
A Practical Guide to Testing
Wireless Smartphone Applications
Julian Harty
Google Inc.

SYNTHESIS LECTURES ON MOBILE AND PERVASIVE COMPUTING # 6

A Practical Guide to Testing
Wireless Smartphone Applications

Synthesis Lectures on Mobile
and Pervasive Computing

Editor
Mahadev Satyanarayanan, Carnegie Mellon University
Mobile computing and pervasive computing represent major evolutionary steps in distributed sys-
tems, a line of research and development that dates back to the mid-1970s. Although many basic
principles of distributed system design continue to apply, four key constraints of mobility have
forced the development of specialized techniques. These include unpredictable variation in network
quality, lowered trust and robustness of mobile elements, limitations on local resources imposed by
weight and size constraints, and concern for battery power consumption. Beyond mobile computing
lies pervasive (or ubiquitous) computing, whose essence is the creation of environments saturated
with computing and communication yet gracefully integrated with human users. A rich collection
of topics lies at the intersections of mobile and pervasive computing with many other areas of com-
puter science.

A Practical Guide to Testing Wireless Smartphone Applications
Julian Harty

Location Systems: An Introduction to the Technology Behind Location Awareness
Anthony LaMarca and Eyal de Lara

Replicated Data Management for Mobile Computing
Douglas B. Terry

Application Design for Wearable Computing
Dan Siewiorek, Asim Smailagic, and Thad Starner

Controlling Energy Demand in Mobile Computing Systems
Carla Schlatter Ellis

RFID Explained
Roy Want

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means — electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

A Practical Guide to Testing Wireless Smartphone Applications
Julian Harty
www.morganclaypool.com

ISBN: 9781608452538  paperback

ISBN: 9781608452545  ebook

DOI: 10.2200/S00219ED1V01Y200909MPC006

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON MOBILE AND PERVASIVE COMPUTING

Lecture #6

Series Editor: Mahadev Satyanarayanan, Carnegie Mellon University

Series ISSN

ISSN 1933-9011 print

ISSN 1933-902X electronic

http://www.morganclaypool.com

Abstract
Testing applications for mobile phones is difficult, time-consuming and hard to do effectively.
Many people have limited their testing efforts to hands-on testing of an application on a few physi-
cal handsets, and they have to repeat the process every time a new version of the software is ready
to test. They may miss many of the permutations of real-world use, and as a consequence their users
are left with the unpleasant mess of a failing application on their phone.

Test automation can help to increase the range and scope of testing, while reducing the
overhead of manual testing of each version of the software. However automation is not a panacea,
particularly for mobile applications, so we need to pick our test automation challenges wisely. This
book is intended to help software and test engineers pick appropriately to achieve more; and as a
consequence deliver better quality, working software to users.

This Synthesis lecture provides practical advice based on direct experience of using software
test automation to help improve the testing of a wide range of mobile phone applications, including
the latest AJAX applications. The focus is on applications that rely on a wireless network connection
to a remote server, however the principles may apply to other related fields and applications.

We start by explaining terms and some of the key challenges involved in testing smartphone
applications. Subsequent chapters describe a type of application e.g. markup, AJAX, Client, followed
by a related chapter on how to test each of these applications. Common test automation techniques
are covered in a separate chapter, and finally there is a brief chapter on when to test manually.

 The book also contains numerous pointers and links to further material to help you to im-
prove your testing using automation appropriately.

Table of Contents / Introduction / Markup Languages / Testing Techniques for Markup Ap-
plications / AJAX Mobile Applications / Testing Mobile AJAX Applications / Client Applications /
Testing Techniques for Client Applications / Common Techniques / When to Test Manually /
Future Work / Appendix A Links and References / Appendix B Data Connectivity / Appendix C
Configuring Your Machine

vi

Keywords
automation, mobile, test, wireless

Welcome to the first edition of the A Practical Guide to Testing Wireless Smartphone Applications. I
hope you find this material useful as a technical introduction to the thorny subject of how to auto-
mate tests for mobile wireless applications that run on smartphones. Here you can learn about the
basics of various practical techniques, then follow the links and references to learn more about topics
of relevance to you. I encourage you to seek other examples and references, and to experiment with
test automation, in order to test your applications more effectively.

I wrote this guide as I could not find anything similar when I started in the field of mobile
wireless testing. After two years of adding material to my notes the content is still unfinished and
incomplete; and I realize I am unlikely to ever “catch up” to cover the encyclopedia of topics, as the
field of test automation for wireless smartphone applications continues to change and evolve. So,
here is what I have written so far. I hope it will enable others to learn about the subject much more
quickly.

I hope to publish updated versions as I learn more about the subject, and I welcome your
contributions. Some draft material is also available online at
http://sites.google.com/site/mobilewirelesstestautomation/

I currently work at Google. Some of the examples come from issues encountered at work, the
rest come from a wide range of sources.

Please be aware that this work continues to evolve based on my experiences: for instance I
would like to include information on test automation for the Android platform once I have the
relevant experience, which is driven — in part — by my project assignments.

Preface

vii

http://sites.google.com/site/mobilewirelesstestautomation/

Chapter 1 We start with an overview of the field of mobile wireless test automation: What
is it? What are the challenges? And how will we approach the problem of test
automation. I’ve included a summary of topics currently beyond the scope of this
book, or my experience, others are welcome to provide material on these topics.

Chapter 2 Introduces markup languages and provides examples of two common languages:
WML and xHTML.

Chapter 3 Introduces some test automation techniques for markup languages. The code is
built up from very modest beginnings, and thankfully it remains compact and
easy to comprehend after we have enhanced the scripts to do more.

Chapter 4 AJAX applications are starting to be developed specifically for mobile devices,
e.g., for the iPhone. This chapter explains the fundamentals of AJAX mobile
applications, how they behave, and explains some of the testing challenges.

Chapter 5 The testing strategy for mobile AJAX applications combines testing techniques
for desktop AJAX applications with several tricks based on our work for markup
applications.

Chapter 6 Introduces client applications and provides a high-level testing strategy for
them.

Chapter 7 Includes the testing techniques for client applications.
Chapter 8 Includes common techniques which are broadly applicable across multiple ap-

plications.
Chapter 9 Provides some guidelines on when to test manually.
Chapter 10 Introduces future work: topics I’d like to include and cover in future versions of

this book.
Appendix A Contains lots of links and references which may help you in your testing ex-

ploits.
Appendix B Provides an overview of data connectivity.
Appendix C Describes how to configure your computer to use a mobile wireless connection,

e.g., GPRS/3G.

What Is InsideWhat Is Inside

viii

Text is in this font. Code examples have a shaded background, e.g.,

import urllib

Key lines of code will be in bold, and may be numbered, e.g.,

response = request.open(“http://www.google.co.uk/m”) (1)

Each numbered line would be described immediately after the example code.
Commands, system responses, and code within the main body of the text, etc., will be for-

matted in Courier (e.g., man minicom)which you can enter in a suitable terminal command
window.

Hyperlinks are live in the electronic edition of this book e.g., http://google.com/m

1.

Conventions

ix

 http://google.com/m

All the examples use freely available software. The main programs are: Python, Java, and the Firefox
web browser. Recent versions of both tools (e.g., Python 2.4, Java 5, and Firefox 1.5) should be suit-
able, although I suggest you use the current versions of the programs.

What You Will Need

�

All the code samples are available from the author or at http://code.google.com/p/mwta/. You are
free to use and modify the code.

Using Code Examples

xi

http://code.google.com/p/mwta/

On reviewing my writings, I am overwhelmed by the number of acronyms and aware of how quickly
the links decay, either by the target disappearing or because they are no longer the most suitable
or the most current reference. When you meet an unfamiliar acronym please search the internet for
the meaning and derivation. For old and decaying links — make notes on your copy of the book and
add updated links and comments to keep your copy current.

Alphabet Soup and the Half-life of Links

xii

Thank you to my colleagues at Google who have helped me understand many of the nuances of
mobile wireless technologies. Greg Block contributed the material on image stitching. Mike Davis
reviewed much of the book for technical content.

Michela Wrong also reviewed the entire book, at short notice and while on holiday. Her dili-
gent notes enabled me to make the content more consistent, clearer, and more readable.

Thank you also to Google who hired me as a novice in the field of mobile wireless testing,
they encouraged me to learn the technical nitty-gritty of the domain while I tried to contribute
usefully in terms of testing our mobile applications. They also permitted me to release this material
for public consumption which helps spread the knowledge and understanding of a fairly specialist
field.

Acknowledgments

xiii

Contents

Preface...vii

What Is Inside...viii

Conventions.. ix

What You Will Need... x

Using Code Examples... xi

Alphabet Soup and the Half-Life of Links.. xii

Acknowledgments.. xiii

1.	 Introduction..1
1.1	 What Is a Mobile Wireless Application?... 1
1.2	 Classifications of Mobile Wireless Applications.. 1

1.2.1	 Client Applications... 2
1.2.2	 Messaging Applications.. 2
1.2.3	 Browser Applications.. 2
1.2.4	 The Supporting Servers.. 3
1.2.5	 Things That Do Not Quite Fit.. 3

1.3	 Currently Outside the Scope of This Book.. 3
1.4	 Scope of Mobile Wireless Test Automation... 4
1.5	 Challenges in Testing Mobile Wireless Applications... 4
1.6	 Problem Space.. 5

1.6.1	 Transcoding Web Content... 6
1.7	 Our Testing Focus.. 8
1.8	 Our Goals When Testing... 9
1.9	 Our Overall Testing Strategy... 10
1.10	 Core Concepts.. 11

xv

xvi  a practical guide to testing wireless smartphone applications

2.	 Markup Languages... 13
2.1	 Examples of Markup Languages.. 14
2.2	 Testing Strategy for Markup Applications... 16
2.3	 Example Problems.. 17

3.	 Testing Techniques for Markup Applications.. 21
3.1	 Getting Started With Test Automation... 21
3.2	 Examples Written in Python.. 22

3.2.1	 A Test to Detect if Google Maps Is Offered to Mobile Users................ 25
3.2.2	 Using Regular Expressions in Our Test.. 26
3.2.3	 Combining XML With Regular Expressions... 27
3.2.4	 Using XPATH in Our Tests... 27

3.3	 Summary of the Examples in Python... 29
3.4	 Building on Your First Automated Scripts... 29

3.4.1	 Data-Driven Tests.. 29
3.4.2	 Obtaining Metadata to Drive Our Tests.. 30
3.4.3	 Using Metadata.. 30
3.4.4	 Test Using Carrier Networks.. 31
3.4.5	 Timing the Request/Response Pair.. 32
3.4.6	 Implementing Rule-Based Tests... 32
3.4.7	 Probe Servers.. 33
3.4.8	 Strengths and Weaknesses of Rule-Based Testing.................................. 33
3.4.9	 A Complementary Tool to Rule-Based Tests... 34
3.4.10	 Is Appropriate Content Being Served?... 34

3.5	 Tips When Implementing Automated Test Scripts... 35
3.6	 Test Tools for Browser-Based Applications.. 35

3.6.1	 Using Web-Testing Tools... 35
3.6.2	 “Mobile Readiness” Tools... 35
3.6.3	 Utilities to Help With Testing Browser Applications............................ 36

4.	 AJAX Mobile Applications... 37
4.1	 Testing Challenges for AJAX Mobile Applications.. 39
4.2 	 Examples of Problems With Mobile AJAX Applications.................................. 39

5.	 Testing Mobile AJAX Applications... 41
5.1	 Using Desktop Browser Automation Tools.. 41

5.1.1	 Selenium... 41

contents  xvii

5.1.2	 WebDriver.. 41
5.1.3	 Customizing Desktop Web Browsers... 42
5.1.4	 Limitations of Using Desktop Web Browsers.. 42

5.2	 Using an Embedded Browser... 44
5.2.1	 Using Simulators.. 44
5.2.2	 General Tips... 44
5.2.3	 Selenium Tips for Mobile AJAX Automation.. 45
5.2.4	 WebDriver Tips for Mobile AJAX Automation..................................... 45

6.	 Client Applications.. 47
6.1	 Portable Applications... 47
6.2	 Native Applications.. 48

6.2.1	 Developing Native Applications... 48
6.2.2	 Example Problems for Portable Applications... 49
6.2.3	 Example Problems for Native Applications.. 49

6.3	 Testing Strategy for Client Applications.. 49

7.	 Testing Techniques for Client Applications... 51
7.1	 Automated Unit Tests.. 51

7.1.1	 Examples of Unit Tests... 52
7.1.2	 Running Unit Tests in an Emulator... 52

7.2	 System Testing for iPhone Applications... 53
7.3	 Code Injection.. 53

7.3.1	 Code Injection for Java ME... 54
7.3.2	 Custom Test Applications.. 56

7.4	 Prober Clients... 56
7.5	 Signature Testing.. 57
7.6	 Test Tools for Client Applications.. 58

7.6.1	 On-Device Debugging... 58
7.6.2	 Test Automation of the Runtime Environment..................................... 58
7.6.3	 Emulators... 59

7.7	 Test Automation Using the Blackberry Emulator.. 62
7.7.1	 Summary of Testing Techniques for Client Applications....................... 63

8.	 Common Techniques... 65
8.1	 GUI-Level Automation... 65
8.2	 Image Stitching.. 65

xviii  a practical guide to testing wireless smartphone applications

8.2.1	 Steps in Image Stitching.. 65
8.2.2	 Challenges of Image Matching.. 68
8.2.3	 Optical Character Recognition... 68
8.2.4	 Encoding Data in Pixels... 69
8.2.5	 Making Image Matching Easier... 72
8.2.6	 Using Advanced Image Matching Techniques....................................... 73
8.2.7	 Detecting Good and Bad Results... 73

8.3	 Contact Sheets.. 74
8.3.1	 Using Transparency Masking... 74
8.3.2	 Combining Automation With Human Judgment.................................. 76

8.4	 Model Based Testing.. 76

9.	 When to Test Manually.. 79
9.1	 Examples of Effective Manual Testing... 79
9.2	 Computer-Assisted Testing for Mobile Wireless Applications.......................... 80
9.3	 Testability for Automated Testing.. 80
9.4	 How to Improve Testability.. 80

9.4.1	 Browser-Based Applications... 80
9.4.2	 Client Applications... 81
9.4.3	 SMS Applications.. 81
9.4.4	 General... 81

10.	 Future Work.. 83

Appendix A  Links and References... 85
A.1	 Testing Markup (Web Sites).. 85
A.2	 J2ME Testing... 86
A.3	 Java Byte Code Instrumentation... 87
A.4	 Native Application Testing... 87
A.5	 Test Automation With Emulators.. 87
A.6	 SMS Services.. 88
A.7	 Connectivity... 88
A.8	 Miscellaneous Links... 88
A.9	 Common Tools... 88
A.10	 Other References.. 89
A.11	 Raw Ingredients... 89

contents  xix

Appendix B  Data Connectivity... 91
B.1	 How to Use a Mobile Phone Modem Interactively.. 92
B.2	 How to Use a Mobile Phone Modem for IP Traffic... 92
B.3	 Possible Problems With Data Connectivity... 92
B.4	 Miscellaneous Problems... 92

Appendix C  Configuring Your Machine... 93
C.1	 Raw Ingredients... 93
C.2	 Prepare the Device.. 93
C.3	 Connecting Your Modem or Phone... 93
C.4	 Using Hyperterminal in Windows... 94
C.5	 Using Minicom in Linux.. 94
C.6	 Configuring PPP in Windows.. 94
C.7	 Configuring PPP in Linux... 94

Author Biography... 99

�

1.1	 WHAT IS A MOBILE WIRELESS APPLICATION?
I will start at the beginning with a working description of the term I will be using throughout the
rest of this work: mobile wireless application.

Mobile refers to the intent, the devices are portable, often lightweight devices that move
around, often carried by their user. The devices are generally powered with a small battery,
which implies a tradeoff between power, functionality, and battery life.

Wireless devices communicate with other devices without physical wires or cables.

Application refers to the software used by the user on the device. The application may be writ-
ten to run on the mobile device or take advantage of existing software on the device such as
a web browser.

The term includes mobile phones and handheld devices that communicate over wireless networks. This
book also covers testing of some aspects of the servers that support the mobile wireless applications.

Mobile wireless applications include communications over-the-air (OTA) between the mo-
bile wireless device and servers. Connections are mainly over external mobile phone networks, al-
though WiFi is an option on newer devices.

A brief introduction to mobile network history and terminology is available at
http://umtsmon.sourceforge.net/docs/terminology.shtml.

1.2	 CLASSIFICATIONS OF MOBILE WIRELESS APPLICATIONS
As I have gained experience with mobile wireless applications, I have come to identify ways to group
similar types of these applications using an informal classification, which has helped me to under-
stand their similarities and differences.

Client applications. These are split into two groups: native and portable,
Messaging applications,
Browser applications. Also split into two groups: markup and AJAX applications.

•
•
•

chapter 1

Introduction

http://umtsmon.sourceforge.net/docs/terminology.shtml

�  a practical guide to testing wireless smartphone applications

I will be using these terms throughout the rest of the document. I encourage you to adapt the clas-
sification scheme to suit your needs.

1.2.1	 Client Applications
Client applications are installed on a mobile device and run on that device.

The application may be written to look and feel like a native application for specific phone
models. A native application should behave and look like an integrated part of the installed phone
software. Generally, custom compilers and tools are needed to build native software specifically for
those phone models.

Portable applications are generally able to run with few changes across a wide range of phone
models and manufacturers. The user interface is not as well integrated with any individual phone
model and the software may not be able to take advantage of all the features provided by particular
phone models.

1.2.2	 Messaging Applications
Current messaging applications use SMS messages as the communications medium. Typically the
user can use the standard “text messaging” feature provided with the phone.

A single SMS message contains between 70 and 160 characters depending on how the char-
acters are encoded. The protocol has been extended to send longer messages
(http://en.wikipedia.org/wiki/SMS).

The servers need to receive and respond to the specifications of SMS messages. The mes-
sages are packed and need to be decoded before being used. Virtually every mobile phone includes
full support for SMS messaging; and manufacturers provide SMS software libraries if you want to
incorporate SMS communication into a custom application.

1.2.3	 Browser Applications
Browser applications are server-based applications that can be accessed through a web browser via
a URL from a mobile device. There are a variety of web-based markup languages, dictated by the
capabilities of the web browsers for different geographic regions, etc. Mobile web browsers are less
flexible or capable than desktop web browsers, e.g., they are unlikely to support extensions and
media players (such as Flash).

Markup applications are generated and run within the server. The client displays, or renders,
the pages generated by the server and provides basic user-interaction. User input is sent by the
browser to the server for processing.

http://en.wikipedia.org/wiki/SMS

Introduction  �

Modern mobile web browsers are beginning to have support for AJAX applications  —  Java
Script that runs within the web browser on the client, and enables developers and designers to create
richer applications. The JavaScript often modifies the page content within the browser, and interacts
directly with the server.

1.2.4	 The Supporting Servers
The servers include varying degrees of customization for mobile wireless applications. For instance,
web servers can detect requests from mobile devices and tailor content accordingly. The customiza-
tion helps to provide content specialized to mobile constraints, such as limited bandwidth and the
small screens and fiddly keyboards on many devices.

For client applications they tend to offer a message-based protocol. Some protocols are based
on the ubiquitous HTTP web protocol. Others include audio and video content (using protocols
such as RTP), and messages (using protocols such as RSS), etc.

Servers for browser applications need to provide content that meets the needs and limitations
of the device’s browser. They detect the device and browser by matching various protocol headers
in the HTTP requests (e.g., the user-agent string, and endeavor to return appropriate content).
The content may need to be pared down to meet limitations of size and complexity; and the for-
mat needs to match the markup language used by the browser (e.g., Wireless Markup Language
[WML] for older phones).

