join the pool to increase the pool’s processing capability.
The situation is improved when request arrival speed is lower in Figure 10.

As shown in Figures 11 and 12, arrival requests are within a pool’s processing capability,
more satisfactory appraisals will achieve through the adjustment of probability in an
instrument pool. Since a queue seldom appears in these situations, requests do not have to be
served with bad instruments and downgrade rules are not often applied. These results are
conformed to those achieved in the case study I.

Figure 9. Results of user appraisals under λ1.

Figure 10. Results of user appraisals under λ2 .

Jie Yin, Yuexuan Wang and Cheng Wu 36

Figure 11. Results of user appraisals under λ3 .

Figure 12. Results of user appraisals under λ4 .

Summary

The contribution of this section lies in the proposal of a fuzzy random scheduling model,

which takes the users’ QoS feedback information into account to provide more satisfactory
services for users in an instrument CI. The QoS appraisals from users can not be represented
in an accurate and quantitative way, since there are many factors in instrument QoS that have

Sharing Scientific Instruments for Higher Education and Research in China 37

effects on users’ appraisals. In many real world scenarios, users’ feedback information is
fuzzy and the fuzzy random model is suitable and straightforward when applied to the
scheduling scenarios described in this work.

The algorithms provided in this work to increase the utilization probability of some
instruments with higher QoS and decrease usage of those with lower QoS, is proved to be
effective in a CI environment for scientific instrument sharing when pool capability is beyond
experiment requests. In situations when request arrival speed is far beyond processing
capability of an instrument pool, algorithms supposed to improve instrument QoS do not
work, since long queuing time downgrades users’ appraisals and instruments with low QoS
feedback have to be used anyway.

CONCLUSION

In this chapter, we introduced the CI for education and research, especially for instrument

sharing in China. We introduce some research projects being developed in the world,
currently hot research field and topics. We focus our effort on scheduling issues in the CI
using fuzzy random theory. Simulation results show that our algorithms can improve user
satisfactions.

Ongoing work is focused on applying these proposed scheduling algorithms into the CI
testbed being developed at Tsinghua University using grid software and technologies. When
applying the work described in this chapter into a real world situation, additional issues have
to be considered besides resource management and scheduling. Ongoing work includes an
information service providing detailed equipment and experiment data, a workflow enactor to
manage experiments involving multiple equipments, a mechanism to ensure reliable and
coherent of different user appraisals, management of provenance information and its storage
and a layered security mechanism for authentication and authorization of remote equipment
access.

ACKNOWLEDGEMENT

This work is supported by Ministry of Education of China under the 211/15 project

“National University Instrument and Resource Sharing Systems”.

REFERENCES

[57] Wang Yuexuan, Wu Cheng and Hu Xixiang, “Study of instrument grid based on
simulation and modeling”, Computer Integrated Manufacturing Systems, 10(9),
pp1031-1035, (2004)

[58] Wang Yuexuan, Wu Cheng and Ni Wangcheng, “Study on instrument grid service
chain sharing technology and method”, Journal of Huazhong University of Science and
Technology (Nature Science Edition), 33, pp15-17, (2005)

Jie Yin, Yuexuan Wang and Cheng Wu 38

[59] Yuan Li-xiang, Wang Wen-yong and Luo Guang-chun, “Study on device grid
technology”, Computer Applications, 25(12), (2014-2015), (2005)

[60] Qu Zheng-wei, Zhao Wei and Huang Song-ling, “The instrument and instrument grid
for resource sharing and collaboration”, Electrical Measurement and Instrumentation,
144(494), pp1-5, (2007)

[61] Jiang Jian-jun, Liu Ji-guang, Xiao Zhi etc, “A UDDI-Based Two-Level Information
Management System for Instrument Grid”, Computer Engineering and Science, 28(8),
pp86-89, (2006)

[62] Yuexuan Wang, Cheng Wu, “Study on Instrument Interoperation Chain Model in Grid
Environment”, Lecture Notes in Computer Science, 3758, pp588-595, (2005)

[63] Wang Yuexuan, Wu Cheng, Xu Ke, “Study on π-Calculus Based Instrument Grid
Service Chain Model”, Lecture Notes in Computer Science, 3779, pp40-47, (2005)

[64] Yuexuan Wang, Lianchen Liu, Cheng Wu, “Research on instrument resource
scheduling in grids”, The Third International Conference on Grid and Cooperative
Computing, 2004, pp. 927-930.

[65] Yuexuan Wang, Lianchen Liu, Cheng Wu, “Research on Instrument Grid Platform for
Resource Sharing”, World Engineers Convention (WEC), 2004, pp. 148-151.

[66] Wang Yuexuan, Liu Lianchen, Hu, Xixiang etc, “The study on simulation grid
technology for instrument resource sharing system”, Proceedings of the World
Congress on Intelligent Control and Automation, 4, 2004, pp. 3235-3239.

[67] http://www.edu.cn/
[68] http://www.nees.org
[69] http://www.cs.indianan.edu/ngi
[70] http://www.escience.cam.ac.uk/projects/telemed.html
[71] http://www.cers.edu.cn
[72] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G.

Messerschmitt, P. Messina, et. al., “Revolutionizing Science and Engineering through
Cyberinfrastructure”, National Science Foundation Blue – Ribbon Advisory Panel on
Cyberinfrastructure, January 2003.

[73] J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow: Workflow Management for
Grid Computing”, in Proceedings of 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, Tokyo, Japan, 2003, pp. 198-205.

[74] M. Faerman, A. Su, R. Wolski and F. Berman, “Adaptive Performance Prediction for
Distributed Data-Intensive Applications”, in Proceedings of ACM/IEEE
Supercomputing Conference, 1999.

[75] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan-Kaufmann, 1998.

[76] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, International Journal of Supercomputer Applications, 15(3),
2001.

[77] R. Kruse and K. D. Meyer, Statistics with Vague Data, D. Reidel Publishing Company,
Dordrecht, 1987.

[78] H. Kwakernaak, “Fuzzy Random Variables-I. Definitions and Theorems”, Information
Sciences, 15, pp1-29, (1978).

[79] H. Kwakernaak, “Fuzzy Random Variables-II. Algorithms and Examples for the
Discrete Case”, Information Sciences, 17, pp253-278, (1979)

Sharing Scientific Instruments for Higher Education and Research in China 39

[80] B. Liu and J. Peng, A Course in Uncertainty Theory, Tsinghua University Press,
Beijing, 2005.

[81] Y. K. Liu and B. Liu, “Fuzzy Random Variables: a Scalar Expected Value Operator”,
Fuzzy Optimization and Decision Making, 2(2), pp143-160, (2003)

[82] NSF Cyberinfrastructure Council, NSF’s Cyberinfrastructure Vision for 21st Century
Discovery, Version 5.0, January 20, 2006.

[83] M. L. Puri and D. Ralescu, “Fuzzy Random Variables”, Journal of Mathematical
Analysis and Applications, 114, pp409-422, (1986)

[84] W. Smith, V. Taylor and I. Foster, “Predicting Application Run Times Using Historical
Information”, Job Scheduling Strategies for Parallel Processing, LNCS 1459, Springer
Verlag, pp122-142, (1998)

[85] W. Smith, V. Taylor and I. Foster, “Using Run-Time Predictions to Estimate Queue
Wait Times and Improve Scheduler Performance”, Job Scheduling Strategies for
Parallel Processing, LNCS 1659, Springer Verlag, pp.202-219, (1999)

[86] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R. Nudd, “Local Grid Scheduling
Techniques Using Performance Prediction”, IEE Proceedings – Computers and Digital
Techniques, 150(2), pp87-96, (2003).

[87] Y. Wang and C. Wu, “A Study on Education Resource Sharing Grid”, International
Journal of Information Technology, Special Issue on Grid Computing I, 11(3), pp73-80,
(2005).

[88] L. Yang, J. M. Schopf and I. Foster, “Conservative Scheduling: Using Predicted
Variance to Improve Scheduling Decisions in Dynamic Environments”, Proceedings of
ACM/IEEE Supercomputing Conference, 2003.

[89] J. Yin, J. Cao, Y. X. Wang etc, “Scheduling Remote Access to Scientific Instruments in
Cyberinfrastructure for Education and Research”, International Symposium on Cluster
Computing and the Grid, May 2007.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 3

AN INTEROPERABLE INFORMATION SERVICE
SOLUTION FOR GRIDS

Anand Padmanabhan1, Eric Shook2,
Yan Liu3 and Shaowen Wang4

1 CyberInfrastructure and Geospatial Information Laboratory (CIGI)
National Center for Supercomputing Application (NCSA)

University of Illinois at Urbana-Champaign
2 CyberInfrastructure and Geospatial Information Laboratory (CIGI)

University of Illinois at Urbana-Champaign
3, 4 CyberInfrastructure and Geospatial Information Laboratory (CIGI)

National Center for Supercomputing Application (NCSA)
University of Illinois at Urbana-Champaign

ABSTRACT

Information services are a critical piece of Grid infrastructure, they collect,
aggregate, and organize sources of Grid resource information, and provide the
information to applications to schedule computational tasks, and enable Virtual
Organizations (VO) to share distributed computing resources. To be successful an
information provider needs to be able to aggregate diverse information from numerous
sources, publish information into different Grid monitoring systems, function under
different Grid deployments, and be adaptable to different information schemas.
Addressing these challenges would provide a platform for an interoperable information
service.

In this chapter, we present the Modular Information Provider (MIP) that address the
aforementioned challenges and eliminates the shortcomings of the existing Grid
information providers. MIP adopts a XML-based data model to enable robust schema

1 E-mail address: apadmana@uiuc.edu
2 E-mail address: eshook2@uiuc.edu
3 E-mail address: yanliu@uiuc.edu
4 E-mail address: shaowen@uiuc.edu

Anand Padmanabhan, Eric Shook, Yan Liu et al. 42

validation as well as to support the latest generation of service-oriented Grid monitoring
software.

MIP provides a critical capability for production Grid environments focusing on
achieving Grid interoperability and manageability. To validate this we conduct
experiments on the Open Science Grid and Grid Australia. These experiments
demonstrate MIP's Grid-independent approach is successful and can easily adapt to
different software stacks and the heterogeneous configuration of several sites on a Grid.
We use GISolve, a TeraGrid science gateway as an example to demonstrate how MIP is
useful from the perspective of Grid application. GISolve provides a geospatial problem
solving platform that hides the complexity of Grid information services based on MIP,
which enables GISolve applications to access multiple Grids seamlessly. We illustrate
how MIP is integrated within GISolve so that GISolve applications can benefit from the
interoperable information service MIP provides.

INTRODUCTION

Grid technologies enable Virtual Organizations (VO) to share distributed computing

resources in a coordinated manner [10]. Information services are a critical component of the
Grid infrastructure providing information which can be used by applications to schedule
computational tasks, detect and recover from faults, and predict performance [9]. Recent
active research in Grid monitoring has covered a broad scope of research topics [11], which
include Grid monitoring architectures [35], monitoring information modeling [5], query
methods for Grid information services [3], performance study of monitoring for distributed
systems [38], and information providers [20].

A Grid information provider serves as an interface to both static and dynamic information
and plays a vital role in collecting, aggregating, and organizing sources of Grid resource
information. Grid applications depend on the published information from such a provider and
thus require a stable and dependable platform. Developing an information provider poses
significant challenges, because the information provider 1) must collect and aggregate diverse
information from numerous sources (e.g., Ganglia [12]); 2) should be capable of publishing
information into various information schemas and different Grid monitoring systems (e.g.,
BDII (Berkeley Database Information Index) [4], MDS4 (Monitoring and Discovery Services)
[20]); and 3) needs to function under diverse Grid deployments and environments. An
information provider that addresses these challenges would provide a platform for an
interoperable information service that Grid applications can depend on.

In this chapter, we present the Modular Information Provider (MIP) that eliminates the
shortcomings of existing Grid information providers. The modular design in MIP facilitates
the separation of Grid-specific information from the Grid-independent framework through the
use of modules, configuration files, and packaging utilities. MIP adopts a XML-based data
model to enable robust schema validation as well as to support the latest generation of
service-oriented Grid monitoring software. The MIP software toolkit provides a critical
capability that could be leveraged in production Grid environments such as the Open Science
Grid, EGEE, and TeraGrid in order to achieve Grid interoperability and manageability. We
also describe several scenarios of MIP deployment.

An Interoperable Information Service Solution for Grids 43

Challenges

Diverse information sources pose several challenges for information providers. Evolving

interfaces and varying data formats complicate information collection. Each interface needs to
be individually managed and the unique information must be parsed and organized before
being processed. Information from sources distributed across multiple systems must be
combined and managed.

Information providers must enable error-free information handling while maintaining
stability. Deployment needs to be simple and straightforward to lower the possibility of
erroneous configuration. The information produced must be verified for correctness to
guarantee accuracy. Machine impact during information collection should be minimized to
maintain scalability while supporting large amounts of complex information. Stability must
be sustained to insure information availability.

Information providers are responsible for enabling Grid-interoperability, a key
requirement for many Grids. This typically requires the ability to produce information for
multiple schemas (e.g. CIM [5], GLUE [16]) in different languages (e.g. XML, ClassAd [7])
and interface with a wide-variety of Grid information services.

The primary challenges faced by the information providers can be summarized as
follows:

• Efficiently collect, aggregate, and manage information from a large number of Grid

information sources such as Grid and cluster monitoring tools (e.g., MonALISA [23]
and INCA [18], local operating system information, Grid configuration data, and
cluster resource management tools (e.g., Torque [36] and Condor [34]);

• Adapt to multiple different information schemas;
• Automate the process of configuring and executing Grid information providers;
• Resolve conflicts arising from identical information being published by multiple

information sources;
• Assure the correctness of the information published within large scale production

Grid environments; and
• Achieve stability, scalability, and interoperability across Grid environments.

To address these challenges, the Modular Information Provider successfully supplies

monitoring information from local and distributed sources, primarily with the contribution of
the following three components: Modules, Information Producers, and the framework. The
framework is composed of a Collector, Module Handler, and Integrator Service. Modules and
Information Producers use the framework for interaction and communication. Modules
collect local information while the Integrator manages distributed information. MIP modules
collect information across several sources such as Ganglia [12] and Condor and provide
crucial information on the status and availability of resources. The integrator enables
collection of resource information from these geographically distributed sources. Information
Producers format and output information based on specific schemas and languages such as
GLUE and Condor ClassAd. The Modular Information Provider (MIP) approach also utilizes
a Grid-independent framework to support re-usability. The Grid-independent framework
contains several components that utilize an XML data-model to support multiple information
modeling schemas and languages. Additional MIP components interact with the framework to

Anand Padmanabhan, Eric Shook, Yan Liu et al. 44

support the formatted collection and output of information. Experiments were conducted on
the Open Science Grid [25] and Grid Australia (formerly known as Australian Partnership for
Advanced Computing (APAC)) [2] successfully demonstrated that MIP's Grid-independent
approach can easily adapt to different software stacks and the heterogeneous configuration of
several sites on a Grid

To demonstrate the usefulness of MIP from the application communities’ perspective, we
use GISolve [14] as a use-case to evaluate it. GISolve provides a suitable environment to
demonstrate MIP's ability to seamlessly integrate within a TeraGrid [33] science gateway.
GISolve applications can benefit from Grid information provided by MIP, while not being
exposed to the complexities of the information services. GISolve is a TeraGrid Science
Gateway toolkit for GIScience that provides user-friendly capabilities for performing
geographic information analysis using computational Grids, and help non-technical users
directly benefit from accessing cyberinfrastructure capabilities. GISolve aggregates the
enormous computational resources that are needed to store and manage geographic
information that is collected for wide variety of application domains (e.g., environment
science, transportation, and public health), and to conduct computationally intensive
geographic information analysis. In order to deliver these computational resources, GISolve
would be required to know the status of the Grid resources to make appropriate job allocation
decisions. MIP aims to satisfy this requirement from the application community.

The rest of the chapter is organized as follows. In section 2 we will review the current
landscape of Information Services deployed on production Grids. Section 3 will provide the
details of MIP's architecture, and data model. Section 4 will evaluate MIP, based on
deployment experiences on OSG and APAC Grid and a case-study of its usage by GISolve, a
TeraGrid GIScience Gateway. We will conclude in section 5 with a conclusion and pointers
to future work.

CURRENT INFORMATION SERVICES LANDSCAPE

In this section we will try to overview the current information services landscape. Most

production grids currently use LDAP based information services, such as MDS2 (the
Monitoring and Discovery Service from Globus Toolkit 2 (GT2), the pre-web services
version of the Globus Toolkit) or BDII (used by LCG [19]). However the GT4 provides
resource information service using MDS4 which uses a Web Services framework. MDS4 and
Web Services will be the logical direction in the future, but the information providers
designed to capture and publish resource information based on Web Services technology are
not well developed. MIP hopes to fill this niche.

The Monitoring and Discovery Services

The Monitoring and Discovery Service (MDS), a component of the Globus Toolkit,

serves as the standard tool for publishing and accessing Grid resource information. MDS
provides functionality to allow the aggregation of information from multiple resources on the
Grid site. It aggregates information in a hierarchical manner, e.g., an instance of MDS may

An Interoperable Information Service Solution for Grids 45

collect all the information about Grid resources at a site, while another instance could collect
information from all the site level MDSs to provide a Grid level view of the available
resources. MDS aims to provide a single standard interface and schema for accessing the
heterogeneous resource information within the Grid, while providing flexibility to publish
additional information, by allowing system administrators to customize existing providers or
write their own resource information providers. MDS can be configured to use the Grid
Security Infrastructure (GSI) to allow only authorized access.

There are two versions of the MDS provided by the Globus Toolkit: MDS2 and MDS4.
MDS2 [21] is the pre-web service version of the information service. The information is
published in an LDAP Data Interchange Format (LDIF) format using an OpenLDAP [24]
server. MDS2 forms a hierarchical structure composed of the Grid Index Information Service
(GIIS), Grid Resource Information Service (GRIS) and Information Providers. An
information provider, according to MDS2, is a program that queries the information sources
and publishes information according to a schema understood by GRIS. The GRIS advertises
information about the resource, aggregating information from one or more information
providers. GIIS acts as an index service that collects information from one or more GRIS or a
lower level GIIS.

MDS4 is the Web Service (WS) implementation of MDS. This version of MDS includes
WSRF implementations of the Index Service, a Trigger Service, WebMDS and the
underlying framework, the Aggregator Framework [27]. The Index Service collects data from
Information Providers and provides a mechanism to query that data. The Trigger Service
collects data from multiple sources and provides the functionality that performs actions when
certain conditions are satisfied based on collected data. The common Aggregation Framework
infrastructure provides shared interfaces and mechanisms for working with data sources. The
WebMDS provides a simple XSLT-transform based visual web-based interface to the data.

Though originally the MDS4 could only use a built-in schema to publish information,
recently developed Resource Property Provider framework [26] addresses this issue. The
RPProvider Framework is an extensible software component that can be used to dynamically
generate XML values for one or more WSRF Resource Properties in any given GT4 Java
WSRF-Core compatible service [37]. This package allows MDS4 to publish information
using any schema.

Berkeley Database Information Index

The Berkeley Database Information Index [4], like MDS2, also uses a LDAP server and

provides an alternative to MDS2. The BDII was developed within the WLCG to replace the
MDS2, since the later has been shown to be unstable when it has to index information from a
large number of sites or process a large number of queries. BDII employs two or more LDAP
servers, to perform update and queries compared to only one with MDS2, there by providing
better scalability. It can be used to replace both the GRIS and GIIS components.

Anand Padmanabhan, Eric Shook, Yan Liu et al. 46

Generic Information Provider

The Generic Information Provider [13] is deployed on several large production grids

(WLCG, OSG) and has proven to be a reliable means of collecting local resource information.
GIP's design has focused primarily on meeting the needs of a specific Grid environment.
While this is advantageous to a single Grid environment, significant work is required to
customize GIP to support multiple Grid environments. For example GIP is designed to
support a single schema not multiple schemas, which is needed to support multiple Grid
information services. Also currently there is no software available to convert GIP output to
XML format as needed by MDS4. Further development of this component would be
challenging due to the inherent differences between the LDAP and XML implementation of
the Glue schema, which the production Grids rely on.

MDS4 Information Providers

The Globus Toolkit 4 has built-in Information Providers which can provide some basic

information about the batch system, memory size, Operating System (OS) name, OS version,
etc [20]. These information providers can use PBS, Ganglia, Hawkeye [17], and Nagios [22]
as their information sources. The issue with the built-in providers is that they all use the
GLUE 1.1 schema which is at least one generation old. Most production Grids use a later
version of Glue schema, for e.g. OSG uses Glue schema 1.3 in its latest production release.

Other Grid Monitoring Systems

Grid monitoring systems such as Inca [18] and MonALISA [23] support distributed

information collection, but differ in the communication method. MonALISA uses a
distributed agent-based model to communicate the information. Inca on the other hand
utilizes a flat hierarchy composed of several components such as reporters, agents, and depots;
while MIP is designed to utilize a multi-level hierarchy through the use of Integrators.

MonALISA and Inca also require multiple layers or components to establish an effective
monitoring system where as MIP utilizes a single component for distributed information
collection. This design feature reduces complexity and simplifies distributed information
collection. Additionally the Integrator is an optional component, so it can be disabled if
distributed information collection is not needed.

MODULAR INFORMATION PROVIDER (MIP)

The MIP software provides is a critical but missing capability in production Grid

environments such as the Open Science Grid, EGEE, and TeraGrid. MIP focuses on
achieving Grid interoperability and manageability, and is designed to interface multiple
information sources and information systems such as Hawkeye and MDS4 (figure 1).

An Interoperable Information Service Solution for Grids 47

Figure 1. MIP in the context of Grid information protocol hourglass model (After [27]).

MIP Architecture and Components

The Modular Information Provider (MIP) leverages a modular design to separate Grid-

specific components from those which are Grid-independent. Specifically, MIP utilizes a
Grid-independent framework that is easily customized using Modules and Information
Producers. The MIP framework uses a XML data-model to process and transfer information
from Modules to Information Producers.

MIP consists of several components including: Modules, a Module Handler, a Collector,
an Integrator Service, and Information Producers. Modules, the basic building blocks of MIP,
are invoked by the Module Handler. The Integrator Service is used to receive distributed
information forming an information hierarchy. The Collector accepts information from the
Module Handler and the Integrator Service, it then forwards the information to Information
Producers or other Integrator Services. Information Producers format the information to a
specific schema using a particular language. The information can then be used by a wide
variety of systems (e.g. MDS4, Hawkeye). Figure 2 illustrate the MIP architecture and the
relationship between the components.

The unique nature of each Grid environment requires a different combination of Modules
and Information Producers. Modules collect information from various sources and these
sources vary from one Grid environment to another. Therefore the combinations of Modules
must also change in each environment. Information Producers format information to a
specific schema and language. Grids may have different schema and language requirements,
so they also require different Information Producers. These components have been separated
from the framework, because they must be changed or customized for each Grid. The
framework however will remain unchanged to simplify deployment and reduce duplicated
effort. Each component is described below to provide further detail.

Anand Padmanabhan, Eric Shook, Yan Liu et al. 48

Figure 2. MIP architecture.

Modules

To manage multiple information sources MIP employs Modules. A Module is an
executable file that accepts certain command-line parameters and outputs information based
on a XML data-model. Modules are easy to create and maintain and dramatically simplify
information collection. This simplification lowers the barrier to adoption for site
administrators, because they can easily change, remove, or add new Modules to properly
describe the status of the site, with a site being a set of computational resources that is owned
by a single entity, such as a university. Site-level customizations greatly improve the accuracy
of information compared to previous information providers which typically offer little support
for site-specific customizations. Furthermore, Modules can be shared and distributed across
sites and Grids, supporting re-usability and reducing duplicated effort.

Modules reduce complexity and simplify information collection, but are restricted to the
interfaces provided by the information sources. Unfortunately, many sources lack support for
remote interaction or information collection. This constrains Modules to collecting local
information.

Module Handler

The Module Handler coordinates and manages the execution of Modules based on
optional filter controls and priorities. Filter controls limit the scope of information collection
to pertinent information, increase efficiency and reduce machine overhead. This is
accomplished by not executing filtered Modules based on the filter controls.

Priorities determine the execution order of Modules. Site and Grid administrators have
the ability to change the priority of each Module. Priorities are used to resolve potentially
conflicting information from similar sources [32]. Once the Modules are executed they return
their collected information, which is then forwarded from the Module Handler to the
Collector.

Integrator Service

The MIP framework includes the Integrator Service to extend the functionality of MIP
beyond local information collection. The Integrator is a service that receives information from
remote MIP instances, enabling distributed information collection.

An Interoperable Information Service Solution for Grids 49

Distributing potentially sensitive information, such as software versions or Grid
accounting information, raises security concerns. To address such concerns the Integrator
supports Secure Socket Layer (SSL) data transfers. SSL encryption enables MIP to securely
transfer sensitive data across a network. Additionally, the Integrator can be configured to
accept information from a select number of machines. This security feature reduces the
likelihood of publishing false information from malicious machines.

MIP Integrators enable hierarchical distributed information collection. Grids and sites can
use several Integrators at various levels to establish an information hierarchy. Other Grid
tools and services can be easily incorporated into this hierarchy. Grid information services,
such as MDS Aggregator Framework [1], can interface with Information Producers. Grid
monitoring systems, such as Inca and MonALISA, can provide information to Modules. MIP
and the Integrator connect these two pieces to establish a robust information hierarchy.

Resources behind a restrictive firewall or in an internal network, (such as within a cluster)
represent a problem for collecting information. Information cannot be collected from these
resources using a pull model, without modification to the network infrastructure (i.e. port
forwarding, opening ports). To support information collection for these resources the
Integrator uses a push model.

Figure 3. An integrator hierarchy example.

Figure 3 shows an example configuration of a MIP Integrator hierarchy. The site-level
Integrator (top of diagram) is feeding information to an MDS4 instance. In this example the
MDS Aggregator Framework is interfacing with MIP as the Grid information service. A deep
hierarchy is not necessarily required; all nodes could be configured to push information
directly to the site-level Integrator Service. This example shows the flexibility of the
Integrator Service within the MIP framework, which ensures a scalable design as more MIP
instances are added.

Collector

The Collector gathers information from the Module Handler and Integrator Service. Once
the Collector gathers the information it presents it to a combination of Integrator Services or
Information Producers.

Anand Padmanabhan, Eric Shook, Yan Liu et al. 50

All components in the framework, including the Collector, transmit information using
XML. This standards-based language provides maximum flexibility for framework
components. XML offers several advantages, such as: easy schema-validation, ability to
handle very large amounts of information, and it provides rich semantics to support schema
translations.

Information Producers

Information Producers accept XML and output information in a particular schema based
on a specific language. The implementation of an Information Producer is dependent on the
specific schema and language. To allow maximum flexibility, MIP places few restrictions on
a Producer.

Unfortunately the complex nature of converting information from one language or
schema to another can make Information Producers cumbersome to write. Fortunately, many
Grids share a common or similar schema or utilize the same Grid information service, in
effect, limiting the number of Information Producers that must to be written. MIP attempts to
minimize the complexity by using XML, which provides semantics for schema conversion.
Next we will discuss the XML data model employed by MIP.

MIP Data Format

XML Data Model
MIP adopts a XML-based data model to support multiple schemas and languages because

1) XML-based data model describes both the data and its structure in the same document; 2)
XML components can be combined and separated without loss of information; 3) XPath and
XQuery provide a straightforward interface to full-text and structural queries; 4) XML can
easily handle a large amount of information as well as efficiently validate information; 5)
XML has rich semantics to support its translation to other schema implementations.

Figure 4. MIP data model.

An Interoperable Information Service Solution for Grids 51

The MIP data model can be described by the meta-schema in figure 4. This meta-schema
is loosely derived from the CIM meta-schema [6] and shares some of its terminology. This
meta-schema permits MIP to describe and relate Classes of objects. To reduce the scope of
the description, MIP uses multiple Schemas to define Elements already known to be useful.
These Schemas can easily be extended if needed. A Set is used to add meta-data to a group of
Elements. Properties are used to characterize a Set. This meta-schema is sufficiently generic
to support existing diverse schemas and languages, such as CIM, XML, and ClassAd as well
flexible enough to support future schemas and languages.

Schema and Languages

The aforementioned MIP meta-schema is capable of structuring information into MIP's
XML-based format. This format will be based on a series of Classes, some example Classes
are: OperatingSystem, Computer, and Storage. An example below provides concrete evidence
supporting MIPs ability to handle multiple schemas and languages using this format.

 <OperatingSystem>
 <Set UniqueID=”OSuniqueID”>
 <Elements>
 <Name>Scientific Linux</Name>
 <Version>4.3</Version>
 <Release>Beryllium</Release>
 <Type>Linux</Type>
 <Description>Scientific Linux is a ...</Description>
 </Elements>
 <Properties>
 <Hostname>mip.cigi.uiuc.edu</Hostname>
 <Role>WorkerNode</Role>
 </Properties>
 </Set>
 </OperatingSystem>

This example has one Set within the OperatingSystem Class with Elements of Name,

Version, and Description. The two Properties: Hostname and Role, characterize the example
Set. This small amount of information is sufficient to describe the Operating System
components in both GLUE and CIM. More specifically, to convert this data format to GLUE
Schema, an Information Producer knows this Set will describe the Operating System of a
worker node, or SubCluster in GLUE Schema terminology, with hostname 'mip.cigi.uiuc.edu'
based on the Role Property and Class name. It will use this meta-data to insert this Operating
System information within the SubCluster section of the GLUE Schema. This example works
with GLUE schema, however CIM is much more complex. The CIM Schema requires the
Operating System to be related to the File System and Computer components using
Association and Composition Aggregation relationships. The CIM Information Producer will
know this Set describing the Operating System of a particular Computer based on the
Hostname Property and Class name. With this, the Information Producer can relate all the
Sets sharing the same Hostname. This includes Sets from OperatingSystem, Computer, and
Storage Classes, where the Storage Class holds the File System information as needed by the
CIM schema. The CIM Information Producer, aware of CIM’s relationship requirements, will
then make the necessary Association and Composition Aggregation relationships between the
information from the various Sets to meet CIM's Schema requirements. The CIM example,

Anand Padmanabhan, Eric Shook, Yan Liu et al. 52

albeit more complex, also is supported by MIP's flexible data-model. Further demonstrating
MIP's data-model flexibility, this example will convert this information to another language,
ClassAd. To convert this information to another language such as ClassAd all one has to do is
take the XML “<Attribute>Value</Attribute>” pairs from each Element and place them into
ClassAd “Attribute=Value” pairs with the Class name in front of each pair. This example
would look like:

OperatingSystemName=Scientific Linux
OperatingSystemVersion=4.3
OperatingSystemRelease=Beryllium
OperatingSystemType=Linux
OperatingSystemDescription=Scientific Linux is a ...

The data-model can be extended to contain many more Properties, but as the previous

examples have demonstrated it is simple and straightforward to establish a robust XML data-
model using MIP's meta-schema.

An Example of MIP Deployment

In order to better understand the MIP framework and how it provides the functionality,

let us consider a simple example; a site is running a PBS batch system that can be accessed
through a Globus gatekeeper. Any application that potentially wants to use the resource is
interested in knowing the status of the gatekeeper and the batch system. For example a
resource user, such as GISolve, is interested in the number of free CPUs to the batch system,
the queue time, the maximum wall clock time available to the potentially submitted jobs, the
priority of the job when submitted, and many others. To make an informed decision for job
scheduling GISolve must collect similar information from all the resources.

The Grid site administrators may be interested in sharing cluster information using
Globus MDS4. In this example MIP will be installed on all head-nodes that are running the
PBS server as well as on the machine hosting Globus MDS4. A MIP pbs Module installed on
the head-node will query the status of queues and collect relevant information such as node
status and job information. The Module Handler will receive the information from the pbs
Module. Then the Collector will gather the information from the Module Handler and
forward the information to the MIP Integrator on the Globus MDS4 machine. The Integrator
of the MDS4 MIP will gather the information and forward it to the Information Producer. The
Information Producer will format the information for Globus MDS4 which will read the
information from all PBS clusters where it can be seen by Grid users and applications. This
will answer the questions we mentioned earlier, enabling Grid applications to make informed
job scheduling decisions.

An Interoperable Information Service Solution for Grids 53

Grid Interoperability

Interoperability is an essential requirement for many Grids and the information provider

framework is a key component supporting this requirement. MIP has several techniques to
support interoperability across Grids

Through the use of MIP Framework, Modules, and Information Providers, MIP has the
flexibility to support multiple Grids with minimal customization. MIP Framework provides a
stable foundation upon which to customize MIP for a particular Grid. Modules are used to
customize the collection of information for the particular Grid environment. Producers can
interface with the MIP framework to format information in a specific language or schema
based on the Grids’ needs. This combination of customizable components and stable
framework provides a robust solution toward supporting multiple Grids.

Interoperability is easily supported, as shown in the two scenarios described below. If
two or more Grids use the MIP information provider framework, information exchange is
simple. The Grids will each establish a Grid-level MIP Aggregator that will share data using
the MIP XML data model. Alternatively, if one or more Grids use a different information
provider, named ProviderX, then interoperability can be achieved in one of two ways. If
ProviderX supports multiple schemas, it can use MIP's XML data model to interact with MIP
to share information. The second technique will use an Information Provider to send data in
ProviderX's schema or language and will retrieve ProviderX's data using a MIP Module. The
first technique is, in general, much cleaner, but since not all information providers support
multiple schemas or languages, MIP provides the second technique to accommodate older
generation or closed specification technologies.

Grids utilizing MIP's information provider framework can also share and exchange
modules. This can simplify the need to support multiple information sources and reduce the
need to “reinvent the wheel” for each Grid.

EVALUATING MIP

In this section we will provide experimental evidence of how MIP achieves its design

goals. For this we will use two case studies: a) Deployment of current Grid Infrastructures:
we will share the experiences of deploying MIP on Open Science Grid (OSG) and Australian
Partnership for Advanced Computing (APAC) Grid; b) Integration with GISolve, a TeraGrid
Science Gateway.

Case Study on Production Grid Infrastructures

Open Science Grid (OSG)
A case study was conducted on a single site of the Open Science Grid [25]. In this study,

MIP was deployed on both Production and Integration Testbed (ITB) resources. A single site-
level Integrator Service collected the information and an Information Producer formatted the
information according to Glue Schema 1.2 [16]. MDS4, the Grid information service read this

Anand Padmanabhan, Eric Shook, Yan Liu et al. 54

information and published it using WebMDS [20]. The case study fully leveraged the
capabilities from MDS4 in particular, Resource Property Providers.

Each resource used a different configuration. The Production resource, used in the study,
consisted of a combined Compute/Storage Element (head-node) and 2 Worker Nodes. A large
storage system on the head-node provided shared storage to the Worker Nodes using a
Network File System (NFS). This resource used the Condor batch system [8] as its job
manager and the latest version of the OSG software stack. The Integration Testbed resource
consisted of a Compute Element (head-node), Storage Element, and a single Worker Node.
The Storage Element provided shared storage to the nodes using NFS. This resource used
Torque [36] as its job manager and the latest version of the OSG software stack for the ITB.

MIP was deployed on the ITB resources by a non-privileged user, (had privileged access
to PBS batch system). Modules such as pbs (torque), cluster, and computingelement were
configured to collect information on the head-node. The Storage Element used Modules such
as storagearea to collect storage information. The Worker Node used Modules such as
subcluster, which collects architecture specific information.

Next, MIP was deployed on a Production resource. This installation was similar to the
ITB resource with the following exceptions:

• A condor Module was used instead of pbs (torque).
• The head-node also had storage Modules installed.
• Head-node Modules slightly modified because of software version differences

All machines in the study, including the worker nodes, were configured to push

information directly to the site-level Integrator Service, resulting in a flat hierarchy. This
study showed that MIP can be deployed on top of OSG infrastructure with minimal effort and
it could publish resource information consistent with Glue Schema.

Grid Australia

A more extensive deployment was conducted on Grid Australia (Formerly known as The
Australian Partnership for Advanced Computing (APAC) grid) [2]. In this study,
approximately 7 sites deployed MIP. The remaining sites plan to deploy MIP as additional
customized Modules become available. This study is particularly important because it
demonstrates the benefit of MIPs Grid-independent design. The framework remains
unchanged between the two studies even though the Grid environments varied drastically.

The APAC Grid utilizes Virtual Machine (VM) technologies for their Gateway Machines.
The Gateway Machines offer several uniform interfaces for Grid users, one such interface is
MDS4. Each participating site installed a site-level MIP Integrator on the MDS4 VM. Similar
to OSG, APAC used Resource Property Providers to interface MIP with MDS4.

After establishing the site-level Integrator, MIP was installed on each cluster head-node.
The APAC deployment required a different set of Modules compared to OSG. APAC was
able to reuse some OSG Modules, while others needed to be customized, and several new
Modules needed to be created. Differences in job managers, software stacks, software
versions, and operating systems all contributed to the need for differing Modules.

The deployment on APAC provides evidence that MIP addressed several challenges. In
particular, we moved the framework from one Grid environment to another without changes,
demonstrating MIPs Grid-independent design. The quick customization made by APAC

An Interoperable Information Service Solution for Grids 55

members’ shows MIPs modular design is simple, flexible, and easy-to-use. MIP has shown to
be scalable on the APAC grid environment.

APACs use of MIP demonstrates it can reliably collect local and distributed information
in a production Grid environment.

GISolve: A TeraGrid GIScience Gateway

GISolve is a Grid-based problem solving environment for computationally and data

intensive geospatial information analysis. Geospatial information analysis is widely used to
support scientific investigations and decision-making in a variety of application domains (e.g.,
environment science, transportation, public health, and business). Methods of geospatial
information analysis often require the use of computationally intensive search, simulation,
optimization, and statistical methods, particularly when they are applied to large, realistic
problems. As massive increases in the quantity of geographic data are readily observable,
these methods must also be able to access these data to address problems that range across a
broad spectrum of spatial and temporal scales. GISolve addresses these challenges by
exploiting Grid computing resources and developing a Grid-based geo-middleware toolkit for
large-scale geospatial information analysis [28].

GISolve is deployed and used as a U.S. National Science Foundation TeraGrid GIScience
Gateway. It provides a set of geospatial science-specific tools, applications, data collections,
and services that are integrated via the GISolve web portal. GISolve portal provides user-
friendly capabilities for performing geographic information analysis using computational
Grids, and helps non-technical users directly benefit from accessing Grid computing
capabilities. Currently, three types of geospatial information analyses are supported: Bayesian
geostatistical modeling, detection of local spatial clustering, and inverse distance weighted
interpolation.

As a geo-middleware, GISolve consists of four major components to facilitate above
analyses: a domain decomposition module, a task scheduling module, a geographic data
access module, and an information broker [29]. Given a geospatial information analysis
problem, the domain decomposition module is used to divide the problem into several sub-
problems each of which can be processed on a single Grid computing element. The task
scheduling module interacts with the information broker to discover dynamically available
Grid resources and employ a proper scheduling algorithm to optimally allocate Grid resources
for sub-problem execution. The geographic data access module is used to manage the transfer,
replication, and manipulation of geographic data on the Grid. Data access functionalities are
requested by the domain decomposition and task scheduling modules, and are implemented
through protocols and services for data access on the Grid (e.g., Globus GridFTP). The
information broker leverages underlying Grid information services to provide: 1) Grid
resource information for the task scheduling module; 2) geospatial data and computing
provenance information. All components are accessible interactively via web or machine-
readable via web services.

GISolve has been developed to manage Grid complexity within a service-oriented
architecture that allows scalable integration between geographic information analysis and
basic Grid services (e.g., security and accounting, data management, job execution, and
information services). Geo-middleware components are implemented as Grid services that

Anand Padmanabhan, Eric Shook, Yan Liu et al. 56

interact with OGSA Grid services. There are three types of GISolve Grid services:
application-specific services, OGSA services, and interaction-specific services [31].

Information broker is an interaction-specific service that plays a key role in GISolve to
provides Grid and GISolve analysis status information to application-specific services via
standard web service interface (for service invocation) and user interface (for portal users). It
acts as both information provider and information consumer.

GISolve Service Information Publication

GISolve services are implemented and deployed in a service-oriented framework which
employs OGSA service model for application and higher level Grid service development.
OGSA is an extension of web service standards for Grid computing. An important extension
of OGSA is the WSRF (Web Service Resource Framework) specification which defines
stateful information support in Grid services. Stateful information support is critical to
support Grid workflows which define a Grid application process as dependent service
interactions. In GISolve, each service has an embedded WSRF interface to access service data
which is the status information holder for a particular Grid service. GISolve interacts with
MIP to publish service data of a particular service instance deployed on a Grid site. MIP
collects service data information from all the deployed GISolve services and presents them as
service information for further retrieval, aggregation, and search. Between GISolve services
and MIP, GLUE schema [16] is used to define service description data format. Information
published to MIP includes service handle, service status, service WSDL definition, owner,
service start time, and service-specific data. Figure 5 is an example of GISolve service
information definition in WSDL format.

Figure 5. An example of GISolve service information publish.

An Interoperable Information Service Solution for Grids 57

Grid Information Service Integration in GISolve
The information broker module in GISolve collects Grid and GISolve service information

to GISolve application-specific services to support resource discovery, selection, and
scheduling, data movement, job monitoring, and geospatial experiment provenance. Currently,
GISolve supports information retrieval from the following three Grid information providers:

• MIP: GISolve uses MIP to discover, select, and monitor Grid resources and services

used in a geospatial information analysis process in GISolve.
• MAGGIS: MAGGIS (Multi-Agent System Architecture for End-User Level Grid

Monitoring Using Geographic Information Systems) [30] is a multi-agent framework
for Grid information services. GISolve integrates MAGGIS client agent for Grid
computing element information monitoring.

• Grid service deployment: GISolve directly accesses service data on their service
deployment sites for third-party Grid services and GISolve services not aggregated in
MIP.

CONCLUSION

In this chapter we presented an information provider solution, the Modular Information

Provider that utilized a Grid-independent framework. The Modular Information Provider
(MIP) addressed the challenges associated with local and distributed information collection
utilizing components such as Modules and the Integrator Service.

We demonstrated MIP’s ability to interface with multiple Grid information services
without sacrificing simplicity or ease-of-use. The deployment of MIP was shown to scale
across multiple Grid infrastructures in experiments on the Open Science Grid and Australian
Grid. The experiments demonstrated the capabilities of MIP, particularly the flexibility of
Modules used in local information collection, the Integrator Service’s ability to support
distributed information collection, and the benefits of a Grid-independent design. These
experiments can be extended in future to extensively test MIP’s ability to support
interoperability by using information provided by MIP to submit computing jobs between
Grids. Further we demonstrated that MIP is used to publish service oriented data from
GISolve as well as to gather resource information about Grid sites which is used by GISolve.
Thus GISolve serves both as producer as well as consumer of MIP information.

MIP’s Grid-independent design minimized the amount of work needed to adapt MIP to a
new Grid environment, thus reducing the significant cost associated with developing,
deploying, and supporting information provider solutions. MIP represents an important
stepping stone to achieving interoperation between Grids. The MIP software framework will
help eliminate current error-prone processes of deploying and managing Grid information
providers and greatly improve the efficiency of developing individual Grid information
provider. MIP achieves a lightweight and customizable architecture that facilitates the
interaction between information sources and Grid information systems. Enhancing the MIP
data model and extending its framework to support new features and capability would be
good directions for further research.

Anand Padmanabhan, Eric Shook, Yan Liu et al. 58

ACKNOWLEDGMENTS

This research was done using resources provided by the Open Science Grid, which is

supported by the National Science Foundation and the U.S. Department of Energy's Office of
Science. To conduct the case study with GISolve, this research used resources from TeraGrid
and NCSA. The authors would like to thank the participating sites and individuals from the
Australian Grid.

REFERENCES

[90] Aggregator. (2007) Information Services - Aggregator Framework. http://www.globus.
org/ toolkit/docs/4.0/info/aggregator.

[91] APAC. (2007) Grid Australia (APAC National Grid), http://grid.apac.edu.au/.
[92] Andrzejak, A., and Xu, Z. (2002) Scalable, efficient range queries for grid information

services. In Proceedings of Second International Conference on Peer-to-Peer
Computing (P2P 2002).

[93] BDII. (2007) Berkeley Database Information Index. https://twiki.cern.ch/twiki//bin/
view/EGEE/BDII.

[94] CIM. (2007) DMTF - Common Information Model (CIM). www.dmtf.org/standards/
cim/.

[95] CIM-Metadata. (2007) DMTF - Common Information Model (CIM) Metadata.
http://www.wbemsolutions.com/tutorials/CIM/metaschema.html.

[96] ClassAd. (2007) Condor Classified Advertisements. http://www.cs.wisc.edu/condor/
classad/.

[97] Condor. (2007) Condor project. http://www.cs.wisc.edu/condor/.
[98] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C. (2002) Grid Information

Services for Distributed Resource Sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-10).
Washington, DC, USA.

[99] Foster, I., Kesselman, C., and Tuecke, S. (2001) The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applications,
15 (3): 200-222.

[100] Foster, I., and Kesselman, C. (2004) The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2 edition.

[101] Ganglia. (2007). Ganglia Monitoring System. http://ganglia.sourceforge.net/.
[102] GIP. (2007) Generic Information Provider. https://twiki.cern.ch/twiki//bin/view/

EGEE/GIP.
[103] GISolve. (2007) GISolve: TeraGrid GIScience Gateway. http://www.gisolve.org/.
[104] Globus. (2007). Globus Toolkit. http://www.globus.org/toolkit/.
[105] Glue. (2007) Glue Schema. http://glueschema.forge.cnaf.infn.it/.
[106] Hawkeye. (2007) Hawkeye: A Monitoring and Management Tool for Distributed

Systems. http://www.cs.wisc.edu/condor/hawkeye/.
[107] Inca. (2007) INCA: user-level grid monitoring. http://inca.sdsc.edu/.

An Interoperable Information Service Solution for Grids 59

[108] LCG. (2007) Large Hadron Collider (LHC) Computing Project (LCG).
http://lcg.web.cern.ch/LCG/.

[109] MDS. (2007) GT Information Services: Monitoring and Discovery System (MDS).
http://www.globus.org/toolkit/mds/.

[110] MDS2. (2007) Monitoring and Discovery Service in GT2. http://www.globus.
org/toolkit/mds/#mds_gt2.

[111] Nagios. (2007) Nagios: A service and network monitoring program.
http://www.nagios.org/.

[112] Newman, H. B., Legrand, I.C., Galvez, P., Voicu, R., and Cirstoiu, C. (2003)
MonALISA: A Distributed Monitoring Service Architecture. CHEP 2003, La Jola,
California.

[113] OpenLDAP. (2007). Open Source Lightweight Directory Access Protocol Server.
http://www.openldap.org/.

[114] OSG. (2007) Open Science Grid. http://opensciencegrid.org/.
[115] RP-Provider. (2007) Resource Property Provider Framework and Information Providers

for MDS4. http://www.globus.org/toolkit/docs/4.0/info/usefulrp.
[116] Schopf, J., D'Arcy, M., Miller, N., Pearlman, L., Foster, I., and Kesselman, C. (2005)

Monitoring and Discovery in a Web Services Framework: Functionality and
Performance of the Globus Toolkit's MDS4. Argonne National Laboratory Tech Report
ANL/MCS-P1248-0405.

[117] Wang, S., Armstrong, M. P., and Bennett, D. A. (2002) Conceptual Basics of
Middleware Design to Support Grid Computing of Geographic Information,
Proceedings of 2nd International Conference on Geographic Information Science,
Boulder, CO, USA, September, 25 - 28, 2002.

[118] Wang, S. (2003) Grid-based Geo-middleware. Paper presented at The Association of
American Geographers 99th Annual Meeting, New Orleans, LA, USA, March 2003.

[119] Wang, S., Padmanabhan, A., Liu, Y., Briggs, R., Ni, J., He, T., Knosp, B. M., Onel, Y.
(2004) A Multi-Agent System Architecture for End-User Level Grid Monitoring Using
Geographic Information Systems (MAGGIS): Architecture and Implementation. In the
conference proceeding of 2nd International Workshop of Grid and Cooperative
Computing (GCC2003)), Lecture Notes in Computer Science, LNCS vol 3032, pp. 536-
543.

[120] Wang, S., Armstrong, M. P., Ni, J., Liu, Y. (2005) GISolve: A Grid-based problem
solving environment for computationally intensive geographic information analysis. In:
Proceedings of the 14th International Symposium on High Performance Distributed
Computing (HPDC-14) – Challenges of Large Applications in Distributed
Environments (CLADE) Workshop, Research Triangle Park, NC, USA, July 24, 2005.

[121] Wang, S., Shook, E., Padmanabhan, A., Briggs, R., Pearlman, L. (2006) Developing a
modular information provider to support interoperable Grid information services. In:
Proceedings of Grid and Cooperative Computing - GCC 2006: The Fifth International
Conference, IEEE Computer Society, pp. 448-453.

[122] TeraGrid. (2007) TeraGrid, http://teragrid.org/.
[123] Thain, D., Tannenbaum, T., and Livny, M. (2005) Distributed Computing in Practice:

The Condor Experience. Concurrency and Computation: Practice and Experience, Vol.
17, No. 2-4, pages 323-356, February-April, 2005.

Anand Padmanabhan, Eric Shook, Yan Liu et al. 60

[124] Tierney, B., Aydt, R., Gunter, D., Smith, W., Taylor, V., Wolski, R., Swany, M. (2002)
A Grid Monitoring Architecture. Global Grid Forum (GGF). http://www-
didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf.

[125] Torque. (2007) TORQUE Resource Manager. http://www.clusterresources.com/pages/
products/torque-resource-manager.php.

[126] UsefulRP. (2007) GT 4.2-drafts MDS4 UsefulRP. http://www.globus.org/toolkit/docs/
development/4.2-drafts/info/usefulrp/index.html.

[127] Zhang, X., Freschl, J. L., Schopf, J. M. (2003) A performance study of monitoring and
information services for distributed systems. In Proceedings of 12th IEEE International
Symposium on High Performance Distributed Computing.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 4

PERFORMANCE-ORIENTED WORKLOAD
MANAGEMENT FOR MULTICLUSTERS AND GRIDS

Ligang He1 and Stephen A. Jarvis2
Department of Computer Science, University of Warwick

Coventry, CV4 7AL, UK

ABSTRACT

This chapter addresses the dynamic scheduling of parallel jobs with QoS demands
(soft-deadlines) in multiclusters and grids. Three performance metrics (over-deadline,
makespan and idle-time) are combined with variable weights to evaluate the scheduling
performance. These three metrics are used for measuring the extent of jobs’ QoS
demands compliance, resource throughput and resource utilization, respectively.
Therefore, clusters situated in different administrative organizations can utilize different
weight combinations to represent their different performance requirements. Two levels of
performance optimisations are applied in the multicluster. At the multicluster level, a
scheduler, (which we call MUSCLE), allocates parallel jobs with high packing potential
to the same cluster; MUSCLE also takes the jobs' QoS requirements into account and
employs a heuristic to allocate suitable workloads to each cluster to balance the
performance. At the local cluster level, a workload manager, called TITAN, utilizes a
genetic algorithm to further improve the scheduling performance of the jobs sent by
MUSCLE. The extensive experimental studies are conducted to verify the effectiveness
of the scheduling mechanism in MUSCLE; the results show that comparing with the
traditional workload allocation policies in distributed systems (Dynamic Least Load and
Weighted Random), the comprehensive scheduling performance (in terms of over-
deadline, makespan and idle-time) of parallel jobs is significantly improved and well
balanced across the multicluster.

1 E-mail address: liganghe@dcs.warwick.ac.uk
2 E-mail address: saj@dcs.warwick.ac.uk

Ligang He and Stephen A. Jarvis 62

INTRODUCTION

Clusters are increasingly being interconnected to create multicluster or grid computing

architectures. These constituent clusters may be located within a single organization or across
different administrative organizations [1, 2, 7]. Work management and scheduling is a key
issue in grid computing. Parallel jobs constitute a typical workload type which is often
encountered in the scheduling scenario. Parallel jobs can be classified into two categories:
rigid and moldable [12]. Rigid parallel jobs are run in the user-specified number of computers
while moldable jobs can be run in the variable number of computers, which is often
determined at run-time [12].

Qualities of service (QoS) are often requested by the jobs submitted to a grid system
[6][8]. An example of this is jobs with user-defined deadlines [2]. The QoS of a job is
satisfied if it finishes before the specified deadline while the QoS decreases as the excess (of
completion over deadline) increases. Therefore, over-deadline can be used to measure the
extent to which the QoS demands of a set of jobs are satisfied. Over-deadline is defined as the
sum of excess time of each job's finish time over its deadline.

The scheduling of parallel jobs has been extensively studied in a single cluster
environment [9, 10, 12, 14, 16]. In such a scenario, backfilling is a popular solution [10, 14]
and resource utilization is a commonly used system-oriented metric [12]. The backfilling
approach runs small jobs before larger jobs that arrive earlier to utilize otherwise idle
computers aiming to achieve higher resource utilization. Idle-time in a resource can be
viewed as the metric for measuring resource utilization [12]. However, backfilling is applied
to a single cluster and submitted jobs typically have no QoS requirements. A new mechanism
is necessary to address the dynamic scheduling of parallel jobs with QoS request in
multiclusters or grids.

An additional goal in job scheduling in computational grid environments is high resource
throughput. In these scenarios, makespan is a commonly used metric to measure resource
throughput [8]. Makespan is defined as the duration between the start time of the first job and
the finish time of the last executed job.

In the multicluster architecture assumed in this chapter, the constituent clusters may be
located in different administrative organizations and as a result be managed with different
performance criteria. In this scheduling work, we combine three metrics (over-deadline,
makespan and idle-time) with additional variable weights; this allows the resources in
different locations to represent different performance scenarios.

It may be the case that maximising user-oriented performance metrics (e.g., achieving a
low over-deadline) conflicts with the goal of maximising system-oriented metrics (e.g.
,obtaining low idle time or short makespans) [8, 12]. To some extent, if parallel jobs can be
packed tightly, the over-deadline can also be reduced. However, overemphasizing the packing
of parallel jobs may compromise performance improvements in terms of over-deadline. It is
therefore necessary to find the schedule that offers high comprehensive performance
according to the performance requirements of each individually managed resource.

In this chapter, the multicluster architecture is equipped with two levels of performance
optimisation. A MUlticluster SCheduling LEver (MUSCLE) is developed at the multicluster-
level to allocate jobs submitted to the multicluster to constituent clusters. MUSCLE is able to
allocate parallel jobs with high packing potential (i.e., they can be packed more tightly) to the

Performance-oriented Workload Management for Multiclusters and Grids 63

same cluster. It also takes the QoS demands of jobs into account and exploits a heuristic to
allocate suitable workload to each cluster. As a result, the comprehensive scheduling
performance (in terms of over-deadline, makespan and idle-time) of parallel jobs is
significantly improved and well balanced across the multicluster. When MUSCLE makes
scheduling decisions to distribute jobs to individual clusters, it also determines a seed
schedule for the jobs allocated to each cluster. These seed schedules are sent to the
corresponding clusters where a local workload manager (TITAN [13]) uses a genetic
algorithm to transform the schedule into one that improves the (local) comprehensive
performance.

In grid systems, the global scheduler usually has no control over the local schedulers.
This presents difficulties when designing effective schedulers for such an environment. The
two-level optimisation architecture developed in this chapter overcomes this difficulty.
MUSCLE has no control over the operations of the TITAN scheduler at each local cluster.
There is also no communication between global-level decision making (using MUSCLE) and
local-level optimisation (using TITAN).

Another challenge in grid scheduling is that jobs can be submitted from different
locations and so a grid scheduler generally lacks a complete view of the jobs in the grid. In
this chapter we preserve realistic usage patterns in that users are allowed to submit jobs to the
multicluster through MUSCLE or through the TITANs of each local cluster. If a job is
submitted through TITAN, another (existing) grid component called A4 (Agile Architecture
and Autonomous Agents) [3, 5] prompts MUSCLE as to the submission and provides
summary metadata (e.g., job size, arriving time) for the job. A4 is responsible for resource
advertisement and discovery as well as for transferring jobs (or job metadata) among
schedulers or resources if necessary. This chapter focuses on presenting the scheduling
mechanism found in MUSCLE. The detailed design of the A4 component is addressed in [3,
5].

A grid is a dynamic system with resources that change over time. The genetic algorithm
used in TITAN is an evolutionary process and is therefore able to deal with changes in the
resources in its domain (such as the addition/deletion/failure of processing nodes). MUSCLE
can also realize these changes via A4 so as to adjust its allocation operations accordingly.

The rest of this chapter is organized as follows. The system and workload model is
introduced in Section 2. Section 3 briefly presents the genetic algorithm used in TITAN. The
design of MUSLCE is proposed in Section 4. Section 5 presents the experimental results.
Finally, Section 6 concludes the chapter.

SYSTEM AND WORKLOAD MODEL

The multicluster architecture assumed in this chapter (shown in figure 1) consists of n

clusters, C1, C2, …, Cn; where a cluster Ci (1≤i≤n) consists of mi homogeneous computers
(i.e., the size of cluster Ci is mi), each with a service rate of ui. There are two scheduling levels
in the architecture; MUSCLE acts as the global scheduler for the multicluster while TITAN
schedules the jobs sent by MUSCLE within each local cluster. MUSCLE and TITAN are
interconnected through the A4 system. Users can submit parallel jobs to the multicluster
through MUSCLE or through TITAN. If a job is submitted via TITAN, MUSCLE is made

Ligang He and Stephen A. Jarvis 64

aware of it through metadata sent by the A4 agents. Also, if the resources (computers) in the
multicluster change (addition or deletion), MUSCLE is also made aware of this via A4.
Hence, the multicluster is a virtual organization from the perspective of users. The submitted
jobs will be judiciously allocated by MUSCLE to suitable clusters for the further scheduling
and execution. The PACE (Performance Analysis and Characterisation Environment) toolkit
[11, 14] is incorporated into the architecture to provide execution time predictions for the
submitted jobs. This performance prediction information is used to support the scheduling
decisions made by MUSCLE and TITAN.

Figure 1. The multicluster architecture.

Parallel jobs considered in this chapter are rigid. A parallel job, denoted by Ji, has the
following attributes:

• Job size (i.e., the requested number of computers to be run), denoted by si;
• Arrival time, denoted by ai;
• Execution time in cluster Cj (1≤j≤n) (predicted by PACE), denoted by etij; Soft-

deadline (QoS), denoted by di.

GENETIC ALGORITHM

This section briefly describes the genetic algorithm used in the TITAN [13]. A two

dimensional coding scheme is developed to represent a schedule of parallel jobs in a cluster.
Each column in the coding specifies the allocation of the processing nodes to a parallel job,
while the order of these columns in the coding is also the order in which the corresponding
jobs are to be executed. An example is given in figure 2 and illustrates the coding for a
schedule as well as the execution of the corresponding jobs.

Three metrics (over-deadline, makespan and idle-time) are combined with the weights to
form a comprehensive performance metric (denoted by CP), which is used to evaluate a
schedule. The CP is defined in Eq.1, where Γ, ω and θ are makespan, idle-time and over-

Performance-oriented Workload Management for Multiclusters and Grids 65

Figure 2. A case study for the coding scheme of a schedule as well as the corresponding execution on
computers (hosts).

deadline, respectively; and Wi, Wm and Wo are their weights. For a given weight combination,
the lower the value of CP, the better the comprehensive performance.

omi

omi

WWW
WWWCP

++
++Γ

=
θω (1)

A genetic algorithm is used in TITAN to find a schedule with a low CP. The algorithm

first generates a set of initial schedules (one of these is the seed schedule sent by MUSCLE
and others are generated randomly). The performance of a schedule, evaluated by the CP, is
normalized to a fitness function using a dynamic scaling technique which is shown in Eq.2,
where maxCP and minCP represent the best and the worst performance in the schedule set; and
CPk is the performance of the k-th schedule.

minmax

max

CPCP
CPCPf

k

k −
−

= (2)

In the genetic algorithm, the value of the fitness function of a schedule determines the

probability that the schedule is selected to create the next generation. Crossover and mutation
operations are performed to generate the next generation of the current schedule set. The
procedure continues until the performance improvement between two generations of schedule
sets is less than a predefined threshold. The crossover operation selects two schedules each
time from the current schedule set, cuts the schedules at a random location, merges the head
portion of one schedule with the tail portion of the other and then reorders the schedules to
produce two legitimate children. The mutation operation consists of two parts; one is to
exchange the execution order of two randomly selected jobs while the other involves
randomly adjusting the allocation of jobs to host computers. The probabilities of performing
crossover and mutation are predetermined.

Ligang He and Stephen A. Jarvis 66

DESIGN OF MUSCLE

The main operations performed by MUSCLE are as follows. First, MUSCLE determines

which parallel jobs can be packed into a computer space with a given size (i.e., available
computers of a given number). It is possible that in a set of parallel jobs, different
compositions of jobs can be packed into a given computer space. These possible
compositions of parallel jobs for packing into a given computer space are organized into a
composition table. The i-th row of the table corresponds to the possible compositions of
parallel jobs for packing into a computer space with size i. After the composition table is
constructed, MUSCLE searches the table for suitable parallel jobs when it wants to allocate
jobs into an available computer space in a cluster. When the computer space is available in
multiple clusters, MUSCLE orders the processing of the space using a heuristic.

Organizing Parallel Jobs

Suppose the maximum cluster size in the multicluster is mMAX and that at some time

point, p parallel jobs, J1, J2, …, Jp are in the queue in the multicluster (they are queued in
MUSCLE or TITAN). Algorithm 1 outlines the steps for constructing the composition table.
The p jobs are filled into suitable rows in the table. When trying to fill job Ji (with size si) into
the j-th row (i.e., packing the job into the computer space with size j), the algorithm checks if
there exists such a composition in the (j-si)th row that no job in the composition has appeared
in the j-th row. If such a composition exists, it indicates that Ji and the jobs in the composition
can be packed into the computer space with size j. Hence, Ji and these jobs are filled into this
row.

The composition table has mMAX rows. The r-th row (1≤r≤mMAX) corresponds to a
computer space with size r and it contains the compositions of jobs for packing into the
computer space. In this row, the total size of all jobs in every composition is r. A composition
in the composition table is located by a pair (r, l) and the composition is denoted by cps(r, l),
where r is the row number which the composition lies in and l is the position subscript of the
first job of the composition in the row. A job is not allowed to appear more than once in the
same row. This rule is to guarantee that a job will not be allocated to different computer
space.

Algorithm 1. Constructing the composition table
1. for each parallel job Ji (1≤i≤p) to be scheduled do
2. for each j satisfying 1≤j≤ mMAX do
3. if si = j
4. Append Ji to the tail of the j-th row of the table;
5. if si < j
6. r←j−si;
7. if the r-th row in the table is not NULL
8. if there is such a composition of parallel jobs in the r-th row, in which no job is

in the j-th row of the table;

Performance-oriented Workload Management for Multiclusters and Grids 67

9. Append Ji as well as the parallel jobs in the composition obtained in the r-th
row to the tail of the j-th row;

Table 1. The working example of all case studies in this chapter

Clusters C1 C2
Size 4 6
Service rate of computers 1 1

Jobs J1 J2 J3 J4 J5 J6
Job size 2 1 4 3 2 1
Execution time 2 4 4 6 2 4
Slack 6 8 14 12 4 8

There are two for-loops in Algorithm 1. Step 8 searches a row for the qualified

composition. In the worst case, the time taken by Step 8 is O(p). Hence, the worst-case time
complexity of Algorithm 1 is O(p2mMAX). Algorithm 1 is illustrated by the following case
study. The cluster setting and the parameters of the jobs in queue are listed in table 1, which
are used as the working example for all case studies in this chapter unless otherwise stated.
Table 2 shows the composition table after filling J1-J6.

Table 2. This is a sample table

1 J2 J5
2 J1 J5, J2 J6
3 J2, J1 J4 J6, J5
4 J3 J4, J2 J6, J1
5 J3, J2 J4, J1
6 J3, J1 J6, J4, J2

Searching the Composition Table

Job allocation proceeds as follows. First, MUSCLE finds the earliest available computer

space in each cluster. MUSCLE then searches the composition table for suitable jobs to
allocate to this space. If multiple clusters offer available computer space, a heuristic is used to
determine the cluster which should be processed first. After jobs are allocated to the computer
space in a cluster, the new earliest available computer space in that cluster is updated. The
heuristic is then called once again to determine the cluster to which MUSCLE should allocate
further jobs. The heuristic aims to balance the CP (see Eq.1) among the constituent clusters in
the multicluster. This subsection demonstrates how the composition tables are searched for
parallel jobs to allocate to a given computer space in a cluster. In subsection 4.3, a heuristic is
proposed to determine which cluster in the multicluster MUSCLE should process first.

The procedure of allocating jobs to a computer space with size r in a cluster proceeds as
follows (Algorithm 3). First, it searches the composition table from the r-th row up to the first
row to obtain the first row which is not null. Then, in this row, the algorithm selects the
composition in which the number of jobs having been allocated is the least. If the number is
zero (i.e., no jobs in the composition have been allocated), then these jobs are allocated to the

Ligang He and Stephen A. Jarvis 68

computer space. If a job, Ji, whose size is si, in the composition has been allocated, a function
(Algorithm 2) is called to search the si-th row for alternative jobs for Ji. The function is called
recursively if a composition cannot be found in the si-th row in which no job in it is allocated.
The recursive call ceases when there is only one composition in a searched row (i.e., there are
no alternative jobs) or when the composition consisting of unallocated jobs is found. If the
algorithm fails to allocate jobs to the computer space with size r, it continues by trying to
identify jobs to allocate to the computer space with size r=r-1. The searching procedure
continues until r reaches 0, which means that no jobs can be allocated to the given computer
space. After the jobs to allocate to a computer space have been determined, the schedule of
these jobs can also be calculated (Step 11 in Algorithm 3).

Algorithm 2 outlines the function of selecting alternative jobs for allocation in a given
composition, cps(r, l). Algorithm 3 outlines the allocation of jobs to the given composition in
a cluster. A computer space is represented by cs(t, r, cp), where t is the time when the space is
available, r is the size of the space and cp is the computer number that the space starts from.
After Algorithm 3 is finished, array q contains the jobs allocated to the computer space.

As can be seen from the above description, Algorithm 3 always attempts to identify the
jobs that maximally occupies the given computer space. By doing so, the number of
computers left idle is minimized. Consequently, the jobs sent to a cluster are tightly packed.

Algorithm 2. Getting the alternative jobs for the allocated jobs in a composition cps(r, l)
Input: the position of the composition in the composition table (r, l); an array, q (used to

contain alternative jobs).
Output: if succeed, return 1; otherwise, return 0; (array q contains partial alternative jobs).
1. lc←l; noway←0;
2. while lc does not reach the end of the composition and noway equals 0
3. Get the job Ji pointed by lc;
4. if Ji has not been allocated
5. Append Ji to array q;
6. else if there is only one composition in the si-th row of the composition table (si is the

size of Ji), which consists of Ji itself
7. noway←1;
8. else
9. In the si-th row (except the composition consisting of Ji itself), get such a

composition cps(si, l) in which the number of allocated jobs is minimum (if more
than one compositions have the same minimum number, select the one first found);

10. if the number of allocated jobs in cps(si, l) is 0
11. Append the jobs in the composition cps(si, l) to array q;
12. else
13. Call Algorithm 2 with (si, l) and array q as the inputs;
14. if its output is 0
15. noway←1;
16. lc←lc+1;
17. end while;
18. if noway equals 0
19. return 1;

Performance-oriented Workload Management for Multiclusters and Grids 69

20. else
21. return 0;
Algorithm 3. Getting the alternative jobs for the allocated jobs in a composition cps(r, l)
Input: the computer space (t, r, cp); an array, q (used to contain jobs allocated to the
computer space).
1. rc←r;
2. while the rc-th row is NULL
3. rc←rc−1;
4. Get such a composition of jobs in which the number of allocated jobs is minimum in the

rc-th row (if more than one compositions have the same minimum number, select the one
first found; suppose the composition obtained is cps(r0, l));

5. if the number of allocated jobs in the composition is 0
6. Put the jobs in the composition to array q;
7. else
8. Call Algorithm 2 with (r0, l) and array q as inputs;
9. if Algorithm 3 returns 0
10. rc←rc−1; Go to Step 2;
11. The starting time of these found jobs is t; these jobs are allocated to the computers in the

order they are in array q, starting from computer cp.
The time complexity of Algorithm 3 (including Algorithm 2) is based on the number of

jobs that are allocated. The best-case time complexity is O(1) while the worst-case time
complexity is O(p2nMAX), since the worst case involves searching the whole composition
table.

Figure 3. The case study for Algorithms 2 and 3.

A case study is given below to illustrate Algorithm 2 and 3. The constructed composition
table is table 2. Suppose job J3 and J4 have been allocated. Algorithm 3 tries to find the jobs
to allocate to a computer space cs(0, 6, 1), i.e., the computer space is available at time 0; its
size is 6 and it starts from the computer numbered 1. In the sixth row of the table, there are
two compositions {J3, J1} and {J6, J4, J2}. The number of allocated jobs in both compositions
is 1. The first composition is selected; this is {J3, J1}. Since J3 has been allocated, Algorithm
2 is called to search the forth row (4 is the size of J3) for alternative jobs for J3. All
compositions, except {J3} that contains itself, are considered in this row. The number of
allocated jobs in the remaining compositions is 1 (J1 is also regarded as the allocated job
since it has been used in the selected composition, {J3, J1}). The composition {J4, J2} is
selected. Since J4 has been allocated, Algorithm 2 is called again (in Step 13) to search the
third row for the alternative jobs for J4. The composition {J6, J5} is now selected. The
recursive call of Algorithm 2 ceases as neither J6 nor J5 are allocated.

Ligang He and Stephen A. Jarvis 70

As shown in Step 11 in Algorithm 3, the starting times of these jobs {J6, J5, J2, J1} are 0.
J6 is allocated to computer 1-2, J5 to computer 3, J2 to computer 4 and J1 to computer 5-6.
Therefore, the scheduling of these jobs is determined. After that, the earliest available
computer space in the cluster is updated. The pre-scheduling of these jobs forms part of the
seed schedule sent to the TITANs at the local clusters.

Employing a Heuristic to Balance the Performance

In each local cluster, TITAN uses a genetic algorithm to adjust the seed schedule sent by

MUSCLE, aiming to further improve the CP. Although MUSCLE has no control over the
detailed operations of the genetic algorithm, it analyses the objective factors influencing the
performance and allocates different levels of workloads to each cluster through a heuristic so
that the CP can be well balanced among the constituent clusters.

The fundamental attributes of the workload (parallel jobs) allocated to a cluster include:

• The number of jobs, denoted by jn;
• The sum of execution times of all jobs, denoted by et_sum;
• Total slacks (relating to the QoS of jobs), denoted by slk_sum (the slack of a job is its

deadline minus its execution time and its arrival time);
• Total job sizes, denoted by size_sum.

The fundamental attribute of a cluster is the number of computers (the attribute of the

service rate of computers has been reflected in the execution times of jobs).
The scheduling performance achieved in a cluster is determined by the resultant forces of

these fundamental attributes. In addition to this, the packing potential for the parallel jobs
allocated to a cluster is also considered a critical factor. This problem however is solved by
Algorithm 3, which always selects the jobs which can maximally occupy a given computer
space so that the jobs sent to a cluster can be packed tightly.

Table 3. Workload allocation trends by comparing the current attribute values

Attribute Definition Value Workload allocation trend
jn The number of jobs Low More
et_sum The sum of execution times Low More
slk_sum The sum of slacks Low Less
size_sum The sum of job sizes Low More
mi The cluster size Low Less

If separately comparing the values of these attributes among clusters, the workload

allocation should follow the following trend, listed in table 3, where “Low” in the “Value”
field means that the value of the attribute in a cluster is lower than that in other clusters;
“More” means more workloads should be allocated to the corresponding cluster. These
attributes are integrated to form a new metric (denoted by ε), shown in Eq.3, where the
attributes whose value are “More” in the “Workload allocation trend” fieldis are placed in the

Performance-oriented Workload Management for Multiclusters and Grids 71

numerator while others are placed in the denominator. Let ε be 0 if slk_sum is 0 (no jobs are
allocated).

imsumslk
sumsizesumetjn

×
××

=
_

__ε (3)

when multiple clusters can offer available computer space, the cluster with the smallest ε is
given the highest priority and will be allocated the jobs. Such an integration of these attributes
is consistent with the allocation trends in table 3. When more than one cluster has the same
value of ε, the cluster with the greatest size is given the highest priority. If multiple clusters
are still of the same size, a cluster is selected randomly. The complete scheduling procedure
of MUSCLE is outlined in Algorithm 4.

Algorithm 4. The complete scheduling procedure of MUSCLE
1. while the current makespans of all clusters are greater than a predefined valve
2. Waiting;
3. Collecting the current jobs in queue in the multicluster;
4. Call Algorithm 1 to construct the composition table for the clusters whose current

makespans are less than the predefined valve;
5. Get the earliest available computer space in each cluster;
6. do
7. Calculate ε using Eq.3 for each cluster and get the cluster with the minimal ε, Ci;
8. Call Algorithm 3 to allocate jobs to the earliest available computer space in Ci;
9. Update the earliest available computer space in Ci;
10. Update the current value of workload attributes in each cluster;
11. while not all jobs have been allocated;
12. Go to Step 1;

The time of Algorithm 4 is mainly taken by Step 4 and Step 8 in the do-while loop. Their

time complexities have been analysed in subsection 4.1 and 4.2. A case study is presented
below to illustrate Algorithm 4. The working example has been listed in table 1. The
corresponding composition table is table 2. Figure 4 shows the evolution of the job
scheduling in C1 and C2 (figure 4.1 and 4.2 are for C1; and figure 4.3 and 4.4 for C2).

Table 4 shows the evolution of the values of the workload attributes, ε and earliest
available computer space (the cs field in table 4). Initially, there is no workload in both
clusters. The earliest available computer spaces in C1 and C2 are (0, 4, 1) and (0, 6, 1),
respectively. C2 has the higher priority. Therefore, in this round MUSCLE calls Algorithm 2
to search table 2 for the jobs to allocate to the space (0, 6, 1). Consequently, J3 and J1 are
found and allocated to the space. The schedule of these jobs in C2 is shown in figure 4.3.
After the allocation, MUSCLE obtains the new earliest available computer space in C2, which
is (2, 2, 5). MUSCLE also updates the values of the workload attributes in C2 (i.e., jn, et_sum,
slk_sum and size_sum; their current values are shown in Column “Round 2” of table 4) to get
the new value of ε. Since ε for C1 is less than that for C2 at this time, MUSCLE search the
composition table for jobs to allocate to the earliest available computer space in C1, which is
(0, 4, 1). J4 and J2 are obtained and their schedule in C1 is shown in figure 4.1. Similarly, the

Ligang He and Stephen A. Jarvis 72

earliest available computer space and ε in C1 are updated. MUSCLE compares the current
values of ε in these two clusters to select a computer space. The procedure continues until all
jobs are scheduled.

Figure 4. Evolution of job scheduling in Cluster C1 and C2; (1) and (2) are for C1; (3) and (4) for C2.

Table 4. Evolution of the values of the workloads attributes, ε and

earliest available computer space (cs) during the job allocation

 Round 1 Round 2 Round 3 Round 4 Round 5
jn 0 0 2 2 3
et_sum 0 0 10 10 12
slk_sum 0 0 20 20 24
size_sum 0 0 4 4 5
mi 4 4 4 4 4
ε 0 0 1 1 1.88

C1

cs (0, 4, 1) (0, 4, 1) (4, 1, 4) (4, 1, 4) (6, 4, 1)
jn 0 2 2 3 3
et_sum 0 6 6 12 12
slk_sum 0 20 20 28 28
size_sum 0 6 6 8 8
mi 6 6 6 6 6
ε 0* 0.6 0.6 1.71 1.71

C2

cs (0, 6, 1) (2, 2, 5) (2, 2, 5) (4, 4, 1) (4, 4, 1)

Performance-oriented Workload Management for Multiclusters and Grids 73

After Algorithm 4 is finished, the seed schedules in both clusters are determined, which
are shown in figure 4.2 and 4.4. It can be seen that these jobs have been packed tightly. These
seed schedules will be sent to TITANs situated in C1 and C2 for further performance
improvement.

EXPERIMENTAL STUDIES

A simulator is developed to evaluate the performance of the scheduling mechanism in

MUSCLE. The presented experimental results focus on showing the performance advantages
of the scheduling mechanism in MUSCLE over the scheduling policies frequently used in
distributed systems. Weighted Random (WRAND) and Dynamic Least Load (DLL) policies
are two selected representatives. The advantages of TITAN over other typical cluster-level
schedulers have been presented in [13].

In the experiments, the generated parallel jobs are submitted to the multicluster.
MUSCLE, DLL or WRAND are used as the multicluster-level scheduling policies
respectively while in all cases TITAN is used as the cluster-level scheduler in each local
cluster. The combination of the weights for the over-deadline, the makespan and the idle-time
is denoted by (Wo, Wm, Wi).

The workloads in the experiments are generated as follows. 20,000 parallel jobs are
generated; the submissions of parallel jobs follow Poisson process with the average arrival
rate λ; job size is generated following a uniform distribution in [MIN_S, MAX_S], and the
execution times of jobs in cluster C1 follow a bounded Pareto distribution, shown below,
where el and eu are the lower and upper limit of the execution time x.

1

)/(1
)(−−

−
= α

α

αα
x

ee
e

xf
ul

l

It is shown in [15] that the distribution can better represent the realistic workload model

than the exponential distribution. If a job is scheduled to another cluster consisting of
computers with the service rate uj, the execution time is determined through multiplying by
the ratio between u1 and uj (i.e., u1/uj). A job’s deadline, di is determined by Eq.4, where dr is
the deadline ratio. dr follows the uniform distribution in [MIN_DR, MAX_DR]. The range is
used to measure the deadline range.

di=max{etij}×(1+dr) (4)

Table 5. the Multicluster setting

Clusters C1 C2 C3 C4
Size 20 16 12 10
Service rate ratio 1.0 1.2 1.4 1.6

The multicluster in the experiments uses the setting in table 5 unless otherwise stated.

Ligang He and Stephen A. Jarvis 74

Dynamic Least-Load (DLL) is a scheduling policy extensively used in heterogeneous
systems [7, 15]. The workload in cluster Ci, denoted as Li, is computed by Eq.5. When a
parallel job is submitted to the multicluster, the DLL policy schedules the job to the cluster
whose workload is the least and whose size is greater than the size of the job.

i

WQJ

ii

i
m

ue
L ii

∑
∈= WQi is the set of jobs allocated to cluster Ci (5)

Weighted Random (WRAND) scheduling policy is another frequently used scheduling

policy in distributed systems [7, 15]. In the policy, the probability that a job is scheduled to a
resource is proportional to its processing capability. The processing capability of a cluster is
determined by the sum of the processing capability of all constituent computers. When a job
arrives at the multicluster system, the WRAND policy first picks out all clusters whose sizes
are greater than the job size (suppose these clusters are Ci1, Ci2, …, Cij), and then schedules
the job to a cluster Cik (1≤k≤j) satisfying the probability below.

∑ =

= j

k ikik

ikik

um
um

1

Pr

The performance metrics evaluated in the experiments are the mean comprehensive

performance (MCP) and performance balance factor (PB). Each time MUSCLE sends seed
schedules to TITANs in individual clusters Ci (1≤i≤n). TITANs further improve the
performance in terms of the CP. When the performance improvement between two
generations of schedule sets is less than a threshold, the CP performance for cluster Ci,
denoted by CPi, is recorded. The MCP is the average of CPi (1≤i≤n), calculated by Eq.6,
where pi is the number of jobs allocated to Ci. The procedure continues until all generated
jobs are processed. Each point in the performance curves is plotted as the average of the MCP
obtained each time.

∑=
×=

n

i
i

i p
p

CPMCP
1

 (6)

The PB is defined as the standard deviation of CPi, shown in Eq.7.

∑=
−

−
=

n

i i MCPCP
n

PB
1

2)(
1

1 (7)

Workload Levels

Figure 5.a and figure 5.b demonstrate the performance difference among MUSCLE, DLL
and WRAND scheduling policies under different workload levels. The performance is
evaluated in terms of mean comprehensive performance (MCP) and performance balance
factor (PB). The workload level is measured by the average arrival rate, by which the average

Performance-oriented Workload Management for Multiclusters and Grids 75

Figure 5. The comparison among MUSCLE, DLL and WRAND under different workload levels in
terms of (a) mean comprehensive performance (MCP), and (b) performance balance factor (PB); (Wo,
Wm, Wi)=(4, 3, 1); el/eu=5/100; MIN_S/MAX_S=1/10; MIN_DR/MAX_DR=0/5; The cluster size and
service rate are same as those in table 5.

job number in the queue in the multicluster is also determined. The x-axis of these figures is
labelled by the mean job number in queue.

It can be seen from figure 5.a that MUSCLE outperforms DLL and WRAND under all
workload levels. This is because that the jobs are packed tightly in the seed schedules sent by
MUSCLE to individual clusters. Therefore, the further improvement in each cluster is based
on an excellent “seed”. However, the jobs sent by DLL or WRAND to each cluster are
random in terms of whether they can be packed tightly. This reduces the possibility of
achieving a high MCP in the multicluster.

Ligang He and Stephen A. Jarvis 76

A further observation from figure 5.a is that the advantage of MUSCLE over other
policies becomes increasingly pronounced as the workload increases. When the mean job
number in queue is 40, MUSCLE outperforms DLL in terms of the MCP by 12.1% and
outperforms WRAND by 8.4%. When the mean job number is 100, the performance
advantages are up to 56.7% and 48.9% comparing with DLL and WRAND respectively. This
is because that when the job number in queue increases, MUSCLE can gather more
information regarding parallel jobs and as a result make better allocation decisions among
clusters.

