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Foreword

Imaging is as old as human intelligence. Indeed, anthropologists identify the point of departure between
animal and human at the point where the creature felt the need to create an image. The creation of im-
ages in prehistoric times was a means of teaching hunting techniques, recording important events, and
communicating (Figurel). It is from those elementary images that hieroglyphs evolved and eventually
alphabets. Imaging has always been part of human culture. Its decorative nature was perhaps less im-
portant than its role in recording significant events, mainly for impressing the masses for the importance
and glory of its rich and powerful patrons. In the last 200 years or so, technology-based imaging started
to co-exist in parallel with manual imaging, restricting the role of the latter mainly to art. Technology
based imaging is nowadays very much a major part of our everyday life, through its medical applica-
tions, routine surveillance, or entertainment. However, imaging has always been haunted by the need to
depict a 3D world on a 2D medium. This has been a problem that pertains to paintings throughout the
millennia: from the ancient Egyptians, who were painting full eyes even when seen sideways, to Pi-

Figure 1.




casso and the cubists, who tried to capture all 3D aspects of the depicted object on a 2D canvas, imaging
in 3D has been the holy grail of imaging. Modern technology has at last matured enough to allow us to
record the 3D world as such, with an enormous range of applications: from medicine and cave technol-
ogy for oil exploration, to entertainment and the 3D television. This book is dedicated exactly to these
modern technologies, which fascinate and excite. Enjoy it!

Maria Petrou
Informatics and Telematics Institute, CERTH, Greece & Imperial College London, UK

Maria Petrou studied Physics at the Aristotle University of Thessaloniki, Greece, Applied Mathematics in Cambridge, UK,
and obtained her PhD and DSc degrees both from Cambridge University in Astronomy and Engineering, respectively. She is
the Director of the Informatics and Telematics Institute of CERTH, Thessaloniki, Greece, and the Chair of Signal Processing
at Imperial College London, UK. She has co-authored two books, “Image Processing, the fundamentals” and “Image Pro-
cessing dealing with texture”, in 1999 (second edition 2010) and 2006, respectively, and co-edited the book “Next generation
artificial vision systems, reverse engineering the human visual system.” She has published more than 350 scientific articles on
astronomy, computer vision, image processing and pattern recognition. She is a Fellow of the Royal Academy of Engineering.
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Preface

This book has three editors, and all of us are involved in image processing and computer vision research.
We have contributed to the 3D imaging research, especially in the field of passive optical 3D shape
recovery methods. Over the last decade, significant progress had been made in 3D imaging research. As
aresult, 3D imaging methods and techniques are being employed for various applications. The objective
of this book is to present various 3D algorithms developed in the recent years and to investigate the
application of 3D methods in various domains.

This book is divided into five sections. Section 1 presents various 3D imaging algorithms that are
developed in recent years. It covers quite a variety of research fields including 3D mapping, hologra-
phy, and 3D shape compression. Six chapters are included in Section 1. Section 2 deals with 3D shape
recovery methods that fall in the optical passive as well as active domains. The topics covered in this
section include shape from focus, shape from heating, and shape from fluorescence. Section 2 includes
5 chapters.

Section 3 is dedicated to stereoscopic vision and autostereoscopic vision. The dedication of a whole
section to stereoscopic and autostereoscopic vision emphasizes the importance of these two technologies.
Seven chapters are included in this section. Section 4 discusses 3D vision for robotic applications. The
topics included in this section are 3D scene analysis for intelligent robotics and usage of stereo vision for
various applications including fire detection and suppression in buildings. This section has three chapters.

Finally, Section 5 includes a variety of 3D imaging applications. The applications included in this
section are 3D DMB player, 3D scanner, 3D mapping, morphological study of meteorite impact rocks,
3D tracking, 3D human body posture estimation, 3D face recognition, and 3D thumbnails for 3D videos.
A total of nine chapters are included on several of the above mentioned applications in this section.

There are 31 chapters in this book. Chapter 1 is not included in any of the sections as it provides an
introduction to 3D imaging. Chapter 1 briefly discusses the classification for 3D imaging. It provides
an overview of the 3D consumer imaging products that are available commercially. It also discusses the
future of 3D consumer electronics.

SECTION 1

Chapter 2 to Chapter 7 are included in this section. Chapter 2 discusses multi-view stereo reconstruction
as well as shape from silhouette method. Multiple images are used with multiple views for 3D reconstruc-
tion. This chapter can be included in both Section 2 and Section 3 since Section 2 deals with methods
like shape from silhouette while Section 3 covers stereovision. However, we decided to put it as the
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first chapter of section I because it presents an algorithm dealing with 3D shape reconstruction and also
because we want to emphasize the importance of these two topics at the very beginning of this book.

Chapter 3 deals with the iterative reconstruction method that can be used in various medical imaging
methods like X-ray, Computed Tomography, Positron Emission Tomography, Single Photon Emission
Computed Tomography, Dose-calculation in Radiotherapy, and 3D-display Volume-rendering. This
chapter is included in the book to emphasize on the importance of 3D transmissive methods that have
greatly influenced our present day life style by improving the healthcare services.

Chapter 4 provides methods for generating 3D maps of the environment surrounding us. These maps
are especially useful for robot navigation. This chapter especially discusses 3D map registration in detail.

Chapter 5 emphasizes the importance of compression for data storage and transmission for large
chunks of 3D data. It describes a 3D image compression method that could reduce the data storage and
transmission requirements.

Chapter 6 addresses holographic images. The future of true 3D lies in the holographic imaging tech-
nology. The holographic images are marred with noise and low quality. Hence, restoration and enhance-
ment are very important for holographic images. This chapter summarizes related issues and provides
solution for the restoration and enhancement of the holographic images.

Chapter 7 is the last chapter in section I. This chapter deals with an active optical 3D shape recovery
method. For active fringe patterns projection, off-the-shelf projector is used in order to reduce the cost
of the system.

SECTION 2

Chapter 8 to Chapter 12 are included in Section 2. Chapter 8 gives a very good introduction of the 3D
shape recovery approaches. It includes the geometric approaches, photometric methods, and the real
aperture techniques. Details are provided for various methods and techniques falling under one of the
three approaches.

Chapter 9 discusses the focus measures in detail. A total of eleven focus measures are discussed, and
they are categorized under four major classes. A very detailed comparison is provided for the eleven
focus measures. The performance comparison is provided with respect to several types of noise, varying
illumination and various types of textures.

Chapter 10 uses S-Transform for developing a focus measure method. High frequency components
in the S-transform domain are targeted by the developed focus measure. The focus measure is used as
a shape from focus technique to recover the 3D shape.

Chapter 11 uses genetic programming for developing a focus measure. An optimal composite depth
function is developed, which utilizes multiple focus measures to get the optimized depth map for 3D
shape recovery.

Chapter 12 provides two methods for recovering 3D shape of the transparent objects. Using normal
optical methods, the 3D shape of transparent objects cannot be recovered accurately and precisely. This
chapter discusses shape from heating and shape from fluorescence techniques to recover the 3D shape.
These are new methods and have been introduced recently.
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SECTION 3

Chapter 13 to chapter 19 are included in Section 3. Chapter 13 to Chapter 17 are related to stereoscopic
vision, while the last two chapters in this section are on autostereoscopic vision. Although these two topics
can be placed under Section 2, they have been placed in a separate section because of their importance
in terms of consumer electronics.

Chapter 13 discusses a stereoscopic algorithm which treats the stereovision as modular approach.
Hence, the stereovision algorithm can be divided into various stages and each of the stage can be imple-
mented individually.

Chapter 14 and Chapter 15 discuss applications of the stereovision. Offroad intelligent vehicle naviga-
tion using stereovision in the agricultural environment is dealt in chapter 14 while chapter 15 discusses
visually induced motion sickness (VIMS) that is associated with stereoscopic movies.

Chapter 16 provides details of viewpoint interpolation methods that are used for synthesizing the
in-between views from few views that are captured by few fixed cameras. Chapter 17 presents a revers-
ible watermarking based algorithm to deal with the high costs of memory, transmission bandwidth and
computational complexity for 3D images.

Chapter 18 and Chapter 19 deal with autostereoscopic vision. Stereoscopic displays require 3D glasses
to view in 3D while the autostereoscopic displays do not require any 3D glasses. Chapter 18 introduces
the basic concepts of autostereoscopic displays and discusses several of its technologies. Chapter 19
addresses the very important issue of bandwidth for high resolution multi-view autostereoscopic data.

SECTION 4

Chapter 20 to Chapter 22 are included in section I'V. This is the shortest section in this book. Although,
all the three chapters in this section could easily be included in Section 3 but we decided to allocate a
separate section to emphasize the topic of robotic vision.

Chapter 20 is an invited chapter. It deals with intelligent robotics by capturing and analysing a scene
in 3D. Real time processing is important for robotic applications and hence this chapter discusses limi-
tations for the analysis of 3D data in real time. This chapter provides very good description of various
technologies that address the limitation issues for real time processing.

Chapter 21 and Chapter 22 use the stereovision for robotic applications. Chapter 21 discusses the
autonomous operation of robots in real working environments while chapter 22 deals with the specific
application of fire detection and suppression in the buildings.

SECTION 5

Chapter 23 to Chapter 31 are included in this section. Nine chapters deal with nine different 3D appli-
cations. It is the last section of the book. However, some of the applications dealing with stereovision,
robotics and compression are also discussed in earlier sections. We placed them in those sections because
we think that they are more relevant to the topics in those sections.

Chapter 23 discusses a 3D DMB player. DMB stands for digital multimedia broadcasting, and it is
used for terrestrial-DMB (T-DMB) systems. The chapter also introduces an approximation method to
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create auto-stereoscopic images in the 3D DMB player. Hence, this chapter is also related to section I11
where autostereoscopic vision is discussed.

Chapter 24 presents a detailed overview of the 3D scanning technologies. Comparison of several 3D
scanning methods is provided based on accuracy, speed, and the applicability of the scanning technology.

Chapter 25 deals with 3D mapping in outdoor environments, while chapter 26 presents 3D scanning
method to study morphology of a meteorite rock. For 3D mapping, examples are taken from pavement
runway inspection and urban mapping. For 3D scanning, meteorite rock is selected from the Karik-
koselkd impact crater (Finland).

Chapter 27 discusses 3D tracking for mixed reality. 3D tracking is one of the active research areas
in 3D imaging. This chapter addresses 3D tracking in mixed reality scenario. Mixed reality deals with
virtual objects in real scenes. It is a very important topic with applications in medical, teaching, and
gaming professions. Multi-sensor fusion methods for mixed reality with 3D camera tracking are dis-
cussed in this chapter.

Chapter 28 uses stereovision for the reconstruction of 3D human body posture that is further utilized
in human activity recognition. Human activity recognition is of vital importance for visual surveillance
applications. Hence, interest in human activity recognition research has increased manifolds in the
recent years.

Chapter 29 deals with 3D face recognition, while chapter 30 discusses 3D face expression recog-
nition. In Chapter 29, a method for 3D face recognition is presented based on adaptive non-uniform
meshes. In chapter 30, a feature extraction method is discussed that does not require any neutral face
for the test object.

Chapter 31 is the last chapter of this section, as well as the last chapter of the book. Chapter 31
introduces a thumbnail format for 3D videos with depth. A framework is presented in the chapter that
generates 3D thumbnails from layered depth video (LDV) and video plus depth (V+D).

FINAL WORDS

The work on this book started in November 2009 and it has taken about one and a half years to complete
it. All the chapters in this book went through multiple reviews by the professionals in the field of 3D
imaging and 3D vision. All the chapters had been revised based on the comments of multiple reviewers
by the respective authors of the chapters. Contributors for the book chapters come from all over the
world, i.e., Japan, Republic of Korea, China, Australia, Malaysia, Taiwan, Singapore, India, Tunisia,
Turkey, Greece, France, Spain, Belgium, Romania, Netherlands, Italy, and United States. This indicates
that this book covers a topic of vital importance for our time, and it seems that it will remain so at least
for this decade.

3D imaging is a vast field and it is not possible to cover everything in one book. 3D research is ever
expanding and the 3D research work will go on with the advent of new applications. This book presents
state of the art research in selected topics. We hope that the topics presented in this book attract the at-
tention of researchers in various research domains who may be able to find solutions to their problems
in 3D imaging research. We further hope that this book can serve as a motivation for students as well as
researchers who may pursue and contribute to the 3D imaging research.

Aamir Saeed Malik, Tae-Sun Choi, Humaira Nisar
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Chapter 1
Introduction to 3D Imaging

Aamir Saeed Malik
Universiti Teknologi Petronas, Malaysia

Humaira Nisar
Universiti Tunku Abdul Rahman, Malaysia

ABSTRACT

With the advent of 3D consumer products in the electronics market, 3D imaging is all set to take off. Last
decade had seen a lot of research activity with respect to 3D imaging. It will not be wrong to say that
this decade will be the decade of 3D imaging. This chapter briefly introduces 3D imaging with respect
to various 3D consumer products and 3D standardization activity. It also discusses the challenges and

the future of 3D imaging.

INTRODUCTION

3D imaging is not a new research area. Re-
searchers are working with 3D data for the last
few decades. Even 3D movies were introduced
using the cardboard colored glasses. However,
the consumers did not accept the results of that
3D research because of low quality visualization
of 3D data. The researchers were limited by the
hardware resources like processing speed and
memory issues. But with the advent of multicore
machines, specialized graphics processors and
large memory modules, 3D imaging research is
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picking up the pace. The result is the advent of
various 3D consumer products.

3D imaging methods can be broadly divided
into three categories, namely, contact, reflective
and transmissive methods. The contact methods,
as the name implies, recover the 3D shape of
the object by having physical contact with the
object. These methods are generally quite slow as
they scan every pixel physically and they might
modify or damage the object. Hence, they cannot
be used for valuable objects like jewellery, his-
torical artifacts etc. However, they provide very
accurate and precise results. An example is the
CMM (coordinate measuring machine) whichisa
contact 3D scanner (Bosch 1995). Such scanners
are common in manufacturing and they are very

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



precise. Another application of contact scanners
is in the animation industry where they are used
to digitize clay models.

On the other hand, reflective and transmissive
methods do not come in physical contact with
the object. The transmissive methods are very
popular in the medical arena and include methods
like CT (Computed Tomography) scanning, MRI
(Magnetic Resonance Imaging) scanning and
PET (Positron Emission Tomography) scanning
(Cabeza, 2006). CT scanners are now installed
in almost all the major hospitals in every coun-
try and they use X-rays for scanning. MRI and
PET are more expensive then CT and are not as
frequently used as CT scanners, especially in the
third world countries. However, because of its
usefulness MRI has become quite popular and is
now available at major hospitals in third world
countries. These technologies haverevolutionized
the medical profession and they help in accurate
diagnosis of the diseases at an early stage. Apart
from the medical profession, these 3D scanning
technologies are used for non-destructive test-
ing and 3D reconstruction for metals, minerals,
polymers etc.

The reflective methods are based either on the
optical or the non-optical sources. For non-optical
based methods, radar, sonar and ultrasound are
good examples which are now widely accepted
and mature technologies. They are used by rescue
services, medical professionals, environmental-
ists, defense personnel etc. They have wide range
of applications and their cost varies from few
hundred to hundred of thousands of dollars.

The optical based reflective methods are
the ones that have direct effect on the everyday
consumer. These methods are the basis for com-
mercialization of consumer products including 3D
TV, 3D monitors, 3D cameras, 3D printers, 3D
discplayers, 3D computers, 3D games, 3D mobile
phones etc. The optical based reflective methods
can be active or passive. Active methods use
projected lights, projected texture and patterns for
acquiring 3D depth data. Passive methods utilize
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depth cues like focus, defocus, texture, motion,
stereo, shading etc to acquire 3D depth data. Pas-
sive methods are also used in conjunction with
active methods for better accuracy and precision.

3D TELEVISION

We start with the introduction of 3D TV because
it is the motivation for most of the other 3D con-
sumer technologies. The first version of the TV
was black-and-white TV. Although, there were
multiple gray levels associated with itbut the name
associated with it was black-and-white TV. The
first major transition was from black-and-white
TV to color TV. It was a big revolution when that
transition occurred. The earlier color TVs were
analog. Then, digital color TVs were introduced
followed by transition from standard resolution
to high definition (HD) resolution of the images.

However, the era of 2D HDTYV appears to be
short because we are now witnessing the advent
of 3D HDTV (Wikipedia HDTV). These, 3D
HDTYV are based on the stereoscopic technology
and hence are known as stereoscopic 3D TV or
S3D TV. Since, they also support high definition
resolution; hence, they can be called S3D HDTV.
All the major TV manufacturers have introduced
S3D HDTYV inthe consumer market. They include
various models from leading manufacturers like
Sony, Panasonic, Mitsubishi, Samsung, LG, Phil-
ips, Sharp, Hitachi, Toshiba and JVC.

S3D HDTV can be switched between the 2D
and 3D imaging modes hence maintaining the
downward compatibility with 2D images and
videos. Additionally, they provide software that
can artificially shift the 2D images and videos
to produce the stereo effect and hence the TV
programs can be watched in 3D. However, the
quality stillneeds to be improved. At this moment,
the best 3D perception is achieved by the images
and videos that are produced in 3D. As mentioned
above, these products are based on stereovision.
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Hence, they require the usage of 3D glasses for
watching in 3D.

3D MONITORS AND PHOTO FRAMES

In addition to S3D HDTYV, 3D monitors are also
available based on the same stereoscopic technol-
ogy (Lipton 2002, Mcallistor 2002). Hence, they
are available with 3D glasses. The 3D glasses are
discussed in detail in the next section. 3D photo
frames are now also being sold in the electronics
market. However, they are based on stereoscopic
vision with 3D glasses as well as on autostereo-
scopic vision technology which does not require
glasses. At this moment in time, autostereoscopic
displays are only available in small sizes and
they are restricted because of the viewing angle
in large sizes.

3D GLASSES

S3DHDTV relies on stereovision. In stereovision,
separate images are presented to each of our eye,
i.e., left and right eye. The images of the same
scene are shifted similar to what our left and right
eye see. As a result, the brain combines the two
separate shifted images of the same scene and
creates the illusion of the third dimension. The
images are presented at a very high refresh rate
and hence the two separate images are visualized
by our eyes almost at the same time. Our brain
cannottell the difference of the time delay between
the two images and they appear to be received by
our eyes at the same time. The concept is similar
to video where static images are presented one
after the other at a very high rate and hence our
brain visualizes them as continuous.

For separate images to be presented to our left
and right eye, special glasses are required. These
glasses had come to be known as 3D glasses. In
early days, cardboard glasses were used. These
cardboard glasses had different color for each of

the lens with one being magenta or red and the
other being blue or green. On the 3D display sys-
tem, two images were shown on the screen with
one is red color and the other in blue color. The
lens with the red color filter absorbed red color
and allowed blue image to pass through while the
lens with the blue filter allowed the red image
to enter the eye. Hence, one eye looked at the
red colored image while the other eye watched
the blue colored image. The brain received two
images and hence 3D image created. However,
two separate images were based on two separate
colors. Therefore, true color movie is not possible
with this technique. So, the image quality of early
3D movies was quite low.

Current 3D Glasses Technology

The current 3D glasses can be categorized into
two classes: active shutter glasses and polarized
glasses. Samsung, Panasonic, Sony and LG use
the active shutter glasses. High refresh rate is
used so that two images can be projected on the
TV alternately; one image for the right eye and
one for the left eye. Generally, the refresh rate
is 120 hertz for one image and 240 hertz for
both the images. The shutters on the 3D glasses
open and close corresponding to the projection
of images on the TV. There is a sensor between
the lenses on the 3D glasses that connect with
the TV in order to control the shutter on each of
the lens. The brain received two images at very
high refresh rate and hence it combines them to
achieve the 3D effect. By looking away from the
TV, one may see the opening and closing of the
lenses and hence it might cause irritation for some
viewers. The active shutter glasses are expensive
compared to polarized glasses.

JVC uses polarized glasses to separate the
images for the right eye and the left eye. The
famous movie, Avatar, was shown in US with the
polarized glasses. These glasses are very cheap
compared to the active shutter glasses. Two images
ofthe scene, each with a different polarization, are



Figure 1. 3D Blu-Ray disc player

projected on the screen. Since, the 3D polarized
glasses have lenses with different polarization,
hence, only one image is allowed in each eye.
The brain receives two images and creates the
3D image out of them.

3D DISC PLAYERS

In the last decade, Sony won the standards war
for the new disc player with blu-ray disc player
being accepted as the industry standard. All the
manufacturers accepted the standard with Blu-
Ray Disc Association as the governing body for
the Sony based HD technology. Recently, the
Blu-Ray Disc Association has embraced the 3D
(Figure 1). As a result, Sony, Samsung and other
leading manufacturers have already released 3D
blu-ray disc players. Additionally, Sony is also
offering Sony Play station 3 upgrade to 3D, via
a firmware download.

3D GAMES

Games have already moved to the 3D arena. Sony
is selling Play Station with 3D gaming capabil-
ity. However, to play 3D games, 3D TV with 3D
glasses are required. The first four Play Station 3
3D games are Wipeout HD, Motor Storm Pacific
Rift, Pain, and Super Stardust HD. Microsoft Xbox
has similar plans.

Nintendo has introduced the new handheld
model replacing the existing DS model. The new
handheld Nintendo has 3D screen. This screen
is not based on stereoscopic vision technology.
Rather, it’s based on autostereoscopic vision.
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Autostereoscopic displays do not require glasses.
Atthismomentin time, the autostereoscopic tech-
nology is limited to small sized displays. Hence,
Nintendo is taking advantage of this technology by
introducing handheld gaming consoles based on
autostereoscopic vision (Heater 2010) (Figure 2).

3D CAMERAS

The camera manufacturers have already launched
various 3D camera models. One of the first 3D
cameras was launched by Fuji in 2009. That cam-
era was a 10 Mega Pixel camera with two CCD
sensors. In September 2010, Sony launched two
different 3D camera models. They were Cyber-
shot DSC TX9 (a 12 Mega Pixel camera) and
WXS5. Both of the cameras provided 3D sweep
panorama in addition to 2D sweep panorama. The
images acquired by the 3D cameras can be seen
on 3D TV, 3D computer and 3D photo frames.

3D COMPUTERS

3D computers are nothing more than the combi-
nation of 3D TV technology and 3D disc play-
ers. Similar to 3D TVs, the current 3D display
technology is based on stereovision. Hence, 3D
glasses are required. Again, some manufacturers

Figure 2. Sony Play Station 3
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Figure 3. 3D computer

provide 3D computers with active shutter glasses
while the others provide the polarized glasses. 3D
blue-ray disc player is standard with most of the
3D computers. One of the earliest 3D computers
is from Acer and Asus (Figure 3). Acer provided
their first laptop with 15.6 inch widescreen 3D
display in December 2009. Acer 3D laptop used
a transparent polarizing filter overlaid on the
screen and hence it required corresponding 3D
polarized glasses. Asus provided the 3D laptops
with software Roxio CinePlayer BD which had
the ability to convert 2D titles to 3D. LG is also
entering the market of 3D laptops. In 2011, about
1.1 million 3D laptops are expected to sell. This
number is expected to increase to about 14 mil-
lion by 2015.

3D PRINTERS

Normal 2D printers are part of our everyday life.
They are based on various technologies like la-
ser, inkjet etc and provide printouts in grayscale
or color depending on the printer model. Some
of the big names in printer technology are HP,
Brother and Epson. The concept of 3D printer

is to produce an object in 3D. Soon there will be
huge data available in 3D within very short span of
time as the 3D cameras will proliferate the market.
Hence, the demand for producing 3D objects will
increase. 3D printers are currently available but
they are very expensive with the cheapestmodel in
thousands of dollars. However, with the increase
in 3D data and the demand for 3D printing, it is
not far that 3D printers will become cheaper. HP
has already taken a step in this direction by buy-
ing a 3D printer company with the aim of mass
producing 3D printers in near future.

3D MOBILE PHONES

Mobile phones have changed the culture of the
world today. It is a strong mini-computer in hand
with the ability to take pictures, make videos,
record sound and upload them instantaneously
on the web. They are playing great role in human
rights protection, cultural revolutions, political
upheaval, news, tourism and almost every other
thing in our daily lives. As mentioned earlier,
autostereoscopic displays work well in small sizes
and they do not require glasses. Hence, 3D mobile
phones are based on autostereoscopic displays. 3D
cameras are already available and it is just matter
of time that they become part of the 3D mobile
phones. Sky is the limit of our imagination for a
3D device that can capture as well as display in
3D, transmit in 3D, record in 3D and can serve
as a 3D gaming platform.

In 2009, Hitachi launched a mobile phone
with stereoscopic display. However, it is the
autostereoscopic technology that will lead the
way for 3D mobile phones. In April 2010, Sharp
introduced 3D autostereoscopic display technol-
ogy that does not require glasses. However, the
image shown through that display was as bright as
it would be on standard LCD screen. Sharp used
parallax barrier technology to produce 3D effect.
Later in chapter 18, the autostereoscopic technol-
ogy is discussed in detail. Sharp announced mass



production of these small autostereoscopic dis-
plays for mobile devices. At the time of the an-
nouncement, the device measured 3.4 inches (8.6
cm) with aresolution 0480 by 854 pixels, bright-
ness (500 cd/m?) and the contrast ratio (1000:1).

AUTOSTEREOSCOPIC 3D TV

Autostereoscopic 3D TVisalsoknownasA3DTV
(Dodgson 2005). A3D TV is multi-view displays
which do not require any glasses. It has large 3D
viewing zone, hence, multiple users can view in
3D at the same time. Currently, A3D TV is based
on two types of technologies, namely, lenticular
lenses and the parallel barrier. In case of lenticular
lenses, tiny cylindrical plastic lenses transparent
sheets are pasted on the LCD screen. The tiny
cylindrical plastic lenses project two images, one
for each of our eye, hence producing 3D effect.
Since, these sheets are pasted on LCD screen, so
the A3D TV based on this technology can only
project in 3D and 2D display is not possible with
this technology.

The other technology is called parallel barrier
technology. Sharp and LG are the front runners
pursuing this technology. Fine gratings of liquid
crystal with slits corresponding to certain columns
of pixels are used in front of the screen. These
slits result in separate images for the right and
left eye when voltage is applied to the parallax
barrier. The parallax barrier can also be switched
off, hence allowing A3D TV to be used in 2D
mode. Chapter 18 discusses in detail the autoste-
reoscopic displays.

3D PRODUCTION

3D TVs are of no use without the 3D production
of movies, dramas, documentaries, news, sports
and other TV programs. Conversion of 2D to 3D
with software does not provide good 3D visual-
ization results. Many production companies are
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investing in 3D production. ESPN is currently
using cameras with two sets of lenses for their
live 3-D broadcasts. In 2007, Hellmuth aired live
the NBA sports tournament in US in 3D HD and
it is leading the 3D HD production. Professional
tools are now available from Sonic for encoding
videos and formatting titles in blue-ray 3D format.

Various movies were released in last few years
in 3D. They include the release of Monsters vs.
Aliens by DreamWorks Animation in September
2009, Disney/Pixar’s “Up” and 20th Century
Fox’s “Ice Age: Dawn of the Dinosaurs” etc. In
2009, USS$1 billion was generated at box offices
worldwide before the release of Avatar in late
2009. Avatar alone generated about $2.7 billion
at box offices worldwide (Wikipedia-Disney)
After that, the production in 3D is becoming
more of a routine production. Hence, the quality
of 3D production is bound to increase with the
passage of time.

3D STANDARDS

There are various companies and organizations
that are competing for the 3D standards. Some
of them include:

. Standard for 3-D mastering and distri-
bution (Society of Motion Pictures and
Television Engineers, SMPTE)

° http://www.smpte.org/home/

. MPEG’s Multiview Video Coding (Moving
Pictures Experts Group — MPEG)

o http://mpeg.chiariglione.org/

° http://www.mpegif.org/

. 3D Consortium (Japan)

° http://www.3dc.gr.jp/english/

. 3D Working Group for 3D home entertain-
ment (Digital Entertainment Group)

° The members of the 3D Working
Group for 3D home entertainment in-
clude Microsoft, Panasonic, Samsung
Electronics, Sony, 20th Century Fox
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Home Entertainment, Walt Disney
Studios Home Entertainment and
Warner Home Entertainment Group
° http://www.degonline.org/
. The Wireless HD Consortium
° They provide Wireless HD stan-
dard for in-room cable-replacement
technology
° The original throughput standard is
based on 4Gbps for high-definition
video up to 1080p
° In the 1.1 spec, throughput is in-
creased to more than 15Gbps for
streaming 3D video formats men-
tioned in the HDMI 1.4a specification
° http://www.wirelesshd.org/
. The 3D@Home Consortium
° This is for the advancement of 3D
technology into the home
o http://www.3dathome.org/
. The Blue-ray Disc Association
° In December 2009, it announced the
agreement that allows for full 1080p
viewing of 3-D movies on TVs
° To create the 3D effect, two images
in full resolution will be delivered by
the Blue-ray disc players.

3D TV: MARKET FORECAST

According to a survey by In-Stat in September
2009, 67% said that they are willing to pay more
for a 3D version of a Blue-ray disc then a 2-D
version. In another survey by a research firm
GigaOM in September 2009, there will be 46
million 3D TV units sold worldwide by 2013. In
December 2009, another research firm, Display
Search, forecasted the 3D TV market to grow to
US$15.8 billion by 2015. It is expected that Sony
will be selling about 40% to 50% 3D TVs out of
its all TV units by end of 2012. LG is expected
to be selling close to 4 million 3D TVs in 2012.
These forecast figures show that there is no

turning back now and all the leading manufacturers
are investing heavily in 3D technology.