1.2.5	 Things That Do Not Quite Fit
Some technologies do not quite fit my classifications, for instance: Multimedia Messaging Service
(MMS) is another messaging service and supported directly by many smartphones. However, unlike
SMS it uses HTTP requests and responses
(http://en.wikipedia.org/wiki/Multimedia_Messaging_Service)/

RSS “feeds” messages and updates from a server to clients who subscribe to the feed. RSS is
similar to a browser application, but uses another piece of software to display the content. There are
several interpretations of RSS (see http://en.wikipedia.org/wiki/Rss for more information).

1.3	 CURRENTLY OUTSIDE THE SCOPE OF THIS BOOK
This book does not cover:

Testing of the physical devices, their operating system, or of the platform (except where it
affects applications that run on that platform);

•

http://en.wikipedia.org/wiki/Multimedia_Messaging_Service
http://en.wikipedia.org/wiki/Rss

�  a practical guide to testing wireless smartphone applications

Automated test suites to certify the run time platform, such as Java Certification;
Testing the internals of the base stations and carrier networks. However, we touch on these
topics where they can materially affect the performance of mobile wireless applications;
and
Embedded devices or technologies I do not yet know about. However, many of the prin-
ciples and techniques may be relevant.

If you would like to contribute ideas, experiences, and material please contact me — I would be
happy to incorporate relevant work and acknowledge your contributions.

1.4	 SCOPE OF MOBILE WIRELESS TEST AUTOMATION
My scope is fairly broad, it ranges from unit testing to system and field testing, and includes any-
thing that helps to partially or fully automate testing of mobile wireless applications.

1.5	 CHALLENGES IN TESTING MOBILE WIRELESS
APPLICATIONS

We face various challenges inherent to testing mobile wireless applications ranging from practical
limitations, to tedious, mundane tasks, to understanding what factors and issues affect the results of
our testing (Figure 1.1).

Trying to test using all possible devices is impractical. Trying to multiply that testing across
the rest of the factors exacerbates the problems (e.g., network operator, different versions of the
underlying software, etc). Even the first stage of configuring handsets — so we can run and test an
application — is error-prone and time-consuming.

•
•

•

FIGURE 1.1: Testing challenges.

Introduction  �

The software installed on phones is constrained by various tradeoffs and decisions made by
the provider of the phone. The provider may have customized the software installed on the phone to
change the default behavior. Neither the original software nor the changes are well documented.

Detecting rendering, or display, issues generally needs someone to look at the content on the
screen. As the User Interface (UI) code can be up to half of all the application’s code, and as the UI
is such an important factor for most mobile applications, the need for human involvement needs to
be factored into much of our test automation.

Some factors that could affect the test results may be outside our direct control. They may
hard to even identify and therefore even harder to measure. When we do test, accurate test data may
be hard to obtain, and there are numerous gaps and contradictions in the data we have which we
need to sift through to determine the key issues and their likely impact.

Measuring performance of mobile applications is an imperfect art, and particularly error-
prone when trying to obtain consistent, accurate results.

1.6	 PROBLEM SPACE
The world of mobile phones is complex; where the device is frequently provided by the network op-
erator as part of a service. The software on these devices is often customized by the operator and the
software may include significant changes to the user interface and to the functionality. For instance,
some operators disabled the “Voice Over IP” (VoIP) feature from Nokia’s very popular N95 handset
to prevent their users from using this service.

There are hundreds of network operators — with multiple Internet price plans and particular
price plans offer or prohibit particular services and have specific network configurations.

There are also hundreds of models of handsets, each may have many variants — e.g., firmware
from a particular network operator — giving thousands of possible variations.

Combinations of price plan, network configuration, and phone firmware may limit or even
disable part or all of an application.

The choice of handset also affects the runtime environment (e.g., some support Java ME and
others support C++ programs). The preinstalled web browser(s) on a handset also determine which
markup language(s) the server needs to use. While modern devices often support relatively com-
plete xHTML or HTML markup, older devices might use more limited markup languages such as
WML, C-HTML, or i-mode.

When testing application software we need to consider:

The human languages (e.g., French, Kanji);
The locales (e.g., UK English, Australian, and US English), which affect things like for-
matting numbers and currency symbols;

•
•

�  a practical guide to testing wireless smartphone applications

Who pays for updates to be downloaded (users may be unwilling to pay to download up-
dates OTA);
How the software is installed on the device (e.g., in terms of security permissions); and
The number of applications and versions you need to support in parallel.

Finally, there is the vital topic of what testing resources you have available to test each version
and release of an application, and to decide how best to spend that time — e.g., which handsets
from which network operators should you test with? We will cover the testing focus in more detail
shortly.

The following diagram provides an overview of the problem domain.

1.6.1	 Transcoding Web Content
Some content is unsuitable for devices — e.g., it may be too complex or contain images in a format
not supported on a device. Google and other companies transcode content in order to make it more
suitable for mobile devices. For example, Google’s mobile search transcodes results by default for
many mobile devices (and offer users the ability to view the original page if they prefer). Some car-
riers also transcode web content to do a similar job.

Here is a diagram of how a transcoder converts a graphical static web page to suit a generic
web browser.

•

•
•

Introduction  �

Essentially a transcoder acts as an intermediate device which interprets both the HTTP
requests and processes the HTTP responses. In the HTTP requests they typically process things
like the user-agent string (to recognize which device is making the request), and in the responses
they process things like content type and content length to determine whether content should be
converted on-the-fly (dynamically) or whether it is appropriate to pass through unchanged.

�  a practical guide to testing wireless smartphone applications

1.7	O UR TESTING FOCUS
Given the vast problem space and our typically severely constrained resources, we need to focus our
testing if we are to be effective. When automation is used appropriately we can be significantly more
effective and reduce the overall time needed to test each software release. Some types of applications
can be automated relatively easily and successfully, while others are more challenging (e.g., client
applications). Finally some aspects are better tested manually — e.g., to assess the rendering of the
UI on actual devices.

For applications that run on a range of devices, where there are lots of variations between
devices and where upgrades can be expensive or difficult, we first want to focus on finding and ad-
dressing problems that would prevent users from being able to use the application on their device.
These problems include:

Finding incompatibilities ranging from not installing to poor rendering;
Discovering and working around limitations in the software on the device, including
browser issues, J2ME bugs, etc.; and
Detecting content or behavior that may adversely affect the behavior of the device (e.g.,
where a large web page may not be shown at all on some devices).

Once we have tested for these issues the next step is determining whether users get the most
technically suitable content for their device. For instance some smartphones from Nokia support
both JavaME and C++, and they may have several web browsers installed (e.g., one that supports
xHTML and another that supports HTML). C++ applications tend to be faster and take better
advantage of the features of the smartphone, but they have to be “trusted” by both the user and
often by the network operator who may prohibit unapproved software from being installed or
used.

Pick a representative subset of the set of all the intended devices. I suggest you slice the set in
various ways to increase the chances of finding meaningful bugs.

Pick some of the most popular models and for these pick a model with the most popu-
lar version of the manufacturer’s firmware (another term for the preinstalled software).
For example, a Nokia N95, an iPhone with version 2.1 of the operating system, and a
T-Mobile G1 with cupcake installed would represent a significant subset of the set devices
with capable web browsers.
Pick one model from a set of similar models — e.g., for the older Nokia Series 60 second
edition devices a N6680 or an N70 are good representatives for the rest of the range of
models. They have similar web browsers, JavaME runtime, and support the same C++
applications.

•
•

•

•

•

Introduction  �

For all our applications we want our users to like using them. After all, unless we have a monopoly
(e.g., for internal company applications), then our users have plenty of alternatives available. Here
we focus on:

Usability, the wow factor, etc.; and
Performance, which is an umbrella term that includes: a user’s perception of responsiveness,
client-side rendering, OTA transmission times, and server-side timings.

Test design helps us to increase the effectiveness of each test, and the test coverage, without testing
every possible permutation! Thankfully we can adopt existing techniques and good practices from
elsewhere in the software testing communities. For example, we can use combination testing tech-
niques to select our test cases and use exploratory testing techniques to help guide our testing.

1.8	O UR GOALS WHEN TESTING
Testing our software is a “means to an end” — part of the journey rather than the ultimate goal.
However, if we have clear, measurable goals then we can keep track of how well we are doing and
whether our testing is useful for the applications we are testing.

Here are some of the goals I have used over the years to help you identify goals that suit you
and your work.

To ensure we deliver attractive, easy-to-use, working applications for as many users as practical.
Lots of happy, frequent users help show our software is successful and useful.
To have justified confidence in the quality of our software. Providing accurate information on the
quality of software is an important aspect of software testing. When we test well, and com-
municate the results so other people understand the strengths, weaknesses, risks, etc., with
releasing our application, there should be few surprises after deploying the software to our
users. Ideally, most of the bugs would be found and fixed before the software is widely used.
Fast feedback to developers. Fast feedback helps them to fix the code while it is still “warm,”
while they are still intimately familiar with it.
To quickly detect issues so they can be addressed. This is particularly relevant when the problem
is related to external factors (e.g., an operator’s network configuration or a specific handset
model). Note: We tend to make changes to our software, as that is the fastest way to fix
the issue from the user’s perspective. We can then work with the relevant third parties to
address the underlying issues in a more considered fashion.

For each of your goals, try to find ways to collect useful metrics (e.g., the number of bugs
found in testing compared to the number reported by users). Dorothy Graham coined the term

•
•

•

•

•

•

10  a practical guide to testing wireless smartphone applications

Defect Detection Percentage to measure these bugs — more information is available on her blog,
http://dorothygraham.blogspot.com/.

1.9	O UR OVERALL TESTING STRATEGY
Start by underpinning manual testing with automated testing. As manual testing is very time-
consuming, and often limited to testing through the limited user-interface of the mobile device,
find ways to automate parts of the application code and the system. For example, use automated
unit tests to test the business logic and the communications libraries of the client application. And
automate the testing of the client-server protocols and interfaces by using custom clients, or in-
dependent automated tests from desktop computers, to send messages and inspect the received
messages.

Rely on existing test automation tools and libraries if they exist: e.g., J2MEUnit for Java ME
applications, and WebDriver for testing AJAX applications. In some cases there is no suitable tool,
so you may decide to create one if you have the time, skills and resources. For instance we ended up
creating JInjector so we could automate system testing and generate code coverage for our Java ME
applications, and the IPhoneDriver for WebDriver. Both these tools are open-source and available
free of charge. We have found “open-sourcing” our tools to be useful both for us and for the wider
testing communities. We get their feedback and support, and they are able to use and extend our
work.

Sometimes problems can be isolated and fixed sooner by splitting the code apart — e.g., to
replace the UI with a text equivalent (sometimes known as a “headless” version). While doing so
may seem like extra work, generally the debugging tools are less sophisticated than when debugging
server code. Also, once you have a headless version, the tests should be able to run without (much)
human involvement, unlike testing through the UI.

Consider reducing problems to their essential details, to divide-and-conquer issues. Note:
mobile client code may be less elegant than equivalent server code, partly owing to restrictions im-
posed by the development platform and libraries, and partly because developers want to optimize to
reduce size and increase speed of the application. Consider testing the servers in isolation, testing
by using protocol emulators, testing locally on the device, etc.

Automate more of the build and deployment processes in order to accelerate and streamline
the testing. Another benefit is that automated processes help to reduce the risk of human error in
the deployment.

Seek ways to automate more of the end-to-end on-device testing, both to reduce the need for
manual testing and to help identify device-specific issues cost-effectively.

Seek also to provide effective test output to reduce the effort required to identify and ad-
dress problems. As mobile applications may have very restricted reporting capabilities — e.g., when

http://dorothygraham.blogspot.com/

Introduction  11

running within the Java ME “sandbox”, where applications need express permission to write to the
filesystem — consider writing the results from the client to a server using HTTP, MMS, or even
SMS messages.

One of my strategies, and one reason this book was written, is to allow other teams and
groups to automatically test their software so that I can then get out of the way and leave them
to it!

Finally for this section, do not be afraid to seek some quick wins as well as trying to address
longer-term automation goals. In terms of testing mobile applications, some seemingly simple tools
can significantly improve our effectiveness. These tools include:

User-agent capture tools;
Using SMS messages to send test URLs and download links to devices;
Screen-capture tools; and
Using “contact-sheets” that collect many screenshots into a single display, which enable lots
of screenshots to be reviewed quickly.

All these tools are covered later in this book. You are welcome to add to the list and tell me about
your favorite tips and tools.

1.10	 CORE CONCEPTS
There are some core concepts which underpin our approach to testing mobile wireless applications.
Let us start with connectivity.

GSM and CDMA networks provide support for data.
Phones include a GPRS (etc.) modem which provides the underlying connection. Web
browsers on the phones (or applications that use the internet for communications) use the
data connection.
We can either use phones or dedicated modems (which are also known as data cards) to
establish a similar connection for testing.
This material concentrates on HTTP connections that underpin the majority of connec-
tions between mobile phones and servers.

To help you understand how HTTP is used for connectivity the first chapter on automation “Test-
ing techniques for markup applications” starts at a relatively basic level and builds the test code in
small discrete steps until a basic test is created for a search page. Here is an overview of what that
chapter includes:

•
•
•
•

•
•

•

•

12  a practical guide to testing wireless smartphone applications

Sending an HTTP request and receive the response;
Analyzing the request and response;
Device Emulation, starting by adding a user-agent setting and adding more HTTP head-
ers until we manage to convince the server that our tests should be treated as that device;
and
HTTP + Device Emulation + Content Validation.

Subsequent chapters include code snippets to highlight specific aspects or topics of test automa-
tion. A mix of programming languages are used, typically the same as would be used to develop the
respective application.

Terms such as emulate and emulation are used throughout this material. Emulation means
our software pretends to be the real device (e.g., our tests can send information which the server
uses to determine whether the request is from a mobile device). Emulators are also provided by
software vendors which behave sufficiently closely to real devices to enable our applications to run
on our computers.

• • • •

•
•
•

•

13

Markup languages combine instructions with content. The instructions range from formatting, e.g.,
to display text in italics to links for images, other web content, etc. The instructions are identified
with tags, characters with a particular meaning for a given markup language. All of the web-based
markup languages use angle brackets < > to indicate markup, e.g., <bold>Hello</bold>
indicates the word Hello should be rendered in bold. The ampersand is used to encode angle-
brackets, and several other characters, in the content, e.g., > represents the < character in the
content.

The granddaddy of all web-based markup languages is HTML. When companies wanted to
deliver web-like content to mobile phones 5 to 10 years ago, they realized HTML was ill-suited.
WML was the first of the markup languages developed with mobile devices in mind. Subsequently,
a number of variations and enhancements have been created and used to reflect the changing needs
of the mobile market. These markup languages include:

xHTML,
cHTML, used by iMode,
WML, used by WAP 1.x.

•
•
•

HTML

WML

cHTML

WAP 1.x

iMode

xHTML

WAP 2.0

Two branches of mobile wireless markup languages from a common source. A more complete figure
is available on Wikipedia http://en.wikipedia.org/wiki/Wireless_Markup_Language.

chapter 2

Markup Languages

http://en.wikipedia.org/wiki/Wireless_Markup_Language

14  a practical guide to testing wireless smartphone applications

Markup languages are rendered by software on mobile phones. There may be limitations or
bugs in the rendering software. Conversely, the rendering software may need to account for flaws in
the markup of a web page and cope with limitations of the hardware, e.g., in terms of screen size,
fonts supported, memory limitations, etc. The net result is that the pages viewed by users on vari-
ous phones may vary considerably in terms of appearance and even behavior — what works on one
phone may not work on another.

2.1	 EXAMPLES OF MARKUP LANGUAGES
Here is an example of an xHTML document, the home page of Google’s mobile search in the UK
(Figure 2.1).

<?xml version="1.0" encoding="UTF-8"?> (1)
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
"http://www.wapforum.org/DTD/xhtml-mobile10.dtd"> (2)
<html xmlns="http://www.w3.org/1999/xhtml"> (3)
<head>
<meta http-equiv="Content-Type" content="application/xhtml+xml;
charset=UTF-8"/> (4)
<meta http-equiv="Cache-Control" content="no-cache"/>
<style type="text/css"> a:link {color:#0000cc;} a:visited
{color:#0000cc;} a:hover {color:#0000cc;} a:active {color:#0000cc;}
.c0 {vertical-align:middle;} .c1 {padding-bottom:1em;} .c2
{color:#ff0000;padding-right:2px;} </style>
<title> Google </title>
</head>
<body>
<div>
<img class="c0" src="/xhtml/images/google.gif" width="85"
height="35" alt="Google"/> (5)
</div>
<div class="c1">
Download Google
Maps (6)
</div>
<form action="/m/search"> (7)
<div>
<input type="hidden" name="mrestrict" value="xhtml"/> (8)
<input type="text" name="q" size="15" maxlength="2048"/>

<input type="submit" name="btnG" value="Search"/>

<input type="radio" name="site" value="search" checked="checked"/>
Web

<input type="radio" name="site" value="images"/> Images

<input type="radio" name="site" value="local"/> Local listings

<input type="radio" name="site" value="mobile"/> Mobile Web (Beta)

</div>
[… more content here, removed to fit the example on the page …]
</form>
©2007 Google

</body>
</html>

FIGURE 2.1: xHTML for Mobile Search homepage in UK.

Markup Languages  15

Things to note in the xHTML document:

The document conforms to the XML specification;
The document type is XHTML Mobile 1.0. A link is provided to the online rules
which apply to this document. The rules are defined in a Document Type Definition
(DTD);
The XML namespace is referenced;

1.
2.

3.

Here is the equivalent Google home page in WML format (Figure 2.2).

<?xml version="1.0" encoding="UTF-8"?> (1)
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
"http://www.wapforum.org/DTD/wml12.dtd"> (2)
<wml> (3)
<head>
<meta http-equiv="Content-Type" content="text/vnd.wap.wml;
charset=UTF-8"/> (4)
<meta http-equiv="Cache-Control" content="no-cache"/>
</head>
<card title="Google"> (5)
<onevent type="onenterforward"> (6)
<refresh> <setvar name="q" value=""/></refresh>
</onevent>
<p> Google </p>
<p>
<input name="q" size="15" maxlength="255" emptyok="true"/>

Search:

<anchor title="search"> (7)
<go href="/m/search" method="get">
<postfield name="output" value="wml"/>
<postfield name="mrestrict" value="wml"/>
<postfield name="q" value="$(q)"/>
<postfield name="site" value="search"/>
</go>Web </anchor>

<anchor title="mobile">
<go href="/m/search" method="get">
<postfield name="output" value="wml"/>
<postfield name="mrestrict" value="wml"/>
<postfield name="q" value="$(q)"/>
<postfield name="site" value="mobile"/>
</go>
Mobile Web </anchor>

<anchor title="local">
<go href="/m/search" method="get">
<postfield name="output" value="wml"/>
<postfield name="mrestrict" value="wml"/>
<postfield name="q" value="$(q)"/>
<postfield name="site" value="local"/>
</go>
Local listings </anchor> </p>
<p>
©2007 Google</p>
</card>
</wml>

FIGURE 2.2: WML for Mobile Search homepage in the UK.

16  a practical guide to testing wireless smartphone applications

The content type is set to application/xhtml+xml Setting the content type helps
the browser to interpret the content correctly;
A link to the Google logo. The image is smaller and simpler than the one delivered to
desktop web browsers such as Firefox;
Here is a link to promote Google Maps for mobile devices. This promotion only offered to
mobile users, and is something we may want to test for;
When the user submits their search, the contents are passed to a mobile-specific version of
Google search; and
A hidden field included. When the web browser sends the search request to the server it
will include this field with the search query. The server then knows the results should be
returned in xHTML format.