As can be observed from figure 5.b, when the mean job number in queue is less than 60
(the workload is low), the performance balance factor (PB) achieved by MUSCLE is slightly
worse than that by DLL. However, when the mean job number is greater than 60, MUSCLE
significantly outperforms DLL. When the mean job number in queue is 100, the advantages
of MUSCLE over DLL and the WRAND are up to 202.7% and 199.2%, respectively. This
can be explained as follows. DLL allocates the jobs to clusters according to the ratios of the
workloads in the clusters to their processing capabilities, which is beneficial to obtaining the
balanced resource throughput and resource utilization. When the workload is low, a small
number of jobs miss their deadlines and the MCP is mainly caused by makespan (resource
throughput) and idle time (resource utilization). Therefore, DLL shows more balanced MCP
performance (though this does not mean DLL achieves higher overall MCP performance).
However, as the workload increases further, more jobs miss their deadlines. The DLL policy
ignores the QoS demands of these jobs. In contrast, MUSCLE takes the QoS demands into
account so that the MCP performance remains balanced among the clusters when the over-
deadline gradually becomes a significant portion in the MCP performance.

Deadlines

Figure 6 compares the performance of MUSCLE, DLL and WRAND under different
deadline ranges, which is measured by the value range of dr in Eq.4. Figure 6.a and b
demonstrate the results in terms of the MCP while figure 6.c and d are for the results in terms
of the PB. In figure 6.a and c, the mean job number in queue is 40 while the number is 100 in
figure 6.b and d.

A general observation from figure 6.a and b is that the MUSLCE performs better than
DLL and WRAND in terms of MCP. Further observations show that the advantages are
different under different combinations of workload levels and deadlines. When the workload
is low and the deadline is loose (this is the case in figure 6.a where the mean job number in
queue is 40 and the deadline range is [0, 5]), the advantage is low. This is because that in this
case, the over-deadline, makespan and idle-time are all low. Hence, the potential of MUSCLE
cannot be fully released. When the deadlines become more urgent relative to the workload
(this is the case in figure 6.a where the mean job number in queue is 40 and the deadline
ranges are [0, 1] and [0, 3], also the case in figure 6.b where the number in queue is 100 and
the deadline parameter is [0, 5]), the advantage of MUSCLE over DLL and WRAND
becomes increasingly prominent. However, when the deadlines become even shorter relative
to the workload (this is case in figure 6.b where the mean job number in queue is 100 while
the deadline range is less than [0, 5]), the advantage of MUSCLE diminishes. This is because
that the workload is saturated relative to the urgent deadlines and the finish times of many
jobs exceed their deadlines by a large amount. This performance deterioration is due to the
overloading and the scheduling policies do little in this situation.

Performance-oriented Workload Management for Multiclusters and Grids 77

Figure 6. Performance comparison among MUSCLE, the DLL and the RAND under different deadline
ranges; (a) and (b) are for the comparison in terms of the MCP; the mean job number in queue is 40 in
(a) and 100 in (b); (c) and (d) are for the comparison in terms of the PB; the mean job number in queue
is 40 in (c) and 100 in (d); (Wo, Wm, Wi)=(4, 3, 1); el/eu=5/100; MIN_S/MAX_S=1/10.

As for the performance in terms of the PB (shown in figure 6.c and d), MUSCLE
significantly outperforms DLL and WRAND under all workloads and deadline ranges (except
when the workloads are low and the deadlines are loose). This is because that comparing with
the DLL and the WRAND policies, MUSCLE is able to distribute the workload evenly
among the multicluster by taking the QoS demands of the jobs into account.

Different Performance Goals

In the multicluster architecture, different clusters can use different weight combinations
to cater to their performance goals. Figure 7 compares the performance of MUSCLE, DLL
and WRAND when the constituent clusters in the multicluster utilise the different weights,
shown in table 6, to get the MCP. Figure 7.a, b and c show the performance comparison in
terms of the MCP while figure 7.d, e and f are for the comparison in terms of the PB. The
experiments are conducted under the low, medium and heavy workload levels (the mean job
number in queue is 40, 100 and 160, respectively).

Ligang He and Stephen A. Jarvis 78

Figure 7. Performance comparison of MUSCLE, the DLL and WRAND in terms of MCP and PB;
el/eu=5/100; MIN_S/MAX_S=1/10; MIN_DR/MAX_DR=0/5.

Table 6. The weight combinations in figure 7

 C1 C2 C3 C4
(Wo, Wm, Wi) (12, 3, 1) (8, 3, 1) (4, 3, 1) (1, 3, 1)

As can be observed from figure 7.a, b and c, the performance of MUSCLE is superior to

other policies in all cases in terms of the MCP. Furthermore, the advantage of MUSCLE over
DLL and WRAND is different under different workload levels. When the mean job number
in queue is 40, the advantage of MUSCLE over DLL is 15.6% while the advantage increases
up to 57.5%, when the job number is 100. When the workload increases further and the mean

Performance-oriented Workload Management for Multiclusters and Grids 79

job number in queue is 160, the advantage of MUSCLE over DLL decreases to 13.7%. These
results are consistent with the experimental results demonstrated in Subsection 5.2.

The results for performance comparison in terms of the PB among MUSCLE, DLL and
WRAND demonstrate the similar pattern as that shown in figure 6.c and d. When the mean
job number in queue is 40, the performance of MUSCLE in terms of the PB is worse than that
of DLL (MUSCLE still outperforms DLL in terms of the MCP though). Under other
workloads, MUSCLE performs significantly better than DLL and WRAND. These are also
consistent with the results in figure 5.b as well as figure 6.c and d.

CONCLUSION

A multicluster-level scheduler, called MUSCLE, is described in this chapter for the

scheduling of parallel jobs with QoS demands in multiclusters, in which the constituent
clusters may be located in different administrative organizations. Three metrics (over-
deadline, makespan and idle-time) are combined with variable weights to evaluate the
scheduling performance. MUSCLE is able to allocate jobs with high packing potential to the
same cluster and further utilizes a heuristic to control the workload distribution among the
clusters. Extensive experimental studies are carried out to verify the performance advantages
of MUSCLE. The results show that compared with the traditional scheduling policies in
distributed systems, the comprehensive performance (in terms of over-deadline, makespan
and idle-time) is significantly improved and the jobs are well balanced across the
multicluster.

REFERENCES

[128] M. Barreto, R. Avila, and P. Navaux, “The MultiCluster model to the integrated use of
multiple workstation clusters,” Proc. of the 3rd Workshop on Personal Computerbased
Networks of Workstations (2000) pp71–80

[129] R. Buyya and M. Baker, “Emerging Technologies for Multicluster/Grid Computing,”
Proceedings of the 2001 IEEE International Conference on Cluster Computing, (2001)

[130] J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance Evaluation of an Agent-Based
Resource Management Infrastructure for Grid Computing,” Proc. of 1st IEEE/ACM
International Symposium on Cluster Computing and the Grid, (2001)

[131] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd, “Performance Modeling of
Parallel and Distributed Computing Using PACE,” Proceedings of 19th IEEE Intl
Performance, Computing, and Communications Conference, (2000)

[132] J. Cao, D. P Spooner, S. A Jarvis, G. R Nudd, “Grid load balancing using intelligent
agents,” Future Generation Computer Systems, Special Issue on Intelligent Grid
Environment: Principles and Applications, 21, 1, (2005) pp135-149

[133] A. Dogan, F. Özgüner, “On QoS-Based Scheduling of a Meta-Task with Multiple QoS
Demands in Heterogeneous Computing,” International Parallel and Distributed
Processing Symposium (2002)

Ligang He and Stephen A. Jarvis 80

[134] L. He, S. A. Jarvis, D. P. Spooner, G. R. Nudd, “Optimising static workload allocation
in multiclusters,” Proceedings of 18th IEEE International Parallel and Distributed
Processing Symposium (2004)

[135] X. He, X. Sun, and G. Laszewski, “QoS Guided Min-Min Heuristic for Grid Task
Scheduling,” Journal of Computer Science and Technology, Special Issue on Grid
Computing, 18, 4 (2003)

[136] B. G. Lawson and E. Smirni, “Multiple-queue Backfilling Scheduling with Priorities
and Reservations for Parallel Systems,” In the 8th Job Scheduling Strategies for
Parallel Processing (2002)

[137] A. W. Mu'alem and D. G. Feitelson, “Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling,” IEEE Trans. Parallel
and Distributed Syst. 12, 6 (2001) pp 529-543

[138] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, J. S. Harper, S. C. Perry and D. V.
Wilcox, “PACE: A Toolset for the Performance Prediction of Parallel and Distributed
Systems,” Intl Journal of High Performance Computing Applications (1999)

[139] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the
performance of parallel job scheduling,” Workshop on Job Scheduling Strategies for
Parallel Processing (2003) pp228-251

[140] D. P Spooner, S. A Jarvis, J Cao, S Saini, G. R Nudd, “Local Grid Scheduling
Techniques using Performance Prediction,” IEE Proc. Comp. Digit. Tech., 150, 2
(2003) pp87-96

[141] D. Talby and D. G. Feitelson, “Supporting priorities and improving utilization of the
IBM SP2 scheduler using slack-based backfilling,” In 13th Intl. Parallel Processing
Symp (1999) pp513-517

[142] X.Y. Tang, S.T. Chanson, “Optimizing static job scheduling in a network of
heterogeneous computers,” 29th Intl Conference on Parallel Processing (2000)

[143] W. Ward, C. Mahood, and J. West, “Scheduling Jobs on Parallel Systems Using a
Relaxed Backfill Strategy,” In the 8th Job Scheduling Strategies for Parallel
Processing (2002).

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 5

VIRTUALIZING SCIENTIFIC APPLICATIONS AND DATA
SOURCES AS GRID SERVICES

Siegfried Benkner1, Gerhard Engelbrecht2
Martin Köhler3 and Alexander Wöhrer4

Institute of Scientific Computing, University of Vienna, Austria

ABSTRACT

Service-oriented Grid computing promises to change the way scientists will tackle future

research challenges by offering advanced data and application services, providing transparent
access to distributed heterogeneous data sources and to high-end computing facilities for
performing computationally demanding and data-intensive modeling, simulation and analysis
tasks. In this article we describe the Vienna Grid Environment (VGE), a service-oriented Grid
infrastructure based on standard Web Services technologies for virtualizing scientific
applications and data sources as Grid services that hide the details of the underlying software
and hardware infrastructure. The VGE service provision framework adopts a component-
based approach which supports the configuration of application and data services from a set
of basic service components providing capabilities like job or query execution, data transfers,
QoS negotiation, data staging, and error recovery. VGE relies on a business-oriented model to
Grid computing based on a flexible QoS infrastructure, dynamic negotiation of service-level
agreements, and on-demand access to Grid services. VGE has been developed and utilized in
the context of several European projects for the realization of Grid infrastructures within
medical and bio-medical application domains.

1 E-mail address: sigi@par.univie.ac.at
2 E-mail address: gerry@par.univie.ac.at
3 E-mail address: koehler@par.univie.ac.at
4 E-mail address: woehrer@par.univie.ac.at

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 82

INTRODUCTION

Grid computing infrastructures promise to offer seamless access to globally distributed IT

resources including clusters, supercomputers, high-speed networks, scientific applications,
data and information repositories as well as scientific instruments and sensors. Grid
computing technologies cover a wide spectrum ranging from computational Grids, to Data
Grids to Collaborative Grid environments. Computational Grids, for example the NSF’s
TeraGrid in the US, focus on the provision of superior computational capabilities beyond the
limits of single computing systems by dynamically aggregating the power of a large number
of individual computers in order to provide a platform for advanced high-performance and/or
high-throughput applications. Data Grids, as for example the European Data Grid managed
by CERN, focus more on managing and sharing of vast quantities of data for a globally
distributed scientific community. Collaborative Grids aim at establishing a virtual
environment which enables geographically dispersed individuals or groups of people to
cooperate within virtual laboratories or to control and manage remote equipment, sensors, and
instruments.

The evolution of Grid technologies over the last years was characterized by a shift
towards the adoption of a service-oriented paradigm and the increasing utilization of
commercial Web Services technologies as base technologies. The Open Grid Services
Architecture (OGSA) [154], proposed by the Open Grid Forum, now relies on a service-
oriented architecture and on standard Web service technologies. The Web Services Resource
Framework [203], initiated by the Grid community and standardized by OASIS, represented a
significant step for bringing Grid technologies and Web Services together. Service-oriented
architectures facilitate the virtualization of heterogeneous IT resources by providing abstract
interfaces that hide the implementation details of services and their underlying physical
infrastructure and execution environment [162].

In this article we describe the Vienna Grid Environment (VGE), a service-oriented Grid
infrastructure for virtualizing scientific applications and data sources as Grid services that
provide a common set of generic interfaces, hiding the details of the underlying software and
hardware infrastructure. VGE adopts a service-oriented architecture based on standard Web
Services and Grid technologies and offers an infrastructure for the provision, deployment and
management of application and data services. Application services may be accessed and
configured on demand subject to a client’s Quality of Service (QoS) requirements. VGE
services are composed of a set of basic service components providing capabilities for data
movement, job and query execution, monitoring, and error recovery. Resources virtualized by
the VGE infrastructure include compute-intensive scientific applications and their associated
compute resources (clusters, supercomputers, computational Grids), as well as scientific data
and information resources, e.g. for long term persistence of research results and their
connected input data. The VGE middleware offers a generic service provision framework that
supports the provision and deployment of application and data services. By leveraging an
intuitive graphical user interface, compute-intensive simulation and analysis applications
available on clusters or other HPC hardware may be automatically exposed as Grid Web
Services to be securely accessed by remote clients over the Internet. In a similar way, data
services may be provided in order to enable transparent access to and integration of various
information sources including relational data bases, XML data bases and flat files. For the

Virtualizing Scientific Applications and Data Sources as Grid Services 83

construction of client side applications that interact with application and data services, a high-
level client API hides the complexity of dealing with remote data and application services
from the client application developer.

As opposed to a model of cost free sharing of Grid resources, VGE assumes a business-
oriented model to Grid computing where clients are willing to pay for services, provided the
required QoS levels can be offered. Service providers expose parallel simulation applications
running on clusters as QoS-enabled application services, capable of dynamically negotiating
with clients guarantees on service response time and price. Grid clients are able to choose
from several service providers before agreeing to select a specific service. The associated
VGE QoS infrastructure relies on a reservation based approach coupled with application
specific performance models, advanced reservation mechanisms, and client-driven
negotiation of service level agreements (SLAs).

VGE data services facilitate access to and integration of heterogeneous data sources. Data
services support the same access patterns, transfer protocols and security mechanisms as
application services and are built upon OGSA-DAI [159], the de-facto standard for data
access and integration in Grid environments. Going beyond OGSA-DAI, VGE data mediation
services offer transparent access to multiple data sources via a virtual global schema.

The VGE application service infrastructure has been initially developed in the context of
the European GEMSS project [145][149] for Grid-enabling advanced medical simulation
applications to improve pre-operative planning and near real-time surgery support. Currently,
components of VGE are utilized and further developed in the EU project @neurIST [144],
which aims at realizing an advanced service-oriented Grid infrastructure for the management
of all processes linked to research, diagnosis and treatment of complex, multi-factorial
diseases encompassing data repositories, computational analysis services and information
systems handling multi-scale, multi-modal information at distributed sites.

The remainder of this chapter is structured as follows: In the next section we describe the
overall architecture of VGE and the underlying service component and access models. We
then describe application services, the associated QoS infrastructure and the negotiation of
service-level agreements. This is followed by a description of data services with a special
focus on data mediation as well as on distributed query processing. In addition, we provide an
overview of the VGE client side programming environment. Finally, we report on the use of
the presented technologies within the European projects GEMSS and @neurIST and discuss
related work.

VGE GRID INFRASTRUCTURE

The VGE Grid infrastructure comprises a generic service provision framework and a

client-side Grid programming environment. The service provision environment enables
service providers to expose compute intensive scientific applications available on HPC
systems as well as distributed data sources as services that can be securely accessed on-
demand by clients over the Internet. The client-side Grid programming framework offers a
high-level application programming interface (API) that may be used to construct advanced
Grid applications from application and data services.

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 84

Architecture

VGE adopts a service-oriented architecture and relies on standard Web Service

technologies for virtualizing parallel applications and distributed heterogeneous data sources
as services. VGE distinguishes two different types of services, application services and data
services, which both are defined via WSDL and securely accessed using SOAP messages.

Application services virtualize compute intensive applications, usually parallel MPI
codes available on clusters or other HPC systems. Using application services, clients may run
applications on demand over the Internet and negotiate with service providers required QoS
levels, for example, to ensure that an application job is completed before a certain deadline.
VGE application services are comprised of generic service components providing interfaces
for job execution, monitoring, data staging, error recovery and application-level quality of
service support.

Data services virtualize data sources as Grid services, facilitating transparent access to
and integration of heterogeneous data sources including relational data bases, XML data
bases and flat files. Relying on advanced mediation mechanisms, data services provide
transparent access to distributed data sources via a single integrated virtual schema. VGE data
services are comprised of generic service components providing interfaces for query
execution, data movement, and staging of result data.

Figure 1. A VGE Grid comprising application and data services.

As shown in figure 1, a VGE Grid usually comprises multiple application and data
services, multiple clients, one or more service registries for maintaining a list of service
providers and the services they support, and a certificate authority for providing an
operational PKI infrastructure and end-to-end security based on X.509 certificates.

The VGE environment provides mechanisms for service discovery based on services
registries. Multiple service registries may be set up in order to enable service providers to

Virtualizing Scientific Applications and Data Sources as Grid Services 85

publish their services, and clients to discover these services. VGE service registries are
realized as Web Services. Service providers can describe their services using an arbitrary set
of attributes (name/value pairs) which are published in the registry. These attributes are
utilized during service selection to determine potential candidate services that might be able
to fulfill a request.

VGE services, being Web Services, are hosted within a preconfigured service container,
which comes with the VGE distribution. VGE client applications usually run on PCs or
workstations connected to the Internet and make use of the VGE client API for interacting
with services through the VGE middleware.

Figure 2 shows a layered abstraction of the VGE infrastructure. At the lower layer are a
variety of data and information sources as well as simulation and modeling applications and
the associated hardware infrastructure. These resources are virtualized through the Grid
middleware layer and transparently accessed through the abstraction of application and data
services by client applications. Application and data services are composed of generic service
components providing basic capabilities for job and query execution, QoS, data mediation,
data transfer, monitoring and error recovery.

Figure 2. Layered abstraction of VGE.

The VGE middleware has been implemented mainly in Java and relies on standard Web
Services technologies including SOAP, WSDL, WS-Addressing and WS-Security. VGE
services comply with the Web Service Interoperability (WS-I) profile. The open-source
frameworks Apache/Tomcat and Axis are utilized for service hosting and deployment. The
VGE distribution is available for various Linux platforms as well as for Windows.

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 86

Service Component Model

VGE services adhere to a component model which supports the configuration and

composition of application and data services based on a set of generic service components
supporting common operations for data transfers between clients and services, job or query
execution, data staging, monitoring, QoS management, and error recovery.

The service component model conceptually follows the WSRF model, which defines a
“generic and open framework for modeling and accessing stateful resources using Web
services…” [203].

The VGE service component model as depicted in figure 3 shows that a service is
composed of a set of service components each accessing one ore more resources. A resource
may be accessed by more than one service component in different ways, but each service
component has only one associated resource. Every service component provides a separate
WSDL document (interface) specifying the service component's operations. Consequently,
the composite WSDL document, which is actually the union of all component WSDLs,
provides the capabilities and operations of the overall service.

The communication among service components is handled by the VGE component
framework, which provides mechanisms to directly access the operations of other service
components via local method invocations as well as listeners and redirections of client SOAP
calls using Apache Axis SOAP request and response handlers.

Services
(Components)

Resource A

Resources

Resource B

Resource M

Composite
WSDL

Service 1

Service 2

Service 3

Service n

Services
(Components)

Resource A

Resources

Resource B

Resource M

Composite
WSDL

Service 1Service 1Service 1

Service 2Service 2Service 2

Service 3Service 3Service 3

Service nService n

Figure 3. Service component model.

Service components provided by VGE include a data transfer service component for
transferring files between a client and a service, an application execution service component
for managing the execution of application jobs, a QoS negotiation service component for
dynamic QoS negotiation, an error recovery service component for controlling check-
pointing and restarting of an application, a query execution service component for managing
queries to virtualized data sources, and a data staging service component for enabling direct
data transfers between services.

The resources associated with these service components include directories within the
service providers file system, applications and their associated files and scripts, the scheduler
for managing the execution of jobs, and data bases and other information sources virtualized
by means of data services.

Virtualizing Scientific Applications and Data Sources as Grid Services 87

Service Access Model

VGE relies on a purely client-driven approach for accessing application and data services

via SOAP. All interactions of a client with services are initiated by the client and neither call-
backs nor notification mechanisms are used. As a consequence, no site-firewall security
compromises are necessary, since only one port for SOAP communication via HTTP (usually
port 80) has to be open. For large file transfers SOAP attachments are utilized.

VGE services are inherently multi-threaded, i.e. if multiple clients access a service, a
separate thread is generated for each client, and for each client a separate application job or
data access is generated. This differs from other Grid service models which generate a
separate service instance for each client using a factory pattern (cf. the now obsolete OGSI
specification [154]). Session management and state handling is managed internally and
transparently conceptually following the WSRF model but being implemented based on
conversational identifiers and WS-Addressing mechanisms.

VGE application services may be configured on-demand to meet a client’s QoS
requirements based on a dynamic negotiation of service level agreements.

��� �����������

�������� �������� ������������
��������� ���

�������� �������� �����

������ ����� ����

�������� �������

��������������

����� ������

�������������
��������������

������ ������� �����

��������� ���������

����� ���������

Figure 4. Service access workflow.

A basic VGE service access scenario is shown in figure 4. A client first performs
administrative steps including authorization and authentication. The client then usually
accesses a registry to find a set of candidate services and runs a QoS negotiation to determine
a service that can fulfill its QoS constraints (e.g. execution time limits). Then the client
uploads the input data, initiates job execution, and finally downloads the result.

Service Hosting

VGE provides a preconfigured service hosting environment based on the open-source

frameworks Apache/Tomcat and Axis and a deployment tool for configuring and deploying
services. The VGE deployment tool automates the provision of HPC applications and data
sources as services. It offers an intuitive graphical user interface for enabling service
providers to describe, configure, deploy and manage services without having to deal with the
details of Grid and Web Service technologies.

The deployment tool enables to specify the service hosting environment, the security
level, and to provide a service description. The description of an application service usually
comprises the specification of input/output file names and of scripts for starting job execution
and for gathering status information. Description of data services comprises the specification
and configuration of the underlying data sources. VGE services support different security
levels, including no security, basic security via SSL, and end-to-end security. Supported
security technologies include PKI, HTTPS, WS Security and an end-to-end security protocol

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 88

for separate encryption of sensitive portions of the transferred data. The information specified
by the user with the deployment tool is stored internally in an XML service descriptor.Upon
deployment of a service, a Web service with a corresponding WSDL interface is generated,
deployed in the VGE hosting environment, and published in the VGE registry.

In a typical deployment scenario as shown in figure 5, services are deployed on a host in
a de-militarized zone (DMZ). A second host with an installed Apache Web server is used for
connecting VGE services with the Internet using a Tomcat connector (JK connector) between
the Apache server and the Tomcat server. The resources accessed by service are usually
located in the Intranet. In case of an application service, a resource will typically be an HPC
application running on a cluster, which is accessed via an existing scheduling system. Data
services usually access a DBMS hosted in the Intranet using a DB connector like JDBC.

Figure 5. VGE service hosting scenario.

VIRTUALIZATION OF SCIENTIFIC APPLICATIONS

The VGE service provision framework enables service providers to virtualize HPC

applications available on clusters or other parallel hardware as application services that can be
accessed on-demand by clients over the Internet. Application services hide the details of their
execution environment, providing abstract interfaces for managing job execution on remote
computing resources.

The VGE application services infrastructure has been partially developed within the EU
Project GEMSS [150], which devised a service-oriented Grid infrastructure that supports the
Grid provision of advanced medical simulation. In order to enable the utilization of Grid-
based simulation services during medical procedures, QoS support to ensure the timeliness of
simulation results was a major requirement. Addressing these issues, VGE service may be
configured with a flexible QoS negotiation service component, supporting dynamic
negotiation of Service Level Agreements (SLAs) [146]. The QoS infrastructure enables
clients to negotiate guarantees on service response times and price with service providers. The

Virtualizing Scientific Applications and Data Sources as Grid Services 89

associated VGE QoS infrastructure supports the dynamic configuration of application
services in order to meet the requirements of a client.

Application Services

Application services are constructed from a set of generic service components which

provide common operations for controlling the execution of application jobs on a remote
HPC system via a generic Web Services interface. In order to support time-critical usage
scenarios VGE application services may be QoS-enabled relying on a client-driven
negotiation of QoS guarantees based on Web Service Level Agreements [202]. The
associated QoS infrastructure adopts a reservation based approach coupled with application
specific performance models, advance reservation mechanisms, and client-driven negotiation
of service level agreements.

Figure 6. VGE application services.

As illustrated in figure 6, an application service may be composed of a data transfer
component, which handles the transfer of input and output data between the client and the
service, an application execution service component, which offers operations for executing
application jobs on the associated compute resource(s) and for querying the status of an
application job, and a data staging service component if input and/or output data should be
transferred directly between services rather than between a client and a service. The QoS
service component offers operations to support the dynamic negotiation of QoS guarantees as
described in Section 3.2. Finally, an error recovery service component may be utilized in
order to provide support for error recovery based on a checkpoint/restart mechanism.

The configuration and deployment of an application service for a specific application is
usually accomplished using the VGE deployment tool as described later.

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 90

Data Transfer Service Component
The data transfer service component provides operations to transfer input and output data

between a client and a service, usually in the form of ZIP files. A data transfer service
component usually virtualizes a directory on the service provider’s local file system where the
corresponding application is installed. This directory is referred to as working directory.

The actual operations of this component are:

upload(input-filename, remote-input-filename)
download(remote-output-filename, output-filename)

Access to the working directory is under full control of the service provider and

transparent to the client. For each client usually a separate sub-directory is generated within
the working directory to store the input and output files. Clients do not have any means to
access other parts of the service provider’s file system.

Data Staging Service Component

The data staging service component provides operations to push and pull (stage) input
and output data to and from one service to another service. Similar to the data transfer service
component this component internally utilizes a directory on the local file system as resource.
The actual operations of this component are defined as follows:

push(dest-service-URI, src-filename, dest-filename)
pull(src-service-URI, src-filename, dest-filename)

Application Execution Service Component
The application execution service component provides generic operations to control the

execution of application jobs on a HPC system. It includes operations to start the execution of
an application job, to monitor the status of a running job and eventually to kill a job if it does
not terminate as expected. The application execution service component provides the
following operations.

start()
getStatus()
kill()

When the operation start is invoked a corresponding start script is executed on the service

side. The operation getStatus executes a pre-defined status-script and returns the output of
this script to the client. The operation kill invokes a kill-script which terminates an
application job.

Note that opposed to other Grid environments (like Globus or Unicore) clients have no
way of sending executable scripts to a service nor do they have any means of controlling
which scripts will be executed on the service providers machine. Only application providers
can control which scripts are to be executed on their machines.

Virtualizing Scientific Applications and Data Sources as Grid Services 91

QoS Management Service Component
The QoS management service component provides a high level interface for QoS

negotiation to clients, comprising the following operations:

requestQoSOffer(qos-request, request-descriptor)
cancelQoSOffer(qos-offer)
confirmQoSOffer(qos-offer)

QoS negotiation based on these operations is described in more detail later.

Error Recovery Service Component
Closely linked to the QoS management service component, this component provides

support for check-pointing and re-starting of application jobs. To support error recovery, an
application must already have checkpoint/restart functionality.

The actual operations of this component are:

checkpointUpload(filename)
checkpointDownload(filename)
restart()

Using these operations the client may download the latest checkpoint file of a failed

application job and restart the application from this checkpoint using a different service
provider.

QoS Management

QoS support for VGE application services is based on a flexible service-side QoS

management component that can be configured by the service provider with an application
specific performance model and a pricing model in order to determine the best possible QoS
offer for a service request. To ensure the availability of computing resources for a service
request, a resource manager, which provides an abstraction of a scheduling system with
support for advance reservation, is utilized.

As can be seen from figure 7, the QoS manager interacts with the application
performance model, the compute resource manager, and the pricing model using various
XML-based descriptors as explained below. The QoS management component receives a
QoS request and a request descriptor from a client, checks whether the client’s QoS
constraints can be met, and generates a corresponding QoS offer which is returned to the
client. A QoS request document specifies the QoS constraints (e.g. earliest begin time of a
job, latest finish time, price) of a client. A request descriptor contains input meta-data for a
specific service request, typically describing the size of the application job to be run. A QoS
offer specifies the QoS constraints offered by a service provider.

If the client decides to accept an offer, a corresponding QoS contract in the form of a
service level agreement (SLA) is established and signed by both parties. The VGE QoS
infrastructure utilizes a subset of the WSLA specification for representing QoS requests, QoS

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 92

Figure 7. QoS management infrastructure.

offers and QoS contracts. Being machine readable, WSLA documents allow processing the
QoS negotiation without the need of human intervention.

Performance Model and Pricing Model

The performance model is used during QoS negotiation to estimate the runtime and other
performance relevant data for a service request. The performance model adheres to an
abstract interface, taking as input a request descriptor and returning a performance descriptor.
The request descriptor, supplied by the client, contains a set of request parameters, which
characterize the input data of a specific service request. For example, in the case of an image
reconstruction service, request parameters typically include image size and required accuracy.
The returned performance descriptor usually contains estimates for the execution time, the
required memory, and the required disk space. Assuming parallel MPI applications, the
performance model is usually parameterized by the number of processors. It may be executed
repeatedly with a varying number of processors until the time constraints set by the client are
met, or the range of feasible processors as specified in the machine descriptor is exceeded.

The pricing model takes as input a resource descriptor and returns a price descriptor
containing a concrete price for the resources specified in the resource descriptor. In the
context of the GEMSS project, two alternative pricing models have been realized, a fixed
price telephone pricing model where users are charged at a prearranged CPU hour rate, and a
dynamic pricing model where the CPU hour rate is dependent on the current load levels the
service provider is experiencing.

Performance models and price models only have to adhere to an abstract interface. The
choice of model implementation, however, is left to the service provider, with each model
implemented as a Java library that can be plugged in and selected dynamically. For example,
a performance model could be implemented based on an analytical model, or where this is not
feasible, a neural network or a database could be used to relate typical problem parameters to
resource needs like main memory, disk space and execution time. The accuracy of
performance models is critical to the ability of the QoS management system to select a large
enough reservation to successfully run an application job.

Resource Manager

The resource manager provides an interface to the scheduler for obtaining information
about the actual availability of computing resources. It is utilized internally by the QoS

Virtualizing Scientific Applications and Data Sources as Grid Services 93

manager for creating temporary reservations during QoS negotiation. The compute resource
manager takes as input the performance descriptor generated by the performance model, and
generates a resource descriptor containing details about temporarily reserved resources. The
resource descriptor is then used as input to the pricing model to determine the price for a
service request. Different scheduling systems that provide support for advance reservation
may be utilized with VGE, including the Maui scheduler [177] and the COSY scheduler
[148].

Service Invocation

The invocation of application services usually comprises two phases, a QoS negotiation

phase and the application job execution phase, as illustrated in the service invocation scenario
shown in figure 8.

Figure 8. Basic service invocation scenario.

In an initial step, a client may access a registry to obtain a list of potential service
providers for a specific application service. Then the client initiates a QoS negotiation to
determine a service provider that can provide a service subject to the client’s QoS constraints.
The client invokes for each candidate service the operation requestQosOffer, passing
along a request descriptor with input meta-data and a QoS request document with the required
QoS constraints.

On the service side, the QoS manager executes the performance model and the price
model to determine whether a client’s time and price constrains can be met. If the required
resources to run the client’s job are available, a temporary resource reservation is made
through the resource manager, and a corresponding QoS offer is returned to the client. On the
client side, the QoS offers from different service providers are received and analyzed. The
client confirms the best offer, or, if it is not satisfied with the offered QoS constraints, may set
up a new QoS request with different constraints and start a new negotiation. If the client

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 94

confirms an offer, the QoS manager confirms the temporary resource reservation made for the
offer, signs the QoS contract and returns it to the client.

The client may then enter the actual service invocation workflow, which usually
comprises the uploading of input data, starting of the remote application job, querying the
status of the job, and finally, downloading the results.

Clients and service providers employ a relatively low level of trust in the negotiation. A
service provider only makes a temporary reservation that will expire if the client takes too
long to make a decision. Likewise service providers will be dropped from the negotiation if
they fail to provide an offer in time.

Within the GEMSS project also more sophisticated negotiation strategies based on a
closed-bid reverse English auction model have been realized by implementing different QoS
negotiation service components [156].

Configuration and Deployment

An intuitive GUI-based deployment tool automates the task of exposing compute-

intensive simulation applications available on clusters or other HPC hardware as Grid
services that can be accessed on demand over the Internet. Usually no code changes are
required, provided an application can already be executed in batch mode and that files in I/O
operations are not accessed with absolute path names.

The deployment tool enables the service provider to specify the configuration details of
an application (input/output file, job script, etc.) and the compute resources (memory, number
of CPUs, etc.) that may be provided. Moreover, a set of QoS parameters which should be
subject to QoS negotiation with clients (e.g., guaranteed begin time, guaranteed latest end
time) may be specified. For each QoS parameter a corresponding QoS model (e.g. a machine
specific performance model) has to be in place. The information specified by the user within
the deployment tool is stored in an XML service descriptor and utilized by the VGE service
provision environment to customize the generic service operations for the application at hand.

Upon deployment, the service provision environment automatically generates a Grid
Service which encapsulates the application, publishes the corresponding WSDL document in
a registry service, and deploys the service within the VGE hosting environment.

Figure 9 shows screenshots of the deployment tool during the configuration of a medical
image reconstruction service. In a first step the service rpovider specifies the names of input
and output files, the script to start an application, the working directory, which serves as root
directory for all files transferred between clients and service, and a status script. In the second
step, a set of request parameters (e.g., NumberOfIterations), a set of machine parameters (e.g.
NumberOfProcessors) and a set of QoS parameters (e.g., BeginTime, EndTime) are specified.

VIRTUALIZATION OF SCIENTIFIC DATA SOURCES

The initial focus of Grid computing with an emphasis on compute-intensive tasks shifted in
recent years towards more data intensive applications with significant processing of very

Virtualizing Scientific Applications and Data Sources as Grid Services 95

Figure 9. Configuration and Deployment of Application Services.

large amounts of data. Data management within Grids brings along additional complexities
due the scale, dynamism, autonomy, and distribution of data sources [208]. In addition, more
and more scientific disciplines are becoming data driven and scientists need to interact with
large shared databases [206]. Grid-based scientific experiments produce more and more data
that which increasingly is to be stored in structured form, often databases [172], as opposed to
binary files in some proprietary format for non-shared single site usage. The need to
overcome problems of accessing and integrating heterogeneous data, including issues
pertaining to location, access rights and autonomy of data sources, and the requirement to
discover new knowledge by combining existing data sources in new ways, becomes more and
more important. All the complexities coming along with these issues, however, should be
hidden from grid application developers via appropriate services.

Data Services

The VGE Grid middleware offers a generic service provisioning framework that supports

the provision and deployment of data services. Data services virtualize heterogeneous
scientific data bases and information sources as Web services, enabling transparent access to
and integration of heterogeneous information sources including relational data bases, XML
data bases and flat files. Data services resolve heterogeneities with respect to access language,
data model and schema between different data sources, utilizing advanced data mediation and
distributed query processing techniques based on OGSA-DAI [159], GDMS [204] and
OGSA-DQP [160].

Data services support the same access patterns, client bindings, transfer protocols and
security mechanisms as application services and are composed of basic service components as
shown figure 10. The query execution service component provides common operations for
managing remote query execution. A data transfer service component is utilized to transfer

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 96

input data (usually specifying a query) and output data to and from a client. A data staging
service component may be used if input and/or output data should be transferred directly
between services rather than between a client and a service.

VGE data services may be set up in different configurations all providing the same
interface to clients. Basic data services provide access to a single data source, while data
mediation services establish a virtual data source for transparently accessing multiple data
sources via a single virtual global schema. Data services usually provide an SQL-based query
mechanism to clients and internally utilize OGSA-DAI to access physical data sources.

Figure 10. Data services.

Data Access Mechanisms

VGE data services have been developed on top of OGSA-DAI (Open Grid Services

Architecture – Database Access and Integration), which is the de-facto standard Grid
middleware assisting with access to and integration of data from separate data sources [159].
Clients access a VGE data service usually by uploading an OGSA-DAI perform document
containing an SQL query, starting the query execution and downloading the results contained
in an OGSA-DAI response document.

An OGSA-DAI perform document enables clients to describe the activities that they wish
a data service to execute on data resources. The submitted requests can be based on multiple
activities that can be combined and connected for querying, updating, transforming,
delivering data, and schema extraction – similar to a simple workflow. Results and status
information of the requested activities are delivered as OGSA-DAI response documents. Both
perform and response documents are based on XML. OGSA-DAI offers a client framework
for constructing perform documents and for processing response documents. This client API
can be used for VGE data services as well.

An example of using OGSA-DAI is shown in figure 11, where the sqlQueryStatment
activity executes a given query against the target relational data source and the following
connected sqlResultsToXML activity defines the format in which the client expects the
results, in our example the WebRowSet XML format defined by Sun.

Virtualizing Scientific Applications and Data Sources as Grid Services 97

Figure 11. Sample OGSA-DAI perform and response document.

The capabilities of OGSA-DAI can be extended and tailored by a user with additional
functionality via extensibility points. Based on this mechanism, we have extended OGSA-
DAI in order to provide support for data mediation (as described later) and for accessing other
VGE data services as data resources.

In addition to the outlined OGSA-DAI access mechanism, VGE data services may be
configured to support a parameter-based access mechanism. With the parameter-based
mechanism the client sends a parameter file to the data service. On the service-side the
parameter file is used to automatically fill a pre-defined query template, which is then used
for accessing the data source. The result data of the query is then returned to the client in the
form of a result data file. The structure and format of input parameter files and result data
files are defined by the service provider during configuration of the data service depending on
the requirements. The parameter-based access mechanism allows specialising a data service
for a fixed query while the query-based mechanism allows more general queries.

Data Mediation

Clients often need to access related data from several distributed data sources. Access to

such data sets should be possible in a way similar to accessing single data sources instead of
forcing each application to interface directly with a set of individual databases and to resolve
complex federation problems themselves. Therefore, VGE offers data mediation services to
support transparent access to multiple heterogeneous mediated data sources via a single
access point provided by a unified global data schema. The mediation process includes
mechanisms for resolving heterogeneities with respect to access language, data model and
schema, following a wrapper-mediator approach [164].

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 98

As Grids typically serve large scale applications spanning multiple administrative
domains and producing an increasing amount of data, physical integration at one place is
often not possible. Therefore we follow a virtual integration approach providing access to live
data and functions, only temporarily materializing the result of queries at the time a query is
posed. Our query reformulation approach follows the Global-as-View (GaV) [206] approach,
where the global schema is described in terms of the local schemas. Since mappings between
the local schemas and the global schema are fixed, changes in a local schema usually require
revisions of the global schema. In the alternative Local-as-View [205] approach, local
schemas are described as views of the global schema. This approach usually suffers from a
more complex and costly query resolution process as compared to the simpler rule-unfolding
of the GaV approach.

GDMS mapping schema

GDMS transformation function

<logicalSchema> <!- global schema of virtual data source -->
<table name=„test“>

<column name=„id“ typ=„int“>
<column name=„name“ typ=„varchar“>
<column name=„type“ typ=„varchar“>

</table>
</logicalSchema>

<VDSTable name=“test“> <!- internal view to virtual data source-->
<join>

<select name=“left“ impl= “jdbcWrapper“ resourceRef=“jdbc:…“>
<mapSource>……</mapSource>

</select>
<select name=“right“ impl=“DataServiceWrapper“ resourceRef=“http://…“>

<mapSource>….</mapSource>
</select>
<joinInfo kind= “inner“ left_keys=.. right_keys=../>

</join>
</VDSTable>

public class TransformName {
public static String combineName(String o, String t) {

return o+“ “+t;
}

}

OGSA/DAI

GDMS

Data Mediation Service

Data ServiceRelational
DB

Virtual Data Source

GDMS mapping schema

GDMS transformation function

<logicalSchema> <!- global schema of virtual data source -->
<table name=„test“>

<column name=„id“ typ=„int“>
<column name=„name“ typ=„varchar“>
<column name=„type“ typ=„varchar“>

</table>
</logicalSchema>

<VDSTable name=“test“> <!- internal view to virtual data source-->
<join>

<select name=“left“ impl= “jdbcWrapper“ resourceRef=“jdbc:…“>
<mapSource>……</mapSource>

</select>
<select name=“right“ impl=“DataServiceWrapper“ resourceRef=“http://…“>

<mapSource>….</mapSource>
</select>
<joinInfo kind= “inner“ left_keys=.. right_keys=../>

</join>
</VDSTable>

public class TransformName {
public static String combineName(String o, String t) {

return o+“ “+t;
}

}

OGSA/DAI

GDMS

OGSA/DAI

GDMS

Data Mediation Service

Data ServiceRelational
DB

Virtual Data Source

Data ServiceRelational
DB

Virtual Data Source

Figure 12. Query execution service component for a data mediation service.

VGE data mediation services utilize a Grid data mediation service (GDMS) component
which is configured with a mapping schema (see figure 12). The mapping schema comprises
the global logical data schema and mediation rules for decomposing a global query into
queries against the target data sources and for combining the results. The mediation process
can apply transformation functions on-the-fly written in Java for resolving several types of
heterogeneities like different data representations, different data scales or different data
structures. A simple example of such a transformation function is given in figure 12
illustrating how to combine parts of a name into a certain target format.

The mediated data sources are accessed internally using OGSA-DAI, which was
extended by an additional data resource accessor for integrating other VGE data services as
target sources permitting a hierarchical mediation structure. The fact that a data service
integrates multiple data sources through mediation is transparent to clients. Clients can access

Virtualizing Scientific Applications and Data Sources as Grid Services 99

the data mediation services as usual by uploading a perform document, starting query
execution and downloading the results in an OGSA-DAI response document

Distributed Query Processing

In order to optimize access to multiple heterogeneous data sources, data mediation

services support distributed query processing based on OGSA-DQP. Distributed query
processing is transparent to clients and may be configured selectively by the service provider
for certain data mediation services.

OGSA-DQP (Open Grid Services Architecture – Distributed Query Processing) is a Grid
middleware based on OGSA-DAI supporting queries over OGSA-DAI data services and
other services [160]. Data intensive requests to multiple data services can be parallelized and
distributed by OGSA-DQP. OGSA-DQP contains a Grid Distributed Query Service, also
called coordinator, which accepts client requests for queries to distributed data sources and
generates a partitioned query plan. OGSA-DQP then uses multiple Query Evaluation Services
(evaluators) each executing a partition of the generated query plan. Evaluators can execute the
query plan partitions in parallel and then combine the results.

Note that opposed to VGE data mediation services, OGSA-DQP does not support a
mediated global view over distributed data sources. As a consequence, using OGSA-DQP
directly, would force clients to deal explicitly with the local data schemas and to specify how
to integrate them within complex distributed queries. By combining the distributed query
processing features of OGSA-DQP with the data mediation mechanisms of GDMS we
seamlessly integrate the best of both systems.

Figure 13 illustrates VGE data services with distributed query processing support. In our
approach GDMS performs the data mediation process including query reformulation from a
query against the global schema into queries against the integrated data sources. The resulting
query to the distributed data sources is then passed to OGSA-DQP for optimized distributed
query processing. OGSA-DQP partitions the query plan using information about the
individual data sources in order to optimize complex mediation operators like unions and
joins. The OGSA-DQP coordinator controls the execution of the distributed query plan on a
set of evaluation services. Each evaluation service processes a separate partition of the query
plan. Finally, OGSA-DQP combines the results from the evaluation services and GDMS
transforms the results according to the global schema.

The utilization of OGSA-DQP is transparent to clients and can be configured selectively
by the service provider for certain data mediation services.

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 100

Figure 13. VGE data mediation service with distributed query processing.

CLIENT ENVIRONMENT

Client applications that access VGE data services and application services could be built

from scratch by only relying on the WSDL descriptions of services. Such a low-level
approach would put the burden of interacting with VGE services on the client developer,
resulting in complex and error-prone client applications. To overcome this obstacle, VGE
provides a high-level client-side programming toolkit supporting languages, such as Java, C#
and C++. Hence client-side applications that interact with VGE services can be built without
having to deal with the complexities of Grid and Web Services technologies.

Beginning with an overview of the high-level client API, this section summarizes how
the VGE client environment may be used to utilize application and data services. Moreover,
we describe additional features that are provided to access services using a command-line
interface or a Web-based interface.

High-Level Client APIs

In order to support the construction of client-side applications that interact with

application services and data services, VGE provides a high-level client API with bindings

Virtualizing Scientific Applications and Data Sources as Grid Services 101

for JAVA, C and C# (.NET). The client API hides most of the details of dealing with remote
services from the client application developer.

 The central abstraction provided by the client API is the ServiceProxy interface
which specifies all methods required for transparently accessing application and data services
from a client application. Moreover, the client API provides a set of classes for dealing with
various aspects of the VGE environment at a high-level of abstraction hiding the details of the
underlying interaction with VGE services.

Figure 14. Client API abstraction layers.

As shown in figure 14, the programming interface is structured into several layers. The
bottom layers implement data marshalling, message generation, signing, and encryption,
while the top layers provide abstractions for service discovery and all service interactions
provided by the ServiceProxy. Using these high-level abstractions, users can more easily
develop client applications that interact with data and application service. The ServiceProxy
interface comprises methods for handling transfers of input and output data, for job or query
execution, for monitoring, as well as for error handling.

Client-Side Access to VGE Services

Different methods for discovering and selecting services are provided. As the simplest

method, a service may be selected directly by providing a distinct service location, i.e. an
end-point URI. A more sophisticated method of service selection requires specifying a set of
service attributes (e.g. application category) which are used to locate services in VGE
registries with matching attributes. Moreover, an application service may be selected from a
set of potential services as the result of a QoS negotiation process subject to user specified
QoS criteria. For this purpose the method getService may be invoked with a request
descriptor and a QoS descriptor as input parameters. The details of accessing service
registries and of QoS negotiation are handled transparently to the user by the API.

Figure 15 shows a simplified code excerpt for a typical client application accessing an
application service that is dynamically discovered subject to certain QoS constraints specified
within a QoS descriptor (qosDsc). The client specifies a QoS request containing QoS
constraints (e.g. earliest begin time of a job, latest finish time, price) and a request descriptor
containing input meta-data for a specific service request, typically describing the size of the
application job to be run. Additionally the client has to specify a set of service attributes (e.g.
application category) and an URL referring to a VGE registry for discovering appropriate

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 102

// initialize request descriptor
RequestDescriptor reqDesc = new RequestDescriptorImpl();
reqDesc.setPerformanceParameter(…)
…
// initialize QoS descriptor
QoSDescriptor qosDesc = new QoSDescriptorImpl();
qosDesc.setObjectiveBeginTime(...)
qosDesc.setObjectiveEndTime(…)
…
// initialize list of service registry and its attributes
String registryURI = " http://localhost/MyRegistry";
Attribute[] attributes = new Attribute[1];
attributes[0] = new Attribute("service.category", "MyCategory");

// initialize VGE proxy by QoS negoatiation
ServiceProxy serviceProxy = ServiceProxy.getService
(registryURI, attributes, qosDesc, reqDesc)

// upload local file (named upload.dat) with remote file-name "inputFile"
serviceProxy.upload(new File("upload.dat"), "inputFile");

// start remote service execution (start job)
serviceProxy.start();

String status = null;
// query the status of the service as long as the service runs
(is not finished) or an error occurs
while (((status = serviceProxy.getStatus()) != serviceProxy.FINISHED) and and
 (serviceProxy.getStatus() != serviceProxy.ERROR)) {
 // service runs ...
}
// finally download the results, save the remote file named
"outputFile" in the local file named
// "output.dat"
serviceProxy.download("output.dat", "outputFile");

Figure 15. Example of VGE client code interacting with an application service.

VGE services using the high-level client API. After a specific service has been selected, the
client starts the application execution workflow including uploading of the input file, starting
the application on the remote computing resource. The client queries the application status
using the API and downloads the result files to the local machine.

A data service client looks similar to an application service client, except that the input
and output files are OGSA-DAI perform and result documents. These XML documents are
generated and manipulated using the OGSA-DAI API, which can be seamlessly integrated in
the VGE client API.

Virtualizing Scientific Applications and Data Sources as Grid Services 103

Additional Features

Due to the miscellaneous use of the VGE system a number of additional features have

been developed for certain environments. A command-line based interface has been realized
to be used in scripts, where each operation can be executed separately using different
command-line parameters. Opposed to this low level realization, a Web-based client is also
available, which provides a simple graphical user interface in a web browser to be used in
"drag'n'drop"-style to submit inputs, start jobs and download outputs.

Besides the already mention client APIs realized in Java, there are client bindings for
.NET in C#, which enables even Office applications to use VGE Grid services via macros.
C++ applications might also be extended to use VGE services utilizing a C++ binding based
on gSOAP.

Additionally, VGE clients support several security mechanisms as provided by the VGE
services and monitoring of job/query execution. The high-level client API is based on the
service component model as outlined previously and therefore extensible with new service
component functionalities.

In summary, the different VGE client interfaces enable client application programmers to
utilize VGE service in a more convenient way.

APPLICATIONS

In this section we provide a brief overview of the EU project GEMSS [150], which

developed a test-bed for Grid-enabled medical simulation services based on QoS-enabled
application services as described earlier. Moreover, we outline the major objectives of the EU
project @neurIST [144] which aims to develop an advanced Grid-based IT infrastructure in
the biomedical domain.

Grid Enabled Medical Simulation Services

The GEMSS Project [150][145] was concerned with the development of a secure,

service-oriented Grid infrastructure for the on-demand provision of advanced medical
simulation and imaging applications as Grid services for improved pre-operative planning and
near real-time surgical support. Key aspects of the GEMSS developments included negotiable
QoS support for time-critical Grid services, flexible support for business models, and security
at all levels in order to ensure privacy of patient data as well as compliance to EU law.

To enable the use of Grid services in a clinical environment, predictability of response
times is of utmost importance. As a consequence, a flexible QoS support infrastructure for
application services as described previously is required in order to provide support for explicit
response time guarantees for simulation services which are executed remotely on a Grid host.

The GEMSS project focused on a business-oriented Grid model, where services are
offered by service providers within an economic context. Unlike a traditional Grid model of
free resource sharing, users do not provide resources to the community, but instead buy
services from service providers. Service providers do not cooperate with each other nor

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 104

disclose information about the availability of their resources, but wait until customers have a
need to perform computations, and then propose a service level agreement.

The GEMSS project Grid-enabled six complex medical simulation applications including
maxillo-facial surgery simulation, neuro-surgery support, radiosurgery planning, inhaled
drug-delivery simulation, cardio-vascular simulation and advanced image reconstruction
[153]. At the core of these bio-medical simulation applications are computationally
demanding methods such as parallel Finite Element Modelling, parallel Computational Fluid
Dynamics and parallel Monte Carlo simulation, which are realized as remote Grid services
running on clusters or other parallel computing platforms. These services have been realized
based on the VGE application service infrastructure.

The medical simulation jobs within GEMSS utilize patient data, which can only be
legally released for processing by a hospital under very clear and restrictive conditions [200].
As a consequence, best practice security mechanisms are of paramount importance. In
addition to the technical and legal requirements there are a number of practical considerations
involved with medical simulation work. Some of the GEMSS applications require the patient
to come in for some medical scans and stay at the hospital until the results of the medical
simulations can be computed and analysed by medical physicists. Other applications require
the availability of live simulation results during surgery. As a consequence, there is a need for
high quality of service and a reservation capability to ensure sufficient compute resources are
pre-booked in advance of patient consultations. These requirements could be successfully
addressed with the flexible QoS infrastructure provided by VGE.

A major objective of GEMSS was also to address the legal requirements of dealing with
patient specific data in a distributed environment represented by a Grid infrastructure. As our
investigations showed, legal constraints (cf. EU Directive 95/46 which to wholly or partly
automated processing of personal data [200]) have a major impact on how Grid technologies
are applicable within a medical context. As a consequence, SLA negotiation is a major
requirement as it allows the represenatation and exchange of an electronic contract, which
can be used as proof that a service provider has accepted the legal responsibilities involved in
processing of a job.

The GEMSS project, which successfully concluded in 2005, demonstrated that Grid
technologies are applicable within a medical context, provided legal issues with respect to the
processing of patient-specific data are taken into account carefully.

Integrated Biomedical Grid Infrastructure

The @neurIST project [144] aims to create an IT infrastructure for the management of all

processes linked to research, diagnosis and treatment development for complex and multi-
factorial diseases. Although the focus of @neurIST is on one such disease, cerebral aneurysm
and subarachnoid haemorrhage, the core technologies are generic and transferable to other
areas. The @neurIST infrastructure encompasses data repositories, computational analysis
services and information systems handling multi-scale, multi-modal information at distributed
sites. The @neurIST project bases its developments on a service-oriented Grid middleware,
leveraging developments from GEMSS, VGE and InnerGrid [152], to facilitate access to
computing and data resources by providing support for access control, advanced security, and
quality of service guarantees.

Virtualizing Scientific Applications and Data Sources as Grid Services 105

Figure 16 shows a high-level overview of the @neurIST architecture. At the top layer,
there are a set of integrative application suites, for integrative rupture and risk assessment, for
linking genetics to diseases, for virtual endovascular treatment planning, and for multimodal
data processing and image fusion. The middle layer constitutes the service-oriented Grid
middleware which comprises a variety of advanced data and compute services.

On the one hand, @neuInfo comprises tools for constructing virtual data sources that
enable transparent access to distributed heterogeneous biological and clinical data sources.
Virtualization of data sources through Grid services is based on the VGE data services
infrastructure and will be extended towards semantic, ontology-based systems, which are key
to the integration of multi-level (from molecular to population) health related data. On the
other hand, @neuCompute provides a compute grid infrastructure to accomplish
computationally demanding modeling and simulation tasks utilizing VGE application services
and InnerGrid services. At the lower layer are a large variety of data and information sources
as well as simulation and modelling applications and the associated hardware infrastructure.
These resources are virtualized through the Grid middleware layer and transparently accessed
through the abstraction of services by the application suites.

Figure 16. The @neurIST grid infrastructure.

Whereas the GEMSS project focused on the on-demand provision of compute-intensive
simulation applications, the @neurIST middleware has the additional requirement of
facilitating access to and integration of distributed heterogeneous data and information
sources. For this purpose @neurIST utilizes VGE data services and relies on VGE’s data
mediation facilities for transparent access to distributed data sources via virtual global
schemas. Going beyond the developments of GEMSS, @neurIST addresses the utilization of
semantic technologies within a service-oriented Grid middleware. As a basic requirement, an

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 106

RDF/OWL-based domain ontology [147] has been developed to provide a common
terminology capturing the semantics of all medical, bio-molecular, genetic and
epidemiological entities related to aneurisms. Based on this ontology data and compute
services will be semantically annotated, allowing to discover data services based on ontology
concepts. Moreover, the domain ontology will serve as semantic glue for data integration.
Annotating the schemas of data services with semantic information will facilitate the
integration of semantically equivalent but structurally different data sources [156].

RELATED WORK

The OGSA Glossary of Terms defines virtualization as making a common set of abstract

interfaces available for a set of similar resources, thereby hiding differences in their properties
and operations, and allowing them to be viewed and/or manipulated in a common way. This
has been done already for quite some time for physical resources, such as storage and servers,
and has been extended in the last years by the Grid for workload and information
virtualization [162].

There exist a number of grid infrastructures trying to ease the use of complex and
heterogeneous gird environments. Some are based on WSRF like Globus [193] and
UNICORE [196], others on plain WS technology like the EU project EGEE [194]
middleware gLite [195] and the UK initiative OMII [192]. OMII Europe has the vision to
harvest open-source, WS-based, Grid software from across Europe and to supply these key
grid services in a form that will allow them to interoperate across the former mentioned
heterogeneous infrastructures. Our VGE infrastructure uses plain Web Services technology
and incorporates QoS components not available in the other infrastructures.

Moore and Baru [156] present an overview of ongoing research in the area of
virtualization services for data intensive Grids. Initially focusing on files [161], there is now a
trend to access and integrate more second-hand and public available data sets of multiple
domains [151], often stored in pre-existing and independently operated databases [172].
OGSA-DAI (Open Grid Services Architecture – Database Access and Integration) is the de-
facto standard Grid middleware assisting with access and integration of data from separate
data sources [159]. OGSA-DQP (Open Grid Services Architecture – Distributed Query
Processing) is a Grid middleware based on OGSA-DAI supporting queries over OGSA-DAI
data services and other services [160]. For a good discussion on available grid data
management systems and services please review [197].

Quality of service has been investigated in various contexts [183][187] while traditional
QoS research usually focuses on network level QoS [189] with various techniques to
guarantee service levels as an improvement to best effort protocols. The work in [183]
focuses on QoS support for distributed query processing, providing significant improvements
compared to best effort based systems. Our QoS infrastructure aims to guarantee service
runtimes in advance via advance resource reservations. A good discussion regarding the
demand for advance reservation in Grid applications can be found in [185] and [188]. In [182]
the authors discuss how resource allocation in Grids affects global and local service level
agreements based on enterprise applications, while our work focuses on medical applications.
The work presented in [185] deals with a QoS-based Web Services architecture comprising

Virtualizing Scientific Applications and Data Sources as Grid Services 107

QoS-aware components which can be invoked using a QoS negotiation protocol. Our work
focuses on Grid provision of high performance computing application services as opposed to
traditional Web Services.

In [182] a Grid QoS management framework is proposed that mainly focuses on service
discovery based on QoS attributes. Conceptually, this work deals with both application-level
and network-level QoS but does not specifically address response time and price guarantees
for long running Grid services. In [186] a model for QoS-aware component architecture for
Grid computing is proposed. The work in [184] proposes a SOAP message tracking model for
supporting QoS end-to-end management in the context of WSBPEL [190] and SLAs. This
work however does not address long running Grid services and SLA negotiation and the
trade-off between response time and cost as supported by our QoS-aware services.

Data integration has been studied for quite a while [163]. For a recent report on state of
the art middleware for data interoperability and management read [171]. A specialised
platform for bioinformatics is SRS [191], allowing to integrate databanks and analysis tools.

In an environment like the Grid with its autonomous and heterogeneous sources with
different capabilities, a wrapper-mediator approach [164] is often followed. OGSA-DAI can
be seen as a wrapper while OGSA-DQP is the mediator (with a main concern on efficient
query execution) combining the data. Optimization of this distributed/parallel query
processing [165] is extremely relevant. Recently, adaptive query processing strategies [166]
which can react to changes in the environment, e.g. data [168], network [170], computation
[169], during execution gain more and more attention, also for the Grid [166]. Semantic
technologies have already been used for quite some time to support semantic data integration
[198]. More recently semantic registration and annotation [199] of data resources are used to
support discovery and integration of relevant data sources.

Grid Technology is increasingly utilized in life sciences and medical applications are
often mentioned as the “killer applications” for the Grid. Hence a number of projects deal
with specific aspects in the field. In the bio-medical domain the EU BioGrid Project [173]
aims to develop a knowledge grid infrastructure for the biotechnology industry. The main
objective of the OpenMolGRID Project [174] is to develop a Grid-based environment for
solving molecular design/engineering tasks relevant to chemistry, pharmacy and
bioinformatics. The EU MammoGrid Project [176] builds a Grid-based federated database for
breast cancer screening. The UK e-Science myGrid Project [175] develops a Grid
environment for data intensive in-silico experiments in biology. While most of these projects
focus on data management aspects, our efforts focus on the computational aspects of the Grid
including Quality of Service (QoS) as well as virtualizing compute and data resources.

Other projects in the bio-medical field which also focus more on the computational
aspect of the Grid include the Swiss BiOpera Project [178], the Japanese BioGrid Project
[179], and the Singapore BioMed Grid [180]. The US Biomedical Informatics Research
Network [181] initiative fosters distributed collaborations in biomedical science focusing on
brain imaging of human neurological disorders and associated animal models.

The LEAD project (Linked Environments for Atmospheric Discovery [149]) addresses
the integration of meteorological data, forecast models, and analysis and visualization tools in
order to support the exploration of weather phenomena like severe storms. LEAD bases its
developments on a service-oriented architecture that relies on a Web Services architecture
similar to VGE.

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 108

CONCLUSION

In this chapter we presented the Vienna Grid Environment, a generic Grid infrastructure

for virtualizing scientific applications and data sources as services that hide the details of the
underlying software and hardware infrastructures. VGE is based on standard Web Services
technologies and has been implemented based on corresponding open-source technologies.
VGE application service virtualize scientific applications running on clusters or other HPC
systems by providing common operations for transparently managing the execution of
applications jobs on remote machines. The complex details of accessing HPC systems are
hidden from users and client-side applications. VGE application services support an on-
demand supercomputing model where the selection of service providers and the configuration
of application jobs are performed automatically by the VGE middleware subject to user-
specified QoS constraints. The associated QoS infrastructure is based on automated SLA
negotiation, advance resource reservation, and application-specific performance models. VGE
data services address the complex problems associated with access to and integration of
distributed heterogeneous data sources. VGE data services virtualize distributed data sources
by providing a global virtual schema to clients, hiding the details of the underlying physical
data sources. VGE data services implement advanced data mediation techniques and provide
support for distributed query processing. Application services and data services provide the
same access patterns, client bindings, transfer protocols and security mechanisms as
application services, simplifying their utilization within client-side Grid applications.

The VGE application service infrastructure has been successfully utilized within the
European GEMSS project for the development of Grid-based medical simulation services.
The VGE data service environment is currently being used in the European @neurIST project
for the development of an advanced IT infrastructure that provides personalized risk
assessment for multi-factorial diseases by integrating advanced analysis and simulation
services with distributed heterogeneous data sources handling multi-modal, multi-scale
information at distributed sites. Within the @neurIST project application services and data
services are being further enhanced through the integration of semantic technologies, which
characterizes a common future trend in Grid computing.

REFERENCES

[144] The @neurIST Project. Integrated Biomedical Informatics for the Management of
Cerebral Aneurysms. EU Integrated Project, IST-2004-027703,
http://www.aneurist.org/

[145] S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S. E. Middleton, R.
Schmidt. GEMSS: Grid-infrastructure for Medical Service Provision, Methods of
Information in Medicine, Vol. 44/4, 2005.

[146] S. Benkner and G. Engelbrecht. A Generic QoS Infrastructure for Grid Web Services.
In Proceedings of the International Conference on Internet and Web Applications and
Services, Guadeloupe, French Caribbean, February 2006. IEEE Computer Society
Press.

Virtualizing Scientific Applications and Data Sources as Grid Services 109

[147] M. Boeker, H. Stenzhorn, K. Kumpf, P. Bijlenga, S. Schulz, S. Hanser. The @neurIST
Ontology of Intracranial Aneurysms: Providing Terminological Services for an
Integrated IT Infrastructure. AMIA 2007 Annual Symposium (AMIA 2007), Chicago,
USA, November 2007.

[148] J. Cao, F. Zimmermann. ”Queue Scheduling and Advance Reservations with COSY”,
Proceedings of the International Parallel and Distributed Processing Symposium,
Santa Fe, New Mexico, 2004

[149] D. Gannon et al. Building Grid Portal Applications from a Web-Service Component
Architecture, Proceedings of the IEEE. Special Issue on Grid Technology, 2005.

[150] The GEMSS Project: Grid-enabled medical simulation services. EU IST Project IST-
2001-37153, 2002--2005. http://www.gemss.de/

[151] A. T. Tony Hey, “The data deluge: An e-science perspective”, in Grid Computing -
making the global infrastructure a reality. John Wiley and Sons, 2003, pp. 809–824.

[152] InnerGrid. Architecture and Services. http://www.gridsystems.com/images/pdf/IGV
Architecture.pdf, 2006.

[153] D. M. Jones, J. W. Fenner, G. Berti, F. Kruggel, R. A. Mehrem, W. Backfrieder, R.
Moore, A. Geltmeier. The GEMSS Grid: An evolving HPC Environment for Medical
Applications, HealthGrid 2004, Clermont-Ferrand, France, 2004.

[154] I. Foster et al. The Open Grid Services Architecture, Version 1.5., Open Grid Forum,
GFD-I.080, July 2006.

[155] I. Foster, C. Kesselman, J. Nick, S. Tuecke. ”The Physiology of the Grid: An Open
Grid Services Architecturefor Distributed Systems Integration”, Open Grid Service
Infrastructure WG, Global Grid Forum,2002.

[156] K. Kumpf, A. Woehrer, S. Benkner, G. Engelbrecht, J. Fingberg. A Semantic
Mediation Architecture for a Clinical Data Grid. In Grid Computing for Bioinformatics
and Computational Biology, Wiley Series in Bioinformatics, ISBN-13: 978-0-471-
78409-8 - John Wiley and Sons, 2007.

[157] S. E. Middleton, M. Surridge, S. Benkner, G. Engelbrecht. Quality of service
negotiation for commercial medical Grid services. Journal of Grid Computing, Springer
Verlag, ISSN 1570-7873, 2007.

[158] R. W. Moore and C. Baru, “Virtualization services for data grids,” in Grid Computing -
making the global infrastructure a reality, John Wiley and Sons, 2003.

[159] M. Antonioletti et al., “The Design and Implementation of Grid Database Services in
OGSA-DAI”. Concurrency and Computation: Practice and Experience, Volume 17,
Issue 2-4, Pages 357-376, February 2005

[160] M. N. Alpdemir et al., “OGSA-DQP: A Service for Distributed Querying on the Grid”,
9th International Conference on Extending Database Technology, LNCS, Volume
2992, pp858-861, 2004

[161] A. Rajasekar et. al, “Storage Resource Broker - Managing Distributed Data in a Grid”,
Computer Society of India Journal, Special Issue on SAN, Vol. 33, No. 4, pp. 42-54,
Oct 2003

[162] M. Haynos, “IBM’s take on Grid, virtualization and SOA”, GridToday, 2006
[163] A.P. Sheth, J.A. Larson, “Federated database systems for managing distributed,

heterogeneous, and autonomous databases”,ACM Comput. Surv. 22 3 (1990) 183–236
[164] G. Wiederhold, “Mediators in the architecture of future information systems”, 1992

Siegfried Benkner, Gerhard Engelbrecht, Martin Köhler et al. 110

[165] D. Kossmann, “The state of the art in distributed query processing”, ACM Comput.
Surv. (CSUR) 32 (4), 2000

[166] A. Gounaris, N. W. Paton, R. Sakellariou, A.A. Fernandes, “Adaptive Query Processing
and the Grid: Opportunities and Challenges”, 2004

[167] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”, Foundations and
Trends in Databases, Vol. 1, No. 1, 1–140, 2007.

[168] P. Bizzaro, “Adaptive Query Processing: Dealing with incomplete and uncertain
statistics”, PhD Thesis, 2006.

[169] A. Gounaris, “Resource aware query prcoessing”. PhD Thesis, 2005.
[170] H. Paques, L Liu, C. Pu, “Distributed Query Adaptation and its Trade-0ffs”, 2003
[171] G. de la Calle, M. García, V. Maojo, Infobiomed Project, “State of the Art on Data

Interoperability and Managment”, 2005.
[172] D. Pearson, “Data requirements for the grid”, Global Grid Forum 5, 2002.
[173] Bala et. al, “BioGRID - An European grid for molecular Biology“, Proceedings of the

11th IEEE International Symposium on High Performance Distributed Computing,
2002.

[174] F. Darvas, A. Papp, I. Bágyi, G. Ambrus-Aikelin, L. Urge L. OpenMolGRID, a GRID
based system for solving large-scale drug design problems. Ed. Dikaiakos, M. D., In:
Lecture Notes in Computers Sciences: Grid Computing, 2004.

[175] R. Stevens, A. Robinson, and C.A. Goble, “myGrid: Personalised Bioinformatics on the
Information Grid”, Bioinformatics Vol. 19, 2003.

[176] Amendolia et. al, “MammoGrid: A Service Oriented Architecture based Medical Grid
Application”, LNCS, 2004.

[177] Maui Cluster Scheduler. http://www.clusterresources.com/products/maui/
[178] BiOpera – Process Support for BioInformatics. ETH Zürich, Department of Computer

Science. http://www.inf.ethz.ch/personal/bausch/biopera/
[179] Japanese BioGrid project, http://www.biogrid.jp/
[180] BiomedGrid Consortium, http://binfo.ym.edu.tw/grid/index.html
[181] Biomedical Informatics Research Network, http://www.nbirn.net/
[182] R. J. Al-AliI, A. Shaikhali, O. F. Rana, D. W. Walker, “Supporting QoS-based

discovery in service-oriented Grids”, In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, 2003

[183] R. Braumandl, A. Kemper, D. Kossmann, “Quality of Serivce in an Information
Economy”, ACM Transactions on Internet Technology, Vol. 3, No. 4, Pages 291-333,
2003

[184] C. K. Fung et. Al, „A Study of Service Composition with QoS Management”, In
Proceedings of the IEEE International Conference on Web Services, 2005.

[185] D. A. Menasce and E. Casalicchio, “QoS-Aware Software Components”, In Internet
Computing Online, Vol. 8, No. 2, pp.91-93 , 2004

[186] S.B. Musunoori, F. Eliassen, R. Staehli, „QoS-aware component architecture support
for grid”. In 13th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2004.

[187] A. Oguz, A.T. Campell, M.E. Kounavis, R.F. Liao, “The Mobiware Toolkit:
Programmable Support for Adaptive Mobile Networking”. IEEE Pesronal
Communications Magazine, Special Issue on Adapting to Network and Client
Variability, 5(4), 1998.

Virtualizing Scientific Applications and Data Sources as Grid Services 111

[188] A. Sulistio, R. Buyya, “A Grid Simulation Infrastructure supporting Advance
Reservation”, International Conference on Parallel and Distributed Computing
Systems, 2004

[189] Z. Wang, “Internet Quality of Service”, Morgan Kaufmann, 2001
[190] OASIS Web Services Business Process Execution Language (WSBPEL)

,http://www.oasis-open.org/committees/wsbpel/
[191] T. Etzold, H. Harris S. and Beulah,”SRS: An integration platform for databanks and

analysis tools in bioinformatics”, Bioinformatics Managing Scientific Data, p 35–74,
2003

[192] Open Middleware Infrastructure Institute, http://www.omii.ac.uk/
[193] The Globus Toolkit, http://www.globus.org
[194] Enabling Grids for e-Science, http://www.eu-egee.org
[195] gLite, http://glite.web.cern.ch
[196] UNICORE, http://www.unicore.eu/
[197] VLDB 2003 Tutorial on Grid Data Management Systems and Services, Berlin,

http://www.vldb.informatik.hu-berlin.de/ressources/vldb-2003-Tutorial-T4.pdf
[198] Wache et. al, “Ontology-Based Integration of Information - A Survey of Existing

Approaches”, 2001
[199] Shawn Bowers, Kai Lin, Bertram Ludäscher, “On Integrating Scientific Resources

through Semantic Registration”, 2004
[200] J.A.M. Herveg, Y. Poullet. 2003. Directive 95/46 and the use of GRID technologies in

the healthcare sector: selected legal issues. In Proceedings of the 1st European
HealthGRID Conference, Lyon, 229-236.

[201] Web Service Level Agreement (WSLA) Language Specification.
[202] http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf, IBM 2003.
[203] Web Service Resource Framework. http://www.globus.org/wsrf/.
[204] Alexander Woehrer, Peter Brezany and A Min Tjoa. Novel mediator architectures for

Grid information systems Journal for Future Generation Computer Systems - Grid
Computing: Theory, Methods and Applications. January 2005

[205] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of the Twenty-second International
Conference on Very Large Data Bases (VLDB’96), p 251–262, 1996.

[206] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D.
Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous
information sources. In IPSJ Conference, Tokyo, 1994.

[207] J. Gray and A. S. Szalay. Where the Rubber Meets the Sky: Bridging the Gap between
Databases and Science, IEEE Data Engineering Bulletin, Vol. 27. Iss. 4, 2004.

[208] V. Raman et. al. Data Access and Management Services on Grid, Database Access and
Integration Services Working Group, Global Grid Forum (GGF) 5, 2002.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 6

GRID RESOURCE BROKER FOR SCHEDULING
COMPONENT-BASED APPLICATIONS ON

DISTRIBUTED RESOURCES

Xingchen Chu1, Srikumar Venugopal2
and Rajkumar Buyya3

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia

ABSTRACT

This chapter presents the design and implementation of seamless integration of two

complex systems component-based distributed application framework ProActive and Gridbus
Resource Broker. The integration solution provides: (i) the potential ability for component-
based distributed applications developed using ProActive framework, to leverage the
economy-based and data-intensive scheduling algorithms provided by the Gridbus Resource
Broker; (ii) the execution runtime environment from ProActive for the Gridbus Resource
Broker over component-based distributed applications. It also presents the evaluation of the
integration solution based on examples provided by the ProActive distribution and some
future directions of the current system.

INTRODUCTION

Grids have progressed from research subjects to production infrastructure for real world

applications. Grids such as TeraGrid [1], LCG [210] and EGEE [211] are being used by

1 E-mail address: xchu@csse.unimelb.edu.au
2 E-mail address: srikumar@csse.unimelb.edu.au
3 E-mail address: raj@csse.unimelb.edu.au

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 114

scientists to run large-scale and data-intensive simulations thereby allowing them to explore
larger parameter spaces than ever before. Current use of Grid technology mostly extends the
batch-job paradigm wherein a job encapsulating the application requirements is submitted to
a Grid and the results of the execution are then returned. However, the capabilities of Grids
are better explored by active applications that can dynamically vary the parameter space
based on different scenarios. This requires programming models that are able to go beyond
the passive nature of batch-jobs and consider the Grid as a unified platform rather than a loose
aggregation of dispersed heterogeneous resources. In this regard, component-based
application development is a promising candidate as it allows Grid applications to be
constructed out of loosely-coupled independent components that converse with each other
through standard interfaces.

Many component-based software frameworks for Grids have therefore been developed
around the world. Examples of such frameworks are ProActive [212], XCAT [214] and
SCIRun [215]. Such frameworks have to provide functions for handling the heterogeneity and
dynamicity of Grid resources. These functions also have to be abstracted from the
programming environment so that developers are able to concentrate on building applications.
In this chapter, an integration of ProActive framework and the Gridbus Broker [216] is
presented so that the former is able to take advantage of the latter’s abilities in resource
allocation, job scheduling and management, and support for different middleware. It
discusses the challenges involved, and presents the integration process in detail. It also
validates the integration by running the existing examples without any modifications. Finally,
the chapter concludes and provides directions for future research.

BACKGROUND KNOWLEDGE

Before we present the integration solution proposed in this chapter, it would be better to

mention about some technical details of the scheduling infrastructure for both systems in
order to fully understand the reason why integration is necessary and important.

ProActive Grid Scheduler

ProActive [212] is a software framework for developing and deploying parallel and

distributed applications. The programming model and APIs provided by ProActive greatly
simplify the development and execution of those applications. Moreover, it provides a
component framework as a reference implementation for GCM (Grid Component Model) for
programming Grid applications as reusable components.

Among a lot of services provided by the ProActive framework such as execution
environment, standardized deployment and component model, there is one very important
service: Grid scheduler service which promises to schedule applications over heterogenous
Grid resources. Let us take a look at how the Grid scheduler has been implemented within
ProActive framework, as shown in figure 1. The upper layer user objects represent the normal
terms such as jobs and resources. The Grid scheduler as well as the resource manager and job
manager (known as the AbstractPolicy) are all in the scheduling layer. The actual scheduling

Grid Resource Broker for Scheduling Component-Based Applications… 115

algorithms are implemented as various policies which extends the AbstractPolicy class. As
can be seen from the figure, four kinds of policies are provided by the ProActive framework.

Although the Grid scheduler implementation fulfils the basic requirement for simple
scenarios, there is a lack of advanced scheduling algorithms that can be very helpful for
scenarios requiring much more complicated resource allocation policies such as economic-
based and data-intensive scheduling policies. This is where the Gridbus resource broker can
help and the underlying rationale of this integration work.

Scheduler

AbstractPolicy ResourceManager

Job m
anagem

ent

Scheduling,
Execution

&Monitoring

Query resources

ResourceListener

Resource
creation

XML Descriptor

Read node
configuration

FIFOPolicy TimePolicy SpacePolicy MixedPolicy

Scheduling Layer

User Objects
GenericJob VirtualNode Node

<<extends>>

Scheduler

AbstractPolicy ResourceManager

Job m
anagem

ent

Scheduling,
Execution

&Monitoring

Query resources

ResourceListener

Resource
creation

XML Descriptor

Read node
configuration

FIFOPolicy TimePolicy SpacePolicy MixedPolicy

Scheduling Layer

User Objects
GenericJob VirtualNode Node

<<extends>>

Figure 1. ProActive grid scheduler.

Gridbus Broker Scheduling Infrastructure

Gridbus Broker [216] is a user-level middleware that mediates access to distributed

resources by discovering available computational resources, and scheduling jobs to best
suitable resources. Users can choose various scheduling policies including simple round-robin
and more advanced data-intensive or economy-based resource allocation algorithms [217].

As our integration concentrates on the scheduling infrastructure, it will skip other details
related to the broker’s application creation and job execution. The scheduling infrastructure
provided by the Gridbus broker is composed of four main components including the
Scheduler, Dispatcher, ServiceMonitor and JobMonitor, as shown in. Each object runs as a
separate thread that exchanges information via the Broker’s storage infrastructure. Various
scheduling algorithms have been implemented by subclasess derived from the Scheduler
class. The Dispatcher is responsible for dispatching jobs to heterogeneous resources. The
SeviceMonitor and JobMonitor are responsible for monitoring resources and job status,
respectively.

As the broker’s point of view, the terms such as job and resources are described using Job
and ComputeServer. The JobWrapper provides lifecycle methods that need to be invoked by
the broker when the job status is changing. Subclasses of ComputeServer and JobWrapper
always come out in pairs which provide a specific runtime environment for different grid
middleware such as Globus Toolkit [218] and Alchemi [219]. As we will explain later in the

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 116

chapter, we have implemented a specific ComputeServer and a JobWrapper for ProActive
framework.

Scheduler Dispatcher JobMonitorServiceMonitor

Broker Storage Layer

Scheduling Layer

Query information (Application, Job and Service)

User Objects

Job ComputeServer JobWrapper

Scheduler Dispatcher JobMonitorServiceMonitor

Broker Storage Layer

Scheduling Layer

Query information (Application, Job and Service)

User Objects

Job ComputeServer JobWrapper

Figure 2. Overview of Gridbus Resource Broker scheduling infrastructure.

INTEGRATION CHALLENGES

As we mentioned, the objective of the integration is to make ProActive use the Gridbus

Broker scheduling infrastructure. It in turns has positive effects on both sides. ProActive is
able to leverage the economy-based and data-intensive scheduling algorithms provided by the
Gridbus Broker. Gridbus Broker is also able to utilise the programming environment
especially the component-based programming concept provided by ProActive. However, it is
not an easy job as the two systems are both complex and have large codebase. There are
several challenges we need to consider in designing a mature and realistic integration
solution.

The first challenge we need to identify is on the potential impact of the integration on
both systems. There should be no or minimum impact on both systems: (i) each complex
system should have no or as little knowledge of each other as possible, and (ii) each complex
system only need to concentrate on its own terms and conditions. It means that we should
avoid direct dependencies between each other as much as possible, and the data or object
representation of each system should remain the same.

The second challenge for the integration is the reuse of existing infrastructure and
codebase provided by both systems. The goal is to maximise reusability and avoid modifying
the existing source code. This can be divided into two aspects: (i) the scheduling
infrastructure provided by Gridbus Broker should be reused without changing existing source
codebase within the Broker, and (ii) the deployment and runtime execution infrastructure
provided by ProActive should be reused to deploy and execute the applications.

In order to validate that the integration solution we have provided can meet all the
challenges presented here, all the legacy applications that used to run with existing ProActive
scheduling policy should work with the Broker’s scheduling policy without recompiling and
redeveloping the source code.

Grid Resource Broker for Scheduling Component-Based Applications… 117

SYSTEM IMPLEMENTATION

As shown in figure 3, the integration solution we have proposed is purely based on basic

object-oriented design principles such as inheritance and delegation. The top layer is the
existing ProActive scheduling infrastructure which contains a scheduler, a job manager (the
policy class) and a resource manager along with the resource listener that is used to acquire
resources. The bottom layer is our proposed implementation for the integration. The
ProxyPolicy, ProxyResourceManager and ProxyResourceListener extend the ProActive
classes respectively. They are proxies and the links between ProActive and Gridbus Broker.
Instead of using the ProActive objects, the proxy objects are responsible for initializing the
relative components that exist in the Broker codebase. Various proxy policies can be
implemented independently in order to enforce certain scheduling algorithms such as Round-
Robin, and Cost/Time optimization that have already been implemented in the Broker.

