


Aamir Saeed Malik
Universiti Teknologi Petronas, Malaysia

Tae-Sun Choi
Gwangju Institute of Science and Technology, Korea

Humaira Nisar
Universiti Tunku Abdul Rahman, Perak, Malaysia

Depth Map and 3D 
Imaging Applications:
Algorithms and Technologies



Depth map and 3D imaging applications: algorithms and technologies / Aamir 
Saeed Malik, Tae Sun Choi, and Humaira Nisar, editors. 
       p. cm. 
  Summary: “This book present various 3D algorithms developed in the recent  
years to investigate the application of 3D methods in various domains,  
including 3D imaging algorithms, 3D shape recovery, stereoscopic vision and  
autostereoscopic vision, 3D vision for robotic applications, and 3D imaging  
applications”-- Provided by publisher. 
  Includes bibliographical references and index. 
  ISBN 978-1-61350-326-3 (hardcover) -- ISBN 978-1-61350-327-0 (ebook) -- ISBN  
978-1-61350-328-7 (print & perpetual access)  1.  Algorithms. 2.  Three- 
dimensional imaging.  I. Malik, Aamir Saeed, 1969- II. Choi, Tae Sun, 1952-  
III. Nisar, Humaira, 1970- IV. Title: Depth map and three-D imaging  
applications.  
  QA9.58.D47 2012 
  621.36’7015181--dc23 
                                                            2011031955

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

Managing Director:   Lindsay Johnston
Book Production Manager:   Sean Woznicki
Development Manager:  Joel Gamon
Development Editor:  Michael Killian
Acquisitions Editor:  Erika Carter
Typesetters:    Mackenzie Snader
Print Coordinator:   Jamie Snavely
Cover Design:   Nick Newcomer

Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

   Library of Congress Cataloging-in-Publication Data



Editorial Advisory Board
Fabrice Meriaudeau, University of Bourgogne, France
Naeem Azeemi, COMSATS Institute of Information Technology, Pakistan
Kishore Pochiraju, Stevens Institute of Technology, USA
Martin Reczko, Synaptic Ltd., Greece
Iftikhar Ahmad, Nokia, Finland
Nidal Kamel, Universiti Teknologi Petronas, Malaysia
Umer Zeeshan Ijaz, University of Cambridge, UK
Asifullah Khan, Pakistan Institute of Engineering and Applied Sciences, Pakistan

List of Reviewers
Aamir Saeed Malik, Universiti Teknologi Petronas, Malaysia
Abdul Majid, Pakistan Institute of Engineering and Applied Sciences, Pakistan
Andreas F. Koschan, University of Tennessee, USA
Antonios Gasteratos, Democritus University of Thrace, Greece
Asifullah Khan, Pakistan Institute of Engineering and Applied Sciences, Pakistan
Aurelian Ovidius Trufasu, Politehnica University of Bucharest, Romania
Fabrice Meriaudeau, University of Bourgogne, France
Fakhreddine Ababsa, University of Evry Val d’Essonne, France
Hiroki Takada, University of Fukui, Japan
Humaira Nisar, Universiti Tunku Abdul Rahman, Perak, Malaysia
Ibrahima Faye, Universiti Teknologi Petronas, Malaysia
Iftikhar Ahmad, Nokia, Finland
Kishore Pochiraju, Stevens Institute of Technology, USA
Mannan Saeed, Gwangju Institute of Science & Technology, Republic of Korea
Martin Reczko, Synaptic Ltd., Greece
Mercedes Farjas, Universidad Politécnica de Madrid, Spain
Muzaffar Dajalov, Yeungnam University, Republic of Korea
Naeem Azeemi, COMSATS Institute of Information Technology, Pakistan
Nidal Kamel, Universiti Teknologi Petronas, Malaysia
Song Zhang, Iowa State University, USA
Tae-Seong Kim, Kyung Hee University, Republic of Korea
Tae-Sun Choi, Gwangju Institute of Science & Technology, Republic of Korea
Umer Zeeshan Ijaz, University of Cambridge, UK



Table of Contents

Foreword ............................................................................................................................................... ix

Preface ................................................................................................................................................... xi

Acknowledgment ................................................................................................................................. xv

Chapter 1
Introduction to 3D Imaging .................................................................................................................... 1

Aamir Saeed Malik, Universiti Teknologi Petronas, Malaysia
Humaira Nisar, Universiti Tunku Abdul Rahman, Malaysia

Section 1
3D Imaging Methods

Chapter 2
Multi-View Stereo Reconstruction Technique ...................................................................................... 10

Peng Song, Nanyang Technological University, Singapore
Xiaojun Wu, Harbin Institute of Technology Shenzhen, China

Chapter 3
Forward Projection for Use with Iterative Reconstruction ................................................................... 27

Raja Guedouar, Higher School of Health Sciences and Technics of Monastir, Tunisia
Boubaker Zarrad, Higher School of Health Sciences and Technics of Monastir, Tunisia

Chapter 4
Algorithms for 3D Map Segment Registration ..................................................................................... 56

Hao Men, Stevens Institute of Technology, USA
Kishore Pochiraju, Stevens Institute of Technology, USA

Chapter 5
3D Shape Compression Using Holoimage ........................................................................................... 87

Nikolaus Karpinsky, Iowa State University, USA
Song Zhang, Iowa State University, USA



Chapter 6
Restoration and Enhancement of Digitally Reconstructed Holographic Images ................................ 105

Rajeev Srivastava, Banaras Hindu University, India

Chapter 7
High-Speed, High-Resolution 3D Imaging Using Projector Defocusing ........................................... 121

Song Zhang, Iowa State University, USA
Yuanzheng Gong, Iowa State University, USA

Section 2
Shape From X: Algorithms & Techniques

Chapter 8
Three-Dimensional Scene Reconstruction: A Review of Approaches ................................................ 142

Dimitrios Chrysostomou, Democritus University of Thrace, Greece
Antonios Gasteratos, Democritus University of Thrace, Greece

Chapter 9
Comparison of Focus Measures under the Influence of Various Factors Effecting their Performance ......163

Aamir Saeed Malik, Universiti Teknologi Petronas, Malaysia

Chapter 10
Image Focus Measure Based on Energy of High Frequency Components in S-Transform ............... 189

Muhammad Tariq Mahmood, Korea University of Technology and Education, Korea
Tae-Sun Choi, Gwangju Institute of Science and Technology, Korea

Chapter 11
Combining Focus Measures for Three Dimensional Shape Estimation  
Using Genetic Programming ............................................................................................................... 209

Muhammad Tariq Mahmood, Korea University of Technology and Education, Korea
Tae-Sun Choi, Gwangju Institute of Science and Technology, Korea

Chapter 12
“Scanning from Heating” and “Shape from Fluorescence”: Two Non-Conventional 
Imaging Systems for 3D Digitization of Transparent Objects ............................................................ 229

Fabrice Mériaudeau, Université de Bourgogne, France
R. Rantoson, Université de Bourgogne, France
G. Eren, Université de Bourgogne, France
L. Sanchez-Sécades, Université de Bourgogne, France
O. Aubreton, Université de Bourgogne, France
A. Bajard, Université de Bourgogne, France
D. Fofi, Université de Bourgogne, France
I. Mohammed, Université de Bourgogne, France
O. Morel, Université de Bourgogne, France
C. Stolz, Université de Bourgogne, France
F. Truchetet, Université de Bourgogne, France



Section 3
Stereoscopy & Autostereoscopy

Chapter 13
Modular Stereo Vision: Model and Implementation........................................................................... 245

Ng Oon-Ee, Monash University Sunway Campus, Malaysia
Velappa Ganapathy, University of Malaya, Malaysia
S.G. Ponnambalam, Monash University Sunway Campus, Malaysia

Chapter 14
Stereoscopic Vision for Off-Road Intelligent Vehicles ....................................................................... 268

Francisco Rovira-Más, Polytechnic University of Valencia, Spain

Chapter 15
Effectiveness of New Technology to Compose Stereoscopic Movies ................................................ 286

Hiroki Takada, University of Fukui, Japan
Yasuyuki Matsuura, Nagoya University, Japan
Masaru Miyao, Nagoya University, Japan

Chapter 16
Low-Complexity Stereo Matching and Viewpoint Interpolation in Embedded 
Consumer Applications ....................................................................................................................... 307

Lu Zhang, IMEC, Belgium
Ke Zhang, IMEC, Belgium
Jiangbo Lu, Advanced Digital Sciences Center, Singapore
Tian-Sheuan Chang, National Chiao-Tung University, Taiwan
Gauthier Lafruit, IMEC, Belgium

Chapter 17
The Use of Watermarking in Stereo Imaging ..................................................................................... 331

Dinu Coltuc, Valahia University Targoviste, Romania

Chapter 18
Introduction to Autostereoscopic Displays ......................................................................................... 346

Armin Grasnick, Sunny Ocean Studios Pte. Ltd., Singapore

Chapter 19
Multi-View Autostereoscopic Visualization using Bandwidth-Limited Channels ............................. 363

Svitlana Zinger, Eindhoven University of Technology, The Netherlands
Yannick Morvan, Philips Healthcare, The Netherlands
Daniel Ruijters, Philips Healthcare, The Netherlands
Luat Do, Eindhoven University of Technology, The Netherlands
Peter H. N. de With, Eindhoven University of Technology, The Netherlands & 
  Cyclomedia Technology B.V., The Netherlands



Section 4
Robotic Vision

Chapter 20
3D Scene Capture and Analysis for Intelligent Robotics .................................................................... 380

Ray Jarvis, Monash University, Australia

Chapter 21
Stereo Vision Depth Estimation Methods for Robotic Applications .................................................. 397

Lazaros Nalpantidis, Royal Institute of Technology (KTH), Sweden
Antonios Gasteratos, Democritus University of Thrace, Greece

Chapter 22
Stereo-Vision-Based Fire Detection and Suppression Robot for Buildings ....................................... 418

Chao-Ching Ho, National Yunlin University of Science and Technology, Taiwan

Section 5
3D Imaging Applications

Chapter 23
3D DMB Player and Its Reliable 3D Services in T-DMB Systems .................................................... 434

Cheolkon Jung, Xidian University, China
Licheng Jiao, Xidian University, China

Chapter 24
3D Scanner, State of the Art ................................................................................................................ 451

Francesco Bellocchio, Università degli Studi di Milano, Italy
Stefano Ferrari, Università degli Studi di Milano, Italy

Chapter 25
3D Imaging for Mapping and Inspection Applications in Outdoor Environments ............................. 471

Sreenivas R. Sukumar, The University of Tennessee, USA
Andreas F. Koschan, The University of Tennessee, USA
Mongi A. Abidi, The University of Tennessee, USA

Chapter 26
3D Laser Scanner Techniques: A Novel Application for the Morphological 
Study of Meteorite Impact Rocks ....................................................................................................... 500

Mercedes Farjas, Universidad Politécnica de Madrid, Spain
Jesús Martinez-Frias, NASA Astrobiology Institute, Spain
Jose María Hierro, Universidad Politécnica de Madrid, Spain



Chapter 27
3D Camera Tracking for Mixed Reality using Multi-Sensors Technology ........................................ 528

Fakhreddine Ababsa, University of Evry Val d’Essonne, France
Iman Maissa Zendjebil, University of Evry Val d’Essonne, France
Jean-Yves Didier, University of Evry Val d’Essonne, France

Chapter 28
Recovering 3-D Human Body Postures from Depth Maps and Its Application  
in Human Activity Recognition .......................................................................................................... 540

Nguyen Duc Thang, Kyung Hee University, Korea
Md. Zia Uddin, Kyung Hee University, Korea
Young-Koo Lee, Kyung Hee University, Korea
Sungyoung Lee, Kyung Hee University, Korea
Tae-Seong Kim, Kyung Hee University, Korea

Chapter 29
3D Face Recognition using an Adaptive Non-Uniform Face Mesh ................................................... 562

Wei Jen Chew, The University of Nottingham, Malaysia
Kah Phooi Seng, The University of Nottingham, Malaysia
Li-Minn Ang, The University of Nottingham, Malaysia

Chapter 30
Subject Independent Facial Expression Recognition from 3D Face Models  
using Deformation Modeling .............................................................................................................. 574

Ruchir Srivastava, National University of Singapore, Singapore
Shuicheng Yan, National University of Singapore, Singapore
Terence Sim, National University of Singapore, Singapore
Surendra Ranganath, Indian Institute of Technology, Gandhinagar, India

Chapter 31
3D Thumbnails for 3D Videos with Depth ......................................................................................... 596

Yeliz Yigit, Bilkent University, Turkey
S. Fatih Isler, Bilkent University, Turkey
Tolga Capin, Bilkent University, Turkey

About the Contributors .................................................................................................................... 609

Index ................................................................................................................................................... 625



ix

Foreword

Imaging is as old as human intelligence. Indeed, anthropologists identify the point of departure between 
animal and human at the point where the creature felt the need to create an image. The creation of im-
ages in prehistoric times was a means of teaching hunting techniques, recording important events, and 
communicating (Figure1). It is from those elementary images that hieroglyphs evolved and eventually 
alphabets. Imaging has always been part of human culture. Its decorative nature was perhaps less im-
portant than its role in recording significant events, mainly for impressing the masses for the importance 
and glory of its rich and powerful patrons. In the last 200 years or so, technology-based imaging started 
to co-exist in parallel with manual imaging, restricting the role of the latter mainly to art. Technology 
based imaging is nowadays very much a major part of our everyday life, through its medical applica-
tions, routine surveillance, or entertainment. However, imaging has always been haunted by the need to 
depict a 3D world on a 2D medium. This has been a problem that pertains to paintings throughout the 
millennia: from the ancient Egyptians, who were painting full eyes even when seen sideways, to Pi-

Figure 1.
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casso and the cubists, who tried to capture all 3D aspects of the depicted object on a 2D canvas, imaging 
in 3D has been the holy grail of imaging. Modern technology has at last matured enough to allow us to 
record the 3D world as such, with an enormous range of applications: from medicine and cave technol-
ogy for oil exploration, to entertainment and the 3D television. This book is dedicated exactly to these 
modern technologies, which fascinate and excite. Enjoy it!

Maria Petrou
Informatics and Telematics Institute, CERTH, Greece & Imperial College London, UK

Maria Petrou studied Physics at the Aristotle University of Thessaloniki, Greece, Applied Mathematics in Cambridge, UK, 
and obtained her PhD and DSc degrees both from Cambridge University in Astronomy and Engineering, respectively. She is 
the Director of the Informatics and Telematics Institute of CERTH, Thessaloniki, Greece, and the Chair of Signal Processing 
at Imperial College London, UK. She has co-authored two books, “Image Processing, the fundamentals” and “Image Pro-
cessing dealing with texture”, in 1999 (second edition 2010) and 2006, respectively, and co-edited the book “Next generation 
artificial vision systems, reverse engineering the human visual system.” She has published more than 350 scientific articles on 
astronomy, computer vision, image processing and pattern recognition. She is a Fellow of the Royal Academy of Engineering.
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Preface

This book has three editors, and all of us are involved in image processing and computer vision research. 
We have contributed to the 3D imaging research, especially in the field of passive optical 3D shape 
recovery methods. Over the last decade, significant progress had been made in 3D imaging research. As 
a result, 3D imaging methods and techniques are being employed for various applications. The objective 
of this book is to present various 3D algorithms developed in the recent years and to investigate the 
application of 3D methods in various domains.

This book is divided into five sections. Section 1 presents various 3D imaging algorithms that are 
developed in recent years. It covers quite a variety of research fields including 3D mapping, hologra-
phy, and 3D shape compression. Six chapters are included in Section 1. Section 2 deals with 3D shape 
recovery methods that fall in the optical passive as well as active domains. The topics covered in this 
section include shape from focus, shape from heating, and shape from fluorescence. Section 2 includes 
5 chapters.

Section 3 is dedicated to stereoscopic vision and autostereoscopic vision. The dedication of a whole 
section to stereoscopic and autostereoscopic vision emphasizes the importance of these two technologies. 
Seven chapters are included in this section. Section 4 discusses 3D vision for robotic applications. The 
topics included in this section are 3D scene analysis for intelligent robotics and usage of stereo vision for 
various applications including fire detection and suppression in buildings. This section has three chapters.

Finally, Section 5 includes a variety of 3D imaging applications. The applications included in this 
section are 3D DMB player, 3D scanner, 3D mapping, morphological study of meteorite impact rocks, 
3D tracking, 3D human body posture estimation, 3D face recognition, and 3D thumbnails for 3D videos. 
A total of nine chapters are included on several of the above mentioned applications in this section.

There are 31 chapters in this book. Chapter 1 is not included in any of the sections as it provides an 
introduction to 3D imaging. Chapter 1 briefly discusses the classification for 3D imaging. It provides 
an overview of the 3D consumer imaging products that are available commercially. It also discusses the 
future of 3D consumer electronics.

SECTION 1

Chapter 2 to Chapter 7 are included in this section. Chapter 2 discusses multi-view stereo reconstruction 
as well as shape from silhouette method. Multiple images are used with multiple views for 3D reconstruc-
tion. This chapter can be included in both Section 2 and Section 3 since Section 2 deals with methods 
like shape from silhouette while Section 3 covers stereovision. However, we decided to put it as the 
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first chapter of section I because it presents an algorithm dealing with 3D shape reconstruction and also 
because we want to emphasize the importance of these two topics at the very beginning of this book.

Chapter 3 deals with the iterative reconstruction method that can be used in various medical imaging 
methods like X-ray, Computed Tomography, Positron Emission Tomography, Single Photon Emission 
Computed Tomography, Dose-calculation in Radiotherapy, and 3D-display Volume-rendering. This 
chapter is included in the book to emphasize on the importance of 3D transmissive methods that have 
greatly influenced our present day life style by improving the healthcare services.

Chapter 4 provides methods for generating 3D maps of the environment surrounding us. These maps 
are especially useful for robot navigation. This chapter especially discusses 3D map registration in detail.

Chapter 5 emphasizes the importance of compression for data storage and transmission for large 
chunks of 3D data. It describes a 3D image compression method that could reduce the data storage and 
transmission requirements.

Chapter 6 addresses holographic images. The future of true 3D lies in the holographic imaging tech-
nology. The holographic images are marred with noise and low quality. Hence, restoration and enhance-
ment are very important for holographic images. This chapter summarizes related issues and provides 
solution for the restoration and enhancement of the holographic images.

Chapter 7 is the last chapter in section I. This chapter deals with an active optical 3D shape recovery 
method. For active fringe patterns projection, off-the-shelf projector is used in order to reduce the cost 
of the system.

SECTION 2

Chapter 8 to Chapter 12 are included in Section 2. Chapter 8 gives a very good introduction of the 3D 
shape recovery approaches. It includes the geometric approaches, photometric methods, and the real 
aperture techniques. Details are provided for various methods and techniques falling under one of the 
three approaches.

Chapter 9 discusses the focus measures in detail. A total of eleven focus measures are discussed, and 
they are categorized under four major classes. A very detailed comparison is provided for the eleven 
focus measures. The performance comparison is provided with respect to several types of noise, varying 
illumination and various types of textures.

Chapter 10 uses S-Transform for developing a focus measure method. High frequency components 
in the S-transform domain are targeted by the developed focus measure. The focus measure is used as 
a shape from focus technique to recover the 3D shape.

Chapter 11 uses genetic programming for developing a focus measure. An optimal composite depth 
function is developed, which utilizes multiple focus measures to get the optimized depth map for 3D 
shape recovery.

Chapter 12 provides two methods for recovering 3D shape of the transparent objects. Using normal 
optical methods, the 3D shape of transparent objects cannot be recovered accurately and precisely. This 
chapter discusses shape from heating and shape from fluorescence techniques to recover the 3D shape. 
These are new methods and have been introduced recently.
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SECTION 3

Chapter 13 to chapter 19 are included in Section 3. Chapter 13 to Chapter 17 are related to stereoscopic 
vision, while the last two chapters in this section are on autostereoscopic vision. Although these two topics 
can be placed under Section 2, they have been placed in a separate section because of their importance 
in terms of consumer electronics.

Chapter 13 discusses a stereoscopic algorithm which treats the stereovision as modular approach. 
Hence, the stereovision algorithm can be divided into various stages and each of the stage can be imple-
mented individually.

Chapter 14 and Chapter 15 discuss applications of the stereovision. Off road intelligent vehicle naviga-
tion using stereovision in the agricultural environment is dealt in chapter 14 while chapter 15 discusses 
visually induced motion sickness (VIMS) that is associated with stereoscopic movies.

Chapter 16 provides details of viewpoint interpolation methods that are used for synthesizing the 
in-between views from few views that are captured by few fixed cameras. Chapter 17 presents a revers-
ible watermarking based algorithm to deal with the high costs of memory, transmission bandwidth and 
computational complexity for 3D images.

Chapter 18 and Chapter 19 deal with autostereoscopic vision. Stereoscopic displays require 3D glasses 
to view in 3D while the autostereoscopic displays do not require any 3D glasses. Chapter 18 introduces 
the basic concepts of autostereoscopic displays and discusses several of its technologies. Chapter 19 
addresses the very important issue of bandwidth for high resolution multi-view autostereoscopic data.

SECTION 4

Chapter 20 to Chapter 22 are included in section IV. This is the shortest section in this book. Although, 
all the three chapters in this section could easily be included in Section 3 but we decided to allocate a 
separate section to emphasize the topic of robotic vision.

Chapter 20 is an invited chapter. It deals with intelligent robotics by capturing and analysing a scene 
in 3D. Real time processing is important for robotic applications and hence this chapter discusses limi-
tations for the analysis of 3D data in real time. This chapter provides very good description of various 
technologies that address the limitation issues for real time processing.

Chapter 21 and Chapter 22 use the stereovision for robotic applications. Chapter 21 discusses the 
autonomous operation of robots in real working environments while chapter 22 deals with the specific 
application of fire detection and suppression in the buildings.

SECTION 5

Chapter 23 to Chapter 31 are included in this section. Nine chapters deal with nine different 3D appli-
cations. It is the last section of the book. However, some of the applications dealing with stereovision, 
robotics and compression are also discussed in earlier sections. We placed them in those sections because 
we think that they are more relevant to the topics in those sections.

Chapter 23 discusses a 3D DMB player. DMB stands for digital multimedia broadcasting, and it is 
used for terrestrial-DMB (T-DMB) systems. The chapter also introduces an approximation method to 
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create auto-stereoscopic images in the 3D DMB player. Hence, this chapter is also related to section III 
where autostereoscopic vision is discussed.

Chapter 24 presents a detailed overview of the 3D scanning technologies. Comparison of several 3D 
scanning methods is provided based on accuracy, speed, and the applicability of the scanning technology.

Chapter 25 deals with 3D mapping in outdoor environments, while chapter 26 presents 3D scanning 
method to study morphology of a meteorite rock. For 3D mapping, examples are taken from pavement 
runway inspection and urban mapping. For 3D scanning, meteorite rock is selected from the Karik-
koselkä impact crater (Finland).

Chapter 27 discusses 3D tracking for mixed reality. 3D tracking is one of the active research areas 
in 3D imaging. This chapter addresses 3D tracking in mixed reality scenario. Mixed reality deals with 
virtual objects in real scenes. It is a very important topic with applications in medical, teaching, and 
gaming professions. Multi-sensor fusion methods for mixed reality with 3D camera tracking are dis-
cussed in this chapter.

Chapter 28 uses stereovision for the reconstruction of 3D human body posture that is further utilized 
in human activity recognition. Human activity recognition is of vital importance for visual surveillance 
applications. Hence, interest in human activity recognition research has increased manifolds in the 
recent years.

Chapter 29 deals with 3D face recognition, while chapter 30 discusses 3D face expression recog-
nition. In Chapter 29, a method for 3D face recognition is presented based on adaptive non-uniform 
meshes. In chapter 30, a feature extraction method is discussed that does not require any neutral face 
for the test object.

Chapter 31 is the last chapter of this section, as well as the last chapter of the book. Chapter 31 
introduces a thumbnail format for 3D videos with depth. A framework is presented in the chapter that 
generates 3D thumbnails from layered depth video (LDV) and video plus depth (V+D).

FINAL WORDS

The work on this book started in November 2009 and it has taken about one and a half years to complete 
it. All the chapters in this book went through multiple reviews by the professionals in the field of 3D 
imaging and 3D vision. All the chapters had been revised based on the comments of multiple reviewers 
by the respective authors of the chapters. Contributors for the book chapters come from all over the 
world, i.e., Japan, Republic of Korea, China, Australia, Malaysia, Taiwan, Singapore, India, Tunisia, 
Turkey, Greece, France, Spain, Belgium, Romania, Netherlands, Italy, and United States. This indicates 
that this book covers a topic of vital importance for our time, and it seems that it will remain so at least 
for this decade.

3D imaging is a vast field and it is not possible to cover everything in one book. 3D research is ever 
expanding and the 3D research work will go on with the advent of new applications. This book presents 
state of the art research in selected topics. We hope that the topics presented in this book attract the at-
tention of researchers in various research domains who may be able to find solutions to their problems 
in 3D imaging research. We further hope that this book can serve as a motivation for students as well as 
researchers who may pursue and contribute to the 3D imaging research.

Aamir Saeed Malik, Tae-Sun Choi, Humaira Nisar 
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Chapter  1

DOI: 10.4018/978-1-61350-326-3.ch001

INTRODUCTION

3D imaging is not a new research area. Re-
searchers are working with 3D data for the last 
few decades. Even 3D movies were introduced 
using the cardboard colored glasses. However, 
the consumers did not accept the results of that 
3D research because of low quality visualization 
of 3D data. The researchers were limited by the 
hardware resources like processing speed and 
memory issues. But with the advent of multicore 
machines, specialized graphics processors and 
large memory modules, 3D imaging research is 

picking up the pace. The result is the advent of 
various 3D consumer products.

3D imaging methods can be broadly divided 
into three categories, namely, contact, reflective 
and transmissive methods. The contact methods, 
as the name implies, recover the 3D shape of 
the object by having physical contact with the 
object. These methods are generally quite slow as 
they scan every pixel physically and they might 
modify or damage the object. Hence, they cannot 
be used for valuable objects like jewellery, his-
torical artifacts etc. However, they provide very 
accurate and precise results. An example is the 
CMM (coordinate measuring machine) which is a 
contact 3D scanner (Bosch 1995). Such scanners 
are common in manufacturing and they are very 

Aamir Saeed Malik
Universiti Teknologi Petronas, Malaysia

Humaira Nisar
Universiti Tunku Abdul Rahman, Malaysia

Introduction to 3D Imaging

ABSTRACT

With the advent of 3D consumer products in the electronics market, 3D imaging is all set to take off. Last 
decade had seen a lot of research activity with respect to 3D imaging. It will not be wrong to say that 
this decade will be the decade of 3D imaging. This chapter briefly introduces 3D imaging with respect 
to various 3D consumer products and 3D standardization activity. It also discusses the challenges and 
the future of 3D imaging.
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precise. Another application of contact scanners 
is in the animation industry where they are used 
to digitize clay models.

On the other hand, reflective and transmissive 
methods do not come in physical contact with 
the object. The transmissive methods are very 
popular in the medical arena and include methods 
like CT (Computed Tomography) scanning, MRI 
(Magnetic Resonance Imaging) scanning and 
PET (Positron Emission Tomography) scanning 
(Cabeza, 2006). CT scanners are now installed 
in almost all the major hospitals in every coun-
try and they use X-rays for scanning. MRI and 
PET are more expensive then CT and are not as 
frequently used as CT scanners, especially in the 
third world countries. However, because of its 
usefulness MRI has become quite popular and is 
now available at major hospitals in third world 
countries. These technologies have revolutionized 
the medical profession and they help in accurate 
diagnosis of the diseases at an early stage. Apart 
from the medical profession, these 3D scanning 
technologies are used for non-destructive test-
ing and 3D reconstruction for metals, minerals, 
polymers etc.

The reflective methods are based either on the 
optical or the non-optical sources. For non-optical 
based methods, radar, sonar and ultrasound are 
good examples which are now widely accepted 
and mature technologies. They are used by rescue 
services, medical professionals, environmental-
ists, defense personnel etc. They have wide range 
of applications and their cost varies from few 
hundred to hundred of thousands of dollars.

The optical based reflective methods are 
the ones that have direct effect on the everyday 
consumer. These methods are the basis for com-
mercialization of consumer products including 3D 
TV, 3D monitors, 3D cameras, 3D printers, 3D 
disc players, 3D computers, 3D games, 3D mobile 
phones etc. The optical based reflective methods 
can be active or passive. Active methods use 
projected lights, projected texture and patterns for 
acquiring 3D depth data. Passive methods utilize 

depth cues like focus, defocus, texture, motion, 
stereo, shading etc to acquire 3D depth data. Pas-
sive methods are also used in conjunction with 
active methods for better accuracy and precision.

3D TELEVISION

We start with the introduction of 3D TV because 
it is the motivation for most of the other 3D con-
sumer technologies. The first version of the TV 
was black-and-white TV. Although, there were 
multiple gray levels associated with it but the name 
associated with it was black-and-white TV. The 
first major transition was from black-and-white 
TV to color TV. It was a big revolution when that 
transition occurred. The earlier color TVs were 
analog. Then, digital color TVs were introduced 
followed by transition from standard resolution 
to high definition (HD) resolution of the images.

However, the era of 2D HDTV appears to be 
short because we are now witnessing the advent 
of 3D HDTV (Wikipedia HDTV). These, 3D 
HDTV are based on the stereoscopic technology 
and hence are known as stereoscopic 3D TV or 
S3D TV. Since, they also support high definition 
resolution; hence, they can be called S3D HDTV. 
All the major TV manufacturers have introduced 
S3D HDTV in the consumer market. They include 
various models from leading manufacturers like 
Sony, Panasonic, Mitsubishi, Samsung, LG, Phil-
ips, Sharp, Hitachi, Toshiba and JVC.

S3D HDTV can be switched between the 2D 
and 3D imaging modes hence maintaining the 
downward compatibility with 2D images and 
videos. Additionally, they provide software that 
can artificially shift the 2D images and videos 
to produce the stereo effect and hence the TV 
programs can be watched in 3D. However, the 
quality still needs to be improved. At this moment, 
the best 3D perception is achieved by the images 
and videos that are produced in 3D. As mentioned 
above, these products are based on stereovision. 
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Hence, they require the usage of 3D glasses for 
watching in 3D.

3D MONITORS AND PHOTO FRAMES

In addition to S3D HDTV, 3D monitors are also 
available based on the same stereoscopic technol-
ogy (Lipton 2002, Mcallistor 2002). Hence, they 
are available with 3D glasses. The 3D glasses are 
discussed in detail in the next section. 3D photo 
frames are now also being sold in the electronics 
market. However, they are based on stereoscopic 
vision with 3D glasses as well as on autostereo-
scopic vision technology which does not require 
glasses. At this moment in time, autostereoscopic 
displays are only available in small sizes and 
they are restricted because of the viewing angle 
in large sizes.

3D GLASSES

S3D HDTV relies on stereovision. In stereovision, 
separate images are presented to each of our eye, 
i.e., left and right eye. The images of the same 
scene are shifted similar to what our left and right 
eye see. As a result, the brain combines the two 
separate shifted images of the same scene and 
creates the illusion of the third dimension. The 
images are presented at a very high refresh rate 
and hence the two separate images are visualized 
by our eyes almost at the same time. Our brain 
cannot tell the difference of the time delay between 
the two images and they appear to be received by 
our eyes at the same time. The concept is similar 
to video where static images are presented one 
after the other at a very high rate and hence our 
brain visualizes them as continuous.

For separate images to be presented to our left 
and right eye, special glasses are required. These 
glasses had come to be known as 3D glasses. In 
early days, cardboard glasses were used. These 
cardboard glasses had different color for each of 

the lens with one being magenta or red and the 
other being blue or green. On the 3D display sys-
tem, two images were shown on the screen with 
one is red color and the other in blue color. The 
lens with the red color filter absorbed red color 
and allowed blue image to pass through while the 
lens with the blue filter allowed the red image 
to enter the eye. Hence, one eye looked at the 
red colored image while the other eye watched 
the blue colored image. The brain received two 
images and hence 3D image created. However, 
two separate images were based on two separate 
colors. Therefore, true color movie is not possible 
with this technique. So, the image quality of early 
3D movies was quite low.

Current 3D Glasses Technology

The current 3D glasses can be categorized into 
two classes: active shutter glasses and polarized 
glasses. Samsung, Panasonic, Sony and LG use 
the active shutter glasses. High refresh rate is 
used so that two images can be projected on the 
TV alternately; one image for the right eye and 
one for the left eye. Generally, the refresh rate 
is 120 hertz for one image and 240 hertz for 
both the images. The shutters on the 3D glasses 
open and close corresponding to the projection 
of images on the TV. There is a sensor between 
the lenses on the 3D glasses that connect with 
the TV in order to control the shutter on each of 
the lens. The brain received two images at very 
high refresh rate and hence it combines them to 
achieve the 3D effect. By looking away from the 
TV, one may see the opening and closing of the 
lenses and hence it might cause irritation for some 
viewers. The active shutter glasses are expensive 
compared to polarized glasses.

JVC uses polarized glasses to separate the 
images for the right eye and the left eye. The 
famous movie, Avatar, was shown in US with the 
polarized glasses. These glasses are very cheap 
compared to the active shutter glasses. Two images 
of the scene, each with a different polarization, are 
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projected on the screen. Since, the 3D polarized 
glasses have lenses with different polarization, 
hence, only one image is allowed in each eye. 
The brain receives two images and creates the 
3D image out of them.

3D DISC PLAYERS

In the last decade, Sony won the standards war 
for the new disc player with blu-ray disc player 
being accepted as the industry standard. All the 
manufacturers accepted the standard with Blu-
Ray Disc Association as the governing body for 
the Sony based HD technology. Recently, the 
Blu-Ray Disc Association has embraced the 3D 
(Figure 1). As a result, Sony, Samsung and other 
leading manufacturers have already released 3D 
blu-ray disc players. Additionally, Sony is also 
offering Sony Play station 3 upgrade to 3D, via 
a firmware download.

3D GAMES

Games have already moved to the 3D arena. Sony 
is selling Play Station with 3D gaming capabil-
ity. However, to play 3D games, 3D TV with 3D 
glasses are required. The first four Play Station 3 
3D games are Wipeout HD, Motor Storm Pacific 
Rift, Pain, and Super Stardust HD. Microsoft Xbox 
has similar plans.

Nintendo has introduced the new handheld 
model replacing the existing DS model. The new 
handheld Nintendo has 3D screen. This screen 
is not based on stereoscopic vision technology. 
Rather, it’s based on autostereoscopic vision. 

Autostereoscopic displays do not require glasses. 
At this moment in time, the autostereoscopic tech-
nology is limited to small sized displays. Hence, 
Nintendo is taking advantage of this technology by 
introducing handheld gaming consoles based on 
autostereoscopic vision (Heater 2010) (Figure 2).

3D CAMERAS

The camera manufacturers have already launched 
various 3D camera models. One of the first 3D 
cameras was launched by Fuji in 2009. That cam-
era was a 10 Mega Pixel camera with two CCD 
sensors. In September 2010, Sony launched two 
different 3D camera models. They were Cyber-
shot DSC TX9 (a 12 Mega Pixel camera) and 
WX5. Both of the cameras provided 3D sweep 
panorama in addition to 2D sweep panorama. The 
images acquired by the 3D cameras can be seen 
on 3D TV, 3D computer and 3D photo frames.

3D COMPUTERS

3D computers are nothing more than the combi-
nation of 3D TV technology and 3D disc play-
ers. Similar to 3D TVs, the current 3D display 
technology is based on stereovision. Hence, 3D 
glasses are required. Again, some manufacturers 

Figure 1. 3D Blu-Ray disc player

Figure 2. Sony Play Station 3
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provide 3D computers with active shutter glasses 
while the others provide the polarized glasses. 3D 
blue-ray disc player is standard with most of the 
3D computers. One of the earliest 3D computers 
is from Acer and Asus (Figure 3). Acer provided 
their first laptop with 15.6 inch widescreen 3D 
display in December 2009. Acer 3D laptop used 
a transparent polarizing filter overlaid on the 
screen and hence it required corresponding 3D 
polarized glasses. Asus provided the 3D laptops 
with software Roxio CinePlayer BD which had 
the ability to convert 2D titles to 3D. LG is also 
entering the market of 3D laptops. In 2011, about 
1.1 million 3D laptops are expected to sell. This 
number is expected to increase to about 14 mil-
lion by 2015.

3D PRINTERS

Normal 2D printers are part of our everyday life. 
They are based on various technologies like la-
ser, inkjet etc and provide printouts in grayscale 
or color depending on the printer model. Some 
of the big names in printer technology are HP, 
Brother and Epson. The concept of 3D printer 

is to produce an object in 3D. Soon there will be 
huge data available in 3D within very short span of 
time as the 3D cameras will proliferate the market. 
Hence, the demand for producing 3D objects will 
increase. 3D printers are currently available but 
they are very expensive with the cheapest model in 
thousands of dollars. However, with the increase 
in 3D data and the demand for 3D printing, it is 
not far that 3D printers will become cheaper. HP 
has already taken a step in this direction by buy-
ing a 3D printer company with the aim of mass 
producing 3D printers in near future.

3D MOBILE PHONES

Mobile phones have changed the culture of the 
world today. It is a strong mini-computer in hand 
with the ability to take pictures, make videos, 
record sound and upload them instantaneously 
on the web. They are playing great role in human 
rights protection, cultural revolutions, political 
upheaval, news, tourism and almost every other 
thing in our daily lives. As mentioned earlier, 
autostereoscopic displays work well in small sizes 
and they do not require glasses. Hence, 3D mobile 
phones are based on autostereoscopic displays. 3D 
cameras are already available and it is just matter 
of time that they become part of the 3D mobile 
phones. Sky is the limit of our imagination for a 
3D device that can capture as well as display in 
3D, transmit in 3D, record in 3D and can serve 
as a 3D gaming platform.

In 2009, Hitachi launched a mobile phone 
with stereoscopic display. However, it is the 
autostereoscopic technology that will lead the 
way for 3D mobile phones. In April 2010, Sharp 
introduced 3D autostereoscopic display technol-
ogy that does not require glasses. However, the 
image shown through that display was as bright as 
it would be on standard LCD screen. Sharp used 
parallax barrier technology to produce 3D effect. 
Later in chapter 18, the autostereoscopic technol-
ogy is discussed in detail. Sharp announced mass  

Figure 3. 3D computer
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production of these small autostereoscopic dis-
plays for mobile devices. At the time of the an-
nouncement, the device measured 3.4 inches (8.6 
cm) with a resolution of 480 by 854 pixels, bright-
ness (500 cd/m2) and the contrast ratio (1000:1).

AUTOSTEREOSCOPIC 3D TV

Autostereoscopic 3D TV is also known as A3D TV 
(Dodgson 2005). A3D TV is multi-view displays 
which do not require any glasses. It has large 3D 
viewing zone, hence, multiple users can view in 
3D at the same time. Currently, A3D TV is based 
on two types of technologies, namely, lenticular 
lenses and the parallel barrier. In case of lenticular 
lenses, tiny cylindrical plastic lenses transparent 
sheets are pasted on the LCD screen. The tiny 
cylindrical plastic lenses project two images, one 
for each of our eye, hence producing 3D effect. 
Since, these sheets are pasted on LCD screen, so 
the A3D TV based on this technology can only 
project in 3D and 2D display is not possible with 
this technology.

The other technology is called parallel barrier 
technology. Sharp and LG are the front runners 
pursuing this technology. Fine gratings of liquid 
crystal with slits corresponding to certain columns 
of pixels are used in front of the screen. These 
slits result in separate images for the right and 
left eye when voltage is applied to the parallax 
barrier. The parallax barrier can also be switched 
off, hence allowing A3D TV to be used in 2D 
mode. Chapter 18 discusses in detail the autoste-
reoscopic displays.

3D PRODUCTION

3D TVs are of no use without the 3D production 
of movies, dramas, documentaries, news, sports 
and other TV programs. Conversion of 2D to 3D 
with software does not provide good 3D visual-
ization results. Many production companies are 

investing in 3D production. ESPN is currently 
using cameras with two sets of lenses for their 
live 3-D broadcasts. In 2007, Hellmuth aired live 
the NBA sports tournament in US in 3D HD and 
it is leading the 3D HD production. Professional 
tools are now available from Sonic for encoding 
videos and formatting titles in blue-ray 3D format.

Various movies were released in last few years 
in 3D. They include the release of Monsters vs. 
Aliens by DreamWorks Animation in September 
2009, Disney/Pixar’s “Up” and 20th Century 
Fox’s “Ice Age: Dawn of the Dinosaurs” etc. In 
2009, US$1 billion was generated at box offices 
worldwide before the release of Avatar in late 
2009. Avatar alone generated about $2.7 billion 
at box offices worldwide (Wikipedia-Disney) 
After that, the production in 3D is becoming 
more of a routine production. Hence, the quality 
of 3D production is bound to increase with the 
passage of time.

3D STANDARDS

There are various companies and organizations 
that are competing for the 3D standards. Some 
of them include:

• Standard for 3-D mastering and distri-
bution (Society of Motion Pictures and 
Television Engineers, SMPTE)
 ◦ http://www.smpte.org/home/

• MPEG’s Multiview Video Coding (Moving 
Pictures Experts Group – MPEG)
 ◦ http://mpeg.chiariglione.org/
 ◦ http://www.mpegif.org/

• 3D Consortium (Japan)
 ◦ http://www.3dc.gr.jp/english/

• 3D Working Group for 3D home entertain-
ment (Digital Entertainment Group)
 ◦ The members of the 3D Working 

Group for 3D home entertainment in-
clude Microsoft, Panasonic, Samsung 
Electronics, Sony, 20th Century Fox 
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Home Entertainment, Walt Disney 
Studios Home Entertainment and 
Warner Home Entertainment Group

 ◦ http://www.degonline.org/
• The Wireless HD Consortium

 ◦ They provide Wireless HD stan-
dard for in-room cable-replacement 
technology

 ◦ The original throughput standard is 
based on 4Gbps for high-definition 
video up to 1080p

 ◦ In the 1.1 spec, throughput is in-
creased to more than 15Gbps for 
streaming 3D video formats men-
tioned in the HDMI 1.4a specification

 ◦ http://www.wirelesshd.org/
• The 3D@Home Consortium

 ◦ This is for the advancement of 3D 
technology into the home

 ◦ http://www.3dathome.org/
• The Blue-ray Disc Association

 ◦ In December 2009, it announced the 
agreement that allows for full 1080p 
viewing of 3-D movies on TVs

 ◦ To create the 3D effect, two images 
in full resolution will be delivered by 
the Blue-ray disc players.

3D TV: MARKET FORECAST

According to a survey by In-Stat in September 
2009, 67% said that they are willing to pay more 
for a 3D version of a Blue-ray disc then a 2-D 
version. In another survey by a research firm 
GigaOM in September 2009, there will be 46 
million 3D TV units sold worldwide by 2013. In 
December 2009, another research firm, Display 
Search, forecasted the 3D TV market to grow to 
US$15.8 billion by 2015. It is expected that Sony 
will be selling about 40% to 50% 3D TVs out of 
its all TV units by end of 2012. LG is expected 
to be selling close to 4 million 3D TVs in 2012. 
These forecast figures show that there is no  

turning back now and all the leading manufacturers 
are investing heavily in 3D technology.

CONCLUSION AND 
FUTURE DIRECTIONS

The 3D imaging products have already started 
appearing in the consumer market since 2009. 
With the wide availability of 3D cameras and 
3D mobile phones, 3D data will soon proliferate 
the web. The 3D movies and other 3D content 
are already changing our viewing culture. In 
near future, the shift will be from stereoscopic 
displays with 3D glasses to autostereoscopic 
displays without the glasses. The gaming culture 
is also shifting to 3D gaming. Within next five 
years till 2015, 3D imaging will become part of 
our everyday life from cameras to mobile phones 
to computers to TV to games. Hence, intelligent 
algorithms and techniques will be required for 
processing of 3D data. Additionally, bandwidth 
requirements will increase for transmission. 
Good compression methods will be required as 
we move to multi-view imaging displays. The 
ultimate goal for imaging displays is to gener-
ate 3D views like we, ourselves, see in 3D. That 
will be accomplished by research in holography. 
However, that is something to be discussed in the 
next decade. This decade is for the stereoscopic 
displays, autostereoscopic displays and for all the 
technology that is associated with them.
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KEY TERMS AND DEFINITIONS

Stereoscopic: It refers to 3D using two im-
ages just like our eyes. It requires 3D glasses to 
view in 3D.

Autostereoscopic: It refers to 3D displays that 
do not require 3D glasses to view in 3D.
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Chapter  2

INTRODUCTION

High quality 3D models have large and wide ap-
plications in computer graphics, virtual reality, 
robotics, and medical imaging, etc. Although 
many of the 3D models can be created by a 

graphic designer using specialized tools (e.g., 3D 
Max Studio, Maya, Rihno), the entire process to 
obtain a good quality model is time consuming 
and tedious. Moreover, the result is usually only 
an approximation or simplification. At this place, 
3D modeling technique provides an alternative 
and has already demonstrated their potential in 
several application fields.

Peng Song
Nanyang Technological University, Singapore

Xiaojun Wu
Harbin Institute of Technology Shenzhen, China

Multi-View Stereo 
Reconstruction Technique

ABSTRACT

3D modeling of complex objects is an important task of computer graphics and poses substantial dif-
ficulties to traditional synthetic modeling approaches. The multi-view stereo reconstruction technique, 
which tries to automatically acquire object models from multiple photographs, provides an attractive 
alternative. The whole reconstruction process of the multi-view stereo technique is introduced in this 
chapter, from camera calibration and image acquisition to various reconstruction algorithms. The shape 
from silhouette technique is also introduced since it provides a close shape approximation for many 
multi-view stereo algorithms. Various multi-view algorithms have been proposed, which can be mainly 
classified into four classes: 3D volumetric, surface evolution, feature extraction and expansion, and depth 
map based approaches. This chapter explains the underlying theory and pipeline of each class in detail 
and analyzes their major properties. Two published benchmarks that are used to qualitatively evaluate 
multi-view stereo algorithms are presented, along with the benchmark criteria and evaluation results.
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In general, 3D modeling technique can be 
classified into two different groups: active and 
passive methods. The active methods try to ac-
quire precise 3D data by laser range scanners or 
coded structured light projecting systems which 
project special light patterns onto the surface of a 
real object to measure the depth to the surface by 
a simple triangulation technique. Although such 
3D data acquisition systems can be very precise, 
most of them are very expensive and require special 
skills. Compared to active scanners, passive meth-
ods work in an ordinary environment with simple 
devices and flexibilities, and provide feasible and 
comfortable means to extract 3D information 
from a set of calibrated pictures. According to the 
information contained in images which is used to 
extract 3D shape information, passive methods 
can be categorized into four classes: shape from 
silhouette, shape from stereo, shape from shading 
(Zhang, 1999), and shape from texture (Forsyth, 
2001; Lobay, 2006). This chapter will mainly 
focus on shape from stereo technique that tries to 
reconstruct object models from multiple calibrated 
images by stereo matching. Shape from silhouette 
technique is also introduced since it outputs a good 
shape estimate which is required by many shape 
from stereo algorithms.

In order to generate 3D model of a real object, 
digital cameras are used to capture multi-view 
images of the object which are obtained by chang-
ing the viewing directions to the object. Once the 
camera has been calibrated, a number of images 
are acquired at different viewpoints in order 
to capture the complete geometry of the target 
object. In many cases, the acquired images need 
to be processed before surface reconstruction. 
Finally, these calibrated images are provided as 
input to various multi-view stereo algorithms 
which seek to reconstruct a complete model from 
multiple images using information contained in 
the object texture. The major advantage of this 
technique is that it can output high quality surface 
models and offer high flexibility of the required 
experimental setup.

This chapter is structured as follows. Next 
section gives a brief introduction to camera 
calibration followed by the section that discusses 
several issues about how the original pictures 
should be taken and processed. Then, shape from 
silhouette concept and approaches are explained 
in detail, along with a discussion of its applica-
tions. After that, a section mainly focuses on the 
classification of shape from stereo approaches and 
introduces the pipeline, theory and characteristics 
of each class. Final section presents two published 
benchmarks for evaluating various multi-view 
stereo algorithms.

CAMERA CALIBRATION

Camera calibration is the process of finding the 
true parameters of the camera that produced a 
given photograph or video. Camera calibration 
is the crucial step in obtaining an accurate model 
of a target object. The calibration approaches can 
be categorized into two groups: full-calibration 
and self-calibration. Full-calibration approaches 
(Yemeza, 2004; Park, 2005) assume that a cali-
bration pattern with precisely known geometry is 
presented in all input images, and computes the 
camera parameters consistent with a set of cor-
respondences between the features defining the 
chart and their observed image projections. While 
the self-calibration approaches (Hernandez, 2004; 
Eisert, 2000; Fitzgibbon, 1998) are proposed to 
reduce the necessary prior knowledge about the 
scene camera geometry only to a few internal 
and external constraints. In these approaches, the 
intrinsic camera parameters are often supposed to 
be known a priori. However, since they require 
complex optimization techniques which are slow 
and difficult to converge, their accuracy is not 
comparable to that of the fully-calibrated systems. 
In practice, many applications such as 3D digitiza-
tion of cultural heritage prefer to fully-calibrated 
systems since maximum accuracy is a very crucial 
requirement while self-calibration approaches 
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are preferred when no Euclidean information is 
available such as reconstruction of a large scale 
outdoor building.

IMAGE ACQUISITION 
AND PROCESSING

There are many important issues about how the 
original pictures should be taken and processed, 
which eventually determine the final model 
quality. In this section only three issues that are 
closely related to multi-view stereo reconstruction 
technique are discussed: uniform illumination, 
silhouette extraction, and image rectification.

One of the most obvious problems during im-
age acquisition is that of highlights. Highlights 
depend on the relative position of object, lights 
and camera which means that they change position 
along the object surface from one image to the 
other. This can be problematic in recovering the 
diffuse texture of the original object. Highlights 
should be avoided in the original images by using 
a diffuse and uniform lighting. Moreover, multi-
view stereo matching will also be influenced by 
uniform illumination. In order to make sure the 
uniform lighting condition for each image, the 
target object should be illuminated by multiple 
light sources at different positions.

To facilitate silhouette segmentation, it is bet-
ter to use a monochrome background in the setup 
of image acquisition. This facilitates the identi-
fication of the object silhouette using standard 
background subtraction method which needs two 
consecutive acquisitions for the same scene, with 
and without the object, keeping the camera and 
the background unchanged. However, standard 
background subtraction method may in some 
cases fail when the background color happens to 
be the same with the object color which will cause 
erroneous holes inside the silhouettes. However, 
if the transition between the background and the 
object is sharp, the correct silhouette can still be 
found. Some manual processing is needed to fix the 

erroneous holes. In practice, it is better to select a 
background color with high contrast to the object 
color which will make image segmentation simple.

In practice, multi-view stereo algorithms 
always rectify image pairs to facilitate stereo 
matching. Stereo rectification determines a trans-
formation of each image plane such that pairs of 
conjugate epipolar lines become parallel to the 
horizontal image axes. Using projection matrices 
of the reference and primary images, we can rectify 
stereo images by using the rectification technique 
proposed by (Fusiello, 2000). The important ad-
vantage of rectification is that computing stereo 
correspondences is simpler, because search is done 
along the horizontal lines of the rectified images.

SHAPE FROM SILHOUETTE

Shape from silhouette approaches try to create a 
3D representation of an object by its silhouettes 
within several images from different viewpoints. 
The 3D representation named visual hull (Lau-
rentini, 1994) is constructed by intersection of 
the visual cones formed by back-projecting the 
silhouettes in the corresponding images. The vi-
sual hull can be very close to the real object when 
much shape information can be inferred from 
the silhouettes (see Figure 1 left). Since concave 
surface regions can never be distinguished using 
silhouette information alone, the visual hull is 
just an approximation of the actual object’s shape, 
especially if there are only a limited number of 
cameras. The visual hull of a toy dinosaur dem-
onstrated in Figure 1 right shows that a concave 
region on the dinosaur body cannot be correctly 
recovered (illustrated by the red square).

3D Bounding Box Estimation

Many visual hull computation approaches need the 
target object’s 3D bounding box, e.g. volumetric 
approach takes it as a root node when building 
visual hull octree structure, deformable model  
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approach needs a 3D bounding volume to construct 
an initial surface.

The 3D bounding box can be estimated only 
from a set of silhouettes and the projection matri-
ces. In practice, an accurate 3D Bounding Box can 
improve the precision of the final model. We can 
calculate the 3D bounding box only from a set of 
silhouettes and the projection matrices. This can 
be done by considering the 2D bounding boxes of 
each silhouette. The bounding box of the object 
can be computed by an optimization method for 
each of the 6 variables defining the bounding box, 

which are the maximum and minimum of x, y, z 
(Song, 2009). On the other hand, the 3D bound-
ing box can also be estimated using an empirical 
method. When the image capture system has been 
constructed, the origin of the world coordinate 
is defined. If we know the approximate position 
of the origin, the center of bounding box can be 
estimated. The size of the bounding box is simple 
to estimate since we can just make it large enough 
to contain the object. Then this estimated initial 
bounding box can be applied to compute the 
visual hull mesh. In practice, the resulting visual 

Figure 1. The visual hull of a toy alien model (left) and a toy dinosaur model (right)
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hull mesh also has a bounding box which is very 
close to the object’s real bounding box.

Visual Hull Computation

The main problem for visual hull computation is 
the difficulty in designing a robust and efficient 
algorithm for the intersection of the visual cones 
formed by back-projecting the silhouettes. Various 
algorithms have been proposed to solve this prob-
lem, such as volumetric (Song, 2009), polyhedral 
(Matusik, 2000; Shlyakhter, 2001), marching 
intersection (Tarini, 2002), and deformable model 
approaches (Xu, 2010). This section gives a brief 
introduction to volumetric approach.

In the volumetric approach, the 3D space 
is divided into elementary cubic elements (i.e., 
voxels) and projection tests are performed to 
label each voxel as being inside, outside or on 
the boundary of the visual hull. This is done by 
checking the contents of its projections on all the 
available binary silhouette images. The output of 
volumetric methods is either an octree (Szeliski, 
1993; Potmesil, 1987), whose leaf nodes cover the 
entire space or a regular 3D voxel grid (Cheung, 
2000). Coupled with the marching cubes algorithm 
(Lorensen, 1987), a surface can be extracted. 
Since these techniques make use of a voxel grid 
structure as an intermediate representation, the 
vertex positions of the resulting mesh are thus 
limited to the voxel grid. The most important 
part for volumetric approach is projection test, 
which is a process to check the projection of a 
voxel on all the available binary silhouette im-
ages. The test result classifies the voxel as being 
inside, outside or on the boundary of the visual 
hull. Specifically, if the projection of the voxel is 
in all the silhouettes, the corresponding voxel is 
inside the visual hull surface; if the projection is 
completely out of at least one silhouette, its type 
is out; else, the voxel is on the visual hull surface.

Discussion

The visual hull is an approximation of the real 
object shape and the level of satisfaction obviously 
depends on the kind of object and on the number 
and position of the acquired views. However, it 
still has many applications in the field of shape 
analysis, robotic and stereo vision etc. Firstly, it 
offers a rather complete description of a target 
object and can be directly fed to some 3D appli-
cations as a showcase. Moreover, the generated 
visual hull model can be sensibly improved from 
the appearance point of view by means of color 
textures obtained by the original images. Secondly, 
the visual hull is an upper bound of a real object 
which is big advantage for obstacle avoidance in 
the field of robotic or visibility analysis in navi-
gation. Finally, it provides good initial model for 
many reconstruction algorithms, e.g. the snake-
based multi-view stereo reconstruction algorithm 
uses it as an initial surface since it can capture the 
target object’s topology in most case.

MULTI-VIEW STEREO 
RECONSTRUCTION

Multi-view stereo technique seeks to reconstruct 
a complete 3D object model from a collection of 
calibrated images using information contained 
in the object texture. In essence, the depth map 
of each image is estimated by matching multiple 
neighboring images using photo-consistency 
measures which operate by comparing pixels in 
one image to pixels in other images to see how 
well they correlate. The position of correspond-
ing 3D point is then computed by a triangulation 
method. In practice, the image sequence captured 
for surface reconstruction contains many images, 
from one dozen to more than one hundred and 
the camera viewpoints may be arranged arbi-
trarily. Therefore, a visibility model is needed to 
determine which images should be selected for 
stereo matching. Multi-view stereo reconstruction  
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algorithms can be mainly categorized into four 
classes according to the taxonomy of (Seitz, 
2006): 3D volumetric, surface evolution, feature 
extraction and expansion, and depth map based 
approaches. We introduce the pipeline of each 
class first and then take one typical algorithm 
of each class to explain the implementation de-
tails. Finally, the characteristics of each class is 
summarized some of which are validated by the 
evaluation results on the Middlebury benchmark.

3D Volumetric Approach

3D volumetric approaches (Treuille, 2004) first 
compute a cost function on a 3D volume, and 
then extract a surface from this volume. Based 
on the theoretical link between maximum flow 
problems in discrete graphs and minimal surfaces 
in an arbitrary Riemannian metric established by 
(Boykov, 2003), many approaches (Snow, 2000; 
Kolmogorov, 2002; Vogiatzis, 2005; Tran, 2006; 
Vogiatzis, 2007) use graph cut to extract an optimal 
surface from a volumetric Markov Random Field 
(MRF). Typically, graph cut based approaches 
first define a photo consistency based surface cost 
function on a volume where the real surface is 
embedded and then discretize it with a weighted 
graph. Finally, the optimal surface under this 
discretized function is obtained as the minimum 
cut solution of the weighted graph.

In the graph cut based approach proposed in 
(Vogiatzis, 2005), they first build a base surface 
Sbase as the visual hull and the parallel inner bound-
ary surface Sin which define a volume C enclosed 
by Sbase and Sin The photo-consistency measure 
ρ( )x  used to determine the degree of consistency 
of a point x with the images is the NCC value 
between patches centered on x. And the base 
surface Sbase is employed for obtaining visibility 
information by assuming that each voxel has the 
same visibility as the nearest point on Sbase The 
cost function associated with the photo-consis-

tency of a candidate surface S is the integral of 
ρ( )x  on the surface,

E S x dAsurf
s

[ ] ( )= ∫∫ ρ  (1)

If the base surface Sbase is not far from the real 
surface, then voxels that lie on the real surface 
would have smallest ρ values. Therefore, surface 
reconstruction can be formulated as an energy 
minimization problem which tries to find the 
minimal surface Smin in the volume C .The minimal 
surface under this function is obtained by com-
puting the minimum cut solution of the graph. In 
order to obtain a discrete solution, 3D space is 
quantized into voxels of size h × h × h. The graph 
nodes consist of all voxels whose centers are in 
C. Each voxel is a node in the graph, G, with a 
6-neighbor system for edges. The weight for the 
edge between voxel (node) vi and vj is defined as,

w v v
h x x

i j
i j( , ) ( )=
+4

3 2

2π
ρ  (2)

where h is the voxel size. The voxels that are part 
of Sin and Sbase are connected with the source and 
sink respectively with edges of infinite weight. 
With the graph G constructed this way, the graph 
cut algorithm is then applied to find Smin in poly-
nomial time.

Since the graph cut algorithm usually prefers 
shorter cuts, protrusive parts of the object surface 
is easy to cut off. In this case, a shape prior that 
favors objects that fill the space of the visual hull 
more can be applied. The main problem for graph 
cut based approach is that for high resolutions 
of the voxel grid, the image footprints used for 
consistency determination become very small 
which often results in noisy reconstructions in 
textureless regions.



16

Multi-View Stereo Reconstruction Technique

Surface Evolution Approach

Surface evolution approaches (Hernandez, 2004; 
Zaharescu, 2007; Kolev, 2009) work by iteratively 
evolving a surface to minimize a cost function, in 
which the surface can be represented by voxels, 
level sets, and surface meshes. Space carving 
(Matsumoto, 1997; Fromherz, 1995) is a tech-
nique that starts from a volume containing the 
scene and greedily carves out non-photoconsistent 
voxels from that volume until all remaining vis-
ible voxels are consistent. Since it uses a discrete 
representation of the surface but does not enforce 
any smoothness constraint on the surface, the 
reconstructed results are often quite noisy. Level 
set techniques (Malladi, 1995) start from a large 
initial volume and shrink inward to minimize a 
set of partial differential equations defined on 
a volume. These techniques have an intrinsic 
capability to freely change the surface topology 
while the drawbacks are the computation time 
and the difficulty to control the topology. Topol-
ogy changes have to be detected and taken care 
of during the mesh evolution which can be an 
error prone process. Snake techniques formulate 
the surface reconstruction as a global energy 
minimization problem. The total energy term E 
is composed of an internal energy Eint to obtain a 
final well-shaped surface, and an external energy 
Eext to make the final surface confirm the shape 
information extracted from the images. This en-
ergy minimization problem can be transformed 
to a surface iteration problem in which an initial 
surface mesh is driven by both the internal force 
and external force that iteratively deform to find 
a minimum cost surface.

Since the snake approach of (Hernandez, 2004) 
wants to exploit silhouettes and texture for surface 
reconstruction, the external energy is composed 
of the silhouette related energy Esil and the texture 
related energy Etex. The minimization problem is 
posed as finding the surface S of R3 that minimizes 
the energy E(S) defined as follows:

E S E S E S E S E S E Sext tex sil( ) ( ) ( ) ( ) ( ) ( )int int= + = + +  
(3)

And this energy minimization problem can 
be transformed to a surface iteration problem as 
follows:

S S t F S F S F Sk k
tex

k
sil

k k+ = + + +1 ∆ ( ( ) ( ) ( ))int  
(4)

To completely define the deformation frame-
work, this approach needs an initial surface S0 
that will evolve under the different energies until 
convergence. Since snake deformable models 
maintain the topology of the mesh during its 
evolution, the initial surface must capture the 
topology of the object surface. The visual hull is 
a quite good choice in this case. The texture force 
Ftex contributes to recovering the 3D object shape 
by exploiting the texture of the object to maximize 
the image coherence of all the cameras that see 
the same part of the object which is constructed 
by computing a Gradient Vector Flow (GVF) 
filled (Xu, 1998) in a volume merged from the 
estimated depth maps. The silhouette force Fsil 
is defined as a force that makes the snake match 
the original silhouettes of the sequence which can 
be decomposed into two different components: a 
component that measures the silhouette fitting, 
and a component that measures how strongly the 
silhouette force should be applied. The internal 
force Fintcontains both the Laplacian and bihar-
monic operators that try to smooth the surface 
during surface evolution process. The deformable 
model evolution process at the kth iteration can 
then be written as the evolution of all the vertices 
of the mesh vi.

v v t F v F v F vi
k

i
k

tex i
k

sil i
k

i
k+ = + + +1 ∆ ( ( ) ( ) ( ))intβ γ  
(5)
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where ∆t  is the time step and β  and γ  are the 
weights of the silhouette force and the regulariza-
tion term, relative to the texture force. The time 
step ∆t  has to be chosen as a compromise between 
the stability of the process and the convergence 
time. Equation 5 is iterated until convergence of 
all the vertices of the mesh is achieved.

Snake deformable offers a well-known frame-
work to optimize a surface under several kinds of 
constraints extracted from images such as texture, 
silhouette, and shading constraints. However, its 
biggest drawback is that it cannot change the topol-
ogy of the surface during the evolution. Moreover, 
since the snake approach is evolved based on 
surface mesh, they have to deal with artifacts like 
self intersections or folded-over polygons. The 
resolution of the polygon mesh has to be adjusted 
by tedious decimation, subdivision and remeshing 
algorithms that keep the mesh consistent. Finally, 
large distances between the initial and the true 
surface (e.g. in deep concavities) often lead to 
slow convergence of the deformation process.

Depth Map Based Approach

Generally, depth map based approaches (Goesele, 
2006; Bradley, 2008; Campbell, 2008; Liu, 2009; 
Song, 2010; Li, 2010) involve two separate stages. 
First, a depth map is computed for each viewpoint 
using binocular stereo. Second, the depth maps are 
merged to produce a 3D model. In these methods, 
the estimation of the depth maps is crucial to 
the quality of the final reconstructed 3D model. 
Since the estimated depth maps always contain 
lots of outliers due to miscorrelation, an outlier 
rejection process is always required before final 
surface reconstruction.

Song et al. (Song, 2010) proposed a depth 
map based approach to reconstruct a complete 
surface model using both texture and silhouette 
information contained in images (see Figure 2 for 
illustration). Firstly, depth maps are estimated from 
multi-view stereo efficiently by an expansion-

based method. The outliers of the estimated depth 
maps are rejected by a two-step approach. Firstly, 
the visual hull of a target object is incorporated 
as a constraint to reject 3D points out of the vi-
sual hull. Then, a voting octree is built from the 
estimated point cloud and a threshold is selected 
to eliminate miscorrelations. To downsample the 
3D point cloud, for each node at the maximum 
depth of the voting octree, the point with largest 
confidence value is extracted in the corresponding 
voxel to construct a new point cloud on the object 
surface with few outliers and smaller scale. The 
surface normal of each point in the point cloud 
is estimated from the positions of the neighbors 
and the viewing direction of each 3D point is 
employed to select the orientation of estimated 
surface normal. The resulted oriented point cloud 
is called point cloud from stereo (PCST). In order 
to restore the textureless and occluded surfaces, 
another oriented point cloud called point cloud 
from silhouette (PCSL) is computed by carving 
the visual hull octree structure using the PCST. 
Finally, Poisson surface reconstruction approach 
(Kazhdan, 2006) is applied to convert the oriented 
point cloud both from stereo and silhouette (PC-
STSL) into a complete and accurate triangulated 
mesh model.

The computation time of depth map based 
methods are dominant by the depth map estima-
tion step which can vary from few minutes to 
several hours for the same input dataset. Since 
these approaches use an intermediate model rep-
resented by 3D points, they are able to recover 
accurate details on well textured region while 
result in noisy reconstructions in textureless re-
gions.