Things to note in the WML document:

The document also conforms to the XML specification;
The document type is now WML 1.2. A link is provided to the online rules which
apply to this document. The rules are defined in a Document Type Definition
(DTD);
The content is within a pair of <wml> tags (the other is the last line of the example);
The content type is text/vnd.wap.wml which helps the browser to interpret the con-
tent correctly;
Content is displayed on individual “cards”; cards are a metaphor for the content, in a similar
way that we describe web “pages.” Cards can be grouped into a “deck”;
 “onevent” contains an action to be performed. Here the variable “q” is set to an empty
string when the page loads in the phone’s WML browser. “q” is the query parameter passed
to Google’s search engine; and
An anchor contains an action, here to perform a search by passing in the parameters,
identified as “postfield”, to the relative address on the server specified in the href
parameter.

2.2	 TESTING STRATEGY FOR MARKUP APPLICATIONS
Try to automate most of the testing for markup applications. Markup languages are designed to be
processed by programs (such as the web browser) rather than being directly interpreted by a human.
Therefore the markup languages are relatively simple to test using a program or script. Furthermore,
there is often support for the web-based markup languages in many of the common programming
languages, either directly or using software libraries, so we can take advantage of this support to
reduce the amount of code we need to write.

4.

5.

6.

7.

8.

1.
2.

3.
4.

5.

6.

7.

Markup Languages  17

Techniques such as matching patterns in responses are effective. The idea is simple: we expect cer-
tain things to be returned in the response, e.g., search results.

People are good at instantly recognizing whether the results seem appropriate, one factor
we seek is known patterns, e.g., a set of search results. However, we cannot predict exactly
what each result will contain; instead we check the individual search results quickly and
select any that seem relevant or interesting.
In our automated tests we can articulate similar patterns in the response, e.g., that a “good”
response may contain a number of search results. Each result will consist of a hyperlink,
a snippet of text, and the source URL, etc. Again, it is unlikely we can predict the exact
content of each search result.

We can therefore design our automated test to use patterns based on the hierarchy and/or the con-
tent of responses.

Two effective pattern-matching methods are: using regular expressions and using hierarchical
path navigation (for instance with XPATH expressions). The examples later on provide examples
of both methods.

2.3	 EXAMPLE PROBLEMS
Here is a summary of typical problems that affect markup applications. Cookie and Transcoder
issues may adversely affect other types of mobile wireless application and are generally “bad news”
for those applications.

Cookies are sometimes intercepted by a gateway, or a proxy server, provided by the carrier.
Users may end up sharing a common cookie owing to the interactions between the web
server and the gateway, or proxy server. These shared cookies can cause unexpected behavior,
e.g., where one user’s custom content is visible to other users who “share” a common cookie.

Automated tests may need to communicate across multiple distinct connections, in
parallel, probably across several devices or computers, in order to trigger cookie sharing
issues.

Theoretically tests from a single source could detect issues caused by other user’s
cookies affecting “our” use of the application. However, typically single source tests aren’t
designed to detect the problem, so — at best — they would detect a problem. But the prob-
lem is likely to be intermittent and treated as a “flaky test.”
Transcoders do not always help improve the mobile experience: we have noticed that they
sometimes transcode data that needs to be returned as-is to our client applications, which
prevents our applications from working correctly.

•

•

•

•

18  a practical guide to testing wireless smartphone applications

We can write automated tests to determine whether a transcoder converts content
inappropriately or stops content entirely. Problems with transcoders are generally resolved
by experimenting with ways to set the headers so content is returned to the user correctly,
or by contacting the company who is using or providing the transcoder.
Devices from at least two manufacturers display a “413: Page Cannot Be Displayed” mes-
sage for some web content. The error can be displayed under various conditions including
factors such as:

o	 The size of the HTTP response,
o	 The complexity of the returned xHTML document, and
o	 The length of the HTTP request (which could be over 500 bytes long in some

cases).
By designing server pages for typical issues the devices can be tested to determine their
limits for these factors.

Poor dropdown menu support (see below).

Poor table support (see right).

•

•

•

Markup Languages  19

Bold tag not supported in an anchor tag (see below).

• • • •

•

21

In my experience the majority of automated testing for markup applications either uses HTTP
requests and responses using a protocol library such as urllib or a browser-based automation
library such as Selenium. Both approaches are useful and can be effective.

A web browser can be used as a simple way to quickly view the content returned for a given
xHTML device. The browser will need an add-in to incorporate sufficient device headers to con-
vince the web site that the request is from a particular mobile device. Similarly, WML can be ren-
dered in Firefox by using another browser add-in. More information is available in the section titled
“Utilities to help with testing browser applications.”

3.1	 GETTING STARTED WITH TEST AUTOMATION
Let us start with an overview of how you can implement your first automated script for testing
browser applications:

Implement commands to send a HTTP request and receive the response.
Add some basic validation of the HTTP response in order to determine whether you are
getting what you want, and not getting what you do not want:

Does the HTTP status code equals 200? (OK.)
Is the content type what you expected?
Is the content length appropriate? (You may be able to use a single exact value or
specify a range of acceptable values.)

Add pattern-matching (e.g., to match the word “Results” followed by two numbers, fol-
lowed by “of about”) for the UK English search results on www.google.co.uk. See screen-
shot for an example of the search results page (Figure 3.1).
Add a user-agent string that matches one from a specific mobile phone.
If necessary, add other HTTP headers such as:

Accept,

X-WAP.

•
•

o

o

o

•

•
•

o

o

chapter 3

Testing Techniques for
Markup Applications

www.google.co.uk

22  a practical guide to testing wireless smartphone applications

Consider adding code to detect failures, e.g., error messages that should not be in the responses. By
detecting failures explicitly the tests will be more reliable (harder to fool) and errors can be handled
sooner, rather than the test meekly waiting for the “expected result” until a timeout occurs.

3.2	 EXAMPLES WRITTEN IN PYTHON
The examples here are written in Python, a flexible programming language that is easy to experiment
with interactively as well as being able to handle large-scale programs. Several other programming
languages are able to provide similar capabilities, so try yours if you don’t find Python suitable.

>>> import urllib (1)
>>> request = urllib.FancyURLopener() (2)
>>> response = request.open(“http://www.google.co.uk/m”) (3)
>>> content = response.read() (4)

EXAMPLE 3.1: Four lines of Python to retrieve a web response.

With four lines of Python, shown in Example 3.1, we are able to retrieve the contents of Google’s
mobile search homepage for the UK site. Note: the numbers of the bullet-points refer to the numbers in
brackets from the preceding example Python code.

import urllib does all the hard work of making the http request and returning the
response, e.g., the library automatically handles HTTP redirection.
Create a request object, using one of the methods provided by urllib.

1.

2.

FIGURE 3.1: Google search results.

Testing Techniques for Markup Applications  23

Make the request to retrieve the contents of the mobile search page, and assign the re-
sponse to the response object.
The content of the response is returned using the read() method. We can now test the
content directly by using standard Python functionality.

So with four simple lines of code we have the page content. We can also obtain more information,
like the HTTP response headers by calling response.info()

>>> print response.info()
Set-Cookie: PREF=ID=dace3eeeb443a505:TM=1189341666:LM=1189341666:
S=HfvfxidI1xMPZ
93O; expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.co.uk
Set-Cookie: MPRF=H4sIAAAAAAAAAAMAAAAAAAAAAAA; expires=Sun, 17-Jan-2038
19:14:07
GMT; path=/; domain=.google.co.uk
Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/vnd.wap.wml; charset=UTF-8
Date: Sun, 09 Sep 2007 12:41:06 GMT
Server: GFE/1.3
Connection: Close

 EXAMPLE 3.2: Display the HTTP response headers for WML.

And individual headers using response.info().typeheader

>>> response.info().typeheader
‘text/vnd.wap.wml; charset=UTF-8’

EXAMPLE 3.3: Display the content type response header for WML.

Here you may notice something strange: the content type indicates the content is in WML, rather
than xHTML or HTML. Google’s search engine seems to be defaulting to the oldest markup lan-
guage, rather than the most popular one  —  why is that?

Early mobile wireless devices used WAP requests and expected WML responses. Later
phones were often able to support both WML and xHTML, while newer phones support xHTML
and HTML. Since the search engine does not have any indication of what markup language the
requester wanted, it sends the earliest version. Google search is able to deliver the correct markup
provided it receives sufficient “clues” in the HTTP request.

Two key HTTP headers generally provide enough information for the search engine to de-
liver appropriate content for a given device. By adding these headers we should be able to “fool” the

3.

4.

24  a practical guide to testing wireless smartphone applications

search engine into returning the content it would return to the equivalent phone model. Let us go
through these headers one by one:

The first header to consider is the “Accept” header. This is part of the HTTP standard and
is used by the requester to tell the server what types of content it is able to use. For a desktop web
browser the Accept header may be set to

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

This “accept” header tells the server the image file formats the browser can display, and then
a catch-all for other content types, e.g., for text/html.

For a mobile browser that accepts xHTML, the Accept header will generally be set to:

Accept: application/xhtml+xml

As indicated with (1) in Example 3.4, in Python we can add this header using:

request.addheader(‘Accept’, ‘application/xhtml+xml’)

>>> import urllib
>>> request = urllib.FancyURLopener()
>>> request.addheader(‘Accept’, ‘application/xhtml+xml’) (1)
>>> response = request.open(“http://www.google.co.uk/m”)
>>> content = response.read()

EXAMPLE 3.4: Adding the accept header for xHTML.

>>> print response.info()
Set-Cookie: PREF=ID=f7be92230ff7006f:TM=1189343788:LM=1189343788:
S=NiHOJyU0dt5Sf
b6C; expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.co.uk
Set-Cookie: MPRF=H4sIAAAAAAAAAAMAAAAAAAAAAAA; expires=Sun, 17-Jan-2038
19:14:07
GMT; path=/; domain=.google.co.uk
Pragma: no-cache
Cache-Control: no-cache
Content-Type: application/xhtml+xml; charset=UTF-8
Date: Sun, 09 Sep 2007 13:16:28 GMT
Server: GFE/1.3
Connection: Close

EXAMPLE 3.5: Displaying the HTTP response headers for xHTML.

And using response.info().typeheader this time shows the response is in
xHTML — phew!

Testing Techniques for Markup Applications  25

>>> response.info().typeheader
‘application/xhtml+xml; charset=UTF-8’

EXAMPLE 3.6: Display the content type for xHTML.

At the time this example was created, September 2007, Google was promoting the “Google Maps”
mobile application to users who had suitable phones. I wanted to write a simple test that checks
whether the link is available on the xHTML homepage. As the link is only offered to users with
suitable phone models, we need our test to pretend it is one of those phones. The User-Agent
HTTP header is what we need to achieve this.

Here is an example of a user-agent string from a Nokia 6230 phone:

‘Nokia6230/2.0+(04.43)+Profile/MIDP-2.0+Configuration/CLDC-1.1+UP.

Link/6.3.0.0.0’

We can add this to our request by adding another header (shown in bold and indicated with
(1) in Example 3.7:

request.addheader(‘User-Agent’,

‘Nokia6230/2.0+(04.43)+Profile/MIDP-2.0+Configuration/CLDC-1.1+UP.

Link/6.3.0.0.0’)

>>> request = urllib.FancyURLopener()
>>> request.addheader(‘Accept’, ‘application/xhtml+xml’)
>>> request.addheader(‘User-Agent’,
‘Nokia6230/2.0+(04.43)+Profile/MIDP-2.0+Configuration/CLDC-
1.1+UP.Link/6.3.0.0.0’) (1)
>>> response = request.open(“http://www.google.co.uk/m”)
>>> content = response.read()

EXAMPLE 3.7: Adding a user-agent string to emulate a Nokia 6230.

3.2.1	 A Test to Detect if Google Maps Is Offered to Mobile Users
Let us start by using a simple search to find out whether Google Maps is mentioned anywhere on
the page.

>>> content.find(‘Google Maps’)
807

EXAMPLE 3.8: Using string search to find out if the content contains Google Maps.

26  a practical guide to testing wireless smartphone applications

If the string is not found content.find() returns -1.

>>> content.find(‘Google Mapsx’)
-1

EXAMPLE 3.9: The String search returns -1 if the string is not found.

So, a simple string search is enough to get us started, and here indicates that the string “Google
Maps” is contained in the returned content. We could now write more involved “string searches,”
e.g., to find and extract the URL for the download and make sure the page does not have multiple
links to Google Maps, etc. However, Python offers a better approach using the very powerful
regular-expression tools.

3.2.2	 Using Regular Expressions in Our Test
Four more lines of Python code are enough to perform the regular expression match and return the
link to the download page.

>>> import re (1)
>>> rx = re.compile(‘<a href.* Google Maps’) (2)
>>> m = rx.search(content) (3)
>>> m.group() (4)
‘Download Google Maps’

EXAMPLE 3.10: Using a regular expression to get the download link for Google Maps.

Here are the four steps required:

Import the re regular expression module (provided as a standard Python library module).
Define and compile the regular expression. The .* characters mean: match any characters
between the href and the string “Google Maps”.
Perform the search on the content of the web results. If matches are found the m variable
will be assigned to point to the set of matches.
m.group() returns all the matches, here there is only one match, which is displayed on
the next line. The link is a relative link: /gmm followed by some parameters that are useful
for tracking the promotion.

We could easily refine this code to extract, and even download, the Google Maps software.

1.
2.

3.

4.

Testing Techniques for Markup Applications  27

3.2.3	 Combining XML With Regular Expressions
Both WML and xHTML return XML documents; therefore we can use XML processing tech-
niques to locate content of interest. The following example demonstrates how to use standard xml
Python modules to match a string or even a regular expression and return the link if it exists.

import re
import sys
from xml.dom import minidom

def getLinkFromXhtml(content, text_regex):
 “””getLink returns the href link for a given text_label.

 Args:
 content: the source content e.g., an xHTML response.
 text_regex: the text to match as a regluar experession.
 Returns:
 The href if the test is found, else None.
 “””

 doc = minidom.parseString(content)
 links = doc.getElementsByTagName(‘a’)

 rx = re.compile(text_regex)

 for i in links:
 if i.hasAttribute(‘href’):
 t = i.firstChild
 text = “”
 while t:
 if t.nodeType == t.TEXT_NODE:
 text += t.data
 t = t.nextSibling
 match = rx.search(text)
 if match:
 return str(i.toxml())

 return None

EXAMPLE 3.11: getlink.py.

3.2.4	 Using XPATH in Our Tests
There is a powerful free Python module called Amara that can be used to address the xml structure
using an intuitive dot addressing, e.g., html.body.div. Amara also supports XPATH expres-
sions, e.g., //div[0].

28  a practical guide to testing wireless smartphone applications

Here is an example of using Amara to test whether the Google Maps link is available. The
link is returned if Google Maps is found in the text of a link.

import re
import amara

doc = amara.parse(open(“mobile-homepage.xhtml”)) (1)

def getHrefFromXML(doc, search_regex): (2)
 ”””Returns the href link if the in search_regex is found in any
<div> tags.

 Assumes the links are in the html body’s div tags.

 Args:
 doc: an amara xml object
 search_regex: the regular expression to match in the href text

 Returns:
 the href as a string if the pattern is found, else None.
 “””
 ru1 = re.compile(search_regex)
 for item in doc.html.body.div:
 try:
 # print str(item.a.xml_children[0])
 # print type(item.a.xml_children[0]) (3)
 p = ru1.search(item.a.xml_children[0]) (4)
 if p:
 return item.a.href (5)
 except:
 pass

 return None

if __name__ == “__main__”: (6)
 print “should return: ‘u/gmm?source=m&dc=mobile-promotion’”
 print getHrefFromXML(doc, “Google Maps”) (7)

EXAMPLE 3.12: Using Amara to extract the Google Maps link.

Example 3.12 is a little more involved, but still relatively easy to follow:

Use Amara to parse the web result. In this example, the code uses a saved example of the
search results. To read the result from the web, simply replace the filename with the full
URL starting with http://
getHrefFromXML is a helper method, which we can use many times to match various
regular expressions.

1.

2.

Testing Techniques for Markup Applications  29

These two lines are commented out (using the # character). These are examples of debug-
ging the helper method and these lines are generally removed once we have debugged the
method.
By using item.a.xml_children[0] we restrict the match to one part of the XML
structure in the response.
Return the match, if found. Otherwise the helper method will return None (a Python
reserved word that we use to indicate no match was found).
This is a standard convention in Python to execute the subsequent code iff the script is be-
ing run directly (rather than as part of a library).
Test the helper function by searching for “Google Maps”.

3.3	 SUMMARY OF THE EXAMPLES IN PYTHON
These sample Python scripts have demonstrated the various ways we can process xHTML
content to:

Make a basic HTTP request.
Set the content-type to control the markup language returned by the web server.
Set the user-agent to emulate a particular phone model.
Parse the returned xHTML content to determine whether the Google Maps for Mobile
link is provided for particular phone models.

3.4	 BUILDING ON YOUR FIRST AUTOMATED SCRIPTS
We can build on these basic scripts to automate more of our mobile browser testing.

3.4.1	 Data-Driven Tests
We can make the tests “data-driven” as follows:

Define a of input parameters. Consider parameters such as:
User-agent string,
Accept header,
URL,
Input parameters,
HTTP verb (GET or POST), and
Expected results, e.g., should there be a link for ‘Google Maps’? There may be
specific variations for particular devices, e.g., different download links.

3.

4.

5.

6.

7.

•
•
•
•

•
o

o

o

o

o

o

30  a practical guide to testing wireless smartphone applications

Read these from an external source.
Return the results, e.g., as a file for later checking. Some basic checks, e.g., for the content-
type may be performed by the program.

3.4.2	O btaining Metadata to Drive Our Tests
Metadata facilitates our automated tests, e.g., user-agent strings, accept headers, etc. Data sources
include:

commercial,
WURFL,
local data, and
http://www.pycopia.net/webtools/headers (which captures the headers from the web browser
on the device you are using and can email them to you, to save copying and pasting).

Find ways to rate and weigh the data quality, as data is often incomplete, contradictory, or wrong.
You may decide it’s worth filtering and merging useful data into a common pool.

3.4.3	 Using Metadata
Once you have collected, filtered and merged your metadata it can be made available as a common
source of data for your tests (and possibly also for your production systems). Figure 3.2 illustrates a
single example of metadata for a Nokia 6230i device.

deviceFile = open(“metadata.csv”)
for line in deviceFile:
 (model, userAgent, accept, …) =
 line.split(‘,’)

Do stuff with device data…

•
•

•
•
•
•

FIGURE 3.2: Combining sources of data with an example of data for a phone.

http://www.pycopia.net/webtools/headers

Testing Techniques for Markup Applications  31

3.4.4	 Test Using Carrier Networks
Carrier networks can sometimes affect the results returned, and sometimes even corrupt the con-
tent. If you have a suitable data connection (e.g., using a GPRS modem or a phone connected as a
data modem) you should be able to run the tests over carrier networks and compare the responses
returned over each carrier. Generally we expect all the responses to be identical (for the patterns and
content we expect to receive). If differences occur, potentially, a given carrier’s network/infrastruc-
ture has modified the content. The differences should then be investigated and assessed in terms of
the impact they have on users.

Your test scripts should:

Record the carrier network used (this may be as simple as using a user-specified string,
or more complex, e.g., by querying the modem using on of the common GPRS AT com-
mands : AT+COPS? for the currently connected carrier network before running the tests);
Compare the response against a known reference page (possibly downloaded over your
wired network); and
Highlight differences, e.g., using a diff program for a user to compare the differences.
Of course you can write more sophisticated comparison algorithms to reduce the need for
people to get involved.

Note: One of the appendices includes information on how to configure a suitable data con-
nection in Linux.

Networks and data plans vary and can affect the functioning of your applications. While you
could test using an application on a phone, the problems may be hard to isolate from other issues
related to the phone(s) you are using to test. A good way to isolate carrier and data plan issues is to
run a custom test program on a computer with a wireless data modem, as Figure 3.3 shows.