CONCLUSION AND
FUTURE DIRECTIONS

The 3D imaging products have already started
appearing in the consumer market since 2009.
With the wide availability of 3D cameras and
3D mobile phones, 3D data will soon proliferate
the web. The 3D movies and other 3D content
are already changing our viewing culture. In
near future, the shift will be from stereoscopic
displays with 3D glasses to autostereoscopic
displays without the glasses. The gaming culture
is also shifting to 3D gaming. Within next five
years till 2015, 3D imaging will become part of
our everyday life from cameras to mobile phones
to computers to TV to games. Hence, intelligent
algorithms and techniques will be required for
processing of 3D data. Additionally, bandwidth
requirements will increase for transmission.
Good compression methods will be required as
we move to multi-view imaging displays. The
ultimate goal for imaging displays is to gener-
ate 3D views like we, ourselves, see in 3D. That
will be accomplished by research in holography.
However, that is something to be discussed in the
next decade. This decade is for the stereoscopic
displays, autostereoscopic displays and for all the
technology that is associated with them.
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KEY TERMS AND DEFINITIONS

Stereoscopic: It refers to 3D using two im-
ages just like our eyes. It requires 3D glasses to
view in 3D.

Autostereoscopic: Itrefers to 3D displays that
do not require 3D glasses to view in 3D.
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ABSTRACT

3D modeling of complex objects is an important task of computer graphics and poses substantial dif-
ficulties to traditional synthetic modeling approaches. The multi-view stereo reconstruction technique,
which tries to automatically acquire object models from multiple photographs, provides an attractive
alternative. The whole reconstruction process of the multi-view stereo technique is introduced in this
chapter, from camera calibration and image acquisition to various reconstruction algorithms. The shape
from silhouette technique is also introduced since it provides a close shape approximation for many
multi-view stereo algorithms. Various multi-view algorithms have been proposed, which can be mainly
classified into four classes: 3D volumetric, surface evolution, feature extraction and expansion, and depth
map based approaches. This chapter explains the underlying theory and pipeline of each class in detail
and analyzes their major properties. Two published benchmarks that are used to qualitatively evaluate
multi-view stereo algorithms are presented, along with the benchmark criteria and evaluation results.

INTRODUCTION graphic designer using specialized tools (e.g., 3D

Max Studio, Maya, Rihno), the entire process to
High quality 3D models have large and wide ap- obtain a good quality model is time consuming
plications in computer graphics, virtual reality, and tedious. Moreover, the result is usually only
robotics, and medical imaging, etc. Although an approximation or simplification. At this place,
many of the 3D models can be created by a 3D modeling technique provides an alternative

and has already demonstrated their potential in
DOI: 10.4018/978-1-61350-326-3.ch002 several application fields.
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In general, 3D modeling technique can be
classified into two different groups: active and
passive methods. The active methods try to ac-
quire precise 3D data by laser range scanners or
coded structured light projecting systems which
project special light patterns onto the surface ofa
real object to measure the depth to the surface by
a simple triangulation technique. Although such
3D data acquisition systems can be very precise,
most ofthem are very expensive and require special
skills. Compared to active scanners, passive meth-
ods work in an ordinary environment with simple
devices and flexibilities, and provide feasible and
comfortable means to extract 3D information
from a set of calibrated pictures. According to the
information contained in images which is used to
extract 3D shape information, passive methods
can be categorized into four classes: shape from
silhouette, shape from stereo, shape from shading
(Zhang, 1999), and shape from texture (Forsyth,
2001; Lobay, 2006). This chapter will mainly
focus on shape from stereo technique that tries to
reconstruct object models from multiple calibrated
images by stereo matching. Shape from silhouette
technique is also introduced since it outputs a good
shape estimate which is required by many shape
from stereo algorithms.

In order to generate 3D model of a real object,
digital cameras are used to capture multi-view
images of the object which are obtained by chang-
ing the viewing directions to the object. Once the
camera has been calibrated, a number of images
are acquired at different viewpoints in order
to capture the complete geometry of the target
object. In many cases, the acquired images need
to be processed before surface reconstruction.
Finally, these calibrated images are provided as
input to various multi-view stereo algorithms
which seek to reconstruct a complete model from
multiple images using information contained in
the object texture. The major advantage of this
technique is that it can output high quality surface
models and offer high flexibility of the required
experimental setup.

This chapter is structured as follows. Next
section gives a brief introduction to camera
calibration followed by the section that discusses
several issues about how the original pictures
should be taken and processed. Then, shape from
silhouette concept and approaches are explained
in detail, along with a discussion of its applica-
tions. After that, a section mainly focuses on the
classification of shape from stereo approaches and
introduces the pipeline, theory and characteristics
ofeachclass. Final section presents two published
benchmarks for evaluating various multi-view
stereo algorithms.

CAMERA CALIBRATION

Camera calibration is the process of finding the
true parameters of the camera that produced a
given photograph or video. Camera calibration
is the crucial step in obtaining an accurate model
of a target object. The calibration approaches can
be categorized into two groups: full-calibration
and self-calibration. Full-calibration approaches
(Yemeza, 2004; Park, 2005) assume that a cali-
bration pattern with precisely known geometry is
presented in all input images, and computes the
camera parameters consistent with a set of cor-
respondences between the features defining the
chart and their observed image projections. While
the self-calibration approaches (Hernandez, 2004;
Eisert, 2000; Fitzgibbon, 1998) are proposed to
reduce the necessary prior knowledge about the
scene camera geometry only to a few internal
and external constraints. In these approaches, the
intrinsic camera parameters are often supposed to
be known a priori. However, since they require
complex optimization techniques which are slow
and difficult to converge, their accuracy is not
comparable to that of the fully-calibrated systems.
Inpractice, many applications such as 3D digitiza-
tion of cultural heritage prefer to fully-calibrated
systems since maximum accuracy is a very crucial
requirement while self-calibration approaches
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are preferred when no Euclidean information is
available such as reconstruction of a large scale
outdoor building.

IMAGE ACQUISITION
AND PROCESSING

There are many important issues about how the
original pictures should be taken and processed,
which eventually determine the final model
quality. In this section only three issues that are
closely related to multi-view stereo reconstruction
technique are discussed: uniform illumination,
silhouette extraction, and image rectification.

One of the most obvious problems during im-
age acquisition is that of highlights. Highlights
depend on the relative position of object, lights
and camera which means that they change position
along the object surface from one image to the
other. This can be problematic in recovering the
diffuse texture of the original object. Highlights
should be avoided in the original images by using
a diffuse and uniform lighting. Moreover, multi-
view stereo matching will also be influenced by
uniform illumination. In order to make sure the
uniform lighting condition for each image, the
target object should be illuminated by multiple
light sources at different positions.

To facilitate silhouette segmentation, it is bet-
ter to use a monochrome background in the setup
of image acquisition. This facilitates the identi-
fication of the object silhouette using standard
background subtraction method which needs two
consecutive acquisitions for the same scene, with
and without the object, keeping the camera and
the background unchanged. However, standard
background subtraction method may in some
cases fail when the background color happens to
be the same with the object color which will cause
erroneous holes inside the silhouettes. However,
if the transition between the background and the
object is sharp, the correct silhouette can still be
found. Some manual processing isneeded to fix the
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erroneous holes. In practice, it is better to select a
background color with high contrast to the object
colorwhich will make image segmentation simple.

In practice, multi-view stereo algorithms
always rectify image pairs to facilitate stereo
matching. Stereo rectification determines a trans-
formation of each image plane such that pairs of
conjugate epipolar lines become parallel to the
horizontal image axes. Using projection matrices
ofthereference and primary images, we canrectify
stereo images by using the rectification technique
proposed by (Fusiello, 2000). The important ad-
vantage of rectification is that computing stereo
correspondencesis simpler, because search is done
along the horizontal lines of the rectified images.

SHAPE FROM SILHOUETTE

Shape from silhouette approaches try to create a
3D representation of an object by its silhouettes
within several images from different viewpoints.
The 3D representation named visual hull (Lau-
rentini, 1994) is constructed by intersection of
the visual cones formed by back-projecting the
silhouettes in the corresponding images. The vi-
sual hull can be very close to the real object when
much shape information can be inferred from
the silhouettes (see Figure 1 left). Since concave
surface regions can never be distinguished using
silhouette information alone, the visual hull is
justan approximation of the actual object’s shape,
especially if there are only a limited number of
cameras. The visual hull of a toy dinosaur dem-
onstrated in Figure 1 right shows that a concave
region on the dinosaur body cannot be correctly
recovered (illustrated by the red square).

3D Bounding Box Estimation

Many visual hull computation approaches need the
target object’s 3D bounding box, e.g. volumetric
approach takes it as a root node when building
visual hull octree structure, deformable model
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Figure 1. The visual hull of a toy alien model (left) and a toy dinosaur model (right)

approachneedsa3D bounding volume to construct
an initial surface.

The 3D bounding box can be estimated only
from a set of silhouettes and the projection matri-
ces. Inpractice, an accurate 3D Bounding Box can
improve the precision of the final model. We can
calculate the 3D bounding box only from a set of
silhouettes and the projection matrices. This can
be done by considering the 2D bounding boxes of
each silhouette. The bounding box of the object
can be computed by an optimization method for
each ofthe 6 variables defining the bounding box,

which are the maximum and minimum of x, y, z
(Song, 2009). On the other hand, the 3D bound-
ing box can also be estimated using an empirical
method. When the image capture system has been
constructed, the origin of the world coordinate
is defined. If we know the approximate position
of the origin, the center of bounding box can be
estimated. The size of the bounding box is simple
to estimate since we can just make it large enough
to contain the object. Then this estimated initial
bounding box can be applied to compute the
visual hull mesh. In practice, the resulting visual
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hull mesh also has a bounding box which is very
close to the object’s real bounding box.

Visual Hull Computation

The main problem for visual hull computation is
the difficulty in designing a robust and efficient
algorithm for the intersection of the visual cones
formed by back-projecting the silhouettes. Various
algorithms have been proposed to solve this prob-
lem, such as volumetric (Song, 2009), polyhedral
(Matusik, 2000; Shlyakhter, 2001), marching
intersection (Tarini, 2002), and deformable model
approaches (Xu, 2010). This section gives a brief
introduction to volumetric approach.

In the volumetric approach, the 3D space
is divided into elementary cubic elements (i.e.,
voxels) and projection tests are performed to
label each voxel as being inside, outside or on
the boundary of the visual hull. This is done by
checking the contents of its projections on all the
available binary silhouette images. The output of
volumetric methods is either an octree (Szeliski,
1993; Potmesil, 1987), whose leafnodes cover the
entire space or a regular 3D voxel grid (Cheung,
2000). Coupled with the marching cubes algorithm
(Lorensen, 1987), a surface can be extracted.
Since these techniques make use of a voxel grid
structure as an intermediate representation, the
vertex positions of the resulting mesh are thus
limited to the voxel grid. The most important
part for volumetric approach is projection test,
which is a process to check the projection of a
voxel on all the available binary silhouette im-
ages. The test result classifies the voxel as being
inside, outside or on the boundary of the visual
hull. Specifically, if the projection of the voxel is
in all the silhouettes, the corresponding voxel is
inside the visual hull surface; if the projection is
completely out of at least one silhouette, its type
is out; else, the voxel is on the visual hull surface.
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Discussion

The visual hull is an approximation of the real
objectshape and the level of satisfaction obviously
depends on the kind of object and on the number
and position of the acquired views. However, it
still has many applications in the field of shape
analysis, robotic and stereo vision etc. Firstly, it
offers a rather complete description of a target
object and can be directly fed to some 3D appli-
cations as a showcase. Moreover, the generated
visual hull model can be sensibly improved from
the appearance point of view by means of color
textures obtained by the original images. Secondly,
the visual hull is an upper bound of a real object
which is big advantage for obstacle avoidance in
the field of robotic or visibility analysis in navi-
gation. Finally, it provides good initial model for
many reconstruction algorithms, e.g. the snake-
based multi-view stereo reconstruction algorithm
uses it as an initial surface since it can capture the
target object’s topology in most case.

MULTI-VIEW STEREO
RECONSTRUCTION

Multi-view stereo technique seeks to reconstruct
a complete 3D object model from a collection of
calibrated images using information contained
in the object texture. In essence, the depth map
of each image is estimated by matching multiple
neighboring images using photo-consistency
measures which operate by comparing pixels in
one image to pixels in other images to see how
well they correlate. The position of correspond-
ing 3D point is then computed by a triangulation
method. In practice, the image sequence captured
for surface reconstruction contains many images,
from one dozen to more than one hundred and
the camera viewpoints may be arranged arbi-
trarily. Therefore, a visibility model is needed to
determine which images should be selected for
stereo matching. Multi-view stereo reconstruction
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algorithms can be mainly categorized into four
classes according to the taxonomy of (Seitz,
2006): 3D volumetric, surface evolution, feature
extraction and expansion, and depth map based
approaches. We introduce the pipeline of each
class first and then take one typical algorithm
of each class to explain the implementation de-
tails. Finally, the characteristics of each class is
summarized some of which are validated by the
evaluation results on the Middlebury benchmark.

3D Volumetric Approach

3D volumetric approaches (Treuille, 2004) first
compute a cost function on a 3D volume, and
then extract a surface from this volume. Based
on the theoretical link between maximum flow
problems in discrete graphs and minimal surfaces
in an arbitrary Riemannian metric established by
(Boykov, 2003), many approaches (Snow, 2000;
Kolmogorov, 2002; Vogiatzis, 2005; Tran, 2006;
Vogiatzis, 2007) use graph cut to extract an optimal
surface from a volumetric Markov Random Field
(MRF). Typically, graph cut based approaches
first define a photo consistency based surface cost
function on a volume where the real surface is
embedded and then discretize it with a weighted
graph. Finally, the optimal surface under this
discretized function is obtained as the minimum
cut solution of the weighted graph.

In the graph cut based approach proposed in
(Vogiatzis, 2005), they first build a base surface
S, .. asthevisual hull and the parallel inner bound-
ary surface S, which define a volume C enclosed
by S, ., and S, The photo-consistency measure
p(z) used to determine the degree of consistency
of a point x with the images is the NCC value
between patches centered on x. And the base
surface S,  is employed for obtaining visibility
information by assuming that each voxel has the
same visibility as the nearest point on S,  The
cost function associated with the photo-consis-

tency of a candidate surface S is the integral of
p(z) on the surface,

E181= [[ plx)ia (1)

If the base surface S,  is not far from the real
surface, then voxels that lie on the real surface
would have smallest p values. Therefore, surface
reconstruction can be formulated as an energy
minimization problem which tries to find the
minimalsurfaceS . inthe volume C.The minimal
surface under this function is obtained by com-
puting the minimum cut solution of the graph. In
order to obtain a discrete solution, 3D space is
quantized into voxels of size & x h % h. The graph
nodes consist of all voxels whose centers are in
C. Each voxel is a node in the graph, G, with a
6-neighbor system for edges. The weight for the
edge between voxel (node) v, and v, is defined as,

47Th2 x,; + 'Z‘v]'
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where / is the voxel size. The voxels that are part
of § and S,  are connected with the source and
sink respectively with edges of infinite weight.
With the graph G constructed this way, the graph
cut algorithm is then applied to find S . in poly-
nomial time.

Since the graph cut algorithm usually prefers
shorter cuts, protrusive parts of the object surface
is easy to cut off. In this case, a shape prior that
favors objects that fill the space of the visual hull
more can be applied. The main problem for graph
cut based approach is that for high resolutions
of the voxel grid, the image footprints used for
consistency determination become very small
which often results in noisy reconstructions in
textureless regions.
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Surface Evolution Approach

Surface evolution approaches (Hernandez, 2004;
Zaharescu,2007; Kolev,2009) work by iteratively
evolving a surface to minimize a cost function, in
which the surface can be represented by voxels,
level sets, and surface meshes. Space carving
(Matsumoto, 1997; Fromherz, 1995) is a tech-
nique that starts from a volume containing the
scene and greedily carves out non-photoconsistent
voxels from that volume until all remaining vis-
ible voxels are consistent. Since it uses a discrete
representation of the surface but does not enforce
any smoothness constraint on the surface, the
reconstructed results are often quite noisy. Level
set techniques (Malladi, 1995) start from a large
initial volume and shrink inward to minimize a
set of partial differential equations defined on
a volume. These techniques have an intrinsic
capability to freely change the surface topology
while the drawbacks are the computation time
and the difficulty to control the topology. Topol-
ogy changes have to be detected and taken care
of during the mesh evolution which can be an
error prone process. Snake techniques formulate
the surface reconstruction as a global energy
minimization problem. The total energy term £
is composed of an internal energy £, to obtain a
final well-shaped surface, and an external energy
E_, to make the final surface confirm the shape
information extracted from the images. This en-
ergy minimization problem can be transformed
to a surface iteration problem in which an initial
surface mesh is driven by both the internal force
and external force that iteratively deform to find
a minimum cost surface.

Since the snake approach of (Hernandez, 2004)
wants to exploit silhouettes and texture for surface
reconstruction, the external energy is composed
of the silhouette related energy £, and the texture
related energy E, . The minimization problem is
posed as finding the surface S of R® that minimizes
the energy E(S) defined as follows:
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E(S) = Eext(s) + Eim(S) = E{ea'(S) + Esu(S) + Eim(S)
3)

And this energy minimization problem can
be transformed to a surface iteration problem as
follows:

S = S 4 AH(F,

tex

(8°) + F,(8") + F,.(5"))
(4)

To completely define the deformation frame-
work, this approach needs an initial surface S,
that will evolve under the different energies until
convergence. Since snake deformable models
maintain the topology of the mesh during its
evolution, the initial surface must capture the
topology of the object surface. The visual hull is
a quite good choice in this case. The texture force
F, contributes to recovering the 3D object shape
by exploiting the texture of the object to maximize
the image coherence of all the cameras that see
the same part of the object which is constructed
by computing a Gradient Vector Flow (GVF)
filled (Xu, 1998) in a volume merged from the
estimated depth maps. The silhouette force F
is defined as a force that makes the snake match
the original silhouettes of the sequence which can
be decomposed into two different components: a
component that measures the silhouette fitting,
and a component that measures how strongly the
silhouette force should be applied. The internal
force F, contains both the Laplacian and bihar-
monic operators that try to smooth the surface
during surface evolution process. The deformable
model evolution process at the & iteration can
then be written as the evolution of all the vertices
of the mesh v.

v =0 + AUE,, (v]) + BE,(v]) + vE, (v]))
(5)
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where At is the time step and § and ~ are the
weights of the silhouette force and the regulariza-
tion term, relative to the texture force. The time
step At hastobe chosenasacompromisebetween
the stability of the process and the convergence
time. Equation 5 is iterated until convergence of
all the vertices of the mesh is achieved.

Snake deformable offers a well-known frame-
work to optimize a surface under several kinds of
constraints extracted from images such as texture,
silhouette, and shading constraints. However, its
biggestdrawback is that it cannot change the topol-
ogy of the surface during the evolution. Moreover,
since the snake approach is evolved based on
surface mesh, they have to deal with artifacts like
self intersections or folded-over polygons. The
resolution of the polygon mesh has to be adjusted
by tedious decimation, subdivision and remeshing
algorithms that keep the mesh consistent. Finally,
large distances between the initial and the true
surface (e.g. in deep concavities) often lead to
slow convergence of the deformation process.

Depth Map Based Approach

Generally, depth map based approaches (Goesele,
2006; Bradley, 2008; Campbell, 2008; Liu, 2009;
Song,2010;Li,2010) involve two separate stages.
First, a depth map is computed for each viewpoint
using binocular stereo. Second, the depth maps are
merged to produce a 3D model. In these methods,
the estimation of the depth maps is crucial to
the quality of the final reconstructed 3D model.
Since the estimated depth maps always contain
lots of outliers due to miscorrelation, an outlier
rejection process is always required before final
surface reconstruction.

Song et al. (Song, 2010) proposed a depth
map based approach to reconstruct a complete
surface model using both texture and silhouette
information contained in images (see Figure 2 for
illustration). Firstly, depth maps are estimated from
multi-view stereo efficiently by an expansion-

based method. The outliers of the estimated depth
maps are rejected by a two-step approach. Firstly,
the visual hull of a target object is incorporated
as a constraint to reject 3D points out of the vi-
sual hull. Then, a voting octree is built from the
estimated point cloud and a threshold is selected
to eliminate miscorrelations. To downsample the
3D point cloud, for each node at the maximum
depth of the voting octree, the point with largest
confidence value is extracted in the corresponding
voxel to construct a new point cloud on the object
surface with few outliers and smaller scale. The
surface normal of each point in the point cloud
is estimated from the positions of the neighbors
and the viewing direction of each 3D point is
employed to select the orientation of estimated
surface normal. The resulted oriented point cloud
is called point cloud from stereo (PCST). In order
to restore the textureless and occluded surfaces,
another oriented point cloud called point cloud
from silhouette (PCSL) is computed by carving
the visual hull octree structure using the PCST.
Finally, Poisson surface reconstruction approach
(Kazhdan,2006) is applied to convert the oriented
point cloud both from stereo and silhouette (PC-
STSL) into a complete and accurate triangulated
mesh model.

The computation time of depth map based
methods are dominant by the depth map estima-
tion step which can vary from few minutes to
several hours for the same input dataset. Since
these approaches use an intermediate model rep-
resented by 3D points, they are able to recover
accurate details on well textured region while
result in noisy reconstructions in textureless re-
gions.

Feature Extraction and
Expansion Approach

The idea behind this class (Habbecke, 2007;
Goesele, 2007; Jancosek, 2009; Furukawa, 2010)
is that a successfully matched depth sample of
a given pixel provides a good initial estimate
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Figure 2. Overall approach of (Song, 2010). From left to right: one input image, visual hull, PCST,
PCSL, PCSTSL, the reconstructed model.

for depth and normal for the neighboring pixel
locations. Typically, these algorithms use a set
of surface elements in the form of patch with
either uniform shape (e.g. circular or rectangular)
or non-uniform shape known as patch model.
A patch is usually defined by a center point, a
normal vector, and a patch size to approximate
the unknown surface of a target object or scene.
The reconstruction algorithm always consists of
two alternating phases. The first phase computes
a patch model by matching a set of feature points
to generate seed patches and expanding the shape
information from these seed patches. Note that a
filtering process can be done simultaneously with
the expansion process or as a post process for the
patch model. The second phase converts the patch
model into a triangulated model.

Recent work by Furukawa and Ponce (Fu-
rukawa, 2010) proposes a flexible patch-based
algorithm for calibrated multi-view stereo. The
algorithm starts by computing a dense set of small
rectangular oriented patches covering the surfaces
visible in the images by a match, expand and
filter procedure: (1) matching: features found by
Harris and difference-of-Gaussians operators are
first matched across multiple pictures to generate
a sparse set of patches associated with salient
image regions, (2) expansion: spread the initial
matches to nearby pixels and obtain a dense set
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of patches, (3) filtering: visibility and a weak
form of regularization constraints are then used to
eliminate incorrect matches. Then the algorithm
converts the resulting patch model into an initial
mesh model by PSR approach or iterative snap-
ping: (1) PSR approach directly converts a set of
oriented points into a triangulated mesh model,
(2) iterative snapping approach computes a visual
hull model and iteratively deforms it towards
reconstructed patches. Note that the iterative
snapping algorithm is applicable only to object
datasets with silhouette information. Finally, an
optional final refinement algorithm is applied
to refine the initial mesh to achieve even higher
accuracy via an energy minimization approach
(Furukawa, 2008). Since this algorithm takes into
account surface orientation properly in comput-
ing photometric consistency, which is important
when structures do not have salient textures, or
images are sparse and perspective distortion ef-
fects are not negligible, it outputs accurate object
and scene models with fine surface detail despite
low-texture regions or large concavities.

Since this class of approach takes advantage of
the already recovered 3D information, the patch
model reconstruction step is quite efficient. And
they do not require any initialization in the form
of a visual hull model, a bounding box, or valid
depth ranges. Finally, these approaches are easy
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to find correct depth in low-textured regions due
to its expansion strategy and patch model repre-
sentation, i.e., use large patches in homogeneous
area while small patches for well textured region.

Discussion

We have introduced the pipeline, theory and
characteristics of each class for multi-view stereo
algorithm. With the development of this area,
some approaches take the advantages of several
existing methods and modify each existing method
in an essential way to make them more robust
and accurate. For example, Vu et al. (Vu 2009)
proposed amulti-view stereo pipeline to deal with
large scenes while still producing highly detailed
reconstructions. They first extracta visibility con-
sistent mesh close to the final reconstruction using
aminimum s-tcut from a dense point cloud merged
from estimated depth maps. Then a deformable
surface mesh is iteratively evolved to refine the
initial mesh to recover even smaller details. In
fact, this approach combines the characteristic
of depth map based, 3D volumetric, and surface
evolution classes. However, since the accuracy of
the final mesh basically depends on the estimated
depth maps, this approach is classified as depth
map based class in this chapter.

Shape from stereo is based on the assumption
that the pixel intensity of a 3D point does not
differ significantly when projected onto different
camera views. However, this assumption does
not hold in most practical cases due to shading,
inhomogeneous lighting, highlights and occlusion.
Therefore, it is difficult to obtain robust and reli-
able shape by using only stereo information. This
methodrelies substantially on the object’s texture.
When atarget object lacks texture, structured light
can be used to generate this information.

BENCHMARK

Multi-view 3D modeling datasets can mainly be
classified into two categories. The first category is
object datasets in which a single object is photo-
graphed from viewpoints all around it and usually
fully visible in acquired images. The uniqueness
of datasets of this category is that it is relatively
straightforward to extract the apparent contours
ofthe object and thus compute its visual hull. The
other category is scene datasets in which target
objects may be partially occluded and/or embed-
ded in clutter, and the range of viewpoints may be
severely limited. The characteristic of datasets of
this category is that it is hard to extract the appar-
ent contours of the object to compute its bounding
volume. Typical examples are outdoor scenes
such as buildings or walls. Two benchmarks have
been published to evaluate various multi-view
stereo algorithms quantitatively: the Middlebury
benchmark for object datasets and the large scale
outdoor benchmark for scene datasets.

Middlebury Benchmark

The Middlebury benchmark (Seitz, 2006) datas-
ets consist of two objects, temple and dino. The
temple object (see Figure 3 left) is a 159.6 mm
tall, plaster reproduction of an ancient temple
which is quite diffuse and contains lots of geo-
metric structure and texture. While the dino object
(see Figure 3 right) is a 87.1mm tall plaster dino-
saur model which has a white, Lambertian surface
without obvious texture. The images of the data-
sets were captured by using the Stanford
spherical gantry and a CCD camera with a resolu-
tion of 640 x 480 pixels attached to the tip of the
gantry arm. From the resulting images, three
datasets were created for each object, correspond-
ing to a full hemisphere, a single ring around the
object, and a sparsely sampled ring. A more
detailed description of the temple and dino data-
sets can be found in (Seitz, 2009). In order to
evaluate the submitted models, an accurate surface
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Figure 3. The Middlebury benchmark: temple (left) and dino (right) objects

model acquired from laser scanner is taken as the
ground truth model with 0.25mm resolution for
each object.

The reconstruction results for the Middlebury
benchmark datasets are evaluated on the accu-
racy and completeness of the final result with
respect to the ground truth model, as well as
processing time. The accuracy is measured by
distance d such that a given percentage, say X%,
of the reconstruction is within d from the ground
truth model and the completeness is measured by
percentage Y% of the ground truth model that is
within a given distance D from the reconstruction.
The default value is X=90 and D=1.25. In order
to compare computation speed fairly, the re-
ported processing time will be normalized accord-
ing to the processor type and frequency. We
present the results of quantitative evaluation of
current state-of-the-art multi-view stereo recon-
struction algorithms on this benchmark datasets
shown in Table 1. Please note that only the pub-
lished approaches are considered for the accu-
racy ranking, ignoring the evaluation results of
unpublished papers. Since Furukawa and Ponce
evaluate the submissions of the same approach
twice for two different publications (Furukawa,
2007; Furukawa, 2010), only the result of (Furu-
kawa,2010)is included foraccuracy ranking. The
algorithms listed in Table 1 are grouped using the
classification method presented in previous
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section in order to validate the characteristic of
each class.

Table 1 shows that the accuracy and complete-
ness rankings among the algorithms are rela-
tively stable. Since most of the algorithms in this
benchmark generate complete object models, the
completeness numbers were not very discrimina-
tive. We mark the top three most accurate algo-
rithms for each datasetin Table 1 using red, green,
and blue color respectively. First of all, we can
find that the evaluation results of the depth map
based approaches on the temple object is very
good for the reason that this class is adapt in re-
constructing well textured object with many slight
details. While the property that depth map based
approach cannot handle textureless region quite
well has also been demonstrated by the Figure 4
(see the region marked by the red square). Sec-
ondly, the approach of (Furukawa, 2010) outper-
forms all other submitted for all the three datasets
of'the dino object since the feature extraction and
expansion approaches can recover correct shape
information for low-textured objects.

Large Scale Outdoor Benchmark

This benchmark data (Strecha, 2008) contains
outdoor scenes and can be downloaded from
(Strecha, 2010). Multi-view images of the scenes
are captured with a Canon D60 digital camera
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Table 1. Quantitative evaluation results of current state-of-the-art multi-view stereo algorithms

Temple Dino
Full Ring SparseR Full Ring SparseR
Vogiatzis 2005 | 1.07,90.7% | 0.76,96.2% | 2.77,79.4% 0.42,99.0% | 0.49,96.7% | 1.18,90.8%
Zg;:‘;g‘emc Tran 2006 1.12,92.3% | 1.53,85.4% 1.12,92.0% | 1.26,89.3%
Vogiatzis 2007 | 0.5,98.4% | 0.64,99.2% | 0.69, 96.9%
Surface Hernandez 2004 | 0.36,99.7% | 0.52,99.5% | 0.75,95.3% 0.49,99.6% | 0.45,97.9% | 0.6, 98.5%
Evolution Zaharesu 2007 0.55,99.2% | 0.78, 95.8% 0.42,98.6% | 0.45,99.2%
Approach Kolev 2009 0.72,97.8% | 1.04,91.8% 0.43,99.4% | 0.53,98.3%
Goesele 2006 0.42,98.0% | 0.61,86.2% | 0.87,56.6% 0.56,80.0% | 0.46,57.8% | 0.56,26.0%
Bradley 2008 0.57,98.1% | 0.48, 93.7% 0.39,97.6% | 038,94.7%
Campbell 2008 | 0.41,99.9% | 0.48,99.4% | 0.53,98.6%
Depth
Map-based Liu 2009 0.65, 96.9% 0.51,98.7
Approach Vu 2009 0.45, 99.8% 0.53, 99.7%
Li 2010 0.64, 98.2% 0.43,99.7%
Song 2010 0.61,98.3% 0.38,99.4% | 0.54,95.5%
Habbecke 2007 | 0.66, 98.0% 0.43,99.7%
Feature
Extraction Goesele 2007 0.42, 98.2% 0.46, 96.7%
gnd ‘ Jancosek 2009 | 0.65,85.8% | 0.7,78.9% | 0.59,74.9% 0.91,73.8% | 0.71,76.6% | 0.66, 74.9%
Xpansion
Furukawa 2010 | 0.49,99.6% | 0.47,99.6% | 0.63,99.3% 0.33,99.8% | 0.28,99.8% | 0.37,99.2%

Figure 4. The dino models reconstructed by depth map based approaches. From left to right, (Goesele,
20006), (Vu, 2009), (Li, 2010), and (Song, 2010).

with a resolution of 3072 x 2028 square pixels.
Figure 5 shows two datasets of this benchmark.
The ground truth which is used to evaluate the
quality of image based results is acquired by a
laser scanner, outlier rejection, normal estimation
and Poisson based surface reconstruction process.