Feature Extraction and 
Expansion Approach

The idea behind this class (Habbecke, 2007; 
Goesele, 2007; Jancosek, 2009; Furukawa, 2010) 
is that a successfully matched depth sample of 
a given pixel provides a good initial estimate 



18

Multi-View Stereo Reconstruction Technique

for depth and normal for the neighboring pixel 
locations. Typically, these algorithms use a set 
of surface elements in the form of patch with 
either uniform shape (e.g. circular or rectangular) 
or non-uniform shape known as patch model. 
A patch is usually defined by a center point, a 
normal vector, and a patch size to approximate 
the unknown surface of a target object or scene. 
The reconstruction algorithm always consists of 
two alternating phases. The first phase computes 
a patch model by matching a set of feature points 
to generate seed patches and expanding the shape 
information from these seed patches. Note that a 
filtering process can be done simultaneously with 
the expansion process or as a post process for the 
patch model. The second phase converts the patch 
model into a triangulated model.

Recent work by Furukawa and Ponce (Fu-
rukawa, 2010) proposes a flexible patch-based 
algorithm for calibrated multi-view stereo. The 
algorithm starts by computing a dense set of small 
rectangular oriented patches covering the surfaces 
visible in the images by a match, expand and 
filter procedure: (1) matching: features found by 
Harris and difference-of-Gaussians operators are 
first matched across multiple pictures to generate 
a sparse set of patches associated with salient 
image regions, (2) expansion: spread the initial 
matches to nearby pixels and obtain a dense set 

of patches, (3) filtering: visibility and a weak 
form of regularization constraints are then used to 
eliminate incorrect matches. Then the algorithm 
converts the resulting patch model into an initial 
mesh model by PSR approach or iterative snap-
ping: (1) PSR approach directly converts a set of 
oriented points into a triangulated mesh model, 
(2) iterative snapping approach computes a visual 
hull model and iteratively deforms it towards 
reconstructed patches. Note that the iterative 
snapping algorithm is applicable only to object 
datasets with silhouette information. Finally, an 
optional final refinement algorithm is applied 
to refine the initial mesh to achieve even higher 
accuracy via an energy minimization approach 
(Furukawa, 2008). Since this algorithm takes into 
account surface orientation properly in comput-
ing photometric consistency, which is important 
when structures do not have salient textures, or 
images are sparse and perspective distortion ef-
fects are not negligible, it outputs accurate object 
and scene models with fine surface detail despite 
low-texture regions or large concavities.

Since this class of approach takes advantage of 
the already recovered 3D information, the patch 
model reconstruction step is quite efficient. And 
they do not require any initialization in the form 
of a visual hull model, a bounding box, or valid 
depth ranges. Finally, these approaches are easy 

Figure 2. Overall approach of (Song, 2010). From left to right: one input image, visual hull, PCST, 
PCSL, PCSTSL, the reconstructed model.
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to find correct depth in low-textured regions due 
to its expansion strategy and patch model repre-
sentation, i.e., use large patches in homogeneous 
area while small patches for well textured region.

Discussion

We have introduced the pipeline, theory and 
characteristics of each class for multi-view stereo 
algorithm. With the development of this area, 
some approaches take the advantages of several 
existing methods and modify each existing method 
in an essential way to make them more robust 
and accurate. For example, Vu et al. (Vu 2009) 
proposed a multi-view stereo pipeline to deal with 
large scenes while still producing highly detailed 
reconstructions. They first extract a visibility con-
sistent mesh close to the final reconstruction using 
a minimum s-t cut from a dense point cloud merged 
from estimated depth maps. Then a deformable 
surface mesh is iteratively evolved to refine the 
initial mesh to recover even smaller details. In 
fact, this approach combines the characteristic 
of depth map based, 3D volumetric, and surface 
evolution classes. However, since the accuracy of 
the final mesh basically depends on the estimated 
depth maps, this approach is classified as depth 
map based class in this chapter.

Shape from stereo is based on the assumption 
that the pixel intensity of a 3D point does not 
differ significantly when projected onto different 
camera views. However, this assumption does 
not hold in most practical cases due to shading, 
inhomogeneous lighting, highlights and occlusion. 
Therefore, it is difficult to obtain robust and reli-
able shape by using only stereo information. This 
method relies substantially on the object’s texture. 
When a target object lacks texture, structured light 
can be used to generate this information.

BENCHMARK

Multi-view 3D modeling datasets can mainly be 
classified into two categories. The first category is 
object datasets in which a single object is photo-
graphed from viewpoints all around it and usually 
fully visible in acquired images. The uniqueness 
of datasets of this category is that it is relatively 
straightforward to extract the apparent contours 
of the object and thus compute its visual hull. The 
other category is scene datasets in which target 
objects may be partially occluded and/or embed-
ded in clutter, and the range of viewpoints may be 
severely limited. The characteristic of datasets of 
this category is that it is hard to extract the appar-
ent contours of the object to compute its bounding 
volume. Typical examples are outdoor scenes 
such as buildings or walls. Two benchmarks have 
been published to evaluate various multi-view 
stereo algorithms quantitatively: the Middlebury 
benchmark for object datasets and the large scale 
outdoor benchmark for scene datasets.

Middlebury Benchmark

The Middlebury benchmark (Seitz, 2006) datas-
ets consist of two objects, temple and dino. The 
temple object (see Figure 3 left) is a 159.6 mm 
tall, plaster reproduction of an ancient temple 
which is quite diffuse and contains lots of geo-
metric structure and texture. While the dino object 
(see Figure 3 right) is a 87.1mm tall plaster dino-
saur model which has a white, Lambertian surface 
without obvious texture. The images of the data-
sets were captured by using the Stanford  
spherical gantry and a CCD camera with a resolu-
tion of 640×480 pixels attached to the tip of the 
gantry arm. From the resulting images, three 
datasets were created for each object, correspond-
ing to a full hemisphere, a single ring around the 
object, and a sparsely sampled ring. A more  
detailed description of the temple and dino data-
sets can be found in (Seitz, 2009). In order to 
evaluate the submitted models, an accurate surface 
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model acquired from laser scanner is taken as the 
ground truth model with 0.25mm resolution for 
each object.

The reconstruction results for the Middlebury 
benchmark datasets are evaluated on the accu-
racy and completeness of the final result with 
respect to the ground truth model, as well as 
processing time. The accuracy is measured by 
distance d such that a given percentage, say X%, 
of the reconstruction is within d from the ground 
truth model and the completeness is measured by 
percentage Y% of the ground truth model that is 
within a given distance D from the reconstruction. 
The default value is X=90 and D=1.25. In order 
to compare computation speed fairly, the re-
ported processing time will be normalized accord-
ing to the processor type and frequency. We 
present the results of quantitative evaluation of 
current state-of-the-art multi-view stereo recon-
struction algorithms on this benchmark datasets 
shown in Table 1. Please note that only the pub-
lished approaches are considered for the accu-
racy ranking, ignoring the evaluation results of 
unpublished papers. Since Furukawa and Ponce 
evaluate the submissions of the same approach 
twice for two different publications (Furukawa, 
2007; Furukawa, 2010), only the result of (Furu-
kawa, 2010) is included for accuracy ranking. The 
algorithms listed in Table 1 are grouped using the 
classification method presented in previous  

section in order to validate the characteristic of 
each class.

Table 1 shows that the accuracy and complete-
ness rankings among the algorithms are rela-
tively stable. Since most of the algorithms in this 
benchmark generate complete object models, the 
completeness numbers were not very discrimina-
tive. We mark the top three most accurate algo-
rithms for each data set in Table 1 using red, green, 
and blue color respectively. First of all, we can 
find that the evaluation results of the depth map 
based approaches on the temple object is very 
good for the reason that this class is adapt in re-
constructing well textured object with many slight 
details. While the property that depth map based 
approach cannot handle textureless region quite 
well has also been demonstrated by the Figure 4 
(see the region marked by the red square). Sec-
ondly, the approach of (Furukawa, 2010) outper-
forms all other submitted for all the three datasets 
of the dino object since the feature extraction and 
expansion approaches can recover correct shape 
information for low-textured objects.

Large Scale Outdoor Benchmark

This benchmark data (Strecha, 2008) contains 
outdoor scenes and can be downloaded from 
(Strecha, 2010). Multi-view images of the scenes 
are captured with a Canon D60 digital camera 

Figure 3. The Middlebury benchmark: temple (left) and dino (right) objects
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with a resolution of 3072 × 2028 square pixels. 
Figure 5 shows two datasets of this benchmark. 
The ground truth which is used to evaluate the 
quality of image based results is acquired by a 
laser scanner, outlier rejection, normal estimation 
and Poisson based surface reconstruction process.

Evaluation of the multi-view stereo reconstruc-
tions is quantified through relative error histo-
grams counting the percentage of the scene re-
covered within a range of 1 to 10 times an 
estimated noise variance σ  which is the standard 
deviation of depth estimates of the laser range 

Table 1. Quantitative evaluation results of current state-of-the-art multi-view stereo algorithms 

Temple Dino

Full Ring SparseR Full Ring SparseR

3D Volumetric 
Approach

Vogiatzis 2005 1.07, 90.7% 0.76, 96.2%  2.77, 79.4% 0.42, 99.0% 0.49, 96.7% 1.18, 90.8%

Tran 2006 1.12, 92.3% 1.53, 85.4% 1.12, 92.0% 1.26, 89.3%

Vogiatzis 2007 0.5, 98.4%  0.64, 99.2% 0.69, 96.9%

Surface  
Evolution  
Approach

 Hernandez 2004 0.36, 99.7% 0.52, 99.5%  0.75, 95.3% 0.49, 99.6% 0.45, 97.9% 0.6, 98.5%

Zaharesu 2007 0.55, 99.2% 0.78, 95.8% 0.42, 98.6% 0.45, 99.2%

Kolev 2009 0.72, 97.8% 1.04, 91.8% 0.43, 99.4% 0.53, 98.3%

Depth 
Map-based 
Approach

Goesele 2006 0.42, 98.0% 0.61, 86.2%  0.87, 56.6% 0.56, 80.0% 0.46, 57.8% 0.56, 26.0%

Bradley 2008 0.57, 98.1% 0.48, 93.7% 0.39, 97.6% 038, 94.7%

Campbell 2008  0.41, 99.9% 0.48, 99.4% 0.53, 98.6%

Liu 2009 0.65, 96.9% 0.51, 98.7

Vu 2009 0.45, 99.8%  0.53, 99.7%

Li 2010 0.64, 98.2% 0.43, 99.7%

Song 2010 0.61, 98.3% 0.38, 99.4% 0.54, 95.5%

Feature  
Extraction 
And  
Expansion

Habbecke 2007 0.66, 98.0% 0.43, 99.7%

Goesele 2007 0.42, 98.2% 0.46, 96.7%

Jancosek 2009 0.65, 85.8% 0.7, 78.9% 0.59, 74.9%  0.91, 73.8% 0.71, 76.6% 0.66, 74.9%

 Furukawa 2010  0.49, 99.6%  0.47, 99.6% 0.63, 99.3% 0.33, 99.8% 0.28, 99.8% 0.37, 99.2%

Figure 4. The dino models reconstructed by depth map based approaches. From left to right, (Goesele, 
2006), (Vu, 2009), (Li, 2010), and (Song, 2010).
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scanner used in the experiments. Table 2 present 
the results of quantitative evaluation of current 
state-of-the-art multi-view stereo reconstruction 
algorithms on the fountain dataset of this bench-
mark. Each entry in the table shows the percent-
age of the laser-scanned model that is within σ  
distance from the corresponding reconstruction. 
Since the feature extraction and expansion ap-
proaches do not require any initialization in the 
form of a visual hull model or a bounding box, 
they are very appropriate for scene datasets re-
construction. Another finding is that (Vu, 2009) 
achieves the best performance for this dataset 
since this approach combines advantages of sev-
eral existing approaches.

FUTURE RESEARCH DIRECTIONS

Further development of multi-view stereo tech-
nique could move in many directions. A few of 

them are indicated as follows: firstly, research 
will focus on recovering 3D models with even 
higher accuracy to know the maximum accuracy 
that can be achieved by this technique; secondly, 
this technique will be more and more broadly em-
ployed for outdoor 3D model acquisition, which is 
a great challenge; finally, most shape from stereo 
algorithms assume that an object or a scene is 
lambertian under constant illumination, which is 
certainly not true for most surfaces in practice. 
Therefore, it is important to know whether this 
technique can recover a high quality 3D model 
of an object with arbitrary surface reflectance 
properties under real lighting conditions. Due 
to the accumulation of solid research results and 
many years’ experience, it is firmly believed 
that multi-view stereo technique will be greatly 
advanced in the future.

Figure 5. Large scale outdoor benchmark, Fountain-P11 (left) and Herz-Jesu (right) datasets

Table 2. Completeness measures for the Fountain dataset 

σ 2σ 3σ 4σ 5σ 6σ 7σ 8σ 9σ 10σ

Zaharescu 2007 14.6 38.8 55.5 65.1 70.4 73.7 75.9 77.3 78.3 79.0

Furukawa 2007 14.8 41.1 58.0 66.9 71.7 74.6 76.5 77.8 78.8 79.6

Vu 2009 18.0 47.7 67.9 78.7 84.2 87.2 88.8 89.8 90.4 90.9

Jancosek 2009 7.9 24.6 42.0 56.5 66.6 72.1 75.0 76.7 77.8 78.6



23

Multi-View Stereo Reconstruction Technique

CONCLUSION

This chapter gives a brief introduction to the 
multi-view stereo technique, ranging from 
camera calibration, image acquisition to various 
reconstruction algorithms. Several hundreds of 
reconstruction algorithms have been designed 
and applied for various applications and can be 
mainly categorized into four classes. The underly-
ing theory and pipeline of each class are explained 
in detail and the properties of each class are also 
analyzed and validated by the evaluation results 
on the published benchmarks. Although we are 
still far away from the dream to recover a 3D 
model of an arbitrary object from multi-view 
automatically, multi-view stereo technique pro-
vides us a powerful alternative to acquire complex 
3D models from real world. This technique has 
become more powerful in recent years, which 
has been confirmed by evaluation results on the 
introduced benchmarks.
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KEY TERMS AND DEFINITIONS

Benchmark: Something whose quality or 
quantity is known and which can therefore be 
used as a standard with which other things can 
be compared.

Camera Calibration: The process of finding 
the intrinsic and extrinsic parameters of the camera 
that took photographs.

Image Processing: A technique in which the 
data from an image are digitized and various 
mathematical operations are applied to the data 
in order to create an enhanced image that is more 
useful or pleasing to a human observer, or to per-
form some of the interpretation and recognition 
tasks usually performed by humans.

Multi-View Stereo Reconstruction: A shape 
reconstruction technique that tries to extract the 3D 
shape of a scene from two or more images taken 
at known camera positions by stereo matching 
different images.

Shape from Silhouette: A shape reconstruc-
tion technique by intersection of the visual cones 
formed by back projecting the silhouettes in the 
corresponding images.

Visual Hull: An approximate shape representa-
tion of an object created by shape from silhouette 
3D reconstruction technique.
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ABSTRACT

Modelling the forward projection or reprojection, that is defined as the operation that transforms a 3D 
volume into series of 2D set of line integrals, is of interest in several medical imaging applications as 
iterative tomographic reconstruction (X-ray, Computed Tomography [CT], Positron Emission Tomography 
[PET], Single Photon Emission Computed Tomography [SPECT]), dose-calculation in radiotherapy and 
3D-display volume-rendering. As forward projection is becoming widely used, iterative reconstruction 
algorithms and their characteristics may affect the reconstruction quality; its accuracy and perfor-
mance needs more attention. The aim of this chapter is to show the importance of the modelling of the 
forward projection in the accuracy of medical tomographic data (CT, SPECT and PET) reconstructed 
with iterative algorithms. Therefore, we first present a brief overview on the iterative algorithms used in 
tomographic reconstruction in medical imaging. Second, we focus on the projection operators. Concepts 
and implementation of the most popular projection operators are discussed in detail. Performance of 
the computer implementations is shown using the well-known Shepp_Logan phantom. In order to avoid 
possibly confounding perspective effects implied by fan or cone-beam, this study is performed in paral-
lel acquisition geometry.
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INTRODUCTION

Tomographic reconstruction is the technique un-
derlying nearly all of the key diagnostic imaging 
modalities, including X-ray, CT, PET, SPECT, 
some acquisition methods for Magnetic Resonance 
Imaging (MRI), and newly emerging techniques 
such as electrical impedance tomography (EIT) 
and optical tomography. During the last decades, 
various algorithms have been developed for 
both 2D and 3D tomographic reconstruction 
such as the analytical and the iterative methods. 
The analytical algorithms, the most used, have  
advantage to be fast, but they are not able to model 
the characteristics of the data acquisition process. 
While the iterative algorithms are able to precisely 
model the physical and statistical characteristics 
of the data acquisition process, independent  
of the dimensionality of the image. The ability  
to perform accurate iterative reconstruction  
relies fundamentally on the modelling of the 
forward projection. Some examples where mod-
elling the forward projections have been found 
worthwhile to explore include: Redundant data, 
better noise models, incomplete data, resolution 
recovery, beam hardening correction and metal 
artifact reduction.

In general, more detailed models result in high-
er image quality but also in higher computational 
load, which can become especially cumbersome 
in 3D problems. Some of numerical methods 
for implementing forward and backprojections 
reduce total processing time by simplifying the 
process used in determining the actual value to 
be backprojected or reprojected but they result in 
varying degrees of approximation errors. These 
simplifications and approximations limit the ab-
solute accuracy of the reconstruction, contribute 
to image reconstruction errors and may negate the 
advantages of an iterative reconstruction. Con-
versely, more accurate interpolation techniques 
tend to impose added requirements of the recon-
struction algorithms, and thus longer processing 
times. As the projection is becoming widely 

used with iterative reconstruction algorithms and 
their characteristics may affect the reconstruc-
tion quality, its accuracy and performance needs 
more attention for better understanding. In this 
context, this chapter aims to detail the implement-
ing of forward projection using the most models 
that are frequently used in medical tomography 
reconstruction with focus on errors generated by 
the geometrical models. It is structured as follows. 
After this introduction, a brief overview on the 
iterative algorithms used in tomographic recon-
struction in medical imaging is first presented. 
Second, the concepts and implementation of the 
most popular projection operators will be detailed. 
Their performances have been shown using the 
well-known Shepp_Logan phantom (Shepp & 
logan, 1994).

ITERATIVE RECONSTRUCTION 
TECHNIQUES

During the last decades, various algorithms have 
been proposed for both 2D and 3D tomographic 
reconstruction such as the analytical and the 
iterative methods. The analytical algorithms, the 
most used, have advantage to be fast, but they 
are not able to model the characteristics of the 
data acquisition process. Iterative tomographic 
reconstruction which is the process of recovering 
3D image data from a set of integrals of that data 
over 2D subspaces, provide an attractive solution 
for tomographic imaging modalities over analytic 
techniques and they have been successfully used 
in medical imaging (Ziegler, 2008; Suetens, 
2002), including computed tomography (CT), 
single photon emission computed tomography 
(SPECT), positron emission tomography (PET), 
tomosynthesis and projection mode 2D magnetic 
resonance imaging (MRI). The iterative methods 
aim to minimize or maximize a cost function 
between reconstructed slices T and measured 
projection P and have the advantage to incorpo-
rate imaging geometry and physics effects into 
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the forward projection operator R that results in 
quantitatively improved reconstruction images. 
All iterative methods begin with initial guess for 
solution and successively improve it until solu-
tion is as accurate as desired. In theory, infinite 
number of iterations might be required to converge 
to exact solution. In practice, iteration terminates 
when some measure of error is as small as desired. 
Figure 1 illustrates steps of implementation of 
an iterative reconstruction algorithm where both 
forward projection matrix and back projection 
matrix (the reverse model of forward projection) 
are needed to achieve one iteration.

A large variety of iterative techniques are 
proposed and applied in medical tomographic 

reconstruction that differ from each other in the 
way the correction terms are derived and how the 
update to the new estimate is calculated. Iterative 
algorithms can be classified mainly into two 
classes (Vandenberghe et al., 2001): conven-
tional algebraic reconstruction techniques and 
iterative statistical methods.

Conventional Algebraic 
Reconstruction Techniques

Conventional algebraic reconstruction techniques 
aim to minimize weighted square norms (Jiang and 
Wang, 2003). The oldest of this family is due to 
S. Kaczmarz works and is known as the Algebraic 

Figure 1. Representation of reconstruction steps at nth iteration with iteration process. The notions used 
are: T̂ n( )  is the reconstructed image, P and P̂ n( )  are the measured and the calculated projection data, 
R and Rt are the forward and back projection matrix, ε p

n  projection error that measured the discrep-

ancy between P and ˆ ,P n( )  and εT
n  is its backprojected image.
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Reconstruction Technique (ART) (Gordon, 1973; 
Gordon & Herman, 1970; Herman, 2009) which 
has a simple intuitive basis. Each projected density 
is thrown back across the reconstruction space in 
which the densities are iteratively modified to bring 
each reconstructed projection into agreement with 
the measured projection. Assuming that the pattern 
being reconstructed is enclosed in a square space 
of n x n array of small pixels contain grayness 
or density number, which is uniform within the 
pixel but different from other pixels. A “ray” is 
a region of the square space which lies between 
two parallel lines. The weighted ray sum is the 
total grayness of the reconstruction figure within 
the ray. The projection at a given angle is then 
the sum of non-overlapping, equally wide rays 
covering the figure. The ART algorithm consists 
of altering the grayness of each pixel intersected 
by the ray in such a way as to make the ray sum 
agree with the corresponding element of the 
measured projection.

Other versions of these algorithms are Simul-
taneous Algebraic Reconstruction Technique 
(SART) (Gilbert, 1972), Simultaneous Iterative 
Reconstruction Technique (SIRT) (Gilbert, 1972) 
and the Iterative Least-Squares Technique (ILST) 
(Goitein, 1972). Conceptually, these techniques 
differ in the procedure of updating ˆ .Ti

n( )  Begin-
ning with initial guess T(0), ART solves one mea-
surement at a time by updating all corresponding 
(image) pixels or voxels using the following equa-
tion:
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where T̂i
n( )  is the value of reconstructed image at 

the pixel i for the nth iteration, N is the total num-
ber of reconstructed image pixels, Pk is the mea-
sured projection data at kth bin, M is the total 
number of projection image bins, aik and a ik

'  are 

the forward and back projector weighting coef-
ficients, respectively, that map the ith pixel to kth 
bin. While, the Additive Simultaneous Iterative 
Reconstruction Technique (ASIRT) (P. Gilbert, 
1972) is a version of SART, computes next itera-
tion by solving for each component of T as below:
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Statistical Image 
Reconstruction Methods

Statistical image reconstruction methods re-
construct images by iteratively maximizing a 
likelihood function (Nuyts, 2001; Green, 1990; 
Herbert & Leahy, 1989). They take the noise on 
the measurement data into account. Therefore 
they use a statistical modelling of the measure-
ment process. The best-known example is the 
Maximum Likelihood (ML-EM) algorithm (Shepp 
and Vardi, 1982; Vardi et al., 1985) that takes the 
Poisson nature of the data into account according 
to the following formula:
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Other examples of these techniques are the 
Maximum A Posteriori (MAP) method mostly 
used to guarantee good noise reduction and edge 
preservation (Alenius & Ruotsalainen, 1997; 
Alenius et al. 1998; Herbert & Leahy, 1989), the 
convex method (Lange & Fessler, 1995) and the 
ordered subsets convex (OSC) method (Kamphuis 
& Beekman, 1998). These methods are known to 
produce images with better signal to noise ratio at 
the cost of increased computation time, and many 
recent developments toward faster methods make 
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these methods promising as using the simplified 
cost function (T. Köhler, 2003; Thibault, 2007).

A third class of iterative algorithms called the 
Iterative Filtered Backprojection (IFBP) methods 
can be considered (Xu et al., 1993). These meth-
ods are based on iterative algebraic application 
of Filtered Backprojection (FBP) methods. For 
IFBP, the step of backprojection in equation (1) 
is replaced by a filter followed by a backprojec-
tor, the same operation normally performed in 
FBP. Instead of converging to the least squares 
solution, IFBP converges to a weighted least-
squares solution with the reconstruction filter 
being the weighting function. (Xu et al., 1993; 
Lalush & Tsui, 1993). Since the FBP method is 
used in each iteration, certain artifacts are very 
rapidly suppressed. Therefore, for the purpose 
of suppressing such artifacts, IFBP methods are 
usually much faster than other iterative methods.

Below follows a brief algorithmic descrip-
tion of iterative reconstruction implementation 
(Algorithm 1):

The advantage of the iterative algorithms are 
that they are able to precisely model the physical 
and statistical characteristics of the data acquisi-
tion process, independent of the dimensionality 
of the image, and can easily accommodate any 
data acquisition geometry. Their major disadvan-
tages are that the processing is time consuming 
and the computational burden is high since one 
projection and one backprojection operation (the 
reverse of forward projection) have to be per-
formed at each iteration. Moreover, the accuracy 
of iterative reconstructed images is dependant 
highly on the choice and the implementation of 
these operations that require a model for the im-
aging system at hand. A variety of efficient forward 
and backprojection algorithms are currently avail-
able in clinical, in industrial, and research- 

Algorithm 1.

0: Algorithm “Iterative reconstruction” 

   1: Initiation: make a guess on the data to be reconstructed (usually assum-

ing that all pixels have the same value) (T̂ ), set the iteration index it = 0, 

   2: Forward projection: Estimate projection data based on the current guess 

at nth iteration P̂k
n( ) = a Tik i

n

i

N
ˆ( )

=
∑

1

where aik is the coefficient of the forward projec-

tion operator that maps the ith data pixel to kth projection bin;

   3: Comparison: calculate the discrepancy ε
p
 (error) between acquired projec-

tions and reprojected ones; 

   4: Backprojection: backproject the discrepency ε
p
 over the image space: εT

n

i

( )

= a ik pk
n

k

M
' ε ( )

=
∑

1

 where a ik
' is the coefficient of the backprojection operator that 

maps the kth projection bin to ith data pixel;

   5: Modification: update the current data by incorporating weighted backpro-

jection in a specific way according to the defined algorithm (addition or 

multiplication); 

   6: Evaluation: evaluate the reconstruction error between T̂i
n−( )1  and T̂i

n( ), if 

the error is not sufficiently small, set it = it+1, and repeat steps 2 to 5 ; 

7: end “Iterative reconstruction”
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oriented applications of tomography, and they 
differ in accuracy and computational speed. Some 
of numerical methods for implementing forward 
and backprojections reduce total processing time 
by simplifying the process of interpolation used 
in determining the actual value to be backpro-
jected or reprojected but they result in varying 
degrees of approximation errors. These simplifi-
cations and approximations limit the absolute 
accuracy of the reconstruction, contribute to im-
age reconstruction errors and may negate the 
advantages of an iterative scheme. Conversely, 
more accurate interpolation techniques tend to 
impose added requirements of the reconstruction 
algorithms, and thus longer processing times. 
Therefore, the selection of an appropriate projec-
tion model for a specific application requires the 
knowledge of the method’s accuracy and compu-
tational complexity. In literature, there are many 
papers considering the reconstruction algorithms 
and reporting empirical comparisons of various 
approaches, but the algorithm implementation 
and the effects of the forward projection matrix 
are not often described in detail. Only few papers 
have recently described them (De Man and Basu, 
2004). However, less attention has been made to 
characterize errors generated by geometrical 
projection modelling. In the following, the con-
cepts and the algorithm implementation of forward 
projection operator are discussed in detail.

Forward Projection Operators

A forward projection or reprojection, that is 
defined as the operation that transforms a 3D 
volume into a series of 2D set of line integrals, is 
of interest in several medical imaging applications 
like (Boag, 2000) as iterative tomographic recon-
struction (CT, SPECTand PET) (Lewitt, 2003; 
Ollinger, 1990; Ziegler, 2008; Zeng, 1994), dose-
calculation in radiotherapy (Bortfeld, 1994) and 
3D-display volume-rendering (Chidlow, 2003). It 
is also useful in industrial and research-oriented 
applications of tomography. The projector is a 

system matrix of weighting coefficients aik that 
maps the image pixels Ti to projection bin Pk and 
models the imaging process as:

P  ak ik ii

N
=

=∑ Τ
1

 (4)

It is the key element in calculating projection 
data from a discretized image. The main issue is 
how to evaluate the contribution of a given pixel 
from an imaged data in a projection bin from the 
obtained projection. The accurate calculation of 
projection matrix is probably the most important 
step in iterative tomography reconstruction al-
gorithms, in which repeated applications of the 
forward and reverse model are used to solve for 
the image that best fits the measurements accord-
ing to an appropriate objective function. It defines 
(1) how the continuous function to be estimated 
is represented by a finite set of parameters; and 
(2) how projection data are calculated from this 
continuous function. These require the modelling 
of the projection matrix including the geometry of 
the reconstruction problem and a number of other 
physical parameters. A variety of efficient models 
have been proposed to simulate the tomography 
projection process. Some of the methods can be 
described as procedures for forward projection but 
they are not all based on explicit models. Another 
family of methods is based on basis function of 
intensity coefficient distribution (Herman, 1976; 
Lewitt, 2003). Generally, forward projection 
models are varying on the choice of the image 
basis function that models the voxel shapes and 
the integration function that is related to the ac-
quisition geometry.

The choice of basis function affects the result of 
an iterative method. A good basis function should 
(1) be able to accurately represent a constant 
function; (2) allow for cost-effective implemen-
tation of forward projection and backprojection 
operations; and (3) contain a minimal amount of 
aliasing artifacts. A lot of basic functions have 
been investigated include the following: square 
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basis function (Peters, 1981; Schwinger et al., 
1986; Thibault, 2007), Fourier series, circular 
harmonics, wavelets, “natural pixels”, B-splines, 
Dirac impulses, Gaussian functions and organ-
based basis functions. Other related representa-
tions include polygons, polar grids, logarithmic 
polar grids, tetrahedral meshes and rotationally 
symmetric basis functions (Lewitt, 1992; Matej, 
1996). Kaiser-Bessel functions called ‘blobs’ 
that consider non zero values only in a circular 
disk around the origin, and smoothly decreases 
from a positive value at the origin to zero at the 
edge of the disk, have been a particularly popular 
choice of rotationally symmetric basis. Although 
in the context of SPECT imaging, blobs were not 
found to be advantageous (Yendiki, 2004), more 
favorable results have been reported in CT and 
PET (Lewitt, 1992; Matej, 1996; Ziegler, 2008). 
Naturally, the fineness of the grid can affect edge 
artifacts and aliasing (De Man, 2000; Zbijewski, 
2006). More recent papers, have enhanced and 
augmented these basic approaches, and reader is 

referred to (De Man & Basu, 2004) for a more 
complete list of references.

The most common type of geometrical in-
tegration function is a Dirac line (Figure 2 (a)) 
transforming the volume integral into a line inte-
gral along the line corresponding to measurement 
(Cormack, 1964). With this configuration, aliasing 
may occur during projection in particularly with 
high voxel density (Hsieh et al., 1998). Therefore, 
using other types of integration functions that 
consists either of several Dirac lines or a strip 
(Figure 2 (b)), can be used for suppressing aliasing 
in the projection generation process.

Regarding all these possibilities, a variety of 
forward projection models can be defined as a 
combination between a selected basis functions 
and an appropriate geometrical integration func-
tion. Some models consider that the intensity 
within each pixel is uniformly distributed  
whereas others assume that it is concentrated at 
pixel center. Moreover, the projection may be 
performed either as line integrals or over finite 

Figure 2. Representation of common geometrical integration functions (a) linear integration (b) strip 
integration
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width paths (strip projection bin). This is where 
the various models differ from each other in 
mostly three ways:

• Either they assume that the voxels are solid 
blocks or that the voxels are infinitesimal 
thin spikes (or sample points).

• Either they trace rays emerging from the 
bins, or a few sub-bins within a pixel, or 
they trace beams, usually bounded by the 
bin boundaries.

• Either they trace the rays (or beams) across 
the volume from the bins or they project 
the voxels onto the projection plane.

FORWARD PROJECTION 
ALGORITHMS: CONCEPT 
AND IMPLEMENTATION

In this section, we propose to detail the imple-
mentation of the forward projection matrix us-
ing models that are frequently used in medical 
tomographic reconstruction today with an iterative 
scheme. In order to avoid possibly confounding 
perspective effects implied by fan or cone-beam, 
all algorithms are performed in parallel acquisition 
geometry. Although we only show the imple-
mentation for the 2D case, for 3D rendering, the 
drawings would extend into 3D (which turns every 
linear interpolation into a bilinear interpolation).

To simplify illustrations, all implementations 
will be shown in the case of 2D functions assum-
ing that each image element (pixel or voxel) value 
will be distributed into two adjacent projection 
bins using the notation defined in Figure 3. To 
be noted that, the pixel value can be distributed 
in maximum into three adjacent projection bins. 
For all projection methods, the backprojection is 
defined as the transpose operation and the weight 
factors aik remain the same, but the detector values 
are weighted and assigned to the image pixels as:

T  a Pi ki kk

M
=

=∑ 1
 (5)

where M is the total number of bins.
Since computational time is not important be-

cause of the availability of fast processer, therefore, 
we neglect it in our study. We pre-computed system 
matrix of projection and store it in random access 
memory. These techniques have better computa-
tional efficiency and an even greater advantage in 
2D over techniques that calculate coefficients in 
real time and at the same time do reconstruction 
task. The major drawback of these techniques is 
in 3D where they require huge memory storage.

Two approaches for implementing system 
matrix with iterative algorithms are proposed 
and used: one approach is to pre-compute it 
beforehand and store in random access memory 
and the other one is to calculate its coefficients on 
the fly at the same time as of the reconstruction 
task. The computed method on fly is well suited 
for hardware implementation because no coef-
ficient is stored after being calculated and used. 
However, this approach increases computational 
time since an additional step is added for each 
projection bins and at each iteration. If the system 
matrix needs to be computed only once as is often 
the case in PET, computation time is not an issue 
and the weighting coefficients can be calculated 
on the fly (real time) and at the same time do 
reconstruction task. The pre-computing tech-
niques have better computational efficiency and 
an even greater advantage in 2D over techniques 
that calculate coefficients in real time. The major 
drawback of these techniques is in 3D because 
they require huge memory storage. However, 
some geometric acquisitions present interesting 
symmetric properties and the effective number of 
weighting coefficient need to be pre-calculated is 
reduced according to the symmetry degree which 
can considerably decrease the size of the useful 
memory. For example, if a parallel tomographic 
acquisition is done over 360 degree, the weight-
ing functions are symmetric about 45° (number 
of views multiples of 4 for the 360°) and thus 
only need to be pre-calculated for one-eighth of 
the total number of projection angles between 0° 
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and 45° (Schwinger et al., 1986). The following 
steps are performed to implement the projection 
operation if the coefficients of the system matrix 
are calculated on fly (Algorithm 2).

In case of pre-calculated system matrix, for 
all projection angles, the corresponding weighting 
coefficients and their projection bins are pre-
calculated and stored for each pixel, and the 
program looks up these pre-calculated values. To 
generate the backprojection, the same pre-calcu-
lated couples (weighting coefficient and the cor-
responding projection bin) are used to back 
project bin values into all pixel slices for all pro-
jection angles. For implementation, the following 
steps are performed (Algorithm 3).

In the following, we present the concept and 
the implementation of the system matrix of the 
most popular forward projection modelling in a 
unified framework under the pre-calculation ap-
proach in order to perform the projection step in 
iterative shame.

Ray-Driven Methods

(Herman, 1980; Siddon, 1985; Zhuang et al, 
1994; Zeng and Gullberg, 1993) are perhaps the 
most intuitive approach to approximating the line 
integrals. They consist of tracing one or more 
equispaced ray paths through each projection bin. 
The total length of intersection between the ray 
paths and each pixel is used as weighting factor 
either in 2D or in 3D. The projection value for 
projection line k can be written as a summation:

Pk i k i
i

N

l T=
=
∑ , *

1

 

where li,k represents an effective intersection 
length of projection line k with pixel i. This is 
illustrated in Figure 4 where each bin is divided 
into 2 sub-bins.

Figure 3. Representation of notations to be used to define the relation between the image pixels and 
projection bins: Ti: pixel i value to be reprojected, Pk, Pk+1: projection bins (detector elements) k and 
k+1 of the projected image P (sinogram), θ: projection angle, ai,k: weighting factor of the contribution 
of pixel i to projection bin k computed using a given projection model.
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Ray-driven methods are generally well-suited 
for projection, but tend to introduce artifacts 
(Moiré patterns) in the backprojection (De Man 
and Basu 2002). Their accuracy can be improved 
by increasing the number of ray-paths that are 
traced per projection bin (sub-bins) (Zhuang  
et al.).

Below follows a brief algorithmic description 
of ray-driven forward projector implementa-
tion where each bin is divided into M sub-bins 
(Algorithm 4).

It should be noticed that if no sub-division is 
considered (conventional ray-driven method), M 
should be replaced by 1 in this algorithm.

Ray-Driven with Linear Interpolation 
(Joseph’s Method) (Joseph, 1983)

The coefficients are computed in 2D as the row 
intersection length combined with the linear in-
terpolation between the two nearest voxels within 
that row, and in 3D as the slab intersection length 
combined with bilinear interpolation between the 

Algorithm 2.

0: Algorithm “Projection operation using weighting coefficients calulated on 

fly” 

   1: for all projection angles θ do 

       2: for all image slices do 

          3: for all pixel slices i do 

             4: determine the bin k in which the considered pixel i is con-
tributed  

             5: calculate the corresponding weighting coefficient a
ik

             6: update Pk=Pk+aikTi

          7: end for 

       8: end for 

   9: end for 

10: end “Projection operation on using weighting coefficients calulated on fly”

Algorithm 3.

0: Algorithm “Projection operation with pre-calulated weighting coefficients” 

               1: for all projection angles θ do 

                      2: for all image slices do 

                          3: upload the matrix of weighting coefficient a
ik
 and 

the corresponding bins k from the storage table.
                          4: for all pixel slices i do 

                               5: update Pk=Pk+aikTi.

                          8: end for 

                      9: end for 

                 10: end for 

11: end “Projection operation with pre-calulated weighting coefficients”



37

Forward Projection for Use with Iterative Reconstruction

Figure 4. Representation of the ray-driven method (2 sub-bins). The two corresponding weighting coef-
ficients are: ai,k = L3/2 and ai,k+1 = (L1+L2)/2.

Algorithm 4.

0: Algorithm “Ray driven projection operator with M sub-bins” 

             1: for all projection angles θ do 

                2: for all image slices do 

                    3: for all pixel slices i do 

                          4: for all intersecting rays (bins) k do 

                               5: for all sub-rays m do 

                                    6: calculate the length of intersection 

between the considered ray and the contributing pixel i: Lm,

                               7: end for 

8: calculate weighting coefficient a
L

ik

m

=











=
∑
m

M

M
1

                              9: save the couple (k, aik) in an access memory 

file 

                         10: end for 

                     11: end for 

                13: end for 

          12: end for 

11: end “Ray driven projection operator with M sub-bins”
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four nearest voxels within that slab. This is shown 
schematically in Figure 5.

To implement Joseph’s method, the same steps 
as ray-driven algorithm are performed with some 
modifications (Algorithm 5).

A more general projection with a trilinear in-
terpolation is also used in3D where the projection 
line is divided into a number of segments with 
fixed step size (Wang 1999). At each step, the 
contribution to projection line i is computed as 
the product of the step-size and a voxel value is 
obtained by trilinear interpolation of eight neigh-
boring voxels. If the used step is equal to the 
column or raw width, this method is equivalent 
to Joseph’s method.

Pixel-Driven Methods (Herman, 1980; 
Peters, 1981; Zhuang et al, 1994)

The pixel-driven method owes its name to the 
fact that the index of the main loop is the image 

pixel index. For each image pixel, the center of 
the pixel is projected onto the detector array along 
the projection direction, and a value is obtained 
from, or accumulated in, the detector by (typically 
linear) interpolation. The projection accuracy can 
be increased by dividing each pixel into sub-pixels 
and forward projection is accomplished simply by 
determining the projection bin within which the 
centre of each sub-pixel is located. This is shown 
schematically in Figure 6 where each pixel is 
divided into 2×2 sub-pixels.

Below follows a brief algorithmic description 
of pixel-driven forward projector implementation 
in case of M sub-pixels (Algorithm 6).

If no sub-division is considered (conven-
tional pixel-driven), previous algorithm is per-
formed with M=1. However, simple pixel-driven 
projection is rarely used because it introduces 
high-frequency artifacts (Zeng and Gullberg 1993, 
De Man and Basu 2002). To improve accuracy, 
linear interpolation is performed between dis-

Figure 5. Representation of the interpolated ray-driven method (Joseph’s linear interpolation method). 
The two corresponding weighting coefficients corresponding to the contribution of voxels Ti to projec-
tion line k and k+1 are computed as: ai,k = lθ*d1/d and ai,k+1 = lθ*d2/d where d=d1+d2
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Algorithm 5.

       0: Algorithm “Ray driven projection operator with linear interpolation” 

             1: for all projection angles θ do 

                  2: for all image slices do 

                      3: calculate the length of intersection between the con-

sidered ray and the contributing column i:  

                          if θ ∈ [−45°; 45°] or θ ∈ [135°; 225°], then L
θ
=pixel 

width/ cos θ  

                          else L
θ,
=pixel width/ sin θ

                      4: for all pixel slices i do 

                          5: for all intersecting rays k do 

                              6: calculate the distances from projection bin k 

to the center pixel i following the contributing column direction: d
i,k,

                              7: calculate weighting coefficient a
ik
=(L

θ
x d

m
)/

pixel width, 

                              8: save the couple (k, a
ik
) in an access memory 

file. 

                         9: end for  

                     10: end for 

                 11: end for 

           12: end for 

        13: end “Ray driven projection operator with linear interpolation”

Figure 6. Representation of the pixel-driven method (xXx sub-pixels). The two corresponding weighting 
coefficients corresponding to the contribution of voxels Ti to projection line k and k+1 are computed as 
ai,k = ¼ and ai,k+1= 3/4.
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tances from each pixel center to the centers of the 
two nearest projection bins.

Bilinear Interpolation Projection

It is the standard method for computing projec-
tions. Projections are computed by interpolation 
based upon the distances from each center pixel to 
the centers of two nearest projection bins. As with 
pixel-driven methods, projection accuracy can be 
increased by dividing each pixel into sub-pixels 
and applying bilinear interpolation projection to 
the sub-pixels. In terms of basis function, the basic 
functions obtained from bilinear interpolation are 
pyramid shaped, each with a support extending 
over a square region with size of four pixels. This 
is shown schematically in Figure 7 where each 
pixel is divided into 4 sub-pixels.

Projection Based Upon Square Voxel

It considers the intensity within pixel distributed 
uniformly in a square areas (in 2 D) or in cubic 

volume (in 3D) and the pixel contribution to pro-
jection bin is proportional to the intersection area 
between the square and the strip bin (Peters, 1981; 
Schwinger et al., 1986, Thibault, 2007). This is 
shown schematically in Figure 8.

Below follows a brief algorithmic description 
of square forward projector implementation (Al-
gorithm 7).

Below follows a brief algorithmic description 
of square forward projector implementation (Al-
gorithm 8).

Projection Based Upon Overlapping 
Circles (Disks) (Shepp, 1982; 
Zhuang, 1994) or Spheres (Balls) 
(Reyes 2007)

These consider the intensity within pixel dis-
tributed uniformly in a circular area in 2 D (or 
in sphere area (in 3D)) rather than square area 
and the pixel contribution to projection bin is 
proportional to the intersection area between the 
disk and the strip bin. The potential advantage of 

Algorithm 6.

      0: Algorithm “Pixel driven projection operator with M sub-pixels” 

            1: for all projection angles θ do 

                    2: for all images slices do 

                            3: for all pixel slices do 

                                   4: for all sub-pixels m do 

                                          5: determine bin k in which the con-
sidered sub-pixel center i is projected.
                                          6: increment a

ik
= a

ik
 +1

                                  7: end for 

                                                8: calculate the total number 

of the contributed pixel: a
ik
= a

ik
 /M,

                                                9: Save the couple (k, a
ik
) in 

an access memory file 

                                  10: end for 

                              11: end for 

                        12: end for 

      13: end “Pixel driven projection operator with M sub-pixels”
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Figure 7. Representation of pixel-driven method with bilinear interpolation projection. In this case, 
the interpolation is done between the values of the four nearest sub-bin pixels. The two weighting coef-
ficients corresponding to the contribution of voxels Ti to projection line k and k+1 is computed as: ai,k 
=1-(d1+d2+d3+d4)/(4d) and ai,k+1= (d1+d2+d3+d4)/(4d).

Figure 8. Representation of projection based upon square pixels. The two weighting coefficients cor-
responding to the contribution of voxels Ti to projection line k and k+1 is computed as: ai,k = s2/(s1+s2) 
and ai,k+1= s1/(s1+s2).
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this approach is that the forward projection of a 
circle is independent of projection angle, while 
the forward projection of a square pixel is angle 
dependant. The use of circular pixels produces a 
reasonably fast projection algorithm. One only 
needs to identify the location of the forward pro-
jection of the center of the circular pixel. Then, 
the analytical computation of the portion of the 

circular pixel lying within each projection bin 
is straightforward. This method is equivalent to 
bi-nonlinear interpolation. To improve accuracy, 
each disk can be divided into xXx sub-disks. This 
is illustrated in Figure 9 (a) and (b) where each 
disk is divided into 2×2 sub-disks.

The two corresponding weighting coefficients 
are: ai,k = s2/(s1+s2) and ai,k+1= s1/(s1+s2) in case (a) 

Algorithm 7.

0: Algorithm “Square projection operator” 

            1: for all projection angles θ do 

                      2: for all images slices do 

                               3: for all pixel slices do 

                                              4: calculate the intersection 

area between the pixel and the strip 

                                                  projection bin (trapezoid 

surface) 

                                              5: calculate the weighting coef-

ficients: a
ik
= a

ik
 /square area

                              6: end for 

                                   7: save the couple (k, a
ik
) in an access 

memory file 

                      8: end for 

             9: end for 

10: end “Square projection operator”

Algorithm 8.

0: Algorithm “Square projection operator” 

          1: for all projection angles θ do 

               2: for all images slices do 

                      3: for all pixel slices do 

                                    4: calculate the intersection area between 

the pixel and the strip projection bin (trapezoid surface) 

                                    5: calculate the weighting coefficients: 

a
ik
= a

ik
 /square area

                      6: end for 

                      7: save the couple (k, a
ik
) in an access memory file

               8: end for 

          9: end for 

10: end “Square projection operator”
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and ai,k = (s+s2+s4)/(4s) and ai,k+1= (s+s1+s3)/(4s) 
in case (b).

Below follows a brief algorithmic description 
of disk forward projector implementation in case 
of M sub-disks (Algorithm 9).

Distance-Driven Projector Method

It was recently proposed in (De Man 2002, De 
Man 2004). It works by mapping pixel and detector 
boundaries to a common axis and the coefficients 
are computed as the row or slab intersection length 
combined with the overlap coefficient (the length 
of overlap). In 3D, the overlap area is computed 
as the product of the overlap lengths in x-y and 
in z respectively. This method resembles to the 
Joseph interpolation but instead of a triangular 
interpolation function, their interpolation employs 
two convolved rectangle functions with different 
widths. These widths were chosen to be the image 
sampling distance and the spatial dependent ray 
distance respectively. Thus, in terms of basis and 
irradiation functions, the first rectangle would cor-
respond to the basis function and the second to the 

integration function. This method is illustrated in 
Figure 10 and below follows a brief algorithmic 
description of distance-driven forward projector 
implementation.

Below follows a brief algorithmic description 
of distance-driven forward projector implementa-
tion (Algorithm 10).

As the concept and the implementing of forward 
projection algorithms frequently used in medical 
tomographic vary from one method to other, their 
performance will also vary. In fact, all these 
methods result in varying degrees of approxima-
tion errors and cause artifacts and/or introduce 
noise in the projection and reconstructed slices 
that limit their absolute accuracy. The pixel-
driven approach is well suited for hardware imple-
mentation, but pixel-driven projection is rarely 
used in reconstruction, because it introduces high-
frequency artifacts. These high-frequency artifacts 
can be prevented by using a more accurate 
model (disks, square, bilinear interpolation), but 
this further increases the arithmetic complexity. 
Ray-driven methods are generally well-suited for 
projection, but tend to introduce artifacts in the 

Figure 9. Representation of (a) projection based upon disks (b) projection based upon 2×2 sub-disks
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backprojection (De Man & Basu, 2002, 2004). 
Furthermore, ray-driven methods generally have 
highly non-sequential memory access patterns. 
The distance-driven method avoids the artifact 
characteristics of ray-driven backprojection and 

pixel-driven projection (De Man & Basu, 2002, 
2003, 2004). Recent studies have shown that a 
better image quality can be obtained by using 
more appropriate basis functions, but at the ex-
pense of a longer reconstruction time.

Algorithm 9.

0: Algorithm “Disk projection operator with M sub-disks” 

              1: for all projection angles θ do 

                   2: for all images slices do 

                       3: for all pixel slices do 

                            4: for all sub-disks m do 

                                 5: calculate the contribution a
i,k
 is propor-

tional to the intersection area between the pixel and the strip projection 

bin: S
m

                                 6: increment a
ik
= a

ik
+S

m

                           7: end for 

                           8: calculate the weighting coefficients: a
ik
= a

ik
 /

disk areas 

                           9: save the couple (k, a
ik
) in an access memory file

                      10: end for 

                  11: end for 

12: end “Disk projection operator”

Figure 10. Representation of distance-driven method. The two corresponding weighting coefficients 
are: ai,k= d2/d and ai,k+1= d1/d.
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EFFECT OF MODELLING 
OF FORWARD PROJECTOR 
ERRORS ON ITERATIVE 
RECONSTRUCTION METHODS

As the projection is becoming widely used with 
iterative reconstruction algorithms and their char-
acteristics may affect the reconstruction quality, its 
accuracy and performance needs more attention 
and they need to be better understood. Regardless 
of all approaches of forward projector modelling; 
errors are inevitable in the forward projection ma-
trix. Thus, it is important to understand the effect 
of modelling errors on iterative reconstruction 
methods. In this context, we compare the forward 
projection algorithms implemented in a unified 
framework as described above on a projection 
task and on iterative reconstruction. Reprojection 
and reconstructed slices with MLEM and ASIRT 
techniques are shown using a standard slice (2D) 

of 3D Shepp-Logan phantom which is considered 
as a standard test for different reconstruction 
methods. All algorithms and data are simulated 
using a user-friendly interface on PC for visual-
ization and reconstruction of tomographic data 
(Guedouar et al., 2011).

Figure 11 shows the projection absolute error 
images between the reprojected sinogram and the 
standard reference of the Shepp-Logan phantom. 
Figure 12 and 13 show results of tomographic 
reconstruction of Shepp-Logan phantom using 
MLEM and ASIRT. The same backprojector is 
associated with investigated forward projection 
to form the pair of reconstruction unless with 
distance-driven method in order to have faith-
ful comparison regardless of the approaches of 
matched and mismatched reconstruction pairs 
(Zeng et al., 2000; Guedouar & Zarrad, 2010a; 
Guedouar & Zarrad, 2010b). In the case of 
distance-driven method, its reverse model is used 

Algorithm 10.

0: Algorithm “Distance driven projection operator” 

             1: for all projection angles θ do 

                           2: for all images slices do 

                                   3: calculate the distance d between two op-

posite middle points of pixel width orthogonally to ray direction:  

                                       if θ ∈ [−45°; 45°] or θ ∈ [135°; 225°], 
then d= pixel width* cos θ  

                                       else d= pixel width*sin θ 

                                   4: for all pixel slices do 

                                        5: determine the bin k in which the 
border of pixel i (middle point of pixel width) is projected.
                                        6: calculate the length of overlap be-

tween pixel and projection bin boundaries: d
k

                                        7: calculate the contribution a
i,k
=d

k
/d

                                        8: save the couple (i, k, a
ik
) in an 

access memory file 

                                   9: end for 

                             10: end for 

              11: end for 

13: end “Distance driven projection operator”
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as in (De Man & Basu, 2004). Backprojection 
accuracy was not evaluated.

Visual inspection of the projections generated 
by the most effective methods (not shown here) 
looked similar and comparable to the analytic 
projections except with the simple pixel-driven 
model which increases artifacts. However, projec-
tion absolute error images (Figure 11) show that 
all methods result in varying degrees of errors 
and cause artifacts and/or introduce noise in the 

reprojected sinogram that limit the absolute ac-
curacy of projection process. Also, errors intro-
duced to projections are mainly concentrated on 
the edge part and no models can reduce both of 
errors in internal and edge regions of the projec-
tion. It can be noted that the model which provides 
the least internal errors, increases edge errors as 
the bilinear interpolation models, whereas the 
operator which provides the least edge errors, 
increases those in internal region as ray-driven 

Figure 11. Projection absolute error images between the reprojected sinogram and the standard refer-
ence of the Shepp-Logan phantom. forward projector models used are: (a) Interpolated ray-driven; (b) 
simple ray-driven; (c) ray-driven using 3 sub-bins; (d) interpolated pixel-driven; (e) bilinear interpola-
tion; (f) projection based on simple disk; (g) projection based on 4 sub-disks; (h) distance-driven; (k) 
projection based on square pixels. Images presented in this figure were thresholded to the interval (0,3) 
to improve the displayed internal errors. Images show that error mainly concentrates on the edge part 
in the sinogram. Operator that reduces noise inside sinogram increases edge errors and vice versa.
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with no subdivision. The projection approaches 
such as oversampling (models with sub-division), 
interpolation (linear and bilinear) and realistic 
basis function (square and disks) can perform 
better reprojection than the conventional methods 
and decrease the difference between the repro-
jected and exact projections but they show the 
same dependency in the region to be reprojected 
with high or low transition. Smoothing projectors 

that use interpolation between pixels or detector 
elements (bins) are efficient to reduce noise but 
they increase high frequency noise near edge (i.e. 
appearance of interpolation artifacts) which un-
fortunately may degrade image resolution.

Therefore, no current projection approach can 
give the least errors in all regions. The interpolated 
ray-driven method seems to provide the best trade 
of between internal and edge errors.

Figure 12. Results of tomographic reconstruction of Shepp-Logan phantom using MLEM. The top im-
age corresponds to the standard exact calculated noiseless slice. Reconstructed slices correspond to the 
convergence iteration (optimal solutions). MLEM reconstruction is performed using the forward projec-
tors: (a) Interpolated ray-driven; (b) simple ray-driven; (c) ray-driven using 3 sub-bins; (d) interpolated 
pixel-driven; (e) bilinear interpolation; (f) projection based on simple disk; (g) projection based on 4 
sub-disks; (h) distance-driven; (k) projection based on square pixels. Interpolated pixel-driven is used 
as backprojector except with distance-driven where its reverse model is used. Images presented in this 
figure were thresholded to the interval (4.8,5) to improve the displayed contrast and aliasing.
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Experiments from Figures 12 and 13, show 
the evidence propagation of forward projection 
modelling errors from projection into recon-
struction. Artifacts and noise are greater for the 
iterative algorithms, which is due to the fact that 
small projection errors might accumulate through 
the iterative process. It is clear that the forward 
projector affect the severity of the edge artifacts 
which means that the appearance and severity of 

these artifacts is highly dependent on the details 
of the implementation used to compute (Snyder 
et al 1987). The forward projection models that 
increase the noise and the aliasing in the internal 
region of reconstructed images decrease the edge 
errors. Smoothing projectors decrease noise but 
introduce important errors in the edge region 
which effects spatial resolution.

Figure 13. Results of tomographic reconstruction of Shepp-Logan phantom using ASIRT. The top image 
corresponds to the standard exact calculated noiseless slice. Reconstructed slices correspond to the 
convergence iteration (optimal solutions). ASIRT reconstruction is performed using the forward projec-
tors: (a) Interpolated ray-driven; (b) simple ray-driven; (c) ray-driven using 3 sub-bins; (d) interpolated 
pixel-driven; (e) bilinear interpolation; (f) projection based on simple disk; (g) projection based on 4 
sub-disks; (h) distance-driven; (k) projection based on square pixels. Interpolated pixel-driven is used 
as backprojector except with distance-driven where its reverse model is used. Images presented in this 
figure were thresholded to the interval (4.8,5) to improve the displayed contrast and aliasing.
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ACCURACY OF MODELLING 
OF FORWARD PROJECTOR: 
ISSUE AND SOLUTION

A wealth of publications exists that discuss and 
compare performance of the forward projection 
by using a defined criterion or by assessing a 
trade-off between numerical accuracy, visual 
differences in reconstructions, and computational 
speed. Siddon (Siddon, 1985), Joseph (Joseph, 
1983), Herman (Herman, 1980) and Lewitt (Le-
witt & Matej, 2003) have described interpolation 
and integration mechanisms that are frequently 
used with the forward projection in CT. Zhuang 
et al. (Zhuang et al., 1994) evaluate projectors of 
iterative reconstruction and proposed a simple 
modification that can be applied to any projector 
to increase the numerical accuracy of the method. 
The accuracy of any ray-driven projector can be 
improved by increasing the number of ray-paths 
traced within each image pixel into a number of 
smaller sub-pixels and applying the pixel-driven 
projection method to the sub-pixels and apply-
ing the pixel-driven projection method to the 
sub-pixels. Yu and Huang (Yu & Huang, 1993) 
analyzed loss of resolution due to reprojection 
technique, comparing a square-pixel area weighted 
convolution and a Gaussian pixel method using a 
nearest-neighbor forward-projection model with 
sub-binning. Bella (Bella et al., 1995) evalu-
ated different implementations of the method 
of shears for image rotation. He examined use 
of various interpolation methods for method of 
shears, including nearest neighbor interpolation, 
up sampled nearest-neighbor interpolation (four 
sub-bins), linear interpolation, and cubic inter-
polation; standard bilinear and bicubic interpo-
lation were used for reference standards. Wallis 
proposed in (Wallis & Miller, 1997) an optimal 
rotator for iterative reconstruction. Recently, De 
Man and Basu (De Man & Basu, 2004) presented 
a 3D distance-driven method for projection and 
backprojection and compared its performance 
in terms of artifact generation, loss of resolution 

and computational burden with the two most 
used methods (interpolated pixel driven and ray 
driven). They have shown that it eliminates the 
artifacts seen in ray-driven backprojection and 
pixel-driven projection.

All these publications have shown that, the 
choice in the calculation method for the coefficient 
matrix is critical and may affect significantly the 
final reconstructed images with iterative tech-
niques. These methods result in varying degrees 
of approximation errors and cause artifacts and/
or introduce noise in the reprojected sinogram 
and reconstructed slices that limit their absolute 
accuracy. Recent studies have shown that a bet-
ter image quality can be obtained by using more 
appropriate basis functions, but at the expense of 
a longer reconstruction time. To overcome this dif-
ficulty, implementation using graphics hardware 
is proposed. However, a major disadvantage of 
using graphics hardware in the reconstruction 
process is the lack of precision of the hardware. 
The tradeoff between noise and spatial resolution 
in reconstructed images can be considered as the 
most important criteria to make good choice of 
forward projection modelling.

It has been shown that if the projection data 
is corrupted by noise, the reconstructed images 
will in turn be corrupted by noise. The artifacts in 
the images resulting from this noise can produce 
corruption especially at the boundaries of ob-
jects in the images (edge artifacts). In particular, 
images reconstructed with MLEM seem to be 
seriously affected by edge artifacts that appear 
as severe over and undershoot in the regions 
of sharp intensity transitions. As the true pixel 
value in the reconstructed images is influenced 
by these artifacts, their quantitative analysis is 
difficult. This significantly limits the clinical 
usefulness of the images, both for diagnostic and 
therapeutic purposes, since an accurate knowledge 
about locations of object boundaries is crucial in 
applications such as computer-assisted surgery, 
and radiotherapy. Also, post processing such as 
noise reduction, binarization, or segmentation of 



50

Forward Projection for Use with Iterative Reconstruction

image information is significantly complicated 
by the presence of such artifacts. It has been 
shown that the appearance and severity of these 
artifacts is highly dependent on the details of the 
implementation used for computation (Figure 12).

The removal of edge and aliasing artifacts 
from the reconstructions is one of the issues of 
crucial importance if statistical reconstruction is 
to be utilized. These artifacts can be prevented 
by using more sophisticated weighting schemes 
but at the expense of a longer reconstruction 
time. Low pass filters are used but unfortunately, 
filtering methods may also substantially increase 
high frequency noise which again degrades image 
resolution. Some regularization methods within 
the iterative techniques are proposed but they 
lead to added computational burden. Hence, it is 
obvious to reduce the artifact by modifying the 
forward implementation that they disappear in 
their environment. If this is achieved, the artifacts 
in tomographic slice will disappear. An earlier 
study (Guedouar & Zarrad, 2010b) compares the 
performance of the most used forward projection 
regarding the compromise between noise and 
spatial resolution. Unlike the existing work that 
often focuses on a specific type of modelling error, 
such as geometric response, attenuation or scatter, 
this study evaluated the forward projection errors 
generated by the different geometrical models in 
two regions of interest (regions with high and 
low transition) via numerical sense (its RMSE). 
Error propagation from the forward projection 
matrix into reconstructed images with iterative 
techniques was shown. Based on this comparison 
study, a new projection method was proposed in 
order to preserve edges without increasing noise. 
Preliminary results show that this method can 
promise more accuracy in term of RMSE and 
aliasing reduction of the reconstructed images. 
Combining acceleration schemes and availability 
of faster computers will decrease the execution 
time to an acceptable level and this method can 
be easily extended to 3D data sets.

CONCLUSION

The choice in the calculation method for the 
forward projection matrix is critical and affects 
significantly the final reconstructed images with 
iterative techniques. All projection methods result 
in varying degrees of errors and cause artifacts 
and/or introduce noise in the reprojected sinogram 
that limit the absolute accuracy of projection pro-
cess. Errors introduced to projections are mainly 
concentrated on the edge part and no models 
can reduce both of errors in internal and edge 
regions of the projection. The appearance and 
severity of these artifacts is highly dependent on 
the details of the implementation used to compute 
the forward projector modelling. Therefore, the 
tradeoff between noise and spatial resolution in 
iterative reconstruction can be reduced by using 
an appropriate forward projection modelling ac-
cording to the goal of the slice to be reconstructed 
regardless of the execution time needed for the 
reconstruction.
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ABSTRACT

Many applications require dimensionally accurate and detailed maps of the environment. Mobile map-
ping devices with laser ranging devices can generate highly detailed and dimensionally accurate coor-
dinate data in the form of point clouds. Point clouds represent scenes with numerous discrete coordinate 
samples obtained about a relative reference frame defined by the location and orientation of the sensor. 
Color information from the environment obtained from cameras can be mapped to the coordinates to 
generate color point clouds. Point clouds obtained from a single static vantage point are generally 
incomplete because neither coordinate nor color information exists in occluded areas. Changing the 
vantage point implies movement of the coordinate frame and the need for sensor position and orienta-
tion information. Merging multiple point cloud segments generated from different vantage points using 
features of the scene enables construction of 3D maps of large areas and filling in gaps left from occlu-
sions. Map registration algorithms identify areas with common features in overlapping point clouds and 
determine optimal coordinate transformations that can register or merge one point cloud into another 
point cloud’s coordinate system. Algorithms can also match the attributes other than coordinates, such 
as optical reflection intensity and color properties, for more efficient common point identification. The 
extra attributes help resolve ambiguities, reduce the time, and increase precision for point cloud regis-
tration. This chapter describes a comprehensive parametric study on the performance of a specialized 
Iterative Closest Point (ICP) algorithm that uses color information. This Hue-assisted ICP algorithm, 
a variant developed by the authors, registers point clouds in a 4D (x, y, z, hue) space. A mobile robot 
with integrated 3D sensor generated color point cloud used for verification and performance measure-
ment of various map registration techniques. The chapter also identifies various algorithms required to 
accomplish complete map generation using mobile robots.
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INTRODUCTION

Complete and dimensionally accurate maps of 
the environments are of interest to many domains 
including surveying, search and rescue, security, 
defense and construction. Laser based scanning 
devices (Light Detection And Ranging-LIDAR) 
are generally used to generate point clouds that 
describe spatial information in the form of numer-
ous discrete point coordinate measurements. Point 
data are acquired by measuring time of flight of 
scattered light or phase shift between incident 
and reflected light to find the distance between 
the object surface and the scanning device (Blais, 
2004). The speed of scanning discrete points can 
be enhanced by pulse and phase based measure-
ment technologies (Blais, 2004). Precise rotation 
mechanisms with high-resolution encoders spin a 
2D LIDAR device to generate a 3D point cloud. 
Point cloud scanners have been mounted on air-
planes (Browell et. al. 1990) and ground vehicles 
(Gebre, et al. 2009) to create large area terrain 
maps. When vision sensors are integrated with 
the laser ranging systems, point clouds can also 
contain the color information of the scene. Opti-
cal imagery from the camera is associated with 
point coordinates to produce color point clouds 
(Andresson, 2007).

A 3D point cloud obtained from a single 
vantage point is seldom adequate to construct a 
complete map. Generation of a complete map of 
an environment requires merging or registration of 
map segments taken from various vantage points. 
The registration enables construction of large-scale 
global 3D maps (Thrun, 2003). Registering the 
map segments is trivial if precise position and ori-
entation of the sensor are accurately known about 
a global reference frame. Position sensors such 
as inertial measurement units or those relying on 
global positioning systems are prone to errors and 
can be highly inaccurate under certain conditions. 
The map registration process determines the rigid 
body translation and rotation of the sensor as its 
output (Thrun, 1993, 2003). The map registration 

quality varies depending upon the sensor resolu-
tion and the extent of overlap between the map 
segments. Different techniques exist for merging 
3D maps by exploiting geometric features and 
measuring surfaces. The most popular registra-
tion algorithm for point cloud registration is the 
iterative closest point (ICP) algorithm (Thrun, 
2003). In ICP, the corresponding closest points in 
different point clouds are associated and optimal 
rigid transformation required to minimize a mean-
square error of separation between the associated 
points (Bsel, 1992) is iteratively found. The color 
attributes of the sampled point can be utilized in 
ICP progress to increase computational speed and 
provide higher accuracy. Anderson (2007) filtered 
the point set data based on hue before conducting 
traditional ICP. Houng et al., (2009) processed 
images to extract corresponding visual features 
that are used in registration process.

In this chapter, we examine the algorithms 
required for a mobile robot to generate a dimen-
sionally accurate and complete map of an area 
without prior information about the area. We focus 
particularly on the techniques for registration of 
map segments taken from various vantage points. 
The chapter also describes a mobile robotic sys-
tem with a color point cloud scanner and various 
algorithms required for accomplishing the mis-
sion of generating a complete and dimensionally 
accurate map of an area.