•

•

•

FIGURE 3.3: Testing the carrier network.

32  a practical guide to testing wireless smartphone applications

3.4.5	 Timing the Request/Response Pair
One of the key frustrations of users for mobile wireless applications is how slow they are. Virtually
all modern programming languages offer the ability to time how long things take to happen. If you
start a timer just before making the HTTP request and stop it as soon as the HTTP response has
been received, you will have a good idea of how long the OTA part of the transaction takes. If you
choose to run similar tests for a range of carriers you can obtain a rough idea of the speed of each
carrier for your local network conditions. Note: the speed varies significantly as local conditions
change. Factors include:

The protocol used to connect (e.g., GPRS is generally much slower than 3G),
The number of active connections to the operator’s local base station,
The distance from the base station,
The physical topology,
The performance of the mobile wireless device, and
The weather.

Measuring the end-user experience is much more involved and outside the scope of the current
material.

3.4.6	 Implementing Rule-Based Tests
In our experience, certain patterns of xHTML cause problems for particular phone models. Some-
times the issue is size of the response, for others tags such as the bold tag cause the contents to be
rendered poorly, some handsets have limitations on the image formats they can handle, one phone
even makes the text larger when the tag specifies the font size should be small, etc.

The effect ranges from the page not being displayed at all to minor rendering issues.
We do not want our users to have a poor user-experience, so we want to ensure our content

will not trigger issues on their phones. At one point we created individual tests to detect whether
particular content was appropriate for a given model of phone. However, that work was time-
consuming and did not scale well. Therefore we designed and implemented a rule-based engine that
can query URLs while emulating a wide range of phone models. The responses are then checked
using rules which detect any violation of the known issues for that model of phone.

We gather issues from a variety of sources, e.g., from bug reports, server logs, manual testing,
etc; identify them (in terms of which devices are affected and when the issue occurs); quantify them
(in terms of severity, impact, likelihood, etc.); and write rules to detect the issue.

We simulate the affected devices using a mobile device database (loosely based on WURFL,
an open-source effort to collect mobile device characteristics). We make requests to a variety of

•
•
•
•
•
•

Testing Techniques for Markup Applications  33

web sites that should work for mobile devices and apply the rules to the response received. If a rule
is broken the software reports an error, i.e., if the content would cause an issue for the emulated
device.

Generally we are able to manually verify whether a bug really occurs by testing with a real
phone. This helps us to remove false positives from our system.

Our developers are then able to modify the application software to prevent the issue from
occurring. Their changes are generally also tested manually, e.g., for aesthetics and to ensure the
content renders correctly on the affected devices.

3.4.7	 Probe Servers
Sometimes we are left with a number of open questions, such as:

What are the capabilities various devices?
What content causes problems?
What is the signature of each device?

One way to obtain the answers is to create a “Probe server” that interacts with devices to obtain the
answers we need. The tests need to be unambiguous for the tester, particularly in terms of their abil-
ity to provide accurate answers. If the tester is confused on what the “correct” answer is then the tests
are likely to take longer while the quality of the data may also be compromised. Also, try to reduce
the time required for each test. I am aware of one commercial vendor that requires a tester to manu-
ally execute more than 1,000 distinct tests per device in order to identify the device's characteristics,
which take several days to execute. I don't envy their testers!

3.4.8	 Strengths and Weaknesses of Rule-Based Testing
Strengths:

Great for regression testing and for testing new applications that need to deliver content
to mobile devices.
Rules are generally relatively easy to codify, and easy to execute automatically.
Additional rules can be added to check for accessibility using internationally recognized
guidelines from the Web Content Accessibility Guidelines

	 (WCAG, http://www.w3.org/TR/WAI-WEBCONTENT/).
It can test some aspects of user experience, e.g., to detect consistency across multiple web
sites for a large companies. Potentially, CSS can be checked dynamically (as it can be af-
fected by client-side scripting, the model of web-browser, etc.).

•
•
•

•

•
•

•

http://www.w3.org/TR/WAI-WEBCONTENT/

34  a practical guide to testing wireless smartphone applications

Weaknesses:

Relies on the quality of the mobile device database, which has proven to be inaccurate.
Each issue needs to be identified, quantified and coded. The coding tends to require some
technical understanding of the underlying markup language, regular expressions and/or
XPATHs, and Java.
False positives need to be tested manually (and false negatives need to be fixed too).
Does not currently simulate user-input.
Does not test navigation, or scripting (e.g., JavaScript).

3.4.9	 A Complementary Tool to Rule-Based Tests
One way to learn about the characteristics and issues for mobile phones is to use the phone to
interact with a known set of web pages that contain various test cases, e.g., to determine which im-
ages are supported. If the web pages are interactive, then the user can provide feedback online while
executing the tests (e.g., to confirm whether an image has been displayed correctly or not). The
resulting data can then be codified into rules for that model of phone.

Furthermore, by running the rule-based checker against the test web pages the accuracy of
the rule-based checker can be verified.

3.4.10	 Is Appropriate Content Being Served?
Large, sophisticated international web sites need to deliver content that is appropriate for each user.
Factors that affect the selection of content include things like:

The device being used (e.g., an xHTML phone, an iPhone, a desktop browser) and its
capabilities to display content.
Whether scripting is supported on the client?
The location of the user (which can affect the selection of localized content and the human
language returned).
User preferences, which may override default language and content selections.

Sometimes we redirect an initial request to a more suitable user interface, e.g., from the general
search to the mobile search, based on the capabilities of the device.

Automated tests can be used to test all aspects of these requirements to varying degrees
of accuracy. For instance the device being used can be emulated quite easily using HTTP head-
ers. Implementing support in our tests to process scripting support is significantly harder. If

•
•

•
•
•

•

•
•

•

Testing Techniques for Markup Applications  35

your tests need to process scripts, consider using third-party open-source libraries such as
HtmlUnit.

Location can be inferred from data such as source IP address and other factors such as phone-
specific HTTP headers.

User preferences are often stored in cookies and cookie content can be added relatively easily
to HTTP requests. Some more sophisticated cookie strategies require more involved programming
to mimic the behavior of the way a device handles them.

3.5	 TIPS WHEN IMPLEMENTING AUTOMATED TEST SCRIPTS

Pick a simple web page that does not change, consider running a local web server to serve
test pages initially.
Use a network traffic analyzer to record the requests and responses.
Get a trustworthy HTTP protocol reference (see Appendix A for some examples).
Try to download pages from a web server that captures the HTTP headers. Access that
web server from several different mobile phones and save the captured data (see Appendix
A for an example of such a server).

3.6	 TEST TOOLS FOR BROWSER-BASED APPLICATIONS

3.6.1	 Using Web-Testing Tools
For xHTML, the content is sufficiently similar to HTML to allow us to use many of the generic
automated test tools, provided the tools offer the ability to set and read the HTTP request and
response headers.

HttpUnit and HtmlUnit enable Java developers familiar with the JUnit test framework to
create similar tests as easily as using Python (except Java does not provide an interactive develop-
ment capability). HtmlUnit is more capable and, as mentioned earlier, includes support for testing
the JavaScript scripting language.

3.6.2	 “Mobile Readiness” Tools
Various software tools and web sites provide the ability to test the “readiness” of a web site for mo-
bile wireless devices. For instance, http://ready.mobi/launch.jsp?locale=en_EN allows a web site to
be checked online in terms of readiness for mobile devices. There are other similar sites and services
available; however, this one has more of a testing focus. It implements the w3c mobileOK basic
tests http://www.w3.org/TR/mobileOK-basic10-tests/ and is able to simulate a variety of common
handsets.

•

•
•
•

http://ready.mobi/launch.jsp?locale=en_EN
http://www.w3.org/TR/mobileOK-basic10-tests/

36  a practical guide to testing wireless smartphone applications

3.6.3	 Utilities to Help With Testing Browser Applications
Browser add-ons such as: wmlbrowser, web developer, user agent switcher, and modify headers (all
for Firefox) make manual testing significantly easier. All of these add-ons can be installed directly
from Firefox from the tools menu. On Microsoft Windows the menu option is “Extensions” on
Linux it is “Add-ons.”

XML tools, such as Oxygen (http://www.oxygenxml.com/), a commercial product, reduce
the challenges of working with XML.

Firebug is a stunningly useful extension for Firefox that provides incredible analysis and
debugging tools. Features range from displaying the XPATH of an element when the mouse is
“hovered-over” page elements on an xHTML web page, to interactive debugging of JavaScript.

Another important tool for testing browser applications is a network traffic analyzer that
helps decode the requests and responses actually sent between your machine and the server, rather
than what you think or hope is being sent.

• • • •

http://www.oxygenxml.com/

37

AJAX applications have been around for several years for desktop web browsers. For instance,
many of the popular web-based email applications make extensive use of AJAX. AJAX (Asyn-
chronous JavaScript and XML) is an umbrella term for rich browser-based applications. They
run much of the UI interactions and some of the data processing within the web browser on
the client device. Smartphones, including iPhones and ones that use the Android software plat-
form, are capable of running these applications, and lots of AJAX applications have been devel-
oped specifically for these devices. More information on AJAX is available on the web, including
http://en.wikipedia.org/wiki/AJAX.

AJAX applications make extensive use of JavaScript, which repeatedly changes the content
within the phone’s web browser by manipulating the Document Object Model (DOM). The Java
Script also requests data from the web server and processes the data, e.g., incoming chat messages and
status changes for the Google Talk application (Figure 4.1). AJAX applications also make requests
and receive responses asynchronously. The data can be formatted in various ways; two popular for-
mats are XML and JavaScript Object Notation (JSON). XML was introduced in Chapter 2, JSON
is a more compact data structure — more information is freely available from http://www.json.org/.

FIGURE 4.1: Example of an AJAX mobile application: Google Talk for the iPhone.

chapter 4

AJAX Mobile Applications

http://en.wikipedia.org/wiki/AJAX
http://www.json.org/

38  a practical guide to testing wireless smartphone applications

When AJAX applications are developed for mobile devices, the priorities need to change,
e.g., animation is less important, while application size and the design of the client-server protocol
are more important owing to the constraints imposed by the device. Also connections are more
likely be intermittent, e.g., when using the device on the move, so the application may need to be
self-sufficient and be able to preserve updates made in the client application until network coverage
is available again.

Like desktop web browsers, devices such as the iPhone include a cache within the web browser
for content downloaded from servers. When web content can be stored in the cache, performance
and user-experience are significantly improved. However the cache on a mobile device is tiny in com-
parison to the cache of a desktop browser; so canny application designers will tweak their implemen-
tation and experiment with actual devices to find ways to maximize the use of the cache. A useful
article on the topic is available online (http://yuiblog.com/blog/2008/02/06/iphone-cacheability/).

AJAX toolkits such as Google’s Web Toolkit (GWT) provide image-bundles that combine
several small, similarly sized images into a single file (see Figure 4.2 for an example from Google
Tasks) and programmatically show the correct picture.

The image-bundle from Google Tasks is only 1.4 KB so fits comfortably into the iPhone’s
browser cache.

AJAX, and AJAX frameworks in particular, make extensive use of JavaScript, which can be quite
verbose (and therefore slow to download and less likely to fit in the browser’s cache). The JavaScript
can be compressed, and may also be obfuscated, which tends to reduce the size of the file. Obfuscated
code is harder to understand or debug, which can make creating automated tests more difficult.

The designers of mobile devices may provide custom features in the web browser, e.g., so
web applications can detect the device being rotated from portrait to landscape. The developer

FIGURE 4.2: Image-bundle from Google Tasks.

http://yuiblog.com/blog/2008/02/06/iphone-cacheability/

AJAX Mobile Applications  39

may choose to include conditional logic to detect and support custom features for particular de-
vices, or create specific versions of their code tailored for that device. (Currently Google Tasks
has distinct versions for iPhone, Android, and a generic less capable XHTML version for other
phones.)

4.1	 TESTING CHALLENGES FOR AJAX MOBILE
APPLICATIONS

Few mobile devices support test automation directly, and we need to be able to test rich UI interac-
tions of the application running within a web browser. The behavior of the applications is asyn-
chronous, e.g., for an email application new emails may arrive from time to time from the server
without any action by the user. The application can consist of large, compressed and obfuscated
bundles of JavaScript that pushes the browser to the limits of what is possible. And, as so often hap-
pens, there are often differences in the features, capabilities, and behaviors of the browsers between
devices.

Testing how well an application copes with intermittent network connectivity can be convo-
luted and may require an intermediate device, e.g., to intercept and modify network packets.

If desktop web browsers are used, e.g., with browser automation software such as WebDriver
(see next chapter for more information), there will be significant differences in the capabilities and
characteristics of that browser compared to the ones used in the mobile device, e.g., in terms of
performance. Also, the desktop browsers are unlikely to support or provide the custom features such
as rotation events.

4.2	 EXAMPLES OF PROBLEMS WITH MOBILE AJAX
APPLICATIONS

Mobile AJAX applications are relatively new, the support and behavior varies from one version of
a browser to another. Developers want to take advantage of mobile-specific features, e.g., screen
rotation and touch interfaces which complicate the client-side application logic. Here are some
examples of problems seen with mobile AJAX applications:

Coping with extensive DOM manipulation performed by the JavaScript. The DOM is one
representation of the content in the web browser. During our testing of a recent application
we noticed that one model of phone displayed a black box over part or all of the screen
while the DOM manipulation was happening — not very attractive for the user.
Complex DOM structures, with deeply nested structures, lacking hooks for testability (css
classes and html ids can make testing much easier and robust).

•

•

40  a practical guide to testing wireless smartphone applications

Duplicate, missing, and out-of-order content because of flaws in the asynchronous data
processing.
Applications not detecting or coping adequately with being suspended, losing the connec-
tion, etc.

Let us move on to how we can automate some of the testing for mobile AJAX devices.

• • • •

•

•

41

We should be able to automate many aspects of testing Mobile AJAX applications. We have several
options in terms of automation, including: using desktop test automation tools; using embedded
browsers; and even automating some of the more complete device emulators, such as the iPhone
emulator included in Apple’s development tools.

5.1	 USING DESKTOP BROWSER AUTOMATION TOOLS
Desktop browser automation tools have a long pedigree and there are tens of tools available, both
commercial and free-of-charge. I’ll cover two free open-source desktop browser tools: Selenium
( http://selenium.openqa.org/ ), and WebDriver ( http://code.google.com/p/webdriver/ ).

5.1.1	 Selenium
Selenium is available in several guises: your choice will depend on things like your programming
skills. Selenium includes a simple interactive development environment which can also record your
interaction with a web site. The underlying scripts are stored in HTML tables, and the language is
called Selanese. Selanese can also be installed on the same web server as the application to be tested,
this is called Selenium Core. And finally there is a client-server version which supports a range of
programming languages.

A subset of Selenium Core can be used to run on some devices, e.g., on the iPhone; how-
ever, in practice it is not very appropriate for even moderately complex AJAX applications. More
practically, Selenium RC can be used in a desktop web browser with HTTP header emulation. The
Selenium web site includes information on how to decide which version of Selenium to use.

5.1.2	 WebDriver
WebDriver is more capable and powerful and is designed to support the needs of programmers.
The primary programming language is Java, and the API enables programmers to work quickly
and efficiently in their integrated development environment (IDE), e.g., Eclipse or IntelliJ. Python
bindings are also available, and other languages may be supported in future.

chapter 5

Testing Mobile AJAX Applications

http://selenium.openqa.org/
http://code.google.com/p/webdriver/

42  A Practical Guide to Testing Wireless Smartphone Applications

WebDriver is designed so it can use a remote WebDriver “server.” They communicate using
a JSON protocol (http://code.google.com/p/webdriver/wiki/JsonWireProtocol) and a server has
been implemented that runs on an iPhone, with another expected for the Android platform. There
are some limitations when using these “on-device” servers, e.g., they may share the communications
channel (3G or WiFi), they use a webview component� rather than the main web browser, and cur-
rently only a subset of the features are supported. However, they show promise, and as all the code
is freely available to modify without charge people can tailor the code to suit their test automation
needs, with the option to contribute their work back into the open-source community.

WebDriver and Selenium are going to be integrated. WebDriver overcomes several limi-
tations caused by Selenium’s implementation as JavaScript running the browser; and WebDriver
provides a cleaner programming API which helps to reduce the size of the tests. In turn, Selenium
supports more web browsers and platforms, so it extends the range of WebDriver to otherwise un-
supported combinations of browser and platform — albeit with some technical limitations.

I would recommend using WebDriver unless you have a compelling need to run the tests on
an unsupported platform, e.g., in the Safari web browser, or using an unsupported programming
language e.g., Visual Basic.

5.1.3	 Customizing Desktop Web Browsers
For mobile AJAX applications we can combine these desktop web browser automation tools to send
custom HTTP headers, e.g., for the user-agent string.

Safari includes support for custom user-agent strings directly from the developer menu.
Firefox has an add-in available which provides similar functionality.
Microsoft’s Internet Explorer’s user-agent can be customized using registry settings, see
http://www.pctools.com/guides/registry/detail/799/.

5.1.4	 Limitations of Using Desktop Web Browsers
While desktop web browsers are incredibly useful to automate testing of mobile AJAX applications,
they behave differently from the mobile browsers and inherently some important factors we want to
test remain elusive or impractical to test.

The browser on a mobile device tends to use a fixed area covering most of the screen, al-
though the iPhone offers a “full-screen” mode (available with version 2.1 of the iPhone software,
http://ajaxian.com/archives/iphone-full-screen-webapps). On-screen keyboards appear within the
fixed area when the user wants to input text, and disappears afterwards. Mobile phone web brows-

� See the section on using an embedded browser for more details of the iPhone’s webview component.

•
•
•

http://code.google.com/p/webdriver/wiki/JsonWireProtocol
http://www.pctools.com/guides/registry/detail/799/
http://ajaxian.com/archives/iphone-full-screen-webapps

Testing Mobile AJAX Applications  43

ers do not support (much) UI customization so programmers learn how to design their application
so it “fits” the limited screen area exactly. Desktop browsers, in contrast, can be resized and support
customization and extensions so that the screen dimensions vary significantly. While each desktop
browser can be sized to roughly match the dimensions of a device’s browser, it is hard to control the
browser’s settings programmatically.

Also, differences in how the browsers lay out and render content means the UI of an appli-
cation in a desktop browser differs significantly from the layout on the actual device. Testing the
appearance of the application is therefore hard to do and the results may be unreliable.

The performance of a desktop computer, and therefore also the browser, is vastly different
from that offered by a mobile device, e.g., in terms of the number of HTTP requests the browser
sends in parallel, and the page caching (covered earlier). In short, do not rely on timings measured
using desktop computers and web browsers when trying to test your application.

Sometimes the mobile browser uses JavaScript features which are missing from the main-
stream web browsers. Some features are custom to a device [e.g., the rotation events on an iPhone],
while others will be supported [e.g., querySelectorAll()] but are not available yet [e.g.,
Firefox 3.0 does not include it, version 3.5 will]. I noticed this when writing tests for Google Tasks
when I changed the user-agent from an older version to emulating a 2.2.1 device and the application

FIGURE 5.1:  Firebug reports a missing JavaScript method.

44  A Practical Guide to Testing Wireless Smartphone Applications

stopped running in Firefox 3.0. Thankfully, Firebug quickly enabled us to identify the problem, as
the following figure shows (Figure 5.1).

There are several workarounds, including: upgrading the browser to one that does support
the JavaScript method, limiting our set of user-agents to those that do not cause the application to
use the newer methods, or for the ambitious — implementing and injecting the missing JavaScript
methods. Note: Google Tasks includes a version of querySelectorAll within the page when
serving older iPhone browsers.