Evaluation of the multi-view stereo reconstruc-
tions is quantified through relative error histo-
grams counting the percentage of the scene re-
covered within a range of 1 to 10 times an
estimated noise variance o which is the standard
deviation of depth estimates of the laser range
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Figure 5. Large scale outdoor benchmark, Fountain-Pl11 (left) and Herz-Jesu (right) datasets

Table 2. Completeness measures for the Fountain dataset

c 20 k1 40 So 60 7o 8o 9¢ 100
Zaharescu 2007 14.6 38.8 55.5 65.1 70.4 73.7 75.9 77.3 78.3 79.0
Furukawa 2007 14.8 41.1 58.0 66.9 71.7 74.6 76.5 77.8 78.8 79.6
Vu 2009 18.0 47.7 67.9 78.7 84.2 87.2 88.8 89.8 90.4 90.9
Jancosek 2009 7.9 24.6 42.0 56.5 66.6 72.1 75.0 76.7 77.8 78.6

scanner used in the experiments. Table 2 present
the results of quantitative evaluation of current
state-of-the-art multi-view stereo reconstruction
algorithms on the fountain dataset of this bench-
mark. Each entry in the table shows the percent-
age of the laser-scanned model that is within o
distance from the corresponding reconstruction.
Since the feature extraction and expansion ap-
proaches do not require any initialization in the
form of a visual hull model or a bounding box,
they are very appropriate for scene datasets re-
construction. Another finding is that (Vu, 2009)
achieves the best performance for this dataset
since this approach combines advantages of sev-
eral existing approaches.

FUTURE RESEARCH DIRECTIONS

Further development of multi-view stereo tech-
nique could move in many directions. A few of
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them are indicated as follows: firstly, research
will focus on recovering 3D models with even
higher accuracy to know the maximum accuracy
that can be achieved by this technique; secondly,
this technique will be more and more broadly em-
ployed for outdoor 3D model acquisition, which is
a great challenge; finally, most shape from stereo
algorithms assume that an object or a scene is
lambertian under constant illumination, which is
certainly not true for most surfaces in practice.
Therefore, it is important to know whether this
technique can recover a high quality 3D model
of an object with arbitrary surface reflectance
properties under real lighting conditions. Due
to the accumulation of solid research results and
many years’ experience, it is firmly believed
that multi-view stereo technique will be greatly
advanced in the future.
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CONCLUSION

This chapter gives a brief introduction to the
multi-view stereo technique, ranging from
camera calibration, image acquisition to various
reconstruction algorithms. Several hundreds of
reconstruction algorithms have been designed
and applied for various applications and can be
mainly categorized into four classes. The underly-
ing theory and pipeline of each class are explained
in detail and the properties of each class are also
analyzed and validated by the evaluation results
on the published benchmarks. Although we are
still far away from the dream to recover a 3D
model of an arbitrary object from multi-view
automatically, multi-view stereo technique pro-
vides usapowerful alternative to acquire complex
3D models from real world. This technique has
become more powerful in recent years, which
has been confirmed by evaluation results on the
introduced benchmarks.
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KEY TERMS AND DEFINITIONS

Benchmark: Something whose quality or
quantity is known and which can therefore be
used as a standard with which other things can
be compared.

Camera Calibration: The process of finding
the intrinsic and extrinsic parameters ofthe camera
that took photographs.

Image Processing: A technique in which the
data from an image are digitized and various
mathematical operations are applied to the data
in order to create an enhanced image that is more
useful or pleasing to a human observer, or to per-
form some of the interpretation and recognition
tasks usually performed by humans.

Multi-View Stereo Reconstruction: A shape
reconstruction technique that tries to extract the 3D
shape of a scene from two or more images taken
at known camera positions by stereo matching
different images.

Shape from Silhouette: A shape reconstruc-
tion technique by intersection of the visual cones
formed by back projecting the silhouettes in the
corresponding images.

Visual Hull: An approximate shape representa-
tion of an object created by shape from silhouette
3D reconstruction technique.
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Forward Projection for Use
with Iterative Reconstruction
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ABSTRACT

Modelling the forward projection or reprojection, that is defined as the operation that transforms a 3D
volume into series of 2D set of line integrals, is of interest in several medical imaging applications as
iterative tomographic reconstruction (X-ray, Computed Tomography [ CT], Positron Emission Tomography
[PET], Single Photon Emission Computed Tomography [SPECT]), dose-calculation in radiotherapy and
3D-display volume-rendering. As forward projection is becoming widely used, iterative reconstruction
algorithms and their characteristics may affect the reconstruction quality, its accuracy and perfor-
mance needs more attention. The aim of this chapter is to show the importance of the modelling of the
forward projection in the accuracy of medical tomographic data (CT, SPECT and PET) reconstructed
with iterative algorithms. Therefore, we first present a brief overview on the iterative algorithms used in
tomographic reconstruction in medical imaging. Second, we focus on the projection operators. Concepts
and implementation of the most popular projection operators are discussed in detail. Performance of
the computer implementations is shown using the well-known Shepp Logan phantom. In order to avoid
possibly confounding perspective effects implied by fan or cone-beam, this study is performed in paral-
lel acquisition geometry.
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INTRODUCTION

Tomographic reconstruction is the technique un-
derlying nearly all of the key diagnostic imaging
modalities, including X-ray, CT, PET, SPECT,
some acquisition methods for Magnetic Resonance
Imaging (MRI), and newly emerging techniques
such as electrical impedance tomography (EIT)
and optical tomography. During the last decades,
various algorithms have been developed for
both 2D and 3D tomographic reconstruction
such as the analytical and the iterative methods.
The analytical algorithms, the most used, have
advantage to be fast, but they are not able to model
the characteristics of the data acquisition process.
While the iterative algorithms are able to precisely
model the physical and statistical characteristics
of the data acquisition process, independent
of the dimensionality of the image. The ability
to perform accurate iterative reconstruction
relies fundamentally on the modelling of the
forward projection. Some examples where mod-
elling the forward projections have been found
worthwhile to explore include: Redundant data,
better noise models, incomplete data, resolution
recovery, beam hardening correction and metal
artifact reduction.

In general, more detailed models resultin high-
er image quality but also in higher computational
load, which can become especially cumbersome
in 3D problems. Some of numerical methods
for implementing forward and backprojections
reduce total processing time by simplifying the
process used in determining the actual value to
be backprojected or reprojected but they result in
varying degrees of approximation errors. These
simplifications and approximations limit the ab-
solute accuracy of the reconstruction, contribute
to image reconstruction errors and may negate the
advantages of an iterative reconstruction. Con-
versely, more accurate interpolation techniques
tend to impose added requirements of the recon-
struction algorithms, and thus longer processing
times. As the projection is becoming widely
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used with iterative reconstruction algorithms and
their characteristics may affect the reconstruc-
tion quality, its accuracy and performance needs
more attention for better understanding. In this
context, this chapter aims to detail the implement-
ing of forward projection using the most models
that are frequently used in medical tomography
reconstruction with focus on errors generated by
the geometrical models. Itis structured as follows.
After this introduction, a brief overview on the
iterative algorithms used in tomographic recon-
struction in medical imaging is first presented.
Second, the concepts and implementation of the
most popular projection operators will be detailed.
Their performances have been shown using the
well-known Shepp Logan phantom (Shepp &
logan, 1994).

ITERATIVE RECONSTRUCTION
TECHNIQUES

During the last decades, various algorithms have
been proposed for both 2D and 3D tomographic
reconstruction such as the analytical and the
iterative methods. The analytical algorithms, the
most used, have advantage to be fast, but they
are not able to model the characteristics of the
data acquisition process. Iterative tomographic
reconstruction which is the process of recovering
3D image data from a set of integrals of that data
over 2D subspaces, provide an attractive solution
fortomographic imaging modalities over analytic
techniques and they have been successfully used
in medical imaging (Ziegler, 2008; Suetens,
2002), including computed tomography (CT),
single photon emission computed tomography
(SPECT), positron emission tomography (PET),
tomosynthesis and projection mode 2D magnetic
resonance imaging (MRI). The iterative methods
aim to minimize or maximize a cost function
between reconstructed slices 7 and measured
projection P and have the advantage to incorpo-
rate imaging geometry and physics effects into
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Figure 1. Representation of reconstruction steps at n iteration with iteration process. The notions used
are: T'") is the reconstructed image, P and P are the measured and the calculated projection data,

R and R’ are the forward and back projection matrix, ¢ projection error that measured the discrep-

ancy between P and ]5("), and e ;. is its backprojected image.
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the forward projection operator R that results in reconstruction that differ from each other in the

quantitatively improved reconstruction images.
All iterative methods begin with initial guess for
solution and successively improve it until solu-
tion is as accurate as desired. In theory, infinite
number ofiterations might be required to converge
to exact solution. In practice, iteration terminates
when some measure of error is as small as desired.
Figure 1 illustrates steps of implementation of
an iterative reconstruction algorithm where both
forward projection matrix and back projection
matrix (the reverse model of forward projection)
are needed to achieve one iteration.

A large variety of iterative techniques are
proposed and applied in medical tomographic

way the correction terms are derived and how the
update to the new estimate is calculated. Iterative
algorithms can be classified mainly into two
classes (Vandenberghe et al., 2001): conven-
tional algebraic reconstruction techniques and
iterative statistical methods.

Conventional Algebraic
Reconstruction Techniques

Conventional algebraic reconstruction techniques
aim to minimize weighted square norms (Jiang and
Wang, 2003). The oldest of this family is due to
S.Kaczmarz works and is known as the Algebraic
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Reconstruction Technique (ART) (Gordon, 1973;
Gordon & Herman, 1970; Herman, 2009) which
has a simple intuitive basis. Each projected density
is thrown back across the reconstruction space in
whichthe densities areiteratively modified to bring
eachreconstructed projection into agreement with
the measured projection. Assuming that the pattern
being reconstructed is enclosed in a square space
of n x n array of small pixels contain grayness
or density number, which is uniform within the
pixel but different from other pixels. A “ray” is
a region of the square space which lies between
two parallel lines. The weighted ray sum is the
total grayness of the reconstruction figure within
the ray. The projection at a given angle is then
the sum of non-overlapping, equally wide rays
covering the figure. The ART algorithm consists
of altering the grayness of each pixel intersected
by the ray in such a way as to make the ray sum
agree with the corresponding element of the
measured projection.

Other versions of these algorithms are Simul-
taneous Algebraic Reconstruction Technique
(SART) (Gilbert, 1972), Simultaneous Iterative
Reconstruction Technique (SIRT) (Gilbert, 1972)
and the [terative Least-Squares Technique (ILST)
(Goitein, 1972). Conceptually, these techniques
differ in the procedure of updating ﬁ(“). Begin-
ning with initial guess 7', ART solves one mea-
surement at a time by updating all corresponding
(image) pixels or voxels using the following equa-
tion:

N M

Ti(n+1) — T:(”) + a’tik . [[Pk _ Za;kT,(n)] ZaikQ]
i=1 k=1

(1)

where Ti("’)

is the value of reconstructed image at
the pixel i for the n iteration, N is the total num-
ber of reconstructed image pixels, P, is the mea-
sured projection data at & bin, M is the total

number of projection image bins, ¢, and a , are

30

the forward and back projector weighting coef-
ficients, respectively, that map the i pixel to k"
bin. While, the Additive Simultaneous Iterative
Reconstruction Technique (ASIRT) (P. Gilbert,
1972) is a version of SART, computes next itera-
tion by solving for each component of T as below:

M

) ) M N N
Tl(nﬂ) = j—;“[) + [1 Z a‘lk‘] : Z [avzx [[PA - Z %T/(”)] Z Q. ]]
k=1 k=1 i=1 i=1
(2)

Statistical Image
Reconstruction Methods

Statistical image reconstruction methods re-
construct images by iteratively maximizing a
likelihood function (Nuyts, 2001; Green, 1990;
Herbert & Leahy, 1989). They take the noise on
the measurement data into account. Therefore
they use a statistical modelling of the measure-
ment process. The best-known example is the
Maximum Likelihood (ML-EM) algorithm (Shepp
and Vardi, 1982; Vardi et al., 1985) that takes the
Poisson nature of the data into account according
to the following formula:
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Other examples of these techniques are the
Maximum A Posteriori (MAP) method mostly
used to guarantee good noise reduction and edge
preservation (Alenius & Ruotsalainen, 1997,
Alenius et al. 1998; Herbert & Leahy, 1989), the
convex method (Lange & Fessler, 1995) and the
ordered subsets convex (OSC) method (Kamphuis
& Beekman, 1998). These methods are known to
produce images with better signal to noise ratio at
the cost of increased computation time, and many
recent developments toward faster methods make
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Algorithm 1.

O: Algorithm “Iterative reconstruction”

1: Initiation: make a guess on the data to be reconstructed (usually assum-

ing that all pixels have the same value)

~

(T), set the iteration index it = 0,

2: Forward projection: Estimate projection data based on the current guess

N
at nth iterationfzw)=§£:awjfn)where a, 1s the coefficient of the forward projec-

i=1

tion operator that maps the i data pixel to k' projection bin;

3: Comparison: calculate the discrepancy g, (error) between acquired projec-

tions and reprojected ones;

4: Backprojection: backproject the discrepency g, over the image space: ¢,

(n)

M
:jzjaﬁampﬂ where a;kis the coefficient of the backprojection operator that
k=1

maps the k™ projection bin to i*" data pixel;

5: Modification: update the current data by incorporating weighted backpro-

jection in a specific way according to the defined algorithm (addition or

multiplication);

~ (-1 ~ (n
6: Evaluation: evaluate the reconstruction error between ]ﬁn ) and Yﬂm, if

2

the error is not sufficiently small, set it = it+l, and repeat steps 2 to 5 ;

7: end “Iterative reconstruction”

these methods promising as using the simplified
cost function (T. Kohler, 2003; Thibault, 2007).

A third class of iterative algorithms called the
Iterative Filtered Backprojection (IFBP) methods
can be considered (Xu et al., 1993). These meth-
ods are based on iterative algebraic application
of Filtered Backprojection (FBP) methods. For
IFBP, the step of backprojection in equation (1)
is replaced by a filter followed by a backprojec-
tor, the same operation normally performed in
FBP. Instead of converging to the least squares
solution, IFBP converges to a weighted least-
squares solution with the reconstruction filter
being the weighting function. (Xu et al., 1993;
Lalush & Tsui, 1993). Since the FBP method is
used in each iteration, certain artifacts are very
rapidly suppressed. Therefore, for the purpose
of suppressing such artifacts, [FBP methods are
usually much faster than other iterative methods.

Below follows a brief algorithmic descrip-
tion of iterative reconstruction implementation
(Algorithm 1):

The advantage of the iterative algorithms are
that they are able to precisely model the physical
and statistical characteristics of the data acquisi-
tion process, independent of the dimensionality
of the image, and can easily accommodate any
data acquisition geometry. Their major disadvan-
tages are that the processing is time consuming
and the computational burden is high since one
projection and one backprojection operation (the
reverse of forward projection) have to be per-
formed at each iteration. Moreover, the accuracy
of iterative reconstructed images is dependant
highly on the choice and the implementation of
these operations that require a model for the im-
aging systemat hand. A variety of efficient forward
and backprojection algorithms are currently avail-
able in clinical, in industrial, and research-
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oriented applications of tomography, and they
differinaccuracy and computational speed. Some
of numerical methods for implementing forward
and backprojections reduce total processing time
by simplifying the process of interpolation used
in determining the actual value to be backpro-
jected or reprojected but they result in varying
degrees of approximation errors. These simplifi-
cations and approximations limit the absolute
accuracy of the reconstruction, contribute to im-
age reconstruction errors and may negate the
advantages of an iterative scheme. Conversely,
more accurate interpolation techniques tend to
impose added requirements of the reconstruction
algorithms, and thus longer processing times.
Therefore, the selection of an appropriate projec-
tion model for a specific application requires the
knowledge of the method’s accuracy and compu-
tational complexity. In literature, there are many
papers considering the reconstruction algorithms
and reporting empirical comparisons of various
approaches, but the algorithm implementation
and the effects of the forward projection matrix
are not often described in detail. Only few papers
have recently described them (De Man and Basu,
2004). However, less attention has been made to
characterize errors generated by geometrical
projection modelling. In the following, the con-
cepts and the algorithm implementation of forward
projection operator are discussed in detail.

Forward Projection Operators

A forward projection or reprojection, that is
defined as the operation that transforms a 3D
volume into a series of 2D set of line integrals, is
ofinterestin several medical imaging applications
like (Boag, 2000) as iterative tomographic recon-
struction (CT, SPECTand PET) (Lewitt, 2003;
Ollinger, 1990; Ziegler, 2008; Zeng, 1994), dose-
calculation in radiotherapy (Bortfeld, 1994) and
3D-display volume-rendering (Chidlow, 2003). It
is also useful in industrial and research-oriented
applications of tomography. The projector is a
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system matrix of weighting coefficients a, that
maps the image pixels 7 to projection bin P, and
models the imaging process as:

N
P=% T, )

It is the key element in calculating projection
data from a discretized image. The main issue is
how to evaluate the contribution of a given pixel
from an imaged data in a projection bin from the
obtained projection. The accurate calculation of
projection matrix is probably the most important
step in iterative tomography reconstruction al-
gorithms, in which repeated applications of the
forward and reverse model are used to solve for
the image that best fits the measurements accord-
ingto an appropriate objective function. It defines
(1) how the continuous function to be estimated
is represented by a finite set of parameters; and
(2) how projection data are calculated from this
continuous function. These require the modelling
of'the projection matrix including the geometry of
the reconstruction problem and a number of other
physical parameters. A variety of efficient models
have been proposed to simulate the tomography
projection process. Some of the methods can be
described as procedures for forward projection but
they are not all based on explicit models. Another
family of methods is based on basis function of
intensity coefficient distribution (Herman, 1976;
Lewitt, 2003). Generally, forward projection
models are varying on the choice of the image
basis function that models the voxel shapes and
the integration function that is related to the ac-
quisition geometry.

The choice of basis function affects the result of
an iterative method. A good basis function should
(1) be able to accurately represent a constant
function; (2) allow for cost-effective implemen-
tation of forward projection and backprojection
operations; and (3) contain a minimal amount of
aliasing artifacts. A lot of basic functions have
been investigated include the following: square
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Figure 2. Representation of common geometrical integration functions (a) linear integration (b) strip

integration

Dexel : Detector element

Line integration
(a)

basis function (Peters, 1981; Schwinger et al.,
1986; Thibault, 2007), Fourier series, circular
harmonics, wavelets, “natural pixels”, B-splines,
Dirac impulses, Gaussian functions and organ-
based basis functions. Other related representa-
tions include polygons, polar grids, logarithmic
polar grids, tetrahedral meshes and rotationally
symmetric basis functions (Lewitt, 1992; Matej,
1996). Kaiser-Bessel functions called ‘blobs’
that consider non zero values only in a circular
disk around the origin, and smoothly decreases
from a positive value at the origin to zero at the
edge of the disk, have been a particularly popular
choice of rotationally symmetric basis. Although
in the context of SPECT imaging, blobs were not
found to be advantageous (Yendiki, 2004), more
favorable results have been reported in CT and
PET (Lewitt, 1992; Matej, 1996; Ziegler, 2008).
Naturally, the fineness of the grid can affect edge
artifacts and aliasing (De Man, 2000; Zbijewski,
2006). More recent papers, have enhanced and
augmented these basic approaches, and reader is

uopoaloid josuig

-~ T:Object

Strip integration
(b)

referred to (De Man & Basu, 2004) for a more
complete list of references.

The most common type of geometrical in-
tegration function is a Dirac line (Figure 2 (a))
transforming the volume integral into a line inte-
gral along the line corresponding to measurement
(Cormack, 1964). With this configuration, aliasing
may occur during projection in particularly with
high voxel density (Hsieh etal., 1998). Therefore,
using other types of integration functions that
consists either of several Dirac lines or a strip
(Figure2 (b)), canbe used for suppressing aliasing
in the projection generation process.

Regarding all these possibilities, a variety of
forward projection models can be defined as a
combination between a selected basis functions
and an appropriate geometrical integration func-
tion. Some models consider that the intensity
within each pixel is uniformly distributed
whereas others assume that it is concentrated at
pixel center. Moreover, the projection may be
performed either as line integrals or over finite
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width paths (strip projection bin). This is where
the various models differ from each other in
mostly three ways:

*  Either they assume that the voxels are solid
blocks or that the voxels are infinitesimal
thin spikes (or sample points).

. Either they trace rays emerging from the
bins, or a few sub-bins within a pixel, or
they trace beams, usually bounded by the
bin boundaries.

. Either they trace the rays (or beams) across
the volume from the bins or they project
the voxels onto the projection plane.

FORWARD PROJECTION
ALGORITHMS: CONCEPT
AND IMPLEMENTATION

In this section, we propose to detail the imple-
mentation of the forward projection matrix us-
ing models that are frequently used in medical
tomographic reconstruction today with an iterative
scheme. In order to avoid possibly confounding
perspective effects implied by fan or cone-beam,
all algorithms are performed in parallel acquisition
geometry. Although we only show the imple-
mentation for the 2D case, for 3D rendering, the
drawings would extend into 3D (which turns every
linear interpolation into a bilinear interpolation).

To simplify illustrations, all implementations
will be shown in the case of 2D functions assum-
ing that each image element (pixel or voxel) value
will be distributed into two adjacent projection
bins using the notation defined in Figure 3. To
be noted that, the pixel value can be distributed
in maximum into three adjacent projection bins.
For all projection methods, the backprojection is
defined as the transpose operation and the weight
factors a, remain the same, but the detector values
are weighted and assigned to the image pixels as:

M
Ti = Zk:1 aksz (5)
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where M is the total number of bins.

Since computational time is not important be-
cause ofthe availability of fast processer, therefore,
weneglectitin our study. We pre-computed system
matrix of projection and store it in random access
memory. These techniques have better computa-
tional efficiency and an even greater advantage in
2D over techniques that calculate coefficients in
real time and at the same time do reconstruction
task. The major drawback of these techniques is
in 3D where they require huge memory storage.

Two approaches for implementing system
matrix with iterative algorithms are proposed
and used: one approach is to pre-compute it
beforehand and store in random access memory
and the other one is to calculate its coefficients on
the fly at the same time as of the reconstruction
task. The computed method on fly is well suited
for hardware implementation because no coef-
ficient is stored after being calculated and used.
However, this approach increases computational
time since an additional step is added for each
projection bins and at each iteration. If the system
matrix needs to be computed only once as is often
the case in PET, computation time is not an issue
and the weighting coefficients can be calculated
on the fly (real time) and at the same time do
reconstruction task. The pre-computing tech-
niques have better computational efficiency and
an even greater advantage in 2D over techniques
that calculate coefficients in real time. The major
drawback of these techniques is in 3D because
they require huge memory storage. However,
some geometric acquisitions present interesting
symmetric properties and the effective number of
weighting coefficient need to be pre-calculated is
reduced according to the symmetry degree which
can considerably decrease the size of the useful
memory. For example, if a parallel tomographic
acquisition is done over 360 degree, the weight-
ing functions are symmetric about 45° (number
of views multiples of 4 for the 360°) and thus
only need to be pre-calculated for one-eighth of
the total number of projection angles between 0°



Forward Projection for Use with Iterative Reconstruction

Figure 3. Representation of notations to be used to define the relation between the image pixels and
projection bins: T pixel i value to be reprojected, P, P,, : projection bins (detector elements) k and

k+1°

k+1 of the projected image P (sinogram), 0: projection angle, a,: weighting factor of the contribution
of pixel i to projection bin k computed using a given projection model.

and 45° (Schwinger et al., 1986). The following
steps are performed to implement the projection
operation if the coefficients of the system matrix
are calculated on fly (Algorithm 2).

In case of pre-calculated system matrix, for
all projection angles, the corresponding weighting
coefficients and their projection bins are pre-
calculated and stored for each pixel, and the
program looks up these pre-calculated values. To
generate the backprojection, the same pre-calcu-
lated couples (weighting coefficient and the cor-
responding projection bin) are used to back
project bin values into all pixel slices for all pro-
jection angles. For implementation, the following
steps are performed (Algorithm 3).

In the following, we present the concept and
the implementation of the system matrix of the
most popular forward projection modelling in a
unified framework under the pre-calculation ap-
proach in order to perform the projection step in
iterative shame.

Ray-Driven Methods

(Herman, 1980; Siddon, 1985; Zhuang et al,
1994; Zeng and Gullberg, 1993) are perhaps the
most intuitive approach to approximating the line
integrals. They consist of tracing one or more
equispaced ray paths through each projection bin.
The total length of intersection between the ray
paths and each pixel is used as weighting factor
either in 2D or in 3D. The projection value for
projection line k can be written as a summation:
N
P, = Z li«,k: *T,

i=1

where 1, represents an effective intersection
length of projection line k with pixel i. This is
illustrated in Figure 4 where each bin is divided
into 2 sub-bins.
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Algorithm 2.

0: Algorithm “Projection operation using weighting coefficients calulated on

fly//
1: for all projection angles 6 do

2: for all image slices do

3: for all pixel slices i do

4: determine the bin k in which the considered pixel i is con-

tributed

5: calculate the corresponding weighting coefficient a,

6: update P =P +a, T,
7: end for
8: end for
9: end for

k

10: end “Projection operation on using weighting coefficients calulated on fly”

Algorithm 3.

0: Algorithm “Projection operation with pre-calulated weighting coefficients”

1: for all projection angles 6 do

2: for all image slices do

3: upload the matrix of weighting coefficient a, and

the corresponding bins k from the storage table.

4: for all pixel slices i do
5: update P, =P +a T,

8: end for
9: end for
10: end for

11: end “Projection operation with pre-calulated weighting coefficients”

Ray-driven methods are generally well-suited
for projection, but tend to introduce artifacts
(Moir¢ patterns) in the backprojection (De Man
and Basu 2002). Their accuracy can be improved
by increasing the number of ray-paths that are
traced per projection bin (sub-bins) (Zhuang
etal.).

Below follows a brief algorithmic description
of ray-driven forward projector implementa-
tion where each bin is divided into M sub-bins
(Algorithm 4).
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It should be noticed that if no sub-division is
considered (conventional ray-driven method), M
should be replaced by 1 in this algorithm.

Ray-Driven with Linear Interpolation
(Joseph’s Method) (Joseph, 1983)

The coefficients are computed in 2D as the row
intersection length combined with the linear in-
terpolation between the two nearest voxels within
that row, and in 3D as the slab intersection length
combined with bilinear interpolation between the
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Figure 4. Representation of the ray-driven method (2 sub-bins). The two corresponding weighting coef-
ficients are: a,, =L /2and a, = (L +L)/2.

L1 L e
Py

L,

=

Algorithm 4.

0: Algorithm “Ray driven projection operator with M sub-bins”
1: for all projection angles 6 do
2: for all image slices do
3: for all pixel slices i do
4: for all intersecting rays (bins) k do
5: for all sub-rays m do

6: calculate the length of intersection

between the considered ray and the contributing pixel i: L

m,

7: end for

M
> L,
8: calculate weighting coefficient a, = ‘"=

9: save the couple (k, a,,) in an access memory
file
10: end for
11: end for
13: end for
12: end for

11: end “Ray driven projection operator with M sub-bins”
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Figure 5. Representation of the interpolated ray-driven method (Joseph's linear interpolation method).
The two corresponding weighting coefficients corresponding to the contribution of voxels Ti to projec-
tion line k and k+1 are computed as: a,, = 1,*d /d and a,,,, = | *d /d where d=d +d,

four nearest voxels within that slab. This is shown
schematically in Figure 5.

To implement Joseph’s method, the same steps
as ray-driven algorithm are performed with some
modifications (Algorithm 5).

A more general projection with a trilinear in-
terpolation is also used in3D where the projection
line is divided into a number of segments with
fixed step size (Wang 1999). At each step, the
contribution to projection line i is computed as
the product of the step-size and a voxel value is
obtained by trilinear interpolation of eight neigh-
boring voxels. If the used step is equal to the
column or raw width, this method is equivalent
to Joseph’s method.

Pixel-Driven Methods (Herman, 1980;
Peters, 1981; Zhuang et al, 1994)

The pixel-driven method owes its name to the
fact that the index of the main loop is the image
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pixel index. For each image pixel, the center of
the pixel is projected onto the detector array along
the projection direction, and a value is obtained
from, oraccumulated in, the detector by (typically
linear) interpolation. The projection accuracy can
be increased by dividing each pixel into sub-pixels
and forward projection isaccomplished simply by
determining the projection bin within which the
centre of each sub-pixel is located. This is shown
schematically in Figure 6 where each pixel is
divided into 2x2 sub-pixels.

Below follows a brief algorithmic description
ofpixel-driven forward projector implementation
in case of M sub-pixels (Algorithm 6).

If no sub-division is considered (conven-
tional pixel-driven), previous algorithm is per-
formed with M=1. However, simple pixel-driven
projection is rarely used because it introduces
high-frequency artifacts (Zeng and Gullberg 1993,
De Man and Basu 2002). To improve accuracy,
linear interpolation is performed between dis-
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Algorithm 5.