MOBILE MAPPING WITH COLOR 
POINT CLOUD SCANNERS

Color point clouds are created by synchronizing 
range sensors such as the LIDAR with video/still 
cameras. LIDAR devices discretely measure the 
distance between a light source and a reflection 
target at a high frequency. By changing the path 
of the light through mirrors and actuators, a point 
cloud of a 3D space is produced. A calibrated 
vision sensor maps the color information to the 
sampled points. Installing such a scanning sensor 
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on a mobile platform extends its range and enables 
mapping of large areas.

3D Color Scanner

The 3D color scanner used in this effort consists 
of a 2D LIDAR and two 1.3 megapixel high-frame 
rate video cameras installed on the LIDAR scan-
ning plane. The LIDAR and the cameras move 
such that the scan plane is rotated about an axis 
within the plane, thus generating 3D color point 
clouds. Figure 1 shows that the LIDAR consists 
of a rotating mirror which is driven about Y axis 
(degree of freedom: θ) and the scan plane is 
rotated about Z axis (φ: degree of freedom). The 
rotations are controlled by servomotors installed 
on the axes. The cameras are calibrated to be on 
the LIDAR scan plane and a forty-pixel wide 
image stripe is extracted from the cameras. The 
color information is then matched, in real-time, 
to the points ranged by the LIDAR. The relative 
distance between cameras and LIDAR is pre-
configured and images are pre-aligned. The 2D 
LIDAR generates scans at a frequency of 38 Hz 
and the cameras provide imagery at 60 frames per 
second. Time synchronization establishes that the 
pixel color is mapped to each ranged point. Use of 
two cameras reduced occlusions due to the offset 
between the LIDAR mirror and the camera lens. 

All areas visible to the LIDAR are visible to one 
of the two cameras. The 2D range measurement 
along with the scanner rotation position (φ) is used 
to generate the coordinate in a spherical coordinate 
system, which is transformed to Cartesian system 
as necessary. Figure 1 also shows a picture of a 
compact version of the system.

The 3D color scanner is mounted on a mobile 
vehicle for mapping large areas. This mobile 
mapping system generates color point cloud data. 
Figure 2 shows the mobile system with the scan-
ner installed on top of the vehicle. The vehicle 
has no global positioning devices other than wheel 
encoders. Cameras and short-range infrared sen-
sors enable observation of terrain conditions, 
collision avoidance and allow a remote operator 
to drive the vehicle. Map data and video feeds are 
transmitted using an on-board wireless commu-
nication system. This mapping system performs 
scans only when it is stopped. The vehicle can 
localize itself from the map observations and 
moves directly from one vantage point to the next 
and acquires additional map information. This 
system can generate color point cloud maps with 
0.25° angular resolution in the vertical scanning 
direction with a coverage angle of 100°. In the 
rotation (φ) direction, the resolution is at 0.1° with 
coverage angle 300°. The map segment from one 

Figure 1. 3D scanning devices built with 2D commercial scanners
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vantage point covers a maximum radius of  
80 meters.

The data elements produced by the scanner 
are shown in Figure 3. Figure 3(a) shows the 
camera image taken from the vantage point de-
picting scene visible to the scanner. The 3D color 
point cloud generated at that vantage point is 
shown in Figure 3(b). In this figure, the coordinate 
(x,y,z) and the color (r,g,b) for all the pixels are 
known. The point density (spatial resolution of 
the point cloud) varies on the left and right sides 
of the color scan scene depending upon the distance 
between the scanned point and the scanner. The 
closest area to the scanner has the highest den-
sity of points. The scanner also records the optical 
reflection intensity of laser beam. The intensity 
information is combined with range measurement 
data and shown in Figure 3(c). The object surface 
material, color and distance towards scanner cause 
variations in intensity data. Similarities between 
intensity point cloud and color point cloud can 
be observed between Figure 3(b) and (c) on 
edges, doors, and windows.

Algorithms for Complete Mapping

An autonomous robot with the color point cloud 
scanner can reduce the surveying and map building 
cost and time. However, several methodologies 
for robust self-localization, map completeness 
evaluation, map based navigation and 3D map 
registration must evolve before a high degree of 
autonomy can be achieved.

A mapping robot deployed at initial start 
position must go through the four phases of the 
mapping processes as shown in Figure 4. The 
robot must be able to localize itself so it can navi-
gate the scene. This can be accomplished by 2D 
SLAM (Simultaneous Localization and Mapping) 
techniques or other methods. Methodologies for 
establishing the map completeness and detection 
of occluded areas are necessary. Determination 
of the optimal vantage point for filling in the 
occluded areas and exploring unmapped areas is 
also a critical step. As the navigation is based on 
imprecise mapping and localization information, 
the map segment registration based on 3D color 
point clouds is the last but crucial step in building 
the complete map of a given area. In this subsec-

Figure 2. Mobility platform used for 3D color map construction in large area (Gebre et al., 2009)
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tion, we discuss the algorithms that address each 
of these tasks.

Robot Self-Localization

The self-localization problem requires mobile 
mapping robot to determine its location in an 
unknown environment. Localization is critical 
because robot cannot effectively navigate to the 
next waypoint without the location information. 
Map registrations require location and pose es-
timates. Usually robot is equipped with multiple 
position and orientation sensors like GPS, Inertial 
Measurement Unit (IMU), odometer, and wheel 
encoders to measure real-time pose and position. 
Multiple position and location sensors return robot 
position information with certain level of error due 
to reasons like sensor precision, GPS signal noise 
and errors, sensor drift for IMU and inaccurate 
measurements from other sensors.

The main challenge for robot localization is 
to escape location sensor noise, drift errors, and 
constantly provide accurate location and position 

reference for the robot. Probabilistic self-local-
ization techniques based on maximum-likelihood 
estimation have been applied to address this 
problem. These techniques assume that the noise 
of position sensor follows certain probabilistic dis-
tribution, which can be described mathematically. 
They also assume that two subsequent map results 
are highly comparable to each other and several 
landmarks can be quickly identified. Therefore, 
accurate relative position and location can be 
solved by comparing current map with a previous 
map in short time intervals, and probabilistically 
maximizing similarity between two maps (Olson, 
2000). Map could be generated by different sensors 
like stereo cameras, sonar or laser range finders. 
Landmarks extracted from maps are commonly 
applied in the self-localization process to reduce 
computation cost. Whyte and Bailey (2006) uti-
lize the relative localization results between two 
neighbor vantage points to merge the two maps.

A two-step process, termed as Simultaneous 
Localization and Mapping (SLAM), typically lo-
calizes the robot. The robot position is established 

Figure 3. High dimensional point cloud map segment taken from a single vantage point. (a) Image of 
an urban building.(b) Color point cloud map. (c) Laser reflection intensity map.
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from multiple but imprecise sensor measurements 
and comparison of landmarks in the scene. The 
position sensor data is improved using sensor 
fusion techniques by Spletzer (2003). Location 
information is estimated based on previous loca-
tion, driving command information and current 
sensor measurements. In SLAM, probabilistic 
methods are applied to reduce sensor noise ef-
fects. Extended Kalman filter and particle filters 
and noise models improve the location estimates 
(Montemerlo, et al. 2003). The SLAM solution 
has been expanded into 3D space with a six de-
gree of freedom (6DOF) SLAM which applies 
sensor measurement and robot kinematics models 
(Nücher, 2005). Landmark extraction and map 
comparison entail the major computation effort 
during the SLAM progress. Real-time SLAM 
has been demonstrated with stereovision sensors 
(Davison, 2003).

The SLAM technique simultaneously consid-
ers the localization and mapping mission (Thrun, 
et al., 2000). The SLAM problem can be described 
by a joint posterior:

P x m z u xt t t( , | , , ): :0 0 0  (1)

Where, xt is the state vector representing the 
robot location and orientation, mi is the vector 
representing the ith landmark location, zit is the 
robot mapping measurement about ith landmark 
at time t, and ut is the control vector applied at t-1 
time to drive robot to state xt at time t.

The SLAM problem requires that equation (1) 
be solved for the time, t, and the latest robot state 
vector xt be computed. Solving the joint posterior 
from, 0-t requires an observation model and a mo-
tion model based on Bayes Theorem (Whyte and 
Bailey, 2006). The observation model determines 
the probabilistic distribution of observation zt with 
known vehicle state and landmarks location as:

P z x mt t( | , )  (2)

The robot motion model describes probability 
on state transition of robot state vector, xt with 
known previous state xt-1 and control input ut

P x x ut t t( | , )−1  (3)

The transition of state vector is assumed as a 
Markov process, implying that the next robot state 
xt can only be determined on previous state xt-1 
and latest control input ut and not the history of 
states. The state of robot is independent of both 
observations and landmarks. Equation (1) can be 
recursively solved in a Prediction (time update) 
and Correction (Measurement update) form.

Prediction is shown in Box 1.
Correction:

P x m z u x
P z x m P x m z u x

P zt k t
t t t t t

t

( , | , , )
( | , ) ( , | , , )

( |: :
: :

0 0 0
0 1 0 0= −

zz ut t0 1 0: :, )−

 

(5)

Equation (4) and equation (5) recursively solve 
latest robot state joint posterior. Robot state can 
be predicted from the motion model P x x ut t t( | , )−1

Figure 4. Map completeness orientated robotic 
mapping process
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and control input at time t. The observation 
model P z x mt t( | , ) is applied to correct state 
prediction with observation and mapping at time 
t.

In order to find solutions to the SLAM prob-
lem, proper practical descriptions about motion 
and observation model in equation (2) and equa-
tion (3) should be provided with reliability and 
efficiency. Extended Gaussian Filter (EKF) is 
applied to represent these models on state-space 
model with additive Gaussian noise (Welch and 
Bishop, 1995). The EKF based SLAM simplifies 
motion model as:

x f x u wt t t t= +−( , )1  (6)

f(xt-1,ut) is the robot kinematics model and wt 
is the additive uncorrelated Gaussian disturbances 
with zero mean and covariance Qt. The observation 
model can be described as:

z h x m vt t t= +( , )  (7)

In which, h(xt,m) is the observation geometry 
description and vt is the additive uncorrelated 
Gaussian disturbance with zero mean and cova-
riance Rt. Eqs. (6) and (7) can be applied to the 
SLAM prediction and correction. In EKF-SLAM 
process, the mean and covariance of both motion 
model and observed motion should be updated at 
every time t. Other probabilistic methods such as 
Particle Filter (PF) (Montemerlo et al., 2003) and 
Graph Filter (GF) are used to solve the SLAM 
problem. A typical SLAM method is implemented 
on 2D space, however, SLAM in 3D space with 6 
Degree of Freedom (6DOF) on robot kinematics 

have been implemented by expanding landmarks 
state, motion model and observation model into 
3D space (Nücher, 2005).

Map Completeness Evaluation

The map completeness problem can be addressed 
with several methodologies including grid oc-
cupancy, obstacle recognition and object view 
completion detection. The completeness of map is 
calculated by occupancy grid map (Thrun, 2003), 
which entails projecting the acquired map on an 
occupancy grid and calculating the occupancy 
level. Possible mapping area is determined based 
on the contour of the objects and separating the 
map into areas that can be potentially mapped or 
impossible to map (Oh et al., 2004). Terrains are 
extracted from current incomplete map for pos-
sible paths for navigation. The map evaluation 
also returns possible explorative area that is acces-
sible to the mobile robot but not mapped. If map 
completeness is the most important factor for the 
mission, algorithms that evaluate latest exploration 
status after every scan may require assessment of 
the complete map and not just the current map 
segment. There are many techniques to evaluate 
the completeness of mapping, namely, grid based 
occupancy map (Thrun, 2003), network/graph, 
cell based map (Zelinsky, 1994) and template 
based completeness evaluation (Oh et al, 2004).

The occupancy grid map is one of the most 
commonly used methods to determine map 
completeness. Area of interest is gridded and 
acquired maps from different vantage position 
are transferred into or projected onto the grid. 
Grid is marked as occupied when data exists on 
this grid, every grid should be represented with 

P x m z u x P x x u P x m z ut t t t t t t t t( , | , , ) ( | , ) ( , | ,: : : :0 1 0 0 1 1 0 1 0 1− − − − −= ,, )x dxt0 1−∫  (4)

Box 1.
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certain level of occupancy, which is computed by 
density of point cloud map on this grid. Map can 
be assumed as complete all the mapped objects 
form self-closed contours or closed contours with 
the boundaries of the mapped area.

A major challenge in map completeness evalu-
ation is deciding whether an area can be mapped. 
For example, when mapping robot is performing 
indoor exploration, space behind wall of the hall-
way may not be accessible. Contours extracted 
from latest global map may be used to determine 
possible navigation paths. Possible mapping area 
exists for contours with gaps. Ascertaining that 
the gaps in map contours are indeed traversable 
paths requires discerning traversable pathways 
in the map.

Map-Based Navigation

Determination of the next vantage point may 
depend upon several criteria: best view, coverage 
of unmapped areas, areas of overlap with current 
map, localization, accessibility and traveling costs. 
Two steps are required for determination of the 
next vantage position. The first step is the genera-
tion of candidate positions and second step is the 
selection of optimal vantage point from the list. 
The candidate vantage positions can be created 
based on frontier exploration algorithm (Basilico 
& Amigoni, 2009) considering obstacles, position 
and terrain conditions. The vantage position is 
selected between candidate positions that have 
the best view coverage and shortest traveling cost. 
Next vantage point should be decided based on 
the best view to fill occluded regions and cover 
as much new area as possible. Frontier based 
exploration algorithm provides vantage point 
candidates for the best view point, these candidate 
points are evaluated to determine best vantage 
point for next mapping.

Computing vantage position for mapping based 
on previous vantage positions and incomplete map 
is known as the Next Best View (NBV) problem 
(Yamauchi, 1997; Basilico & Amigoni, 2009). 

NBV algorithms navigate robot to acquire maxi-
mum uncovered area. A certain level overlapped 
area ensures that the robot has enough landmarks 
to navigate between the current and the next best 
view vantage point. Frontier based algorithm can 
be applied to provide candidate positions for the 
next best view point. Based on the regions on the 
boundary between mapped and unmapped space, 
the frontier can be extracted. Considering the range 
for mapping sensor constraints, next mapping 
position on the frontier can then be generated. 
Current frontier should be evaluated in occupancy 
grid map so that the frontier grid positions that 
cover more unoccupied can be selected to accel-
erate the coverage of the area. These candidate 
points can be evaluated based on the criteria for 
the exploration and time and power requirements 
for reaching the vantage point.

The map data acquired from various vantage 
points must be registered into global map space 
using various registration algorithms. Although 
this section describes the various algorithms 
required for complete map generation, the focus 
of this chapter remains on the registration aspect 
of the mapping exploration.

ALGORITHMS FOR REGISTERING 
MAP SEGMENTS

Three-dimensional point cloud segments acquired 
from different locations have to be combined to-
gether as complete large-scale map. Position and 
orientation information required for registration 
can be provided directly by mobile platform sen-
sors such as GPS and IMU (Thrun 1993). In most 
cases, position information acquired from sensor 
is reasonably accurate. However, the orientation 
information is costly and relatively imprecise 
because orientation sensor measurement can be 
affected by external disturbances like magnetic 
field variations and sensor integration drift with 
time. Position and orientation information can also 
be provided by indirect techniques based on both 
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rough position sensor measurement and common 
geometric feature identification. Figure 5 shows 
two maps generated from separate vantage points. 
The left map on the top row shows map gener-
ated with robot facing towards one side of the 
building, the right map shows the map generated 
from the second vantage point. The bottom figure 
shows the map data from the first vantage point 
registered into the coordinate system of the second 
location. Registering the two segments produces 
the complete map of the façade of the building.

Comparing with the SLAM algorithm, map 
registration techniques focus on generating ac-
curate map details rather than localization of the 
robot in a global coordinate system (Arun, 1987; 
Bsel, 1992; Lorusso, 1995; Rusinkiewucz, 2001). 
Discrete range points received from color point 
cloud sensor contain detailed spatial information 
about the environment. Different techniques exist 
for merging such point clouds together by exploit-
ing geometric features and measuring surfaces. 
Map registration techniques such as Iterative 

Closest Point (ICP) algorithm proposed by Bsel 
(1992) has been applied to stitch two neighbor 
3D point cloud maps together into one map based 
on their common coverage area. Upon conver-
gence, ICP algorithm terminates at a minimum. 
Several algorithms are in existence for calculating 
the minimum average distance between two point 
clouds. Singular Value Decomposition (SVD) 
method by Arun (1987), eigen-system methods 
that exploit the orthonormal properties of the 
rotation matrices, and unit and dual quaternion 
techniques were adopted in ICP process. Quater-
nion based algorithms have been used in ICP for 
map fusion by Bsel (1992), SVD based algorithms 
are widely used in ICP and 6DOF SLAM (Arun 
1987, Nucher, 2005, Joung et al., 2009) as they 
are robust to reach local minimum and easy to 
implement. Several variants of ICP are reported 
by Rusinkiewucz (2001) to increase the speed 
and precision. Corresponding points sampling, 
matching, weighting and rejecting are some 
methods used to accelerate the ICP algorithm. In 

Figure 5. Map segments generated from two vantage points (Top) and registered map (Bottom)
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the ICP algorithm, associating corresponding 
points in two point cloud data sets is the most 
critical step. Nearest neighbor search in 2D or 3D 
space is commonly used for associating the cor-
responding points. Parallel ICP algorithms have 
been developed by Robertson (2002) to accelerate 
computation speed. Point to plane registration 
method (Lorusso, 1995, Rusinkiewucz, 2001, 
Salvi et al., 2007) accelerates the ICP iteration 
and convergence.

Other techniques include the point signature 
method by Chua (1997), which uses signature 
points to describe curvature of point cloud and 
matches corresponding signature points during the 
registration process. Spin image based methods 
compute 2D spin image to represent surface char-
acterization and solve the registration problem by 
finding best correspondence between two different 
scan spin images (Johnson 1997). Other methods 
like principle component analysis (Chung and Lee, 
1998) and algebraic surface model (Tarel et al., 
1998) are based on the point cloud surface geo-
metrical features. The normal vector distribution 
can be translated into an orientation histogram in 
an Extended Gaussian Image (EGI) (Makadia & 
Daniilidis, 2006). Rigid motion required to register 
two point clouds is solved from the cross covari-
ance function (Chibunichev & Vilizhev, 2008) of 
the two EGI images. Rigid motion could also be 
solved in Fourier domain by computing Discrete 
Fourier Transform on Rotation Group on SO(3) 
(SOFT) (Joistekecm and Ricjnirem, 2008).

Registration of color point clouds has been 
considered (Ferbabdez, et al., 2007; Druon, 
2007; Newman et al., 2006; Anderson, 2006, 
2007). By applying proper calibration on the 
hybrid sensor system (Joung et al., 2009; New-
man, Cole, Ho, 2006), range measurement and 
visual information can be integrated together to 
construct a visually accurate representation of the 
scene. Color mapped 3D data was used in map 
registration by weighted red, green, blue data. 
The corresponding point search during the ICP is 
conducted on both the coordinate and color data 

(Johnson, Kang, 1997). Hue filters were also used 
to constrain the closest point search in every ICP 
iteration (Druson, 2007). Color data can be used 
to estimate initial alignment of pair wise scans 
using Scale Invariant Feature Transform (SIFT) 
techniques. Color attributes transferred in YIQ 
color model can also be weighted to construct 
new variant together with range information for 
ICP fine registration. Depth-interpolated Image 
Feature (DIFT) algorithm solves corresponding 
points between two images and registers color 
point clouds based on extracted correspondences 
(Anderson, Lilienthal, 2010).

In this chapter, we introduce hue assisted ICP 
algorithm for registration of color point clouds. 
The criteria for association are defined on a 4D 
space rather than 3D geometric space. The fourth 
dimension selected is the hue, representing the 
intrinsic color values of the pixel. While achieving 
the effect of a hue-based filter, hue-association 
reduces the nearest neighbor search burden con-
siderably (Men & Pochiraju, 2010). The remaining 
sections of the paper describe the approach and 
the performance of the algorithm under several 
hue distributions in the scene.

HUE-ASSISTED ITERATIVE 
CLOSEST POINT (H-ICP) 
ALGORITHM

The primary hypothesis of this algorithm is that the 
hue value can be applied to increase the accuracy 
of point association and accelerate the registration 
process. The major time and computation cost 
during ICP is finding the correct points pairs. 
Closest spatial distance is typically applied in 3D 
ICP method. The distance value in 3D space can 
be expanded into 4D space by adding weighted 
hue value as the 4th dimension. By integrating hue 
value into the closest point search, accuracy of 
point association can then be improved.
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Hue Invariance with Vantage Point

Hue value remains consistent about the same 
point between images taken from two vantage 
points, while the color values represented in red, 
green and blue quantities usually differ because 
of variation in light conditions. In order to apply 
color to improve the association process, light-
ing effect should be removed. Color raw data 
are transformed into representation of separate 
chroma, lightness and brightness value. Figure 6 
shows two camera images of different angles of 
a color palette on a Rubik’s cube, four colors are 
used on the same surface. Figure 6 also shows the 
color pixels with the background and black frame 
removed. Histograms showing the red, green and 
blue value in RGB space for all the pixels are 
shown in Figure 7. In the RGB histogram, R, G, 
and B distributions of the image vary considerably 
with the vantage point. When the RGB color space 

is transformed into HSL space and histograms of 
hue, lightness and saturation are plotted in Figure 
8, the hue values remain relatively invariant with 
the position of the camera. Therefore, hue value of 
the pixel, taken from the Hue-Saturation-Lightness 
(HSL) model, is used as the fourth dimension in 
the point association process. In Figure 9, the 
hue rendered point cloud of color point cloud in 
Figure 3(b) is shown. Hue values are normalized 
between 0 and 1. The hue distribution is typically 
similar to the color distribution in Figure 3(b).

Construction of a Weighted 4D 
Search Space

Both hue and range value have to be combined 
together in the H-ICP variant as {xo, yo, zo, hw} 
for point association. xo, yo, zo are the original 
coordinate values with distance units and hw is the 
weighted hue value. Hue values are normalized 

Figure 6. Rubik’s cube camera images take from two vantage points
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to a 0-1 range and must be weighted during the 
closest point search in the four-dimensional space. 
In order to normalize the coordinates, we find the 
bounding box for each point cloud segment and 
the coordinate space is rescaled to a 0-1 range. 
The normalized variant for point association is 
{x, y. z, hw}, where x=xo/rx, y=yo/ry, z=zo/rz. rx, ry, 

rz are the dimensions of the bounding box in x, 
y, z directions.

The weight value for the hue dimension should 
be properly selected for point association. Since 
both range and hue value are normalized from 0 
to 1. Weight for hue represents its influence in 
the nearest neighbor search process. Low weight 

Figure 7. RGB distribution varies with camera positions

Figure 8. HSL distribution: hue remains invariant
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biases the point association towards the range 
data and a high weight towards the hue values. 
Small weight values for the hue correspond to the 
traditional 3D-ICP. Hue weight should be selected 
between 10% and 35% for accurate point asso-
ciation. Error in H-ICP will be evaluated by the 
average mean square root distance of normalized 
associated point pairs.

k-d Tree Based Point 
Cloud Association

In 3D ICP algorithm, corresponding points are 
searched according to the closest distance rule. 
This may cause incorrect matching during single 

iteration loop as Figure 10. Dashed line circle 
illustrates range based nearest point association 
results, in which all points in data set look for 
nearest neighbor in 3D space. It takes more than 
one iteration to pair correct nearest neighbor points 
for given data points set. Grey circle denotes the 
H-ICP nearest point search that also uses the 
correct hue property in finding the best neighbor 
in the model. Depending on the correct color 
information, corresponding point can be locked 
with less iteration.

The ICP computation speed and precision are 
highly dependent on association process. Use of 
a k-d tree for closest point search and association 
or the Nearest Neighbor Search (NNS) problem 

Figure 9. Hue rendered point cloud of the scene shown in Figure 3

Figure 10. Point association based on nearest distance (dotted) and nearest distance and hue (solid)
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increases the speed and efficiency of the search. 
The k-d tree is a spatial partitioning data structure 
that stores and organizes data in a k dimensional 
space. The k-d tree is a generalized type of bi-
nary tree, with every leaf node is a k-dimension-
al data point that splits the hyperspace into two 
subspaces. Splitting is done sequentially from the 
first dimension to the kth dimension. A typical k-d 
tree in 2D space is shown in figure 11(a). Each 
point in the 2D space divides the space sequen-
tially into a left-right spaces (about x-axis) or into 
a top-bottom spaces (about y-axis).

Nearest neighbor search can be done very ef-
ficiently on k-d trees. For a given point with known 
coordinates in the data point cloud and a search 
radius, the algorithm recursively moves down the 
tree and follows the same procedure as insertion. 
Search stops at a leaf node of the tree and the 
points in the model tree within the search radius 
are identified. The nearest point is obtained using 
distance computation. Figure 11(b) shows the 
nearest neighbor (red square) for the search point 
at the center of the circle. The nearest point is 
then regarded as the point associated with the 
search point.

In 3D closest point search, the distance between 
2 points between 2 point clouds is:

r m d m d m dij ix jx iy jy iz jz= − + − + −( ) ( ) ( )2 2 2  
(8)

in which, di{dix,diy,diz} and mj{mjx,mjy,mjz} are 
point spatial coordinates in data and model point 
cloud respectively.

In 4D space, the 4th dimension for each point 
should be weighed hue value dhw or mhw. The 
spatial value of points should be normalized by 
3D search radius rij as mentioned in section 4.1. 
In order to accomplish closest point search in 
4D space, the distance between two normalized 
points di{dix,diy,diz,,hihw} and mj{mjx,mjy,mjz,mjhw } 
should be:

r m d m d m d m dij ix jx iy jy iz jz ihw jhw
' ( ) ( ) ( ) ( )= − + − + − + −2 2 2 2  

(9)

or

r r hij ij ijw
' = +2 2∆  (10)

In the ICP process, search radius effects the 
computation time and final result. A constant 

Figure 11. k-d tree construction and nearest neighbor search in 2D space. (a) k-d tree construction in 
2D space. (b) 2D space nearest neighbor search in k-d tree.
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search radius is applied for all iteration loops. 
Once the search radius is large, too many points 
will be included as candidates and increases the 
computational burden. Candidate points cloud will 
be missed if search radius is too small. The search 
radius is determined by the density of point cloud. 
In 4D k-d tree search, the search radius comprises 
of two parts -- a distance part and weighted hue 
part as seen in equation (9). The search range for 
3D distance is selected such that it ensures about 
50 candidate points within search radius. As hue 
value is not transformed at iteration, hue search 
is analogous to filtering. If the weight for hue is 
high, k-d tree search will bias toward hue dimen-
sion. Therefore, appropriate hue weighting ensures 
that spatial search dominates over hue filtering.

The ICP algorithm iteratively converges at 
minimum error, which is described by mean square 
root of the spatial distance between paired points. 
At each iteration, a rigid transformation matrix 
is computed so that the distance error metric be-
tween the associated points is minimized. Data 
point cloud is transformed into the model space 
using the computed transformation matrix. This 
iteration continues until error metric converges.

Use of hue as a fourth dimension is significant 
in those instances where the coordinate based 
matching results in a non-unique registration. For 
example, if the points in the model and the data 
point clouds belong to a plane, traditional coordi-
nate based ICP results in non-unique association 
of points. In such cases, using the hue value may 
result in unique registration of the points. The 
color assisted ICP algorithm in this paper can be 
described as follows.

1.  Estimate the initial transformation matrix R 
and T;

2.  Construct k-d tree of model point cloud 
M{m1,m2,m3…mM}, hue value has been 
weighted as the 4th dimension;

3.  While merging error ε>preset error

Use R and T to transfer data point cloud 
D{d1,d2…dN}.

D RD T
�� ��
= +  

4.  For i=1 to length of data point cloud

Search closest point for point di{dix, diy, diz , 
dih} in model k-d tree

If closest point mj exists in search range r
Pair di and mj as {dk, mk};
k++;
End If
End For
Acquire paired point cloud Dp and Mp, contain 

N Points, calculate normalized mean square root 
distance εas error,

ε = − + − + −
=
∑1 2 2 2

1N
d m d m d mix ix iy iy iz iz

i

N

( ) ( ) ( )  

6.  Construct orthonormality matrix H 
(Equation14) and solve rigid rotation R 
and translation T (Equation15, 16) for next 
iteration;

End While

Solving Rigid Transformation

ICP algorithm is an iteration process to calculate 
rigid transformation matrix based on associated 
point clouds. Mi = {mix,miy,miz} represent the co-
ordinates of the ith point in the model point cloud 
and dj = {djx,djy,djz} is the jth point in data point 
cloud. Rigid transformation (R) that minimizes 
the error measure E(R,T) shown in Equation (11) 
is determined.

E R T
N

m Rd Ti i
i

N

( , ) ( )= − +
=
∑1

1

 (11)
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A centroid for the associated points is calcu-
lated as the first step (Equation12) and associ-
ated points are translated into centroid relative 
coordinates (Equation13). Orthonomal matrix of 
associated points can then be constructed as shown 
in Equation14. Rotation R and translation T are 
decoupled based on the gravity center of associ-
ated points. Using Singular Value Decomposition 
(SVD) methods, R can be determined as shown 
in Equation15. Translation T is computed using 
Equation16.

m
N

m d
N

di
i

N

i
i

N

= =
= =
∑ ∑1 1

1 1

, .  (12)

I n  w h i c h ,  m m m mx y z= { , , }  a n d 
d d d dx y z= { , , } are the center points of associ-
ated points in model and data point clouds. N is 
the amount of point pairs. The coordinated of 
associated point in center point relative space 
should be

m m m d d di i i i
′ = − ′ = −,  (13)

I n  w h i c h ,  ′ = ′ ′ ′m m m mi ix iy iz{ , , }  a n d 
′ = ′ ′ ′d d d di ix iy iz{ , , } are the ith associated point with 

center relative coordinates. The orthonormality 
matrix H can be constructed based on m ′ {mi

′

, i=1… N} and d ′ {di
′ , i=1… N}.

H

S S S

S S S
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xx xy xz
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Singular value decomposition is performed 
on constructed H matrix for optimal rotation R

H U VT= Λ  (15)

where optimal rotation R VUT= .
The translation T can be calculated as

T m Rd
T T

= −  (16)

Convergence Criteria

Convergence and stopping criterion for the H-ICP 
iteration are discussed in this sub-section. An as-
sociation stability criteria is introduced as the one 
of the convergence criteria. Association stability, 
denoted as S, is defined as the number of points 
which changed their paired point in any iteration. 
If a point comes into association or changes its 
nearest neighbor, S is incremented. Large value of 
S signifies that point association has not stabilized. 
H-ICP iteration is terminated when S vanishes and 
the distance error converges.

A pair wised color point H-ICP registration 
was accomplished based on above criteria. Model 
point cloud contained 122,409 points with color 
attributes. Data point cloud is extracted from 
model point cloud with a known rotation (θz=5o). 
The H-ICP registration process is compared with 
3D ICP, error as shown in Figure 12(a). The as-
sociated point number reaches maximum after 
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the 5th iteration (Figure 12(b)), but error has not 
converged. From Figure 12(c) the association 
stability (S) reaches 0 after 15th and 26th iteration 
for H-ICP and 3D ICP respectively. Error and 
rigid transformation are shown in Figure 12(a) 
and Figure 13. The known transformation (θz=5o) 
is recovered by the H-ICP and ICP algorithms.

MAP REGISTRATION WITH ICP AND 
H-ICP

The hue distribution or the color of the model 
is generally independent of the geometry. If the 
entire body is painted with a color of a single hue, 
H-ICP is as effective as the traditional ICP. In 
this section, we describe the performance of the 
algorithm under various hue distribution scenarios. 
The Stanford bunny point cloud is considered as 
the benchmark data set. In HSL color space, hue 
value varies from 0- 360. The color correspon-
dence between RGB and hue is given in Table 1.

Environments with Fixed Hue 
Distributions

For the first experiment, we textured the Stanford 
bunny point cloud model as shown in Figure 
14(a). In this model, the hue varies from 0 to 360 
with from bottom to top at Z direction in seven 
segments. Figure 14(b) also shows the initial 

registration of the model and data point clouds 
used for this simulation.

The H-ICP registration progress is shown in 
Figure 15(a) and Figure 15(b). Figure 15(a) shows 
the mean square error during the ICP process and 
Figure15 (b) shows the number of points associ-
ated during iteration loops. Both data and model 
point cloud after registration is shown in Figure 
14(b). The hue-assisted ICP registers the point 
and data clouds faster than the traditional coor-
dinate based ICP.

Continuously Varied Hue Along One 
Dimension

In the second simulation, a continuous hue distri-
bution is assigned to the bunny model. The hue 
value is varied from 0 to 360, smoothly, along 
the z (vertical) direction. The resultant model 
and data clouds are shown in Figure 16 (a), (b). 
Saturation and lightness value have been set as 
constant at every point inside dataset. Hue value 
can be calculated by equation (17).

h
z z

z z
j=
−

−
360 min

max min

 (17)

h is the hue value at range point i, zi is the 
coordinate distance for ith point at z direction, zmax 
and zmin are maximum and minimum coordinate 
of the point cloud at z direction.

Table 1. Hue and RGB values for several common colors 

   Color    R    G    B    Hue

   Gray    128    128    128    0

   Yellow    255    255    0    60

   Green    0    255    0    120

   Cyan    0    255    255    180

   Blue    0    0    255    240

   Magenta    255    0    255    300

   Red    255    0    0    360
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Continuous hue distribution on point cloud 
data is registered together (Figure 16 (c)) and the 
results are shown in Figure 17. A comparison of 
model performance on discrete and continuous 
distribution of hue on the same model shows 
the expected acceleration in performance due to 
uniform distribution of hue on the model.

Randomized Hue on the Model

In this case, the model considered has a continu-
ously distributed hue but with a randomized and 
noisy pattern. In this case, there is no geometric 
pattern for the color on the object. The color 
point clouds are rendered in Figure 18 (a, b). 
The merged cloud point cloud after registration 
is shown in Figure 18(c). Figure 19 shows the 

Figure 12. Building color point cloud registration comparison between H-ICP and 3D ICP algorithm. 
(a) Comparison of error convergence. (b) Association number convergence. (c) Association stability 
convergence.
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error minimization iteration and comparison with 
the seven-segment hue distribution model. In this 
case, the hue confuses the nearest neighbor search. 
The registration accuracy is also not as good as a 
patterned hue case.

Effect of Imaging Noise

In the previous simulation, the imaging sensor is 
assumed perfect. The hue on a point is assumed 
to be recorded by the imaging sensor perfectly 
in both model and data clouds. Some noise in 
the color measurement can be expected when 
the point clouds are generated from two vantage 
points (Gebre et al., 2009). Considering this situa-

tion, we colorized the bunny model but with 50% 
noise in the sensor. The points in the model and 
data clouds differ in color by as much as 50%. 
The resulting point clouds are shown in Figure 
20(a, b). The merged color point cloud is shown 
as Figure 20(c).

Hue assisted color ICP matching result in 
camera noise color point cloud is compared with 
3D ICP matching performance. From Figure 21, 
noise in hue decreases the matching accuracy and 
reduces the iteration efficiency. Two groups of 
cloud point clouds are selected to evaluate the 
performance of H- ICP algorithm compared with 
typical 3D ICP. A known transformation point 
cloud data pair was generated by transforming 

Figure 13. Convergence of translation and rotation estimates during registration



75

Algorithms for 3D Map Segment Registration

model point cloud at 6DOF to compare the  
convergence speed and registration accuracy as 
the rigid transformation is already known. Outdoor 
large scale area pair wised registration includes 
8 pair wised data registration.

Registration with Six DOF Rotation

In this experiment, registration speed between 3D 
ICP and H-ICP are compared using data and model 
point clouds with known (and exact) registration 

Figure 14. Registration of point clouds with uniformly distributed hues (a) Stanford Bunny point clouds 
with hue distributed as seven distinct stripes (b) Registered color point cloud

Figure 15. Registration comparisons between H-ICP and 3D ICP algorithm (a) Mean square error 
comparison. (b) Associated point number comparison.
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transformation. Both H-ICP algorithm and 3D ICP 
algorithm have been applied on a building data set 
(Gebre et al., 2009). The data point cloud is taken 
from a view position that is 10° off in Y and Z axis 
from the model point cloud. Translation between 
the point clouds is known to be 2.46, 2.612 and 
0.347 along the X, Y, and Z respectively. Same 
parameters for registrations are selected to be 
the same as in the previous 1-DOF registration. 
Error comparison and associated point number 

comparison are shown in Figure 22(a) and (b). 
Association stability is shown in Figure 22(c). 
The evolution of rigid transformation during ICP 
is shown in Figure 23. The H-ICP completes reg-
istration after 102th iteration and the traditional 3D 
ICP after the 164th iteration, which demonstrates 
the effectiveness of H-ICP for registering complex 
and realistic point clouds. The merged color point 
cloud about building is shown in Figure 24.

Figure 16. Bunny model with continuous hue variation in one axis (a) Data point cloud. (b) Model point 
cloud. (c) Merged View.

Figure 17. Registration comparisons between 7 segment hue model and continuous hue model. (a) Mean 
square error comparison (b) Associated point number comparison.
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Sequential Registration of Multiple 
Point Clouds

3D ICP and H ICP algorithms have been applied 
on several outdoor map segments. Color point 
clouds taken from eight different vantage points 
have been registered together to construct a large 
scale color point cloud map. Figure 25 shows the 
top view of outdoor mapping area in aerial image. 

This scene includes trees, road, electrical poles 
and buildings. Figure 26 shows the registered map 
and the vantage points from which map segments 
are obtained. Pair-wise registration is applied to 
construct a single map about the reference coor-
dinate of the first map segment. 3D search radius 
in k-d tree was set as 1.5 and the 3D range data 
was normalized based on this radius. Hue value 
was normalized to a 0-1 range, hue search radius 

Figure 18. Bunny point cloud with randomized hue distribution (a) Data point cloud (b) Model point 
cloud (c) Merged View

Figure 19. Comparison between discrete and random hue distribution case (a) Mean square error com-
parison (b) Associated point number comparison
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Figure 20. Hue mapped with noise. (a) Data point cloud. (b) Model point cloud. (c) Merged View.

Figure 21. Comparison between H- ICP in and 3D ICP for noisy hue case. (a) Mean square error com-
parison. (b) Associated point number comparison.

Table 2. Sequential registration of multiple point cloud maps 

   Position    3D ICP Iterations    H- ICP Iterations    3D ICP Error    H- ICP Error

   2    45    35    0.842    0.856

   3    54    44    0.929    0.961

   4    77    54    0.039    0.290

   5    49    43    0.104    0.319

   6    66    59    0.165    0.179

   7    73    69    0.129    0.128

   8    99    95    0.068    0.070
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was set to be 0.15, and hue weight was set to 
5.0. The final error and the number of iterations 
required to register the point clouds is shown in 
Table 2. H-ICP requires less number of iterations 
than 3D ICP.

This experiment proves that faster registration 
will be conducted by adding color value into 
registration progress. Position 3 and 4 acquired 
point clouds have been registered together and 
shown in Figure 27, Figure 27(a) describes two 
different point clouds with two different colors; 
point cloud at position 4 (black) has been registered 

into position 3 point cloud (blue). Combined point 
clouds with color are shown in Figure 27(b).

FUTURE RESEARCH DIRECTIONS

Point clouds are inefficient representations of 
geometry. Some of the future research directions 
can include:

a.  Efficient generation of higher order geo-
metric representations --- lines, surfaces and 
solids from the point cloud data;

Figure 22. Registration comparisons between 3D ICP and H-ICP algorithm. (a) Mean square error 
comparison. (b) Associated point number comparison. (c) Stability Comparison.
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b.  Map completeness measures that predict 
the geometry missing in the occluded areas 
based on a knowledge-base; and

c.  Extra sensing modalities such as infrared 
or thermal imaging, acoustic/ultrasonic and 
radio frequency imaging to help determina-
tion of materials in the scene.

Architecture, surveying and engineering fields 
have considerable needs for automatic or semi-
automatic conversion of 3D point clouds into 
higher order line, surface and solid models that are 

compatible with commercial CAD software. This 
enables bringing the point cloud data into existing 
business processes like generation of drawings for 
code compliance, additions and modifications to 
existing built areas and remodeling interior spaces.

CONCLUSION

This chapter describes an algorithm to introduce 
color attribute into point cloud registration process 
and fundamental algorithms for autonomous ro-

Figure 23. Convergence of translation and rotation estimates during registration
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Figure 24. Registered data and model point clouds

Figure 25. Aerial image of outdoor mapping area and vantage positions
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botic complete mapping. Normalization of range 
data and hue value have been applied during the 
registration process and quantitatively evaluate the 
effect of hue search range and weight for the point 
association process. Different hue distribution and 
noise effect have been discussed with specific hue 
rendered color point clouds. A building data set and 
large-scale outdoor point cloud has been registered 
using image data assisted algorithm. Use of the 
hue value to assist the point association and error 
minimization is shown to be effective during the 
ICP iteration schemes. Higher dimensional point 
association based on weighted hue and range data 
leads more accurate point matching result, conduct 
earlier convergence of ICP progress, and reduce 
computation time. When rigid transformation 
is been application in every iteration loop dur-
ing the ICP period, hue value does not change 

in space transformation. However, in HSL data 
space, Lightness should change according to the 
view angle and light position. Corresponding 
point search using additional lightness value 
could be a further research field to increase Color  
ICP algorithm.
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KEY TERMS AND DEFINITIONS

3D Map: 3D map represents certain level of 
spatial information about the geometry features in 
specific area. The map is dimensionally accurate 
and may have a relative or absolute reference.

3D Mapping: 3D mapping is the process of 
applying measurement devices to construct 3D 
map about specified environment.

Color Point Cloud: Discrete points group 
with both dimensiaonl accurate measurement 
and texture property, normally generated by both 
ranging device and color camera.

Map Registration: A process to accurately 
stitch pair or multiple point clouds together into 
single point cloud.

Point Cloud: Discrete points group with ac-
curate 3D coordinates describing object surface 
dimensional measuremnts, usually contructed by 
laser ranging devices.
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INTRODUCTION

Advancements in 3D imaging and computational 
technology have made acquisition and display of 
3D data simple. Techniques such as structured 
light, stereovision, and light detection and ranging 
(LIDAR) have led the path in 3D data acquisition 
(Gorthi & Rastogi, 2010). Stereoscopic displays 
have made the display of 3D data a reality. 

However, as these fields and techniques evolve, 
a growing problem is being confronted; how can 
3D data be efficiently stored and transmitted?

Storage and transmission of 3D data has 
become a large problem due to the file sizes 
associated with 3D geometry. Standard 3D file 
storage techniques do not lend themselves nicely 
to high detailed, high frame rate scenes. Instead, 
traditional 3D file storage techniques aim to store 
models and then animated models based on con-
straints of a few points, typically skeletal points 
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3D Shape Compression 
Using Holoimage

ABSTRACT

As 3D becomes more ubiquitous with the advent of 3D scanning and display technology, methods of 
compressing and transmitting 3D data need to be explored. One method of doing such is depth mapping, 
in which 3D depth data is compressed into a 2D image, and then 2D image processing techniques may 
be leveraged. This chapter presents a technique of depth mapping 3D scenes into 2D images, entitled 
Holoimage. In this technique, digital fringe projection, a special kind of structured light technique from 
optical metrology, is used to encode and decode 3D scenes pixel-by-pixel. Due to the pixel-by-pixel 3D 
data processing nature, this technique can be used on parallel hardware to realize real-time speed for 
high definition 3D video encoding and decoding.
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(Forstmann et al., 2007). This does not hold true 
for 3D scenes captured from 3D scanners, as they 
consist of a large array of 3D coordinates, all of 
which are animated; this animation is inherently 
unstructured and unconstrained making typical 3D 
file storage difficult. Introducing 3D models into 
3D scenes only further exacerbates the problem, 
as both modalities need to be accounted for. How 
then can such scenes with both types of 3D data 
be encoded in a unifying way, which provides not 
only an efficient storage and transmission medium, 
but also a quick encoding and decoding of high 
definition (HD) data?

One solution to this problem is to use depth 
mapping to encode 3D scenes consisting of un-
structured scanned data and structured models into 
2D images, and then rely on 2D image compression 
and transmission techniques. The benefit of doing 
this is that decades of research and development in 
2D image processing can be leveraged, utilizing 
existing compression and transmission techniques 
along with existing infrastructure. Existing video 
services such as Youtube and Vimeo can be used 
with slight modifications; only the video renderer 
needs to be modified to decode and display 3D 
scenes rather than 2D images.

Holoimage (Gu et al, 2006) is a technique 
developed to accomplish the task of depth map-
ping an entire HD 3D scene. Utilizing techniques 
developed in optical metrology, Holoimage cre-
ates a virtual fringe projection (a special kind of 
structured light) system which can depth map 
an entire 3D scene point-by-point into 2D im-
ages. The benefits of such a technique include: 
(1) using existing research in the field of optical 
metrology; (2) leveraging existing research in 
the field of image processing; and (3) achieving 
point-by-point computation though the whole 
process. Employing parallel hardware such as 
that of a graphics processing unit (GPU), HD 3D 
scenes can be encoded and decoded in real-time. 
Thus Holoimage meets the requirements of en-
coding and decoding a 3D scene with little speed 
hindrance, lending itself nicely to 3D video and 

other high-speed, high-resolution 3D applications 
(Zhang & Huang, 2006a; Zhang & Yau, 2006; 
Zhang & Yau, 2007). This chapter will delve 
into the details of the Holoimage technique, will 
show compression results, and will discuss the 
advantages and shortcomings.

BACKGROUND

Related Work

To compress point cloud data, two different classes 
of encoders have been developed: progressive 
coders, and single-rate coders. Progressive coders 
encoded point clouds with a coarse representation 
and then progressive refinements. This allows for 
the coarse representation to be displayed almost 
immediately, and then gradual streaming of re-
finements to occur when they become available. 
These schemes typically involve building a tree of 
vertices in memory, such as a kd or spanning tree, 
followed by entropy encoding using predictive 
heuristics, and finalized with run level or Huffman 
encoding. This allows for high levels of lossless 
compression such as 27:1, but with slow encoding 
times for dense point clouds. Schnabel and Klein 
developed such a technique that uses Octrees, with 
coarse representations using approximately 2 bits 
per pixel, and then refinements using up to 6 bits 
per pixel (Schnabel & Klein, 2006).

The other class of encoders, single-rate coders, 
requires the entire file before decoding can com-
mence. This class of encoders typically consists 
of a simple decoder, which can quickly decode 
and display a file. Fast decoding makes these 
techniques viable for real-time applications such 
as 3D video, but compression rates typically are 
not as high as seen in progressive encoders. Chai 
et al. developed such an encoder, which encodes 
a depth map for a scene along with a triangular-
mesh (Chai, Sethuraman, Sawhney & Hatrack, 
2004). They were able to achieve compression 
ratios ranging from approximately 2:1 all the way 
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to approximately 27:1. When rendering a large 
number of triangles, their implementation fell 
far below real-time, achieving only 8.8 frames 
per second for approximately 125k triangles. The 
coder presented in this chapter is classified as a 
single-rate coder.

Depth Mapping

Unlike 2D images, 3D geometry conveys much 
more information, albeit at the price of increased 
data size. An example of this extra information is 
facial identification; 2D facial identification sys-
tems rely on the texture of a 2D image, whereas 3D 
facial identification systems utilize the structure of 
3D geometry (Abate et al 2007). Thus, if lighting 
conditions change, or the subject’s texture changes 
such as applying makeup to circumvent the system, 
2D facial identification systems will fail. 3D facial 
identification systems relying on facial structure 
on the other hand will not, as the subject would 
have to change their physical facial structure in 
order to fool the 3D facial identification system. 
The cost of all this added information is large in 
comparison with 2D though in terms of file size.

To illustrate this point, consider a simple 2D 
color image with three color channels and 8-bit 
color depth resulting in 24 bits per pixel or 3 
bytes per pixel. Now consider a simple 3D point 
cloud with a 4 byte floating point number for each 
component of a 3D coordinate (x, y, z) resulting 
in 12 bytes per point. Already the 3D geometry 
is on an order of 4 times as large. Now include 
connectivity information which is standard in 

most 3D data formats, along with point normals, 
texture coordinates, and associated texture data; 
the resulting 3D geometry is on the order of 10-
20 times larger than a 2D image with the same 
number of points. This illustrates the point that 
where even one of the smallest 3D formats, poly-
gon file format (PLY) is still over 5 times larger 
than an uncompressed 2D image. Now employ 
2D image compression such as portable network 
graphics (PNG) compression and the result is 
staggering (Table 1).

To overcome this problem for large static 
models, computer graphics has employed what 
is known as depth mapping for some time. The 
idea behind depth mapping is to encode 3D ge-
ometry into 2D images, which can then later be 
decoded back to 3D, known as image based ren-
dering (Krishnamurthy et al, 2001). Typically, the 
model being depth mapped is aligned with a plane 
such as the XY plane, and then the Z component 
is encoded in a 2D image known as a depth map. 
The result of the process is a 2D image, which 
assumes that it is XY axis aligned, the points are 
uniformly spaced, and each pixel encodes the 
depth at the point or the Z value. Performing this 
operation allows for the use of decades of existing 
research in 2D image processing to be leveraged 
as the 3D geometry has been encoded into a 2D 
image. Thus, storage and transmission of the 
geometry are simplified. Typically, large static 
models in a 3D world are terrain models, and 
depth mappings are often employed to quickly 
generate these models at photorealistic levels. 
Due to the nature of 3D scanners and their use of 

Table 1. 3D File formats compared to uncompressed 2D image format all with 640 x 480 points. Note the 
closest format is still over 5 times as large as its 2D counterpart. Also 3D formats contain only vertices 
and connectivity if required; no point normals or texture coordinates are stored. DAE – Digital Asset 
Exchange; OBJ – Wavefront Object file; STL – Stereolithography file format. 

Bitmap image PLY DAE OBJ STL

File size: 1.2MB 6.5MB 10.6MB 12.8MB 17MB

Ratio: 1: 1 1: 5.42 1: 8.83 1: 10.67 1: 14.17
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2D images to generate 3D data, a natural connec-
tion with depth mapping is apparent. In a typical 
3D scanning system, the 3D coordinates are re-
covered from 2D images captured by cameras. 
Therefore, there should be a way to convert these 
recovered 3D scenes back into 2D images.

Another technique that is often employed with 
depth mapping is level of detail (LOD) triangle 
meshes (Lindstrom et al, 1996). As a camera moves 
farther from its subject, the perspective makes the 
subject appear to get smaller and smaller. As the 
subject gets smaller from the camera’s viewpoint, 
less camera pixels can capture the subject, thus the 
subjects level of detail can be decreased without 
affecting the detail at the camera’s viewpoint. LOD 
triangle meshes take advantage of this principle 
and reduce the number of vertices in the overall 
mesh to display an appropriate level of detail, 
while displaying as few vertices as possible for 
speed. Since depth maps are applied per vertex, 
the fewer vertices the faster the decoding process. 
Thus LOD meshes work nicely with depth map-
ping, decoding and displaying only the needed 
level of detail in a mesh.

HOLOIMAGE TECHNIQUE

Principle

The principle behind Holoimaging is borrowed 
from optical metrology and is known as fringe 
projection (Gu et al, 2006). Figure 1 shows a 
basic fringe projection system, which consists of 
a projector and a camera. A projector projects a 
structured pattern or structured light onto an object, 
and a camera captures the resulting scene. As the 
structured pattern from the projector lands on the 
objects in the scene, the 3D geometry distorts the 
pattern, which is what the camera captures. As-
suming that the geometric relationship between 
the projector pixels and the camera pixels are 
known, the 3D geometry can be reconstructed 
from the distortion between each image. Thus 3D 

geometry is transformed into a single 2D image, 
and then the 2D image can be used to reconstruct 
the 3D geometry.

In the Holoimaging system setup, it differs 
slightly from a real 3D fringe projection system 
in that the camera and projector are both virtual 
orthogonal devices instead of perspective ones. 
In a real system the pinhole camera model, a 
perspective projection, is used which complicates 
the technique of encoding and decoding. The 
camera and projector lens distortion usually brings 
3D shape measurement errors. Thus, using an 
orthogonal ideal projection simplifies the process 
further. Another difference is that in real 3D fringe 
projection system, the light usually cannot pass 
through an opaque object, but in a virtual fringe 
projection (Holoimage) system, the fringe patterns 
can pass through any object to generate fringe 
patterns for 3D shape recovery. Moreover, since 
the position of the virtual camera and projector 
can be precisely configured, the geometric rela-
tionship between the two can be precisely defined 
resulting in no need to calibrate the camera and 
projector. This is usually a very complicated 
process with a real 3D fringe projection system 
(Zhang & Huang, 2006b). With the Holoimaging 
setup, 3D shape reconstruction is significantly 
simplified and is highly precise, resulting in a 
quick and efficient way to depth map an HD 3D 
scene. In our previous work, we have demon-
strated that the Holoimaging system can pre-
cisely recover a 3D scene (Zhang & Yau, 2008), 
and can be used to recover arbitrary 3D shapes 
(Karpinsky & Zhang, 2010a), albeit via different 
phase-shifting techniques.

Three-Step Phase-Shifting Algorithm

The structural pattern, or fringe pattern, that is 
used in the Holoimaging system is a sinusoidaly-
varying pattern, which is typical of a fringe 
projection system (Zhang & Huang, 2006a). 
Phase shifting is usually used to achieve pixel-by-
pixel spatial resolution during 3D shape recovery. 
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Phase-shifting algorithms are extensively used in 
optical metrology because of their measurement 
accuracy and speed. Over the years, a number of 
phase shifting algorithms have been developed 
including three-step, four-step, least square algo-
rithms etc (Schreiber & Bruning, 2007). All these 
algorithms differ in the number of fringe images 
required and the amount of phase shift, but they 
all share the same properties: (1) high measure-
ment speed, because it only requires a minimal 
amount of images to recover one 3D shape; (2) 
high spatial resolution, because the phase can be 
obtained pixel by pixel, thus the measurement can 
be performed pixel by pixel; (3) less sensitivity to 
surface reflectivity variations, since the calcula-
tion of the phase will automatically cancel out 
the DC components.

In a real world 3D shape measurement system 
using a fringe projection technique, a three-step 
phase-shifting algorithm is typically used in high-
speed applications as it requires the least number 
of fringe patterns for 3D shape recovery. The fringe 
images of a three-step phase-shifting algorithm 
with equal phase shift can be described as

I x y I x y I x y x y1 2 3( , ) ( , ) ( , )cos[ ( , ) / ],= ′ + ′′ −φ π  
(1)

I x y I x y I x y x y2( , ) ( , ) ( , )cos[ ( , )],= ′ + ′′ φ  
(2)

I x y I x y I x y x y3 2 3( , ) ( , ) ( , )cos[ ( , ) / ].= ′ + ′′ +φ π  
(3)

Figure 1. Virtual fringe projection setup, otherwise known as a Holoimaging setup
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Here, ′I x y( , ) is the average intensity, ′′I x y( , )  
the intensity modulation, and φ( , )x y the phase to 
be solved for. ′I x y( , )  stands for the background 
light, the surface reflectivity, and the projected 
average light. ′′I x y( , )  indicates the fringe qual-
ity. The phase can be obtained by simultaneously 
solving Equation (1)-(3):

φ( , ) tan
( , ) ( , )

( , ) ( , ) ( , )
x y

I x y I x y

I x y I x y I x y
=

−[ ]
− −



−1 1 3

2 1 3

3

2











.  

(4)

The phase value provided from the arctangent 
function only ranges from −π to+π , which will 
result in 2π  phase discontinuities. To obtain a 
continuous phase map, a phase unwrapping algo-
rithm is usually needed (Ghialia & Pritt, 1998). 
The phase unwrapping step is essentially to detect 
the 2π  phase jumps and remove them by adding 
or subtracting multiples of 2π . In other words, 
the unwrapped phase can be written as

Φ( , ) ( , ) ( , ).x y x y k x y= + ×φ π2  (5)

Here Φ( , )x y is the unwrapped phase, and k(x,y) 
is integer, which might differ for different pixels. 
The phase unwrapping step is essentially to find 
correct k(x,y) for each point. Once the continuous 
phase map is obtained, 3D information can be 
recovered if the system is calibrated (Zhang & 
Huang, 2006b).

As can be seen in Equation (4), the phase is 
calculated pixel-by-pixel, thus the 3D information 
can be obtained pixel-by-pixel, which is advanta-
geous over most other 3D imaging techniques. 
Therefore, this technique allows for pixel-level 
spatial resolution. Since only three images are 
required, it is possible to achieve high-speed 
(Zhang, 2010a).

Holoencoding: Coordinate-
to-Phase Conversion

Because of the background lighting and random 
noise effect, three phase-shifted fringe patterns 
are typically required in order to perform 3D shape 
measurement in a real world system. In contrast, 
within a virtual Holoimaging system, all environ-
mental variables can be precisely controlled; 
therefore only two phase-shifted fringe patterns 
are needed in order to solve for the phase φ( , )x y
. These two fringe patterns can be modeled and 
encoded into two primary color channels of the 
projector. Since the background light can be pre-
cisely controlled, the fringe images can be ide-
ally sinusoidal and described in the following two 
equations:

I x yr = × +
255
2

1[ sin ( , )],Φ  (6)

I x yg = × +
255
2

1[ cos ( , )].Φ  (7)

From these two equations, the wrapped phase 
φ( , )x y may be obtained point-by-point by

φ( , ) arctan .x y
I

I

r

g

=
−

−













255
2

255
2

 (8)

Similarly, this yields a phase value for each 
pixel that ranges from [-π , +π ), which can later 
be used to reconstruct the 3D geometry. The 
unwrapped phaseΦ( , )x y can be obtained by adopt-
ing a phase unwrapping algorithm to find k(x, y). 
However, since there are three primary color 
channels and the blue channel is not yet utilized 
in the Holoimaging system, we can encode k(x, 
y) into the third channel by projecting it along 
with the fringe patterns. In practice, the third 
color channel is encoded as
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I k x y stepHeight
x y

stepHeightb = × =
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(9)

Embedding these functions in the red, green 
and blue color channels, a gradient image to be 
projected is created; this image is seen in Figure 
2. Due to the exactness of the virtual system these 
jumps can be mathematically determined, and a 
third function can be used which simply specifies 
the number of periods of the function or the mul-
tiple of 2π  to add at each point (Karpinsky & 
Zhang, 2010b). This function is given above as
Ib . By referring to this image, the continuous 
phase map can be obtained by

Φ( , ) ( , ) / ( ) ( , ).x y I x y stepHeight x yb= +2π φ  
(10)

Given that there are only three images, these 
functions can be encoded into the three primary 
color channels (red, green, blue, or RGB) of a 2D 
image and projected in the virtual system at once, 

achieving depth mapping of 3D geometry into a 
2D image. Because the 3D information can be 
encoded into a single color image, it drastically 
reduces the size of storing 3D geometry data. In 
addition, because the phase at each point can be 
solved for point-by-point without referring to any 
neighboring point, the decoding can be achieved 
in parallel. With a highly parallel computation 
device, such as GPU, the decoding step can be 
realized in real-time.

Holodecoding: Phase-to-
Coordinate Conversion

Decoding a Holoimage is achieved through a very 
simple triangulation. To explain the concept in 
the context of a digital fringe projection system, 
Figure 3 is given which decodes a single depth 
value z using a reference plane (a flat surface 
with z = 0). In other words, the depth z value is 
relative to the flat plane. The ultimate goal is to 
be able to calculate the z value for each point in a 
point-by-point manner from the computed phase 
value in Equation (10).

Figure 2. Diagram of Holoimage fringe image. (A) Red color channel (Ir) given in Equation (6); (B) 
Green color channel (Ig) given in Equation (7); (C) Blue color channel (Ib) given in Equation (9); (D) 
Holoimage with all three color channels combined. Note it is rendered in grayscale but is a RGB color 
image in the actual Holoimage system.
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To begin, from Figure 2, we can use basic 
trigonometry to find z in terms of ∆xC A−  and 
tan θ , where θ  is the angle between the capture 
plane and the projection plane.

z
iC A= −∆

tan
.
θ

 (11)

To simplify the 3D rendering, the graphics 
pipeline is usually set up in a way that the rendered 
scene gets visualized within a unit cube, thus the 

size of a pixel is 1
W

,  where W is the total number 

of pixels horizontally in the unit cube. If the ori-
gin of the coordinate system for the unit cube is 
aligned with the origin of the image then x can 
be found by simple scaling, that is

x
i

W
= ,  (12)

where i is the index of the pixel being decoded in 
the Holoimage. Therefore, the distance between 
C and A in the unit cube is actually:

∆x
i

WC A
C A

−
−= .  (13)

At this point Equations (11) - (13) can be 
combined yielding the following:

z
i

W
C A= −∆
tan

.
θ

 (14)

This gives z in terms of the change of index 
from point C to point A, along with the number 
of pixels horizontally, and the angle between the 
projection and capture planes. Since there is no 
easy way to find i for point C and point A given 
a point, we will have to look further to see if the 
phase value can be leveraged.

For an arbitrary pixel K in the Holoimaging 
system, the point A on the reference plan would 
have a phase value of ΦA

r . From the camera per-
spective or the Holoimage perspective, point B 
would be in the place of point A and the phase 
value would be ΦB or just Φ . From the projector’s 
perspective, point B and point C (on the reference 
plane) have the same value, i.e. Φ Φ Φ= =B C

r . 
Since the fringe stripes are uniformly distributed 

Figure 3. Schematic diagram for phase to coordinate conversion. In order to decode the depth value 
from the Holoimage the projection angle and fringe pitch used during encoding must be known.
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on the reference plane we have the following 
equation.

∆Φ Φ Φ Φ Φ= − = −C
r

C
r

B A
r .  (15)

The phase of a point on the reference plane 
can be defined as a function of the index i  and 
the fringe pitch (number of pixels per period of 
fringe) on the reference plane.

Φr

r

i
P

=
2π

.  (16)

Here Pr is the fringe pitch on the reference 
plane. Again using more trigonometry, we can 
define the fringe pitch on the reference plane in 
terms of the fringe pitch of the projector.

P
P

r = cos
.
θ

 (17)

Here, P is the fringe pitch that the projector 
actually projects. In other words, P here is the 
computer generated fringe pattern pitch number. 
Combining Equation (16) and Equation (17), we 
obtain the phase of a point on the reference plane 
in terms of the fringe pitch P and the angle between 
the capture plane and projection plane θ .

Φr i
P

=
2π θcos

.  (18)

Furthermore, Equation (15) and Equation (18) 
can be combined to obtain

∆Φ Φ= − = −
2 2 2π θ π θ π θi

P

i

P

i

P
C A Acos cos cos

,  

(19)

or in another means as,

∆Φ
∆

Φ= = −−2 2π θ π θcos cos
.

i

P

i

P
C A A  

(20)

Rearranging the first part of Equation  
(20) yields

i
P

C A− =
∆Φ

2π θcos
.  (21)

From here we can go back to where we left off 
with Equation (14) and substitute in Equation (21).

z
P

W
=

∆Φ
2π θ θcos tan

,  (22)

or

z
P

W
=

∆Φ
2π θsin

.  (23)

Substituting in ∆Φ  from Equation (20) 
we obtain:

z
P

i
P

W

A

=
−









Φ

2

2

π θ

π θ

cos

sin
.  (24)

Now we relate the depth information z with 
the projected fringe patterns, the Holoimage 
pixel index, and the setup of the Holoimaging 
system, that is

z
P i

W
A=

−Φ 2

2

π θ
π θ

cos

sin
.  (25)

This yields a value z in terms of P the fringe 
pitch; iA the index of the pixel being decoded in 
the Holoimage; θ the angle between the capture 
plane and the projection plane; Φ  the phase at 
the current pixel being decode in the Holoimage; 
and W the number of pixels horizontally. Because 
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the system is an orthogonal system and the render-
ing is performed within a unit cube, the x and y 
coordinates can be calculated by scaling the j and 
i as,

x
j

W
= ,  (26)

y
i

W
= .  (27)

All of these terms are specific to the point 
at which the Holoimage is being decoded, thus 
making the decoding a point-by-point function; 
given parallel hardware, a Holoimage scene can 
be decoded in parallel giving a large speed boost.

Holoimage Example

To verify the performance of the proposed ap-
proach, we first tested a simulated pyramid object 
with a known shape and dimension (unit can be 
any since it is normalized into a unit cube) as 
shown in Figure 4. This object is then sent to the 
Holoimging system to generate the Holoimage, 
as shown in Figure 4(A). In this example, the 
Holoimaging system was configured as the fol-
lows: stair step height of 32 grayscale values, 
projection angle of θ = 30 , fringe pitch of P = 
16 pixels, display window size of 512 X 512 
pixels, and the rendering is performed within a 
unit cube. During the rest of this chapter, all ex-
periments are performed under the same Holo-
imaging system setup.

From the red and green channels, the wrapped 
phase map can be calculated using Equation (8), 
which is shown in Figure 4(B). Figure 4(C) shows 
the blue channel stair image that is then applied 
to unwrap the phase point by point using Equation 
(9). The unwrapped phase map is shown in Figure 
4(D). Once the phase map is known and the con-
figuration of the system is pre-defined, the (x, y, 
z) coordinates for each pixel can be calculated 

from the unwrapped phase map point by point 
using Equations (25)-(27). Figure 4(E) shows the 
recovered 3D shape. To verify the accuracy of the 
Holoimaging system, the difference map between 
the original data and the reconstructed one was 
obtained, as shown in Figure 4(F). The error is 
approximately 0.05%, which can be negligible in 
comparison with the quantization error: represent-
ing the depth map with 8-bit grayscale images in 
one channel generates error of 0.39%, or 
1
2

100 0 39
8
× =% . %.

To further demonstrate the accuracy of the 
Holoimaging system, an actual scanned 3D object 
is then tested for the proposed technique. Figure 5 
shows the experimental result. The original shape 
is shown in Figure 5(A). It can be seen that the 3D 
shape is a typical statue face with very detailed 
3D structures. Due to the nature of the Holoim-
age technique, all the details can be recovered. 
Figure 5(D) shows the Holoimage generated for 
the object. From the Holoimage, the wrapped 
phase, unwrapped phase map, and the 3D shape 
can be obtained. Figure 5(C) shows the recovered 
3D shape. If the original shape and the recovered 
one are rendered in the same window, the results 
are shown in Figure 5(D) in shaded mode. It 
clearly demonstrates that the recovered 3D shape 
and the original one are almost perfectly aligned, 
that is, the recovered 3D shape and the original 
3D shape do not have significant difference. The 
difference map is further calculated and plotted in 
Figure 5(E). The error was found to be 0.004%. 
The error is again negligible in comparison with 
quantization error.