Scheduler

AbstractPolicy ResourceManager

Job m
anagem

ent

Scheduling,
Execution

&Monitoring

Query resources

ResourceListener

Resource
creation

XML Descriptor

ProxyPolicy

RoundRobin
Policy

CostOptimisation
Policy

TimeOptimisation
Policy

Proxy
ResourceManager

Proxy
ResourceListener

Resource
creation

<<extends>> <<extends>> <<extends>>

<<extends>>

Gridbus Objects

ProActive Objects
Scheduler

AbstractPolicy ResourceManager

Job m
anagem

ent

Scheduling,
Execution

&Monitoring

Query resources

ResourceListener

Resource
creation

XML Descriptor

ProxyPolicy

RoundRobin
Policy

CostOptimisation
Policy

TimeOptimisation
Policy

Proxy
ResourceManager

Proxy
ResourceListener

Resource
creation

<<extends>> <<extends>> <<extends>>

<<extends>>

Gridbus Objects

ProActive Objects

Figure 3. ProActive and Gridbus Broker integration design.

In order to seamlessly integrate the two systems together, we have to divide the
implementation into two different aspects: (i) new classes that should belong to the ProActive
codebase are responsible for replacing the existing scheduling infrastructure provided by
ProActive dynamically, and (ii) new classes that should be part of the Broker codebase are
responsible for wrapping the ProActive terms into the Broker’s terms that can be scheduled
and managed by the Broker’s scheduling infrastructure.

Proxies for ProActive Scheduling Layer

Let us first examine the objects created belonging to the ProActive codebase.

• Proxy Objects: they bridge ProActive classes with Gridbus Broker classes, and

internally delegate the responsibility to the corresponding behavior in the Gridbus
Broker.

• ProxyPolicy: it is a subclass of ProActive AbstractPolicy class which is responsible
for initialising the Broker runtime including JobMonitor, ServiceMonitor, Scheduler
and Dispatcher. Besides, it also overrides the ProActive’s job management functions

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 118

by delegating to the proper broker functionality. Its subclasses provide the
information required by the Broker to match the scheduling algorithms and create an
appropriate scheduler for a certain policy. For example, the RoundRobinPolicy is
used to guide the Broker to utilise the basic round-robin scheduler that has already
been implemented in the Broker scheduling infrastructure.

• ProxyResourceManager: this class extends the ProActive ResourceManager class. It
overrides the ProActive’s resource management functions using Broker’s
functionality.

• ProxyResourceListener: as ProActive utilises the ResourceListener to acquire the
resources from the XML deployment descriptor, the ProxyResourceListener simply
overrides those implementation and add those resources into the Broker system by
converting the terms from ProActive (such as virtual node and node) to the terms
recognized by the Broker.

The proxies we have implemented that are fully compliant to ProActive scheduling

infrastructure provide an alternative approach for the ProActive community that is promised
to utilise Gridbus Resource Broker’s advanced scheduling algorithms and infrastructure.

ProActive Wrappers for Gridbus Broker

We have already mentioned about the proxies for the ProActive’s scheduling

infrastructure that delegate ProActive’s responsibilities to the Gridbus Broker. However, it is
just one side of the coin, we also need to look at another side of the problem. As both systems
use their own terms representing the same set of information such as resources and jobs. We
have to also provide wrapper classes that translate different terms from one system to another
system. As our goal of the integration is to utilise the Broker’s advanced scheduling
infrastructure for ProActive, it is very important to translate the terms from ProActive into the
terms that the Broker can understand and manage.

As we have already seen the terms ProActive defined for the resources (virtual node,
node) and jobs (GenericJob), an entity mapping has been implemented by wrapping proper
objects into the Broker’s terms as follows:

• ProActiveJob: this class extends the Broker’s Job class and maintain a ProActive’s

GenericJob object internally. Whenever a GenericJob is created by the ProActive’s
job submission module, a ProActiveJob object will be created and queued for
schedule by the Broker system.

• ProActiveComputeServer: it is the subclass of the ComputeServer class which is a
representation of the compute resource for Broker. It internally keeps track of one
virtual node and a list of nodes with that virtual node. Once the resource is created by
ProActive deployment component, the ProActive compute server will be created by
giving the virtual node and a list of nodes associated with the virtual node.

• ProActiveJobWrapper: the job wrapper is a unique class for the Broker that is used to
execute a task using a given way. It provides lifecycle methods for a task that will be
managed and executed by the Broker’s scheduling infrastructure. This particular

Grid Resource Broker for Scheduling Component-Based Applications… 119

implementation for ProActive is responsible for setting up the ProActive runtime
environment and execute the job using the API provided by ProActive runtime.

Assembling the System

We have provided proxies for the ProActive system and also wrappers for the Broker

system, the remaining work is to assemble the two independent parts into an integrated
environment. Figure 4 demonstrates how the whole system works together.

ProxyPolicy
Gridbus Runtime

Job
Monitor

Service
Monitor Scheduler Dispatcher

Proxy
ResourceManager

Start

Broker Storage Layer

Read and update

GenericJob

Submit

Save
GenericJob

ProActiveJob

Proxy
ResourceListener VirtualNode

Node

ProActiveComputeServer

Node Node
XMLDescriptor

Create resources

Add resources

Manage resources

ProxyPolicy
Gridbus Runtime

Job
Monitor

Service
Monitor Scheduler Dispatcher

Gridbus Runtime

Job
Monitor

Service
Monitor Scheduler Dispatcher

Proxy
ResourceManager

Start

Broker Storage Layer

Read and update

GenericJob

Submit

Save
GenericJob

ProActiveJob

Proxy
ResourceListener VirtualNode

Node

ProActiveComputeServer

Node Node

VirtualNode

Node

ProActiveComputeServer

Node Node
XMLDescriptor

Create resources

Add resources

Manage resources

Figure 4. How the integration works.

As can be seen from the figure, the center part of the system is the Broker storage base,
all the information related to the jobs and resources are pushed into the storage. It is the core
part for decoupling ProActive and the Broker. The proxies at the ProActive side are totally
unaware of the Broker runtime environment because they do not need the direct
communication with those components such as scheduler, dispatcher and job/service monitor.
The Broker on the other hand only need to retrieve information such as jobs and resources in
the same manner without even knowing who has given those information.

The entire workflow can be described into three independent parts:

• Resource Acquisition and Management: the proxy resource manager is activated at

the very beginning when the ProActive scheduler starts and initialises the proxy
resource listener to acquire the resources from the XML deployment descriptor. The
listener will create the ProActiveComputeServer objects based on the virtual node
and nodes deployed by the XML deployment descriptor, and save those compute
server objects into the Broker storage system. The proxy resource manager simply
manages those resources via the Broker storage system.

• Job Submission: the ProActive user is able to submit their applications in terms of
GenericJob objects to the ProActive scheduler just as before. Once the GenericJob
objects have been submitted to the system, the proxy policy class will create the

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 120

ProActiveJob objects that wrap each GenericJob object. The ProActiveJob objects
are saved into the Broker storage system for later scheduling.

• Job Scheduling, Monitoring and Execution: this part is fully controlled by the Broker
scheduling infrastructure and totally transparent to the ProActive system. The proxy
policy class will intialise the Broker runtime before any job submissions occur. The
four Broker components including the Scheduler, Dispatcher, Job and Service
Monitor will run as separate threads in the system. They periodically poll the storage
system and retrieve or update required information. For example, the scheduler will
try to find out all the newly submitted jobs and all the available resources, and
schedule jobs over best resources based on the scheduling algorithms. If no job or no
available resource has been found, it just waits for a certain time and polls it again in
the next round. Similarly, the other three components work in the same manner.

The three independent parts work simultaneously without knowing each other. They

obtain required data by querying the storage system, and update certain information
accordingly. This separation enables decoupling for both systems, and they just concentrate
on what they need to deal with.

VALIDATION

In this section, we look at how to validate our integration that meets the objective and

solves the challenges, by running an application developed using the ProActive framework
and being scheduled via the Gridbus broker’s scheduling infrastructure. The integration
solution is valid unless the following conditions are satisfied:

• Legacy applications developed using ProActive should work without changing and

recompiling the source code. The only acceptable modification will be the
configuration file that needs to be used to connect to the Grid scheduler.

• The dependencies between each system should be minimized. Users from ProActive
should be able to dynamically choose which scheduler to use, either the existing one
or the Gridbus broker’s scheduler. And the Gridbus broker should not be aware of
any ProActive runtime information.

• Reuse the existing infrastructure at both sides without adding new features. The job
scheduling should be delegated to the Gridbus broker, and the ProActive’s
application deployment and job execution need to be reused.

C3D Application

The application we are using is the C3D which is a Java benchmark application

measuring the performance of a 3D raytracer renderer distributed over several Java virtual
machines. Image rendering is the process of generating an image from a model by means of
computer programs. The model is described as a three dimensional object that can be
understood by computer programs. Information such as geometry, texture, lighting, viewpoint

Grid Resource Broker for Scheduling Component-Based Applications… 121

and shading may be carried by the objects. Ray tracing is just one of the algorithms that can
be used to render the image, which is a brute-force method calculating the value of each pixel
[220]. In general, the ray tracing rendering approach is too slow to consider for the realtime
image rendering. The C3D application makes use of the distributed rendering engines
working in parallel which is able to accelerate the speed of the normal ray tracing rendering
approach. Users can interact through messaging and voting facilities so that they can choose a
scene that is rendered using a set of distributed rendering engines.

Launch the Application

This application has been provided by the ProActive distribution. We have configured a

scheduler node with 5 nodes (pure JVM) which uses the default round-robin scheduler and
asks the C3D application to connect to the scheduler node. We also monitor this application
via the IC2D monitor GUI, as shown in figure 5. From the user’s point of view, there is
nearly no difference between this run and the one without the Gridbus broker except that the
RoundRobinPolicy and ProxyResourceManager have been presented in the scheduler virtual
node show on the IC2D panel.

Figure 5. C3D application using Gridbus Broker in IC2D monitor.

As the application can be run without modifying any source code, the only thing we need
is to connect the application to the scheduler node via an XML configuration file provided by
the ProActive’s deployment infrastructure. It satisfies the first condition we have set for the
validation.

The dependencies between each system have been minimized as well. The following
code shows how to start the grid scheduler with the broker’s proxy classes.

The ProActive still uses it grid scheduler and it does not know about the existence of the
broker. The implementation classes related to the broker have been dynamically loaded via
Java reflection by giving the name of those classes. Different policies can be easily applied by

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 122

giving a different class name that delegates to the appropriate policy implementation. So we
could say that the integration also fulfils the second condition.

public class StartScheduler{
public static void main(String [] args){

String policyName =
"org.objectweb.proactive.scheduler.gridbus.policy.RoundRobinPolicy";

String resourceManager =
"org.objectweb.proactive.scheduler.gridbus.ProxyResourceManager";

Scheduler.start(policyName,resourceManager);
}

}

The last condition has also been satisfied by our implementation. All the implementations

we have done for the integration are simply providing proxies and wrappers for both system.
No new features are introduced into either of them.

Since all the conditions we have set for the validation have been achieved, we could
conclude that our proposed integration not only works with the two complex systems, but is
also a valid solution that does not comprise the user’s prospective.

REMARKS OF THE INTEGRATION

To evaluate a successful integration solution, only considering whether it is working or

not is not sufficient. It is very important and necessary to look at what impacts the integration
has made to each of the independent systems. In this section of the chapter, we will examine
the impacts that our work brings to each system.

Impacts on ProActive

At the ProActive side, the integration solution provided in this chapter has the least

impacts on the original ProActive system both at the system level and the application level.
First of all, it is necessary to check the impacts on the ProActive’s system level functions. In
terms of the changes of the source code for the ProActive existing codebase, it only requires
tiny changes in the scheduler class that has been modified to add a new overload start method
supporting dynamic configuration of proxy resource manager and proxy policy. Other than
that, the most relevant and important infrastructures such as the deployment service, the
runtime execution environment and the scheduler services have been reused. In other words,
the reusability of the system has been greatly achieved with this integration solution which
has minimised the impacts on the system level.

Another aspect to look at is the application level, or the necessary changes that might be
required by the client applications developed using the ProActive framework. As the previous
section has shown the C3D application is totally are unaware of the existence of the Gridbus
broker at all. This is achieved by decoupling the process of creating the resource manager and
policy from the Scheduler class via the new start method. It is very important to understand

Grid Resource Broker for Scheduling Component-Based Applications… 123

that the implementation of the broker’s scheduling service including the proxy resource
manager and proxy policy are plugged at runtime via the modified scheduler class not at
compile time which eliminates the recompilation process of existing legacy applications
requiring the original scheduling service. This decoupling helps to reduce the unnecessary
dependencies between the client and the scheduling service, which means that the client
applications can safely ignore the existence of the underlining scheduling service.

The last notable aspect is to check how many extra dependencies (extra jar files) that are
required by the ProActive system to perform the scheduling via the Gridbus broker. this is so
important to mention is because the integration approach adopted can largely affect the size of
the jar files required by certain configuration. With inappropriate approach, the runtime
system will require a huge amount of jar files on the classpath and it will cause more
problems such as class conflicts if the two systems use the same open source products with
different versions. The integration solution in this chapter considers this problem. Only one
Java jar file which is the broker runtime library is needed for ProActive to work with the
Gridbus broker.

Impacts on Gridbus Broker

The impact of this integration on the broker is even lesser. The architecture of the

Gridbus broker is very flexible in which the scheduler plays a core role, and various types of
runtime Grid middleware such as Globus, Alchemi, SGE, Condor and PBS can be plugged
into its runtime environment at runtime via the configuration. The broker itself acts as a
middle-man who is responsible for matching jobs to heterogeneous resources. In order to
implement a middleware that can be supported by the Gridbus broker, only few classes are
required to be extended including the ComputeServer class representing the grid resource and
the JobWrapper class which contains the job execution logic for that particular middleware.

The integration solution extends this idea of the broker and makes ProActive as another
type of Grid middleware. The benefit of this decision is that all the classes related to
ProActive can be an independent project that does not need to change the original broker’s
source. At runtime, the broker is totally unaware of the existence of ProActive and just treats
it as a type of normal Grid resource. The broker schedules and dispatches jobs as before
without worrying about the terms defined in ProActive such as GenericJob, Virtual Node and
Node.

CONCLUSION AND FUTURE WORK

This chapter presented the design, implementation and evaluation of an integration

solution for enabling schedule component-based applications on global Grids by utilising the
Gridbus resource broker. The integration solution provided in this chapter strictly follows the
object-oriented design principles, which seamlessly makes the two complex systems
collaborate without knowing each other. Any legacy applications running under the original
runtime can still work without modifying and recompiling the source code. The glue between
the two systems has been provided via the configuration file and the execution environment

Xingchen Chu, Srikumar Venugopal and Rajkumar Buyya 124

loads it dynamically at runtime through the existing deployment service. To validate whether
the integration meets the objective, a legacy 3D raytracer renderer application along with the
ProActive monitor has been tested via the integration.

From the validation, this chapter concludes that the integration solution has minimum
impacts on both systems. They all can work independently and the community users of the
ProActive can freely choose either to use the Gridbus broker scheduling service or not to
worry about it at all. Although this integration solution has demonstrated the feasibility and
potential benefits of scheduling component-based applications via Gridbus broker, a much
closer integration is required in the future to facilitate the economy-based scheduling services.
The job model of the ProActive has to be extended to support QoS parameters such as budget
and deadline via a configurable way. Moreover, the provided implementation only focuses on
the RMI runtime provided by ProActive, a much more comprehensive testing needs to be
done with other types of runtime environments provided by ProActive.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their valuable comments. This work

is fully supported by the international linkage research grant from the Australian Department
of Education, Science and Training (DEST).

REFERENCES

[209] R. Pennington, Terascale Clusters and the TeraGrid , Invited talk, Proceedings for HPC
Asia, Dec 16-19, 2002, pp. 407-413.

[210] I. Bird, L. Robertson and J. Shiers, Local to Global Data Interoperability - Challenges
and Technologies, 20-24 June 2005, CERN, Geneva, Switzerland.

[211] EGEE, Enabling Grids for EScience, http://www..eu-egee.org.
[212] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, and

M. Yechuri, A Component Based Services Architecture for Building Distributed
Applications. In Proceedings of the 9th IEEE international Symposium on High
Performance Distributed Computing, Pittsburgh, PA, USA, August 2000, IEEE
Computer Society, Washington, DC, 2000.

[213] F. Baude, L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel and R. Quilici,
Programming, Composing, Deploying for the Grid, GRID COMPUTING: Software
Environments and Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag,
January 2006.

[214] D. Gannon, et al., Programming the Grid: Distributed Software Components, P2P and
Grid Web Services for Scientific Applications. Cluster Computing 5(3):325-336,
Springer-Verlag, Berlin, Germany, 2002.

[215] S. G. Parker, and C. R. Johnson, SCIRun: a scientific programming environment for
computational steering. Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing (SC '95), San Diego, California, United States, December 04 - 08,
1995. ACM Press, New York, NY, 1995.

Grid Resource Broker for Scheduling Component-Based Applications… 125

[216] S. Venugopal, R. Buyya and L. Winton, A Grid Service Broker for Scheduling e-
Science Applications on Global Data Grids, Concurrency and Computation: Practice
and Experience, 18(6): 685-699, Wiley Press, New York, USA, May 2006.

[217] S. Venugopal and R. Buyya, A Deadline and Budget Constrained Scheduling
Algorithm for eScience Applications on Data Grids, 6th International Conference on
Algorithms and Architectures for Parallel Processing, Oct. 2-5, 2005, Melbourne,
Australia.

[218] I. Foster and C. Kesselman, The Globus Project: A Status Report, Proceedings of
IPPS/SPDP'98 Heterogeneous Computing Workshop, 1998, pp. 4-18.

[219] A. Luther, R. Buyya, R. Ranjan, S. Venugopal, Alchemi: A .NET-Based Enterprise
Grid Computing System, Proceedings of the 6th International Conference on Internet
Computing (ICOMP'05), June 27-30, 2005, Las Vegas, USA.

[220] G. H. Spencer and M. V. R.K. Murty (1962). General Ray-Tracing Procedure . J. Opt.
Soc. Am. 52 (6): 672–678.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 7

CROWN: A SERVICE GRID MIDDLEWARE
FOR E-SCIENCE

Jinpeng Huai1 and Chunming Hu2
Beihang University, Beijing 100083, P. R. China

ABSTRACT

In the past few years, the Grid computing paradigm has emerged as an instance of
cyber infrastructure, promising to enable resource sharing and collaborating across
multiple domains. In the research community there has been an intense interest in
designing and studying of such system.

CROWN (China R and D Environment Over Wide-area Network) project is an e-
Science project funded by China Natural Science Foundation Committee, and China 863
High-tech Program. The main goal of CROWN project is to empower in-depth
integration of resources and cooperation of researchers nationwide and worldwide.
CROWN was started in late 2003. The main goal of CROWN project is to build the
middleware infrastructure and wide area testbed to support computation intensive, data
centric e-Science applications.

Recently, with the evolution of Web services, the service-oriented architecture has
become a significant trend for grid computing, with OGSA/ WSRF as the de facto
standards. CROWN has adopted the service-oriented architecture, connecting large
amount of services deployed in universities and institutes. Up till mid 2007, lots of
applications in different domains have been deployed into CROWN grid, such as gene
comparison in bioinformatics, climates pattern prediction in environment monitoring, etc.
The long-range goal for CROWN is to integrate home user resources in a fully
decentralized way with a robust, scalable grid middleware infrastructure.

In this chapter, based on a proposed Web service-based grid architecture, a service
grid middleware system called CROWN is introduced. As the two kernel points of the
middleware, the overlay-based distributed grid resource management mechanism is
proposed, and the policy-based distributed access control mechanism with the capability
of automatic negotiation of the access control policy and trust management and

1 E-mail address: huaijp@buaa.edu.cn
2 E-mail address: hucm@buaa.edu.cn

Jinpeng Huai and Chunming Hu 128

negotiation is also discussed in this chapter. Experience of CROWN testbed deployment
and application development shows that the service-oriented middleware can support the
typical scenarios such as computing-intensive applications, data-intensive applications
and mass information processing applications.

BACKGROUND

In the year 2004, with the development of Grid technologies in both the academic and

industry, the Natural Science Foundation Committee of China (NSFC), which is one of the
main funding parties in China, announced its e-Science Program named Network-based e-
Science Environment. As one of the Grid related research program, this program is also
referred as the NSFCGrid. The program started in 2004 and ended at the end of 2007. The
main goal of this program is to build up a virtual science and experiment environment to
enable the wide-area research corporation such as large-scale computing and distributed data
processing. The research projects are organized into three layers: basic theory and principles,
general test bed and pilot applications. Different with CNGrid and ChinaGrid, NSFGrid pays
more attention on the fundamental research of Grid related technologies.

CROWN (http://www.crown.org.cn) [1] is the brief name for China Research and
Development environment Over Wide-area Network, one of the main projects in NSFCGrid
program, which is led by Beihang University (BUAA), with several partners in China, such as
National University of Defense Technology of China (NUDT), Peking University, Computer
Network Information Center of China Academy of Science (CNIC, CAS) and Tsinghua
University. The output of CROWN project may fails into three parts: the middleware set to
build a service-oriented Grid system, the testbed to enable the evaluation and verification of
Grid related technologies, and the applications.

CROWN service Grid middleware is the kernel to build an application service Grid.
Basic features of CROWN are listed as follows. First, it adopts an OGSA/WSRF compatible
architecture [2]; second, considering the application requirements and the limitation of
security architecture of OGSA/WSRF, more focus is put on the Grid resource management
and dynamic management mechanism in the design stage, and a new security architecture
with distributed access control mechanism and trust management mechanism which are
proposed to support the sharing and collaborating of resources in a loosely coupled
environment is proposed in CROWN.

Under the framework of CROWN project, we also created the CROWN testbed,
integrating 41 high performance servers or clusters distributed among 11 institutes in 5 cities
(by April 2007). They are logically arranged in 16 domains of 5 regions by using the
CROWN middleware. The testing environment is growing continuously and it becomes much
similar to the real production environment. The CROWN testbed will eventually evolve into a
wide-area Grid environment both for research and production.

CROWN is now becoming one of the important e-science infrastructure in China. We
have developed and deployed a series of applications from different disciplines, which
include Advanced Regional Eta-coordinate numerical prediction Model (AREM), Massive
Multimedia Data Processing Platform (MDP), gViz [3] for visualizing the temperature field
of blood flow, Scientific Data Grid (SDG) and Digital Sky Survey Retrieval (DSSR) for

CROWN: A Service Grid Middleware for e-Science 129

virtual observatory. These applications are used as test cases to verify the technologies in
CROWN.

CROWN MIDDLEWARE

Design Motivation

Since many researchers are focusing on technologies and applications of Grid, the

interoperability and loosely coupled integration problem between different Grid systems are
now becoming a hot topic. At the same time, the application and standardization of Web
services technology are developed rapidly, and service-oriented architecture (SOA) becomes
an important trend in building a distributed computing environment for wide area network,
which helps the merging of Grid and Web services. Recently, Open Grid Service Architecture
[2] and Web Service Resource Framework (www.globus.org/wsrf/) were proposed and have
become one of the fundamental technologies in Grid competing. SOA and related
standardization work provide an important methodology to the research and application of
Grid technology. First, the resources are encapsulated into services with standardized
interfaces, supporting the unified service management protocol, which helps to solve the
problem caused by the heterogeneity of resources; second, the resources are utilized through a
service discovery and dynamic binding procedure, which helps to set up a loosely coupled
computing environment. But the current resource management mechanism is not enough for
all the Grid application scenarios because of the distributed and autonomic resource
environment, and the existing security mechanism cannot pro-vide features like privacy
protection and dynamic trust relationship establishment, which embarrass the further
application of Grid technology.

Actually, not only the Grid computing, but also the Peer-to-Peer computing and the
ubiquitous computing try to explore the Internet-oriented distributed computing paradigm.
The common issue of these computing paradigms is how to use the capability of resources
efficiently in a trustworthy and coordinated way in an open and dynamic network
environment. As we know, Internet (especially the wireless mobile network) is growing
rapidly, while it is deficient in the effective and secure mechanism to manage resources,
especially when the resource environment and relationship between different autonomic
systems are changing constantly. At this point, three basic problems such as cooperability,
manageability and trustworthiness are proposed. The cooperability problem is how to make
the resources in different domains work in a coordinated way to solve one big user’s problem.
The manageability problem is how to manage heterogamous resources and integrate the
resources on demands in a huge network environment, which is a basic condition of building
an Internet-oriented distributed computing environment. The trust-worthiness problem is how
to set up the reliable trust relationship between cross domain resources when they are sharing
and collaborating.

From year 2002, based on our previous work on Web service supporting environment,
and OGSA/OGSI compatible service Grid middleware WebSASE4G, a WSRF compatible
CROWN Grid Middleware is proposed. According to the three basic problems, several key
issues have been explored, such as resource management of service Grid, distributed access

Jinpeng Huai and Chunming Hu 130

control, cross-domain trust management, Grid service workflow and service orchestration
based software development.

Architecture Design

Grid computing started from the meta-computing in the 1990s. In recent years, Grid was

changed from Metacomputing to computing Grid and service Grid, but the basic architecture
of such a computing paradigm was not changed much. In 2001, the five-layer sand-glass
architecture was proposed and accepted generally. With the application and standardization of
Grid, the architecture and its supporting technology be-come an important research issue.
OGSA is a service-oriented architecture, which adopts the service as the unified resource
encapsulation format to provide better extensibility and interoperability between Grid
resources. WSRF refines the service interface and interoperating protocols of OGSA, and
makes the OGSA a Web service-compatible implementation framework, which helps the
merging of Grid and Web service technology more smoothly.

Actually, the five-layer sand-glass architecture just proposed an abstract functionality
structure for service Grid. OGSA/WSRF provided an implementation framework based on
service concept, and a set of Grid service interfaces, neither of which discussed the design
principles, middleware component definitions, and the detailed solutions for access control
and trust management in service Grid. In this chapter, we analyze the requirements from
typical Grid applications, and provide a detailed introduction of CROWN middleware and its
architecture, design principles and kernel technologies based on OGSA/WSRF service Grid
architecture.

Generally, there are three kinds of services in an OGSA/WSRF service Grid: general
services, resource encapsulating services and application-specific services. General services,
such as Grid job broker service, meta-scheduling service, and Grid information services
(GISs) are an important part of a service Grid middleware. In a typical application Grid
scenario (see figure 1), a user first submits job to the meta-scheduling service, then gets the
job status and result from the job broker service; meta-scheduling service retrieves the
resource requirements from the job description language, queries GIS to discovery the
necessary service, submits the job to the service and traces the status of the job execution.

网格作业代理

Grid Information
Service

Service Registration
& Resource Status Update

Service
Discovery

Service Access

资源封装服务

Grid Information
Service………

Information
Exchange

Service Provider

Service Index Centre

Meta Schedule
ServiceUser Proxy

Job
Submission

Service Requester

Create/Manage

Grid Job Proxy

Resource
Encapsulation Service

Asynchronous
Notification

Query Job Status
& Get Job Result

网格资源Grid
Resource

Resource
Monitor

网格作业代理

Grid Information
Service

Service Registration
& Resource Status Update

Service
Discovery

Service Access

资源封装服务

Grid Information
Service………

Information
Exchange

Service Provider

Service Index Centre

Meta Schedule
ServiceUser Proxy

Job
Submission

Service Requester

Create/Manage

Grid Job Proxy

Resource
Encapsulation Service

Asynchronous
Notification

Query Job Status
& Get Job Result

网格资源Grid
Resource

Resource
Monitor

Figure 1. CROWN-based service Grid application pattern.

CROWN: A Service Grid Middleware for e-Science 131

Based on the above analysis, we provide a layered architecture for CROWN and compare
it with the five-layer sand-glass architecture (see figure 2). In the figure 2, service Grid
middleware covers resource layer, collective layer and application layer. In our sys-tem
design, services in resource layer (e.g., resource encapsulation service), collective layer (e.g.,
Grid information service, meta-scheduling service and job broker service) and part of services
in application layer are OGSA compatible Grid services, using information service to obtain
the capability of registration and dynamic discovery. Grid application support tools are used
to enable the interoperation between the collective layer and application layer (for example,
the application-specific developing framework, routines, and Web-based Grid application
portals, etc.).

Fabric Layer

Connective Layer

Resource Layer

Collective Layer
(Common Funciton)

Application Layer

Collective Layer
(Field related Layer)

Computation
Resource

Storage
Resource

Apparatus
Equipment

Program
Resource

Data
Resource

Service Interoperation Service (SOAP，WS-Security etc.）

Service Encapsulation based OGSA Grid Service Interface

G
rid Inform

ation S
ervice

Meta Schedule
Service

Grid Job
Proxy Service

Application
Service

Customized
Schedule
Service

Other Application Service

Other Common
Service

Other Tools（Programming Model、Application Framework etc.）

Web Portal Other User Proxy

Various Applications

Fabric Layer

Connective Layer

Resource Layer

Collective Layer
(Common Funciton)

Application Layer

Collective Layer
(Field related Layer)

Computation
Resource

Storage
Resource

Apparatus
Equipment

Program
Resource

Data
Resource

Service Interoperation Service (SOAP，WS-Security etc.）

Service Encapsulation based OGSA Grid Service Interface

G
rid Inform

ation S
ervice

Meta Schedule
Service

Grid Job
Proxy Service

Application
Service

Customized
Schedule
Service

Other Application Service

Other Common
Service

Other Tools（Programming Model、Application Framework etc.）

Web Portal Other User Proxy

Various Applications

Figure 2. CROWN-based service Grid application.

Components in CROWN

There are 11 components in total in CROWN service Grid middleware analyzed as

follows in detail.

Node Server
Node Server [4] provides a basic runtime environment for Grid service. Using Node

Server, the underlying resources can be encapsulated into Grid services. Node Server
provides all the generic functionalities when running a service instance, such as SOAP
message processing, service instance management; instance/invoke lifecycle management and
notification mechanism. Based on Globus Toolkit 4.0, Node Server adds lots of features such
as remote and hot service deploying, resource status monitoring and re-porting, logging and
remote control and management. By adding security modules, Node Server can provide
features like PKI/Kerberos based authentication, fine-gained authorization, trust management

Jinpeng Huai and Chunming Hu 132

and automatic trust negotiation (ATN), which could guarantee the security and privacy
effectively when resources are used by remote users or cross-domain resources.

Resource Locating and Description Service (RLDS)

CROWN Resource Locating and Description Service (RLDS) is a distributed information
service system for service registration and discovery. Multiple RLDS instances use in-
formation exchange and topology maintenance protocol to build the hierarchical architecture
and the overlay network at runtime as needed to get better performance of re-source
management and service discovery.

CROWN Scheduler

CROWN Scheduler is a meta-scheduling service in CROWN, queues and schedules
user’s jobs according to a set of predefined strategies, interoperates with RLDS to get current
service deployment information and job status, uses predefined scheduling policy (random
policy, load balancing policy, etc.) to do the matchmaking, and performs the service
invocation. CROWN scheduler supports two types of job, POSIX application invocation and
Grid service invocation. Job submission description language (JSDL) is used to describe the
QoS requirements and security demands of the jobs.

CROWN CommSec

CROWN CommSec is a plug-in for Node Server and a generic Web service to provide
the basic security communication feature such as building and verifying of certificate chains.
Administrators can edit the predefined policy file according to complex security requirements
to provide independent, extensible and feasible security solutions.

CROWN Authz Service

CROWN Authz Service is a generic service using an XACML based authorization policy
description language and provides the capability of authorization decision and policy
management. It supports the multi-granularity access control policy and domain access
control policy.

CROWN CredMan

CROWN CredMan is used to manage user credentials. Through the agent certificate
issue, the identified subjects can be managed especially when the job is submitted from the
Web portal or in the mobile networks.

CROWN CredFed

CROWN CredFed contains a plug-in for Node Server and a credential mapping service.
It can be used to map credentials from different security infrastructures (such as PKI and
Kerberos) to enable the identity mapping between two security domains. Administrators can
modify the mapping policy to control the behavior of CredFed.

CROWN ATN

CROWN ATN contains a plug-in for Node Server and a set of generic services. The
Automatic Trust Negotiation (ATN) is to establish the trust relationship between strangers in
Internet, protecting the privacy (for example, the information on attributes-based certificates

CROWN: A Service Grid Middleware for e-Science 133

and the negotiation policies) of both sides. It provides a security decision and trust
management mechanism for open network environment.

CROWN Portal and Rich Client Framework

These two tools, CROWN Web Portal and Rich Client Framework, provide a unified user
interface to service Grid to support the job parameter configuration, job submitting, JSDL
generating and result demonstration. CROWN Portal provides a Web-based interaction model
for the applications, and Rich Client Framework provides a Java-based application
framework for applications, which has extensive visualization and interaction demands (such
as complex visualization). The framework can be customized according to the application
scenario to speed up the application development.

CROWN Designer

CROWN Designer is a Grid service developing and deploying tool based on Eclipse
platform. A set of wizard and dialogs provided make the development and deployment of
Grid service more easily. By using the remote and hot deploy feature of Node Server, the
designer provides drag and drop features to deploy the GAR file. In the near future, more
service orchestration tools will be integrated into the CROWN Designer.

CROWN Monitor

CROWN Monitor is an Eclipse RCP based client tools written in Java. It is used to
retrieve, store and analyze events/information from different Grid entities, and to show
current runtime information using map and chart. We can also adjust parameters of the tool to
change the monitor behavior to the target service Grid systems.

Figure 3. Service Grid Design Principle based on CROWN middleware.

Jinpeng Huai and Chunming Hu 134

Based on these middleware modules, CROWN is designed under the guide of figure 3.
There are three layers in a service Grid. CROWN middleware connects resources in a
resource layer. Application Grid uses Web portal or other customized client interfaces to
submit jobs and solve the user’s problem. First, Node server should be deployed on each
resource to support service deploy and runtime management; second, all the Grid re-sources
are divided into multiple domains, at least one RLDS instance should be deployed into each
domain, and all the RLDS instances have to be configured into a predefined heretical
architecture to form a distributed information systems; third, CROWN scheduler will be
deployed into the Grid, to get the job request from the user and to find the proper services for
each job; finally monitoring and developing tools simplify the building procedure of a Service
Grid and its applications.

Features Overview

CROWN adopts an OGSA/WSRF compatible architecture, with the following features.

Overlay-Based Distributed Resource Management
Overlay technique is an effective way to support new applications as well as protocols

without any changes in the underlying network layer. The basic idea of the overlay net-work
is to build a new network over the existing physical network nodes according to some
selected logical rules. In CROWN, resources are managed by an information service overlay
consisted by a set of RLDS services [5]. These RLDS instances are linked with each other
according to a tree-based topology with carefully selected short-cuts, exchanging resource
and request information with their logical neighbors. Such a fully decentralized structure can
provide better performance with the avoidance of single point of failure at information
systems.

Remote and Hot Deploy with Trust (ROST)

We developed the remote and hot deploy technique with trust support, called ROST [6].
Traditionally, the remote service deployment is supported in a cold fashion, which means

to deploy a new service, and the service runtime environment needs to be restarted.
Therefore, the hot service deployment has become increasingly important, which does not
need to restart the runtime environment while deploying services. To achieve this feature, an
archive format called GAR file (Grid Archive) is proposed to encapsulate all the necessary
files and configurations for a Grid service. GAR file can be moved to target service container
through SOAP/HTTP protocols. Target service container receives the GAR file and
uncompresses it to update the container information without stop the container.

Security issues are guaranteed through the trust negotiation using ATN (autonomic trust
negotiation) technique. ATN is a new approach to access control in an open environment,
which, in particular, successfully protects sensitive information while negotiating a trust
relationship. With ATN, any individual can be fully autonomous. Two individuals, which are
not in different security domains, try to set up a trust relationship by exchanging credentials
according to respective policies.

With the availability of remote and hot service deployment, many applications will
benefit, such as load balancing, job migration and so on.

CROWN: A Service Grid Middleware for e-Science 135

JSDL-Based Job Submission and BES-based Job Scheduling
JSDL (Job Submission Description Language) and BES (Basic Execution Service) are

adopted in CROWN scheduler, with extension to Web service-based Job submission. Job can
be submitted to CROWN scheduler via any JSDL compatible clients, such as GridSAM, and
gLite using a BES interface. Interoperability demonstrations are proposed in AHM 2006 and
SC 2006, organized by HPCP (High Performance Computing Profile) working group in OGF.

Security Architecture Supporting Domain Interoperability

CROWN uses a federate construction to form the virtual organization. We use the term
region to denote the area with homogenous security infrastructure such as PKI or Kerberos,
and term domain to denote the area of autonomous organization. When Grid services are
deployed in different domains, each domain may have their own security concerns about the
services. CROWN provides a fine-grained and extensible architecture that maximizing the
separation of service administrators and service developers.

Beside this, CROWN enables that the same implemented service can be deployed into
those PKI domains as well as Kerberos domains without having to modify the source code of
the service. Furthermore, CROWN-ST also supports users from domains with heterogeneous
security infrastructures to access the resources from other domains.

RESOURCE MANAGEMENT IN CROWN

Overview

CROWN employs a three-layered structure of resource organization and management [5],

as illustrated in figure 4, based on the characteristic of e-Science applications and the resource
subordination relationship. The three layers are Node Server, RLDS (Resource Locating and
Description Service), S-Club and RCT.

Figure 4. CROWN resource organization and management.

Jinpeng Huai and Chunming Hu 136

In CROWN, before a computer becomes a Node Server (NS), it must be installed with
CROWN middleware. The service container is the core component in CROWN middleware,
which provides a runtime environment for various services. Each NS usually belongs to a
security domain. Every domain has at least one RLDS to provide information services, and
RLDS maintains the dynamic information of available services. S-Club and RCT are used for
more efficient resource organization and service discovery.

Resource Sharing Using Node Server

All kinds of heterogeneous resources are encapsulated into CROWN Nodes, and services

are deployed on these nodes to provide a homogeneous view for upper middleware to access
the resources.

CROWN Node Server is implemented on the basis of GT4 Java WSRF core, and figure 5
shows its system architecture. GT4 provides a stable implementation of WSRF specification
family and a light-weight embedded runtime. However, these basic functions are not enough
to satisfy the requirements for service container in real grid environments.

Figure 5. System Architecture of Node Server.

Resource Management Using RLDS

CROWN defines domain, region, and gateway to management heterogynous resources on

the wide area network.
Nodes are organized into different domains according to their subordination or resource

catalogs. A Resource Locating and Description Service (RLDS) is deployed in each domain
as the center of grid information management. Domains may contain several sub-domains
such that all RLDS come up with a tree like topology.

For flexibility, the concept region is introduced to coordinate different domain trees. A
region switch is deployed in each region such that flexible topologies and information sharing
mechanisms can be applied among regions.

CROWN: A Service Grid Middleware for e-Science 137

To connect with other grid systems, we deploy several gateways on the edge of the
CROWN system.

S-Club and RCT

CROWN employs a service club mechanism, called S-Club, for efficient resource

organization and service discovery.
S-Club is used to build an efficient overlay over the existing GIS (Grid Information

Service) mesh network [8, 9, 7]. In such an overlay, GISs providing the same type of services
organized into a service club. An example of such a club overlay is shown in figure 6, where
nodes C, D, E, G form a club. A search request could be forwarded to the corresponding club
first such that search response time and overhead can also be reduced if the desired result is
available in the club.

Intuitively, to set up a club requires information exchange, and clubs need to be
maintained dynamically because new GISs may join and some existing GISs may leave. Also,
it is possible that some types of services become less popular after the club is built. Therefore,
the system has to be careful on the trade-off between the potential benefit and the cost
incurred. In general, the usage of services is not uniformly distributed. Some types of services
can be very popular and others may not. When/how clubs are constructed/destroyed will be
key issues in S-club scheme.

Figure 6. An example of Service Club.

Assuming any search request is firstly sent to a GIS close to the user. On receiving a
search request for a specific service type, the GIS checks locally whether there has been a
club for this type. If yes, the GIS forwards the request to the club, which will be flooded
within the club only. If there is no club for this type, however, the GIS floods the request
throughout the mesh network.

When a new GIS joins the GIS network, it has no idea what clubs are there. But since it
has at least one neighbor in the underlying mesh network, it can ask one of its neighbors for

Jinpeng Huai and Chunming Hu 138

the information of existing clubs. Namely, it simply copies the information of clubs from its
neighbor. For more detailed discussion, please refer to [7].

Besides S-Club, there is a RCT (Resource Category Tree) for the third layer’s resource
management. Computational resources are usually described by a set of attribute-value pairs.
Among all attributes of a computational resource, one or several attributes is choose to
characterize the resource capacity of meeting application resource requirements as primary
attributes (PA). An overlay called RCT (Resource Category Tree) is used to organize
computational resources based on PAs.

Grid applications can be characterized by their requirements for computational resources,
e.g., computing intensive and data intensive applications. In turn, categorizing computational
resources based on certain resource characteristics that can meet application resource
requirements. By doing so, resource discovery is performed on specific resource categories
efficiently. For example, resources with huge storage can better serve a data intensive
application, thus they can be organized together based on an overlay structure.

Furthermore, according to the observation, the values of most resource attributes are
numerical, e.g., values of disk size. And attributes whose values are not numerical can be
converted to be numerical through certain mathematical methods. Based on this consideration,
RCT adopts an AVL tree (or balanced binary search tree) overlay structure to organize
resources with similar characteristics. The attribute that can best describe the characteristic of
resources organized by an RCT is named a primary attribute or PA. Figure 7 is an example of
RCT. The chosen PA is available memory size, and the value domain of available memory
ranges from 0MB to 1000MB.

Compared with traditional AVL, each node of RCT manages a range of values, instead of
a single value. Each node only needs to maintain its connection with direct child nodes and
parent, and operations like registration, updating and query can start from any node. Unlike in
traditional AVL structure, higher-level nodes of RCT are not required to maintain more
information or bear more load than those in lower levels, which provide the basis for RCT to
scale easily.

Figure 7. An example of RCT.

Suppose D is the value domain of the PA of an RCT. Each node n of an RCT is
responsible for a sub range of D, or Dn. All resources with PA values belonging to Dn
register themselves to node n. We name each RCT node an HR (Head of a sub Range). And

CROWN: A Service Grid Middleware for e-Science 139

terms of “HR n” and “node n” will be used interchangeably in the rest of this chapter. In
figure 1, the circles denote HRs, while the squares below an HR denote computational
resources registered with an HR.

Suppose N is the total number of HRs in an RCT, lc(n) and rc(n) are the left and right
child nodes of HR n respectively. Since an RCT is a binary search tree, following
observations can be found.

Di∩Dj=φ , �i,j ∈[1,N] (2)
Dlc(i) <Di <Drc(i) , �i∈[1,N] (3)
Di < Dj if the upper bound of Di is less than the lower bound of Dj, e.g., [1, 2] < [3, 4].

If the ranges of node i and node j, i.e. Di and Dj, are adjacent, node i is referred to as a
neighbor of node j, and vice versa. If node i is a neighbor of node j and Di< Dj, node i is
called left neighbor of node j (denoted by L-neighbor(j)); node j is called right neighbor of
node i (denoted by R-neighbor(i)). Note there are two exceptions: the leftmost HR and the
rightmost HR, the former has no left neighbor and the latter has no right neighbor.

As shown in figure7, C2 and B2 are neighbors of A, while C2 is L-neighbor of A and B2
is R-neighbor of A. Note that C1 does not have left neighbor and B2 has no right neighbor.

As resources are owned and managed by different resource providers, providers may
define different Pas for their resources, which results in constructing multiple RCTs. In figure
8, we present a 2-layer architecture for organizing resources across resource providers by
using RCT. In the lower layer, each resource provider defines a set of PAs that can best
describe their resources. Based on PAs, resources are organized through a certain number of
RCTs. To enable wide area resource discovery across different providers, an RCT index
service (RIS) is deployed by each service provider in the upper layer. RIS is a basic service
that stores information about PAs of a provider and entry points of RCTs. RISs can be
implemented, e.g., as web services or grid services, and find each other using services like
UDDI.

In practice, a resource may have many attributes, but only a few of them are chosen as
primary attributes. So there will not be too many RCTs. When a query request cannot be
satisfied by a resource provider, the RIS will contact other RISs to recommend another
resource provider for further discovery operations.

Figure 8. Resource organizing with RCT.

Jinpeng Huai and Chunming Hu 140

SECURITY ARCHITECTURE IN CROWN

Overview

CROWN provides a hierarchical security solution to secure virtual organizations

established via CROWN middleware system. There are three levels of security mechanisms
in CROWN Security Architecture, including node level, domain level, and region level
security mechanisms. CROWN uses a federated construction to form the virtual organization,
and the architecture of Security is designed accordingly as shown in figure 9. Term region is
used to denote the area with homogenous security infrastructure such as PKI or Kerberos, and
term domain to denote the area of autonomous organization.

Figure 9. Architecture of CROWN security.

In order to wrap, share and protect the raw resources in autonomous domains, CROWN
node should be deployed in the domain. It’s the responsibility of the CROWN node to accept
or intercept resource requests from grid users and do the security control. The raw resources
to be protected are located in what we called protected area which may be a physical area or a
conceptual area. The deployment of CROWN Security should insist that every access to the
resources in protected area is mediated by a CROWN node.

Node Level Security

In CROWN node, CROWN Security implements communication security, fine-grained
access control, basic message level security, such as encryption/decryption,
signing/verification, and authentication, authorization mechanisms is provided. Moreover,
other new functionalities can easily be extended in this architecture due to its flexibility.
CROWN Security is highly flexible through configuration, which facilitates administrators to
specify fine-gained security policies for each service. For example, it is feasible to apply

CROWN: A Service Grid Middleware for e-Science 141

various security processing modes, such as a signature-only mode, or an encryption-with-
signature mode, etc., to different services, even different methods or method parameter values
in a service, in the same node.

Currently, CROWN Security supports two kinds of security infrastructure, Kerberos and
PKI. Therefore X.509 certificate [14] and Kerberos ticket are both supported in authentication
module. Both Kerberos and PKI authentication are implemented as a WSSecureConversation
[15] service which conforms to GSS-API standard [16]. For instance, a service deployed in
Kerberos region can use CROWN Security to authenticate and authorize users according to
their Kerberos credential, and in the mean time the same service can also be deployed in PKI
region with only slight configuration adjustments made by administrator. This feature is the
essential infrastructure to support further credential federation among regions.

In particular, during the dynamic trust establishment between two unknown nodes located
in different security domains, the sensitive credentials or access control policies may be
disclosed. In CROWN Security, a dedicated ATNService, namely Automated Trust
Negotiation Service, which comply with WS-Trust standard, is provided to preserve privacy
for the nodes. If the service requester has a trust ticket issued by target service, then the trust
can be established without negotiation. Otherwise, trust negotiation will be triggered, where
the negotiation strategy enforcer in the ATNService will determine where and which
credentials should be disclosed. Specially, an advanced trust chain construction component,
which holds by trust management with various delegation credentials, is supported in
ATNService.

Domain Level Security

Although some security functions such as authentication and authorization are
implemented as a node level security mechanism in CROWN Security. Sometimes, it is a
huge burden for administrators to maintain authentication and authorization policies on
enormous number of CROWN nodes in each domain. Therefore, several fundamental security
services are provided by CROWN Security with the intention to ease the security
administration and reduce the administration burden, including the authentication service
(AuthService) and the authorization service (AuthzService). For example, a centralized
authorization service can be deployed in a domain, and this authorization service will serve
for all grid services reside in the CROWN nodes in this domain to make authorization
decision.

Furthermore, CROWN Security provides a credential management service
(CredManService) as a MyProxy [11] replacement in CROWN middleware. CredManService
allows users to access their credentials anywhere, anytime, even when they are on a system
without Grid infrastructure or without secure access to their long-term credentials as
MyProxy does. However, CredManService is implemented as a grid service, and it is
decoupled with underlying security mechanisms. This actually benefits to the administrators
with immeasurable flexibility to tailor different security configurations for different service
deployment. On the other hand, MyProxy is heavily coupled with SSL as a session security
mechanism and a built-in access control model which is hard coded and inflexible to extend.

The domain administrator can deploy these services selectively. These services are all
implemented as an extension to the WS-Trust standard [17], which has a policy-based design,
therefore they are highly adaptable and easy to configure.

Jinpeng Huai and Chunming Hu 142

Region Level Security
Region level security mechanism in CROWN Security is realized by credential federation

service (CredFedService). In a multi-party collaboration, users in one region may have
fundamental problem accessing services provided by other region because they have different
authentication method as well as different format for user credential, such as X.509 certificate
and KerberosV5 [18] ticket. A credential conversion mechanism is an essential enabling
mechanism to establish profound collaboration among multi-parties. For example,
CredFedService can be employed as a bridge between PKI region and Kerberos region.
Therefore users from one region can access the resources across different security
infrastructure via the policy-based identity mapping and credential conversion feature
provided by CredFedService. CredFedService is also implemented as a grid service, which is
decoupled with underlying security mechanisms. Administrators can adapt different security
configuration as well as identity mapping policy to their own requirements.

Design and Implementation

As discussed above, CROWN Security presents an extensible framework and implements

basic communication security component inside CROWN Node. CROWN Security also
provided four other components based on the framework, including Credential Management,
Policy Based Authorization, Trust Management and Negotiation, and Credential Federation.
Implementation of CROWN Security is tightly integrated with the CROWN NodeServer,
which is the core component of CROWN Middleware system. Basic function of CROWN
Security comes together with CROWN NodeServer and several fundamental security services
are available as grid service archives, which can be remotely deployed into a CROWN
NodeServer through ROST service [10].

Before diving into design and implementation details, security structure of CROWN node
will be discussed in following subsection, which is essential design to realize flexible and
adaptable features of CROWN Security.

Security Structure for CROWN Node

Figure 10 depicts the internal security structure for CROWN node. The design of this
structure is much inspired by Axis although the purpose of CROWN Security is message
level security processing rather than SOAP message processing. The security processing
depends on a configurable security chains, and generally two chains, which deal with the
request and response messages of service respectively, are configured for every grid service.
For the sake of simplicity, there is only a processing chain shown in figure 10. Each handler
in the processing chain is in charge of some specific security functions. The grid services
developers, deployers and administrators can customize grid services protection by merely
configuring these chains. The configuration is stored in security descriptors.

CROWN: A Service Grid Middleware for e-Science 143

Figure 10. Security architecture of CROWN node.

When the message interceptor embedded in CROWN node intercepts request or response
message for a grid service, it will call the engine with information related to this message.
Then the engine will generate an appropriate chain by means of a configuration engine
according to the security descriptor, and invoke the chain to process the message, i.e., invoke
each handler in the chain in a sequential order. After invoking a handler, the engine will
choose continuing the process or terminating it according to the current result. The
configuration engine can also be used to cache the instantiated processing chains and handlers
in order to achieve better performance.

Besides the information related to the request or response message, some other
information such as session keys, states of automated trust negotiation, properties of
resources are also needed by the handlers to finish their processing. In CROWN Security, the
information is called security contexts and is classified and managed by a context manager.

It should be noted that most handlers currently implemented in CROWN Security follow
the policy-based design. For some handlers, such as authentication handler and authorization
handler, there are two editions available with different modes, namely call-out mode and
stand-alone mode. For instance, a standalone authentication handler will follow the
authentication policy specified in a node-local security descriptor with all the policy decisions
made locally, while a call-out authentication handler will merely read the locations of access
point of a centralized authentication service and consult the service for policy decisions.

As discussed above, to wrap, share and protect the raw resources in autonomous domains,
CROWN nodes should be deployed into the hosts of the domain. The software to be installed
is called CROWN NodeServer, which is the core component of CROWN Middleware system.
NodeServer is implemented based on GT WS-Core container with various new features and
extensions, such as remote and hot service deployment, monitoring and management service,
etc.

The security structure for CROWN Node is tightly integrated with the CROWN
NodeServer. Some function of CROWN-ST comes together with CROWN NodeServer as

Jinpeng Huai and Chunming Hu 144

security handlers, which can be configured and customized by administrators in security
processing chains.

Communication Security

Communication security module consists of both security handlers and security services
which can be used to secure corresponding messages between nodes, including encryption,
decryption, signature, authentication handlers, authentication service, and secure-conversation
service. All handlers provided by CROWN Security conform to WS-Security standard in
terms of SOAP message encryption and signature. Moreover, WS-Policy [12] language is
used to express different policies for message processing which makes CROWN Security
highly flexible.

CROWN Security currently supports three modes of message level security, which are
username token mode, secure-message mode, and secure-conversation mode. The first two
modes are similar with those implemented in GT4, which complies with WSSecurity.
Furthermore, our secure-conversation mode supports using both X.509 certificate and
KerberosV5 ticket as user credential for authentication and encryption, which conforms to
WSSecureConversation [15], WS-Trust [17], and IETF GSS-API standards [16].

Policy Based Authorization

Policy-based authorization module in CROWN Security implements policy decision
point in both handler and service. We adopt XACML [13] (eXtensible Access Control
Markup Language) to express fine-grained access control policy in AuthzService. By using
SAML assertions, the AuthzService can make authorization decision based on user attributes
rather than identity.

In figure 11, authorization module intercepts each request sent to target service, then
collects attribute certificates signed by attribute authority for both user and service to form a
request context, which is conducted by policy decision point to make a authorization decision
for the request. As mentioned previously, authorization policy is coded with XACML
language and managed by domain administrator.

Credential Management

Grid Portals are increasingly used to provide user interfaces for grid. Through these
interfaces, users can access a grid conveniently. When security is taken into account, it is
required that the user can access his credentials in a secure and convenient way anytime,
anywhere. Credential management module, which consists of a CredManService and

CROWN: A Service Grid Middleware for e-Science 145

Figure 11. Structure of the Authorization module.

corresponding client tools, in CROWN Security, known as CredMan, is designed to meet this
requirement. At first, a user would use a CredMan client command, named credman-init, to
visit the CredManService, and delegate a set of proxy credentials which are signed by the
user’s permanent credential to the service repository. At a later time when the user’s
credential is needed, the user, or service acting on the behalf of the user to get a proxy
credential delegated from the proxy credential stored in the repository.

In CROWN, client tools can be integrated with the portal, that is, a user can access his
credential through portal. By using the tools, a user can easily delegate to and retrieve
credential from the repository. Moreover, some client tools are provided for the user to
manage the credential stored in the repository. In order to protect the credentials in the service
repository, CredManService provides a protected mechanism in which user can specify
authentication information and retrieval restrictions to protected his credentials in the
repository.

Trust Management and Negotiation

A dedicated ATNService can be deployed with the target service to support the trust
negotiation with the service requester.

As illustrated in figure 12, a series of procedures are involved in the trust negotiation.
When the client requests the target service which protected by trust negotiation service, it will
firstly initialize an ATNEngine through local RedirectHandler. Upon receiving the negotiation
requests from client, the service provider will create an ATNEngine, too. The state of
negotiation will be stored in ATNContext. Then, the two participants may disclose their
credentials according to the provider’s policy; or policies for sensitive credential. This
process will be interacted until a final decision (‘success’ or ‘failure’) is reached. If the
negotiation succeeds, ATNService will return a success status, and the context will be
updated accordingly. The requester can insert the session id into SOAP header and sign it
before sending to the target service. The target service will verify the authenticity of session
id through its AuthzHandler, and allow the access if the verification succeeds.

Jinpeng Huai and Chunming Hu 146

Figure 12. ATNService and ATNEngine.

Credential Federation
Credential Federation component is provided as a grid service called CredFedService.

The function of CredFedService is to convert X.509 certificate to KerberosV5 ticket
according to specified identity mapping policy, and vice versa. Figure shows relationships
and data flow among the modules inside CredFedService implementation.

Figure 13. CredFedService.

The input of CredFedService is user’s credential, and the output is a new credential in a
format different with the input credential. Figure 13 demonstrated a procedure of mapping a
X.509 credential to a Kerberos credential. First, the input credential is processed by the
authentication module, which is realized by secureconversation mode offered by underlying
communication security component of CROWN-ST, to verify whether the user is the real
owner of this credential. If so, the credential is then forwarded to identity mapping module,
which will map the identity of user to another domain based on mapping policy. Then the
new identity will be processed by credential conversion module to generate a new credential
for the user. Finally this credential is returned to the user by CredFedService.

As shown in figure 13, each module has its corresponding policy that can be customized
by administrator of CredFedService.

CROWN: A Service Grid Middleware for e-Science 147

Summary

CROWN Security provides a finegrained and extensible framework enabling trust

federation and trust negotiation for resource sharing and collaboration in an open grid
environment. We also demonstrate the performance of our implementation through
comprehensive experimental studies. CROWN Security aims to satisfy some security
requirements of dynamic distributed resources sharing and integration, but much works
remains to be done.

TESTBED AND APPLICATIONS OF CROWN

CROWN is now becoming one of the important e-science infrastructure in China.
We have developed and deployed a series of applications from different disciplines,

which include Advanced Regional Eta-coordinate numerical prediction Model (AREM),
Massive Multimedia Data Processing Platform (MDP), gViz for visualizing the temperature
field of blood flow, Scientific Data Grid (SDG) and Digital Sky Survey Retrieval (DSSR) for
virtual observatory. These applications are used as test cases to verify the technologies in
CROWN.

AREM uses Grid as a tool to study and refine the numerical prediction model of weather
and climate. Several numerical models are worked out by meteorologists during their research
and prediction work. Typically these models use the raw weather data from national
meteorology authority as input, and simulate the weather transformation according to the laws
of atmospheric physics and fluid dynamics. The output can be used as a prediction result of
the future weather. The simulations are all based on complex numerical calculations and need
large quantity of computing power and storage capacities. By using the resource organization,
job scheduling technologies provided by CROWN, we successfully developed AREM
research system. We encapsulated the Fortran complier, visualization tools (GrADS) and the
simulation framework of AREM as services, and a unified raw weather data center is also
deployed. Meteorologists can submit simulation jobs to the system and refine the numerical
models according to the results. Since the jobs are executed by using the resources provided
by CROWN testbed, the execution procedure can be parallel, the execution time can be much
reduced and the efficiency of weather system research and prediction model refinement is
improved.

Large amount of storage capability and computing power is needed when performing
multimedia data processing, such as content recognition of voice or video. Traditionally a
central processing model is applied and pieces of data are collected and processed in a single
point. When the input data increase, this method provides little scalability especially for the
real-time applications. We combine the service Grid technologies with the massive data
processing and implement the MDP platform for multimedia data processing. MDP has been
deployed into CROWN and provides service since 2005. We encapsulate the related
algorithms into services and deploy then on many Grid nodes. Users can provide many ways
of multimedia data and submit jobs to the Grid scheduling system. After analyzing the work
load of Grid nodes available resources can be found automatically and data can be processed
by invoking corresponding services. Since the platform is deployed in a wide-area

Jinpeng Huai and Chunming Hu 148

environment, we also introduced the trust management and negotiation mechanisms. These
technologies protect the user data and make the processing trustworthy. By using MDP, the
resources that can be used to process multimedia data increase apparently, and the throughput
and dependability of processing can be much improved.

CROWN interoperates with other Grid middleware through specifications. The testbed
also links to some famous Grid testbeds. For example gViz application is deployed both in
CROWN and White Rose Grid (WRG) which is a part of UK National Grid Service (NGS).
We demonstrated the application on UK e-Science All Hands Meeting 2005 to show the
interoperability of heterogeneous and autonomic Grid systems.

The experience of system development and deployment mentioned above shows that
CROWN provides the capability of resource management, distributed access control and trust
management and negotiation. It can be used to support applications that are computation
intensive and/or data intensive. 11 applications are deployed into CROWN by April 2006 and
more than 25000 requests are processed.

ACKNOWLEDGEMENT

Part of this work is supported by grants from the China Natural Science Foundation (No.

90412011 and 60703056), China 863 High-tech Programme (Porject No. 2006AA01A106),
China 973 Fundamental R and D Program (No. 2005CB321803) and National Natural
Science Funds for Distinguished Young Scholar (No. 60525209). We would also like to thank
Jianxin Li, Tianyu Wo and Hailong Sun and other members in CROWN team at Beihang
University for contributions to design and implementations of CROWN middleware, testbed,
applications and related resource management technologies mentioned in this chapter.

REFERENCES

[221] “CROWN, http://www.crown.org.cn”
[222] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the Grid: An Open

Grid Services Architecture for distributed systems integration”,
http://www.globus.org/research/papers/ogsa.pdf

[223] Ken Brodlie, David Duce, Julian Gallop, Musbah Sagar, Jeremy Walton, Jason Wood.
“Visualization in Grid Computing Environments”. Proceedings of IEEE Visualization
2004, pp155-162.2004

[224] Hailong Sun, Wantao Liu, Tianyu Wo, Chunming Hu, “CROWN Node Server: An
Enhanced Grid Service Container Based on GT4 WSRF Core”, Fifth International
Conference on Grid and Cooperative Computing Workshops, pp. 510-517, 2006

[225] Jinpeng Huai, Tianyu Wo, and Yunhao Liu, “Resource Management and Organization
in CROWN Grid,” in Proceedings of the 1st international conference on Scalable
information systems, 2006.

[226] Jinpeng Huai, Hailong Sun, Chunming Hu, Yanmin Zhu, Yunhao Liu, Jianxin Li,”
ROST: Remote and hot service deployment with trustworthiness in CROWN Grid”,
Future Generation Computer Systems Volume 23, Issue 6 (July 2007)

CROWN: A Service Grid Middleware for e-Science 149

[227] J. Frey and T. Tannenbaum, "Condor-G: A computation Management Agent for multi-
Institutional Grids," Journal of Cluster Computing, vol. 5, pp. 237, 2002.

[228] W. Hong, M. Lim, E. Kim, J. Lee, and H. Park, "GAIS: Grid Advanced Information
Service based on P2P Mechanism," in proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing (HPDC-13), 2004, pp. 276-
277.

[229] A. Iamnitchi, I. Foster, and D. C. Nurmi, "A Peer-to-Peer Approach to Resource
Location in Grid Environments," in proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing (HPDC-11), 2002.

[230] H. Sun, Y. Zhu, C. Hu, J. Huai, Y. Liu, and J. Li, "Early Experience of Remote and Hot
Service Deployment with Trustworthiness in CROWN Grid," presented at 6th
International Workshop on Advanced Parallel Processing Technologies (APPT 2005)
2005.

[231] J. Basney, M. Humphrey, and V. Welch, "The MyProxy Online Credential Repository,"
Software: Practice and Experience, vol. 35, pp. 801-816, 2005.

[232] S. Bajaj, D. Box, and D. Chappell, "Web Services Policy Framework," 2005.
[233] T. M. Simon Godik, "OASIS eXtensible Access Control Markup Language

(XACML)," 2003.
[234] R. Housley, W. Ford, T. Polk, and D. Solo, "Internet X.509 Public Key Infrastructure

Certificate and CRL Profile," 1999.
[235] S. Anderson, J. Bohren, and T. Boubez, "Web Services Secure Conversation

Language," 2005.
[236] J. Linn, "Generic Security Service Application Program Interface, Version 2," 1997.
[237] S. Anderson, J. Bohren, and T. Boubez, "Web Services Trust Language," 2005.
[238] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, "The Kerberos Network

Authentication Service (V5)," 2005.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 8

SEMANTICS-ENABLED SERVICE DISCOVERY
FRAMEWORK IN A PAN-EUROPEAN

PHARMACEUTICAL GRID*

Changtao Qu1, Falk Zimmermann2, Kai Kumpf 3,
Richard Kamuzinzi4, Valérie Ledent5 and Robert Herzog6

1,2 IT Research Division, NEC Laboratories Europe, NEC Europe Ltd.
Rathausallee 10, D-53757 Sankt Augustin, Germany

3 Fraunhofer Institute for Algorithms and Scientific Computing
Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

4,5,6 Department of Molecular Biology, Universite libre de Bruxelles
Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium

ABSTRACT

We present the design and implementation of a semantics-enabled service discovery
framework in a pan-European pharmaceutical Grid: SIMDAT, an industry-oriented Grid
environment for integrating thousands of Grid-enabled biological data services and
analysis services. The framework consists of three major components: the OWL-DL-
based biological domain ontology, OWL-S-based service annotation, and semantic
matchmaker based on the ontology reasoning. Built upon the framework, workflow
technologies are extensively exploited in the SIMDAT to assist biologists in
(semi)automatically performing in silico experiments. We present a typical usage
scenario through the case study of a biological workflow: IXodus.

* This chapter is an extended version of “C. Qu, F. Zimmermann, K. Kumpf, R. Kamuzinzi, V. Ledent, and R.
Herzog, Semantics-Enabled Service Discovery Framework in the SIMDAT Pharma Grid, IEEE Trans. on
Information Technology in Biomedicine, vol. 12, no. 2, March 2008, pp.182-190”.

1 E-mail address: qu@it.neclab.eu
2 E-mail address: zimmermann@it.neclab.eu
3 E-mail address: kumpf@scai.fraunhofer.de
4 E-mail address: rkamuzinzi@ulb.ac.be
5 E-mail address: vledent@ulb.ac.be
6 E-mail address: rherzog@ulb.ac.be

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 152

INTRODUCTION

EU FP6 Grid Research Projects: Overview

In Sept. 2004, the EC (European Commission) launched 12 research projects in the area

of Grid technologies under FP6 (the sixth Framework Programme), which received 52M Euro
of EU (European Union) funding. These projects are intended to investigate the key approach
to Grid research, which, as envisioned by the EC, combines “technology push”, i.e.,
developing underlying technologies and interoperability standards, with “application pull”,
i.e., developing the enabling technologies needed for real world applications such as
modeling, simulation, data mining and collaborative working tools. The bulk of the EU
funding went to four flagship projects, respectively, the SIMDAT (Data Grids for Process and
Product Development using Numerical Simulation and Knowledge Discovery,
http://www.simdat.org), the NextGRID (Architecture for Next Generation Grids,
http://www.nextgrid.org), the Akogrimo (Access to Knowledge through the Grid in a Mobile
World, http://www.mobilegrids.org/), and the CoreGRID (The European Research Network
on Foundations, Software Infrastructures and Applications for large scale distributed, GRID
and Peer-to-Peer Technologies, http://www.coregrid.net), which each received an EU
contribution of around 9M Euro. Together with other eight smaller projects launched in Sept.
2004 as well as 20 additional Grid projects launched in Sept. 2006 with 70M Euro of EU
funding, the EU FP6 Grid research projects bring together dozens of universities, research
institutes, large and small companies from across Europe to muster the “critical mass” of
expertise and resources necessary to trigger change. As illustrated in figure 1, these projects
cover almost all technologies that are critical to the next generation Grid, and the
dissemination of the research results is also intended to go beyond Europe, driven by several
continual projects also under FP6, such as the EC-Gin (Europe-China grid InterNetworking,
http://www.ec-gin.eu/), the EchoGrid (EC-China strategic GRID Roadmap,
http://echogrid.ercim.org/), the Grid@Asia (Advanced Grid Research Workshops through
European and Asian Cooperation, http://www.gridatasia.net/), which were launched in the
beginning of 2007 with the focus on cooperation with China on Grid Technologies7.

SIMDAT and the SIMDAT Pharma Grid

As one of the four flagship projects of the EU FP6 program, the SIMDAT is basically an

“application pull” project, which aims at developing generic Grid technologies for the
solution of complex application problems in four industrial application sectors: Automotive,
Pharma, Aerospace and Meteorology [1]. In overall, seven key technology layers are
identified as important to achieving SIMDAT’s objectives, respectively [1]:

• An integrated Grid infrastructure offering basic services to applications and higher

level layers;
• Transparent access to data repositories on remote Grid sites;

7 For detailed information about the EU FP6 Grid research projects, we refer to the EU IST (Information Society
Technologies) website under http://cordis.europa.eu/ist/grids/projects.htm.

Semantics-Enabled Service Discovery Framework… 153

• Management of virtual organizations;
• Scientific workflow;
• Ontologies;
• Integration of analysis services; and
• Knowledge services.

Figure 1. Overview of the EU FP6 Grid research projects.

These technologies are developed within the SIMDAT, and, according to different
application requirements, are further adapted to each of four application domains.

In the SIMDAT Pharma sector, the focus is on the provision of a global knowledge Grid
for life sciences, which is able to integrate thousands of Grid-enabled biological data services
and analysis services to support collaboration between research institutes, e.g., within the
EMBnet (European Molecular Biology Network, http://www.embnet.org), and, in particular,
between businesses, e.g., between biotechnology companies such as Inpharmatica Ltd.
(http://www.inpharmatica.co.uk/) and pharmaceutical companies such as GlaxoSmithKline
(http://www.gsk.com/). Until the end of 2007, two testbeds have been set up in the SIMDAT
Pharma Grid, respectively:

• Distributed in silico analysis and annotation of biological sequences: This testbed is

focused on the analysis and annotation of a cDNA databank using a large number of
traditional bioinformatics tools, including the EMBOSS toolkit and access to BLAST
sequence comparison services. The working scenario is typical of the work
conducted by biotechnology and pharmaceutical research organizations in early
stages of drug design, and specifically in understanding the biological targets of the
drugs. The tools used are made available by many organizations, and each tool is

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 154

encapsulated as a Grid service. There may be multiple service providers for each
service; thus, the focus of the testbed is to enable dynamic, rather than static, binding
of different Grid service instances.

• Collaborative B2B (Business to Business) Pharma application: This testbed is
focused on the interaction between a large pharmaceutical company, namely,
GlaxoSmithKline, and a biotechnology company, namely, Inpharmatica, which is
capable of providing specialized screening services. The working scenario is typical
of the future B2B collaborations for drug discovery. Grid technologies are used to
coordinate the data flow and invocation of remote services between both
organizations within a secure environment providing resource management and
service accounting facilities. Furthermore, different from the first testbed, in the B2B
testbed, remote Grid services are transparent to end users, which implies that the
services can be checked and audited by service requestors.

Within the SIMDAT Pharma Grid, one of the essential requirements is on the discovery

of biological services. Nowadays more and more biological resources, e.g., Soaplab [2], have
chosen Web service as the standard interface. However, as biological resources are essentially
distributed and heterogeneous [3], the discovery of biological resources/services in
bioinformatics is becoming increasingly challenging in the face of flooded, interlinked, and
intertwined biological resources. Specific to the SIMDAT, biological services in the
SIMDAT Pharma Grid are typically provided by several famous bioinformatics tools
including the SRS (Sequence Retrieval System) [4], the MRS (Maarten’s Retrieval System)
[5], the BLAST (Basic Local Alignment Search Tool) [6], the InterProScan [7], and the
EMBOSS (European Molecular Biology Open Software Suite) [8], etc. While these
biological services are basically, or can be mapped to, standard Web services, in the
SIMDAT, they are further wrapped through an industry-strength Grid middleware, namely,
GRIA (Grid Resources for Industrial Applications) [9], thus possessing enhanced capability
in security, QoS (Quality of Service), and business management. The service discovery in the
SIMDAT has to deal with not only a large number of services from different categories and
administrative domains, but also lots of service features including both bioinformatics and
Grid ones. Furthermore, with the introduction of some advanced experimental methods in the
SIMDAT, in particular, biological workflow [10][11], the service discovery is becoming
increasingly crucial, as advanced service discovery, i.e., (semi)automatic service discovery,
selection, composition, and invocation, as defined in [12], is deemed the key enabling
technology of workflow [10].

Due to a strong capability for knowledge modeling, integration, and reasoning, semantic
technologies, in particular, ontologies, are increasingly recognized as a key technology in
bioinformatics to represent sophisticated relationships between biological resources, and
further enable some more advanced resource discovery patterns than simple keyword-based
ones [13][14][15]. However, restricted by the technology development, most of previous
semantic service discovery frameworks in bioinformatics such as Semantic MOBY [13], Feta
[14], and Grimoires [15] are rather lightweight in the sense that they have not yet made full
use of semantic technologies to support advanced discovery functionalities such as
matchmaking (c.f. “Related Work”). With the special purpose to support (semi)automatic
biological workflow in the SIMDAT, we design and implement a service discovery
framework, which, in comparison to previous projects, is more focused on semantics-enabled

Semantics-Enabled Service Discovery Framework… 155

service matchmaking. Taking advantage of the state-of-the-art semantic technologies, the
framework highlights an OWL-DL (Web Ontology Language - Description Logic) [16] based
bioinformatics domain ontology, OWL-S [12] based service annotation, and semantic
matchmaker based on the ontology reasoning. Within Grid computing environments, the
framework can easily be integrated with most of the mainstream Grid middleware through its
Web service, WSRF (Web Service Resource Framework)/GT4 (Globus Toolkit) [17][18], and
the GRIA [9] interface.

DESIGN OF THE SEMANTICS-ENABLED SERVICE DISCOVERY
FRAMEWORK IN THE SIMDAT PHARMA GRID

As in silico experiments conducted in large knowledge discovery processes are both

cumbersome and error-prone if run manually, workflow technologies are extensively
exploited in the SIMDAT with the purpose to enable in silico protocol designers to devote
more to the core scientific problem than to dealing with the complex deployment of
biological services. By means of the SIMDAT workflow toolkit, biologists are expected to be
effectively shielded from the technical middleware. They can compose the experiment
procedure using “abstract” task components, describe their requirements on each component,
and the workflow enactor is then responsible for (semi)automatically discovering/selecting
service instances according to the user requirements, and further managing the execution of
the workflow. As in silico experiments are basically designed at a high level of abstraction
following such a workflow approach, the workflow components and commonly used
workflow patterns can easily be reused. This can, on the one hand, enable rapid development
of new in silico experiments, but, on the other hand, it may also reduce the requirements on
users’ domain knowledge for designing complex in silico experiments.

For the (semi)automatic workflow execution in the SIMDAT as described above, the
service discovery is of vital importance. As all “abstract” workflow components have to be
dynamically bound to “concrete” service installations at run-time, the workflow enactor
depends on the service discovery module to discover actual service instances and further
select the most suitable one. Functionally, the service discovery framework has to provide a
mechanism to annotate and advertise service instances, represent user requirements/queries,
and discover service instances in terms of user requirements and service annotations. Going a
step further, it is also desired to support some advanced functionalities such as the service
matchmaking and advanced result ranking, which are deemed indispensable for the workflow
enactor to (semi)automatically select optimal services [10].

In order to implement such an advanced service discovery framework in the SIMDAT,
we exploit a semantic approach, in which ontologies are adopted as a key technology to
represent biological domain knowledge, describe different service features, define query
protocols, and further serve as the basis for advanced service discovery and matchmaking.
This design is essentially different from some popular Web service or Grid service registries
such as the UDDI (Universal Description, Discovery, and Integration) [19] and the ebXML
[20], which are generally not able to handle semantic service annotation/discovery in terms of
domain ontologies. It is also distinct from some semantic extensions to above registries such
as [15] and [21], whose discovery capability is basically restricted by the rigid data model of

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 156

either the UDDI or the ebXML. In our framework, we adopt the OWL-S as a more generic,
extendable, and semantic-rich data model to describe and discover services, and also define
an OWL-DL-based domain ontology to provide formal semantics for representing biological
domain knowledge. As the service description data model (i.e. OWL-S), service annotations,
and domain ontologies are uniformly in the OWL-DL format, the semantic service discovery
and matchmaking can be realized by means of the OWL-DL reasoning.

In figure 2, we illustrate the design of the semantics-enabled service discovery
framework in the SIMDAT Pharma Grid.

Figure 2. Design of the semantics-enabled service discovery framework in the SIMDAT Pharma Grid.

OWL-DL-Based Bioinformatics Domain Ontology

The ontology in (bio)informatics is, according to Schulze-Kremer, “a concise and

unambiguous description of principle relevant entities with their potential, valid relations to
each other” [22]. In the biological domain in general, ontologies have traditionally served
data integration purposes [23][24]. For this purpose, a plethora of ontologies from diverse
subfields have been developed mostly independently of each other, which implies that there is
no common upper ontology. Most ontologies try to describe well-defined sub-domains of
biology from the level of taxonomic genera down to molecular biology [25]. Most of these
ontologies deal with entities from the world of living beings instead of the tools required to
analyze them.

Unlike some popular biological/biomedical domain ontologies such as the BioPax
(Biological PAthway eXchange) [26] and the FMA (Foundational Model of Anatomy) [27],
etc., the SIMDAT domain ontology is not intended to model quasi-complete knowledge of a
specific domain such as biological pathway in the BioPax, but to provide inter-domain
knowledge for annotating and discovering service features of interest, e.g., data processed and
produced through service I/O (Input/Output). This position determines that the domain
ontology may not necessarily be large and complex, but it has to fit the biologists’ lines of

Semantics-Enabled Service Discovery Framework… 157

thought when they look for services for specific biological tasks in in silico experiments. Just
as described in [3], such an ontology should be able to “initiate a knowledge-driven line of
questioning spanning the entirety of the expensive biological data space”. Here the “entirety”
also implies that the domain ontology should be scalable, extendable, interoperable, and
(easily) maintainable. In the SIMDAT, we design such a domain ontology with joint efforts
from biologists and informaticians.

From the biologists’ perspective, three types of biological ontologies are identified as
necessary to address the biologists’ lines of thought for discovering biological services:

• Bio Data Ontology: Are we dealing with sequences, structures, amino acids, proteins,

profiles, mutations, etc.? This ontology draws some concepts from the SO (Sequence
Ontology) [28], and is clearly needed for annotating service features such as I/O. The
most significant classification here is made between primary molecular data types
(sequences of nucleic or amino acids) and higher order structures or derived data
(e.g., alignment data). For each data type, a range of possible data formats or
representations can be assigned. Note that we do not exploit the complete SO
because it also represents biological sequence features that are attributes of such
sequences such as whether a fragment of DNA plays a role as an exon or intron.
Usually, these are derived data that have to be computed on demand or are stored as
optional annotations to the primary data in databases, which implies that these do not
play a role for the classification of services which concentrate on the primary data.

• Bio Tool Ontology: Are we looking for databank queries or alignment, phylogenetic
tree tools, etc.? This ontology borrows some relationships from the myGrid ontology
[14], but takes its major part from the EMBOSS tools classification hierarchy
(http://poblano.health.unm.edu/Software/EMBOSS/Apps) [7] for categorizing
biological analysis services. For data services (abstracted databases), it also
references the SRS classification ontology [4]. This classification is not a simple
inheritance tree, but rather contains some multiple inheritance. Thus, alignment tools
like BLASTx must be listed below both protein and nucleic_acid tools. This
“feature” cannot be avoided when one tries to accurately model various aspects of
certain software tools that play a role depending on the task at hand.

• Bio Taxonomy Ontology: Which organisms are we dealing with? This ontology may
refer to other related classification systems such as the one provided by the NCBI
(National Center for Biotechnology Information) [29], and is clearly relevant for
representing biological domain knowledge. For example, a database query could
focus on specific DNA sequences from primates and mouse for later alignment.

As the SIMDAT domain ontology is directly used by biologists to annotate and discover

services, it is thoroughly engineered during the design phase with the goal to facilitate the end
user’s usage. First of all, we try to make it straightforwardly interpretable for biologists
through keeping it as sparse as possible. As illustrated in figure 3, at the top level of the Bio
Tool Ontology, only two principal types of services are distinguished, i.e., computation
service and database service. Two relationships are then modeled to link the Bio Tool
Ontology to the Bio Data Ontology: one describes the input and the other the output data
type, thereby providing basic workflow enabling information. Taxonomic information is only

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 158

entered at the level of database instances as a NCBI taxonomy ID string. The rationale behind
this is that, in general, only databases will sometimes contain taxon-specific information.

Figure 3. Top level concepts and relationships modeled in the SIMDAT domain ontology.

Second, different from the common practice of the ontology development as in the
BioPax [26], all real service types in the SIMDAT domain ontology are also represented as
class instances so that a service annotation only has to establish an “is_a” mapping between
the service and the according instances. The class and consequently predefined instances are
designed to accurately reflect the static or unvarying qualities of the service. Having
predefined instances does not preclude the possibility of having an annotation strategy that
lets the annotator create new service class instances on the fly. This is however not intended
to be manually done by users, rather by a dynamic annotation tool, the Dynamo (Dynamic
Annotator Module). As detailed in the following, the Dynamo can create new service
instances including both predefined static service features and dynamically changing ones.

In correspondence to different service types modeled in the domain ontology, several
service query patterns are provided by the SIMDAT workflow toolkit through a GUI
(Graphical User Interface) to assist biologists in constructing (semantic) queries based on the
controlled vocabularies defined in the domain ontology. Depending on user’s domain
knowledge and query interest, a query may only be pointed to semantic service features, e.g.,
find services that belong to a class <A> of tools that allow data types <C> as input and
give at least data type <D> as output. Such a semantic query can further be extended to point
to nonsemantic, bioinformatics service features, e.g., services using <E> databank released
after “2008-01-01”, or nonsemantic, Grid-related service features, e.g., services provided by
a site with more than 4G memory, etc. Note that depending on users’ domain knowledge, the
“semantic” vocabularies used in queries may be rather “shallow” or rather “deep” in the
taxonomy tree. Correspondingly, the matching degrees of the same service instance may vary
a lot, representing different semantic similarities between the user requirements and service
annotations.

Semantics-Enabled Service Discovery Framework… 159

From the informatician’s perspective, a scalable, extendable, interoperable, and (easily)
maintainable domain ontology is designed using the W3C (the World Wide Web Consortium)
standard ontology language OWL [16], and more precisely, the OWL-DLP (OWL
Description Logic Programs) [30], which is the strict subset of the OWL-DL. Although the
OWL-DLP is usually considered not to be suited for modeling complex biological/biomedical
domain knowledge [31], we find it possible to restrict the SIMDAT domain ontology within
the OWL-DLP, as at the current project stage we do not see the need for modeling complex
relationships in the domain ontology for the service discovery purpose. However, with
increasing requirements on biological service discovery, in particular, with the need for
importing complex biological domain ontologies such as [26], [27], and [28], the sole OWL-
DLP reasoning is deemed not to be sufficient. Therefore, in parallel to the OWL-DLP
reasoner OWLIM [32], a full-fledged OWL-DL reasoner Pellet [33] can also be used in the
framework to support full OWL-DL reasoning, though at the cost of system performance. As
the semantic matchmaker is independent of underlying ontology reasoners thanks to a
predefined uniform interface, it can easily switch between OWLIM and Pellet in order to
leverage different levels of reasoning capability.