0: Algorithm “Ray driven projection operator with linear interpolation”
1: for all projection angles 6 do
2: for all image slices do
3: calculate the length of intersection between the con-
sidered ray and the contributing column i:
if 6 € [-45°; 45°] or 6 € [135°; 225°], then L =pixel
width/ cos 6
else L =pixel width/ sin ©
4: for all pixel slices i do
5: for all intersecting rays k do
6: calculate the distances from projection bin k
to the center pixel i following the contributing column direction: d,
7: calculate weighting coefficient amz(I@x dm)/
pixel width,
8: save the couple (k, a;) in an access memory
file.
9: end for
10: end for
11: end for
12: end for
13: end “Ray driven projection operator with linear interpolation”

Figure 6. Representation of the pixel-driven method (xXx sub-pixels). The two corresponding weighting
coefficients corresponding to the contribution of voxels T to projection line k and k+1 are computed as
a, ="%anda,, = 3/1.
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Algorithm 6.

0: Algorithm “Pixel driven projection operator with M sub-pixels”

1: for all projection angles 6 do

2: for all images slices do

3: for all pixel slices do

4:

sidered sub-pixel center i is projected.

for all sub-pixels m do

5: determine bin k in which the con-

6: increment a = a, +1
ik ik

7: end for

of the contributed pixel: a, = a, /M,

ik ik

an access memory file
10:

11: end for

12: end for

8: calculate the total number

9: Save the couple (k, a,) in

end for

13: end “Pixel driven projection operator with M sub-pixels”

tances from each pixel center to the centers of the
two nearest projection bins.

Bilinear Interpolation Projection

It is the standard method for computing projec-
tions. Projections are computed by interpolation
based upon the distances from each center pixel to
the centers of two nearest projection bins. As with
pixel-driven methods, projection accuracy can be
increased by dividing each pixel into sub-pixels
and applying bilinear interpolation projection to
the sub-pixels. In terms of basis function, the basic
functions obtained from bilinear interpolation are
pyramid shaped, each with a support extending
over a square region with size of four pixels. This
is shown schematically in Figure 7 where each
pixel is divided into 4 sub-pixels.

Projection Based Upon Square Voxel

It considers the intensity within pixel distributed
uniformly in a square areas (in 2 D) or in cubic
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volume (in 3D) and the pixel contribution to pro-
jection bin is proportional to the intersection area
between the square and the strip bin (Peters, 1981;
Schwinger et al., 1986, Thibault, 2007). This is
shown schematically in Figure 8.

Below follows a brief algorithmic description
of square forward projector implementation (Al-
gorithm 7).

Below follows a brief algorithmic description
of square forward projector implementation (Al-
gorithm 8).

Projection Based Upon Overlapping
Circles (Disks) (Shepp, 1982;
Zhuang, 1994) or Spheres (Balls)
(Reyes 2007)

These consider the intensity within pixel dis-
tributed uniformly in a circular area in 2 D (or
in sphere area (in 3D)) rather than square area
and the pixel contribution to projection bin is
proportional to the intersection area between the
disk and the strip bin. The potential advantage of
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Figure 7. Representation of pixel-driven method with bilinear interpolation projection. In this case,
the interpolation is done between the values of the four nearest sub-bin pixels. The two weighting coef-
ficients corresponding to the contribution of voxels Ti to projection line k and k+1 is computed as: a,,
=1-(d +td,td+d )/(4d) and a,, = (d +d,+d +d )/(4d). '

Figure 8. Representation of projection based upon square pixels. The two weighting coefficients cor-
responding to the contribution of voxels Ti to projection line k and k+1 is computed as: a,, = s /(s,+s,)
anda,  =s/(s+s,).
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Algorithm 7.

0: Algorithm “Square projection operator”

1: for all projection angles 6 do

2: for all images slices do

3: for all pixel slices do

area between the pixel and the strip
surface)

ficients: a, .=

.= 2, /square area

6: end for

7:
memory file
8: end for
9: end for

10: end “Square projection operator”

Algorithm 8.

0: Algorithm “Square projection operator”

4: calculate the intersection

projection bin (trapezoid

5: calculate the weighting coef-

save the couple (k, am) in an access

1: for all projection angles 6 do

2: for all images slices do

3: for all pixel slices do

4:
the pixel and the strip projection bin
5:
a, = a, /square area
6: end for
7: save the couple
8: end for

9: end for

10: end “Square projection operator”

this approach is that the forward projection of a
circle is independent of projection angle, while
the forward projection of a square pixel is angle
dependant. The use of circular pixels produces a
reasonably fast projection algorithm. One only
needs to identify the location of the forward pro-
jection of the center of the circular pixel. Then,
the analytical computation of the portion of the
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calculate the intersection area between
(trapezoid surface)

calculate the weighting coefficients:

(k, a,) in an access memory file

circular pixel lying within each projection bin
is straightforward. This method is equivalent to
bi-nonlinear interpolation. To improve accuracy,
each disk can be divided into xXx sub-disks. This
is illustrated in Figure 9 (a) and (b) where each
disk is divided into 2x2 sub-disks.

The two corresponding weighting coefficients
are:a, =s/(s,+s,) anda,  =s/(sFs,) incase (a)
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Figure 9. Representation of (a) projection based upon disks (b) projection based upon 2 %2 sub-disks

and a,, = (sts,+s,)/(4s) and a,,, = (sts,Fs,)/(4s)
in case (b).

Below follows a brief algorithmic description
of disk forward projector implementation in case
of M sub-disks (Algorithm 9).

Distance-Driven Projector Method

It was recently proposed in (De Man 2002, De
Man2004). It works by mapping pixel and detector
boundaries to a common axis and the coefficients
are computed as therow or slab intersection length
combined with the overlap coefficient (the length
of overlap). In 3D, the overlap area is computed
as the product of the overlap lengths in x-y and
in z respectively. This method resembles to the
Joseph interpolation but instead of a triangular
interpolation function, their interpolation employs
two convolved rectangle functions with different
widths. These widths were chosen to be the image
sampling distance and the spatial dependent ray
distance respectively. Thus, in terms of basis and
irradiation functions, the firstrectangle would cor-
respond to the basis function and the second to the

R
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S,

(b)

integration function. This method is illustrated in
Figure 10 and below follows a brief algorithmic
description of distance-driven forward projector
implementation.

Below follows a brief algorithmic description
of distance-driven forward projector implementa-
tion (Algorithm 10).

Asthe concept and the implementing of forward
projection algorithms frequently used in medical
tomographic vary from one method to other, their
performance will also vary. In fact, all these
methods result in varying degrees of approxima-
tion errors and cause artifacts and/or introduce
noise in the projection and reconstructed slices
that limit their absolute accuracy. The pixel-
driven approach is well suited for hardware imple-
mentation, but pixel-driven projection is rarely
used inreconstruction, because it introduces high-
frequency artifacts. These high-frequency artifacts
can be prevented by using a more accurate
model (disks, square, bilinear interpolation), but
this further increases the arithmetic complexity.
Ray-driven methods are generally well-suited for
projection, but tend to introduce artifacts in the
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Algorithm 9.

0: Algorithm “Disk projection operator with M sub-disks”

1: for all projection angles 6 do

2: for all images slices do

3: for all pixel slices do
4: for all sub-disks m do

5: calculate the contribution a,

, is propor-

tional to the intersection area between the pixel and the strip projection

bin: S_
6: increment a, = a,+S_
end for
calculate the weighting coefficients: a, = a, /

disk areas

9: save the couple (k, am) in an access memory file

10: end for
11: end for

12: end “Disk projection operator”

backprojection (De Man & Basu, 2002, 2004).
Furthermore, ray-driven methods generally have
highly non-sequential memory access patterns.
The distance-driven method avoids the artifact
characteristics of ray-driven backprojection and

pixel-driven projection (De Man & Basu, 2002,
2003, 2004). Recent studies have shown that a
better image quality can be obtained by using
more appropriate basis functions, but at the ex-
pense of a longer reconstruction time.

Figure 10. Representation of distance-driven method. The two corresponding weighting coefficients

are: a, = dyd and a0 = dyd.
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Algorithm 10.

0: Algorithm “Distance driven projection operator”
1: for all projection angles 6 do
2: for all images slices do
3: calculate the distance d between two op-
posite middle points of pixel width orthogonally to ray direction:
if 6 € [-45°; 45°] or © € [135°; 225°],
then d= pixel width* cos 6
else d= pixel width*sin ©
4: for all pixel slices do
5: determine the bin k in which the
border of pixel i (middle point of pixel width) is projected.

tween pixel and projection bin boundaries:

access memory file
9:

10: end for

11: end for

6: calculate the length of overlap be-

d
k
calculate the contribution alk=dk/d

save the couple (i, k, a,) in an

end for

13: end “Distance driven projection operator”

EFFECT OF MODELLING

OF FORWARD PROJECTOR
ERRORS ON ITERATIVE
RECONSTRUCTION METHODS

As the projection is becoming widely used with
iterative reconstruction algorithms and their char-
acteristics may affect the reconstruction quality, its
accuracy and performance needs more attention
and they need to be better understood. Regardless
ofall approaches of forward projector modelling;
errors are inevitable in the forward projection ma-
trix. Thus, it is important to understand the effect
of modelling errors on iterative reconstruction
methods. In this context, we compare the forward
projection algorithms implemented in a unified
framework as described above on a projection
task and on iterative reconstruction. Reprojection
and reconstructed slices with MLEM and ASIRT
techniques are shown using a standard slice (2D)

of 3D Shepp-Logan phantom which is considered
as a standard test for different reconstruction
methods. All algorithms and data are simulated
using a user-friendly interface on PC for visual-
ization and reconstruction of tomographic data
(Guedouar et al., 2011).

Figure 11 shows the projection absolute error
images between the reprojected sinogram and the
standard reference of the Shepp-Logan phantom.
Figure 12 and 13 show results of tomographic
reconstruction of Shepp-Logan phantom using
MLEM and ASIRT. The same backprojector is
associated with investigated forward projection
to form the pair of reconstruction unless with
distance-driven method in order to have faith-
ful comparison regardless of the approaches of
matched and mismatched reconstruction pairs
(Zeng et al., 2000; Guedouar & Zarrad, 2010a;
Guedouar & Zarrad, 2010b). In the case of
distance-driven method, its reverse model is used
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Figure 11. Projection absolute error images between the reprojected sinogram and the standard refer-
ence of the Shepp-Logan phantom. forward projector models used are: (a) Interpolated ray-driven; (b)
simple ray-driven; (c) ray-driven using 3 sub-bins, (d) interpolated pixel-driven, (e) bilinear interpola-
tion; (f) projection based on simple disk; (g) projection based on 4 sub-disks; (h) distance-driven; (k)
projection based on square pixels. Images presented in this figure were thresholded to the interval (0,3)
to improve the displayed internal errors. Images show that error mainly concentrates on the edge part
in the sinogram. Operator that reduces noise inside sinogram increases edge errors and vice versa.

as in (De Man & Basu, 2004). Backprojection
accuracy was not evaluated.

Visual inspection of the projections generated
by the most effective methods (not shown here)
looked similar and comparable to the analytic
projections except with the simple pixel-driven
model which increases artifacts. However, projec-
tion absolute error images (Figure 11) show that
all methods result in varying degrees of errors
and cause artifacts and/or introduce noise in the
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reprojected sinogram that limit the absolute ac-
curacy of projection process. Also, errors intro-
duced to projections are mainly concentrated on
the edge part and no models can reduce both of
errors in internal and edge regions of the projec-
tion. It can be noted that the model which provides
the least internal errors, increases edge errors as
the bilinear interpolation models, whereas the
operator which provides the least edge errors,
increases those in internal region as ray-driven
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Figure 12. Results of tomographic reconstruction of Shepp-Logan phantom using MLEM. The top im-

age corresponds to the standard exact calculated noiseless slice. Reconstructed slices correspond to the

convergence iteration (optimal solutions). MLEM reconstruction is performed using the forward projec-
tors: (a) Interpolated ray-driven; (b) simple ray-driven; (c) ray-driven using 3 sub-bins, (d) interpolated
pixel-driven, (e) bilinear interpolation; (f) projection based on simple disk; (g) projection based on 4
sub-disks; (h) distance-driven; (k) projection based on square pixels. Interpolated pixel-driven is used

as backprojector except with distance-driven where its reverse model is used. Images presented in this

figure were thresholded to the interval (4.8,5) to improve the displayed contrast and aliasing.

5.0

Standard slice

with no subdivision. The projection approaches
such as oversampling (models with sub-division),
interpolation (linear and bilinear) and realistic
basis function (square and disks) can perform
better reprojection than the conventional methods
and decrease the difference between the repro-
jected and exact projections but they show the
same dependency in the region to be reprojected
with high or low transition. Smoothing projectors

4.8

that use interpolation between pixels or detector
elements (bins) are efficient to reduce noise but
they increase high frequency noise near edge (i.e.
appearance of interpolation artifacts) which un-
fortunately may degrade image resolution.

Therefore, no current projection approach can
givetheleasterrorsinall regions. The interpolated
ray-driven method seems to provide the best trade
of between internal and edge errors.
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Figure 13. Results of tomographic reconstruction of Shepp-Logan phantom using ASIRT. The top image
corresponds to the standard exact calculated noiseless slice. Reconstructed slices correspond to the
convergence iteration (optimal solutions). ASIRT reconstruction is performed using the forward projec-
tors: (a) Interpolated ray-driven; (b) simple ray-driven, (c) ray-driven using 3 sub-bins, (d) interpolated
pixel-driven, (e) bilinear interpolation; (f) projection based on simple disk; (g) projection based on 4
sub-disks; (h) distance-driven; (k) projection based on square pixels. Interpolated pixel-driven is used
as backprojector except with distance-driven where its reverse model is used. Images presented in this
figure were thresholded to the interval (4.8,5) to improve the displayed contrast and aliasing.

ol

Standard slice

4.8

(9) (h) (k)

Experiments from Figures 12 and 13, show
the evidence propagation of forward projection
modelling errors from projection into recon-
struction. Artifacts and noise are greater for the
iterative algorithms, which is due to the fact that
small projection errors might accumulate through
the iterative process. It is clear that the forward
projector affect the severity of the edge artifacts
which means that the appearance and severity of
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these artifacts is highly dependent on the details
of the implementation used to compute (Snyder
et al 1987). The forward projection models that
increase the noise and the aliasing in the internal
region of reconstructed images decrease the edge
errors. Smoothing projectors decrease noise but
introduce important errors in the edge region
which effects spatial resolution.
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ACCURACY OF MODELLING
OF FORWARD PROJECTOR:
ISSUE AND SOLUTION

A wealth of publications exists that discuss and
compare performance of the forward projection
by using a defined criterion or by assessing a
trade-off between numerical accuracy, visual
differences in reconstructions, and computational
speed. Siddon (Siddon, 1985), Joseph (Joseph,
1983), Herman (Herman, 1980) and Lewitt (Le-
witt & Matej, 2003) have described interpolation
and integration mechanisms that are frequently
used with the forward projection in CT. Zhuang
et al. (Zhuang et al., 1994) evaluate projectors of
iterative reconstruction and proposed a simple
modification that can be applied to any projector
to increase the numerical accuracy of the method.
The accuracy of any ray-driven projector can be
improved by increasing the number of ray-paths
traced within each image pixel into a number of
smaller sub-pixels and applying the pixel-driven
projection method to the sub-pixels and apply-
ing the pixel-driven projection method to the
sub-pixels. Yu and Huang (Yu & Huang, 1993)
analyzed loss of resolution due to reprojection
technique, comparing asquare-pixel area weighted
convolution and a Gaussian pixel method using a
nearest-neighbor forward-projection model with
sub-binning. Bella (Bella et al., 1995) evalu-
ated different implementations of the method
of shears for image rotation. He examined use
of various interpolation methods for method of
shears, including nearest neighbor interpolation,
up sampled nearest-neighbor interpolation (four
sub-bins), linear interpolation, and cubic inter-
polation; standard bilinear and bicubic interpo-
lation were used for reference standards. Wallis
proposed in (Wallis & Miller, 1997) an optimal
rotator for iterative reconstruction. Recently, De
Man and Basu (De Man & Basu, 2004) presented
a 3D distance-driven method for projection and
backprojection and compared its performance
in terms of artifact generation, loss of resolution

and computational burden with the two most
used methods (interpolated pixel driven and ray
driven). They have shown that it eliminates the
artifacts seen in ray-driven backprojection and
pixel-driven projection.

All these publications have shown that, the
choice in the calculation method for the coefficient
matrix is critical and may affect significantly the
final reconstructed images with iterative tech-
niques. These methods result in varying degrees
of approximation errors and cause artifacts and/
or introduce noise in the reprojected sinogram
and reconstructed slices that limit their absolute
accuracy. Recent studies have shown that a bet-
ter image quality can be obtained by using more
appropriate basis functions, but at the expense of
alongerreconstruction time. To overcome this dif-
ficulty, implementation using graphics hardware
is proposed. However, a major disadvantage of
using graphics hardware in the reconstruction
process is the lack of precision of the hardware.
The tradeoff between noise and spatial resolution
in reconstructed images can be considered as the
most important criteria to make good choice of
forward projection modelling.

It has been shown that if the projection data
is corrupted by noise, the reconstructed images
will in turn be corrupted by noise. The artifacts in
the images resulting from this noise can produce
corruption especially at the boundaries of ob-
jects in the images (edge artifacts). In particular,
images reconstructed with MLEM seem to be
seriously affected by edge artifacts that appear
as severe over and undershoot in the regions
of sharp intensity transitions. As the true pixel
value in the reconstructed images is influenced
by these artifacts, their quantitative analysis is
difficult. This significantly limits the clinical
usefulness of the images, both for diagnostic and
therapeutic purposes, since an accurate knowledge
about locations of object boundaries is crucial in
applications such as computer-assisted surgery,
and radiotherapy. Also, post processing such as
noise reduction, binarization, or segmentation of
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image information is significantly complicated
by the presence of such artifacts. It has been
shown that the appearance and severity of these
artifacts is highly dependent on the details of the
implementation used for computation (Figure 12).

The removal of edge and aliasing artifacts
from the reconstructions is one of the issues of
crucial importance if statistical reconstruction is
to be utilized. These artifacts can be prevented
by using more sophisticated weighting schemes
but at the expense of a longer reconstruction
time. Low pass filters are used but unfortunately,
filtering methods may also substantially increase
high frequency noise which again degrades image
resolution. Some regularization methods within
the iterative techniques are proposed but they
lead to added computational burden. Hence, it is
obvious to reduce the artifact by modifying the
forward implementation that they disappear in
their environment. Ifthis is achieved, the artifacts
in tomographic slice will disappear. An earlier
study (Guedouar & Zarrad, 2010b) compares the
performance of the most used forward projection
regarding the compromise between noise and
spatial resolution. Unlike the existing work that
often focuses on a specific type of modelling error,
such as geometric response, attenuation or scatter,
this study evaluated the forward projection errors
generated by the different geometrical models in
two regions of interest (regions with high and
low transition) via numerical sense (its RMSE).
Error propagation from the forward projection
matrix into reconstructed images with iterative
techniques was shown. Based on this comparison
study, a new projection method was proposed in
order to preserve edges without increasing noise.
Preliminary results show that this method can
promise more accuracy in term of RMSE and
aliasing reduction of the reconstructed images.
Combining acceleration schemes and availability
of faster computers will decrease the execution
time to an acceptable level and this method can
be easily extended to 3D data sets.
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CONCLUSION

The choice in the calculation method for the
forward projection matrix is critical and affects
significantly the final reconstructed images with
iterative techniques. All projection methods result
in varying degrees of errors and cause artifacts
and/or introduce noise in the reprojected sinogram
that limit the absolute accuracy of projection pro-
cess. Errors introduced to projections are mainly
concentrated on the edge part and no models
can reduce both of errors in internal and edge
regions of the projection. The appearance and
severity of these artifacts is highly dependent on
the details of the implementation used to compute
the forward projector modelling. Therefore, the
tradeoff between noise and spatial resolution in
iterative reconstruction can be reduced by using
an appropriate forward projection modelling ac-
cording to the goal of the slice to be reconstructed
regardless of the execution time needed for the
reconstruction.
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ABSTRACT

Many applications require dimensionally accurate and detailed maps of the environment. Mobile map-
ping devices with laser ranging devices can generate highly detailed and dimensionally accurate coor-
dinate data in the form of point clouds. Point clouds represent scenes with numerous discrete coordinate
samples obtained about a relative reference frame defined by the location and orientation of the sensor.
Color information from the environment obtained from cameras can be mapped to the coordinates to
generate color point clouds. Point clouds obtained from a single static vantage point are generally
incomplete because neither coordinate nor color information exists in occluded areas. Changing the
vantage point implies movement of the coordinate frame and the need for sensor position and orienta-
tion information. Merging multiple point cloud segments generated from different vantage points using
features of the scene enables construction of 3D maps of large areas and filling in gaps left from occlu-
sions. Map registration algorithms identify areas with common features in overlapping point clouds and
determine optimal coordinate transformations that can register or merge one point cloud into another
point cloud s coordinate system. Algorithms can also match the attributes other than coordinates, such
as optical reflection intensity and color properties, for more efficient common point identification. The
extra attributes help resolve ambiguities, reduce the time, and increase precision for point cloud regis-
tration. This chapter describes a comprehensive parametric study on the performance of a specialized
Iterative Closest Point (ICP) algorithm that uses color information. This Hue-assisted ICP algorithm,
a variant developed by the authors, registers point clouds in a 4D (x, y, z, hue) space. A mobile robot
with integrated 3D sensor generated color point cloud used for verification and performance measure-
ment of various map registration techniques. The chapter also identifies various algorithms required to
accomplish complete map generation using mobile robots.
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INTRODUCTION

Complete and dimensionally accurate maps of
the environments are of interest to many domains
including surveying, search and rescue, security,
defense and construction. Laser based scanning
devices (Light Detection And Ranging-LIDAR)
are generally used to generate point clouds that
describe spatial information in the form of numer-
ous discrete point coordinate measurements. Point
data are acquired by measuring time of flight of
scattered light or phase shift between incident
and reflected light to find the distance between
the object surface and the scanning device (Blais,
2004). The speed of scanning discrete points can
be enhanced by pulse and phase based measure-
ment technologies (Blais, 2004). Precise rotation
mechanisms with high-resolution encoders spina
2D LIDAR device to generate a 3D point cloud.
Point cloud scanners have been mounted on air-
planes (Browell et. al. 1990) and ground vehicles
(Gebre, et al. 2009) to create large area terrain
maps. When vision sensors are integrated with
the laser ranging systems, point clouds can also
contain the color information of the scene. Opti-
cal imagery from the camera is associated with
point coordinates to produce color point clouds
(Andresson, 2007).

A 3D point cloud obtained from a single
vantage point is seldom adequate to construct a
complete map. Generation of a complete map of
anenvironmentrequires merging or registration of
map segments taken from various vantage points.
Theregistration enables construction of large-scale
global 3D maps (Thrun, 2003). Registering the
map segments is trivial if precise position and ori-
entation of the sensor are accurately known about
a global reference frame. Position sensors such
as inertial measurement units or those relying on
global positioning systems are prone to errors and
can be highly inaccurate under certain conditions.
The map registration process determines the rigid
body translation and rotation of the sensor as its
output (Thrun, 1993, 2003). The map registration

quality varies depending upon the sensor resolu-
tion and the extent of overlap between the map
segments. Different techniques exist for merging
3D maps by exploiting geometric features and
measuring surfaces. The most popular registra-
tion algorithm for point cloud registration is the
iterative closest point (ICP) algorithm (Thrun,
2003). In ICP, the corresponding closest points in
different point clouds are associated and optimal
rigid transformation required to minimize a mean-
square error of separation between the associated
points (Bsel, 1992) is iteratively found. The color
attributes of the sampled point can be utilized in
ICP progress to increase computational speed and
provide higher accuracy. Anderson (2007) filtered
the point set data based on hue before conducting
traditional ICP. Houng et al., (2009) processed
images to extract corresponding visual features
that are used in registration process.

In this chapter, we examine the algorithms
required for a mobile robot to generate a dimen-
sionally accurate and complete map of an area
without prior information about the area. We focus
particularly on the techniques for registration of
map segments taken from various vantage points.
The chapter also describes a mobile robotic sys-
tem with a color point cloud scanner and various
algorithms required for accomplishing the mis-
sion of generating a complete and dimensionally
accurate map of an area.

MOBILE MAPPING WITH COLOR
POINT CLOUD SCANNERS

Color point clouds are created by synchronizing
range sensors such as the LIDAR with video/still
cameras. LIDAR devices discretely measure the
distance between a light source and a reflection
target at a high frequency. By changing the path
of'the light through mirrors and actuators, a point
cloud of a 3D space is produced. A calibrated
vision sensor maps the color information to the
sampled points. Installing such a scanning sensor
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Figure 1. 3D scanning devices built with 2D commercial scanners

Camera

onamobile platform extends its range and enables
mapping of large areas.

3D Color Scanner

The 3D color scanner used in this effort consists
ofa2D LIDAR andtwo 1.3 megapixel high-frame
rate video cameras installed on the LIDAR scan-
ning plane. The LIDAR and the cameras move
such that the scan plane is rotated about an axis
within the plane, thus generating 3D color point
clouds. Figure 1 shows that the LIDAR consists
of a rotating mirror which is driven about Y axis
(degree of freedom: #) and the scan plane is
rotated about Z axis (¢: degree of freedom). The
rotations are controlled by servomotors installed
on the axes. The cameras are calibrated to be on
the LIDAR scan plane and a forty-pixel wide
image stripe is extracted from the cameras. The
color information is then matched, in real-time,
to the points ranged by the LIDAR. The relative
distance between cameras and LIDAR is pre-
configured and images are pre-aligned. The 2D
LIDAR generates scans at a frequency of 38 Hz
and the cameras provide imagery at 60 frames per
second. Time synchronization establishes that the
pixel color is mapped to each ranged point. Use of
two cameras reduced occlusions due to the offset
between the LIDAR mirror and the camera lens.
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20 LIDAR

Rotation Mechanism

All areas visible to the LIDAR are visible to one
of the two cameras. The 2D range measurement
along with the scanner rotation position (¢) is used
to generate the coordinate in a spherical coordinate
system, which is transformed to Cartesian system
as necessary. Figure 1 also shows a picture of a
compact version of the system.

The 3D color scanner is mounted on a mobile
vehicle for mapping large areas. This mobile
mapping system generates color point cloud data.
Figure 2 shows the mobile system with the scan-
ner installed on top of the vehicle. The vehicle
hasno global positioning devices other than wheel
encoders. Cameras and short-range infrared sen-
sors enable observation of terrain conditions,
collision avoidance and allow a remote operator
to drive the vehicle. Map data and video feeds are
transmitted using an on-board wireless commu-
nication system. This mapping system performs
scans only when it is stopped. The vehicle can
localize itself from the map observations and
moves directly from one vantage point to the next
and acquires additional map information. This
system can generate color point cloud maps with
0.25° angular resolution in the vertical scanning
direction with a coverage angle of 100°. In the
rotation (¢) direction, the resolutionis at0.1° with
coverage angle 300°. The map segment from one
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Figure 2. Mobility platform used for 3D color map construction in large area (Gebre et al., 2009)

Birds eye view Pan-Tilt HD
video camera with
acoustic microphone

Rear facing wide-angle
video cameras

Long range wireless
communication system
antenna

4 rear facing long range
(5.5m) IR proximity
sensors. Running across
the width of the vehicle.

s

e LSRR

| !l--';::_ -

Forward facing wide
angle Camera (main
driving camera)

3-DOF video registered
LIDAR Scan Systems.

2 Front facing long
= range (5.5m) IR
proximity sensors.

On board Guad
Core computer
{Inside)

2 Front facing short range
(1.5m) IR proximity sensors

Wide angle front bumper video Camera

vantage point covers a maximum radius of
80 meters.

The data elements produced by the scanner
are shown in Figure 3. Figure 3(a) shows the
camera image taken from the vantage point de-
picting scene visible to the scanner. The 3D color
point cloud generated at that vantage point is
shownin Figure 3(b). In this figure, the coordinate
(x,y,z) and the color (r,g,b) for all the pixels are
known. The point density (spatial resolution of
the point cloud) varies on the left and right sides
ofthe color scan scene depending upon the distance
between the scanned point and the scanner. The
closest area to the scanner has the highest den-
sity of points. The scanner also records the optical
reflection intensity of laser beam. The intensity
information is combined with range measurement
data and shown in Figure 3(c). The object surface
material, color and distance towards scanner cause
variations in intensity data. Similarities between
intensity point cloud and color point cloud can
be observed between Figure 3(b) and (c¢) on
edges, doors, and windows.

Algorithms for Complete Mapping

An autonomous robot with the color point cloud
scanner can reduce the surveying and map building
cost and time. However, several methodologies
for robust self-localization, map completeness
evaluation, map based navigation and 3D map
registration must evolve before a high degree of
autonomy can be achieved.

A mapping robot deployed at initial start
position must go through the four phases of the
mapping processes as shown in Figure 4. The
robot must be able to localize itself so it can navi-
gate the scene. This can be accomplished by 2D
SLAM (Simultaneous Localization and Mapping)
techniques or other methods. Methodologies for
establishing the map completeness and detection
of occluded areas are necessary. Determination
of the optimal vantage point for filling in the
occluded areas and exploring unmapped areas is
also a critical step. As the navigation is based on
imprecise mapping and localization information,
the map segment registration based on 3D color
point clouds is the last but crucial step in building
the complete map of a given area. In this subsec-
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Figure 3. High dimensional point cloud map segment taken from a single vantage point. (a) Image of
an urban building.(b) Color point cloud map. (c) Laser reflection intensity map.

tion, we discuss the algorithms that address each
of these tasks.

Robot Self-Localization

The self-localization problem requires mobile
mapping robot to determine its location in an
unknown environment. Localization is critical
because robot cannot effectively navigate to the
next waypoint without the location information.
Map registrations require location and pose es-
timates. Usually robot is equipped with multiple
position and orientation sensors like GPS, Inertial
Measurement Unit (IMU), odometer, and wheel
encoders to measure real-time pose and position.
Multiple position and location sensors return robot
position information with certain level of error due
to reasons like sensor precision, GPS signal noise
and errors, sensor drift for IMU and inaccurate
measurements from other sensors.