Both simulation and the real data shows that 
the Holoimging system can be used to accurately 
recover the original 3D geometry with a single 
color image. Because 3D geometry can be repre-
sented with a single color imaging, it poses po-
tential for 3D shape compression, which will be 
detailed next.
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Holoimage Compression

Once a scene is Holoencoded the resulting 3D 
color image can be compressed using standard 
2D image compression techniques. An example 
face shown in Figure 5 that is 512×512 pixels 
has been Holoencoded and then compressed us-
ing different techniques. As an example, we used 
Bitmap, PNG, tagged image file format (TIFF), 
and differing compression levels of joint photo-

graph experts group (JPEG) + PNG compression 
to store the Holoimage. Table 2 compares differ-
ent compression techniques in comparison with 
storing the geometry in the PLY format, which is 
a typical highly compressed 3D format. Note that 
the even storing the geometry in uncompressed 
BMP format still yields a compression ratio of 
approximately 6:1.

One caveat of the technique is that the image 
is encoded 3D geometry, thus lossy image  

Figure 4. 3D recovery using the single color fringe image. (A) Fringe image; (B) Phase map using red 
and green channels of the color fringe image; (C) Stair image (blue channel); (D) Unwrapped phase 
map; (E) Recovered 3D shape; (F) Difference map between the recovered 3D shape and the original 
one (RMS error 0.05%).

Table 2. Comparison of PLY model format to Holoimage encoded in various image formats. Note that 
even an uncompressed bitmap format still yields a compression ratio of over 6:1. 

PLY BMP TIFF PNG JPEG+PNG

File Size (bytes): 4,838,400 786,488 395,194 141,344 81,090

Ratio: 1: 1 6.15: 1 12.24: 1 34.23: 1 59.67: 1
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compression can create artifacts in the recon-
structed geometry much like it does in the actual 
2D image. An example of such compression is 
JPEG encoding; high compression rates can be 
achieved, but at the cost of blocking artifacts. 
Blocking artifacts occur due to the fact that the 
JPEG compression standard performs its cosine 
transform on 8 X 8 blocks of pixels in the image. 
The edges of these blocks can have sharp discon-
tinuities at high levels of compression. These 
discontinuities from the blocking artifacts lead to 
what is known as spiking noise, which is shown 
in Figure 6. Currently JPEG encoding cannot be 
directly implemented with Holoimages as the 
blocking artifacts cause significant problems with 
the blue color channel which is used to unwrap 
the phase and is intolerant of noise. To alleviate 
this problem, the red and green color channels 

can be encoded with JPEG encoding and the blue 
color channel can be encoded with a lossless 
format such as PNG. This modified 2D image 
format allows for the high compression rates seen 
in JPEG and other lossy image formats, without 
introducing errors in the blue color channel.

As can be expected, the higher the compression 
rate on lossy formats, the more apparent the block-
ing artifacts become, resulting in more spikes and 
ripple noise. Because these spikes only appear 
along the edges of the stair, which usually shifts 
one pixel left or right, they can be removed through 
filtering (e.g., median filtering) on the phase map 
before triangulation (Karpinsky & Zhang, 2010b). 
The third row of Figure 6 shows a median filtered 
mesh, where most of the spikes have been removed. 
Median filtering leads to the loss of point-by-point 
processing for the decoding procedure, but one 

Figure 5. 3D recovery using the color fringe image for scanned data. (a) 3D scanned original data; (b) 
Color fringe image; (c) 3D reconstructed shape; (d) Overlap original 3D shape (light gray) and the 
recovered 3D shape (dark gray) in shaded mode; (e) Difference map (RMS error 0.004%).
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should note that the spiky noise is only one pixel 
in width, thus if filtering is implemented  
correctly it can still be implemented in parallel. 
We have demonstrated that compression ratios of 
36:1 can be achieved without significant loss in 
the quality of the data (Karpinsky & Zhang, 
2010b). Because the compression ratio is very 
high and the 3D scenes will be converted into 2D 
images, this compression technique would easily 

allow for streaming of high frame rates of com-
pressed Holoimages.

FUTURE RESEARCH DIRECTIONS

One known problem in Holoimaging is subpixel 
shift in which during the encoding process the 
sinusoidal fringe gets quantized into an RGB 

Figure 6. Comparison of reconstructed geometry under varying levels of JPEG compression. The first 
row shows the Holoimage used to compress the geometry; row two shows the reconstructed geometry 
before median filtering; row three shows the reconstructed geometry after median filter. Note that 
median filtering has removed most of the spiking noise, but some ripples have formed on the model 
such as on the forehead. Column (A) shows the uncompressed Holoimage and the associated results; 
Column (B) shows the 90% compressed Holoimage and the associated results; Column (C) shows the 
70% compressed Holoimage and the associated results; and Column (D) shows the 50%, compressed 
Holoimage and the associated results.
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pixel. This results in some error, which at times 
can create what is known as spiking error (as 
illustrated in Figure 6). For 3D HD scenes, this 
error is unacceptable and must be filtered out. A 
3×3 median filtering on the phase map can be 
performed to help eliminate small amounts of this 
noise, but at the cost of losing the point-by-point 
decoding of Holoimaging. Parallel processing can 
still be maintained if implemented correctly, but 
this is not an optimal solution. If instead 2D image 
filtering can be applied to the Holoimage before 
the decoding, this noise could be removed without 
losing point-by-point parallelism of decoding.

This leads into a major direction of research 
in terms of Holoimages and depth mapping in 
general, which is filtering of the depth map im-
ages. Since Holoimages are encoding information, 
standard 2D image filtering has differing effects, 
which can sometimes be adverse. How then can 
2D image filtering be applied to the Holoimages 
to retain point-by-point parallel decoding and 
achieve the removal of spiking noise? If this 
question can be answered it has the potential to 
solve subpixel shift along with enabling Holoim-
ages to be saved in a highly compressed lossy 
image format.

Another source of noise in Holoimaging oc-
curs when compressing the Holoimages. If the 
Holoimages are stored in a lossy image format, 
compression artifacts are introduced, resulting in 
erroneous decoded spiking noise. An example of 
this is with JPEG compression, which introduces 
blocking artifacts as it divides the image into 
8×8 blocks before applying the discrete cosine 
transform and quantizing. With high compres-
sion levels the blocking artifacts are apparent to 
the human eye. With small amounts of blocking 
artifacts, Holoimages can be affected adversely. 
Again filtering can be used to reduce this such 
as median or Gaussian filtering, but this is typi-
cally applied to the decoded phase map and not 
the actual Holoimage. Also there might be some 
directions that could encode the 3D geometry 
in another way so that the blue channel will not 

contain sharp edges. By circumventing the prob-
lems with information loss in JPEG compression, 
the problem of spiky noise might be completely 
eliminated. This, of course, requires the investiga-
tion of the exact manner of JPEG compression.

If research is done to develop methods to 
overcome these shortcomings then Holoimaging 
has the potential to compress 3D scenes into 2D 
images and then store the resulting depth maps 
in lossy image formats. Once in this format, the 
images could be encoded in into video via the 
wide variety of 2D video codecs. This could allow 
for wide spread adoption of 3D video without the 
need to create or adapt new storage and transmis-
sion techniques.

CONCLUSION

Holoimaging yields an effective way to encode, 
transmit, and decode 3D scenes. Encoding relies 
on techniques borrowed from optical metrology, 
namely fringe projection. The fundamental behind 
the technique is to project a specially designed 
sinusoidal structured pattern onto objects in a 3D 
scene and then capture how the objects distort the 
pattern. Being a virtual system, all environmental 
variables can be controlled giving a precise known 
relationship between camera and projector, remov-
ing the calibration step seen in real-world fringe 
projection systems. Also, being a virtual system 
only two fringe images need to be used which can 
be embedded in the red and green color channel 
of an image, along with a stair image in the blue 
color. The stair image allows for point-by-point 
decoding lending the technique to be easily imple-
mented in parallel architectures.

Once compressed into a 2D depth map, exist-
ing image compression techniques can be applied 
to compress and transmit the depth map. One of 
these compression techniques, JPEG encoding, 
has been explored which allows for high com-
pression but at the loss of data. In order to save 
Holoimages in this format, the JPEG had to be 
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augmented with a lossless compression technique 
for the blue color channel. This was due to the 
fact that the blue color channel was very intolerant 
of noise. As compression rates increased, block-
ing artifacts due to the JPEG compression in the 
Holoimage led to spiking noise, but this could 
be easily removed though median filtering of the 
phase map. Filtering on the phase map causes 
Holoimaging to lose its point-by-point nature, but 
if implemented correctly can still be performed on 
parallel architecture. One major area to explore 
in Holoimaging would be filtering of the actual 
Holoimage, which would be more efficient in 
terms of filtering 2D data vs. 3D data and keeping 
the pipeline point-by-point. Another area would 
be different methods to encode the Holoimage so 
that the spiky problem will be fundamentally and 
completely eliminated.
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KEY TERMS AND DEFINITIONS

Fringe Projection: Projecting sinusoidaly 
varying fringe patterns (structured light) onto 
an object.

Holoimaging: The technique of virtually ap-
plying fringe projection to encode 3D geometry 
into 2D images and then be able to decode back 
into 3D a scene via a phase shifting technique.

Phase Shifting: Process of taking multiple 
fringe images and shifting the sinusoidal fringe 
patterns spatially in the phase domain.

Phase Unwrapping: Finding and removing 
2π discontinuities resulting from the arctangent 
function used in phase wrapping.

Phase Wrapping: Process to retrieve the phase 
from fringe pattern(s). This is typically done by 
adopting an arctangent function, which yields a 
phase map containing 2π discontinuities.

Spiky Noise: Noise in the mesh that results 
from problems such as subpixel shift or block-
ing artifacts in 2D compression. This noise can 
typically be removed by median filtering on the 
decoded mesh.

Structured Light: Light that is structured into 
a pattern, which can be used to encode a scene.
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Holographic Images

ABSTRACT

Holograms can be reconstructed optically or digitally with the use of computers and other related devices. 
During the reconstruction phase of a hologram by optical or digital methods, some errors may also be 
introduced that may degrade the quality of obtained hologram, and may lead to a misinterpretation of the 
holographic image data, which may not be useful for particular application. The basic common errors 
are zero-order diffraction and speckle noise. These errors have more undesirable effects in digital than 
in optical holography because the systems of recording and visualization used in the digital holography 
are extremely sensitive to them or inclusively increase them. The zero-order diffraction can be removed 
by using high pass filters with low cut-off frequencies and by subtracting the average intensity of all 
pixels of the hologram image from the original hologram image. Further, the speckle noise introduced 
during the formation of digital holographic images, which is multiplicative in nature, reduces the image 
quality, which may not be suitable for specific applications. As the range of applications get broader, 
demands toward better image quality increases. Hence, the suppression of noise, higher resolution of 
the reconstructed images, precise parameter adjustment, and faster, more robust algorithms are the es-
sential issues. In this chapter, the various methods available in literature for enhancement and speckle 
reduction of digital holographic images have been discussed, and a comparative study of results has 
been presented.
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INTRODUCTION

The basic concept (Srivastava, 2010) of hologra-
phy was first introduced by Gabor in 1948 to im-
prove the resolving power of electron microscope 
for coherent imaging. After the advent of laser 
technologies, the Goodman in 1967 had conceived 
the basic idea of digital holography. Since one of 
the main drawbacks of electron microscopes is 
that the higher the spatial resolution, the lower 
is depth of focus which imposes restrictions in 
imaging for a specific application. This problem 
of microscopy can be resolved by holography. 
Holography is the science of producing holograms 
which is an advanced form of photography that 
allows an image to be recorded in three dimensions 
(3D) and the technique of holography can also 
be used to optically store, retrieve, and process 
information. Holography is related to measuring 
the wave field followed by reconstruction of the 
wave field, i.e. both the amplitude and the phase 
of the light wave scattered by the object. Due to 
advancements in digital optics, CCD and CMOS 
cameras and computers, it became possible not 
only to record the digital holograms but also to 
reconstruct them. Further, with the advancement 
and use of digital image processing and optical 
information processing methods for further pro-
cessing of digital holographic images, nowadays it 
is possible to generate realistic digital holograms 
with no defects that may be used in different 
areas of applications. Holography which was 
originally invented to solve problems in electron-
microscopy, now in its new form of digital holog-
raphy, can be used to solve problems of optical 
microscopy. Holography is capable of recording 
3-D information and optical reconstruction is 
then possible with visual 3-D observation. Since 
there are no wet chemical processing and other 
time consuming procedures, digital holography 
can be done in almost real time through numerical 
reconstruction which offers great flexibility on 
controlling some parameters, such as focusing, 
image size and resolution.

When image of an object is observed through 
a microscope or the object’s diffraction pattern, 
the information about the phase of the emanated 
wave is lost. However, if one records the inter-
ference pattern of light coming from an object 
called the object beam with a reference beam 
which has the same wavelength as the object 
beam and of a known phase distribution such as 
a plane wave or a spherical wave then it is pos-
sible to reconstruct both the phase and amplitude 
of the object beam (See Figure 1) (Yaroslavskii 
& Merzlyakov, 1989). This reconstruction of the 
object beam can be done optically by taking the 
hologram, which is the recorded fringe pattern 
obtained from interfering the object and reference 
beam, and shining the reference beam at it and 
the hologram in turn diffracts the light so that an 
image of the object is visible. As an example, we 
can consider the recording of the hologram of a 
spherically scattered wave like the light scattered 
from a Rayleigh scatterer where the spherical 
wave coming from the object interferes with a 
plane wave and as result a pattern of concentric 
rings are formed which resembles a Fresnel zone 
plate and like a Fresnel zone plate, the fringes 
focus a plane wave illuminating it to a point. 
The holograms can be reconstructed optically 
or digitally with the use of computers and other 
related devices. Figure 2 shows the steps involved 
in digital reconstruction and image processing of 
holograms. The various components of the setup 
contain following components.

Hologram Sensor which captures original 
hologram in analog form; Analog-to-digital con-
verter which converts the analog form of re-
corded hologram in digital form for further pro-
cessing with computers; pre-processing of digital 
hologram which involves the preparation of ho-
logram data in some specific desired format etc; 
image reconstruction is associated with Digital 
reconstruction of holograms by applying various 
steps such as use of transformations (DFT, Fres-
nel’s) etc; followed by image processing step 
which is responsible for producing realistic  
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holograms by applying various image contrast 
enhancement techniques, speckle reduction  
techniques and zero-order diffraction removal 
techniques etc.

Difference Between Digital 
Holography and Digital Photography

The basic difference between ordinary digital 
photography and digital holography is that in 

digital photography only intensity, i.e. ampli-
tude distribution of light coming from an object 
being imaged is recorded on a particular plane 
because the camera lens can be focussed only in a  
particular plane and the details of the field  
nearer and farther than the focussed plane are 
discarded whereas in digital holography both 
the amplitude and the phase distribution of light 
coming from object being imaged can be recorded 
in any plane between the object and the observer, 

Figure 1. Digital holographic microscopy principles

Figure 2. Steps in digital reconstruction of hologram



108

Restoration and Enhancement of Digitally Reconstructed Holographic Images

producing the complete realistic field of view as 
originally observed.

Advantages of Digital Holography

The advantages of digital holographic microscopy 
include (Yaroslavskii, & Merzlyakov, 1989): real 
time image reconstruction for visual analysis, 
flexibility in retrieving arbitrary focal plane and 
focal plane data fusion, availability of digital image 
processing technology for sensor data calibration 
and processing reconstructed images, and direct 
availability of data for numerical analysis.

Image Processing Problems 
in Digital Holography

Some of the image processing problems involved 
in digital holography include: digital representa-
tion of holograms and optical transforms, holo-
gram sensor signal correction, fast reconstruction 
algorithms, image contrast enhancement, speckle 
reduction, encryption, zero-order diffraction re-
moval, phase unwrapping etc.

Application Areas

The various areas of applications of digital ho-
lography include: Copyright protection, security 
systems, holographic interferometry, microscopic 
examination of certain kinds of biological speci-
men, stereoscopic holography, high capacity 
system for image storage and re-examination, 
applications using short-coherence length light 
such as light-in-flight measurements & short 
coherence tomography, particle distribution mea-
surement, endoscopic digital holography, optical 
reconstruction of digital holograms, comparative 
digital holography, encrypting of information 
with digital holography, synthetic apertures and 
many more.

In this chapter, some of the standard techniques 
for speckle reduction and enhancement of digitally 
reconstructed holographic images are explained, 

implemented and their performance comparisons 
are presented. Next section presents basic con-
cepts of digital holography and speckle forma-
tion followed by the section discussing various 
techniques for speckle reduction and enhancement 
of digital holographic images. Then, results and 
performance comparison of various techniques 
for enhancement and speckle reduction of digital 
holographic images are presented. Finally, conclu-
sion and future directions of research are discussed.

DIGITAL HOLOGRAPHY: GENERAL 
PRINCIPLES AND FORMATION 
OF SPECKLE NOISE

The digital holography framework (García-
Sucerquia, Herrera, & Velasquez, 2005) for 
hologram recording and reconstruction has three 
planes namely object plane, hologram plane and 
real Image plane separated by a distance d and 
involves two diffraction processes one from the 
object plane to hologram plane and another from 
the hologram plane to the image plane. The ob-
ject located at the object plane z=0 is coherently 
illuminated and the optical field scattered by it 
interferes with the plane reference wave in such 
a way that the interference pattern is recorded in a 
CCD camera located at a distance z= d in hologram 
plane where only the intensity impinging upon the 
CCD is recorded. The optical field at the image 
plane located at a distance d from the hologram 
plane is calculated by means of calculating the 
diffraction process of the plane reference wave 
when it illuminates the transmittance represented 
by intensity incident upon the CCD.

Holographic Recording and 
Reconstruction Process

During the recording process of digital hologram, 
to produce a recording of the phase of the light 
wave at each point in an image, holography uses a 
reference beam which is combined with the light 
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from the object known as object beam. Optical 
interference between the reference beam and the 
object beam, due to the superposition of the light 
waves, produces a series of intensity fringes that 
can be recorded on standard photographic film. 
These fringes form a type of diffraction grating 
on the film, which is called the interference pat-
tern or hologram. These recorded fringes not only 
directly represent their respective corresponding 
points in the space of a scene but also an individual 
section of even a very small size on a hologram’s 
surface contains enough information to reconstruct 
the entire original scene as viewed through that 
point’s perspective. This is possible because 
during holographic recording, each point on the 
hologram’s surface is affected by light waves 
reflected from all points in the scene, rather than 
from just one point. In holographic reconstruction 
process, once the film is processed, if illuminated 
once again with the reference beam, diffraction 
from the fringe pattern on the film reconstructs the 
original object beam in both intensity and phase 
as both the phase and intensity are reproduced, 
the image appears three dimensional (3D) and the 
viewer can move his viewpoint and see the image 
rotate exactly as the original object would. The 
holography typically uses a laser in production 
because of the need for interference between the 
reference and object beams. The light from the 
laser is split into two beams, one forming the 
reference beam, and one illuminating the object 
to form the object beam. A laser is used because 
the coherence of the beams allows interference 
to take place. Before the invention of laser, early 
holograms were made by other coherent light 
sources such as mercury-arc lamps. In simple 
holograms, the coherence length of the beam de-
termines the maximum depth the image can have. 
A laser will typically have a coherence length of 
several meters, sufficient for a deep hologram.

The mathematical models (Yaroslavskii, & 
Merzlyakov, 1989) of recording and reconstruc-
tion of holograms assume that monochromatic 
coherent radiation that is described by its complex 

amplitude as a function of spatial coordinates is 
used for hologram recording and reconstruction 
and object characteristics defining its ability to 
reflect or transmit incident radiation are described 
by radiation reflection or transmission factors 
which are also functions of spatial coordinates. 
If I(x, y, z) is complex amplitude of the object 
illumination radiation at point (x, y, z); O(x, y, 
z) is object reflection or transmission factor then 
complex amplitude a(x, y, z) of the radiation re-
flected or transmitted by the object at this point 
is defined as:

a(x, y, z) = I(x, y, z)O(x, y, z)  (1)

I f  α ϕ( , ) exp( )x y A ih h obj obj=  a n d 
R x y A ih h ref ref( , ) exp( )= ϕ  denote complex am-
plitudes of the object and reference beams, re-
spectively, at point (xh, yh) of the hologram plane, 
then intensity recorded by the recording medium 
at this point is a squared module of their sum 
which reads

I R R R RRh = + = + + +α α α αα
2 * * * *.  

(2)

where * denotes complex conjugate. This intensity 
is a hologram signal, or a hologram. The first term 
in the sum in the right hand side of equation (2) is 
proportional to the object’s beam complex ampli-
tude which is called the mathematical hologram.

Alternatively, equation (2) can be written as:
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(3)

Hologram reconstruction consists in applying 
to the mathematical hologram a transform that 
implements wave back propagation from the ho-
logram plane to object. For this, one has either to 
eliminate, before the reconstruction, other three 
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terms or to apply the reconstruction transform to 
the entire hologram and then separate the contribu-
tion of other terms in the reconstruction resulted 
from that of the mathematical hologram term.

The mathematical model for reconstructing 
hologram reads

I I A i

A A i A A A

h ref ref

ref obj obj obj ref re

= ⋅

= ⋅ + + ⋅
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(4)

Wave back propagation transformations used 
to reconstruct mathematical holograms are linear 
transformations and they are mathematically 
modelled as integral transformations which are 
also known as diffraction transform. In digital 
holography, this diffraction process can be de-
scribed by the Kirchhoff–Fresnel diffraction in-
tegral and for the given setup in Figure 3, this 
integral can be described by Fresnel–Fraunhofer 
approximation. With a finite size of hologram the 
image Ih reconstructed from it is characterized by 
readings of the optical field E(x,y,z) which are 
linked to the hologram readings I(k,l) and can be 
described by a discrete Fresnel transformation 

(García-Sucerquia, Herrera, & Velasquez, 2005) 
which reads
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Where ∆ ∆x yh h×  is the resolution of the rect-
angular CCD having Nx × Ny pixels which regis-
ters the hologram; m = 0,1,…Nx – 1 and n = 0,1,…
Ny – 1 and image pixel dimensions ∆ ∆x yi i×
are related to the pixel CCD dimensions

∆ ∆x yh h×  by ∆
∆

x
z

N xi
x h

=
λ

and ∆
∆

y
z

N yi
y h

=
λ

.

Further it can be observed that equation (3) is 
the discrete Fourier transform (DFT) of 

I k l
i

z k x l y
( , )exp(

( )
).−

+

π

λ 2 2 2 2∆ ∆
From equation (3), the intensity and phase of 

the optical field can be obtained by

Figure 3. Schematic diagram for digital hologram recording and reconstruction
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I m n z E m n z E m n z E m n z( , , ) ( , , ) Re[ ( , , )] Im[ ( , , )]= = +
2 2 2  

(6)

And

ϕ( , , ) arctan Im[ ( , , )]
Re[ ( , , )] .m n z E m n z

E m n z=






  

(7)

where Re and Im denotes real and imaginary part 
of the optical field and due to this the digital ho-
lography allows us to compute the intensity and 
phase of a reconstructed digital hologram for a 
particular distance z from the hologram plane.

In paper (Xiao-ou, 2008), it has been shown 
by the authors that the diffraction wave forming 
the real image Ireal is given by

I x y R x y x y i d x y z x yreal i i i( , ) ( , ) ( , )exp( ) ( , , , , )* '=
∑
∫∫

2 2
α

π
λ

 

(8)

where α (xh, yh) and R(xh, yh) denote complex 
amplitudes of the object and reference beams, 
respectively, at point (xh, yh) of the hologram plane 
and d’(xi,yi,zi,x,y) optical path length between 
hologram plane and image plane, see Figure 3, 
with the Fresnel approximation expression reads
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(xi,yi) is a point on image plane. According to 
equation (8), after the de-convolution operation, 
the distribution of light intensity can be expressed 
by (Xiao-ou, 2008)
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(10)

where I(x, y, z) is complex amplitude of the object 
illumination radiation at point (x, y, z); O(x, y, z) 
is object reflection or transmission factor ; a(x, 
y, z) complex amplitude of the radiation reflected 
or transmitted by the object at this point defined 
by the equation(1) and R(xh, yh) denote complex 
amplitude of the reference beam at point (xh, yh) 
of the hologram plane;(xo, yo, zo) is a point on 
object plane; I0 is the intensity of the ideal object 
light and Im is the intensity of the speckle noise. 
Therefore, from equation (10), it may be seen that 
speckle noise in digital holography is multiplica-
tive in nature.

Based on analysis as above and as presented in 
paper (Cai, 2008), it can be concluded that speckle 
noise in reconstruction of digital holography is 
mainly due to interference illumination. Further, 
the formation of speckle noise in digital hologra-
phy can be categorized in three parts:

a.  The speckle noise forms on the surface of 
the recording object due to its optical rough-
ness when illuminated by the coherent light 
and it is multiplicative in nature as shown 
in equation (10).

b.  A speckle hologram creates with the interfer-
ence of the object beam and the reference 
light in hologram plane.

c.  In the reconstruction process, the speckle 
noise is modulated in the various diffraction 
orders. Since the reconstructed image of the 
hologram is the convolution result of the 
original object light and Fourier transfor-
mation of the hologram aperture function, 
and the small size of hologram aperture 
diffraction aggravates the speckle noise in 
the reconstructed image (Cai, 2008).

REDUCTION OF SPECKLE 
NOISE FROM DIGITAL 
HOLOGRAPHIC IMAGES

The speckle noise aggravated by the small size of 
hologram aperture diffraction can be reduced by 
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setting an appropriate aperture function match-
ing the recording parameter and aperture size of 
the hologram and de-convolve the reconstructed 
image with it (Cai, 2008).

Approaches for Speckle Reduction 
From Digitally Reconstructed 
Holographic Images

For further elimination of speckle noise from 
digitally reconstructed holographic images, there 
are two basic approaches.

Homomorphic Filtering

The first approach, converts the multiplicative 
speckle noise to additive one by using homo-
morphic filtering approach explained as follows:

i. Apply the logarithmic transform on equa-
tion (10) to convert the multiplicative noise 
into additive one. Suppose C is a constant 
in equation (10) and it is one, then equation 
(10) after logarithmic transform reads

log log log

( , ) ( , ) ( , )

I I I

v x y I x y x y
m

s

= +

⇒ = +
0

η
 (11)

where v(x,y) = logI is the observed hologram im-
age in log domain, I (x,y) = logI0(x,y) is the noise-
less hologram image in log domain that is to be 
recovered and ηs mx y I x y( , ) log ( , )=  the amount 
the of the speckle noise which is now an additive 
noise and is to be minimized.

ii.  In this step, an additive noise removal filter 
such as Wiener filter, median filter, PDE 
based diffusion filters etc is applied to re-
move or minimize the additive noise 
ηs x y( , ).

iii. Finally, the restored holographic image, 
Irestored can be obtained by taking the expo-
nentiation of output obtained in step ii.

Irestored = exp(I(x,y)).  (12)

The most common filters that can be used for 
removal of additive noise is median filter, Wiener 
filter, Wavelet based filters etc. In recent years, 
partial differential equation (PDE) based filters 
have been developed that reduces the additive 
noise. Some of these PDE based filters are based 
on 2D diffusion or heat equation and its extensions.

Specialized Speckle 
Reduction Filters

The second approach uses specialized speckle 
reduction filter to directly reduce the speckle 
noise. Some examples of these types of filters 
successively applied for multiplicative speckle 
noise in other digital imaging modalities such as 
in ultrasound imaging, synthetic aperture radar 
imaging includes Lee Filter, Lee-Sigma Filter, 
Frost Filter, Kuan Filter, Speckle reducing aniso-
tropic diffusion (SRAD) filter etc. These filters 
can also be used to reduce speckle noise from 
digitally reconstructed holographic images. The 
brief descriptions of various filters are as follows:

Mean Filter

The Mean Filter is a simple one and does not 
remove the speckles but averages it into the data 
and it is the least satisfactory method of speckle 
noise reduction as it results in loss of detail and 
resolution. However, it can be used for applica-
tions where resolution is not the first concern.

Median Filter

The Median filter is also a simple one and removes 
pulse or spike noises. Pulse functions of less than 
one-half of the moving kernel width are suppressed 
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or eliminated but step functions or ramp functions 
are retained.

Wiener Filter (Jain, 2006)

The Wiener filter is the MSE-optimal station-
ary linear filter for images degraded by additive 
noise and blurring. The calculation of the Wiener 
filter requires the assumption that the signal and 
noise processes are second-order stationary (in 
the random process sense).Wiener filters are 
often applied in the frequency domain. Given a 
degraded image x(n,m), one takes the Discrete 
Fourier Transform (DFT) to obtain X(u,v). The 
original image spectrum is estimated by taking 
the product of X(u,v) with the Wiener filter G(u,v).

Lee-Sigma and Lee Filters 
(Lee, 1981; Lee, 1983)

The Lee-Sigma and Lee filters utilize the statistical 
distribution of the DN values within the moving 
kernel to estimate the value of the pixel of interest. 
These two filters assume a Gaussian distribution 
for the noise in the image data. The Lee filter is 
based on the assumption that the mean and variance 
of the pixel of interest is equal to the local mean 
and variance of all pixels within the user-selected 
moving kernel. The scheme for computing digital 
number output (DNout) is as follows:

k
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mean x
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+
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( ) var( )2 2σ
 (13)
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µw and σw are the mean and variances of pixels 
within chosen window. The Sigma filter is based 
on the probability of a Gaussian distribution. It 
is assumed that 95.5% of random samples are 
within a two standard deviation range. This noise 
suppression filter replaces the pixel of interest 
with the average of all DN values within the mov-
ing kernel that fall within the designated range.

Frost Filter (Frost et al., 1982)

The Frost filter replaces the pixel of interest with 
a weighted sum of the values within the n×n mov-
ing kernel. The weighting factors decrease with 
distance from the pixel of interest. The weighting 
factors increase for the central pixels as variance 
within the kernel increases. This filter assumes 
multiplicative noise and stationary noise statistics 
and follows the following formula:

DN k e
t

nxn
=

−
∑ α

α
 (15)
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2n I
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Where DN is the digital number defined as above, 
k = normalization constant, I = local mean, σ 
=local variance, σ  = image coefficient of varia-
tion value, |t| = |X-X 0 | + |Y-Y 0 |, and n = moving 
kernel size.

Kuan Filter (Kuan, 1987)

Kuan filter first transforms the multiplicative 
noise model into a signal-dependent additive noise 
model. Then the minimum mean square error 
criterion is applied to the model. The resulting 
filter has the same form as the Lee filter but with a 
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different weighting function. Because Kuan filter 
made no approximation to the original model, it 
can be considered to be superior to the Lee filter.

The resulting grey-level value R for the 
smoothed pixel is:

R = Ic *W + Im * (1–W)  (17)

where:

W C C C
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Ic = center pixel in filter window, Im = mean value 
of intensity within window, and S = standard 
deviation of intensity within window.

The Kuan filter is used primarily to filter 
speckled radar data. It is designed to smooth out 
noise while retaining edges or shape features in 
the image. Different filter sizes will greatly affect 
the quality of processed images. If the filter is too 
small, the noise filtering algorithm is not effective. 
If the filter is too large, subtle details of the image 
will be lost in the filtering process. A 7×7 filter 
usually gives the best results. The NumberofLooks 
parameter is used to estimate noise variance and 
it effectively controls the amount of smoothing 
applied to the image by the filter. Theoretically, 
the correct value for NumberofLooks should be 
the effective number of looks of the radar image. 
It should be close to the actual number of looks, 
but may be different if the image has undergone 
re-sampling. The user may experimentally adjust 
the NumberofLooks value so as to control the ef-
fect of the filter. A smaller NumberofLooks value 
leads to more smoothing; a larger NumberofLooks 
value preserves more image features.

Speckle Reducing Anisotropic 
Diffusion (SRAD) Filter

In this chapter (Yu & Acton, 2002), the authors 
provides the derivation of speckle reducing 
anisotropic diffusion (SRAD), a diffusion method 
tailored to ultrasonic and radar imaging applica-
tions. SRAD is the edge-sensitive diffusion for 
speckled images, in the same way that conven-
tional anisotropic diffusion is the edge-sensitive 
diffusion for images corrupted with additive noise. 
At first authors had shown that the Lee and Frost 
filters can be cast as partial differential equations, 
and then SRAD filter is derived by allowing edge-
sensitive anisotropic diffusion within this context. 
SRAD exploits the instantaneous coefficient of 
variation, same as the Lee and Frost filters utilize 
the coefficient of variation in adaptive filtering. 
The instantaneous coefficient of variation is a 
function of the local gradient magnitude and 
Laplacian operators.

Speckle Reduction Using 
Wavelet Transform

In paper (Sharma, Sheoran, Jaffery, & Moinud-
din, 2008), authors have introduced a method for 
improvement of signal-to-noise ratio in digital 
holography using wavelet transform. The basic 
problem in optical and digital holography is the 
presence of speckle noise in the reconstruction 
process, which reduces the signal-to-noise ratio 
(SNR). The presence of speckle noise is serious 
drawback in optical and digital holography since 
it substantially reduces the SNR in the recon-
structed image. This issue has been addressed in 
this chapter.

Other methods for speckle reduction from 
digital holographic images include:

In paper (Monroy, & Garcia-Sucerquia, 2009), 
authors have introduced a method for increment-
ing lateral resolution in digital holography by 
speckle noise removal. Experimental features 
such as wavelength, camera specifications and 
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reconstruction distance determine the theoretical 
limit for lateral resolution in digital holography. 
However, the actual experimental resolution 
limit is about 50% below such theoretical limit 
due to the high-contrast speckle noise presented 
in the reconstructed holograms. In this chapter, 
the proposed method is based on extended work 
presented in paper (Garcia-Sucerquia et al., 2006). 
By this approach of reducing the contrast of the 
speckle noise, it is experimentally shown that an 
improvement of the order of 50% can be reached 
when 100 reconstructed images are superimposed.

PDE-Based Filters

In recent years, several PDE based methods have 
been developed for removal of additive noise from 
images (Perona, & Malik, 1990; Gilboa et al., 
2004; You, & Kaveh, 2004) which can be used 
by homomorphic filters to reduce speckle noise. 
The basic idea behind PDE based noise removal 
are based on energy minimization techniques 
discussed as follows:

In PDE based noise removal techniques (Ro-
meny, 1994; Caselles et al., 1998), suppose I is a 
2D scalar noisy image that we want to restore and 
the noise can be considered as high frequency 
variations σ  with low amplitude, added to the 
pixels of the regular image.

I Inoisy regular= + σ  (18)

To regularize Inoisy a common idea is to minimize 
its variations estimated by gradient norm of image:

|| || ( )∇ = +I I Ix Y
2 2  (19)

Then the corresponding variational problem 
is the minimization of energy functional

min ( ) || ||
:I R

E I I d
Ω

Ω

Ω
→

= ∇∫ 2  (20)

The necessary condition for minimizing the 
energy functional E(I) described by equation (20) 
can be obtained using Euler-Lagrange minimiza-
tion that results in following heat equation

∂
∂
= ∇ = +

I
t

c I c I Ixx YY
2 ( )  (21a)

With initial condition as the observed noisy 
image given as:

I(t-0) = Inoisy (21b)

where ∇2I  is Laplacian of image I and c is the 
diffusion constant and I(x, y, t) = I(x, y) .This 
equation describes the isotropic diffusion process. 
The basic disadvantage of the isotropic diffusion 
is that in addition to noise removal it may also 
blur the edges and fine structures present in the 
image after certain iterations.

Perona and Malik (1990) proposed a nonlinear 
diffusion method to avoid blurring and localiza-
tion problem of linear diffusion filtering which is 
termed as anisotropic diffusion. Anisotropic diffu-
sion is the opposite of isotropic, i.e. to designate 
a regularization process that does not smooth the 
image with the same weight in all the spatial direc-
tions.This achieves both noise removal and edge 
enhancement through the use of a non-uniform 
diffusion which acts as unstable inverse diffusion 
near edges and as linear heat equation like diffu-
sion in homogeneous regions without edges. In 
paper (Perona & Malik, 1990), authors have used 
the anisotropic diffusion process to avoid blur-
ring and localization problem of linear diffusion 
filtering to remove additive noise from images. 
In anisotropic diffusion based filter, the basic idea 
is that heat equation (21) for linear diffusion can 
be written in divergence form:

∂
∂
= ∇ = = ∇∇

I
t

I div gradI I2 ( ) .
� �

 (22)
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The introduction of a conductivity coefficient 
c in the above diffusion equation makes it pos-
sible to make the diffusion adaptive to local image 
structure [PM]:

∂
∂
= ∇ ∇ = ∇ +∇ ∇

I
t

c I c I c I
� �
. .2  (23)

The two possible choices for diffusion coef-
ficient c are:

c
I

k
andc

I
k

1 2 2 2

2

1

1
= −

∇







 =

+
∇

exp
|| ||

|| ||
;  

(24)

where k>0.
Both expressions are equal up to first order 

approximation and k is a fixed gradient threshold 
that differentiates homogeneous area and regions 
of contours and edges. The value of conductivity 
coefficient ranges in between 20-50.

In anisotropic diffusion based model (Perona, 
& Malik, 1990), if real time factor t is replaced 
by complex time factor itand the diffusion coef-
ficient c It

n( )∇ by c(Im(I)) then it leads to fol-
lowing complex diffusion equation (Gilboa et al., 
2004) originally proposed for image enhancement 
and additive noise removal from digital images.

∂
∂
= ∇( )I

t
div c I I(Im( ))  (25)

There are two variants of complex diffusion 
based filter. First one is linear complex diffusion 
based filter, and the second one is nonlinear com-
plex diffusion based filter. In linear complex 
diffusion based filter for image enhancement and 
de-noising, the authors (Gilboa et al.,2004) pro-
posed to replace the diffusion coefficient term in 
equation (25) with a complex diffusion coefficient 
c i= exp( ),θ  and for nonlinear complex diffu-

sion, the diffusion coefficient is defined as follows 
(Gilboa et al., 2004):

c I
e

I
k

i

(Im( ))
Im( )

=

+








θ

θ
1

2
 (26)

Here k is the edge threshold parameter. The 
value of k ranges from 1 to 1.5 for digital images. 
The value of k is fine tuned according to the ap-
plication in hand. For experimentation purposes 

value of θ  is chosen to be π
30

.

In a recent work (Srivastava, Gupta, & 
Parathasarthy, 2010), authors have proposed a 
partial differential equation (PDE)-based homo-
morphic diffusion filter to reduce speckle noise 
from digitally reconstructed holographic images. 
For digital implementations, the proposed scheme 
was discretized using finite differences scheme. 
Further, the performance of the proposed PDE 
based technique is compared with other speckle 
reduction techniques such as homomorphic aniso-
tropic diffusion filter based on extended concept 
of (Perona, & Malik, 1990), homomorphic Weiner 
filter, Lee filter, Frost filter, Kuan filter, speckle 
reducing anisotropic diffusion (SRAD) filter and 
hybrid filter in the context of digital holography. 
For the comparison of various speckle reduc-
tion techniques, the performance is evaluated 
quantitatively in terms of all possible parameters 
that justify the applicability of a scheme for a 
specific application. The chosen parameters are 
mean-square-error (MSE), normalized mean 
square error (NMSE), peak-signal-to-noise ratio 
(PSNR), speckle index, average signal-to-noise 
ratio (SNR), effective number of looks (ENL), 
correlation parameter (CP), mean structure simi-
larity index map (MSSIM) and execution time 
in seconds. For experimentation and computer 
simulation, MATLAB 7.0 has been used and the 
performance is evaluated and tested for various 
sample holographic images for varying amount 
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of speckle variance. The results obtained justify 
the applicability of proposed schemes.

RESULTS AND COMPARISONS

In this section, the results of various filters are 
presented for speckle reduction from digital holo-
graphic images and a comparative study has been 
shown. The performance is measured in terms of 
speckle index (SI) and Average signal-to-noise 
ratio (SNR) defined as follows:

Speckle Index (SI)

Since speckle noise is multiplicative in nature, 
average contrast of an image may be treated as a 
measure of speckle removal. Speckle index (SI) 
is defined as,

SI
I

E I
=

var( )

( )
.  (27)

and its discrete version for an image reads,

SI
mn

i j
i jj

n

i

m

=
==
∑∑1

11

σ
µ
( , )
( , )

 

where m × n is the size of the image, µ is the 
mean and σ  is the standard deviation. The 
speckle index can be regarded as an average re-
ciprocal signal-to noise ratio (SNR) with the 
signal being the mean value and noise being the 
standard deviation.

Average SNR=1/SI.  (28)

Figure 4 shows the visual results of various 
speckle reduction filters for the sample digital 
holographic image holographic.jpg. Table 1 

shows the performance comparison of various 
filters in terms of Avg. SNR and speckle index 
for the same image. From Figure 4 and Table 1, 
it can be seen that homomorphic complex diffu-
sion based method is outperforming all methods 
in consideration and it may be considered as an 
optimal choice for speckle reduction from digital 
holographic images.

FUTURE RESEARCH DIRECTIONS

Some of the open problems related to digital 
holographic images include:

1. Devising techniques for speckle reduction 
and zero- order diffraction from holographic 
images using partial differential equation 
(PDE) based approaches in variational 
framework.

2. Devising wavelet based techniques for en-
hancement, restoration and speckle reduc-
tion.

3. Devising techniques for encrypting of 
information with digital holography using 
wavelet based and PDE based approaches.

4. Use of hybrid techniques such as one from 
Fourier’s optics based and another one in-
volving wavelet or PDE-based approaches 
and many more.

CONCLUSION

In this chapter the basic concepts of digital ho-
lography, difference between digital holography 
and photography, advantages of digital hologra-
phy and its applications have been discussed in 
brief in introduction part. The general principles 
of holographic recording and reconstruction and 
principles of formation of speckle noise in digital 
holographic images have been discussed in section 
followed by introduction. The various techniques 
for speckle reduction available in literature are 
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Figure 4. (a) Original speckled holographic image, holographic.jpg; and Filtered image using(b) Ho-
momorphic complex diffusion based method (c) Homomorphic anisotropic diffusion method (d) Homo-
morphic Wiener Filter (e) Lee Filter (f) Frost Filter (g) Kuan Filter (h) SRAD filter.

Table 1. Comparison of performances of various speckle reduction filters for the sample digital holo-
graphic image, holographic.jpg, SNR of original speckled image= 225.5583, Speckle Index of original 
speckled image 

Speckle Reduction Filters SNR of restored image Speckle Index of Restored Image

Homomorphic complex diffusion based 
method

256.8098 0.00380

Homomorphic anisotropic diffusion method 249.3765 0.00401

Homomorphic Wiener Filter 256.410 0.00390

Lee Filter 238.0952 0.00420

Frost Filter 243.9024 0.00410

Kuan Filter 246.9135 0.00405

SRAD filter 255.1020 0.00392
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also discussed. The various important techniques 
discussed in this chapter for speckle reduction 
include homomorphic filtering approach, and 
various specialized filters such as speckle re-
ducing anisotropic diffusion based filter, PDE 
based methods. Further, the implementation and 
performance analysis of various speckle reduc-
tion techniques are presented. The homomorphic 
complex diffusion based speckle reduction method 
performs better in comparison to other methods 
in consideration.
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KEY TERMS AND DEFINITIONS

Digital Holography: In digital holography, 
both the amplitude and the phase distribution of 
light coming from object being imaged can be 
recorded in any plane between the object and the 
observer producing the complete realistic field of 
view as originally observed.

Enhancement: This is one of the digital im-
age processing tasks that enhances or highlights 
the visual quality of the image from its previous 
version.

Homomorphic Filter: This filter is used for 
speckle reduction from digital images using filters 

defined for additive noise removal in logarithmic 
domain. In logarithmic domain, the multiplicative 
noise converts in to additive noise.

Mathematical Hologram: In digital holog-
raphy, the object’s beam complex amplitude is 
called the mathematical hologram.

PDE-Based Filters: Partial differential equa-
tion based filters derived using variational calculus 
by minimizing the energy functional of the image 
defined in terms of gradient norm of the image.

Restoration: This is one of the digital image 
processing tasks that removes or reduces the noise 
from images to improve its visual quality.

Speckle Index: One of the performance mea-
sures for speckle noise. It can be regarded as an 
average reciprocal signal-to noise ratio (SNR).

Speckle Noise: A multiplicative noise that 
appears in digital holographic images. It degrades 
the visual quality of the image. This noise is in-
troduced during the formation of image.

Speckle Reduction: It deals with the methods 
to reduce speckle noise.
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INTRODUCTION

With the release of Avatar and others three-
dimensional (3D) movies, and the emergence of 
3D TVs and monitors, 3D imaging technology 
started penetrating into our daily lives. Thus, 3D 

imaging has become unprecedentedly important 
and close to ordinary people.

3D imaging is essential to represent the physical 
object with 3D contents either in a digital format 
or by an analog means. However, an enormous 
amount of effort has been put to represent the scene 
digitally because it is easier to manipulate in this 
manner. To digitalize a 3D scene, there are mainly 
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ABSTRACT

With the advance of software and hardware, three-dimensional (3D) scene digitization becomes increas-
ingly important. Over the years, numerous 3D imaging techniques have been developed. Among these 
techniques, the methods based on analyzing sinusoidal structured (fringe) patterns stand out due to their 
achievable speed and resolution. With the development of digital video display technologies, digital fringe 
projection techniques emerge as a mainstream for 3D imaging. However, developing such a system is 
not easy especially when an off-the-shelf projector is used. The major challenging problems are: (1) 
the projection system nonlinearity; (2) the precise synchronization requirement; and (3) the projection 
system speed limit. This chapter will present an alternative route for 3D imaging while reducing these 
problems. The fundamentals of the proposed technique will be introduced, the analytical and experimental 
results will be shown, and its advantages and limitations will be addressed.



122

High-Speed, High-Resolution 3D Imaging Using Projector Defocusing

two approaches: passive and active. The passive 
methods (e.g., stereo vision) are to recover the 3D 
information from natural 2D photographs. They 
essentially capture photographs of the object from 
different viewing angles and obtain the depth by 
finding the correspondences between the image 
pairs, and by establishing the triangulation between 
the object point and the camera sensor locations. 
These methods work well for applications where 
the accuracy is not the primary focus, such as the 
entertainment. However, hinging on identifying 
the correspondences between image pairs, the 
measurement accuracy is not high if the object 
does not have very strong texture information 
(Zhang, 2010b).

Active methods, on the other hand, recover 
depth information by actively placing some vivid 
features on the object surface to assist the corre-
spondence establishment. Typically, an active light 
is used because of its surface noncontact nature. 
The active light can be a single wavelength laser, 
a range of color spectrum, or a broadband white 
light. The active features can be dots, lines, and 
area structured patterns (Salvi et al, 2010). For 
high-speed applications, the whole area structured 
patterns are usually desired. There are many ways 
to generate the structured patterns, such as laser 
interference, gratings, slide projectors, etc. How-
ever, the most convenient means is to use a digital 
video projector. The patterns can be different in 
terms of shape and structures, binary, sinusoidal, 
narrow and wide, etc. Among these techniques, 
the sinusoidal structured (fringe) patterns based 
methods stand out because it is most close to the 
natural light propagation (in sinusoidal way). The 
phase-shifting techniques have been studied over 
the past decades and have been used broadly in 
numerous applications (Gorthi & Rastogi, 2010). 
Conventionally, the fringe patterns are generated 
by laser interference, which is good in terms of 
measurement accuracy and stability. Digital fringe 
projection techniques, where a digital video pro-
jector is used, start expanding its use because of 
its simplicity.

There is some success and advancement in 
the technological development of digital fringe 
projection techniques for 3D imaging, which has 
been thoroughly reviewed in reference (Zhang, 
2010a). The commercial digital video display 
systems are designed for the purposes other than 
3D imaging. There are a number of challenges in 
order to use them for high-speed and high-accuracy 
3D imaging. These include handling the problems 
of (1) the projection system nonlinearity, (2) the 
precise synchronization requirement, and (3) the 
projection system speed limit (Lei & Zhang, 2010).

The objective of this chapter is to present an 
alternative route for 3D imaging technique us-
ing a digital fringe projection and phase shifting 
technique. This new technique has the potential to 
significantly reduce the problems of the existing 
digital fringe projection technique, to drastically 
simplify the system development for non-experts, 
and thus to speed up its use in our daily lives. In 
particular, we will present some of our most recent 
research in high-speed 3D imaging area that uses 
this technique.

BACKGROUND

Over the past decades, a number of 3D imaging 
techniques have been developed including some 
with real-time capability (Huang et al, 2005; Li 
et al, 2010; Pawlowski et al, 2002; Quan et al, 
1995; Takeda & Mutoh, 1983; Zhang & Huang, 
2006a). With recent advancement in computational 
and shape analysis techniques, high-speed 3D 
imaging has become unprecedentedly important. 
Over the years, a number of techniques have been 
developed to reach real-time capability, including 
spacetime stereo (Zhang, et al, 2004, Davis, et al, 
2005), structured light (Rusinkiewicz et al, 2002), 
and fringe projection (Zhang & Huang 2006). 
Among these techniques, fringe analysis stands 
out because of its numerous advantages (Gorthi 
& Rastogi, 2010).
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A fringe pattern is essentially a special case 
of a structured pattern in that the stripe intensity 
varies sinusoidally. The Fourier profilometry 
method (Takeda & Mutoh, 1983) that uses a single 
fringe pattern could reach the fastest speed thus 
it has been applied to many areas (Su & Chen, 
2001; Su & Zhang, 2010), and has been used to 
measure numerous extreme phenomena (Takeda, 
2010). This method is basically to obtain the 
phase information by applying Fourier transform 
of the fringe pattern, and 3D information will be 
extracted from the phase. This technique is very 
suitable for measuring smooth surfaces, while has 
the limitations if it is used to measure complex 
shapes. Windowed Fourier transform technique 
endeavors to alleviate some problems of the 
conventional Fourier method by processing the 
fringe pattern patch by patch (Qian, K, 2004). 
However, challenges still remain for the single 
fringe pattern based Fourier technique to measure 
complicated objects.

To address the limitations of single fringe pat-
tern based 3D imaging techniques, phase-shifting 
methods are proposed. The phase shifting methods 
use more fringe patterns with spatial or temporal 
shift in phase to perform better measurement. 
Instead of performing the measurement referring 
to the whole image, a phase-shifting method is to 
provide the measurement through a point-by-point 
operation. Therefore, this technique gives better 
spatial resolution (Zhang, 2010b). Various phase-
shifting methods have been proposed including 
three-step, four-step, and least-square algorithms 
(Schreiber & Bruning, 2007). Since it requires a 
minimum number of three phase-shifted fringe 
images to allow for point by point 3D imaging, this 
technique requires capture three individual images, 
or a single color image for each measurement. 
Because only three fringe patterns are required to 
perform one 3D measurement at pixel-level spatial 
resolution, this technique has the potential to real-
ize high-speed and high-resolution 3D imaging.

Conventionally, the fringe patterns are either 
generated by a mechanical grating or by laser 

interference. They have been very successfully 
applied to numerous industrial applications in 
optical metrology. However, it is typically not very 
easy for them to adjust fringe pitches (periods), 
nor accurately shift them in phase domain.

The technique of projecting sinusoidal fringe 
patterns with a digital video projector is called 
the digital fringe projection technique. It recently 
emerged as a mainstream in 3D imaging, and has 
the advantages of generating and controlling the 
fringe patterns accurately and easily. There is some 
success and advancement in using this technology 
for real-time 3D imaging (Li et al, 2010; Zhang 
& Huang, 2006a; Zhang & Yau, 2006, Zhang et 
al, 2006). However, developing a high-speed 3D 
imaging system with an off-the-shelf projector 
remains difficult, which will be explained in the 
next section.

To address the challenges of the existing 3D 
imaging technologies, this chapter will present 
a new 3D imaging approach that was recently 
developed in our research group. Because of 
some of its advantageous features of this new 
technique and also because of the fundamental 
limitations of the current off-the-shelf hardware 
components, this technique shows great potential 
to lead some breakthroughs in the field of high-
speed 3D imaging. In particular, we will focus on 
the following three major pieces of work that we 
have recently developed: (1) improved the existing 
real-time 3D shape measurement speed without 
significantly increases its hardware costs (Gong 
& Zhang, 2010a); (2) reached a kHz 3D shape 
measurement speed with a simple and inexpensive 
digital-light-processing (DLP) projector (Gong 
& Zhang, 2010b); and (3) achieved a superfast 
phase-shifting method for unprecedentedly high-
speed 3D imaging: 667 Hz (Zhang et al, 2010). 
In particular, we have developed a system that 
has doubled our real-time 3D imaging speed and 
reached the maximum rate of 120 Hz if a DLP 
projector and a three-step phase-shifting method 
are used. The second technique we have devel-
oped was essentially to convert a DLP projector 
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to be a flexible sinusoidal grating system for fast 
motion capture. Implementing this technique  
to a recently innovated DLP Discovery projec-
tion platform, a potential tens-of-kHz rate 3D  
imaging is feasible. All these could not be realized 
without the defocusing technique that we have 
recently developed.

MAIN FOCUS OF THE CHAPTER

Principles of Digital Fringe-
Projection and Phase-
Shifting Technique

Figure 1 shows the setup of a digital fringe projec-
tion system. This is a typical triangulation based 
system. A computer generated sinusoidal fringe 
pattern is projected by a projector onto an object 
surface, a camera, from another viewing angle, 
captures the scattered fringe images by the object. 
The computer software is then used to process and 
recover the 3D shape. Since this is a triangulation 
based system, the correspondences between the 
projector projected image and the camera captured 
image must be identified. In a fringe projection 
system, this correspondence is established in 
phase domain. In other words, a point on the 
camera corresponds to the point projected by the 
projector only if both points have the same phase 
value. Because the structured pattern contains 
vertical stripes, each phase value corresponds to 
a vertical line on the projected image. Therefore, 
epipolar geometry is needed in order to identify 
the unique correspondences (Zhang & Huang, 
2006b). Once the correspondence is identified, 
the depth information can be recovered based on 
triangulation. In this technique, the correspon-
dence was established through the phase, which 
will be explained in the next Subsection.

Fundamentals of Phase-Shifting 
Algorithm

Phase-shifting techniques have been widely used 
in optical metrology. Over the years, a number of 
phase shifting algorithms have been developed 
including three-step, four-step, least square al-
gorithms etc. (Schreiber & Bruning, 2007). All 
these algorithms differ in terms of the number 
of fringe images required, the amount of phase 
shift, but they are all the same in terms of phase 
calculation, pixel by pixel.

A three-step phase-shifting algorithm is very 
commonly used in high-speed applications since 
it requires the least number of fringe patterns. 
Three fringe images of a three-step phase-shifting 
algorithm can be represented as

I x y I x y I x y x y1 2 3( , ) ( , ) ( , )cos[ ( , ) / ],= ′ + ′′ −φ π  
(1)

I x y I x y I x y x y2( , ) ( , ) ( , )cos[ ( , )],= ′ + ′′ φ      (2)

I x y I x y I x y x y3 2 3( , ) ( , ) ( , )cos[ ( , ) / ].= ′ + ′′ +φ π  
(3)

Here, ′I x y( , )  is the average intensity, ′′I x y( , )  
the intensity modulation, and φ( , )x y  the phase 
to be solved for. Solving Equations (1)-(3) simul-
taneously, the phase can be obtained as:
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The phase value provided by this equation 
only ranges from −π  to +π , which will result 
in 2π  phase discontinuities. To obtain a continu-
ous phase map, a phase unwrapping algorithm is 
usually needed (Ghialia & Pritt, 1998). Once the 
continuous phase map is obtained, 3D information 
can be recovered if the system is calibrated (Zhang 
& Huang, 2006b). To recover one 3D shape,  
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the system based on binary patterns uses codeword 
to establish correspondence between the  
captured images and the projected images. The 
codeword, a unique value, is formed by a sequence 
of stripes composed of 0s (purely black) or 1s 
(purely white) and can be determined from cap-
tured binary structured images. As explained 
previously, a method using binary structured pat-
terns cannot reach pixel-level resolution spa-
tially because the stripe width must be larger than 
one projector’s pixel.

In this phase-shifting technique, the phase 
value is regarded to as the codeword that is used in 
the binary structured light technique because they 
are unique for each line on the projected fringe 
patterns. Therefore, once the phase is obtained 

from the captured fringe images, the codeword 
can be determined, 3D information can then be 
recovered from the phase. As can be seen in Equa-
tion (4), the phase here is calculated pixel by pixel, 
thus, the 3D information can be obtained pixel by 
pixel, which is advantageous over most other 3D 
imaging techniques. Therefore, this technique al-
lows for pixel-level spatial resolution. Since only 
three images are required, it is possible to achieve 
high-speed (Zhang, 2010a).

In the meantime, from Equations (1) - (3), we 
can obtain the texture shown in Equation 5.

Because the texture is obtained point-by-point, 
and precisely aligned with the 3D geometry, this 
is another advantage of 3D imaging with a phase-
shifting technique.

I x y I x y I x y
I I I I I I I I

t( , ) ( , ) ( , )
( ) ( )

= ′ + ′′ =
+ +

+
− + − −

1 2 3 1 3
2

2 1 3
2

3

3 2

3
..  (5)

Box 1.

Figure 1. Setup of a digital fringe-projection and phase-shifting technique
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Major Concerns of a Conventional 
Digital Fringe Projection System

Despite the success of using a digital fringe 
projection technique for real-time 3D imaging, 
challenges still remain, and problems still exist. 
There are three major problems of the existing 
digital fringe projection system for accurate 3D 
imaging, and for further improving its speed.

Challenge #1: The nonlinearity of the projec-
tion system. The first major challenge about this 
technique is the nonlinear effect of a projector. To 
perform high quality 3D imaging using a digital 
fringe projection and phase-shifting method, 
the projector nonlinearity calibration is usu-
ally mandatory. This is because the commercial 
video projector is usually a nonlinear device that 
is purposely designed to compensate for human 
vision. However, for 3D imaging, this nonlinear 
effect increases the complexity of the system 
development, and induces measurement errors. A 
variety of techniques have been studied including 
the methods that actively changing the fringe to 
be projected (Huang et al., 2002; Kakunai et al., 
1999), and those that passively compensating for 
the phase errors (Guo et al., 2004; Pan et al., 2009; 
Zhang & Huang, 2007; Zhang & Yau, 2007a). 
Moreover, because the output light intensity 
does not change much when the input intensity is 
close to be 0 or/and 255 (Huang et al, 2002), it is 
impossible to generate sinusoidal fringe images 
with full intensity range (0-255). In addition, our 
experiments found that the projection nonlinear 
gamma actually changes over time, thus the system 
needs to be re-calibrated frequently.

Challenge #2: The precise synchronization 
requirement for the whole system. Because the 
projector is a digital device that generates the full 
grayscale image at a certain frequency, which is 
typically the refresh rate of the image. Therefore, 
in order to capture the grayscale images accurately 
and correctly, the camera must capture at least one 
full refresh cycle. For high speed 3D imaging, it is 
desirable to capture only one cycle. Therefore, the 

camera must be precisely synchronized with the 
projector, i.e., the camera must start its exposure 
when the image starts refresh and must stop its 
exposure when the refresh finishes. For instance, 
the DLP projector generates the grayscale fringe 
images by time modulation (Hornbeck, 1997), 
thus the camera exposure time cannot be shorter 
than the single channel projection time (1/360 
sec). This limits its application to measure very 
fast phenomena when a very short exposure  
is required.

Challenge #3: The speed limit of the projec-
tion system. Because of its digital fringe genera-
tion nature, the 3D imaging speed is ultimately 
determined by the fringe projection rate: 120 Hz 
for a typical DLP projector. In order to capture a 
fast motion, a “solid-state” fringe pattern is usu-
ally needed. The solid-state fringe pattern can 
be generated by a mechanical grating, or by a 
laser interfering. However, as addressed earlier, 
the digital fringe projection technology usually 
cannot produce solid-state fringe pattern. To take 
advantage of the merits of digital fringe generation 
techniques, we need to circumvent the associate 
problems to achieve fast 3D imaging speed.

All these problems and challenges hinder the 
3D imaging applications especially for precision 
measurement. On the contrast, if a technique can 
generate ideal sinusoidal fringe images without 
worrying about the problems introduced above, 
it would significantly simplify the 3D imaging 
system development, and drastically speed up its 
use in our daily life.

Proposed Technique

To address the problems of the current digital 
fringe projection system, we recently proposed a 
technique that is to generate sinusoidal fringe 
patterns based on defocusing effect (Lei & Zhang, 
2009). This technique allows for “solid-state” 
fringe generation without requiring nonlinear 
gamma calibration. Instead of using 8-bit grayscale 
fringe images, this technique only uses binary (0s 
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or 255s) structured patterns. The idea came from 
our two observations: (1) seemingly sinusoidal 
fringe patterns often appear on the ground when 
the light shines through an open window blind; 
and (2) the sharp features of an object are blend-
ed together in a blurring image that was captured 
by an out-of-focus camera. The former gives the 
insight that an ideal sinusoidal fringe image could 
be produced from a binary structured pattern, and 
the latter provides the hint that if the projector is 
defocused, the binary structured pattern might 
become ideal sinusoidal. Because only binary 
patterns are needed, the nonlinear response of the 
projector would not be a problem since only 0 
and 255 intensity values are used. Moreover, phase 
shifting can be introduced by spatially moving 
the binary structured patterns. For instance, a 
2 3π /  phase shift can be realized by shifting 
the binary structured patterns spatially by 1/3 of 
its period. Therefore, a 3D shape measurement 
system based on a digital fringe projection  
technique can be developed without nonlinear 
gamma calibration.

This binary status coincides with the DLP 
technology that operates the digital micro mirrors 
ON/OFF, in binary stage. Therefore, theoretically, 
if a micro mirror is set to be a value of 0 or 255, it 
should stay OFF or ON all the time. By this means, 
the micro mirror will act as “solid state” (does not 
refresh). Therefore, the solid-state structured light 
will be realized. Because the structured patterns 
are generated in solid state and any segment of 
time can represent the signal, there is no precise 
synchronization requirement between the projec-
tor and the camera. In the meantime, the exposure 
time can be shorter than the channel projection 
time, namely, less than 1/120 second for a 120 
Hz projector. Therefore, this technique allows 
for capturing extremely fast phenomena with a 
relatively inexpensive off-the-shelf DLP projector.

Because of the architecture of the digital cam-
eras, the capture and data transfer usually cannot 
happen simultaneously if an external triggering 

mode is utilized. This limits the 3D imaging speed 
to 60 Hz for a 120 Hz projector (Zhang & Yau, 
2007b; Li et al, 2010). With this new technology, 
it may enable the 120 Hz 3D imaging rate with the 
same hardware components. In addition, because 
only binary structured patterns are used, it actu-
ally allows for even faster fringe pattern switch-
ing rate since smaller size of data rate is needed. 
This, in turns, potentially allows for much faster 
3D imaging rate.

Generating Sinusoidal Fringe 
Patterns with Projector Defocusing

Because of the advantages of a phase-shifting 
based technique, it is desirable to use sinusoidal 
fringe patterns for 3D imaging. However, as ex-
plained earlier, the existing techniques to generate 
sinusoidal fringe patterns have some challenges 
to tackle with. In the meantime, if only binary 
structured patterns are used, those problems can 
be significantly alleviated or eliminated.

To illustrate the viability of generating sinu-
soidal fringe patterns with a projector defocusing, 
we performed an experiment. In this experiment, 
a DLP projector (Dell M109S, Texas) is used to 
project the computer generated binary patterns 
onto a white board. A camera (The Imaging Source 
DMK 21BU04, North Carolina), with the board 
on its focal plane, is to capture the reflected fringe 
patterns by the board. The projector’s focus is 
adjusted gradually from approximately perfectly 
focused to severely defocused. Figure 2 shows 
some frames of the captured fringe patterns. 
Figure 2(a) -(e) shows the progress of the binary 
structured pattern sent to a DLP projector with 
different degrees of defocusing. It clearly shows 
that the binary structured pattern becomes seem-
ingly more and more sinusoidal with the degree 
of defocusing increases. At certain point, the 
fringe patterns become approximately sinusoidal. 
Of course, when the projector is defocused too 
much, all the patterns are blended together, and 
there are no obvious structured patterns. Figure 
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2(f)-(j) shows the one of the cross sections for 
each fringe image. This experiment shows that 
it seems feasible to generate approximately si-
nusoidal fringe patterns by properly defocusing 
the binary one.

Theoretical Analysis

Because the structured pattern contains vertical 
stripes with exactly the same structures, to under-
stand how the pattern changes when the projector 
is defocused, we only need to understand its one 
horizontal cross section. The cross section is actu-
ally a square wave, which can be represented as
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The imaging (or projection) system can be 
regarded as a point spread function (PSF). The 
defocusing effect is essentially to blur the images. 
The degree of blur can be modeled as applying 
different size of PSF. Since the square wave only 
contains odd harmonics without even ones, it is 
easier for a filter to suppress the higher frequency 
components. This indicates the feasibility of gen-
erating sinusoidal fringe patterns by defocusing 
binary structured ones. If the binary patterns are 
moved horizontally, phase-shifted fringe patterns 
will be generated after defocusing. Therefore, this 
technique can be used for 3D imaging using a digi-
tal fringe projection and phase-shifting technique.

Figure 2. Binary structured pattern becomes more and more sinusoidal with the increase of degree of 
defocusing. (a)-(e) shows the progress of the fringe patterns; (f)-(j) shows their corresponding cross 
sections.
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Experiments

To demonstrate the viability of the proposed 3D 
imaging technology, a hardware system was devel-
oped. The system is composed of a DLP projector 
(Dell M109S, Texas), and a CCD camera (The 
Imaging Source DMK 21BU04, North Carolina). 
The projector is projecting binary fringe patterns 
with a period of 12 pixels per period, and a phase 
shift of 120 degrees (or 4 pixels in this case). The 
projector is properly defocused so that sinusoidal 
fringe patterns will be generated. Figure 3 (a)-(c) 
shows three captured fringe images. Equation (4) 
is applied to compute the wrapped phase map, 
as shown in Figure 3(d). This phase map is then 
unwrapped to obtain the continuous phase map by 
adopting a phase unwrapping algorithm (Zhang 
et al, 2007). Figure 3 (e) shows the unwrapped 
phase map. The unwrapped phase map can then be 
used to recover the 3D shape of the object (Zhang 
& Huang, 2006b). Figure 3(f)-(g) shows the ren-
dered result of the 3D shape. Figure 3 (h) shows 
the zoom in view of the object, it clearly shows 
that the system can capture very fine details with 
a relatively low resolution camera (640 X 480).