OWL-S-Based Service Annotation and the Annotation Toolkits

Among the WSMO (Web Service Modeling Ontology) [34] and the WSDL-S (Web

service Description Language Semantics)/SAWSDL (Semantic Annotation for WSDL and
XML Schema) [35][36], the OWL-S is one of the major initiatives in the SWS (Semantic
Web Service) community, which is purposed to enable (semi)automatic discovery, selection,
composition, and invocation of Web services [12]. As comparatively the WSMO is not yet
mature enough and the WSDL-S/SAWSDL is conceptually much weaker (c.f. “Related
Work”), we choose the OWL-S as the standard data model to describe different service
features based on the SIMDAT domain ontology.

OWL-S and the OWL-S-Based Service Annotation

The OWL-S is an OWL-based Web service ontology which provides a core set of
markup language constructs for describing the properties and capabilities of Web services in
unambiguous, computer-interpretable form. As illustrated in figure 4, OWL-S itself consists
of three subsets of ontologies [12]:

• The service profile for advertising and discovering services (“what the service
does”);

• The service model for describing detailed service operations (“how the service
works”);

• The service grounding for specifying the service invocation details such as the
communication protocol, message formats, etc. (“how to access the service”).

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 160

Figure 4. Top level structure of the OWL-S.

As the typical usage of the service discovery framework is to support (semi)automatic
service discovery and selection through the SIMDAT workflow toolkit, we leave most of the
complex OWL-S service model annotations such as “pre-condition”, “result”, as well as
complicated control flow and data flow unaddressed, but specifically focus on the OWL-S
service profile and service grounding annotation. According to [37], due to considerable
complexity of in silico experiments, the automatic service composition in bioinformatics is
still of less requirement in comparison to the semiautomatic one. However, the cost of
annotating the OWL-S service model for the automatic service composition/orchestration
would be rather expensive.

As illustrated in figure 5, the OWL-S service profile consists of several properties which
can be used to annotate various service features. According to the current service
annotation/discovery requirements in the SIMDAT, the following OWL-S service profile
properties are used for annotating services:

Figure 5. Structure of the OWL-S service profile.

• serviceName, textDescription: Used to annotate general service information.
• contactInformation: Used to annotate service provider information based on the

OWL-S ActorDefault ontology (http://www.daml.org/services/owl-s/1.2/Actor
Default.owl).

• serviceClassification: Used to annotate the service classification referring to the Bio
Tool Ontology.

Semantics-Enabled Service Discovery Framework… 161

• serviceCategory: Used to annotate the service category referring to the Bio
Taxonomy Ontology.

• hasInput, hasOutput, and hasParameter: Used to annotate service I/O referring to the
Bio Data Ontology.

• serviceParameter: As the major extension point of the OWL-S service profile,
serviceParameter is heavily used to annotate service features like QoS, security, and
associated databanks, etc.

For the service grounding annotation, we mainly annotate services’ WSDL grounding,

and, respectively, using grounding:WsdlAtomicProcessGrounding/grounding:wsdlService to
annotate the service invocation point, and grounding:WsdlAtomicProcessGrounding/
grounding:wsdlDocument to annotate the URL (Universal Resource Locator) of the service
WSDL document. Such a grounding annotation is sufficient for the SIMDAT workflow
toolkit to automatically invoke services through the GRIA middleware.

OWL-S-Based Service Annotation Toolkits: the TUAM and the Dynamo

As the OWL-S-based service annotation involves a sophisticated service upper ontology,
namely, the OWL-S, an important issue to address in the service discovery framework is how
to simplify the service annotation process with efficient tooling support. While Protégé’s
OWL-S Editor [38] is rather handy for informatician/bioinformaticians to annotate biological
services, it requires considerable knowledge and familiarity with the OWL-S and the OWL-S-
based service annotation model. In the SIMDAT, a bioinformatics-specific service annotation
toolkit, namely, the TUAM (Tool for Universal Annotation and Mapping) [39], is designed
and developed, which can better be used by biologists to create the OWL-S-based service
annotations by means of an intuitive ontology browsing/navigating interface and an
annotation GUI that can hide the OWL-S-based service annotation model from service
annotators.

Unlike usual semantic Web annotation toolkits such as the Ontomat-Annotizer [40] and
the Annotea (http://www.w3.org/2001/Annotea/), etc., which are mainly focused on
annotating Web documents, the TUAM is designed to annotate different types of
bioinformatics resources including biological services, database schema tables, ASCII-files,
and spreadsheets, etc. It allows establishing and persisting arbitrary relationships between any
number and kind of data sources in a n:m fashion, as well as effectively building a semantic
network that can comprise unstructured or pre-structured data and terminologies with the
expressiveness power from thesauri to OWL ontologies. Although the TUAM has previously
been used in similar environments for the deep annotation of biological data services [39], it
has not yet been applied to deal with the OWL-S service annotation model and Grid service
descriptions represented in the extended WSDL format as in the GRIA. Thus, in the
SIMDAT, the TUAM is mainly extended to accommodate the OWL-S model, as well as
represent annotated service features through a GUI. In figure 6, we show a screenshot of
annotating a BLASTp service in the TUAM based on the SIMDAT domain ontology. As we
can see, by means of the TUAM, the complexities of the OWL-S are completely hidden from
the annotator who only needs to concentrate on matching services with corresponding
concepts from the ontology. The navigation/browsing of the domain ontology is also greatly
simplified through a GUI component as shown in the top right part of the screenshot.

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 162

Figure 6. Semantic annotation of a BLASTp service in the TUAM based on the SIMDAT domain
ontology.

Unlike usual service features such as service I/O, which are relatively stable, biological
services usually have some rapidly changing service features such as databank entries,
databank release date, etc. As these dynamic service features are sometimes of great interest
of biologists while discovering biological services, they are critical to the service discovery
and matchmaking, at least as equally important as static service features such as the service
classification. In order to keep these dynamic service features short-periodically updated in
the knowledge base, in the SIMDAT, besides the TUAM, a complementary annotation tool
called the Dynamo (Dynamic Annotation Module) is developed to automatically update
dynamic service features.

In contrast to the TUAM, Dynamo itself is not semantics-aware. It is merely a software
agent that can be triggered by databank updating events and sequentially updates service
annotations by inserting the dynamic data items and then republishing the annotations. At
present, the Dynamo can work with two popular sequence retrieval systems, i.e., the SRS [4]
and the MRS [5]. In figure 7, we illustrate the typical deployment of the Dynamo in the
service discovery framework.

Semantics-Enabled Service Discovery Framework… 163

Figure 7. Deployment of the Dynamo in the service discovery framework.

Semantic Matchmaker Based on the Ontology Reasoning

The semantic matchmaker, called the SB (Semantic Broker) in the SIMDAT Pharma

Grid, is the kernel component of the service discovery framework, which is basically a
service registry built upon ontology reasoning services. Unlike usual nonsemantic or semantic
service registries such as the UDDI [19] and the Grimoires [15], the SB is focused on the
service matchmaking. The users represent their requirements on services in terms of the
OWL-S service profile, the SB can then compute the matching degree of each discovery
result in term of the semantic similarity between the user requirements and service
annotations. At this point, the SB is also a bit different from some OWL-S-based generic
semantic matchmakers such as ones mentioned in “Related Work”. Specifically designed for
biological service discovery, the SB matchmaking algorithm is more extensive. It can include
any interested service features into the matchmaking process.

The SB matchmaking algorithm is basically a modification/extension to the semantic
matchmaking algorithm proposed in [41], which identifies four types of semantic “degree of
match” between the “requirement concept” Creq and “advertisement concept” Cadv in terms
of the minimal distance between concepts in the taxonomy tree:

• Exact: If Creq = Cadv, then Creq and Cadv are equivalent, the matching degree

between Creq and Cadv is exact. If Creq subClassOf Cadv, the matching degree is
still exact under the assumption that by advertising Cadv the service provider
commits to provide features consistent with every immediate subtype of Cadv.

• Plug-in: If Cadv subsumes Creq, the matching degree between Creq and Cadv is
plug-in, which denotes a weaker relation between Creq and Cadv than the exact
relation.

• Subsume: If Creq subsumes Cadv, the matching degree between Creq and Cadv is
subsume, which denotes a weaker relation between Creq and Cadv than the plug-in
relation

• Fail: If no subsumption relation exists between Creq and Cadv, the matching degree
is fail.

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 164

In our algorithm, the plug-in relationship is first dropped taking into account specific
features of the biological service annotation in the SIMDAT. Typically, as biological domain
experts can clearly differentiate between services at the leaf concept level of the domain
ontology, the occurrence of the plug-in relationship can efficiently be avoided by means of
the service annotation using either leaf or second-leaf concepts. As a replacement of the plug-
in relation, we further differentiate between two cases of the exact relation, and denote Creq
subClassOf Cadv as a new type of matching degree exact-, which is weaker than the exact
relation but stronger than subsume. Such a differentiation makes sense for the biological
service discovery, as generally it is not a common practice in biological domain ontology
design to enumerate all subclasses of a concept. In this case, as a service annotated using
second-leaf concepts does not necessarily hold the assumption proposed in the original
algorithm, it is rather beneficial to degrade the Creq subClassOf Cadv relationship to make
the semantic matchmaking more “accurate”.

Besides semantic service features, nonsemantic service features are also included into the
SB matchmaking algorithm. These features typically include Grid ones such as the memory
size of a site, and bioinformatics ones such as databank entries, databank release date, etc.
Generally, nonsemantic service features are not modeled in the domain ontology, instead they
are restricted by the XML Schema simple data types [42]. Thus, the matchmaking of
nonsemantic service features is either “equal” or “greater-than/after” or “less-than/before”,
which implies that if nonsemantic service features are present in queries, they are always
considered as “hard” requirements. In the SB matchmaking algorithm, we always handle
nonsemantic service features prior to semantic ones in order to possibly avoid costly
computation for the ontology reasoning.

The result ranking in the SB matchmaking algorithm is principally based on the average
matching degree. However, if the matching degrees of several discovery results are
equivalent, the secondary ranking will be conducted, which typically uses one of the user-
preferred, nonsemantic service features as the secondary ranking criterion, e.g., the memory
size of a site, databank release date, etc.

FRAMEWORK USAGE

The first SIMDAT Pharma Grid testbed, i.e., “distributed in silico analysis and annotation

of biological sequences” testbed, has been deployed since Sept. 2005 in five Grid sites across
three European countries. As two Grid sites in Belgium are affiliated with the EMBNet, they
directly extend the reach of the SIMDAT Pharma Grid to the whole Europe. In the following
we describe the usage of the service discovery framework in the SIMDAT Pharma Grid based
on the case study of a pilot biological workflow designed in the SIMDAT: IXodus.

IXodus Biological Workflow

The Lyme disease has been identified in the 1990s as a significant source of human and

animal pathology in temperate areas of the world (North America, Central and Western
Europe). It is caused by the bite of a tick of genus Ixodes, infected by the pathogen bacterium

Semantics-Enabled Service Discovery Framework… 165

Borrelia burgdorferi. The study of the man-parasite interactions is an active research area, as
about 20% of the ticks have been found infected by this bacterium. To better understand the
infectious process frequently associated with this organism, a biological workflow called
IXodus is designed in the SIMDAT to deal with the characterization of genes expressed in the
salivary gland of the tick Ixodes ricinus at various stages of the host-parasite interaction.

The IXodus workflow is fed with a batch of nucleic sequences coming from the
systematic sequencing of thousands of salivary gland cDNAs. As detailed in figure 8 through
the UML (Unified Modeling Language) 2.0 diagram, the workflow itself consists of two
distinct phases:

1) During the first phase, each sequence of the batch is first analyzed for possible

redundancy with sequences already residing in the project database. This is
performed by using the BLASTN algorithm that compares the new sequences with a
databank composed from all previously entered sequences to identify matches of
100% between one sequence and a portion of the other. At the end of the first phase,
all project sequences and their existing relationships are stored in a relational
database management system.

2) Once a sequence from the current batch has been considered as relevant for further
analysis, it is submitted to the main analysis part of the workflow, which basically
consists of three steps:
2a) A comparison of the nucleic sequence with the UNIPROT public databank of

protein sequences by using the BLASTX algorithm. Again, a decision is taken
about a possible relevant hit, by using the BLAST E-value and percentage of
identity reported by the program. The analysis outputs of the analyzed sequences
are reported accordingly in the databank. If no hit is found, the analysis continues
with the next step.

2b) The sequence is submitted to the EMBOSS GETORF program in order to extract
the longest ORF (Open Reading Frame). This ORF is then processed by the
InterProScan package. A total of 13 different analysis methods (Generalised
profiles, hidden markov models, etc.) are applied to identify functional elements
(motifs). If no hit is found, the sequence is submitted to the next step.

2c) A sequence comparison with the current release of the EMBL public databank is
performed thanks to the BLASTN algorithm. At this step of the analysis, all
information relative to matches between the new sequence and EMBL sequences
is stored in the project database.

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 166

Figure 8. IXodus biological workflow represented through the UML 2.0 diagram.

Deployment of the Service Discovery Framework in the SIMDAT Pharma
Grid

In figure 9, we illustrate the deployment of the service discovery framework in the

SIMDAT Pharma Grid.
On each Grid site, either the SRS or the MRS is installed and configured to host different

biological data services and analysis services. Each service is wrapped through a GRIA
wrapper program, and further interacts with other Grid components/services through the
GRIA middleware. All communications between Grid components/services are secured

Semantics-Enabled Service Discovery Framework… 167

through the E2E (End-to-End) security module, as detailed in [43]. In addition, the access to
each Grid component/service is also secured through the PBAC (Process Role-based Access
Control) module of the GRIA middleware [9].

The SB itself is also deployed as a GRIA service, which exposes four operations to end
users: publishAnnotation, removeAnnotation, retrieveAnnotation, and getServiceMatchings.
Although we have developed a Web 2.0 interface to enable end users to directly interact with
the SB through a GUI, this interface only serves for educational purpose. Basically, the SB is
a “non-face” component, which is not intended to be directly exposed to end users. Just as
illustrated in figure 9, in the SIMDAT, there are only three components that directly interact
with the SB. While the TUAM and the Dynamo contact the SB for publishing and updating
service annotations, the SIMDAT workflow toolkit interacts with the SB through the
getServiceMatchings operation to send queries and sequentially get matchmaking results.

Figure 9. Deployment of the service discovery framework in the SIMDAT Pharma Grid.

It is worth noting that the access to different SB service operations is controlled through
the PBAC module. In terms of the PBAC, each interaction with the SB is based on a specific
user X.509 certificate. For users allowed to access the SB, they are dynamically assigned a
process role, either as SB_User or as SB_Annotator. Whereas the SB_User role only allows to
access the getServiceMatchings operation, the SB_Annotator role allows to access all SB
operations. This implies, for example, if a user would like to publish a service annotation
through the TUAM, he must first ask the SB administrator to acquire the SB_Annotator role
for invoking the publishAnnotation operation.

Framework Usage: the IXodus Case Study

The IXodus biological workflow is executed within the SIMDAT Pharma Grid testbed, in

which all analysis methods, public sequence databanks, and private project sequences used in
IXodus are distributed over the Grid as the GRIA services. For the design and execution of

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 168

IXodus, users have to follow the procedure as illustrated in figure 10, which demonstrates the
typical usage of the semantics-enabled service discovery framework through the SIMDAT
workflow toolkit.

Figure 10. Usage of the semantics-enabled service discovery framework through the SIMDAT
workflow toolkit.

For the design of the IXodus workflow, the biologists do not need to have any knowledge
of deployed service instances. Through operating on sets of “abstract” task components in the
workflow authoring tool, the users can directly construct the workflow at a high level of
abstraction, just like illustrated in figure 11.

Figure 11. An example “abstract” workflow produced through the SIMDAT workflow authoring tool.

Semantics-Enabled Service Discovery Framework… 169

On each “abstract” component, the users can specify their requirements in terms of
predefined semantic query patterns. Taking IXodus task 2a) as an example, the requirement
might be to request a service instance that belongs to “similarity_search” class of tool, uses
“embl” databank released after “2008-10-01”, allows “nucleic_acid_sequence” as input,
and gives at least “sequence_pairwise_alignments” as output. Note that we can also add
additional service QoS requirements here. This can easily be done through a generic service
QoS query pattern defined in the workflow authoring tool [10].

In order to bind each “abstract” task component to a “concrete” service instance, the
workflow adviser will contact the SB, which may return a set of candidate services in a
ranking list, e.g., sets of BLASTx, tBLASTx instances from different providers. This is a
dynamic discovery process, which implies that service instances are discovered in term of not
only the semantic similarity, but also actual service states including “heartbeat detection”.
The service selection is then either optionally semiautomatic, i.e., the users choose their
preferable service instance according to actual service information, or fully automatic, i.e., the
workflow adviser automatically chooses the first service instance in the ranking list. After all
“abstract” components are instantiated, the “concrete” workflow will be submitted to the
workflow execution engine, which can parse and validate the workflow, perform meta-
scheduling operations between different services, generate a final execution plan, and then
coordinate the invocation of remote services as well as handle the data transfer between them
[10].

EXPERIEMNTAL EVALUATION

For the evaluation of the semantics-enabled service discovery framework, two series of

experiments are carried out to respectively evaluate the end user experience and the
scalability of the SB. Except where stated otherwise, in the experiments, the SB is deployed
on a workstation of AMD Opteron 252, 2.6GHz, with 1MB L2 cache and 2GB memory. As
the SB is a Java application, Sun JDK 5.0 SE (Java Development Kit 5.0 Standard Edition)
update 7 for Linux x64 platform is used, with the JVM (Java Virtual Machine) heap size set
to 1GB. The SB knowledge base is built upon Sesame 1.2.4 (http://www.openrdf.org/), using
OWLIM 2.8.3 as the SAIL (Storage and Inference Layer) to provide the OWL reasoning
service. For experiments involving the Web service performance test, the SB is deployed in
Apache Axis 1.3 final (http://ws.apache.org/axis/) and Apache Tomcat 5.5.17
(http://tomcat.apache.org/). Although the SB also has two WSRF interfaces respectively
based on the Globus Toolkit 4.01 Grid middleware and the GRIA 5.1 middleware, the
performance of SB’s WSRF interfaces is not evaluated. Basically, the WSRF performance is
expected to be similar to the Web service performance.

Evaluation of the End User Experience

The end user experience is evaluated based on the IXodus workflow with the focus on

comparing the effort needed to perform a well-defined biological task using the SIMDAT
Pharma Grid testbed with the conventional/manual way as it is currently being done in many

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 170

institutes. For both manual analysis and workflow analysis, we choose at random a set of 20
cDNA sequences (Ixodes ricinus) from the research group on tick pathogenicity at the
Laboratory of Applied Genetics of the ULB (Universite libre de Bruxelles). These sequences
come from the automatic sequencing machine, among which about one-third have previously
been characterized by the research team, and the other are considered as “unidentified”.

In the manual analysis, expert intervention is required for each step throughout the whole
procedure. As the procedure not only implies the treatment of huge amounts of output data,
but also includes very repetitive and tedious tasks that are error-prone, the manual analysis
necessitates two persons to accelerate the analysis process and minimize human errors.
Because the time and effort involved in manual analysis are rather overwhelming, only eight
sequences are analyzed. The experimental result of the manual analysis is:

• The average treatment time of a sequence is 322s; the average sequence per

manpower time is 644s.

In the workflow analysis, the biologists need relatively less domain knowledge with the

assistance of the SIMDAT workflow toolkit. Also the human intervention is greatly reduced.
After the workflow is instantiated, the biologists need only copy/paste the sequences to the
interface and click a button to start the whole procedure. A single person can easily manage
this work with no risk of error. All 20 sequences are analyzed and the experimental result is:

• The average treatment time of a sequence is 40s; the average sequence per manpower

time is 40s.

Though it can clearly be seen that the workflow analysis is more efficient, we cannot

quantitatively show the reduced requirement on users’ domain knowledge. This experiment is
expected to be conducted in the next project phase when SIMDAT’s usage is more
widespread and more end users are involved in the testbed8.

Scalability Evaluation of the Semantic Broker

As the number of services deployed in the current SIMDAT Pharma Grid testbed is still

rather limited, a simulation experiment is conducted with the purpose of evaluating the
scalability of the SB. In the experiment, up to 10,000 service annotations are generated based
on a practical service annotation, each with over 1000 explicit triple statements. The SB
repository is thus with a size up to over 10 million triple statements counting the SIMDAT
domain ontology and various schema ontologies.

For the service publication/removal and query operation, the overheads of invoking the
stand-alone SB and invoking SB via its Web service interface are respectively measured, as
denoted in figure 12. The SB query overhead is evaluated based on two types of queries:

8 For the whole evaluation report, we refer to the corresponding public project deliverable on the SIMDAT website

(http://www.simdat.org).

Semantics-Enabled Service Discovery Framework… 171

• A query covering all annotated service features, which can retrieve all service
instances (“the worst case” query); and

• A query covering only one annotated service feature, which can also retrieve all
service instances (“the quasi-best case” query).

In either case, the ontology reasoning is included. In figure 12, we illustrate the

experimental results.

Figure 12. (a) service publication overhead. (b) “the worst case” query overhead. (c) “the quasi-best
case” query overhead.

As the SB depends on the ontology reasoning, its scalability is basically determined by
the OWLIM, i.e., the maximal scale achievable is limited by the available RAM (Random
Access Memory) because the reasoning and query evaluation in the OWLIM are performed
in-memory [32]. Figure 12(a) shows that the service publication overhead increases linearly
with the repository size, which is in line with the “upload” operation overhead in the OWLIM
[32] . For each new service published, the whole repository is reloaded excluding, thanks to
the persistence policy of OWLIM, the domain ontology and the schema ontologies. The
service removal overhead is basically the same as the service publication overhead; thus, it is
omitted in figure 12. This is because that the “delete” operation in the OWLIM is relatively
slow; thus, we simply reload the whole repository after a registered service has been removed.

Figure 12(b) and 12(c) show that the service query overhead also increases with the
repository size, ranging from tens of milliseconds to tens of seconds. This can partly be
explained by the fact that the query overhead in the OWLIM grows up in a linear dependency
to the repository size and result set size [32]. However, comparing figure 12(b) and 12(c), we
can clearly see that the key influential factor is actually the complexity of the SB queries, in
particular, the number of query entries demanding the real-time ontology reasoning. In fact,
with the increase of the semantic query entries, more ontology reasoning processes have to be
initiated in the matchmaking algorithm. Thus, “the worse case” query overhead dramatically
increases in comparison to “the quasi-best case” query overhead.

RELATED WORK

In recent years, several generic semantic matchmakers have been developed for Web

service discovery and matchmaking, most of which are based on the OWL-S/DAML-S [12],

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 172

e.g., the OWLS-UDDI matchmaker [41], OWLS-MX [44], DAMLS matchmaker [45],
Mindswap Web service composer [46], and OWL-S matcher [47], etc. Whereas all these
generic semantic matchmakers are mainly focused on service I/O-based matchmaking, the SB
is more registry-alike, being able to include arbitrary number of interested service features
into the matchmaking algorithm.

Besides the OWL-S-based ones, there are also other two series of semantic matchmakers,
which are respectively based on the WSMO and the WSDL-S/SAWSDL, e.g., the WSMX
(Web Service Execution Environment)[48] and METEOR-S [49]. In comparison to the
OWL-S, the WSMO is a conceptually stronger approach for realizing semantic Web services,
which “has a better separation of the service requester and provider point of view, includes
the orchestration of a Web service enabling the static or dynamic reuse of Web services to
achieve the functionality of a more complex Web service, provides formal semantics for the
choreography of Web services, and allows multiple ways of interacting with a given service”
[50]. Though most of WSMO-based products are still in prototypical phase, the WSMO
seems rather promising for the future semantic Web services, in particular, as far as the
service orchestration and choreography are concerned. Theoretically, the SB can be
“upgraded” to become partly WSMO-compliant, as the OWL-S-based service annotation
model can wholly be translated into the WSMO service description model, and both the
OWL-DLP and the OWL-DL ontologies can be represented through corresponding subsets of
the WSML (Web Service Modeling Language) [50]. However, the migration of SB from the
OWL-S to the WSMO is deemed rather difficult, and the fully new design and
implementation of the system needs to be done.

In contrast to the WSMO, the WSDL-S is conceptually much weaker than the OWL-S,
which proposes a small set of extensions to the WSDL, by which semantic annotations may
be associated with WSDL elements such as operations, input and output type schemas, and
interfaces [35]. Since Aug. 2007, the WSDL-S has become a new W3C recommendation,
namely, the SAWSDL [36]. As the only W3C recommendation for semantic annotation of
Web services, the widespread acceptance of SAWSDL in the SWS community can be
expected. In general, the SAWSDL is very similar to the OWL-S service grounding subset.
The difference is in that the SAWSDL can only annotate service features contained in the
WSDL, whereas the OWL-S service grounding proposes some WSDL extensions [51]. It is
expected to be straightforward to “degrade” the SB from the OWL-S to the SAWSDL, and, in
particular, the existing SB matchmaking algorithm can directly be reused. However, it is also
clear that most of service annotations in the OWL-S will be lost, as only service I/O features
can effectively be annotated through the SAWSDL. This implies that the SB’s functionality
will unavoidably be weakened.

In bioinformatics, a number of research projects have exploited semantic technologies in
recent years for biological service discovery within Grid environments, principally including
Semantic MOBY in the BioMoby [13], Feta in the myGrid [14], and Grimoires [15].
Restricted by the technology development at that time, these semantic service discovery
frameworks are rather lightweight. “Semantically”, Grimoires has no ontology support;
Semantic MOBY uses a rather simple data model to describe services; and Feta leverages the
RDF(S) (Resource Description Framework Schema) [52] reasoning instead of the more
powerful OWL [16] reasoning. “Functionally”, none of them can support semantic
matchmaking, i.e., “matching queries and resource advertisements with reference to
ontologies, and further returning results with a relevance ranking” [53]. Without

Semantics-Enabled Service Discovery Framework… 173

matchmaking functionality, it is rather difficult to support advanced service discovery in
workflow.

CONCLUSION

Though semantic technologies have been recognized as a key technology for biological

service discovery, their potential is not yet fully revealed in previous work. Based on the
state-of-the-art technology development, this chapter indicates several technology aspects,
which are worth rethinking and further exploration.

1) The domain ontologies specifically designed for biological service discovery are not

necessarily as complete and complex as generic biological/biomedical ontologies
such as [26], [27], and [28]. As a consequence, some design principles for generic
bioinformatics ontologies such as those proposed in [31] need to be revisited, in
particular, when we only need a domain ontology to deal with lightweight service
discovery requirements. Our practice in the SIMDAT evidences that it is possible to
model a complex domain ontology for biological service discovery using lightweight
ontology language OWL-DLP, which directly enables the usage of high-performance
ontology reasoners. As the real-time ontology reasoning is always a “must” for
semantic service discovery, our practice clearly points out that reducing ontology
complexity is the key to system design.

2) The biological service discovery needs a more comprehensive, extendable, and
semantic-rich data model to describe different service features. It may be beyond the
capability of some pragmatic data models used in previous projects [13][14][15] to
address more complex service discovery requirements, in particular, as far as their
extendibility and interoperability are concerned. Our practice in the SIMDAT
evidences that the OWL-S can efficiently be used as a standard data model to deal
with various service features. OWL-S itself is also expected to have good
interoperability with other mainstream standardization efforts in the SWS community
such as the WSMO, the SAWSDL, and the SWSF (Semantic Web Services
Framework) [50][51][54].

3) The service matchmaking is rather crucial for supporting (semi)automatic service
discovery, selection, composition, and invocation, in particular, in a workflow
centered Grid computing environment like the SIMDAT. Whereas this aspect was
not fully recognized in previous projects, Our practice in the SIMDAT clearly shows
its importance through (semi)automatic execution of the biological workflow IXodus.
Additionally, we also highlight the significance of nonsemantic service features for
biological service discovery and matchmaking, and demonstrate how to handle these
features in the matchmaking algorithm in order to use them for advanced result
ranking as well as possibly avoid costly computation for the ontology reasoning.

4) The OWL-S-based service annotation is not necessarily as complicated and
cumbersome as described in [14]. Whereas some generic annotation toolkits are not
really usable for biologists, Our practice in the SIMDAT shows that bioinformatics-
specific annotation toolkits such as the TUAM and the Dynamo can greatly simplify

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 174

the service annotation process. Besides, we also demonstrate how domain ontologies
can be engineered with the service annotation in mind. In general, these practices are
different from those for generic biological/biomedical ontology design.

Last but not the least, our experimental evaluation indicates that the ontology reasoning,

in particular, the OWL-DLP reasoning, is not necessarily as computationally expensive as
imagined in previous projects [13][14][15]9. For a middle-scale semantic application with a
reasonable repository size, it proves possible to apply real-time ontology reasoning with
acceptable performance. This may further inspire the exploration of more advanced semantic
technologies, such as the full set of OWL-DL and semantic rules in the real-time reasoning.
For this aspect, our practice indicates that Pellet [33] may deserve further investigation.

ACKNOWLEDGMENT

The authors are grateful to all project partners at the SIMDAT Pharma Activity

Consortium. In particular, Jun Wang and Luigi Lo Lacono from the IT Research Division,
NEC Laboratories Europe, NEC Europe Ltd., helped in setting up and operating the service
discovery framework in the SIMDAT Pharma Grid testbed. Moustafa Ghanem from
InforSense Ltd. kindly produced figure 10 to illustrate the SIMDAT workflow usage. The
Dynamo was initially developed at the ULB (Universite libre de Bruxelles) by Aubin Rukera
for his graduate thesis, and further improved by Joseph Mavor. The IXodus case study was
inspired by Edmond Godfroid and Bernard Couvreur from the Laboratory of Applied
Genetics of the ULB.

This research was supported in part by the EU IST FP6 project SIMDAT under Contract
IST-2004-511438.

REFERENCES

[239] C. Upstill, and M. J. Boniface, “SIMDAT,” CTWatch Quarterly, vol. 1, no. 4, pp. 16-
24, Nov. 2005.

[240] M. Senger, P. Rice, and T. Oinn, “Soaplab - a Unified Sesame Door to Analysis Tools,”
in Proc. UK e-Science, All Hands Meeting 2003, Nottingham, UK, Sept. 2003.

[241] M.D. Wilkinson, and M. Links, “BioMOBY: an Open-Source Biological Web Services
Proposal,” Briefings in Bioinformatics, vol. 3, no. 4, pp. 331-341, 2002.

[242] T. Etzold, A. Ulyanov, and P. Argos, “SRS: information retrieval system for molecular
biology data banks,” Methods Enzymol., vol. 266, pp.114-142, 1996.

[243] M.L. Hekkelman, and G. Vriend, “MRS: A fast and compact retrieval system for
biological data,” Nucleic Acids Research, vol. 33, pp.766-769, 2005.

[244] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, “Basic local
alignment search tool,” J. of Mol. Biology, vol. 215, pp. 403-410, 1990.

9 Our result is not directly comparable with Grimoires, as Grimoires does not make use of OWL-DL reasoning. It is

comparable with Semantic MOBY and Feta. However, neither Semantic MOBY nor Feta has the performance
evaluation report so far.

Semantics-Enabled Service Discovery Framework… 175

[245] E. M. Zdobnov, and R. Apweiler, “InterProScan - an integration platform for the
signature-recognition methods in InterPro,” Bioinformatics, vol. 17, no.9, pp.847-855,
2001.

[246] P. Rice, I. Longden, and A. Bleasby, “EMBOSS: the European molecular biology open
software suite,” Trends Genet., vol. 16, no. 6, pp.276-283, 2000.

[247] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, “Experiences with GRIA-
Industrial Applications on a Web Services Grid,” in Proc. 1st Int. Conf. on e-Science
and Grid Computing, Melbourne, Australia, Dec. 2005, pp. 98-105.

[248] M. Ghanem, N. Azam, M.Boniface, and J. Ferris, “Grid-Enabled Workflows for
Industrial Product Design,” in Proc. 2nd IEEE International Conference on e-Science
and Grid Computing (e-Science'06), Amsterdam, The Netherlands, Dec. 2006, pp.96.

[249] R. Stevens, C. Goble, P. Baker, and A. Brass, “A classification of tasks in
bioinformatics,” Bioinformatics, vol. 17, no. 2, pp.180-188, 2001.

[250] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara,
“OWL-S: Semantic Markup for Web Services.” Available:
http://www.daml.org/services/owl-s/1.2/overview/, March 2006.

[251] P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble, and
L. Stein, “Applying Semantic Web Services to Bioinformatics: Experiences Gained,
Lessons Learnt,” in Proc. 3rd Int. Semantic Web Conference (ISWC2004), Hiroshima,
Japan, Nov. 2004.

[252] P. Lord, P. Alper, C. Wroe, and C. Goble, “Feta: A Light-Weight Architecture for User
Oriented Semantic Service Discovery,” in Proc. 2nd European Semantic Web
Conference, Crete, Greece, May 2005.

[253] W. Fang, S. C. Wong, V. Tan, S. Miles, and L. Moreau, “Performance analysis of a
semantics enabled service registry,” in Proc. 4th All Hands Meeting (AHM'05),
Nottingham, UK, Sept. 2005.

[254] D. L. McGuinness, and F. van Harmelen, “OWL Web Ontology Language Overview.”
Available: http://www.w3.org/TR/owl-features/, Feb. 2004.

[255] OASIS WSRF TC, “Web Service Resource Framework.” Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf , Apr. 2006.

[256] The Globus Alliance, “Globus Toolkit.” Available: http://www.globus.org/toolkit/,
Aug. 2006.

[257] OASIS UDDI Specifications TC, “UDDI.” Available: http://www.oasis-
pen.org/committees/tc_home.php?wg_abbrev=uddi-spec, Feb. 2005.

[258] OASIS ebXML Registry TC, “ebXML registry.” Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=regrep, Feb. 2007.

[259] A. Dogac, Y. Kabak, and G. Laleci, “Enriching ebXML Registries with OWL
Ontologies for Efficient Service Discovery,” in Proc. 14th Int. Workshop on Research
Issues on Data Engineering, Boston, USA , March 2004.

[260] S. Schulze-Kremer, “Ontologies for Molecular Biology,” Pac. Symp. Biocomput., vol.3,
pp.693-704, 1998.

[261] J. A. Blake, and C. J. Bult, “Beyond the Data Deluge: Data Integration and Bio-
ontologies,” J Biomed Inform, 39, pp. 314-320, 2006

[262] S. P. Gardner, “Ontologies and Semantic Data Integration,” Drug Discov Today, vol.
10, pp.1001-1007, 2005.

Changtao Qu, Falk Zimmermann, Kai Kumpf et al. 176

[263] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J. Goldberg, K.
Eilbeck, A. Ireland, C. J. Mungall, The OBI Consortium, N. Leontis, P. Rocca-Serra, A.
Ruttenberg, S. A. Sansone, R. H. Scheuermann, N. Shah, P. L. Whetzel, and S. Lewis,
“The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data
Integration,” Nat Biotechnol, vol. 25, pp. 1251-1255, 2007.

[264] BioPax Group, “BioPax: Biological pathway exchange ontology.” Available:
http://www.biopax.org/, Dec. 2005.

[265] C. Rosse, and J.V.L. Mejino, “A reference ontology for biomedical informatics: the
Foundational Model of Anatomy”, J. Biomed Inform., vol. 36, pp. 478-500, 2003.

[266] K. Eilbeck, S. E. Lewis, C. J. Mungall, M. Yandell, L. Stein, R. Durbin, and M.
Ashburner, “The Sequence Ontology: A tool for the unification of genome
annotations”, Genome Biology, vol. 6, no. 5, Apr. 2005.

[267] D. L.Wheeler, C. Chappey, A. E. Lash, D. D. Leipe, T. L. Madden, G. D. Schuler, T. A.
Tatusova, and B. A. Rapp, “Database resources of the National Center for
Biotechnology Information,” Nucleic Acids Res, vol. 28, no. 1, pp.10-14, 2000.

[268] B. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs:
combining logic programs with description logics,” in Proc. WWW 2003, Budapest,
Hungary, May 2003.

[269] C. Golbreich, “Web rules for Health Care and Life Sciences: use cases and
requirements,” in Proc. Reasoning on the Web Workshop at WWW2006, Edinburgh,
UK, 2006.

[270] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM – a Pragmatic Semantic
Repository for OWL,” in Proc. Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), New York, USA, Nov. 2005.

[271] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz., “Pellet: A practical
OWL-DL reasoner,” J. of Web Semantics, vol. 5, no.2, pp.51-53, June 2007.

[272] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C.
Feier, C. Bussler, and D. Fensel, “Web Service Modeling Ontology,” Applied Ontology,
vol. 1, no. 1, pp.77-106, 2005.

[273] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T. Schmidt, A. Sheth, and K.
Verma, “Web Service Semantics - WSDL-S.” Available:
http://www.w3.org/Submission/WSDL-S/, Nov. 2005.

[274] J. Farrell, H. Lausen, Semantic Annotations for WSDL and XML Schema,
http://www.w3.org/TR/sawsdl/, Aug. 2007.

[275] R. Stevens, C. Goble, P. Baker, and A. Brass, “A classification of tasks in
bioinformatics,” Bioinformatics, vol. 17, no. 2, pp.180-188, 2001.

[276] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri, S. Sadaati, and R. Senanayake,
“The OWL-S Editor – A Development Tool for Semantic Web Services,” in Proc. 2nd
European Semantic Web Conference, Crete, Greece, May 2005.

[277] A. Arbona, S. Benkner, G. Engelbrecht, J. Fingberg, M. Hofmann, K. Kumpf, G.
Lonsdale, and A. Woehrer, “A Service-oriented Grid Infrastructure for Biomedical Data
and Compute Services,” IEEE Trans. Nanobioscience, vol. 6, pp. 136-141, 2007.

[278] S. Bloehdorn, K. Petridis, C. Saathoff, N. Simou, V.Tzouvaras, Y. Avrithis, S.
Handschuh, Y. Kompatsiaris, S. Staab, and M. G. Strintzis, “Semantic Annotation of
Images and Videos for Multimedia Analysis”, in Proc. 2nd European Semantic Web
Conference, Heraklion, Greece, May 2005.

Semantics-Enabled Service Discovery Framework… 177

[279] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, “Semantic Matching of Web
Services Capabilities,” in Proc. Int. Semantic Web Conference (ISWC), Sardinia, Italy,
June 2002.

[280] D. Peterson, P. V. Biron, A. Malhotra, and C. M. Sperberg-McQueen, “XML Schema
1.1 Part 2: Datatypes.” Available: http://www.w3.org/TR/xmlschema11-2/, Feb. 2006.

[281] J. A. M. Herveg,, F. Crazzolara, S. E. Middleton, D. Marvin, and Y. Poullet, “GEMSS:
Privacy and security for a Medical Grid,” in Proc. HealthGRID 2004, Clermont-
Ferrand, France, Jan. 2004.

[282] M. Klusch, B. Fries, and K. Sycara, “Automated Semantic Web Service Discovery with
OWLS-MX,” in Proc. 5th Int. Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2006), Hakodate, Japan, May 2006.

[283] L. Li, and I. Horrock, “A Software Framework for Matchmaking based on Semantic
Web Technology,” in Proc. 12th Int. World Wide Web Conference Workshop on E-
Services and the Semantic Web (ESSW 2003), Budapest, Hungary, May 2003.

[284] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic Composition of Web Services
using Semantic Descriptions,” in Proc. of Web Services: Modeling, Architecture and
Infrastructure. Workshop in Conjunction with ICEIS2003, Angers, France, April, 2003.

[285] M. C. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs, “Ranked
Matching for Service Descriptions Using OWL-S,” in Proc. KiVS 2005, Kaiserslautern,
Germany, 2005.

[286] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “WSMX - A Semantic
Service-Oriented Architecture”, in Proc. International Conference on Web Service
(ICWS 2005), Orlando, Florida, 2005.

[287] A. Patil, S. Oundhakar, A. Sheth, and K. Verma, “METEOR-S Web Service Annotation
Framework,” in Proc. the 13th World Wide Web Conference (WWW2004), New York,
USA, May 2004.

[288] R. Lara, A. Polleres, H. Lausen, D. Roman, J. de Bruijn, and D. Fensel, “A Conceptual
Comparison between WSMO and OWL-S”, in Proc. European Conference on Web
Services (ECOWS 2004), Erfurt, Germany, Sept. 2004.

[289] D. Martin, M. Paolucci, and M. Wagner, “Towards Semantic Annotations of Web
Services: OWL-S from the SAWSDL Perspective,” in OWL-S Experiences and Future
Developments Workshop at ESWC 2007, Innsbruck, Austria, June 2007.

[290] D. Brickley, and R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF
Schema.” Available: http://www.w3.org/TR/rdf-schema/, Feb. 2004.

[291] T. Di Noia, E. Di Sciascio, and F. M. “Donini, A non-monotonic approach to semantic
matchmaking and request refinement in E-Marketplaces,” in Proc. 1st Int. Workshop on
Semantic Matchmaking and Resource Retrieval: Issues and Perspectives, Seoul, Korea,
Sept. 2006, pp. 81-96.

[292] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D.
Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet, “Semantic Web Services
Framework (SWSF) Overview.” Available: http://www.w3.org/Submission/SWSF/,
Sept. 2005.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 9

SERVICE COMPOSITION AUTOMATION
WITH AI PLANNING

Maozhen Li1, Bin Yu2 and Man Qi3
1 Electronic and Computer Engineering,

School of Engineering and Design
Brunel University, Uxbridge, UB8 3PH, UK
2 Level E Limited, Edinburgh, EH9 3JL, UK

3 Department of Computing, Canterbury Christ Church University
Canterbury, Kent, CT1 1QU, UK

ABSTRACT

Grid computing is rapidly evolving into a service-oriented computing infrastructure
that facilitates resource sharing and large-scale problem solving on the Internet. It is
envisioned that many resources on the grid would be exposed as services for a wider use
by the community. Service discovery and composition has thus become a vitally
important component in utilizing grid facilities. This chapter focuses on service
composition. One challenge in service composition is how to automate the composition
process in terms of a large number of services (atomic services or component services)
and a variety of user requests. A novel Hierarchical Two Directions Partial Order
Planning (H2POP) algorithm is presented for discovery of composite services which are
dynamically composed from component services. A use case is given to illustrate the
application of the H2POP algorithm for travel planning service composition automation.

INTRODUCTION

With the development of Web services technologies [1], the computational grid is rapidly

evolving into a service-oriented computing infrastructure that facilitates resource sharing and

1 E-mail address: Maozhen.Li@brunel.ac.uk
2 E-mail address: Bin.Yu@levelelimited.com
3 E-mail address: mq4@canterbury.ac.uk

Maozhen Li, Bin Yu and Man Qi 180

large-scale problem solving over the Internet [2]. Open Grid Services Architecture [3],
promoted by the Open Grid Forum (OGF, http://www.ogf.org) as a standard architecture for
developing the next generation service-oriented grid systems, has facilitated the evolution. It
is expected that Web Service Resource Framework [4] will be acting as an enabling
technology to drive this evolution further. Services are implemented as software components,
the interfaces of which can be advertised in terms of their functional and non-functional
properties. Advertising services in a grid environment means that service-associated
properties are registered with a service registry, which can then be accessed by users or user
applications to discover the services that meet user needs. In this way, users can utilize grid
services without knowing their low level implementations, reducing the complexity of using
grid facilities. Increasingly, grid environments host a large number of services -- exposing
physical resources such as processors/CPUs, disk storage, network links, instrumentation and
visualisation devices in addition to applications and software libraries. Service discovery has
therefore become a vitally important component for utilising grid facilities.

ROSSE is a Rough sets based search engine for discovery of Grid or Web services that
have WSDL interfaces or OWL-S interfaces [5, 6, 7]. The novelty of ROSSE lies in its
capability to deal with uncertainty of properties when matching services. For a service query,
ROSSE can find more relevant services than other service discovery mechanisms such as
UDDI and OWL-S. It is worth noting that, in some cases, no individual services could satisfy
a user specific query. A number of services may need to be composed together to answer a
user query. ROSSE has been enhanced with the capability to discover composite services
which is the focus of this chapter.

The rest of this chapter is organized as follows. Section 2 introduces AI planning for
service composition. Section 3 presents a Hierarchical Two Directional Partial Order
Planning (H2POP) algorithm for service composition automation. Section 4 gives a case
study to illustrate the use of H2POP to discover a composite service for travel planning.
Section 5 discusses some related work on service composition, and Section 6 concludes the
chapter.

AI PLANNING FOR SERVICE COMPOSITION

Service composition can be considered as a planning problem. AI planning has been

widely used for service composition with an aim to automate the process in service
composition. In the following sections, we give a brief overview of classic AI planning
algorithms.

Classic AI Planning

Most AI planning approaches use a state-transition system. In a state-transition system,

there are finite or recursively enumerable set of states, actions and events along with a
transition function that maps a state, an action and an event to a set of states [8]. Classic AI
planning mainly employs the initial modeling of the STRIPS [9] as a basic model to solve a
planning problem.

Service Composition Automation with AI Planning 181

The action of STRIPS can be represented as <P, A, D>, where

• The state P is the description of a precondition.
• The state A represents an “add” state, which adds a group of states in the current list

of world states.
• The state D represents a “delete” state, which removes a group of states from the

current list of world states.

Here, each state in STRIPS is defined by using a first-order language. Based on the

STRIPS model, classic AI planning introduces an operator which can be represented as a
triple, i.e. o= (name(o), precond(o),effects(o)), where

• The name(o) is the name of an operator.
• The precond(o) is the precondition of an action happened.
• The effects (o) can be positive or negative
• The)(oeffect + is normally placed into an add list which represents a set of added

states.
• Oppositely, the)(oeffect − is normally placed into a delete list, which represents a set

of removed states.

If the preconditions of an operator are satisfied with the state s (denoted by

precond(o)⊂ s), this operator o will act on the state s. However, the STRIPS model does not
have expressions of conditions and functions. Then, the representation is insufficiently
expressive for real domains. As a result, many language variations are developed such as the
Action Description Language (ADL) [10]. In addition, many high-level planning models are
developed to handle complex planning problems such as Hierarchical Task Network (HTN)
planning [11]. The main idea of HTN planning is to decompose tasks to subtasks by using
domain related pre-defined methods. However, the domain of grid services is very wide in
terms of the variety of services, the number of relevant methods for decomposing user goals
could be huge. As a result, for a user service request (goal), service composition using HTN
planning would be hard as the mapping of user goals to decomposition methods is time
consuming. Pre-defined decomposition methods are fixed for a particular domain problem
using HTN planning, which is not flexible in terms of a variety of domain problems.
Furthermore, a large space is needed to store decomposition methods. Therefore, a dynamic
and flexible planning approach for service composition is needed to avoid the large scale of
computing and storage.

Partial Order Planning

Partial Order Planning (POP) [12] only introduces ordering constraints as necessary (least

commitment) in order to avoid unnecessarily searching through the space of possible
orderings. POP has an advantage over HTN planning in terms of its least commitment.

Maozhen Li, Bin Yu and Man Qi 182

Algorithm 1. A classic POP algorithm

function POP(initial, goal, operators) returns plan
Plan<-Make-Minimal-Plan(initial goal)
loop do

if Solution?(plan) then return plan
Sneed, c <-Select-Subgoal(plan)
Choose-Operator(plan, operators, Sneed, c)
Resolve-Threats(plan)

end
function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)
with a precondition c that has not been achieved

return Sneed, c
procedure Choose-Operator(plan, operators, Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect
if there is no such step then fail
add the causal link Sadd ---c--> Sneed to Links(plan)
add Sadd < Sneed to Orderings(plan)
if Sadd is a newly added step from operators then

add Sadd to Steps(plan)
add Start<Sadd<Finish to Orderings(plan)

procedure Resolve-Threats(plan)
for each Sthreat that threatens a link Si --c->Sj in Links(plan) do

choose either
Demotion: Add Sthreat<Si to Orderings(plan)
Promotion: Add Sj<Sthreat to Orderings(plan)

if not Consistent(plan) then fail
end

The key of POP is that, for a user request (goal), it searches partial plans rather than all

possible situations. There are three main parts in classic POP algorithm, i.e. obtaining sub-
tasks (sub-goals), searching and locating operators. When applying POP in service
composition, a sub-task in POP can be considered as a component service in a composite
service, an operator in POP can be considered as a candidate service (a concrete component
service). Locating an operator can be considered as positioning a component service in a
composite service. Thus, POP can be used for partially automating service compositions. A
classic POP algorithm is depicted in Algorithm 1.

H2POP FOR SERVICE COMPOSITION AUTOMATION

H2POP Design

Based on classic POP algorithms, we have designed the H2POP algorithm for service

composition automation. We extend POP from the following aspects.

Service Composition Automation with AI Planning 183

Definition 1: A H2POP operator is defined as an expression of quaternion: (Identity,
Precondition, effect+, effect-). There are two types of operators - operator+ and operator-,
where

• Identity represents the identity of a candidate service.
• Precondition represents whether a candidate service is selected.
• effect+ represents the H2POP operator’s ‘add’ list. The properties in the ‘add’ list

will be appended into an original property list after the service is selected.
• effect- represents the H2POP operator’s ‘delete’ list. The properties in the ‘delete’

list will be removed from an original property list after the service is selected.
• Operator+ represents add operator when a progressed search is executed.
• Operator- represents add operator when regressed search is executed.
Thus, a H2POP plan can be defined as follows:

Plan = Operator+ ⊙ Operator-
where, the symbol ⊙ combines all candidate services from their original service lists and
workflow arrays (recording the positions of candidate services) of both Operator+ and
Operator- to form a uniform service list and a uniform workflow array. It should be stressed
that the “+” and “-” of operators in H2POP algorithm represent progressed directions and
regressed directions respectively.

The following definition defines how service composition can be considered as an AI
planning problem.

Definition 2: A planning problem in H2POP is defined as a triple (D, IN+, IN-), where

• D is a domain
• IN+ is a positive goal
• IN- is a negative goal
The following definition describes a Hierarchical Partial Order Planning in one direction.
Definition 3: A Hierarchical Partial Order Planning (HPOP) is defined as a triple (initial,

goal, operators), where

• initial represents a planning problem for services composition represented by (D,

IN+| IN-).
• goal represents that the goal of HPOP is to gain effect- from selected operators to

reduce IN+ or IN- in initial.
• operators represents selected operators, which are recorded in a service list and

positioned in a workflow array.

HPOP can be a progressed planning (HPOP+) or a regressed planning (HPOP-).

Now the problem of service composition becomes an issue of AI planning. The H2POP

algorithm provides a complete planning by recursively invoking partial planning processes.
That is where a hierarchical POP comes from.

It should be noted that if a composite service is planned with one planning direction, be it
a progressed planning or a regressed planning, the searching process may not be able to
converge as shown in Figure 1. In Figure 1, the red line represents a progressed planning, and

Maozhen Li, Bin Yu and Man Qi 184

green line represents a regressed planning. Therefore, we add two directions in the HPOP to
automate service composition.

Figure 1. Progressed Planning and Regressed Planning.

The data flow in the H2POP algorithm is shown in Figure 2. The Progressed Planning
unit and the Regressed Planning unit are used to compose a service in a positive direction and
in a negative direction respectively. The Link unit aims to link a positive workflow array with
a negative workflow array. The Judgement unit checks whether a Progressed Planning can be
linked with a Regressed Planning.

Figure 2. Data flow in the H2POP algorithm.

From Algorithm 2, only when all user inputs (goals) and outputs (goals) are satisfied and
searching results using a progressed planning and a regressed planning are linked together,
the algorithm returns correct plan. If user inputs and outputs are not satisfied or searching
results of progressed and regressed cannot be linked together, the system will continue to
search by using updated inputs and outputs. The function Available-Link checks whether
outputs of operator+ and inputs of operator- have any relationships. As defined in Definition

Service Composition Automation with AI Planning 185

3, the goal of service composition is to satisfy all properties of user input and output.
Algorithm 2 shows the H2POP algorithm, and Algorithm 3 shows the HPOP algorithm.

Algorithm 2. The HPOP function

function H2POP(D, IN+ , IN-) returns plan

Plan <- Gain-Operator-From-ROSSE(initial value)
if Solution?(plan) then return plan
else plan <- null
loop do
 operator+ <- HPOP+(D∨IN+∨IN-, goal, operator+)
 if goal? break
end

IN+,IN- <- Renew(IN+, IN-) from HPOP+(-)
loop do
 operator- <- HPOP-(D∨IN+∨IN-, goal, operator-)
 if goal? break
end
if Available-Link(operator+, operator-) and goal? then return plan
Else

Renew(IN+, IN-) from Operator
H2POP(D, IN+ , IN-)
Return plan
end if

end

Algorithm 3. The HPOP+(-) function

Function
HPOP+(-)(D∨IN-∨IN+, goal, operators+(-)) returns operators+(-)
newoperators+(-) <-Choose-Operator+(-)(D∨IN+(-),operators+(-))
IN-(+) <- Delete-Gain-Properties(newoperators+(-))
operators+(-) <- Resolve-Threats(newoperators+(-),operators+(-))
return operators+(-)

In HPOP, new operators are selected by using Choose-Operator function as shown in

Algorithm 4, and then their locations are planned by using Resolve-Threats function as
shown in Algorithm 5.

Algorithm 4. The Choose-Operator

Function
Choose-Operator+(-)(operators+(-)) return newoperator+(-)
 input(output)<- Gain-Property(operators+(-))
 newoperator+(-) <- Gain-Operator -From-ROSSE(input(output))

return newoperator+(-)

Maozhen Li, Bin Yu and Man Qi 186

The Choose-Operator function builds on the ROSSE search engine and only uses input
properties or output properties to search for related candidate services. Here, the new operator
is different from the operator defined in Definition 1. It only includes the identity of a
candidate service but does not include information related to a workflow array.

Algorithm 5. The Resolve-Threats function

Function
Resolve-Threats(newoperators+(-),operators+(-)) return operators+(-)

for choose a step wadd from newoperators+(-) have eff as effects and pre as
preconditions do
if there is no such step then fail

choose either
Demotion: Add wadd < w 0 to W(i,j)+(-)
Promotion: Add w j < wadd to W(i,j)+(-)

if not Consistent(W(i,j)+(-)) then fail
add newoperators+(-) to Service set S+(-)
operators+(-) <- S+(-), W(i,j)+(-)

end
 return operators+(-)

In addition, the algorithm introduces a unit to handle loop states. The unit gives a flag for

each service where the loop is possibly happened. The flag is also labelled into both
workflow array and service set. In the Resolve-Threats function, both the progression
approach and the regression approach in classical POP are used to solve ordering problem of
workflow arrays. Then, generated operators are returned. These operators include related
candidate services and their positions in a workflow array.

H2POP Implementation

This section focuses on the implementation of H2POP, which builds on the ROSSE

search engine. Figure 3 shows the components related to H2POP.
The Service Selection unit is used to find possible individual component (atomic)

services. Based on a service ontology, the unit reasons the relationships between properties of
advertised services and properties used in a service query. For reasoning, the Service
Selection unit uses Protégé OWL plug-in API (http://protege.stanford.edu/plugins/owl/api)
and RACER [13]. In addition, the service property reduction of ROSSE is still used here to
dynamically discern and reduce dependent properties.

Using selected component services, the Workflow Building unit is used to automatically
generate workflows building on the H2POP algorithm. The process of building a workflow is
alternately implemented between the Workflow Building unit and the Service Selection unit.
In other words, if a possible component service is selected, then a workflow attempts to create
a new step. Based on a created workflow, a new component service is selected. The process is

Service Composition Automation with AI Planning 187

Figure 3. H2POP related components for discovery of composite services.

not completed until all component services are found and a whole workflow is built. There
are three statuses after a composite service is built:

• Executable. It means that the search process is successful and a composite service is

produced.
• Terminable. It means that searching process is a finite computation and a failure will

be returned.
• Reusable. It means that a composite service can be directly discovered if user

supplies an identical query.

The database in H2POP reuses and extends the structure of the ROSSE database as

shown in Figure 4. In order to search services by input properties, output properties,
preconditions and effects, we build input tables, output tables, precondition tables and effect
tables. For services with OWL-S interfaces, the properties related to input, output,
preconditions and effects are appended into relevant tables. For UDDI registries, only input
and output properties are manually supplied to the system. In the mean time, H2POP also
makes use of UDDI APIs to dynamically load services registered in UDDI registries. The
OWL-S files mapping aims at mapping OWL-S files to their network access points, and the
ontology table stores ontology information for semantic reasoning. The history table records
previous search results.

Figure 4. Service database management.

Maozhen Li, Bin Yu and Man Qi 188

A CASE STUDY OF H2POP

In the section, a travel-planning example is used to illustrate how the H2POP algorithm

works. To test the effectiveness of H2POP, we have designed a few hundred services in
ROSSE including car rental, accommodation booking, money translator, flight tickets
booking. The H2POP algorithm runs o top of the ROSSE environment. We designed a
composite service using the following atomic services as shown in Table 1.

Table 1. Five atomic services for a composite service

A service composition request is supplied to ROSSE using the user interface as shown in

Figure 5. In the following sections, we describe how the service composition is performed.
Firstly, a service composition query which is provided in the form of

#composite#class:travel;input:pound,destination;output:cartype,price,color,charge,roomno,t
otalprice,and is submitted to ROSSE, here,

• #composite means a service composition
• #class: means a searched domain
• input: means user inputs
• output: means user outputs
• ; means the end of the request

Figure 6 (a), (b), (c) show the results of the service composition. The workflow diagram
which is automatically drawn by ROSSE shows all the atomic services used in the composite
service. It should be noted that service 3 and service 4 are used together in the service
composition. The diagram also comes with a description on each service used in the
composite service such as service number, service name, business name, business description,
access point, overview document and all services ID of possible candidate services. Using the
example as shown in Figure 5, we explain how the service is composed using H2POP.

Service Composition Automation with AI Planning 189

Figure 5. ROSSE user interface for discovery of composite services.

(a)

Maozhen Li, Bin Yu and Man Qi 190

(b)

(c)

Figure 6. Service composition results.

Service Composition Automation with AI Planning 191

• Step 1: the input proprieties of a user requirement were used to infer and discover the
first service using the Progressed Planning as shown in Figure 7. The first service
was descried as a quaternion
<flight ticket, add-this-service (precondition), Add (input: Dollar, Source Location

output: Availability, City Location), Delete (input: Destination, output: null)>
Thus, Destinations were removed from current searching properties. Other properties

were appended to the list of current searching properties. The goals of the user query are
Pounds and Destinations.

Input: Pound, Destination

Figure 7. The 1st step of the service composition.

• Step 2: the inferred input proprieties in the second step were used to reason and

match the second service in the goal of Progressed Composite Service as shown in
Figure 8. The second service was descried as a quaternion
<Money Exchange, add-this-service, Add (input: null output: dollar), Delete (input:

Pound output: null)>
Thus, Pound was removed from current searching properties. Other properties were

appended to current searching properties. Then, the connection method was invoked to
locate the relationship between the component service and services partially composed in
previous steps. In the example, because the output of Money Exchange service was equal
to an input of the service of Flight Ticket, the Money Exchange service was placed in
front of the Flight Ticket service. Then, because the property of dollar belongs to input
and output, the connected property Dollar was deleted from both of input and output
property lists. In addition, all input properties of a user requirement are completed.

Input: Pound, Dollar, Source Location
Output: Availability, City Location

Figure 8. The 2nd step of the service composition.

Maozhen Li, Bin Yu and Man Qi 192

• Step 3: the output proprieties of users’ requirement were used to implement
Regressed planning and discovered the first service in the goal of Regressed
Composite Service as shown in Figure 9. The first service in the first Regressed
reasoning was descried as a quaternion
<Car Rental, add-this-service, add-this-service, Add (input: City location output:

Payment), Delete (input: null output: Charge, CarType, Color)>
Thus, Charge, CarType and Color properties were removed from current searching

properties. The property of City Location was appended to current searching properties.

Output: Cartype, Price, Color, Charge, Room no, Totalprice

Figure 9. The 3rd step of the service composition.

• Step 4: the remainder of output proprieties of user requirement were used to
implement Regressed reasoning and gain the second service in the goal Regressed
Composite Service as shown in Figure 10. The second service in Regressed
reasoning was descried as a quaternion
<Accommodation, Add-this-service, Add (input: City location output: Payment),

Delete (input: null output: Price, Room no)>
Thus, the properties of Price and Room no were removed from current searching

properties. Other properties were appended to current searching properties. Then, the
connection method was invoked to locate the relationship between the component service
and composed services in previous steps in process of Regressed reasoning. In the
sample, because the input and output of the service of Car Rental was equal to an input of
the service of Accommodation, the service of Car Rental and Accommodation were
implemented in parallel. Then, because the property of City Location only belonged to
input properties, one of two properties, Location, is deleted from input properties.

Input : City Location Output: price, room no, totalprice

Figure 10. The 4th step of the service composition.

Service Composition Automation with AI Planning 193

• Step 5: the remainder output propriety of user’s requirement, totalprice, were used to
implement Regressed reasoning and gain the third service in the goal Regressed
Composite Service as shown in Figure 11. The third service in Regressed reasoning
was descried as a quaternion
<Check out, add-this-service, Add (input: Payment output: null), Delete (input: null

output: Totalprice)>
Thus, the output property of Totalprice was removed from current searching

properties. Other properties were appended to current searching properties. Then, the
connection method was invoked to locate the relationship between the component service
and composed services in previous steps in process of Regressed reasoning. In the
sample, because the input of the service of Check Out was equal to an output of the
service of previous total Regressed composite service, the service of Check Out was
located after the total Regressed composite service. Then, because the related property,
Payment, belonged to input and output, it was deleted from both of input and output
properties. In addition, all output properties of users’ requirement had been completely
gained. The first Regressed searching also had been completed. Then the Regressed
searching and Progressed searching were attempted for connection.

Input : City Location Output: totalprice

Figure 11. The 5th step of the service composition.

As shown in Figure 12, the Regressed searching and Progressed searching were
attempted for connection. An output of the Progressed composite service was the same as an
input of the Regressed composite service. The whole composite service was combined
together. If the connection cannot be found, the output properties of Progressed composite
service and the input of Regressed composite service will be implemented in a new round of
service composite as new input properties and new output properties.

The whole service composition process was completed in 7413 ms. The composition
process went through data transferring, service selection, workflow building, service
optimisation, returning results and workflow diagram drawing. Hereinto, selecting services
and building the workflow took 5034 ms.

Maozhen Li, Bin Yu and Man Qi 194

Connection: Output of progressed planning: Availability, City Location
Input of regressed planning: City Location

Figure 12. The 6th step of the service composition.

RELATED WORK

In this section, we discuss some related work on service composition, from the aspects of

semi-automatic service composition and automatic service composition.

Semi-Automatic Service Composition

Semi-automated service composition requires user involvement in a composition process.

Currently, there are many successful work for semi-automated service composition such as
OWL-S, Web Component [14], π-calculus [15] and Petri-nets [16]. OWL-S is a semantic
service description langrage. OWL-S processes can be used to describe workflows of
services. However, OWL-S files are very hard to generate and implement service binding, so
many tools are developed for OWL-S to translate services from WSDL to OWL-S such as
OWL-S Editor (http://owlseditor.semwebcentral.org/). The main idea of Web Component is
to encapsulate composite-logic information inside a class definition and its public interface
can be published and used for discovery and reuse. The composite-logic comprises service
composition types and message dependencies. Similar to BPEL [17], Web component can be
composed using Service Composition Specification Language (SCSL). However, the SCSL
has to be manually edited, and its correctness has to be checked by using related tools. The π-
calculus manually composes service components and automatically checks the correctness of
composite services. However, the π-calculus is different form others, which is able to
successfully compose large-scale composite services. In addition, Petri-nets is a well-
established process-modeling approach. It can be used for modelling and checking composite
services. However, it is not able to automatically compose services. Although the above-
mentioned methods for service composition have strong analysis functions, they are only used
for accessorial design.

Service Composition Automation with AI Planning 195

Automated Service Compositions

The Finite-State Machines (FSM) [18] and Artificial Intelligence (AI) planning are two

popular methods for automatic service compositions. The FSM checks the existence of a
composite service. Therefore, if a system wants to discover composite services using FSM, it
will have to require a fixed domain task structure or require an infinite storage space to locate
all domain task structures. The AI planning includes situation calculus, Planning Domain
Definition Language (PDDL) [19], Rule-based planning [20, 21] and Hierarchical Task
Network (HTN) planning. The SWORD [22] is a tool for building composite services using
rule-based plan generation. However, rule-base plan only build work flow in one direction.
This method may lead to a large scale of searching space and a result which cannot trend to
be constringency. And the HTN planning is an AI planning approach. SHOP2 [23, 24] uses
the HTN planning to couple services. Its main idea is to decouple a composite task to many
primitive tasks and to replace each primitive task with an existing operator. If the number of
service in a system is large, SHOP2 will possibly introduce many intermediate services. Thus,
the speed and correctness of service composition will be decreased. In addition, in order to
decouple any complex tasks into primitive tasks, the system has to store a large number of
primitive methods and hierarchical models.

Compared with the related work in service composition, the H2POP algorithm builds on
a classic POP model, and extends POP with planning in two directions. One benefit of
H2POP is its flexibility in that it does not need pre-defined methods to decompose user goals
like HTN planning. H2POP uses the least commitments as constrains to compose services.
The use of progressed planning and regressed planning ensures the composition process to be
converged quickly instead of to be an infinite process. In addition, H2POP is a lightweight
algorithm. The algorithm does not demand intensive resources when composing services.

CONCLUSION

This chapter presented H2POP for service composition automation. H2POP builds on

Rough sets for dynamic service reduction, and extends a classic POP model for automatic
service composition. A case study was presented to illustrate the use of H2POP for
composition of travel services. H2POP can be improved in the following ways:

• Distributed Services Composition. The H2POP algorithm composes services in a

centralised way. However, a service-oriented structure is typically used for a
distributed system framework. Thus, services, which might be geographically
distributed in a network environment, are more suitable to be coupled in a
decentralised way. For this purpose, a distributed service registry is needed. UDDI 3,
which provides a federated mechanism to couple services, can be explored for this
work. Distributed service composition also entails structures for the distributed
service registry to ensure the lookups of services in a distributed environment to be
efficient.

• Uncertainty of Service Properties. The H2POP algorithm dynamically uses Rough
sets to reduce irrelevant and dependent properties for a specific component service.

Maozhen Li, Bin Yu and Man Qi 196

However, H2POP currently does not check the dependencies of service properties
between component services. To speed up service composition process, and to
achieve more accuracy in service composition, this issue should be considered in
future work.

• Service Composition with Loops. H2POP deals with loops in service composition
with pre-defined information. It is not flexible in this way as they can be a variety of
services published in ROSSE. Future work should introduce new mechanisms to
manage loops in service composition. There are two types of loops - self-loops and
normal loops. For a self-loop service, the number of loops could be determined using
historical execution records of the services. For a normal loop service, finite state
machines (FSM) could be used to determine the number of loops and the services
that are usually coupled by the service.

REFERENCES

[293] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the Web Services: An Introduction to SOAP, WSDL, and UDDI,” IEEE
Internet Computing, vol. 6, no. 2, pp. 86-93, 2002.

[294] M. P. Atkinson, D. De Roure, A. N. Dunlop, G. Fox, P. Henderson, A. J. G. Hey, N. W.
Paton, S. Newhouse, S. Parastatidis, A. E. Trefethen, P. Watson, J. Webber, “Web
Service Grids: An Evolutionary Approach,” Concurrency - Practice and Experience,
vol. 17, no. 2-4, pp. 377-389, 2005.

[295] Foster, C. Kesselman, J. M. Nick, S. Tuecke, “Grid Services for Distributed System
Integration,” IEEE Computer, vol. 35, no. 6, pp. 37-46, 2002.

[296] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, W. Vambenepe, “The WS-Resource Framework,” March 5, 2004. [online]
http://www.globus.org/wsrf/specs/ws-wsrf.pdf. (last access: Dec. 2007)

[297] M. Li, B. Yu, C. Huang, and Y. H. Song, “Service Matchmaking with Rough Sets,”
Proc. IEEE Int’l Symposium on Cluster Computing and the Grid (CCGrid), pp. 23-30,
May 2006.

[298] B. Yu, W. Guo, M. Li, Y.H. Song, P. Hobson, M. Qi, “Service Matchmaking and
Discovery with Rough Sets,” Proc. Int’l Conf. on Semantics, Knowledge and Grid
(SKG), p. 80, Nov. 2006.

[299] Maozhen Li, Bin Yu, Omer Rana, Zidong Wang, Grid Service Discovery with Rough
Sets, IEEE Transactions on Knowledge and Data Engineering, 19 Dec 2007.

[300] E Sirin, Automated composition of web services using AI planning Techniques,
http://www.cs.umd.edu/Grad/scholarlypapers/papers/aiplanning.pdf.

[301] R. E. Fikes and N. J. Nilsson. “Strips: A new approach to the application of theorem
proving to problem solving”. In J. Allen, J. Hendler, and A. Tate, editors, Readings in
Planning, pages 88–97. Kaufmann, San Mateo, CA, 1990.

[302] E Pednault, ADL and the state-transition model of action, Journal of Logic and
Computation 4:467–512, 1994.

[303] K. Erol, J. Hendler and D. S. Nau, “Semantics for Hierarchical Task Network
Planning”, UMIACS Technical Report, 1994.

Service Composition Automation with AI Planning 197

[304] Joachim Peer: A POP-Based Replanning Agent for Automatic Web Service
Composition. ESWC 2005: 47-61.

[305] V. Haarslev and R. Möller, “Description of the RACER System and its Applications,”
Proc. Int’l Workshop on Description Logics (DL-2001), Aug. 2001.

[306] Jian Yang, Mike P. Papazoglou: Web Component: A Substrate for Web Service Reuse
and Composition. CAiSE 2002: 21-36.

[307] R. Milner, The ployadic pi-calculus: a tutorial, Technical Report, Laboratory for
Foundations of Computer Science, University of Edinburgh, October 1991.

[308] R. Hamadi and B. Benatallah, “A Petri-Net-Based Model for Web Service
Composition,” Proc. 14th Australasian Database Conf. Database Technologies, ACM
Press, 2003, pp. 191–200.

[309] F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller, S. Thatte, and S. Weerawarana,
Business Process Execution Language for Web Services(BPEL4WS) 1.0, August 2002.

[310] X. Fu, T. Bultan, and J. Su, “Formal Verification of Eservices and Workflows,” Proc.
Workshop on Web Services, E-Business, and the Semantic Web (WES), LNCS 2512,
Springer-Verlag, 2002, pp. 188–202.

[311] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL—The Planning Domain Definition Language (1998)

[312] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid, “Composing Web Services on the
Semantic Web”, The VLDB journal, September 2003

[313] S. A. Chun, V. Atluri, N. R. Adam, Using Semantics for Policy-Based Web Service
Composition, Distributed and Parallel Databases, 2005.

[314] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for Web service
composition. In Proceedings of the 11th World Wide Web Conference, Honolulu, HI,
USA, 2002.

[315] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Héctor Muñoz-Avila, J.
William Murdock, Dan Wu, Fusun Yaman: Applications of SHOP and SHOP2. IEEE
Intelligent Systems 20(2): 34-41 (2005).

[316] Dan Wu, Bijan Parsia, Evren Sirin, James A. Hendler, Dana S. Nau: Automating
DAML-S Web Services Composition Using SHOP2. International Semantic Web
Conference 2003: 195-210.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 10

WORKFLOW IN A SERVICE ORIENTED
CYBERINFRASTRUCTURE/GRID ENVIRONMENT

Wei Tan1, Yushun Fan2, Ian Foster3 and Ravi Madduri4
1 Computation Institute, University of Chicago and
Argonne National Laboratory Chicago, IL, USA

2 Department of Automation, Tsinghua University,
Beijing 100084, P. R. China

3 Computation Institute, Argonne National Laboratory
and University of Chicago Chicago, IL, USA

4 Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, USA

ABSTRACT

With the emergence of Service Oriented Computing, workflow has become an
important method to compose services and reuse existing resources in the
Cyberinfrastructure (CI) and the Grid. In this chapter, we first summarize research
activities in the field of workflow in service oriented computing. We discuss five major
research topics, i.e., languages and tools for service orchestration, automatic service
composition, mediation-aided service composition, verification of service workflow, and
decentralized execution of workflow. Although some of this work was originally targeted
at the area of business process management, they can be adopted by the CI community
with some modification or enhancement. In the second part of this chapter, we introduce
a service-oriented workflow execution system, WS-Workflow, and explain the key
modules in this system, including the data-driven composition module, the mediation-
aided composition module, and the model fragmentation module. This system has been
used in many projects to facilitate the flexible workflow composition and decentralized
execution.

1 E-mail address: wtan@mcs.anl.gov
2 E-mail address: fanyus@tsinghua.edu.cn
3 E-mail address: foster@mcs.anl.gov
4 E-mail address: madduri@mcs.anl.gov

Wei Tan, Yushun Fan, Ian Foster et al. 200

INTRODUCTION

From a technical point of view, with the emergence and maturation of Service Oriented

Architecture (SOA), Web Services have begun to play a key role in enterprise information
systems, the Grid, and cyberinfrastructure (CI) [1]. CI and Grids are becoming service
oriented, i.e., using Web Services to provide a uniform interface to various resources, data
and appliances. For example, grid middleware such as Globus [2] are adopting Web Services
standards. From economic aspect, Web Services are now gaining momentum in the so-called
network economics. Companies such as eBay, Google, and Amazon all use Web Services to
extend their business and make money out of it.

In the scope of this chapter, CI is regarded as a collaborative platform to involve more
users (typically scientific researchers) and resources (including data, applications and
appliances), enabling greater capabilities in science and engineering research across multiple
institutions and disciplines. Moreover, the term Grid is used to represent a concept similar as
CI. However, this focus does not preclude the application of the techniques described in the
following sections to overlapping fields like high performance computing, enterprise
computing, etc.

Service not only provides interoperability. More important, service orchestration, or
service workflow, offers enhanced reusability, agility and dynamicity in solution engineering.
Nowadays, many resources in CI, including data, computational resources and others are
wrapped with service interfaces to provide a uniform access. At the same time, many
applications in CI are achieved through complex and distributed procedures. Given this
requirement, many studies have been conducted on how to tailor the traditional workflow
technology in order to address the new challenges brought about by such a service oriented
computing (SOC) paradigm. Workflow systems are increasingly being developed to enable
users in CI to integrate, orchestrate, and monitor various local or remote service resources to
perform tasks like parallel data processing, batch job execution, and scientific discovery.
Because we are talking about workflow in SOC, we use terms like service workflow, service
composition, and service orchestration interchangeably.

Workflow technology can be traced back to late 1970s. It is originated from Office
Automation (OA) and flourishes in Business Process Management (BPM) area. The
requirements and characteristics of workflows in CI are partially overlapping those of
business workflows. For example, they both need to define tasks and dependencies, and the
structures of workflow systems in both areas are similar to the workflow reference model [3]
proposed by WfMC (See figure 1). On the other hand, workflow in CI, especially in a service
oriented paradigm, has its unique features, and therefore raises new challenges to be
addressed by academia as well as industry. Here we classify these features and challenges
into five categories which correspond to five interfaces defined in the workflow reference
model. Some of these challenges have their counterparts in business process management
domain, others do not. We will emphasize these different features and challenges in the
following summary.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 201

Other Workflow
Enactment Services

Interface 1

Interface 5

Interface 4

Interface 2 Interface 3

Workflow API and
Interchange

Workflow
Engine (s)

Workflow
Engine (s)

Admin. &
Monitoring

Tools

Process
Definition

Workflow
Client

Application

Invoked
Applications

Figure 1. The workflow reference model (by WfMC [3]).

Interface 1: Process Definition

• Business workflows are usually constructed in a control-flow pattern. In contrast,

data flow is considered to be the first-class citizen in a workflow in CI [4]. In a data
flow, tasks and links represent data processing and data transport, respectively. A
challenge is how to define a meta-model for the workflow in CI given this data-
oriented nature. Whether and how service orchestration languages like BPEL can be
used in CI still needs more exploration.

• Another challenge is how to derive a composite workflow that fulfills a given
requirement. Because in CI typically there are many resources that provide similar
functionality, techniques to facilitate the automatic service matchmaking and
composition is welcomed. Given the heterogeneity of various service resources, an
approach to glue them together with least cost and engineering effort is also desired.

• When multiple workflows are involved in an interaction, some technique is needed to
guarantee the correctness of workflow(s).

Interface 2: Workflow Client Application
The Workflow Client Application let the users retrieve the tasks together with related

data, and submit the execution results. In CI, user authentication and authorization is of great
importance to ensure the integrity of workflows that span multiple organizations.

Interface 3: Invoked Applications

• The applications in CI workflow are often data-intensive. Data stage in/out are

necessary before and after application execution.

Wei Tan, Yushun Fan, Ian Foster et al. 202

• Fault handling is also crucial because the applications in CI are often long-running,
computation-intensive, and expensive. The workflow system should be capable of
identifying and handling failures to guarantee reliable execution in such cases.

•
Interface 4: Other Workflow Enactment Services
To take part in the collaboration with the workflows controlled by other enactment

services, the flow engine should overcome heterogeneity at both process level (for example,
in data format, data semantics, and process logic) and system level (for example, in security
mechanisms).

Interface 5： Administration and Monitoring Tools

• In a CI without central control, it is a challenge to guarantee QoS commitments in

workflow execution.
• Data provenance, i.e., to track the steps by which the data was derived, can provide

significant value addition in data-intensive workflows in CI.

This chapter tries to give an overview of the research activities in service workflow, with

a concentration on its application to CI. Section 2 provides a summary of the studies in
service-oriented workflow area. Besides the languages and tools which have been widely
used in this community, we also discuss some key technologies enabling the flexible and
efficient modeling and execution of a service workflow. These technologies include
automatic service composition, mediation-aided composition, verifications of workflow, and
decentralized execution of workflows. Section 3 introduces the implementation of a service
workflow system called WS-Workflow, including its framework and the major supporting
techniques inside it. In Section 4 a summary is given and directions in future research are
pointed out.

RESEARCH OF WORKFLOW IN SOC: STATE OF THE ART

SOA can be regarded as the backbone for CI, just like TCP/IP as the backbone for the

Internet. In this section we summarize the research of workflow in SOC into five topics, i.e.,
languages and tools for service orchestration, automatic service composition, mediation-aided
service composition, verification of service workflow, and decentralized execution of
workflow. Although some of the studies are not originally targeted at CI, they can be used by
the CI community without difficulty

Languages and Tools for Service Orchestration

Industrial community has proposed many service orchestration specifications, including

Web Service Business Process Execution Language (WS-BPEL, or BPEL for short) [5], Web
Service Choreography Interface (WSCI) [6], Web Service Choreography Description
Language (WS-CDL) [7], and Ontology Web Language-Service (OWL-S) [8]. Among these

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 203

specification languages, BPEL is becoming dominant not only because it has been proposed
by OASIS as an industry standard, but also because it is execution-oriented and supported by
major software companies such as IBM, Oracle and SAP, as well as the open source
community.

BPEL

BPEL defines a meta-model and a XML-based grammar for describing the behavior of a
business process that are composed of Web services as well as exposed as Web services. The
BPEL process defines the execution structure on how multiple Web Service invocations are
coordinated to achieve a business goal. BPEL also include other model elements like data
manipulation, fault/exception handling, event processing, etc. One favorite feature of BPEL is
that, it utilizes many XML specifications like XML Schema, WSDL, XPath, XSLT, WS-
Addressing, etc. WSDL messages and XML Schemas are used as data type definitions; XPath
and XSLT provide support for data assignment. WSDL is used to model all external partner
services; WS-Addressing is used to access stateful resources which are especially relevant in
CI.

caGrid (GT4)
Service 1

caGrid User

GT4 Axis
Security

GT4

Workflow
Management

Service
(WMS)

R
un

W
or

kF
lo

w

R
es

ul
t[]

ActiveBPEL Axis + https +
GT4 authz

ActiveBPEL Axis + https +
GT4 authz

ActiveBPEL
Bpel

Engine
Admin

de
pl

oy
Bp

r

R
es

ul
ts

[]

in
vo

ke
P

ro
ce

ss

caGrid (GT4)
Service 2

Invo
ke

 ht
tps

Invoke https

text

tomcat

Figure 2. BPEL workflow in caGrid.

BPEL version 1.0 is proposed by IBM, BEA, Microsoft, SAP, etc, in 2002. BPEL 1.0
inherits two former specifications, XLANG by Microsoft and WSFL by IBM. In 2007 BPEL
version 2.0 became an OASIS standard. BPEL specification can be used to model both
abstract process and executable process. An abstract process is to define the externally visible

Wei Tan, Yushun Fan, Ian Foster et al. 204

message exchange sequence of a process, and this abstraction is used to depict interaction
protocol without revealing its internal implementation. Whereas an abstract process provides
a public view of the process logic, an executable one provides an internal view which is fully
specified and thus can directly be executed by a workflow engine. There are many tools
provided by commercial and open source community to support the modeling and execution
of BPEL processes. These tools include IBM WebSphere Process Server, Oracle BPEL
Process Manager, Active Endpoints ActiveBPEL, Eclipse BPEL Designer, etc.