The main challenge for robot localization is
to escape location sensor noise, drift errors, and
constantly provide accurate location and position
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reference for the robot. Probabilistic self-local-
ization techniques based on maximum-likelihood
estimation have been applied to address this
problem. These techniques assume that the noise
ofposition sensor follows certain probabilistic dis-
tribution, which can be described mathematically.
They also assume that two subsequent map results
are highly comparable to each other and several
landmarks can be quickly identified. Therefore,
accurate relative position and location can be
solved by comparing current map with a previous
map in short time intervals, and probabilistically
maximizing similarity between two maps (Olson,
2000). Map could be generated by different sensors
like stereo cameras, sonar or laser range finders.
Landmarks extracted from maps are commonly
applied in the self-localization process to reduce
computation cost. Whyte and Bailey (2006) uti-
lize the relative localization results between two
neighbor vantage points to merge the two maps.

A two-step process, termed as Simultaneous
Localization and Mapping (SLAM), typically lo-
calizes the robot. The robot position is established
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Figure 4. Map completeness orientated robotic
mapping process
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from multiple but imprecise sensor measurements
and comparison of landmarks in the scene. The
position sensor data is improved using sensor
fusion techniques by Spletzer (2003). Location
information is estimated based on previous loca-
tion, driving command information and current
sensor measurements. In SLAM, probabilistic
methods are applied to reduce sensor noise ef-
fects. Extended Kalman filter and particle filters
and noise models improve the location estimates
(Montemerlo, et al. 2003). The SLAM solution
has been expanded into 3D space with a six de-
gree of freedom (6DOF) SLAM which applies
sensor measurement and robot kinematics models
(Niicher, 2005). Landmark extraction and map
comparison entail the major computation effort
during the SLAM progress. Real-time SLAM
has been demonstrated with stereovision sensors
(Davison, 2003).

The SLAM technique simultaneously consid-
ers the localization and mapping mission (Thrun,
etal.,2000). The SLAM problem can be described
by a joint posterior:

P(xt ’m | ZO:t’“O:t?‘TU) (1)

Where, x, is the state vector representing the
robot location and orientation, m, is the vector
representing the i landmark location, z, is the
robot mapping measurement about i landmark
attime 7, and u, is the control vector applied at ¢-1
time to drive robot to state x, at time .

The SLAM problem requires that equation (1)
be solved for the time, ¢, and the latest robot state
vector x, be computed. Solving the joint posterior
from, 0-frequires an observation model and amo-
tion model based on Bayes Theorem (Whyte and
Bailey, 2006). The observation model determines
the probabilistic distribution of observation z with
known vehicle state and landmarks location as:

P(z, | z,,m) @)

The robot motion model describes probability
on state transition of robot state vector, x, with
known previous state x,_, and control input u,

P(xt | l‘t—l?’ut) (3)

The transition of state vector is assumed as a
Markov process, implying that the next robot state
x, can only be determined on previous state x,,
and latest control input #, and not the history of
states. The state of robot is independent of both
observations and landmarks. Equation (1) can be
recursively solved in a Prediction (time update)
and Correction (Measurement update) form.

Prediction is shown in Box 1.

Correction:

P(zt | xt ? m)P('rf ? m ‘ 20:t717 uO:t ) x(’l)

P(z, | 2y, 1 ty,)

0:t—17 ~0:t

Pz, m | 2,0y, 7)) =
&)
Equation (4) and equation (5) recursively solve

latest robot state joint posterior. Robot state can
bepredicted fromthemotionmodel P(z, | z, |, u,)
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Pla,m | 20, 15t 3) = [ P, |2, 0 0) P, om | 2, 000, 1 7,)dr, “

0:t—17 0:t—-17 70

and control input at time ¢. The observation
model P(z, | z,,m)is applied to correct state
prediction with observation and mapping at time
[

In order to find solutions to the SLAM prob-
lem, proper practical descriptions about motion
and observation model in equation (2) and equa-
tion (3) should be provided with reliability and
efficiency. Extended Gaussian Filter (EKF) is
applied to represent these models on state-space
model with additive Gaussian noise (Welch and
Bishop, 1995). The EKF based SLAM simplifies
motion model as:

T, = f(mt—ﬂ ut) +w, (6)

fix, ,,u) is the robot kinematics model and w,
isthe additive uncorrelated Gaussian disturbances
with zero mean and covariance @, The observation
model can be described as:

zt = h(xﬂm) + vt (7)

In which, A(x,m) is the observation geometry
description and v, is the additive uncorrelated
Gaussian disturbance with zero mean and cova-
riance R, Egs. (6) and (7) can be applied to the
SLAM prediction and correction. In EKF-SLAM
process, the mean and covariance of both motion
model and observed motion should be updated at
every time ¢. Other probabilistic methods such as
Particle Filter (PF) (Montemerlo et al., 2003) and
Graph Filter (GF) are used to solve the SLAM
problem. A typical SLAM method is implemented
on 2D space, however, SLAM in 3D space with 6
Degree of Freedom (6DOF) on robot kinematics
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have been implemented by expanding landmarks
state, motion model and observation model into
3D space (Niicher, 2005).

Map Completeness Evaluation

The map completeness problem can be addressed
with several methodologies including grid oc-
cupancy, obstacle recognition and object view
completion detection. The completeness of map is
calculated by occupancy grid map (Thrun, 2003),
which entails projecting the acquired map on an
occupancy grid and calculating the occupancy
level. Possible mapping area is determined based
on the contour of the objects and separating the
map into areas that can be potentially mapped or
impossible to map (Oh et al., 2004). Terrains are
extracted from current incomplete map for pos-
sible paths for navigation. The map evaluation
alsoreturns possible explorative area that is acces-
sible to the mobile robot but not mapped. If map
completeness is the most important factor for the
mission, algorithms thatevaluate latest exploration
status after every scan may require assessment of
the complete map and not just the current map
segment. There are many techniques to evaluate
the completeness of mapping, namely, grid based
occupancy map (Thrun, 2003), network/graph,
cell based map (Zelinsky, 1994) and template
based completeness evaluation (Oh et al, 2004).

The occupancy grid map is one of the most
commonly used methods to determine map
completeness. Area of interest is gridded and
acquired maps from different vantage position
are transferred into or projected onto the grid.
Grid is marked as occupied when data exists on
this grid, every grid should be represented with
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certain level of occupancy, which is computed by
density of point cloud map on this grid. Map can
be assumed as complete all the mapped objects
form self-closed contours or closed contours with
the boundaries of the mapped area.

Amajor challenge in map completeness evalu-
ation is deciding whether an area can be mapped.
For example, when mapping robot is performing
indoor exploration, space behind wall of the hall-
way may not be accessible. Contours extracted
from latest global map may be used to determine
possible navigation paths. Possible mapping area
exists for contours with gaps. Ascertaining that
the gaps in map contours are indeed traversable
paths requires discerning traversable pathways
in the map.

Map-Based Navigation

Determination of the next vantage point may
depend upon several criteria: best view, coverage
of unmapped areas, areas of overlap with current
map, localization, accessibility and traveling costs.
Two steps are required for determination of the
next vantage position. The first step is the genera-
tion of candidate positions and second step is the
selection of optimal vantage point from the list.
The candidate vantage positions can be created
based on frontier exploration algorithm (Basilico
& Amigoni, 2009) considering obstacles, position
and terrain conditions. The vantage position is
selected between candidate positions that have
the best view coverage and shortest traveling cost.
Next vantage point should be decided based on
the best view to fill occluded regions and cover
as much new area as possible. Frontier based
exploration algorithm provides vantage point
candidates for the best view point, these candidate
points are evaluated to determine best vantage
point for next mapping.

Computing vantage position formapping based
on previous vantage positions and incomplete map
is known as the Next Best View (NBV) problem
(Yamauchi, 1997; Basilico & Amigoni, 2009).

NBYV algorithms navigate robot to acquire maxi-
mum uncovered area. A certain level overlapped
area ensures that the robot has enough landmarks
to navigate between the current and the next best
view vantage point. Frontier based algorithm can
be applied to provide candidate positions for the
next best view point. Based on the regions on the
boundary between mapped and unmapped space,
the frontier can be extracted. Considering the range
for mapping sensor constraints, next mapping
position on the frontier can then be generated.
Current frontier should be evaluated in occupancy
grid map so that the frontier grid positions that
cover more unoccupied can be selected to accel-
erate the coverage of the area. These candidate
points can be evaluated based on the criteria for
the exploration and time and power requirements
for reaching the vantage point.

The map data acquired from various vantage
points must be registered into global map space
using various registration algorithms. Although
this section describes the various algorithms
required for complete map generation, the focus
of this chapter remains on the registration aspect
of the mapping exploration.

ALGORITHMS FOR REGISTERING
MAP SEGMENTS

Three-dimensional point cloud segments acquired
from different locations have to be combined to-
gether as complete large-scale map. Position and
orientation information required for registration
can be provided directly by mobile platform sen-
sors such as GPS and IMU (Thrun 1993). In most
cases, position information acquired from sensor
is reasonably accurate. However, the orientation
information is costly and relatively imprecise
because orientation sensor measurement can be
affected by external disturbances like magnetic
field variations and sensor integration drift with
time. Position and orientation information can also
be provided by indirect techniques based on both
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Figure 5. Map segments generated from two vantage points (Top) and registered map (Bottom)

rough position sensor measurement and common
geometric feature identification. Figure 5 shows
two maps generated from separate vantage points.
The left map on the top row shows map gener-
ated with robot facing towards one side of the
building, the right map shows the map generated
from the second vantage point. The bottom figure
shows the map data from the first vantage point
registered into the coordinate system of the second
location. Registering the two segments produces
the complete map of the facade of the building.
Comparing with the SLAM algorithm, map
registration techniques focus on generating ac-
curate map details rather than localization of the
robot in a global coordinate system (Arun, 1987;
Bsel, 1992; Lorusso, 1995; Rusinkiewucz, 2001).
Discrete range points received from color point
cloud sensor contain detailed spatial information
about the environment. Different techniques exist
formerging such point clouds together by exploit-
ing geometric features and measuring surfaces.
Map registration techniques such as Iterative
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Closest Point (ICP) algorithm proposed by Bsel
(1992) has been applied to stitch two neighbor
3D point cloud maps together into one map based
on their common coverage area. Upon conver-
gence, ICP algorithm terminates at a minimum.
Several algorithms are in existence for calculating
the minimum average distance between two point
clouds. Singular Value Decomposition (SVD)
method by Arun (1987), eigen-system methods
that exploit the orthonormal properties of the
rotation matrices, and unit and dual quaternion
techniques were adopted in ICP process. Quater-
nion based algorithms have been used in ICP for
map fusionby Bsel (1992), SVD based algorithms
are widely used in ICP and 6DOF SLAM (Arun
1987, Nucher, 2005, Joung et al., 2009) as they
are robust to reach local minimum and easy to
implement. Several variants of ICP are reported
by Rusinkiewucz (2001) to increase the speed
and precision. Corresponding points sampling,
matching, weighting and rejecting are some
methods used to accelerate the ICP algorithm. In
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the ICP algorithm, associating corresponding
points in two point cloud data sets is the most
critical step. Nearest neighbor search in 2D or 3D
space is commonly used for associating the cor-
responding points. Parallel ICP algorithms have
beendeveloped by Robertson (2002) to accelerate
computation speed. Point to plane registration
method (Lorusso, 1995, Rusinkiewucz, 2001,
Salvi et al., 2007) accelerates the ICP iteration
and convergence.

Other techniques include the point signature
method by Chua (1997), which uses signature
points to describe curvature of point cloud and
matches corresponding signature points during the
registration process. Spin image based methods
compute 2D spin image to represent surface char-
acterization and solve the registration problem by
finding best correspondence between two different
scan spin images (Johnson 1997). Other methods
like principle component analysis (Chung and Lee,
1998) and algebraic surface model (Tarel et al.,
1998) are based on the point cloud surface geo-
metrical features. The normal vector distribution
can be translated into an orientation histogram in
an Extended Gaussian Image (EGI) (Makadia &
Daniilidis,2006). Rigid motion required to register
two point clouds is solved from the cross covari-
ance function (Chibunichev & Vilizhev, 2008) of
the two EGI images. Rigid motion could also be
solved in Fourier domain by computing Discrete
Fourier Transform on Rotation Group on SO(3)
(SOFT) (Joistekecm and Ricjnirem, 2008).

Registration of color point clouds has been
considered (Ferbabdez, et al.,, 2007; Druon,
2007; Newman et al., 2006; Anderson, 2006,
2007). By applying proper calibration on the
hybrid sensor system (Joung et al., 2009; New-
man, Cole, Ho, 2006), range measurement and
visual information can be integrated together to
construct a visually accurate representation of the
scene. Color mapped 3D data was used in map
registration by weighted red, green, blue data.
The corresponding point search during the ICP is
conducted on both the coordinate and color data

(Johnson, Kang, 1997). Hue filters were also used
to constrain the closest point search in every ICP
iteration (Druson, 2007). Color data can be used
to estimate initial alignment of pair wise scans
using Scale Invariant Feature Transform (SIFT)
techniques. Color attributes transferred in YIQ
color model can also be weighted to construct
new variant together with range information for
ICP fine registration. Depth-interpolated Image
Feature (DIFT) algorithm solves corresponding
points between two images and registers color
point clouds based on extracted correspondences
(Anderson, Lilienthal, 2010).

In this chapter, we introduce hue assisted ICP
algorithm for registration of color point clouds.
The criteria for association are defined on a 4D
space rather than 3D geometric space. The fourth
dimension selected is the hue, representing the
intrinsic color values of the pixel. While achieving
the effect of a hue-based filter, hue-association
reduces the nearest neighbor search burden con-
siderably (Men & Pochiraju, 2010). The remaining
sections of the paper describe the approach and
the performance of the algorithm under several
hue distributions in the scene.

HUE-ASSISTED ITERATIVE
CLOSEST POINT (H-ICP)
ALGORITHM

The primary hypothesis of this algorithm is that the
hue value can be applied to increase the accuracy
of pointassociation and accelerate the registration
process. The major time and computation cost
during ICP is finding the correct points pairs.
Closest spatial distance is typically applied in 3D
ICP method. The distance value in 3D space can
be expanded into 4D space by adding weighted
hue value as the 4™ dimension. By integrating hue
value into the closest point search, accuracy of
point association can then be improved.

65



Algorithms for 3D Map Segment Registration

Figure 6. Rubik's cube camera images take from two vantage points

Camera image at 8-

Hue Invariance with Vantage Point

Hue value remains consistent about the same
point between images taken from two vantage
points, while the color values represented in red,
green and blue quantities usually differ because
of variation in light conditions. In order to apply
color to improve the association process, light-
ing effect should be removed. Color raw data
are transformed into representation of separate
chroma, lightness and brightness value. Figure 6
shows two camera images of different angles of
a color palette on a Rubik’s cube, four colors are
used on the same surface. Figure 6 also shows the
color pixels with the background and black frame
removed. Histograms showing the red, green and
blue value in RGB space for all the pixels are
shown in Figure 7. In the RGB histogram, R, G,
and B distributions of the image vary considerably
with the vantage point. When the RGB color space
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Filtered vellow color at 8,

Filtered vellow color at &,

is transformed into HSL space and histograms of
hue, lightness and saturation are plotted in Figure
8, the hue values remain relatively invariant with
the position of the camera. Therefore, hue value of
the pixel, taken from the Hue-Saturation-Lightness
(HSL) model, is used as the fourth dimension in
the point association process. In Figure 9, the
hue rendered point cloud of color point cloud in
Figure 3(b) is shown. Hue values are normalized
between 0 and 1. The hue distribution is typically
similar to the color distribution in Figure 3(b).

Construction of a Weighted 4D
Search Space

Both hue and range value have to be combined
together in the H-ICP variant as {x, y, z, &}
for point association. x, y, z, are the original
coordinate values with distance units and 4 is the
weighted hue value. Hue values are normalized
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Figure 7. RGB distribution varies with camera positions
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to a 0-1 range and must be weighted during the
closest point search in the four-dimensional space.
In order to normalize the coordinates, we find the
bounding box for each point cloud segment and
the coordinate space is rescaled to a 0-1 range.
The normalized variant for point association is

{x, vz hw}, where x=xo/rx, y=y0/ry, z=zo/rz. r.r,
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r_ are the dimensions of the bounding box in x,
y, z directions.

The weight value for the hue dimension should
be properly selected for point association. Since
both range and hue value are normalized from 0
to 1. Weight for hue represents its influence in
the nearest neighbor search process. Low weight
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Figure 9. Hue rendered point cloud of the scene shown in Figure 3

biases the point association towards the range
data and a high weight towards the hue values.
Small weight values for the hue correspond to the
traditional 3D-ICP. Hue weight should be selected
between 10% and 35% for accurate point asso-
ciation. Error in H-ICP will be evaluated by the
average mean square root distance of normalized
associated point pairs.

k-d Tree Based Point
Cloud Association

In 3D ICP algorithm, corresponding points are

searched according to the closest distance rule.
This may cause incorrect matching during single
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iteration loop as Figure 10. Dashed line circle
illustrates range based nearest point association
results, in which all points in data set look for
nearest neighbor in 3D space. It takes more than
oneiteration to pair correct nearest neighbor points
for given data points set. Grey circle denotes the
H-ICP nearest point search that also uses the
correct hue property in finding the best neighbor
in the model. Depending on the correct color
information, corresponding point can be locked
with less iteration.

The ICP computation speed and precision are
highly dependent on association process. Use of
a k-d tree for closest point search and association
or the Nearest Neighbor Search (NNS) problem
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Figure 11. k-d tree construction and nearest neighbor search in 2D space. (a) k-d tree construction in
2D space. (b) 2D space nearest neighbor search in k-d tree.

increases the speed and efficiency of the search.
Thek-d tree is a spatial partitioning data structure
that stores and organizes data in a £ dimensional
space. The k-d tree is a generalized type of bi-
nary tree, with every leaf node is a k-dimension-
al data point that splits the hyperspace into two
subspaces. Splitting is done sequentially from the
first dimension to the £ dimension. A typical k-d
tree in 2D space is shown in figure 11(a). Each
point in the 2D space divides the space sequen-
tially into a left-right spaces (about x-axis) or into
a top-bottom spaces (about y-axis).

Nearest neighbor search can be done very ef-
ficiently onk-d trees. Fora given point with known
coordinates in the data point cloud and a search
radius, the algorithm recursively moves down the
tree and follows the same procedure as insertion.
Search stops at a leaf node of the tree and the
points in the model tree within the search radius
are identified. The nearest point is obtained using
distance computation. Figure 11(b) shows the
nearest neighbor (red square) for the search point
at the center of the circle. The nearest point is
then regarded as the point associated with the
search point.

In3D closest point search, the distance between
2 points between 2 point clouds is:

(b)

ry = lm, —d,)? +(m, —d, )} +(m, —d.)

in which, d{d,, d,yd,-z} and mj{mj . mjymjz} are
point spatial coordinates in data and model point
cloud respectively.

In 4D space, the 4" dimension for each point
should be weighed hue value d, or m, The
spatial value of points should be normalized by
3D search radius r,as mentioned in section 4.1.
In order to accomplish closest point search in
4D space, the distance between two normalized
points d,{d, x’dzydiz,’hihw} and mj{mj .

should be:

mjy’ mjz’ mjhw }

T/ :\/(m,fd,.)er(m

ij iz j iy

2 2 2
- d,u) +(m,, — d};) + (my,, — dﬂuu)

)

or

r]_j' = 17“,;- + Ahm2 (10)

In the ICP process, search radius effects the
computation time and final result. A constant
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search radius is applied for all iteration loops.
Once the search radius is large, too many points
will be included as candidates and increases the
computational burden. Candidate points cloud will
be missed if search radius is too small. The search
radius is determined by the density of point cloud.
In4D k-d tree search, the search radius comprises
of two parts -- a distance part and weighted hue
part as seen in equation (9). The search range for
3D distance is selected such that it ensures about
50 candidate points within search radius. As hue
value is not transformed at iteration, hue search
is analogous to filtering. If the weight for hue is
high, k-d tree search will bias toward hue dimen-
sion. Therefore, appropriate hue weighting ensures
that spatial search dominates over hue filtering.

The ICP algorithm iteratively converges at
minimum error, which is described by mean square
root of the spatial distance between paired points.
At each iteration, a rigid transformation matrix
is computed so that the distance error metric be-
tween the associated points is minimized. Data
point cloud is transformed into the model space
using the computed transformation matrix. This
iteration continues until error metric converges.

Use of hue as a fourth dimension is significant
in those instances where the coordinate based
matching results in a non-unique registration. For
example, if the points in the model and the data
point clouds belong to a plane, traditional coordi-
nate based ICP results in non-unique association
of points. In such cases, using the hue value may
result in unique registration of the points. The
color assisted ICP algorithm in this paper can be
described as follows.

1.  Estimate the initial transformation matrix R
and T;

2. Construct k-d tree of model point cloud
M{m ,m,m....m }, hue value has been
weighted as the 4 dimension;

3. While merging error £>preset error
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Use R and T to transfer data point cloud
D{d.d,..d,.

D=RD+T

4.  For i=1 to length of data point cloud

Search closest point for point d./d di), d._,
d,} in model k-d tree

If closest point m, exists in search range r

Pair d, and m, as {d,, m, };

k++;

End If

End For

Acquire paired point cloud D, and M, contain
N Points, calculate normalized mean square root
distance gas error,

+ (diz - mz:)2

z—z\/d -m,) +(d, —m,)

6. Construct orthonormality matrix H
(Equation14) and solve rigid rotation R
and translation 7 (Equationl15, 16) for next
iteration,;

End While
Solving Rigid Transformation

ICP algorithm is an iteration process to calculate
rigid transformation matrix based on associated
point clouds. M, = {m_, mlymiz} represent the co-
ordinates of the i point in the model point cloud
and d = {d d d_} is the /™ point in data point
cloud R1g1d transformatlon (R) that minimizes
the error measure £(R,T) shown in Equation (11)
is determined.

E(R,T) Z||m —(Rd, +T)| (11)
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A centroid for the associated points is calcu-
lated as the first step (Equation12) and associ-
ated points are translated into centroid relative
coordinates (Equation13). Orthonomal matrix of
associated points can then be constructed as shown
in Equation14. Rotation R and translation T are
decoupled based on the gravity center of associ-
ated points. Using Singular Value Decomposition
(SVD) methods, R can be determined as shown
in Equation15. Translation T is computed using
Equationl16.

—_ — N
m=— mj,.d:%Zdi (12)

In which, m= {Em,%y,%z} and
d= {c_lz, ;ly,gz} are the center points of associ-
ated points in model and data point clouds. N is
the amount of point pairs. The coordinated of
associated point in center point relative space

should be
m' =m, —m,d =d —d (13)

!/

/
’ iy )

i)

In which,
d/ ={d! ,d! ,d!} are the i" associated point with

w? Ty iz

m, ={m! ,m/ m/} and
center relative coordinates. The orthonormality

matrix H can be constructed based on m, ' {m,./

,i=1..N}yand d' {d,i=I... N}.

T Ty Tz
H =
yx vy yz
2T zY 2
Where

N
Szz = Zm'u d'zz
i=1
N
Syy = Zm'w d'w
= (14)

1=1
N

— ! !

1

Singular value decomposition is performed
on constructed H matrix for optimal rotation R

H=UAV" (15)

where optimal rotation R = VU" .
The translation 7 can be calculated as

—T =T
T=m —Rd (16)

Convergence Criteria

Convergence and stopping criterion for the H-ICP
iteration are discussed in this sub-section. An as-
sociation stability criteria is introduced as the one
of the convergence criteria. Association stability,
denoted as S, is defined as the number of points
which changed their paired point in any iteration.
If a point comes into association or changes its
nearest neighbor, S is incremented. Large value of
Ssignifies that pointassociation has not stabilized.
H-ICPiteration is terminated when S vanishes and
the distance error converges.

A pair wised color point H-ICP registration
was accomplished based on above criteria. Model
point cloud contained 122,409 points with color
attributes. Data point cloud is extracted from
model point cloud with a known rotation (6 =5°).
The H-ICP registration process is compared with
3D ICP, error as shown in Figure 12(a). The as-
sociated point number reaches maximum after
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Table 1. Hue and RGB values for several common colors

Color R B Hue
Gray 128 128 128 0

Yellow 255 255 0 60

Green 0 255 0 120

Cyan 0 255 255 180

Blue 0 0 255 240

Magenta 255 0 255 300

Red 255 0 0 360

the 5% iteration (Figure 12(b)), but error has not
converged. From Figure 12(c) the association
stability (S) reaches 0 after 15" and 26™ iteration
for H-ICP and 3D ICP respectively. Error and
rigid transformation are shown in Figure 12(a)
and Figure 13. The known transformation (6 =5°)
is recovered by the H-ICP and ICP algorithms.

MAP REGISTRATION WITH ICP AND
H-ICP

The hue distribution or the color of the model
is generally independent of the geometry. If the
entire body is painted with a color of a single hue,
H-ICP is as effective as the traditional ICP. In
this section, we describe the performance of the
algorithm under various hue distribution scenarios.
The Stanford bunny point cloud is considered as
the benchmark data set. In HSL color space, hue
value varies from 0- 360. The color correspon-
dence between RGB and hue is given in Table 1.

Environments with Fixed Hue
Distributions

For the first experiment, we textured the Stanford
bunny point cloud model as shown in Figure
14(a). In this model, the hue varies from 0 to 360
with from bottom to top at Z direction in seven
segments. Figure 14(b) also shows the initial
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registration of the model and data point clouds
used for this simulation.

The H-ICP registration progress is shown in
Figure 15(a)and Figure 15(b). Figure 15(a) shows
the mean square error during the ICP process and
Figurel5 (b) shows the number of points associ-
ated during iteration loops. Both data and model
point cloud after registration is shown in Figure
14(b). The hue-assisted ICP registers the point
and data clouds faster than the traditional coor-
dinate based ICP.

Continuously Varied Hue Along One
Dimension

In the second simulation, a continuous hue distri-
bution is assigned to the bunny model. The hue
value is varied from 0 to 360, smoothly, along
the z (vertical) direction. The resultant model
and data clouds are shown in Figure 16 (a), (b).
Saturation and lightness value have been set as
constant at every point inside dataset. Hue value
can be calculated by equation (17).

Z; = Zmin
h = 360 ——uin_ (17)
z

max Zmin

h is the hue value at range point i, z, is the
coordinate distance for i point at z direction, z,__
and z are maximum and minimum coordinate
of the point cloud at z direction.
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Figure 12. Building color point cloud registration comparison between H-ICP and 3D ICP algorithm.
(a) Comparison of error convergence. (b) Association number convergence. (c) Association stability

convergence.
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Continuous hue distribution on point cloud
data is registered together (Figure 16 (c)) and the
results are shown in Figure 17. A comparison of
model performance on discrete and continuous
distribution of hue on the same model shows
the expected acceleration in performance due to
uniform distribution of hue on the model.

Randomized Hue on the Model

In this case, the model considered has a continu-
ously distributed hue but with a randomized and
noisy pattern. In this case, there is no geometric
pattern for the color on the object. The color
point clouds are rendered in Figure 18 (a, b).
The merged cloud point cloud after registration
is shown in Figure 18(c). Figure 19 shows the
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Figure 13. Convergence of translation and rotation estimates during registration
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error minimization iteration and comparison with
the seven-segment hue distribution model. In this
case, the hue confuses the nearest neighbor search.
The registration accuracy is also not as good as a
patterned hue case.

Effect of Imaging Noise

In the previous simulation, the imaging sensor is
assumed perfect. The hue on a point is assumed
to be recorded by the imaging sensor perfectly
in both model and data clouds. Some noise in
the color measurement can be expected when
the point clouds are generated from two vantage
points (Gebreetal., 2009). Considering this situa-
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Keratinn

tion, we colorized the bunny model but with 50%
noise in the sensor. The points in the model and
data clouds differ in color by as much as 50%.
The resulting point clouds are shown in Figure
20(a, b). The merged color point cloud is shown
as Figure 20(c).

Hue assisted color ICP matching result in
camera noise color point cloud is compared with
3D ICP matching performance. From Figure 21,
noise in hue decreases the matching accuracy and
reduces the iteration efficiency. Two groups of
cloud point clouds are selected to evaluate the
performance of H- ICP algorithm compared with
typical 3D ICP. A known transformation point
cloud data pair was generated by transforming
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Figure 14. Registration of point clouds with uniformly distributed hues (a) Stanford Bunny point clouds
with hue distributed as seven distinct stripes (b) Registered color point cloud

(b)

Figure 15. Registration comparisons between H-ICP and 3D ICP algorithm (a) Mean square error
comparison. (b) Associated point number comparison.
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convergence speed and registration accuracy as
therigid transformation is already known. Outdoor
large scale area pair wised registration includes
8 pair wised data registration.
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Registration with Six DOF Rotation
In this experiment, registration speed between 3D

ICPand H-ICP are compared using dataand model
point clouds with known (and exact) registration
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Figure 16. Bunny model with continuous hue variation in one axis (a) Data point cloud. (b) Model point

cloud. (c) Merged View.
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Figure 17. Registration comparisons between 7 segment hue model and continuous hue model. (a) Mean
square error comparison (b) Associated point number comparison.
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transformation. Both H-ICP algorithm and 3D ICP comparison are shown in Figure 22(a) and (b).
algorithm have been applied on a building data set Association stability is shown in Figure 22(c).
(Gebre et al., 2009). The data point cloud is taken The evolution of rigid transformation during ICP
from a view position thatis 10° off in Y and Z axis is shown in Figure 23. The H-ICP completes reg-
from the model point cloud. Translation between istration after 102" iteration and the traditional 3D
the point clouds is known to be 2.46, 2.612 and ICP after the 164" iteration, which demonstrates
0.347 along the X, Y, and Z respectively. Same the effectiveness of H-ICP for registering complex
parameters for registrations are selected to be and realistic point clouds. The merged color point
the same as in the previous 1-DOF registration. cloud about building is shown in Figure 24.