Some Recent Advances

The defocusing technology has recently led some 
breakthroughs in high-speed 3D imaging field. 
In particular, three major technological improve-
ments have been achieved, they are:

1.  The improvement of the real-time 3D imag-
ing speed.

2.  The realization of a high-speed 3D imaging 
with an off-the-shelf inexpensive projector.

3.  The achievement of a superfast phase-
shifting method for 3D imaging.

In this section, we will elucidate these  
technologies.

Improve the Real-Time 
3D Imaging Speed

Conventionally, a real-time 3D imaging technique 
based on a digital fringe projection and phase-
shifting method requires sinusoidal fringe patterns 
to be sent to a focused DLP projector (Zhang & 
Huang, 2006a; Li et al, 2010). However, due to 
its digital fringe generation nature, the camera 
and the projector must be precisely synchronized. 
Modern projectors usually have no time gap 
between channels. Therefore, in order to reach 
the projection speed, the camera must be able to 
readout the data simultaneously while it exposures. 
However, when the external triggering mode  
is used, a relative inexpensive camera usually 
takes some time to readout the data asynchro-
nously: usually 1 / (max frame rate) to readout 
the image before it takes another one. Moreover, a 
typical DLP projector has different time duration 
for different color channels to balance its output 
color. This means that the camera must be able to 
change its exposure time from frame to frame. In 
reality, this is not an easy task, especially when 
the external trigger mode is in use. Therefore, it 
is usually very difficult for an ordinary system 
to achieve the maximum 3D imaging speed: the 
projector’s refresh rate. As a result, Only 60 Hz 
3D imaging rate is achieved for a modified120 
Hz projector (Zhang & Yau, 2007b, Li et al 2010). 
In order to solve this problem, a conventional ap-
proach is to employ a high-end camera so that it 
can capture images when the data is reading out, 
and it allows for precise timing changes from 
frame to frame. However, this type of camera is 
usually extremely expensive.

On the contrast, if a binary structured pattern 
is used, it does not require the camera capture 
the full projection channel. This is because any 
portion of the signal can represent the projected 
image and the capture can happen any time and 
with any exposure time during the image projec-
tion. Therefore, it allows the use of a relatively 
inexpensive camera to reach the maximum speed. 
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By this means, with a relatively inexpensive 
camera, the 3D imaging system can double the 
previously maximum achievable speed and reach 
the refreshing speed of a DLP projector: 120 Hz.

This technique was verified by implementing it 
into our previously developed real-time 3D imag-
ing system (Zhang et al, 2007). In this system, a 
modified DLP projector (PLUS U5-632h, Japan) 
is used to switch the structured patterns at 120 Hz 
(RGB). Three color channels are encoded as three 
phase-shifted fringe patterns, and a camera (Jai 
Pulnix TM-6740CL, California) that is precisely 
synchronized with the projector is used to capture 
three color channels separately. We achieved 60 
Hz 3D imaging rate with a conventional method, 

and the exposure time of the camera is precisely 
2.78 ms since each projection channel lasts this 
amount of time. In this experiment, we chose 
the exposure time of the camera to be 0.78 ms 
and the camera capturing speed to be 360 Hz. If 
a conventional technique is used, the measure-
ment cannot be correctly performed, as shown 
in Figure 4 top row.

On the contrast, if the method introduced in 
this chapter is used, 3D imaging can be performed 
accurately even if the exposure time is 0.78 ms, 
which is less than the channel projection time, 
2.78 ms. Figure 4 shows the experimental result.

Figure 3. Example 3D shape measurement result using projector defocusing. (a)-(c) Three phase shifted 
fringe patterns; (d) Wrapped phase map; (e) Unwrapped phase map; (f) 3D rendering in shaded mode; 
(g) 3D shape with texture mapping; (h) Zoom-in view of the 3D shape.
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Figure 4. Experimental results of the 120 Hz 3D imaging technique with an exposure time of 0.78 ms 
(much less than the projection time 2.78 ms). The top row shows the measurement result using a con-
ventional method. (a)-(c) Three phase-shifted fringe patterns. It can be seen that the fringe patterns lost 
its sinusoidal structures. From these fringe patterns, the phase map can be obtained as shown in (d). 
The phase map shows irregular structures. (e) The recovered 3D profile that is not correctly captured. 
The bottom row shows the measurement result using the proposed defocusing technique. The sinusoidal 
fringe patterns look normal and the 3D profile can be correctly captured. The resolution of the camera 
used is 224×480.
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Realize High-Speed 3D Imaging with 
an Off-the-Shelf Inexpensive Projector

Because of its digital fringe pattern generation 
nature, the 3D imaging speed is ultimately deter-
mined by the fringe projection rate: 120 Hz for a 
typical DLP projector. Moreover, because the DLP 
projector generates the grayscale fringe images 
by time modulation, the camera exposure time 
cannot be shorter than the projection time. This 
limits its application to measure very fast motion 
when a very short exposure time is required. On 
the contrast, if we use binary structured patterns 
(0s and 255s), each micro-mirror always being one 
stage (either OFF or ON), thus identical structured 
patterns can be captured during any time interval. 
Again sinusoidal fringe patterns are generated by 
properly defocusing binary ones. As introduced 
earlier, from a single fringe pattern, 3D imaging 
can be performed through Fourier analysis. By this 
means, the 3D imaging speed can go beyond 120 
Hz, and the exposure time can be shorter than the 
projector refreshing time (1/120 sec).

Experimentally, we used a very inexpensive 
DLP projector (Dell M109S) to project the fringe 
patterns at 60 Hz, and a high-speed CMOS cam-
era (Phantom V9.1) to capture the projected fringe 
patterns. The camera captures the fringe images 
at 4000 Hz with exposure time of 240µs.  If a 
conventional fringe generation technique is used, 
where the 8-bit grayscale values are all used, the 
sinusoidal fringe patterns cannot be correctly 
captured. Figure 5 top row shows some typical 
frames of the captured fringe patterns. It clearly 
shows that the sinusoidal structure of the pattern 
is not very obvious and the fringe pattern cannot 
be captured correctly. This is because when the 

exposure time of the camera is much shorter than 
the channel projection time, the DLP projector 
cannot completely produce the full 8-bit grayscale 
image during the time period.

On the contrast, if a binary structured pattern 
and the defocusing technique are used, the fringe 
patterns can be captured with high quality. This 
is because each micro-mirror remains constant 
thus any time period will produce the same signal. 
Figure 5 bottom row shows the captured fringe 
patterns. It can be seen from these fringe images 
that even though the intensity of the fringe patterns 
are different, the sinusoidal structure is well pre-
served. The intensity variations are caused by the 
color of the projector. Even though a white struc-
tured pattern is used, the projector produces the 
white pattern by combining red, green, and blue 
channels in time sequence. Because the camera 
has different sensitivity to different spectrum of 
light, and the color light output of the projector 
has different intensity, the captured fringe pattern 
will be different in brightness during different 
projection timing.

Fourier method (Takeda & Mutoh, 1983) is one 
of the 3D imaging techniques that only require 
use of one single fringe pattern. Theoretically, 
the single fringe pattern can be written as shown 
in Equation (8).

If a Fourier transform is applied to the image 
and the conjugate frequency component and the 
DC component is filtered out, the resultant can 
be represented as the following signal in complex 
format
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From this equation, the phase can be  
calculated by
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Here, Im(x) is to obtain the imaginary part of 
the complex value x, and Re(x) is to obtain the 
real part of the complex value x. Once the phase 
is obtained, 3D information can be recovered 
from the phase following similar procedures as 
the phase-shifting technique.

To verify the performance of the proposed 
technique with the fast capturing rate, a rotating 
fan blade was measured. The fan is rotating at 
1,793 revolutions per minute (rpm) during the 
experiment. Figure 6 shows one of the measure-
ment results. The fringe pattern is captured at 

4,000 Hz and exposure time of 80µs . The image 
resolution is 480×480. This experiment shows 
that with a relatively inexpensive projector, the 
system can be used to measure very fast phenom-
ena (rotating fan blade).

Achieve Superfast Phase-Shifting 
Method for 3D Imaging

Previously, we demonstrated that it was feasible 
to image very fast phenomena with the proposed 
fringe generation technique with a relatively 
inexpensive projector and the single fringe analy-
sis technique. The Fourier method is very good 
to measure smooth surface at very fast speed 
(Karpinsky & Zhang, 2010). In the meantime, in 
order to measure very complex 3D structures, a 
phase-shifting technique is necessary. However, 
a typical digital video projector cannot change 

Figure 5. Comparison between captured fringe images with a high-speed camera and an off-the-shelf 
inexpensive projector when the exposure time is much shorter than each individual projection channel 
time. The projector refreshes at 60 Hz, and the camera captures at 4,000 Hz, the exposure time used for 
the camera is 240µs . The top row shows some example fringe images if a conventional fringe projection 
technique is use. The sinusoidal structure is not very obvious in these images. The bottom row shows 
some example fringe images if the defocusing technique is used. The fringe pattern still maintains high-
quality sinusoidal structures. Image resolution is 480×480.
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the phase-shifted fringe patterns at such a high 
frame rate.

The most recently developed DLP Discovery 
(Texas Instruments, Texas) technology has enabled 
1-bit image switching rate at tens of kHz. This 
innovation shows great potential for 3D optical 
metrology because of its flexibility to control 
the projected light accurately (Hoefling, 2004a, 
Hoefling 2004b; Hoefling & Aswendt, 2009). 
We have verified the feasibility of using the DLP 
Discovery technology for superfast 3D imaging 
with a digital fringe projection and sinusoidal 
phase-shifting method (Zhang et al, 2010). In our 
experiments, we used a DLP Discovery D4000 
with a 0.55’’ digital micro-mirror device (DMD) 
chip. It can switch binary images up to 32,550 Hz 
with a resolution of 1,024×768. On the contrast, 
if the same projection system is used to switch 
8-bit grayscale images, it can reach approximately 
291 Hz (or 97 Hz 3D imaging rate). The binary 
structured pattern combined with the defocusing 
technique thus can drastically increase the 3D 
imaging rate.

In this work (Zhang et al, 2010a), we used the 
DLP Discovery projection system that includes 
a DLP Discovery board (D4000) (Texas Instru-
ments, Texas), an ALP High Speed (Digital Light 
Innovations, Texas), and an optical module (S3X) 

(Visitech, Norway). With a Phantom V9.1 (Vision 
research, NJ) digital camera, we successfully de-
veloped a system that can achieve fringe image 
acquisition at 2000 Hz at an image resolution of 
576 X 576 with decent quality for white surfaces 
due to the low intensity of the light source. Because 
a three-step phase-shifting algorithm is used, the 
3D imaging speed is actually 667 Hz. This research 
has proved the success of using such a platform to 
achieve an unprecedentedly fast 3D imaging rate.

Due to the low surface reflectivity of live rab-
bit heart surfaces, the previous system only 
achieved 333 Hz 3D imaging rate (Zhang et al, 
2010b). To further increase the 3D imaging qual-
ity for the live hearts, we replaced the light source 
of the DLP Discovery projection system with a 
bright LED light (CBT-90-W, Luminus Devices, 
MA). This LED light has the potential to reach 
2200 lumens output light. The same camera is 
used to perform the measurement at even higher 
frame rate. We have successfully achieved a speed 
of 2000 Hz 2-D imaging, or 667 Hz 3D imaging 
for live rabbit hearts measurement. The exposure 
time used for the data capture is 490µs . Figure 
7 shows the some typical frames of the 3D heart 
surfaces when it is beating. This experiment was 
performed in Prof. Igor R. Efimov’s laboratory 
at Washington University in Staint Louis.

Figure 6. 3D imaging result of a rotating fan blade with the proposed technique and a very inexpensive 
projector. The data is captured at 4000 Hz with an exposure time of 80µs . (a) Photograph of the fan 
blade; (b) Fringe image; (c) Fourier spectrum; (d) Phase map; (e) 3D profile. The image resolution is 
480×480.



135

High-Speed, High-Resolution 3D Imaging Using Projector Defocusing

FUTURE RESEARCH DIRECTIONS

The digital fringe projection technology that uses 
a defocused projector has significantly simpli-
fied the 3D imaging system development, and 
has drastically advanced the area of high-speed 
imaging with off-the-shelf hardware components. 
However, this new technology is not trouble free: 
there are a number of challenging issues to explore 
in the future:

1.  The high-frequency harmonics phase er-
rors. The defocusing essentially is to filter 
out the high-frequency harmonics of the 
binary structured patterns. However, our 
experiments found that the high-frequency 
harmonics still exists for high-quality fringe 
patterns. In order to realize high-quality 3D 
imaging, the errors induced by the harmonics 
need to be reduced through either software 
approaches or hardware means.

2.  The depth range limitations. For a con-
ventional fringe generation technique, where 
fringe pattern is always sinusoidal if the 
nonlinearity of the projector is corrected. 
However, for this technique, the close-to-
be-ideally sinusoidal fringe pattern can be 
generated within a small depth range. As 
addressed earlier, the high-quality fringe 
patterns are needed to perform good mea-
surement. Therefore, the current technique 
can only perform high-quality measurement 
within relatively smaller depth range. Future 
research needs to be conducted to increase 
the depth range without sacrificing the merits 
of the proposed technique.

3.  The defocused projector calibration. All 
existing calibration technologies assume 
that the projector is in focus, which is a 
natural way to develop a 3D imaging system. 
However, this proposed technology requires 
the projector be defocused, which makes the 

Figure 7. Measurement results of a live rabbit heart with the superfast 3D imaging system. The 3D im-
age rate is 667 Hz, and the image resolution 576 X 576.
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projector (thus the system) calibration more 
complicated. In the future, new calibration 
methodologies have to be developed in order 
to perform high-accurate 3D imaging with 
the proposed technology.

CONCLUSION

We have presented a recently developed sinusoidal 
fringe generation technique, defocusing binary 
structured patterns, to realize high-speed, high-
resolution 3D imaging. By this means, the 3D im-
aging system development has been significantly 
simplified since the projector nonlinearity does 
not bring any problems into the imaging system. 
Moreover, because this new technique coincides 
with the DLP projector’s projection mechanism 
(binary operation), it permits some breakthroughs 
in the field of high-speed 3D imaging. We have 
presented three major studies that took advantage 
of this technology.

Of course, this technology is not trouble free: 
there are still a number of problems to be solved, 
and some challenges to be tackled with. Future 
research needs to be conducted to improve this 
technology. We believe that this technology will 
bring a lot new breakthroughs in the field of high-
speed 3D imaging because of its simplicity and 
its closeness to nature.
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KEY TERMS AND DEFINITIONS

Binary Structured Light: Light that is struc-
tured into a pattern, which can be used to encode 
a scene and only two intensity values are used 
for all the patterns.

Fringe Projection: Projecting sinusoidally 
varying fringe patterns (structured light) onto 
an object.

High Speed and High Resolution: The tech-
nique that could resolve both temporal and spatial 
resolution at very high details.

Phase Shifting: Process of taking multiple 
captured fringe patterns and performing phase 
wrapping and unwrapping to get an absolute 
phase map, which can then be used to acquire 
3D coordinates.

Phase Unwrapping: Finding and removing 
2π discontinuities resulting from the arctangent 
function used in phase wrapping. This can be done 
using a spatial phase unwrapping algorithm or 
using an encoded stair function.

Phase Wrapping: Taking multiple fringe 
patterns and wrapping them into a wrapped phase 
map. Typically, it is calculated by an arctangent 
function, which yields a phase map containing 
2π discontinuities.

Projector Defocusing: An object is placed 
in a position where the projector is out of focus.
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ABSTRACT

The production of 3D models has been a popular research topic already for a long time, and important 
progress has been made since the early days. During the last decades, vision systems have established 
to become the standard and one of the most efficient sensorial assets in industrial and everyday applica-
tions. Due to the fact that vision provides several vital attributes, many applications tend to use novel 
vision systems into domestic, working, industrial, and any other environments. To achieve such goals, 
a vision system should robustly and effectively reconstruct the 3D surface and the working space. This 
chapter discusses different methods for capturing the three-dimensional surface of a scene. Geometric 
approaches to three-dimensional scene reconstruction are generally based on the knowledge of the scene 
structure from the camera’s internal and external parameters. Another class of methods encompasses 
the photometric approaches, which evaluate the pixels’ intensity to understand the three-dimensional 
scene structure. The third and final category of approaches, the so-called real aperture approaches, 
includes methods that use the physical properties of the visual sensors for image acquisition in order to 
reproduce the depth information of a scene.
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INTRODUCTION

Three-dimensional object and surface reconstruc-
tion from images is an important topic in various 
application areas, such as quality inspection, 
clinical photography, robotics, agriculture, and 
archaeology. In the domain of quality inspec-
tion, a large number of inspection tasks depend 
on three-dimensional reconstruction techniques, 
such as the surface measurement applied to high-
precision engineered products such as aircraft 
wings (J. Xu, Xi, Zhang, & Shi, 2009; J. Xu, 
Xi, Zhang, Shi, & Gregory, 2010). Tasks of this 
kind usually require the accurate measurement of 
depth on small surfaces. Other tasks depend on 
the precise measurement of a sparse set of well 
defined points, for example to determine if an 
assembly process has been completed with the 
required accuracy, or measurement of the relative 
movement between important parts during a crash 
test. Three-dimensional clinical photographs have 
the potential to provide quantitative measurements 
that reduce subjectivity in assessing the surface 
anatomy of the subject before and after a surgi-
cal intervention by providing numeric scores for 
the shape, symmetry and longitudinal change of 
anatomic structures (Tepper et al., 2008; Janoos 
et al., 2009). Furthermore, the vast majority of 
nowadays mobile robots are equipped with one, 
two or more cameras in order to provide visual 
feedback in applications like maze exploration, 
map navigation and obstacle avoidance. (DeCub-
ber, Nalpantidis, Sirakoulis, & Gasteratos, 2008; 
Nevado, Garcia-Bermejo, & Casanova, 2004; 
Nalpantidis, Kostavelis, & Gasteratos, 2009; 
Nalpantidis, Chrysostomou, & Gasteratos, 2009). 
Besides, in the field of agriculture, new applica-
tions emerged recently, such as a mobile robotic 
system use cameras to reconstruct the surface of the 
plants to find parasites and report them (Šeatović, 
2008; Zhu, Lu, Luo, Tao, & Cheng, 2009). One 
more interesting application area includes the 
archaeological excavations and historic objects, 
where three-dimensional surface reconstruction 

is applied to many archaeological sites in order to 
preserve crucial details of the site and use them 
afterwards for 3D presentation and tourist attrac-
tion (El-Hakim, Beraldin, Picard, & Cournoyer, 
2008; Remondino, El-hakim, Baltsavias, Picard, 
& Grammatikopoulos, 2008).

The key feature of a vision system is its ca-
pability to see or capture portions of the world 
and to obtain a density of sampling in space and 
time. This sampling density is essential in several 
applications. In surveillance, dense sampling of 
space and time might allow us to track a single 
pedestrian throughout a complex of buildings. 
Multiple views of a geometry can be used to obtain 
3D reconstructions with appropriate assumptions, 
camera location and calibration information. Cur-
rently, they are used to produce reconstructions of 
quite complex geometries from a moving camera 
or from a static multi-camera system inside a room. 
For example, one might drive a camera through 
a city and build a geometric model from the re-
sulting video or one might watch a hanging robot 
inside a seminar room while tracking it from the 
reconstructed data. Once multiple views establish 
correspondences, their observations might be used 
to recover a geometric model as well as a model 
of the cameras’ current locations. The various 
application scenarios set different requirements 
on the reconstruction. In several tasks, it is suf-
ficient to produce a sparse set of 3D points, where 
3D information is available only for a very small 
number of pixels in the input images, while others 
require a dense reconstruction, with 3D informa-
tion available for every pixel in the input images. 
Other important factors include the size, shape, 
and material of the objects, the number of required 
images, requirements on positions of the cameras 
or light sources, and the time allowed for image 
capture and reconstruction.

This chapter discusses different methods for 
capturing the three-dimensional surface of a scene. 
A first classification distinguishes geometric, pho-
tometric, and real-aperture approaches. Geometric 
approaches to three-dimensional scene reconstruc-
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tion are generally based on the knowledge of the 
scene structure from the intrinsic and extrinsic 
camera parameters and are based on the modeling 
of the geometric aspects of image creation. These 
methods originate from the first photogrammetric 
methods and exploit the perspective projection of 
a three-dimensional scene into a two-dimensional 
image plane. Another class of three-dimensional 
scene reconstruction methods encompasses the 
photometric approaches, which evaluate the 
distribution of the pixel intensity in the image to 
infer the three-dimensional scene structure and are 
primarily based on photometric modeling. As long 
as sufficient information about the illumination 
conditions and the surface reflectance properties 
is available, these methods may provide dense 
depth maps of object surfaces. The third and final 
category of approaches includes methods, the so-
called real aperture approaches, where they use 
the physical properties of the optical system of 
the visual sensors for image acquisition, in order 
to produce depth information about the scene. 
The rest of this chapter is organized as follows: 
The three aforementioned classes for 3D surface 
generation are reported in the next three, respec-
tive, sections. Future research challenges for scene 
reconstruction are discussed in the next section. 
Last concluding remarks are made in the last sec-
tion of this chapter.

GEOMETRIC APPROACHES

Image Formation and Pinhole Camera Model
Two-dimensional image analysis has been 

the foundation for three-dimensional surface re-
construction since Laussedat and Meydenbauer 
developed the first photogrammetric methods 
back in 19th century (Laussedat, 1898; Meyden-
bauer, 1867). Now, that is used for mapping and 
reconstruction of buildings (Luhmann, 2003). The 
early photogrammetric methods were based on 
the geometric modeling of the image formation, 

exploiting the perspective projection of the 3D 
scene onto a flat 2D image plane.

The camera model used by most photogram-
metric and computer vision approaches is the 
pinhole camera, as shown below in Figure 1. 
The projection of a 3D point given in the camera 
coordinate system C, XC= [x1, y1, z1] into XJ = 
[u1,v1] in image coordinates can be denoted by 
the projection function P:

Xj = P(K,Xc)  (1)

The parameter K defines the internal (focal 
length, lens distortion parameters) camera orien-
tation. The projection function of a pinhole cam-
era is defined as:

u f
x

z1
1

1

= −  (2)

v f
y

z1
1

1

= −  (3)

where f is the distance between pinhole and image 
plane. Once multiple cameras are considered, it is 
practical to introduce a world coordinate system 
W, and specify the orientation Ti of each camera 
relative to this world coordinate system. Then 
the projection function of a point in the world 
coordinate system needs to be transformed into 
the camera coordinate system of the ith camera, 
Ci using a camera orientation Ti. In this case the 
projection function depends on both internal ori-
entation Ki and external orientation Ti:

Xj = P(Ti,Ki,X
C)  (4)

In the computer vision community, the internal 
camera orientation parameters are known as intrin-
sic camera parameters, while the external orienta-
tion parameters as extrinsic camera parameters. 
The projected points are then captured by a light 
sensitive device, typically a film or digital sensor. 
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In the case of a digital sensor, the light sensitive 
area is sampled and the light intensity is measured 
at each sample point (Luhmann, 2003). Note that 
the 3D point in camera coordinates Xc cannot be 
determined uniquely given camera parameters K 
and image point XJ, since they only define a ray 
in C on which XC is located.

Camera calibration is an emerging problem in 
the computer vision society and several research-
ers across the years have accomplished numerous 
solutions to a variety of occasions. To begin with, 
Barreto developed the first method for calibrating 
multiple cameras located across a room without 
using non-linear minimization and using a moving 
LED instead (Barreto & Daniilidis, 2004). More-
over, Sturm proposed a more generic concept for 
camera calibration by removing the parametric 
nature of the problem and adopted a more general 
projection model (Sturm & Ramalingam, 2004) 
and lately expanded this general imaging geometry 
to include central catadioptric cameras as well 
(Sturm & Barreto, 2008). Kanalla suggest a new 
generic camera model and calibration method 
for applications that need wide angle or fisheye 
lenses estimating all the parameters needed for 

a state-of-the-art accuracy (Kannala & Brandt, 
2006). A very wide field of view and especially 
fisheye lenses are commonly used for space ex-
ploration and robotic applications and thus camera 
calibration methods for these applications using 
fisheye lenses were developed from Gennery and 
Courbon respectively (Gennery, 2006; Courbon, 
2007). One of the most recent camera calibration 
methods was proposed by Furukawa, who achieve 
great pixel accuracy using multi-view stereo 
and bundle adjustment techniques to calibrate 
high resolution digital cameras (Furukawa &  
Ponce, 2009).

Bundle Adjustment

Most geometric methods for three-dimensional 
scene reconstruction from multiple images are 
based on establishing corresponding points in 
the images. For a single scene point XW observed 
in N images, the corresponding points XJi in each 
image i, where i = 1, …, N, can be determined 
manually or by automatic correspondence search 
methods. Given the extrinsic and intrinsic camera 
parameters, each image point defines a ray in 

Figure 1. Pinhole projection
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three-dimensional space, and in the absence of 
measurement errors, all N rays intersect in the 
scene point XW. Automatic detection of corre-
sponding points in arbitrary scenes is a challenging 
problem and an active research area (Moreels & 
Perona, 2007; Li & Allinson, 2008; Tuytelaars 
& Mikolajczyk, 2008). First general scene re-
construction methods based on images acquired 
from different views were developed by (Kruppa, 
1913). An overview of these early methods is given 
by (Luhmann, 2003). They aim to determine the 
intrinsic and extrinsic camera parameters and the 
three-dimensional coordinates of the scene points. 
Kruppa (1913) presented an analytical solution for 
the scene structure and extrinsic camera param-
eters from a minimal set of five corresponding 
image points. In classical bundle adjustment (D. 
Brown, 1958; Triggs, McLauchlan, Hartley, & 
Fitzgibbon, 2000; Lourakis & Argyros, 2009), 
scene points (structure) and camera orientation 
(motion) are recovered jointly and optimally from 
corresponding image points. The bundle adjust-
ment error term:

E T X P T K X xB i j
i

N

i i j ji
j

M

({ },{ }) [ ( , , ) ]= −
= =
∑ ∑

1

2

1

 

(5)

can be used to minimize the re-projection error 
EB with respect to the unknown N internal camera 
orientations Ki, external camera orientation Ti and 
the M scene points Xj. Here, xji denotes the given 
2D pixel coordinates (uji, vji) of feature j in image 
i. Bundle adjustment is a very flexible method, 
depending on the reconstruction task, and even 
values for all or some of parameters Ki, Ti and Xj 
might be unknown. By minimizing the bundle 
adjustment equation with respect to the unknown 
parameters, the bundle adjustment method can be 
used for calibration of internal and/or external 
camera parameters as well as pose estimation 
of objects. The method can be applied to image 
sequences acquired by the same camera, or to im-

ages acquired simultaneously by multiple cameras. 
It is also possible to use cameras with different 
projection functions P, for example pinhole and 
fish-eye cameras, in the same reconstruction task. 
If additional information about the scene is avail-
able, such as the position of some 3D points in 
world coordinates, additional terms can be added 
to the equation. Measurement uncertainties of 
the known variables can be used to compute the 
uncertainty of the estimated parameters. As the 
bundle adjustment equation is a nonlinear one, it 
is minimized using the Levenberg-Marqardt or 
Gauss-Newton algorithm. Even bundle adjustment 
tasks with many unknowns can be optimized ef-
ficiently, since the re-projection error of the jth 
point in view i only influences Ti, Ki in frames 
where the point j could be tracked as well as Xj 
. This leads to a sparse set of equations, which 
can be exploited by the optimization algorithm 
(Lourakis & Argyros, 2004).

In general, bundle adjustment provides ac-
curate reconstruction of scene points for which 
correspondences could be established. Problems 
also occur when the correspondences contain 
outliers that do not comply with the assumption 
of a Gaussian re-projection error distribution. In 
that case the estimated parameters can contain 
gross errors that are not directly apparent in the 
statistics of the estimated parameters. Ways to 
work around outliers are based on screening the 
data for outliers, for example using RANSAC 
(Fischler & Bolles, 1981) together with a minimal 
case five point algorithm (Nister, 2004), or using 
a M-Estimator while minimizing the bundle ad-
justment equation. Usually correspondences can 
only reliably be extracted in high contrast image 
areas, resulting in a sparse 3D reconstruction, 
where areas with uniform or repetitive texture 
cannot be reconstructed.

Stereo Vision

In the cases where two cameras with known inter-
nal and external orientation observe the examined 
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scene, a geometric limitation such as the epipolar 
constraint is used. This setup is exploited in the 
stereo vision approach for 3D reconstruction. The 
epipolar constraint simplifies the correspondence 
search problem, as it limits the correspondence 
search region for a given point in one image to 
a single line in the other one. Additionally, each 
3D point can be calculated directly through 
triangulation, such that no bundle adjustment 
is required. Due to these simplifications, stereo 
vision is a widely used technique in close range 
3D reconstruction. In most stereo systems, two 
views with known internal and external camera 
orientation are used. In a typical stereo applica-
tion, a scene is simultaneously and continuously 
monitored by a pair of cameras whose centers of 
projection are located on a horizontal baseline. In 
many practical applications, the optical axes of 
the two cameras are parallel, and the images are 
taken with the same focal length. This is often 
called the standard stereo geometry and leads 
to epipolar lines oriented parallel to image rows 
or columns, where the correspondences can be 
estimated efficiently. It is possible to transform 
images from an arbitrary camera setup into images 
with horizontal or vertical epipolar lines, using 
a process known as stereo rectification (Forsyth 
& Ponce, 2002; Kruger, Wohler, Wurz-Wessel, 
& Stein, 2004).

Several surveys ((Barnard & Fischler, 1982; 
Dhond & Aggarwal, 1989; DeSouza & Kak, 2002; 
Scharstein & Szeliski, 2002; Brown, Burschka, & 
Hager, 2003; Lemaire, Berger, Jung, & Lacroix, 
2007; Nalpantidis, Sirakoulis, & Gasteratos, 2008) 
provide an exhaustive overview of the different 
stereo methods. Given the internal parameters of 
the cameras, i.e. the focal length, the principal 
point and the distortion parameters and external 
ones, i.e. the position and the orientation of the 
cameras in the 3D space, the distance of an ar-
bitrary object in the scene may be computed via 
disparity. The latter is the offset between the pixels 
in both images of the stereo pair. The collection 

of all the disparity points, in image coordinates, 
is the so called disparity map.

Robust determination of the corresponding 
points and, consequently, of disparity is the central 
problem to be solved by stereovision algorithms. 
An early survey by Barnard and Fischler (1982) 
reports the use of block and feature matching. 
Block matching approaches compare a small area 
in one image with potentially matching areas in 
the other one. Often cross correlation and the 
sum of squared differences are used as matching 
criteria. This assumes structures parallel to the 
image plane, known as fronto-parallel. At depth 
discontinuities or tilted areas, a block will con-
tain pixels from different depths leading to less 
reliable matching results. Additionally uniform 
image areas cannot be matched reliably. Feature 
matching approaches extract suitable features 
like edges or curves (Mikolajczyk et al., 2005) 
and match these by computing suitable similarity 
measures. Since these features are usually well 
localized, feature based methods handle depth 
discontinuities better, but might provide a sparse 
disparity map, compared to block matching.

The robustness and accuracy of the disparity 
estimates can be improved by considering ad-
ditional constraints during the matching process. 
For example, the smoothness constraint states that 
the disparity should vary smoothly, this is indeed 
useful for uniform and/or untextured areas where 
no correspondences can be established. The order-
ing constraint states that for opaque surfaces the 
order of correspondences is always preserved. 
Many stereo algorithms (Masrani & MacLean, 
2006; Ben-Ari & Sochen, 2007) use dynamic 
programming (Z. Liu & Klette, 2008; MacLean, 
Sabihuddin, & Islam, 2010) to efficiently and opti-
mally calculate the disparity values of a complete 
scanline while considering the ordering constraint. 
Constraints over the whole image, across several 
scanlines, are hard to integrate into the dynamic 
programming framework. Algorithms based on 
graph cuts (Boykov & Kolmogorov, 2004; Vo-
giatzis, Esteban, Torr, & Cipolla, 2007) can use the 
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constraints globally during the reconstruction and 
are among the best performing stereo algorithms, 
in terms of reconstruction quality (Nalpantidis et 
al., 2008).

Shape from Silhouettes

In many situations, performing a foreground/
background segmentation of the object of inter-
est is a good way to initialize or fit a 3D model 
(Grauman, Shakhnarovich, & Darrell, 2003; 
Vlasic, Baran, Matusik, & Popović, 2008) or to 
impose a convex set of constraints on multi-view 
stereo (Kolev & Cremers, 2008). Over the years, 
a number of techniques have been developed to 
reconstruct a 3D volumetric model from the in-
tersection of the binary silhouettes projected into 
3D. The resulting model is called a visual hull, in 
analogy to the convex hull of a set of points, since 
the volume is maximal with respect to the visual 
silhouettes and since surface elements are tangent 
to the viewing rays (lines) along the silhouette 
boundaries (Boyer & Franco, 2003).

Some techniques first approximate each sil-
houette with a polygonal representation, and then 
intersect the resulting faceted conical regions in 
three dimensional space to produce polyhedral 
models (Aganj, Pons, Segonne, & Kerive, 2007; 
X. Liu, Yao, Chen, & Gao, 2008), which can 
later be fused using stereo methods (Esteban & 
Schmitt, 2004) or range data (Yemez & Wetherilt, 
2007). Other approaches use voxel-based repre-
sentations, usually encoded as octrees (Zhang & 
Smith, 2009), because of the resulting space-time 
efficiency. Figures 2a and b show an example of 
a 3D octree model and its associated colored tree, 
where black nodes are interior to the model, white 
nodes are exterior, and gray nodes are of mixed 
occupancy. Examples of octree-based reconstruc-
tion approaches include (Ladikos, Benhimane, & 
Navab, 2008; Azevedo, Tavares, & Vaz, 2010; 
Zhou, Gong, Huang, & Guo, 2010).

The most recent work on visual hull computa-
tion borrows ideas from image-based rendering 
and, hence, it is called image-based visual hull 
(Matusik, Buehler, & McMillan, 2001). Instead 

Figure 2. Volumetric octree reconstruction from binary silhouettes (Szeliski 1993) © 1993 Elsevier (a) 
octree representations and its corresponding (b) tree structure; (c) input image of an object on a turn-
table; (d) computed 3D volumetric octree model.
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of pre-calculate a global 3D model, an image-
based visual hull is recomputed for each new 
viewpoint, by successively intersecting viewing 
ray segments with the binary silhouettes in each 
image. This not only leads to a fast computation 
algorithm, but also enables fast texturing of the 
recovered model with color values from the input 
images. This approach can also be combined with 
high-quality deformable templates to capture and 
re-animate whole body motion (Vlasic et  
al., 2008).

PHOTOMETRIC APPROACHES

Shape from Shading

The problem of recovering the shape of a surface 
from this intensity variation is known as ‘Shape-
from-shading’ (Horn, 1989) and typically handles 
smooth, non-textured surfaces. The images of 
smooth shaded objects, such as the ones shown 
in Figure 3, show clearly the shape of the object 
from just the shading variation. This is possible 
as the surface normal changes across the object, 
the apparent brightness changes as a function of 

the angle between the local surface orientation 
and the incident illumination.

Most shape from shading algorithms assume 
that the surface under consideration is of a uniform 
albedo and reflectance, and that the light source 
directions are either known or can be calibrated 
by means of a reference object. Under the assump-
tions of distant light sources and observer, the 
variation in intensity (irradiance equation) be-
come purely a function of the local surface ori-
entation,

I(x,y) = R(p(x,y),q(x,y))  (6)

where (p,q) = (zx,zy) are the depth map derivatives 
and R(p,q) is called the reflectance map. For 
example, a diffuse (Lambertian) surface has a 
reflectance map that is the (non-negative) dot 
product  between the surface normal 
n p q p q= + +( , , )) /1 1 2 2  and the light source 
direction v = (vx,vy,vz),

R p q p
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Figure 3. Synthetic example of shape from shading application. (Zhang et al. 1999) © 1999 IEEE
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where p is the surface reflectance factor (albedo). 
In principle, the two equations above can be used 
to estimate (p,q) using non-linear least squares 
or some other method. Unfortunately, unless ad-
ditional constraints are imposed, there are more 
unknowns per pixel (p,q) than the measurements 
(I). One commonly used constraint is the smooth-
ness constraint,

εs x y x yp p q q dxdy p q dxdy= + + + = ∇ + ∇∫∫ 2 2 2 2 2 2
    ,  

(8)

and the integrability constraint,

εi y xp q dxdy( ) ,−∫ 2  (9)

which results straightforwardly, as for a valid 
depth map z(x,y) with (p,q) = (zx,zy), we have py 
= zxy = zyx = qx.

Instead of first recovering the orientation 
fields (p,q) and then integrating these to obtain a 
surface, it is also possible to directly minimize the 
discrepancy in the image formation equation while 
finding the optimal depth map z(x,y) (Horn, 1990). 
Unfortunately, shape from shading is both sus-
ceptible to local minima in the search space, and, 
similar to other variational problems that involve 
the simultaneous estimation of many variables, it 
can also suffer from slow convergence. Tsai and 
Shah utilized a preliminary step to improve the 
performance of shape from shading algorithms in 
all types of surfaces using linear approximation 
(Tsai & Shah, 1994). Other approaches, by using 
multi-resolution techniques (Szeliski, 1991) can 
help accelerate the convergence, while by us-
ing more sophisticated optimization techniques 
(Wilhelmy & Kruger, 2009) can help avoid  
local minima.

In practice, surfaces, other than plaster casts, 
are rarely of a single uniform albedo. Shape from 
shading therefore needs to be combined with 
some other technique or extended in some way to  

become useful. One way to do this is to combine it 
with stereo matching (Jin, Soatto, & Yezzi, 2000; 
Chow & Yuen, 2009) or known texture (surface 
patterns) (White & Forsyth, 2006). The stereo 
and/or texture components provide information in 
textured regions, while shape from shading helps 
fill in the information across uniformly colored 
regions and also provides finer information about 
surface shape. Another method is to combine 
the strength of graph cuts with the simplicity of 
shape from shading to produce accurate results 
(Chang, Lee, & Lee, 2008). The survey by (Durou, 
Falcone, & Sagona, 2008) not only reviews more 
recent techniques, but it also provides some  
comparative results.

Photometric Stereo

Another way to make shape from shading more 
reliable is to use multiple light sources that can 
be selectively turned on and off. This technique is 
called photometric stereo, since the light sources 
behave similarly to the cameras located at different 
locations in traditional stereo (Woodham, 1981; 
Basri, Jacobs, & Kemelmacher, 2007; Hernandez, 
Vogiatzis, & Cipolla, 2008). A different reflectance 
map, R1(p, q), R2(p, q), etc, corresponds to each 
individual light source. Given the corresponding 
intensities I1, I2, etc. of a pixel, in principle both 
an unknown albedo p and a surface orientation 
estimate (p, q) can be recovered. If the local ori-
entation by n is parameterized, diffused surfaces, 
for non shadowed pixels, might be described by 
a set of linear equations:

Ik = pn · vk (10)

from which we can recover pn using linear least 
squares method.

Once the surface normals or gradients have 
been recovered at each pixel, they can be integrated 
into a depth map using a variant of regularized 
surface fitting. (Nehab, Rusinkiewicz, Davis, & 
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Ramamoorthi, 2005) and (Harker & O’Leary, 
2008) have presented some interesting results 
lately. When surfaces are specular, more than 
three light directions may be required. In fact, the 
irradiance equation not only requires that the light 
sources and camera be distant from the surface, it 
also neglects inter-reflections, which can be a sig-
nificant source of the shading observed on object 
surfaces, e.g., the darkening seen inside concave 
structures such as grooves and crevasses (Nayar, 
Ikeuchi, & Kanade, 1991; Y. Xu & Aliaga, 2008).

Shape from Texture

Local anomalies of the imaged texture (e.g. an-
isotropy in the statistics of edge orientations for 
an isotropic texture, or deviations from assumed 
periodicity) are regarded as the result of projec-
tion and can also provide useful information about 
local surface orientation. Surface orientations 
which allow the original texture to be maximally 
isotropic or periodic are selected. Shape from 
texture algorithms require a number of processing 
steps, including the extraction of repeated pat-
terns or the measurement of local frequencies in 
order to compute local affine deformations, and a 
subsequent stage to infer local surface orientation.

Details on these various stages can be found 
in the research literature (Loh & Hartley, 2005; 
Lobay & Forsyth, 2006; Galasso & Lasenby, 2007; 
Todd, Thaler, Dijkstra, Koenderink, & Kappers, 
2007; Grossberg, Kuhlmann, & Mingolla, 2007; 
Jacques, De Vito, Bagnato, & Vandergheynst, 
2008). When the pattern is more regular, it is 
possible to fit a regular but slightly deformed 
grid to the image, and to then use this grid for a 
variety of image replacement or analysis tasks (Y. 
Liu, Collins, & Tsin, 2004; Y. Liu, Lin, & Hays, 
2004; Hays, Leordeanu, Efros, & Liu, 2006; Park, 
Brocklehurst, Collins, & Liu, 2009). This process 
becomes even easier if specially printed textured 
cloth patterns are used (White & Forsyth, 2006; 
White, Crane, & Forsyth, 2007).

REAL APERTURE APPROACHES

The geometric methods described in the previous 
section are all based on an ideal camera, which 
projects scene points into image points perfectly. 
However, a real camera system uses a lens of finite 
aperture, which results in images with a limited 
depth of field. The depth dependent blurring is not 
considered by the geometric methods and usually 
decreases the accuracy of the correspondence 
search methods.

The depth dependent defocusing is illustrated 
in Figure 4, where a scene point at distance d0 is in 
focus (projected onto a single point in the image 
plane located at distance v), while points at other 
distances from the camera are spread onto a larger 
area, leading to a blurred image. If the light rays 
are traced geometrically, object points that are out 
of focus will be imaged to a circular disk. This 
disk is known to the photographers’ community 
as the circle of confusion. Using the lens law:

1 1 1
v d f
+ =  (11)

its diameter C can be approximated by
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where f is the focal length and D is the diameter 
of the lens aperture. The depth dependent term 1/d 
approaches zero for larger values of d while the 
other terms stay constant, resulting in little change 
of the blur radius for objects at a large distance 
d. This limits the real aperture methods to close 
range scenarios, where two different depth values 
result in a measurable change of C.
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Shape from Focus

When the image is focused, knowledge of the 
camera parameters f and v can be used to calculate 
the depth d of the object. In Depth from Focus 
(DfF), a sequence of images of a scene is obtained 
by continuously varying the distance v between 
the lens and the image detector (Shim & Choi, 
2010). This leads to a series of differently blurred 
images. For each image, a sharpness measure is 
computed at each pixel in a local window and for 
each pixel position the image with the maximum 
focus measure is determined.

The main difference between the different 
Depth from Focus methods proposed in the lit-
erature is the choice of the focus measures, com-
mon measures are based on the strength of high 
frequency components in the amplitude spectrum. 
A particularly simple way is to use the image in-
tensity variance of a local region. With a suitable 
criterion, the maximum of the sharpness measure 
can be interpolated, resulting in an improved 
depth resolution (Ramnath & Rajagopalan, 2009).

Depth from Focus is a comparably simple 
method, only one camera position is involved and 

the computational cost for depth recovery is quite 
low. Additionally, there is no correspondence prob-
lem and the accuracy of the method is relatively 
high. As the Depth from Focus method relies on 
high frequency image content it can only estimate 
the depth for surfaces with image texture. Like 
any other method based on real aperture effects, 
it is only applicable to close range scenarios, 
where the depth of field is small, compared to 
the object depth range. Sources of measurement 
errors include edge bleeding and the assumption of 
a constant depth of each window. A fundamental 
drawback is the requirement of a whole image 
focus series, a non-interpolating approach requires 
one image for each desired distance D.

Shape from Defocus

The main drawback of Depth from Focus is the 
necessity of an image series captured with mul-
tiple camera focus settings that scans the whole 
depth measurement range. Depth from Focus uses 
the camera parameters of the sharpest frame to 
determine the object depth. However, according 
to equation above, the radius of the circle of con-

Figure 4. Real aperture lens model used for depth from defocus
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fusion is a function of the camera parameters and 
the depth of a scene point. Hence, the amount of 
blur observable in a defocussed image contains 
information about the depth of a scene point. A 
number of techniques have been developed to 
estimate depth from the amount of defocus (Fa-
varo & Soatto, 2005; Pradeep & Rajagopalan, 
2007; Favaro, 2007; Favaro, Soatto, Burger, & 
Osher, 2007).

In order to make such a technique practical 
numerous assumptions should be made as that the 
amount of blur increases in both directions as one 
moves away from the focus plane and therefore it 
is necessary to use two or more images captured 
with different focus distance settings (Favaro, 
2007), or to translate the object in depth and to 
look for the point of maximum sharpness (Lou, 
Favaro, Bertozzi, & Soatto, 2007). Moreover, the 
magnification of the object can vary as the focus 
distance is changed or the object is moved. This 
can either be modeled explicitly (making corre-
spondence more difficult), or telecentric optics and 

axial stereo, which approximate an orthographic 
camera and which require an aperture in front 
of the lens, can be used (Sahay & Rajagopalan, 
2009). Besides, the amount of defocus must be 
reliably estimated. A simple approach is to sim-
ply average the squared gradient in a region, but 
this suffers from several problems, including the 
image magnification problem mentioned above.

Figure 5 shows an example of a real-time depth 
from defocus sensor, which employs two imaging 
chips at slightly different depths sharing a com-
mon optical path, as well as an active illumination 
system that projects a checkerboard pattern from 
the same direction. As you can see in Figure 5b–g, 
the system produces high-accuracy real-time depth 
maps for both static and dynamic scenes.

FUTURE RESEARCH CHALLENGES

The production of 3D models has been a popular 
research topic since a long time, and important 

Figure 5. Real time depth from defocus (Nayar et al. 1996) © 1996 IEEE: (a) the real-time focus range 
sensor, which includes a half-silvered mirror between the two telecentric lenses (lower right), a prism 
that splits the image into two CCD sensors (lower left), and an edged checkerboard pattern illuminated 
by a Xenon lamp (top); (b–c) input video frames from the two cameras along with (d) the corresponding 
depth map; (e–f) two different frames (you can see the texture if you zoom in) and (g) the corresponding 
3D mesh model.
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progress has indeed been made since the early 
days. Nonetheless, the research community is 
well-aware of the fact that still much remains 
to be done. In this section, we list some of  
these challenges.

As seen in the previous section, there is a wide 
variety of techniques for creating 3D models, but 
depending on the geometry and material charac-
teristics of the object or scene, one technique may 
be much better suited than another. For example, 
non-textured objects are a nightmare for tradi-
tional stereo, but too much texture may interfere 
with the patterns of structured-light techniques. 
Hence, one would seem to need a range of sys-
tems to deal with the variability of objects - e.g. 
in a museum - to be modeled. In fact, having to 
model the entire collection of diverse museums is 
a useful application area to think about, as it poses 
many of the pending challenges, often several at 
once. Another area is 3D city modeling, which 
has quickly grown in importance over the last 
years. It is another extreme in terms of conditions 
under which data have to be captured, in that 
cities represent an absolutely uncontrolled and 
large-scale environment. Many problems remain 
to be resolved, in that application area.

One of the most difficult challenges is the 
presence of many objects with an intricate shape, 
the scanning of which requires great precision 
combined with great agility of the scanner to 
capture narrow cavities and protrusions, deal 
with self-occlusions or fine carvings. The types 
of objects and materials that potentially have to be 
handled are very diverse, ranging from metal coins 
to woven textiles; stone or wooden sculptures; 
ceramics; gems in jewellery and glass. No single 
technology can deal with all these surface types 
and for some of these types of artifacts there are 
no satisfactory techniques yet. Also, apart from 
the 3D shape the material characteristics may need 
to be captured as well. The objects to be scanned 
range from needle size to an entire landscape or 
city. Ideally, one would handle this range of scales 
with the same techniques and similar protocols.

For many applications, data collection may 
have to be undertaken on-site under potentially 
adverse conditions or implying transportation of 
equipment to remote sites. Objects are sometimes 
too fragile or valuable to be touched and need to be 
scanned without human intervention. The scanner 
needs to be moved around the object, without it 
being touched, using portable systems.

Masses of data often need to be captured, like 
in city modeling examples. Efficient data capture 
and model building is essential if this is to be 
practical. Those undertaking the digitization may 
be technically trained. Not all applications are 
to be found in industry, and technically trained 
personnel might not exist. This raises the need 
for intelligent devices that ensure high quality 
data through (semi-) automation, self-diagnosis, 
and strong operator guidance. Also, precision is a 
moving target in many applications and as higher 
precisions are obtained, new applications emerge, 
that push for even higher precision.

An application where combined extraction 
of shape and surface reflectance occurs would 
be highly innovative. Increasingly, 3D scanning 
technology is aimed at also extracting high-
quality surface reflectance information. Yet, there 
is an appreciable way to achieve high-precision 
geometry if it is combined with detailed surface 
characteristics like full-fledged BRDF (Bidirec-
tional Reflectance Distribution Function) or BTF 
(Bidirectional Texture Function) information.

Besides, in-hand-scanning, i.e. scanning using 
portable devices is available. However, the choice 
is still restricted, especially when also surface 
reflectance information is required and when the 
method ought to perform well with any material, 
including metals. On-line scanning is another 
promising technique. Nowadays, the physical ac-
tion of scanning and the actual processing of the 
data are still two separate steps. This may cause 
problems in the completeness and quality of the 
data as they can only be inspected after the scan-
ning session is over and the data are analyzed and 
combined elsewhere. It may then be too late or 
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too cumbersome to take corrective actions, such 
as acquiring a few additional scans. It would be 
very desirable if the system would extract the 3D 
data on the fly, and would give immediate visual 
feedback. This should ideally include steps like 
the integration and remising of partial scans. This 
would also be a great help in planning where to 
take the next scan during scanning.

Scanning using multi modal sensors may not 
only combine geometry and visual characteristics. 
Additional features like non-visible wavelengths 
(UV,(N)IR) could have to be captured, as well as 
haptic impressions. The latter would then also 
allow for a full replay to the public, where audi-
ences can hold even the most precious objects 
virtually in their hands and explore them with 
all their senses.

Gradually computer vision is getting at a point 
where scene understanding becomes feasible. Out 
of 2D images, objects and scene types can be 
recognized. This will in turn have a drastic effect 
on the way in which ‘low’- level processes can be 
carried out. If high-level, semantic interpretations 
can be fed back into ‘low’- level processes like 
motion and depth extraction, these can benefit 
greatly. This strategy ties in with the opportu-
nistic scanning idea. Recognizing what it is to 
be reconstructed in 3D (e.g. a car), would assist 
a system to decide how to perform, resulting in 
increased speed, robustness and accuracy. It can 
provide strong priors about the expected shape.

Finally, the real challenge is to make the tech-
nology available to mainstream audience using 
off-the-shelf components. In order to keep 3D 
modeling cheap, one would ideally construct the 
3D reconstruction systems based on off-the-shelf, 
consumer products. This does not only reduce 
the price, but also lets the systems go along with 
fast-evolving, mass-market products. For instance, 
the resolution of still, digital cameras is steadily 
on the rise, so a system based on such cameras 
can be upgraded to higher quality without much 
effort or investment. Moreover, as most users will 
be acquainted with such components, the learning 

curve to use the system is probably not as steep as 
with a totally novel, dedicated technology.

Given the above considerations, 3D recon-
struction of shapes and surfaces from multiple, 
un-calibrated images is one of the most promising 
3D techniques. Objects or scenes are relatively 
small or large, depending on the appropriate op-
tics and amount of camera data. These methods 
also give direct access to both shape and surface 
reflectance information, where both can be aligned 
without special alignment techniques.

CONCLUSION

Efficient implementations of several 3D recon-
struction algorithms have been proposed lately. In 
this chapter, we described three different catego-
ries of methods: The first one calculates shape of 
objects and surfaces using pure geometric tools; 
the second one evaluates the intensity of the pixel 
neighborhoods inside the image space to examine 
the three-dimensional scene structure and, last, the 
third category examined in this chapter refers to 
the real – aperture approaches that take advantage 
of the physical properties of the visual sensors for 
image acquisition to reproduce depth and estimate 
shapes of the objects.

Concluding, it can be said that 3D visual 
reconstruction technology was accelerated sig-
nificantly during the last decades, following the 
resolution booming in imaging devices and the 
extreme advance in computing power. We already 
are capable of reconstructing famous landmarks 
using everyday tourist photos from social web 
pages and finding our way on the map using 
triangulated image data from satellites.

Yet, 3D reconstruction is a laborious process 
which involves many limitations and difficulties to 
overcome. There is a large gap between computer 
algorithms and cognitive performance. One of 
the recent trends is using vast amount of image 
data to train machine learning models to act and 
think like real humans do. The complexity of the 
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vision problems can be so high that smarter and 
more intelligent algorithms should be examined. 
The promising outcome of these potential research 
directions will assure us that three dimensional 
reconstructions will remain a very exciting area 
of study for the researchers in the future.
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KEY TERMS AND DEFINITIONS

Bundle Adjustment: The method to acquire 
accurate reconstruction of points by minimizing 
the reprojection error using Levenberg-Marqardt 
or Gauss-Newton algorithms.

Camera Calibration: The method to estimate 
the internal and external camera parameters. 

PhotometricStereo: The method to estimate 
shapes using shading variations and multiple 
light sources.

Pinhole Camera: The fundamental camera 
model for projection estimation.

Shape from Defocus: The method to estimate 
shapes estimating the amount of blur.

Shape from Focus: The shape reconstruc-
tion approach to measure depth using the camera 
parameters like focus.

Shape from Shading: The problem of recover-
ing the shape of a surface using shading variations.

Shape from Silhouettes: The method to es-
timate shape of objects calculating the silhouette 
boundaries from images.

Shape from Texture: The method to estimate 
shapes measuring texture anomalies.

Stereo Vision: The use of two cameras to 
simulate human vision system and estimate depth 
from the camera system.
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INTRODUCTION

Depth map estimation for three-dimensional shape 
recovery from one or multiple observations is a 
challenging problem of computer vision. This 
depth map can subsequently be used in interpola-

tion and approximation techniques and algorithms 
leading to the recovery of a three dimensional 
structure of the object, a requirement of a number 
of high level vision applications. However, the 
basic problem of imaging systems, such as the 
digital-camera, is that depth information is lost 
while projecting a 3D scene onto 2D image plane. 

Aamir Saeed Malik
Universiti Teknologi Petronas, Malaysia

Comparison of Focus 
Measures under the Influence 
of Various Factors Effecting 

their Performance

ABSTRACT

This chapter presents a comparison of eleven focus measures which are categorized in four main 
classes or groups. The performance of focus measures is evaluated by considering various factors that 
might hinder their smooth operation. These factors include illumination variation, texture reflectance, 
object distance variation, distance variation in between consecutive frames, and various types of noise 
including Gaussian, Shot, and Speckle noise. The focus measures are tested for depth estimation for 3D 
shape recovery using Shape From Focus (SFF) techniques. Three measures are used to compare the 
performance of the focus measures, namely, visual inspection as a qualitative measure and root mean 
square error and correlation as quantitative measures.
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Therefore, one fundamental problem in computer 
vision is the reconstruction of a geometric object 
from one or several observations.

There are a variety of 3D Shape estimation 
methods that try to address this problem. They 
include Shape From Focus, Defocus, Texture, 
Motion etc. They are generally referred to as 
Shape From X and are classified as optical passive 
methods. In this chapter, we limit our discussion to 
Shape From Focus (SFF). SFF is based on focus 
which is an accommodation cue (Mennucciy, 
1999) that can be measured from blurring in the 
image, which increases with the distance of imag-
ing system from the plane of focus. Techniques 
that retrieve spatial information, by looking at 
multiple images of the same scene, taken with 
different geometry or position of imaging devices, 
are classified as Shape From Focus (SFF).

The objective of Shape From Focus (SFF) is 
to find out the depth of every point of the object 
from the camera lens. Hence, finally we get a 
depth map which contains the depth of all points 
of the object from the camera lens where they are 

best focused or in other words, where they show 
maximum sharpness.

The basic image formation geometry is shown 
in Figure 1. In Figure 1, the parameters related 
to the camera are already known. We need to 
calculate ‘u’, i.e., depth of object from the lens. 
We make a depth map by calculating ‘u’ for every 
pixel. We can use the lens formula to calculate 
‘u’. If the image detector (ID) is placed exactly 
at a distance v, sharp image P’ of the point P is 
formed at v (see Figure 1). Then the relationship 
between the object distance u, focal distance of 
the lens f, and the image distance v is given by 
the Gaussian lens law:

1 1 1
f u v
= +  (1)

Therefore, in SFF, a sequence of images that 
correspond to different levels of object focus is 
obtained. A sharp image and the relative depth 
can be retrieved by collecting the best focused 
points in each image. The absolute depth of object 

Figure 1. Image formation of a 3D object
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surface patches can be calculated from the focal 
length and the position of lens that gave the sharp-
est image of the surface patches. The depth or 
best focus is obtained by using some focus mea-
sure. A Focus Measure operator is one that cal-
culates the best focused point in the image, i.e., 
focus measure is defined as a quantity to evaluate 
the sharpness of a pixel locally (Helmli, 2001).

EVOLUTION OF FOCUSING 
METHODS

1960s-1970s

One of the earliest focusing relationships was 
provided by (Horn, 1968). He described the 
application of Fourier transform method to the 
focusing problem. His analysis included errors 
due to resolution limits, noise, lens positioning, 
diffraction, servo inaccuracy and lens motion. 
Aperture-plane distortion was considered by 
(Buffington, 1974) because they analyzed the 
sharpness of the image. They proposed that sharp-
ness of the image reaches a maximum value only 
for an undistorted image. What they didn’t know 
was that they were additionally describing one 
of the earliest focus measure operators. In 1976, 
(Erteza, 1976) related the sharpness to the focus 
control. He derived a sharpness index function 
from the intensity distribution in an image and 
used it for correctness of focus.

1980s

(Greon, 1982) presented a comparison of autofo-
cus algorithms in 1982. They found that the best 
algorithms are based upon squared gradient of the 
image and normalized image standard deviation. 
In 1983, (Jarvis, 1983) surveyed a variety of ap-
proaches to generalize range finding including, 
depth from texture, focusing, stereo, motion, ul-
trasonic, laser etc. He discussed entropy, variance 
and sum modulus difference as focus measures 

for estimating range using focus. (Krotkov, 1987) 
discussed how to best determine the focus motor 
position providing sharpest focus on an object 
point and how to compute the distance to a sharply 
focused point. Also, focus related research was 
published by (Pentland, 1987; Gillespie, 1989).

1990s

First major SFF system was demonstrated by 
(Nayar, 1990). He also described a focus mea-
sure based on gradient as well as approximation 
method based on Gaussian interpolation for the 
3D microscope based imaging system. (Dillion, 
1992) defined a hybrid range scheme based on 
shape from stereo and shape from focus in 1992. 
In 1993, various focusing methods were imple-
mented on a prototype camera system called 
SPARCS (Subbarao, 1993). This was one of the 
first implementation of a 3D camera system. (Choi 
& Subbarao, 1995) for the first time proposed the 
calculation of focus measure over a surface in 3D 
plane instead of a 2D image plane. (Asada, 1998) 
proposed a method eliminating windowing in 
1998. This resulted in improvement in computa-
tional speed. References (Nair, 1992, Xiong, 1993, 
Bove, 1993, Nayar, 1994, Noguchi, 1994, Nayar, 
1996, Subbarao, 1998, Choi, Lee & Ho, 1999, 
Yun, 1999) also contributed valuably for this era.

Since 2000

Various new focus measures have been proposed 
in the literature since 2000. (Zhang, 2000) de-
scribed a new focus measure based on 2nd/4th 
order central moment in 2000. This type provides 
explicit expression of point spread function. In 
2001, (Helmi, 2001) proposed three new focus 
measures based on mean, curvature and point 
focus methods. Wavelet found its way to focus 
measure too in 2002 (Kautsky, 2002) just as it did 
in so many other research fields lately. Another 
focus measure based on Chebyshev moments was 
proposed by (Yap, 2004). Dynamic programming 
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(Mozerov, 2000; Milios, 2000), DCT (Shen, 
2006) and few others (Pradeep, 2006, Tsai, 2003, 
Takahashi, 2004) were also proposed as one of 
the possible solutions.

CLASSIFICATION OF 
FOCUS MEASURES

A Focus Measure operator is one that calculates 
the best focused point in the image, i.e., focus 
measure is defined as a quantity to evaluate the 
sharpness of a pixel locally. The success of any 
focus measure depends on how accurate the sharp-
ness in image pixels could be detected. Hence, 
algorithms and techniques based on calculating 
sharpness and edges in an image automatically 
become potential candidates for the selection of 
focus measure. The focus measures can be clas-
sified into four main classes or groups.

Derivative-Based Focus Measures

Laplacian-Based Focus Measure

Laplacian, being a point and symmetric operator, 
is suitable for accurate shape recovery. This focus 
measure is obtained by adding second derivatives 
in the x and y directions.

Laplacian
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In case of textured images, x and y components 
of Laplacian operator may cancel out (gxx = -gyy) 
and yield no response. Therefore, Modified La-
placian (ML) is computed by adding squared 2nd 
derivates. For discrete model, self convolution of 
Sobel operator is applied.
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If the image has rich textures with high vari-
ability at each pixel, focus measure can be calcu-
lated considering single pixel. In order to improve 
robustness for weak-texture images, (Nayar, 1990, 
1994) presented focus measure at (x,y) as Sum of 
ML (SML) values in a local window.
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Tenenbaum Focus Measure

It is gradient magnitude maximization method 
that measures the sum of squared responses of 
horizontal and vertical Sobel masks. For robust-
ness, it is also summed in a local window.

TEN G x y G x yx y
p x y U x y
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(5)

M2 Focus Measure

Various focus measures were proposed by (Sub-
barao, 1993). The focus measures proposed were 
based on image grey level variance (M1), energy 
of image gradient (M2) and energy of image La-
placian (M3).These focus measures are similar 
to those described above, i.e., M1 is similar to 
Gray Level Variance (GLV) Focus Measure, M2 
is similar to Tenenbaum Focus Measure and M3 is 
similar to Laplacian focus measure. M2 was further 
modified by (Xiong, 1993). They employed M2 
method using Fibonacci search followed by ex-
haustive search. They mentioned to use either M2 
or Tenegrad (Krotkov, 1987) with zero threshold. 
M2 is computed as:

M2   (g g )x
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y
2= +

= −

+

= −
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where: gx(x,y) = gi(x+1,y) – gi(x,y) & gy(x,y) = 
gi(x,y+1) – gi(x,y)

Statistics-Based Focus Measures

Gray Level Variance (GLV) 
Focus Measure

In case of a sharp image, the variance of gray-level 
is higher than that in a blur image.

GLV
N
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With µU x y( , )0 0
 the mean of the gray values in 

the neighborhood U(x0,y0)

Mean Method (MM) Focus 
Measure (Helmli, 2001)

The ratio of mean grey value to the center grey 
value in the neighborhood can also be used as a 
focus measure. The ratio of one shows a constant 
grey-level or absence of texture. Ratio is different 
in case of high variations. It is also summed in 
local window. Let U(x,y) be the neighborhood 
region, g(x,y) be the center gray value and µ be 
the mean value, then mathematically this focus 
measure is given as:

MM
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Curvature Focus Measure 
(Helmli, 2001)

The curvature in a sharp image is expected to be 
higher than that in a blur image. First, the surface 
is approximated using a quadratic equation f(x,y) 
= ax + by + cx2 + dy2. The coefficients (a, b, c, d) 

are calculated using a least squares approximation 
technique (Nayar, 1996). Then these coefficients 
are combined to obtain a focus measure.

Moment-Based Focus Measures

2nd order and 4th order central moments are used 
to obtain the focus information from a sequence 
of images (Zhang, 2000). Finally, a curve is ob-
tained that is used to express the blur property of 
the imaging system. Another way is to represent 
the low and high spatial frequency components 
as low and high order Chebyshev moments (Yap, 
2004). Focus measure is defined as the ratio of 
the norm of the high order moments to that of 
low order moments.

Energy-Based Focus Measures

Signal Power (SP) Focus 
Measure (Ligthart, 1982)

Square of the intensity value is taken and it is 
summed in a 2D window. The maximum value 
of SP is the sharpest value.

SP g x y
y
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Histogram Entropy (HE) Focus 
Measure (Jarvis, 1983, Krotkov, 
1987, Gillespie, 1989)

Generally, a sharply focused edge has two spikes 
in histogram corresponding to each side of the 
edge. Hence, the result is a bimodal intensity 
histogram whereas a blurred edge does not exhibit 
this behavior and hence it is different from that of 
a sharp edge. Let I be the grey level and P(I) be 
the frequency of occurrence of I then:
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HE P I P I P I
i

=− ≠∑ ( ) ln[ ( )], ( ) 0  (10)

HE is minimum when P(I) is zero for all except 
one value of I and it is maximum when all P(I) 
are equal. Therefore, the sharp edge will have less 
entropy compared to the blurred edge.

Transform-Based Focus Measures

Some of the following focus measures can also 
be classified as energy based focus measures. 
However, we have put them under this section to 
emphasize the role of transform domain.