Although BPEL is originally designed for business workflows, it also attracts attention
from the CI community [9-11]. Because BPEL is built on top of the XML standard stack,
standards that are particularly relevant in CI, like those in WSRF, can be easily integrated into
BPEL. For example, BPEL is used in caGrid [12]. caGrid is the service-based Grid software
infrastructure of the National Cancer Institute (NCI) cancer Biomedical Informatics Grid
(caBIG™) program. The caBIG™ program was established to implement the enabling
informatics technologies so that researchers can more efficiently share, discover, integrate,
and process disparate clinical and research data resources with the overarching goal of
accelerating cancer research. It implements a workflow service for orchestration of Grid
services. The workflow management service uses BPEL, enabling the execution and
monitoring of BPEL-defined workflows in a secure Grid environment. The general
architecture is shown in figure 2. The Workflow component leverages an infrastructure stack
that consists of Globus Toolkit, Apache Tomcat, Java, and Ant, with the addition of the
ActiveBPEL workflow engine. The WorkflowFactoryService is a standard Globus Toolkit
based grid service that allows a workflow to be created from a BPEL workflow document. An
EndPointReference is returned to a WorkflowManagementService resource that can be used
to start, stop, pause, resume, cancel, and destroy the created workflow. The
WorkflowManagementService is layered on top of the ActiveBPEL workflow engine, which
provides the primary functionality for running the BPEL-defined workflow.

WSCI and WS-CDL

Different from BPEL, WSCI and WS-CDL are not targeted at describing executable
workflows. They, from a global viewpoint, define the peer-to-peer collaborations of services
by specifying the ordered message exchanges between them. These two specifications are
both abstract, and describing the global observable behavior of multiple parties in a
collaboration. While BPEL is called a service orchestration language, WSCI and WS-CDL
are usually referred as service choreography languages.

DAGMan, Kepler, Taverna and Other Scientific Workflow Systems

Besides the specifications proposed by the Web Service community, there are also some
systems developed by the CI community. These tools mainly support scientific data analysis
and therefore are called scientific workflow systems. Some of these systems, like DAGMan,
Pegasus and Swift, are sometimes called "workflow" systems, but they really have nothing to
do with "workflow" in the traditional sense--they are parallel programming systems. Here we
briefly introduce DAGMan, Kepler, and Taverna.

DAGMan is the flow manager of the well-known Condor job scheduling system [13]. In
DAGMan a directed acyclic graph (DAG) which is made up of nodes and edges, is used to
represent a set of programs and the dependencies between them. The nodes in a DAG
represent programs, and the edges identify the dependencies between nodes. DAGMan

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 205

submits jobs to Condor in an order represented by a DAG. For robustness, DAGman provides
fault-handling mechanisms like task-level retry and checkpointing, and flow-level re-
submission (rescue workflow).

Kepler [4] is a scientific workflow system which is developed for the biology, ecology,
and astronomy research community, for the analysis and modeling of scientific data. Kepler
workflow consists of processing steps called actors that perform computations such as signal
processing, statistical operations, etc. Kepler has an extensible library of actors such that in-
house or third-party software like Web and Grid services can be added to this library by
scientists.

Taverna [14], developed by the UK myGrid project (www.mygrid.org.uk), aims to
provide a open-source tool to facilitate the use of workflow and distributed resources within
the e-Science community. The Taverna workbench provides a GUI to model a workflow,
using Taverna’s proprietary workflow language called Scufl, and then the model can be
executed by a workflow engine called Freefluo. Taverna has build-in support to access many
biological databases and analytical services (like Biomart, Soaplab, etc), which is welcomed
by the biology scientists. Taverna also provides an extensible framework so that additional
applications, like grid services, can be populated to it.

Other scientific workflow systems include Chimera [15], Pegasus [16], Swift [17], Triana
[18], BioOpera [19], and Askalon [20].

Automatic Service Composition

Automatic service composition methods can be further classified into three categories,

i.e., semantic based [21-27], automata based [28-30], and optimization based [31, 32].
Semantic based and automata based methods concern the functional properties (i.e., the
behavior) of the composite service, while the optimization based approach concerns the non-
functional properties.

Semantic-based approaches assume that service providers give semantic descriptions of
the service, like input, output, pre-condition, effect, etc. Based on these semantic descriptions,
various methods can be used to automatically generate composite service, or service
workflow. A common problem description is given in [33]: the automatic service composition

problem can be described as a five tuple 0, , , ,S S G A< Γ > , in which S is the set of all possible

system states; 0S and G are the initial and goal states, respectively, for the service
composition; A is the set of all possible actions (i.e., all service operations); and

S A SΓ = × × defines the pre-condition and effect for each action. Then, if we start from the
initial (or goal) state, with all the possible actions in Γ , various AI-planning methods can be
used to derive a feasible plan to the goal (or initiate) state. Research in this category usually
uses an ontology modeling language like OWL-S [8] to add semantic annotations to Web
Service descriptions. Then situation calculus [23, 24], PDDL [22], or rule based approaches
such as SWORD [25] and HTN [27] can be used to derive feasible solution(s).

Automata-based approaches use automata to describe the behavior of target composite
service as well as participant services. The key of this approach is computing a delegator
which coordinates the activities from those participant services so that the overall behavior

Wei Tan, Yushun Fan, Ian Foster et al. 206

corresponds to the desired composition. If a delegator exists, the behavior of the target
composite service can be achieved by synthesizing the participant services and delegating
their individual behaviors [29, 30, 34].

Optimization-based approaches are used to derive composite services which satisfy
certain Quality of Service (QoS) index. Usually the QoS constraints include local constraints
(constraints imposed on single service) and global ones (constraints imposed on multiple
services). Optimization methods like linear programming [31] and genetic algorithm [32] are
used to solve the QoS constraints and yield feasible solution(s).

Mediation-Aided Service Composition

The service orchestration and choreography specifications, and most of the automatic

service composition methods, assume the direction composition between services. Direct
composition is made based on the assumptions that:

• The incoming messages of one service are the exact ones provided by its partner(s);

the outgoing messages of one service are the exact ones consumed by its partner(s),
and

• Two services in composition consent to the message format and exchange sequence,
such that their composition process always executes in a logically correct way (e.g.,
terminates properly).

It is observed that partial compatibility is common in real-life service composition.

Partial compatibility refers to the situation that, two (or more) Web Services provide
complementary functionality and can be linked together in principle; however, their interfaces
and interaction patterns do not fit each other exactly. Hence, they cannot be directly
composed. The problem of partial compatibility arises mainly because services have to
interact with one another in the ways not necessarily foreseen when they are separately
developed.

Briefly, there are two methods to make partially compatible services work with each
other, i.e., configuration [35] and mediation [36]. Configuration is a heavyweight approach
that changes the original service within some predefined variable points to make it work
smoothly with other services. Casati and Shan [35] propose a configuration-based approach
that enables the dynamic and adaptive composition of e-services. Its adaptability is achieved
through dynamic service discovery, dynamic conversation selection, multi-service nodes, and
dynamic service node creation.

Compared to configuration, mediation is considered as a more economic and labor-saving
approach to address the challenge of partial compatibility in real-world Web Service
composition. The basic idea of mediation-aided composition is similar to the concept of an
adapter to make two pieces of hardware compatible. Mediator wraps the various services
(which are in general heterogeneous, e.g., have different interfaces, impose different message
sequences, and support different data structures) such that they can appear homogeneous and
are therefore easier to be integrated.

Figure 3 illustrates several cases of partial compatibility and corresponding (message)
mediators. For example, in figure 3 (a), messages A and B are exchanged between Services 1

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 207

and 2. In figure 3(a), Service 1 first sends A and then sends B; Service 2 waits for A and B to
arrive simultaneously. Services 1 and 2 cannot be directly composed by simply adding links,
because Service 1 has two interfaces while Service 2 has only one. In this case we can add a
module (i.e., a mediator) between them. Its function is to combine messages A and B from
Service 1 and forward it to Service 2. With the aid of this mediator, Services 1 and 2 can be
correctly composed. Figure 3 (b) illustrates a similar case where message needs to be spitted
by a mediator and dispatched to the receiver. In figure 3 (c) the message sequence needs to be
altered by a mediator.

The examples in figure 3 are elementary and intuitive, but in real cases several challenges
have to be addressed:

• A rigorous method, to check the existence of a mediator, should be used before any

effort is taken to actually generate the mediation model or code. For example, in
figure 3 (d), Service 1 first expects A and then sends B, Service 2 first expects B and
then sends A, and in this circumstance no message mediator exists between them.

• Mediation code should be generated when the existence of a mediator is determined.
For example, if two BPEL services need to be glued and is checked to be compatible,
a mediator, which should also be a Web Service, needs to be generated in order to
communicate with the two BPEL services.

Figure 3. Partial compatibility and mediation-aided composition.

Wei Tan, Yushun Fan, Ian Foster et al. 208

Recently the mediation-aided approach is attracting more attention. Benatallah et al. [37]
provide a summary of the mismatch patterns in Web Service composition. These patterns
include Message Ordering Mismatch, Extra Message Mismatch, Missing Message Mismatch,
Message Split Mismatch, and Message Merge Mismatch. Based on the work in [37],
Kongdenfha et al. [38] propose the use of an aspect-oriented programming (AOP) approach to
weave adaptor code into the partial compatible services. Brogi and Popescu [39] present a
method to automatically generate a mediator between two BPEL services. They translate a
BPEL process into YAWL (which is a workflow specification language with formal
semantics), and do mediator existence checking and adapter generation afterwards. Nezhad, et
al. [40] also propose an automata-based method to model the protocol of service interaction
and to identify mismatches automatically. They use a schema matchmaking technique to
handle the issue of message mapping, and they also propose some heuristic methods for
deadlock resolution between two services.

Verification of Service Workflow

The verification of workflows in an SOC paradigm has its unique features, compared to

the verification of traditional workflows. First, the model elements in specifications like
BPEL, are much more complicated than those in former workflow specifications like
WfMC’s XPDL [37]. BPEL concepts such as correlation set, death path elimination,
compensation and fault handling are unique, which brings complexity in verification. Second,
because workflows in SOC usually interact and interrelate to each other by message exchange,
the correctness of a workflow not only relies on its own internal logic, but also relies on how
its partners collaborate with it. Even if a workflow is correct from a traditional single-process
point of view, its composition with another workflow may still fail: for example, if the two
workflows do not agree on message exchange sequence, as figure 3 (d) shows.

Based on the formal method used, the researches in this area can be classified into several
categories, i.e., Petri net based, automata based, and process algebra based methods.

Petri Net Based Methods

Ouyang et al. [38] build up a comprehensive Petri net formalism for various BPEL model
elements, including basic activities, structured activities, event handler, control link, fault
handling, etc. This model covers major part of BPEL specification, and is ideal for the
verification of a single BPEL process. Martens, et al. [39] tries to verify the choreography of
multiple BPEL processes. The properties been verified include usability (give a BPEL
process, whether a proper environment exists to interact with it), equivalence (whether one
BPEL process can safely replace another in a choreography), and compatibility (whether the
composition of BPEL processes can be used by an environment). Because Martens’ work
concentrates on interactions among multiple workflows, its Petri net model for BPEL are
more compact, omitting some features like event, fault handling, etc. Hinz, et al. [40]
transform BPEL into Petri net, and then use CTL (Computational Tree Logic) and model-
checking tool to verify various properties.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 209

Automata Based Methods
Su et al. [41, 42] focus on the automata model for services and apply model checking via

LTL (Linear Temporal Logic). A special point of their research is a technique called
synchronizability analysis to tackle the problem of state space explosion brought about by
asynchronous messaging. Their result shows that, if a composite Web service is
synchronizable, its conversation set remains the same when asynchronous communication is
replaced with synchronous communication, so a synchronous communication model can be
used in LTL model checking. Kazhamiakin et al. [55] develop a set of parametric
communication models in service compositions. These models range from synchronous
communications to asynchronous communications with complex buffer structures. In addition,
they develop a technique to associate with a service composition the most adequate
communication model that is sufficient to capture all the behaviors of the composition. Using
this model, the analysis before the actual verification can bring about an improved
performance in verification.

Process Algebra Based Methods

Process algebra [43] is an algebraic approach to the modeling and analysis of concurrent
processes. Its advantage is that it provides not only temporal logic model checking, but also
bisimulation analysis through which whether two processes have equivalent behaviors can be
determined. Foster et al. transform BPEL into a kind of process algebra called Finite State
Process (FSP), and then use a model checking tool to verify properties like whether the
implementation satisfies the abstract design specifications [44], whether the composition of
two services are compatible [45], and whether the composition of BPEL services satisfies the
properties defined in WS-CDL [46]. Pi-Calculus [47] is a kind of process algebra developed
based on Calculus of Communicating system (CCS). This model takes into account the notion
of mobility which can describe the dynamic behaviour like late binding in service
choreography. A formal BPEL model based on Pi-Calculus can be find at [48].

Decentralized Execution of Workflow

Workflow systems are often built on the client/server architecture in which a single

workflow engine takes the responsibility for the operation of a whole process. However, this
sort of centralized systems may not fully meet the requirements in CI. The services involved
in a grid workflow come from different organizations, and probably these services can only
be controlled by the workflow engines insides their own domain boundary; therefore
sometimes a cross-organizational workflow cannot be orchestrated by one single engine.
Secondly, the reliability and performance of a workflow can be increased when multiple
workflow engines collaborates to execute it.

Partitioning an integrated workflow into small fragments each of which is orchestrated by
one engine is a preliminary requirement for decentralized execution. A team from IBM India
Research Lab has conducted a series of studies in the decentralized execution of composite
BPEL services [49-52]. The research include: how to partition a BPEL into multiple parts,
especially the partition of fault-handling code [50]; the model partition policies to improve
execution performance, like to reduce communication between engines and increase
execution parallelism [51, 52]; how to partition the model when dataflow is constrained [49].

Wei Tan, Yushun Fan, Ian Foster et al. 210

Recently a similar distributed execution approach has been used in grid workflow to optimize
the non-functional properties [53].

WS-WORKFLOW: A WORKFLOW SYSTEM IN SOC

To assist services composition and orchestration in SOC, a workflow system, WS-

Workflow [54] is designed and implemented. We do not mean to offer a comprehensive
system that tackles all the challenges given in Section 1. However, our system provides an
integrated solution with some nice features that other approaches do not provide. These
features include:

• A data-driven composition module providing guidance for service composition with

a given service portfolio.
• A mediation-aided composition module providing a rigorous approach to analyze the

compatibility of two BPEL services. The method to generate a mediator which glues
two partial compatible BPEL services is also given to provide run-time support.

• A model fragmentation module partitioning a BPEL process into multiple parts each
of which can be orchestrated by one engine.

This section first introduces the WS-Workflow framework and then discusses the major

supporting techniques inside it.

WS-Workflow: the Framework

The WS-Workflow framework shown in figure 4 consists of three layers, the data layer,

the logic layer and the user layer. Here we briefly introduce the modules in each layer. In the
next subsection a more detailed explanation on the techniques needed by each module will be
given.

Figure 4. WS-Workflow framework.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 211

The data layer provides persistence storage for all the other modules in WS-Workflow. It
includes a requirement/service domain database, a BPEL run-time database, and an interface
mapping database. The requirement/service domain database stores the data elements in
requirement domain and service domain, and the relations between them; BPEL run-time
database stores the instance data used by a BPEL engine in workflow execution; interface
mapping database stores the mapping relations of the data elements in BPEL services which
are to be composed.

The logic layer contains the core functionalities offered by the WS-Workflow system.
The BPEL engine coordinates the execution of BPEL processes input by other modules in
this layer. It navigates a process according to BPEL definition, invoke Web Services, and
monitor the execution trace of the process. The other three modules around the BPEL engine
are key components in WS-Workflow system, and embody the features offered by WS-
Workflow. The functions of these modules are:

• Data-driven service module. This module receives the service composition

requirement from user requirement module in the user layer, checks the
requirement/service domain data, and provides a composition of the operations from
services in the given service portfolio. The service composition method is based on a
Colored Petri nets formalism and Petri net decomposition method. The derived
service composition can be transformed into a BPEL process and feed into the BPEL
engine for execution.

• Mediation-aided composition module. This module receives two BPEL services and
the interface mappings between them from the BPEL process module in the user
layer. In this module BPEL processes are transformed to Colored Petri nets. A
rigorous method is used on these colored Petri nets to check their compatibility. If
the two nets are compatible, mediation code is generated to glue these two BPEL
processes; if not, detailed reasons are given back to the users.

• Model fragmentation module. This module partitions a BPEL process into multiple
parts each of which can be orchestrated by one engine.

The user layer provides user interfaces to access the functions provided by WS-Workflow:

user requirement module allows users to model new service composition requirements
represented by abstract activities in the form of I O in which I and O are input and output
data types of desired service composition; workflow modeling module allows users to set up
an integrated workflow model (in BPEL or Petri net format) to be later partitioned and
executed in a decentralized manner; BPEL process module allows users to input two BPEL
processes to be later analyzed and glued by a mediator.

The layered and modularized design of WS-Workflow has two advantages: first, the
individual modules are relatively independent and can easily integrate with other systems or
solutions; second, the interfaces of these modules are well-defined so that additional building
blocks can be added into the system without any difficulty.

Wei Tan, Yushun Fan, Ian Foster et al. 212

Key Technologies in WS-Workflow

Data Driven Service Composition
Reuse of existing services is a key issue in SOC. When new requirements emerge,

solution designers should devise a composite process that makes the best use of available
services. There are a number of good studies on automatic Web Service composition, but
there are not many tackle the problem from the perspective of data. As mentioned in Section
1, data flow is considered to be the first-class citizen in the workflow in CI. Therefore we
believe it is worthy of investigating a data-driven service composition method that can be
used in both business and grid workflow.

There are two domains involved in service composition scenario, i.e., requirement and
service domains. In requirement domain a requirement is represented by a process that
consists of abstract activities with input/output data. In service domain, a service is modeled
by a set of operations with input/output data defined in WSDL.

To devise a data-driven composition approach, first the data relations and composition
rules are to be explored. The taxonomy we use to define data relations is rather similar to the
Unified Modeling Language (UML). The semantics of aggregation, generalization and
realization relation is identical to those in UML. (Later on in this chapter, the data types in
requirement domain are denoted with uppercase strings, and the data types in service domain
are denoted with lowercase strings. One’s name in lower case and the other in upper case has
realization relation between them.)

Other relations are:

• Generation describes the relations between input and output data types of an abstract

activity or a service operation.
• Partial realization describes the situation that a service data realizes one part of a

requirement data.
• Specialized realization describes the situation that a service data realizes one special

kind of a requirement data.

Given the defined data relations, three data-driven composition rules, i.e., sequential,

parallel, and choice composition rules, are given in figure 5 (a), (b) and (c), respectively.
These rules are represented with colored Petri nets. Here we explain these three rules.

Sequential Composition Rule

For a requirement A→C, if there are two operations in service portfolio, i.e., a→ b and
b→ c, we can refine the requirement into a composite service realized by existing services,
i.e., a→b→c.

Parallel Composition Rule

If a=a1×a2 (a is composed of a1 and a2), b=b1×b2, and we have two
operations 1 1 2 2{ , }a b a b→ → . Then requirement A→B can be realized by the AND collection
of 1 1 2 2{ , }a b a b→ → , with two additional mediation transitions (which are represented with
black rectangles in figure 5). With mediation transitions, a is decomposed into a1 and a2, and
b is decomposed into b1, b2.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 213

Choice Composition Rule
In the requirement domain, we have a requirement A→B; in the service domain, we have

two operations 1 2{ , }a b a b→ → ; a=a1∪a2 (a can be specialized into two categories, i.e., a1 and
a2), a1∩a2=∅. Then requirement A→B can be realized by the XOR (exclusive OR) collection
of 1 2{ , }a b a b→ → , with two additional mediation transitions (which are also represented with
black rectangles in figure 5). With mediation transitions, data type a is specified to either a1
or a2.

Based on the data relations and composition rules we propose a formal method to derive
all the possible composition candidates given a service portfolio. First we get a connected
service net from the service portfolio; then we reduce the service net with respect to the given
requirement (i.e. the input/output data types); afterwards we decompose the reduced service
net into subnets each of which represents a composition candidate. More details regarding the
service composition algorithm can be found in [55].

Figure 5. Data relation and data driven composition rules.

Wei Tan, Yushun Fan, Ian Foster et al. 214

Compatibility Analysis and Mediation-Aided BPEL Service Composition
In Section 2.3 we have claimed that, when two BPEL services provide complementary

functionality and can collaborate in principle, but their interfaces and internal logic do not fit
each other exactly, they cannot be directly composed. The mediation-aided composition
module in WS-Workflow embedded an approach to analyze inter-BPEL compatibility and
automatically generate mediation to compose services. The steps of the proposed approach
are as follows (see figure 6):

1. Take two BPEL processes as the input, and check whether these two processes are

directly composable. If yes, existing methods can be used to compose them. If no,
continue with step 2.

2. Translate two BPEL processes into Service Workflow net (SWF-net) which is a kind
of colored Petri nets, acting as a unified formalism to describe services, composition
and mediator.

3. Read the data mapping information that will be used in later steps.
4. Check mediation existence. We formally define the compatibility between services,

two services are compatible iff 1) Once the interaction begins, it will complete
successfully; 2) When interaction completes, both services must reach their ending
state, and possibly there are remaining messages sent out by one service but are not
consumed by the other.

We introduce the concept of Communicating Reachability Graph (CRG) whose function

is to concurrently construct the reachability graph of two services, using data mapping as the
communication mechanism. In this step, CRG is generated and based on it the existence of
mediation, i.e., the compatibility, can be determined.

5. If mediation exists, generate mediation code to glue two services.
6. If no mediation exists, provide the reasons (for example, message missing or

message sequence collision) to the user.

Figure 6. Compatibility analysis and mediation-aided BPEL service composition.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 215

Figure 7 gives a sample CRG (left) and the corresponding SWF-nets as well as the
mediation model (right). The CRG is a basically a state-space model. The two SWF-nets are
in two rectangles respectively and the mediator in between glue them together. Mediator code
is also generated to actually compose two BPEL services.

Figure 7. Communicating Reachability Graph and mediation generation.

The advantages of our approach are:

• We take the de facto standard, i.e., BPEL, as input, and adopt service workflow nets

as a model to formally represent service, composition and mediator.
• We formally define the compatibility between services, and this definition is more

reasonable in stating the correctness of a service composition, compared with the
related definitions in business process integration field.

• We propose a reachability based method to check the existence of mediators. The
concept of Communicating Reachability Graph (CRG) is introduced to concurrently
construct a reduced reachability graph of two services. We prove that the CRG
contains all needed properties in mediator existence checking. Moreover, the state-
space exploration is efficiently performed by using mediation transitions as stubborn
sets.

• We define an algorithm to generate a mediator to glue two services, based on data
mapping and derived CRG.

More details regarding the background, algorithms and application of this approach can

be found in our paper [56].

Wei Tan, Yushun Fan, Ian Foster et al. 216

Decentralized Execution
In the model fragmentation module in WS-Workflow, two kinds of fragmentation method,

i.e., static and dynamic fragmentation, are embedded to support decentralized execution of
workflows. Static fragmentation means that the integrated workflow model is partitioned
before process instantiation, while the dynamic one means that the centralized model is
partitioned step by step during process execution. The static fragmentation method is used
when the execution engine (site) of each task can be determined when a workflow instance
starts; while the dynamic one is used in a more flexible way, when the execution site can to
be determined at run-time.

Figure 8. Static model fragmentation for decentralized execution.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 217

Figure 8 is an example of static model fragmentation. Figure 8 (a) is an integrated BPEL
process that is to be partitioned. This itinerary booking workflow first receives the user’s
request and then checks the user’s identity. Afterwards the workflow splits into two parallel
flows: rent a car and book flight, after the two flows both complete they are merged and
itinerary confirmation is sent back to the user. There are three parties involved in this
workflow, i.e., the travel agency, the car rental company and the airline agency. Each party
has its own workflow engine. Figure 8 (b) shows the four fragments after model
fragmentation. The fragments’ codes come from the integrated BPEL, with additional receive
and invoke activities as communication blocks between fragments. Fragment F1, F2, F3 and
F4 are to be executed at the site of travel agency, car rental company, airline agency and
travel agency, respectively.

We also devised a dynamic fragmentation method to partition an integrated workflow
model into fragments step by step while the workflow is in execution [57]. The fragments
created can migrate to proper engines, where tasks are performed and new fragments are
created and forwarded to other engines to be executed in succession. The advantages of this
approach include the enhanced scalability by outsourcing the required functionalities, the
increased flexibility by designating execution sites on-the-fly, the avoidance of redundant
information transfer by judging their pre-conditions before forwarding fragments, etc.
Currently the dynamic model fragmentation and execution is based on colored Petri nets
model, we are now working to make it work with BPEL model.

The WS-Workflow system has been used in several projects to facilitate flexible
workflow composition and decentralized execution in an SOC paradigm.

CONCLUSION

With the emergence of the SOC paradigm, Web services are gaining momentum as key

elements not only in the World Wide Web, but also in the cyberinfrastructure and the Grid.
Building workflows using service composition has become an important method to build
composite applications and reuse existing resources. Therefore, workflow-based service
composition and orchestration is now a hot topic in both academia and industry.

This chapter consisted of two parts. The first part summarized research activities in the
field of workflow in SOC. Five major research topics, i.e., languages and tools for service
orchestration, automatic service composition, mediation-aided service composition,
verification of service workflow, and decentralized execution of workflow were discussed.
We emphasize that although some of the studies are originally targeted at the area of business
process management, they can be adopted by the CI community with some modification or
enhancement. The second part introduced a service-oriented workflow execution system,
called WS-Workflow. The key modules in this system, including the data-driven composition
module, the mediation-aided composition module, and the model fragmentation module were
explained. This system has been used in many projects to facilitate flexible workflow
composition and decentralized execution.

There are still many challenging issues to tackle when bringing workflow and service
composition technology to CI. Currently there is not a well-accepted workflow specification
to address grid-specific features such as large data transport, authorization and authentication,

Wei Tan, Yushun Fan, Ian Foster et al. 218

and stateful resource access. The various home-grown meta-models hamper workflow
interoperability. The run-time issue is even more challenging. Techniques supporting large
data transport, fault handling and recovery, real-time resource discovery and composition, are
in urgent need to enable cyberinfrastructure-wide collaboration.

REFERENCES

[317] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G.
Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright, "Revolutionizing Science
and Engineering Through Cyberinfrastructure," National Science Foundation Blue-
Ribbon Advisory Panel on Cyberinfrastructure, January, 2003.

[318] I. Foster and C. Kesselman, "Globus: a Metacomputing Infrastructure Toolkit,"
International Journal of High Performance Computing Applications, vol. 11, pp. 115-
128, 1997.

[319] WfMC,"The Workflow Reference Model", http://www.wfmc.org/standards/docs/
tc003v11.pdf, 2005.

[320] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J.
Tao, and Y. Zhao, "Scientific Workflow Management and the Kepler System,"
Concurrency and Computation: Practice and Experience, 2005.

[321] OASIS,"Web Services Business Process Execution Language Version 2.0",
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html, 2007.

[322] W3C,"Web Service Choreography Interface (WSCI) 1.0", http://www.w3.org/TR/wsci/,
2002.

[323] W3C,"Web Services Choreography Description Language Version 1.0",
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/, 2004.

[324] W3C,"OWL-S: Semantic Markup for Web Services",
http://www.w3.org/Submission/OWL-S/, 2004.

[325] F. Leymann, "Choreography for the Grid: towards fitting BPEL to the resource
framework," Concurrency and Computation-Practice and Experience, vol. 18, pp.
1201-1217, Aug 2006.

[326] A. Slominski, "Adapting BPEL to Scientific Workflows," in Workflows for E-science:
Scientific Workflows for Grids, I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields,
Eds.: Springer Press, 2007, pp. 212-230.

[327] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and J. Patel,
"Sedna: A BPEL-Based Environment for Visual Scientific Workflow Modeling," in
Workflows for E-science: Scientific Workflows for Grids, I. J. Taylor, E. Deelman, D.
B. Gannon, and M. Shields, Eds.: Springer Press, 2007, pp. 428-449.

[328] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W. Sanchez, M. Kher, A.
Manisundaram, K. Shanbhag, and P. Covitz, "caGrid: design and implementation of the
core architecture of the cancer biomedical informatics grid," Bioinformatics, vol. 22,
pp. 1910-1916, 2006.

[329] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, "Workflow Management in
Condor," in Workflows for e-Science: Scientific Workflows for Grids, I. J. Taylor, E.
Deelman, D. B. Gannon, and M. Shields, Eds.: Springer Press, 2007.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 219

[330] T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M. Greenwood, D. Hull, R. Stevens,
D. Turi, and J. Zhao, "Taverna/myGrid: aligning a workflow system with the life
sciences community," in Workflows for E-science: Scientific Workflows for Grids, I. J.
Taylor, E. Deelman, D. B. Gannon, and M. Shields, Eds. Guildford: Springer, 2007, pp.
300–319.

[331] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, "Chimera: a virtual data system for
representing, querying, and automating data derivation," Proc. 14th International
Conference on Scientific and Statistical Database Management, Edinburgh, Scotland,
2002, pp. 37-46.

[332] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, and
M. Livny, "Pegasus: Mapping Scientific Workflows onto the Grid," Proc. 2nd
European Across-Grids Conference, Nicosia, Cyprus, 2004.

[333] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, T. Stef-Praun,
and M. Wilde, "Swift: Fast, Reliable, Loosely Coupled Parallel Computation," in 2007
IEEE Congress on Services, 2007, pp. 199-206.

[334] I. Taylor, M. Shields, I. Wang, and A. Harrison, "The Triana Workflow Environment:
Architecture and Applications," in Workflows for E-science: Scientific Workflows for
Grids, I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Eds. Guildford:
Springer, 2007, pp. 320–339.

[335] W. Bausch, C. Pautasso, R. Schaeppi, and G. A. A. G. Alonso, "BioOpera: cluster-
aware computing," Proc. 2002 IEEE International Conference on Cluster Computing,
Chicago, IL, USA, 2002, pp. 99-106.

[336] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H. L.
Truong, A. Villazon, and M. Wieczorek, "ASKALON: A Grid Application
Development and Computing Environment," Proc. The 6th IEEE/ACM International
Workshop on Grid Computing, Seattle, Washington, USA, 2005, pp. 122-131.

[337] J. Cardoso and A. Sheth, "Semantic e-workflow composition," Journal of Intelligent
Information Systems, vol. 21, pp. 191-225, Nov 2003.

[338] D. McDermott, "Estimated-Regression Planning for Interactions with Web Services,"
Proc. AI Planning Systems Conference (AIPS'02), 2002.

[339] S. McIlraith and T. Son, "Adapting Golog for Composition of Semantic Web Services,"
Proc. Eights International Conference on Principles and Knowledge Representation
and Reasoning (KR-02), Toulouse, France, 2002, pp. 482-493.

[340] S. Narayanan and S. A. McIlraith, "Simulation, verification and automated composition
of web services," Proc. Eleventh International World Wide Web Conference
(WWW2002), Honolulu, Hawaii, USA, 2002, pp. 77-88.

[341] S. R. Ponnekanti and A. Fox, "SWORD: A Developer Toolkit for Web Service
Composition," Proc. Proc. of the Eleventh International World Wide Web Conference,
Honolulu, HI, 2002.

[342] E. Sirin, J. Hendler, and B. Parsia, "Semi-automatic composition of web services using
semantic descriptions," Web Services: Modeling, Architecture and Infrastructure
workshop in conjunction with ICEIS2003, 2002.

[343] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, "HTN Planning for Web Service
Composition Using SHOP2," Journal of Web Semantics, vol. 1, pp. 377-396, 2004.

Wei Tan, Yushun Fan, Ian Foster et al. 220

[344] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella, "Automatic
composition of e-services that export their behavior," Proc. 1st Int. Conf. on Service
Oriented Computing (ICSOC), 2003, pp. 43-58.

[345] Z. Dang, O. H. Ibarra, and J. W. Su, "On composition and lookahead delegation of e-
services modeled by automata," Theoretical Computer Science, vol. 341, pp. 344-363,
Sep 2005.

[346] E. Gerede, R. Hull, O. H. Ibarra, and J. Su, "Automated composition of e-services:
lookaheads," Proc. 2nd International Conference on Service Oriented Computing, New
York City, NY, USA, 2004, pp. 252-262.

[347] D. Ardagna and B. Pernici, "Dynamic web service composition with QoS constraints,"
International Journal of Business Process Integration and Management, vol. 1, pp. 233
- 243, 2006.

[348] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, "An approach for QoS-aware
service composition based on genetic algorithms," Proc. Conference on Genetic and
evolutionary computation Washington DC, USA, 2005, pp. 1069 - 1075

[349] J. Rao and X. Su, "A Survey of Automated Web Service Composition Methods," Proc.
Semantic Web Services and Web Process Composition, San Diego, California, USA,
2004, pp. 43-54.

[350] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella, "Automatic
composition of e-services that export their behavior," Proc. 1st Int. Conf. on Service
Oriented Computing (ICSOC), Trento, Italy, 2003, pp. 43-58.

[351] F. Casati and M. C. Shan, "Dynamic and adaptive composition of e-services,"
Information Systems, vol. 26, pp. 143-163, 2001.

[352] D. Fensel and C. Bussler, "The Web Service Modeling Framework WSMF," Proc.
Electronic Commerce Research and Applications, 2002, pp. 113–137.

[353] WfMC,"Process Definition Interface-- XML Process Definition Language",
http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf, 2005.

[354] H. M. W. Verbeek and W. M. P. v. d. Aalst, "Analyzing BPEL Processes using Petri
Nets," Proc. Second International Workshop on Applications of Petri Nets to
Coordination, Workflow and Business Process Management, Miami, Florida, USA,
2005, pp. 59-78.

[355] A. Martens, "Analyzing Web Service Based Business Processes," Proc. 8th
International Conference on Fundamental Approaches to Software Engineering (FASE
2005), Edinburgh, UK, 2005, pp. 19-33.

[356] S. Hinz, K. Schmidt, and C. Stahl, "Transforming BPEL to Petri nets," Proc. 3rd
International Conference on Business Process Management, Nancy, France, 2005, pp.
220-235.

[357] T. Bultan, J. Su, and X. Fu, "Analyzing conversations of Web services," IEEE Internet
Computing, vol. 10, pp. 18-25, 2006.

[358] X. Fu, T. Bultan, and J. W. Su, "Synchronizability of conversations among Web
services," IEEE Transactions on Software Engineering, vol. 31, pp. 1042-1055, Dec
2005.

[359] J. C. M. Baeten and W. P. Weijland, Process algebra: Cambridge University Press New
York, NY, USA, 1991.

Workflow in a Service Oriented Cyberinfrastructure/Grid Environment 221

[360] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based verification of Web
service compositions," Proc. 18th IEEE International Conference on Automated
Software Engineering, 2003, pp. 152-161.

[361] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Compatibility verification for Web
service choreography," Proc. IEEE International Conference on Web Services 2004,
2004, pp. 738-741.

[362] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-Based Analysis of Obligations
in Web Service Choreography," Proc. Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications
and Services (AICT/ICIW 2006), Guadeloupe, French 2006, p. 149.

[363] R. R. Milner, Communicating and Mobile Systems: The Pi Calculus: Cambridge
University Press, 1999.

[364] R. Lucchi and M. Mazzara, "A pi-calculus based semantics for WS-BPEL," Journal of
Logic and Algebraic Programming, vol. 70, pp. 96-118, 2007.

[365] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, "Orchestrating composite Web
services under data flow constraints," Proc. 2005 IEEE International Conference
onWeb Services 2005, pp. 211-218 vol.1.

[366] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, "Decentralized orchestration of
composite web services," Proc. 13th international World Wide Web conference, New
York, NY, USA 2004, pp. 134-143.

[367] M. G. Nanda, S. Chandra, and V. Sarkar, "Decentralizing execution of composite web
services," Proc. 19th Annual ACM SIGPLAN conference on Object-oriented
Programming, Systems, Languages, and Applications, Vancouver, BC, Canada 2004,
pp. 170-187.

[368] M. G. Nanda and N. Karnik, "Synchronization analysis for decentralizing composite
Web services," Proc. 2003 ACM Symposium on Applied Computing, Melbourne,
Florida 2003, pp. 407-414.

[369] W. Binder, I. Constantinescu, B. Faltings, and N. Heterd, "Optimized, decentralized
workflow execution in grid environments," Multiagent and Grid Systems, vol. 3, 2007.

[370] W. Tan, "Research on the Composition and Fragmentation of Service-oriented
Workflow Model," Department of Automation, Tsinghua University, Beijing, PhD
Thesis 2007.

[371] W. Tan, Z. Tian, F. Rao, L. Wang, and R. Fang, "Process Guided Service Composition
in Building SoA Solutions: A Data Driven Approach," Proc. IEEE International
Conference on Web Services (ICWS'06), 2006, pp. 558-568.

[372] W. Tan, Y. Fan, and M. Zhou, "A Petri Net-based Method for Compatibility Analysis
and Composition of Web Services in Business Process Execution Language," IEEE
Transactions on Automation Science and Engineering, 2007 (Accepted).

[373] W. Tan and Y. Fan, "Dynamic workflow model fragmentation for distributed
execution," Computers in Industry, vol. 58, pp. 381-391, 2007.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 11

FEDERAL MANAGEMENT OF VIRTUAL
ORGANIZATIONS WITH TRUST EVALUATION

Zhen Wang1 and Junwei Cao2
Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology
Tsinghua University, Beijing 100084, P. R. China

ABSTRACT

Dynamical and flexible resource aggregation tools are required in 21st century
research. Scientists need to aggregate various digital equipments and cooperate with each
other in different organizations through Virtual Organizations (VO) on the Internet in a
flexible and dynamical way. In this cooperation and resource sharing process, trust
evaluation is of great importance for flexible VO management. Traditional tools such as
VOMS for grids are short in dynamism and trust evaluation. In this chapter, we propose a
new scheme providing federal VO membership management based on trust evaluation,
with which researchers can achieve appropriate trust relationships with each other and
establish a particular VO dynamically to aggregate resources for their own purposes.

INTRODUCTION

Background

Modern science research has great requirement for experimental instruments,

computational and storage capability, and cooperation across organizations and discinplines
[374]. However, grid technology, which is considered as a traditional solution enabling
resource integration and sharing within a virtual organization (VO), can not meet current
requirements for multiple VO management. Scientists and researchers require a more general

1 E-mail address: zhen-wang07@mails.tsinghua.edu.cn
2 E-mail address: jcao@tsinghua.edu.cn

Zhen Wang and Junwei Cao 224

and flexible digital platform for data analysis, information integration, instruments sharing
and so on.

In 2003, CI [374], short for Cyberinfrastructure, was proposed as a new infrastructure in
Cyberspace in future by National Science Foundation in USA. In the year of 2006, Office of
Cyberinfrastructure [375] was founded for CI implementation and a detailed plan [376] was
established. Compared with grid or other similar technologies, CI is a more general and
flexible platform, with which everyone can contribute their resources or obtain sufficient
distributed resources to meet their own requiurments. In a CI environment, resource providers
contribute their resources (Cyberresources) and users benefit from these resources via a
Cyberenvironment. A member of CI may be a RP and a User at same time, depending on his
requirement. CI knocks down the barriers between different grids VOs and makes it possible
to share resources and cooperate across them.

The implementation of CI will be a large distributed system and brings a lot of challeages.
The problem we are trying to address in this chapter is how to provide a mechanism to
support trustable cooperation and resource sharing dynamically and flexibly, as we called
Trustable Federal VO Management (TFVOM). TFVOM help Users or RPs to realize
effective and trustable resource sharing and access control. There are already some traditional
mechanisms which achieve similar functions: Mandatory Access Control (MAC) [377][378],
Role-Based Access Control (RBAC) [379][380], Discretionary Access Control (DAC) [381],
Virtual Organization Membership Service (VOMS) [382][383][384], Grid User Management
System (GUMS) [385], PRIvilege Management and Authorization (PRIMA) [386], Privilege
and Role Management Infrastructure Standards Validation (PERMIS) [387] and so on. DAC
is implemented by maintaining an account list. In CI environment, the number of CI members
is huge and they also change dynamically. On another hand, Users or RPs require flexible
resource privilege management, which cannot be implemented using DAC. RBAC and MAC
cannot be adopted either because of the different jurisdiction distribution. These two
mechanisms are more suitable for centralized organizations with fixed architecture, where
there is an account with the highest privilege to all the resources. However, in the CI
environment, all the resources are owned by RPs who have the highest privilege over their
own resources. This means CI environment is an incompact system and the privilege locates
on terminals. Other mechanisms, including VOMS, GUMS, PRIMA and PERMIS, are all
used in grids without any trust management mechanism since Users have already built trust
relationships to some extent before a grid is enalbed. How to make cross-domain users and
resource providers achieve appropriate trust relationships is the main purpose of TFVOM.

In this chapter, we will introduce TFVOM mechanism in details with corresponding
implementation. How to deploy the TFVOM mechanism in the CI environment is also
described.

Challenges

Compared with other resource aggregation environments, such as grids, a CI environment

is more dynamic, complicated, and open. This is why CI is regarded as the future advanced
infrastructure for 21st scientific discovery, but this also imposes significant challenges.

The openness of CI leads to the complexity and wideness of origins of Users and RPs in a
CI environment, which is quite different from that of the grid. Before a grid is established,

Federal Management of Virtual Organizations with Trust Evaluation 225

Users or RPs have already achieved an agreement about the purpose of the grid and how to
contribute and share the resources. This agreement or protocol is established by non-
technological manner. A grid usually has more fixed organization architecture and members
of corresponding VO are within a specific domain. A grid is used to enable resource sharing
between RPs and Users that already form a VO beforehand. Members of a grid believe that
all other members are trustable and resources are shared following the existing agreement.
Members of a CI environment do not have any agreement with each other on sharing their
resources before they join in the CI. The CI provides an environment to enable members to
build such agreement and thus fosters VOs and grids. In this process, RPs want to make sure
that they have full control on their resources, and meanwhile Users also have requirements to
ensure quality of services (QoS) when using these resources. TFVOM is designed to provide
RPs and Users with a negotiation mechanism to achieve agreement on resource sharing with
trust evaluation supports. This process should be implemented using advanced computing
technologies that can adapte to various situations.

Compared with centralized organizations, the privilege of resources in a CI environment
is distributed to each RPs, as mentioned before. No matter what has happened, RPs, resource
owners, always have full control of their resources. Each RP has specific and various policies
on how to share his resource, which makes traditional aggregation and access control
mechanisms not feasible in the CI environment, since most of them are suitable for
centralized organizations. To implement a CI environment, a new mechanism should be
proposed that can ensure that RPs has the highest privilege on their resources.

Another challenge sources from the variety of resources. Any resource that can be
connected through Cyberspace can join in the CI resource pool. Cyberresources include
hardware facilities, e.g. a computer, a sensor or an astronomical observatory, driven by
different middlewares running on different operating systems. In general, a VO is founded
usually for some specific research purpose, used for a certain discipline and enabled using
grid technologies, e.g. Network for Earthquake Engineering Simulation (NEES) [389],
National Ecological Observatory Network (NEON) [391], The Geosciences Network
(GEON)[392], National Center for Atmospheric Research (NCAR) [393], US National
Virtual Observatory (NVO) [394] and TeraGrid [15]. CI provides an environment to operate
on multiple VOs or grids, e.g., Open Science Grid (OSG) [390], where cross-VO resource
sharing becomes available.

In the CI environment, researchers and scientists can easily form a VO, aggregate
sufficient and appropriate resources, and collaborate together to work for a specific project.
After the project is finished, these resources are released again and can be used for other VOs.
Existing VOs should also be able to share resources with each other. From this point of view,
a CI could be a platform with many grids. The access control mechanism must be robust
enough to handle various situations. Moreover, this mechanism should not be centralized. The
primary challenges faced by the new access control mechanism can be summarized as follows:

• Trust evaluation mechanism: With the help of certificates, members can know

identity of each other. However, members still can not trust each other based on pure
authentication. We must provide a trust evaluate mechanism to help them establish
appropriate trust relationships.

• Dynamic and flexible VO membership management: requirements of Users and RPs
are various and dynamically changing over time, so we must provide appropriate

Zhen Wang and Junwei Cao 226

tools help them change VO membership easily and dynamically when their purpose
and requirements change.

• Communication with other middlewares seamlessly. The new access control
implementation must be deployed in different environment and communicate with
other CI components seamlessly.

• Reliability: as this mechanism is one of essential tools in a CI environment, we must
ensure high reliability since it will influence all Users and RPs of a CI.

To address to these challenges, we propose TFVOM as the solution for the access control

mechanism in CI. The details will be introduced in the following. In Section 2, we will
introduce some related and similar technologies used in grids or other applications currently.
In Section 3, TFVOM mechanism is introduced in details. We will demonstrate the
implementation architecture and several typcial applications in Section 4. Then we will
evaluate this mechanism, make conclusion and indicate future work in Section 5.

RELATED WORK

In this section, we will introduce several mechanisms widely being used in the current

systems. These implementations are developed for some specific purposes. For example,
VOMS is developed by European DataGrid (EDG) [22] and Data TransAtlantic Grid
(DataTAG) [23] to knock down the barrier between the two grids originally, and be accepted
and used by other grids. Privilege and Role Management Infrastructure Standards Validation
(PERMIS), supporting authentication of the personal idnode and determination of the role,
status, entitlements, or other socio-economic attributes, is developed by ISIS, Institute for
Science and International Security. These different schemes all support access control but
focus on different aspects. In this section, we will introduce these schemes to show current
technology landscape.

VOMS

VOMS, short for the Virtual Organization Membership Service, is one of the most

famous and widely used implementation about authorization and authentication of access
privilege over resources to the members in grids. The project is supported and developed by
European DataGrid (EDG) and Data TransAtlantic Grid (DataTAG) and used by many other
grids [24] such as Laser Interferometer Gravitational-wave Observatory (LIGO) [25],
Structural Biology Grid (SBGrid) [26], Open Science Grid (OSG), Georgetown University
Grid (GUGrid) [27] and so on.

VOMS is developed for the purpose of authorization and authentication on the
organization level. VOMS maintains a database to manage and store the information of user
roles and capabilities and provides user a set of tools for accessing and manipulating the
database. Then VOMS can generate Grid credentials for users through the database contents
when needed. The VO is established by the administrator, who is in charge of managing the
VO, e.g. adding new member, creating new group, changing roles. Every member in VO is

Federal Management of Virtual Organizations with Trust Evaluation 227

assigned with specific role, with which the member has the privilege corresponding to the
role assigned in VO. The role assignment is described in the certificate in local sites and
stored and managed by the administrator. Access control over the resource is achieved by the
role definition and assignment. In the VO, there are two important facts: administrator and
user. Administrator is the one who has the responsibility to manage and maintain the VO and
is in charge of role assignment and maintaining the membership information, while the User
is a part of the VO and can request information onVO memberships when needed.

VOMS consists of four modules, User Server, User Client, Administration Server,
Administration Client, which have different functions, respectively:

• User Client: contact to the Server with certificate and obtain the information of

membership in the VO after confirmation, e.g., member lists, role assignments, sub-
groups, and capability of a User.

• User Server: receive the request from the User Client, and return the results for user
requests.

• Administrator Client: this client is used by the administrator who is in charge of
management tasks, e.g., adding new user, creating sub group, role assignment.

• Administrator Server: this server is mainly a data server, which is used to maintain
the database and response to the request for the membership information from the
client.

VOMS adopts the GSI security control mechanism provided by Globus Toolkit package.

User can use the command “voms-proxy-init” to get the certificate generated in the VOMS
server. This certificate adopts RFC 3281[29] format and signed by the VOMS server. In order
to make sure user can be a member of several VO and may have communication with other
non-VOMS GateKeepers, this certificate is extendable and can be an aggregation of several
certificates. The VOMS combines two different mechanisms: RBAC and VO. The policy on
how the User uses the resources is defined by two aspects: which VO the User belongs to and
which role he plays.

GUMS

The Grid User Management System (GUMS) is a system running in the local site in the

grid. The major function of GUMS is to manage the mapping process from User’s grid
certificate or credential to the local site-specific certificate or credential. In the grid, User
shares the distributed resources through mapping User grid account to the RP local account,
which is similar with remote access to the resources using the account RP assigned to the
User. One RP may belong to many VOs or grids, so it is a big challenge how to map the grid
certificate to the local account according to the access policy. The accounts provided for the
remote access may be different according to different Users jobs. For example, a RP who
owns a computer joins in two different VOs. He may provide two different kinds of accounts
with different privileges locally for the two VOs. The accounts may even be different because
of the job recieved.

GUMS can be configured to map the grid certificate to a local account in two manners: 1)
generate statistic map-files according to the Users 2) or map the grid certificate to the local

Zhen Wang and Junwei Cao 228

account dynamically according to the job submitted. For example, a user wants to submit
some jobs to a certain resource. When the job arrives at the resource with the grid certificate
and be passed to the job manager, the gatekeeper must obtain a local account for this job. The
gatekeeper will either consults with the map-file generated by the GUMS or pass a request to
the local GUMS for a local site, depending on the GUMS configuration. If the GUMS is
configured to map the grid certificate dynamically according to the job, the gatekeeper will
act as later case, or just consult with the map-file.

The function of the GUMS can be summarized as follows [385]:

• Retrieve membership information from a VO server such as LDAP or VOMS.
• Maintain a manual group of people, and stored in the GUMS database (this is useful

to handle special cases).
• Map groups of users to the same account (a group account).
• Map groups of users to an account pool, in which one account will be forever

assigned to each user.
• Map groups of users according to the information present in NIS or LDAP.
• Map groups of users according to a manual mapping, stored in the GUMS database.

However, GUMS do not perform authentication but provide information to the

gatekeeper. In this view of point, GUMS is just a Policy Decision Point (PDP) not a Policy
Enforcement Point (PEP). It must cooperate with other middlewares.

PRIMA

PRIMA, short for PRIvilege Management and Authorization, is a system combining the

resource access request with the appropriate privilege. In PRIMA model, a privilege is
independent and self-contained, taking files access privilege for example. The privilege of
access files are configured by the administrator and stored in the database. In order to ensure
the seamless communication, PRIMA describe this privilege in XML-based language.

DAC, MAC and RBAC

DAC (Discretional Access Control), proposed in the 1970s, is based on the access control

matrix. In this mechanism, any member in the system can empower other member’s the
privilege that is the subset of the privilege he has. And this information is stored and managed
by the access control matrix. In the access control matrix, in which the line factors represent
the User, the row factors represent the RP, and the elements represent the access privilege. If
a User wants to use a certain resource, the DAC monitor will check the element on the
intersection of the User and RP who own the resource. If this kind of access is allowed
according to the element record, the access to the resource can be established, or be forbidden.
However, the advantage of discretion of DAC also brings a big problem the DAC can not
deal with: security. In DAC, the information and privilege always flows and be empowered
from on member to another member. A User U1 forbidden to the resource R1 may get the
privilege over it because another User who has the privilege over the R1 empowers U1 the

Federal Management of Virtual Organizations with Trust Evaluation 229

privilege accessing to the R1. Another problem is that this scheme is too complicated to
maintain for the members, Users and RPs, and system managers.

MAC, short for the Mandatory Access Control, determines the privilege of access by the
security level between Users and RPs. All the members, Users and RPs, are assigned with
security tags recording the security level by the system security administrator and these tags
can not be changed by other members. User can only access to the resources whose security
level is not higher than him. Multiple privilege management can be achieved based on the
security tags. This mechanism is suitable for the centralized organizations and cannot be
adopted a CI environment.

Role-based Access Control (RBAC), proposed by National Institute of Standards and
Technology (NIST) in the 90’s, is another access control mechanism that is widely used.
RBAC binds the privilege with roles defined by the administrator. User can get the privilege
only through the roles assigned to him. Administrator in charge of assigning the roles to the
right Users according to the functions they have in the organizations. A role may be assigned
to several Users, and meanwhile a User may have different roles in different departments.
RBAC cut the direct relationships between privileges with specific Users, which makes the
access control system more secure and easy to maintain. This scheme is only suitable for
centralized organization for it has an administrator with the highest privilege over all the
resources to assign the roles.

PERMIS

PERMIS [402], founded by ISIS, is designed to address the issues of an authorization of

the personal idnode and determination of socio-economic attributes. Based on the RBAC
mechanism, this scheme provides an authorization system that complements an existing
authentication system. PERMIS is a privilege management with two major functions: provide
policy editor for the owners to construct policies and assign appropriate privilege to the
remote users. There are two kinds of policies: authorization policies define how to empower a
remote user an appropriate privilege on local sites; delegation policies determine how to
delegate to a trustable member the power to assign roles to other users in the same group. All
these policies are in XML format. PERMIS also provides the Attribute Certificate Manager
(ACM) and the Bulk Loader for managers to allocate privilege to users. The generated
privilege information is stored in X.509 Attribute Certificate format [30]. With this policies
and privilege information, PERMIS can provide following services:

• When users request access to your resources, PERMIS makes the access control

decisions for you based on your access control policies and the roles of the users.
• Edit policies according to the requirement by the owner.
• It allows you to delegate to trusted individuals the ability to assign roles to users on

your behalf.

PERMIS is kept in the local site which RP controls. So if being deployed in a dynamical
environment, it is hard for PERMIS to maintain consistency among various repositories.
Besides, PERMIS is more likely a policy engine without negotiation mechanism.

Zhen Wang and Junwei Cao 230

FEDERAL VO MANAGEMENT

In a CI environment, everyone, including scientists, researchers, institutions and common

PC users, are potential RPs. They can contribute their digital equipments, computers, sensors,
instruments and other resources, to others and benefit from sharing resources through the CI
platform. All Cyberresources are various from access policies defined by the RPs. On the
other hand, Users have different requests for resource sharing. TFVOM is designed to achieve
trustable cooperation and resource sharing based on the agreement accepted by both RPs and
Users. TFVOM helps Users to achieve agreements and trust relationships with RPs and then
aggregates sufficient resources by establishing a suitable VO. In a VO, there can be three
different kinds of members: Users, RPs and sub-VOs and two types of policies: resource
policy and VO policy. Sub-VO is both a User and a RP in a VO. Resource policy, formulated
by the RP, is the description on how much privilege the User can have to use the resource.
VO policy, formulated by the VO administrator, describes what resources can join in and
what privilege the User should have over the resources in the VO. VO policy is used to
balance User requirements with RP interests. In this section, we will introduce the details of
the TFVOM.

VO Architecture

In a CI environment, VO is established for the purpose of cross-domain resource sharing

and member collaboration. A VO consists of two different types of members: RPs and Users.
A member can be both a RP and a User in one VO. A sub-VO can be considered as a RP and
a User simultaneously.

All Users, RPs and VOs are regarded as Nodes in a CI environment. If node A directly
belongs to node B, we call node B is a Father Node of A and node A is a Child Node of B. If
node A belongs to node B indirectly, we call node B is an Ancestor Node of A. If nodes A
and B belong to the same Node directly, we call they are Brother Nodes.

As shown in figure 1, VO2 is a Child Node of VO1 and VO1 is a Father Node of VO2.
VO1 is an Ancestor Node of RP3. One VO, RP or User can belong to multiple VOs. As
shown in figure 1, VO2 belongs to both VO1 and VO4. RP3 is both a member of VO3 and
VO4. In a CI environment, Users, RPs and VOs are same logically, so we manage them using
a uniform abstract: Node. VOs in CI consist of nodes and has a hierarchical architecture.

Resource and VO Policies

In a CI environment, there are two types of nodes with policies: RP and VO. The policy

defined by the RP is different from that defined by a VO administrator.

Federal Management of Virtual Organizations with Trust Evaluation 231

VO1

VO3VO2 VO2

VO4

RP1

RP3RP2

User1

User2 User3

RP3User1

CI Environment

CI Resource Pool

VO

 Figure 1. Hierarchical VO architecture.

Resource Policy: This policy represents RP configuration about how to share their
resources. A PC owner may only allow sharing his PC when the CPU utilization ratio is lower
than 10 percents, providing no more than 30 percents EMS memory of the PC and reading on
the hard disk is not allowed. All these are configured by the RP according to his preferences.
Cyberresources consist of various types of instruments and services, policies of which are
quite different from each other. For scientific computing, some jobs are computation
intensive and others may be data intensive. More over, Cyberresources do not just include
physical instruments, but also Web Services developed by the scientists. There may be more
limitations and definitions on how to share their services.

VO Policy: This type of policy defines rules all members in the VO should obey and rules
other nodes out of the VO should obey if they want to cooperate with nodes in this VO.
Former rules are use policy, representing Users’ reqirements about what kind of resources and
collaborators they need. These include instrument status such as memory usage, CPU
frequency, core number, instrument type, and bandwidth, and the way to use the resource
such as available time, memory limitation and cost. A program for data analysis would collect
computers with large memories and bandwidth, which can be defined via the VO policy.
Another rule type, share policy, is proposed for the nodes out of the VO. As mentioned before,
VO has two roles in function: User and RP. So a VO may join in another VO as RP. Share
policy, having the same function with the RP policy, are the policy for other nodes on how to
combine and share this VO. If a scientist in Bioinformatics established a VO to analyze data
in biology, he may not be happy to include any other VOs which have nothing to do with
bioinformatics. He can write this policy as VO policy to avoid such a situation.

In summary, there are only two types of policies in function: policy for outer nodes and
that for inner nodes. First policy, stipulating outer nodes how to share local resources, is
regarded as use policy. Second type of policy, stipulating members how to share resources in
the VO, is regarded as share policy. RP only has use policy while VO has both of them.

Zhen Wang and Junwei Cao 232

Federal Cooperation and Sharing Mechanisms

Organizations are usually formed to achieve aggregation and cooperation using two

different types of mechanisms: centralized mechanism and federal mechanism. In the
centralized mechanism, power is distributed in a pyramid way, centralized to the top level
organizations. Most of organizations with fixed architecture apply this mechanism. If two
organizations, organization 1 and organization 2, all have privilege on an instrument and
organization 2 is a sub-organization and belongs to organization 1, organization 1 has higher
privilege than organization 2 over the instrument when there are some conflicts. But in the
federal model, a big organization, consisting of small organizations and individuals, has
smaller privilege over resources of sub organizations. Organizations at bottom of the
hierarchy have highest privileges over resources.

CI is an open environment with high freedom and flexibility, in which cooperation and
aggregation between nodes happens frequently. The reason we adopt a federal mechanism to
deal with cooperation and sharing in CI can be summarized in two aspects. 1) In CI, all the
resources owned by various RPs who have the highest privilege over their resources. VO can
not have higher privilege than the RP for security problems. Besides, VO can join to a higher-
level VO for the cooperation. Joining a VO does not mean that the sub VO or resources will
be controlled by the father VO. Node only collaborate based on the common goals. This
feature is quite different from organizations with a centralized architecture. 2) In CI, VO is
established, removed and combined in other VOs dynamically according to the various
requirements. When a node needs to aggregate resources or collaborate with other User or
VO, it will establish a VO or join in the established VO. Such actives happen frequently. In
this case, the federal mechanism is more suitable for the CI environment than the centralized
mechanism.

In CI environment, privilege is defined by the policies. VOs at different levels have
different privileges over a specific resource, though this resource belongs to all these VOs.
Figure 2 shows the difference of privilege scopes of VOs at different levels. We denote the
rectangle as a node and the context covered by the rectangle as the privilege the node has over
the appointed resource. RP has the highest privilege and can control the resource completely,
and contributes part of his privilege for the members in VO2 based on its use policy. The
same situation happens between VO1and VO2: VO2 has higher privilege over the RP than
the VO1, for VO2 is one of the RPs of VO1 in this case.

Figure 2. Privilege architecture in the federal mechanism.

Federal Management of Virtual Organizations with Trust Evaluation 233

TRUST MANAGEMENT

Federal VO architecture can ensure the platform flexibility and dynamism to satisfy the

various requirements, however, it is not so easy to be implemented, since privileges are quite
different from one to another. A computer owner may just want to only contribute his
computer to certain users or just provides computational capability without data storage.
Because policies are defined by common users and RPs individually according to their
specific requirements, it is hard to describe all these policies in a uniform way. A lot of
privilege search and manage scheme which are all based on semantic analysis are proposed,
such as SIMDAT (semantics-enabled service discovery framework in a pan-European
pharmaceutical Grid) [30].

In fact, RPs define various resource policies just because they have different trust levels
for different users. Resource policies will transform different trust levels to appropriate
privileges on the local site. Since trust levels can be somehow charaterized in a uniform and
quantfatitative way, we can just map different trust evaluation to different levels of privileges.
This support can help RPs to assign appropriate privileges to the Users.

Schemes to manage and evaluate trust values are wildly used in E-commerce and P2P
applications [31, 32, 33]. Considering characteristics of a CI environment, a trust
management model is proposed that can help Users and RPs achieve appropriate, flexible and
dynamic trust relationships automatically.

Current Trust Models

Trust is defined in different ways: In [34], trust was defined as “a particular level of the

subjective probability with which an agent assesses that another agent or group of agents will
perform a particular action, both before he can monitor such action and in a context in which
it affects his own action.” In [35] , the trust that Device A places in Device B is defined as:
the level that A believes B will implement the desired operations and will not initiate or
transfer attacks on Device A or a system that runs on Device A. In CI environment, trust
value A places in B is the level of risk A would take to empower privileges to B. More
privileges always lead to high risk. When a RP receives request from a User, he must first
calculate the value of trust he places on the User, and then the RP will empower appropriate
privileges to the User according to the trust values.

In the CI environment, trust value A places on B is not the same as that B places on A,
for the trust value is not symmetrical. We use TA-B to denote trust value A places on B.

In an E-commerce environment and other virtual communities on the Internet, trust
management schemes originate from real world scenarios. In real world, people get trust
information in two ways: recommendation from others and their own judgment.
Recommendation from others is usually called as reputation in real world. On the other hand,
ones own judgment comes from his individual experience. So in a virtual environment on the
Internet, researchers also adopt similar ways to evaluate and manage trust values via both
direct trust and indirect trust [34, 36].

Zhen Wang and Junwei Cao 234

Direct trust: Direct trust value can be calculated from historic information Node A
observes from Node B. When Node B wants to establish trust relationship with Node A, it
will present its trust related information to Node A, such as certificate, membership, etc.
Node A also has historic access records. Then A will calculate trust values according to these
two aspects of information: trust related information Node B presents and historic records
maintained by Node A:

A BD − : Direct trust value Node A places on Node B;

BInf : Information Node B presents to Node A;

A BRc − : Historic records between Nodes A and B.

Direct trust values will be calculated as (,)A B B A BD f Inf Rc− −= . This trust value

includes the individual judgment of Node A to Node B.

Indirect trust/reputation: Indirect trust values are provided by a third party, which is

regarded as a trustable node for Node A. Assume Node B wants to establish trust relationship
with Node A. Node B should send a request to Node A. Then Node A needs to make a
decision on if Node B is trustable. Besides direct trust values, it is also important to consider
other trustable nodes’ opinion about Node B. For example, Node C is trusted by Node A as a
third party node. How Node C evaluates Node B influence the trust value Node A evaluate on
Node B. The importance of the recommendation depends on the trust level Node A places on
Node C. The recommendation from the third node is more likely regarded as reputation of
Node B in real world:

C BI − : Indirect trust values Node A places on Node B from Node C (recommendation
from Node C);

Indirect trust values represent global judgment on a certain node. In E-commerce or

distributed scenarios, final trust value is combined with two types of trust values with
different weights and calculated as follows:

(1)A B A B C BT D Iω ω− − −= + − 0 1ω≤ ≤ ;

where ω presents the level a node trusts its own judgment. ω=1 means Node A judges Node
B totally according to its own experience and does not trust any recommedation from other
nodes; ω=0 means Node A totally trusts the recommedation from others and do not adds any
self experiences in it.

Trust Modeling in CI Environment

CI is a distributed environment in which all resources are aggregated and managed

through VOs. VO is an aggregation of nodes in CI based on the agreed policies and trust

Federal Management of Virtual Organizations with Trust Evaluation 235

levels. If Users or RPs evaluate trust values every time they want to share or contribute
resources with others, the platform is not only complicated to use but also hard to support a
large scope of cooperation and resource sharing. Modern science research always need large
scope of cooperation across disciplines and huge number of various instruments. CI should
support dynamism, usability and large scope of cooperation of VOs. In fact, nodes in a VO
already establish a certain level of trust relationships between each other when they agreed on
the VO policies and joined the VO. There are three different types of trust values in the trust
model of CI:

• Global trust value: This trust value is managed and calculated by the CI

Management Center (CIMC). It represents the reputation of a node in the whole
environment, for it is an accumulated value which is calculated from all historical
records of activities in the environment. CIMC is a trustable node which is in charge
of managing all nodes’ global trust values as recommendation values.

• Local trust value: This trust value is based on the specific relationship. When Node
A receives request from Node B, Node A will examine historic records of Node B
and idnode information presented by Node B. And then Node A will calculate local
trust value according to all these information. Local trust value, which makes sense
only for specific relationship, represents individual opinion. Nodes can establish
flexible and individual trust relationship through local trust values.

• VO trust value: This trust value defines the basic trust level of a VO and assigned by
the VO administrator. All members of a VO are trustable at the level of the VO trust
value. In default situation, all members can establish trust relationship among each
other without any authorization and negotiation processes. This trust value represents
the agreement of nodes in a certain VO.

The first two types of trust values are calculated while VO trust value is assigned by the

VO administrator according to the VO purpose.

Global Trust Value
When a task is submitted by a User to a specific RP, there are two main properties to

describe the completion of the submitted task: duration time and quality of execution.
Duration time of a task represents task complexity. Quality of execution of a task can be
characterized in three grades: success in time, success but delayed and failure. Longer
duration time and higher quality contribute positively to trust evaluation.

When a task is finished and the task result is returned to the User, User will send a task
report to the CIMC, which records the duration time and quality of execution of the task.
CIMC will calculate contribution value from the report. And then we need an appropriate
scheme to assign this contribution value to the related nodes: User, RP and VO (if necessary).

The trust contribution of task execution is assigned to Users and RPs with different
weights. Users and RPs are designed to take the responsibility of the task together to avoid
spite activities from Users and RPs. This can also encourage Users submit suitable tasks and
configure sufficient expected time while RPs provide QoS services.

Final global trust value is an accumulated value from contribution of many tasks. Last
task status has highest influence and trustability as it can more accurately reflect current
situation.

Zhen Wang and Junwei Cao 236

If the task is submitted and finished across VOs, VOs which the User and the RP directly
belongs to take part in this trust relationship, because a high trustable VO is a guarantor aided
to provide credit situation of nodes thatbelong to the VO. Further more, scientists or
researchers usually collaborate with each other on the VO level to establish resource sharing
among all members of the two VOs. This cooperation is always the result of negotiation
between administrators of the two VOs. In this case, VO plays a key role in the process of
establishing trust relationship between members from different VOs. As VO is a guarantor in
this process, it also takes responsibility in the resource sharing.

Global trust values represent nodes’ reputation and recommendation of CIMC. It is basic
trust evaluation in CI which provides three functions:

• Determine whether or not a node can join in a VO, for the global trust value of the

node must satisfy the VO requirement. Generally speaking, global trust value of a
node must higher than the trust value of VO it belongs to.

• This value is also one part of idnode information which helps node to calculate local
trust value.

• If a node wants to establish a VO for his applications, the VO trust value configured
by him is limited by his global trust value. VO trust value must be lower than
founder’s global trust value.

Local Trust Value

Local trust value represents the individual judgment on specific relationships. This type
of trust values is calculated from two types of information: idnode information from the
applicant and historical records in the local site. Assuming Node B sends a request to Node A
to establish a trust relationship. The local trust value is calculated using historic data.

Historic records are items that record former activities between Nodes A and B. Every
item consists of several properties: task duration, completion time and subjective judgment.
Completion time is the time when a task is finished. Recent items always are more important
and influential. Task duration time for a task is also of importance, the longer duration is, the
more influential this task for the local trust is. Subjective judgment comes from the local site:
the RP will give a rough judgment on the User who submits his tasks while the User will also
make a judgment if the RP provide high quality of services.

VO Trust Value

The VO trust value is initially configured by the VO founder, namely the VO
administrator, under the limitation of administrator global trust value. After all, a node can
not establish a VO with trust value higher than its global trust value. Generally speaking,
administrator’s global trust value should higher than his VO trust value in a certain number
for he must be surplus to handle unexpected global trust value changing. When a VO trust
value is configured, this parameter should keep stable in its entire life. There is only one
limitation: administrator should have sufficient global trust value to ensure the VO trust value.

Federal Management of Virtual Organizations with Trust Evaluation 237

Establishment of Trust Relationships

In a CI environment, all nodes are organized through VOs. The trust relationship between

two nodes can be only established inner a VO directly or indirectly. If two nodes belong to
the same VO directly, they can establish a trust relationship. If they do not belong to the same
VO directly, they can establish trust relationship only if they have at least one common
ancestor VO. Nodes many have many common ancestor VOs. In this case, we just choose the
VO which has the highest VO trust value as the smallest common VO.

IMPLEMENTATION

There are three components in a CI environemnt: CI Management Center (CIMC), VO

Management Center (VOMC) and Clients. CIMC has three functions: authentication, trust
management and node management. VOMC (VO Management Center) manages VO
membership and monitors member status in real time. VOMC and CIMC are all implemented
as Web Service to provide flexible and security information service. There is also a small
optional client installed at client sides (Users and RPs). This client can help User manage
local historic records and aid to make decision on the access control and privilege
management. Common Users or RPs can also access to the VOMC or CIMC through a web
browser.

Compared with VOMS, membership in a CI environment is recorded and authenticated
by VOMC and CIMC rather than in the certificate. When two nodes want to establish a trust
relationship, they must check the other node membership and global trust value from CIMC
and VOMC. This scheme can ensure the dynamism and flexibility of VO memberships.
Figure 3 shows how these three components work together.

Figure 3. Architecture of three Components.

Zhen Wang and Junwei Cao 238

CIMC

CIMC is composed by three function modules: Certificate Authority Module, Trust

Management Module and Node Management Module and CI Database maintain all
concerned information:

• Certificate Authority Module. This module is the authority center for all the nodes in

the CI, signing and sending certificates. There are three sections in a certificate: a
section for node basic information, an extendable section and digital signature.

• Trust Management Module. This component is mainly in charge of calculating global
trust values. Input data is task reports from Users and RPs. When a new report is
received, new global trust values are calculated and databased is updated.

• Node Management Module. Node Management Module is designed to manage and
monitor all nodes in CI, including VOs, RPs and Users. This module is in charge of
registering of VOs, Users and RPs and checking their qualifications. It is also used to
provide identity information, e.g. membership of a node, global trust value of a node,
etc.

VOMC

A VO is always established by a certain individual or another VO. Though this

establishment may be the negotiation result among several individuals and organizations,
there is only one administrator to found a VO. The administrator maintains a VO
Management Center (VOMC) and undertakes the following responsibilities: managing VO
membership, monitoring members status in real time, communicating with other VOs on VO
level collaboration. VOMC has two components: VO Monitoring Module and VO
Membership Module. There is also a VO database to store and manage all this information.

• VO Membership Module. This module records sufficient information about all the

members in the VO and deals with dynamical changing of these information.
Information on father nodes or brother nodes is also maintained. As mentioned
before, nodes achieve resource sharing only when they belong to the same VO
directly or indirectly. This module provides membership management and
information service. Membership management handle requests related to the
membership such as joining or leaving the local VO, and collaborating with other
VOs and so on. Information service provides membership search and lookup services.

• VO Monitoring Module. This component is designed to monitor the member status in
the VO in real time, especially the member global trust value, since every member
should meet the requirement for the node global trust value from the VO and global
trust value is dynamically changing.

Federal Management of Virtual Organizations with Trust Evaluation 239

Clients

The client is an optional component for Users or RPs. It is used to store individual

historic records about past activities and evaluation. The client provides a tool to guide Users
or RPs to record integrated information about a task and store them locally.

The client receives applications and provides processed information to help Users or RPs
implement access control and privilege management. It calculates local trust value from past
records, and final trust value as mentioned before. The client also retrieves identity
information of applicants from CIMC and VOMC if necessary. All these information is
provided to Users/RPs to help them make a decision. Users or RPs can also run a small
component like GUMS to help them assign appropriate privilege to the applicant according to
the information the client provides following the policies they are configured with.

CONCLUSION

TFVOM, as proposed in this chapter, provides federal VO management mechanism to

achieve trusted collaboration. Compared with traditional technologies, TFVOM has the
following features:

• Trust Evaluation Supports. This is one of core functions of TFVOM. Traditional

resource aggregation or authority/authentication mechanisms can not provide this
function. Members’ credits cannot be evaluated only with certificates. The Grid,
which is based on the public key infrastructure, is widely used as a resource
aggregation and cooperation platform. However, all the members of a grid have to
achieve agreement on resource sharing beforehand. TFVOM provides an
environment for members who know nothing about each other before to build credits,
gain trust relationships with each other and form a VO together if required.

• Federal VO Management. Most of related mechanisms, such as RAC and RDAC, are
suitable for centralized organizations. RAC and RDAC requires a center with highest
privilege managing all members in the organization, e.g. assigning roles,
empowering privileges, determine security levels and so on. The federal mechanism
makes TFVOM suitable for incompact organizations.

• Portability and Extendibility. TFVOM can handle various resources and dynamic
membership changes. Any RPs or Users can join the environment. Besides, the
extendibility also indicates that TFVOM can meet various requirements and requests
since policies are extendable.

• On-the-fly Collaboration. VOMS is another toolkit to enable cooperation and
resource sharing across VOs. VOMS is more suitable for stable cooperation and
resource sharing. TFVOM provides a series of tools that facilitates the process of
dynamic VO operations, e.g. creating, joining, leaving, removing or merging VOs.

Zhen Wang and Junwei Cao 240

REFERENCES

[374] D. E. Atkins et al. Revolutionizing Science and Engineering through
Cyberinfrastructure. National Science Foundation Blue – Ribbon Advisory Panel on
Cyberinfrastructure, January 2003.

[375] OCI – Office of Cyberinfrastructure. http://www.nsf.gov/oci.
[376] NSF Cyberinfrastructure Council. NSF’s Cyberinfrastructure Vision for 21st Century

Discovery, Version 7.1. National Science Foundation, July 2006.
[377] Thomas, T.; A mandatory access control mechanism for the Unix file system,

Aerospace Computer Security Applications Conference, 1988.
[378] Yixin Jiang; Chuang Lin; Hao Yin; Zhangxi Tan, Security analysis of mandatory access

control model, 2004 IEEE International Conference on Systems, Man and Cybernetics,
Vol. 6, 10-13 Oct. 2004.

[379] Andreas Schaad, Jonathan Moffett, Jeremy Jacob. The role-based access control system
of a European bank : a case study and discussion, Proceedings of the sixth ACM
symposium on Access control models and technologies, May 2001.

[380] Ninghui Li; JiWon Byun; Bertino, E, A Critique of the ANSI Standard on Role-Based
Access Control, IEEE Security and Privacy, Vol. 5, No. 6, 2007.

[381] Sandhu, R.S. Samarati, P. Access control: Principles and Practice. IEEE
Communications Magazine, Vol. 32 , No. 9 pp. 40 – 48, 1994.

[382] http://vdt.cs.wisc.edu/VOMS-documentation.html
[383] http://hep-project-grid-scg.web.cern.ch/hep-project-grid-scg/voms.html
[384] Dongguk Univ. Grid Information Retrieval Management System for Dynamically

Reconfigurable Virtual Organization, Fifth International Conference on Grid and
Cooperative Computing (GCC 2006), Oct. 2006.

[385] https://www.racf.bnl.gov/Facility/GUMS/1.2/index.html
[386] http://computing.fnal.gov/docs/products/voprivilege/prima/prima.html
[387] Privilege and Role Management Infrastructure Standards Validation:

http://www.permis.org
[388] TeraGrid. http://www.teragrid.org.
[389] NEES – Network for Earthquake Engineering Simulation. http://www.nees.org.
[390] OSG – Open Science Grid. http://www.opensciencegrid.org.
[391] NEON – National Ecological Observatory Network. http://www.neoninc.org
[392] GEON – The Geosciences Network. http://www.geongrid.org
[393] NCAR – National Center for Atmospheric Research. http://www.ncar.ucar.edu
[394] NVO – US National Virtual Observatory. http://www.us-vo.org
[395] EDG – European DataGrid http://eu-datagrid.web.cern.ch/
[396] DataTAG – Data TransAtlantic Grid http://datatag.web.cern.ch/datatag/
[397] VOMS Monitoring Documentation http://voms-monitor.grid.iu.edu/cgi-bin/index.cgi
[398] LIGO – Laser Interferometer Gravitational-wave Observatory. http://www.

ligo.caltech.edu
[399] SBGrid – Structural Biology Grid http://www.sbgrid.org/
[400] GUGrid – Georgetown University Grid http://gugrid.arc.georgetown.edu/
[401] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid, International Journal

of High performance Computing Applications, 15, 3 (2001).

Federal Management of Virtual Organizations with Trust Evaluation 241

[402] Permis http://sec.cs.kent.ac.uk/permis/
[403] C. Upstill, and M. J. Boniface, “SIMDAT,” CTWatch Quarterly, vol. 1, no. 4, pp. 16-

24, Nov. 2005.
[404] Alexandria, Virginia, Trust Management for Trusted Computing Platforms in Web

Services, Conference on Computer and Communications Security, Proceedings of the
2007 ACM workshop on Scalable trusted computing, Nov. 2007 - Nov. 2007.

[405] Guangwei Zhang, Jianchu Kang, Rui He, Towards a Trust Model with Uncertainty for
e-Commerce Systems, Proceedings of the 2005 IEEE International Conference on e-
Business Engineering (ICEBE’05).

[406] Alireza Pourshahid, Thomas Tran, Modeling Trust in E-Commerce: An Approach
Based on User Requirements,

[407] D. Gambetta, “Can We Trust Trust?” in Trust: Making and Breaking Cooperative
Relations, Basil Blackwell, New York, 1988, pp. 213-237.

[408] Tao Sun, Mieso K. Denko. A Distributed Trust Management Scheme in the Pervasive
Computing Environment, Canadian Conference on Electrical and Computer
Engineering (CCECE 2007), pp. 1219-1222, 22-26 April 2007.

[409] Pavlou, P. A., Yao-Hua Tan, and Gefen, D. The transitional role of institutional trust in
online interorganizational relationships, Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 2003.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 12

COMMUNITY-SCALE CYBERINFRASTRUCTURE FOR
EXPLORATORY SCIENCE

Peter Bajcsy1, Rob Kooper2, Luigi Marini3 and Jim Myers4
National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)

ABSTRACT

This chapter presents some of the key aspects of Cyberinfrastructure (CI) research
and development targeting community-scale exploratory science. The motivation comes
from the fact that successful software for CI is increasing scientific productivity of a
single investigator, small groups of scientists as well as dispersed teams spanning
multiple institutions. Community scale scientific activities and their informatics
requirements are driving the development of new CI solutions. It becomes critical to
follow CI design principles based on past, present and future efforts. In addition, data-
and hypothesis-driven explorations are fundamental scientific activities leading to
discoveries. In this work, our focus is on informatics requirements and CI design
principles behind existing software. We have included our experiences and described
several prototype CI solutions to support exploratory science.

INTRODUCTION

The word Cyberinfrastructure (CI) has emerged as the latest in a series of terms to

describe the potentially revolutionary impact of computational technologies on scientific and
technological progress. There is a plethora of definitions, community specific interpretations
and reports describing the future of CI [1-4], but it are generally accepted that
“cyberinfrastructure refers to infrastructure based upon distributed computer, information and

1 E-mail address: pbajcsy@ncsa.uiuc.edu
2 E-mail address: kooper@ncsa.uiuc.edu
3 E-mail address: lmarini@ncsa.uiuc.edu
4 E-mail address: jimmyers@ncsa.uiuc.edu

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 244

communication technology. If infrastructure is required for an industrial economy, then we
could say that cyberinfrastructure is required for a knowledge economy” [3]. A critical
distinction between CI and earlier terms, such as collaboratories and grids, is the recognition
that CI is infrastructure that will become vital in addressing the key research and development
challenges and increasing scientific productivity of the 21st century. Despite its promise, CI is
as yet far from ubiquitous and is still considered by many to be difficult to use productively.
Thus, in this chapter we present some key challenges related to the need for CI to be deployed
as broad community infrastructure while enabling ubiquitous adoption and productive use by
independent exploratory research efforts.

In some sense, CI has been in development since the advent of the computer and the
Internet and has been benefiting from the exponential increases in computing, storage, and
networking capabilities ever since. Inflection points such as the development of the Mosaic
Web browser in 1993 at NCSA and the emergence of the World Wide Web have helped shift
our perception of CI from simply providing cycles and storage to understanding that its true
power includes organization of information and coordination of efforts. Over the past decade,
there have been developments such as grids, portals and social networking sites, and
community databases that have helped to drive these concepts of community scale sharing
and organization of computation, data, and expertise. The developments have shown that CI
will enable qualitatively new approaches to scientific research in addition to the quantitative
improvements leveraging hardware advances. Most recently, the emergence of Web 2.0
technologies has shown how core capabilities created by service providers can rapidly be
‘mashed-up’ and customized to support the needs of specific projects and communities.

In general, one could capture two concepts pertinent to CI design. First, it is the concept
of scientific communities planning and designing CI based on the expectation of both
quantitatively and qualitatively new CI capabilities. Second, it is the concept of designing and
building CI from the ground up to support quantitative and qualitative change in how research
communities work. Following from these CI design considerations, NCSA has coined the
term “Cyberenvironments” and worked with a number of communities to explore the
transformative potential of CI within their domains and to enable cross-disciplinary work.
Based on this analysis, we recognized that both technological and scientific progress will be
rapid in comparison to the timescale at which infrastructure can be developed and deployed.
Thus, NCSA worked on identifying key design patterns somewhat analogous to those behind
Web 2.0 that will enable core CI to quickly and cost-effectively be ‘mashed-up’ to create
environments tailored to specific scientific needs. Building on these design patterns, we have
begun to create a new generation of middleware and components that implement them.
Furthermore, we are working with pilot communities to begin deployment of capabilities that
will help catalyze transformative changes in the scope, scale, and impact of their research
over the coming decade.