5.2	 USING AN EMBEDDED BROWSER
High-end devices, such as the iPhone, may include an embedded web browser component (for the
iPhone it is called UIWebView). Software can be written to use these embedded browser s for test
automation. Here are some suggestions on how they can be used:

To test the latency and general behavior of a browser-based application on actual devices.
As they run on actual devices they rely on the underlying capabilities and performance of
the device and the network. An experimental iPhoneDriver has been added to WebDriver
in January 2009 which allows WebDriver test scripts to use an iPhone to execute requests.
Create a “client” or “server” application that interacts with remote software, e.g., a client
can receive instructions such as a URL, then execute that URL and record the results (e.g.,
the time taken and whether the URL returned valid results). A server could be driven by a
test automation client to extend the reach of the test automation tool.

5.3	 Using Simulators
Simulators are available for many of the high-end devices, often as part of a development toolkit.
These can be used to make manual testing easier and provide a way to do testing when devices are
not available. In theory the simulator could be automated using desktop application automation tools
that operate at the Graphical User Interface (GUI) level. I would not recommend automation of
simulators as a general solution unless the simulator provides good support for test automation.
Otherwise the effort is likely to be substantial, and testing with actual devices will provide more
faithful and complete results.

5.4	 General Tips
The development team can make testing much easier and more robust by adding custom, unique
identifiers for key elements (e.g., for a search box), which makes the test scripts much easier to write
and reduces the likelihood of your tests breaking each time the code is updated. The identifiers are
implemented using the ID attribute in HTML.

•

•

Testing Mobile AJAX Applications  45

Neither Selenium nor WebDriver provide a way to directly detect activities or actions in the
AJAX application. Therefore our automated tests have to rely on polling the web browser in order
to determine when the UI has changed.

“Note also that the purpose of the automated testing is to increase confidence that the
application works as expected; even if the emulation isn’t perfect, it means that there’s
less manual testing required, which can only be a Good Thing.”

 — Simon Stewart, author of WebDriver, July 2008

5.4.1	 Selenium Tips for Mobile AJAX Automation
Selenium IDE is available for Firefox. Create a custom Firefox profile that includes the
user agent add-in. Add user-agent strings for the mobile device(s) you want to test. Then
record a session in the IDE to create a basic script which can be incorporated into your
automated tests.

5.4.2	 WebDriver Tips for Mobile AJAX Automation
When testing with a desktop web browser, use Firefox and the FirefoxDriver. Firefox is
easy to customize and extend, and the WebDriver interface is the most capable as a result.
In the test programmatically create a custom profile which sets sufficient HTTP headers to en-
able the browser to convince the server our requests have been sent from the device we want to
emulate. See the following code example to configure Firefox to emulate an iPhone device.

private static final String IPHONE_USER_AGENT_V1_1 =
 "Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420.1 "
 + "(KHTML; like Gecko) Version/3.0 Mobile/3B48b Safari/419.3";

 /**
 * Returns the WebDriver instance with settings to emulate an iPhone V1.1
 */
 public static WebDriver createWebDriverForIPhoneV1_1() {

 FirefoxProfile profile = new FirefoxProfile();

 // blank headers that would otherwise confuse the web server.
 profile.setPreference("general.appversion.override", "");
 profile.setPreference("general.description.override", "");
 profile.setPreference("general.platform.override", "");
 profile.setPreference("general.vendor.override", "");

•

•

•

46  A Practical Guide to Testing Wireless Smartphone Applications

 profile.setPreference("general.vendorsub.override", "");

 profile.setPreference("general.appname.override", "iPhone");
 profile.setPreference(
 "general.useragent.override", IPHONE_USER_AGENT_V1_1);

 WebDriver webDriver = new FirefoxDriver(profile);
 return webDriver;
 }

We can also include extra Firefox extensions, e.g., Firebug when creating the FirefoxPro-
file, which may help when debugging our automated test.

• • • •

•

47

Client applications are installed onto mobile wireless devices such as mobile phones. They are able
to provide users with more functionality, better integration, and better performance than browser
applications. Client applications may be written in a portable programming language (e.g., J2ME
or FlashLite) or written as native code (e.g., Symbian C++ for Nokia phones).

Client applications can be divided into two categories: portable applications and native ap-
plications. Portable applications run in (or on) a virtual machine, such as the Java Virtual Machine.
Native applications are written to run directly on particular architecture or platform of the target
devices; for instance Nokia’s Series 60 3rd edition platform.

Portable applications are written to run on an idealized platform, which should provide a
consistent environment regardless of the actual details of the physical device. They are therefore less
likely to have access to the latest and greatest features offered by a particular device. However, one
application should run, essentially unchanged, on hundreds of different devices and models.

Native applications, in contrast, do have access to specific features provided by a physical
device, and have access to things like the underlying file system, the contacts list, etc. They tend to
run faster, but distinct, custom versions of an application need to be written to suit different target
platforms. A target platform may be broad or narrow depending on the amount of integration with
particular features provided by the devices. For instance, a target platform for Nokia phones could
be “Series 60” that covers around 50 models, or subdivided into “Series 60 1st edition,” “Series 60
2nd edition,” and “Series 60 3rd edition” depending on whether the software needs to use specific
features offered by later versions of the handset models.

6.1	 PORTABLE APPLICATIONS
Sun was one of the first companies to try to provide a standard platform across many mobile devices
where a program written and compiled for that platform can be installed on any of those devices.
Sun’s platform is known as Java Micro Edition (Java ME). Until recently Java ME was called Java
2 Micro Edition (J2ME), which is still the more common term for the platform and programming
language.

chapter 6

Client Applications

48  a practical guide to testing wireless smartphone applications

Subsequently, there have been several other “portable” platforms for mobile devices including:

FlashLite (from Adobe),
JavaFX (from Sun), and
SilverLight (from Microsoft).

I will limit my discussion to Java ME as I have no experience of automated testing for the other
platforms.

Although Java ME is intended to be a common, consistent platform, in practice many of the
features were optional and manufacturers did not implement all of them, and some features were
implemented partially. Many features are documented through Java Specification Requests (JSRs),
e.g., JSR75 for access to the file system.

The software is bundled as a JAR file, together with a JAD file that describes the JAR file,
e.g., the file size and the names of the main class. In practice a JAR file’s internal structure is similar
to a zip file and can be opened with the same software utilities.

Java ME is a reduced version of Java (standard edition). Java ME lacks some of the features
of Java for development and debugging. For example, many devices offer only limited stack traces,
and custom class-loaders are not available.

6.2	 NATIVE APPLICATIONS
Native applications can take advantage of all the features offered by particular phone models, e.g.,
with very well integrated user interfaces, access to contacts, the camera, etc.

Native applications are often developed in C/C++ or a similar low-level programming lan-
guage. Binary Runtime Environment for Wireless (BREW) is also considered a native platform,
which is implemented on a relatively small number of devices.

6.2.1	 Developing Native Applications
The compilers and development environments are more demanding than the equivalent tools for
J2ME applications. For instance we install at least four heavyweight SDKs, an emulator, and Visual
Studio in order to build an application for Windows Mobile phones.

Some of the software tools used to build native applications are easy to incorporate into
automated builds and testing. However, others require significant effort just to run and require ad-
ditional checking after the event to find out whether something went wrong or not.

•
•
•

Client Applications  49

6.2.2	 Example Problems for Portable Applications

One UK branded Sony Ericsson W880i does not stream audio (a generic W880i does).
The application being developed had to be changed to wait for a defined period rather than
waiting to receive a finite amount of data from the device.
Access to the file system is provided through JSR75. A common J2ME application was
written to access photos from a phone’s file system. One manufacturer’s phone displayed
over 23 pairs (i.e., > 46 prompts), asking the user for permission, another asks 7 times, and
a third manufacturer’s handset thankfully simply crashed!
Users complained that an email application did not load on various phones because it was
too large. The information on the maximum JAR file size is inconsistent and unreliable so I
ended up writing a test application where we could control the size of the JAR file in order
to determine the maximum size of JAR file supported by various phone models.

6.2.3	 Example Problems for Native Applications

The expected API to allow SMS messages to be sent from the Windows Mobile version
of Google Maps for Mobile was not available on one manufacturer’s phone. The manufac-
turer provided details of an alternative API that worked once we had implemented it.
Google Maps for Mobile on a new popular phone model had extraneous text in textboxes.
The issue appeared to be related to the changes in the newer version of the phone’s operat-
ing system, which we had to account for.

6.3	 TESTING STRATEGY FOR CLIENT APPLICATIONS
Typically, testing client applications are done interactively, even when the tests are automated for
various reasons, such as:

Applications include a high percentage of UI code that needs to be verified visually.
The software and development environments are more constrained and the tools more
specialized to meet the needs of individual target platforms.
Unit testing frameworks are less well developed for automated, headless (i.e. no user inter-
face) testing.

•

•

•

•

•

•
•

•

50  a practical guide to testing wireless smartphone applications

In terms of an automation strategy for client applications, we combine automation with manual
(human) checking, particularly for on-screen rendering.

Custom test applications are a good way of learning about the key characteristics of a device
or its virtual machine environment (e.g., for Java ME). These can often run unattended and report
results directly to a server for processing and analysis.

• • • •

51

In my experience client applications are harder to automate. This is the area with the richest poten-
tial in terms of improving the quality and effectiveness of automated testing. Here are examples of
techniques I have worked with.

Automated unit tests: these are relatively well understood and commonplace for testing cli-
ent applications. The unit tests often run within the relevant simulator, e.g., Sun’s Wireless
Tool Kit’s (WTK) emulator for Java ME applications.
Code instrumentation: particularly relevant for automating tests for Java ME applications.
Custom test applications and prober applications: these are a good way to explore the capa-
bilities and quirks of actual devices, e.g., to test how access to the file-system (using JSR75)
behaves on each phone model.
Signature testing: we can create UI-less clients that behave like the full client at the net-
work interface. To the server they are essentially fully-operational clients; however, they
only contain the essential code required to perform the network I/O.
GUI-level automation: including optical character recognition (OCR) and encoding text
in image pixels. These are both described in the common techniques chapter.
Using “mock” libraries, e.g., Hammock for Java ME.

As part of our work on test automation we are working on making improvements in terms of test
automation for these applications.

7.1	 AUTOMATED UNIT TESTS
Unit test frameworks exist for most mobile development platforms. In some cases these are specific
to the mobile device platform, e.g., Symbian OS unit that works for Series 60 and UIQ devices. In
other cases there are a number of competing frameworks, e.g., for Java ME.

•

•
•

•

•

•

chapter 7

Testing Techniques for
Client Applications

52  A Practical Guide to Testing Wireless Smartphone Applications

The tests are often executed in an emulator or simulator, although some development plat-
forms allow the unit tests to be run on actual phones. Some unit tests (those without a UI com-
ponent) can generally be fully automated (e.g., using J2MEUnit for J2ME applications), where
such tests can be run using the Text-based test runner. However, in practice unit tests are often
unable to test things like the GUI layer, event handlers, or multithreading (which is why we need
other ways to automate the testing). A useful article on J2MEUnit and Eclipse is available online
(http://efforts.embedded.ufcg.edu.br/javame/?p=11).

Often the test logic needs to be embedded with the application code being tested, and can
significantly increase the size of the application. In some cases devices with limited resources may
not be even able to install or run the application.

While these tests are useful for development, as they enable individual pieces of code to be
tested, they seldom scale to system or acceptance tests.

7.1.1	 Examples of  Unit Tests
Here is a unit test, written in JUnit, for a method that encodes strings in Base64 (Base64 allows all
characters to be encoded in a safe set of 64 characters that should not be interpreted by the com-
munication channel, in this application it is used for simple user authentication).

protected void testBasicAuthForEmptyStrings() {
	 String authResult = BasicAuth.encode("", "");
	 assertEquals("EmptyStrings should result in 4 byte result", 4,
authResult.length());
}

7.1.2	 Running Unit Tests in an Emulator
There are several challenges when running unit tests in an emulator, including capturing the output
and automating exection of the tests in the emulator.

Capturing the output. Many emulators were designed to be run interactively, where displaying
the test results on a screen is sufficient. There are several forms of output, including the rendered
UI, sound, events (e.g., vibrating the “phone”), and debugging statements written to the standard
output and error consoles.

Screen capture code helps to record the rendered UI. And mapping the virtual storage card
to a specified directory on the machine being used to run the tests may enable your script to capture
the output from the tests.

Automating execution of the tests. One benefit of having automated tests is the ability to run
them often, and automatically. While most emulators can be started automatically, and include

http://efforts.embedded.ufcg.edu.br/javame/?p=11

Testing Techniques for Client Applications  53

command-line parameters to specify the test program to run, getting an emulator to quit automati-
cally after the tests have completed can be a challenge. Also, you may want the tests to run in the
background or on a machine without a GUI interface.

If you need to fully automate unit tests in such emulators you may need to devise creative
solutions like using virtual graphical terminals in order run without a GUI, screenshots to determine
when the tests have completed, and remote key entry to quit the emulator after the tests have com-
pleted.

7.2	 SYSTEM TESTING FOR iPHONE APPLICATIONS
Native applications have been available for the iPhone since the launch of v2.0 of the iPhone device
software. These applications are written in Objective C. A unit testing framework is available on
code.google.com (http://code.google.com/p/google-toolbox-for-mac/) that even supports basic UI
testing (http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting).

At Google, we also found a way to include system-level tests for native applications. Future
versions of this document may include more information. Until then please contact me directly if
you need some tips on how to get started.

7.3	 CODE INJECTION
Currently we have successfully used code injection for J2ME and Blackberry applications.

One option for test automation is to inject code to test and monitor an application. An exist-
ing application’s binary software is processed to add additional object code. The injected code may
simply be used to obtain information, e.g., statement coverage, timing data, etc., or it may include
automated tests.

Code injection is significantly more involved than unit testing or incorporating system tests
at the application level; however, it provides several unique features not available from other forms
of test automation:

Source code is not required for some forms of code injection, e.g., to add code coverage
instrumentation.
The application’s source code does not need modifying.

Injecting code requires:

The application,
The code to inject (which may be tightly coupled to the implementation details of the ap-
plication),

•

•

•
•

http://code.google.com/p/google-toolbox-for-mac/
http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting

54  A Practical Guide to Testing Wireless Smartphone Applications

A way to inject the code, and
Instructions on where and how to inject the code.

7.3.1	 Code Injection for Java ME
This section provides an overview of the injection process. The details are more involved and creat-
ing effective support libraries (to interface tests to the application being tested) may take weeks or
months of effort, although my colleagues and I are working on finding ways to simplify and reduce
the effort required.

Java ME applications conform to the MIDlet model shown in Figure 7.1 (reproduced with
permission from Stefan Haustein who coauthored MIDP Programming with J2ME, by Sams Pub-
lishing). At least one chapter, Chapter 3, is available online
(http://www.developer.com/java/j2me/article.php/1561591) if you would like to learn more about
J2ME development. A good understanding is important to perform the code injection effectively.

Java ME does not allow other software to start a MIDlet for security reasons, and it also does
not support reflection or introspection  —  both available with Java Standard or Enterprise Editions.
Also, the security model prohibits ClassLoaders to be overridden. Typically test automation tools
for Java rely on techniques such as using custom ClassLoaders or reflection, so unfortunately none
of these tools work for J2ME.

Java ME also places a number of practical constraints in terms of test automation. The soft-
ware has to run with limited resources and under the constraints of Java ME’s security model,
which prohibits shared memory and limits the application to a sandbox. Java ME software may be

•
•

loaded/paused
startApp()

active

startApp() pauseApp()

paused
destroyApp(boolean)

destroyed

destroyApp(boolean)

FIGURE 7.1:  Java ME life cycle.

http://www.developer.com/java/j2me/article.php/1561591

Testing Techniques for Client Applications  55

permitted out of the sandbox, e.g., to access the filesystem through a combination of optional JSRs
(e.g., JSR75 for filesystem access) and security permissions (e.g., a signed application may have
some restrictions lifted). Implementation of JSRs is the responsibility of whoever provides the Java
Runtime for a given device model, they choose whether to implement a JSR, how to implement it,
and how much of the JSR to implement. The provider is also hard to pin down as it tends to be a
combination of several parties including the manufacturer of the device and the network-provider.
All in all, quite a challenge to address!

Code injection for Java ME consists of several related activities:

Preparing the application so it can be instrumented effectively, e.g., by disabling optimiza-
tion and obfuscation of the byte code, and by adding debug information to the compilation
stage.
Unpacking the JAR file if we are waiting until the end of the build process to inject code
rather than doing so in parallel with building the application.
Creating support, or helper, classes (e.g., to interface with a graphics library), to add code
coverage (a related activity that also requires code injection), or to access internal data
structures.
Designing and implementing the actual tests (why we are doing all this work in the first
place!).

After any code injection the resulting application needs to be processed (in the same way that any
Java ME application has to be packaged for release), the resulting code needs to be pre-verified, and
a (new) JAD file created. Figure 7.2 provides a pictorial overview of the process.

The steps can be straightforward, but rely on a good understanding of the object code or byte
code. Often a tool or software library may be available to simplify the instrumentation process.

•

•

•

•

FIGURE 7.2:  An overview of code injection for Java ME.

56  A Practical Guide to Testing Wireless Smartphone Applications

For Java ME applications, a number of mature open-source libraries are available to instru-
ment the code, e.g., ASM (http://asm.objectweb.org/index.html).

Implementing the tests. One effective way to implement the tests is to have them run in a sepa-
rate thread within the application being tested. The tests need to be started by adding a hook into
the startApp() method, and hooks should also be added to pauseApp() and any destructors
(to clean up generally and store the test results). The tests need a way to determine the state of the
application (e.g., so they can confirm the application is on the home screen), some way to trigger
events (e.g., by inserting a key press representing the “select key”), and ways to detect whether the
expected behavior occurs (e.g., that the menu is displayed with the correct items, in order, in the
appropriate place on the screen). We created support libraries in Java to perform all of these steps.

Miscellaneous comments. The techniques work across a broad range of platforms, including
Blackberry. However, some tweaks may be required to enable the automation to work for each
platform.

Several colleagues at Google (Michele Sama and Olivier Gaillard) and I presented a talk
at GTAC in October 2008 on JInjector, a tool we developed in 2008 that significantly simpli-
fies the effort required to use code injection for J2ME applications. A video of the presentation is
available at http://www.youtube.com/watch?v=B2v5jQ9NLVg, and the code is available online at
http://code.google.com/p/jinjector/.

7.3.2	 Custom Test Applications
Custom “test” applications can be developed to test key behaviors, e.g., whether a given network
supports UDP traffic, whether a Java ME application has access to the file system, the performance
characteristics of the record store on the phone, etc. These may be developed in the same program-
ming language and development environment as the main application (e.g., in Java ME) or in a
different language (e.g., Python), depending on the skills and needs of the creator.

7.4	 PROBER CLIENTS
Prober clients are similar to custom test applications; however, they are generally written in the same
language and programming language as the main application, as they need to run on the devices.
They can also help us to learn more about the behavior and capabilities of client platforms quickly
and without needing fancy UIs, etc. They are particularly useful for Java ME applications. Examples
of the types of tests that can be implemented include:

JSR support (e.g., JSR75 for the file system and JSR135 for multimedia).
RMS performance characteristics (data storage for Java ME applications).

•
•

http://asm.objectweb.org/index.html
http://www.youtube.com/watch?v=B2v5jQ9NLVg
http://code.google.com/p/jinjector/

Testing Techniques for Client Applications  57

Memory management.
Other performance tuning.
Size of run-time for the application.

We can also test whether signing the application helps reduce the number of interactive prompts
users have to acknowledge (Java ME applications).

7.5	 SIGNATURE TESTING
Debugging issues when a client application is installed on physical devices can be very tough. For
instance we were testing an application that uses UDP to send content to the servers. The testing
was being performed remotely by manual testers who had problems getting the application to work
end-to-end; and the application still needed polish so the error messages were not ideal.