Error comparison and associated point number
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Figure 18. Bunny point cloud with randomized hue distribution (a) Data point cloud (b) Model point

cloud (c) Merged View
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Figure 19. Comparison between discrete and random hue distribution case (a) Mean square error com-

parison (b) Associated point number comparison
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Sequential Registration of Multiple
Point Clouds

3D ICP and H ICP algorithms have been applied
on several outdoor map segments. Color point
clouds taken from eight different vantage points
have been registered together to construct a large
scale color point cloud map. Figure 25 shows the
top view of outdoor mapping area in aerial image.
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This scene includes trees, road, electrical poles
and buildings. Figure 26 shows the registered map
and the vantage points from which map segments
are obtained. Pair-wise registration is applied to
construct a single map about the reference coor-
dinate of the first map segment. 3D search radius
in k-d tree was set as 1.5 and the 3D range data
was normalized based on this radius. Hue value
was normalized to a 0-1 range, hue search radius
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Figure 20. Hue mapped with noise. (a) Data point cloud. (b) Model point cloud. (c) Merged View.

(a) (b)

Figure 21. Comparison between H- ICP in and 3D ICP for noisy hue case. (a) Mean square error com-
parison. (b) Associated point number comparison.
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Table 2. Sequential registration of multiple point cloud maps
Position 3D ICP Iterations H- ICP Iterations 3D ICP Error H- ICP Error
2 45 35 0.842 0.856
3 54 44 0.929 0.961
4 77 54 0.039 0.290
5 49 43 0.104 0.319
6 66 59 0.165 0.179
7 73 69 0.129 0.128
8 99 95 0.068 0.070
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Figure 22. Registration comparisons between 3D ICP and H-ICP algorithm. (a) Mean square error
comparison. (b) Associated point number comparison. (c) Stability Comparison.
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was set to be 0.15, and hue weight was set to
5.0. The final error and the number of iterations
required to register the point clouds is shown in
Table 2. H-ICP requires less number of iterations
than 3D ICP.

This experiment proves that faster registration
will be conducted by adding color value into
registration progress. Position 3 and 4 acquired
point clouds have been registered together and
shown in Figure 27, Figure 27(a) describes two
different point clouds with two different colors;
pointcloud at position 4 (black) has beenregistered
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Associated Points (x1000)
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into position 3 point cloud (blue). Combined point
clouds with color are shown in Figure 27(b).

FUTURE RESEARCH DIRECTIONS

Point clouds are inefficient representations of

geometry. Some of the future research directions
can include:

a.  Efficient generation of higher order geo-
metric representations --- lines, surfaces and
solids from the point cloud data;
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Figure 23. Convergence of translation and rotation estimates during registration
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b. Map completeness measures that predict
the geometry missing in the occluded areas
based on a knowledge-base; and

c.  Extra sensing modalities such as infrared
or thermal imaging, acoustic/ultrasonic and
radio frequency imaging to help determina-
tion of materials in the scene.

Architecture, surveying and engineering fields
have considerable needs for automatic or semi-
automatic conversion of 3D point clouds into
higher order line, surface and solid models that are
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compatible with commercial CAD software. This
enables bringing the point cloud data into existing
business processes like generation of drawings for
code compliance, additions and modifications to
existing builtareas and remodeling interior spaces.

CONCLUSION

This chapter describes an algorithm to introduce
color attribute into point cloud registration process
and fundamental algorithms for autonomous ro-
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Figure 24. Registered data and model point clouds

Figure 25. Aerial image of outdoor mapping area and vantage positions
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Figure 26. Top view of eight sequentially registered color point cloud maps

—

.

botic complete mapping. Normalization of range
data and hue value have been applied during the
registration process and quantitatively evaluate the
effect of hue search range and weight for the point
association process. Different hue distribution and
noise effect have been discussed with specific hue
rendered color point clouds. Abuilding data setand
large-scale outdoor point cloud has been registered
using image data assisted algorithm. Use of the
hue value to assist the point association and error
minimization is shown to be effective during the
ICP iteration schemes. Higher dimensional point
association based on weighted hue and range data
leads more accurate point matching result, conduct
earlier convergence of ICP progress, and reduce
computation time. When rigid transformation
is been application in every iteration loop dur-
ing the ICP period, hue value does not change
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in space transformation. However, in HSL data
space, Lightness should change according to the
view angle and light position. Corresponding
point search using additional lightness value
could be a further research field to increase Color
ICP algorithm.
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Figure 27. Map registered from scans taken from two vantage points. (a) Registered position 4(black)
point cloud into position 3 (blue) point cloud. (b) Color point cloud after registration.
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KEY TERMS AND DEFINITIONS

3D Map: 3D map represents certain level of
spatial information about the geometry features in
specific area. The map is dimensionally accurate
and may have a relative or absolute reference.

3D Mapping: 3D mapping is the process of
applying measurement devices to construct 3D
map about specified environment.

Color Point Cloud: Discrete points group
with both dimensiaonl accurate measurement
and texture property, normally generated by both
ranging device and color camera.

Map Registration: A process to accurately
stitch pair or multiple point clouds together into
single point cloud.

Point Cloud: Discrete points group with ac-
curate 3D coordinates describing object surface
dimensional measuremnts, usually contructed by
laser ranging devices.
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3D Shape Compression
Using Holoimage

Nikolaus Karpinsky
lowa State University, USA

Song Zhang
lowa State University, USA

ABSTRACT

As 3D becomes more ubiquitous with the advent of 3D scanning and display technology, methods of
compressing and transmitting 3D data need to be explored. One method of doing such is depth mapping,
in which 3D depth data is compressed into a 2D image, and then 2D image processing techniques may
be leveraged. This chapter presents a technique of depth mapping 3D scenes into 2D images, entitled
Holoimage. In this technique, digital fringe projection, a special kind of structured light technique from
optical metrology, is used to encode and decode 3D scenes pixel-by-pixel. Due to the pixel-by-pixel 3D
data processing nature, this technique can be used on parallel hardware to realize real-time speed for

high definition 3D video encoding and decoding.

INTRODUCTION

Advancements in 3D imaging and computational
technology have made acquisition and display of
3D data simple. Techniques such as structured
light, stereovision, and light detection and ranging
(LIDAR) have led the path in 3D data acquisition
(Gorthi & Rastogi, 2010). Stereoscopic displays
have made the display of 3D data a reality.

DOI: 10.4018/978-1-61350-326-3.ch005

However, as these fields and techniques evolve,
a growing problem is being confronted; how can
3D data be efficiently stored and transmitted?
Storage and transmission of 3D data has
become a large problem due to the file sizes
associated with 3D geometry. Standard 3D file
storage techniques do not lend themselves nicely
to high detailed, high frame rate scenes. Instead,
traditional 3D file storage techniques aim to store
models and then animated models based on con-
straints of a few points, typically skeletal points

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



(Forstmann et al., 2007). This does not hold true
for 3D scenes captured from 3D scanners, as they
consist of a large array of 3D coordinates, all of
which are animated; this animation is inherently
unstructured and unconstrained making typical 3D
file storage difficult. Introducing 3D models into
3D scenes only further exacerbates the problem,
as both modalities need to be accounted for. How
then can such scenes with both types of 3D data
be encoded in a unifying way, which provides not
only an efficient storage and transmission medium,
but also a quick encoding and decoding of high
definition (HD) data?

One solution to this problem is to use depth
mapping to encode 3D scenes consisting of un-
structured scanned data and structured models into
2Dimages, and thenrely on 2D image compression
and transmission techniques. The benefit of doing
thisisthatdecades of research and developmentin
2D image processing can be leveraged, utilizing
existing compression and transmission techniques
along with existing infrastructure. Existing video
services such as Youtube and Vimeo can be used
with slight modifications; only the video renderer
needs to be modified to decode and display 3D
scenes rather than 2D images.

Holoimage (Gu et al, 2006) is a technique
developed to accomplish the task of depth map-
ping an entire HD 3D scene. Utilizing techniques
developed in optical metrology, Holoimage cre-
ates a virtual fringe projection (a special kind of
structured light) system which can depth map
an entire 3D scene point-by-point into 2D im-
ages. The benefits of such a technique include:
(1) using existing research in the field of optical
metrology; (2) leveraging existing research in
the field of image processing; and (3) achieving
point-by-point computation though the whole
process. Employing parallel hardware such as
that of a graphics processing unit (GPU), HD 3D
scenes can be encoded and decoded in real-time.
Thus Holoimage meets the requirements of en-
coding and decoding a 3D scene with little speed
hindrance, lending itself nicely to 3D video and
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other high-speed, high-resolution 3D applications
(Zhang & Huang, 2006a; Zhang & Yau, 2006;
Zhang & Yau, 2007). This chapter will delve
into the details of the Holoimage technique, will
show compression results, and will discuss the
advantages and shortcomings.

BACKGROUND
Related Work

To compress point cloud data, two different classes
of encoders have been developed: progressive
coders, and single-rate coders. Progressive coders
encoded point clouds with a coarse representation
and then progressive refinements. This allows for
the coarse representation to be displayed almost
immediately, and then gradual streaming of re-
finements to occur when they become available.
These schemes typically involve building a tree of
vertices in memory, such as a kd or spanning tree,
followed by entropy encoding using predictive
heuristics, and finalized with run level or Huffman
encoding. This allows for high levels of lossless
compressionsuchas27:1, but with slow encoding
times for dense point clouds. Schnabel and Klein
developed such a technique thatuses Octrees, with
coarse representations using approximately 2 bits
per pixel, and then refinements using up to 6 bits
per pixel (Schnabel & Klein, 2006).

The other class of encoders, single-rate coders,
requires the entire file before decoding can com-
mence. This class of encoders typically consists
of a simple decoder, which can quickly decode
and display a file. Fast decoding makes these
techniques viable for real-time applications such
as 3D video, but compression rates typically are
not as high as seen in progressive encoders. Chai
et al. developed such an encoder, which encodes
a depth map for a scene along with a triangular-
mesh (Chai, Sethuraman, Sawhney & Hatrack,
2004). They were able to achieve compression
ratios ranging from approximately 2:1 all the way



3D Shape Compression Using Holoimage

Table 1. 3D File formats compared to uncompressed 2D image format all with 640 x 480 points. Note the
closest format is still over 5 times as large as its 2D counterpart. Also 3D formats contain only vertices

and connectivity if required; no point normals or texture coordinates are stored. DAE — Digital Asset
Exchange; OBJ — Wavefront Object file; STL — Stereolithography file format.

Bitmap image PLY DAE OBJ STL
File size: 1.2MB 6.5MB 10.6MB 12.8MB 17MB
Ratio: 1: 1 1:5.42 1: 8.83 1:10.67 1: 14.17

to approximately 27:1. When rendering a large
number of triangles, their implementation fell
far below real-time, achieving only 8.8 frames
per second for approximately 125k triangles. The
coder presented in this chapter is classified as a
single-rate coder.

Depth Mapping

Unlike 2D images, 3D geometry conveys much
more information, albeit at the price of increased
data size. An example of this extra information is
facial identification; 2D facial identification sys-
temsrely on the texture ofa2D image, whereas 3D
facial identification systems utilize the structure of
3D geometry (Abate et al 2007). Thus, if lighting
conditions change, or the subject’s texture changes
such as applying makeup to circumvent the system,
2D facial identification systems will fail. 3D facial
identification systems relying on facial structure
on the other hand will not, as the subject would
have to change their physical facial structure in
order to fool the 3D facial identification system.
The cost of all this added information is large in
comparison with 2D though in terms of file size.

To illustrate this point, consider a simple 2D
color image with three color channels and 8-bit
color depth resulting in 24 bits per pixel or 3
bytes per pixel. Now consider a simple 3D point
cloud with a 4 byte floating point number for each
component of a 3D coordinate (x, , z) resulting
in 12 bytes per point. Already the 3D geometry
is on an order of 4 times as large. Now include
connectivity information which is standard in

most 3D data formats, along with point normals,
texture coordinates, and associated texture data;
the resulting 3D geometry is on the order of 10-
20 times larger than a 2D image with the same
number of points. This illustrates the point that
where even one of the smallest 3D formats, poly-
gon file format (PLY) is still over 5 times larger
than an uncompressed 2D image. Now employ
2D image compression such as portable network
graphics (PNG) compression and the result is
staggering (Table 1).

To overcome this problem for large static
models, computer graphics has employed what
is known as depth mapping for some time. The
idea behind depth mapping is to encode 3D ge-
ometry into 2D images, which can then later be
decoded back to 3D, known as image based ren-
dering (Krishnamurthy etal, 2001). Typically, the
model being depth mapped is aligned with a plane
such as the XY plane, and then the Z component
is encoded in a 2D image known as a depth map.
The result of the process is a 2D image, which
assumes that it is XY axis aligned, the points are
uniformly spaced, and each pixel encodes the
depth at the point or the Z value. Performing this
operation allows for the use of decades of existing
research in 2D image processing to be leveraged
as the 3D geometry has been encoded into a 2D
image. Thus, storage and transmission of the
geometry are simplified. Typically, large static
models in a 3D world are terrain models, and
depth mappings are often employed to quickly
generate these models at photorealistic levels.
Due to the nature of 3D scanners and their use of
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2D images to generate 3D data, a natural connec-
tion with depth mapping is apparent. In a typical
3D scanning system, the 3D coordinates are re-
covered from 2D images captured by cameras.
Therefore, there should be a way to convert these
recovered 3D scenes back into 2D images.

Another technique that is often employed with
depth mapping is level of detail (LOD) triangle
meshes (Lindstrometal, 1996). Asacameramoves
farther from its subject, the perspective makes the
subject appear to get smaller and smaller. As the
subject gets smaller from the camera’s viewpoint,
less camera pixels can capture the subject, thus the
subjects level of detail can be decreased without
affecting the detail atthe camera’s viewpoint. LOD
triangle meshes take advantage of this principle
and reduce the number of vertices in the overall
mesh to display an appropriate level of detail,
while displaying as few vertices as possible for
speed. Since depth maps are applied per vertex,
the fewer vertices the faster the decoding process.
Thus LOD meshes work nicely with depth map-
ping, decoding and displaying only the needed
level of detail in a mesh.

HOLOIMAGE TECHNIQUE
Principle

The principle behind Holoimaging is borrowed
from optical metrology and is known as fringe
projection (Gu et al, 2006). Figure 1 shows a
basic fringe projection system, which consists of
a projector and a camera. A projector projects a
structured pattern or structured light onto an object,
and a camera captures the resulting scene. As the
structured pattern from the projector lands on the
objects in the scene, the 3D geometry distorts the
pattern, which is what the camera captures. As-
suming that the geometric relationship between
the projector pixels and the camera pixels are
known, the 3D geometry can be reconstructed
from the distortion between each image. Thus 3D
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geometry is transformed into a single 2D image,
and then the 2D image can be used to reconstruct
the 3D geometry.

In the Holoimaging system setup, it differs
slightly from a real 3D fringe projection system
in that the camera and projector are both virtual
orthogonal devices instead of perspective ones.
In a real system the pinhole camera model, a
perspective projection, is used which complicates
the technique of encoding and decoding. The
camera and projector lens distortion usually brings
3D shape measurement errors. Thus, using an
orthogonal ideal projection simplifies the process
further. Another difference is thatinreal 3D fringe
projection system, the light usually cannot pass
through an opaque object, but in a virtual fringe
projection (Holoimage) system, the fringe patterns
can pass through any object to generate fringe
patterns for 3D shape recovery. Moreover, since
the position of the virtual camera and projector
can be precisely configured, the geometric rela-
tionship between the two can be precisely defined
resulting in no need to calibrate the camera and
projector. This is usually a very complicated
process with a real 3D fringe projection system
(Zhang & Huang, 2006b). With the Holoimaging
setup, 3D shape reconstruction is significantly
simplified and is highly precise, resulting in a
quick and efficient way to depth map an HD 3D
scene. In our previous work, we have demon-
strated that the Holoimaging system can pre-
cisely recover a 3D scene (Zhang & Yau, 2008),
and can be used to recover arbitrary 3D shapes
(Karpinsky & Zhang, 2010a), albeit via different
phase-shifting techniques.

Three-Step Phase-Shifting Algorithm

The structural pattern, or fringe pattern, that is
used in the Holoimaging system is a sinusoidaly-
varying pattern, which is typical of a fringe
projection system (Zhang & Huang, 2006a).
Phase shifting is usually used to achieve pixel-by-
pixel spatial resolution during 3D shape recovery.
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Figure 1. Virtual fringe projection setup, otherwise known as a Holoimaging setup

Phase line

Phase line

Phase-shifting algorithms are extensively used in
optical metrology because of their measurement
accuracy and speed. Over the years, a number of
phase shifting algorithms have been developed
including three-step, four-step, least square algo-
rithms etc (Schreiber & Bruning, 2007). All these
algorithms differ in the number of fringe images
required and the amount of phase shift, but they
all share the same properties: (1) high measure-
ment speed, because it only requires a minimal
amount of images to recover one 3D shape; (2)
high spatial resolution, because the phase can be
obtained pixel by pixel, thus the measurement can
be performed pixel by pixel; (3) less sensitivity to
surface reflectivity variations, since the calcula-
tion of the phase will automatically cancel out
the DC components.

Projector
pixel

Camera_}-|.
pixel

N

In areal world 3D shape measurement system
using a fringe projection technique, a three-step
phase-shifting algorithm is typically used in high-
speed applications as it requires the least number
offringe patterns for 3D shaperecovery. The fringe
images of a three-step phase-shifting algorithm
with equal phase shift can be described as

Il(xvy) = I/(xvy) + [”(ﬂj,y) COS[¢($7 y) —2m / 3]7
1)

L(z,y) = I'(z,y) + I"(,y) cos[p(z, y)],
2

I(z,y) = I'(z,y) + I"(z,y) cos[d(z, y) + 27 / 3].
3
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Here, I'(z,y)isthe average intensity, I”(z, )
the intensity modulation, and ¢(z, y) the phase to
be solved for. I'(x,) stands for the background
light, the surface reflectivity, and the projected
average light. I”(z,) indicates the fringe qual-
ity. The phase can be obtained by simultaneously
solving Equation (1)-(3):

\/g[jl(xv y)— L(z, y)]
212@’ y) - I1(Ia y) - 13(% y) .
“4)

¢(z,y) = tan™

The phase value provided from the arctangent
function only ranges from — to 4+ , which will
result in 27 phase discontinuities. To obtain a
continuous phase map, a phase unwrapping algo-
rithm is usually needed (Ghialia & Pritt, 1998).
The phase unwrapping step is essentially to detect
the 27 phase jumps and remove them by adding
or subtracting multiples of 27 . In other words,
the unwrapped phase can be written as

O(z,y) = ¢(x,y) + 21 x k(z,y). (5)

Here ®(z,y) istheunwrapped phase, and k(x,y)
is integer, which might differ for different pixels.
The phase unwrapping step is essentially to find
correct k(x,y) for each point. Once the continuous
phase map is obtained, 3D information can be
recovered if the system is calibrated (Zhang &
Huang, 2006b).

As can be seen in Equation (4), the phase is
calculated pixel-by-pixel, thus the 3D information
can be obtained pixel-by-pixel, which is advanta-
geous over most other 3D imaging techniques.
Therefore, this technique allows for pixel-level
spatial resolution. Since only three images are
required, it is possible to achieve high-speed
(Zhang, 2010a).
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Holoencoding: Coordinate-
to-Phase Conversion

Because of the background lighting and random
noise effect, three phase-shifted fringe patterns
are typically required in order to perform 3D shape
measurement in a real world system. In contrast,
within a virtual Holoimaging system, all environ-
mental variables can be precisely controlled;
therefore only two phase-shifted fringe patterns
are needed in order to solve for the phase ¢(z,y)
. These two fringe patterns can be modeled and
encoded into two primary color channels of the
projector. Since the background light can be pre-
cisely controlled, the fringe images can be ide-
ally sinusoidal and described in the following two
equations:

I = % X [1 + sin ®(z,y)], (6)

r

;25

g

X [14 cos ®(z,y)]. (7

From these two equations, the wrapped phase
¢(x,y) may be obtained point-by-point by

2%
¢(x,y) = arctan —2?)5 . (8)
b=y

Similarly, this yields a phase value for each
pixel that ranges from [- 7, + 7 ), which can later
be used to reconstruct the 3D geometry. The
unwrapped phase ®(z, y) canbe obtained by adopt-
ing a phase unwrapping algorithm to find k(x, ).
However, since there are three primary color
channels and the blue channel is not yet utilized
in the Holoimaging system, we can encode (X,
y) into the third channel by projecting it along
with the fringe patterns. In practice, the third
color channel is encoded as
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Figure 2. Diagram of Holoimage fringe image. (4) Red color channel (1) given in Equation (6); (B)
Green color channel (I g) given in Equation (7); (C) Blue color channel (1,) given in Equation (9), (D)
Holoimage with all three color channels combined. Note it is rendered in grayscale but is a RGB color

image in the actual Holoimage system.
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D(z,y)
2

I, = k(z,y) x stepHeight = x stepHeight.

)

Embedding these functions in the red, green
and blue color channels, a gradient image to be
projected is created; this image is seen in Figure
2. Due to the exactness of the virtual system these
jumps can be mathematically determined, and a
third function can be used which simply specifies
the number of periods of the function or the mul-
tiple of 27 to add at each point (Karpinsky &
Zhang, 2010b). This function is given above as
I, . By referring to this image, the continuous
phase map can be obtained by

O(z,y) = 271, (z,y) / (stepHeight) + ¢(z,y).
(10)

Given that there are only three images, these
functions can be encoded into the three primary
color channels (red, green, blue, or RGB) of'a 2D
image and projected in the virtual system at once,

(B) )

(D)

achieving depth mapping of 3D geometry into a
2D image. Because the 3D information can be
encoded into a single color image, it drastically
reduces the size of storing 3D geometry data. In
addition, because the phase at each point can be
solved for point-by-point without referring to any
neighboring point, the decoding can be achieved
in parallel. With a highly parallel computation
device, such as GPU, the decoding step can be
realized in real-time.

Holodecoding: Phase-to-
Coordinate Conversion

Decoding a Holoimage is achieved through a very
simple triangulation. To explain the concept in
the context of a digital fringe projection system,
Figure 3 is given which decodes a single depth
value z using a reference plane (a flat surface
with z = 0). In other words, the depth z value is
relative to the flat plane. The ultimate goal is to
be able to calculate the z value for each pointin a
point-by-point manner from the computed phase
value in Equation (10).
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Figure 3. Schematic diagram for phase to coordinate conversion. In order to decode the depth value

from the Holoimage the projection angle and fringe pitch used during encoding must be known.

To begin, from Figure 2, we can use basic
trigonometry to find z in terms of Az, , and
tan @, where 0 is the angle between the capture
plane and the projection plane.

_ A

= . 11
¢ tan @ (1D

To simplify the 3D rendering, the graphics
pipelineisusually setup ina way thatthe rendered
scene gets visualized within a unit cube, thus the

. o1 .
size of a pixel is g where W is the total number

of pixels horizontally in the unit cube. If the ori-
gin of the coordinate system for the unit cube is
aligned with the origin of the image then x can
be found by simple scaling, that is

r=—, (12)

where i is the index of the pixel being decoded in
the Holoimage. Therefore, the distance between
C and 4 in the unit cube is actually:
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1
Az, , = %}‘4 . (13)

At this point Equations (11) - (13) can be
combined yielding the following:

. (14)
W tan 6

This gives z in terms of the change of index
from point C to point 4, along with the number
of pixels horizontally, and the angle between the
projection and capture planes. Since there is no
easy way to find i for point C and point 4 given
a point, we will have to look further to see if the
phase value can be leveraged.

For an arbitrary pixel K in the Holoimaging
system, the point 4 on the reference plan would
have a phase value of ®’,. From the camera per-
spective or the Holoimage perspective, point B
would be in the place of point 4 and the phase
value wouldbe @, orjust ® . Fromthe projector’s
perspective, point B and point C (on the reference
plane) have the same value, i.e. & =, = ¢,.
Since the fringe stripes are uniformly distributed
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on the reference plane we have the following
equation.

AD =), -, =P, — P, (15)

The phase of a point on the reference plane
can be defined as a function of the index ¢ and
the fringe pitch (number of pixels per period of
fringe) on the reference plane.

o =210 (16)

Here P_is the fringe pitch on the reference
plane. Again using more trigonometry, we can
define the fringe pitch on the reference plane in
terms of the fringe pitch of the projector.

p=L
cosd

(17)

Here, P is the fringe pitch that the projector
actually projects. In other words, P here is the
computer generated fringe pattern pitch number.
Combining Equation (16) and Equation (17), we
obtain the phase of a point on the reference plane
interms of'the fringe pitch P and the angle between
the capture plane and projection plane 6 .

o — 2micost (18)
P

Furthermore, Equation (15) and Equation (18)
can be combined to obtain

AD — 2mi, cos  2mi, cosd o 2mi, cos
P p p
(19)

or in another means as,

_ 2mcostAi, , o 2mi, cos

P P

A
(20)

Rearranging the first part of Equation
(20) yields

ADP
; = . 21
f-a 27 cosf @D

From here we can go back to where we left off
with Equation (14) and substitute in Equation (21).

. ADP , (22)
27W cos 6 tan 6

or

z = ﬂ (23)
27W sin 6

Substituting in A® from Equation (20)
we obtain:

P[(ID _ 27TZA;OS(9]
z = - . (24)
27W sin 6

Now we relate the depth information z with
the projected fringe patterns, the Holoimage
pixel index, and the setup of the Holoimaging
system, that is

. P® —2mi, cosf
27 sinf

(25)

This yields a value z in terms of P the fringe
pitch; i, the index of the pixel being decoded in
the Holoimage; 6 the angle between the capture
plane and the projection plane; ® the phase at
the current pixel being decode in the Holoimage;
and /¥ the number of pixels horizontally. Because
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the system is an orthogonal system and the render-
ing is performed within a unit cube, the x and y
coordinates can be calculated by scaling the j and
ias,

_J
T= (26)

i
v=1 27)

All of these terms are specific to the point
at which the Holoimage is being decoded, thus
making the decoding a point-by-point function;
given parallel hardware, a Holoimage scene can
be decoded in parallel giving a large speed boost.

Holoimage Example

To verify the performance of the proposed ap-
proach, we first tested a simulated pyramid object
with a known shape and dimension (unit can be
any since it is normalized into a unit cube) as
shown in Figure 4. This object is then sent to the
Holoimging system to generate the Holoimage,
as shown in Figure 4(A). In this example, the
Holoimaging system was configured as the fol-
lows: stair step height of 32 grayscale values,
projection angle of § = 30°, fringe pitch of P =
16 pixels, display window size of 512 X 512
pixels, and the rendering is performed within a
unit cube. During the rest of this chapter, all ex-
periments are performed under the same Holo-
imaging system setup.

From the red and green channels, the wrapped
phase map can be calculated using Equation (8),
which is shown in Figure 4(B). Figure 4(C) shows
the blue channel stair image that is then applied
tounwrap the phase point by point using Equation
(9). The unwrapped phase map is shown in Figure
4(D). Once the phase map is known and the con-
figuration of the system is pre-defined, the (x, y,
z) coordinates for each pixel can be calculated
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from the unwrapped phase map point by point
using Equations (25)-(27). Figure 4(E) shows the
recovered 3D shape. To verify the accuracy of the
Holoimaging system, the difference map between
the original data and the reconstructed one was
obtained, as shown in Figure 4(F). The error is
approximately 0.05%, which can be negligible in
comparison with the quantization error: represent-
ing the depth map with 8-bit grayscale images in
one channel generates error of 0.39%, or
%x 100% = 0.39%.

To further demonstrate the accuracy of the
Holoimaging system, an actual scanned 3D object
is then tested for the proposed technique. Figure 5
shows the experimental result. The original shape
is shown in Figure 5(A). It can be seen that the 3D
shape is a typical statue face with very detailed
3D structures. Due to the nature of the Holoim-
age technique, all the details can be recovered.
Figure 5(D) shows the Holoimage generated for
the object. From the Holoimage, the wrapped
phase, unwrapped phase map, and the 3D shape
can be obtained. Figure 5(C) shows the recovered
3D shape. If the original shape and the recovered
one are rendered in the same window, the results
are shown in Figure 5(D) in shaded mode. It
clearly demonstrates that the recovered 3D shape
and the original one are almost perfectly aligned,
that is, the recovered 3D shape and the original
3D shape do not have significant difference. The
difference map is further calculated and plotted in
Figure 5(E). The error was found to be 0.004%.
The error is again negligible in comparison with
quantization error.

Both simulation and the real data shows that
the Holoimging system can be used to accurately
recover the original 3D geometry with a single
color image. Because 3D geometry can be repre-
sented with a single color imaging, it poses po-
tential for 3D shape compression, which will be
detailed next.
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Figure 4. 3D recovery using the single color fringe image. (4) Fringe image; (B) Phase map using red
and green channels of the color fringe image; (C) Stair image (blue channel); (D) Unwrapped phase
map; (E) Recovered 3D shape,; (F) Difference map between the recovered 3D shape and the original

one (RMS error 0.05%).
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Table 2. Comparison of PLY model format to Holoimage encoded in various image formats. Note that
even an uncompressed bitmap format still yields a compression ratio of over 6:1.

PLY BMP TIFF PNG JPEG+PNG
File Size (bytes): 4,838,400 786,488 395,194 141,344 81,090
Ratio: 1:1 6.15: 1 12.24: 1 34.23: 1 59.67: 1

Holoimage Compression

Once a scene is Holoencoded the resulting 3D
color image can be compressed using standard
2D image compression techniques. An example
face shown in Figure 5 that is 512x512 pixels
has been Holoencoded and then compressed us-
ing different techniques. As an example, we used
Bitmap, PNG, tagged image file format (TIFF),
and differing compression levels of joint photo-

graph experts group (JPEG) + PNG compression
to store the Holoimage. Table 2 compares differ-
ent compression techniques in comparison with
storing the geometry in the PLY format, which is
atypical highly compressed 3D format. Note that
the even storing the geometry in uncompressed
BMP format still yields a compression ratio of
approximately 6:1.