In this chapter, we begin with a discussion of the changes CI is expected to enable in
various communities. We focus on Earth science applications, where a number of large
environmental observatory projects are being supported by the National Science Foundation
(NSF) with the goal of transforming Earth systems research. A discussion of the requirements
related to these observatories is then used to motivate discussion of the necessary design
patterns. We introduce specific work at NCSA that has begun to apply the design patterns to
create new capabilities for earth systems research. The chapter concludes with the thought
that, as at the beginning of the WWW, we are entering a phase of rapid progress in the use of

Community-Scale Cyberinfrastructure for Exploratory Science 245

CI to power a next-generation of scientific research and development that will drive new
discoveries and help to provide a scientific basis for addressing the grand challenges facing
humanity.

INFORMATICS REQUIREMENTS FOR CYBERENVIRONMENTS

The word “informatics” has been used widely in a multitude of application areas.

Informatics refers to the increasing amounts of often highly complex data that have to be
analyzed, interactively explored, and transformed from raw form to information and to
knowledge [5]. In all application areas, scientists desire to learn from their data about a
spectrum of complex phenomena surrounding us. From this perspective, any software for CI
becomes a part of an X-informatics system, where X stands for a specific application domain.
Some common uses for X are bio, hydro, medical, document, astro, or sensor [6, 7]. In all
these instances, classes of the X-informatics systems are typically characterized by
methodologies of steps or activities that have to take place to conduct experiments and to
arrive to knowledge. It is understood that knowledge is gained regardless of the experimental
outcome. Thus, the research and development (R and D) of software for CI is therefore driven
by a set of requirements for building X-informatics solutions following common
methodologies. Broad community infrastructure can be built to support specific research
areas by providing common informatics frameworks. The frameworks are decoupled into
specific components developed by the individual researchers and provide simple mechanisms
for component inclusion, no matter what the specific area of study might be.

One of the scientific fields that have benefited the most from the current CI is Earth
science. Earth science includes domains ranging from geosciences, atmospheric sciences,
hydrology, environmental engineering to ecology, geochemistry, earthquake engineering,
oceanography, ground water or water quality sciences. Scientists and practitioners from
multiple sub-domains have formed communities and consortiums funded primarily by NSF to
articulate their requirements for CI development and deploy prototypes of CI that could
support community level science. One should mention a few of these communities such as
WATERS (environmental engineers), CUAHSI (hydrologists), LTER, SEEK and NEON
(ecologists), CZEN (geochemists), GEON (mineralogists) and OOI (oceangraphers). While
working with multiple Earth science communities, it has become apparent that the research
and development of Cyberenvironments has to lead to community-scale CI for exploratory
science.

In Earth sciences and many other domains, the R and D requirements of software CI
typically vary depending on the scientific activities of individuals alone and the activities of
collaborating teams. Thus, the software components in community-scale Cyberenvironments
need to scale from the activities of individual scientists to groups of scientists and eventually
to very large communities. In addition, community scale research involves sharing not only
data but also scientific analyses and the trails of exploratory processes as documented in the
NSF workshop on Challenges in Scientific Workflows [8]. Sharing of scientific analyses is
important for reproducibility of results, validation of each other's hypotheses and comparisons
of results obtained using multiple techniques. It also implies to put in place gathering of rich
provenance information and leads to a concept of self-describing software execution so that

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 246

scientists do not have to be burdened with the provenance gathering. Based on our
observations, the software scalability requirement with the number of users and the concept
of self-describing software execution are rarely imposed on software solutions designed by a
single investigator and his students.

Whether at a community scale or at the individual scientist scale, most scientific activities
deal with data. Scientific data sets can come from sensors, instruments or visual observations,
as well as from simulations and modeling efforts. When working with scientific data,
common challenges are encountered and would be usually related to (a) sharing of potentially
large volumes of data, (b) data volume and data rate, and associated computational and
bandwidth requirements, (c) heterogeneity of data, software and hardware technologies, (d)
management of time-critical data exchanges and analysis execution, (e) curation of data and
preservation of scientific analyses, and (f) complexity of data-software-hardware interfaces
during data sharing, interactive data manipulations and configurations of data-driven
analyses. This list of common data-centric challenges outlines what a scientist has to cope
with today in order to execute a data-driven scientific study. Thus, the requirements on
software for CI are clearly defined by the need to remove the burden from a single scientist or
a team of scientists. For example, given sufficient computational, storage and networking
resources, scientists should not be concerned with data volume and data rate since the
software for CI would dynamically allocate resources on demand [9, 10]. In general,
Cyberenvironments must address the above data-centric challenges by automation in order to
increase the productivity of scientists using such Cyberenvironments.

As the requirements are presented at a high level from domain specific X-informatics
methodologies thru community scale activities to data-centric challenges, one might neglect
the requirements coming from conducting Exploratory Science. It is very common in Earth
sciences to explore historical data, global geospatial changes over time from spatially and
temporally partitioned data, indirect geospatial variables, or data with heterogeneous
geospatial, temporal and spectral sampling rates. In the majority of these exploratory studies,
there is an inherent uncertainty about the source of data, acquisition parameters, metadata
information (e.g., geo-referencing information), variable transformations (e.g., indirect
variables or un-calibrated variables) or approximating transformations (e.g., interpolations or
extrapolations in space, time and spectrum). Thus, exploratory studies frequently involve
verification, validation and confidence evaluations of the obtained results. In addition, many
of the exploratory studies are about comparing multiple implementations of methodologies, a
range of parameters associated with software execution or several data products. One could
also view these activities as computer-assisted decisions and the associated software as
computer-assisted decision support. Driven by the exploratory science, one of the
requirements for building software for CI is the easy-to-use user interface to support
computer-assisted scientific explorations and discoveries.

In a summary, the informatics requirements for building Cyberenvironments should
include considerations about (a) components of domain specific X-informatics
methodologies, (b) the spectrum of community scale activities associated with data and
science discovery process sharing, (c) the automation benefits and costs of solutions
addressing data-centric challenges, and finally (d) the user interfaces to support scientific
explorations and discoveries. In order to meet these requirements with limited resources, one
has to identify common components of science domain methodologies, decouple specific

Community-Scale Cyberinfrastructure for Exploratory Science 247

domain science characteristics from generic functionality of software for CI, and then pursue
research and development of Cyberenvironments with inter-disciplinary teams.

MEETING INFORMATICS REQUIREMENTS
IN CYBERENVIRONMENTS

Software for CI has been evolving along the historical course of the cyberinfrastructure

development from basic communication protocols and secure data transfers to advanced
cyberinfrastructure-enabled environments. According to the Atkins report [3], “generic names
for such cyberinfrastructure-enabled environments include collaboratory, co-laboratory, grid
community/network, virtual science community, and e-science community.” Several NSF,
NIH, and DOE funded projects have contributed to prototyping examples of
cyberinfrastructure-enabled environments, for instance, the NSF Network for Earthquake
Engineering Simulation (NEES), the NSF National Virtual Observatory (NVO), the NSF
National Ecological Observatory Network (NEON), NIH Biomedical Informatics Research
Network (BIRN) or the DOE Scientific Discovery Through Advanced Computing (SciDAC)
projects just to mentioned a few. While the communities building software for CI are
numerous, the human resources are limited. Thus, sharing human resources, establishing and
following technology standards, and coordination of efforts in meeting informatics
requirements have become eminent.

In the Earth science domains, the communities have adopted the term "virtual
observatories" (VO) as their end-goal of cyberinfrastructure developments. For instance, the
hydrologic community has been building digital hydrologic observatory or Hydrologic
Information System (HIS). It is is designed as “a combination of hydrologic data, tools and
simulation models that supports hydrologic science, education and practice.”[2]. Similarly,
the environmental engineers envisioned “an observatory system that will engender a
community-wide shift towards systems-level, CI-enabled research, global research
coordination, and bi-directional integration of experiment and simulation.” [4]. These
communities of hydrologists and environmental engineers together with the geochemists
building the Critical Zone Observatories (CZEN) have been coordinating their efforts to
leverage their cyberinfrastructure investments by holding joint workshops, designing
cyberinfrastructure for sharing data (measurements) and metadata, as well as by leveraging
developed technologies. One of the challenges for such large communities has been to
identify the priorities for meeting the informatics requirements given the existing software
technologies. For instance, according to the community survey [4], Excel spread sheets are
the most common data formats and software tools used by the communities. Therefore
supporting conversions of data entries from Excel to community standards (e.g.,
Observational Data Model5) and the ability to execute Excel macros on demand by the
cyberinfrastructure are of a high priority for the domain users.

Within the framework of shared development of software for CI, it is critical to
understand what design principles should govern developments of new software for CI, what

5 http://water.usu.edu/cuahsi/odm/

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 248

software technologies are currently available for building virtual observatories, and how the
features of these technologies meet the informatics requirements.

Design Principles

A large number of researchers and developers are contributing to building software for

CI. Software teams follow basic software design principles that come from software
engineering. These principles include modularity of software components, computational
scalability, standard application programming interfaces, user interfaces, and ability to use
common data formats. With the current fast pace of information technology, new
technologies are being invented and existing technologies are failing. Any new design of
software for CI has to take into consideration the fault tolerance of distributed
cyberinfrastructure systems whether due to a failure of existing components or due to an
introduction of new components. Following the basic software engineering design principals
is the key to interoperability, low cost maintenance and long term sustainability of software
for CI. Along with basic design principles of software engineering, there is a category of
design principles that assumes particular importance when it comes to software for science
and engineering. The following list is by no means comprehensive, but should receive some
attention when designing CI: strong community involvement, open distributed systems, active
curation, data-centric strategies for dealing with heterogeneous data and software, and
adaptable interfaces.

The most successful and currently available software for CI has a community of scientific
users behind it. It is the support of the X-informatics methodologies by the software for CI
that attracts domain users since the step-by-step execution of those methodologies is a part of
their daily scientific activities. “Careful technologists will take the time needed to understand
fully how users currently work, and why, rather than simply assuming that the innovations
they propose are an inevitable improvement.” [11] Thus, the design and the development of
Cyberenvironments supporting informatics processes of a community is an inter-disciplinary
effort with each expertise being represented. One has to take into an account technology
adoption within a community and across communities, incentives and rewards for migrating
legacy data and technologies to new Cyberinfrastructure and social aspects of engagements in
multi-disciplinary efforts that are needed for building Cyberenvironments supporting
scientific explorations. Needless to say, meeting this design requirement is typically one of
the most challenging one since typically the computer science team members are focused on
decoupling specific domain science characteristics from generic functionality of software for
CI, while domain science team members are seeking specific features supporting an
individual informatics process of their interest. Thus, design principles for
Cyberenvironments have to be derived from community surveys and community workshops
in order to identify and support community informatics methodologies.

The Cyberinfrastructure must be built not only with multiple communities in mind, but
also with the considerations of distributed research teams and distributed resources. In such a
distributed world, spanning both digital constructs and people, software system must be open,
distributed and architected with no master control in mind. The Cyberinfrastructure
development landscape is filled with relatively small teams that need simple ways to leverage
what other groups have already done. This is a similar problem to what the business

Community-Scale Cyberinfrastructure for Exploratory Science 249

community is facing, with a cultural shift added to the mix. In a culture of “publish or perish”
careful attention must be placed in privacy and recognition of individual contributions.

Another design principle comes from the spectrum of community scale activities
associated with data and science discovery process sharing. It is many times hard to foresee
what would be the scale of active users of Cyberenvironments and their activities. In addition,
it is unknown in exploratory scientific experiments what parts of the activities would be of
interest later when a discovery has been made. All activities and data sets created should
typically be actively curated during the scientific end-to-end cycle. We define active curation
as the use of cyberinfrastructure to integrate curation and preservation directly with data
collection, analysis, modeling, referencing and scholarly publication. Thus, one of the design
principles for Cyberenvironments is the capability to record data provenance (data history) as
data moves from sensors to reference stores, as integrated and derived data products are
created, and as researchers perform analysis and modeling activities at their desktop and on
the computational Grid. Cyberenvironments will capture additional annotations, usage
information, and associations with papers and other publications. Significant new
functionality becomes available when this information is captured across the full data
lifecycle [12]. Incorporating this active curation principle in response to the wide spectrum of
community scale activities, researchers will be able to better manage complex,
multidisciplinary synthesis science activities, and curators can make informed decisions.

The design principles addressing the automation of basic data-centric operations draw
from the fact that the explorations could be much more productive if software for CI would
(a) automatically resolve heterogeneities of data and software, (b) seamlessly allocate
computational resources and (c) effortlessly enable curation of results and preservation of
scientific analyses. For example, it has been known that data cleaning and data preparation
takes the majority of time in many data-driven analyses and there is an abundance of
literature about techniques available to address these problems [13, 14]. When it comes to
community scale software for CI, data preparation techniques have to be readily available and
the cost of software development must be clearly counter-balanced by increased productivity
of all users. In order to minimize the cost of software development and still automate the
data-centric operations, one of the design principles is not only to establish and follow
existing data and software interface standards, but also to develop limited number of modules
for easy translations of historical data and easy integration of legacy software interfaces into
new Cyberenvironments. We could list a few particular open specification standards for data
sets, such as GeoTIFF and HDF file formats for raster data, ESRI Shapefile for vector data,
separator delimited tabular data and Adobe PDF for office documents. The web software
interfaces are primarily defined by the World Wide Web Consortium 6 (W3C) and the
standards include for publishing language (HTML), Service Modeling Language (SML),
Synchronized Multimedia Integration Language (SMIL 3.0), query language for the Semantic
Web (SparQL), Ontology Language (OWL), Simple Knowledge Organization System
(SKOS), etc.

Depending on the community targeted, the level of technical knowledge can greatly vary
amongst its members. For example, in a survey on technology user adoption done for the
WATERS Cyberinfrastructure plan [4], Excel was the most popular software (88%) with
ArcGIS and Matlab being the most commonly used software package. Despite the long list of

6 http://www.w3.org/

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 250

scientific workflow management system, no software system belonging to this area has make
it to the WATERS list of the community most commonly used software packages. We believe
that one of the reasons for poor adoption lies in using inappropriate metaphors for workflow
composition that do not actively support the end user [15]. In general, much more care must
go towards interfaces that support scientists in the way they are used to do their science.
When new interfaces must be introduced, it is important to do so with a level of complexity
that supports both basic and advanced users. A novice user should be guided from simple and
illustrative capabilities to more advanced and still clear ones. The ability to easily create new
interfaces besides the ones available needs to be supported as well. Therefore, a clear
decoupling between features and graphical user interfaces (GUIs) should be built into the
software for CI so that new software developers and even researchers can easily create new
GUIs or aggregations of the existing GUIs.

TECHNOLOGIES AVAILABLE FOR
BUILDING CYBERENVIRONMENTS

There is a stack of exciting technologies available for building virtual observatories that

range according to their maturity level. The software landscape of cyberinfrastructure is still
evolving and adapting, trying to learn from and contribute to some of the software changes in
both the open source world and the commercial world. The software includes components
such as science portals/gateways, context management systems (CMS), process management
systems, security layers and communication mechanisms for remote access to data, software
and computational resources. These technologies address certain requirements described in
the previous two sections, and are outlined next. We omit describing database technologies
that are typically connected to various components of Cyberenvironments but are not viewed
as a part of the on-going Cyberenvironment research and development.

Software Technology Components

Several broad categories of software have emerged over the years to support scientific

and engineering communities. A short discussion of some of the most fundamental ones
follows, starting from portal technologies, to content management systems, process
management systems, and security and data transfer protocols.

One could view science portals as the points of access on the Internet through which
information and services are delivered to a user (a client) from central or distributed
computational resources (servers). Although there exist multiple definitions of portals in the
literature, [16, 17] the definition above includes multiple purposes of portals. For example,
portals could have the purpose of sharing supercomputing resources like the tera-grid
resources, or the purpose of sharing scientific publications, presentations, data and metadata
like in many digital library systems, or the purpose of communication via email, blog, chat
room, or Skype (video and audio). Several commercial portal solutions are available on the
market, for instance, Liferay, Blackboard, Campus Ads, Jenzabar, ORACLE PeopleSoft, or

Community-Scale Cyberinfrastructure for Exploratory Science 251

uPortal. In the realm of scientific portals, MyExperiment.org7 adopted some of the successful
models developed by popular social networking web site such as Facebook.com and
MySpace.com, to provide a way for scientists to share personal profiles, create collaborations
on the fly and share workflow representations. Nanohub.org8 mixes delivery of teaching
material with access to desktop applications inside the browser via the use of virtual machines
and VNC. The Nanohub users can easily access existing applications without having to worry
about setting up the software environment. Although science portals do not specifically
consider informatics methodologies in exploratory science, the technologies have matured to
provide scalability with the number of users, support for limited data-centric activities and
customizable user interfaces for data sharing and browsing.

Content management systems (CMS) are designed for content creation, editing, and
version control. In the case of cyberinfrastructure, content includes any data and metadata
about data, and activities of communities represented in-silico regardless of whether the
content came from local or remote resources. Open source projects, such as Joomla!, focus on
providing extensible interfaces to organize, create and publish content. Tools, such as the
Tupelo semantic content repository 9 , enable distributed management of datasets and
Resources Description Framework (RDF) descriptions. The management is supported by a
variety of storage implementations, including file systems, relational databases, and RDF
triple stores such as Mulgara10and Sesame11. A key concept in semantic content management
is that, at the level of CMS’s operation, all information about any kind of entity is simply a
combination of an opaque blob of bits and metadata associated with a globally unique
identifier. Thus, at the repository level, people, scientific instruments, data, workflows,
documents, etc. are all first-class, co-equal entities that can be managed and annotated by any
application.

Process management systems and specifically scientific workflow management systems
have been originally designed for automation of procedures, linking stand-alone codes and
creating flows of data governed by rules. The simplest workflows are scripts of batch files
that describe a sequence of tool executions. In the context of Cyberenvironments, workflow
systems aim at providing complex problem-solving environments from heterogeneous tools.
Driven by systems-science use cases and complex informatics problems, there are several
dimensions along which current workflow technologies have grown to become a robust
cyber-infrastructure capable of scaling to meet the national needs [5]. These dimensions
include (1) hierarchical structure and organization of software, (2) heterogeneity of software
tools and computational resources, (3) usability of tool and workflow interfaces (e.g.,
workflow by example), (4) community sharing of fragments and publications, (5) user
friendly security and provenance, (6) built-in fault-tolerance, etc. It is apparent that workflow
environments address immediately several of the informatics requirements described in the
Informatics Requirement for CI section. There is a plethora of existing workflow technologies
although the features of workflows designed for scientific communities are different from
those designed for business communities. The primary difference is in responding to the large

7 http://myexperiment.org
8 http://www.nanohub.org
9 http://www.tupeloproject.org
10 http://mulgara.org/
11 http://www.openrdf.org/

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 252

data volume and data rate requirements in sciences. Among the available scientific
workflows, one could list Cyberintegrator [15], Kepler [18, 19], D2K [20], D2KSL, OGRE,
Ensemble Broker [21], ArcGIS ModelBuilder (ESRI ArcGIS), SciFlo, DAGMan, CCA12 or
Taverna13. Nonetheless, only a few of these systems would accommodate the requirements
dictated by the community scale and exploratory science needs of end-to-end solutions.

Security layers are necessary for scientific community for multiple reasons. First, it is the
nature of distributed resources on the Internet, where clients are connecting and browsing
multiple remote hosts, as well as building channels for communications, data transfers and
utilization of computational resources. Second, it is the nature of conducting a cutting edge
research where scientific collaborations constrained to teams of various sizes. The results and
ideas of research teams have to be protected to guarantee the recognition of individual
researchers after the results and discoveries are shared. Without providing too much details on
security technologies, any applications that requires communication on the Internet (e.g., web
browsing, email, instant messaging, or any data transfer) should include simple authentication
and security layer (SASL). Among the existing open source security technologies, one could
use myProxy14or DIGEST-MD515. NCSA MyProxy is software for managing X.509 Public
Key Infrastructure (PKI) security credentials and supporting authentication mechanisms,
including passphrase, certificate, Kerberos, Pubcookie, VOMS, PAM, LDAP, SASL and One
Time Passwords (OTP). DIGEST -MD5 uses the Java Cryptography Extension (JCE) and is
already included in Java SDK. It might be also of interest to assess the security risks of
developed Cyberenvironment using tools from the Open Web Application Security Project16
(OWASP).

There exists a multitude of data transfer protocols, some are written for specific
application and are built on top of Transmission Control Protocol (TCP) other are more
generic. One of the oldest protocols around is File Transfer Protocol (FTP, also denoted as
RFC 965] which was ratified as an Internet Request For Comment (RFC) in 1980. This
allows sharing of data between two hosts, the first host is the server and puts the data up for
download, and the second host can download the data from the server. Although this protocol
has been around for a long time, due to its simplicity it is still used by many people to
exchange data. Around the year 1985, the WWW became popular and people started to use
WWW to transfer data. The WWW-based file transfers are similar to FTP-based transfers,
one host is the server and the other host is the client that wants to download the data from the
server. Most sites these days will have at least one HTTP (Hypertext Transfer Protocol)
server running, allowing people to share data. Not all sites might have an FTP server anymore
since the HTTP-based trasfers make sharing of information easier than FTP-based transfers.
Another advantage of HTTP over FTP is the ability for secure transfers which makes nearly
impossible for third parties to intercept the data.

In the mid 90's grid computing was introduced to denote a distributed computing
infrastructure for science and engineering [9]. The grid adds the capability to both share data
with other people (using GridFTP) and compute power. GridFTP is based on FTP but allows

12 http://www.cca-forum.org/
13 http://taverna.sourceforge.net/
14 http://grid.ncsa.uiuc.edu/myproxy/
15 http://java.sun.com/products/jndi/tutorial/ldap/security/digest.html
16 http://www.owasp.org/

Community-Scale Cyberinfrastructure for Exploratory Science 253

people to subsections of the data and the data can be retrieved from different servers, allowing
the client host to select the server closest to them. The Globus Toolkit has been used by many
people to create grid enabled applications, giving them an easy way how to share data While
some people worked on the infrastructure for grid computing, others worked on building a
protocol on top of HTTP to share computing resources and to access the data. The protocol
was built as a remote procedure call using the web, which led to the introduction of web
services. The web services are described in a description language that is independent of any
programming language allowing easier integration with applications written in any
programming language. Although web services do not directly focus on some of the issues
with large and distributed data sets, they are still used to serve data because of their wide
adoption.

Example Technologies Developed at NCSA

Example solutions of Cyberenvironments at NCSA have been developed in close

collaborations with the communities of hydrologists, environmental engineers and earthquake
engineers. Software requirements have been gathered based on the inputs from community
workshops and surveys [11] and by forming inter-disciplinary teams (e.g., Environmental
Cyberinfrastructure Demonstrator (ECID), GeoLearn, SP2Learn or MAEVis projects at
NCSA/UIUC). As the outcome of multiple efforts, there are example solutions at NCSA that
are available for deployment when science gateways, process management (workflow)
environments, security layers, or targeted solutions following domain methodologies of
interest. The list of these example solutions includes Liferay based CyberCollaboratory
portal, Eclipse RCP based Cyberintegrator as a generic workflow environment, Java based
GeoLearn and SP2learn informatics driven linear workflows, and Eclipse RCP based
MAEViz informatics solution.

The CyberCollaboratory [22] promotes the role of contexts (social context, geospatial
context, provenance, etc.) and the use of the Resource Description Framework (RDF) [23] to
enable flexible and lightweight means to produce and share metadata. Like
MyExperiment.org and Nanohub.org, the CyberCollaboratory embraces design strategies of
the Web 2.0, such as user generated content [36]. Traditional science gateways such as the
TeraGrid User Portal17 focus on providing access to data and computational resources and
"usually do not provide extensive social networking interaction or social context." [22]. By
providing better tools to support participatory science, this new wave of scientific portals
could truly revolutionize scientific gateways for the end users.

Demonstrations at the SC06 (International Conference for High Performance Computing,
Networking, Storage and Analysis, 2006) and at the American Geophysical Union Fall 2006
meeting [37-39], showed how users of the CyberCollaboratory could start new communities,
write blogs, wikis, share documents and share workflow representations. Furthermore, users
could change workflow parameters on-the-fly and publish and execute the new workflow
remotely to dynamically create new data streams, discuss the changes to the parameters
online with collaborators and make them available to the rest of the community. This
provided an example of how user generated content can go beyond text, pictures and videos,

17 http://portal.teragrid.org/

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 254

to embrace more complex resources, such as workflow representations, and associated
operations on these resources, such as workflow executions, workflow modifications and
dynamic generation of derived data sets.

The Cyberintegrator [15] scientific workflow management system attempts to broaden he
feature set of traditional workflow systems by focusing on the community and collaboration
aspect and by enabling creations of new workflows in an experimental way. It allows users to
share annotations and tags about tools, workflow steps, data sets and workflow
representations from inside the editor. Information is stored using RDF (figure 1) and
distributed repositories using the Tupelo semantic content repository. This enables a level of
sharing of resources that is built into the system from the ground up.

Figure 1. Metadata views in Cyberintegrator.

Tupelo provides a library of utilities for managing large RDF graphs. It abstracts the
underlying RDF database implementations, so that application does not have to worry about
the different stores and the stores can be swapped based on requirements. For example,
Cyberintegrator currently supports the ability to store the data on the local file system, in a
MySQL database (DB), or in a remote store, such as Sesame or WebDAV18 instances.
MySQL DB stores the RDF statements. Sesame and WebDAV store the binary data ingested
and produced by the system. This gives the end user the ability to connect to multiple remote
repositories that could be shared across groups of researchers. The Cyberintegrator takes
advantage of shared repositories by providing ways of adding shared annotations and tags to
data sets, tools and workflows.

Exploratory workflow creation is enabled by providing an alternative to the conventional
graph-based visual programming metaphor. Users interact with a pool of available datasets
and related tools that can be executed on specific data sets. As the user executes actions
implemented by the tools, more data sets are created and the overall process is developed
behind the scenes. The user experiments with different options based on the current data sets

Community-Scale Cyberinfrastructure for Exploratory Science 255

available (figure 2). To make the system extensible, the Cyberintegrator framework is built on
top of the Eclipse Rich Client Platform (RCP), a plug-in based architecture with strong
support from both the industry and the open source world.

Figure 2. Cyberintegrator editor.

Example Applications Supported by NCSA Technologies

One of the applications is the study and prediction of hypoxia in the Corpus Christi Bay,

TX . As part of the Corpus Christi Bay WATERS Test Bed Site, the Cyberintegrator has been
used for connecting a hydrodynamics model based on ELCIRC [32] to sensor feeds from the
Texas Coastal Ocean Observation Network and from the Shoreline Environmental Research
Facility via the CUAHSI HIS web services19.

Another application is the optimal redesign of a sewage network in the city of Cali,
Columbia. Torres [31] developed a model for urban drainage systems based on NSGA-II [33]
and SWMM 5.0 [34] software packages linked into a workflow in Cyberintegrator. Instead of
manually configuring the execution of models every time, the sewage network planners can

18 http://www.webdav.org/
19 http://www.cuahsi.org/his.html

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 256

execute an optimization workflow that embeds how the different steps link together and
exposes only the parameters necessary to drive a particular execution.

GeoLearn [24-26] was developed to better understand scientific questions raised by the
hydroclimatology and terrestrial hydrology communities. Specifically the scientific questions
related to causes and consequences of global changes of hydrologic variables through
phenomenology, modeling, and synthesis. Like Cyberintegrator, GeoLearn is a workflow
system. However, unlike Cyberintegrator the GeoLearn system can only run a set of linear
workflows constrained by the steps and options predefined by the particulate informatics
flow. In GeoLearn workflow, one can load multiple image datasets, combine these datasets to
have consistent spatial and temporal resolution as well as geographic projection, and extract
variables over user driven masks derived using additional image, boundary or point
information. These steps could be also viewed as the common methodology steps that are
present in the majority of scientific analyses in hydrology and incorporated into the design of
GeoLearn. The rest of GeoLearn workflow is custom-designed for data mining (data-driven
predictive modeling) and geo-spatial visualization of the resulting models, such as predicted
and measured values, spatially distributed errors and ranked variables in terms of their
relevance for predicting the output variables. The major steps of GeoLearn are illustrated in
figure 3 with the tabs labeled as “Load Raster”, “Integration”, “Create Mask”, Attribute
Selection”, “Modeling” and “Visualization.” At every step, a user is presented with a set of
parameters and operations to perform as well as with the visualization of the data. Figure 3
demonstrates the first step labeled as “Load Raster” with the left pane showing the raster files
already loaded, right pane displaying the selected file (digital elevation map of Illinois),
parameters of the display below athe image and the operations/buttons for loading (“Add”),
removing (“Remove”) and mosaicking (“Mosaic”) raster files. The computer science
problems and several solutions are documented in [7]. The problems include (a) out-of-core
processing and visualization for files that would not fit to RAM, (b) integration of raster files
with multiple projections, datums, and spatial resolutions, and (c) ranking of input variables
in terms of their relevance to predicting output variables based on multiple machine learning
techniques. The GeoLearn system has been used for analyzing the spatial and temporal
dependencies of vegetation indices on 29 terrain, climate and land use variables at the US
continental scale with 1KM spatial resolution and one month temporal resolution.

Like GeoLearn the SP2Learn [27, 28] system encapsulates a linear workflow assisting
with modeling groundwater recharge and discharge rates. In this case, the design of SP2Learn
workflow supports a portion of the informatics methodology for taking multiple clouds of
geospatial point measurements, interpolating them into raster sets (spatial grids), predicting
groundwater recharge and discharge (R/D) rates using physics-based models, introducing
boundary conditions to R/D rate predictions by spatial image filtering, integrating auxiliary
variables with the filtered R/D rate predictions, deriving rules for relating auxiliary variables
with R/D rate predictions and applying the rules to the R/D rate maps to obtain the best
accuracy and spatial consistency of the results. The phenomena related to groundwater
recharge and discharge result from a set of complex, uncertain processes and are generally
difficult to study without visual explorations and simulations. SP2Learn is an example of a
framework supporting such exploratorations and simulations. By combining multiple pattern

Community-Scale Cyberinfrastructure for Exploratory Science 257

Figure 3. GeoLearn user interface supporting a methodology for data-driven exploratory analyses of
hydrologic variables and their relationships.

recognition and data mining methods into a linear workflow, scientists can explore and
discover relationships between recharge and discharge rates and other variables. In addition,
the SP2Learn workflow can be used for optimization of all parameters of this process
including interpolation, filtering, integration and machine learning algorithms. Figure 4
illustrates the main workflow steps as the tabs labeled “Load Raster”, “Registration”, Create
Mask”, Attribute Selection”, “Rules” and “Apply Rules.” These steps of the methodology
assume that interpolation, physics-based prediction and spatial image filtering have been
completed and the focus is on the auxiliary variables and their relationships to the R/D rate
(or any arbitrary variable of interest). SP2Learn have been used in the past for exploring the
relationships between R/D rate and slope, soil type and proximity to water bodies, and for
optimization of the parameters of the process.

The earthquake hazard risk management called MAEViz [29] is another application of
NCSA technologies. Based on the Mid-America Earthquake (MAE) Center research in
Consequence-based Risk Management (CRM) [35], it constitutes an example of a domain
specific solution that contains several elements described so far. Like the Cyberintegrator, the
framework is built on top of the Eclipse RCP, to make the system modular and easily
extensible to new analysis and data formats. A user can create scenarios, access local and
remote repositories, and execute decision support models [30]. As new algorithms are
developed, they can easily be added to the framework. One specific use case developed in the
MAEViz framework investigated the earthquake risk to buildings in the Zeytinburnu district
of Istanbul, Turkey [30]. Simulations of physical damage from ground shaking to buildings

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 258

Figure 4. SP2Learn user interface supporting a methodology for discovering rules between
recharge/discharge rates and auxiliary variables (in this example they are slope, proximity to water or
soil type). The relationships of these variables have not been quantified but are a part of experts’ tacit
knowledge.

were run. Based on the results, critical buildings that should be considered for retrofit were
identified. Users can apply advanced filtering capabilities to visualize the most critical
buildings and start exploring retrofit options (figure 5). Economic impacts such as property
tax or sales tax changes from the loss of buildings can also be assessed from this interface.
Following the CRM paradigm, retrofits can be applied to the critical buildings in the
simulation and new simulations can be executed.

CONCLUSIONS AND FUTURE DIRECTIONS

The experience of working on cyberinfrastructure research and development can be

described as a highly inter-disciplinary effort involving cross-disciplinary education and
multi-disciplinary solutions. In contrary to many other efforts, the process involves
community engagement to address the community scale science and has to support scientific
explorations to enable discoveries. We presented community informatics driven requirements
for building CI software to highlight key features and/or performance expectations. Based on
the lessons learnt from our past development, we have also discussed some of the basic
design principles for building new software for CI and listed several NCSA technologies
available today.

Community-Scale Cyberinfrastructure for Exploratory Science 259

Figure 5. MAEViz interface for earthquake hazard risk management. Buildings in the right pane are
colored bytheir mean damage, where blue refers to the lowest damage and red denotes the highest
damage.

The future direction of working on cyberinfrastructure research and development is
driven by the distributed nature of the resources (e.g., data access, access to services), by
data-driven analyses in systems science, and by the capabilities needed for making
discoveries and innovations in virtual observatory/digital watershed-type environments.
Furthermore, modern digital publishing is changing the flow of information in fundamental
ways. The amount of data and the diversity of data types increase, creators can (and often
must) publish directly, dissemination costs are negligible, and users participate in editing and
curating. Research is often hampered not by lack of data, but by the problem of finding them
and interpreting them within context. Therefore the value of content repositories increasingly
lies in the metadata and services that link core artifacts into a semantic web, which provides
them meaning and facilitates their access. Domain scientists can and must contribute to the
process of publication and curation. Without their active participation, the scientific discovery
process becomes too onerous to curate large amounts of data, and information that is
important to the community but not to the individual researcher will be lost (e.g., proper
interpretation of a procedure).

REFERENCES

[410] NSF, NSF’s Cyberinfrastructure Vision for 21st Century Discovery, NSF
Cyberinfrastructure Council. 2006.

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 260

[411] Maidment, D. R., ed. (2005), Hydrologic Information System Status Report, Version 1,
Consortium of Universities for the Advancement of Hydrologic Science, Inc, 224 p,
http://www.cuahsi.org/docs/HISStatusSept15.pdf (Last accessed on October 2nd, 2008).

[412] Atkins, Revolutionizing Science and Engineering through Cyberinfrastructure: Report
of the National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure. 2003.

[413] Finholt, T., and Van Briesen, J. (2007). WATERS Network Cyberinfrastructure Plan:
the WATERS, Network Project Office Cyberinfrastructure Committee. Unpublished
TechnicalReport., http://www.watersnet.org/docs/CyberinfrastructurePlan.pdf. Last
accessed on October 2nd, 2008)

[414] Bajcsy, P., et al., A Meta-Workflow Cyber-infrastructure System Designed for
Environmental Observatories. Technical Report: NCSA Cyber-environments Division,
ISDA01-2005, December 30, 2005.

[415] Bajcsy, P., et al., Survey of Bio-Data Analysis from Data Mining Perspective, in Data
Mining in Bioinformatics, J.T.L. Wang, et al., Editors. 2004, Springer Verlag. p. 9-39.

[416] Kumar, P., et al., Hydroinformatics: Data Integrative Approaches in Computation,
Analysis, and Modeling. 2005: CRC Press LLC.

[417] Gil, Y., et al., Examining the Challenges of Scientific Workflows. Computer, 2007.
40(12): p. 24-32.

[418] Foster, I. and C. Kesselman, Computational Grids, in The Grid: Blueprint for a New
Computing Infrastructure. 1999, Morgan-Kaufman.

[419] Karo, M., et al., Applying Grid technologies to bioinformatics, in 10th IEEE
International Symposium on High Performance Distributed Computing. 2001. p. 441-
442.

[420] Spencer, B. F. Jr., et al. (2006). Cyberenvironment project management: lessons
learned., 26 p, September 5, 2006, URL : http://www.nsf.gov/od/oci/CPMLL.pdf (Last
accessed on October 2nd, 2008).

[421] Myers, J.D., et al., Re-integrating the research record. Computing in Science and
Engineering, 2003.

[422] Dasu, T. and T. Johnson, Exploratory data mining and data cleaning. 2003, New York
Wiley-Interscience.

[423] Pyle, D., Data preparation for data mining. 1999, San Francisco: Morgan Kaufmann
Publishers.

[424] Marini, L., et al., Supporting exploration and collaboration in scientific workflow
systems, in AGU, Fall Meet. Suppl., Abstract IN31C-07. 2007: San Francisco, CA.

[425] Daigle, S.L. and P.M. Cuocco, Portal Technology Opportunities, Obstacles, and
Options: A View from the California State University, in Web Portals and Higher
Education Technologies to Make IT Personal, Richard N. Katz and Associates, Editor.
2002, Jossey-Bass, A Wiley Company.

[426] IBM Global Education Industry, Higher Education Portals: Presenting Your Institution
to the World. 2000. Available as Sue Hoffman, IBM brings strategic business
intelligence technology to the college campus, IBM Press Room, NASHVILLE, TN -
10 Oct 2000: URL: http://www-03.ibm.com/press/us/en/pressrelease/1523.wss, Last
accessed on October 2nd, 2008

[427] Altintas, I., et al., A Framework for the Design and Reuse of Grid Workflows, in SAG
2004. 2005, Springer-Verlag Berlin, Heidelberg. p. 120-133.

Community-Scale Cyberinfrastructure for Exploratory Science 261

[428] Ludäscher, B., et al., Scientific Workflow Management and the KEPLER System.
Concurrence and computation: Practice and Experience, Special Issue on Scientific
Workflows.

[429] Welge, M., et al., Data to Knowledge (D2K): A Rapid Application Development
Environment for Knowledge Discovery in Database. 1999, National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign,
Champaign.

[430] Alameda, J., et al., Ensemble Broker Service Oriented Architecture for LEAD, in the
22nd International Conference on Interactive Information Processing Systems for
Meteorology, Oceanography, and Hydrology. 2006.

[431] Liu, Y., et al., Towards A Rich-Context Participatory Cyberenvironment, in
International Workshop on Grid Computing Environments 2007, Supercomputing
Conference 2007 (SC07). 2007: Reno, NV.

[432] Beckett, D., RDF/XML Syntax Specification (Revised). 2004, W3C.
[433] Bajcsy, P., et al., GeoLearn: An Exploratory Framework for Extracting Information and

Knowledge from Remote Sensing Imagery, in 32nd International Symposium on
Remote Sensing of Environment Sustainable Development Through Global Earth
Observations. 2007: San Jose, Costa Rica.

[434] Bajcsy, P., et al., GeoLearn: Prediction Modeling Using Large Size Geospatial Raster
and Vector Data, in EOS Trans. AGU, 87(52), Fall Meet. Suppl., Abstract IN41C-06.
2006: San Francisco, CA.

[435] Kumar, P., et al. Data Driven Discovery from Satellite Remote Sensing: System
Development and Analysis of Vegetation Indices, in ESTO 2006. 2006.

[436] Lin, Y.-F., et al., Evaluation of Alternative Conceptual Models Using Interdisciplinary
Information: An Application in Shallow Groundwater Recharge and Discharge, in
AGU, Fall Meet. Suppl., Abstract H31G-0738. 2007: San Francisco, CA.

[437] Lin, Y.-F., et al., Development of Point-To-Zone Pattern Recognition And Learning
Utilities For Groundwater Recharge And Discharge Estimation, in The geological
society of America 2006 Annual Meeting. 2006: Philadelphia.

[438] Elnashai, A., et al., MAEviz Architecture, in HAZTURK Workshop 2007. 2007:
Istanbul, Turkey.

[439] Elnashai, A., et al., Overview of Applications of MAEviz-Istanbul, in HAZTURK
Workshop 2007. 2007: Istanbul, Turkey.

[440] Sanchez A., Towards a demonstrator of an urban drainage decision support system,
MSc thesis, 2007, UNESCO-IHE Institute for Water Education, Delft, the Netherlands.

[441] Zhang, Y.-L., Baptista, A.M. and Myers, E.P. (2004) "A cross-scale model for 3D
baroclinic circulation in estuary-plume-shelf systems: I. Formulation and skill
assessment". Cont. Shelf Res. 24: 2187-2214

[442] Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T. (2000). A fast and elitist
multiobjective genetic algorithm: NSGA-II. Technical Report No. 2000001. Kanpur:
Indian Institute of Technology Kanpur, India.

[443] Rosman, L. A. (2005) Storm water management model user's manual Version5, U.S
Environmental Protection Agency.Cincinnati, Ohio. USA.

[444] Elnashai, A., Hajjar, J. (2006). “Mid-America Earthquake Center Program in
Consequence-Based Seismic Risk Management,” Proc. of the 100th Anniversary

Peter Bajcsy, Rob Kooper, Luigi Marini et al. 262

Earthquake Conference: Managing Risk in Earthquake Country, San Francisco,
California, Abstract/Paper Number: 8NCEE-002047

[445] Liu, Y., Myers, J., Minsker, B., Futrelle ,J. (2007), Leveraging Web 2.0 technologies in
a Cyberenvironment for Observatory-centric Environmental Research, OGF-19
Semantic Web 2.0 and Grid Workshop, Jan. 29, 2007, the 19th Open Grid Forum,
Chapel Hill, North Carolina, USA.

[446] Minsker, B., J. Myers, M. Marikos, T. Wentling, S. Downey, Y, Liu, P. Bajcsy, R.
Kooper, L. Marini, N. Contractor, H. Green, Y. Yao, J. Futrelle. Environmental
CyberInfrastructure Demonstrator Project: Creating Cyberenvironments for
Environmental Engineering and Hydrological Science Communities. Presented at
Supercomputing Conference 2006 (SC06), Tampa, FL, November 13-17, 2006.

[447] Liu, Y., S. Downey, B. Minsker, J. Myers, T. Wentling, and L. Marini, Event-Driven
Collaboration through Publish/Subscribe Messaging Services for Near-Real- Time
Environmental Sensor Anomaly Detection and Management, Eos Trans. AGU 87(52),
Fall Meet. Suppl. 2006.

[448] Marini, L., B. Minsker, R. Kooper, J. Myers, and P. Bajcsy, CyberIntegrator: A Highly
Interactive Problem Solving Environment to Support Environmental Observatories, Eos
Trans. AGU 87(52), Fall Meet. Suppl. 2006.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 13

CYBERINFRASTRUCTURE FOR BIOMEDICAL
APPLICATIONS: METASCHEDULING AS AN ESSENTIAL

COMPONENT FOR PERVASIVE COMPUTING

Zhaohui Ding1, Xiaohui Wei2, Osamu Tatebe3,
Peter W. Arzberger4, Philip M. Papadopoulos5

and Wilfred W. Li6
1,2 College of Computer Science and Technology, Jilin University

Changchun, Jilin, 130012 P. R. China
3 Department of Computer Science, Tsukuba University

Tsukuba, Ibaraki, 3058573, Japan
4 National Biomedical Computation Resource, University of California

San Diego, CA 92093, United States
5,6 National Biomedical Computation Resource,

San Diego Supercomputer Center
University of California, San Diego, CA 92093, United States

ABSTRACT

Biomedical, translational and clinical research through increasingly complex
computational modeling and simulation generate enormous potential for personalized
medicine and therapy, and an insatiable demand for advanced cyberinfrastructure.
Metascheduling that provides integrated interfaces to computation, data, and workflow
management in a scalable fashion is essential to advanced pervasive computing
environment that enables mass participation and collaboration through virtual
organizations (VOs). Avian Flu Grid (AFG) is a VO dedicated to members from the

1 E-mail address: zhaohui.ding@email.jlu.edu.cn
2 E-mail address: weixh@email.jlu.edu.cn
3 E-mail address: tatebe@cs.tsukuba.ac.jp
4 E-mail address: parzberg@ucsd.edu
5 E-mail address: phil@sdsc.edu
6 E-mail address: wilfred@sdsc.edu

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 264

international community to collaborate on antiviral drug discovery for potential pandemic
influenza viruses. The complex and dynamic drug discovery workflow requirement in the
AFG-VO is met through innovative service oriented architecture with metascheduling
playing a key role. The community scheduler framework (CSF4) is a web service
resource framework (WSRF)-compliant metascheduler with an extensible architecture for
customized plugins that provide cross site scheduling, workflow management, and data-
aware scheduling on the Grid Datafarm (Gfarm) global filesystem. The Opal web service
toolkit enables existing scientific applications to be deployed as web services, accessible
by various types of clients including advanced workflow management tools such as
Vision and Kepler. Molecular dynamics and virtual screening applications exposed as
Opal based services are metascheduled using CSF4 to access distributed resources such
as the Pacific Rim Applications and Middleware Assembly (PRAMGA) grid and the
TeraGrid. Emerging trends in multicore processors, virtualization and Web 2.0 continue
to shape the pervasive computing environment in the years to come and pose interesting
opportunities for metascheduling research and development.

INTRODUCTION

From Metacomputing to Cyberinfrastructure

About 20 years ago, the term “metacomputing” was coined by Larry Smarr to describe a

connected network computing environment [1], which would eventually enable everyone to
obtain information on demand “all from their own desktop workstations”. With the
emergence of the globus toolkit [2], metacomputing has been popularized as grid computing,
with the promise of computing resources as dynamically accessible as the electricity grid.
Various countries have made major investments in the development of the grid middleware,
software stacks that bridge the network and computing resources to the domain specific
applications and users [3].

Since 1997, the US funding agencies such as National Science Foundation (NSF),
Department of Energy (DOE), have funded the development of cyberinfrastructure through a
series of initiatives including but not limited to the National Partnership for Advanced
Computational Infrastructure (NPACI) [4], National Middleware Initiatives (NMI), Software
Development for Cyberinfrastructure (SDCI), Science Discovery through Advanced
Computing (SciDAC) for software; the OptIputer [5], the Global Ring Network for Advanced
Application Development (GLORIAD) [6] for network; the TeraGrid [7], the Open Science
Grid (OSG) [8], and the Petascale Computing Environment for high throughput and high
performance computing. A number of international grid activities have also sprung up, such
as UK e-Science Programme [9], The Enabling Grids for E-science (EGEE) [10] from the
European Union, and the Pacific Rim Grid Applications and Middleware Assembly
(PRAGMA) grid [11] supported by NSF and member institutes in the Asian Pacific region. In
the public health and biomedicine sector, the National Center of Research Resources
(NCRR), National Institutes of Health (NIH) has funded the development of the Biomedical
Informatics Research Network (BIRN) [12] for data sharing; the National Cancer Institute
(NCI) has supported the development of the Cancer Biomedical Informatics Grid (caBIG)
[13] for grid services for biomedical data models and integration. With the release of the
Atkins report in 2003, cyberinfrastructure is generally used to refer to the national and

Cyberinfrastructure for Biomedical Applications 265

international network of computers, storage, software and human resources dedicated to
support the advancement of science, engineering and medicine [14, 15].

Today, as Moore’s law continues to hold at doubling the amount of transistors in an
integrated circuit every 18 to 24 months [16], several new trends are developing. Electricity
usage and cooling requirements have limited the clock speed of the processors, and led the
chip designers to the production of multi-core processors, with multiple processors in the
same silicon chip [17]. Soon, workstations may be configured with 16 or 32 CPUs, each of
which with 8 or 16 cores, enunciating the dawn of personal supercomputers. More specialized
accelerators such as multi-core graphical processing units (GPUs) [18], and field
programmable gate array (FPGAs) [19] make up an even more heterogeneous computing
environment even within the same machine, posing additional challenges to the traditional
programming models. The “desktop workstations” in the vision of metacomputing are
appearing as either multi-core personal supercomputers or as increasingly small form but
powerful devices such as laptops, pocket PC’s and smart phones. Projects that thrive upon
“salvaging” spare cycles from the general consumers, such as SETI@home [20],
Folding@home [21], or FightAids@home [22] on the World Community Grid, have taken
the claim of “theoretical” or “peak” petaflop computing power even before the leadership-
class “sustained” petascale supercomputers become assembled. High speed satellite, wireless
and cellular networks are making information readily available anywhere on demand, with
ultra-broadband networks emerging for scientific and medical applications.

With the commoditization of computing resources and the prevalence of high speed
network, optical [23] or wireless, a next generation grid computing paradigm, termed “Cloud
Computing”, has emerged. Computing clusters and data storage may be provisioned on
demand transparently from pools of highly automated and massively parallel grids of data and
compute resources, often serviced by third party providers [24, 25]. Cloud computing,
shifting the burden of computer, network, software and content management away from end
users, could eventually become the backbone for the popular online social network, gaming,
information sharing, education, research and public health, and an integral part of the
cyberinfrastructure for the 21st century.

While cloud computing makes utility computing [26] possible in a large scale, the way
the applications are deployed and accessed are best described using virtualization [27] and
Web 2.0 [28]. These two paradigms significantly reduce the application deployment
overhead, and increase the ease of user participation and contribution through the service
oriented architecture. Virtualization describes the portable, replicable and scalable computing
environment provisioned through virtual machines within cloud or grid computing facilities;
whereas Web 2.0 describes the participatory nature of a web-based platform for users to
compose applications, and complex workflows with easy to use tools. Together these new
trends influence how the cyberinfrastructure for biomedical computing evolves in the years to
come.

New Collaborative e-Science through Virtual Organizations

The impact of cyberinfrastructure on e-science is most felt through the collaborative

research it enables on a scale never imagined before. One of the key components is the ability
to form virtual organizations, where researchers and professionals alike are able to share data,

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 266

applications, and visualization environment transparently and seamlessly with the necessary
authentication and authorization [29]. For example, the BIRN project enables the biomedical
researchers to share neuroscience imaging datasets, analysis tools, as well as access to
TeraGrid resources through its portal environment [12]. The OptIportals allow researchers to
visualize large datasets over high speed optical networks. [5]. Similarly, the OSG supports
high energy physics research, as well as computational biology virtual organizations [8, 30].

Virtual Organizations

Virtual Organizations provide applications and resources meeting specific user
requirements through unified user, job, and resource management schemes. User management
includes the accounting of allocations for individual grid users or shared community users,
authentication and authorization of independent or federated identities [31]. Job management
includes the classification of jobs based on priority or type (array job, serial or parallel), the
monitoring of job status, information cache, fault-tolerance and job migration. Resource
Management includes resource classification (compute, data and application resources),
availability, reservation and virtualization [32]. Some comprehensive software stacks for
developing VO-based grid computing environment have emerged over time, e.g., the globus
toolkit, Condor [33], VDT (Virtual Data Toolkit) [34], gLite [35], OMII [36], and NAREGI
[37].

The Avian Flu Grid (AFG) is a virtual organization in the PRAGMA grid designed to
provide a computational data grid environment, with databases and shared information
repositories in the fight against the pandemic threat of avian influenza viruses. Figure 1
illustrates the AFG VO in terms of the specific requirements mentioned above. It relies on the
PRAGMA certificate authority (CA), as well as individual member organization CA’s to
issue user certificates; a VOMS server is coupled with GAMA to help manage user
credentials. Job management is handled through the metascheduler CSF4 [38], and data
management is achieved using Gfarm [39]. The molecular dynamics (MD) simulations are
stored in the M*Grid [40]. It takes advantage of the distributed resources in the PRAGMA
grid for virtual screening experiments, as well as the high performance computing resources
for MD studies. Such virtual organizations greatly increase the productivity of researchers by
providing defined services desired by groups of users on top of the basic security, resource,
and most importantly, very specific user requirements.

Figure 1. Avian Flu Grid Overview of Activities.

Cyberinfrastructure for Biomedical Applications 267

VO User, Computation and Data Management
In general, the basic security mechanism for user management involves the use of Grid

Security Infrastructure (GSI) [41], implemented in the Globus toolkit (GT) [42]. X509 based
certificates are created and signed by a trusted CA (certificate authority) for user
identification, and the associated user proxies are used as user credentials for authentication
and authorization in different VO’s, often managed through a service such as MyProxy [43],
GAMA (Grid Account Management Architecture) [44], or VOMS (Virtual Organization
Management System) [45]. VOMS provides a centralized certificate management system
with extended attributes which enables role based authentication and authorization with
support for multiple VO’s. A user may use a command-line tool (voms-proxy-init) to
generate a local proxy credential based on the contents of the VOMS database and VOMS-
aware applications can use the VOMS data, along with other services such as GUMS to
support various types of usage scenarios and proper accounting practices [46].

The computational infrastructure often comprises grids of grids, grids of clusters or just
clusters built upon proprietary or open source operating systems. For example, Rocks cluster
environment is a popular distribution for building Linux based clusters and grids [47], with
the appropriate grid rolls [48]. The BIRN infrastructure is replicable and expandable using the
BIRN Racks, a minimum set of hardware requirement, with a customized biomedical
software stack encapsulated using Rocks rolls. Condor, VDT, GT4, e.g., may be installed on
Rocks clusters to build a grid of clusters. More than half of clusters in the PRAGMA grid use
the Rocks cluster environment [39], with the entire grid integrated through the globus toolkit.

Data services, which include basic data handling, metadata management, automatic data
staging, replication and backup, are often provided using gridFTP [49], RFT [50], Gfarm [51],
Storage Resource Broker [52], dCache [53] or similar services. Resources such as the
TeraGrid may also employ high performance file systems such as GPFS (General Parallel
File System) [54] or Lustre file system [55] for large I/O requirements.

Metaschedulers Reduces Complexity for Users and Applications Developers

Each of the major middleware packages includes some form of resource brokers or
metaschedulers, which ensures that the data and computational requirements are met across
sites or clusters. Metascheduler services range from resource discovery, application staging,
data I/O management, and on-demand computing resources [56]. However, they are often tied
to a particular unified software stack in grid environments such as EGEE or OSG. Quite often,
grids comprise heterogeneous resources distributed in multiple VOs which may have different
local policies. Users and application developers are faced with many different choices of local
schedulers, grid protocols, and resource brokers. It is desirable to have a lightweight
metascheduler that may enable a biomedical researcher to access any grid through
standardized protocols. Different approaches have been taken to achieve this goal. APST is an
agent based approach for parameter sweep applications [57, 58]. Nimrod/G provides an
economy based scheduling algorithm when choosing computational resources [59]. The
Globus GRAM (Grid Resource Allocation and Management) provides a standardized
interface to access different local schedulers [60]. Condor-G offers users of condor pools to
also take advantage of Globus-based grids [61]. Gridway supports the DRMAA (Distributed
Resource Management Application API) specification [62], as well as the Unicore, and EGEE
infrastructure [63]. CSF4 leverages the Globus GRAM, and provides an advanced plugin
mechanism for cross domain parallel applications, as well as workflow management [56].

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 268

Since a metascheduler is able to provide a virtualized resource access interface to end
users, and enforce global policies for both resource providers and consumers as well, it plays
an increasingly important role in efficient management of computational and data grids.
Metascheduling is essential to workflow management and seamless access to distributed
resources.

Emerging Technology for Pervasive Computing

Virtualization and Cloud Computing
In the age of cloud computing, virtualization of physical resources have added a dynamic

twist to how we think about providing a customized computing environment. In order to cater
to various user requirements for applications, memory, storage, and network infrastructure, it
is desirable to provision such customized environments through the use of virtual machines
[27]. These virtual machines encode the optimized requirements of the included applications,
and may be scheduled on demand, within a compute cloud of hundreds and thousands of
processing cores. Cloud computing facilities such as the Amazon EC2 (Elastic Compute
Cloud), or the IBM Blue Cloud may be economical enough for occasional users to deploy
their applications and have their problems solved without investing in the computational
infrastructure. At the campus level, the large compute and data centers such as the Tsubame
supercluster [64], and the progress in developing virtual clusters [65] define a new outlook for
grid computing, where the grids are completely virtualized, within a single compute cloud, or
across sites. Such virtual organizations are distinct in the sense that the applications within the
VO could come with the virtual machine images completely. This enables the virtual
deployment of “everyone’s supercomputers” since the application environment are virtual
images of one’s familiar desktop, workstation or cluster environment, optimized and with
extreme scalability.

Web 2.0

While virtualization, virtual organizations are buzz words for the computer scientists, the
biomedical researchers are excited by different tunes. Applications in systematic modeling of
biological processes across scales of time and length demand more and more sophisticated
algorithms and larger and longer simulations. The grid computing technologies are enabling
the creation of virtual organizations and enterprises for sharing distributed resources to solve
large-scale problems in many research fields. One big challenge for building
cyberinfrastructure is to enable Web 2.0 for scientific users, based on user requirements and
the characteristic of grid resources, as exemplified by the massive collaborations that brought
into fruition such public resources as Wikipedia [66]. Scientific users need the ability to use
distributed resources for the scalability without knowing how it’s provided.

The Web 2.0 paradigm provides several lessons that can be leveraged by the scientific
and grid communities. In “What is Web 2.0” [28], O’Reilly lists some design patterns and
general recommendations that are a large part of the Web 2.0 paradigm: (1) use the Web as a
platform for development, (2) harness the collective intelligence of the community, (3) focus
on services, and not prepackaged software, with cost-effective scalability, (4) enable light-
weight programming models, and (5) provide a rich user experience. In principle, the Web 2.0
paradigm allows users to contribute their applications, share data, and participate in

Cyberinfrastructure for Biomedical Applications 269

collaborative activities with ease and keep their focus on the process of creation, instead of
maintaining and learning new tools and interfaces. The virtualization trend in computational
resources is going to play an important role in enabling Web 2.0 for the masses.

Opal Toolkit for Virtualized Resources

The disparity between the exponential growth of capacity for computing, optical fiber

and data storage [23] and the ability of researchers to take advantage of the computing power,
and visualizing the information has been growing. In order to allow user to truly enjoy the
benefits of pervasive computing, software design must observe human social behaviors, lay
people or scientists alike. The popularity of social networks such as MySpace [67], FaceBook
[68], even among educated researchers, suggests that Web 2.0 or easily accessible
participatory, pervasive computing, is for everyone, and the next generation of researchers
certainly expects it.

The Opal toolkit models applications as resources while exposing them as Web services
[69]. The ability to deploy any application within any compute environment and exposes it as
a web service with an automatically generated user interface accessible from any type of
client significantly reduces cost of developing reusable and scalable applications. It also
reduces the cost of service mashups because legacy applications may now be made accessible
a standardized interface, with scalable computing and data backend support. Lastly, the
automatic interface generation feature enables the user with to receive the latest updates
automatically, and with minimal changes from what he’s already familiar with. The purpose
of Opal, therefore, is to shield the scientific application developers from the fast changing
grid computing environment, and make the underlying grid middleware, currently using
WSRF [70], compatible with standard web services. Opal is one of the tools that enable the
Web 2.0 paradigm for scientific users and developers.

The base version of Opal by default submits jobs to a local scheduler. This places a limit
to its scalability to a single cluster, physical or virtual. For greater scalability, it is necessary
to leverage multiple clusters, physical or virtual, located at different locations or within the
same compute cloud. With that in mind, we have extended the concept of an application as a
requestable resource to the metascheduler CSF4 [7], the open source meta-scheduler released
as an execution management component of the Globus Toolkit 4 [10]. CSF4 can coordinate
heterogeneous local schedulers and provide an integrated mechanism to access diverse data
and compute resources across the grid environment. More information about the Opal toolkit
[71] and its usage is available online [72].

INTEGRATED COMPUTATION, DATA AND
WORKFLOW MANAGEMENT THROUGH METASCHEDULING

Metaschedulers and Resource Brokers

As described earlier, many kinds of grid resource brokers, meta-schedulers and utilities

have been proposed and developed for parallel computing and scheduling in the

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 270

heterogeneous grid environment. They are quite different in resource management protocols,
communication mode and applicable scenario, etc. A typical metascheduler handles the data
stage in, credential delegation, job execution, status monitoring, and data stage out. Most
existing metaschedulers only sends jobs to a single cluster, and transfer the data output to the
user’s machine or a central data server. Here we discuss some challenges in providing
integrated computation, data and workflow management in biomedical applications which
must be met through better and more intelligent metaschedulers and resource brokers.

Cross-site Job Scheduling

Running parallel jobs crossing sites in a grid environment is still a challenge. Parallel
Virtual Machine (PVM) [73] and Message Passing Interface (MPI) [74] are usually used in
the traditional single cluster environment. Grid enabled MPICH (MPICH-G2) is a Grid-
enabled implementation of MPI, which is able to execute a parallel job across multiple
domains [75] and has been used in many life science applications. Nonetheless, MPICH-G2
does not synchronize the resource allocation in multiple clusters, which would cause resource
waste or even dead lock problems (see section 3.1). Many researchers have found that the
MPICH-G2 jobs cannot execute successfully unless manual reservations are made in advance
at destination clusters. Apparently, without an automated high-level coordinator’s
participation, these problems are hard to resolve.

The Moab grid scheduler (Silver) consists of an optimized and advanced reservation
based grid scheduler and scheduling policies, which guarantee the synchronous startup of
parallel jobs by using advanced reservation [76]. Silver also proposed the concept of
synchronized resource reservation for cross-domain parallel jobs. GARA [32] splits the
process of resource co-allocation into two phases: reservation and allocation. The reservation
created in the first phase guarantees that the subsequent allocation request will succeed.
However, GARA did not address synchronized resource allocation. Furthermore, GARA and
Silver both require that local schedulers support resource reservation. Many other meta-
schedulers, such as Gridway [63], have yet to make optimizations for cross-domain parallel
jobs.

Grid Filesystems and Data Aware Scheduling

One significant bottleneck of the existing computational platforms, especially in the age

of petascale computing, is the efficient data management, transfer, replication and on demand
access to large datasets. Existing data management, high performance I/O, and data sharing
solutions include but not limited to Gfarm, SRB, GPFS, and GSI-FTP. However, a number of
these require the use of specific API’s and places special burden on application developers
and users. It has previously been shown that Gfarm-FUSE (File System in User Space) may
enable legacy applications to leverage grid resources without modification [77], and data
aware scheduling may provide efficient support for scheduling the computation to where the
data resides [78].

When users have to access different compute resources available in different virtual
organizations, file transfer between sites become a bottleneck due to network latency,
especially when large amounts of small files are created. For a round trip time (RTT) of 0.3
ms, 10,000 files create 30 min of delay, 48,000 files mean a whole day of delay for a single

Cyberinfrastructure for Biomedical Applications 271

user, and assuming only one exchange is required. This multiplies with the number of sites
involved, and the number of services involved due to security requirements. The solution,
until the ubiquity of dedicated high speed fiber optical networks is achieved, is to take the
computation to the data. The success of Google lies in its technical infrastructure which
enables localized data centers to provide the best possible service to the local population, with
the necessary replication of data using dedicated connections. However, scientists always
need to take some data with their own computer, send some data to their collaborators or
share large datasets for data mining purposes, or visualization on specialized hardware, after
the computation is done.

On the other hand, there is always need to transfer tens to hundreds of GB’s of data from
instruments such as electron microscopes (EM’s), mass spectrometers, sequencing centers,
and metagenomic or ecological sensory network, for storage and analysis, where the data
come in streams and need to be processed on the fly or stored. In the case of EM or large
scale simulations, there is the requirement of real time feedback or progress monitoring, this
also places additional constraints on how fast the data may be analyzed and/or visualized.
How to manage these data streams and make them available to legacy applications efficiently
remains a challenge and is an area of active research [79].

Workflows in Translational Biomedical Research

Workflow is a group of correlative tasks, procedural steps, organizations or roles

involved, required input and output information, and resource needed for each step in a
business process, can be executed automatically or semi-automatically. Workflows may be
described at different levels through process modeling, and more than 100 workflow patterns
have been extracted [80]. XPDL (XML Process Definition Language) is often used to store
and exchange the resulting process diagram [81], which may be mapped to an execution
language such as BPEL (business process execution language), and executed in an execution
engine such as ActiveBPEL [82]. However, workflows in business processes exhibit different
characteristics from the workflows in scientific investigations. Grid Process Execution
Language (GPEL) [83], an extension of WS-BPEL, and the corresponding grid workflow
engines are being developed [84].

In biomedical research, grid based workflows require additional parameters such as
statefulness, performance and reliability [85]. Some typical examples of workflows are
illustrated in figure 2. For example, a user often needs to connect the input and output of
several applications into a workflow, such as the use of a MEME-based position specific
score matrix for a MAST-based database search [86]. Or in the case of electron microscopy,
the use of MATLAB and a series of steps need to be done in series with large datasets to
construct 3D volume reconstruction using 2D transmission EM tilt imaging series [87]. Other
workflows involve sophisticated facial surgery simulation software through a series of image
segmentation, mesh generation, manipulation and finite element simulation (see figure 3 and
[88]).

The workflows often encompass web services with strongly type data [89] or legacy
applications exposed as web services through a web service wrapper such as Opal [90]. The
flexibility of web services interface and its accessibility by different clients have contributed

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 272

 Figure 2. Sample workflows involving sequence analysis, visualization and electrostatics calculations.

Figure 3. Image processing workflow: steps involved from light microscopy images to mesh generation,
refinement to computational simulations. Courtesy of Zeyun Yu.

to its popularity as the main standard for developing a loosely coupled computing framework
for different types of clients, and also make them suitable for relatively tightly coupled

Cyberinfrastructure for Biomedical Applications 273

service mashups, in addition to the simple and popular REST (Representational State Transfer)
protocol [91].

Quite often, in the field of genomic analysis, or virtual screening experiments, in a way
that is very similar to parameter sweep studies, one often needs to rerun the same application
with different parameters, e.g., input sequences, or different ligands. In such cases, the
workflow or composite of workflows may be very tightly coupled applications or loosely
couple services. Such scientific workflow requires special treatment since they require high
throughput, fault tolerance, checkpointing and restarts, and pose particular challenges to
metascheduling.

The main problems we encountered when running biomedical application on grids
include huge amount of distributed data, distributed computing resource and sub jobs
dependency in a large task. Although the global file system like Gfarm and the Meta-
Scheduler like CSF4 are able to handle the distributed data and computing resources.
Evaluation of job status, quality of service in terms of network bandwidth, queue length, and
job turn-around time, are still difficult challenges to be met.

The job dependency issue can be handled by meta-scheduler easily, since meta-scheduler
is able to queue and disassemble tasks and monitor the jobs status. Driven by this, we have
developed a grid workflow plug-in in CSF4 meta-scheduler and the details will be described
in next section.

CUSTOMIZED SCHEDULING POLICY PLUG-INS
FOR BIOMEDICAL APPLICATIONS

Many meta-schedulers are built on the top of specific local resource management system,

such as Silver and Condor-G. They provide plenty of policies derived from local schedulers.
However, these policies are implemented under specified local system protocols, so they are
not available in a heterogeneous environment. The Nimrod/G resource broker introduces the
concept of computational economy to metascheduling [59]. It leverages the Globus
Monitoring and Discovering System (MDS) to aggregate resource information and enforces
scheduling policies based on an auctioning mechanism [92]. To process resource negotiation,
it is required that resource brokers use a common protocol like SNAP [93], and the
negotiation result is difficult to predict. Gridway’s scheduling system follows the “greedy
approach”, implemented by the round-robin algorithm.

We have developed additional plug-in modules for the Community Scheduler Framework
(CSF4), e.g., an array-job plug-in to schedule AutoDock [94] or Blast [95] like applications,
and demonstrate that many popular life science applications can take the advantage of CSF4
meta-scheduling plug-in model. Newly developed data-aware plugin and workflow plugin are
also described.

CSF4 Framework for Plug-in Policies

The framework is completely scalable to the developers, and customizable to user

requirements. Here we provide an overview of the kernel plug-in, array job plug-in,

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 274

functional plug-ins such as workflow and data-aware plugin, and how the different plugins
operate together.

Kernel Plug-in

The kernel plug-in is the default plug-in, which will be loaded and enforced by all the job
queues. It only provides the most general functionalities and making match decisions
according to FCFS round-robin policies. The purpose of the kernel plug-in is not making
efficient match decisions but ensure the jobs can be complete, i.e. the resource requirements
of the jobs must be satisfied.

In the past, using CSF4 was fairly complicated – if users have specialized resource
requirements, they needed to know details of each of the clusters, such as deployment of
applications, location of replicated data, dynamic state of clusters, etc. The resource
management of CSF4 paid more attention to the integration of heterogeneous local schedulers
[9].

The kernel plug-in use a virtualized resource based method, in which all the user
requirements, such as cpu, memory, disk space, data, cluster type, and even application, are
abstracted a kind of resource owned by clusters.

First, we divide grid resources into two parts - application resources and cluster resources.
The description of an application resource includes necessary parameters: “name”, “path”,
“clusters deployed on” and optional parameters “version”, “compiler” and “dependent
libraries”. The status of the application resource does not change frequently once an
application is deployed – it can be updated by the local administrator, and queried via MDS
[92] or SCMSWeb [96], or even an RSS (Really Simple Syndication) feed. To submit a job to
CSF4, a client just needs to specify the name of the application resource. After the scheduling
decision has been made, as described below, the scheduler can use an appropriate version of
the application, taking into account the location of binaries and dependencies from the
resource information, thus obviating the need for an end-user to specify it each time. This is
analogous to our model for the Web services where a user just deals with a service, and is not
bothered with the internal details.

The description of cluster resource includes necessary parameters: “name”,
“infrastructure type”, “scheduler type”, “master hostname”, “available CPUs” and optional
parameters: “scheduler version”, “scheduler port”, “CPU architecture”, “memory”, “disk
space”. Some parameters of cluster resources, such as “available CPUs”, are finite and change
very frequently -- although some monitoring tools such as Ganglia [97] provide some semi-
real-time cluster status information via MDS, this information has been found to be not very
dependable since they are not gained from local schedulers and are frequently out of date.
Hence, we also maintain an inner resource status list in CSF4, and change the resource status
on every scheduling cycle by reports on the status of completed jobs. When a user submits a
job to CSF4, it queries the application and cluster resources from a provider. In the
scheduling cycle, CSF4 regards the user job as a set of resource requirements and matches the
requirements with resources available via FCFS (first come first server) policies. CSF4 locks
the allocated resource by changing the inner resource status list after a successful match. The
locked resource will be released after the job finished. CSF4 also adjusts the value of
“available CPUs” after the completion of submitted jobs. On one cluster, if most of the
dispatched jobs are finished, CSF4 will give a higher weighted value for the “available
CPUs” of this cluster. On the other hand, if few jobs are finished, which suggests that the

Cyberinfrastructure for Biomedical Applications 275

cluster may be busy or that the local scheduler did not allocate all the CPUs for Grid jobs – in
this case, the value “available CPUs” for the cluster will be weighted down. For transfer of
data between nodes, CSF4 uses the GridFTP protocol [49], though RFT (reliable file transfer)
is [50] through the WSRF framework is also. Figure 4 shows how the CSF kernel plug-in
works.

Figure 4. CSF4 kernel plug-in uses FCFS round-robin and virtualized resource based scheduling
policies.

Array Job Plug-in
Quite frequently, life sciences applications are “pleasantly parallel”, i.e., serial

applications which may be used to handle many parallel data input. For example, AutoDock
may be used to dock different ligands to a target protein structure, or Blast may be used with
different input sequences to search for potentially related sequences within a target database.
Here we show how a customized scheduling policy for these applications may be developed
using the CSF4 plug-in model. A testbed of three clusters is setup with the Gfarm deployed,
each with different host numbers and dynamic local work load. Normally AutoDock or Blast
applications consist of a large number of subjobs. These subjobs execute same binary with
different input/output files, so the plug-in is named array job plug-in, similar to what’s
available for some local schedulers. The metascheduling objective is to balance the load
between clusters and complete the entire set of jobs as soon as possible. The array job plug-in
call back functions implementation details are described in [56]. Briefly:

Initialize() sets up the maximum job load, 10, for example, for all local clusters. If the
number of unfinished subjobs in a cluster exceeds this maximum job load, the metascheduler
will not send any new job to it.

As the subjobs of AutoDock or Blast do not communicate to each other, and there is no
dependency among them, the job execution order does not matter. Hence, Funjob−sort() is
just a empty function in the plug-in.

As the input/output files are accessible in all the clusters through the Gfarm virtual file
system, so any cluster can run AutoDock or Blast jobs as long as its local scheduler is up.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 276

Therefore, FunCL−match() will simply select all clusters with local schedulers as matched
clusters.

FunCL−sort() sorts the matched clusters according to their unfinished sub-job numbers.
For example, in the beginning, the metascheduler dispatches 10 sub-jobs to both Cluster A
and B. While doing the next scheduling, Cluster A finished 6 jobs and cluster B finished 4
jobs, then Cluster A would be preferred as the execution cluster for next job. If all the clusters
have hit the maximum job load number set by Initialize(), no cluster is qualified as an
execution cluster.

Dispatch() dispatches the first job in the job list to the execution cluster selected by
FunCL−sort(), and increase the cluster’s unfinished job number. Then, the metascheduler
calls Funjob−sort(), FunCL−match(), FunCL−sort() and Dispatch() again for the next job
until no execution cluster is returned by FunCL−sort(). In the case above, cluster A gets 6
new jobs, and cluster B gets 4. Although the local cluster’s load and policies are not
considered explicitly, the loads are balanced dynamically since the cluster which completes
jobs faster will get more jobs.

Function Plug-in

CSF Workflow Plug-in

In the grid environment, a metascheduler has to accept and assemble grid tasks, match the
jobs to qualified resources, and dispatch the jobs to distributed sites. Complicated grid tasks
may be described and processed by using workflow techniques. Currently, there are a few
popular workflow standards, such as XPDL [81], BPML and BPEL4WS. Since the XPDL
focuses mostly on the distributed workflow modeling and supported by various workflow
engines, it is convenient to use XPDL to describe the workflow in general.

Within the CSF scheduling plug-in framework, we have developed a plug-in to support
the scheduling of grid workflow. As described before, the default kernel plug-in uses the
FCFS round-robin policy to match jobs with appropriate resources, and is invoked by any job
queue. However, the default plug-in cannot process complex jobs with intricate job
dependencies. Hence, we have developed a separate plug-in named “grid workflow”.

Figure 5. Example of a simple workflow for job dependency.

While XPDL is powerful enough to describe a grid task, there are many elements of
XPDL, such as “visualized flow chart”, which are not needed by a grid task. Therefore, we
only implemented a subset of XPDL, but extended it with a few grid variables (such as
‘Resource Specification Language’, RSL for short).

There is only one <WorkflowProcesses> tag and one or more than one
<WorkflowProcess> tags in a single grid workflow description. They present the main flow
and the sub-flow. In a <WorkflowProcess> tag, there are two main tags, <Activities>, which
includes all the atomic grid jobs (describe as an RSL file) in this sub-flow, and <Transitions>

Cyberinfrastructure for Biomedical Applications 277

presents the relationship of the grid jobs. For example, “<Transition Id="16" Name="”,
From="a" To="b"/>” represents that “a” is the precursory job of “b” and “b” is the
subsequent job of “a”. Then, any grid workflow can be described as a directed acyclic graph
(DAG). A simple workflow is shown figure 5, and the corresponding workflow description is
represented in XPDL in figure 6.

Figure 6. The XPDL description of the workflow.

The main functionalities of workflow plug-in are analyzing the grid workflow, obtaining
the RSL and the dependencies of all the jobs, and making the dispatch decisions. They were
mainly implemented in the Funjob−sort() function. The input of Funjob-sort() is the tasks
queue, the tasks can be single job, parallel job, array job or a grid workflow.

The Funjob-sort() will be invoked periodically, during the every invocation, each grid
workflow will be decomposed into multiple single sorted jobs based on the job dependencies
described in the workflow. If the job has an unfinished precursory job, its status will be set to
“PENDING”, if not, its status will be set to “SCHEDULE”. The priority of a job is decided
by the number of its subsequent jobs, a job has more subsequent jobs will get a higher priority.
The output of the function is a single and sorted jobs queue. See the figure below.

Data-aware Plug-in

Emerging classes of data-intensive applications that both access and generate large data
sets are drawing much more attention. High-performance data-intensive computing and
networking technology has become a vital part of large-scale scientific research projects in
areas such as high energy physics, astronomy, space exploration, human genome projects,
and computational simulations in biomedical research. One example is the Large Hadron
Collider (LHC) project at CERN. The so-called Data Grids provide essential infrastructure for
such applications. Grid Datafarm (Gfarm), for example, is one of them.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 278

Gfarm architecture is designed for global petascale data-intensive computing. It provides
a global parallel file system with online petascale storage, scalable I/O bandwidth, and
scalable parallel processing, and it can exploit local I/O in a grid of clusters with tens of
thousands of nodes. Gfarm parallel I/O APIs and commands provide a single file system
image and manipulate file system metadata consistently. If a huge amount of data I/O is
involved, a network system’s performance will be degraded by network congestions without
proper data management and job scheduling. In Gfarm, gfrun and gfmpirun commands are
able to allocate the file-affinity hosts for optimum execution of applications based on
available metadata. However, the manual method is not scalable in a production environment
with a large number of users running jobs concurrently. It is imperative to have an automated
job scheduling and data management mechanism.

Utilizing the CSF4 extensible scheduling plug-in framework, we developed a scheduling
plug-in for data intensive applications, called data-aware plug-in [78]. It works with Gfarm to
manage the Gfarm file replicas, optimize the job distribution and reduce the use of I/O
bandwidth to improve the system performance (figure 7).

Figure 7. Data aware plugin of CSF4 for Gfarm.

The purpose of data aware algorithm are obtaining the replicas location of the required
files from data grid, and making jobs/clusters match decisions based on the file replicas
information. Since the scheduling targets of the meta-scheduler are not single machines but
clusters or local resource managers, it is impossible to for a meta-scheduler to specify
machines for jobs, so we just assume the local scheduler can dispatch the jobs to the machines
with the necessary file replicas accessible through a local network file system or Gfarm file
system. Then, the purpose of data aware plug-in is to dispatch the jobs to the clusters that
have the required file replicas.

The functionalities of data-aware algorithm are implemented in Funjob-match(). The
input of the function is a tasks queue, and the output is the tasks queue with dispatch
decisions. Briefly, it entails getting the required files list from job resource description (rsl
file); getting the metadata of the files (include file size, file replicas location) by using Gfarm
API; getting the satisfied clusters list based on file replicas location; and making the
jobs/clusters selection decisions. If the required file replicas are distributed at multiple
clusters, the cluster that has most files will be selected to minimize the network transfer.

Cyberinfrastructure for Biomedical Applications 279

The data aware module can also work with other scheduling policies, such as array job
plug-in and grid workflow plug-in to provide more flexibility as a standard CSF4 scheduling
plug-in.

Parallel Job Scheduling on the Grid

Most shared grid resources, despite the collective computational power available, are

often queued up with many jobs waiting to be executed. There are several ways to tackle this
problem .One is through advanced reservation, where different resources are made available
at the same time in order for a particular large experiment to run within allocated time period.
A number of such experiments are used as demonstrations of the computing power in cross-
site simulations on the TeraGrid, as well as federated grids [98, 99]. However, such
experiments are still fraught with difficulties in network latency, data accessibility and
resource co-allocation. To support cross-domain parallel jobs in different grids, we need to
resolve these three issues. First, the input or output files should be accessible in all the
candidate clusters/grids where the job executes. Second, the efficient inter-process
communications of an application should be guaranteed between hosts in different domains.
Last, the resource allocations in these clusters should be synchronized. Here we describe our
experience on cross-site computations using commodity technologies. In particular, we use
data grid technologies, like Gfarm [13], to provide the global data availability, and MPICH-
G2, a grid enabled MPI implementation, to enable a user to run MPI programs across multiple
sites [75]. We have also developed the Virtual Job Model (VJM) [100] for CSF4 to realize
synchronized resource co-allocation for parallel jobs.

Synchronized Resource Co-allocation benefits from VJM

Since dynamic grid resources are distributed in different administrative domains, and
there is not a global controller in grid system, synchronized resource co-allocation to running
parallel jobs is a very complicated issue. When user submits a MPICH-G2 parallel job by
mpirun (MPICH program starter), mpirun parses the job request first. Based on pre-defined
information in a configuration file or MDS, mpirun decides the job execution clusters using
round-robin policy and generates a RSL (Resource Specification Language) script. Then
globusrun is used to distribute the sub-jobs to the clusters specified in the RSL file.

There are several difficulties for MPICH-G2 applications to succeed without manual
intervention. First, since there is no cluster availability check, MPICH-G2 could submit sub-
jobs to a cluster which is not even online. Second, when the sub jobs of a parallel job are
submitted to local clusters, they are scheduled by local schedulers based on their local
policies to compete for resources with local jobs instead of running immediately. If there is
not a practical mechanism to support synchronized resource co-allocation, the jobs starting
earlier have to wait for the other jobs that are still waiting for resource allocation, which will
result in resource wasting. Lastly, when multiple parallel jobs were submitted, the resource
allocation deadlock could occur due to the resource competition and the differences of
various local scheduling policies.

VJM is a new meta-scheduling model designed for CSF4 to resolve the above problems
in synchronized resource co-allocation. Before starting the actual job, VJM dispatches a
virtual job to the candidate clusters to acquire the resources for real parallel jobs. VJM is

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 280

designed to require only the minimal common features supported by all local resource
managers, (no resource reservation), and to require no extra components or changes at any
local site.