We needed a way to identify, isolate, and address the connectivity issues. We created a UI-less
client which incorporated the essential network characteristics of the full client. Our client ran on
a desktop machine, and connected using a GPRS modem to the mobile network, and then to our
servers. Our client could exercise the items identified with a tick in the following list of factors that
could prevent end-to-end communications from working:

Server application error(s)
Server configuration issues
Firewall and related components
Significant packet loss on networks or interfaces
Carrier network issues/blocking
Features supported by customer’s mobile contract, e.g., WAP only?

Other factors that can prevent end-to-end communications include:

Firmware/network operator customization on the device.
Client application bugs/configuration.
Incorrect configuration, or selection, of the network settings (known as the Access Point
Name [APN]) on each device.

Our client had the same “signature” in terms of the network behavior and helped us to test the APN
and carrier connectivity independently of requiring manual testing using the full client.

APN consists of a set of parameters to enable network connectivity for a given network op-
erator and data plan. At the time some of these network settings were hard to obtain and the avail-
able information was not always accurate.

•
•
•













•
•
•

58  A Practical Guide to Testing Wireless Smartphone Applications

On some devices users were prompted for the APN when installing the software. Other
devices asked for them when starting the application. And in some cases the devices “remembered”
the setting, which was a problem if users had not picked the correct APN at the time, especially as
sometimes there was no way to correct the mistake afterward!

7.6	 TEST TOOLS FOR CLIENT APPLICATIONS
There are at least three ways automation can help with testing client applications, including on-
device debugging, test automation for the test environment, and automated unit tests, mentioned
earlier in this chapter.

7.6.1	O n-Device Debugging
On-device debugging allows developers to control and inspect their software on real devices. Al-
though on-device debugging is not really a way to automate the testing, it can help us to find out
what is going wrong.

Some work has been done by commercial software vendors to debug software on physi-
cal phones. Companies such as SonyEricsson provide tools to enable software to be debugged on
their more powerful phones. Version 3.0 of Sun’s Software Development Kit (SDK) for Java ME
supports on-device debugging for phones that use ActiveSync; and Microsoft provides a highly-
integrated development environment for their C++ software platform that allows software to be
debugged on devices that run the Windows Mobile operating system. Android supports on-device
debugging; and as the platform is freely available as open-source code, there is plenty of scope to
create and customize the debugging tools.

7.6.2	 Test Automation of the Runtime Environment
When we are able to automate the run time environment we can control and interrogate a running
application. Ideally the test automation would include interaction with the native system events
(e.g., for keyboard and other inputs) and the ability to query the GUI layer (e.g., to read the con-
tents of a text box). Extra features could be provided to enhance our ability to test the application,
e.g., where system calls can be intercepted and modified to force certain conditions to be triggered.
In comparison, tools such as Security Innovation’s Holodeck provide these capabilities for the desk-
top and server versions of Microsoft Windows operating systems.

I am not aware of any companies providing public support for automated testing on their
devices. Instead, I know of several ad-hoc solutions that enable tests to be automatically deployed
and executed on devices.

Testing Techniques for Client Applications  59

There are a few examples where emulators include an automated test framework (ATF), for
instance Sun demonstrated an ATF for version 2.6 of the Java ME WTK at the JavaOne Confer-
ence in 2008. However, I do not think any of the automation frameworks have been made generally
available.

Typical challenges when automating tests using emulators are:

Driving the user-interface.
Interpreting screen-responses, including stitching together images for pages that require
scrolling, pattern matching where the content varies from request to requests.
Latency in the device interaction.
A lack of fidelity between the behavior of the emulator compared to actual devices.
There may be serious issues with your software, even if your tests pass on the emulator
(Figure 7.3).

7.6.3	 Emulators
Emulators are ubiquitous for client applications, and are often provided by the manufacturer or
software provider in the case of Java ME (see screenshot).

As few emulators provide support for automation. Automated testing tends to consist of
building an application where the tests are incorporated into the application and run in an emulator.
The tests (or the test framework such as J2MEUnit) report the results, which are then checked for
errors and other issues.

Characteristics of using emulators. Emulators run on a desktop computer and may be limited
to a single operating system (generally Microsoft Windows). They are easy to use interactively and

•
•

•
•

FIGURE 7.3:  Monitoring network traffic when running a client application in an emulator.

60  A Practical Guide to Testing Wireless Smartphone Applications

often faster, and slightly easier to use, than using physical devices. The performance characteristics
are very different from the actual performance of physical devices, and in our experience we have to
test performance optimizations on devices as we got misleading results when running these tests in
an emulator (Figure 7.4).

Some, such as Sun’s Java ME emulator, emulate general characteristics (e.g., color screen
and a QWERTY keyboard). Other emulators include relatively faithful representations of specific
phones (e.g., the BlackBerry development kits). However, they seldom emulate the quirks and bugs
of actual devices, which makes testing some bugs and resulting workarounds very difficult.

Emulators might run on a different platform (Windows on an x86 processor) than the target
platform (mobile operating system (OS) on ARM). The differences may invalidate tests that cross
the application boundary, such as:

For performance and benchmarking: since the code is running on a different processor, it is
difficult to estimate and instrument both CPU and memory usage; and

•

FIGURE 7.4:  An emulator.

Testing Techniques for Client Applications  61

OS/API assumptions: since the code is running within a host OS where the emulator
translates calls to the underlying OS or runtime platform. The translation makes it very
hard to detect device-specific bugs.

As mentioned earlier, emulators are seldom designed to be automated, and so require significant
effort to implement even a flawed automation. They tend to be proprietary and therefore difficult
to integrate with automated testing. Logs and data files are often hard to access, although some
vendors may provide facilities to copy files and data to and from the device.

Examples of emulators. Each handset manufacturer and/or operating system provider offers
their own, distinct approach to using emulators.

Examples of emulators for native applications:

Microsoft’s emulator emulates the ARM processor used in Windows Mobile devices. It
emulates the operating system and the application running in the emulator could also run
directly on the phone.
Nokia’s Symbian and SonyEricsson’s (UIQ) emulators do not emulate the underlying
hardware and developers need to build their applications for either the emulator or for the
physical devices.
PalmOS applications are built as 68K code (i.e. as if they would be running on the Motorola
68000 CPU series). Some speed-critical subroutines can be written as native ARM subrou-
tines. However, the emulator does not run the ARM subroutines, instead developers need to
build their subroutines as a Windows DLL or compile them for 68K to run on the emulator.

Examples of emulators for J2ME:

Sun’s WTK, which runs applications in a Java Virtual Machine. The resulting code can also
run unchanged on a phone.
There are a number of other emulators provided by handset manufacturers, including Mo-
torola and Nokia.

An open-source emulator, called MicroEmulator, exists for J2ME. It provides a “glue” layer to exe-
cute J2ME code in a J2SE environment. Other people have enhanced the source code to implement
additional JSRs. Note: As MicroEmulator actually uses J2SE libraries rather than J2ME libraries
(which are much more limited and have some behavioral differences) some classes of bugs are not
detected using this emulator.

•

•

•

•

•

•

62  A Practical Guide to Testing Wireless Smartphone Applications

Using emulators OTA. When an emulator is able to connect using the generic networking
capabilities of an operating system then we can configure the test environment so that the network
traffic goes OTA, which provides more realistic performance characteristics than using a local area
network (LAN). The data connectivity section of this material describes how to connect a computer
OTA.

After configuring and testing the OTA connection, we need to configure the computer so
little or, ideally, no other network traffic uses the OTA connection, otherwise that network traf-
fic may adversely affect the results (Figure 7.5). To reduce the traffic, try to suspend background
updates (e.g., by antivirus software, quit web browsers, shutdown all but the essential services and
utilities, etc.).

7.7	 TEST AUTOMATION USING THE BLACKBERRY
EMULATOR

The BlackBerry device simulator from Research In Motion (RIM) supports automation.
Command-line tools are used to enter commands, and to create screenshots (Figure 7.6).

Key elements include:

Fledge.exe — the simulator, which can be started from the GUI or from the command line
Fledgecontroller.exe — the input mechanism, allows various inputs to be sent to the simu-
lator, e.g., key presses
Javaloader.exe — allows screenshots to be captured and saved as bitmap images. Javaloader
uses a USB connection to grab the screenshot from a device or emulator. Therefore the
USB connection needs to be enabled for the emulator. The USB can be enabled in the
simulator’s UI, using the Simulate > “USB Cable Connected” menu option, or with a com-
mand line option: /execute=UsbCableInsertion(true)

•
•

•

Wireless
network Internet

network Web
server

GPRS modem

Host operating
system

program

network
Carrier

FIGURE 7.5:  Connecting a program in an emulator over a PPP connection. OTA.

Testing Techniques for Client Applications  63

Examples of using the tools include:

�simulator_path\simulator\fledgecontroller.exe /session=8800 /
execute=KeyPress(a)

simulator_path\bin\JavaLoader.exe -u screenshot c:\screenshot.png

7.7.1	 Summary of  Testing Techniques for Client Applications
We have a wide range of test automation techniques available, ranging from unit test frameworks to
hardcore code injection. Custom clients and prober applications can help discover issues with de-
vices or the environment quickly and effectively, rather than trying to debug these issues through the
application code. While emulators are useful, they are seldom intended as test automation tools.

• • • •

FIGURE 7.6:  Test automation using the BlackBerry emulator.

65

Some automation techniques apply for multiple classes of application. These are described in this
section.

Image stitching is used to reconstruct an image of information rendered on a physical de-
vice or on an emulator.
OCR matching.
Encoding data in pixels.
Model-Based Testing (MBT).

8.1	 GUI-LEVEL AUTOMATION
Software agents enable GUI-level automation. However, challenges (in terms of making the tests
relatively reliable) include:

The need for high contrast, opaque, block colors for backgrounds, etc., to make images
easier to match for menus, etc.
Deciding whether to use image pattern-matching or OCR.
Structuring test resources, e.g., you may need a set of images per device.

8.2	 IMAGE STITCHING
Image stitching is used to assemble a number of screenshots into a composite single image that
represents the original page. It is particularly useful when the page is too large to be displayed on a
physical phone. There are four steps involved in image stitching:

8.2.1	 Steps in Image Stitching
Step 1: Image retrieval. This is fairly straightforward. Assemble a set of screenshots of a web page by
scrolling down at the finest granularity the device allows (or, alternately, the granularity level deter-
mined through heuristics and statistical analysis). The way and amount may vary between different

•

•
•
•

•

•
•

chapter 8

Common Techniques

66  a practical guide to testing wireless smartphone applications

models or even versions of the installed software. And the scrolling may be affected by the navigable
elements in the UI (e.g., web page links) and input fields on an electronic form.

The following screenshots represent a simple example  —  the real one may involve as many as
30 screenshots to travel the same distance (Figure 8.1). We can assume at least one screenshot for
every navigable element that appears on the screen.

These four images represent the four images we will use to reconstruct the full web page. As
you can see, there are slight variations in the images: in the first image, the search button is selected;
in the second, we have moved the selection down one to the web link.

Step 2: Image alignment. Image alignment is the process of finding the correct offset of
the new image from the image that came before. An example of the alignment is provided in
Figure 8.2.

FIGURE 8.1: A set of example screenshots.

FIGURE 8.2: Aligning the screenshots.

Common Techniques  67

The alignment can be performed by brute force, trying to compare the pixels row by row be-
tween the two images. The best match is the first offset with the lowest number of differing pixels.
A maximum offset is specified, and should be no more than the height of the phone’s screen. Other
parameters are used to reduce the chance of false matches.

Step 3: Image subdivision and election. Once we have our images in their final, absolute posi-
tions, we can figure out which parts of which images we wish to stitch together into a final repre-
sentation of the page.

This is done through a kind of voting process — we perform a popularity contest for each part
of each image represented within the complete page. To do this we first figure out what the image
boundaries are — a divider is placed for the start or end of each image. Once all the dividers are in
place all of the images are tested to see whether or not they fall within a particular region; if they
do, that region is cut out of the original image, and held in an object, in memory, which tracks how
often a particular image is seen.

As you can see in Figure 8.3, the second row has a search button. The first is selected; the
second is not. In this example we have two distinct candidates and two votes, one for each. Both are
equally popular. In this case, we choose the one to appear last.

The third “row” is the more general case — the same section of image will appear multiple
times as the scrolling was recorded; one of those scroll events will represent a link or form element in
its selected state. In these cases we have multiple possible images to choose from; two, however, are
identical, so there are two distinct candidates: the middle one with one vote (the one with “web” in
blue) and one other represents both the left-hand and right-hand slices of this “row,” with two votes.
The image with two votes (i.e., without the text selection) will be elected as the best representation.

FIGURE 8.3: Slicing the images into rows.

68  a practical guide to testing wireless smartphone applications

Step 4: Image reconstruction.

Once we picked the representative images for each “row,” we can stitch them together, one after the
other, to reconstruct the final image.

While this is a trivial example, this can be scaled up and out in multiple ways — reversing
direction, supporting horizontal as well as vertical scroll, etc.

FIGURE 8.4: How the content varies across screen sizes and resolutions.

Common Techniques  69

8.2.2	 Challenges of Image Matching
In theory, matching images is relatively straightforward, especially once transparency is used. How-
ever, in practice the content validation may require lots of work to implement as the phone plat-
forms are so diverse and the conditions change frequently, possibly every time the tests are executed.
As an example, if we decide to automate the testing of an email client the captured images may vary
significantly from device model to model. Here are some screenshots of an email inbox for three
variations of phone (Figure 8.4).

8.2.3	O ptical Character Recognition
OCR has been used for years to extract text from images. OCR applications are even provided with
entry-level document scanners. Conceptually, they extract textual content from images and return
the content as text which can then be used and edited more easily than trying to do so with the
image. For mobile test automation OCR offers the potential to extract text from GUI screenshots,
amongst other things.

For automated tests OCR offers the potential to reduce the need to compare images, rather
we could compare the text, e.g., of a menu to determine whether the correct values are present.

However, based on my experiences of using several open-source and commercial OCR soft-
ware libraries the extracted text is both incomplete and wrong. The error rate seems around 40%.
Text on a mobile phone screen tends to be quite small (e.g., 8 point), possibly too small for general
purpose OCR libraries.

Currently, I cannot recommend using OCR in automated tests for mobile wireless applica-
tions. However it may be possible to train an OCR library to improve the accuracy of the rec-
ognition. I would like to use OCR once it is sufficiently accurate and trustworthy as it offers the
potential to significantly increase the reliability of the automated tests while reducing the need for
sets of screenshots per device.

8.2.4	 Encoding Data in Pixels
Most things on computers are represented in memory, including text and images. Images are en-
coded as data, which is interpreted by programs and devices when rendered. Text is also stored as
data.

Each character of ASCII text can be stored in 8 bits of data. A common notation of 8 bit data
is a hexadecimal code in the form 0xnn where nn represent two hexadecimal characters in the range
0–9, A–F. The ASCII character codes for common characters are consistent and well documented,
e.g., the letter capital “A” is represented as 0x41 in hexadecimal, while lowercase ‘a’ is represented
as 0x61.

70  a practical guide to testing wireless smartphone applications

Each digit of hexadecimal represents a “nibble” of computer memory — 4 bits of data.

Hex 0 1 2 3 4 5 6 7

Binary coding 0000 0001 0010 0011 0100 0101 0110 0111

Hex 8 9 A B C D E F

Binary coding 1000 1001 1010 1011 1100 1101 1110 1111

Conceptually the letter “A,” therefore, is represented in memory with 01000001; and the
letter “a” with 01100001. The essential difference between lowercase and uppercase letters is that
the 3rd bit from the left is set to 1 for lowercase letters and 0 for uppercase letters.

Based in this encoding, the text “Help” would be represented as follows:

First in hexadecimal characters: 0x48 0x65 0x6C 0x70
And in binary: 01001000 01100101 01101100 0111000

(The underlying computer architecture may actually store the information in a different or-
der, which is one thing we need to check for later on in this test technique).
Now let us consider how images are stored on a computer or phone. Typically, each pixel (the small-
est dot on the screen) is encoded using 32 bits as follows:

Value Transparency Red Green Blue

Range 0 to 0xFF 0 to 0xFF 0 to 0xFF 0 to 0xFF

Effectively, a pair of hexadecimal characters represents each value. A solid white pixel would
be represented as:

0xFF 0xFF 0xFF 0xFF in hexadecimal
or 11111111 11111111 11111111 11111111 in binary

Here is where we can take advantage of how pixels are encoded to encode text within pixels.

For instance the string “Help” could be encoded in a single pixel! The color would be a mucky gray
(since the character values are relatively similar). However, if we are able to detect the “hidden” char-
acters (e.g., by agreeing which pixel(s) they will be encoded in), then our automated tests can easily
and reliably extract the text, rather than relying on image matching or OCR.

Common Techniques  71

We can build on this technique to pass the text contents of menus and other text displayed on
screen and even other data such as status codes, all within a few pixels on screen.

The following figure demonstrates the concepts of providing the text “Julian” within a few
pixels at the top left of a screen. In this case, I have used artistic license by using a few green pixels
to brighten up an otherwise dull series of gray pixels.

Tips and traps. As I have already mentioned, the computer may actually store text and/or
images slightly differently based on the underlying hardware, for instance. Your code may need to
change the order of data, either when it is written as pixels or when the pixels are extracted from
the image of the screenshot.

Some devices may support different “color-depths” — the number of bits used to represent
each color, e.g., modern desktop computers may use between 16 and 64 bits to represent each color.
Also, characters may be represented in a variety of formats including various Unicode formats.
There are various ways to address these issues, e.g.:

Write a signature sequence at the start of the set of encoded pixels. When the signature is
decoded, the code used to read the signature can pick the appropriate formula, or pattern,
to use when matching the main encoded data.
Repeat the data several times within each pixel and discard duplicates when reading the
image.

Some devices may use color pallets (a sort of lookup table) to match colors to pixels. These lookup
tables may limit the number of characters we can safely and reliably encode in a pixel. Furthermore,
intermediate programs such as VNC Viewers and the GUI interface of the computer receiving the

•

•

72  a practical guide to testing wireless smartphone applications

image may all reduce the fidelity of the encoded data. I suggest you create some tests to determine
whether this is an issue for you in practice.

Web-safe GIF images are an example of how a limited pallet is used to represent colors across
a broad range of web browsers.

In summary:

We can incorporate text data in image data,
The text is rendered as seemingly “random” pixels,
The text can be reconstructed from image data,
Test code can process and match reconstructed text, and
The encoding may need to include error-detection and error-correction to compensate for
palette tables, both on the device, and in each intermediate dynamic image.

8.2.5	 Making Image Matching Easier
Here are a number of tips and techniques that may help to make image matching easier for your
automated tests.

Automate screenshots so a distinct screenshot is captured after each controlled in-
put (some inputs such as network errors may be outside your direct control). For exam-
ple, after every key event a script could take and store a screenshot, and store it with a
monotonically incrementing filename (the first file is called image1, the second image2,
etc).
Find, adopt, or even create good, efficient image processing tools to reduce the burden of
editing, cropping, and otherwise manipulating images.
Store the images for each distinct model of device in a separate file directory. The name of
the directory can include the name of the device, e.g., /nokia6230i. If you need to capture
separate images for sub-models or custom firmware (e.g., when the device is provided by
a particular network operator), then include enough information in the directory name to
identify the specific nature of the device.

Autogeneration of images. With a small helper application you may be able to autogenerate images
for known text on a given device. Conceptually the application would “echo” each input charac-
ter on screen. The screenshot can be captured automatically in the controlling program and pro-
cessed to extract the image that represents the characters to match when testing the application
we need to test. The controlling program would need to specify the font-face (e.g., Arial, Courier

•
•
•
•
•

•

•

•

Common Techniques  73

New), the style (e.g., bold, italic), and the font size (e.g., 8 point) to enable the correct image to be
generated.