DCT-Based Focus Measures

The AC energy component can be used as a focus 
measure (Baina, 1995). This provides informa-
tion about variance component of the luminance. 
The best focus is where AC energy component 
is maximum. Let G(u,v) be the image after DCT 
transformation then this focus measure is given as:

AC G u v
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Another focus measure (Shen, 2006) is calcu-
lated as a ratio between the energy of AC part of 
the DCT image to that of DC part, i.e., by dividing 
the energy of high frequency band by that of low 
frequency band. This focus measure is given as:

CR
Sumof squareof AC Coefficients
Sumof squareof DC Coefficient

=  

(12)

Wavelet Based Focus Measures 
(Kautsky, 2002, Yang, 2003, Xie, 2006)

Ratio of high pass band and low pass band norms 
can be taken as a focus measure (Kautsky, 2002; 

Xie, 2006). The measure exhibits monotonic 
behavior with respect to degree of defocusing. 
Another way is to exploit the properties of the 
wavelet transform coefficients in high frequency 
subbands. Let the wavelet transform images at 
level-1 LH, HL and HH subbands be denoted as 
GLH, GHL and GHH respectively. Let µLH, µHL and 
µHH be the expectation of wavelet coefficients 
and ULH, UHL and UHH be the operator windows 
in each subband with w and l as width and length 
respectively. Daubechies orthogonal wavelet basis 
D6 is used for computing following:
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Fourier-Based Focus 
Measure (Malik, 2008)

This focus measure is based on an optical transfer 
function implemented in the Fourier domain, and it 
is denoted as OM. The theory of this focus measure 
is based on bipolar incoherent image processing 
(Poon, 2001). Let g(x,y) be input image frames, 
F & F-1 be Fourier and inverse Fourier transform, 
Kx and Ky be spatial frequencies, σ1 and σ2 be 
filtering parameters, then mathematically, this 
focus measure is represented as:
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NOTE: For all simulations, the calculations 
are done by summing in a local window like SML 
(see equation 4). In addition, we have taken into 
consideration the optimum window size (Malik, 
2007) and we have used window of 3×3.
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APPROXIMATION TECHNIQUES

After obtaining a robust focus measure, some ap-
proximation technique (like interpolation, surface 
estimation, polynomial fitting etc) can be applied 
in order to construct a more accurate depth range 
image. Most of the approximation techniques for 
SFF mentioned in the literature (Subbarao, 1995; 
Nayar, 1996; Yun, 1999; Choi, Asif & Yun, 1999; 
Asif, 2001; Ahmad, 2005; Malik, 2007) use some 
kind of focus measure. Some of the approxima-
tion techniques include Focus Image Surface 
Method (Subbarao, 1995), piecewise curved 
surface method (Yun, 1999), SFF using Neural 
Network (Asif, 2001) and SFF using Dynamic 
Programming (Ahmad, 2005).

EXPERIMENTAL DESIGN

Test Images

We have used a “Test” image, a sequence of 97 
simulated cone images, 97 real cone images, 87 
real planar object images and 68 real microscopic 
object (Lincoln head on US penny) images for 

noise analysis. For other types of analysis, we used 
only microscopic objects, namely, Lincoln head 
part on US penny, TFT-LCD cell, V-groove and 
micro-sphere. Figure 2 shows one of the frames 
for these images.

Focus Measures Selected for 
Comparison

We selected focus measures from each of the four 
categories. The focus measures selected include 
Sum of Modified Laplacian (SML, eq. 4), Te-
nenbaum (TEN, eq. 5), M2 (eq. 6), Gray Level 
Variance (GLV, eq. 7), Mean Method (MM, eq. 
8), Signal Power (SP, eq. 9), Histogram Entropy 
(HE, eq. 10), DCT based AC energy (AC, eq. 11), 
DCT based ratio of AC energy to DC energy (CR, 
eq. 12), wavelet based (WAV, eq. 13) and Fourier 
based (OM, eq. 14). The description of these focus 
measures is given in section III.

Image Quality Metric

An image quality metric can be derived as a mea-
sure of the perceived difference from a reference 
image. The fundamental assumption is that any 

Figure 2. Test images
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reduction in quality is caused by some perceived 
difference. If no differences can be perceived, 
then the reproduced image is indistinguishable 
from the original and the image quality is at its 
maximum. We take the ground truth depth map 
for simulated cone and all microscopic objects 
as a reference.

Various metrics have been proposed to deal 
with both general and specific aspects of image 
quality. We use visual inspection, Root Mean 
Square Error (RMSE) and Correlation as image 
quality metrics.

Design of Experiments

Noise

We compared the focus measures by adding Gauss-
ian, speckle and shot noise to the “Test” image, 
simulated cone sequence, real cone sequence, 
planar object sequence and microscopic coin 
sequence. Gaussian and speckle noise are added 
at five noise levels having variance = 0.5, 0.05, 
0.005, 0.0005 and 0.00005 at each level. Shot 
noise is also added at five noise levels with noise 
densities = 0.5, 0.05, 0.005, 0.0005 and 0.00005 
at each level.

Pre-Filtering

We pre-filtered the noisy images using Weiner 
filter, Frost filter and Median filter for Gaussian 
noise, speckle noise and shot noise respectively. 
Then we compared the above sequence of test 
images using various focus measures.

Illumination

We study the effects of illumination by changing 
the microscope source illumination levels. 50 W 
(1000 Lumens) halogen lamp is used. Illumina-
tion is controlled with various steps. We select 
3 illumination levels, i.e., low (~20% of source 

illumination), medium (~50% of source illumina-
tion) and high (~100% of source illumination).

Texture Reflectance

We study the effect of texture reflectance by select-
ing 4 microscopic objects of different material and 
texture, i.e., copper alloy (coin), transparent glass 
(TFT-LCD cell), reflective silicon (V-Groove) and 
transparent plastic (micro-sphere).

Distance Variation within Image Frames

We perform this experiment by acquiring different 
number of images for same z-distance. We select 
3 distance variation levels for this experiment.

Distance Variation with 
Different Object Positions

We study the effect of placing object at different 
distances from the CCD camera. We perform this 
experiment for 4 different distances for coin and 
V-Groove while 3 different object positions for 
the TFT-LCD cell.

NOISE ANALYSIS

Qualitative Analysis

Figure 3(a) shows the “Test” image with uniform 
background of white color and “TEST” written in 
black over it. The result is converted to binary im-
ages so that actual edges extracted can be viewed. 
Figures 3(b) ~ (e) show the sharp variations in 
pixel values calculated by four focus measures, 
one each from the four groups. As can be seen 
from the images in Figure 3, all the methods are 
able to estimate the sharp variations clearly. There 
is no noise in the images in Figure 3. In Figure 
4, we have added the Gaussian noise with zero 
mean and variance is 0.1. The effects of noise can 
now be seen on the results of the focus measures.
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In Figure 5, we changed the value of variance 
to 0.5 for the Gaussian noise. As can be seen, the 
results of focus measures deteriorate as the noise 
in increased.

Now we calculate the depth map for sequence 
of 97 simulated cone images. Figure 6 shows 
some of the frames of the simulated cone images. 
We obtain depth maps using all the eleven focus 
measures. These depth maps are obtained without 
any addition of noise to the sequence of images. 
Figure 7(a) shows the ground truth depth map 

while Figures 7(b) to 7(l) show the depth maps 
calculated using the eleven focus measures while 
no noise is added to the images. As can be seen 
from the figures, the 3D depth map obtained us-
ing all focus measures is comparable. However, 
the depth maps of GLV and OM appear to be 
smoother than the rest of the focus measures.

Now consider Figure 8. Noise is now added 
to the sequence of the images of simulated cone. 
Noise added is Gaussian with zero mean and 
variance equal to 0.05. Figures 8(a) to 8(k) show 

Figure 3. Applying focus measure operators on the test image

Figure 4. Results with Gaussian noise (mean=0 & var=0.1) addition

Figure 5. Gaussian noise with zero mean and variance = 0.5
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the depth maps calculated using the eleven focus 
measures. As can be seen from the figures, the 
3D depth map obtained using OM is recognizable 
followed by GLV and TEN. The depth maps using 
other focus measures have degraded signifi-
cantly. Infact, the noise added to the pixel values 
is enhanced in the depth map for others and hence 
it results in spikes originating from pixels all over 
the image.

Now we calculate the depth map for sequence 
of 97 real cone images. Figure 9 shows some of 
the frames of the real cone images. Figure 10 
shows the depth maps for real cone with Gaussian 
noise added. Now Gaussian noise with zero mean 
and variance equal to 0.005 is added. This time 
we have decreased the noise variance from 0.05 
to 0.005. SML, SP, HE and WAV results deterio-

Figure 6. Some frames for the simulated cone

Figure 7. Depth maps for the simulated cone object
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rate significantly while rest of the focus measures 
show comparable behavior.

Till now all the results shown are for Gaussian 
noise only. Now we consider two more types of 
noise, i.e., Shot noise and Speckle noise. We add 
the bipolar shot noise to the sequence of images 
of the planar object. Consider Figure 11 where 
Figure 11 (a) to (k) shows the depth maps for all 
eleven focus measures when the bipolar shot noise 
is added to the planar sequence of images. The 

noise density used is 0.0005. As can be seen from 
the images, the depth maps for SML, M2, MM, 
SP, HE, AC, CR and WAV are again degraded 
with spikes originating from the pixels all over 
the image hence making the shape of the planar 
object unrecognizable. However, it can also be 
seen from the depth maps that the results of TEN 
and GLV are better than the others except OM. 
OM shows exceptionally good results for the 
planar object.

Figure 8. Depth maps for the simulated cone object when Gaussian noise is added

Figure 9. Some frames for the real cone
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Similarly, Figure 12(a) to 12(k) shows the 
depth maps for all the eleven focus measures when 
the multiplicative speckle noise is added to the 
sequence of images of microscopic Lincoln head. 
The noise variance is 0.00005.

Quantitative Analysis

We used two metric measures to compare these 
focus measures. The metric measures used are 
Root Mean Square Error (RMSE) and Correla-
tion. The reference image for comparison is the 
ground truth depth map for the simulated cone. 
For real objects like real cone etc such data was 
not available. Hence, we obtained more accurate 
depth maps (as compared to using the focus mea-
sure alone) by using the approximation technique 
(Fuzzy using Neural Network).

For simulated cone data, we have 97 numbers 
of steps corresponding to 97 images. Each step 
is of equal distance. On the other hand, if the 
depth maps contain the object distances from the 
camera, then the RMS error is obtained in term 
of object distances. The object distances from the 
lens can be easily computed using eq (1), if we 
know the depth map in terms of image number 
and the parameters of the camera. For example 
in Table 1, the RMS error for TEN is about 19 
lens steps out of 97 steps. Same is true for other 
object sequences too.

For the simulated cone, Table 1 shows the 
comparison of all the focus measures in the absence 
of noise. Corresponding Figure 13 depicts the 
results for RMSE and correlation. It is seen from 
these tables that the performance of all focus 
measures is comparable with the exception of OM 

Figure 10. Depth maps for the real cone object when Gaussian noise is added
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and WAV. OM performs better than the rest while 
WAV performs worst than the rest.

Figures 14 to 16 show the graphs for RMSE 
and correlation for all three types of noise. The 

results in Figure 14 are shown for data with Gauss-
ian noise of zero mean and varying variance 
values, i.e., variance = 0.5, 0.05, 0.005, 0.0005, 
0.00005. OM shows robustness to Gaussian  

Figure 11. Depth maps for the planar object when shot noise is added to the images

Table 1. Performance in the absence of noise (simulated cone) 

Focus Measure RMSE Correlation

  TEN 19.7017 0.8991

  SML 19.6557 0.8999

  M2 19.6535 0.9005

  GLV 19.6816 0.8985

  MM 19.5736 0.8988

  SP 19.6916 0.8961

  HE 19.5673 0.9001

  AC 19.6768 0.8997

  CR 19.6065 0.9009

  WAV 20.891 0.8603

  OM 14.2114 0.9119
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Figure 12. Depth maps for microscopic object when speckle noise is added to the images

Figure 13. Comparison in absence of noise
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noise and is not affected while GLV and TEN 
performance degrades for upper most noise level 
while their performance increases considerably 
for the other noise levels. The rest of the focus 
measures deteriorate at medium and high noise 

levels while showing comparable performance at 
low noise levels.

Now consider Figure 15 which shows the 
results of the eleven focus measures in the pres-
ence of Shot noise of various densities, i.e., values 
of noise density from 0.5 to 0.00005. OM and 

Figure 14. Comparison of focus measures (Gaussian Noise)

Figure 15. Comparison of focus measures (Shot Noise)
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MM show robustness to shot noise. Among rest 
of four focus measures, performance of GLV, CR, 
HE and TEN degrades for upper most noise 
level while their performance increases consider-
ably for the other noise levels. The rest of the 
focus measures deteriorate at medium and high 
noise levels while showing comparable perfor-
mance at low noise levels.

Now consider Figure 16 which shows the 
results of the eleven focus measures in the pres-
ence of Speckle noise with varying variances, i.e., 
0.5, 0.05, 0.005, 0.0005, 0.00005. OM, TEN, GLV, 
CR, SP, M2 and AC show robustness to speckle 
noise. Among rest of four focus measures, per-
formance of MM, SML and HE degrades for 
upper most noise level while their performance 
increases considerably for the other noise levels. 
WAV deteriorate at medium and high noise levels 
while showing comparable performance at low 
noise levels.

Till now we have shown the results for simu-
lated cone. Hence, keeping in view the results of all 
the objects, we can make the following evaluation.

• Overall Performance:
 ◦ Gaussian Noise:

 ▪ OM shows good performance 
followed by GLV, CR, TEN and 
HE

 ▪ AC, M2 and MM should be 
avoided at high and medium 
noise levels

 ▪ WAV, SP and SML should be 
avoided

 ◦ Shot Noise:
 ▪ OM, TEN, CR and GLV show 

better performance at all noise 
levels

 ▪ Rest of the focus measures 
should be avoided except at low 
noise level

 ◦ Speckle Noise:
 ▪ OM and TEN show good per-

formance followed by GLV, CR 
and AC which show comparable 
performance at all noise levels

 ▪ HE, M2 and MM exhibits better 
performance for medium noise 
levels

 ▪ SML, WAV and SP should be 
avoided

Figure 16. Comparison of focus measures (Speckle Noise)
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NOISE PRE-FILTERING

We have used the following filters before applying 
focus measures:

1.  Wiener Filer is used for Gaussian noise. 
It filters an intensity image that has been 
degraded by constant power additive noise. 
Since we already know that this additive 
noise is Gaussian noise, therefore, we use 
this information for implementing this filter 
for Gaussian noise.

2.  Median filter is used for Shot noise. It is 
the most commonly used filter for shot noise 
and it’s very effective.

3.  Frost filter (Frost, 1982) is used for 
Speckle noise. The Frost filter is based on 
the multiplicative speckle model and the 
local statistics.

There is little improvement in the results of 
focus measures after the usage of Wiener and Frost 
filter at high noise levels. However, improvement 
can be observed at the medium and low noise 
levels. However, median filter improves the result 
remarkably. Most of the focus measures are not 
affected by the shot noise at medium and low 
noise levels. They are only affected at high noise 
level. The results of the focus measures improve 
significantly showing almost no affect of shot 
noise at medium and low noise levels.

TEXTURE REFLECTANCE 
AND ILLUMINATION

Reflectance is defined as a physical quantity that 
measures how well a surface reflects light or 
other electromagnetic radiations. In other words, 
reflectance is a measure of the percentage of light 
reflected from a surface (the rest is absorbed.). 
Reflectance is a dimensionless quantity, com-
prised in the range 0 to 1. A bright white surface 
will reflect almost all of the light falling on it, 

perhaps having a reflectance of over 99%, while 
a very deep black will reflect less than 1% of the 
incident light. A mid-gray surface reflects around 
18% of the light falling on it - and thus absorbs 
82%. The amount of light reflected by a surface 
element also depends on the material. For example, 
reflectance value for snow is 0.93 while that for 
stainless steel is 0.80.

Let g(x,y) be the captured image frame, is(x,y) 
be the amount of source illumination incident on 
the object and r(x,y) be the reflectance. Then, 
g(x,y) is defined as a product of illumination and 
reflectance (Gonzalez, 2002):

g(x,y) = is(x,y)r(x,y)

where, 0 < is(x,y) < ∞  and 0 < r(x,y) < 1
Hence, by changing the source illumination 

and object material, the resultant image g(x,y) 
changes. Therefore, we selected the following 
for our experiments:

Objects: US Penny (copper plated), TFT-LCD 
Cell (transparent glass), V-Groove (reflective 
silicon surface), Micro-Sphere(transparent plastic)

Source Illumination: 50 W (1000 Lumens) 
halogen lamp is used. Illumination is controlled 
with various steps. We select 3 illumination levels, 
i.e., low (~20% of source illumination), medium 
(~50% of source illumination) and high (~100% 
of source illumination). Figure 17 shows frame# 
30 at different illumination levels.

Table 2 shows the comparison of various focus 
measures. This comparison is on scale 1 to 3 where 
this value simply implies the order with 1 as high-
est order (best result) while 3 as the lowest order 
number (worst result). This numbering is relative 
based on RMSE, correlation and visual inspection 
of depth map. The ‘f’ indicates that the focus 
measure fails and ‘o’ means ONLY that focus 
measure showed any performance.

Medium Lamp Level: Overall, the best results 
are obtained at this level. TEN, M2, GLV, AC and 
CR focus measures did not fail for any object. 
Best performance is shown by OM followed by 
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CR, AC and M2. However, OM fails for V-Groove 
at all lamp levels.

Low & High Lamp Levels: It was observed 
that focus measures generally fail at low or high 
lamp levels. At low lamp level, all focus measures 
fail for at least two objects with best performance 
shown by CR followed by OM, AC and M2. CR 

is also the focus measure that fails only for one 
object at high lamp level while rest fails for two 
or more objects.

One thing is clear from Table 2 that the per-
formance of focus measures varies for varying 
textures as well as source illumination levels. 
No one focus measure performs satisfactorily 

Figure 17. Frame# 30 at different illumination levels

Table 2. Study of reflectance & illumination 

  Lamp   Low Lamp Level   Medium Lamp Level   High Lamp Level

  Object   C   L   V   S   C   L   V   S   C   L   V   S

  TEN 2 2 f f 3 2 2 2 f 2 2 f

  SML 1 3 f f 2 2 f 2 f 1 f f

  M2 1 2 f f 3 2 2 1 f 2 2 f

  GLV 3 2 f f 3 2 2 2 f 2 1 f

  MM 3 f f f f 3 f 2 3 3 f f

  SP f f o f f f 3 1 f f 1 o

  HE f f f f 3 f f 2 f f f f

  AC 1 2 f f 3 2 2 1 f 2 1 f

  CR 1 1 f f 3 2 1 1 f 2 1 o

  WAV f f o f f f 3 2 f f 3 f

  OM 2 1 f f 1 1 f 1 3 1 3 f

C=Coin, L=LCD, V=V-Groove, S=Micro-Sphere
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for all textures at varying illumination levels. 
Therefore, Table 2 is a guideline for selection of 
focus measures based on known texture proper-
ties (copper, transparent glass, reflecting silicon, 
transparent plastic) and known illumination level. 
Table 2 can be expanded to a very meaningful 
lookup table for the selection of focus measures 
based on object and environment properties by the 
addition of more materials with varying textures.

DISTANCE VARIATION

Within Frames

The performance of SFF algorithms depends on 
various parameters. One of them is the number 

of image frames acquired for depth estimation. 
Small number of frames implies larger distance 
in between the frames resulting in more error 
introduced due to non-continuous behavior. 
Large number of images means lesser distance 
in between the frames but more error due to the 
factors associated with the image acquisition 
equipment. Hence, we study the effects of this 
distance variation within the frames on the focus 
measures. Using the microscopic setup described 
earlier, we acquire the images for US Penny, 
TFT-LCD Cell, V-Groove and Micro-Sphere at 
a resolution of 300x300. Table 3 shows the three 
distance levels within the frames.

Table 4 shows the comparison of focus mea-
sures on scale 1 to 3 where this value simply 
implies the performance level with 1 as highest 
order (best performance) while 3 as the lowest 
order number. This numbering is relative based 
on RMSE, correlation and visual inspection of 
depth map. In addition, ‘f’ indicates that the focus 
measure fails in that case and ‘o’ means only that 
focus measure showed any performance.

For small distance in between frames, the 
focus measures generally tend to fail for all objects. 

Table 4. Study of distance variation within frames 

  Distance 
b/w Frames

  Large Distance 
  (45 Images)

  Medium Distance 
  (75 Images)

  Small Distance 
  (105 images)

  Object   C   L   V   S   C   L   V   S   C   L   V   S

  TEN 2 1 f f 2 1 2 2 f 2 f f

  SML 2 2 f f 1 2 f 2 o 2 f f

  M2 2 1 f f 1 1 3 3 f 2 f f

  GLV 2 1 f o 1 1 2 2 f 2 f f

  MM f f f f 2 f f 2 f 3 f f

  SP f 3 o o f f f 1 f f f o

  HE f 3 f f f 3 f 1 f f f f

  AC 2 1 f f 1 1 2 2 f 1 f f

  CR 2 1 f f 1 1 1 2 f 1 o f

  WAV 3 3 o f 3 f f 3 f f f f

  OM 1 1 f f 1 1 f 2 f 1 o f

C=Coin, L=LCD, V=V-Groove, S=Micro-Sphere

Table 3. Three distance level variations 

S. 
No.

Number of Images 
Acquired

Distance in between 
Frames (µm)

1 45 0.72

2 75 0.43

3 105 0.3
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The vibration error of the microscopic system 
increase as more images are acquired within same 
range which results in decrease in distance 
within frames. SML, CR and OM show some 
performance for most number of objects at this 
level. Large distance in between frames results 
in smaller number of images being acquired. 
Hence, some information is lost in between frames. 
OM performs well at this level too. However, 
GLV, SP and WAV show some level of performance 
for most number of the objects. Almost all focus 
measures give some level of performance for 

medium distance level. Best performance is shown 
by CR followed by GLV, AC and OM.

Different Object Positions

Another parameter affecting the performance of 
focus measures is the distance of the object from 
the imaging device. The best results are obtained 
where the object is best focused. Hence, we study 
the effects of object distance variation from the 
imaging device. Figure 18 shows frame# 30 at 
different distances. Using the microscopic setup, 
we acquire the images for US Penny, TFT-LCD 
Cell and V-Groove at a resolution of 300x300. 
Table 5 shows the different object positions for 
each of the image sequences. For different ob-
jects, the distance variation is different because 
of the different sizes of the objects. In Table 5, 0 
means the first position of the object. The object 
is moved away from the imaging device at a 
constant distance rate.

Table 5. Object placed at different positions 

S.No. Coin (µm) TFT-LCD Cell 
(µm)

V-Groove (µm)

1 0 0 0

2 16 8 8

3 32 16 16

4 48 x 24

Figure 18. Frame# 30 when objects are placed at different distances
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Table 6 shows the comparison of various focus 
measures. The comparison is on scale 1 to 3 where 
this value simply means 1 as highest order (best 
performance) while 3 as the lowest order number. 
The ‘f’ indicates that the focus measure fails in 
that case and ‘o’ means only that focus measure 
showed any performance.

At distance of 0 µm, objects are generally out 
of focus and then they cone in focus and finally 
they become defocused again at maximum dis-
tances as shown in Table 6. Almost all focus 
measures fail when the object is defocused. How-
ever, some level of performance is shown by SML, 
MM and OM. At distances where the object comes 
in focus, OM shows best performance for coin 
and TFT-LCD cell followed by SML and CR. For 
V-Groove, best performance is shown by GLV 
followed by CR and TEN. Most of the focus 
measures fail for this object as discussed in previ-
ous sections.

FUTURE RESEARCH DIRECTIONS

Focus measures are generally computed on indi-
vidual 2D frames in the 3D space. In future, new 
focus measures need to be developed that can 
be applied directly in the 3D space and that can 
exploit the 3D nature of the object. Additionally, 
considerable time is required for the computation 
of focus measures for all the frames because the 
number of frames is large. Therefore, parallel 
processing and distributed processing algorithms 
need to be exploited for reducing the computational 
complexity of the focus measures algorithms.

CONCLUSION

In this chapter, focus measures are classified into 
four main groups, namely, derivative, statistics, 
energy and transform based. Total of eleven fo-
cus measures are selected with at least two from 
each of the group. We tested and compared these 

Table 6. Study of distance variation with reference 
to object position 

(a) Coin

Object Position 0 µm 16 
µm

32 
µm

48 µm

TEN f 2 3 f

SML f 1 2 o

M2 f 1 2 f

GLV f 2 2 f

MM o 3 3 o

SP f f 2 f

HE f f f f

AC f 1 2 f

CR f 1 2 f

WAV f f f f

OM o 1 1 f

(b) TFT-LCD Cell

Object Position 0 µm 8 
µm

16 µm

TEN 3 2 f

SML 2 1 3

M2 3 2 f

GLV 3 2 f

MM 3 3 f

SP 3 f f

HE f 3 f

AC 3 2 f

CR 2 2 f

WAV 3 f f

OM 1 1 2

(c) V-Groove

Object Position 0 µm 8 µm 16 
µm

24 µm

TEN f f 2 2

SML f f f f

M2 f f 3 3

GLV f f 1 2

MM o f f f

SP f 3 f f

HE f f f f

AC f f 2 3

CR f f 2 1

WAV f 3 f f

OM f 3 f f
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focus measure using ‘TEST’ image (Table 7 and 
8), simulated cone images, real cone images, 
slanted planar object images and three micro-
scopic objects. The experiments were conducted 
for noise, pre-filtering the noisy images, effects 
of illumination and texture reflectance and effects 
of distance variation within the frames as well as 
with respect to various object positions. We used 
visual inspection of depth maps as a qualitative 
measure while RMSE and Correlation as quantita-
tive metric measures to compare the performance 
of the focus measures. After extensive and wide 
base of experimentation, we found that OM, CR, 
GLV and TEN provide good results in most of the 
conditions. However, it was concluded that no one 
focus measure can be used for every condition. The 
performance of focus measures vary with change 
in various above-mentioned factors. Hence, we 
provide our recommendations in Table 7 that 

can be used as a lookup table for the selection of 
focus measures.
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KEY TERMS AND DEFINITIONS

3D Shape Recovery: To completely recon-
struct the 3D shape of an object in x, y and z-planes.

All-in-Focus Image: An all-in-focus image 
consist of the sharpest pixels values correspond-
ing to best focus.

Depth Map: A Depth map represents the 3D 
information of an object in the z-plane. Focus 
measure: An operator that measures the sharp-
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ness of the pixel values, i.e. the focus quality of 
the image.

Metric Measures: These are the quality mea-
sures like RMSE, correlation etc that are used to 
assess the 3D reconstruction of the object.

Shape from Focus: This is one of the shape 
from X methods based on the focus settings to 
capture images and then reconstruct the 3D shape.

Shape From X: These are the optical passive 
methods to recover the 3D shape. The X represents 
focus, defocus, texture, motion, stereo, shading.
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INTRODUCTION

Imaging devices, particularly those with lenses 
of long focal lengths, usually suffer from limited 
depth-of-field. Therefore, in the acquired images, 
some parts of the object are well-focused while 

the other parts are defocused with a degree of blur. 
Usually, a focus measure is used to compute the 
image focus quality that plays an important role 
in many image processing and computer vision 
applications. For example, the performance of 
the shape from focus (SFF) techniques and multi-
focus fusion algorithms depend on accurate focus 
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Image Focus Measure Based 
on Energy of High Frequency 
Components in S-Transform

ABSTRACT

Focus measure computes sharpness or high frequency contents in an image. It plays an important role 
in many image processing and computer vision applications such as shape from focus (SFF) techniques 
and multi-focus image fusion algorithms. In this chapter, we discuss different focus measures in spatial as 
well as in the transform domains. In addition, we suggest a novel focus measure in S-transform domain, 
which is based on the energy of high frequency components. A localized spectrum, by using variable 
window size, provides a more accurate method of measuring image sharpness as compared to other focus 
measures proposed in spectral domains. An optimal focus measure is obtained by selecting an appropri-
ate frequency dependent window width. The performance of the proposed focus measure is compared 
with those of existing focus measures in terms of three dimensional shape recovery and all-in-focus 
image generation. Experimental results demonstrate the effectiveness of the proposed focus measure.
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measurements (Ahmad & Choi, 2005; Simonov 
& Rombach, 2009; Wang, Ma, & Gu, 2010). In 
multi-focus fusion, an all-in-focus image is ob-
tained from two or more blurred images. In the 
stack of images, the well-focused regions are dis-
tinguished from the blurred regions by commuting 
the focus quality. The fused image is obtained by 
combining the well-focused regions. On the other 
hand, SFF is a passive optical technique, which 
uses focus as a cue for depth estimating. In this 
technique, a sequence of images is acquired at 
different focus levels by translating object along 
the optical axis. First, focus value is computed 
for each pixel in the image sequence by using a 
focus measure. The best-focused pixels among 
the sequence provide the depth information. A 
rough depth map is then obtained by maximizing 
the focus measure along the optical axis. In the 
second step, an approximation technique is used 
to refine the initial depth map (Ahmad & Choi, 
2005; Simonov & Rombach, 2009; Wang, et al., 
2010). These depth estimation techniques gener-
ally rely on the accuracy of the focus measure. 
Thus, in SFF techniques, a robust and accurate 
focus measure is of fundamental importance. In 
addition, many focus measure based techniques 
have been successfully utilized in many industrial 
applications. Using the variations of the focus, it 
is possible to measure the surface roughness and 
metrology(Kyte, 2010; Malik & Choi, 2009). It 
can also be employed in surface characterization, 
evaluation of tolerances and wear analysis in 3D, 
accurate 3D measurement of micro-gear wheels 
(Kyte, 2010).

Focus measure computes sharpness or high 
frequency contents in an image. Acquired images 
through the camera aperture are result of convolu-
tion of actual image and low pass filter i.e. point 
spread function (PSF). Therefore, ideally, a focus 
measure is a high pass filter that should response 
to the high frequency contents in an image. In 
the literature, many focus measures have been 
reported in spatial and frequency domains. In 
spatial domain, derivative and statistical analysis 

of image intensities commonly used to compute 
the sharpness (Krotkov, 1988; Malik & Choi, 
2007; Nayar & Nakagawa, 1994b). In frequency 
domains, focus measures usually compute total 
energy of high frequency components. Some fo-
cus measures in transform domain calculate the 
ratio of the high frequency components to the low 
frequency components (Kautsky, Flusser, Zitov, 
& Simberov, 2002; Sang-Yong, Kumar, Ji-Man, 
Sang-Won, & Soo-Won, 2008; Xie, Rong, & Sun, 
2007). The studies of these focus measures have 
revealed that frequency components of differ-
ent energies affect the focus measurement. For 
example, in discrete wavelet transform (DWT) 
based focus measures, high frequency components 
at the second level have a higher effect on image 
sharpness (Mahmood, Shim, & Choi, 2009). 
Similarly, in discrete cosine transform (DCT) 
based focus measures, frequency components in 
the middle are of greater interest regarding focus 
measurement (Mahmood, et al., 2009). The use of 
optical transfer function (OTF) i.e. low pass filter 
in frequency domain increases the robustness of 
the focus measure (Malik & Choi, 2008). In other 
words, the quality of focus measurements depends 
upon the frequency spectrum of the image.

Due to a variable window size, a recently 
proposed S-transform (ST) has certain advantages 
over DWT and other time-frequency analysis tools, 
and it has gained considerable attention in signal 
and image processing (Brown, Zhu, & Mitchell, 
2005; Stockwell, Mansinha, & Lowe, 1996). In 
this chapter, we suggest the use of ST, with modi-
fied window width scheme, to compute the image 
focus. The window width affects the energy of the 
transformed components. In the proposed method, 
the window width depends on the variation in 
frequency along with two adjustable parameters. 
The optimal values of these adjustable parameters 
are chosen in such a way that the energy concen-
tration be maximized. The energy of localized 
spectrum is taken as a criterion to compute the 
focus quality. Experimental results demonstrate 
the effectiveness of the proposed method.
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In the remaining chapter, we start with the for-
mation of image in convex lens and define focus 
measure. Different focus measures in spatial and 
frequency domains are explained. Then, details 
about the focus measure in ST are given. Later 
sections of this chapter explain experimental setup 
and comparative analysis.

BACKGROUND

Focus Measure

In order to illustrate the theoretical aspects of the 
focus measure, we consider the paraxial geometric 
optics model that is circularly symmetric around 
the optical axis (Brown, Lauzon, & Frayne, 2010; 
Sejdic, Djurovic, & Jiang, 2008; Stockwell, et 
al., 1996). Figure 1 shows the basic geometry of 
image formation through a thin convex lens. Let 
P and Q are two points on a visible surface of an 
object and all light rays, which are radiated from 

these points of the object, are intercepted by the 
lens and converged at the image detector. A point 
P has its well-focused image Pf on the image 
plane while a defocused image Qd of the point Q 
is obtained on the image detector. Well-focused 
points satisfy the lens law:

1
=

1 1
f u v

+  (1)

where f is the focal length of the lens, u is the 
distance of the object point P from the lens, and 
v is the distance between lens and image plane. 
At any other distance ′ ≠u u  of the object point 
from the lens will not be well focused on the im-
age plane. According to geometric optics, the 
aperture defines the shape of the blurred image 
of the point P. Since, we have considered the 
aperture to be circular, the blurred image is also 
a circle of radius R with uniform brightness inside 
the circle and zero outside it. In practice, the  

Figure 1. Basic image formation in convex lens
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image of a point is not a crisp circular patch with 
constant brightness. Due to diffraction, polychro-
matic illumination, lens aberrations etc., it will 
be a circular blob with the brightness falling of 
gradually at the border. Therefore, this blurring 
effect is usually modeled by two-dimensional 
Gaussian function, which is defined by:

h x y
r

x y
r

, exp( ) −
+









=
1

2 22

2 2

2π
 (2)

This function is also known as Point Spread 
Function (PSF) where, r is a spread parameter 
corresponding to the standard deviation of the 
distribution of the PSF. Hence, a sensed image is 
the convolution of the actual image and a Gauss-
ian function, i.e.

I(x,y) = Ia(x,y)*h(x,y)  (3)

where I(x,y) is the sensed image, Ia(x,y) is the actual 
image, * is the convolution operator and h(x,y) is 
the PSF. The radius of the blurred circle R and the 
width of the Gaussian function r are related by r 
= cR. Where c is a constant and it can be approxi-
mated through camera calibration (Horn, 1986). 
Further, the Optical Transfer Function (OTF) 
is the corresponding PSF in frequency domain. 
Convolution in the spatial domain corresponds 
to the multiplication in the Fourier domain, the 
OTF is written as

G(u,v) = H(u,v).Ga(u,v)  (4)

where G(u,v), H(u,v), and Ga(u,v) are the Fourier 
transformations of the functions I(x,y), h(x,y), and 
Ia(x,y) respectively. The OTF can be expressed as

H u v
u v

r, exp( ) = −
+









2 2
2

2
 (5)

It is notable that OTF exhibits the character-
istics of a low pass filter as low frequencies are 
passed unattenuated, while higher frequencies 
are reduced in magnitude. Therefore, a focus 
measure will be a high pass filter that is capable 
of computing high frequency components effec-
tively in the image. The focus measure increases 
with the increase of focus quality and it attains 
maximum value at well-focused frame number. 
Hence, a well-focused image will have larger 
amount of high frequency contents as compared 
to de-focused image of the same scene.

Focus Measures in Spatial Domain

The focus measures in spatial domain are usually 
computed locally. Let U(x,y) be the neighborhood 
of size d × d of a point (x,y) in an image I(x,y). 
It is defined as,

U x y x d y d, , |( ) = ( ) − ≤ ∧ − ≤{ }ξ η ξ η  
(6)

One of the famous categories of focus measures 
in spatial domain is based on image derivatives. 
These focus measures are based on the idea that the 
larger difference in intensity values of neighboring 
pixels analogous to the sharper edges. Broadly, 
they can be divided into two sub-categories: first 
and second derivative based methods. A method 
based on gradient energy is investigated by (Pent-
land, 1987; Subbarao, Choi, & Nikzad, 1993a) that 
uses the Sobel operators to estimate the gradient 
of the image. The focus measure is defined as,

F x y G I G ITEN x y
U x y

, , ,
, ,

( ) = ∗ ( )( ) + ∗ ( )( )( )
( )∈ ( )
∑ ξ η ξ η

ξ η

2 2  

(7)

Where Gx and Gy are Sobel operators in x and 
y directions and can be written in kernel form as:
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Some variants of gradient based methods 
like threshold absolute gradient (TAG), squared 
gradient (SG), and Brenner gradient (BG) (Te-
nenbaum, 1970) have also been studied. Second 
order derivative operator (Laplacian), being a point 
and symmetric operator, is suitable for measuring 
image sharpness. It has capability to suppress the 
lower frequencies more strongly than a first order 
derivative. The Laplacian of an image in defined as

∇ =
∂ ( )
∂

+
∂ ( )
∂

2
2

2

2

2
I

I x y

x

I x y

y

, ,
 (8)

The partial derivatives of an image in horizontal 
and vertical directions are approximated as;
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∂
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Several focus measures have been proposed by 
modifying the Laplacian operator (Brenner et al., 
1976; Santos et al., 1997; Tian, Shieh, & Wildsoet, 
2007). Among these, sum modified Laplacian 
(SML) focus measure based on second deriva-
tive has gain considerable attention (Helmli & 
Scherer, 2001; Subbarao, Choi, & Nikzad, 1993b; 
Subbarao & Tyan, 1998; Thelen, Frey, Hirsch, 
& Hering, 2009). In this focus measure, first, an 
image is convolved with Laplacian operator. The 
x and y components may have opposite sign and 
can yield zero response by canceling the effect 
of each other. To overcome this limitation, it is 
modified by taking the energy of the Laplacian. 
In order to improve robustness for weak textured 
image, the resultant values are summed up within 

a small window. The focus value for each pixel 
is thus computed as;

F x y
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The second derivative based focus measures 
provide more accurate results as compared to the 
first derivative based methods. However, these 
methods are more sensitive to noise.

Many focus measures have been reported based 
on the statistical analysis of image intensities 
(Nayar & Nakagawa, 1994a). Among these, the 
gray level variance (GLV) is the most famous. 
The larger variance of intensity values within a 
small window corresponds to the sharper image 
and vice versa. The focus value for the central 
pixel of a small neighborhood is computed by 
calculating the variance of intensity values as:

F x y
d

IGLV
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where µ is the mean gray level value within the 
window of size d × d.

µ ξ η
ξ η

= ( )
( )∈ ( )
∑1

2d
I

U x y

,
, ,
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Recently, (Groen, Young, & Ligthart, 1985; 
Mahmood, Choi, & Choi, 2008b; Mahmood, 
et al., 2009; Wee & Paramesran, 2007; Yap & 
Raveendran, 2004; Zhang, Zhang, & Wen, 2000) 
suggested a focus measure by applying a robust 
band-pass filter defined in the frequency domain 
and based on bipolar incoherent image process-
ing. The squared values of the responses of real 
in the spatial domain are then summed over  
a neighborhood.
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F IOTF
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where I ξ η,( )  is the response of the filtered im-
age in frequency domain and represented as

I x y I x y h x yOTF, Re , ,( ) = ( )( ) ( ){ }
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where Γ  is Fourier transform, Γ−1  is its inverse 
Fourier transform, hOTF(x,y) is the optical transform 
function and Re indicates the real part of the 
transformed components.

Focus Measures in Discrete 
Cosine Transform

The DCT of a signal is a real valued transform, 
which represents data in the frequency domain. 
For a given image I(x,y) of size N × N, two dimen-
sional DCT coefficients C(u,v) can be computed 
by with several variants, the following is one of 
the most commonly used (Malik & Choi, 2008).
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For (u,v = 0), the coefficient F(0,0) represents 
average of the data and it is known as DC part. The 
values for C(u ≠ 0, v ≠ 0) are known AC compo-
nents. Most variations in the data are collected by 
AC part. In literature, some focus measures have 
also been proposed in the DCT domain by using 
the energy of its coefficients. (Ahmed, Natarajan, 

& Rao, 1974) proposed the energy of the AC part 
of DCT as a focus measure.
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It is observed that the mid frequency com-
ponents have more influence on the focus qual-
ity as compared to the very low and very high 
frequency components (Baina & Dublet, 1995). 
The focus measure is thus computed by square 
of the convolution with 4 × 4 image block B and 
a DCT operator.

FDCT x y DCT
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For the images taken with the low illumination, 
the ratio between energies of AC and DC parts 
of the DCT is a better choice for measuring the 
focus quality (Sang-Yong, et al., 2008).

F
E

EDCT
AC

DC
3 =  (20)

In this instance, EAC and EDC are the energies of 
the AC and DC parts of DCT of an image block. 
Strengthening the idea of selective frequency 
component for image focus, (Shen & Chen, 2006) 
proposed another focus measure by using Bayes 
spectral entropy function. It is defined as
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where F u v
~

( , )  stands for normalized DCT coef-
ficients.

Focus Measures in Discrete 
Wavelet Transform

DWT is the decomposition of the signal into ap-
proximations and details coefficients obtained 
by expanding the signal in terms of the scaling 
function and basis function. Two-dimensional 
discrete wavelet transform of an image I(x,y) of 
size N × M is give as:
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where W j m nφ 0, ,( )  and W j m ni
ψ , ,( )  represent 

approximation and detailed coefficients respec-
tively. The approximation coefficients are com-
puted by inner products of original image with 
scaling function ϕj m n x y

0 , , ,( )  whereas, detailed 
or wavelet coefficients are obtained through the 
basis functionsψj m n

i x y, , ,( ) . These scale and basic 
functions are defined as

ϕ ϕj m n

j
j jx y x m y n

0
2 2 22

, , , ,( ) = − −( )  (24)

ψ ψj m n
i

j
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where index i is a superscripts and indicates the 
directional wavelets i.e., horizontal, vertical, and 
diagonal wavelets. Approximations components 

represent low pass bands or smoothness whereas 
detailed components contain high frequency con-
tents in the image.

In wavelet domain, first, (Kristan, Pers, Perse, 
& Kovacic, 2006) proposed a focus measure based 
on energy of wavelet coefficients. It is the ratio 
of Euclidean norms of high pass bands and low 
pass bands.
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w
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Where hw(I) and lw(I) are total number of 
coefficients in high pass bands and low pass 
bands respectively, of the input image I. The ||·|| 
operator is Euclidean norm. (Kautsky, et al., 2002) 
proposed two focus measures in wavelet domain. 
These focus measures are very similar to the first 
and second order moments of the high frequency 
components. Considering a small window U(x,y) 
of size d × d, Daubechies orthogonal wavelets 
with basis 6 are applied and only the first level 
of decomposition is considered.
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where µH , µV , and µD are mean of horizontal, 
vertical, and diagonal detailed coefficients respec-
tively. In other words, the focus values are deter-
mined by calculating L1-norm and L2-norm di-
vided by total no of coefficients, of high 
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frequency components. (Ge & Nelson, 2003) 
concluded that the detailed components, obtained 
at the second level, have stronger discriminating 
properties with respect to focus quality. Hence, 
the absolute sum of high frequency wavelet coef-
ficients is taken as a focus measure.
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( , ) ( , ) ( , )
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(29)

(Jui-Ting, Chun-Hung, See-May, & Homer, 
2005) proposed another focus measure in wavelet 
domain. The ratio of energies of the high frequency 
components to the low frequency components is 
taken as focus quality measure.
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where EH
2  and EL

2  are defined as
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FOCUS MEASURE IN S-TRANSFORM

S-Transform

Fourier transform (FT) is one of the fundamental 
tools for frequency analysis of signals. However, 
spatial information is lost in this frequency domain, 
which is essential in many cases. To overcome this 
problem, several transforms have been reported 
including short time Fourier transform (STFT) 
and wavelet transforms (WT). S-transform has 
been proposed by (Xie, et al., 2007) and is being 

widely utilized in image and single processing. 
Let us start with the Fourier analysis of a signal 
h(t) that can be written as:

H h t e dti tω πω( ) ( )
−∞

+∞
−∫= 2  (33)

where w denotes the frequency. This spectrum can 
be referred to as the time-averaged spectrum. Now, 
if we multiply time series with a window function 
g(t) point by point then the Fourier spectrum will 
be given as:

H h t g t e dti tω πω( ) ( ) ( )
−∞

+∞
−∫= 2  (34)

Due to the compact form in the spatial as well 
as in the frequency domains, Gaussian window is 
used. So setting the Gaussian window as under;

g t
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σ
exp  (35)

This window is a function of both translation 
τ  and dilation (window width σ ). If the window 
width σ  is fixed, a special case of ST, which is 
equivalent to the short-time Fourier transform 
(STFT). However, in ST, the window size varies 
at each point. By setting the width of Gaussian 
window as a function of frequency i.e.;

σ ω
ω( )= 1  (36)

In other words, the window function becomes 
a function of time and frequency. Width of the 
window is determined by the frequency. In the 
time domain, window is wider for lower, and 
narrower for higher frequencies. In conclusion, 
the window provides good localization in the 
frequency domain for low frequencies, while it 
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provides good localization in the time domain for 
higher frequencies. It is clear that the time–fre-
quency atoms for the S-transform are arranged in 
the same way as for the wavelet transform. The 
ST can be written as:

χ τ ω
ω

π

τ ω πω, exp .( ) = ( ) −
−( )
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−∫2 2

2 2
2h t

t
e dti t  

(37)

Energy Concentration

Energy concentration measure concerns with the 
representation of the signals in time-frequency 
domains. Maximum energy concentration measure 
provides the sharpness or peakedness of the trans-
formed signal. In literature, several energy concen-
tration measures have been reported (Stockwell, 
et al., 1996). We adopted one of them as defined 
by (Jones & Parks, 1990; Sejdic, et al., 2008).
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This measure is similar to the kurtosis in 
statistics. It is L4 – norm divided by the square 
of L2 – norm of the transformed coefficients. It 
should be clear that energy concentration should 
be the maximum for a good representation of a 
signal in S-domain. The energy concentration or 
kurtosis of the frequency components in the trans-
form domain may directly be used for measuring 
the focus quality of an image (Jones & Parks, 
1990). It is worthy to mention here that kurtosis of  
ST coefficients can be used as an energy concen-
tration measure.

Modified S-Transform

It is inferred from the discussion in previous sec-
tions that the window size affects the transformed 
components and their energy. The total energy of 
the high frequency components further affects the 
focus quality and we obtain an improved focus 
measure by modifying the standard deviation of 
the Gaussian window as:

σ ω
α

ω
α ββ( ) >= 0, ,  (39)

The above modification is very similar to that 
proposed in (Caviedes & Oberti, 2004; Feng, Han, 
& Zhu, 2006) for a higher energy concentration. 
However, instead of using a single parameter, we 
use two parameters namely α and β that tune the 
width of the window. The modified ST is given as:
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In the modified ST, the window width corre-
sponds to α = 1 and β = 1 representing the standard 
ST. The value of α determines the intercept for the 
maximum window size. For α < 1, the maximum 
window size becomes less than one and the window 
becomes narrower in the time domain. However, 
in the case of α > 1, the window becomes wider. 
Increasing the value of β shortens the window 
width and vice versa. An effective focus measure 
can be obtained by providing appropriate values 
of α and β. To determine the optimal values of α 
and β, the grid search algorithm is applied. The 
main steps of the algorithm are listed in Table 1.

To illustrate the effect of parameters on window 
width and energy concentration, some experiments 
have been conducted using a synthetic cross chirp 
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time series (Sejdic, et al., 2008). Figure 2 (a) 
shows the variations in window size with respect 
to frequency for different values of β and α = 1. 
It can be observed that in standard S-transform, 
a wider window is used for lower frequencies and 
on the other hand, a narrower window is used for 
higher frequencies. This choice of window width 
function leads to a disadvantage which is the same 
assignment of the standard deviation for all signal 
components at all frequencies because of the fact 
that σ is always defined as a reciprocal of the 
frequency. Some signals would benefit from dif-
ferent value of the standard deviation for the 
window function. The effect of parameters α and 
β on energy concentration is shown in Fig. 2 (b). 
It can be observed that the standard ST does not 
provide maximum energy concentration. If some 
optimal values for α and β are determined for a 
given signal, an improved time-frequency local-
ization becomes possible. Figure 2 (c)-(d) shows 
the contour of the chirp time series obtained after 
applying standard ST and modified ST respec-
tively. The modified ST components have been 
computed using the values α = 0.7 and β =0.7. In 
other words, energy concentration in the time-
frequency representation of a signal can be im-
proved by adjusting these parameters.

In the case of a discrete signal h[pT], ST can 
be written as τ ω= ={ }n
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where n,p = 0,1,2,…,N-1 and H(·) denotes the 
Fourier transform of the signal.

Computing Depth and 
All-in-Focus Image

In SFF, an image sequence Iz(x,y) is acquired 
through a charge-coupled device (CCD) camera by 
varying the focus level. In the obtained sequence, 
the total number of images is Z. Considering a small 
image of size N × M around each pixel (x,y) of the 
sequence, we use 2D ST for measuring the focus 
quality. The discrete form of 2D ST is written as
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where NTx and MTy denote frequency coordinates, 
Tx and Ty represent time samples, and p,q,nand 

Table 1. Parameters optimization 

1 Initialize parametrs α and β and step size.

2 Compute ST ′ ( )χ τ ω,  using (41).

3 Calculate Ec using (38) for each value of α and β.

4 Determine the parameters α and β that provide optimal energy concentration measure.α β α β
α β

, max ,
,

= ( )( )Ec

5 Use these optimal values for computing modified ST.
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mare indices in the spatial and transform domains. 
At zero frequencies, the transformed components 
′ ( )χ pT qTx y, , 0, 0  represent the average values 

of the data. Thus, we exclude these components 
to compute the sharpness. The proposed focus 
measure is computed as,
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(43)

By applying the above focus measure for each 
pixel in the sequence, we determine the focus 
volume ′ ( )I x yz , as,

′I x y F I x y z Zz ST z( ) ( ( ), = , ) , = 1,2, , .  
(44)

To improve the robustness, the initial focus 
values are accumulated within a small 3D neigh-
borhood Uz(x,y) around each point (x,y)z of size (d 
× d × d) and a refined focus volume is obtained as,

Figure 2. (a) Effect of parameters on window width, (b) energy concentration measure for varying pa-
rameters alpha and beta, (c) contour plot of Chirp function for standard ST, (d) contour plot of Chirp 
function for modified ST.



200

Image Focus Measure Based on Energy of High Frequency Components in S-Transform

′′( ) ′ ( )
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For each object point, the sharpest pixel pro-
vides the depth information. The depth map D(x,y) 
is computed by maximizing the focus measure 
along the optical axis, as shown below:

D x y I x y z Z
z

z( ) argmax( ( ), ., = , ) = 1,2, ,′′
  

(46)

On the other hand, the all-in-focus image Iaif 
is computed by taking gray level values at the 
maximum focus as

Iaif(x,y) = ID(x,y)  (47)

For brevity, the steps to compute depth map 
and all-in-focus image using the ST based focus 
measure are listed in Table 2.

RESULTS AND DISSCUSION

To report the effectiveness of the proposed focus 
measure, we conducted experiments using image 
sequences of three real objects. A sequence of 
97 images of a real cone was obtained by using 
simple charge-coupled device CCD camera. The 
dimensions of each image are 200 × 200 pixels. 
Its actual depth map was estimated by using the 
cone parameters. Images for the real test objects, 
a statue on the one cent coin and letter I engraved 
into the surface, were obtained using microscope 
control system (Shim & Choi, 2010) shown in 
Figure 3. The system comprises of a personal 
computer, a frame grabber board, a CCD camera, 
motor driver with 2.5 nm (nano meter) step length, 
a microscope and image capturing software. The 
CCD camera is mounted on the microscope and 
the images were acquired by controlling the lens 
position. Keeping the illumination conditions 
constant, sequences of 60 images for the both 
test objects obtained under 50× magnifications.

We have actual depth map and corresponding 
all-in-focus image of real cone. Therefore, it is 

Table 2. Summary of depth estimation and recovering all-in-focus image through proposed focus measure 

1 For each pixel (x,y) in the image sequence Iz(x,y), a small image of size N × M is taken. Initialize n, m, p, q, Tx, NTx, Ty, MTy.

2 Compute the Fourier transform using fast Fourier transform (FFT) method.

3 Calculate 2D Gaussian window using optimal window width at the current frequency 
n

NT
m

MTx y

,










.

4 Shift the Fourier spectrum H(n,m) to H(n’+n,m’ + m).

5 Compute point wise multiplication of shifted spectrum and Gaussian window.

6 Repeat steps 3 to 5 for N × M times.

7 Compute initial focus value using (43).

8 Repeat steps 2 to 7 for each pixel in the image sequence.

9 Recover depth map and restore all-in-focus image through (46) and (47) respectively.
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possible to evaluate different focus measures 
quantitatively. We choose three quantitative mea-
sures: root mean square error (RMSE), universal 
image quality index (UIQI), and structural simi-
larity index measure (SSIM). RMSE measures 
the average of square of the error or distortion 
between actual and estimated depth maps or all-
in-focus images.

RMSE
XY
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where D(x,y) and D’(x,y) are actaul and esti-
mated depth maps respectively. UIQI measure 
the similarity between actual and a distorted 
images. The distortion is modled by combining 
three factors: correlation,mean luminance, and 
contrast (Stockwell, et al., 1996). Mathematically, 
it is expressed as,

UIQI
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where D  and ′D  represent mean of the actual 
and estimated depth maps respectivly. Extending 
their work on distortion measure, (Zhou & Bovik, 
2002) suggested another quality measure that is 
based on strutural information. This measure is 
defined as,

SSIM
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where, σD is the variance of orignal depth map, 
σ ′D is the variance of estimated depth map, and 
σDD ′  is the covariance between original and 
compted depth maps. c1 and c2 are constants.

To find the appropriate values of parameters 
α and β, we used well known grid search tech-
nique as explained in Table 1. In this technique, 
we assign grid range and the step size for each 
parameter. Energy concentration is computed 
using modified ST for a small image patch of 
size 15x15 by varying the values of α and β. To 
make computationally effective search, we use 

Figure 3. Microscope control system
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the concept of coarse search by selecting large 
size of grid range with large step size then we 
refine the grid using small ranges [1,5] and [.5,2] 
for α and β, respectively, with the step size 0.1. 
The overall average of the optimal values from 
randomly selected fifty image patches are found 
to α=3 and β=1.7. After that, same values have 
been used for computing focus measure for all 
image sequences. It is difficult to find generic 
optimal values for these parameters that are valid 

for all images. Apart from the image distribution, 
parameters values also depend upon the length of 
the signal (patch size) and maximum frequency 
present. These two factors determine the frequency 
samples at each time instance. For image patches 
of same sizes the variations in parameters α and β 
is comparatively small. However, if the size of the 
image patch largely differs then these parameters 
have significantly different optimal values.

Figure 4. First row, frame number 20 extracted from each image sequence: (a) real cone, (b) coin, and 
(c) letter I. Second row: frame number 50 extracted from each image sequence: (d) real cone, (e) coin, 
and (f) letter I. (g)–(i) all-in-focus images obtained through the proposed focus measure FST.
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The performance of the proposed focus mea-
sure is compared with the existing focus mea-
sures FSML,FTEN, FGLV, FDCT, and FDWT. The focus 
measures in frequency domain FDCT and FDWT 
compute ratio of the energies of high frequency 
components to low frequency components. First 
two rows of Figure 4 show frames numbers 20 
and 50 extracted from each of image sequences 
of test objects real cone, coin, and letter I. It can 
be observed that in frame 20 some parts of the 
objects are well-focused and others are defocused 
and not clearly visible. Similarly, the well-focused 
parts in frame 20 are defocused in frame 60 and 
defocused parts in frames 20 are becomes well 
focused. Third row of the Figure 3 shows the all-
in-focus image computed through the proposed 
method. In restored images, the objects are well 
focused the quality of the image is improved 
significantly.

Table 3 shows the performance comparisons 
in terms of depth map and all-in-focus image 
generation using the quality measures RMSE, 
UIQI, and SSIM. The numerical values for these 
metrics are computed using true depth map / all-
in-focus image and the estimated depth maps / 
and all-in-focus images of real cone. It can be 
observed that RMSE, UIQI, and SSIM values for 
the proposed focus measure are better among 
others. The results computed using FDWT are com-
parable with the proposed method. However, the 
performance of FTEN has provided the lowest 
performance.

Figure 5 shows the depth maps computed by 
using existing focus measures FSML, FGLV, FDCT and 
the proposed focus measure FST for three test 
objects real cone, coin, and letter I. For lucid 
comparisons, after applying focus measures, 3D 
window of size 5 × 5 × 5 has been used for sum-
mation of focus values. This step helps to suppress 
the noisy focus measurements. A significant per-
formance difference can be observed between the 
3D shapes recovered using the proposed and 
existing focus measures. It can be observed that 
3D shapes recovered through the proposed scheme 
are better than the conventional methods. On the 
other hand, 3D shapes reconstructed through the 
traditional methods generated coarse surfaces due 
to their limited capability in computing focus 
measurements accurately. Moreover, noisy focus 
values introduce error in depth values and rela-
tively more spikes can be observed in the con-
structed depth maps of the objects. It is notable 
that the FSML focus measure poorly recovered the 
depth of the lower right corner of the real cone. 
This is due to the low illumination and weak 
textured area of the real cone images. However, 
our proposed method successfully recovered the 
depth from this weak textured area.

FUTURE RESEARCH DIRECTIONS

From various studies, it is concluded that the initial 
focus measurements contain noise that result in 

Table 3. Performance comparison in terms of depth map recovery and all-in-focus image generation 

Measure

Depth map All-in-focus image

RMSE UIQI SSIM MSE UIQI SSIM

FSML 10.3063 0.7734 0.9906 26.1593 0.9580 0.9695

FTEN 14.2214 0.6994 0.9759 78.4633 0.9218 0.9390

FGLV 10.3947 0.8151 0.9910 26.5559 0.9654 0.9807

FDCT 13.1364 0.8371 0.9891 21.8088 0.9665 0.9752

FDWT 9.5982 0.8152 0.9951 16.9414 0.9679 0.9775

FST 9.4518 0.8537 0.9966 14.6745 0.9724 0.9812
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Figure 5. Reconstructed 3D shapes of test objects (left-most column) real cone, (central column) coin, 
and (right-most column) letter I using (first row) FSML, (second row) FGLV, (third row) FDCT, and (fourth 
row) FST.
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inaccurate depth map and all-in-focus image. The 
filtering of initial focus volume may provide better 
focus measurements. This fact is also highlighted 
in earlier work (Mahmood, Choi, & Choi, 2008a; 
Malik & Choi, 2008; Zhou, Bovik, Sheikh, & 
Simoncelli, 2004). The use of OTF in frequency 
domain acts as low pass filtering whereas PCA 
discriminate the focus measurements in frequency 
domains. The focus measurements with ST may 
also be enhanced through a similar operation. 
However, instead of applying linear filtering i.e., 
uniformly estimating focus measurements using 
a fixed window, adaptive nonlinear filtering will 
provide better results. In addition, we found that 
the computations of ST are expensive. This is 
perhaps the main reason that limits the utility of 
ST in many applications. However, recently some 
fast algorithms have been proposed to improve 
its efficiency (Brown, Lauzon, & Frayne, 2009).

CONCLUSION

In this chapter, we have explored the image focus 
measure that has many important applications in 
image processing and machine vision applications. 
A comprehensive discussion has been done regard-
ing various focus measures that have been reported 
in spatial and transform domains. In addition, we 
have proposed a new focus measure employing 
the energy of high frequency components in ST. 
A modification for the window width function is 
suggested that affects the energy as well as focus 
measure. The optimal parameters are obtained 
using the energy concentration criterion. The 
proposed focus measure is then tested for real 
images with respect to multi-focus restoration and 
depth map extraction. The comparative analysis 
has shown the effectiveness of the proposed  
focus measure.
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KEY TERMS AND DEFINITIONS

All-in-Focus Image: An all-in-focus image 
comprises of best focus parts that are extracted 
from a stack of visual observation.

Depth Map: A Depth map represents depth 
information instead of intensity values correspond-
ing to two- dimensional array of an image.

Discrete Cosine Transform: The discrete 
cosine transform (DCT) of a signal is a real valued 
transform that expresses a sequence of finitely 
many data points in terms of a sum of cosine 
functions oscillating at different frequencies.

Discrete Wavelet Transform: The discrete 
wavelet transform (DWT) is the decomposition 
of the signal into approximations and details 
coefficients obtained by expanding the signal in 
terms of the scaling function and basis function.

Energy Concentration Measure: The En-
ergy concentration measure concerns with the 
representation of the signals in time-frequency 
domains. Maximum energy concentration mea-
sure provides the sharpness or peakedness of the 
transformed signal.

Focus Measure: An operator that measures 
the focus quality of the image by utilizing the 
high frequency contents in the image.

Shape from Focus: A technique that retrieves 
3D structure of an object from a sequence of its 
images with different focus settings.

S-Transform: The S transform is a generaliza-
tion of the Short-time Fourier transform (STFT), 
which uses a variable window instead of a constant 
window that depends on the frequency.
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ABSTRACT

Three-dimensional (3D) shape reconstruction is a fundamental problem in machine vision applications. 
Shape from focus (SFF) is one of the passive optical methods for 3D shape recovery, which uses degree 
of focus as a cue to estimate 3D shape. In this approach, usually a single focus measure operator is 
applied to measure the focus quality of each pixel in image sequence. However, the applicability of a 
single focus measure is limited to estimate accurately the depth map for diverse type of real objects. To 
address this problem, we introduce the development of optimal composite depth (OCD) function through 
genetic programming (GP) for accurate depth estimation. The OCD function is developed through op-
timally combining the primary information extracted using one (homogeneous features) or more focus 
measures (heterogeneous features). The genetically developed composite function is then used to compute 
the optimal depth map of objects. The performance of this function is investigated using both synthetic 
and real world image sequences. Experimental results demonstrate that the proposed estimator is more 
accurate than existing SFF methods. Further, it is found that heterogeneous function is more effective 
than homogeneous function.
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INTRODUCTION

Inferring three-dimensional (3D) shape of an 
object from two-dimensional (2D) images is a 
fundamental problem in computer vision (Ahmad 
& Choi, 2005; Nayar & Nakagawa, 1994; Thelen, 
Frey, Hirsch, & Hering, 2009). Broadly, 3D shape 
recovery algorithms based on optical reflective 
model can be categorized into active and passive 
techniques. In active techniques, depth of the ob-
ject of interest is computed by investigating trans-
mission or reflection of signals such as ultrasound 
or infrared rays. While, passive methods infer 
the depth of the object by analyzing information 
from the captured images. The shape from focus 
(SFF) is one of the passive methods to estimate 
3D structure of the object based on image focus 
analysis. It is a famous one in the paradigm of shape 
from X, where X denotes the cue used to infer the 
shape as stereo, motion, shading, de-focus, and 
focus. The SFF technique has been successfully 
utilized in many industrial applications, i.e. mi-
croelectronics (Niederost, Niederost, & Scucka, 
2003), industrial inspection (S. O. Shim, Malik, 
& Choi, 2009), medical diagnostics (Boissenin et 
al., 2007), 3D cameras (Malik & Choi, 2007a), 
TFT-LCD color filter manufacturing (Ahmad & 
Choi, 2007), and roughness comparison of poly-
mers (Malik & Choi, 2009). In addition, it has 
also been employed to measure roughness, and 
geometry of large components, such as engine 
blocks and aircraft turbines (Kyte, 2010).

In SFF, an image sequence is acquired by trans-
lating object along the optical axis. It is important 
to note that acquired images from lenses with 
limited depth of field have both the areas in and 
out of focus. However, it is possible to compute 
the well-focused image from the image sequence 
taken at different focus levels by computing the 
high frequency image contents. A criterion, usually 
known as focus measure, is used to compute focus 
quality of each pixel in the image sequence. Focus 
quality is computed for each pixel in the image 
sequence and an initial depth map is obtained by 

maximizing the focus measure along the optical 
axis. In the literature, many focus measure opera-
tors are reported in spatial (Helmli & Scherer, 
2001; Krotkov, 1988; Subbarao & Tyan, 1998) 
and transform domains (Mahmood, Choi, & Choi, 
2008; Mahmood, Shim, & Choi, 2009; Malik & 
Choi, 2008; Sun, Duthaler, & Nelson, 2004; Xie, 
Rong, & Sun, 2007). Once an initial depth map 
is computed, some approximation technique is 
applied to further refine these results (Malik & 
Choi, 2007b; Nayar & Nakagawa, 1994; Subbarao 
& Choi, 1995). Most of these techniques use a 
single focus measure to estimate initial depth map. 
Due to the diverse nature of real images, it is not 
possible for a single focus measure to perform 
equally well under different scenarios. Therefore, 
it is difficult to choose a suitable focus measure 
for specific conditions. Another drawback with 
existing techniques is that the error introduced 
in computing initial depth map is propagated to 
the approximation step. In such scenario, there 
is a demand of a new generalized optimal depth 
estimator that may effectively incorporate useful 
information from more than one focus measures.

In this connection, we propose a novel idea of 
combining initial depth and focus values extracted 
from various focus measures. Using this concept, 
the advantages of one focus measure can over-
come the shortcomings of others. However, the 
problem is how to combine in a best possible way. 
Under such circumstances, we introduce genetic 
programming (GP) based technique that optimally 
combines the initial information extracted from 
one or more focus measures. GP approach works 
on the principles of natural selection and recom-
bination to search the space for possible solutions 
under a fitness criterion. Due to the flexibility of 
adjustable parameters, GP optimization technique 
(dos Santos, Ferreira, Torres, Gonlves, & Lam-
parelli, 2010; Kouchakpour, Zaknich, & Brnl, 
2009; Koza, Streeter, & Keane, 2008; Langdon, 
2000; Mallipeddi, Mallipeddi, & Suganthan, 2010) 
has been widely used in the applications of image 
processing (Petrovic & Crnojevic, 2008), pattern 
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recognition (Majid, 2006), and computer vision 
(Majid, Khan, & Mirza, 2006). In the proposed 
scheme, GP based optimal composite depth (OCD) 
functions are developed using homogenous and 
heterogeneous feature sets. In the first step, set 
of features, consisting of initial focus and depth 
values that are computed through existing focus 
measures, is obtained. The useful features infor-
mation and random constant values are combined 
through arithmetic operators to develop the OCD 
function. The composite function is then used to 
compute the optimal depth map. The improved 
performance of the developed function is inves-
tigated using synthetic and real images. Experi-
mental results demonstrate the superiority of the 
proposed GP based scheme over the conventional 
focus measures.

In the remainder of this chapter, we describe 
the SFF scheme and present a brief summary of 
existing focus measures and approximation tech-
niques. Then, after providing some experimental 
results describing the effect of focus measures on 
the depth map, we are motivated to suggest GP 
based scheme. Later sections of this chapter ex-
plain experimental setup and comparative analysis.