Scheduling Stages of VJM

VJM consists of three stages, resource availability check stage, resource allocation stage,
and job startup stage (figure 8). First the meta-scheduler performs resource availability check
(pre-check mechanism in CSF4) before sending resource allocation requests to local
schedulers. The pre-check first checks if a cluster is online, then it checks the resource
requirements of the job and the resource availability of the cluster. Based on the pre-check
results, the meta-scheduler decides which clusters are qualified as execution clusters. With the
pre-check, the jobs are never sent to the offline clusters, and a job with resource requirements
that exceed the total resource capability of all clusters is rejected with a warning.

Figure 8. Architecture of Virtual Job Model (VJM).

After the pre-check, the meta-scheduler makes a temporary decision about on which
clusters to execute the parallel job and how to distribute the sub-jobs among them according
its meta-scheduling policies. Since the meta-scheduler is not the owner of local cluster
resources, it cannot allocate resources directly. Hence, a virtual job mechanism is introduced
to co-allocate the resource for a parallel job.

We design a virtual job manager (VJmgr) for dispatching virtual jobs, collecting the
resource allocation information, managing a virtual resource pool and virtual job credential.
VJmgr generate a temporary proxy credential, whose lifetime can be configured and the
default value is 12 hours. As the proxy credential expired, all the existent virtual jobs will be
cancelled. VJmgr will generate a new proxy credential and resend these virtual jobs
automatically.

During the resource allocation stage, the virtual jobs with the virtual job proxy credential
are dispatched to the clusters instead of the real jobs. In consideration of the resource
accidental breakdown or heavy load, the number of the virtual job is generally more than

Cyberinfrastructure for Biomedical Applications 281

resources required by the real job to obtain redundant availability. Virtual job’s responsibility
is to obtain the guaranteed resources for the real job and report the resource allocation status
in each cluster to the meta-scheduler.

The virtual job will be scheduled by local scheduler like a normal serial job. By the proxy
credential, virtual job can authenticate with VJmgr. As a virtual job gets the resource and
starts up, it will send a ”READY” notification to VJmgr, register the resource information
(such as IP address) to virtual resource pool and wait for instructions from the VJmgr.

During the startup stage, after the VJmgr has received sufficient ”READY” notifications
from the virtual jobs, within a SSL channel, a ”STARTUP” instruction is sent to every virtual
job that has registered in resource pool. The “STARTUP” instruction contains the real job
description and the proxy credential of real job owner. The subsequent redundant resource
will be abandoned or serve other waiting jobs if needed. Since the virtual job can guarantee
the resource availability, virtual job model can make sure that all the sub-jobs of a parallel job
are synchronized.

The virtual job is not distinct from normal batch job, so VJM neither depends on advance
reservation nor need to install extra resource manager on grid sites. Moreover, during the
resource allocation stage, VJmgr is able to detect the potential dead lock and the cluster
runtime error so that the meta-scheduler can adjust its scheduling decision accordingly. At the
same time, VJmgr is able to backfill smaller jobs to the partially allocated resource of a larger
parallel job to improve the resource usage of the system.

Deadlock Prevention

When the jobs were forwarded to local resource sites by meta-scheduler, they will not
start up immediately but wait to be scheduled in the local queues. Since the resource
availability is dynamic and the local scheduling policies are unknown, the waiting time is
hard to predict. Hence, the deadlock prevention method based on a lexicographical order
induced by host’s IP address is quite inefficient in such scene. Motivated by this, we divide
the deadlock prevention into two-phase: cluster selection phase and host selection phase.

Firstly, we give out some definitions. Since the master host’s IP address, the available
hosts, and the number of clusters are generally knowable. Let Ci (i=1,...,n) be a available
cluster, Ni(i=1,...,n) be the available hosts number of the cluster Ci, and Hij(j=1,...Ni) be a
host in the cluster Ci, C1-Cn are ordered by cluster’s master host’s IP address and Hi1-Him
are ordered by host’s IP address in the Cluster Ci.

In cluster selection phase deadlock prevention, we assume that a cluster represents a
resource type and take the cluster’s master host's IP address as unique resource type identifier,
and the hosts in the same cluster represent multiple resource instances with identical resource
type. Then we can avoid the resource allocation deadlock among clusters by using deadlock
prevention method based on a global resource type order.

As presented in previous section, the virtual job can obtain host’s information (such as IP
address) and report it back to meta-scheduler after startup. We can prevent deadlock among
hosts via resource order obtain from virtual job if we assume that a host represents a resource
by taking the host’s IP address as its unique local resource identifier. However, since the local
scheduling decisions are unpredictable, we cannot know which hosts will be used before the
virtual jobs startup, the method is still inefficient. For example, in cluster Ci, to prevent
resource deadlock, the resource request cannot continue unless host Hi1 is held, even if Ci’s
available resource are abundant. Hi1 becomes a bottleneck.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 282

Therefore, we introduce an optimized algorithm to improve resource allocation in the
host selection phase deadlock prevention. To describe the algorithm, we further define
Ri(i=1,...,n) is the request resource number on cluster Ci. The pseudo code of optimized
deadlock prevention algorithm is summarized in figure 9. When a virtual job obtains a
resource Hij and notifies back to meta-scheduler, the algorithm is executed.

Figure 9. Pseudocode for deadlock resolution in VJM.

The (Ni-j) in the pseudo presents the number of the resource whose order is less than
current registering resource. If it is larger than required resource on Cluster Ci, deadlock will
not occur, otherwise, the resource should be abandoned to prevent the potential deadlock.
Hence, the resource in smaller order will not be bottleneck.

As total resource number and their IP addresses are knowable, by using order-based
deadlock prevention method, resource co-allocation will free from deadlock even if multiple
meta-schedulers involve in resource competing. Moreover, the two-phase deadlock
prevention improves the system performance and resource usage.

Besides the resource dead lock, the run-time cluster unavailability (such as server down
or very heavy workload) can also be detected by VJmgr. VJmgr regards a cluster as invalid
for a virtual job when it cannot startup within a predefined time. Then the meta-scheduler will
re-dispatch the sub-jobs to another cluster.

Backfilling

In a distributed system, backfilling is widely used while scheduling parallel jobs to
optimize resource usage. VJmgr is also able to backfill smaller jobs to the partially allocated
resource of a larger parallel job to alleviate resource wasting. Such smaller jobs may be
effectively jobs that may finish within a fixed amount of wall clock time, and their resource
requirements are met with the resources currently allocated. In a single cluster, the local
scheduler has full control of its jobs and resources, so it can backfill any job to the resources
allocated for another job. In the grid environment, however, access control poses problems to
the backfilling process. In VJM, the jobs are started by virtual job, instead of the scheduler,
which only have the access permission of the desired job owner. Therefore, only the jobs

Cyberinfrastructure for Biomedical Applications 283

from the same user can be backfilled safely. Otherwise, the backfilled job may fail to access
the system resources at run time. After the investigation of grid applications, we found that
most permission problems are caused of file accesses. Thus, we consider that if applications
can access their desired files smoothly, the small job backfilling is enabled.

Data grid techniques like Gfarm which uses user proxies instead of user id or
user/password to authenticate an access request. This provides more flexibility to backfilling
when cooperating with VJM. In the implementation of VJM in CSF4, the meta-scheduler is
able to delegate the user proxy of the backfilled job to the virtual job. Then, the virtual job
can setup the correct credential context for those jobs to make sure they can access the Gfarm
file systems successfully at runtime. After the backfilled jobs finished, virtual job can also
clean the credential context to avoid the abuses of authority.

In summary, the VJM resolves the problems in synchronized resource co-allocation
mentioned above, helps the deadlock prevention algorithm to adapt to grid computing and
improve the performance and resource usage, and ensures proper backfilling of jobs when
used with Gfarm.

USER INTERFACES TO METASCHEDULERS

Metascheduling is essential to pervasive computing in how it provides transparent access,

ensures workflows and simplifies the users’ interaction with the computing infrastructure.
Even in the age of petascale or higher computing, the appearance of virtual machines or
virtual clusters, with the rise of the virtual organizations, metascheduling is indispensible.

CSF Client Command-line

Since the CSF portlet is for grid-unaware users, we try to make the techniques details

transparent to user and the functionalities were limited. For the advanced user, we provided a
plenty of command-line tools to access CSF Server. A separate client package is also
available for the client machine (such as a Linux server or a Mac laptop) without GT4
installed (figure 10).

Interface to Opal Based Web Services

As more and more clusters as well as and grids of clusters or virtual organizations (VO)

spring up, the ability to simplify the scheduling of tasks across VO becomes critical. The
difficulty in bridging the gap between the grid services and the target user communities
remains significant due to the unfriendly interface of grid software. While the high energy
physics community with computational prowess has taken a lead in the development of
integrated systems for grid computing and data management, the biomedical research
community requires additional effort to lower the barrier of entry by making the grid access
transparent and easily accessible.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 284

Figure 10. Screenshots of CSF4 command line client for remote job submission.

The Opal toolkit models applications as resources by exposing them as web services,
however, the basic version can only submit jobs to a local scheduler. For greater scalability, it
is necessary to leverage multiple clusters located at different geographic regions. However,
our goal is to do this without compromising the ease of use of application deployment via
Opal. As described in CSF4 kernel section, CSF4 virtualizes many kinds of resource include
applications and is able to match the jobs to the clusters that have the special application.
Hence, the only difference is user will not submit resource requirements to CSF4 but Opal
web services. See figure 11.

Figure 11. CSF4 Integrate with Opal based web services.

Cyberinfrastructure for Biomedical Applications 285

Portal Interface

My WorkSphere
Typically end users in life sciences access computational resources through a web based

interface to a popular application such as Blast available at the National Center for
Biotechnology Information (NCBI), or through desktop applications that may solve small
problems locally. With Moore’s law continue to hold true by increasing the number of
computing cores per processor, desktops may become more and more powerful. However, the
pervasive availability of distributed grid resources and petascale facilities will continue to
entice end users as they begin to tackle problems at ever increasing scales. My WorkSphere is
an integrative environment which leverages open source components to provide easy access
to grid computing resources [101]. In this particular environment, a number of open source
software packages are adopted and integrated, such as the GridSphere portal framework and
Gridportlets, the GAMA server and portlet, the Opal web service toolkit, the community
scheduler framework 4 (CSF4), Gfarm, Globus Toolkit and Commodity Grid Kits [102], and
Rocks. The purpose of My WorkSphere is to prototype an environment where users can
easily gain access to grid computation resources; run jobs without worrying about what
resources they are using, and deploy applications easily for use on the grid. It is one of the
TeraGrid Science Gateways for the biomedical community researchers under development by
the National Biomedical Computation Resource, in collaboration with academic researchers
and developers worldwide.

CSF4 Portlet

The CSF4 portlet v1.0 is developed through the collaboration between Jilin University
and University of California, San Diego (UCSD) driven by the needs of My WorkSphere. It is
a java based web application for dispatching jobs to a CSF4 metascheduler server through a
web browser. The CSF4 portlet not only presents the functionality of CSF4 itself, but also
provide a generic interface for users to submit jobs, view job specifications and job history,
monitor job status, and get job output from remote sites using GridFTP. Additionally, the
CSF4 portlet uses the gridportlets to provide methods for tracking Globus Security Service
(GSS) credentials for a given user either from GAMA server or directly from a MyProxy
server 28). Besides credential management, the APIs provided by GridSphere and the
gridportlets are also used to implement account management services. The CSF4 portlet
supports the integration of CSF4 and Gfarm file system (figure 12).

Vision Workflow Environment

Vision is a python based workflow program with support of a visual programming

environment. The concept of the Vision’s visual programming environment is very similar to
the Web 2.0 “vision” of enabling the users to perform mashups of services [103]. An example
is in (figure 13).

The ability of Vision or Vision-like visual programming environments allow users to
compose workflows based on not just local software modules but remotely accessible
services, whether data-centric or compute-centric, allow users to experience rich
functionalities all from a user’s desktop environment. Coupled with the ability of Opal

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 286

Figure 12. Screenshots of CSF4 portlet interface for GridSphere.

Toolkit’s interface generation ability, using server provided configuration files, Vision is
capable of providing user with up to date user interfaces and functionalities, relieving the
users of the mundane tasks of maintaining and updating the software.

Figure 13. Vision based workflow for mesh rendering and manipulation. Courtesy of Michel Sanner.

Cyberinfrastructure for Biomedical Applications 287

CASE STUDIES AND PERFORMANCE EVALUATION

Avian Flu Grid is a VO that encompasses multiple grids and resources, including

TeraGrid, PRAGMA Grid, Open Science Grid and NBCR compute resources. Figure 14
provides an illustration of the types of applications and workflows to be fully supported by
the Avian Flu Grid project [104, 105], a virtual organization within the PRAGMA grid
environment [11].

We have used AutoDock as a test case for the array job plug-in. The AutoDock case is
docking 735 different ligands, each one needs around 2.5-3.5 hours running on a 2.4GHz
CPU. The available resource involved two NBCR clusters and two clusters of PRAGMA grid
test bed. The total jobs duration is 21 hours 30 minutes 44 seconds. We didn’t make any
advanced reservation, the job just utilizing the idle CPU hours of the distributed resource. We
also ran the same case on our private productive cluster. We have to reserve 64 CPUs in
advance, the total jobs duration is more than one and an half days.

The scheduling policies we configured include default plug-in and array job plug-in. The
resource virtualized feature in default plug-in make the job description easier. The array job
plug-in helps the case to achieve better job distribution and balanced workload. See (figure
15).

Figure 14. Overview of the applications supported in the Avian Flu Grid.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 288

Figure 15. Distribution of AutoDock job in one virtual screening experiment.

We have also used NAMD to run jobs at different resources with higher CPU counts for
NAMD [106], a parallel application for molecular dynamics simulations. This represents the
class of applications that have a large CPU requirement, long running time, and a large data
size for output, as well as input when the jobs have to be restarted. NAMD requires a number
of pre-equilibrations and energy minimizations before the final extended free energy
minimization run. It raises the possibility of using Gfarm to do automatic restarts on different
clusters, automatic replication of large datasets as well as real time visualization of simulation
results. The Avian Flu Grid has also provided a real life study case for developing advanced
scheduling algorithm for QoS monitoring, fault detection and job migration.

CONCLUSION AND FUTURE WORK

Metascheduling is critical in achieving the necessary transparency and scalability for

biomedical applications and users. We’ve taken a bottom up approach by developing
scheduling policies based on real scientific application requirements. The adoption of
standardization effort at OGF on workflows, resource monitoring and reporting, and identify
federation will further enhance the efficiency of metaschedulers or resource brokers, and
thereby the productivity of biomedical researchers.

The number of workflow systems is increasing rapidly, along with the support of
emerging standards for workflow models to be mapped into different execution environments.
As better tools are built over time, our approach allows us to insulate scientific biomedical
applications from the changing computational tools and infrastructure. As has been shown in
the case of the Opal toolkit, by providing the functionalities that biomedical researchers can
understand and use to meet the scalable requirement at hand, and the reporting requirements

Cyberinfrastructure for Biomedical Applications 289

from their funding agencies, we can deliver virtualized compute resources without negatively
impacting the productivity of multiscale research. In addition, by adding database support for
logging and accounting, and job provenance, we have also provided scientific researchers
with the ability to keep track of the history of their research, workflows.

Underlying these different advances, it is the ability to metaschedule that enables
metacomputing, regardless of what buzz words we’d like to use for the next round of
technology advances. Recently, software has been developed that adds the ability to schedule
different web services [107]. This adds the higher level of support for ensuring the quality of
service mashups, by providing QoS feedback based on the overall throughput of different
web services. This complements the Opal-CSF4 based approach, which aims to optimize the
performance of individual web services and the underlying resource usage.

Last but not the least, the ability to schedule jobs with different priorities and economic
models based on the virtual organizations present an interesting new challenge for
metascheduling, along with the ability to further optimize data aware scheduling, and the
ability to metaschedule data transfers in concert with advanced reservations for computational
requirements. The VJM for metascheduling also presents an interesting opportunity for co-
scheduling Xen-based virtual machines, as well as MPICH-G2 based applications, which may
be co-located within the same petascale resource, instead of disparate resources. The ability to
handle large data streams and dynamically adjust the virtual cluster size presents another set
of interesting possibilities for more research and development.

ACKNOWLEDGMENT

The authors would like to acknowledge support from the NIH P41 RR 08605 to NBCR;

TATRC W81XWH-07-2-0014 to PWA and WWL; the NSF Grant No.INT-0314015 and
OCI-0627026 for the PRAGMA project, the China NSF Grant No.60703024 for the CSF4
project and Jilin Department of Science and Technology Grant No.20070122 and 20060532.

REFERENCES

[449] NCSA. The Metacomputer: One from Many. Science for the Millennium 1995 [cited;
Available from: http://archive.ncsa.uiuc.edu/Cyberia/MetaComp/MetaHome.html

[450] Foster, I. and C. Kesselman. Globus: a Metacomputing Infrastructure Toolkit. 1997
[cited; Available from: ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[451] Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New Computing
Infrastructure. 1 ed. 1999, Morgan Kaufmann Publishers, Inc.: San Francisco.

[452] NPACI. National Partnership for Advanced Computational Infrastructure: Archives.
2002 [cited 2008; Available from: http://www.npaci.edu/About_NPACI/index.html.

[453] OptIPuter. A Powerful Distributed Cyberinfrastructure to Support Data-Intensive
Scientific Research and Collaboration. 2005 [cited; Available from:
http://www.optiputer.net.

[454] GLORIAD. Global Ring Network for Advanced Applications Development. 2007
[cited 2008; Available from: http://www.gloriad.org/gloriad/index.html.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 290

[455] TeraGrid. TeraGrid. 2004 [cited; Available from: http://www.teragrid.org.
[456] OSG. Open Science Grid. 2006 [cited; Available from:

http://www.opensciencegrid.org/.
[457] Hey, T. and A.E. Trefethen, Cyberinfrastructure for e-Science. Science, 2005.

308(5723): p. 817-21.
[458] EGEE. Enabling Grids for E-sciencE. 2007 [cited; Available from: http://public.eu-

egee.org/.
[459] Arzberger, P.W. and P. Papadopoulos (2006) PRAGMA: Example of Grass-Roots Grid

Promoting Collaborative e-Science Teams. CTWatch Quarterly Volume.
[460] Grethe, J.S., et al., Biomedical informatics research network: building a national

collaboratory to hasten the derivation of new understanding and treatment of disease.
Stud Health Technol Inform, 2005. 112: p. 100-9.

[461] Oster, S., et al., caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research.
J Am Med Inform Assoc, 2007.

[462] Atkins, D., et al., Revolutionizing Science and Engineering Through
Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory
Panel on Cyberinfrasturcuture. 2003, National Science Foundation: Arlington, VA.

[463] NSF. A brief history of NSF and the internet. 2008 [cited; Available from:
http://www.nsf.gov/news/special_reports/cyber/internet.jsp.

[464] Moore, G.E., Cramming more components onto integrated circuits, in Electronics.
1965. p. 1-4.

[465] McCalpin, J., C. Moore, and P. Hester, The Role of Multicore Processors in the
evolution of general-Purpose computing, in The Promise and Perils of the Coming
Multicore Revloution and Its Impact, J. Dongarra, Editor. 2007. p. 18-30.

[466] GPGPU. General Purpose Graphics Processing Units. 2008 [cited; Available from:
http://www.gpgpu.org/.

[467] OpenFPGA. Open FPGA. 2007 [cited; Available from: http://www.openfpga.org/.
[468] SETI@home. SETI at home. 2007 [cited; Available from: http://setiathome.

berkeley.edu/.
[469] Folding@home. Folding@home distributed computing. 2007 [cited; Available from:

http://folding.stanford.edu/.
[470] fightAIDS@home. fightAIDS@home. 2007 [cited; Available from: http://

fightaidsathome.scripps.edu/.
[471] Stix, G., The Ultimate Optical Networks: The Triumph of the Light, in Sci Am. 2001.

p. 80-86.
[472] Foster, I. There's Grid in them thar Clouds. 2008 [cited 2008; Available from:

http://ianfoster.typepad.com/blog/2008/01/theres-grid-in.html.
[473] Hand, E., Head in the clouds. Nature, 2007. 449: p. 963.
[474] Ross, J.W. and G. Westerman, Preparing for utility computing: The role of IT

architecture and relationship management. IBM Systems Journal, 2004. 43(1): p. 5-19.
[475] Xen. XenSource. 2008 [cited; Available from: http://xen.xensource.com/.
[476] O'Reilly, T. (2005) What is Web 2.0: Design patterns and business models for the next

generation of software. O'Reilly.com Volume.
[477] Siebenlist, F., et al., Security for Virtual Organizations: Federating Trust and Policy

Domains, in The Grid: Blueprint for a New Computing Infrastructure, I. Foster and C.
Kesselman, Editors. 2004, Morgan Kaufmann: Amsterdam.

Cyberinfrastructure for Biomedical Applications 291

[478] Stevens, R.C., Trends in Cyberinfrastructure for Bioinformatics and Computational
Biology, in CTWatch Quarterly, R.C. Stevens, Editor. 2006. p. 6-17.

[479] IGTF. International Grid Trust Federation. 2008 [cited; Available from:
http://www.gridpma.org/.

[480] Foster, I., et al. A Distributed Resource Management Architecture that Supports
Advance Reservations and Co-Allocation. in Intl. Workshop on Quality of Service.
1999. University College London, UK.

[481] Litzkow, M., M. Livny, and M. Mutka. Condor - a hunter of idle workstations. in
Proceedings of the 8th International Conference of Distributed Computing Systems.
1988.

[482] VDT. VDT Documentation. 2007 [cited; Available from: http://vdt.cs.wisc.edu/
documentation.html.

[483] gLite. Lightweight Middleware for Grid Computing. 2007 [cited; Available from:
http://cern.ch/glite/.

[484] OMII. Open Middleware Infrastructure Institute. 2006 [cited; Available from:
http://www.omii.ac.uk/.

[485] NAREGI. National Research Grid Initiative. 2006 [cited; Available from:
http://www.naregi.org/index_e.html.

[486] Wei, X., et al. CSF4: A WSRF Compliant Meta-Scheduler. in International Conference
06' on Grid Computing and Applications. 2006. Las Vegas, USA.

[487] Zheng, C., et al. The PRAGMA Testbed: building a multi-application international grid.
in CCGrid. 2006. Singapore.

[488] Choi, Y., et al. Glyco-MGrid: A Collaborative Molecular Simulation Grid for e-
Glycomics. in 3rd IEEE International Conference on e-Science and Grid Computing.
2007. Banglore, India.

[489] Foster, I., et al. A Security Architecture for Computational Grids. in ACM Conference
on Computer and Communications Security. 1998. San Francisco, CA.

[490] Globus. The Globus Alliance. 2004 [cited; Available from: http://www.globus.org.
[491] Novotny, J., S. Tuecke, and V. Welch. An Online Credential Repository for the Grid:

MyProxy. in High Performance Distributed Computing (HPDC). 2001.
[492] Bhatia, K., S. Chandra, and K. Mueller. GAMA: Grid Account Management

Architecture. in 1st IEEE International Conference on e- Science and Grid Computing.
2006. Melbourne, Australia.

[493] Alfieri, R., et al., From gridmap-file to VOMS: managing authorization in a grid
environment. Future Generation of Computer Systems, 2005. 21: p. 549-558.

[494] GUMS. Grid User Management System. 2008 [cited; Available from:
https://www.racf.bnl.gov/Facility/GUMS/1.2/index.html.

[495] ROCKS. Rocks Cluster Distribution. 2005 [cited; Available from:
http://www.rocksclusters.org.

[496] Bruno, G., et al. Rolls: Modifying a Standard System Installer to Support User-
Customizable Cluster Frontend Appliances. in IEEE International Conference on
Cluster Computing. 2004. San Diego, USA.

[497] Allcock, W., et al. GridFTP: Protocol Extension to FTP for the Grid, Grid Forum
Internet-Draft. 2001.

[498] Allcock, W.E., I. Foster, and R. Madduri. Reliable Data Transport: A Critical Service
for the Grid. in Global Grid Forum 11. 2004. Honolulu, HI.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 292

[499] Tatebe, O., et al. Gfarm v2: A Grid file system that supports high-performance
distributed and parallel data computing. in 2004 Computing in High Energy and
Nuclear Physics. 2004. Interlaken, Switzerland.

[500] SRB. The Storage Resource Broker. 2004 [cited; Available from:
http://www.sdsc.edu/srb/.

[501] dCache. dCache.org. 2008 [cited; Available from: http://www.dcache.org/.
[502] IBM. General Parallel File System. 2007 [cited; Available from: http://www-

03.ibm.com/systems/clusters/software/gpfs/index.html.
[503] CFS. Lustre Filesystem. 2007 [cited; Available from: http://www.lustre.org.
[504] Ding, Z., et al., Customized Plug-in Modules in Metascheduler CSF4 for Life Sciences

Applications. New Generation Computing, 2007: p. In Press.
[505] Casanova, H. and F. Berman, Parameter sweeps on the Grid with APST, in Grid

Computing: Making the Global Infrastructure a Reality, F. Berman, G.C. Fox, and
A.J.G. Hey, Editors. 2003, Wiley Publishers, Inc.: West Sussex.

[506] Li, W.W., et al., The Encyclopedia of Life Project: Grid Software and Deployment.
New Generation Computing, 2004. In Press.

[507] Abramson, D., J. Giddy, and L. Kotler. High performance parametric modeling with
Nimrod/G: Killer application for the global grid? in IPDPS. 2000.

[508] Czajkowski, K., et al. A Resource Management Architecture for Metacomputing
Systems. in Proceedings of IPPS/SPDP'98 Workshop on Job Scheduling Strategies for
Parallel Processing. 1998.

[509] Frey, J., et al., Condor-G: A Computation Management Agent for Multi-Institutional
Grids. Cluster Computing, 2002. 5(3): p. 237-246.

[510] DRMAA. Distributed Resource Management Application API. 2007 [cited; Available
from: http://www.drmaa.net/w/.

[511] Huedo, E., R.S. Montero, and I.M. Llorente, A modular meta-scheduling architecture
for interfacing with pre-WS and WS grid resourcement services. Future Generation of
Computer Systems, 2007. 23: p. 252-261.

[512] Matsuoka, S., The TSUBAME Cluster Experience a year later, and onto petascale
TSUBAME 2.0. Lecture Notes In Computer Science, 2007. 4757: p. 8-9.

[513] Nishimura, H., N. Maruyama, and S. Matsuoka. Virtual clusters on the fly -- fast,
scalable and flexible installation. in Cluster Computing and the Grid, CCGrid 2007.
2007. Rio de Janeiro, Brazil.

[514] Tapscott, D. and A.D. Williams, Wikinomics: How Mass Collaboration Changes
Everything. 2007: Portfolio Hardcover.

[515] MySpace. MySpace.com. 2008 [cited; Available from: http://www.myspace.com.
[516] Facebook. Facebook.com. 2008 [cited; Available from: http://www.facebook.com.
[517] Clementi, L., et al. Providing dynamic virtualized access to grid resources via the web

2.0 paradigm. in Grid Computing Environment 2007 (GCE 07). 2007. Reno, Nevada.
[518] WSRF. Web Services Resource Framework. 2004 [cited; Available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.
[519] Krishnan, S., et al., Leveraging the Power of the Grid with Opal: A Guide to

Biomedical Application Developers and Users, in Handbook of Research on
Computational Grid Technologies for Life Sciences, Biomedicine and Healthcare, M.
Cannataro, Editor. 2008: Milan. p. Invited.

Cyberinfrastructure for Biomedical Applications 293

[520] NBCR. National Biomedical Computation Resource. 2005 [cited; Available from:
http://nbcr.net.

[521] Geist, A., et al., PVM:Parallel Virtual Machine—A User’s Guide and Tutorial for
Network Parallel Computing. 1994, Cambridge, MA: MIT Press.

[522] MPICH. MPICH-A Portable Implementation of MPI. 2006 [cited 2006; Available
from: http://www-unix.mcs.anl.gov/mpi/mpich/.

[523] Karonis, N., B. Toonen, and I. Foster, MPICH-G2: A Grid-enabled Implementation of
the Message Passing Interface. J. Parallel Distrib Comput, 2003. 63: p. 551-563.

[524] Silver. Moab grid scheduler. 2000 [cited; Available from:
http://www.supercluster.org/projects/silver/index.html.

[525] Ding, Z., et al. My WorkSphere: Integrated and Transparent Acess to Gfarm
Computational Data Grid through GridSphere Portal with Metascheduler CSF4. in 3rd
International Life Sciences Grid Workshop. 2006. Yokohama, Japan.

[526] Wei, X., et al. Implementing data aware scheduling on Gfarm by using LSFTM
scheduler Plugin. in International Symposium on Grid Computing and Applications.
2005. Las Vegas, NV.

[527] Zhang, W., et al., Grid Data Streaming, in Grid Computing Research Progress, J.
Wong, Editor. 2008, Nova Science Publishers.

[528] WPI. Workflow Pattern Initiatives. 1999 [cited 2008; Available from:
http://www.workflowpatterns.com.

[529] WFMC. XML Process Definition Language. 2007 [cited 3008; Available from:
http://www.wfmc.org/standards/xpdl.htm.

[530] ActiveBPEL. ActiveBPEL Execution Engine. 2008 [cited 2008; Available from:
http://www.active-endpoints.com/open-source-active-bpel-intro.htm.

[531] Wang, Y., C. Hu, and J. Huai. A New Grid Workflow Description Language. , . in
IEEE International Conference on Services Computing. 2005. Los Alamitos: IEEE
Computer Society Press.

[532] Zeng, J., et al. CROWN FlowEngine: a GPEL-Based Grid Workflow Engine. in Third
International Conference on High Performance Computing and Communications.
2007. Houston, USA: Springer.

[533] gridworkflow.org. Grid Workflow. 2007 [cited 2008; Available from:
http://www.gridworkflow.org/snips/gridworkflow/space/Grid+Workflow.

[534] Krishnan, S., et al. An end-to-end web services-based infrastructure for biomedical
applications. in Grid 2005. 2005. Seattle, Washington.

[535] Lathers, A., et al. Enabling Parallel Scientific Applications with Workflow Tools. in
Proceedings of the 6th International Workshop on Challenges of Large Applications in
Distributed Environments. 2006.

[536] Cao, J., et al. Implementation of Grid-enabled Medical Simulation Applications Using
Workflow Techniques. in 2nd Inter. Workshop on Grid and Cooperative Computing.
2003. Shanghai, China: LNCS.

[537] Baldridge, K., et al. GEMSTONE: Grid Enabled Molecular Science Through Online
Networked Environments. in Life Sciences Grid Workshop. 2005. Singapore: World
Scientific Press.

[538] Krishnan, S., et al. Opal: Simple Web Services Wrapers for Scientific Applications. in
International Conference of Web Services. 2006. Chicago, USA.

Zhaohui Ding, Xiaohui Wei, Osamu Tatebe et al. 294

[539] Fielding, R.T., Architectural Styles and the Design of Network-based Software
Architectures, in Computer Science. 2000, University of California, Irvine: Irvine. p.
162.

[540] Zhang, X. and J. Schopf. Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, MDS2. in International Workshop on Middleware Performance, co-
located with the 23rd International Performance Computing and Communications
Workshop. 2004.

[541] Czajkowski, K., et al., SNAP: A Protocol for negotiating service level agreements and
coordinating resource management in distributed systems. Lecture Notes In Computer
Science, 2002. 2537: p. 153-183.

[542] Goodsell, D.S., G.M. Morris, and A.J. Olson, Automated docking of flexible ligands:
applications of AutoDock. J Mol Recognit, 1996. 9(1): p. 1-5.

[543] Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

[544] Uthayopas, P., J. Maneesilp, and P. Ingongnam. SCMS: An Integrated Cluster
Management Tool for Beowulf Cluster System. in PDPTA. 2000. Las Vegas, Nevda,
USA: IEEE.

[545] Massie, M., B. Chun, and D. Culler, The Ganglia Distributed Monitoring System:
Design, Implementation and Experience. Parallel Computing, 2004. 30: p. 817-840.

[546] Boghosian, B., et al., NEKTAR, SPICE and Vortonics: using federated grids for large
scale scientific applications. Cluster Computing, 2007. 10(3): p. 351-364.

[547] Dong, S., N.T. Karonis, and G.E. Karniadakis. Grid Soluations for Biological and
Physical Cross-Site Simulations on the TeraGrid. in 20th International Parallel and
Distributed Processing Symposium (IPDPS 2006). 2007. Rhodes Island, Greece.

[548] Ding, Z., X. Wei, and W.W. Li. VJM-A Deadlock Free Resource CO-allocation Model
for Cross Domain Parallel Jobs in HPC Asia. 2007. Seoul, Korea.

[549] Ding, Z., et al. My WorkSphere: Integrative Work Environment for Grid-unaware
Biomedical Researchers and Applications. in Supercomputing Conference 2006, SC06,
2nd Grid Computing Environment Workshop. 2006. Tampa, Florida.

[550] Von Laszewski, G., et al., Features of the Java Commodity Grid Kit. Concurrency and
Computation: Practice and Experience, 2002. 14(13-15): p. 1045-1055.

[551] Sanner, M.F., A component-based software environment for visualizing large
macromolecular assemblies. Structure (Camb), 2005. 13(3): p. 447-62.

[552] Amaro, R.E., et al. Avian Flu Grid: International Collaborative Environment for Team
Science on Avian Influenza. in PRAGMA 13 Workshop. 2007. Urbana-Champaign,
Illinois.

[553] Amaro, R.E., Baron, R., McCammon, J. A., An improved relaxed complex scheme for
incorporating receptor flexibility in rational drug design. J Comput Aided Mol Des,
2008. in press.

[554] Phillips, J.C., et al., Scalable molecular dynamics with NAMD. J Comput Chem, 2005.
26(16): p. 1781-802.

[555] ichikawa, K., S. Date, and S. Shimojo. A Framework for Meta-Scheduling WSRF-
based Services. in Grid Asia. 2007. Singapore.

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 14

THE BRIDHING DOMAIN MULTISCALE METHOD
AND ITS HIGH PERFORMANCE

COMPUTING IMPLEMENTATION

Shaoping Xiao1, Jun Ni2 and Shaowen Wang3
1 Department of Mechanical and Industrial Engineering,

Center for Computer-Aided Design, The University of Iowa, Iowa City, IA 52242
2 Department of Mechanical and Industrial Engineering,

Department of Radiology; The University of Iowa, Iowa City, IA 52242
3 CyberInfrastructure and Geospatial Information Laboratory (CIGI)

National Center for Supercomputing Application (NCSA)
University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

This chapter presents a study on the feasibility of applying high performance
computing (HPC) to the Bridging Domain Multiscale (BDM) method, so that featured
scalable multiscale computations can be achieved. Wave propagation in a molecule chain
through an entire computational domain is employed as an example to demonstrate its
applicability and computing performance when multiscale-based simulations are
conducted in a large-scale parallel computing environment. In addition, the conceptual
idea and computing framework using Grid computing technologies is proposed to
enhance future multiscale computations in nanotechnology.

INTRODUCTION

Nanotechnology is used to create innovative materials with new functional or

multifunctional structures and novel devices on a nanometer (10-9m) scale. Nanotechnology

1 E-mail address: shaoping-xiao@uiowa.edu
2 E-mail address: jun-ni@uiowa.edu
3 E-mail address: shaowen@uiuc.edu

Shaoping Xiao, Jun Ni and Shaowen Wang 296

has emerged in multidisciplinary research fields. For instance, numerical methods in
computational science play a crucial role in the research fields of nano- mechanics and
materials science, especially in simulating and understanding the principal design or
fabrication of novel nanoscale materials such as nanocomposites. Among these methods,
molecular dynamics (MD) is one of the effective and efficient numerical methods that have
been widely used in elucidating complex physical phenomena [1-5] on a nanoscale. Although
MD has many advantages, it exhibits limitations with respect to both length and time scales.
For example, a material with a cubic volume of 1 m3 contains trillions of atoms, and a typical
time-step in MD simulation is roughly one femtosecond (~10-15s). Consequently, these
characteristics limit the use of MD for simulation of many physical phenomena, such as
material failure problems. At present, a complete MD modeling is unrealistic, especially for
completely simulating a material system with heterogeneity, even with powerful high-end
computers. Therefore, there exists an urgent need to develop a new and applicable
methodology that can be used to efficiently simulate large nanosystems.

Recently, the development of efficient multiscale methods that are capable of addressing
large length and time scales has been addressed in computational nanotechnology for the
design of novel nanoscale materials and devices [6]. Multiscale methods can be divided into
two classes: hierarchical [7-10] and concurrent multiscale methods [11-16]. In hierarchical
methods, the continuum approximation is based on the properties of a subscale model, such
as an MD model. The intrinsic properties of the material are determined at the atomic level
and embedded in a continuum model using a homogenization procedure. Classical
hierarchical multiscale methods include quasicontinuum methods [7] and discontinuous
Galerkin (DG) methods within the framework of the Heterogeneous Multiscale Method
(HMM) [8]. Most hierarchical methods assume that nanostructures are perfect molecular
structures subject to zero temperature. Xiao and Yang [9, 10] proposed nanoscale meshfree
particle methods with a temperature-related homogenization for nanoscale continuum
modeling and simulation.

Concurrent multiscale methods employ an appropriate model in different subdomains to
treat each length scale simultaneously. In a pioneering work, Abraham et al. [11, 12]
developed a methodology called MAAD (Macro-Atomistic-Ab initio-Dynamics) in which a
tight-binding quantum mechanical calculation is coupled with MD and, in turn, coupled with
a finite element continuum model. Choly et al. [13] presented formalism for coupling a
density-functional-theory-based quantum simulation within a classical simulation for the
treatment of simple metallic systems. Recently, several concurrent multiscale techniques that
couple continuum and molecular models in particular have been developed. Wagner and Liu
[14] developed a multiscale method in which the molecular displacements are decomposed
into fine scale (molecular) and coarse scale (continuum).

Belytschko and Xiao [15, 16] developed a bridging domain method for coupling
continuum models with molecular models. In this method, the continuum and molecular
domains are overlapped in a bridging subdomain, where the Hamiltonian is taken to be a
linear combination of the continuum and molecular Hamiltonians. The compatibility in the
bridging domain can be enforced by Lagrange multipliers or by the augmented Lagrangian
method. An explicit algorithm for dynamic solutions was developed [16]. Results showed that
this multiscale method could avoid spurious wave reflections at the molecular/continuum
interface without any additional filtering procedures, even for problems with significant
nonlinearities. The method was also shown to naturally handle the coupling of the continuum

The Bridhing Domain Multiscale Method… 297

energy equation with the molecular subdomain. A multiple-time-step algorithm was also
developed within this framework [16].

A concurrent multiscale method can be designed to span a range of physical domains of
different length scales, from atomic to microscopic/mesoscopic to macroscopic scales.
Unfortunately, most multiscale methods still require intensive computation for large
nanoscale simulations, although such limitations are much smaller than those associated with
full MD simulations. On the other hand, due to the highly intensive computation requirement,
a single-processor computer is barely sufficient to handle simulations that typically involve
trillions of atoms and up to several seconds. The limitation of computing capacity naturally
motivates an alternative approach—to conduct concurrent multiscale computations based on
high performance computing (HPC) or Grid-based distributed computing. To date, a few
HPC-based multiscale simulations have been reported. For example, Yanovsky [17] utilized
parallel computing technologies to study polymer composite properties. Ma et al. [18]
implemented their continuum/atomic coupling algorithm in the Structural Adaptive Mesh
Refinement Application Infrastructure (SAMRAI) using parallel processing to study two-
dimensional crack propagation. However, most existing works do not focus on HPC
algorithm development and efficiency.

In the U. S., the Cyberinfrastructure recently promoted by the National Science
Foundation (NSF) provides a gateway to future science and engineering discovery. It enables
large-scale resource sharing, especially distributed HPC systems with unprecedented
computational capacity. Such capacity reaches several hundred teraflops, and upgrading to
petaflops is just a few years away on the NSF TeraGrid—a Grid computing environment and
key element of U.S. cyberinfrastructure. Grid computing technologies enable users to
assemble large-scale distributed computational resources to create a secured virtual
supercomputer that can be used to accomplish a specific purpose [19]. This assemblage of
distributed resources is dynamically orchestrated using a set of protocols as well as
specialized software referred to as Grid middleware. This coordinated sharing of resources
takes place within formal or informal consortia of individuals and/or institutions often
referred to as Virtual Organizations (VO) [20]. Grid computing technologies give scientists
the ability to handle large-scale computations, especially in nanotechnology investigations.

In this chapter, we will develop a scalable, parallel bridge domain coupling algorithm for
computations in nanotechnology applications. The bridging domain coupling method is
described in Section 2 after the introduction. This coupling method is extended to a scalable
parallel multiscale method in Section 3. Associated domain decomposition and
communication algorithms are explained, and a one-dimensional example is studied for
investigating computing performance. Section 4 offers a description of the feasibility of
multiscale modeling and simulation using Grid computing, followed by a conclusion.

BRIDGING DOAMIN COUPLING METHOD

Coupling Strategy

The Bridging Domain Coupling Method (BDCM) was proposed by Xiao and Belytschko

[15, 16]. Here, we first provide a brief summary of this methodology, detailed in a one-

Shaoping Xiao, Jun Ni and Shaowen Wang 298

dimensional molecule chain that includes a molecular dynamics domain, a finite element
(continuum) domain, and a bridging domain where the molecular and continuum domains
overlap, as shown in figure 1.

Figure 1. Bridging domain coupling model of a molecule chain.

Generally, a BDCM method serves as a linkage between molecular and continuum
models through an overlapped domain. The continuum domain, CΩ , modeled by a
macroscopic continuum model, overlaps the molecular domain, MΩ , modeled by a molecular
model, through an interaction region, called a bridging domain, intΩ . The superscripts “M”
and “C” refer to the molecular and continuum domains, while the superscript “int” refers to
the interaction domain or bridging domain where a bridging domain coupling technique is
employed. In the BDCM method, the total energy is taken to be a linear combination of the
molecular and continuum energies. Therefore, in the bridging domain, the molecular and
continuum models co-exist. A linear switch scaling parameter α is introduced hereby in the
overlapped bridging domain. For example, the parameter α can be proposed as

[]
intC

int

intM

in
in
in

00

0

00

1
1,0

0

Ω−Ω
Ω

Ω−Ω

⎪
⎩

⎪
⎨

⎧
=α . (1)

The Hamiltonian energy for the complete domain can be considered as a linear

combination of the molecular and continuum counterparts. It can be expressed as

() ()

() CC
I

M
II

I
I

CC
I

MII

I
I

CM

WdvWdmX

WdvWdmXHHH

C

C

ααραα

ααραααα

+Ω+−+−=

+Ω+−+−=+−=

∫∑

∫∑

Ω

Ω

0

0

0
2

0
2

0
2

0

2

2
11)](1[

2
1

2
11

2
)](1[1

 (2)

where Im and Id are the mass and displacement of the atom, 0ρ is the initial density in the

finite element domain, Iv is the velocity of node I , and CW is the total strain energy in the

continuum domain. In the molecular domain, ()xW M refers to the potential function that is
the summation of all energies due to any force field (such as the pair-wise interaction of the
atoms, three-body potentials, or others). Assume the potential is due only to a constant

The Bridhing Domain Multiscale Method… 299

external force, ext
If , such as electrostatic forces, and a pair-wise interatomic potential is

denoted by),(JIMIJ xxww = , where x is the coordinate. The total potential can be
expressed as

()∑∑
>

+−=+−=
IJI

JIM
I

I
ext

I
int

M
ext

M
M xxwdfWWW

,
, . (3)

The strain energy of the continuum model is defined by

∫
Ω

Ω=
0

dwW C
C (4)

where Cw is the potential energy per unit volume within the continuum domain. It depends
on the elongations and angle changes of the atomic bonds that underlie the continuum model.
The potential energy density can be calculated based on the homogenization techniques7. If
temperature effects are considered, the free energy density, instead of the potential energy
density, is employed in Eq. (4), and calculation can be performed based on the temperature-
related Cauchy-Born rule [9, 10].

In the bridging domain, a Lagrange multiplier can be used to conjunct the molecular and
the continuum domains, with the following constraints: () () 0, =− tdtXu II , where

∑=
J

JIJI uXNtXu)(),(is the finite element interpolated displacement of atom I . The total

Hamiltonian energy of the system can then be expressed as

() () () ()()∑
Ω∈

−++−=
int

,1
I

M
II

C
I

CM tutXuXHHH λαα . (5)

Based on Hamiltonian mechanics, the following discrete equations can be derived:

L
I

int
I

ext
III

LC
I

intC
I

extC
III

fffdm

fffuM

−−=

−−=
M

C

in

in

0

0

Ω

Ω
 (6)

where
() III MXM α= , ()() III mXm α−= 1

and IM is the nodal mass associated with node I . The external nodal forces, including the
scaling factor, are defined as

() ()

()() ext
II

ext
I

t
I

C
I

extC
I

fXf

dtNXbdNXf tC

α

αρα

−=

Γ+Ω= ∫∫ ΓΩ

1
00

000 (7)

Shaoping Xiao, Jun Ni and Shaowen Wang 300

where b is the body force per unit mass and t is the traction applied on the boundary 0Γ in
the continuum domain. Similarly, the internal forces are

() ()
∫Ω Ω

∂
∂

= C

C

I

CintC
I d

u
Fw

Xf
0

00ρα (8)

()() ()∑
> ∂
∂

−=
IJI I

JIM
I

int
I d

xxw
Xf

,

,
1 α . (9)

The forces LC
If and L

If are due to the constraints enforced by the Lagrange
multipliers, and they are

()

()

LC J
I J J J I

J JI

L J
I J J IJ

J JI

gf N X
u

gf .
d

λ λ

λ λ δ

∂
= =

∂

∂
= = −

∂

∑ ∑

∑ ∑
 (10)

An explicit algorithm to solve the above discrete equations is described below:
Initialize the domains, displacements, velocities, and accelerations
Calculate the trail displacements with constraints neglected:

M
nInInInI

C
nInInInI

intdtddd

intutuuu

0
2

)()()(
*

)1(

0
2

)()()(
*

)1(

2
1
2
1

ΩΔ+Δ+=

ΩΔ+Δ+=

+

+
 (11)

(The subscripts in parentheses are the time step numbers). In the equations above, the

accelerations are obtained from Eq. (6) without considering the forces due to the constraints;
therefore,

[]

[] M
nI

ext
nI

I
nI

CC
nI

extC
nI

I
nI

inff
m

u

inff
M

u

0
int

)1()1(
*

)1(

0
int

)1()1(
*

)1(

1

1

Ω−=

Ω−=

+++

+++
 (12)

Calculate the trial velocities:

[]
[] M

nInInInI

C
nInInInI

intdddd

intuuuu

0)1()()(
*

)1(

0)1()()(
*

)1(

2
1
2
1

ΩΔ++=

ΩΔ++=

++

++
 (13)

Compute unknown Lagrange multipliers:

The Bridhing Domain Multiscale Method… 301

() ***
I

J
JIJI

L
LIL duXNgA −== ∑∑ λ (14)

where

() ()∑ −− Δ−Δ=
J

LIIJLIJIIL mtXNXNMtA δ11

Update the velocities:

()∑Δ−= −
++

J
JIJInInI XNtMuu λ1*

)1()1((15)

() J

J
IJInInI tmdd λδ∑ −Δ−= −

++
1*

)1()1((16)

Repeat Step 2 through Step 5 until the end of simulation.

Example
In the first example, we simulate wave propagation in a one-dimensional molecule chain,

which contains 431 atoms. The Lennard-Jones (LJ) 6-12 potential is employed to describe the
inter-atomic interaction between two neighboring atoms. This potential is expressed as

()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

612

4
ijij

ij
M

rr
rW σσε (17)

where the parameters are J2.0=ε and nm11.0=σ . The equilibrium bond length is given as

nmr 139.00 = .
In the bridging domain coupling model of the molecule chain similar to that in figure 1,

the molecular domain contains 211 atoms, and there are 40 elements of equal length in the
continuum domain. Each element contains approximately 5 atoms. The bridging domain
includes 6 finite elements. In the continuum model, all the bonds in a single element are
assumed to be deformed uniformly. Consequently, the length of deformed bonds in this single
element is 0Frr = , where F is the deformation gradient in this element. In computing the
nodal internal forces via Eq. (8), the strain energy density in an element is the potential
energy density:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

6

0

12

00

4
FrFrr

FwC
σσε . (18)

Shaoping Xiao, Jun Ni and Shaowen Wang 302

During the simulation, the time step is 0.002 ps. There are initial displacements on the
atoms in the left portion of the molecular domain. The initial displacements contain a
combination of high-frequency and low-frequency modes. Once the simulation starts, there is
a wave propagating from the molecular domain to the continuum domain. Since the length of
the high-frequency wave is larger than the element length in the continuum domain, a
nonphysical wave reflection phenomenon may occur in most multiscale simulations16.
However, the bridging domain coupling technique can automatically eliminate such a
phenomenon, as shown in figure 2.

Figure 2. Wave propagation in 1D molecule chain: (a) Initial wave; (b) Wave propagation.

In this section, we employ the bridging domain coupling method to study material
properties, especially Young’s moduli, of carbon nanotube (CNT)-reinforced aluminum (Al)
composites. It should be noted that we only consider pristine nanotubes since a defected tube
plays a different role when embedding in composites; see details provided by Xiao and Hou

[33]. We first consider single-walled nanotubes (SWNTs) and assume that long SWNTs are
aligned unidirectionally and distributed homogeneously in the Al matrix. Therefore, we use a
unit cell model, shown in figure 3, with periodic boundary conditions to investigate Young’s
moduli of nanocomposites.

Figure 3. Bridging domain coupling model of SWNT/Al nanocompositesJ: (a) 3-D view; (b) top view.

The Bridhing Domain Multiscale Method… 303

The cell model in figure 3 contains an SWNT. In the coupling model, the SWNT is
embedded in the center of the unit cell. The bridging domain is a circular band with the outer
radius of or and the inner radius of ir between the molecular and continuum domains.

Therefore, the scaling parameter α is defined as a linear function of () ()ioi rrrr −− , where
r is the distance of the projection to the tube axis, as shown in figure 4. Except in the
bridging domain, α is 0 in the molecular domain and 1 in the continuum domain. Obviously,
theα is an axially-symmetric function.

Figure 4. The scaling parameter in the multiscale model of nanocomposites.

We employ the finite element method with tetrahedral elements in the continuum model.
The material properties at the room temperature of 300K are: Young’s modulus of 78.02 GPa
and Poisson’s ratio of 0.325. In the molecular model, molecular dynamics with the Hoover
thermostat is used. We use the modified Morse potential function [3] to describe interatomic
interaction between bonded carbon atoms in SWNT. This potential can be written as:

anglestretch EEE +=

()[]
⎭
⎬
⎫

⎩
⎨
⎧ −−= −− 11

2
0rr

estretch eDE β (19)

() ()[]4
0

2
0 1

2
1 θθθθθ −+−= sangle kkE

where stretchE is the bond energy due to bond stretching or compressing, angleE is the bond

energy due to bond angle-bending, r is the current bond length, and θ is the angle of two
adjacent bonds representing a standard deformation measure in molecular mechanics. The
parameters are:

mr 10
0 1042.1 −×= , NmDe

191003105.6 −×= ,
11010625.2 −×= mβ , rad094.20 =θ (20)

218 /1013.1 radNmk −×=θ , 4754.0 −= radks

Shaoping Xiao, Jun Ni and Shaowen Wang 304

Since only weak CNT/Al interfaces were observed in the experimentation [34], the
Lennard-Jones potential as follows is used to describe nonbonded interaction between the
embedded carbon nanotube and the aluminum matrix.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

612

4
rr

ELJ
σσε (21)

The parameters for the interactions between carbon atoms and Al atoms are obtained

from the Lorentz-Berelot combining rules: eV038.0=ε and nm296.0=σ .
To calculate Young’s moduli of nanocomposites, we investigate the stress-strain relations

of nanocomposites first. The prescribed displacement is applied on the top of the unit cell,
while the bottom of the unit cell is fixed. Since the long tube is considered and the periodic
boundary condition is employed, the prescribed displacement is applied on both the nanotube
and the Al matrix. We evaluate stress at every 0.1% strain during the simulation via summing
the internal forces on the nodes/atoms on the top of the unit cell and then dividing it by the
cross section area of the cell. The Young’s modulus is then calculated as the slope of the
stress-strain relation curve. In this section, we mainly investigate Young’s moduli of
nanocomposites with various volume fractions of embedded CNTs at the room temperature of
300K.

We consider two SWNTs, respectively, as inclusions in the Al matrix material. One is the
(5,5) SWNT with a diameter of 0.68 nm, while the other is the (21,21) SWNT with a diameter
of 2.85 nm. We vary the size of the unit cell so that various volume fractions of embedded
tubes can be achieved. Table 1 illustrates the calculated Young’s moduli of nanocomposites
with various tube volume fractions at the room temperature. Apparently, a larger volume
fraction of embedded SWNTs results in a larger Young’s modulus of nanocomposites. It also
can be seen that the Young’s moduli of nanocomposites are similar no matter which SWNTs
are embedded for a given tube volume fraction. In other words, nanotube size has no effect on
the Young’s modulus of nanocomposites. This is because size effects on nanotubes’ stiffness
are significant only for nanotubes with small diameters [35]. Therefore, there is no effect of
tube size on Young’s moduli of nanotube-reinforced composites.

Table 1. Young’s moduli of SWNT-based Al nanocomposites with various tube volume

fractions at the room temperature

SWNT volume fraction (%) 1.3 1.8 4.1 7.3 11.4 16.4
Young’s moduli (GPa) of
nanocomposites with (5,5)
SWNTs

85.0 86.8 89.4 96.6 101.4 118.0

Young’s moduli (GPa) of
nanocomposites with (21,21)
SWNTs

84.2 86.4 90.1 97.7 103.2 115.7

As utilized in the experiments [36], most fabricated CNTs are multi-walled nanotubes

(MWNTs) or SWNT bundles. An MWNT contains a number of co-axial SWNTs, and the
interlayer distance between SWNTs is 0.34 nm. In SWNT bundles, SWNTs are packed in
two-dimensional triangular lattices. The nearest distance between two neighboring SWNTs is

The Bridhing Domain Multiscale Method… 305

also 0.34 nm. The Lennard-Jones potential [37], similar to Eq. (21), is employed to describe
nonbonded interaction between two carbon atoms that are located at different SWNTs in
MWNTs or SWNT bundles. The parameters are: eV0025.0=ε and nm34.0=σ .

Figure 5. Multiscale models of nanocomposites (top views): (a) nanocomposite with an MWNT; (b)
nanocomposite with an SWNT bundle.

In our multiscale simulations, we select a (21,21) MWNT, which contains (21,21),
(16,16), (11,11), and (6,6) SWNTs, and a (5,5) SWNT bundle, which contains seven (5,5)
SWNTs. The multiscale models are illustrated in figures 5(a) and 5(b), respectively. The
scaling parameters in the bridging domains can be constructed similarly to the one in figure 4.
It should be noted that all the (21,21) SWNT, (21,21) MWNT, and (5,5) SWNT bundles have
the similar diameters. Figure 6 compares the roles of the above three nanotube inclusions in
reinforcement of nanocomposites. It is evident that the MWNT results in the most significant
reinforcement, followed by the SWNT bundle. The SWNT results in the least significant
reinforcement compared to the other two inclusions. As an instance of 10% CNT volume
fraction, the nanocomposite containing (21,21) SWNTs has the Young’s modulus of 100
GPa. However, the nanocomposite containing (5,5) SWNT bundles can have the Young’s
modulus of 110 GPa, and the one containing (21,21) MWNTs can have the Young’s modulus
of as high as 135 GPa.

Figure 6. Young’s moduli of nanocomposites at various CNT volume fractions.

Shaoping Xiao, Jun Ni and Shaowen Wang 306

BRIDGING DOMAIN MULTISCALE METHOD
WITH PARALLEL COMPUTING

Bridging Domain Multiscale Method

Figure 7. A bridging domain multiscale (BDM) method with different length scales.

The bridging domain coupling method can be extended for coupling the nanoscale to the
microscale and macroscale for a given system, as shown in figure 7. A macroscale domain
(~10-3 m) can be modeled as a linear elasticity domain using finite element methods [21]. The
elastic properties are obtained using a Representative Volume Element (RVE) model from an
MD simulation at a given temperature. A microscale domain (~106m) can be embedded in the
macroscale domain, modeled using a nonlinear FE method [22]. The homogenization
techniques, such as the TCB rule [9, 10], can be implemented in the nonlinear FE method to
construct the temperature-dependent constitutive equations of the continuum. A subdomain in
the microscale domain can be treated as a nanoscale (molecular) domain (~10-9 m) using MD
if one is interested in studying physical phenomena in this subdomain. We can employ a
Hoover thermostat [23] to maintain the nanoscale domain at a given temperature. It should be
noted that a number of different length scales, such as the mesoscale domain, could be added
as desired between the macroscale and microscale continuum domains. Furthermore, even the
macroscale or the microscale can contain a number of different length scale subdomains.
Different length scales are coupled via the bridging domain coupling technique [16].

Most concurrent multiscale methods employ multiple length scales but only a single time
step. In coupling finite element methods and molecular dynamics, if the finite element mesh
is graded down to the atomic spacing at the interface of the continuum and molecular
domains [11], the time step must be restricted to the order of one femtosecond (10-15 s), due to
the stability requirement in the molecular model. Consequently, significant computation time
is wasted for large length scales in which large time steps can be used. In the bridging domain
multiscale method, coupling different scales without such grading down of mesh sizes will be
achieved by a straightforward implementation of different time steps via a multiple-time-step
algorithm.

Since uniform meshes can be used in each length scale in the bridging domain multiscale
method, it is possible to apply different time steps in different length scales, as shown in
figure 8. A multiple-time-step algorithm is proposed for the bridging domain multiscale
method. For example, to couple a molecular model at the nanoscale and a continuum model at

The Bridhing Domain Multiscale Method… 307

Figure 8. Multiple time steps used in the proposed multiscale method.

the microscale, a fine time step, τΔ , is used in the molecular model and a coarse time step,
τΔ=Δ Nt , is used in the microscopic continuum model. Eq. (13) is then rewritten as:

[]
M

N
jnI

N
jnI

N
jnI

N
jnI

C
nInInInI

indddd

intuuuu

0
)1()()(

*

)1(

0)1()()(
*

)1(

2
1

2
1

ΩΔ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

ΩΔ++=

+
+++

+
+

++

τ

 (22)

The bridging domain then connects a fine length/time scale and a coarse length/time

scale. Compatibility of different length scales will be enforced by means of a constraint
imposed via the Lagrange multiplier method, i.e., Eq. (14), at each coarse time step, tΔ , as
shown in figure 8. Consequently, the equations of motion will be solved independently in
different length scales with different time steps. At each coarse time step, velocities of
nodes/atoms in the bridging domain will be corrected via the bridging domain coupling
technique.

Domain Decomposition

To perform such multiscale simulations via high performance computing, efficient and

effective domain decomposition strategies are necessary. In the bridging domain multiscale
method, as illustrated in figure 9, a simulation domain can be easily hierarchically divided
into subdomains, each of which can be processed in parallel.

The entire domain is divided into several sub-domains based on the scale difference. The
primarily decomposed sub-domains are called the first-generation (FG) subdomains. The
computational jobs on the subdomains can be distributed to different groups of HPC
processors. For example, the computations in the molecular domain can be performed at
Group 1 (a group of processors within a single HPC cluster), while those in the
microscale/macroscopic domains can be performed at Group 2 (another group of processors
within a single HPC cluster). The first-generation subdomain decomposition is parallel
computing task decomposition. Each FG subdomain is further divided into a number of
second-generation (SG) subdomains. Each SG subdomain is assigned to a single processor. In
other words, as the secondary effort, the data within the subdomain are decomposed and

Shaoping Xiao, Jun Ni and Shaowen Wang 308

transferred to each processor within a specified group for intensive computation. Obviously,
it is a data-decomposition. This way, the task and data decomposition are combined.

Figure 9. Domain decomposition for the BDM method.

A bridging subdomain is a special subdomain. It is shared by two SG subdomains, each
of which belongs to two different length scales. Although one SG subdomain can overlap
more than one other SG subdomain, the bridging subdomains do not overlap each other.

Inter-domain communications between two SG subdomains take place in each FG
subdomain separately. Such inter-domain communications occur prior to solution of the
equations of motion so that the motion of atoms or nodes at the SG subdomain boundaries is
consistent.

The procedure for solving equations of motion in each FG subdomain is independent.
Once the equations of motion are solved at each time step (or coarse time step in the

event that a multiple-time-step algorithm is used), the bridging domain communications take
place between two processors. It should be noted that those two processors belong to two
different groups of processors, shown in figure 9. The bridging coupling techniques are
applied to correct the trial velocities of nodes or atoms in each bridging subdomain
independently.

Inter-Domain and Bridging Domain Communications

Figure 10 illustrates the inter-domain communication in the BDM method. A simple

BDM model contains two subdomains, ΩA and ΩB, in the molecular domain and two
subdomains, ΩC and ΩD, in the continuum domain. ΩA and ΩB are allocated to two different
processors in the same group of processors. Similarly, ΩC and ΩD are allocated to two
processors in another group of processors. Inter-domain communications occur between ΩA
and ΩB or between ΩC and ΩD prior to solution of the equations of motion. Such
communications take place only inside each group of processors. In the molecular domain,
ΩA and ΩB share atom E. Since the multi-body potential functions are generally utilized in
MD simulations, slave domains int

BΩ and int
AΩ , associated with ΩA and ΩB, respectively, are

introduced to support energy and force calculations. For example, the motion of atom H is

The Bridhing Domain Multiscale Method… 309

updated in ΩB. Such information is passed to the slave domain int
BΩ to assist in the

calculation of the interatomic force of atom E in ΩA because the potential in the molecular
domain includes the angle-bending potential of bonds GE and HE. Similarly, the motion of
atom G is updated in ΩA. Such information is passed to the slave domain int

AΩ to assist in the
calculation of the interatomic force of atom E in ΩB. Consequently, after solving the
equations of motion, the updated motions of atom E in either subdomain ΩA or ΩB are
identical to avoid the occurrence of nonphysical phenomena. It should be noted that the size
of a slave domain depends on the selected potential functions, in particular the cutoff distance
for Van der Waals potential functions.

Figure 10. The inter-domain communication.

The inter-domain communication in the continuum domain has a different strategy from
the one in the molecular domain. The continuum subdomains ΩC and ΩD share the boundary
node F, as shown in figure 10. FC and FD are used to represent the same node F, but in
different subdomains. Unlike inter-domain communication between neighboring molecular
subdomains, inter-domain communication between neighboring continuum subdomains does
not require slave domains, instead acting to aid the exchange of calculated internal forces of
boundary nodes. For instance, the internal force of node FC, calculated in subdomain ΩC, is
passed to subdomain ΩD and is set as the negatively external force of node FD. A similar
procedure is performed to pass the internal force of node FD, calculated in subdomain ΩD, to
subdomain ΩC as the negatively external force of node FC. Therefore, the motions of node F,
updated by solving the equations of motion, Eq. (6), in both subdomains ΩC and ΩD, are
identical.

Once the equations of motion are solved independently in each processor, the bridging-
domain communication occurs separately in each bridging subdomain, e.g., B

ACΩ and B
BDΩ

in figure 11. For example, trial velocities of atoms in B
BDΩ of ΩB are passed to ΩD, while trial

Shaoping Xiao, Jun Ni and Shaowen Wang 310

Figure 11. The bridging domain communication.

velocities of nodes in B
BDΩ of ΩD are passed to ΩB. Then, the Lagrange multipliers in B

BDΩ
are solved via Eq. (14). Last of all, the trial velocities of atoms and nodes in the bridging
domain B

BDΩ will be corrected in ΩB and ΩD, independently through Eqs. (15) and (16).
Upon the above domain decomposition and data communication, the parallel computing

processing can be implemented in the workflow illustrated in figure 12.

Figure 12. The workflow of the BDM method.

The Bridhing Domain Multiscale Method… 311

Complexity and Performance Evaluations

An important focus of the proposed method is the definition of a suitable computational

intensity metric for sub-domains:

M (d) = f (D (d), O, P) (23)

where M is a function of the domain size D, i.e., the number of nodes or atoms having sub-
domain d, the computing time complexity O of a particular component of a multiscale
method, and parameters P that characterize the computing capacity of each specific HPC
resource. M will be used to determine the size of sub-domains in domain decomposition. M is
also an important parameter that can be used to guide decisions about when and where these
sub-domains should be scheduled.

The computing time complexity of a continuum domain is O(n2) while the complexity for
a molecular domain is O(m2), where m represents the number of atoms and n the number of
finite element nodes. Although the complexity representation is the same for these two
domains, m is often significantly larger than n. O(m2) is approximately within the range O(n3)
to O(n4), because m is approximately equivalent to n3/2~2. The domain decomposition
approach will address this complexity difference to produce sub-domains adaptively, the
representations of which include the complexity information for tasking scheduling purposes.
This approach will help detach the domain decomposition technique from the task-scheduling
advisor, as described in the following. Further research will be conducted for multiple time
steps as used in different length scales.

In order to investigate the feasibility, reliability, and application of the proposed method,
several high performance computing benchmark studies should be conducted. The studies
include (1) parallel performance speedup and efficiency to evaluate the behavior of high-
performance computing, (2) detailed data communication (blocking, non-blocking,
gather/scatter, one-site-communication effect using MPI2 features, parallel I/O, network
impacts and network latency, load balance, etc.) among a group of processors and
computational nodes to understand and reduce the communication loss, and (3) experiments
of different HPC platforms and an analytical model of HPC scalability.

One-Dimensional Examples

To demonstrate the preliminary feasibility of the bridging domain multiscale method with

high performance computing techniques, an experimental model has been developed. Similar
to the previous example, the experiment is designed to observe the propagation of an imposed
wave in a molecule chain passing from the molecular domain to the continuum domain. In
this example, the bridging domain multiscale model contains 10,000 atoms and 10,000 finite
elements. Each finite element contains 9 atoms. Therefore, the molecule chain has 100,000
atoms, and the length of the chain is around 20 micrometers. In this example, we mainly
study the speedup of simulations due to high performance computing. The first computation
is conducted on a local cluster (Microway 64-bit AMD Opeteron 32 processors). Figure 13(a)
presents the speedup performance. The parallel performance increase exhibits a quasi-linear
behavior. In order to test the parallel scalability, we also employed the algorithm on NSF’s

Shaoping Xiao, Jun Ni and Shaowen Wang 312

TeraGrid (NCSA) system with 100 processors. The computational results are very promising,
as shown in figure 13(b). Due to the large memory required for the finite element method, a
superlinear behavior is observed. The preliminary study successfully demonstrates the
feasibility and applicability of the proposed model. The achieved computations provide
significant experience for future multi-dimensional studies.

Figure 13. Speedup of 1D BDM method with high-performance computing; (a) on a 32-node UI-IA32-
HPC cluster with low memory; and (b) on 64-node NCSA-HPC cluster with larger memory.

GRID COMPUTING TECHNIQUES IN MULTISCALE SIMULATIONS

Nano-Middleware

During the last several years, Computational Grids have been widely used to address

computationally intensive problems in science, engineering, and commerce [24, 25]. Several
disciplines have employed Grid computing to obtain solutions to computationally intensive
problems by developing domain-specific middleware. This domain-specific middleware
exploits characteristics of domain problems and aids the efficient use of Grids. In a similar
manner, Grid application-specific middleware must be developed for multiscale methods to
capture important method characteristics. This chapter develops a conceptual framework for
multiscale methods that supports the location, allocation, and utilization of Grid resources to
effectively and efficiently apply multiscale methods for nanotechnology applications. This
middleware is referred to as nano-middleware in this chapter.

Figure 14. The proposed nano-middleware architecture.

The Bridhing Domain Multiscale Method… 313

The nano-middleware will be designed, as shown in figure 14, to enable Grid computing
of the bridging domain multiscale method. Note that Globus is a software project, the purpose
of which is to develop protocols and services for computational grids. Condor is a high
throughput computing system. For a given problem, the nano-middleware will schedule
decomposed domains to appropriate Grid resources (e.g., clusters) to achieve load balancing
and efficient use of resources. The primary components of the nano-middleware are:

1) A task-scheduling advisor that takes the result of domain decomposition as input to

produce scheduling plans and achieve high-performance simulation through load-
balancing;

2) An information broker (IB) that leverages Grid information services to provide
resource discovery [26, 27] functions to the task-scheduling advisor;

3) A data access module (DAM) that will manage the transfer, replication, and
manipulation of data on the Grid.

Components 1 and 2 primarily deal with computing strategies. Data handling will be

supported by existing generic middleware. The task-scheduling advisor is the key element of
nano-middleware for its impact on performance gains. It should be noted that the concept of
proposed nano-middleware can be applied to other multiscale methods.

Task Scheduling Advisor

Task scheduling is used to schedule subdomains to an appropriate set of Grid resources to

achieve optimal performance—tasks are allocated in a way that balances computation across
the selection of available resources. In the nano-middleware task-scheduling advisor,
subdomains from the computational domain decomposition process are converted to tasks
that are then placed in Grid resource queues in a specific order. In practice, queues will be
managed by local resource schedulers, such as Portable Batch Systems (PBS) and Condor.
The task-scheduling advisor is designed to achieve optimal performance by balancing tasks
across available resources [28]. The advisor generates a scheduling plan that determines the
correspondence between tasks and the available Grid resources to which they are submitted.

There are two general approaches to task scheduling: static and dynamic. When a static
scheduling strategy is employed, the scheduling plan does not change until all tasks are
completed [29]. In contrast, dynamic scheduling permits a plan to be altered while the set of
tasks is being executed [30]. Using dynamic task scheduling for the BDM method is difficult
to accomplish for two specific reasons [31]. First, the computation required to implement
dynamic scheduling is much greater than for static scheduling; dynamic scheduling
introduces additional overhead penalties created by network latency and the execution of the
code that monitors the task status. Also, tasks are swapped between resources according to a
dynamic performance evaluation. Second, fine granularity in individual subdomains,
produced based on the BDM method, is desirable in order to achieve high levels of
parallelism. Results for these subdomains can be inexpensive to compute even if scheduled to
a Grid resource having a small capacity. Therefore, the time overhead that results from
implementing dynamic scheduling on a task level may exceed the time required to compute
results for an individual subdomain.

Shaoping Xiao, Jun Ni and Shaowen Wang 314

Consequently, static scheduling strategies are developed to assign tasks based on
computational intensity information for each subdomain, as well as the variability in the
computing capacity of each Grid resource. Two principles are used to guide the development
of static scheduling algorithms: (1) Grid resources with greater computing capacity are used
before those with less capacity; and (2) tasks that are more (less) computationally intensive
are assigned to Grid resources with more (less) computing capacity [32].

CONCLUSION

Multiscale modeling and simulation has been at the forefront of nanotechnology research

due to its ability to simulate larger systems than is possible with molecular dynamics. In this
chapter, we first introduced the bridging domain coupling method, which can efficiently
couple molecular dynamics and the finite element method. A more powerful multiscale
method can be extended to bridge a number of length and time scales via the bridging domain
coupling technique.

Recently developed multiscale methods, including the bridging domain multiscale
method, still have limitations in length and time scales. This chapter proposed an alternative
solution for the above problem: high performance computing techniques including Grid
computing techniques. The speedup study demonstrated the advantage of implementing high
performance computing techniques into the bridging domain multiscale method. Furthermore,
the conceptual idea of Grid-based multiscale modeling and simulation will benefit from
rapidly developing computer science technologies. Finally, the proposed research in this
chapter can also be viewed as a framework for implementing high performance computing
techniques in other potential multiscale methods.

REFERENCES

[556] S. Xiao and W. Hou, Phys. Rev. B 73, 115406 (2006)
[557] S. Xiao, D. R. Andersen, R. Han and W. Hou, J. Comput. Theor. Nanosci. 3, 142

(2006)
[558] T. Belytschko, S. Xiao, G. Schatz, R. Ruoff, Phys. Rev. B 65, 235430 (2002)
[559] J. S. Smith, D. Bedrov and G. D. Smith, Comp. Sci. Tech. 63, 1599 (2003)
[560] C. L. Rountree, R. K. Kalia, E. Lidorikis, A. Nakano, B. L. Van and P. Vashishta, Ann.

Rev. Mater. Res. 32, 377 (2002)
[561] S. Xiao and W. Hou, Phys. Rev. B 75, 125414 (2007)
[562] E. B. Tadmor, M. Ortiz and R. Phillips, Phil. Mag. A 73, 1529 (1996)
[563] S. Q. Chen, W. N. E and C. W. Shu, Mult. Model. Simul. 3, 871 (2005)
[564] S. Xiao and W. Yang, Int. J. Numer. Meth. Engrg. 69, 2099 (2007)
[565] S. Xiao and W. Yang, Comp. Mater. Sci. 37, 374 (2006)
[566] F. Abraham, J. Broughton, N. Bernstein and E. Kaxiras, Europhy. Lett. 44, 783 (1998)
[567] J. Broughton, F. Abraham, N. Bernstein and E. Kaxiras, Phys. Rev. B 60, 2391 (1999)
[568] N. Choly, G. Lu, W. E and E. Kaxiras, Phys. Rev. B 71, 094101 (2005)
[569] G. J. Wagner and W. K. Liu, J. Comp. Phys. 190, 249 (2003)

The Bridhing Domain Multiscale Method… 315

[570] T. Belytschko and S. P. Xiao, Int. J. Multi. Comp. Engrg. 1, 115 (2003)
[571] S. P. Xiao and T. Belytschko, Comp. Meth. Appl. Mech. Engrg. 193, 1645 (2004)
[572] Y. G. Yanovsky, Int. J. Multi. Comp. Engrg. 3, 199 (2005)
[573] J. Ma, H. Lu, B. Wang, R. Hornung, A. Wissink, and R. Komanduri, Comp. Model.

Engrg. Sci. 14, 101 (2006)
[574] I. Foster and C. Kesselman, The Grid: Blue Print for a New Computing Infrastructure.

Morgan Kaufmann Publishers, Inc. San Francisco, CA, 1999
[575] I. Foster, C. Kesselman and S. Tuecke, Int. J. Supercomp. Appl. 15, (2001)
[576] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Analysis,

Prentice-Hall, Dover, 1987.
[577] T. Belytschko, W. K. Liu and B. Moran, Nonlinear Finite Elements for Continua and

Structures, Wiley, New York, 2000
[578] W. G. Hoover, Phys. Rev. A 31, 1695 (1985)
[579] I. Foster, Phys. Today. 55, 42 (2002)
[580] F. Berman, G. Fox and T. Hey, “The Grid, past, present, future,” In Grid Computing,

Making the Global Infrastructure a Reality, edited by R. Berman, G. Fox, and T. Hey
John Wiley and Sons, West Sussex, England, 2003

[581] S. Wang, A. Padmanabhan, Y. Liu, R. Briggs, J. Ni, T. He, B. M. Knosp, Y. Onel, Lec.
Note. Comp. Sci. 3032, 536 (2003)

[582] Padmanabhan, A., Wang, S., Ghosh, S., and Briggs, R. Proceedings of the Grid 2005
Workshop, Seattle, WA, November 13-14, 2005, IEEE press, pp. 312-317.

[583] J. Henrichs, Proceedings of International Conference on Supercomputing. 1998, 165
(1998)

[584] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen and R. F. Freund, J. Para. Distrib. Comp.
61, 810 (2001)

[585] O. Beaumont, A. Legrand and Y. Robert, Para. Comp. 29, 1121 (2003)
[586] H. J. Siegel and S. Ali, Euromicro J. Sys. Arch. 46, 627 (2000)
[587] S. Wang and M. P. Armstrong, Para. Comp. 29, 1481 (2003)
[588] S. Xiao and W. Hou, Phys. Rev. B 73, 115406 (2006)
[589] T. Kuzumaki, K. Miyazawa, H. Ichinose and K. Ito, J. Mater. Res. 13(9), 2445 (1998)
[590] S. Xiao and W. Hou, Fullerenes, Nanotubes, and Carbon Nanostructures, 14, 9 (2006)
[591] M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. Ruoff, Science. 287, 637

(2000)
[592] C. A. Girifalco and R. A. Lad, J. Chem. Phys. 25(4), 693 (1956)

In: Cyberinfrastructure Technologies and Applications ISBN: 978-1-60692-063-3
Editor: Junwei Cao © 2009 Nova Science Publishers, Inc.

Chapter 15

CYBERINFRASTRUCTURE FOR AGRICULTURAL
DATA AND KNOWLEDGE SHARING IN CHINA

Chunjiang Zhao1, Yuxin Wan2,
Huarui Wu3 and Wen Zhang4

1 National Engineering and Research Center for Information
Technology for Agriculture, Beijing 100097, P. R. China

2 Department of Automation, Tsinghua University, Beijing 100084, P. R. China
3 National Engineering and Research Center for Information

Technology for Agriculture, Beijing 100097, P. R. China
School of Computer Science, Beijing University of Technology,

Beijing 100022, P. R. China
4 Department of Automation, Tsinghua University,

Beijing 100084, P. R. China

ABSTRACT

During the last decade, billions of national investment has been spent in China on
building agricultural information systems for data collection, integration, analysis and
processing. Each province has built its own technology platform for information sharing
and access. However, since data sources are separate and corresponding applications are
developed by different organizations, cross-domain data and knowledge sharing becomes
very difficult. A Cyberinfrastructure (CI) for agricultural data and knowledge sharing in
China is proposed in this work and funded by the Ministry of Science and Technology of
China under the national 863 high-tech R and D program. In this work, related work is
summarized and our system structure is described in details. Heterogeneity of different
operating systems and databases has to be addressed. System performance can be
improved by avoiding large-scale data transferring by introducing an application server
within each domain for local data processing.

1 E-mail address: zhaocj@nercita.org.cn
2 E-mail address: wanyx04@mails.tsinghua.edu.cn
3 E-mail address: wuhr@nercita.org.cn
4 E-mail address: wen-zhang05@mails.tsinghua.edu.cn

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 318

INTRODUCTION

During the past decade, billions of national investment has been spent in China on

agricultural information system for data collection, integration analysis and processing. Up to
now the information services has been widely used from crop production to stock breeding
during the whole production management. Each province has established their own
agricultural technology platform based on agriculture data resources. However, since these
databases are separated in different locations and different information systems, it becomes
very difficult to integrate all these highly distributed agricultural data and provide transparent
access and massive processing supports on these data and knowledge. Major challenges are as
follows:

• Data Heterogeneity. All these agricultural data are collected and maintained in

different information systems. Data are stored in different databases, e.g. SQL Server,
MySQL, and ORACLE, using different operating systems, e.g. Windows and Linux.
Corresponding applications of these data are developed and maintained by different
organizations and originally not motivated by data and knowledge sharing.

• Massive Data Transferring. Data are located separately and network situation may
vary largely among these locations. Large-scale cross-domain data transferring
becomes impossible and has to be avoided as much as possible.

There are already many technical mechanisms provided to solve similar problems, such

as distributed database systems and data grid systems. In this chapter, a brief summary of
related work is provided in Section 2.

A Cyberinfrastructure (CI) for agricultural data and knowledge sharing in China is
proposed in this work and funded by the Ministry of Science and Technology of China under
the national 863 high-tech R and D program. The project is a joint effort of National
Engineering and Research Center for Information Technology for Agriculture and Tsinghua
University. An overview introduction to project goals is included in Section 3.

A three-layered system structure for heterogeneous data integration is proposed in this
work and related software techniques for implementing the system are introduced in details.
A working procedure is given to explain how the system works. All details can be found in
Section 4 and the chapter concludes in Section 5.

RELATED WORK

Distributed Database Systems (DDB)

A simple solution for data integration is using distributed database system and D-DBMS.

DDB technology aims to provide mechanisms to manage and uniform access to those
physically distributed but logically related information sources. There are two features of
DDB. One is data independence, which includes logic independence, physical independence
and distributed transparency. Second is DDB is a combined system that includes both
centrality and autonomy. Centrality refers to centralized control which means a virtual center

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 319

assort with each component DBMS (database management systems) and execute high-level
applications. On the contrary, autonomy refers to control distribution and indicates the degree
to which individual DBMS can operate independently. “There are three types of autonomy,
tight integration, semi-autonomy, and full autonomy. In tightly integrated system, a single
image of the entire database is available to users who want to share the information in
multiple databases. Semiautonomous systems consist of DBMSs that can operate
independently but have been designed to participate in federation to make their local data
shareable. In fully autonomous systems, the individual components do not know the other
DBMSs and do not communicate with them.” [10] According to our scenarios,
semiautonomous system is the most appropriate choice. The distributed data source system
deal with their own business and a global control system is in charge of assorting with each
data source and providing integrated application.

To all appearances, it seems DDB systems are a good choice for building agriculture data
sharing systems. However, there are two main disadvantages of DDB. Obviously, a notable
character of agriculture information system is the massive amount of data. However, DDB
system is not appropriate for mass data integration. Firstly, DDB system need to make
replication for safety but for agriculture data it is impossible. Second, DDB system has no
mechanism for mass data transferring. The other shortage is that DDB is a close-coupling
system, since once the whole system is constructed it’s inconvenient to change, for example
adding new data source nodes or removing existing nodes. However, agriculture information
systems are dynamic systems since we cannot tell how many nodes there are at the beginning.
The number of nodes will increase as the popularization of agriculture information systems.
Also, it’s almost impossible to build a DDB system from a huge number of data sources.

Although DDB is not suitable for our project, the idea of semiautonomy systems is very
useful and we will talk about that lately in Section 4.

Grid Technologies and Applications

There are various efforts on large-scale data integration in the grid community for

scientific applications in different domains [6]. For example, Grid Physics Network [11] and
Open Science Grid [12] are grid testbeds in the US for data intensive computing on high-
energy physics and gravitational wave astrophysics. There is no dedicated grid infrastructure
in the world for agricultural data integration and processing, but some general-purpose tools
provide similar functionalities, e.g., OGSA-DAI and SRB.