8.2.6	 Using Advanced Image Matching Techniques
Image matching is an active field of research and practice, e.g., for automatically matching faces on
photographs, matching iris scans for biometric security, etc. I suspect some of the concepts used for
image matching in general may help to improve the efficacy and reliability of matching screenshots
from mobile wireless applications.

8.2.7	 Detecting Good and Bad Results
Another challenge is to recognize whether the results are good, or problematic, purely from the
screenshots. The following figure includes two screenshots from a mapping application. Can we tell
from either screenshot in Figure 8.5 whether something is wrong?

FIGURE 8.5: Is there a problem in either of these images?

74  a practical guide to testing wireless smartphone applications

For these two screenshots, Screen A is displayed while waiting for content to be downloaded
and rendered. Here we may want our script to wait before capturing another screenshot, by which
time the content may have been loaded correctly. Screen B includes red X’s that are only displayed
when a problem has occurred.

8.3	 CONTACT SHEETS
One technique which has generated good results is to combine automated “user” input with manual
verification of the resulting on-screen content. Events such as key-presses are automatically gener-
ated, and after a certain period screenshots are taken and stored for later comparison. The screenshots
can be laid out as “contact sheets.” Contact sheets provide a multicolumn format of rows of small
images that can be used to quickly spot possible anomalies ready for more detailed investigation.

8.3.1	 Using Transparency Masking
In order to increase the reliability of the tests, intermediate screens are matched with reference
screenshots. The reference screenshots generally contain areas that do not need to be matched (for
instance, where the content changes frequently and is not germane to our tests).

FIGURE 8.6: Using transparency to ignore unnecessary sections.

Common Techniques  75

An example of something we often want to ignore is the time of day displayed on some phone
screens. The term for marking the areas to ignore is called transparency masking (Figure 8.6). See
Figure 8.7 for a simple example of a BlackBerry home screen.

Here we mask: the time, the date, all but 2 bars of the signal strength indicator, the connec-
tion type, and most of the battery strength. We want to fail the match if the signal strength is very
low or the battery is fully discharged.

FIGURE 8.7: Transparency masking of an image.

Best of both worlds
human-assisted automation...

Step Step Check Check

Take screenshot

No? No?

Create 'contact-
sheets'

FIGURE 8.8: Assisting test automation with human decision making.

76  a practical guide to testing wireless smartphone applications

By matching the screens it is also easier to reset the device to a known state (e.g., back to the idle
screen) at the end of various tests.

8.3.2	 Combining Automation With Human Judgment
Until we can reliably automate all aspects of our application tests, we can take advantage of the
strengths of automated test scripts, which run lots of tests automatically and unattended, with
the pattern matching skills of humans who can typically interpret images quickly and effectively
(Figure 8.8).

8.4	 Model Based Testing
Model Based Testing (MBT) is already used to test other software domains such as web sites,
desktop applications, etc. It helps to automate longer-running automated tests, where the test
software interacts with the software being tested and compares the actual behavior of the soft-
ware being tested with the expected behavior contained in a programmed model of the desired
behavior.

We have used MBT techniques to test a number of mobile wireless applications, including a
search engine and client applications.

When testing a search engine, the test engine can be implemented in a very similar fashion to
implementing model-based tests for web applications. The key differences involve:

Manipulating and checking the HTTP headers in the requests and responses, and
Dealing with a number of markup languages.

When testing client applications we decided to implement the model as a separate program that ran
on a distinct computer, rather than on the client because the client application is already constrained
by resource limitations (Figure 8.9).

•
•

FIGURE 8.9: Using a separate controller for MBT.

Common Techniques  77

The executable model interrogated the server for appropriate state, context, and data and
interacted with the client application through a small software module that was incorporated into
the client application. The executable model and the client module communicated OTA using
proprietary messages, created specifically for the application being tested. The data structures used
common formats used elsewhere on the project.

• • • •

79

During my many years of working with software I have heard and read numerous arguments for the
benefits of automated testing. I agree with the goals and ambitions of automating as much testing
as practical. However, I believe good software testers can often generate better results with manual
testing, particularly when we use a hybrid approach that builds on the relative strengths of humans
and automated tests. Also, I have lived through numerous projects where the automated testing
lagged behind the software we wanted to test, and where — sadly — the automated tests ended up
being a waste of time and energy, not having exposed a single issue.

Before I provide some examples where manual testing makes sense, here are some of my
maxims for measuring the effectiveness of testing:

What do we learn from the results of the testing? I am looking for things like bugs found,
bugs prevented, increased and justified confidence in the system under test, etc.
How much time was invested in creating and running the tests? The time should be di-
vided into several chunks: the time required to run the first set of useful tests, and the time
required for each subsequent deliverable, e.g., for each new release of the software being
tested, or for each new release of automated tests.
What problems did our tests miss? What questions remain unanswered?

9.1	 EXAMPLES OF EFFECTIVE MANUAL TESTING

UI and rendering problems can often be noticed immediately by a person. Common prob-
lems we can spot easily are alignment issues, flickering, etc.
When the UI is changing frequently, test scripts tend to break and need repairing, requiring
lots of work. However, if the development team is supportive of automated testing, they
can help reduce the effort required to maintain and update automated tests, e.g., by using
consistent labels for key elements.
When content is dynamic and hard to predict. I wrote an article about using weighting to
improve the accuracy of (automated) tests, which may provide some suggestions on how to

•

•

•

•

•

•

chapter 9

When to Test Manually

80  a practical guide to testing wireless smartphone applications

automate tests in these circumstances
	 (see http://www.stickyminds.com/s.asp?F=S11983_COL_2).

When the cost of automating is likely to significantly exceed the costs of manual testing.
However I would encourage you to consider scripting languages such as Python or Ruby
and create some simple automated tests, e.g., to reproduce existing reported issues, which
could be used to speed up regression testing.

9.2	 COMPUTER-ASSISTED TESTING FOR MOBILE
WIRELESS APPLICATIONS

I have had excellent results when I have found ways to augment my testing with automation. Here
are a few examples to get you started:

Automating setup and other preparation (see Jonathan Kohl’s Man and Machine article for
some useful ideas and tips, http://www.stickyminds.com/s.asp?F=S13122_MAGAZINE_2);
Message generation, and test bots, which reduce the workload on the tester; and
Contact sheets (as mentioned in the chapter on Common Techniques).

9.3	 TESTABILITY FOR AUTOMATED TESTING
The design and implementation of the mobile wireless application can have significant effect on
how easy the testing is to automate. In the worst case, automation may be impractical, e.g., if the
data structures and names change dynamically, have cryptic identifiers, and where the software is a
poorly defined blob of code.

When applications are designed to make automated testing easy, the automation code is
simpler, faster to implement, and more likely to be accurate and robust.

The following article provides an interesting view on how to implement an API to
increase the testability and is focused on Windows Mobile applications at the time of writing:
http://www.jamosolutions.com/documents/Automation%20deployment%20-%20best%20practise.pdf.

9.4	 HOW TO IMPROVE TESTABILITY
Here are some tips on how to improve testability for each class of mobile wireless application.

9.4.1	 Browser-Based Applications
Add ID tags to the main elements the automated tests will interact with. Make the names
understandable and keep them consistent across releases.

•

•

•
•

•

http://www.stickyminds.com/s.asp?F=S11983_COL_2
http://www.stickyminds.com/s.asp?F=S13122_MAGAZINE_2
http://www.jamosolutions.com/documents/Automation%20deployment%20-%20best%20practise.pdf

When to Test Manually  81

9.4.2	 Client Applications
Consider using high-contrast colors, visual markers, and even pixel-encoding to make
GUI-based automation more reliable.

9.4.3	 SMS Applications
Provide a scriptable library or interface (e.g., available from Python) to make tests easier
to create.

9.4.4	 General
Provide a complete API to enable the test automation code to test “below” (without) the
GUI.
In programming languages such as Java consider making methods and data protected.
Consider using an xUnit structure for the test cases. The development team is likely to
already use a unit-testing framework such as JUnit for Java, PyUnit for Python, etc. If the
larger tests use the same unit-test layout then the developers are more likely to write and
maintain the automated system tests, etc.

• • • •

•

•

•

•
•

83

This book covers some of the basic approaches to test automation for mobile wireless devices.
As mentioned in the introduction, some additional topics are available online in draft form at
http://sites.google.com/site/mobilewirelesstestautomation/draft-material-on-mobile-wireless. At the
time of writing. these include:

SMS applications, including testing techniques,
How to test applications that use WiFi connections,
Common tools,
Test automation for Android applications,
Measuring end-to-end performance, and
Running more tests on the devices.

There is a lot more to do! Your contributions and involvement can help us collectively to improve
test automation for mobile wireless applications.

What would you like to do next?
To be continued . . .

• • • •

•
•
•
•
•
•

chapter 1 0

Future Work

http://sites.google.com/site/mobilewirelesstestautomation/draft-material-on-mobile-wireless

85

I hope you will find these references useful. I appreciate your comments and recommendations
too.

Here are some online resources related to this book:
Blog: http://mobilewirelesstestautomation.blogspot.com/
Site: http://sites.google.com/site/mobilewirelesstestautomation/

A.1	 TESTING MARKUP (WEB SITES)
http://ready.mobi/launch.jsp?locale=en_EN — Online checker that allows a web site to be checked

in terms of readiness for mobile devices. Simple, but quite useful. There are other similar
sites and services available; however this one has more of a testing focus. It implements the
w3c mobileOK basic tests (http://www.w3.org/TR/mobileOK-basic10-tests/). The w3c
have recently launched a beta version of an online checker

	 http://validator.w3.org/mobile/ and http://validator.w3.org/mobile/alpha.
http://www.cameronmoll.com/mobile and http://www.cameronmoll.com/mobile/mkp/ — Include

test pages to try with your xHTML phone browser.
http://dev.mobi/node/472 — Sample code a web site might use to detect whether a request is from

a mobile device or not.
http://www.w3.org/2005/MWI/BPWG/ — Links to an open-source implementation of the mo

bileOK basic tests (written in Java).
http://www.tagjam.com/headers.php — Displays the HTTP headers, good for obtaining headers

such as user-agent for our tests.
http://www.developershome.com/wap/detection/ — A useful introduction to the nitty–gritty de-

tails of HTTP headers for WAP and xHTML detection.
http://www.zytrax.com/tech/web/mobile_ids.html — A discussion about user-agent strings for

various mobile phones, with lots of examples.
http://www.ericgiguere.com/articles/masquerading-your-browser.html — A very readable article on

user-agent strings, how to change them in various desktop browsers, etc. The site includes
various ways to view the user-agent sent by your web browser.

A ppendix A

Links and References

http://mobilewirelesstestautomation.blogspot.com/
http://sites.google.com/site/mobilewirelesstestautomation/
http://ready.mobi/launch.jsp?locale=en_EN
http://www.w3.org/TR/mobileOK-basic10-tests/
http://validator.w3.org/mobile/
http://validator.w3.org/mobile/alpha
http://www.cameronmoll.com/mobile
http://www.cameronmoll.com/mobile/mkp/
http://dev.mobi/node/472
http://www.w3.org/2005/MWI/BPWG/
http://www.tagjam.com/headers.php
http://www.developershome.com/wap/detection/
http://www.zytrax.com/tech/web/mobile_ids.html
http://www.ericgiguere.com/articles/masquerading-your-browser.html

86  a practical guide to testing wireless smartphone applications

http://www.pctools.com/guides/registry/detail/799/ — Details of how to customize the user-agent
string sent by Microsoft’s Internet Explorer.

http://uche.ogbuji.net/tech/4suite/amara/ — The Amara Python module, used to parse xml such as
xHTML and WML responses from web sites.

http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html — Last updated in 1994(!) docu-
ments common HTTP request headers including User-Agent and Accept.

http://tuxmobil.org/phones_linux_wap.html — Summary of software suitable for WAP/WML and
iMode/cHTML. The site has links on how to setup Linux with various mobile wireless
devices, however a number of links are broken.

http://www.diveintopython.org/http_web_services/user_agent.html — Part of a great free resource
on Python, this section describes how to set the user-agent string for HTTP requests.

http://www.crummy.com/software/BeautifulSoup/#Download — A very useful Python library to
prettify web pages.

http://www.zvon.org/xxl/XPathTutorial/General/examples.html

A.2	 J2ME TESTING
http://code.google.com/p/jinjector/ — JInjector project homepage.
http://j2meunit.sourceforge.net/ — J2ME unit itself.
http://www.wikistudent.ws/hammingweight/modules/hammock/ — Homepage for Java ME mock

objects representing common libraries. The source code is avialable at:
	 http://hammockmocks.sourceforge.net/
http://kobjects.sourceforge.net/me4se/ — Open-source project that provides the Java ME APIs

in J2SE. See also http://midpath.thenesis.org/bin/view/Main/ for an implementation of
MIDP that works with J2SE.

http://blog.emptyway.com/2007/04/05/comparison-of-java-me-unit-testing-frameworks/ — In-
teresting comparison + good comments from readers.

http://java.sun.com/products/j2mewtoolkit/ — Wireless ToolKit download link. Sun’s toolkit for
J2ME development that includes their emulator.

http://www.microemu.org/unittests.html — How to use the open-source MicroEmulator to auto-
matically run unit tests for J2ME client applications. A worked example would be useful.

http://code.google.com/p/testingemulator/ — Is an enhancement to the MicroEmulator and im-
plements support for additional JSRs.

http://pyx4me.com/snapshot/pyx4me/pyx4me-cldcunit/ — CLDC Unit test framework, untried by me.
http://developers.sun.com/mobility/midp/articles/test/ — Fair article on using J2SE, lacks techni-

cal depth but written with a testing mindset.

http://www.pctools.com/guides/registry/detail/799/
http://uche.ogbuji.net/tech/4suite/amara/
http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html
http://tuxmobil.org/phones_linux_wap.html
http://www.diveintopython.org/http_web_services/user_agent.html
http://www.crummy.com/software/BeautifulSoup/#Download
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://code.google.com/p/jinjector/
http://j2meunit.sourceforge.net/
http://www.wikistudent.ws/hammingweight/modules/hammock/
http://hammockmocks.sourceforge.net/
http://kobjects.sourceforge.net/me4se/
http://midpath.thenesis.org/bin/view/Main/
http://blog.emptyway.com/2007/04/05/comparison-of-java-me-unit-testing-frameworks/
http://java.sun.com/products/j2mewtoolkit/
http://www.microemu.org/unittests.html
http://code.google.com/p/testingemulator/
http://pyx4me.com/snapshot/pyx4me/pyx4me-cldcunit/
http://developers.sun.com/mobility/midp/articles/test/

Links and references  87

http://www.devx.com/wireless/Article/32540 — Worked examples of using J2MEUnit and JMEUnit
testing frameworks.

http://weblogs.java.net/blog/alexeyp/ — An interesting blog by a Sun insider who writes about ways
to improve the testing of J2ME software.

http://developers.sun.com/mobility/allsoftware/ — Sun’s list of tools and emulators from various
third party suppliers.

BlackBerry have several online articles, including:

How To — Automate testing with the BlackBerry Simulator Article Number: DB-00531.
How To — Use Javaloader to take a screen shot Article Number: DB-00484

I do not have a persistent link for them but search engines find them.
http://www.robotme.org/files/AutomatedGUITestingOfMobileJavaApplications.pdf — Masters

thesis (also available in a similar form from Springer-Verlag to purchase) on how to auto-
mate the integrations testing of J2ME applications.

http://cobertura4j2me.org/ — Open source code coverage tool for Java ME software.
http://www.sic-software.com/artikel/schulten_testen.pdf — An article, in German, on J2ME test

automation.

A.3	 JAVA BYTE CODE INSTRUMENTATION
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/ — A useful introduction to

Java bytecode.
http://en.wikipedia.org/wiki/Java_byte_code — A brief example of Java bytecode, including a sum-

mary of each bytecode.
http://asm.objectweb.org/index.html — ASM bytecode framework, useful for implementing byte-

code instrumentation.

A.4	 NATIVE APPLICATION TESTING
http://www.symbianosunit.co.uk/ — Unit testing framework for Symbian phones.

A.5	 TEST AUTOMATION WITH EMULATORS
http://www.perftestplus.com/resources/EA.pdf — A useful article on test automation using emula-

tors. While the tools and emulators are old (circa 2001) the concepts and examples are rel-
evant. Here is a related set of slides: http://www.perftestplus.com/resources/EA_ppt.pdf

•
•

http://www.devx.com/wireless/Article/32540
http://weblogs.java.net/blog/alexeyp/
http://developers.sun.com/mobility/allsoftware/
http://www.robotme.org/files/AutomatedGUITestingOfMobileJavaApplications.pdf
http://cobertura4j2me.org/
http://www.sic-software.com/artikel/schulten_testen.pdf
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/
http://en.wikipedia.org/wiki/Java_byte_code
http://asm.objectweb.org/index.html
http://www.symbianosunit.co.uk/
http://www.perftestplus.com/resources/EA.pdf
http://www.perftestplus.com/resources/EA_ppt.pdf

88  a practical guide to testing wireless smartphone applications

A.6	 SMS SERVICES
http://linux.softpedia.com/get/Communications/Telephony/SMS-Server-Tools-5735.shtml — 

Open source SMS tool, uses a GPRS modem to send and receive the messages.

A.7	 CONNECTIVITY
How to connect your computer to the Mobile Wireless network(s).
http://umtsmon.sourceforge.net/ — A very useful Linux package that configures and connects to

the Wireless network over a variety of carriers and data cards (modems). Seems to work well
for T-Mobile in particular.

http://www.ibm.com/developerworks/library/wi-enable.html — Includes WiFi, Bluetooth, and GPRS
connectivity in Linux.

A.8	 MISCELLANEOUS LINKS
http://en.wikipedia.org/wiki/WURFL — A description of the Wireless Universal Resource File

open source project that provides information on the capabilities of lots of wireless devices
(mobile phones).

http://people.csail.mit.edu/rudolph/Teaching/Lectures07/ — Professor Larry Rudolph’s online
material for a pervasive computing course that contains lots of useful ideas which can be
used to create automated tests run from mobile devices.

http://www.geocities.com/model_based_testing/ — Harry Robinson’s web site containing useful
information on Model Based Testing. Although the home page says the site was last up-
dated in 2004, there is more recent content, e.g., from one of his presentations in 2006. It
is well worth a visit.

http://www.adobe.com/products/flashlite/ — FlashLite from Adobe.
http://www.waptutor.org.uk/ — An extremely basic introduction to creating a WAP page in

WML.
http://www.w3schools.com/wap/wap_intro.asp — A more detailed introduction to WAP and

WML, the site includes a useful WML reference.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html — Far too many links on

WAP specifications and other technical material.
http://www.w3.org/2006/07/Mobile_Web_Design.pdf — An attractive introduction to the mobile

web.

A.9	 COMMON TOOLS
http://www.wireshark.org/ — Homepage for the free and very powerful Wireshark protocol analyser.

http://linux.softpedia.com/get/Communications/Telephony/SMS-Server-Tools-5735.shtml
http://umtsmon.sourceforge.net/
http://www.ibm.com/developerworks/library/wi-enable.html
http://en.wikipedia.org/wiki/WURFL
http://people.csail.mit.edu/rudolph/Teaching/Lectures07/
http://www.geocities.com/model_based_testing/
http://www.adobe.com/products/flashlite/
http://www.waptutor.org.uk/
http://www.w3schools.com/wap/wap_intro.asp
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html
http://www.w3.org/2006/07/Mobile_Web_Design.pdf
http://www.wireshark.org/

Links and references  89

http://www.gosymbian.com/fexplorer_new.php — Homepage for FExplorer for Symbian Series 60
phones.