BACKGROUND

Shape from Focus

Techniques that retrieve spatial information from 
multiple images of the same scene, taken at dif-
ferent focus levels, are classified as Shape From 
Focus (SFF). In SFF, the objective is to find out 
the depth by measuring the distance of well-fo-
cused position of every object point from the 
camera lens. Once, distances for all points of the 
object are found, the 3D shape can easily be re-
covered. Figure 1 shows the schematic of SFF 
technique. Initially, an object of unknown depth 
is kept on reference plane and then translated in 
the optical direction in fixed finite steps of δd
with respect to a real aperture camera. At every 

step, an image is captured and a stack of visual 
observations is obtained. Due to the limited depth-
of-field of the camera and the 3D nature of the 
object, the captured images are space-variantly 
blurred such that some parts of the object come 
into focus in each frame. The distances between 
the focus plane and reference plane are known. 
A point P on the surface of the object becomes 
focused gradually and at one stage, it will be in 
sharp focus. We are interested at this sharp focus 
stage as it provides information about the depth 
of this point. All light rays, which are radiated 
from the object point P, are intercepted by the 
lens and converged at the point P’ on image plane. 
Well-focused point P satisfies the lens law:

1
=

1 1
f u v

+  (1)

where f is the focal length of the lens, u is the 
distance of the object point from the lens, and v 
is the distance between lens and image plane. At 
any other distance u ≠ u’ of the object point from 
the lens will not be well-focused on image plane. 
According to geometric optics, the aperture defines 
the shape of the blurred image of the point P. 
Since, we have considered the aperture to be 
circular, the blurred image is also a circle of ra-
dius R with uniform brightness inside the circle 
and zero outside it. In practice, the image of a 
point is not a crisp circular patch with constant 
brightness. Due to diffraction, polychromatic il-
lumination, lens aberrations etc., it will be a cir-
cular blob with the brightness falling of gradu-
ally at the border. Therefore, this blurring effect 
is usually modeled by two-dimensional Gaussian 
function which is defined by:
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This function is also known as Point Spread 
Function (PSF) where, r is a spread parameter 
corresponding to the standard deviation of the 
distribution of the PSF. Hence, a sensed image is 
the convolution of the actual image and a Gauss-
ian function, i.e.

g(i,j) = ga(i,j)*h(i,j)  (3)

where g(i,j) is the sensed image, ga(i,j) is the 
actual image, * is the convolution operator and 
h(i,j) is the PSF. The radius of the blurred circle 
R and the width of the Gaussian function r are 
related by r = cR. Where c is a constant and it 

can be approximated through camera calibration 
(Pentland, 1987). The main issue in SFF scheme 
is to determine the particular distances of all 
object points from the camera for which they are 
well focused at image plane. The focus measure 
increases with the increase of focus quality and 
it attains maximum value at well-focused frame 
number. Therefore, a well-focused image will 
have larger amount of high frequency contents 
as compared to de-focused image of the same 
scene. The main problem in the construction of an 
accurate depth map is to locate the best-focused 
pixel using the obtained image frames at each 
object point.

Figure 1. Schematic of shape from focus
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Focus Measures

The basic step in SFF is to compute the focus 
quality or sharpness for each pixel in the image 
sequence. One of the famous categories of focus 
measures is based on image derivatives. These 
measures are based on the idea that the larger 
difference in intensity values of neighboring 
pixels is analogous to the sharper edges. Broadly, 
they can be divided into two sub-categories: first 
and second derivative based methods. In gradi-
ent based methods include Threshold Absolute 
Gradient (TAG) (Santos et al., 1997), Squared 
Gradient (SG) (Tian, Shieh, & Wildsoet, 2007), 
Brenner Gradient (BG) (Brenner et al., 1976), and 
Tenenbaum focus measure (TEN) (Tenenbaum, 
1970) . Among these, TEN is the most famous. In 
this method, horizontal and vertical Sobel opera-
tors are applied. The focus quality is measured by 
computing the magnitude of the gradient vector 
components. In the remaining text, it is referred 
as F2. Second derivative based operator Laplacian, 
being a point and symmetric operator, is suitable 
for measuring image sharpness. Several focus 
measures have been proposed by modifying the 
Laplacian operator (Helmli & Scherer, 2001; Sub-
barao, Choi, & Nikzad, 1993; Subbarao & Tyan, 
1998; Thelen, et al., 2009). Nayar and Nakagawa 
proposed sum modified Laplacian (SML) focus 
measure (Nayar & Nakagawa, 1994) that is de-
noted by F1 in the remaining text. In this measure, 
first, an image is convolved with the Laplacian 
operator. The components obtained through the 
Laplacian operator may have opposite sign and 
can yield zero response by canceling the effect 
of each other. To overcome this limitation, it is 
modified by taking the energy of the Laplacian 
operator. In order to improve robustness, the re-
sultant values are summed up within a small win-
dow. The second derivative based focus measures 
provide more accurate results as compared to the 
first derivative based measures. However, these 
measures are more sensitive to noise. Among the 
statistic based focus measures (Groen, Young, & 

Ligthart, 1985; Wee & Paramesran, 2007; Yap & 
Raveendran, 2004; Zhang, Zhang, & Wen, 2000), 
the Gray Level Variance (GLV) (Krotkov, 1988) 
focus measure has gained the most attention. The 
main concept is that the larger variance of intensity 
values within a small window corresponds to the 
sharper image and vice versa. The focus value is 
computed by calculating the variance of intensity 
values. In the remainder text, this focus measure 
is denoted by F3.

Some focus measures have also been proposed 
in transform domains. The main concept is the 
energy of high frequency components remains 
analogous to the image sharpness. In discrete 
cosine transform (DCT) domain, the energy of 
high frequency components or ratio of energies 
of high frequency and low frequency components 
is taken as focus measure. The entropy of the 
normalized DCT coefficients has been suggested 
as a focus measure by (Kristan, Perv, Pervse, & 
Kovavcic, 2006). In discrete wavelet transform 
(DWT) domain, the ratio of energies of the high 
and low frequency components is considered as 
focus measure (Xie, et al., 2007). Another robust 
focus measure based on optical transfer function 
(OTF) has been proposed by (Malik & Choi, 2008). 
Recently, a focus measure based on the energy 
of high frequency components in S-transform is 
suggested by (Mahmood & Choi, 2010). Focus 
measures in transform domains also provide 
comparable accuracy. However, these methods 
are rather expensive to compute.

Depth Refinement Techniques

Once an initial depth is extracted by applying 
a focus measure, it is further refined to obtain 
an accurate depth map. In literature, many ap-
proximation and machine learning based methods 
have been suggested. Some of them are briefly 
discussed here.
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Gaussian Interpolation

Gaussian interpolation has been suggested to 
compute the accurate depth position by (Nayar & 
Nakagawa, 1994). First, focus values are computed 
through F1 focus measure. The Gaussian model 
is fitted to three focus values near the peak of the 
focus curve. The initial depth is replaced with the 
mean value of the fitted curve. However, paramet-
ric interpolation methods such as Gaussian curve 
fitting may not yield optimal depth, as the focus 
values (focus curve) may not follow any specific 
distribution. Moreover, in reality objects have 
complex geometry, so the focus values computed 
over a single frame may not capture the effect of 
focus values from the neighboring frames.

Focused Image Surface

Traditional methods do not consider the fact that 
the focused image of the 3D object being in 3D 
space too. The concept of Focused Image Surface 
(FIS) is introduced by (Subbarao & Choi, 1995). 
Based on this concept, they also proposed a method 
SFF-FIS to recover an accurate 3D shape. FIS is 
defined as the surface formed by the set of points 
at which the object points are focused by the 
camera lens. First, an initial shape is computed 
using a focus measure F1. Then, the initial shape 
is refined by approximating focus measure over 
3D space. A planar window in the image volume 
instead of a single frame is used to approximate 
the optimal focus. The SFF-FIS provides better 
results; however, this method is computationally 
expensive as it searches the plane that provides 
optimal focus measure from a huge number of 
possible planes.

Focused Image Surface 
through Curved Window

Further extending the work on SFF-FIS, (Choi 
& Yun, 2000) suggested the estimation of FIS 
through piecewise curved surface approximation 

instead of planar window. For objects with com-
plex geometry, the planar window may not yield 
accurate results. Moreover, small neighborhood 
around the initial depth estimate may not provide 
sufficient information for optimal focus measure. 
Therefore, (Choi & Yun, 2000) proposed higher 
order approximation. the initial shape estimate 
is computed through the focus measure F3. The 
piecewise curved surface around each pixel is 
estimated by using second order Lagrangian 
polynomials with nine control points. The central 
pixel of the approximated curve provides optimal 
focus measure. It provides better results, however, 
the related computational cost is increased.

Neural Network-Based SFF

Neural networks are capable of learning any arbi-
trary nonlinear function from a set of observations. 
An approach based on neural networks to obtain 
an optimal FIS has been suggested by (Asif & 
Choi, 2001). In this method, initial focus values 
are computed through the focus measure F3. The 
focus measurements from 3D neighborhood of 
each point are provided to the input layer of the 
neural network. The optimal focus measure is 
learned by maximizing the focus value at the output 
layer. It provides better 3D shape, however, it is 
difficult to get a generalized function for optimal 
focus measure for arbitrary objects.

Dynamic Programming-Based SFF

In another work, (Ahmad & Choi, 2005) proposed 
the use of dynamic programming (DP) to obtain an 
accurate shape of the object. An initial FIS is esti-
mated using a traditional focus measure. Through 
DP, a refined FIS is then obtained by optimizing 
focus measure in 3D space. DP optimization is 
based on Bellman’s principal of optimality which 
states that the optimal path between two given 
points is also optimal between any two points lying 
on that path. In this method, the problem of shape 
recovery is split into a series of small problems. 
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Thus computationally this approach is effective 
than traditional methods. The shape of the object 
is searched in the whole image focus volume.

Combinatorial Optimization for SFF

In this approach, the SFF is modeled as combi-
natorial optimization problem (S. Shim & Choi, 
2010). To reduce the computational complexity, a 
local search algorithm is proposed. First, the initial 
estimate is obtained by applying a conventional 
focus measure and then initial depth is obtained by 
maximizing the focus measure along the optical 
axis. At each point, the neighborhood is defined 
from the initial depth by taking several preceding 
and following frames with respect to the initial 
depth. The intermediate image volume is obtained 
by collecting the pixels values of neighborhood 
at each point. The updated solution is retrieved 
from the intermediate image volume. This update 
process continues until the convergence criterion 
is fulfilled. The process to obtain temporary image 
volume has the effect of aligning the curved object 
patch, corresponding to the focused image sur-
face perpendicular to the optical axis. Therefore, 
applying the focus measure on the intermediate 
image volume gives more accurate focus level 
at each pixel.

The above-discussed methods provide good 
results but their performance relies upon the initial 
estimate obtained from a single focus measure. 
Another drawback of these traditional approaches 
is their noise sensitivity due to the gradient-based 
focus measures. That is why; the performance of 
these SFF methods is deteriorated significantly 
under diverse conditions.

FOCUS MEASURE VS. DEPTH MAP

In this section, we will discuss the effect of focus 
measure on depth map. Comparative studies of 
focus measure operators (Groen, et al., 1985; 
Subbarao & Tyan, 1998; Sun, et al., 2004; Tian, 

et al., 2007) revealed that different focus measures 
provide different focus values and thus result in 
different depth values. Practically, it is hard to 
predict the suitable focus measure among a large 
list. Many factors including window size, mask 
size, noise level, illumination, contrast, affect the 
accuracy of the computed focus values and depth 
map. Some focus measure work well in normal 
conditions however, others perform poorly in weak 
textured and low illumination conditions. The 
performance of derivative based focus measures 
is relativity poor relating to the parts of images 
with less texture. Moreover, in noise-free environ-
ment, the second derivative based focus measure 
is more accurate as compared to the first derivative 
based focus measure. However, its performance 
is degraded with the increase of noise variance. 
Similarly, higher order moments provide good 
focus measures but are more sensitive to noise 
and complex in computation.

To illustrate the effect of window size and ac-
curacy of focus measurements for various focus 
measures, we carried out some experiments by 
retrieving image sequence of simulated cone. 
The image acquiring procedure and experimental 
setup are explained in sub section “Implementation 
details”. Since, we have true depth map for the 
simulated cone object, it is possible to compute 
discrepancies between estimated and true depth 
maps through a quantitative measure. Figure 2 
(a) shows the root mean square error (RMSE) 
computed for depth maps obtained through the 
focus measures F1, F2, and F3. The accuracies of 
estimated depth maps are differing from each other. 
We can observe that F1 provides better results than 
F2 and F3 It is also notable, that as we increase the 
window size, the depth map become smoother and 
performance difference between focus measure 
operators becomes smaller. Increasing the window 
size actually makes the object surface smooth and 
spikes (wrong depth estimates) are suppressed. A 
comprehensive study about the effect of neighbor-
hood size and illumination in SFF techniques is 
done by (Malik & Choi, 2007b). Malik and Choi 
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concluded that a larger window size deteriorates 
the depth map accuracy. In addition, the uniform 
averaging (summation of focus values within 
the window) is another source of inaccuracies 
in depth map computation. During this process, 
many noiseless focus measurements are altered.

We computed focus curve for the sequence of 
the object point (80, 80) of simulated cone by 
using different focus measures. For all focus 
measure, window size 5 × 5 has been used to ag-
gregate focus values. The true depth value for this 
point is 38.97. From Fig. 2 (b), it can be observed 
that the three focus measures F1, F2 and F3 have 
provided different depth values. The focus measure 
F1 has provided the best focus pixel at position 
40, F3 has provided depth value 36, and depth 
value 37 is computed through the focus  
measure F3

Summarizing the above discussion, we con-
clude that it is difficult to compute accurate depth 
map using a single focus measure. Moreover, real 
images with diverse types of illumination and 
contrast lead to the erroneous depth map estima-
tion through a single focus measure. Therefore, 
we propose GP based optimization technique that 
automatically combines the useful information to 

develop an optimal function for accurate depth 
estimation. Through GP evolution cycle, the most 
satisfactory solution in the shape of a numerical 
expression is developed. This composite function 
might compensate the shortcomings of one focus 
measure while taking advantages of the other focus 
measure for accurate depth map estimation. In the 
subsequent section, we will describe the GP based 
approach to develop OCD function.

Proposed Scheme based on 
Genetic Programming

Our aim is to develop GP based depth estima-
tion function, F’: x → y, that maps the useful 
input information x to the target depth y values. 
The proposed scheme is divided into Preparing 
training data, Function development and Depth 
estimation. In first module, training data is 
formed by computing features from by applying 
some focus measure. During GP process, optimal 
depth estimation function is developed using the 
training data. Depth estimation module is used to 
estimate the optimal depth map of the object. The 
block diagram of the proposed GP based scheme 
is shown in Figure 3.

Figure 2. (a) Effect of window size on depth map accuracy, and (b) focus curves for the object point 
(80,80) of the simulated cone obtained through different focus measures
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Preparing Training Data

In the proposed scheme, the first step is to construct 
a set of informative feature vectors. The feature 
vector x consists of initial depth and focus values 
computed by applying some focus measure op-
erator on an image sequence of the object. An 
image sequence g(k)(i,j) is acquired through a CCD 
camera by translating the object along the optical 
axis, where i = 1,2,…,I and j = 1,2,…,J indicate 
the number of rows and columns of each image 
in the sequence. Here k = 1,2,…,K denotes the 
frame number in the image sequence. In order to 
obtain a focus volume ′g i jm

k( )( , ) , mth focus mea-
sure operator Fm is applied on each image in the 
sequence, i.e.,

′g i j F g i j k Km
k

m
k( ( )( ( ))( , ) = , ) , = 1,2, , .  (4)

For each object point, the sharpest pixel pro-
vides depth information. Therefore, the initial 
depth map is constructed by selecting the maxi-
mum values along the optical axis as:

d i j g i j k Km
k

m
k( ) argmax ( )(, = ( , ) , = 1,2, , .)′


 

(5)

Corresponding to each initial depth dm(i,j), the 
best focus values vm(i,j) are computed from the 
image focus volume, i.e.

v i j g i jm m
dm( , ) = ′ ( )( ) , .  (6)

The training dataset X yn n
n
N= , 1{( )} ,x( ) ( )
=  is 

constructed by selecting N data point out of total 
L = I × J points. Each data point consists of input 
feature vector and corresponding target value. 
The feature vector x consists of initial depth and 
focus values. The initial depth dm and focus value 
vm are computed using Eq. (7) and Eq. (8) respec-
tively. In this work, we construct homogeneous 
and heterogeneous feature vectors. The homoge-
neous feature vector xm is constructed using 
Fmfocus measure, whereas the heterogeneous 
feature vector xh is formed from various focus 
measures. Using these two types of feature vec-
tors, homogeneous function ′ →F ym m: x and 
heterogeneous function ′ →F yh h: x  are devel-
oped.

To develop homogenous feature vector xm we 
use the initial depth and 3D neighborhood around 
best-focused pixel. Neighboring focus values of 

Figure 3. GP based optimal depth map estimation scheme
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the best-focused pixel have greater influence on 
the depth value. There are many approaches to 
construct 3D neighborhood (Bernd, 2005). How-
ever, we use the six-pixel neighborhood around 
each best focused pixel in the focus volume 
′g i jm

k( .)( , )  Thus, a set smof seven focus values is 
obtained, i.e.,

s

v g i j v g i j

v g i
m

m m
d

m m
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m m
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m m
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(7)

Thus, for each point (i,j), an eight-dimensional 
homogenous feature vector xm is constructed, i.e.,

xm = (dm,sm)  (8)

From the object with known depth data, the 
training dataset is formed by randomly selecting 

N pairs of data points i.e., X ym m
n n

n

N

= ( ){ }( ) ( )

=
x , .

1

We found that the heterogeneous combination 
of prediction models is more informative than the 
homogenous combination of prediction models 
(Khan, Abdul, & Anwar, 2005; Majid, 2006; 
Majid, et al., 2006). Applying this concept, we 
construct heterogeneous feature vector using 
various focus measures to develop heterogeneous 
function ′ →F yh h: x . The heterogeneous feature 
vector xh for each object point (i,j) is constructed 
by including the initial depth dm and best focused 
pixel vmfrom each of M focus measures, i.e.,

xh = (d1,…,dM,v1,…,vM)  (9)

Currently, we use three most commonly used 
focus measures F1, F2, and F3 for m = 1,2,3 re-
spectively, however, other focus measures in 
spatial and transform domains can also be incor-
porated. In this way, a six-dimensional heteroge-

neous feature vector xh = (d1,d2,d3,v1,v2,v3) is 
formed. From the simulated object with known 

depth, we prepare training set X yh h
n n

n

N

= ( ){ }( ) ( )

=
x ,

1
 

of N observations, where xh is the nth input vector 
and y(n) is corresponding scalar target value, re-
spectively. For brevity, we use separate notations 
for the homogeneous vector, heterogeneous vec-
tor and corresponding OCD functions.

Function Development

In this module, the main task is the adequate 
representation of desired solutions in tree-like 
data structure. To develop homogeneous function
′Fm ,  we provide eight-dimensional homogenous 

feature vector xm as input variables for GP tree. 
Whereas, six-dimensional heterogeneous feature 
vector xh gives six input variables for the develop-
ment of heterogeneous function ′Fh .  Further, 
randomly generated numbers in the range of [0-1] 
are used as constant terminals. On the other hand, 
the set of non-terminals in GP tree comprises of 
simple arithmetic and trigonometry operators i.e., 
plus, minus, times, divide, sin, cos, log, power, 
and exp. Table 1 shows all necessary parameter 
setting for GP simulation.

In GP evolution process, first, an initial popu-
lation of size Z is generated using ramped half-
and-half method (Majid, et al., 2006). In a popu-
lation, possible candidate solution V is a 
constituent of randomly selected variables, con-
stants and mathematical functions. In second step, 
the fitness of each individual tree in the population 
is assessed using mean square error (MSE) as a 
fitness criterion. This minimum value of fitness 
measure Fit(V) indicates how effectively a GP 
individual moves towards the optimal solution 
(Majid, 2006).

Fit V
N

eval V y n N
n

N
n n( ) =

1
, = 1,2, , .

=1

2

∑ ( ) ( )( )−( ) 

 

(10)
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where y(n) is the nth target depth value correspond-
ing to the nth training pattern. In the third step of 
GP process, based on the survival of fittest rule, 
i.e. the best candidates ranked and selected from 
the population. The probability of individual to 
be selected within the population is computed as 
(Majid, 2006):

Pr ,V
Fit V

Total Fitnessz
z( )
( )

=  (11)

where

Total Fitness Fit V
z

Z

z= ( )∑
=1

.  (12)

The selected candidates are used for the cre-
ation of next generation. Crossover, mutation, and 
replication operators are applied on the selected 

individuals to generate new population. Crossover 
operator creates offspring by exchanging genetic 
material between two individual parents. To obtain 
good results through crossover, we used tourna-
ment selection method (Koza, et al., 2008). This 
selection works by selecting trees at random from 
the current generation. Two trees with the highest 
fitness values are exchanged sub-trees resulting 
in two new possible solutions. Crossover helps 
in converging to optimal/near-optimal solution. 
However, in mutation process, a small part of 
individual often brings diversity in the solution 
space. For GP simulation, a ratio of crossover/
mutation is automatically adapted. During simu-
lation, each new generation has a slightly higher 
average fitness score. In this way, the solution 
space is refined and converges to the optimal/
near optimal solution. The simulation is stopped 
if either the number of generations reaches the 

Table 1. GP parameters setting to develop OCD function

GP parameters Set values

Terminals set
• A homogenous feature vector xm to develop homogenous function ′ →F ym m: x ;
 

xm m m m m m m m md v v v v v v v= ( )( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,1 2 3 4 5 6 7
• A heterogeneous feature vector xh to 

develop heterogeneous function ′ →F yh h: x ;
xh = (d1,d2,d3,v1,v2,v3)
• Random constants in the range of [0-1]

Functions set plus, minus, times, divide, log, sin, cos, exp, power

Fitness criterion Mean square error

Population size and No. of genera-
tions

50 and 300, respectively

Population initialization Ramped half and half

Initial tree depth 5

Expected offspring Rank85

Operators probabilities Variable crossover/mutation ratio

Population sampling Tournament

Survival Keep the best individuals
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maximum limit or the fitness value (MSE) ap-
proaches the minimum set value.

Depth Estimation

Once, OCD function is developed through the 
GP module, the optimal depth map of an object 
can easily be computed. It is to be noted that for 
OCD function development, we prepare training 
data from simulated object with known depth. 
Moreover, randomly selected data points are used 
not only to reduce the training time but also to 
improve the generalization. During the develop-
ment of OCD functions, we found that the order 
of the feature vectors is insignificant.

In order to obtain a complete depth map of an 
object, we need to provide input feature vector 
for each object point to the depth estimator. Con-
sider again, an image sequence g(k)(i,j) of the test 
object that is acquired using CCD camera by 
displacing object toward the camera lens. For 
total K images, each of size I × J = L in the se-
quence, we are interested to estimate depth (̂ , )d i j  
for each object point (i,j) First, lexicographically 
arranged vectors are represented in a matrix 

X n

n

L

= ( ){ }( )

=
x

1
 of size L × R, where x represents 

a R dimensional feature vector and L indicates 
the total feature vectors respectively. The optimal 
depth value d̂  is estimated using the OCD func-
tion F’, i.e.;

d̂ F= ′( )x  (13)

The function F’ may be homogeneous or 
heterogeneous function. In case of homogeneous 
function ′Fm ,  the feature vector xm obtained through 
mthfocus measure will be used to estimate depth. 
Similarly, heterogeneous feature vector xh will be 
used to estimate depth from heterogeneous func-
tion ′Fh .

RESULTS AND DISSCUSSION

Implementation Details

For the development of OCD function, we pre-
pared training data from the simulated object. A 
sequence of 97 images, each of size 360 × 360, 
of a simulated cone was generated synthetically 
by using simulation software (Subbarao & Choi, 
1995). For each pixel, a homogeneous feature 
vector x1 is formed by applying F1 focus mea-
sure. In this way, feature vectors along with true 
depth values are used to construct training data 
of 129600 (=360 × 360) points. To avoid the over 
fitting problem and to reduce the training time, 
we randomly selected 40,000 data points.

Figure 4 (a) shows the curve of the best fit 
individual, in each generation, during the develop-
ment of homogeneous function ′F1 . The complex-
ity is expressed as a function of tree depth level 
and the number of nodes. During GP evolution, 
some constructive blocks are created, which try 
to minimize the destruction of useful building 
blocks. As a result, the size of GP individual grows 
exponentially without appreciable improvement 
in performance curve of the best individual. This 
behavior can be clearly observed in the middle 
region of the accuracy curve in Figure 4 (a). This 
might be due to the occurrence of bloating phe-
nomenon during GP evolution (Langdon, 2000; 
Majid, 2006). Many branches may not contribute 
in improving the performance. As a result, the 
best genome’s total number of nodes increases 
and average tree depth becomes very large. There-
fore, with the increase of complexity, the perfor-
mance curve of the best individual approaches 
towards the optimal solution. During the evolu-
tion, the selected parameters are optimally com-
bined to develop homogenous OCD function. 
Figure 4 (b) shows the graphical representation 
of the best homogeneous OCD function ′F1  ob-
tained at the end of simulation. Similarly, we 
obtain numerical expressions for the homogeneous 
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functions ′F2  and ′F3  through the GP evolution-
ary cycle for homogeneous feature vectors x2 and 
x3 respectively. These expressions, in prefix forms, 
are given as follows: 

′ = ( ) ( )F plus divide divide v plus v v1 1 1
2

1
4

10 799( ) ( ( ( , log( . )), ( ,x 22
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The heterogeneous function ′Fh h( )x  is devel-
oped using heterogeneous feature vectors xh where 
xh is formed by applying focus measuresF1, F2, 
and F3. The best obtained numerical expression 
is given as:

′ =F plus plus plus timesh h( ) ( (log(sin( (log( . ), log( (log(lx 0 7116 oog( )), ))))),

(log (sin(log( ))), (log(log( ))
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The improved performance of the developed 
functions is highly dependent on the optimal 
combination of initial depth and focus parameters 
along with arithmetic functions and some random 
constants. These homogeneous and heterogeneous 
functions are employed to estimate the 3D structure 
of any arbitrary object.

Experiments with Synthetic Images

To report the improved performance of OCD 
functions, we carried out several experiments 
using both synthetic and real image sequences. In 
case of synthetic object, it is possible to compute 
qualitatively discrepancies between the true and 

Figure 4. (a) Improvement in accuracy/fitness score exhibited by the best individual in each generation; 
and (b) Tree representation of the best individual ′F1 obtained at the end of GP simulation
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the estimated depth maps. We use three metrics: 
Mean Square Error (MSE), correlation, and Peak 
Signal-to-Noise Ratio (PSNR). MSE quantifies the 
amount by which a processed depth map differs 
from the ground-truth depth map. It measures the 
average of square of the error or distortion between 
the true and the estimated depth maps as:

MSE
L

d i j d i j
i

I

j

J

t=
1

=1 =1

2

∑∑ ( )− ( )( )ˆ , ,  (18)

where dt(i,j) and ˆ ,d i j( )  are true and estimated 
depth maps respectively. The smaller the RMSE 
is, better the result will be. The correlation metric 
provides the similarity between two depth maps. 
Correlation coefficient indicates the strength and 
direction of a linear relationship between the 
actual and approximated depth maps. It can be 
computed as:
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where d i jt ,( )  and ˆ ,d i j( )  are the means of the 
original depth map and estimated depth map re-
spectively. The PSNR is one of the most com-
monly used as a measure of quality of reconstruc-
tion. PSNR is the ratio between the maximum 
possible power of a signal and the power of cor-
rupting noise. It is usually expressed in terms of 
the logarithmic decibel scale:

PSNR
max

MSE
d= 10 10

2

log
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where maxd is the maximum depth value of the 
object. A higher PSNR indicates the reconstruc-
tion of higher quality.

Figure 5 (first row) shows different frames 
extracted from the image sequence of simulated 
cone. From these images, it can be observed that 
some parts of the cone are well focused and some 
parts are defocused. Second row in the Figure 5 
shows depth maps of simulated cone object com-
puted through the traditional focus measures F1, 
F2, F3 and heterogeneous ′Fh  function. For the 
traditional focus measures, first, focus volumes 
are computed by using window size 5 × 5and then 
depth maps are obtained by maximizing the focus 
measure along the optical direction. To estimate 
the depth map from heterogeneous ′Fh  function, 
the feature vector xh for each object point is com-
puted as described in Section 4.1. It can be observed 
that 3D shapes recovered through the proposed 
approach are better than conventional methods. 
The heterogeneous ′Fh  function, based on the 
optimal combination of conventional focus mea-
sures, has provided more accurate depth map.

Table 2 shows the performance comparisons 
in terms of MSE, correlation, and PSNR. The 
numerical values for these metrics are computed 
using true depth map of simulated cone and esti-
mated depth maps using traditional focus mea-
sures, homogeneous, and heterogeneous functions. 
Homogeneous feature vectors x1, x2, and x3 for 
each object point are computed using focus mea-
sures F1, F2, and F3 respectively. Depth maps of 
simulated cone are estimated using homogeneous 
functions ′F1 , ′F2 , and ′F3 . It can be observed that 
the estimated depth maps through the homoge-
neous and heterogeneous functions are closer to 
the actual depth map of simulated cone. The cor-
relation value for the heterogeneous function ′Fh  
is increased by 3.46%, 3.21%, and 3.37% than 
the conventional measures respectively. GP based 
heterogeneous function exhibits improvement 
13.69%, 114.81%, and 114.45% as compared to 
traditional methods F1, F2, and F3 respectively. 
Similarly, improvement in terms of PSNR measure 
can be observed from the Table 4. Figure 9 shows 
the performance comparison in pictorial form. It 
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is observed that the GP based functions ′F1 , ′F2 , 
′F3 , and ′Fh  provided considerable improvement 

as compared to the conventional measures in terms 
of MSE, correlation and PSNR. Further, it is in-
ferred that the heterogeneous function ′Fh  is more 
effective than homogeneous functions ′F1 , ′F2 , 
and ′F3.

Experiments with Real Images

Images for real objects have been acquired through 
the microscope control system (MCS) (Ahmad 
& Choi, 2007; Malik & Choi, 2007a). The MCS 
consists of a charge-coupled device (CCD) camera 
mounted on microscope, a frame grabber card 
integrated with computer, a motor driver with 
step size 2.5 nm to move the object plane along 
the optical axis, and software for capturing im-
ages by controlling the step size and number of 
images. The second object taken was TFT-LCD 
color filter. These filters have size in microns 

and are used to develop thin and bright displays. 
Sequence of 90 images, each of size 300 × 300, 
has been considered for experiments. The third 
object is a slanted planar, while the fourth object 
is a real cone whose 97 images, each of size 200 
× 200, were taken using CCD camera. The real 
cone object was made of hardboard with black 
and white stripes drawn on its surface for dense 
texture. First row of Figure 6 shows the sample 
images extracted from the image sequences of 
these objects.

Figure 6 shows 3D shapes reconstructed for 
test objects TFT-LCD color filter, real cone, and 
planar object. The depth maps of these objects 
are computed using traditional methods F1, F2, 
F3, and the heterogeneous function ′Fh . In case 
of traditional methods, first, focus volumes are 
computed using focus measures and focus value 
are aggregated by using a window size 5 × 5. Then 
the depth maps are obtained by maximizing the 
focus measure along the optical axis. For the 
function ′Fh , feature vector xh for each object point 

Figure 5. (First row) sample frames extracted from image sequence of synthetic object simulated cone 
(a) frame number 20, (b) frame number 40, (c) frame number 60 (d) frame number 80. (Second row) 
depth map reconstructed using (e) F1, (f) F2, (g) F3, and (h) ′Fh .
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is computed as described in Section “Preparing 
training data. It is to be noted that the data gener-
ated for depth estimation from real objects is 
entirely different from the training data generated 
by the simulated cone. For each test object, the 
complete depth map is computed using ′Fh . Figure 
6 shows the improved performance of the proposed 
GP based scheme. It can be observed that 3D 
shapes recovered through the proposed scheme 
are better than conventional methods. On the 
other hand, 3D shapes reconstructed through the 
traditional methods generated coarse surfaces due 
to their limited capability in computing focus 
measurements accurately. Noisy focus values 
introduce error in depth values and relatively more 
spikes can be observed in the constructed depth 
maps of the objects. However, ′Fh  has signifi-
cantly reduced the effect of noisy-focus measure-
ments and generated accurate depth maps.

FUTURE RESEARCH DIRECTIONS

In proposed GP based scheme, the main concept 
is to estimate a nonlinear function for comput-
ing optimal depth of the object. In probability 
theory and mathematics, function estimation is 
also known as regression. This kind of function 
estimation is possible through many ways such 
as Gaussian process regression (GPR), support 
vector regression (SVR), and generalized regres-
sion neural networks (GRNN). For such learning 
algorithms, the features (input data) play vital 
role to learn a generalized nonlinear function. 

Therefore, the input feature vector can be enriched 
by including additional useful information. The 
accuracy of the estimated depth map may be 
enhanced by including information from more 
robust focus measures.

CONCLUSION

In this chapter, we explain the SFF, i.e. one famous 
passive method to estimate the structure of an ob-
ject from a sequence of images. A comprehensive 
discussion is made on existing approximation and 
machine learning based SFF approaches. Besides 
this, we developed an improved performance 
composite function for optimal depth estimation 
of real objects through GP based technique. The 
main advantage of the proposed scheme is that 
useful information of individual focus measures 
is automatically selected and combined during 
GP evolution cycle. Another benefit is that this 
generic method does not depend on a specific focus 
measure. Moreover, the capability of proposed 
depth estimator can be enhanced by adding more 
useful information through focus measures. The 
performance of this method is also investigated 
for homogenous and heterogeneous combination 
using single and multiple focus measures respec-
tively. Through various experiments, it is found 
that heterogeneous combination is more informa-
tive. Experimental results have demonstrated that 
our generalized depth estimator has provided more 
accurate depth maps than existing SFF methods.

Table 2. Performance comparisons of different methods 

Measure

Conventional Homogeneous Heterogeneous

F1 F2 F3
′F1 ′F2 ′F3 ′Fh

MSE 62.0373 63.0752 62.7372 33.3168 26.7515 50.4217 17.0687

Correlation 0.9367 0.09391 0.9376 0.9491 0.9632 0.9484 0.9697

PSNR 20.9631 20.8911 20.9144 23.9144 24.6491 21.8635 26.5677
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Figure 6. (First row) Sample frames extracted from image sequence of real objects (a) TFT-LCD color 
filter, (b) real cone, (c) planar object. 3D shapes reconstructed for TFT-LCD color filter, real cone, and 
planar object using (second row) (d-f) F1, (third row) (g-i) F2, (forth row) (j-l) F3, and (fifth row) (m-o) 
′Fh .
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KEY TERMS AND DEFINITIONS

Depth Map: A Depth map represents depth 
information instead of intensity values correspond-
ing to two- dimensional array of an image.

Fitness Measure: It evaluates the performance 
of each individual (solution) in the population.

Focus Measure: An operator that measures 
the focus quality of the image by utilizing the 
high frequency contents in the image.

Focused Image Surface: The focused image 
surface (FIS) is formed by the set of points at which 
the object points are focused by the camera lens.

Genetic Programming: It is a well-known ge-
netic operators based machine learning technique 
that can combine optimally arithmetic operators 
and data features.

Shape From Focus: A technique that retrieves 
3D structure of an object from a sequence of its 
images with different focus setting.

Training Data: The training dataset consists 
of a set of input feature vectors with their cor-
responding target values.
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INTRODUCTION

The computer vision community has extensively 
developed techniques to determine the shape of 
objects. Laser light based scanning systems and 
structured lighting systems are probably the most 
commonly used techniques for acquiring the 3D 
shape of objects, however, reliable solutions are 
still lacking for non-opaque materials (specular or 
transparent objects). To overcome this problem, 
powder is usually spread onto the object prior 
digitization. This supplementary step is trouble-
some (the object has to be cleaned afterwards), 
and the accuracy is dependent on the powder 
thickness and homogeneousness. Various attempts 
have been proposed over the last few years for 3D 
surface acquisition of transparent objects and an 
exhaustive review can be found in (Ihrke, 2008) 
but the presented methods require a priori about 
the object or assumptions about the interactions 
of the light with the object surface.

This chapter presents two new approaches 
which are an extension of the well known struc-
tured lighting method to the thermal infrared 
range as well as to the UV range with induced 
fluorescence.

BACKGROUND

In this chapter, we present a new technique for 3D 
range scanning of transparent objects. 3D range 
scanning has been investigated for several decades 
and most of the proposed approaches assume a 
diffuse reflectance of the object’s surface. The 
broad literature on the subject is usually divided 
into active and passive techniques. Active light 
techniques, whose recent review is proposed by 

Blais (2004), include laser range scanning, coded 
structured light systems (Salvi, 2004) and time-of-
flight scanners (Bokhabrine 2010) whereas passive 
techniques are mainly stereovision (Horn, 1986), 
“shape from optical flow”, shape from shading….
or multiview acquisition system (Harvent, 2010).

The further a surface deviates from the  
Lambertian reflectance assumption, the less ac-
curate standard 3D range scanning techniques 
become. Figure 1 is an example of a glass bottle 
scanned by a commercial scanner without any 
preparation of the sample surface (powder spray) 
prior digitization.

Coating the object with a powder prior digiti-
zation might solve the problem (see Figure 2), on 
the other hand, this cannot be done in many ap-
plications because it involves additional handlings 
of the objects (coating, cleaning) which include 
higher processing costs.

The literature survey (Ihrke, 2008), (Ihrke, 
2010) pinpoints several techniques to partially 
overcome this problem. For instance, in the com-
puter graphics community Goesele et al., (Goesele, 
2004) proposed a method for determining the 
scattering behaviour of translucent objects by 
using a laser, but the geometry was initially ac-
quired by covering the object with a white coating. 
Similarly, Matusik et al., (Matuzik, 2002) pre-
sented an acquisition and rendering system for 
transparent and refractive objects from arbitrary 
viewpoints using a novel illumination, but the 
recovered geometry is just the visual hull (i.e. a 
very rough approximation of the object’s shape). 
Morris and Kutulakos (Morris, 2007) proposed a 
method based on scatter-trace photography that 
provides good results for complex objects with 
an inhomogeneous interior. Ohara et al. (Ohara, 
2003) estimated the depth of the edge of a trans-

to the digitization of transparent object These approaches led to three recent techniques which can be 
referred as shape from polarization, shape from fluorescence as well as shape from heating (SFH). The 
two latest approaches will be exposed throughout this chapter.
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parent object by using the shape from focus. 
Ben-Ezra and Nayar (Ben Ezra 2003) used the 
structure from motion to estimate the parameter-
ized surface shape of transparent objects. These 
methods, however, do not estimate the arbitrary 
shapes of transparent objects. Trifonov et al. 

(Trifonov, 2006) have recently estimated the shape 
of a transparent object through visible tomography. 
However, their technique requires immersing in 
a liquid the object to be digitized and assumes 
perfect index matching (to avoid spurious inter-
reflections and refractions) between the fluid and 

Figure 1. (a) glass bottle; and (b) the 3D rendering obtained with a Vi 910 Minolta scanner without 
prior preparation of the surface

Figure 2. From left to right: (a) specular object, same object after being coated with a powder; (b) 
transparent object
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the object. Hullin et al. (Hullin, 2008) have de-
veloped a similar technique by immersing the 
object to be digitized in fluorescent liquid.

Myasaki and coworkers (Miyazaki 2002), 
(Miyazaki, 2004), (Saito, 1999) have developed 
a technique relying based on “shape from polar-
ization” which was later on applied to metallic 
specular surfaces (Morel 2006). A recent extension 
of this method with multispectral information has 
been developed for transparent object (Ferraton 
2009). However, these techniques required prior 
information on the refraction index of the object, or 
its estimation during the process, and ambiguities 
(zenithal and azimutal angles) which need to be 
solved or inferred from the experimental set-up. 
Recent works based on polarization coupled with 
inverse raytracing (D. Miyazaki, Ikeuchi (2005) 
led to interesting results which cope with some of 
the cons of the previous methods by taking into 
account the inter-reflections and not suffering from 
the ambiguity of the incident angle. However, this 
technique is still based on numerous assumptions 
such as a known back surface shape, known re-
fractive index and a homogenous lighting system 
which cannot be guaranteed for any object shape.

Other methods have been developed over the 
last decade and are thoroughly presented by Ihrke 
(Ihrke, 2008) in its broad and complete survey on 
recent developed techniques for 3D digitization 
of specular and transparent surface. This chapter 
presents two new approaches for addressing some 
of the issues of visible light laser scanners by 
considering the heat pattern released by the object 
and the fluorescence induced by UV irradiation.

Regarding, the information carried by the heat 
released by samples, similar techniques based on 
an IR sensor to infer 3-D information have recently 
been developed: Pelletier and Maldague (Pelletier 
1997) were among the pioneers to work on this 
idea. Their technique (“shape from heating”) re-
quires a presegmentation of the image to isolate 
linear patches and nonlinear patches, which are, 
afterward, used to lead to “extraction of relative 
depth” and “extraction of surface orientation”. 

The technique is restricted to simple shapes such 
as cylinders, and accurate measurements for more 
complex objects have not yet been achieved. An 
extension of this technique, called the “shape 
from amplitude”, has recently been proposed (Liu 
2006). The technique uses amplitude images that 
are obtained in pulse phase thermography.

Ming et al. (Ming, 2005; Ming, 2007) cali-
brated an IR camera that acquires a sequence of 
2-D thermographic images and then reconstructed 
the 3-D temperature distribution from the cap-
tured 2-D thermal images by the Octree carving 
technique. This technique is based on imaging 
the heat released by a surface that is being me-
chanically processed and is, by its principle, close 
to our system; however, the 3-D reconstruction 
principle based on the shape from silhouette is 
totally different from the technique presented in 
this chapter.

Sadjadi (Sadjadi, 2007) and Prakash et 
al.(Prakash, 2006) proposed a passive stereo-
scopic system. Both techniques suffer from the 
lack of texture on IR images leading to a sparse 
3-D representation. To cope with this lack of in-
formation, our system relies on an IR pattern that 
is being simply projected onto the object (Eren, 
2009), (Meriaudeau, 2010), and the heat released 
by the object (which has been heated by the IR 
radiation) is then imaged by a spatially calibrated 
IR sensor; the technique relies, therefore, on the 
observation of the emitted pattern.

Regarding shape from fluorescence or 3D 
from Fluorescence generated by UV radiations, 
to the best of our knowledge, only one approach 
is related to this (Hullin, 2008) but requires the 
immersion of the sample and is therefore not 
suitable for numerous applications.

The rest of this chapter is organized as fol-
lows: The first part is related to a 3-D laser scan-
ning method called Scanning from Heating, the 
second part presents recent results obtained with 
the Shape from Fluorescence technique. The last 
part is dedicated to new research directions and 
the chapter ends with a short conclusion.
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“SHAPE FROM HEATING” 
FOR 3D DIGITIZATION OF 
TRANSPARENT OBJECT

Shape From Heating (SFH) is a new method for 
3D shape estimation based on local surface heating 
by a laser source and observation of it by a ther-
mal camera. This technique is based on imaging 
the heat released by the object (which has been 

heated by an IR radiation) by a spatially calibrated 
IR sensor; the technique relies, therefore, on the 
observation of the emitted pattern.

Two approaches were recently developed: 
a point scanning approach (Enen, 2009) and a 
structured lighting system approach (Meriaudeau, 
2010). In the point scanning approach (See Figure 
3), the system is calibrated using the Zhang method 

Figure 3. Schematic of the “shape from heating” point approach
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(Zhang, 1999) with a thermal calibrating grid 
(See Figure 4) specially designed for this method.

Once the camera is calibrated, various “Z 
positions” are scanned so as to establish a cor-
responding table between the position in the 
image reference frame and the Z position in the 
world coordinate system. The transparent object 
is placed on a moving platform. The laser heat 
source, which is fixed, can be a point (Eren, 2009) 
or structured with a hemi-spherical lens (Meri-
audeau, 2010) to generate a laser sheet, reducing 
the scanning time. For the structured lighting 
condition, the quadrangle techniques was used, 

so as to simultaneously calibrate the camera as 
well as the laser related to the camera (Figure 5).

The thermal camera (3 to 5 mm or 8-12 mm) 
is fixed and imaged the released heat pattern (see 
figure 6).

A CO2 laser was chosen for the irradiation 
because at a wavelength of 10.6 µm, the absorp-
tion rate of most of glass or plastic materials is 
very high at the surface level, enabling therefore 
to get an accurate 3D digitization of the object 
surface without having any volume effect.

The SFH concept is as follows:

Figure 4. Calibration grid

Figure 5. Calibration using the quadrangle technique
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• When the laser is on, the sample is being 
heated.

• When the laser is turned off, the heat which 
is released by the sample is then imaged 
by the IR camera (see Figure 6) which has 
been previously calibrated so as to infer the 

3D coordinates of the objects (Eren, 2009), 
(Meriaudeau, 2010).

• The method relies on few assumptions 
which are most of the time fulfilled:
 ◦ The object surface is opaque to the la-

ser heating source, and laser energy is 

Figure 6. Experimental configuration for the structured lighting system configuration

Figure 7 (a) Images of a heat pattern released in the case of a glass; (b) scanned using the Scanning 
from heating: Line configuration (Meriaudeau, 2010)
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absorbed by the surface at the object 
(without penetrating into the object).

 ◦ Once the surface is heated, the emis-
sion of thermal radiation is omnidi-
rectional, so that it can be observed 
by the thermal camera.

• Calibration procedures involve either the 
quadrangle principle (Meriaudeau, 2010) 
realized with a glass quadrangle for the la-
ser line projection technique or the general 
technique (Zhang, 1999) using a chess-
board (Eren, 2009) which has to be real-
ized with a graphite paint to enable the lo-
calization of landmarks in the IR spectrum 
after heating.

Many experiments were carried out on glass 
samples or plastic samples. Figures 8, 9, and 
10 illustrate these results with some error map 
obtained by computing the normal difference 
between a reference object (obtained with a prior 
coating of the object with a Minolta@ scanner).

“SHAPE FROM FLUORESCENCE” 
FOR 3D DIGITIZATION OF 
TRANSPARENT OBJECT

In this experiment, a classical triangulation system 
based on the use of UV laser source to estimate 
transparent objects shape (see Figure 11) was 
developed. The choice of the environment range 
is motivated by the specificity of the application 
materials (glasses and some plastics) which exhibit 
fluorescence when irradiated with UV.

Our stereoscopic system is composed of two 
classical cameras working in visible range associ-
ated with a low cost UV laser source (Rantoson, 
2010). Under the effect of ultraviolet irradiation, 
the fluorescence generated at the object surface 
is emitted in a diffuse way and captured with our 
calibrated stereoscopic rig (Figure 11). As in clas-
sical active system, the emitted light spots de-
tected by the stereoscopic sensors are used to 
simplify stereo matching step exploiting epipolar 

Figure 8. From left to right: Glass container and its 3D representation obtained from SFH, Glass and 
its 3D representation obtained from SFH

Figure 9. From left to right: a plastic bottle, its 3D digitization using SFH and the error map with a 
ground truth providing a commercial scanner Vi910 from Minolta@
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Figure 10. Error map between the 3D digitization of the glass (of Figure 3) using the SFH with line 
projection and a reference obtained with a commercial scanner Vi910 from Minolta@

Figure 11. From left to right, experimental set-up of our shape from fluorescence system: a UV laser 
beam generates fluorescence (right image) on a glass sample (middle image) which is then imaged by 
a calibrated stereo–rig
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constraint (Faugeras, 1993). The experiments are 
run in dark room environment.

The shape from Fluorescence method is  
as follows:

Let us briefly recall the main equation repre-
senting the image forming process. Considering 
M = (X,Y,Z,1)T as the 3D homogenous coordinate 
of an object point in world coordinate system and 
m = (u,v,1)T its corresponding 2D homogeneous 
coordinate image point in the image frame, with 
a scale factor s ≠ 0, the equation is as follows:

s·m = A[R t]M (1)

where,

A

u

v
u

v=













α
α
0

0

0 0 1

0

0  

A is the matrix of intrinsic parameters with 
(αu,αv) as the focal length and (u0,v0)

T the coordinate 
of the camera center in the image system. Specific 
for each camera, intrinsic parameters characterize 
the internal geometrical and optical parameters of 
the camera. R and t define the matrix of extrinsic 
parameters reduced to rotation and translation 
geometric transformations.

R = [r1r2r3]  (2)

where, r1 = (r1i r2i r3i)
T, i = {1,2,3}

And

t = (t1t2t3)
T (3)

Extrinsic parameters characterize the position 
and the orientation between the camera system 
and the world system. The developed reconstruc-
tion process behind the acquisition system could 
be summarized by the four main steps described 
below:

• Calibration step.

We preliminarily calibrated each camera (in-
trinsic and extrinsic parameters) separately using 
homography (Rantoson 2010) from captured 
images of a planar square chessboard in different 
orientations to determine the intrinsic parameters 
(A in eq.1). The spatial relationship between both 
cameras is thereby established from the extrinsic 
parameters.

• Matching step.

The matching step criterion is based on the 
epipolar constraint. For each given pair of im-
ages acquired by the stereoscopic cameras, the 
centroid of a fluorescent point in the left image 
is matched with the closest centroïd of a  
fluorescent point of the right image to the epipo-
lar line. Let E, be the space of the fluorescent 
points m i'  in the right image, i=1,…,n with n as 
the number of elements in E, and ∆ , the epipolar 
line whose equation is represented by 
au bv c' '+ + = 0 , where a, b, c are the constants 
calculated from the image coordinate of a given 
point m  in the left image. The corresponding 
point of m is the closest point m E' ∈  whose 
distance to the epipolar line is the minimum. This 
minimization problem is represented by the equa-
tions presented below:

m d m
m

i
i

' min ( ' , )
'

=
∈Ε

∆  (4)

where,

d m
au bv c

a b
i( ', )

' '
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+ +

+2 2
 

where d is the orthogonal distance between a point 
m u vi

T
' ', '= ( )  and the epipolar line Δ.
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• 3D Reconstruction step in a camera system.

From each matched pair of points (m, m’), the 
3D homogenous camera coordinate Mc = (x,y,z,1)T 
of the object is estimated by least square methods 
knowing the intrinsic and extrinsic parameters of 
each camera. The computation is done in a chosen 
camera system, the left in this case, assuming the 
equations below:

For the left camera:

s·m=A[I 0]M (5)

For the right camera:

s m A R t Mrl rl c⋅ = [ ]' '  (6)

where I is a 3×3 identity matrix, A’ is the matrix 
of intrinsic parameters related to the right camera 
and (Rrl trl) is the spatial relationship between the 
calibrated stereoscopic cameras.

Due to our experimental configuration for 
which the two cameras are fixed as well as the UV 
laser providing a fixed direction of incident rays, 
the measured image points of the object loose their 
actual spatial distribution in the camera coordinate 
system, a supplementary step was required to get 
the 3D model in the world coordinate system

The following part describes the computation 
of the definitive 3D data in the world coordinate 
system in accordance with the object’s structure.

• 3D Reconstruction step in the world 
system.

The spatial relationship, denoted by Si in 
eq.7, between the world system (represented by 
the reference plane) and the left camera system 
is required to be known for each position i of 
the object to project its 3D coordinate points of 
the camera system onto the world system (eq.7).
Therefore,

M S Mi i ci
= with

S
R t

i
i i=











−

0 1

1

 (7)

The process operates in three steps:
Step 1: Location of the plane in the left image 

by an automatic extraction algorithm of the four 
LED spots: a global threshold is first applied on 
one or more of the RGB components of the image 
in accordance with the color of the LED to be 
tracked. The threshold pixels’ RGB components 
are then used to verify the Mahalanobis distance 
criterion as in eq.8. The intensities of pixels rep-
resenting a LED spot are modeled by a Gaussian 
distribution. There are subsequently four (k=1…4) 
distributions that represent the LED spots. Con-
sidering RGB space, each distribution (k) is 
characterized by a mean vectorµk and a covari-
ance matrixΣk related to the intensities of a given 
class of spot. Gaussian parameters are learned 
from few training images. Hence, to track an LED 
spot (k) whose Gaussian parameters are defined, 
we verified for each given pixel if its intensity I 
satisfies the inequality expressed below:

D I I I TM k
T

k k k( ) ( ) ( )= − − ≤−µ µΣ 1  (8)

where DM is the Mahalanobis distance for a 
given intensity I towards a considered class of 
distribution (k) and Tk a threshold defined by the 
maximum Mahalanobis distance calculated from 
the training data used to estimate the Gaussian 
distribution parameters. Consequently, all pixels 
satisfying the inequality (8) formed the LED spot 
(k) and the spot centroid is computed to select the 
representative point used for defining the plane. 
The four led spots are tracked in a fixed sequence 
to correctly define the plane orientation that must 
be maintained for each analyzed image.
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Step 2: Computation of the extrinsic param-
eters Si in eq.7 for a position i by homography, 
that relate the coordinates of the reference plane 
in world system and its camera system.

Step 3: Determination of the object 3D coordi-
nates in the world system (eq.7) using the extrinsic 
parameters derived from step 2.

Figure 12 to 13 present some of the results 
recently obtained with our method.

FUTURE RESEARCH DIRECTIONS

Shape from Heating

This technique provides fast and reliable results 
and is currently implemented in the industry 
(Eren, 2010) to control various glass objects. 
We are also investigating, in the case of a laser 
point interaction, the shape of the heated pattern 

Figure 12. From left to right, Glass sample, 3D sample points obtained from our technique, Error map 
between our results and those obtained with a Vi 910 Minolta scanner @ on a powdered sample

Figure 13. Glass bottle reconstruction (original presented on figure 11) and the associated error map
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(Gaussian shape) being released (Eren, 2010), 
which also provides useful information about 
the local normal direction of the sample surface.

The process is further extended in the case of 
metallic specular objects, the principle relies on 
the same concept but the heating process is carried 
out at a lower wavelength range to enable a better 
absorption of the metallic surfaces. First results 
are promising and should soon be published.

This only drawback of the technique is its high 
cost because it involves Infrared Camera which, 
depending on the NETD can be quite expensive. 
However, based on the market trend, prototype 
should soon be available for less than 50,000 USD.

Shape from Fluorescence

We showed the feasibility of transparent objects 
shape estimation by a system relying on the 
fluorescence generated by UV irradiations onto 
the sample surface. Thanks to the transportabil-
ity of the system and the accuracy provided, our 
approach is perfectly adaptable for industrial 
applications such as glass inspection in quality 
control and 3D modeling of transparent objects. 
All objects reacting by fluorescence with an ad-
equate UV laser source are measurable with the 
proposed system. With our UV laser source almost 
all transparent objects (glasses and plastics) are 
measurable (3D surface acquisition) irrespective 
of their color, their shape complexity and the thick-
ness of the glass, except for very thin plastics. We 
are currently working on a deeper analysis of the 
physical phenomenon occurring at the interface 
in order to understand and compensate if any 
volume effects appear.

CONCLUSION

This chapter has presented two recent techniques 
(2009, 2010) for digitization of transparent ob-
jects. These two techniques: shape from Heating 
(Eren, 2009), (Meriaudeau, 2010) and shape from 

Fluorescence (Rantoson, 2010) do not need any 
a priori on the sample (index of refraction) or on 
the interaction (multiple reflexions, refraction) 
whereas all other techniques dedicated to the 3D 
digitization of transparent objects need strong a 
priori or complicated experimental set-up and 
assumptions on the interaction process.

The only drawback of the shape from heat-
ing technique is the high cost involved in the 
experimental set-up whereas the drawback for 
the Shape from Fluorescence is linked to volume 
effect which might occur during the interaction.
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KEY TERMS AND DEFINITIONS

Active Methods: The structured light or tex-
ture/pattern or both projected on the scene.

Passive Methods: Light reflected from the 
object is captured by cameras for 3D shape re-
construction.

IR: InfraRed radiations.
UV: UltraViolet radiations.
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INTRODUCTION

“Stereo vision” is a specific method for 3-dimen-
sional imaging. Other methods include multi-view 
vision, optical flow, and photometric methods 
relying on known light sources or shadows. Stereo 
vision is quite robust in application, not relying on 

any fixed external constraints (besides the scene 
being lighted). Stereo vision setups do not require 
controlled illumination which may disturb the 
scene being observed. They are relatively cheap 
in cost and power consumption relative to multi-
view methods and laser rangefinder imaging.

The disadvantages of stereo vision are high 
complexity and ambiguity in the stereo vision 
process itself (this is expanded on in the next 
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Modular Stereo Vision:
Model and Implementation

ABSTRACT

The two-frame stereo vision algorithm is typically conceived of and implemented as a single process. 
The standard practice is to categorize individual algorithms according to the ‘type’ of process used. 
Evaluation is done based on the quality of the depth map produced. In this chapter, we demonstrate 
that the stereo vision process is actually composed of a number of inter-linked processes. Stereo vision 
is shown to be modular in nature; algorithms implementing it typically implement distinct stages of 
the entire process. The modularity of stereo vision implies that the specific methods used in different 
algorithms can be combined to produce new algorithms. We present a model describing stereo vision 
in a modular manner. We also provide examples of the stereo vision process being implemented in a 
modular manner, with practical example code. The purpose of this chapter is to present this model and 
implementation for the use of researchers in the field of computational stereo vision.
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section). ‘Pure’ two-frame stereo vision is much 
more difficult than multi-view methods which 
can rely on many different observations; it is 
therefore more vulnerable to noise and lack of 
scene texture. Much research has been done into 
solving the stereo vision problem; some of that 
work is referenced in this chapter.

In this chapter, we examine the stereo vi-
sion process as a system composed of distinct 
processes. The stereo vision process is typically 
viewed as a kind of black box which describes 
a single process applied on two input images to 
produce a depth map. This chapter describes the 
processes which make up the typical stereo vision 
algorithm. Based on these processes, a model for 
modular stereo vision is presented.

This model is not meant merely as an academic 
description, but as a practical guide to implement-
ing stereo vision algorithms. Algorithms devel-
oped based on this model will have component 
parts (called modules) which are inter-changeable 
with other implementations of the same process. 
In this way, a newly developed approach for one 
process in the model can potentially be used in any 
number of existing algorithms. To this end, this 
chapter also presents a practical implementation 
of the model in C++.

To summarize, this chapter presents a model 
describing the stereo vision process as a series of 
inter-linked processes. The practical advantages 
of this model over the standard ‘black box’ view 
of stereo vision are discussed. An implementation 
of this model is included to demonstrate those 
advantages.

COMPUTATIONAL STEREO VISION

This section provides a brief introduction to 
computational stereo vision. Readers who are 
familiar with stereo vision and its implementation 
on computers should feel free to skip to the next 
section on Modular Stereo Vision.

The first sub-section describes the challenges 
inherent in stereo vision, and gives a general 
summary of how these challenges are tackled 
by existing algorithms. The second sub-section 
discusses how the typical stereo vision algorithm 
is considered to be a black box when compared 
against a competing algorithm and the background 
behind this understanding. The final sub-section 
briefly discusses the quantitative measurement of 
stereo vision result quality.

The Stereo Vision Challenge

Stereo vision is the process of converting two 
views of a scene to its depth map. For compu-
tational stereo vision, typically two cameras are 
used in the epipolar configuration with parallel 
visual axes (Figure 1). This is analogous to the 
physical arrangement of our eyes (Ganapathy 
and Ng, 2008, Figure 1). In general, the term 
‘stereo vision’ should only be used to describe 
the two-view case, since multi-view vision is a 
very different field of research. Also, some hybrid 
depth-perception methods rely on a combination 
of visual data with other non-visual cues; these are 
not sufficiently related to stereo vision to warrant 
inclusion in this discussion.

The depth of a scene element is measured from 
the baseline between the camera apertures. The 
disparity of a scene element is the difference 
between the position of that element in each view. 
For example, the disparity d of Object 1 in Figure 
1 is xl1 – xr1. Given a baseline b between the two 
cameras and a common focal length f, the relation-
ship between depth z and disparity is:

z
b f
d

=
 (0.1) 

Due to this inverse relationship, if we know the 
disparity of an object, we can calculate its depth 
and therefore its position relative to the cameras. 
The real challenge in stereo vision is matching 
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the pixels at xl1 and xr1 while avoiding wrong 
matches, for example between pixel xl1 and xr2.

Computational stereo vision can therefore be 
classified as a matching problem. This matching 
problem is non-trivial, since for natural noisy im-
ages any pixel can theoretically be a good match 
for many other pixels, only one of which would 
actually be the correct match. The two challenges 
faced in stereo matching are matching ambiguity 
and occlusion.

Stereo matching can be ambiguous due to 
repetitive texture (this is sometimes referred to 
as the ‘picket fence’ problem), lack of texture, 
and differences in the cameras used for both 
views. Baker et al. (2001) analyze the effect of 
lighting and surface reflectivity on stereo vision 
and conclude that the stereo matching problem is 
inherently ambiguous even in the noiseless case.

Occlusion in stereo vision happens when a 
scene element is visible in one view but is blocked 
by another (nearer) scene element in the other 
view. Occlusion occurs in any scene with ele-
ments at different depths. Šára and Bajcsy (1997) 
state that it is not possible to “overcome the lack 
of information needed to resolve it” and that at 

best it is only possible to “reduce the expectancy 
of errors”.

Despite the twin challenges of matching am-
biguity and occlusion, many algorithms exist to 
solve the stereo matching problem with varying 
degrees of robustness and success. Scharstein 
and Szeliski (2002) provide a good taxonomy 
of such algorithms; the same authors maintain 
an up-to-date website1 for comparing the results 
of recent best-performing stereo matching algo-
rithms. The exact method used differs widely. 
Yoon and Kweon (2006) and other aggregation-
based methods average nearby or related pixels 
to reduce ambiguity. Tola et al. (2010) and other 
feature-matching methods are based on matching 
local feature descriptors. Recent research activity 
has primarily been focused on graph-theory based 
methods, with the disparity map being represented 
as a connected graph to be optimized; for example 
Yang et al. (2006) use belief propagation while 
Deng et al. (2007) use graph cuts. For efficiency 
purposes, Criminisi et al. (2007) and related 
methods optimize in one dimension at a time 
rather than as a fully connected graph.

In general, existing stereo algorithms work by 
providing ‘support’ for the assigning of a particular 
disparity to a pixel. This ‘support’ is normally 
taken from nearby pixels, either directly through 
aggregation or by using those pixels to construct 
a feature descriptor. Graph-theory based methods 
utilize this same concept of ‘support’ by implicitly 
making every node’s value dependent on other 
nodes. The problem of occlusion is handled by 
attempting to make sure occluded pixels do not 
form part of the ‘support’ for non-occluded pixels, 
based on assumptions on image content. The most 
common assumption used for this purpose is that 
disparity boundaries (where occluded pixels ap-
pear) correlate strongly with intensity boundaries 
in the original image.

In this discussion, we have ignored the prob-
lem of image rectification. Image rectification 
is necessary due to the differences in camera 
configurations between both views of the stereo 

Figure 1. Standard epipolar stereo geometry
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scene, but is generally well understood and only 
needs to be calibrated once. Methods such as those 
proposed by Fusiello et al. (2000) and Zhou and 
Li (2008) can be used for this purpose.

In short, ambiguity and occlusion are the two 
main challenges to be overcome when performing 
stereo matching. Tackling these problems is typi-
cally accomplished using the concept of ‘support’ 
for a particular pixel-disparity combination; many 
methods are available for doing this.

Stereo Algorithms as Black Boxes

All stereo vision algorithms take two views of a 
scene and produce a depth map of the scene. The 
simplest way to evaluate a stereo vision algorithm 
is to see it as a black box which applies a certain 
function to the input views to produce a depth map. 
This allows comparisons to be made between dif-
fering stereo vision algorithms by simply compar-
ing the output depth maps when both algorithms 
are provided with the same input views.

The pattern of viewing stereo vision algo-
rithms as black boxes is well-established in the 
literature. Banks and Corke (2001) compare the 
effects of radiometric differences on various al-
gorithms, Scharstein and Szeliski (2002) present 
the largest comparison of unique stereo vision 
algorithms available in the literature, and Brown 
et al. (2003) evaluate the performance of stereo 
algorithms specifically in the occluded regions 
of a scene. In these and other similar works, 
the common denominator is that each compares 
multiple stereo vision algorithms based solely on 
the final depth map.

While black box evaluation is intuitive and 
simple, it by necessity ignores the complexities 
of modern stereo vision algorithms. For example, 
the comparisons in Banks and Corke (2001) are 
between similar algorithms, while the breadth of 
algorithms covered by Scharstein and Szeliski 
(2002) means that wildly differing methods are 
compared. In recognition of this, Scharstein and 
Szeliski (2002) classify stereo algorithms based 

on a taxonomy similar to the general one provided 
in the previous sub-section. Recently published 
stereo vision algorithms typically classify them-
selves according to this taxonomy for evaluation 
purposes rather than attempting to compare their 
performance with the performance of totally 
unrelated algorithms.

Recent comparative papers such as Hirsch-
müller and Scharstein (2007, 2009) recognize 
the inherent problems of apples-to-oranges 
comparison and choose to focus specifically on 
comparing similar methods. In the process, the 
authors are able to draw specific conclusions on 
the effects of the specific elements examined in 
the paper (cost calculation methods) on stereo 
matching performance over different scenes and 
with radiometric differences.

Black box evaluation is reflective of real world 
performance, because it is the depth map which is 
the ultimate product of any stereo vision algorithm. 
However, more in-depth analysis is necessary 
to understand the contribution of the different 
elements of the modern stereo algorithm, a task 
made difficult if algorithms are only compared 
based on black box evaluation.

Measuring Stereo Vision 
Output Quality

Quantitative evaluations of results are necessary 
in any scientific endeavour. In the stereo vision 
research field, almost all publications utilize a 
simple quality measure based on the percentage 
of correctly-matched pixels or its complement. 
Scharstein and Szeliski (2002) were not the first 
to utilize this measure, but their websitei makes 
extensive use of it in its comparative study of stereo 
vision algorithms. The results of new algorithms 
are regularly added to this website by researchers.