OGSA-DAI

OGSA-DAI [5] is a project conceived by UK Database Task Force and is working
closely with the Open Grid Forum DAIS-WG. OGSA stands for “Open Grid Source
Architecture” while DAI means “Data Access Integration”. The main goal of the program is
for scientific use “To contribute to a future in which scientists move away from technical
issues such as handling data location …. instead focus on application specific data analysis
and processing”. This middleware bases on Globus and has provided control and access to
relational and XML database management system currently. The framework, however, has
been designed to allow other data sources such as file systems to be accessed through the
same interfaces.

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 320

Figure 1 below shows the framework of OGSA-DAI and corresponding detailed
descriptions can be found in the document [1].

Figure 1. Schematic representation of OGSA-DAI.

• The presentation layer accepts message from clients and decide which Data Service
Resource (DSR) in the Core Layer is the proper one to submit.

• The core layer consists of a set of DSR. Each DSR implements the core DAI
functionality that includes overseeing the coordination of the activities for a specific
Data Resource. A DSR may also expose additional capabilities such as data
transport-related operations and can cache data for retrieval by third parties.

• The client toolkit (CTk) API has been refactored to abstract away the differences
between the different messaging infrastructures.

Figure 2 below shows a typical OGSA-DAI interaction. The following interaction steps

are cited from the document [2].

Figure 2. A typical OGSA-DAI interaction.

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 321

• Data Access and Integration Service Group Registry (DAISGR) is a service allowing
other services to publish metadata about any data resources they represent and the
capabilities they expose. A client can thus use a DAISGR to identify, by querying its
registered metadata, a resource provider that best satisfies its needs.

• Grid Data Service Factory (GDSF) acts as a persistent access point to a data resource
and contains additional related metadata that may not be available at a DAISGR. A
GDSF creates GDSs to access and manipulate data resources.

• Grid Data Service (GDS) acts as a transient access point to a data resource. It is
through a GDS that a client interacts with a data resource.

1. A GDSF may register its service handle with a DAISGR, along with sufficient

metadata and capability information to allow service/resource discovery to take
place.

2. Clients obtain information about available resources (represented by GDSFs) by
querying a DAISGR. They can then ask for detailed information, e.g., the schema of
the resource, at a particular GDSF of interest.

3. A GDSF, in effect, acts as a persistent Grid-enabled wrapper for a data resource but
does not provide direct access to that data resource. Access to a data resource
requires the creation of a GDS through the GDSF’s Factory portType as specified in
OGSI.

4. GDSs are transient services created at the request of clients who wish to access a
data resource. Data resource access is done through a single document-based
operation provided by the GDS.

5. A client submits a perform document to the GDS which contains the sequence of
activities to be executed on that data resource or the resulting data.

6. The activities that can be executed by the GDS are defined when a GDSF is
configured. The inner workings of a GDS are examined in more detail in the next
section.

From above we can see that OGSA-DAI has constructed a uniform service format and

provided a standard accessing criterion to distributed data sources. Especially, OGSA-DAI is
a loose-coupling system. Data sources are not fixed to a special server but can be discovered
instantly. OGSA-DAI project is based on Java and use JDBC technique for data integration.
OGSA-DAI aim to providing not only database system access but also allow other data
sources such as file systems to be accessed through the same interfaces.

Storage Resource Brokers (SRB)

Storage Resource Broker (SRB) [13] is a data grid middleware software system produced
by the San Diego Supercomputer Center (SDSC) and commercialized by Nirvana that is
operating in many national and international computational science research projects.

SRB provides a uniform interface to heterogeneous data storage resources over a network.
As part of this, it implements a logical namespace (distinct from physical file names) and
maintains metadata on data-objects (files), users, groups, resources, collections, and other
items in an SRB Metadata Catalog (MCAT) stored in a relational database management
system. System and user-defined metadata can be queried to locate files based on attributes as
well as by name. SRB runs on various versions of Unix, Linux, and Microsoft Windows.

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 322

The SDSC SRB system is middleware in the sense that it is built on top of other major
software packages (various storage systems, real-time data sources, a relational database
management system, etc) and it has callable library functions that can be utilized by higher-
level software. However, it is more complete than many middleware software systems as it
implements a comprehensive distributed data management environment, including various
end-user client applications. It has features to support the management and collaborative (and
controlled) sharing, publication, replication, transfer, and preservation of distributed data
collections.

Compared with the work described above, we adopts a different approach by introducing
local applications servers so that cross-domain data encapsulation and transferring problems
are avoid and system performance is approved.

CYBERINFRASTRUCTURE (CI) FOR AGRICULTURAL
DATA AND KNOWLEDGE SHARING IN CHINA

CI for agricultural data and knowledge sharing is a project in China funded by the

Ministry of Science and Technology of China under the national 863 high-tech R and D
program. The project is a joint effort of National Engineering and Research Center for
Information Technology for Agriculture and Tsinghua University. Two other consortium
members are China Agriculture University and Institute of Software of Chinese Academy of
Sciences. Major challenges that have to be addressed by the project are as follows.

• Database integration, also known as data transparency. It’s the foundation of our

project, which means:

o Storage resource transparence - accessing data without knowing the type of storage.

It is the bottom layer, aiming at combining different types of physical databases into
a logical set of sources and offering standard interfaces for accessing.

o Storage location transparence - accessing data without knowing the location.
o Data identifier transparence - finding data without knowing the identifier. There are

four types of data identifiers: unique name, descriptive name, collective name and
physical name.

• User authentication. Each data source is a preserved data system and data accessing
should be authenticated. Since our project goal is building a loosely coupled system,
the authentication should not be too complicated.

• Easy access. Data sources should be easily added into our system.
• Massive data transferring. As we know, today’s Internet provides a best effort service,

although TCP/IP protocol defined some mechanisms for reliability and safety.
However, some level of protection still has to be set at the application layer. We have
to guarantee a reliable transferring through an unreliable channel.

• Data intensive computing. We cannot depend on a central processor dealing with all
the query. Distributed computing is a necessary component in our program.

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 323

• Security guarantee. Since the program operates on databases directly, users should
not have too much authority.

Among the challenges mentioned above, heterogeneous data integration and mass data

processing are the top two questions [7]. In the section below, we will introduce our
framework according to address these challenges.

HETEROGENEOUS DATA INTEGRATION

System Architecture

From down to top there are three layers of this system, as shown in Figure 3 below.

Database Integration Layer

Data grid

Application Layer

Figure 3. System architecture.

• The bottom layer is integrated data resources. This layer will integrate heterogeneous
databases and provide standard accessing interfaces to different databases. Compared
with OGSA-DAI, this layer accomplishes parts of the core layer function.

• On the second layer, we will establish a data grid system that enables mass data
transferring and safe access of distributed database systems. Easy access and
authentication mechanism will be provided in this layer. At the same time, this layer
is the central processing unit of our system, according to user query collected from
the application layer. It will operate on data sources and get corresponding
information.

• On the top level, we will build a web server system and implement some web
applications such as data searching. As the presentation layer in OGSA-DAI project,
this layer accepts messages from clients and submits jobs to the right resource. In
addition, some of the security control is done in this layer.

In this section, we provide an overview of our system, and in the following sections, we

will present the implementation of our framework and technical details we used.

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 324

System Structure

According to the framework we describe above, the actual system structure is shown in

Figure 4.

Figure 4. System structure.

Application servers and DBs, accomplish database integration and part of data processing.
It is the whole database integration layer and a part of data grid layer. As we discussed above,
one problem we need to solve is how to transfer and deal with massive data. If we merely rely
on the Web server, it will be impossible in practice because of transferring and processing
costs. The transferring cost depends on the Internet bandwidth while computation cost relies
on processing ability of the Web server. Neither can we require the bandwidth nor hardware
configuration so we have to adopt the concept of distributed computing. Each application
server is the virtual center of nearby databases. It will gather the original data, make filtration
and computing and then transfer them to the web server. We use ODBC techniques as the
OGSA-DAI project for database integration. On each application server, we dispose a
program that will get requests from the web server and make corresponding operations on
databases.

The web server responds to clients and makes special requests to application servers,
which is the center of the data grid. Actually, it is both the application layer and core of data
grid layer. The communication between the web server and application servers are well
protected which insures only legal clients can operate the database. On the other hand, as we
cannot figure out how many application servers we need at the beginning so the web server
provides a very simple and safe mode for application servers to plug in. It is a loosely coupled
system. We use the grid middleware Globus to implement security of our system. At the same
time, the web server need to get messages from users and make an interactive network
interfaces. We use the Apache Web server and PHP techniques at the top level.

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 325

Technical Details

ODBC Techniques
This section introduces ODBC techniques that are adopted at the bottom layer of our

system [3].
ODBC is an open specification for providing application developers with a predictable

API with which to access data sources. Data sources include SQL Servers and any data source
with an ODBC driver, such as Oracle, MySQL, etc.

There are four parts in an ODBC based system: user program, ODBC driver manager,
ODBC driver, data source. The system structure is shown in Figure 5.

Figure 5. ODBC techniques.

User program is written based on standard ODBC functions and SQL functions. It
contains:

• Connecting databases
• Sending SQL query to databases
• Allotting special memory and define data types for result returned from databases
• Getting result data from databases
• Making special processes with the data and return it to users, in fact it is exact the

application server program.
• Disconnecting databases

ODBC driver manager is free software provided by both Microsoft (for windows systems)

and unixODBC project (for unix systems). It manages communication between user programs
and ODBC drivers. It contains loading ODBC drivers, selecting and connecting special
drivers, manage data sources, checking using errors and recording using history of ODBC
functions. Also you can set and make configuration and get data source or driver information
from driver managers.

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 326

Driver program provides independence between user systems and database systems.
Drivers contain the special code required to talk to the specific type of database you will work
with. Drivers often come from the vendor of the database but may also be found in the
unixODBC package. User programs do not connect with database directly, instead all the
requests are submit to special ODBC driver program through the driver manager. Then the
driver program will use corresponding functions connecting to data sources. If user program
need to use different data sources, it has to connect different driver programs dynamically.

Data sources are the databases user finally access, it contains the location and type of the
database. ODBC gives every data source a unique name called DSN (short for Data Source
Name) and mapping all the necessary bottom layer software or library. During the connection,
DSN is the agent of the real database system. Once ODBC and DSN are configured rightly, it
will be transparent for users to connect databases.

There are three major advantages of choosing to code an application using the Unix
ODBC API [4]:

• Portable data access codes. The ODBC API is available on all major platforms.

Microsoft platforms include many enhancements to this specification; these
enhancements are also supported by unixODBC.

• Dynamic data binding. This allows the user or system administrator to easily
configure an application to use any ODBC compliant data source. Dynamic binding
allows the end-user to pick a data source, i.e. an SQL Server, and use it for all data
applications without having to worry about recompiling the application.

• All Unix ODBC development is distributed under GPL or LGPL, which means you,
can use the software free of charge.

Globus Toolkit

Globus Toolkit is a fundamental enabling technology for the grid letting people share
computing power, databases, and other tools securely online across corporate, institutional,
and geographic boundaries without sacrificing local autonomy. The toolkit includes software
services and libraries for resource monitoring, discovery, and management, plus security and
file management. It is an open source toolkit, freely available in source code form for use by
anyone, including both commercial and non-commercial purposes. And it is particularly
useful to application developers and system integrators. Globus Toolkit aims to provide
standard system components that can support a wide variety of highly customized
applications and user interfaces without requiring a unique infrastructure to be developed for
each application. And it does not provide a complete solution for Grid projects. The
components in the Globus Toolkit have to be organized and fitted together according to a plan
that fits the requirements of the project. In fact, the Globus Toolkit genuinely is a toolkit or a
collection of tools [8].

The existing grid computing or network standards being capitalized on Globus Toolkit
are IETF, W3C, OASIS and GGF etc. Some of the particularly useful standard mechanisms
for our project used in Globus Toolkit are listed below.

• SSL/TLS. Secure Sockets Layer (SSL) / Transport Layer Security (TLS) are

cryptographic protocols that provide secure communications on the Internet for such
things as web browsing, e-mail, Internet faxing, instant messaging and other data

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 327

transfers. This mechanism ensures the safe job submission from Web server to
application server.

• X.509 Proxy Certificates [9]. Use of a proxy credential is a common technique used
in security systems to allow entity A to grant to another entity B the right for B to be
authorized with others as if it were A. X.509 Proxy Certificates forms a certificate
profile for Proxy Certificates, based on the RFC 3280. Unlike unrestricted proxy, this
profile defines a framework for carrying policies in Proxy Certificates that allows
proxy to be limited through either restrictions or enumeration of rights. In addition,
proxy Certificates will be with unique names, derived from the name of the end
entity certificate name. This allows the Proxy Certificates to be used in conjunction
with attribute assertion approaches such as Attribute Certificates and have their own
rights independent of their issuer. X.509 Proxy Certificates is the core mechanism of
our loose-coupling system. Only need to apply a Proxy Certificates from each newly
found application server then web server will be able to operate all its date resources.
In fact, server programs are disposed on every application server. When the web
server gets their proxy certificate, it will be able to operate those server program as
application server itself.

• GridFTP. GridFTP is a high-performance, secure, reliable data transfer protocol
optimized for high-bandwidth wide-area networks. It is based upon the Internet FTP
protocol, and it implements extensions for high-performance operation that were
either already specified in the FTP specification but not commonly implemented or
that were proposed as extensions by Globus Alliance. GridFTP guarantees the
reliability and security of mass data transferring through the data grid system.

Globus Toolkit is adopted to solve the core authentication, easy plugging in and massive

data process challenge of our project. It implements the whole data grid layer and part of data
integration layer.

Apache and PHP

Apache HTTP server is open-source software and supports almost all operating systems.
We use the Apache server and HTML to build an interactive interface from which to get
messages from clients. PHP is a widely used general-purpose scripting language that is
especially suited for Web development and can be embedded into HTML. Instead of lots of
commands to output HTML, PHP pages contain HTML with embedded code that makes
special operations. The code is executed on the server, and generated HTML pages are sent to
the client. The client receives the results of running the script, without knowing what the
underlying code is. For our project, we accept messages from clients by HTML and then use
underlying PHP pages to execute our process program. The Apache server and PHP language
are adopted to implement the top web server layer of our system.

Working Procedures

This system includes a web server deployed with Globus toolkit, an interactive Web page

which user can submit requests, and a PHP page that includes the processing program. At

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 328

Figure 6. Working procedure.

least one application server is configured with Globus toolkit and Unix ODBC, and integrated
with some heterogeneous relational database such as SQL server and Oracle. Those databases
have been added into the ODBC configuration file. In this section, working procedures of our
system are given below.

1. First step is that users input query requests. Clients visit our Web page and submit

their requests.
2. Underlying PHP pages access html forms, deal with collected messages and make

corresponding requirements. There should be at least one processing program
deployed here. This program converts user messages into standard SQL sentences
and decides which application server to submit the job.

3. Once the SQL query is compiled, PHP or the Web server program will transfer SQL
query to the specific application server. As this process uses the Globus proxy
certificate, there should be a recurrent shell program disposed on the web server
applying for certificates once every 12 hours (The default remaining time of a proxy
certificate is 12 hours).

4. When disposed program at the application server receives SQL query from the web
server it will operate its databases. In fact, it is the web server itself that calls the
program in the application server. Once the proxy certify is done, the web server is
able to act as an application server and have the authority to operate its program. In
this step, in order to achieve database transparency, there is a searching program in
each application server that dynamically obtains all its managed database
information, such as DSN, user name and password. When the application server
program is connected to databases, those database info will automatically be added
into the program.

Cyberinfrastructure for Agricultural Data and Knowledge Sharing in China 329

5. The application server gets the original data from database and makes application
specific data processing. This step is different according to different application
scenarios.

6. The web server obtains the result data from each application server, combines
results, and returns it to users.

CONCLUSION

This heterogeneous database integration system based on ODBC techniques and data grid

middleware plays essential role in our CI project for agricultural data and knowledge sharing
in China. The three layered system design come partly from OGSA-DAI and partly from
distributed database systems. In fact, the bottom layer is a simple distributed database system
while the second layer is composed with a loosely coupled data grid. The complete working
procedures are similar to the OGSA-DAI project but some simplification is made. Compared
to OGSA-DAI or other grid projects such as SRB, this system is far less complicated and
much easier for implementation. However, because of limitations of ODBC techniques, this
system can only be used for relational database integration. And also the overhead for
authentication between the web server and application server is high sometimes and ongoing
work includes performance optimization of the system implementation.

ACKNOWLEDGMENT

The work was funded by four grants from the Ministry of Science and Technology of

China under the national 863 high-tech R and D program (contracts No. 2007AA10Z235, No.
2006AA10Z237, No. 2007AA01Z179 and No. 2008AA01Z118) and a grant from the
Ministry of Agriculture of China (contract No. 2006-G63).

REFERENCES

[593] OGSA-DAI Status and Benchmarks. OGSA-DAI project group.
[594] The Design and Implementation of Grid Database Services in OGSA-DAI. OGSA-DAI

project group.
[595] S. Wang, S. Sha, Conspectus to Database Systems, fourth edition. 2006.
[596] Unixodbc. http://www.unixodbc.org/
[597] OGSA-DAI project. http://www.ogsadai.org/
[598] Grid Data Management Systems and Services. VLDB Tutorial Berlin,2003.
[599] Feng He, Heterogeneous Database Integration in Grid Environment, Tsinghua

University, 2007.
[600] Globus Alliance. http://www.globus.org/
[601] Internet X.509 Pubilc Key Infrastructure Proxy Certificate Profile.
[602] Distributed Database system: Where are we now? MT Ozsu, P Valduriez-Computer,

1991 IEEE

Chunjiang Zhao, Yuxin Wan, Huarui Wu et al. 330

[603] Grid Physics Network. http://www.griphyn.org.
[604] Open Science Grid. http://www.opensciencegrid.org
[605] The Storage Resource Broker. http://www.sdsc.edu/srb/index.php.

INDEX

A

Aβ, 212, 213
academic, 128, 285
accessibility, 271, 279
accidental, 280
accommodation, 188
accounting, 49, 55, 154, 266, 267, 289
accuracy, 2, 11, 12, 13, 43, 48, 92, 196, 256
achievement, 8
acid, 157, 169
adaptability, 206
adjustment, 6, 29, 31, 34, 35
administration, 141
administrative, 61, 62, 79, 87, 98, 154, 279
administrators, 45, 48, 52, 135, 141, 142, 143,

144, 236
advertisement, 63, 163, 172
advertising, 159, 163
age, 268, 270, 283
agent, 21, 22, 23, 46, 57, 132, 162, 233, 267, 326
agents, 22, 46, 64, 79, 233
aggregates, 44, 230
aggregation, 20, 44, 56, 114, 212, 223, 224, 225,

227, 232, 234, 239
agricultural, 317, 318, 319, 322, 329
agriculture, 318, 319
aid, 207, 237, 309
algorithm, 2, 5, 7, 8, 9, 10, 11, 12, 13, 29, 30, 34,

55, 61, 63, 64, 65, 66, 67, 70, 163, 164, 165,
171, 172, 173, 179, 180, 182, 183, 184, 186,
188, 195, 206, 213, 215, 261, 267, 273, 278,
282, 283, 288, 296, 297, 300, 306, 308, 311

allocated time, 279
alternative, 9, 45, 68, 69, 92, 98, 118, 254, 297,

314
alternatives, 5
aluminum, 302, 304

Amazon, 200, 268
amino, 157
amino acid, 157
amino acids, 157
Amsterdam, 175, 290
animal models, 107
annotation, 107, 151, 153, 155, 158, 160, 161,

162, 164, 167, 170, 172, 173
antiviral, 264
appraisals, 28, 29, 31, 32, 33, 34, 35, 36, 37
Artificial Intelligence (AI), 195
Asia, 124, 152, 294
Asian, 152, 264
assessment, 25, 261
assignment, 203, 227
associations, 11, 249
assumptions, 206
astronomy, 205, 277
astrophysics, 319
asymptotic, 5
asynchronous, 11, 13, 209
asynchronous communication, 209
ATLAS, 13, 17
atoms, 296, 297, 298, 301, 302, 304, 307, 308,

309, 310, 311
attacks, 233
attention, 11, 107, 128, 204, 208, 248, 249, 274,

277
audio, 250
Australia, 113, 125, 175, 291
Austria, 81, 177
authentication, 37, 87, 131, 141, 142, 143, 144,

145, 146, 201, 217, 225, 226, 228, 229, 237,
239, 252, 266, 267, 322, 323, 327, 329

authenticity, 145

Index 332

authority, 84, 144, 147, 238, 239, 266, 267, 283,
323, 328

automata, 205, 208, 209, 220
automation, 179, 180, 182, 195, 246, 249, 251
autonomic, 129, 134, 148
autonomous, 63, 107, 109, 134, 135, 140, 141,

144, 177, 319
autonomy, 95, 318, 326
availability, 23, 43, 91, 92, 104, 134, 266, 279,

280, 281, 285
avian influenza, 266
avoidance, 134, 217

B

bacterium, 164
Badia, 17
bandwidth, 2, 4, 5, 7, 12, 231, 246, 273, 278, 324,

327
banks, 12, 174
barrier, 3, 48, 226, 283
barriers, 224
basic research, 14
basic services, 152
basic trust, 235, 236
Bayesian, 55
behavior, 11, 117, 132, 133, 203, 205, 220, 311
Beijing, 19, 39, 127, 199, 221, 223, 317
Belgium, 151, 164
benchmark, 11, 120, 311
bending, 303, 309
benefits, 4, 6, 8, 11, 57, 124, 142, 246, 269, 279
binding, 103, 129, 154, 194, 209, 296, 326
bindings, 95, 100, 103, 108
bioinformatics, 107, 111, 127, 153, 154, 158,

160, 161, 164, 172, 173, 175, 176, 231, 260
biological, x, 105, 151, 153, 154, 155, 156, 157,

159, 161, 162, 163, 164, 165, 166, 167, 169,
172, 173, 174, 205, 268

biological processes, 268
biology, 107, 156, 205, 231, 266
biomedical, 103, 107, 156, 159, 173, 174, 176,

218, 264, 265, 266, 267, 268, 270, 271, 273,
277, 283, 285, 288, 293

biomedical applications, 270, 288, 293
biotechnology, 107, 153, 154
black, 212, 213
blocks, 7, 12, 217
blog, 250, 290
blogs, 253
blood, 128, 147
blood flow, 128, 147
boils, 3

bonds, 299, 301, 303, 309
Boston, 175
bottleneck, 270, 281, 282
bottlenecks, 11
boundary conditions, 256, 302
bounds, 10
brain, 107
Brazil, 292
breakdown, 280
breast, 107
breast cancer, 107
breeding, 318
broad spectrum, 55
broadband, 13, 17, 265
browser, 244, 251
browsing, 161, 251, 252, 326
buffer, 12, 209
building blocks, 47, 211
buildings, 257, 258
business, 2, 55, 81, 83, 103, 154, 188, 199, 200,

203, 204, 212, 215, 217, 248, 251, 260, 271,
290, 319

business management, 154
business model, 103, 290
buttons, 256

C

C++, 100, 103
cache, 4, 6, 10, 12, 143, 169, 266, 320
calculus, 194, 195, 197, 205, 221
California, 15, 59, 124, 220, 260, 262, 263, 285,

294
Canada, 221
cancer, 25, 204, 218, 264
candidates, 213
capacity, 12, 138, 269, 297, 311, 313, 314
carbon, 302, 303, 304, 305, 315
carbon atoms, 303, 304, 305
Caribbean, 108
case study, 32, 33, 34, 35, 53, 58, 65, 67, 69, 71,

151, 164, 174, 180, 195, 240
cDNA, 153, 170
cell, 302, 303, 304
centralized, 11, 141, 144, 209, 216, 224, 225,

229, 232, 239, 267, 318
cerebral aneurysm, 104
certificate, 84, 132, 141, 142, 144, 146, 167, 227,

234, 237, 238, 252, 266, 267, 327, 328
channels, 252
check stage, 280
chemistry, 107
Chicago, 109, 199, 219, 293

Index 333

children, 65
China, 19, 20, 21, 25, 37, 127, 128, 147, 148,

152, 199, 223, 263, 289, 293, 317, 318, 322,
329

Chinese, 322
Cincinnati, 261
circulation, 261
classes, 6, 13, 101, 117, 118, 121, 123, 245, 277,

296
classical, 186, 296
classification, 23, 24, 157, 160, 162, 175, 176,

266
classified, 62, 143, 205, 208
cleaning, 249, 260
clients, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96,

98, 99, 103, 108, 135, 252, 264, 271, 272, 320,
321, 323, 324, 327

clinical, 25, 103, 105, 204, 263
clouds, 256, 290
clustering, 55
clusters, 23, 52, 61, 62, 63, 66, 67, 70, 71, 73, 74,

75, 76, 77, 79, 82, 83, 84, 88, 94, 104, 108,
128, 265, 267, 268, 269, 270, 274, 275, 276,
278, 279, 280, 281, 283, 284, 287, 288, 292,
313

Co, 152, 219, 232, 279, 285, 291
codes, 84, 217, 251, 326
coding, 64, 65
collaboration, xi, 14, 20, 38, 142, 147, 153, 202,

204, 218, 230, 238, 239, 254, 260, 262, 263,
285, 289, 292

Colorado, 1, 16
Columbia, 255
commerce, 233, 234, 312
commercial, 82, 109, 204, 250, 326
commodity, 4, 279
communication, 3, 6, 9, 11, 16, 43, 46, 63, 86, 87,

119, 132, 141, 142, 146, 159, 209, 214, 217,
227, 228, 244, 247, 250, 252, 270, 297, 308,
309, 310, 311, 324, 325

communities, 14, 44, 233, 244, 245, 247, 248,
250, 251, 253, 256, 268, 283

community, 2, 3, 4, 5, 9, 44, 82, 103, 118, 124,
127, 159, 172, 173, 179, 199, 202, 204, 205,
217, 219, 243, 244, 245, 246, 247, 248, 249,
251, 253, 254, 258, 259, 264, 266, 268, 283,
285, 319

compatibility, 206, 207, 208, 210, 211, 214, 215,
296

compensation, 208
competition, 279
compiler, 22, 274
complementary, 162, 206, 214

complex systems, 113, 122, 123
complexity, 4, 8, 42, 46, 48, 50, 55, 67, 69, 83,

160, 171, 173, 180, 208, 224, 235, 246, 250,
311

compliance, 61, 103
components, 2, 3, 15, 19, 23, 43, 45, 46, 47, 50,

51, 53, 55, 57, 81, 82, 83, 84, 85, 86, 89, 94,
95, 106, 107, 114, 115, 117, 119, 120, 131,
142, 151, 155, 166, 167, 168, 169, 180, 186,
187, 194, 211, 226, 237, 238, 244, 245, 246,
248, 250, 265, 280, 285, 290, 313, 319, 326

composite, 86, 179, 180, 182, 183, 187, 188, 189,
193, 194, 195, 201, 205, 206, 209, 212, 217,
221, 273, 297

composites, 302, 304
composition, 66, 67, 68, 69, 71, 86, 154, 159,

160, 173, 179, 180, 181, 182, 183, 184, 185,
188, 190, 191, 192, 193, 194, 195, 196, 197,
199, 200, 201, 202, 205, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 217, 219, 220,
250

compositions, 66, 68, 69, 182, 195, 209, 221
computation, 6, 9, 16, 107, 127, 148, 149, 157,

164, 173, 187, 202, 220, 231, 244, 261, 263,
270, 271, 285, 297, 306, 308, 311, 313, 324

computational capacity, 297
Computational Fluid Dynamics, 104
computational grid, 62, 179, 313
computational modeling, xi, 263
computer, 15, 16, 66, 67, 68, 69, 70, 71, 72, 120,

136, 159, 225, 227, 233, 243, 244, 246, 248,
256, 265, 268, 271, 297, 314

computer architecture, 16
computer science, 248, 256, 314
computer systems, 15
computers, 39, 62, 63, 64, 65, 66, 67, 68, 69, 70,

73, 74, 80, 82, 110, 221, 230, 231, 265, 296
concentrates, 115, 208
concentration, 202
concrete, 51, 92, 155, 169, 182
confidence, 246
configuration, 42, 43, 44, 49, 54, 81, 86, 87, 89,

94, 97, 108, 120, 121, 122, 123, 133, 141, 142,
143, 206, 228, 231, 279, 286, 324, 325, 328

conflict, 12
Congress, 38, 219
consent, 206
constraints, 2, 5, 13, 87, 91, 93, 101, 104, 108,

181, 206, 220, 221, 271, 299, 300
construction, 10, 21, 83, 100, 135, 140, 141
consumers, 265, 268
consumption, 3
continuing, 143

Index 334

contracts, 92, 329
control, 4, 9, 10, 22, 24, 63, 70, 79, 82, 90, 104,

127, 128, 130, 131, 132, 134, 141, 142, 144,
148, 160, 201, 202, 208, 224, 225, 226, 227,
228, 229, 232, 237, 239, 240, 248, 251, 282,
318, 319, 323

controlled, 10, 13, 120, 158, 167, 202, 209, 232,
322

conversion, 50, 142, 146
cooling, 265
coordination, 20, 22, 244, 247, 320
correlation, 208
Costa Rica, 261
cost-effective, 244, 268
costs, 22, 28, 246, 259, 324
coupling, 296, 297, 298, 301, 302, 303, 306, 307,

308, 314, 319, 321, 327
covering, 171
crack, 297
credentials, 132, 134, 141, 142, 144, 145, 226,

252, 266, 267, 285
credit, 27, 236
Crete, 175, 176
crop production, 318
cryptographic, 326
crystal, 24
crystals, 24
cultural, 249
culture, 249
customers, 104
cybernetics, 240
cycles, 244, 265
cyclic distribution, 10
Cyprus, 219

D

data analysis, 204, 224, 231, 319
data availability, 279
data base, 82, 84, 86, 95
data collection, 55, 249, 317, 318, 322
data communication, 9, 310, 311
data distribution, 11
data mining, 25, 152, 256, 257, 260, 271
data processing, 105, 128, 147, 200, 201, 317,

323, 324, 329
data set, 6, 97, 106, 246, 249, 253, 254, 277
data structure, 6, 10, 11, 98, 206
data transfer, 23, 49, 81, 85, 86, 89, 90, 95, 169,

193, 247, 250, 252, 289, 317, 318, 319, 322,
323, 327

database, 21, 92, 107, 109, 157, 161, 165, 187,
211, 226, 227, 228, 238, 250, 254, 267, 271,

275, 289, 294, 318, 319, 321, 323, 324, 326,
328, 329

database management, 187, 319
death, 208
decentralized, 127, 134, 199, 202, 209, 211, 216,

217, 221
decision making, 63
decisions, 13, 44, 52, 63, 64, 76, 143, 229, 246,

249, 274, 277, 278, 281, 311
decomposition, 8, 55, 181, 211, 297, 307, 308,

310, 311, 313
decoupling, 119, 120, 122, 248, 250
decryption, 141, 144
definition, 3, 7, 9, 27, 56, 183, 194, 211, 215,

227, 250, 311
deformation, 301, 303
degree, 163, 164, 319
delays, 32
delivery, 104, 251
demand, 81, 82, 83, 84, 87, 88, 94, 103, 105, 106,

108, 157, 195, 246, 247, 263, 264, 265, 267,
268, 270

density, 296, 298, 299, 301
Department of Education, 124
Department of Energy (DOE), 58, 264
designers, 2, 155, 212, 265
desire, 245
detection, 55, 169
differentiation, 164
diminishing returns, 4, 6
disabled, 46
discipline, 225
Discovery, 39, 42, 44, 59, 107, 151, 152, 155,

166, 175, 177, 196, 240, 247, 259, 261, 264,
294

diseases, 83, 108
dispatcher, 119
displacement, 298, 299, 304
distributed applications, ix, 113, 114
distributed computing, viii, 16, 23, 41, 42, 129,

252, 273, 290, 297, 324
distributed grid resources, 285
distributed memory, 3, 4, 5, 6, 10, 11, 15
distribution, ix, 29, 33, 73, 79, 85, 95, 113, 121,

224, 267, 278, 287, 319
diversity, 259
diving, 142
dominance, 4
download, 90, 91, 102, 103, 252
drainage, 255, 261
drug design, 110, 153, 294
drug discovery, xi, 154, 264
drugs, 153

Index 335

duration, 20, 62, 235, 236, 287
dynamic scaling, 65
dynamic scheduling, 3, 6, 7, 8, 10, 11, 17, 61, 62,

313
dynamic systems, 319

E

earth, 244
earthquake, 24, 245, 253, 257, 259
ecological, 271
ecologists, 245
ecology, 205, 245
e-Commerce, 241
economic, 20, 103, 115, 200, 206, 226, 229, 289
economics, 200
economy, 113, 115, 116, 124, 244, 267, 273
education, 19, 20, 21, 37, 39, 247, 258, 260, 261,

265
educators, vii
eigenvalue, 8
elasticity, 306
electricity, 264
electron, 271
electron microscopy, 271
electronic, 104
electrostatic, 299
electrostatic force, 299
email, 250, 252, 263
employment, 5
empowered, 228
encapsulated, 21, 129, 131, 136, 147, 154, 267
encapsulation, 21, 130, 131, 322
encryption, 49, 88, 101, 141, 144
end-to-end, 84, 87, 107, 249, 252, 293
energy, 266, 277, 283, 288, 297, 298, 299, 301,

303, 308
energy density, 299, 301
engagement, 258
engineering, 5, 24, 107, 200, 201, 245, 248, 250,

252, 265, 297, 312
engines, 121, 209, 217, 271, 276
England, 25, 315
English, 94
enterprise, 106, 200
environmental, 244, 245, 247, 253
Environmental Protection Agency, 261
epidemiological, 106
equilibrium, 301
equipment, 37, 82
Euro, 152
Europe, 106, 151, 152, 164, 174

European, 81, 82, 83, 108, 110, 111, 151, 152,
153, 154, 164, 175, 176, 177, 219, 226, 240,
264

European Commission, 152
European Union, 152, 264
evidence, 51, 53, 54
evolution, 71, 82, 127, 180, 290
evolutionary, 63, 220
evolutionary process, 63
expert, 170
expertise, 152, 244, 248
experts, 25, 164, 258
explosive, 3
exponential, 3, 33, 73, 244, 269
extraction, 96

F

fabrication, 296
factorial, 83, 104, 108
failure, 63, 134, 145, 187, 235, 248, 296
false, 49
family, 136
fault detection, 288
fault tolerance, 248, 273
faults, 42
February, 15, 59, 108, 109
feedback, 19, 25, 26, 27, 29, 30, 31, 32, 33, 36,

37, 271, 289
feeding, 49
fiber, 271
field programmable gate array, 265
filtration, 22, 24, 324
finite element method, 303, 306, 312, 314
first generation, 12
fitness, 65
flexibility, 6, 7, 8, 9, 13, 45, 49, 50, 52, 53, 57,

136, 141, 142, 195, 217, 232, 233, 237, 271,
279, 283, 294

flight, 188, 191, 217
floating, 7
flow, 9, 33, 34, 146, 154, 160, 184, 195, 201,

202, 204, 212, 221, 256, 259, 276
fluid, 147
focusing, 42, 106, 107, 129, 254
folding, 290
Ford, 149
Fortran, 147
Fourier, 13
Fox, 196, 197, 219, 292, 315
fragmentation, 199, 210, 211, 216, 217, 221
France, 109, 177, 219, 220
free energy, 288, 299

Index 336

freedom, 232
Fullerenes, 315
funding, 22, 128, 152, 264, 289
fusion, 105

G

ganglia, 58
Ganglia, 42, 43, 46, 58, 274, 294
gene, 127
generalization, 212
generation, 1, 2, 4, 14, 42, 46, 53, 65, 101, 195,

208, 215, 244, 245, 254, 269, 271, 272, 286,
294, 307

genes, 165
genetic, 61, 63, 64, 65, 70, 106, 206, 220, 261
genetic algorithms, 220
genetics, 105
Geneva, 124
genome, 176
genomic, 273
geochemistry, 245
Geographic Information System (GIS), 57, 59,

130, 137
Germany, 124, 151, 177
gland, 165
glass, 130, 131
GlaxoSmithKline, 153, 154
global resources, 21
globus, 58, 59, 60, 111, 129, 148, 175, 196, 264,

266, 267, 279, 289, 291, 329
goals, 53, 77, 181, 182, 184, 191, 195, 232, 318
government, 24
grades, 235
grading, 306
graduate students, vii
grants, 148, 329
graph, 3, 8, 9, 10, 204, 214, 215, 254, 277
graphics processing units, 4
Greece, 175, 176, 294
Grid Australia, 42, 44, 54, 58
grid computing, 62, 127, 252, 264, 265, 266, 268,

269, 283, 285, 326
grid environment, 55, 136, 147, 180, 221, 266,

267, 269, 270, 276, 282, 287, 291
grid services, 19, 106, 139, 142, 143, 180, 181,

205, 264, 283
grid technology, 22, 38, 223
grids, 23, 38, 44, 46, 61, 62, 109, 152, 223, 224,

225, 226, 227, 244, 256, 265, 267, 268, 273,
279, 283, 287, 294

ground water, 245
grounding, 159, 160, 161, 172

groundwater, 256
groups, 25, 82, 227, 228, 243, 245, 248, 254, 266,

307, 308, 321
growth, 3, 14, 269
guidance, 210

H

Hamiltonian, 296, 298, 299
handling, 43, 83, 87, 101, 104, 108, 114, 202,

203, 205, 208, 209, 218, 267, 313, 319
harvest, 106
Hawaii, 219, 241
head, 52, 54, 65
health, 105, 157
healthcare, 111
heartbeat, 169
heat, 3, 4
heterogeneity, 3, 21, 114, 129, 201, 202, 246,

251, 296
heterogeneous, 4, 5, 17, 22, 42, 44, 45, 74, 80,

81, 82, 83, 84, 95, 97, 99, 105, 106, 107, 108,
109, 111, 114, 115, 123, 135, 136, 148, 154,
206, 246, 248, 251, 265, 267, 269, 270, 273,
274, 318, 321, 323, 328, 329

heterogeneous systems, 5, 74
heuristic, 61, 63, 66, 67, 70, 79, 208
high resolution, 20
high risk, 233
high-energy physics, 319
higher quality, 235
high-frequency, 302
high-level, 3, 83, 100, 101, 102, 103, 105, 181,

270, 319
high-speed, 82
high-tech, 317, 318, 322, 329
Hiroshima, 175
homogeneous, 5, 63, 136, 206
homogenous, 135, 140
hospital, 104
host, 65, 88, 103, 165, 166, 180, 252, 253, 275,

281, 282
HTTP protocol, 134
human, 22, 25, 92, 107, 164, 170, 247, 265, 269,

277
human genome, 277
human resources, 247, 265
humanity, 245
Hungary, 176, 177
hybrid, 1, 2
hydro, 245
hydrodynamics, 255
hydrologic, 247, 256, 257

Index 337

hydrology, 245, 256
hypothesis, xi, 243
hypoxia, 255

I

IBM, 4, 13, 15, 16, 80, 109, 111, 203, 209, 260,
268, 290, 292

id, 113, 145, 283
identification, 267
identity, 22, 132, 142, 144, 146, 165, 183, 186,

217, 225, 238, 239
Illinois, 41, 243, 256, 261, 294, 295
images, 25, 26, 109, 268, 272
imaging, 103, 107, 266, 271
implementation, 6, 8, 9, 45, 46, 50, 82, 92, 113,

114, 115, 117, 118, 119, 121, 122, 123, 124,
130, 136, 142, 146, 147, 148, 151, 172, 180,
186, 202, 204, 209, 218, 224, 226, 246, 251,
254, 270, 275, 279, 283, 306, 323, 329

incentives, 248
inclusion, 245
independence, 318, 326
India, 109, 209, 261, 291
Indian, 261
indices, 256
industrial, 152, 244
industrial application, 152
industry, 4, 107, 128, 151, 154, 200, 203, 217,

255
inefficiency, 8, 23
infectious, 165
infinite, 195
influenza, 264
information age, 22
information and communication technology, 244
information exchange, 53, 137
information processing, 128
information retrieval, 57, 174
information sharing, 136, 265, 317
Information System, 219, 220, 247, 260
information systems, 46, 57, 83, 104, 109, 111,

134, 148, 200, 317, 318, 319
information technology, 248
Information Technology, 39, 151, 223, 318, 322
infrastructure, 2, 19, 20, 21, 24, 41, 42, 45, 49,

54, 81, 82, 83, 84, 85, 88, 89, 91, 92, 103, 104,
105, 106, 107, 108, 109, 113, 114, 115, 116,
117, 118, 120, 121, 127, 128, 135, 140, 141,
142, 147, 152, 179, 204, 224, 239, 243, 244,
245, 251, 252, 260, 267, 268, 271, 274, 277,
283, 288, 293, 319, 326

inheritance, 117, 157

institutions, 200, 230, 243, 297
instruction, 2, 4, 12, 281
instruments, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

30, 31, 32, 33, 35, 37, 82, 223, 230, 231, 235,
246, 251, 271

integrated circuits, 15, 290
integration, 24, 55, 71, 82, 83, 84, 95, 96, 98,

105, 106, 107, 108, 111, 113, 114, 115, 116,
117, 118, 119, 120, 122, 123, 124, 127, 129,
147, 148, 154, 156, 175, 215, 223, 247, 249,
253, 256, 257, 264, 274, 285, 317, 318, 319,
321, 322, 323, 324, 327, 329

integrity, 201
Intel, 6, 15
intelligence, 260, 268
intensity, 6, 311, 314
intentions, 29
interaction, 43, 48, 56, 57, 101, 133, 154, 165,

167, 201, 204, 206, 208, 214, 253, 283, 298,
301, 303, 304, 305, 320

interactions, 56, 87, 101, 165, 208, 304
interdisciplinary, 14, 25
interface, 9, 22, 42, 43, 45, 46, 49, 50, 53, 54, 56,

57, 82, 83, 86, 87, 88, 89, 91, 92, 96, 97, 100,
101, 103, 130, 133, 135, 154, 155, 159, 161,
167, 170, 188, 189, 194, 200, 211, 246, 249,
257, 258, 259, 267, 268, 269, 271, 283, 285,
286, 296, 306, 321, 327

international, 16, 124, 148, 221, 264, 291, 321
internet, 82, 83, 84, 85, 88, 94, 108, 110, 111,

125, 129, 132, 149, 179, 180, 196, 202, 220,
221, 223, 233, 244, 250, 252, 290, 291, 322,
324, 326, 327, 329

interoperability, 42, 43, 46, 53, 57, 107, 129, 130,
148, 152, 173, 200, 218, 248

interpretation, 259
intervention, 92, 170, 279
intrinsic, 296
intron, 157
investment, 317, 318
IP address, 281, 282
Ireland, 111, 176
Italy, 177, 220

J

January, 38, 39, 111, 124, 218, 240
Japan, 38, 175, 177, 263, 293
Japanese, 107, 110
Java, 31, 45, 85, 92, 98, 100, 103, 120, 121, 123,

133, 136, 169, 204, 252, 253, 294, 321
job queues, 274

Index 338

job scheduling, 22, 23, 25, 52, 62, 71, 72, 80,
114, 120, 147, 204, 278

jobs, 22, 31, 52, 57, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 73, 74, 75, 76, 77, 79, 86, 89, 90,
91, 103, 104, 108, 114, 115, 118, 119, 120,
123, 132, 134, 147, 205, 227, 228, 231, 266,
269, 270, 273, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 287, 288, 289,
307, 323

judges, 234
judgment, 233, 234, 236
Jun, 174, 295
jurisdiction, 224

K

kernel, 127, 128, 130, 163, 273, 274, 275, 276,
284

knowledge economy, 244
Korea, 177, 294

L

labor, 206
Lagrange multipliers, 296, 300, 310
Lagrangian, 296
land, 256
land use, 256
language, 3, 9, 16, 17, 22, 31, 47, 50, 52, 53, 95,

97, 130, 132, 144, 159, 173, 181, 204, 205,
208, 228, 249, 253, 271, 327

laptop, 283
Large Hadron Collider, 59, 277
large-scale, 55, 110, 114, 128, 179, 180, 194,

268, 277, 295, 297, 317, 319
latency, 270, 279, 311, 313
lattices, 304
law, 3, 4, 103, 265, 285
laws, 147
layered architecture, 131
lead, 4, 195, 233, 245, 283
leadership, 265
leakage, 4
learning, 269
legacy software, 249
legal issues, 104, 111
life sciences, 107, 153, 219, 275, 285
lifecycle, 115, 118, 131, 249
lifetime, 280
ligands, 273, 275, 287, 294
likelihood, 49
limitation, 128, 231, 236, 297

limitations, 4, 7, 231, 296, 297, 314, 329
linear, 1, 2, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17,

171, 206, 253, 256, 257, 296, 298, 303, 306
linear function, 303
linear programming, 206
linear systems, 17
linguistic, 25, 28
linkage, 124, 298
links, 117, 148, 180, 201, 207
Linux, 51, 52, 85, 169, 267, 283, 318, 321
literature, 249, 250
load balance, 3, 311
location, 22, 23, 24, 65, 95, 101, 192, 274, 278,

312, 319, 322, 326
location information, 23
logging, 131, 289
London, 291
long-term, 142
low-level, 100

M

machine learning, 256, 257
machine-readable, 55
machines, 4, 7, 49, 54, 90, 108, 120, 196, 251,

265, 268, 278, 283, 289
mainstream, 155, 173
maintenance, 3, 20, 132, 248
malicious, 49
manipulation, 22, 24, 55, 203, 271, 286, 313
manners, 227
manpower, 170
mapping, 21, 98, 118, 132, 142, 146, 158, 181,

187, 208, 211, 214, 215, 227, 228, 326
market, 15, 250
materials science, 296
mathematical, 138
mathematical methods, 138
mathematics, 27
matrix, 7, 8, 15, 16, 17, 228, 271, 302, 304
maturation, 200
mechanical, 296
mechanics, 296, 299, 303
mediation, 83, 84, 85, 95, 96, 97, 98, 99, 100,

105, 108, 199, 202, 206, 207, 208, 210, 211,
212, 213, 214, 215, 217

mediators, 206, 215
medical services, 25
medicine, 263, 265
membership, 29, 30, 223, 225, 227, 228, 234,

237, 238, 239

Index 339

memory, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14,
15, 16, 46, 92, 94, 138, 158, 164, 169, 171,
231, 268, 274, 312, 325

memory capacity, 5
mesoscopic, 297
message passing, 9
messages, 84, 143, 144, 203, 206, 214, 323, 324,

327, 328
metaphor, 254
metaphors, 250
meteorological, 107
metric, 62, 64, 70, 311
Miami, 220
microprocessors, 3
microscope, 20
microscopy, 272
Microsoft, 203, 321, 325, 326
middleware, 21, 22, 55, 59, 82, 85, 95, 96, 99,

104, 105, 106, 107, 108, 114, 115, 123, 127,
128, 129, 130, 131, 133, 134, 136, 140, 142,
148, 154, 155, 161, 166, 169, 200, 244, 264,
267, 269, 297, 312, 313, 319, 321, 322, 324,
329

migration, 134, 172, 266, 288
Millennium, 289
Ministry of Education, 20, 37
mobility, 209
modeling, 14, 21, 22, 25, 37, 42, 43, 55, 81, 85,

86, 105, 152, 154, 159, 180, 194, 202, 204,
205, 209, 211, 246, 249, 256, 268, 271, 276,
292, 296, 297, 314

models, 5, 22, 83, 87, 89, 92, 107, 108, 114, 147,
165, 173, 181, 195, 209, 218, 240, 247, 251,
255, 256, 257, 264, 265, 268, 269, 284, 288,
289, 296, 298, 305

modules, x, 42, 43, 53, 55, 131, 134, 146, 199,
210, 211, 217, 227, 238, 249, 273, 285

modulus, 303, 304, 305
molecular biology, 156, 174, 175
molecular dynamics, 266, 288, 294, 296, 298,

303, 306, 314
molecular structure, 296
momentum, 200, 217
money, 188, 200
monolithic, 4
Monte Carlo, 104
motion, 307, 308, 309
motivation, xi, 12, 243
mouse, 157
movement, 57, 82, 84
MPI applications, 92
multidisciplinary, 20, 249, 296
multimedia, 147

multimedia data, 147
multiplication, 15, 17
multiplier, 299, 307
mutation, 65
mutations, 157

N

nanocomposites, 296, 302, 303, 304, 305
nanometer, 295
nanoscale materials, 296
nanostructures, 296, 315
nanosystems, 296
nanotechnology, 295, 296, 297, 312, 314
nanotube, 302, 304, 305
NASA, 16
national, 20, 147, 251, 264, 290, 317, 318, 321,

322, 329
National Grid Service, 148
National Institute of Standards and Technology

(NIST), 229
National Institutes of Health, 264
National Science Foundation, 24, 38, 55, 58, 218,

224, 240, 244, 260, 264, 290, 297
natural, 6
neglect, 246
negotiating, 83, 134, 294
negotiation, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94,

101, 104, 107, 108, 109, 127, 132, 133, 134,
141, 143, 145, 147, 148, 225, 229, 235, 236,
238, 273

Netherlands, 175, 261
network, 17, 21, 24, 49, 59, 80, 106, 107, 129,

132, 133, 134, 136, 137, 161, 180, 187, 195,
200, 247, 255, 264, 265, 268, 270, 271, 273,
278, 279, 290, 311, 313, 318, 321, 324, 326

network congestion, 278
networking, 244, 246, 277
neural network, 92
neurological disorder, 107
neuroscience, 266
Nevada, 292
New Mexico, 109
New Orleans, 59
New York, 124, 125, 176, 177, 220, 221, 241,

260, 315
Newton, 17
next generation, 65, 152, 180, 265, 269, 290
Ni, 37, 59, 281, 282, 295, 315
nodal forces, 299
nodes, 2, 5, 9, 49, 52, 54, 63, 64, 118, 119, 121,

134, 136, 137, 138, 139, 141, 144, 147, 204,

Index 340

206, 230, 231, 232, 234, 235, 236, 237, 238,
275, 278, 304, 307, 308, 309, 310, 311, 319

nonlinear, 306
nonlinearities, 296
non-uniform, 3
normal, 2, 25, 28, 30, 31, 33, 34, 114, 121, 123,

196, 281
North America, 164
North Carolina, 262
novelty, 180

O

object-oriented design, 117, 123
observable behavior, 204
observations, 76, 139, 246
obsolete, 87
Ohio, 261
online, 10, 196, 241, 253, 265, 269, 278, 279,

280, 326
Open Science Grid, 42, 44, 46, 53, 57, 58, 59,

225, 226, 240, 264, 287, 290, 319, 330
OpenMP, 9, 17
openness, 224
operating system, 43, 54, 225, 267, 317, 318, 327
operator, 181, 182, 183, 184, 185, 186, 195
optical, 265, 266, 269, 271
optical fiber, 269
optimal performance, 313
optimization, 22, 55, 117, 205, 256, 257, 329
orchestration, x, 130, 133, 160, 172, 199, 200,

201, 202, 204, 206, 210, 217, 221
organism, 165
organization, 6, 12, 13, 62, 135, 136, 137, 140,

147, 225, 226, 229, 232, 239, 244, 251, 266
organizations, 61, 62, 79, 153, 154, 201, 209,

223, 224, 225, 229, 232, 238, 239, 266, 268,
271, 317, 318

outsourcing, 217
overload, 122
OWL, 106, 151, 155, 156, 159, 160, 161, 163,

169, 171, 172, 173, 174, 175, 176, 177, 180,
186, 187, 194, 202, 205, 218, 249

P

Pacific, 264
packaging, 42
pandemic, xi, 264, 266
pan-European, x, 151, 233
paper, 59, 215, 262
parallel algorithm, 15, 16

parallel implementation, 15
parallel performance, 2, 9, 311
parallel processing, 278, 297
parallel simulation, 83
parallelism, 1, 2, 4, 5, 6, 7, 9, 14, 209, 313
parallelization, 7, 8, 13
parameter, 28, 31, 76, 94, 97, 114, 133, 141, 236,

267, 273, 298, 303, 311
parasite, 165
Pareto, 73
partition, 99, 209, 217
passive, 114
password, 283, 328
pathology, 164
patients, 25
peer, 204
penalties, 313
perception, 244
periodic, 302, 304
personal, 104, 226, 229, 251, 265
pervasive computing, xi, 263, 269, 283
Petri Net, 197, 208, 220, 221
pharmaceutical, 151, 153, 154, 233
pharmaceutical companies, 153
phenomenology, 256
Philadelphia, 261
philosophy, 6
phylogenetic, 157
phylogenetic tree, 157
physical therapy, 25
physicists, 104
physics, 147, 256, 257, 266, 277, 283
physiology, 148
pipelining, 15
planning, 83, 103, 104, 105, 179, 180, 181, 183,

184, 188, 192, 194, 195, 196, 205, 244
platforms, 1, 2, 14, 17, 85, 104, 270, 311, 326
play, 3, 23, 157, 200, 269, 296
plug-in, 132, 163, 164, 186, 255, 273, 274, 275,

276, 277, 278, 279, 287
point-to-point, 6
Poisson, 33, 73, 303
Poisson distribution, 33
polymer, 297
pools, 19, 25, 26, 28, 32, 265, 267
poor, 8, 19, 33, 250
population, 105, 271
portability, 9
portfolio, 210, 211, 212, 213
ports, 49
potential energy, 299, 301
power, 1, 2, 3, 4, 5, 6, 14, 82, 147, 161, 229, 232,

244, 245, 252, 265, 269, 279, 326

Index 341

pragmatic, 173
predictability, 80, 103
prediction, 4, 23, 29, 64, 127, 128, 147, 255, 257
predictive model, 256
pre-existing, 106
preparation, 249, 260
prevention, 281, 282, 283
primary data, 157
primates, 157
primitives, 9
priorities, 48, 80, 247, 289
pristine, 302
privacy, 103, 129, 132, 141, 249
private, 4, 10, 167, 287
probability, 19, 25, 27, 28, 29, 30, 31, 32, 34, 35,

37, 65, 74, 233
problem solving, 24, 42, 55, 59, 179, 180, 196
problem-solving, 251
procedures, 9, 88, 145, 200, 251, 296, 328, 329
production, 42, 43, 44, 46, 55, 113, 128, 265,

278, 318
productivity, 243, 244, 246, 249, 266, 288, 289
profit, 22
profits, 6
program, 4, 22, 25, 45, 59, 128, 152, 165, 166,

204, 231, 279, 285, 317, 318, 319, 322, 323,
324, 325, 326, 327, 328, 329

programming, 1, 2, 3, 5, 9, 11, 13, 14, 16, 17, 31,
83, 100, 101, 114, 116, 124, 204, 208, 248,
253, 254, 265, 268, 285

programming languages, 9
propagation, 295, 297, 302, 311
property, 183, 186, 191, 192, 193, 258
propriety, 193
protected area, 141
protection, 129, 143, 322
protein, 157, 165, 275, 294
protein sequence, 165
protein structure, 275
proteins, 157
protocol, 21, 47, 87, 107, 129, 132, 155, 159,

204, 208, 225, 252, 253, 273, 275, 322, 327
protocols, 21, 55, 83, 95, 106, 108, 130, 134, 155,

247, 250, 252, 267, 270, 273, 297, 313, 326
prototype, 6, 243, 285
prototyping, 247
proxy, 102, 117, 119, 120, 121, 122, 123, 145,

227, 267, 280, 281, 283, 327, 328
pseudo, 282
public, 20, 44, 55, 106, 165, 167, 170, 194, 204,

239, 264, 265, 268, 290
public health, 44, 55, 264, 265
public resources, 268

public view, 204

Q

QoS, 19, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35,
36, 37, 61, 62, 63, 64, 70, 76, 77, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94,
101, 102, 103, 104, 106, 107, 108, 110, 124,
132, 154, 161, 169, 202, 206, 220, 225, 235,
288, 289

qualifications, 238
quality of service, 19, 22, 25, 84, 104, 225, 236,

273, 289
quantum, 296
quasi-linear, 311
query, 42, 45, 52, 81, 82, 83, 84, 85, 86, 95, 96,

97, 98, 99, 100, 101, 102, 103, 106, 107, 108,
110, 138, 139, 155, 157, 158, 169, 170, 171,
180, 186, 187, 188, 191, 249, 322, 323, 325,
328

questioning, 157

R

radiation, 25
radius, 303
Raman, 20, 110, 111
Raman spectra, 20
random, 19, 23, 26, 27, 28, 29, 31, 36, 37, 65, 75,

132, 170
randomness, 19, 27
range, 1, 2, 14, 55, 58, 73, 76, 92, 127, 138, 157,

209, 246, 250, 267, 297, 311
reading, 231
real time, 22, 25, 237, 238, 271, 288
reality, 109
real-time, 83, 103, 147, 171, 173, 174, 218, 274,

322
reasoning, 151, 154, 156, 159, 163, 164, 169,

171, 172, 173, 174, 186, 187, 192, 193
recognition, 147, 175, 244, 249, 252, 257
reconstruction, 92, 94, 104, 271
recovery, ix, 13, 81, 82, 84, 85, 86, 89, 91, 218
reduction, 2, 7, 8, 16, 186, 195
redundancy, 165
reflection, 121, 302
registries, 84, 101, 155, 163, 187
registry, 175, 321
regression, 186
reinforcement, 305
relational database, 165, 251, 321, 322, 328, 329

Index 342

relationship, 47, 51, 129, 132, 134, 135, 164, 191,
192, 193, 234, 235, 236, 237, 277, 290

relationship management, 290
relationships, 34, 51, 146, 154, 157, 158, 159,

161, 165, 184, 186, 223, 224, 225, 229, 230,
233, 235, 236, 239, 241, 257, 258

relevance, 172, 256
reliability, 209, 226, 271, 311, 322, 327
rent, 217
replication, 55, 267, 270, 271, 288, 313, 319, 322
reporters, 46
reputation, 233, 234, 235, 236
research and development, 128, 243, 244, 245,

247, 250, 258, 259, 264, 289
researchers, 24, 127, 129, 200, 204, 223, 225,

230, 233, 236, 245, 248, 249, 250, 252, 254,
265, 266, 268, 269, 270, 285, 288

reservation, 22, 25, 83, 89, 91, 92, 93, 94, 104,
106, 108, 266, 270, 279, 280, 281, 287

resolution, 98, 208, 256, 282
resource allocation, 106, 114, 115, 270, 279, 280,

281, 282
resource availability, 280, 281
resource management, 37, 43, 118, 127, 128, 129,

138, 148, 154, 266, 270, 273, 274, 294
resource policies, 233
response time, 22, 83, 88, 103, 107, 137
responsibilities, 104, 118, 238
returns, 26, 69, 90, 92, 94, 182, 184, 185, 329
reusability, 116, 122, 200
revolutionary, 243
rewards, 248
Rio de Janeiro, 292
risk, 105, 108, 170, 233, 257, 259
risk assessment, 105, 108
risk management, 257, 259
risks, 252
robustness, 205
room temperature, 303, 304
routines, 7, 9, 15, 131
rubber, 111

S

safety, 319, 322
sales, 258
sample, 67, 192, 193, 215
sampling, 246
sand, 130, 131
satellite, 265
scalability, 2, 10, 43, 45, 147, 169, 170, 171, 217,

246, 248, 251, 268, 269, 284, 288, 311

scalable, 3, 8, 10, 14, 49, 55, 127, 157, 159, 263,
265, 269, 273, 278, 288, 292, 295, 297

scalar, 27, 39
scaling, 5, 11, 251, 298, 299, 303, 305
scatter, 311
schema, 41, 42, 45, 46, 47, 50, 51, 52, 53, 56, 83,

84, 95, 96, 97, 98, 99, 108, 161, 170, 171, 177,
208, 321

schemas, 41, 42, 43, 46, 50, 51, 53, 98, 99, 105,
172

science, 42, 44, 55, 107, 109, 128, 147, 200, 218,
219, 223, 235, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 258, 259, 264, 265,
270, 273, 296, 297, 312, 321

scientific, 2, 4, 13, 14, 19, 20, 24, 25, 37, 55, 81,
82, 83, 95, 108, 124, 155, 200, 204, 205, 224,
231, 243, 244, 245, 246, 248, 249, 250, 251,
252, 253, 254, 256, 258, 259, 260, 264, 265,
268, 269, 271, 273, 277, 288, 294, 319

scientific community, 82, 252
scientific computing, 231
scientific progress, 244
scientists, 81, 95, 114, 205, 225, 230, 231, 236,

243, 245, 246, 250, 251, 257, 259, 268, 269,
271, 297, 319

scripts, 86, 87, 90, 103, 251
search, 55, 56, 68, 69, 71, 137, 138, 139, 169,

174, 180, 183, 184, 186, 187, 233, 238, 271,
275, 294

search engine, 180, 186
searches, 23, 66, 67, 182
searching, 9, 22, 23, 25, 68, 69, 181, 182, 183,

184, 187, 191, 192, 193, 195, 323, 328
Seattle, 219, 293, 315
secure communication, 326
security, 22, 37, 49, 55, 83, 84, 87, 95, 103, 104,

108, 128, 129, 131, 132, 133, 134, 135, 136,
140, 141, 142, 143, 144, 146, 147, 154, 161,
167, 177, 202, 227, 228, 229, 232, 237, 239,
250, 251, 252, 253, 266, 267, 271, 323, 324,
326, 327

seed, 63, 65, 70, 73, 74, 75
segmentation, 271
selecting, 68, 101, 155, 193, 325
semantic, 105, 107, 108, 151, 154, 155, 158, 159,

161, 163, 164, 169, 171, 172, 173, 174, 177,
187, 194, 205, 219, 233, 251, 254, 259

semantic content, 251, 254
semantic information, 106
Semantic Web, 159, 173, 175, 176, 177, 197,

219, 220, 249, 262
semantics, 50, 106, 151, 154, 156, 162, 168, 169,

172, 175, 202, 208, 212, 221, 233

Index 343

sensitive data, 49
sensors, 24, 82, 230, 246, 249
sentences, 328
separation, 42, 120, 135, 172
sequencing, 165, 170, 271
serial algorithm, 5
series, 51, 128, 145, 147, 169, 172, 209, 239,

243, 264, 271
service provider, 83, 84, 86, 87, 88, 90, 91, 92,

93, 94, 97, 99, 103, 104, 108, 139, 145, 154,
160, 163, 205, 244

sewage, 255
Shanghai, 293
shape, 264
shares, 51, 227
sharing, 19, 20, 22, 27, 37, 38, 51, 52, 82, 83,

103, 127, 128, 129, 147, 179, 223, 224, 225,
230, 231, 232, 235, 236, 238, 239, 244, 245,
246, 247, 249, 250, 251, 252, 254, 264, 268,
270, 297, 317, 318, 319, 322, 329

shortage, 319
sign, 145
signs, 94
silicon, 265
silver, 293
similarity, 163, 169
simulation, 14, 19, 21, 22, 24, 25, 31, 32, 33, 34,

37, 38, 55, 81, 82, 83, 85, 88, 94, 103, 104,
105, 108, 109, 147, 152, 170, 247, 258, 263,
271, 288, 296, 297, 301, 302, 304, 306, 307,
313, 314

simulations, 34, 104, 114, 147, 246, 256, 258,
266, 268, 271, 272, 277, 279, 288, 295, 297,
305, 307, 308, 311

Singapore, 107, 291, 293, 294
singular, 8
sites, 42, 44, 45, 48, 49, 54, 57, 58, 83, 104, 108,

152, 164, 217, 227, 229, 244, 252, 267, 268,
270, 276, 279, 281, 285

social, 244, 248, 251, 253, 265, 269
social behavior, 269
social context, 253
social network, 244, 251, 253, 265, 269
society, 261
software, 2, 4, 5, 9, 10, 11, 12, 13, 14, 16, 37, 42,

44, 45, 46, 49, 54, 57, 81, 82, 106, 108, 114,
130, 144, 157, 162, 175, 180, 203, 204, 205,
243, 245, 246, 247, 248, 249, 250, 251, 252,
255, 258, 264, 265, 266, 267, 268, 269, 271,
283, 285, 286, 289, 290, 292, 294, 297, 313,
318, 321, 322, 325, 326, 327

soil, 257, 258

solutions, 9, 11, 12, 57, 130, 132, 211, 243, 245,
246, 250, 252, 253, 256, 258, 270, 296, 312

space exploration, 215, 277
spatial, 55, 256, 257
specialization, 11
spectrum, 82, 245, 246, 249
speculation, 4
speed, 4, 5, 7, 12, 34, 37, 121, 133, 195, 196,

265, 266, 271
spreadsheets, 161
stability, 7, 43, 306
stages, 10, 153, 165, 280
standard deviation, 74
standardization, 129, 130, 173, 288
standards, 21, 50, 56, 58, 127, 144, 152, 200,

204, 218, 220, 224, 226, 240, 247, 249, 276,
288, 293, 326

statistics, 110
stiffness, 304
stock, 318
storage, 8, 12, 20, 22, 25, 37, 54, 106, 115, 119,

120, 138, 147, 180, 181, 195, 211, 223, 233,
244, 246, 251, 265, 268, 269, 271, 278, 321,
322

storms, 107
strain, 12, 298, 299, 301, 304
strategic, 152, 260
strategies, 29, 94, 107, 132, 248, 253, 307, 313,

314
streams, 253, 271, 289
strength, 154
stress, 304
stretching, 303
structuring, 51
students, 246
subarachnoid haemorrhage, 104
subdomains, 296, 306, 307, 308, 309, 313
subjective, 233, 236
subtasks, 181
Sun, 16, 80, 96, 148, 149, 169, 241
supercomputers, 82, 265, 268
supply, 106
surgery, 83, 104, 271
surgical, 103
surplus, 236
sustainability, 248
Switzerland, 124, 292
synchronization, 3, 6, 11
synchronous, 5, 209, 270
synthesis, 249, 256
systematic, 165, 268

Index 344

T

targets, 153, 278
taxonomic, 156
taxonomy, 158, 163, 212
teaching, 251
team members, 248
technological, 225, 243, 244
technological progress, 243
technology, 9, 11, 20, 37, 44, 106, 114, 129, 130,

152, 154, 155, 172, 173, 180, 200, 217, 226,
244, 247, 248, 249, 260, 277, 289, 317, 318,
326

telephone, 92
temperature, 128, 147, 296, 299, 306
temporal, 55, 209, 246, 256
Tennessee, 1, 14
TeraGrid, 42, 44, 46, 53, 55, 58, 59, 82, 113, 124,

225, 240, 253, 264, 266, 267, 279, 285, 287,
290, 294, 297, 312

terminals, 224
Texas, 16, 255
theoretical, 265
theory, 23, 26, 27, 37, 128, 296
therapy, 25, 263
third party, 234, 265
threat, 266
threshold, 65, 74
ticks, 165
time constraints, 92
time consuming, 181
Tokyo, 38, 111
tolerance, 251, 266
topology, 132, 134, 136
torque, 54, 60
Toshiba, 4
total costs, 22
total energy, 298
tracking, 10, 11, 12, 107, 285
traction, 300
trade, 7, 12, 107, 137
trade-off, 7, 107, 137
trading, 10, 13
traditional Grid, 103
training, 21
trans, 9
transfer, 47, 49, 55, 83, 89, 90, 95, 108, 217, 233,

252, 270, 271, 275, 278, 313, 322, 324, 328
transformation, 98, 147
transformations, 8, 246
transistors, 265
transition, 180, 196
transitions, 212, 213, 215

translation, 12, 50
translational, 263
transmission, 271
Transmission Control Protocol, 252
transparency, 20, 288, 318, 322, 328
transparent, 22, 81, 82, 83, 84, 90, 95, 97, 98, 99,

105, 120, 154, 283, 318, 326
transport, 201, 217, 320
transportation, 25, 44, 55
travel, 179, 180, 188, 195, 217
tree-based, 134
trees, 136
trend, 10, 70, 106, 108, 127, 129, 195, 269
trial, 300, 308, 309, 310
trust, 94, 127, 128, 129, 130, 131, 132, 134, 141,

143, 145, 147, 148, 223, 224, 225, 230, 233,
234, 235, 236, 237, 238, 239, 241

trusts, 234
trustworthiness, 129, 148
Turkey, 257, 261
two-dimensional, 297, 304

U

ubiquitous, 5, 12, 129, 244
uncertainty, 180, 246
unification, 176
uniform, 22, 54, 73, 159, 183, 200, 230, 233, 306,

318, 321
unions, 99
United States, 124, 263
universities, 20, 25, 127, 152
updating, 7, 16, 96, 138, 162, 167, 286
upload, 90, 102, 171
urban, 255, 261
user data, 148
user-defined, 62, 321

V

validation, 42, 50, 121, 122, 124, 245, 246
values, 23, 25, 27, 28, 29, 31, 32, 33, 45, 70, 71,

72, 138, 141, 233, 234, 235, 236, 238, 256
Van der Waals, 309
variability, 314
variable, 25, 27, 29, 61, 62, 79, 206, 246, 257
variables, 27, 28, 246, 256, 257, 258, 276
vascular, 104
vector, 12, 13, 17, 249
vegetation, 256
velocity, 298
video, 25, 147, 250, 253

Index 345

Virginia, 241
virtual organization, 64, 135, 140, 153, 223, 263,

265, 266, 268, 270, 283, 287, 289
virtual organizations, 38, 41, 42, 58, 140, 153,

223,263, 265, 266, 268, 270, 283, 289, 290,
297

virtual supercomputer, 297
viruses, 264, 266
visible, 203
vision, 106, 265, 285
visual, 11, 45, 246, 254, 256, 285
visualization, 107, 133, 147, 256, 266, 271, 272,

288
VO, 41, 42, 223, 224, 225, 226, 227, 228, 230,

231, 232, 233, 234, 235, 236, 237, 238, 239,
247, 263, 266, 267, 268, 283, 287, 297

voice, 147
VOs, 224, 225, 227, 230, 231, 232, 234, 236,

237, 238, 239, 263, 267
voting, 121

W

Washington, 58, 124, 219, 220, 293
waste, 270
water, 245, 247, 257, 258, 261
water quality, 245
watershed, 259
Watson, 196
wave propagation, 301
web, 20, 22, 44, 45, 55, 56, 59, 103, 111, 139,

196, 219, 220, 221, 237, 240, 249, 251, 252,
253, 255, 259, 264, 265, 269, 271, 284, 285,
289, 292, 293, 323, 324, 326, 327, 328, 329

Web 2.0, 167, 244, 253, 262, 264, 265, 268, 269,
285, 290

web browser, 103, 237, 285

Web Ontology Language, 155, 175
web service, xi, 44, 45, 55, 56, 139, 196, 219,

220, 221, 253, 255, 264, 269, 271, 284, 285,
289, 293

web-based, 45, 265
Western Europe, 164
White Rose Grid (WRG), 148
Wikipedia, 268
windows, 325
wireless, 129, 265
workflow, 22, 37, 87, 94, 96, 102, 119, 130, 151,

153, 154, 155, 157, 158, 160, 161, 164, 165,
166, 167, 168, 169, 170, 173, 174, 183, 184,
186, 187, 188, 193, 199, 200, 201, 202, 203,
204, 205, 208, 209, 210, 211, 212, 215, 216,
217, 219, 221, 250, 251, 253, 254, 255, 256,
257, 260, 263, 267, 268, 270, 271, 272, 273,
274, 276, 277, 279, 285, 286, 288, 310

workload, 13, 61, 62, 63, 70, 71, 73, 74, 75, 76,
77, 78, 79, 80, 106, 282, 287

workstation, 79, 169, 268
World Wide Web, 159, 177, 197, 217, 219, 221,

244, 249
worry, 124, 251, 254, 326
writing, 5

X

X-ray, 20, 24

Y

yield, 206

	Nova Science - Cyberinfrastructure Technologies and Applications (02-2009) (ATTiCA)
	NOTICE TO THE READER
	CONTENTS
	PREFACE
	PARALLEL DENSE LINEAR ALGEBRA SOFTWARE IN THE MULTICORE ERA
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	METHODOLOGY
	New Algorithms
	Algorithm Description and Execution Environment
	Unified Approach for Different Memory Architectures
	Related Topics of High Importance

	CONCLUSIONS
	REFERENCES

	SHARING SCIENTIFIC INSTRUMENTS FOR HIGH EREDUCATION AND RESEARCH IN CHINA
	ABSTRACT
	INTRODUCTION
	Cyberinfrastructure for Instrument Sharing
	Research Background

	RELATED WORK
	NEES
	XPort
	CancerGrid
	CERS

	SCHEDULING INTRUMENT SHARING
	Scientific Instrument Sharing
	Fuzzy Random Scheduling
	Performance Evaluation
	Summary

	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

	AN INTEROPERABLE INFORMATION SERVICE SOLUTION FOR GRIDS
	ABSTRACT
	INTRODUCTION
	Challenges

	CURRENT INFORMATION SERVICES LANDSCAPE
	The Monitoring and Discovery Services
	Berkeley Database Information Index
	Generic Information Provider
	MDS4 Information Providers
	Other Grid Monitoring Systems

	MODULAR INFORMATION PROVIDER (MIP)
	MIP Architecture and Components
	MIP Data Format
	An Example of MIP Deployment
	Grid Interoperability

	EVALUATING MIP
	Case Study on Production Grid Infrastructures
	GISolve: A TeraGrid GIScience Gateway

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	PERFORMANCE-ORIENTED WORKLOAD MANAGEMENT FOR MULTICLUSTERS AND GRIDS
	ABSTRACT
	INTRODUCTION
	SYSTEM AND WORKLOAD MODEL
	GENETIC ALGORITHM
	DESIGN OF MUSCLE
	Organizing Parallel Jobs
	Searching the Composition Table
	Employing a Heuristic to Balance the Performance

	EXPERIMENTAL STUDIES
	CONCLUSION
	REFERENCES

	VIRTUALIZING SCIENTIFIC APPLICATIONS AND DATASOURCES AS GRID SERVICES
	ABSTRACT
	INTRODUCTION
	VGE GRID INFRASTRUCTURE
	Architecture
	Service Component Model
	Service Access Model
	Service Hosting

	VIRTUALIZATION OF SCIENTIFIC APPLICATIONS
	Application Services
	QoS Management
	Service Invocation
	Configuration and Deployment

	VIRTUALIZATION OF SCIENTIFIC DATA SOURCES
	Data Services
	Data Access Mechanisms
	Data Mediation
	Distributed Query Processing

	CLIENT ENVIRONMENT
	High-Level Client APIs
	Client-Side Access to VGE Services
	Additional Features

	APPLICATIONS
	Grid Enabled Medical Simulation Services
	Integrated Biomedical Grid Infrastructure

	RELATED WORK
	CONCLUSION
	REFERENCES

	GRID RESOURCE BROKER FOR SCHEDULING COMPONENT-BASED APPLICATIONS ON DISTRIBUTED RESOURCES
	ABSTRACT
	INTRODUCTION
	BACKGROUND KNOWLEDGE
	ProActive Grid Scheduler
	Gridbus Broker Scheduling Infrastructure

	INTEGRATION CHALLENGES
	SYSTEM IMPLEMENTATION
	Proxies for ProActive Scheduling Layer
	ProActive Wrappers for Gridbus Broker
	Assembling the System

	VALIDATION
	C3D Application
	Launch the Application

	REMARKS OF THE INTEGRATION
	Impacts on ProActive
	Impacts on Gridbus Broker

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENT
	REFERENCES

	CROWN: A SERVICE GRID MIDDLEWARE FOR E-SCIENCE
	ABSTRACT
	BACKGROUND
	CROWN MIDDLEWARE
	Design Motivation
	Architecture Design
	Components in CROWN
	Features Overview

	RESOURCE MANAGEMENT IN CROWN
	Overview
	Resource Sharing Using Node Server
	Resource Management Using RLDS
	S-Club and RCT

	SECURITY ARCHITECTURE IN CROWN
	Overview
	Design and Implementation
	Summary

	TESTBED AND APPLICATIONS OF CROWN
	ACKNOWLEDGEMENT
	REFERENCES

	SEMANTICS-ENABLED SERVICE DISCOVERY FRAMEWORK IN A PAN-EUROPEAN PHARMACEUTICAL GRID*
	ABSTRACT
	INTRODUCTION
	EU FP6 Grid Research Projects: Overview
	SIMDAT and the SIMDAT Pharma Grid

	DESIGN OF THE SEMANTICS-ENABLED SERVICE DISCOVERY FRAMEWORK IN THE SIMDAT PHARMA GRID
	OWL-DL-Based Bioinformatics Domain Ontology
	OWL-S-Based Service Annotation and the Annotation Toolkits
	Semantic Matchmaker Based on the Ontology Reasoning

	FRAMEWORK USAGE
	IXodus Biological Workflow
	Deployment of the Service Discovery Framework in the SIMDAT PharmaGrid
	Framework Usage: the IXodus Case Study

	EXPERIEMNTAL EVALUATION
	Evaluation of the End User Experience
	Scalability Evaluation of the Semantic Broker

	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	SERVICE COMPOSITION AUTOMATION WITH AI PLANNING
	ABSTRACT
	INTRODUCTION
	AI PLANNING FOR SERVICE COMPOSITION
	Classic AI Planning
	Partial Order Planning

	H2POP FOR SERVICE COMPOSITION AUTOMATION
	H2POP Design
	H2POP Implementation

	A CASE STUDY OF H2POP
	RELATED WORK
	Semi-Automatic Service Composition
	Automated Service Compositions

	CONCLUSION
	REFERENCES

	WORKFLOW IN A SERVICE ORIENTED CYBERINFRASTRUCTURE/GRID ENVIRONMENT
	ABSTRACT
	INTRODUCTION
	RESEARCH OF WORKFLOW IN SOC: STATE OF THE ART
	Languages and Tools for Service Orchestration
	Automatic Service Composition
	Mediation-Aided Service Composition
	Verification of Service Workflow
	Decentralized Execution of Workflow

	WS-WORKFLOW: A WORKFLOW SYSTEM IN SOC
	WS-Workflow: the Framework
	Key Technologies in WS-Workflow

	CONCLUSION
	REFERENCES

	FEDERAL MANAGEMENT OF VIRTUALORGANIZATIONS WITH TRUST EVALUATION
	ABSTRACT
	INTRODUCTION
	Background
	Challenges

	RELATED WORK
	VOMS
	GUMS
	PRIMA
	DAC, MAC and RBAC
	PERMIS

	FEDERAL VO MANAGEMENT
	VO Architecture
	Resource and VO Policies
	Federal Cooperation and Sharing Mechanisms

	TRUST MANAGEMENT
	Current Trust Models
	Trust Modeling in CI Environment
	Establishment of Trust Relationships

	IMPLEMENTATION
	CIMC
	VOMC
	Clients

	CONCLUSION
	REFERENCES

	COMMUNITY-SCALE CYBERINFRASTRUCTURE FOR EXPLORATORY SCIENCE
	ABSTRACT
	INTRODUCTION
	INFORMATICS REQUIREMENTS FOR CYBER ENVIRONMENTS
	MEETING INFORMATICS REQUIREMENTS IN CYBERENVIRONMENTS
	Design Principles

	TECHNOLOGIES AVAILABLE FORBUILDING CYBERENVIRONMENTS
	Software Technology Components
	Example Technologies Developed at NCSA
	Example Applications Supported by NCSA Technologies

	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

	CYBERINFRASTRUCTURE FOR BIOMEDICAL APPLICATIONS: METASCHEDULING AS AN ESSENTIAL COMPONENT FOR PERVASIVE COMPUTING
	ABSTRACT
	INTRODUCTION
	From Metacomputing to Cyberinfrastructure
	New Collaborative e-Science through Virtual Organizations
	Emerging Technology for Pervasive Computing
	Opal Toolkit for Virtualized Resources

	INTEGRATED COMPUTATION, DATA AND WORKFLOW MANAGEMENT THROUGH METASCHEDULING
	Metaschedulers and Resource Brokers
	Grid Filesystems and Data Aware Scheduling
	Workflows in Translational Biomedical Research

	CUSTOMIZED SCHEDULING POLICY PLUG-INS FOR BIOMEDICAL APPLICATIONS
	CSF4 Framework for Plug-in Policies
	Function Plug-in
	Parallel Job Scheduling on the Grid

	USER INTERFACES TO METASCHEDULERS
	CSF Client Command-line
	Interface to Opal Based Web Services
	Portal Interface
	Vision Workflow Environment

	CASE STUDIES AND PERFORMANCE EVALUATION
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES

	THE BRIDHING DOMAIN MULTISCALE METHOD AND ITS HIGH PERFORMANCE COMPUTING IMPLEMENTATION
	ABSTRACT
	INTRODUCTION
	BRIDGING DOAMIN COUPLING METHOD
	Coupling Strategy

	BRIDGING DOMAIN MULTISCALE METHOD WITH PARALLEL COMPUTING
	Bridging Domain Multiscale Method
	Domain Decomposition
	Inter-Domain and Bridging Domain Communications
	Complexity and Performance Evaluations
	One-Dimensional Examples

	GRID COMPUTING TECHNIQUES IN MULTISCALE SIMULATIONS
	Nano-Middleware
	Task Scheduling Advisor

	CONCLUSION
	REFERENCES

	CYBERINFRASTRUCTURE FOR AGRICULTURAL DATA AND KNOWLEDGE SHARING IN CHINA
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Distributed Database Systems (DDB)
	Grid Technologies and Applications

	CYBERINFRASTRUCTURE (CI) FOR AGRICULTURAL DATA AND KNOWLEDGE SHARING IN CHINA
	HETEROGENEOUS DATA INTEGRATION
	System Architecture
	System Structure
	Technical Details
	Working Procedures

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	INDEX