A.10	O THER REFERENCES
HTTP Pocket Reference, O’Reilly, Clinton Wong, ISBN 1-56592-862-8
Python phrasebook, Developers Library, Brad Dayley, ISBN 0-672-32910-7
www.python.org — Includes the Python software and extensive documention (a tutorial, library

reference, etc).
www.diveintopython.org — A brilliant free online book, which is also available in print. Intended

for programmers who have experience of programming in another language: read it anyway
and work through the examples.

A.11	 RAW INGREDIENTS
If you are wondering what you’ll need to automate your tests, here is a list of raw ingredients you
might need or use:

Experience in programming in one or more languages. You may choose to learn the lan-
guage used by the developers when creating the applications or scripting languages that
help you to test independently. Some common choices are:

Java,
Python,
Java ME (originally called J2ME),
You may also need various flavours of C++ for some native platforms, e.g., for
iPhone, for Windows Mobile, and for Symbian.

Hardware
Computers,
GPRS (etc.) modems,
Phones (that the software is targetted for),
Automation devices that include physical phones,
Digital cameras.

Data, which can come from several sources both externally (e.g., from public and commer-
cial sources) and internally (e.g., from log files).

The Wireless Universal Resource File (known as WURFL) that contains details
of the capabilities of many devices;

•

o

o

o

o

•
o

o

o

o

o

•

o

http://www.gosymbian.com/fexplorer_new.php
www.python.org
www.diveintopython.org

90  a practical guide to testing wireless smartphone applications

The commands used to interact and control modems (known as AT commands as
the first two characters of the commands are the letters AT). Some commands are
limited to a subset of devices;
Network configuration parameters, such as the Access Point Name (APN) used to
establish a network connection by a device;
Web sites, where individuals and organizations have shared information relevant
to mobile devices; and
Logs (for example logs recorded by web servers may contain device header infor-
mation generated by devices with every web request they make).

External software
Run-time emulators, device and platform SDKs,
Protocol emulators,
Protocol analyzers,
Utilities,
Browser plug-ins,
Unit testing frameworks, and
Open source libraries (e.g., for Python).

o

o

o

o

•
o

o

o

o

o

o

o

91

Virtually all mobile phones include a data modem used for data communications. These modems
support a standard form of commands based on the venerable Hayes AT command set from the
1980s, e.g., ATD 12345 would ask a modem to dial the phone number 12345.

GPRS modems and the more modern 3G modems support a common set of extensions to the
basic, older AT command set. The extended commands have a + after the initial AT. For example:

AT+CGDCONT=1,”IP”,”Internet”
ATD*99***1#

The AT+CGDCONT is an extended command used to configure the modem with the carrier’s
network settings called the APN, while the ATD is a standard Hayes command to dial the special
number used by this carrier (and many carriers) to connect to the GPRS network. The 1 towards
the end of the number tells the modem to use the first set of APN values, which was configured by
the AT+CGDCONT.

Note: your GPRS modem or phone may support additional commands using other special
characters, e.g., AT#

Try to obtain a copy of the AT command reference for your phone or modem; the ones from
Siemens are particularly good.

AT commands OTA

Computer Carrier
network

PPP connection

Diagram: AT commands are sent to the modem to establish a connection. PPP is used by the com-
puter once the connection has been established to provide network connectivity.

A ppendix B

Data Connectivity

92  a practical guide to testing wireless smartphone applications

B.1	 HOW TO USE A MOBILE PHONE
MODEM INTERACTIVELY

The modem commands are not available from the UI of the phone, instead the phone needs to be con-
nected to a computer (or a similar device). The connection can be hardwired (e.g., using a USB or se-
rial port cable), wireless (e.g., using Bluetooth), or over an infrared connection — depending on which
features the phone offers. The connection is represented as a serial port in common operating systems,
including on Microsoft Windows and Linux. The operating system may allow you to configure the
identifier of the serial port (e.g., the COM port number in Microsoft Windows). Details of how to
configure the serial port and how to get started with a terminal emulator are available in Appendix C.

Once the serial port has been correctly configured and tested, you should be able to use a
terminal emulator program to enter commands directly.

B.2	 HOW TO USE A MOBILE PHONE MODEM
FOR IP TRAFFIC

Using AT commands limits the type of test to SMS testing and testing an APN’s ability to establish
the first stage of a PPP network protocol. To do more testing we need to configure the computer
to establish a TCP/IP using the mobile phone modem. PPP is the most prevalent way TCP/IP is
configured over a modem, including mobile wireless devices. Please see Appendix C for details on
how to configure PPP for Linux and Microsoft Windows.

B.3	 POSSIBLE PROBLEMS WITH DATA CONNECTIVITY

Phone configurations (APN settings);
Using limited APN configuration, e.g., one that does not allow UDP, using WAP vs. “In-
ternet”;
Poor network conditions, e.g., signal strength, network congestion, GPRS vs. 3G, etc.;
Blocking of:

IP protocols, e.g., UDP on some price plans or carriers, and
Some application protocols being blocked by operators, for example until the sum-
mer of 2007 RTSP was not available on at least one UK network operator;

Inappropriately transcoded content; and
Walled gardens (where the carrier restricts users to an often very limited subset of the internet).

B.4	 MISCELLANEOUS PROBLEMS
Inappropriate caching by operator networks,
Cookie issues (ranging from phones not supporting them at all, to limits on the number
and/or size).

•
•

•
•

o

o

•
•

•
•

93

These are the main steps to configuring your machine to use a mobile wireless device such as a
GPRS modem or a phone:

Prepare the device,
Connect the modem or phone,
Establish communications using a terminal emulator program, and
Configure PPP so your computer can use the connection for network (TCP/IP) commu-
nications.

This appendix provides brief instructions on how to get started.

C.1	 RAW INGREDIENTS
A computer with either a GPRS data card or a GPRS modem. I have had good results us-
ing an external Siemens MC35 GPRS modem, cost is around $250 given the current US
exchange rate (£150 GBP).
The SIM.
The APN settings.
Knowledge of either Linux or Windows dial-up networking, modem configuration, etc.
Patience!

C.2	 PREPARE THE DEVICE
Put the SIM in to the GPRS card or GPRS modem.
Connect the GPRS device into the computer.

C.3	 CONNECTING YOUR MODEM OR PHONE
There are various ways a modem or phone can be connected to your computer. External GPRS
modems are generally connected using a serial port and a serial cable. PCMCIA cards integrate into
your computer and generally need a software driver in order to operate. In Windows they appear as
one or more serial ports, in Linux they appear as one or more /dev/ttyUSB devices.

1.
2.
3.
4.

•

•
•
•
•

•
•

A ppendix C

Configuring Your Machine

94  a practical guide to testing wireless smartphone applications

Phones can be connected using a USB cable, infrared, Bluetooth, and possibly even other
ways I have not seen yet. The choice depends on the capabilities of your computer and phone. For
instance, both need Bluetooth in order to use it. I recommend using the USB cable if it is available.
In Windows a software driver is generally required.

Serial ports need to have their speed and other properties set correctly on the computer in or-
der for the modem to respond. Try setting the parameters to 115200 bits per second (also incorrectly
called baud), 8 data bits, no parity, one stop bit, and hardware handshaking (also called RTS/CTS
handshaking).

C.4	 USING HYPERTERMINAL IN WINDOWS
HyperTerminal is available is Windows 98 and later versions of the operating system. It provides
basic terminal capabilities and can be used to interact with your phone or modem.

http://www.developershome.com/sms/howToUseHyperTerminal.asp — How to use the Hy-
perTerminal in Microsoft Windows to control a modem, e.g., to enter AT commands for a GPRS
modem.

C.5	 USING MINICOM IN LINUX
Minicom is one of the many possible terminal programs in Linux. The manual should be available
online (type man minicom to load the manual). A combination of control keys gives you access
to the menus. Control+A followed by Z displays the main menu. O loads the configuration menu,
then select the Serial Port setup where you can select the device.

/dev/ttyS0 represents the first serial port, and /dev/ttyUSB0 tends to work for a
PCMCIA GPRS/3G data card. “Enter” tends to close menu options. I recommend you save your
changes as dfl (I think this means the default to use), then quit and restart minicom in order to use
the changes reliably.

C.6	 CONFIGURING PPP IN WINDOWS
I have removed from the current document to save space. Details are available from the author.

C.7	 CONFIGURING PPP IN LINUX
In Ubuntu Linux (and I expect most other flavours) all we need to do is create a configuration file
for wvdial and then call wvdial with the relevant configuration name. I am assuming you will want
to create separate configuration settings for each carrier you may want to test. Here is an example
with two Vodafone UK sections, one for contract SIMs and the other for pay-as-you-go:

http://www.developershome.com/sms/howToUseHyperTerminal.asp

Configuring Your Machine  95

root@2atestuk01:/etc# cat wvdial.conf
[Dialer Defaults]
New PPPD = yes
Modem = /dev/ttyS0
Baud = 57600
Init = ATZ

[Dialer VodafoneUKContract]
Phone = *99***1#
Username = web
Password = web
Init2 = AT+cgdcont=1,ip,internet

[Dialer VodafoneUKPAYG]
Phone = *99***1#
Username = wap
Password = wap
Init2 = AT+cgdcont=1,ip,pp.vodafone.co.uk

Obtaining the Username, Password and the specific AT command used in the Init2 strings are of-
ten hard to find. I have frequently spent hours searching on the Internet for the relevant details for
specific combinations of network operator and data plan.

To start the connection, call wvdial followed by the name of the section you want to use, e.g.

wvdial VodafoneUKPAYG

If not, you can simplify your configuration by only having the:[Dialer Defaults]

header with one set of Phone/Username/Password/Init2 values. For example:

root@2atestuk01:/etc# cat wvdial.conf
[Dialer Defaults]
New PPPD = yes
Modem = /dev/ttyS0
Baud = 57600
Init = ATZ

Phone = *99***1#
Username = web
Password = web
Init2 = AT+cgdcont=1,ip,internet

96  a practical guide to testing wireless smartphone applications

To start the connection, call wvdial as follows:

wvdial

Here is a typical log of a successful connection:

--> WvDial: Internet dialer version 1.55
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: AT+cgdcont=1,ip,pp.vodafone.co.uk
AT+cgdcont=1,ip,pp.vodafone.co.uk
OK
--> Modem initialized.
--> Sending: ATDT*99***1#
--> Waiting for carrier.
ATDT*99***1#
CONNECT
~[7f]}#@!}!}#} }9}”}&} }*} } }’}”}(}”}%}&R!}4O}#}%B#}%n[02]~
--> Carrier detected. Waiting for prompt.
~[7f]}#@!}!}#} }9}”}&} }*} } }’}”}(}”}%}&R!}4O}#}%B#}%n[02]~
--> PPP negotiation detected.
--> Starting pppd at Mon Aug 20 15:40:27 2007
--> Pid of pppd: 8271
--> Using interface ppp0
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> local IP address 10.172.165.66
--> pppd: È¿EÀI[06][08]`H[06][08]
--> remote IP address 192.168.254.254
--> pppd: È¿EÀI[06][08]`H[06][08]
--> primary DNS address 10.205.65.68
--> pppd: È¿EÀI[06][08]`H[06][08]
--> secondary DNS address 10.205.65.68
--> pppd: È¿EÀI[06][08]`H[06][08]

To test the connection use the ping command specifying the newly created PPP network, e.g.,

ping www.google.com -I ppp0

Configuring Your Machine  97

Note: Your current LAN connectivity may play up while you have an active PPP connection.
Fixing the routing so both LAN and PPP work concurrently would be desirable; however it is cur-
rently outside the scope of this material.

To disconnect press Control-C in the terminal window and the program should respond
along the following lines . . .

Caught signal 2: Attempting to exit gracefully...
--> Terminating on signal 15
--> pppd: È¿EÀI[06][08]`H[06][08]
--> Connect time 3.4 minutes.
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> pppd: È¿EÀI[06][08]`H[06][08]
--> Disconnecting at Mon Aug 20 15:43:51 2007

That is it, good luck!

99

Author Biography

Julian Harty is currently a senior test engineer at Google, UK.
Over the past 3 years his main focus has been testing mobile
phone applications, particularly in the area of test automation.

He has presented a number of tutorials in this area in
Europe, Canada, Australia and New Zealand.

Julian is also actively involved with the British Com-
puter Society’s Specialist Group in Software Testing (BCS
SIGIST) in the important area of non-functional testing. Prior
to joining Google he ran his own successful software testing
consultancy company (Commercetest) in the UK.

A frequent author and speaker at software testing conferences and workshops on specialist
subjects including: mobile, productivity, non-functional, performance and security testing, Julian is
an internationally respected and sought-after software tester.

	A Practical Guide to Testing Wireless Smartphone Applications
	Synthesis Lectures on Mobile and Pervasive Computing
	Abstract
	Keywords
	Preface
	What Is Inside
	Conventions
	What You Will Need
	Using Code Examples
	Alphabet Soup and the Half-life of Links
	Acknowledgments
	Contents

	chapter 1 Introduction
	1.1 WHAT IS A MOBILE WIRELESS APPLICATION?
	1.2 CLASSIFICATIONS OF MOBILE WIRELESS APPLICATIONS
	1.2.1 Client Applications
	1.2.2 Messaging Applications
	1.2.3 Browser Applications
	1.2.4 The Supporting Servers
	1.2.5 Things That Do Not Quite Fit

	1.3 CURRENTLY OUTSIDE THE SCOPE OF THIS BOOK
	1.4 SCOPE OF MOBILE WIRELESS TEST AUTOMATION
	1.5 CHALLENGES IN TESTING MOBILE WIRELESS APPLICATIONS
	1.6 PROBLEM SPACE
	1.6.1 Transcoding Web Content

	1.7 OUR TESTING FOCUS
	1.8 OUR GOALS WHEN TESTING
	1.9 OUR OVERALL TESTING STRATEGY
	1.10 CORE CONCEPTS

	chapter 2 Markup Languages
	2.1 EXAMPLES OF MARKUP LANGUAGES
	2.2 TESTING STRATEGY FOR MARKUP APPLICATIONS
	2.3 EXAMPLE PROBLEMS

	chapter 3 Testing Techniques for Markup Applications
	3.1 GETTING STARTED WITH TEST AUTOMATION
	3.2 EXAMPLES WRITTEN IN PYTHON
	3.2.1 A Test to Detect if Google Maps Is Offered to Mobile Users
	3.2.2 Using Regular Expressions in Our Test
	3.2.3 Combining XML With Regular Expressions
	3.2.4 Using XPATH in Our Tests

	3.3 SUMMARY OF THE EXAMPLES IN PYTHON
	3.4 BUILDING ON YOUR FIRST AUTOMATED SCRIPTS
	3.4.1 Data-Driven Tests
	3.4.2 Obtaining Metadata to Drive Our Tests
	3.4.3 Using Metadata
	3.4.4 Test Using Carrier Networks
	3.4.5 Timing the Request/Response Pair
	3.4.6 Implementing Rule-Based Tests
	3.4.7 Probe Servers
	3.4.8 Strengths and Weaknesses of Rule-Based Testing
	3.4.9 A Complementary Tool to Rule-Based Tests
	3.4.10 Is Appropriate Content Being Served?

	3.5 TIPS WHEN IMPLEMENTING AUTOMATED TEST SCRIPTS
	3.6 TEST TOOLS FOR BROWSER-BASED APPLICATIONS
	3.6.1 Using Web-Testing Tools
	3.6.2 “Mobile Readiness” Tools
	3.6.3 Utilities to Help With Testing Browser Applications

	chapter 4 AJAX Mobile Applications
	4.1 TESTING CHALLENGES FOR AJAX MOBILE APPLICATIONS
	4.2 EXAMPLES OF PROBLEMS WITH MOBILE AJAX APPLICATIONS

	chapter 5 Testing Mobile AJAX Applications
	5.1 USING DESKTOP BROWSER AUTOMATION TOOLS
	5.1.1 Selenium
	5.1.2 WebDriver
	5.1.3 Customizing Desktop Web Browsers
	5.1.4 Limitations of Using Desktop Web Browsers

	5.2 USING AN EMBEDDED BROWSER
	5.3 Using Simulators
	5.4 General Tips
	5.4.1 Selenium Tips for Mobile AJAX Automation
	5.4.2 WebDriver Tips for Mobile AJAX Automation

	chapter 6 Client Applications
	6.1 PORTABLE APPLICATIONS
	6.2 NATIVE APPLICATIONS
	6.2.1 Developing Native Applications
	6.2.2 Example Problems for Portable Applications
	6.2.3 Example Problems for Native Applications

	6.3 TESTING STRATEGY FOR CLIENT APPLICATIONS

	chapter 7 Testing Techniques for Client Applications
	7.1 AUTOMATED UNIT TESTS
	7.1.1 Examples of Unit Tests
	7.1.2 Running Unit Tests in an Emulator

	7.2 SYSTEM TESTING FOR iPHONE APPLICATIONS
	7.3 CODE INJECTION
	7.3.1 Code Injection for Java ME
	7.3.2 Custom Test Applications

	7.4 PROBER CLIENTS
	7.5 SIGNATURE TESTING
	7.6 TEST TOOLS FOR CLIENT APPLICATIONS
	7.6.1 On-Device Debugging
	7.6.2 Test Automation of the Runtime Environment
	7.6.3 Emulators

	7.7 TEST AUTOMATION USING THE BLACKBERRY EMULATOR
	7.7.1 Summary of Testing Techniques for Client Applications

	chapter 8 Common Techniques
	8.1 GUI-LEVEL AUTOMATION
	8.2 IMAGE STITCHING
	8.2.1 Steps in Image Stitching
	8.2.2 Challenges of Image Matching
	8.2.3 Optical Character Recognition
	8.2.4 Encoding Data in Pixels
	8.2.5 Making Image Matching Easier
	8.2.6 Using Advanced Image Matching Techniques
	8.2.7 Detecting Good and Bad Results

	8.3 CONTACT SHEETS
	8.3.1 Using Transparency Masking
	8.3.2 Combining Automation With Human Judgment

	8.4 Model Based Testing

	chapter 9 When to Test Manually
	9.1 EXAMPLES OF EFFECTIVE MANUAL TESTING
	9.2 COMPUTER-ASSISTED TESTING FOR MOBILE WIRELESS APPLICATIONS
	9.3 TESTABILITY FOR AUTOMATED TESTING
	9.4 HOW TO IMPROVE TESTABILITY
	9.4.1 Browser-Based Applications
	9.4.2 Client Applications
	9.4.3 SMS Applications
	9.4.4 General

	chapter 10 Future Work
	Appendix A Links and References
	A.1 TESTING MARKUP (WEB SITES)
	A.2 J2ME TESTING
	A.3 JAVA BYTE CODE INSTRUMENTATION
	A.4 NATIVE APPLICATION TESTING
	A.5 TEST AUTOMATION WITH EMULATORS
	A.6 SMS SERVICES
	A.7 CONNECTIVITY
	A.8 MISCELLANEOUS LINKS
	A.9 COMMON TOOLS
	A.10 OTHER REFERENCES
	A.11 RAW INGREDIENTS

	Appendix B Data Connectivity
	B.1 HOW TO USE A MOBILE PHONE MODEM INTERACTIVELY
	B.2 HOW TO USE A MOBILE PHONE MODEM FOR IP TRAFFIC
	B.3 POSSIBLE PROBLEMS WITH DATA CONNECTIVITY
	B.4 MISCELLANEOUS PROBLEMS

	Appendix C Configuring Your Machine
	C.1 RAW INGREDIENTS
	C.2 PREPARE THE DEVICE
	C.3 CONNECTING YOUR MODEM OR PHONE
	C.4 USING HYPERTERMINAL IN WINDOWS
	C.5 USING MINICOM IN LINUX
	C.6 CONFIGURING PPP IN WINDOWS
	C.7 CONFIGURING PPP IN LINUX

	Author Biography