One caveat of the technique is that the image
is encoded 3D geometry, thus lossy image
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Figure 5. 3D recovery using the color fringe image for scanned data. (a) 3D scanned original data; (b)
Color fringe image, (c) 3D reconstructed shape; (d) Overlap original 3D shape (light gray) and the
recovered 3D shape (dark gray) in shaded mode; (e) Difference map (RMS error 0.004%,).
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compression can create artifacts in the recon-
structed geometry much like it does in the actual
2D image. An example of such compression is
JPEG encoding; high compression rates can be
achieved, but at the cost of blocking artifacts.
Blocking artifacts occur due to the fact that the
JPEG compression standard performs its cosine
transform on 8 X 8 blocks of pixels in the image.
The edges of these blocks can have sharp discon-
tinuities at high levels of compression. These
discontinuities from the blocking artifacts lead to
what is known as spiking noise, which is shown
in Figure 6. Currently JPEG encoding cannot be
directly implemented with Holoimages as the
blocking artifacts cause significant problems with
the blue color channel which is used to unwrap
the phase and is intolerant of noise. To alleviate
this problem, the red and green color channels
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can be encoded with JPEG encoding and the blue
color channel can be encoded with a lossless
format such as PNG. This modified 2D image
format allows for the high compression rates seen
in JPEG and other lossy image formats, without
introducing errors in the blue color channel.
Ascanbeexpected, the higher the compression
rate on lossy formats, the more apparent the block-
ing artifacts become, resulting in more spikes and
ripple noise. Because these spikes only appear
along the edges of the stair, which usually shifts
one pixel left orright, they can be removed through
filtering (e.g., median filtering) on the phase map
before triangulation (Karpinsky & Zhang, 2010b).
The third row of Figure 6 shows a median filtered
mesh, where most ofthe spikes have been removed.
Median filtering leads to the loss of point-by-point
processing for the decoding procedure, but one
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Figure 6. Comparison of reconstructed geometry under varying levels of JPEG compression. The first
row shows the Holoimage used to compress the geometry, row two shows the reconstructed geometry
before median filtering, row three shows the reconstructed geometry after median filter. Note that
median filtering has removed most of the spiking noise, but some ripples have formed on the model
such as on the forehead. Column (A) shows the uncompressed Holoimage and the associated results;
Column (B) shows the 90% compressed Holoimage and the associated results;, Column (C) shows the
70% compressed Holoimage and the associated results; and Column (D) shows the 50%, compressed

Holoimage and the associated results.
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should note that the spiky noise is only one pixel
in width, thus if filtering is implemented
correctly it can still be implemented in parallel.
We have demonstrated that compression ratios of
36:1 can be achieved without significant loss in
the quality of the data (Karpinsky & Zhang,
2010b). Because the compression ratio is very
high and the 3D scenes will be converted into 2D
images, this compression technique would easily

allow for streaming of high frame rates of com-
pressed Holoimages.

FUTURE RESEARCH DIRECTIONS

One known problem in Holoimaging is subpixel
shift in which during the encoding process the
sinusoidal fringe gets quantized into an RGB
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pixel. This results in some error, which at times
can create what is known as spiking error (as
illustrated in Figure 6). For 3D HD scenes, this
error is unacceptable and must be filtered out. A
3%3 median filtering on the phase map can be
performed to help eliminate small amounts of this
noise, but at the cost of losing the point-by-point
decoding of Holoimaging. Parallel processing can
still be maintained if implemented correctly, but
this isnot an optimal solution. Ifinstead 2D image
filtering can be applied to the Holoimage before
the decoding, this noise could be removed without
losing point-by-point parallelism of decoding.

This leads into a major direction of research
in terms of Holoimages and depth mapping in
general, which is filtering of the depth map im-
ages. Since Holoimages are encoding information,
standard 2D image filtering has differing effects,
which can sometimes be adverse. How then can
2D image filtering be applied to the Holoimages
to retain point-by-point parallel decoding and
achieve the removal of spiking noise? If this
question can be answered it has the potential to
solve subpixel shift along with enabling Holoim-
ages to be saved in a highly compressed lossy
image format.

Another source of noise in Holoimaging oc-
curs when compressing the Holoimages. If the
Holoimages are stored in a lossy image format,
compression artifacts are introduced, resulting in
erroneous decoded spiking noise. An example of
this is with JPEG compression, which introduces
blocking artifacts as it divides the image into
8x8 blocks before applying the discrete cosine
transform and quantizing. With high compres-
sion levels the blocking artifacts are apparent to
the human eye. With small amounts of blocking
artifacts, Holoimages can be affected adversely.
Again filtering can be used to reduce this such
as median or Gaussian filtering, but this is typi-
cally applied to the decoded phase map and not
the actual Holoimage. Also there might be some
directions that could encode the 3D geometry
in another way so that the blue channel will not
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contain sharp edges. By circumventing the prob-
lems with information loss in JPEG compression,
the problem of spiky noise might be completely
eliminated. This, of course, requires the investiga-
tion of the exact manner of JPEG compression.

If research is done to develop methods to
overcome these shortcomings then Holoimaging
has the potential to compress 3D scenes into 2D
images and then store the resulting depth maps
in lossy image formats. Once in this format, the
images could be encoded in into video via the
wide variety of 2D video codecs. This could allow
for wide spread adoption of 3D video without the
need to create or adapt new storage and transmis-
sion techniques.

CONCLUSION

Holoimaging yields an effective way to encode,
transmit, and decode 3D scenes. Encoding relies
on techniques borrowed from optical metrology,
namely fringe projection. The fundamental behind
the technique is to project a specially designed
sinusoidal structured pattern onto objects ina 3D
scene and then capture how the objects distort the
pattern. Being a virtual system, all environmental
variables can be controlled giving a precise known
relationship between camera and projector, remov-
ing the calibration step seen in real-world fringe
projection systems. Also, being a virtual system
only two fringe images need to be used which can
be embedded in the red and green color channel
of an image, along with a stair image in the blue
color. The stair image allows for point-by-point
decoding lending the technique to be easily imple-
mented in parallel architectures.

Once compressed into a 2D depth map, exist-
ing image compression techniques can be applied
to compress and transmit the depth map. One of
these compression techniques, JPEG encoding,
has been explored which allows for high com-
pression but at the loss of data. In order to save
Holoimages in this format, the JPEG had to be
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augmented with a lossless compression technique
for the blue color channel. This was due to the
factthatthe blue color channel was very intolerant
of noise. As compression rates increased, block-
ing artifacts due to the JPEG compression in the
Holoimage led to spiking noise, but this could
be easily removed though median filtering of the
phase map. Filtering on the phase map causes
Holoimaging to lose its point-by-point nature, but
ifimplemented correctly can still be performed on
parallel architecture. One major area to explore
in Holoimaging would be filtering of the actual
Holoimage, which would be more efficient in
terms of filtering 2D data vs. 3D data and keeping
the pipeline point-by-point. Another area would
be different methods to encode the Holoimage so
that the spiky problem will be fundamentally and
completely eliminated.
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KEY TERMS AND DEFINITIONS

Fringe Projection: Projecting sinusoidaly
varying fringe patterns (structured light) onto
an object.

104

3D Shape Compression Using Holoimage

Holoimaging: The technique of virtually ap-
plying fringe projection to encode 3D geometry
into 2D images and then be able to decode back
into 3D a scene via a phase shifting technique.

Phase Shifting: Process of taking multiple
fringe images and shifting the sinusoidal fringe
patterns spatially in the phase domain.

Phase Unwrapping: Finding and removing
2 w discontinuities resulting from the arctangent
function used in phase wrapping.

Phase Wrapping: Process toretrieve the phase
from fringe pattern(s). This is typically done by
adopting an arctangent function, which yields a
phase map containing 27 discontinuities.

Spiky Noise: Noise in the mesh that results
from problems such as subpixel shift or block-
ing artifacts in 2D compression. This noise can
typically be removed by median filtering on the
decoded mesh.

Structured Light: Light thatis structured into
a pattern, which can be used to encode a scene.
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Chapter 6

Restoration and Enhancement
of Digitally Reconstructed
Holographic Images

Rajeev Srivastava
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ABSTRACT

Holograms can be reconstructed optically or digitally with the use of computers and other related devices.

During the reconstruction phase of a hologram by optical or digital methods, some errors may also be
introduced that may degrade the quality of obtained hologram, and may lead to a misinterpretation of the
holographic image data, which may not be useful for particular application. The basic common errors
are zero-order diffraction and speckle noise. These errors have more undesirable effects in digital than
in optical holography because the systems of recording and visualization used in the digital holography
are extremely sensitive to them or inclusively increase them. The zero-order diffraction can be removed
by using high pass filters with low cut-off frequencies and by subtracting the average intensity of all
pixels of the hologram image from the original hologram image. Further, the speckle noise introduced
during the formation of digital holographic images, which is multiplicative in nature, reduces the image
quality, which may not be suitable for specific applications. As the range of applications get broader,

demands toward better image quality increases. Hence, the suppression of noise, higher resolution of
the reconstructed images, precise parameter adjustment, and faster, more robust algorithms are the es-

sential issues. In this chapter, the various methods available in literature for enhancement and speckle

reduction of digital holographic images have been discussed, and a comparative study of results has

been presented.
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INTRODUCTION

The basic concept (Srivastava, 2010) of hologra-
phy was first introduced by Gabor in 1948 to im-
prove the resolving power of electron microscope
for coherent imaging. After the advent of laser
technologies, the Goodman in 1967 had conceived
the basic idea of digital holography. Since one of
the main drawbacks of electron microscopes is
that the higher the spatial resolution, the lower
is depth of focus which imposes restrictions in
imaging for a specific application. This problem
of microscopy can be resolved by holography.
Holography is the science of producing holograms
which is an advanced form of photography that
allows animage to berecorded in three dimensions
(3D) and the technique of holography can also
be used to optically store, retrieve, and process
information. Holography is related to measuring
the wave field followed by reconstruction of the
wave field, i.e. both the amplitude and the phase
of the light wave scattered by the object. Due to
advancements in digital optics, CCD and CMOS
cameras and computers, it became possible not
only to record the digital holograms but also to
reconstruct them. Further, with the advancement
and use of digital image processing and optical
information processing methods for further pro-
cessing of digital holographic images, nowadays it
is possible to generate realistic digital holograms
with no defects that may be used in different
areas of applications. Holography which was
originally invented to solve problems in electron-
microscopy, now in its new form of digital holog-
raphy, can be used to solve problems of optical
microscopy. Holography is capable of recording
3-D information and optical reconstruction is
then possible with visual 3-D observation. Since
there are no wet chemical processing and other
time consuming procedures, digital holography
can be done in almost real time through numerical
reconstruction which offers great flexibility on
controlling some parameters, such as focusing,
image size and resolution.
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When image of an object is observed through
a microscope or the object’s diffraction pattern,
the information about the phase of the emanated
wave 1s lost. However, if one records the inter-
ference pattern of light coming from an object
called the object beam with a reference beam
which has the same wavelength as the object
beam and of a known phase distribution such as
a plane wave or a spherical wave then it is pos-
sible to reconstruct both the phase and amplitude
of the object beam (See Figure 1) (Yaroslavskii
& Merzlyakov, 1989). This reconstruction of the
object beam can be done optically by taking the
hologram, which is the recorded fringe pattern
obtained from interfering the object and reference
beam, and shining the reference beam at it and
the hologram in turn diffracts the light so that an
image of the object is visible. As an example, we
can consider the recording of the hologram of a
spherically scattered wave like the light scattered
from a Rayleigh scatterer where the spherical
wave coming from the object interferes with a
plane wave and as result a pattern of concentric
rings are formed which resembles a Fresnel zone
plate and like a Fresnel zone plate, the fringes
focus a plane wave illuminating it to a point.
The holograms can be reconstructed optically
or digitally with the use of computers and other
related devices. Figure 2 shows the steps involved
in digital reconstruction and image processing of
holograms. The various components of the setup
contain following components.

Hologram Sensor which captures original
hologram in analog form; Analog-to-digital con-
verter which converts the analog form of re-
corded hologram in digital form for further pro-
cessing with computers; pre-processing of digital
hologram which involves the preparation of ho-
logram data in some specific desired format etc;
image reconstruction is associated with Digital
reconstruction of holograms by applying various
steps such as use of transformations (DFT, Fres-
nel’s) etc; followed by image processing step
which is responsible for producing realistic
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Figure 1. Digital holographic microscopy principles
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holograms by applying various image contrast
enhancement techniques, speckle reduction
techniques and zero-order diffraction removal
techniques etc.

Difference Between Digital
Holography and Digital Photography

The basic difference between ordinary digital
photography and digital holography is that in

digital photography only intensity, i.e. ampli-
tude distribution of light coming from an object
being imaged is recorded on a particular plane
because the camera lens can be focussed only in a
particular plane and the details of the field
nearer and farther than the focussed plane are
discarded whereas in digital holography both
the amplitude and the phase distribution of light
coming from object being imaged can be recorded
in any plane between the object and the observer,
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producing the complete realistic field of view as
originally observed.

Advantages of Digital Holography

The advantages of digital holographic microscopy
include (Yaroslavskii, & Merzlyakov, 1989): real
time image reconstruction for visual analysis,
flexibility in retrieving arbitrary focal plane and
focal plane data fusion, availability of digital image
processing technology for sensor data calibration
and processing reconstructed images, and direct
availability of data for numerical analysis.

Image Processing Problems
in Digital Holography

Some of the image processing problems involved
in digital holography include: digital representa-
tion of holograms and optical transforms, holo-
gram sensor signal correction, fast reconstruction
algorithms, image contrast enhancement, speckle
reduction, encryption, zero-order diffraction re-
moval, phase unwrapping etc.

Application Areas

The various areas of applications of digital ho-
lography include: Copyright protection, security
systems, holographic interferometry, microscopic
examination of certain kinds of biological speci-
men, stereoscopic holography, high capacity
system for image storage and re-examination,
applications using short-coherence length light
such as light-in-flight measurements & short
coherence tomography, particle distribution mea-
surement, endoscopic digital holography, optical
reconstruction of digital holograms, comparative
digital holography, encrypting of information
with digital holography, synthetic apertures and
many more.

Inthis chapter, some of the standard techniques
for speckle reduction and enhancement of digitally
reconstructed holographic images are explained,
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implemented and their performance comparisons
are presented. Next section presents basic con-
cepts of digital holography and speckle forma-
tion followed by the section discussing various
techniques for speckle reduction and enhancement
of digital holographic images. Then, results and
performance comparison of various techniques
for enhancement and speckle reduction of digital
holographicimages are presented. Finally, conclu-
sionand future directions of research are discussed.

DIGITAL HOLOGRAPHY: GENERAL
PRINCIPLES AND FORMATION
OF SPECKLE NOISE

The digital holography framework (Garcia-
Sucerquia, Herrera, & Velasquez, 2005) for
hologram recording and reconstruction has three
planes namely object plane, hologram plane and
real Image plane separated by a distance d and
involves two diffraction processes one from the
object plane to hologram plane and another from
the hologram plane to the image plane. The ob-
ject located at the object plane z=0 is coherently
illuminated and the optical field scattered by it
interferes with the plane reference wave in such
away that the interference pattern is recorded in a
CCD cameralocated ata distance z=d inhologram
plane where only the intensity impinging upon the
CCD is recorded. The optical field at the image
plane located at a distance ¢ from the hologram
plane is calculated by means of calculating the
diffraction process of the plane reference wave
when it illuminates the transmittance represented
by intensity incident upon the CCD.

Holographic Recording and
Reconstruction Process

During the recording process of digital hologram,
to produce a recording of the phase of the light
wave at each point in an image, holography uses a
reference beam which is combined with the light
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from the object known as object beam. Optical
interference between the reference beam and the
object beam, due to the superposition of the light
waves, produces a series of intensity fringes that
can be recorded on standard photographic film.
These fringes form a type of diffraction grating
on the film, which is called the interference pat-
tern or hologram. These recorded fringes not only
directly represent their respective corresponding
points in the space ofascene butalso an individual
section of even a very small size on a hologram’s
surface contains enough information to reconstruct
the entire original scene as viewed through that
point’s perspective. This is possible because
during holographic recording, each point on the
hologram’s surface is affected by light waves
reflected from all points in the scene, rather than
from just one point. In holographic reconstruction
process, once the film is processed, if illuminated
once again with the reference beam, diffraction
from the fringe pattern on the film reconstructs the
original object beam in both intensity and phase
as both the phase and intensity are reproduced,
the image appears three dimensional (3D) and the
viewer can move his viewpoint and see the image
rotate exactly as the original object would. The
holography typically uses a laser in production
because of the need for interference between the
reference and object beams. The light from the
laser is split into two beams, one forming the
reference beam, and one illuminating the object
to form the object beam. A laser is used because
the coherence of the beams allows interference
to take place. Before the invention of laser, early
holograms were made by other coherent light
sources such as mercury-arc lamps. In simple
holograms, the coherence length of the beam de-
termines the maximum depth the image can have.
A laser will typically have a coherence length of
several meters, sufficient for a deep hologram.
The mathematical models (Yaroslavskii, &
Merzlyakov, 1989) of recording and reconstruc-
tion of holograms assume that monochromatic
coherentradiation thatis described by its complex

amplitude as a function of spatial coordinates is
used for hologram recording and reconstruction
and object characteristics defining its ability to
reflect or transmit incident radiation are described
by radiation reflection or transmission factors
which are also functions of spatial coordinates.
If I(x, y, z) is complex amplitude of the object
illumination radiation at point (x, y, z); O(x, y,
z) is object reflection or transmission factor then
complex amplitude a(x, y, z) of the radiation re-
flected or transmitted by the object at this point
is defined as:

a(x, y,2) = I(x, y, 2)O(x, y, 2) (1)

If a(z,,y,) = A, exp(z’%bj) and
R(z,,y,) = A, exp(ig,,) denote complex am-
plitudes of the object and reference beams, re-
spectively, at point (x,, y, ) of the hologram plane,
then intensity recorded by the recording medium
at this point is a squared module of their sum
which reads

I, =la+R =aR +a'R+aa” +RR".
2)

where * denotes complex conjugate. This intensity
isahologram signal, or ahologram. The first term
in the sum in the right hand side of equation (2) is
proportional to the object’s beam complex ampli-
tude which is called the mathematical hologram.
Alternatively, equation (2) can be written as:
I, = |4, explip,,) + 4, expip,, )|
= Ay Ay exp(i(0,; = @) + Ay A exp(=ilp,, —0,,) + AL, + AL

3)

Hologram reconstruction consists in applying
to the mathematical hologram a transform that
implements wave back propagation from the ho-
logram plane to object. For this, one has either to
eliminate, before the reconstruction, other three
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Figure 3. Schematic diagram for digital hologram recording and reconstruction
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terms or to apply the reconstruction transform to
the entire hologram and then separate the contribu-
tion of other terms in the reconstruction resulted
from that of the mathematical hologram term.

The mathematical model for reconstructing
hologram reads

I=1 ne Arcf eXp(i‘pwf)
= A’fef : Aobj exp(ispobj) + (AZ + Ai:f) : Aref eXp(i‘pmf)

obj
+A3ef eXp(iQ(p7ff) ) Aob] eXp(_iQOob]

(4)

Wave back propagation transformations used
to reconstruct mathematical holograms are linear
transformations and they are mathematically
modelled as integral transformations which are
also known as diffraction transform. In digital
holography, this diffraction process can be de-
scribed by the Kirchhoff—Fresnel diffraction in-
tegral and for the given setup in Figure 3, this
integral can be described by Fresnel-Fraunhofer
approximation. With a finite size of hologram the
image I, reconstructed from it is characterized by
readings of the optical field E(x,y,z) which are
linked to the hologram readings I(k,I) and can be
described by a discrete Fresnel transformation
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(Garcia-Sucerquia, Herrera, & Velasquez, 2005)
which reads

iE )
E(m,n,z) = —Oexp(7+)
Az ( m2 n2 |
(——F+ ——
N2Aq2 NQAy2
x y
N —1N, -1 )
X TS I exp(- —5 el (2 + )
k=0 l=o0 Ne(k°Az” + 1“Ay?) N Ny
(5)

Where Az, x Ay, is the resolution of the rect-
angular CCD having N, x N pixels which regis-
ters the hologram; m=0,1,...N —1landn=0,1,...
N, — 1 and image pixel dimensions Az, x Ay,
are related to the pixel CCD dimensions

Az
Az, x Ay, by Az, =
Ih yh y xz NT ACC,L
and Ay, = Az
N Ayh,

Further it can be observed that equation (3) is
the discrete Fourier transform (DFT) of

(k1) exp(— il

).
A(K2Az? + 2Ay?)
From equation (3), the intensity and phase of
the optical field can be obtained by
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I(m,n,2) Re[E(m,n,2)]" + Im[E(m,n, z)[’
(6)

And
¢(m,n, z) = arctan [Im[E(m, n,2)] Re[E(m, n, z)]]
(7

where Re and /m denotes real and imaginary part
of the optical field and due to this the digital ho-
lography allows us to compute the intensity and
phase of a reconstructed digital hologram for a
particular distance z from the hologram plane.

In paper (Xiao-ou, 2008), it has been shown
by the authors that the diffraction wave forming
the real image 7, is given by

I..(z.y) ff‘R z,Y)

a'(z,y) exp(7—)d(x Yis 20, T, Y)

(®)

where a (x,, y,) and R(x,, y,) denote complex
amplitudes of the object and reference beams,
respectively, atpoint(x,, y,) of the hologram plane
and d’(x,y,z,x,y) optical path length between
hologram plane and image plane, see Figure 3,
with the Fresnel approximation expression reads

2 2 2 2
' "+ Tty Yy
d(xmymzmxvy)% Qdy + 2d - d .

)

(x,y,) is a point on image plane. According to
equation (8), after the de-convolution operation,
the distribution of light intensity can be expressed
by (Xiao-ou, 2008)

I=1_.1I

ireal™ ireal
= | |R]" Y |ate, 9,02, 106, 9,2,
=cl I

0" m

(10)

where I(x, y, z) is complex amplitude of the object
illumination radiation at point (x, y, z); O(x, y, z)
is object reflection or transmission factor ; a(x,
¥, z) complex amplitude of the radiation reflected
or transmitted by the object at this point defined
by the equation(1) and R(x,, y,) denote complex
amplitude of the reference beam at point (x,, y,)
of the hologram plane;(x, y_, z ) is a point on
object plane; /, is the intensity of the ideal object
light and 7 is the intensity of the speckle noise.
Therefore, from equation (10), it may be seen that
speckle noise in digital holography is multiplica-
tive in nature.

Based on analysis as above and as presented in
paper (Cai, 2008), it can be concluded that speckle
noise in reconstruction of digital holography is
mainly due to interference illumination. Further,
the formation of speckle noise in digital hologra-
phy can be categorized in three parts:

a.  The speckle noise forms on the surface of
the recording object due to its optical rough-
ness when illuminated by the coherent light
and it is multiplicative in nature as shown
in equation (10).

b.  Aspecklehologram creates with the interfer-
ence of the object beam and the reference
light in hologram plane.

c. In the reconstruction process, the speckle
noise is modulated in the various diffraction
orders. Since the reconstructed image of the
hologram is the convolution result of the
original object light and Fourier transfor-
mation of the hologram aperture function,
and the small size of hologram aperture
diffraction aggravates the speckle noise in
the reconstructed image (Cai, 2008).

REDUCTION OF SPECKLE
NOISE FROM DIGITAL
HOLOGRAPHIC IMAGES

The speckle noise aggravated by the small size of
hologram aperture diffraction can be reduced by
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setting an appropriate aperture function match-
ing the recording parameter and aperture size of
the hologram and de-convolve the reconstructed
image with it (Cai, 2008).

Approaches for Speckle Reduction
From Digitally Reconstructed
Holographic Images

For further elimination of speckle noise from
digitally reconstructed holographic images, there
are two basic approaches.

Homomorphic Filtering

The first approach, converts the multiplicative
speckle noise to additive one by using homo-
morphic filtering approach explained as follows:

i.  Apply the logarithmic transform on equa-
tion (10) to convert the multiplicative noise
into additive one. Suppose C is a constant
in equation (10) and it is one, then equation
(10) after logarithmic transform reads

logI =loglI, +1logI

(11)
= v(z,y) = I(z,y) +n,(z,y)

where v(x,y) = log/ is the observed hologram im-
age in log domain, / (x,y) = log/ (x,y) is the noise-
less hologram image in log domain that is to be
recoveredand 1, (z,y) = log I (z,y) theamount
the of the speckle noise which is now an additive
noise and is to be minimized.

ii.  In this step, an additive noise removal filter
such as Wiener filter, median filter, PDE
based diffusion filters etc is applied to re-
move or minimize the additive noise

n.(z,y).
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iii. Finally, the restored holographic image,
I, ..canbe obtained by taking the expo-

nentiation of output obtained in step ii.

Irexlored = exp([(x’y))' ( 1 2)

The most common filters that can be used for
removal of additive noise is median filter, Wiener
filter, Wavelet based filters etc. In recent years,
partial differential equation (PDE) based filters
have been developed that reduces the additive
noise. Some of these PDE based filters are based
on 2D diffusion or heat equation and its extensions.

Specialized Speckle
Reduction Filters

The second approach uses specialized speckle
reduction filter to directly reduce the speckle
noise. Some examples of these types of filters
successively applied for multiplicative speckle
noise in other digital imaging modalities such as
in ultrasound imaging, synthetic aperture radar
imaging includes Lee Filter, Lee-Sigma Filter,
Frost Filter, Kuan Filter, Speckle reducing aniso-
tropic diffusion (SRAD) filter etc. These filters
can also be used to reduce speckle noise from
digitally reconstructed holographic images. The
brief descriptions of various filters are as follows:

Mean Filter

The Mean Filter is a simple one and does not
remove the speckles but averages it into the data
and it is the least satisfactory method of speckle
noise reduction as it results in loss of detail and
resolution. However, it can be used for applica-
tions where resolution is not the first concern.

Median Filter

The Median filter is also a simple one and removes
pulse or spike noises. Pulse functions of less than
one-halfofthe moving kernel width are suppressed
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or eliminated but step functions or ramp functions
are retained.

Wiener Filter (Jain, 2006)

The Wiener filter is the MSE-optimal station-
ary linear filter for images degraded by additive
noise and blurring. The calculation of the Wiener
filter requires the assumption that the signal and
noise processes are second-order stationary (in
the random process sense).Wiener filters are
often applied in the frequency domain. Given a
degraded image x(n,m), one takes the Discrete
Fourier Transform (DFT) to obtain X(u,v). The
original image spectrum is estimated by taking
the product of X(u,v) with the Wiener filter G(u,v).

Lee-Sigma and Lee Filters
(Lee, 1981; Lee, 1983)

The Lee-Sigmaand Lee filters utilize the statistical
distribution of the DN values within the moving
kernel to estimate the value of the pixel of interest.
These two filters assume a Gaussian distribution
for the noise in the image data. The Lee filter is
based on the assumption that the mean and variance
of the pixel of interest is equal to the local mean
and variance of all pixels within the user-selected
moving kernel. The scheme for computing digital
number output (DN, ) is as follows:

. var(z) (13)
(mean)’c” + var(z)
where
o —i—,u2
var(z) = |[——u | — 12 14
( ) 0_2 +1 Mu ( )

i, and o are the mean and variances of pixels
within chosen window. The Sigma filter is based
on the probability of a Gaussian distribution. It
is assumed that 95.5% of random samples are
within a two standard deviation range. This noise
suppression filter replaces the pixel of interest
with the average of all DN values within the mov-
ing kernel that fall within the designated range.

Frost Filter (Frost et al., 1982)

The Frost filter replaces the pixel of interest with
aweighted sum of the values within the nxn mov-
ing kernel. The weighting factors decrease with
distance from the pixel of interest. The weighting
factors increase for the central pixels as variance
within the kernel increases. This filter assumes
multiplicative noise and stationary noise statistics
and follows the following formula:

DN = Y kae (15)
nan
Where
2
4 |0
a=(—%)(=5 (16)
(—5)E)

Where DN is the digital number defined as above,
k = normalization constant, / = local mean, ¢
=local variance, ¢ = image coefficient of varia-
tion value, [t| = [X-X /[ +|Y-Y |, and n=moving
kernel size.

Kuan Filter (Kuan, 1987)

Kuan filter first transforms the multiplicative
noise modelinto a signal-dependentadditive noise
model. Then the minimum mean square error
criterion is applied to the model. The resulting
filter has the same form as the Lee filter but with a

113



Restoration and Enhancement of Digitally Reconstructed Holographic Images

different weighting function. Because Kuan filter
made no approximation to the original model, it
can be considered to be superior to the Lee filter.

The resulting grey-level value R for the
smoothed pixel is:

=1 *W+1I *(1-W) 17
where:

W= ( M/C (1+C3)

1—
NumberofLooks
8
Ci= I,
I, = center pixel in filter window, I = mean value
of intensity within window, and S = standard
deviation of intensity within window.

The Kuan filter is used primarily to filter
speckled radar data. It is designed to smooth out
noise while retaining edges or shape features in
the image. Different filter sizes will greatly affect
the quality of processed images. If the filter is too
small, the noise filtering algorithm is not effective.
Ifthe filter is too large, subtle details of the image
will be lost in the filtering process. A 7x7 filter
usually gives the bestresults. The NumberofLooks
parameter is used to estimate noise variance and
it effectively controls the amount of smoothing
applied to the image by the filter. Theoretically,
the correct value for NumberofLooks should be
the effective number of looks of the radar image.
It should be close to the actual number of looks,
but may be different if the image has undergone
re-sampling. The user may experimentally adjust
the NumberofLooks value so as to control the ef-
fect of the filter. A smaller NumberofLooks value

leads to more smoothing; a larger NumberofLooks
value preserves more image features.
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Speckle Reducing Anisotropic
Diffusion (SRAD) Filter

In this chapter (Yu & Acton, 2002), the authors
provides the derivation of speckle reducing
anisotropic diffusion (SRAD), a diffusion method
tailored to ultrasonic and radar imaging applica-
tions. SRAD is the edge-sensitive diffusion for
speckled images, in the same way that conven-
tional anisotropic diffusion is the edge-sensitive
diffusion for images corrupted with additive noise.
At first authors had shown that the Lee and Frost
filters can be cast as partial differential equations,
and then SRAD filteris derived by allowing edge-
sensitive anisotropic diffusion within this context.
SRAD exploits the instantaneous coefficient of
variation, same as the Lee and Frost filters utilize
the coefficient of variation in adaptive filtering.
The instantaneous coefficient of variation is a
function of the local gradient magnitude and
Laplacian operators.

Speckle Reduction Using
Wavelet Transform

In paper (Sharma, Sheoran, Jaffery, & Moinud-
din, 2008), authors have introduced a method for
improvement of signal-to-noise ratio in digital
holography using wavelet transform. The basic
problem in optical and digital holography is the
presence of speckle noise in the reconstruction
process, which reduces the signal-to-noise ratio
(SNR). The presence of speckle noise is serious
drawback in optical and digital holography since
it substantially reduces the SNR in the recon-
structed image. This issue has been addressed in
this chapter.

Other methods for speckle reduction from
digital holographic images include:

In paper (Monroy, & Garcia-Sucerquia, 2009),
authors have introduced a method for increment-
ing lateral resolution in digital holography by
speckle noise removal. Experimental features
such as wavelength, camera specifications and
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reconstruction distance determine the theoretical
limit for lateral resolution in digital holography.
However, the actual experimental resolution
limit is about 50% below such theoretical limit
due to the high-contrast speckle noise presented
in the reconstructed holograms. In this chapter,
the proposed method is based on extended work
presented in paper (Garcia-Sucerquiaetal., 2006).
By this approach of reducing the contrast of the
speckle noise, it is experimentally shown that an
improvement of the order of 50% can be reached
when 100 reconstructed images are superimposed.

PDE-Based Filters

In recent years, several PDE based methods have
been developed forremoval of additive noise from
images (Perona, & Malik, 1990; Gilboa et al.,
2004; You, & Kaveh, 2004) which can be used
by homomorphic filters to reduce speckle noise.
The basic idea behind PDE based noise removal
are based on energy minimization techniques
discussed as follows:

In PDE based noise removal techniques (Ro-
meny, 1994; Caselles et al., 1998), suppose / is a
2D scalar noisy image that we want to restore and
the noise can be considered as high frequency
variations o with low amplitude, added to the
pixels of the regular image.

=1

noisy regular

to (18)

Toregularize I, @common ideaistominimize
its variations estimated by gradientnorm of image:

I VI= I+ 1) (19)

Then the corresponding variational problem
is the minimization of energy functional

min B(I) = [|| VI |Fd9 (20)

I:Q—R

The necessary condition for minimizing the
energy functional £(I) described by equation (20)
can be obtained using Euler-Lagrange minimiza-
tion that results in following heat equation

% =V =cl, +1,) (2la)

With initial condition as the observed noisy
image given as:

l

(2-0) = [noisy

(21b)

where V°I is Laplacian of image / and c is the
diffusion constant and I(x, y, t) = I(x, y) .This
equation describes the isotropic diffusion process.
The basic disadvantage of the isotropic diffusion
is that in addition to noise removal it may also
blur the edges and fine structures present in the
image after certain iterations.

Peronaand Malik (1990) proposed anonlinear
diffusion method to avoid blurring and localiza-
tion problem of linear diffusion filtering which is
termed as anisotropic diffusion. Anisotropic diffu-
sion is the opposite of isotropic, i.e. to designate
a regularization process that does not smooth the
image with the same weight in all the spatial direc-
tions.This achieves both noise removal and edge
enhancement through the use of a non-uniform
diffusion which acts as unstable inverse diffusion
near edges and as linear heat equation like diffu-
sion in homogeneous regions without edges. In
paper (Perona & Malik, 1990), authors have used
the anisotropic diffusion process to avoid blur-
ring and localization problem of linear diffusion
filtering to remove additive noise from images.
In anisotropic diffusion based filter, the basic idea
is that heat equation (21) for linear diffusion can
be written in divergence form:

% =V = div(gradl) = @%[ (22)
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The introduction of a conductivity coefficient
c in the above diffusion equation makes it pos-
sible to make the diffusion adaptive to local image
structure [PM]:

% = VeV = oV 4+ VeV (23)

The two possible choices for diffusion coef-
ficient c are:

24

where k>0.

Both expressions are equal up to first order
approximation and % is a fixed gradient threshold
that differentiates homogeneous area and regions
of contours and edges. The value of conductivity
coefficient ranges in between 20-50.

In anisotropic diffusion based model (Perona,
& Malik, 1990), if real time factor ¢ is replaced
by complex time factor irand the diffusion coef-
ficient c(|V1} ) by e(Im(1)) then it leads to fol-
lowing complex diffusion equation (Gilboa et al.,

2004) originally proposed forimage enhancement
and additive noise removal from digital images.

% = div(c(Im(1))VI) (25)

There are two variants of complex diffusion
based filter. First one is linear complex diffusion
based filter, and the second one is nonlinear com-
plex diffusion based filter. In /inear complex
diffusion based filter for image enhancement and
de-noising, the authors (Gilboa et al.,2004) pro-
posed to replace the diffusion coefficient term in
equation (25) with a complex diffusion coefficient
¢ = exp(i0), and for nonlinear complex diffu-
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sion, the diffusion coefficientis defined as follows
(Gilboa et al., 2004):

61’9
cIm(l)) = —— (26)

2]

Here k is the edge threshold parameter. The
value of k ranges from 1 to 1.5 for digital images.
The value of k is fine tuned according to the ap-
plication in hand. For experimentation purposes

value of 6 is chosen to be ;—0

In a recent work (Srivastava, Gupta, &
Parathasarthy, 2010), authors have proposed a
partial differential equation (PDE)-based homo-
morphic diffusion filter to reduce speckle noise
from digitally reconstructed holographic images.
For digital implementations, the proposed scheme
was discretized using finite differences scheme.
Further, the performance of the proposed PDE
based technique is compared with other speckle
reduction techniques such ashomomorphic aniso-
tropic diffusion filter based on extended concept
of (Perona, & Malik, 1990), homomorphic Weiner
filter, Lee filter, Frost filter, Kuan filter, speckle
reducing anisotropic diffusion (SRAD) filter and
hybrid filter in the context of digital holography.
For the comparison of various speckle reduc-
tion techniques, the performance is evaluated
quantitatively in terms of all possible parameters
that justify the applicability of a scheme for a
specific application. The chosen parameters are
mean-square-error (MSE), normalized mean
square error (NMSE), peak-signal-to-noise ratio
(PSNR), speckle index, average signal-to-noise
ratio (SNR), effective number of looks (ENL),
correlation parameter (CP), mean structure simi-
larity index map (MSSIM) and execution time
in seconds. For experimentation and computer
simulation, MATLAB 7.0 has been used and the
performance is evaluated and tested for various
sample holographic images for varying amount
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of speckle variance. The results obtained justify
the applicability of proposed schemes.

RESULTS AND COMPARISONS

In this section, the results of various filters are
presented for speckle reduction from digital holo-
graphic images and a comparative study has been
shown. The performance is measured in terms of
speckle index (SI) and Average signal-to-noise
ratio (SNR) defined as follows:

Speckle Index (Sl)

Since speckle noise is multiplicative in nature,
average contrast of an image may be treated as a
measure of speckle removal. Speckle index (SI)
1s defined as,

27

and its discrete version for an image reads,

g7 — L y~§halig)

mn - j= (i, 5)

where m x n is the size of the image, pis the
mean and o is the standard deviation. The
speckle index can be regarded as an average re-
ciprocal signal-to noise ratio (SNR) with the
signal being the mean value and noise being the
standard deviation.

Average SNR=1/SI. (28)

Figure 4 shows the visual results of various
speckle reduction filters for the sample digital
holographic image holographic.jpg. Table 1

shows the performance comparison of various
filters in terms of Avg. SNR and speckle index
for the same image. From Figure 4 and Table 1,
it can be seen that homomorphic complex diffu-
sion based method is outperforming all methods
in consideration and it may be considered as an
optimal choice for speckle reduction from digital
holographic images.

FUTURE RESEARCH DIRECTIONS

Some of the open problems related to digital
holographic images include:

1. Devising techniques for speckle reduction
and zero- order diffraction from holographic
images using partial differential equation
(PDE) based approaches in variational
framework.

2. Devising wavelet based techniques for en-
hancement, restoration and speckle reduc-
tion.

3.  Devising techniques for encrypting of
information with digital holography using
wavelet based and PDE based approaches.

4.  Use of hybrid techniques such as one from
Fourier’s optics based and another one in-
volving wavelet or PDE-based approaches
and many more.

CONCLUSION

In this chapter the basic concepts of digital ho-
lography, difference between digital holography
and photography, advantages of digital hologra-
phy and its applications have been discussed in
brief in introduction part. The general principles
of holographic recording and reconstruction and
principles of formation of speckle noise in digital
holographicimages have been discussed in section
followed by introduction. The various techniques
for speckle reduction available in literature are
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Figure 4. (a) Original speckled holographic image, holographic.jpg; and Filtered image using(b) Ho-
momorphic complex diffusion based method (c) Homomorphic anisotropic diffusion method (d) Homo-
morphic Wiener Filter (e) Lee Filter (f) Frost Filter (g) Kuan Filter (h) SRAD filter.

Speckled image  Homomarphic NCD Homaomorphic AD Homamorphic Wiiener

Lee Frost Kuan SRAD

Table 1. Comparison of performances of various speckle reduction filters for the sample digital holo-
graphic image, holographic.jpg, SNR of original speckled image= 225.5583, Speckle Index of original
speckled image

Speckle Reduction Filters SNR of restored image Speckle Index of Restored Image
Homomorphic complex diffusion based 256.8098 0.00380

method

Homomorphic anisotropic diffusion method | 249.3765 0.00401

Homomorphic Wiener Filter 256.410 0.00390

Lee Filter 238.0952 0.00420

Frost Filter 243.9024 0.00410

Kuan Filter 246.9135 0.00405

SRAD filter 255.1020 0.00392
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also discussed. The various important techniques
discussed in this chapter for speckle reduction
include homomorphic filtering approach, and
various specialized filters such as speckle re-
ducing anisotropic diffusion based filter, PDE
based methods. Further, the implementation and
performance analysis of various speckle reduc-
tion techniques are presented. The homomorphic
complex diffusion based speckle reduction method
performs better in comparison to other methods
in consideration.
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KEY TERMS AND DEFINITIONS

Digital Holography: In digital holography,
both the amplitude and the phase distribution of
light coming from object being imaged can be
recorded in any plane between the object and the
observer producing the complete realistic field of
view as originally observed.

Enhancement: This is one of the digital im-
age processing tasks that enhances or highlights
the visual quality of the image from its previous
version.

Homomorphic Filter: This filter is used for
speckle reduction from digital images using filters
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defined for additive noise removal in logarithmic
domain. Inlogarithmic domain, the multiplicative
noise converts in to additive noise.

Mathematical Hologram: In digital holog-
raphy, the object’s beam complex amplitude is
called the mathematical hologram.

PDE-Based Filters: Partial differential equa-
tionbased filters derived using variational calculus
by minimizing the energy functional of the image
defined in terms of gradient norm of the image.

Restoration: This is one of the digital image
processing tasks that removes or reduces the noise
from images to improve its visual quality.

Speckle Index: One of the performance mea-
sures for speckle noise. It can be regarded as an
average reciprocal signal-to noise ratio (SNR).

Speckle Noise: A multiplicative noise that
appears in digital holographic images. It degrades
the visual quality of the image. This noise is in-
troduced during the formation of image.

Speckle Reduction: It deals with the methods
to reduce speckle noise.
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ABSTRACT

With the advance of software and hardware, three-dimensional (3D) scene digitization becomes increas-

ingly important. Over the years, numerous 3D imaging techniques have been developed. Among these

techniques, the methods based on analyzing sinusoidal structured (fringe) patterns stand out due to their

achievable speed and resolution. With the development of digital video display technologies, digital fringe

projection techniques emerge as a mainstream for 3D imaging. However, developing such a system is
not easy especially when an off-the-shelf projector is used. The major challenging problems are: (1)
the projection system nonlinearity, (2) the precise synchronization requirement, and (3) the projection
system speed limit. This chapter will present an alternative route for 3D imaging while reducing these

problems. The fundamentals of the proposed technique will be introduced, the analytical and experimental

results will be shown, and its advantages and limitations will be addressed.

INTRODUCTION

With the release of Avatar and others three-
dimensional (3D) movies, and the emergence of
3D TVs and monitors, 3D imaging technology
started penetrating into our daily lives. Thus, 3D

DOI: 10.4018/978-1-61350-326-3.ch007

imaging has become unprecedentedly important
and close to ordinary people.

3Dimagingis essential to represent the physical
object with 3D contents either in a digital format
or by an analog means. However, an enormous
amount of efforthas been putto represent the scene
digitally because it is easier to manipulate in this
manner. To digitalize a 3D scene, there are mainly

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
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two approaches: passive and active. The passive
methods (e.g., stereo vision) are to recover the 3D
information from natural 2D photographs. They
essentially capture photographs of the object from
different viewing angles and obtain the depth by
finding the correspondences between the image
pairs, and by establishing the triangulation between
the object point and the camera sensor locations.
These methods work well for applications where
the accuracy is not the primary focus, such as the
entertainment. However, hinging on identifying
the correspondences between image pairs, the
measurement accuracy is not high if the object
does not have very strong texture information
(Zhang, 2010Db).

Active methods, on the other hand, recover
depth information by actively placing some vivid
features on the object surface to assist the corre-
spondence establishment. Typically, anactive light
is used because of its surface noncontact nature.
The active light can be a single wavelength laser,
a range of color spectrum, or a broadband white
light. The active features can be dots, lines, and
area structured patterns (Salvi et al, 2010). For
high-speed applications, the whole area structured
patterns are usually desired. There are many ways
to generate the structured patterns, such as laser
interference, gratings, slide projectors, etc. How-
ever, the most convenient means is to use a digital
video projector. The patterns can be different in
terms of shape and structures, binary, sinusoidal,
narrow and wide, etc. Among these techniques,
the sinusoidal structured (fringe) patterns based
methods stand out because it is most close to the
natural light propagation (in sinusoidal way). The
phase-shifting techniques have been studied over
the past decades and have been used broadly in
numerous applications (Gorthi & Rastogi, 2010).
Conventionally, the fringe patterns are generated
by laser interference, which is good in terms of
measurementaccuracy and stability. Digital fringe
projection techniques, where a digital video pro-
jector is used, start expanding its use because of
its simplicity.
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There is some success and advancement in
the technological development of digital fringe
projection techniques for 3D imaging, which has
been thoroughly reviewed in reference (Zhang,
2010a). The commercial digital video display
systems are designed for the purposes other than
3D imaging. There are a number of challenges in
ordertouse them for high-speed and high-accuracy
3Dimaging. These include handling the problems
of (1) the projection system nonlinearity, (2) the
precise synchronization requirement, and (3) the
projection system speed limit (Lei & Zhang,2010).

The objective of this chapter is to present an
alternative route for 3D imaging technique us-
ing a digital fringe projection and phase shifting
technique. This new technique has the potential to
significantly reduce the problems of the existing
digital fringe projection technique, to drastically
simplify the system development for non-experts,
and thus to speed up its use in our daily lives. In
particular, we will present some of our mostrecent
research in high-speed 3D imaging area that uses
this technique.

BACKGROUND

Over the past decades, a number of 3D imaging
techniques have been developed including some
with real-time capability (Huang et al, 2005; Li
et al, 2010; Pawlowski et al, 2002; Quan et al,
1995; Takeda & Mutoh, 1983; Zhang & Huang,
2006a). Withrecentadvancement in computational
and shape analysis techniques, high-speed 3D
imaging has become unprecedentedly important.
Over the years, anumber of techniques have been
developed to reach real-time capability, including
spacetime stereo (Zhang, et al, 2004, Davis, et al,
2005), structured light (Rusinkiewiczetal, 2002),
and fringe projection (Zhang & Huang 2006).
Among these techniques, fringe analysis stands
out because of its numerous advantages (Gorthi
& Rastogi, 2010).
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A fringe pattern is essentially a special case
of a structured pattern in that the stripe intensity
varies sinusoidally. The Fourier profilometry
method (Takeda & Mutoh, 1983) thatuses asingle
fringe pattern could reach the fastest speed thus
it has been applied to many areas (Su & Chen,
2001; Su & Zhang, 2010), and has been used to
measure numerous extreme phenomena (Takeda,
2010). This method is basically to obtain the
phase information by applying Fourier transform
of the fringe pattern, and 3D information will be
extracted from the phase. This technique is very
suitable for measuring smooth surfaces, while has
the limitations if it is used to measure complex
shapes. Windowed Fourier transform technique
endeavors to alleviate some problems of the
conventional Fourier method by processing the
fringe pattern patch by patch (Qian, K, 2004).
However, challenges still remain for the single
fringe pattern based Fourier technique to measure
complicated objects.

To address the limitations of single fringe pat-
tern based 3D imaging techniques, phase-shifting
methods are proposed. The phase shifting methods
use more fringe patterns with spatial or temporal
shift in phase to perform better measurement.
Instead of performing the measurement referring
to the whole image, a phase-shifting method is to
provide the measurement through a point-by-point
operation. Therefore, this technique gives better
spatial resolution (Zhang, 2010b). Various phase-
shifting methods have been proposed including
three-step, four-step, and least-square algorithms
(Schreiber & Bruning, 2007). Since it requires a
minimum number of three phase-shifted fringe
images to allow for point by point 3D imaging, this
techniquerequires capture three individual images,
or a single color image for each measurement.
Because only three fringe patterns are required to
performone 3D measurement at pixel-level spatial
resolution, this technique has the potential to real-
ize high-speed and high-resolution 3D imaging.

Conventionally, the fringe patterns are either
generated by a mechanical grating or by laser

interference. They have been very successfully
applied to numerous industrial applications in
optical metrology. However, itis typically not very
easy for them to adjust fringe pitches (periods),
nor accurately shift them in phase domain.

The technique of projecting sinusoidal fringe
patterns with a digital video projector is called
the digital fringe projection technique. It recently
emerged as a mainstream in 3D imaging, and has
the advantages of generating and controlling the
fringe patterns accurately and easily. There is some
success and advancement in using this technology
for real-time 3D imaging (Li et al, 2010; Zhang
& Huang, 2006a; Zhang & Yau, 2006, Zhang et
al, 2006). However, developing a high-speed 3D
imaging system with an off-the-shelf projector
remains difficult, which will be explained in the
next section.

To address the challenges of the existing 3D
imaging technologies, this chapter will present
a new 3D imaging approach that was recently
developed in our research group. Because of
some of its advantageous features of this new
technique and also because of the fundamental
limitations of the current off-the-shelf hardware
components, this technique shows great potential
to lead some breakthroughs in the field of high-
speed 3D imaging. In particular, we will focus on
the following three major pieces of work that we
haverecently developed: (1) improved the existing
real-time 3D shape measurement speed without
significantly increases its hardware costs (Gong
& Zhang, 2010a); (2) reached a kHz 3D shape
measurement speed with a simple and inexpensive
digital-light-processing (DLP) projector (Gong
& Zhang, 2010b); and (3) achieved a superfast
phase-shifting method for unprecedentedly high-
speed 3D imaging: 667 Hz (Zhang et al, 2010).
In particular, we have developed a system that
has doubled our real-time 3D imaging speed and
reached the maximum rate of 120 Hz if a DLP
projector and a three-step phase-shifting method
are used. The second technique we have devel-
oped was essentially to convert a DLP projector
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to be a flexible sinusoidal grating system for fast
motion capture. Implementing this technique
to a recently innovated DLP Discovery projec-
tion platform, a potential tens-of-kHz rate 3D
imaging is feasible. All these could not be realized
without the defocusing technique that we have
recently developed.

MAIN FOCUS OF THE CHAPTER

Principles of Digital Fringe-
Projection and Phase-
Shifting Technique

Figure 1 shows the setup ofa digital fringe projec-
tion system. This is a typical triangulation based
system. A computer generated sinusoidal fringe
pattern is projected by a projector onto an object
surface, a camera, from another viewing angle,
captures the scattered fringe images by the object.
The computer software is then used to process and
recover the 3D shape. Since this is a triangulation
based system, the correspondences between the
projector projected image and the camera captured
image must be identified. In a fringe projection
system, this correspondence is established in
phase domain. In other words, a point on the
camera corresponds to the point projected by the
projector only if both points have the same phase
value. Because the structured pattern contains
vertical stripes, each phase value corresponds to
a vertical line on the projected image. Therefore,
epipolar geometry is needed in order to identify
the unique correspondences (Zhang & Huang,
2006b). Once the correspondence is identified,
the depth information can be recovered based on
triangulation. In this technique, the correspon-
dence was established through the phase, which
will be explained in the next Subsection.
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Fundamentals of Phase-Shifting
Algorithm

Phase-shifting techniques have been widely used
in optical metrology. Over the years, a number of
phase shifting algorithms have been developed
including three-step, four-step, least square al-
gorithms etc. (Schreiber & Bruning, 2007). All
these algorithms differ in terms of the number
of fringe images required, the amount of phase
shift, but they are all the same in terms of phase
calculation, pixel by pixel.

A three-step phase-shifting algorithm is very
commonly used in high-speed applications since
it requires the least number of fringe patterns.
Three fringe images of a three-step phase-shifting
algorithm can be represented as

Il(Iay) = I/(Qf,y) + IN(L?J) COS[¢(xa y) —2m / 3]7
(1)

L(z,y) = I'(z,y) + I"(z,y) cos[p(z,y)], (2)

L(z,y) = I'(z,y) + I"(z,y) cos[p(z,y) + 2m / 3].
3)

Here, I'(x,y) istheaverageintensity, I”(z,y)
the intensity modulation, and ¢(z,y) the phase
to be solved for. Solving Equations (1)-(3) simul-
taneously, the phase can be obtained as:

\/g[fl(:v, y)—I,(z, y)]
2[2(1.’ y) - [1($7 y) - I3($a y) ‘
4)

¢(z,y) = tan™'

The phase value provided by this equation
only ranges from —m to +m , which will result
in 27 phase discontinuities. To obtain a continu-
ous phase map, a phase unwrapping algorithm is
usually needed (Ghialia & Pritt, 1998). Once the
continuous phase map is obtained, 3D information
canberecoveredifthe system s calibrated (Zhang
& Huang, 2006b). To recover one 3D shape,
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Figure 1. Setup of a digital fringe-projection and phase-shifting technique
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the system based on binary patterns uses codeword
to establish correspondence between the
captured images and the projected images. The
codeword, aunique value, is formed by a sequence
of stripes composed of Os (purely black) or 1Is
(purely white) and can be determined from cap-
tured binary structured images. As explained
previously, a method using binary structured pat-
terns cannot reach pixel-level resolution spa-
tially because the stripe width must be larger than
one projector’s pixel.

In this phase-shifting technique, the phase
valueisregarded to as the codeword thatis used in
the binary structured light technique because they
are unique for each line on the projected fringe
patterns. Therefore, once the phase is obtained

Box 1.

from the captured fringe images, the codeword
can be determined, 3D information can then be
recovered from the phase. As can be seen in Equa-
tion (4), the phase here is calculated pixel by pixel,
thus, the 3D information can be obtained pixel by
pixel, which is advantageous over most other 3D
imaging techniques. Therefore, this technique al-
lows for pixel-level spatial resolution. Since only
three images are required, it is possible to achieve
high-speed (Zhang, 2010a).

In the meantime, from Equations (1) - (3), we
can obtain the texture shown in Equation 5.

Because the texture is obtained point-by-point,
and precisely aligned with the 3D geometry, this
is another advantage of 3D imaging with a phase-
shifting technique.

I(z,y) = I'(z,y) + I"(z,y) 3

_ 11 + 12 + Is + \/3(1—1 B Is)2 + (212 - I1 B Is)2

3 ©)
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Major Concerns of a Conventional
Digital Fringe Projection System

Despite the success of using a digital fringe
projection technique for real-time 3D imaging,
challenges still remain, and problems still exist.
There are three major problems of the existing
digital fringe projection system for accurate 3D
imaging, and for further improving its speed.

Challenge #1: The nonlinearity of the projec-
tion system. The first major challenge about this
technique is the nonlinear effect of a projector. To
perform high quality 3D imaging using a digital
fringe projection and phase-shifting method,
the projector nonlinearity calibration is usu-
ally mandatory. This is because the commercial
video projector is usually a nonlinear device that
is purposely designed to compensate for human
vision. However, for 3D imaging, this nonlinear
effect increases the complexity of the system
development, and induces measurement errors. A
variety of techniques have been studied including
the methods that actively changing the fringe to
be projected (Huang et al., 2002; Kakunai et al.,
1999), and those that passively compensating for
the phase errors (Guo etal.,2004; Panetal.,2009;
Zhang & Huang, 2007; Zhang & Yau, 2007a).
Moreover, because the output light intensity
does not change much when the input intensity is
close to be 0 or/and 255 (Huang et al, 2002), it is
impossible to generate sinusoidal fringe images
with full intensity range (0-255). In addition, our
experiments found that the projection nonlinear
gamma actually changes over time, thus the system
needs to be re-calibrated frequently.

Challenge #2: The precise synchronization
requirement for the whole system. Because the
projector is a digital device that generates the full
grayscale image at a certain frequency, which is
typically the refresh rate of the image. Therefore,
inorder to capture the grayscale images accurately
and correctly, the camera must capture at least one
full refresh cycle. For high speed 3D imaging, it is
desirable to capture only one cycle. Therefore, the
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camera must be precisely synchronized with the
projector, i.e., the camera must start its exposure
when the image starts refresh and must stop its
exposure when the refresh finishes. For instance,
the DLP projector generates the grayscale fringe
images by time modulation (Hornbeck, 1997),
thus the camera exposure time cannot be shorter
than the single channel projection time (1/360
sec). This limits its application to measure very
fast phenomena when a very short exposure
is required.

Challenge #3: The speed limit of the projec-
tion system. Because of its digital fringe genera-
tion nature, the 3D imaging speed is ultimately
determined by the fringe projection rate: 120 Hz
for a typical DLP projector. In order to capture a
fast motion, a “solid-state” fringe pattern is usu-
ally needed. The solid-state fringe pattern can
be generated by a mechanical grating, or by a
laser interfering. However, as addressed earlier,
the digital fringe projection technology usually
cannot produce solid-state fringe pattern. To take
advantage of the merits of digital fringe generation
techniques, we need to circumvent the associate
problems to achieve fast 3D imaging speed.

All these problems and challenges hinder the
3D imaging applications especially for precision
measurement. On the contrast, if a technique can
generate ideal sinusoidal fringe images without
worrying about the problems introduced above,
it would significantly simplify the 3D imaging
system development, and drastically speed up its
use in our daily life.

Proposed Technique

To address the problems of the current digital
fringe projection system, we recently proposed a
technique that is to generate sinusoidal fringe
patterns based on defocusing effect (Lei & Zhang,
2009). This technique allows for “solid-state”
fringe generation without requiring nonlinear
gamma calibration. Instead ofusing 8-bit grayscale
fringe images, this technique only uses binary (0s



High-Speed, High-Resolution 3D Imaging Using Projector Defocusing

or 255s) structured patterns. The idea came from
our two observations: (1) seemingly sinusoidal
fringe patterns often appear on the ground when
the light shines through an open window blind,
and (2) the sharp features of an object are blend-
ed together in a blurring image that was captured
by an out-of-focus camera. The former gives the
insight that an ideal sinusoidal fringe image could
be produced from a binary structured pattern, and
the latter provides the hint that if the projector is
defocused, the binary structured pattern might
become ideal sinusoidal. Because only binary
patterns are needed, the nonlinear response of the
projector would not be a problem since only 0
and 255 intensity values are used. Moreover, phase
shifting can be introduced by spatially moving
the binary structured patterns. For instance, a
27 / 3 phase shift can be realized by shifting
the binary structured patterns spatially by 1/3 of
its period. Therefore, a 3D shape measurement
system based on a digital fringe projection
technique can be developed without nonlinear
gamma calibration.

This binary status coincides with the DLP
technology that operates the digital micro mirrors
ON/OFF, inbinary stage. Therefore, theoretically,
1f a micro mirror is set to be a value of 0 or 255, it
should stay OFF or ON all the time. By this means,
the micro mirror will act as “solid state” (does not
refresh). Therefore, the solid-state structured light
will be realized. Because the structured patterns
are generated in solid state and any segment of
time can represent the signal, there is no precise
synchronization requirement between the projec-
tor and the camera. In the meantime, the exposure
time can be shorter than the channel projection
time, namely, less than 1/120 second for a 120
Hz projector. Therefore, this technique allows
for capturing extremely fast phenomena with a
relatively inexpensive off-the-shelf DLP projector.

Because of the architecture of the digital cam-
eras, the capture and data transfer usually cannot
happen simultaneously if an external triggering

mode is utilized. This limits the 3D imaging speed
to 60 Hz for a 120 Hz projector (Zhang & Yau,
2007b; Li et al, 2010). With this new technology,
itmay enable the 120 Hz 3D imaging rate with the
same hardware components. In addition, because
only binary structured patterns are used, it actu-
ally allows for even faster fringe pattern switch-
ing rate since smaller size of data rate is needed.
This, in turns, potentially allows for much faster
3D imaging rate.

Generating Sinusoidal Fringe
Patterns with Projector Defocusing

Because of the advantages of a phase-shifting
based technique, it is desirable to use sinusoidal
fringe patterns for 3D imaging. However, as ex-
plained earlier, the existing techniques to generate
sinusoidal fringe patterns have some challenges
to tackle with. In the meantime, if only binary
structured patterns are used, those problems can
be significantly alleviated or eliminated.

To illustrate the viability of generating sinu-
soidal fringe patterns with a projector defocusing,
we performed an experiment. In this experiment,
a DLP projector (Dell M109S, Texas) is used to
project the computer generated binary patterns
onto awhiteboard. A camera (The Imaging Source
DMK 21BU04, North Carolina), with the board
on its focal plane, is to capture the reflected fringe
patterns by the board. The projector’s focus is
adjusted gradually from approximately perfectly
focused to severely defocused. Figure 2 shows
some frames of the captured fringe patterns.
Figure 2(a) -(e) shows the progress of the binary
structured pattern sent to a DLP projector with
different degrees of defocusing. It clearly shows
that the binary structured pattern becomes seem-
ingly more and more sinusoidal with the degree
of defocusing increases. At certain point, the
fringe patterns become approximately sinusoidal.
Of course, when the projector is defocused too
much, all the patterns are blended together, and
there are no obvious structured patterns. Figure
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Figure 2. Binary structured pattern becomes more and more sinusoidal with the increase of degree of
defocusing. (a)-(e) shows the progress of the fringe patterns; (f)-(j) shows their corresponding cross

sections.
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