The quality measure used by Scharstein and 
Szeliski (2002) also includes specifying the er-
ror rate (percentage of wrongly-matched pixels) 
in two regions of the image, the non-occluded 
region and the discontinuity region (pixels near  
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discontinuities). As we have previously mentioned, 
stereo algorithms work by obtaining support for 
individual pixel-disparity assignments. This leads 
to the hypotheses that error rates would be higher 
not just at occluded points but also at pixels near 
to those occluded points (discontinuities in the 
depth map). The submitted measurements agree 
with this hypotheses; all algorithms submitted to 
this websitei exhibit much higher error rates in 
the discontinuity region than in the overall image.

All algorithms submitted to the websitei above 
are required to utilize the same parameters across 
all test images. This applies both to generic pa-
rameters such as disparity range searched and 
noise threshold level as well as algorithm-specific 
parameters such as occlusion penalties and a priori 
standard deviation value. This is meant to favour 
more robust algorithms which work well over a 
multitude of images compared to algorithms which 
specialize in particular image types.

An alternative method of quantifying quality 
is the method of Kostlivá et al. (2007), known as 
Receiver Operating Characteristics (ROC) analy-
sis. ROC analysis is based on the false positive and 
false negative rates given by a particular run of an 
algorithm. Instead of focusing on ‘average’ per-
formance over varying images, evaluation using 
ROC analysis is done by repeatedly evaluating the 
output of the algorithm with a range of parameters 
and noting the best achievable performance and 
plotting the relationship between false positive 
and false negative rates. This plot gives the ‘best 
case’ performance of the algorithm under varying 
parameters, and provides more discriminability 
between algorithms than the standard method. It 
is also more complicated and time-consuming 
to measure.

In general, the standard method is sufficient 
to indicate the performance of a stereo vision 
algorithm. While the requirement for constant 
parameter settings is understandable, it results 
in algorithms being evaluated on their ‘average’ 
performance rather than ‘best’ performance, which 
may not be the desired effect depending on the 

intentions of the reviewer. ROC analysis provides 
a good alternative, though a time-consuming one. 
There remains a need for a generic evaluation 
method for stereo vision algorithms similar to the 
evaluation methods which exist for other computer 
vision fields (Cardoso and Corte-Real, 2005).

MODULAR STEREO VISION: 
BEYOND CLASSIFICATION

Classifying stereo vision algorithms by methodol-
ogy does not adequately reflect the relationships 
between different stereo vision algorithms. The 
quick survey of the literature above shows that al-
gorithm classification is necessary for the purposes 
of relative algorithm evaluation. A comparison of 
existing stereo vision algorithms shows that the 
stereo vision process itself is modular in nature. 
This section describes the modularity of compu-
tational stereo vision and provides a model for 
this modularity. The Modular Stereo Vision model 
was first presented by Ng and Ganapathy (2008), 
an updated version is presented here (Figure 2).

The Modular Stereo Vision Model (MSVM) 
consists of four stages. Each stage consists of one 
or more processes. Data flow is indicated by ar-
rows, some processes have feedback arrows in-
dicating in situ processing or iteration.

The central concept of the MSVM is the cost 
volume. It contains the estimated cost of assigning 
a disparity value to each pixel. This matching cost 
is commonly defined as the probability of such 
an assignment.

The pre-processing stage operates on the 
rectified input stereo images. Pre-processing 
stage processes are easily identified since they 
only operate on a single input image at a time 
without using information from the other im-
age. Pre-processing stage processes range from 
common mean filters to complex segmentation 
algorithms. One pre-processing filter which is 
often mistakenly identified as a cost calculation 
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process is the rank and census transform of Zabih 
and Woodfill (1994).

The cost calculation stage operates on a pair 
of stereo images. Processes from this stage gener-
ate the cost volume, either through initialization 
based on pixel values or through feature/window 
analysis. Aggregation can optionally be applied. 
In this stage, the aggregation process has been 
heavily focused on in research, with interesting 
and varied works such as Yoon and Kweon (2008) 
and Adhyapak et al. (2007) being significantly 
more advanced than simple fixed-window ag-
gregation techniques.

The cost volume is optimized by optimization 
stage processes. These range from the simple 
‘winner-takes-all’ algorithm to complex global 
algorithms. In recent research, global optimization 
algorithms such as the belief propagation algo-
rithm of Felzenszwalb and Huttenlocher (2004) 
and the graph cut method of Hong and Chen (2004) 
have been heavily studied, as evidenced by the 
number of such algorithms in the top rankings of 
the Middlesbury sitei.

The post-processing stage is similar to the 
pre-processing stage, but operates on the depth 
map rather than on the input images. The left-right 
consistency check is widely used, and border 
correction methods such as those presented in 

Hirschmüller et al. (2002) are also possible. Post-
processing is not a popular field of research in 
stereo vision, largely because more improvement 
can be seen from working on the cost calculation 
and optimization stages.

Using the MSVM, a stereo vision algorithm is 
defined by the combination of processes used to 
implement it. There are many ways to implement 
each process. Each separate method is a single 
module which implements one or more processes. 
Modules should be drop-in replacements for each 
other within the same process.

As an example of module-based representa-
tion of a current stereo vision algorithm, take the 
3-step Dynamic Programming method of Cox 
et al. (1996). No pre-processing is specified, so 
the first stage is skipped. For the second stage, 
the initialization process is implemented by the 
Absolute Difference module. For the third stage, 
the 3-step Dynamic Programming module imple-
ments the 1-D optimization process. Finally, no 
post-processing is specified.

Having specified the modules, it is then pos-
sible to consider changing those modules. One of 
the simplest changes would be substituting another 
initialization module. The sampling-insensitive 
version of the Absolute Difference method devel-
oped by Birchfield and Tomasi (1998) can also 

Figure 2. Modular stereo vision model
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implement the initialization stage. Alternatively, 
an aggregation module could be added, such as 
the adaptive support-weight aggregation of Yoon 
and Kweon (2006). The resulting algorithm can 
be evaluated against the initial algorithm, reveal-
ing the specific effect of the module which was 
changed or added.

The MSVM can be seen as a generalization of 
the taxonomy of Scharstein and Szeliski (2002). 
Where the taxonomy focuses on classifying al-
gorithms, the MSVM focuses on identifying the 
components (processes) which make up those 
algorithms. This provides the following benefits:

1.  Encourages process improvement at a finer 
level by making explicit the multiple pro-
cesses each algorithm implements.

2.  Allows like-to-like comparison of processes 
rather than apples-to-oranges comparison of 
algorithms.

3.  Suitable for direct translation to computa-
tional implementation.

Item 1 has been covered in the previous ex-
ample. Item 2 indicates that the stage/process 
model of the MSVM lends itself to the comparison 
of processes. For example, a new initialization 
method should be evaluated against other initial-
ization methods maintaining the same aggregation, 
optimization, and pre/post-processing modules. 
For more informative analysis, a range of modules 
can be used. Hirschmüller and Scharstein (2009) 
and others already do comparisons in this man-
ner, the MSVM provides a model justifying the 
selection of modules to be compared.

As indicated by item 3, the MSVM can be 
implemented directly to computer code. This 
facilitates the comparisons mentioned in the 
previous paragraph, as well as code re-use (a 
new segmentation module can be substituted in 
place of an old one without disturbing the second 
to fourth stage of the algorithm). While there are 
efficiency costs to pay when implementing stereo 
vision algorithm costs in this manner (due to ad-

ditional memory requirements and data copying) 
the resulting modules can be rapidly substituted, 
allowing mix-and-match algorithms to be con-
structed for any particular application.

The MSVM goes beyond the classification 
of stereo vision algorithms to explicitly defining 
these algorithms as a product of their component 
processes. Implementing stereo vision algorithms 
in a modular manner according to the MSVM 
brings benefits in focused analysis, fair evaluation 
of stereo process methods, and actual implementa-
tion for easy deployment.

IMPLEMENTING MODULAR 
STEREO VISION

This section discusses a practical implementation 
of the MSVM. First we discuss the selection of 
object-oriented programming as the programming 
paradigm. This is followed by the specification of 
classes along with associated fields and behav-
iours. Finally, some abbreviated example code 
is provided for well-known stereo vision-related 
algorithms.

MSVM Programming Paradigm

Programming paradigms define a certain way to 
program solutions to a computational problem. 
Programming paradigms provide instructions and 
defined boundaries to the coding process. This 
results in more uniform and easily understandable 
code, at the cost of limiting the programmer’s 
freedom. Procedural programming, functional 
programming, and object-oriented programming 
are examples of programming paradigms.

Programming paradigms are not mutually ex-
clusive, and deciding on the ‘best’ programming 
paradigm for a computational problem is not an 
exact science. For the MSVM, we believe that the 
object-oriented programming (OOP) paradigm 
is the most suitable. In general terms, OOP is 
implemented using ‘objects’ containing data and 
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methods. Since the term ‘method’ has a defined 
meaning in the MSVM, we substitute the term 
‘function’ to mean ‘OOP method’. Each object 
should theoretically be self-contained, with the 
behaviour of an object defined by its functions; 
an object’s data should be self-contained and non-
accessible by external objects/functions.

OOP is a good fit for the MSVM because each 
stereo vision module can be implemented as a 
single object. Furthermore, OOP concepts such as 
inheritance and polymorphism are useful in creat-
ing portable and re-usable modules. Inheritance 
in OOP refers to the ability of objects to inherit 
from other objects, making the second object a 
specialization of the first object. The resulting 
relationship is referred to as an ‘is-a’ relationship. 
An ancestor object ‘car’ could have a derived 
object ‘BMW’, with the obvious relationship that 
a ‘BMW’ is a ‘car’. Polymorphism in OOP refers 
to how different objects can be used in place of 
each other; this is typically implemented through 
inheritance. A ‘BMW’ object can thus be used 
anywhere a ‘car’ object is required, though the 
inverse is not usually allowed.

In an OOP implementation of the MSVM, 
the basic object is the stereo vision module. 
The stereo vision algorithm consists of several 
modules which operate sequentially, with the 
main program itself operating as a simple shell 
passing image and operational data between the 
modules. Polymorphism is applied such that each 
module can be treated almost identically by the 
main program; a basic ‘module’ object is inherited 
by the various algorithms which implement each 
module. The behaviour of a stereo vision module 
is defined as follows:

• Takes image(s) as input
• Produces image(s) as output
• Takes a ‘settings’ object as input
• Provides information on the implemented 

algorithm

Every implemented module should adhere to 
the behaviour listed above. The ‘settings’ object is 
analogous to a notepaper being passed from person 
to person in a team project with instructions for 
each person. Obviously, stereo vision modules 
operate on images, the exact number of images 
depends on the process being implemented. Fi-
nally, the module should provide some information 
to the main program on how exactly it should be 
handled (the format of input/output images, the 
process being implemented etc.).

OOP is not the only paradigm which can or 
should be used for implementing the MSVM. 
However, for the reasons stated above, we believe 
it is a good fit for the MSVM problem. We have 
described the objects which constitute an OOP 
implementation of the MSVM.

MSVM C++ Class Specifications

The MSVM implementation described in this 
section is implemented using C++. As with the 
selection of the programming paradigm, there is 
no ‘best’ programming language for implement-
ing MSVM. One of the obvious requirements 
would be OOP capability, though almost all 
popular languages allow implementation of the 
OOP paradigm to some degree. In general, low-
level programming languages are preferable for 
efficiency reasons, though this can be somewhat 
offset by efficient compilers for higher-level 
languages. Another consideration would be the 
availability of helper libraries for standard tasks 
which should not need to be programmed from 
scratch by the researcher.

C++ fulfils all the requirements above. The lan-
guage enables and encourages the use of the OOP 
paradigm through its implementation of classes 
with public/private inheritance. Polymorphism is 
also available through the base class. C++ is one 
of the most efficient programming languages, be-
ing relatively low-level. The OpenCV2 computer 
vision library is available for C++ (also in C and 
Python), and provides many useful helper func-



253

Modular Stereo Vision

tions to deal with digital images; the software 
library received a major update in October 2009 
which enhanced type-safety and ease-of-use spe-
cifically in the C++ interface. A final benefit of 
using C++ is its backward-compatibility with C. 
Cox et al. (1996), Scharstein and Szeliski (2002) 
and other researchers have released the source 
code for their stereo matching algorithms; this 
code is typically written in either C or C++. Us-
ing C++ as the language for implementing the 
MSVM allows re-use of such code, whether it 
was written in C or C++.

We provide here a specification for an imple-
mentation of the MSVM which we call ‘anyste-
reo’. The basic ‘module’ object of the MSVM is 
implemented as an abstract base class containing 
unimplemented functions. In accordance with 
the OOP paradigm, an object is defined by its 
behaviour. In C++, the abstract base class has 
abstract (virtual) functions, at least one of which 
is ‘pure virtual’ and must be implemented by a 
derived class. The virtual functions provide a 
defined interface for interacting with the object 
– the behaviour of the object (also known as the 
Application Programming Interface). The module 
object ‘alg_method’ can be implemented with the 
following public functions (Algorithm 1).

The functions above describe the behaviour 
detailed previously for generic stereo vision 
modules. There is an overloaded run() function 
which takes pointers to one or two asMat objects 
(described later in this section) and one options 
object. getResult() returns an asMat object 
pointer. The remaining four functions are pure 
virtual and allow the caller to determine what 
inputs and outputs the algorithm requires, wheth-
er the algorithm creates a new asMat object, and 
what stage of stereo vision is implemented by the 
algorithm.

Besides the object interface, each alg_method 
object also has several defined data fields. These 
are defined as protected members which are di-
rectly accessible by derived classes but not from 
the caller (Algorithm 2).

The inImage, inLeft, and inRight asMat objects 
and the stereo_opt object are recommended for 
use by derived classes. However, the result and 
result2 asMat objects and the various FLAG 
boolean fields have a specific meaning. The asMat 
objects store the result(s) of the module’s algo-
rithm, while the FLAG fields specify the current 
state of the algorithm and should be set to true 
when the algorithm has finished running and has 
populated the appropriate output objects.

Algorithm 1.

class alg_method { 

public: 

  virtual ~alg_method(); 

  virtual void run(asMat* const inImage,stereo_opt* const myOpt); 

  virtual void run(asMat* const inLeft,asMat* const inRight, 

      stereo_opt* const myOpt); 

  asMat* getResult(); 

  virtual int requestedInputs() = 0; 

  virtual int requestedOutputs() = 0; 

  virtual bool returnsNew() = 0; 

  virtual int stageImplemented() = 0; 

  ... 

}
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Finally, the output of the API functions indicat-
ing the stage implemented and the type of input/
output expected is specified using the following 
enum defines (Algorithm 3).

These enums are included in the class defini-
tion. Derived classes would need to return the 
values indicated above. Details on how this is 
done will be provided later in this section.

To complete our specification, we provide the 
definition of the asMat and stereo_opt objects. 
The asMat class inherits from cv::Mat, the basic 
matrix object used by the OpenCVii computer 
vision library. The asMat class is a thin wrapper 
to cv::Mat, meaning it can be used wherever 
a cv::Mat is required (for example by built-in 
OpenCVii functions); in this regard it is similar 

to the cv::Mat_ class. The asMat class adds a 
‘planes’ data field so that it can be used to hold a 
3-dimensional cost volume (a d-by-w-by-h volume 
is simply a matrix with width w and height d x h). 
The relevant portion of asMat.h is shown here, 
more documentation on behaviour inherited from 
cv::Mat should be obtained from the OpenCV 
wiki3 (Algorithm 4).

The stereo_opt object provides an interface to 
set and retrieve various options, which can be 
textual or numerical. A helper getdepth() function 
is also provided to convert numerical depth (32-
bit, for example) to the appropriate OpenCVii 
value. The options are stored separately based on 
data-type in a std::map (from the C++ Standard 
Template Library) and indexed/accessed by their 
name. The setopt() function is overloaded for the 
different option data-types (Algorithm 5).

This section has provided the reasons for se-
lecting the C++ language for implementing the 
MSVM using the OOP paradigm. Also provided 
are public and protected definitions for the ste-
reo_alg, asMat, and stereo_opt classes. This API 
forms the basis for the ‘anystereo’ MSVM imple-
mentation.

Example Module Code

To demonstrate the utility of the API specified 
above, we present some examples of common 
stereo vision algorithm modules. These examples 
are meant to illustrate how various technical  

Algorithm 2.

protected: 

  asMat *inImage_, *inLeft_, *inRight_; 

  stereo_opt *options_; 

  bool FLAG_complete; 

  asMat* result; 

  bool FLAG_result_valid; 

  asMat* result2; 

  bool FLAG_result2_valid;

Algorithm 3.

enum svStage { 

  svStageERROR, 

  svPRE, 

  svCOST, 

  svOPT, 

  svPOST, 

  svCOMBINED 

}; 

enum svInputOutput { 

  svInputOutputERROR, 

  sv2IM, 

  svVOL 

};
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issues relating to modularity are handled. The 
actual mathematical algorithms themselves are not 
implemented fully; instead they are represented 
as C++ comments to save space. Error-checking 
and option-handling code is not shown for the 
same reason unless crucial and specific to the 
algorithm being implemented.

Initialization Modules

Initialization algorithms produce a pixel-wise 
difference volume between the two input images, 
which serves as the cost volume. The exact differ-
ence measure used varies between algorithms. We 
take advantage of polymorphism and inheritance 
to speed implementation of various initialization 

algorithms. Since the mathematical difference 
for this type of initialization can be separated 
from the algorithm implementation, an init_hash 
class can be used to implement all initialization 
algorithms which use a pixel-wise difference. One 
pure virtual function is defined which needs to be 
implemented by derived classes, the create_hash() 
function (Algorithm 6).

Derived functions implement the specifics for 
the create_hash() function. The hashtable itself is 
a 256-by-256 integer array indicating the cost to 
be assigned to each pair of input pixel values. For 
example, the most common pixel-difference 
measure is the absolute difference measure  
(Algorithm 7).

Algorithm 4.

class asMat: public cv::Mat { 

public: 

  int planes; 

  asMat(): cv::Mat(), planes(1) { } 

  asMat(int _rows, int _cols, int _type) 

  ... 

};

Algorithm 5.

class stereo_opt { 

private: 

  std::map<std::string,int> intopt; 

  std::map<std::string,double> doubleopt; 

  std::map<std::string,std::string> stropt; 

public: 

  void setopt(const std::string& optname, const int& opt); 

  void setopt(const std::string& optname, const double& opt); 

  void setopt(const std::string& optname, const std::string& opt); 

  const int getint(const std::string& optname) const; 

  const double getdouble(const std::string& optname) const; 

  const std::string getstr(const std::string& optname) const; 

  const int getdepth(const int& depth, const bool& colour=false) const; 

};
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Algorithm 6.

class init_hash: public alg_method { 

protected: 

  template<class T> void runTemplate(); 

  int* hashtable; 

  init_hash() { hashtable = 0; } 

  virtual void create_hash() = 0; 

public: 

  virtual ~init_hash() { delete [] hashtable; } 

  void run(asMat* const inLeft,asMat* const inRight, 

      stereo_opt*  const myOpt); 

  bool returnsNew() { return 1; } 

  int requestedInputs() { return sv2IM; } 

  int requestedOutputs() { return svVOL; } 

  int stageImplemented() { return svCOST; } 

}; 

void init_hash::run(asMat* const inLeft, 

    asMat* const inRight,stereo_opt* const myOpt) { 

  inLeft_ = inLeft; inRight_ = inRight; options_ = myOpt; 

  /* call runTemplate with the appropriate data-type specialization */ 

} 

template<class T> 

void init_hash::runTemplate() { 

  create_hash(); 

  /* implement initialization using the values in the hashtable array */ 

}

Algorithm 7.

class cost_init_ad: public init_hash { 

public: 

  void create_hash() { 

    hashtable = new int[256*256]; 

    for (int i=0 ; i<=255 ; ++i) 

      for (int j=0 ; j<=255 ; ++j) 

        if (i>j) { hashtable[i*256+j] = i-j; } 

        else { hashtable[i*256+j] = j-i; } 

  } 

};



257

Modular Stereo Vision

The ‘heavy-lifting’ algorithm-wise is done in 
the init_hash class, with the derived init_ad class 
only required to implement the mathematical 
equation | lxy – rxy |. The same init_hash class can 
be used to implement the closely-related squared 
difference and truncated absolute difference 
measures. Additionally, a cost_init_file class can 
be created which loads an image file to be used 
as the hashtable. This allows arbitrary pixel-
value relations to be implemented separately and 
loaded into the stereo algorithm without changing 
any code (Algorithm 8).

The derived classes of init_hash are not only 
limited to simple measures such as those shown 
before. Ng and Ganapathy (2009) describe an 
initialization algorithm based on modeling the 
intensity relationships between the input images. 
This algorithm is specifically targeted at handling 
exposure differences between input images effi-
ciently. The implementation is shown below; 
specifics (especially the mathematical back-
ground) should be obtained from the referenced 
paper (Algorithm 9).

The initialization process algorithms shown 
here demonstrate the advantages of polymorphism 
and inheritance in implementing similar algo-
rithms without having to re-implement code.

Optimization Modules

The optimization stage produces a depth map 
from a cost volume. Optimization algorithms at-
tempt to find the depth map which best satisfies 
some criteria with regards to the cost volume. 
Depending on the initialization method used, the 
objective may be to minimize the cost (with stan-
dard pixel-difference measures) or to maximize 
the cost (for example when using normalized 
cross-correlation).

It is possible to simply specify that all cost 
stage algorithms generate cost volumes where 
lower costs are better. In this implementation of 
the MSVM, we take a different approach which 
allows the same optimization modules to be used 

regardless of whether the cost volume is ‘lower-
is-better’ or ‘higher-is-better’. An additional class 
alg_method_opt is created from which all opti-
mization algorithms are derived (Algorithm 10).

Optimization algorithms should then imple-
ment the runMin() function rather than the run() 
function. These algorithms almost invariably 
perform cost minimization by default, deriving 
from alg_method_opt ensures that no changes 
need to be made to the algorithms to handle the 
case where higher costs are better. Instead, the 
responsibility for indicating that higher costs are 
better is placed on the cost stage algorithm, which 
would need to set the _findmax option appropri-
ately.

Since most of the API functions have already 
been implemented in alg_method_opt, optimiza-
tion methods can be very brief, basically consist-
ing only of the implementation of runMin(). For 
example, the following shows the implementation 
of the winner-takes-all module, which just creates 
the output depth map based on the lowest cost for 
each pixel (Algorithm 11).

For comparison, we also present our imple-
mentation of the 3-step dynamic programming 
algorithm by Cox et al. (1996). An extra level of 
data templatization is used since a temporary ar-
ray is required for this algorithm (Algorithm 12).

In both the opt_wta and opt_dp3 classes, in-
heriting alg_method_opt allowed the same algo-
rithm to be used for both lower-is-better and 
higher-is-better type costs. This demonstrates the 
inherent flexibility in implementing stereo algo-
rithms based on the MSVM.

FUTURE RESEARCH DIRECTIONS

3D Imaging is a wide field of research. The recent 
advent of 3D movies, animated or otherwise, has 
demonstrated the maturity of the relatively simple 
task of 3D projection. 3D interpretation, however, 
will continue to be a very open field for continuous 
research. Stereo vision research can be expected 
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to lead the way, as results in this field are directly 
applicable to applications in other fields such as 
multi-view vision.

As stereo vision algorithms become more 
complicated, we expect that research will shift 
from being focused on complete algorithms to 
being focused on specific processes as defined 

Algorithm 8.

class cost_init_sd: public init_hash { 

public: 

  void create_hash() { 

    hashtable = new int[256*256]; 

    for (int i=0 ; i<=255 ; ++i) 

      for (int j=0 ; j<=255 ; ++j) 

        hashtable[i*256+j] = (i-j)*(i-j); 

  } 

}; 

class cost_init_tad: public init_hash { 

public: 

  void create_hash() { 

    hashtable = new int[256*256]; 

    int temp, trunc = options_->getint(“truncation”); 

    for (int i=0 ; i<=255 ; ++i) { 

      for (int j=0 ; j<=255 ; ++j) { 

        if (i>j) 

          if (i-j > trunc) { hashtable[i*256+j] = trunc; } 

          else { hashtable[i*256+j] = i-j; } 

        else 

          if (j-i > trunc) { hashtable[i*256+j] = trunc; } 

          else { hashtable[i*256+j] = j-i; } 

  } 

}; 

class cost_init_file: public init_hash { 

public: 

  void create_hash() { 

    asMat filehash = cv::imread(“filehash.png”,0); 

    unsigned char* filehashPtr = (unsigned char*) filehash.data; 

    hashtable = new int[256*256]; 

    for (int i=0 ; i<=255 ; ++i) 

      for (int j=0 ; j<=255 ; ++j) 

        hashtable[i*256+j] = filehashPtr[i*step+j]; 

    filehash.release(); 

  } 

};
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in the Modular Stereo Vision Model. Current 
research is heavily focused on optimization pro-
cesses. As potential for improvement decreases 
in that process, more research will be conducted 

into the cost calculation stage as well as ‘guided’ 
pre/post-processing methods.

The increasing availability of high-grade 
consumer graphics hardware is also a potential 

Algorithm 9

class cost_init_quartile_match: public init_hash { 

private: 

  const std::vector<int> quartile(const asMat * const inImage); 

  void init_hash(const std::vector<int> leftQuartiles, 

      const std::vector<int> rightQuartiles, 

      const alg_math_monotone_cubic *const mc_L, 

      const alg_math_monotone_cubic *const mc_R); 

  void fill_hash(const int n); 

public: 

  void create_hash(); 

}; 

void cost_init_quartile_match::create_hash() { 

  const std::vector<int> leftQuartiles = quartile(inLeft_); 

  const std::vector<int> rightQuartiles = quartile(inRight_); 

  hashtable = new int[256 * 256]; 

  /* mc_L and mc_R are functions to calculate the monotone cubic */ 

  /* interpolation of the quartiles previously calculated        */ 

  init_hash(leftQuartiles, rightQuartiles, mc_L, mc_R); 

  fill_hash(256); 

} 

const std::vector<int> cost_init_quartile_match::quartile( 

    const asMat * const inImage) { 

  /* calculate image quartiles based on entire input image */ 

} 

void cost_init_quartile_match::init_hash( 

    std::vector<int> const leftQuartiles, 

    std::vector<int> const rightQuartiles, 

    const alg_math_monotone_cubic * const mc_L, 

    const alg_math_monotone_cubic * const mc_R) { 

  /* Fill in the intensity curve based on the monotone cubic */ 

  /* interpolated values.                                    */ 

} 

void cost_init_quartile_match::fill_hash(const int n) { 

  /* Find the Manhattan distance from the interpolated intensity */ 

  /* curve, which is used as the matching cost.                  */ 

}
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game-changer for the 3D Imaging field, as it 
has been for the previous decade. A consumer 
purchasing a latest-generation desktop machine 
would own a graphics card which surpasses the 
capabilities of the expensive purpose-built FPGAs 
previously favoured for image processing. Mairal 
et al. (2006), Labatut et al. (2006) and Yang et al. 
(2006) are examples of new stereo vision algo-

rithms with the computational burden shifted to 
consumer graphics cards.

The gradual shift from CPU-based to GPU-
based programming will have tremendous implica-
tions in the stereo vision field, allowing for speed 
increases of an order of magnitude or more. Some 
algorithms which cannot be efficiently imple-
mented on the GPU (such as the more complex 

Algorithm 10.

class alg_method_opt: public alg_method { 

private: 

  asMat* flipImage; 

  template<class T> 

  void runTemplate(asMat* const inImage,stereo_opt* const myOpt); 

protected: 

  alg_method_opt() { flipImage = 0; }; 

  virtual void runMin(asMat* const inImage,stereo_opt* const myOpt) = 0; 

public: 

  virtual ~alg_method_opt() { if(flipImage) { flipImage->release(); } }; 

  void run(asMat* const inImage,stereo_opt* const myOpt); 

  int requestedInputs() { return svVOL; } 

  int requestedOutputs() { return sv1IM; } 

  bool returnsNew() { return 1; } 

  int stageImplemented() { return svOPT; } 

}; 

template<class T> 

void alg_method_opt::runTemplate(asMat* const inImage, 

    stereo_opt* const myOpt) { 

  flipImage = new asMat(h,w,inImage->depth()); 

  T *inPtr = (T*) inImage->data; 

  T *flipPtr = (T*) flipImage->data; 

  for (int r = 0;r < h;++r) 

    for (int c = 0;c < w;++c) 

      flipPtr[r*step+c] = 0 - inPtr[r*step+c]; 

  runMin(flipImage,myOpt); 

} 

void alg_method_opt::run(asMat* const inImage, stereo_opt* const myOpt) { 

  if (myOpt->getint(“_findmax”)) 

    /* call runTemplate with the appropriate data-type specialization */ 

  else { runMin(inImage,myOpt); } 

}
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dynamic programming techniques) will see little 
to no development. The MSVM implementation 
presented in this chapter would need to be replaced 
by one which reduces data transfer, since that is 
the main bottleneck in GPU programming.

A big open question in stereo vision research 
currently is that of measuring the quality of ste-
reo vision algorithms. Earlier in this chapter a 
summary of the current methodology has been 
presented. Research into better quality measures 
complete with realistic image sets would be of 
tremendous usefulness to the field of stereo vision, 
and indeed to 3D Imaging research as a whole. 

Hirschmüller and Scharstein (2007) and Scharstein 
and Pal (2007) are examples of such initiatives.

CONCLUSION

This chapter provided an overview on computa-
tional stereo vision. The stereo vision field was 
defined, as well as the major challenges faced 
were discussed. A short description of the current 
model for stereo vision was presented followed 
by a description of stereo vision quality measures. 
After that, the Modular Stereo Vision Model was 
presented. This model described the processes 

Algorithm 11.

class opt_wta: public alg_method_opt { 

private: 

  template<class T> void runTemplate(); 

public: 

  void runMin(asMat* inImage,stereo_opt* myOpt); 

}; 

template<class T> inline void opt_wta::runTemplate() { 

  result = new asMat(h,w,CV_8UC1); 

  unsigned char *outPtr = (unsigned char*) result->data; 

  int match; 

  for (int r = 0;r < h;++r) { 

    for (int c = 0;c < w;++c) { 

      minimum = abs_max_val;  match = 0; 

      for (int d=0;d<disp;++d) { 

        if (sumPtr[d*sum_size+r*sum_step+c] < minimum) { 

          match = d; 

          minimum = sumPtr[d*sum_size+r*sum_step+c]; 

        } 

      } 

      outPtr[r*step+c] = match + d_min; 

    } 

  } 

} 

void opt_wta::runMin(asMat* const inImage, stereo_opt* const myOpt) { 

  /* call runTemplate with the appropriate data-type specialization */ 

}
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which make up the typical stereo vision algorithm. 
The excellent work of Scharstein and Szeliski 
(2002) formed the basis for this generalized model. 
The validity of this model was demonstrated us-

ing a few examples of well-known stereo vision 
algorithms.

An implementation of the MSVM was 
presented. This implementation was presented  

Algorithm 12.

class opt_dp3: public alg_method_opt { 

private: 

  template<class IN_C> void run2(); 

  template<class IN_C, class OUT_C> void runTemplate(); 

  asMat *cost; 

  bool FLAG_cost_valid; 

  asMat *match;  

public: 

  void runMin(asMat* vol_cost,stereo_opt* myOpt); 

}; 

template<class IN_C, class OUT_C> 

inline void opt_dp3::runTemplate() { 

  match = new asMat(h*(d_max-d_min+3),w,CV_8UC1); 

  result = new asMat(h,w,CV_8UC1); 

  cost = new asMat(h*(d_max-d_min+3),w, 

      options_->getdepth(options_->getint(“out_depth”))); 

  /* Processing is row-by-row */ 

  for (int r = 0; r <= h-1; ++r) { 

    /* Initialize boundary pixels to maximum allowable value        */ 

    /* Loop through pixels, assigning lowest cost of three possible */ 

    /* ‘moves’ - same disparity, increase disparity, or decrease    */ 

    /* disparity. A change in disparity necessitates and occlusion  */ 

    /* cost.                                                        */ 

   

    /* Finally, use a reverse-traversal loop to trace the minimum  */ 

    /* cost path back to the original pixel (at 0,0). Depth map is */ 

    /* assigned based on this minimum cost path.                   */ 

  } 

  FLAG_complete = true; 

} 

void opt_dp3::runMin(asMat* const vol_cost,stereo_opt* const myOpt) { 

  /* call run2 with the input data-type specialization */ 

} 

template<class IN_C> void opt_dp3::run2() { 

  /* call runTemplate with the output data-type specialization */ 

}
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sequentially. First, the programming paradigm 
used was discussed; Object-oriented program-
ming was chosen as the most suitable paradigm. 
Next, the Application Programming Interface was 
specified. The language used was C++ for this 
particular implementation. Finally, examples were 
given on module implementation, complete with 
abbreviated example code. The code focused on 
MSVM-specific functionality rather than the algo-
rithms being implemented due to space concerns. 
Some comments on the future of 3D imaging in 
general and Modular Stereo Vision in particular 
were also included to round up the chapter.
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KEY TERMS AND DEFINITIONS

Application Programming Interface (API): 
Conceptually – the description of the behavior 
of a class. Practically: The functions and data 
members of a class which are publicly available 
to all users of the class.

Disparity: Difference between the positions 
of a scene element in both views, inversely cor-
related to scene depth.

Modular Stereo Vision: Concept which de-
fines stereo vision algorithms as a combination 
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of inter-linked modules which taken together 
implement stereo vision.

Object-Oriented Programming: A program-
ming paradigm incorporating the concepts of in-
heritance and polymorphism, a suitable paradigm 
for the implementation of modular stereo vision.

Occlusion: The condition where a scene ele-
ment from one view is not visible in the other view 
due to being covered by another scene element.

Stereo Algorithm: A computational process 
which implements stereo vision.

Stereo Method: An algorithm which imple-
ments some section or stage of a stereo algorithm.

Stereo Module: A computational implementa-
tion of a stereo method which allows its use as 
part of a modular stereo vision algorithm.

Stereo Vision: The process of combining two 
distinct views of a scene into a unified map of 
scene depth.

ENDNOTES

1  http://vision.middlebury.edu/stereo/
2  http://opencv.willowgarage.com/
3  http://opencv.willowgarage.com/wiki
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INTRODUCTION

An intelligent off-road vehicle is a vehicle that, in 
addition to perform optimally in off-road environ-
ments, has been endowed with certain degree of 
artificial intelligence (AI). Typical equipment de-

signed to work in off-highway conditions include 
agricultural machinery, forestry machines, con-
struction vehicles, military trucks, and planetary 
rovers. The intelligent and automatic tasks typi-
cally demanded from these vehicles are directly 
related to the purpose or main activity for which 
they have been designed, although most of the in-

Chapter  14
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Stereoscopic Vision for Off-
Road Intelligent Vehicles

ABSTRACT

After mechanization, the next disruptive technology in agriculture will probably be robotization. The 
introduction of information technology and automation in farm fields started in the eighties with the 
advent of the Global Positioning System (GPS) and the subsequent development of Precision Agriculture. 
While being indispensable for many innovative applications, global positioning is not sufficient for all 
situations encountered in the field, where local sensing is essential if accurate and updated, information 
has to control automated vehicles. Safeguarding, high resolution mapping, and real time monitoring can 
only be achieved with local perception sensors such as cameras, lasers, and sonar rangers. However, 
machine vision offers multiple advantages over other sensing alternatives, and among imaging sensors, 
stereo vision provides the richest source of information for real time actuation. This chapter presents 
an overview of current and future applications of 3D stereo vision to off-road intelligent vehicles, with 
special emphasis in real problems found in agricultural environments and practical solutions devised to 
cope with them, as image noise, system configuration, and 3D data management. Several examples of 
stereo perception engines implemented in robotized off-road vehicles illustrate the concepts introduced 
along the chapter.
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strumentation and techniques employed are com-
mon among off-road vehicles. This chapter focuses 
on off-road vehicles used for civilian applications, 
especially those related with agricultural produc-
tion systems. In this particular case, the objective 
is usually to assist operators so that vehicles can 
perform their tasks in semi-autonomous mode; 
that is, the driver sits in the cabin of the vehicle 
for supervision and security reasons while several 
tasks are carried out simultaneously, and some of 
them automatically. Unlike planetary rovers that 
cope with totally unstructured terrains, farm-based 
equipment often navigates through fields orderly 
arranged and partially structured by crop rows, 
tree lanes, guiding trellis, or greenhouse walls. 
Even those operations occurring in barren fields 
are limited by field boundaries, natural streams, 
or irrigation canals.

The presence of solid structures sharing the vi-
tal space used by intelligent vehicles in their regular 
motion is both an advantage and a disadvantage. 
The former is due to the fact that structures of 
known characteristics provide additional informa-
tion to the vehicle and create visual features that 
can be tracked for navigation and localization. 
The latter, however, poses a critical problem for 
automated vehicles as most of the obstacles found 
in agricultural fields are not traversable and the 
possibility of having an accident is always present. 
In fact, this risk is most likely the hardest impedi-
ment to automation in agricultural fields, where 
intelligent machines –even in semi-autonomous 
mode– are assumed to outperform humans. The 
existence of semi-structured environments results 
in the need of reliable perception capabilities, 
and among the range of practical possibilities, 
machine vision occupies a preeminent position. 
It is, precisely, under these circumstances of 
partially structured terrains where stereoscopic 
vision finds its privileged niche as it provides 
three-dimensional (3D) representations of field 
scenes in the vicinity of intelligent vehicles, at 
high rates, and with a resolution never reached 
by satellite or airborne imagery. This chapter 

explains how to configure the stereo perception 
engine of an off-road vehicle, discusses the main 
issues and difficulties involved with real time 3D 
perception, proposes practical solutions to deal 
with common problems encountered in the field, 
and finally analyzes two popular applications 
within off-road agricultural equipment.

BACKGROUND

Although the principles of stereoscopy have been 
known since the nineteen century, the availability 
of commercial stereo cameras only dates from the 
turn of this century. The processing speed of cur-
rent computers allows the execution of algorithms 
that can correlate two stereo images and generate 
a depth map in real time. The level of detail and 
amount of information supplied by stereoscopic 
perception has placed stereo-based devices in a 
privileged position among other sensors used in 
field robotics. Mars exploration (Olson et al., 
2003) and defense mobile robots like Urbie rely 
on stereo cameras to acquire critical information 
of remote and often hazardous environments. 
The application of 3D vision technology to 
agricultural vehicles, in spite of having a high 
potential (Rovira-Más, 2003), is still in its infancy. 
Some timid efforts have been made to apply 
the idea of stereoscopy to automatically locate 
fruits in plants (Kondo et al., 1996), but human  
intervention has been normally required to as-
sist in pixel matching. Real time stereo-based 
perception for mobile robots is relatively recent, 
and although some solutions have been success-
fully developed for small indoor robots (Herath 
et al., 2006) and on-highway vehicles (Kato et 
al., 1996), the scenarios typically perceived in 
these applications are substantially different from 
those encountered by off-road vehicles; therefore, 
the latter demand specific solutions motivated 
by very distinctive needs. Even the off-road pro-
totypes that participated in the DARPA Grand 
Challenge competition, organized by the United 



270

Stereoscopic Vision for Off-Road Intelligent Vehicles

States Department of Defense, were set to fulfill 
elaborated missions that nothing have to do with 
habitual agronomical tasks (Kogler et al., 2006).

Conventional stereo cameras provide percep-
tual information at three levels: the original (2D) 
images that comprise the stereo pairs (left image 
and right image), the disparity (2D) image that 
holds the basic depth information, and the 3D 
point cloud that recreates the perceived scene in 
a discrete set of points. Critical information may 
be retrieved at any stage, so, for example, color 
data in RGB format is obtainable from the raw 
images of the stereo pairs when at least one of the 
imagers of the camera supports RGB color. The 
disparity image, in spite of storing spatial and 
depth information, is actually a two-dimensional 
image to which conventional image processing 
techniques can be applied. However, the fact that 
(disparity) image pixels can retrieve the 3D loca-
tion of critical features selected from the scene, 
allowed Rovira-Más et al. (2004) to segment crop 
rows in disparity images with the purpose of deter-
mining the trajectory of an automatically steered 
tractor. The availability of the three-dimensional 
coordinates for each point of an image-determined 
trajectory was advantageous in the transformation 
from image domain to real world, which typi-
cally represents a delicate stage for monocular 
cameras working outdoors. The appearance of a 
vanishing point when a camera captures images 
of parallel rows from a ground vehicle is often a 
difficult challenge for monocular vision, but it is 
correctly handled by stereo cameras. The main 
complexity for this disparity-based row tracking, 
though, rested on the segmentation of the images, 
which were set in such a way that background soil 
was saturated and consequently filtered by the 
correlation algorithm, only remaining the pixels 
representing the crop rows providing navigation 
information. A varying ambient illumination, 
common in outdoor conditions, complicated the 
permanent and robust discrimination of crop 
rows, especially with alternating vehicle heading 
at sunrise and sunset.

Although the previous example describes a 
technique that uses disparity images as source 
data for guiding a vehicle, the majority of stereo 
applications employ 3D point clouds as initial 
data from which critical perceptual information 
can be extracted. Point clouds will be, therefore, 
the main data to be processed in stereo perception. 
There are three fundamental problems that need to 
be solved before an intelligent vehicle can make 
use of the perception information acquired with 
a stereo camera: noise reduction, data condition-
ing, and the extraction of critical information. 
The presence of noise is a common issue for real 
time stereo correlation, and as a result, it has led 
to the development of diverse filtering algorithms 
usually incorporated in commercial off-the-shelf 
stereo cameras. Nevertheless, there is always un-
controllable noise that remains unfiltered by the 
proprietary software loaded in the camera, and 
consequently ends up forming part of the dispar-
ity image, leading to 3D points with wrong –and 
often impossible– coordinates. This sort of noise 
is dangerous because it can be hard to detect and 
could destabilize an automated vehicle very easily. 
The first place where correlation mismatches can 
be noticed is in the disparity image, and therefore 
noise filtering can start at this stage. As a matter of 
fact, high quality disparity images often result in 
rich and meaningful 3D point clouds. Bailey et al. 
(2007) applied a Gaussian filter to blur both images 
of a stereo pair and eliminate pixel noise. Salt and 
pepper noise has also been efficiently eliminated 
from disparity images (Wong & Jarvis, 2004), but 
Rovira-Más et al. (2009) found that the application 
of spectral analysis to palliate the effect of noise 
in disparity images was not helpful for orchard 
scenes, where noisy blobs composed of several 
miscorrelated pixels could not be completely 
eradicated. This type of consistent mismatches is, 
precisely, the one posing the biggest challenges 
for mapping and navigation. A wrongly-detected 
branch, for instance, can halt a vehicle before 
finishing a task, or more dangerously, it can force 
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a vehicle to deviate from its safest trajectory to 
avoid inexistent obstacles.

The Validity Box approach, explained in the 
next section, has been successfully applied to 
lessen the effect of noise causing coordinates to 
point at unrealistic locations. After the reduction 
of noise, the following stage in the processing of 
stereo information is data conditioning for the 
extraction of key information. This step com-
prises the set of operations that prepare massive 
and unstructured point clouds for an effective 
extraction of information in real time. A point 
cloud can be considered a large number of dis-
connected points that only have coherence when 
appropriately treated. The utilization of 3D data 
through the idea of evidence grids (Moravec, 1996) 
has been a popular resource among the robotics 
community dealing with indoor applications. 
The non-probabilistic approach of density grids 
(Rovira-Más et al., 2006) has worked efficiently 
outdoors, and therefore results convenient for 
processing the 3D perceptual information acquired 
by automatic off-road vehicles. The third and last 
essential matter to deal with when analyzing 3D 
point clouds is the identification of vital informa-
tion for the pursuit of the assigned mission. These 
data will depend on each particular application and 
so will be the degree of precision and reliability 
required. The resolution needed in the reconstruc-
tion of agricultural scenes will also be related 
to the size of potential objects being perceived. 
Sometimes, a vehicle does not need to identify 
the obstacles that invade its surroundings; rather, 
it is more practical to assess if those obstacles can 
be traversed by the robotic vehicle. Because point 
clouds constitute unstructured data for which no 
standard modeling exists (Marr, 1982), each case 
needs to be treated with the required degree of 
specificity. The analysis of terrain according to its 
traversability has resulted appealing for planetary 
rovers (Singh et al., 2000), and has been explored 
as well for robotized agricultural equipment by 
Rovira-Más (2009). Regardless of the specific 
application developed, the best guarantee for suc-

cessful stereoscopic perception entails a favorable 
configuration of the system, the efficient reduc-
tion of noise, and a proficient method to handle 
and process massive point clouds. The following 
sections try to bring some light on these crucial 
steps, and the last one describes two agricultural 
applications that illustrate most of the ideas, con-
cepts and approaches presented along the chapter.

THE WEIGHT OF NOISE IN REAL-
TIME FIELD APPLICATIONS

Issues with Stereo Mismatches 
in Outdoor Environments

Television watchers remember, before the popu-
larization of digital technology, how annoying it 
was the presence of noise in broadcast images. It 
was a nuisance but there were no further conse-
quences besides the obvious exasperation. When 
the final outcomes of vision-based intelligent 
systems are navigation commands, safeguarding 
alerts, yield-production estimations, or any other 
electronic signal serving as the basic control input 
of an automatic operation, the consequences of 
image degradation are far deeper than just irrita-
tion. Noise can mask important phenomena occur-
ring in the sensed scene or involve a vehicle in a 
dangerous situation. Figure 1 shows problematic 
noise found in typical field scenes. Cloudy skies, 
for example, are a common source of error when 
the matching algorithm is misled and clouds are 
positioned within few meters from the ground. 
In general, field scenes are well illuminated and 
full of texture, what is propitious for good stereo 
correlation and quality disparity images. Some-
times, however, ambiguous areas in the scene, i. 
e. those portions with pixels of equal intensity, 
originate mismatches and erroneous blobs appear 
in disparity maps. Once a pixel is associated with 
a disparity value –either correct or incorrect–, it 
will lead to a given 3D location defined by three 
Cartesian coordinates. A noisy blob in the disparity 
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image will result in a misplaced set of points in 
the 3D point cloud; its size and 3D position will 
determine the level of corruption introduced in the 
point cloud. Rain is another potential source of 
errors as it might confuse the correlation algorithm, 
although it is not very important in practice as 
most off-road vehicles do not operate with stormy 
weather. Muddy terrains complicate maneuver-
ability of heavy off-road vehicles, and humidity 
can jeopardize certain tasks such as harvesting.

Practical Solutions and 
Recommendations

When a group of noisy points skip the firmware-
embedded correlation filters and appear in the 
final 3D point cloud as outliers, it is very difficult 
to isolate and remove them. In this situation, the 
information known beforehand as a consequence 
of operating in semi-structured scenarios can be 
helpful, in addition to other logic assumptions 
such as the suppression of those points located 
under the reference ground. An effective way to 
remove harmful outliers is by defining a 3D box 

indicating a reasonable placement for scene points, 
called the Validity Box. All points falling outside 
this box do not need to be considered in further 
processing. The dimensions of the box depend on 
each application and are limited by intersecting 
planes parallel to the Cartesian planes defined by 
the ground coordinates indicated in Figure 3b. 
Negative heights, for example, can be neglected 
in common orchard scenes as the ground is usually 
flat without deep holes. Maximum ranges –dis-
tances from the camera to the objects– depend on 
the configuration of the camera, i.e. baseline and 
lenses chosen, and therefore it makes no sense 
to process points that are too far to be detected 
reliably with a given configuration. If the average 
height of the trees in the field is less than 4 m, all 
the points above 5 m from the ground have a high 
probability of being noise such as the clouds in 
the sky of Figure 1.

When vehicles navigate between tree rows, 
there is no interest in considering points that be-
long to adjacent rows, which will likely represent 
outliers because an onboard camera cannot per-
ceive through the dense vegetation of surrounding 

Figure 1. Noise in stereo images of field scenes
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trees. Following a rationale of this kind, we can 
limit the volume where the camera is expected to 
retrieve 3D information. The points outside the 
box (“outboxers”) tend to be small in number but 
large in error (outliers). As an example, a robotic 
tractor equipped with a stereo camera of 20 cm 
baseline and 8 mm lenses was set to perceive 3D 
information of a vineyard, composed of plants 
1.5 m high and disposed in rows separated 3 m. 
The onboard stereo system used a box 5 m high 
(Z), 6 m width (X), and 15 m long (Y). The cam-
era was mounted on the top-center of the cabin, 
approximately 3 m (Z) from ground level. The 
effects of salt and pepper noise, as well as other 
electronic noise, resulting in isolated outliers 
inside the Validity Box were palliated with data 
condensation through density grids.

CONFIGURATION OF 3D 
PERCEPTION ENGINES FOR 
OFF-ROAD VEHICLES

In-Field Needs for 
Automated Vehicles

The tasks performed by off-road vehicles and 
the environments in which they operate are 
very different from those related to other sort 
of vehicles; on-highway trucks and automobiles 
navigate at higher speeds and may be continuously  
surrounded by other light vehicles, many small ro-
bots are designed to work indoors and find guiding 
features in doors or walls, planetary rovers roam 
around unstructured terrain where no man-made 
structures are ever found. Agricultural off-road 
vehicles usually move around crop or tree rows 
that leave small tolerances for the vehicle to go 
through the field without causing damage to the 
vegetation. Many times these tolerances are in the 
order of a few centimeters. With these precision 
requirements, GPS-based navigation can greatly 
benefit from small local adjustments only possible 
with perception sensors such as stereo cameras. 

However, the targeted field of view has to be 
finely determined in order to reach high levels 
of detail in the reconstructed 3D view. Precision 
needs strongly depend on both the vehicle used 
and the task performed. Nonetheless, some general 
requirements can be enunciated for the average off-
road intelligent vehicle. First of all, the perceptive 
capabilities of the vehicle should assure real-time 
awareness, and therefore we cannot afford such 
a wide field of view that data processing has to 
be carried out off-line. In general, two target dis-
tances (or ranges) need to be adequately covered: 
medium distances between 10 and 30 m, and short 
ranges in the vehicle’s vicinity. Medium distances 
include crop-based feature detection for automatic 
guidance, as for example trajectory target points 
or cut-uncut harvesting edges. Perception in the 
surrounding area of vehicles is important for 
safeguarding reasons, since it is essential to be 
aware of any nearby obstacle that might become a 
potential hazard for automated operations. Given 
the importance of adjusting the field of view of 
the camera to the sensed scene, it is essential to 
optimally select the three main design parameters 
of stereo cameras: baseline, lenses, and targeted 
range interval. The following section describes 
a procedure to find the best configuration of a 
binocular stereo rig.

Determination of Optimal 
Baselines and Lenses

The objective of this procedure is to find the 
fundamental camera parameters that yield high 
quality 3D perception for a determined visual 
field. These parameters are the baseline, or dis-
tance between the optical center of both lenses, 
and the focal length of the lenses. Every time 
a lens is changed or the baseline modified, the 
camera needs to be calibrated with a chess-like 
board. For this reason, it is more convenient to 
use precalibrated cameras with fixed optics and 
permanent baseline, but before choosing definitive 
lenses and baseline, we need to make sure that 
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the needed field of view is appropriately covered 
by the stereo sensor and the requested ranges are 
accurately estimated. As mentioned before, a rich 
and noiseless disparity image is a good indicator 
of 3D perception quality, but there is a need for a 
quantitative evaluation in terms of objective qual-
ity indicators. A way to conduct this evaluation 
consists of placing target objects of size similar to 
that of potential objects to detect separated from 
the camera the approximated expected range, and 
capturing a stereo image of the test scene with the 
camera under evaluation.

Once the stereo image has been acquired, its 
corresponding 3D point cloud let us compare 
between the stereo-estimated distances and the 
actual ones along the three coordinates x1, x2, x3 
in such a way that three relative errors can be 
calculated according to Equation 1, where x1, x2, 
and x3 are the real distances directly measured 
with a standard tape, and x1’, x2’, and x3’ are the 
estimated distances directly read from the 3D 
point cloud. The distances under comparison need 
to be replicated for multiple features randomly 
sampled from the testing scene and then aver-
aged before proceeding with the calculation of 
relative errors {εx1= εx, εx2= εz, εx3= εy}. Once the 
relative errors have been determined for the three 
Cartesian axes, those defining a plane parallel 
to the camera and therefore containing points of 
equal range, for example x1 and x2, will give the 
planar efficiency η2D according to Equation 2. If, 
in addition, the relative error in ranges, say x3, is 
also taken into account following Equation 3, we 
will have an estimate of the 3D quality achieved 
for that camera configuration. The assessment of 
3D perception quality with efficiencies η2D and η3D 
helps to compare different camera configurations 
before choosing the ideal setup for a given appli-
cation. After the selection of lenses and baseline 
has been made according to the highest values 
of η2D and η3D, a stereo camera with fixed optics 
can be ordered to avoid the problems caused by a 
loss of accuracy in the calibration parameters as 
a consequence of vehicle vibrations or accidental 
drops of the camera. The chart of Figure 2 plots 

the η2D and η3D efficiencies estimated with various 
combinations of lenses and baselines for a set of 
flat targets situated at 12 m from the camera. The 
target consisted of a matrix of nine boxes equally 
spaced with a front pattern combining black and 
white solid squares. This test considered ranges 
of around 12 m as the critical medium distances 
under study. In the chart, each point represents a 
combination of baseline (B) and focal length (f) 
analyzed in the experiment. The position of each 
square in the two-dimensional plot of Figure 2 
indicates a particular perception quality for the 
combination B-f tried for the detection of 12-m 
ranges, as the abscissas give the planar efficiency 
(η2D) while the ordinates represent the stereo ef-
ficiency (η3D). In particular, Figure 2 highlights 
three combinations that are preferable (η2D and 
η3D over 90%) for sensing at 12 m ranges: {B =19 
cm; f =8 mm}, { B =19 cm; f =12 mm }, { B =15 
cm; f =16 mm }.
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PROCESSING 3D DATA IN REAL 
TIME

Raw Data from Compact Binocular 
Cameras and Coordinate Systems

After finding the best possible configuration of the 
camera given by baseline and lenses, as well as 
the optimum location for the sensor in the vehicle, 
we are ready to perceive the world in three dimen-
sions. The output of the camera is formed by a set 
of points precisely located in space by their three 
Cartesian coordinates. Two elemental checks need 
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to be made at this point: the definition of camera 
coordinates and the units in which the coordinates 
are expressed. This information is provided by 
the camera manufacturer, and without it all the 
data acquired in the field is useless, as objects 
and distances need to be properly referenced and 
measured. Typical units for camera coordinates are 
meters and millimeters. The definition of camera 
coordinates includes the position of the origin 
and the description of the three Cartesian axes 
intersecting in the origin. Origins are normally 
set at the optical center of one of the two lenses, 
hereafter denominated the reference lens. Figure 
3a illustrates a usual coordinate frame for stereo 
cameras, where the reference lens is the left one 
(seen from behind the camera).

Following a convention adopted by the ma-
chine vision community, the XcYc plane is coin-
cident with the image plane, the Yc coordinates 
follow the vertical dimension of the image grow-
ing downwards, and the Xc axis coincides with 
the horizontal dimension of the image with in-
creasing values from left to right. The third dimen-
sion, Zc, indicates the ranges or distances from 
the optical center of the reference lens to the 

detected objects. The camera coordinates por-
trayed in Figure 3a, while being comfortable for 
a permanent camera mounted with the image plane 
perpendicular to the ground, are not convenient 
for cameras on board off-road vehicles. To begin 
with, vehicle-fixed cameras are often tilted in 
such a way that ranges are not parallel to the 
ground. Furthermore, this inclination angle may 
change with time, making impossible the fusion 
of coordinates generated when the camera is set 
under different inclination angles. Off-road intel-
ligent vehicles are, after all, ground vehicles, and 
any information related to them needs to be prop-
erly referenced to them and, by extension, to the 
ground. The ground coordinates represented in 
Figure 3b are very practical and convenient for 
off-road machines to perceive in the open field. 
They keep the origin at ground level so that heights 
are coincident with the Z coordinates. The XY 
plane is therefore coplanar with the ground where 
the vehicle rests on. This definition establishes 
the center of coordinates at the intersection of the 
Z axis with the XY plane. The Y axis points at 
the forward direction and indicates the distance 
between objects and cameras, i. e. the ranges, and 

Figure 2. Assessment of 3D perception quality for target ranges of 12 m



276

Stereoscopic Vision for Off-Road Intelligent Vehicles

the X axis is perpendicular to the forward direc-
tion as represented in Figure 3b. Given that the 
locations of the points in the 3D cloud will be 
initially given in camera coordinates, they will 
have to be transformed to ground coordinates 
according to Equation 4, where (xc, yc, zc) are the 
camera coordinates, (x, y, z) are the ground co-
ordinates, hc is the camera height taken at the 
optical center of the reference lens, and ϕ is the 

camera inclination angle. Figure 4 illustrates this 
transformation process for a generic point P.
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Figure 3. Fundamental systems of coordinates for stereo vision perception. (a) Camera coordinates (b) 
Ground coordinates.
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Density Grids and 3D Density

After the coordinate transformation has been con-
ducted for every valid pixel of the disparity map, 
the stereo information is still in the form of a 3D 
point cloud, an unstructured set of points with no 
apparent relation among them. The point clouds 
can be massive, and even a moderate image reso-
lution of 320 x 240 easily yields disparity images 
of over 50000 correlated pixels. The perception 
computer on the vehicle needs to process these 
data and make sense of the discrete amount of 
points forming the cloud. Each point provides 
the 3-coordinate location of a determined feature 
belonging to the scene captured by the camera; 
therefore, the accumulation of points in certain 
region of space is a good indicator of a potential 
solid object. This idea led to the concept of 3D 
density (Rovira-Más et al., 2006), which is defined 
as the number of stereo-correlated points per 
volume unit. The definition of 3D density (d3D) 
avoids the strong dependency of the number of 
stereo-matched points on the image resolution. 

The presence or absence of an object must never 
depend on the resolution of the images used. As 
consecutive images may be exposed to different 
illumination patterns, the amount of valid pixels 
can differ significantly from one image to the next 
one; therefore, the calculation of densities in any 
image has to be normalized by the maximum value 
of the 3D density reached in that image before 
comparisons can be made among images. With this 
adjustment, regardless of image resolution, and 
even of the total number of pixels correlated, the 
high density portions of the reconstructed space 
will represent solid objects in the actual scene.

A practical way of applying the concept of 
3D density is through density grids, which can 
be constructed by dividing the space ahead of the 
vehicle in a regular grid and calculating the 3D 
density for every cell. In spite of the positive results 
obtained with density grids to process 3D data in 
real time, there is still a concern remaining: the 
distribution of d3D along the Y axis decreases qua-
dratically. This means that the 3D density depends 
on the range of the cell evaluated, phenomenon 

Figure 4. Transformation from camera coordinates to ground coordinates



278

Stereoscopic Vision for Off-Road Intelligent Vehicles

that can be easily explained by the physical fact 
that the terrain closer to the camera is described 
by a greater number of pixels since the field of 
view opens as the range grows. As a result, further 
targets will be represented by fewer points and 
the 3D point cloud will get scarcer as it separates 
from the camera. A less populated point cloud is 
still valid to discern between solid objects and 
empty space, but the 3D density threshold used 
to discriminate objects from emptiness cannot 
be uniformly applied to the entire image unless a 
range-based correction is applied. This correction 
normalizes the densities within the grid according 
to a reference range, usually near the camera where 
the d3D has not dropped too much. The general form 
for the corrective formula is that of Equation 5, 
where [d3D]c is the compensated density, d3D is the 
original density, Ycell is the range measured at the 
center of the corrected cell, and K is a constant 
that depends on the magnitude and units of the 
reference range as well as the quadratic fit curve. 
Figure 5 shows a typical orchard scene (a) and 
two density grids associated to it: a frontal grid 
composed of square cells of size 50 mm resulting 
in a grid of resolution 200 x 100 (b); and a top 
view grid (c) made of square cells of 120 mm 
side that lead to a grid resolution of 47 x 125. The 
top grid of Figure 5c clearly traces the lane free 
of obstacles between the two rows detected. The 
separation between the adjacent rows is about 
20 cells, which approximately corresponds to 
2.5 meters. Notice that the maximum range rep-
resented spans 125 cells or the equivalent length 
of 15 m ahead of the camera. The color code as-
signed to every cell represents a particular value 
of 3D density, obtained by counting the number 
of correlated points inside the cell, normalizing 
it, and compensating it according to its range. 
The grids of Figure 5 do not portray the ground 
of the traversable inter-row lane in spite of being 
represented in the original image of the scene 
(Figure 5a). As a matter of fact, there were many 
correlated pixels coming from the ground, but in 
order to enhance non-traversable obstacles –trees 

in this case–, all the points located under 0.8 m 
were suppressed in the final display of the grid. 
Although grid cells are represented by squares, 
3D density is defined as points per volume unit, 
and therefore the actual cells considered are long 
prisms of square section, where the cross section 
is precisely the square cell and the main length is 
limited by the layer gathering the critical infor-
mation. The top grid of Figure 5c, for example, 
uses prismatic cells with a cross section of 0.12 
x 0.12 (m2), and a main length of 4.2 m from Z = 
0.8 m to Z = 5 m.

d K Y dD c cell D3
2

3[ ] = ⋅ ⋅  (5)

AGRICULTURAL APPLICATIONS

Global 3D Terrain Mapping

The pervasive diffusion of satellite localization 
systems such as GPS has motivated the develop-
ment of new concepts and disciplines like precision 
agriculture. The core idea behind precision farm-
ing is to endow agricultural operations with higher 
levels of precision, those levels never reached 
before, what in a nutshell can be understood and 
summarized as applying the right quantity of 
input exactly where it is needed and just at the 
right time. This procedure entails handling large 
amounts of data, high updating rates, and instant 
actuation. The information exchanged in preci-
sion agriculture applications is typically managed 
and expressed in the form of globally referenced 
maps, where satellite imagery blends with locally 
acquired information to compose useful maps for 
the producers. However, these maps lack high 
resolution when they are based on satellite images, 
and seldom can they be updated very often because 
the final user has no free access to the source of 
information. A stereo-based terrain map can offer 
the high degree of detail typical of local perception 
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plus all the advantages of global positioning. In 
addition, the visual information gathered in the 
field is available in three dimensions, which al-
lows for multiple views easily adaptable to any 
application pursued. Global 3D terrain mapping 
requires three different sources of information: 3D 
perception with a stereo camera, vehicle attitude 
estimated with an inertial measurement unit, and 
global positioning data acquired by a GPS receiver. 
Apart from the 3D location of each point in the 
cloud, the stereo camera can also provide the true 

color associated to each point in the scene so that 
realistic 3D maps can be rendered as shown in 
Figure 6.

The main difficulties encountered when creat-
ing 3D global maps are caused by the complex-
ity of managing large amounts of data accumu-
lated in massive point clouds, and the strong 
dependency of the map consistency on the ac-
curacy of localization and attitude sensors. The 
procedure to assemble a global map starts by 
merging the individual local maps obtained from 

Figure 5. Density grids for stereo perception in off-road environments: (a) Field scene; (b) Frontal 
density grid; (c) Top view density grid
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every pair of images grabbed by the stereo cam-
era. This superposition of point clouds can be 
carried out either on-the-fly or offline after all the 
data have been acquired in the field. Given that 
mapping does not interfere with other farming 
operations, terrain maps can be built while other 
production tasks are being performed by the intel-
ligent vehicle. Global three-dimensional maps 
have multiple uses. They can provide safeguard-
ing warnings and navigational assistance, from 
them we may estimate the bulk of canopies or the 
growth rate of crops, and any object represented 
in them is immediately situated in a Cartesian 
frame for future applications. Figure 6 illustrates 
the concept of 3D field mapping applied to an 
orchard in full production. The degree of detail 
achieved with ground-based 3D perception allows 
the identification of a person lying down between 
two rows of apple trees.

Automatic Guidance of 
Tractors and Harvesters

The major advantage of stereoscopic vision over 
monocular vision is the availability of ranges. 
Depth assessment is always ambiguous with single 
two-dimensional images because any pixel in 
these images may belong to different points in the 
real world, depending on the relative position and 
orientation of the camera with respect to the sensed 
scene; generally speaking, the presence of van-
ishing points induces such effect. This advantage 
of stereo vision has been used to detect obstacles 
interfering with a vehicle’s course, either to find 
the optimum path for autonomous navigation or 
as a safety tool to avoid collisions. Given that the 
information acquired with a stereo camera is far 
richer than that obtained with alternative systems 
such as nodding lasers and ultrasonic devices, the 
practical applicability of stereoscopic vision to 
mobile robotics is relentlessly increasing.

Figure 6. Global 3D mapping of agricultural environments
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The strategy planned to guide tractors and 
combines depends on each application and on 
the architecture available in the vehicle. Quite 
likely, camera coordinates will have to be trans-
formed to ground coordinates, but their further 
conversion to a global frame will not always be 
necessary. Very often, as the cases illustrated in 
Figure 7, it is more convenient to use a vehicle-
fixed coordinate system; other times, as the case 
of using 3D global maps to trace a path reference, 
East-North coordinates are essential. In any case, 
and whatever the option chosen, the procedure 
to follow entirely fits the methodology outlined 
along this chapter: noise treatment, camera op-
timal configuration, coordinate transformation, 
and density grid representation. What rest are, 
of course, the interpretation of every density grid 
and the calculation of their subsequent decision 
making commands, which will involve different 
operations according to each particular applica-
tion developed. The top row of Figure 7 provides 
the basic information related to the automated 
guidance of a corn harvester: the position and 
orientation of the camera on the harvester head, 
strategically offset from the head by an extension 
rod to better sense the cut-uncut edge, selected as 
the main guidance feature; a sample image of the 
stereo pair taken from the chosen camera position; 
and finally the corresponding top-view density 
grid signaling the machine-detected position of 
the guiding edge. Notice that the reconstructed 
corn row is straight and vertical regardless of 
the camera position and attitude, what indicates 
a correct scene perception and coordinate trans-
formation. The bottom row of Figure 7 shows a 
different way to guide the same vehicle with the 
same stereo camera. The major difference between 
both approaches is caused by the new position of 
the camera, which results in a completely differ-
ent morphology of visual scenes. This time, the 
cut-uncut edge is not properly sensed within the 
available field of view, as shown in the sample 
image included in the figure.

For that reason, rather than trying to find the 
dividing edge, the objective is to identify the corn 
rows in front of the harvester as main tracking 
features for guiding the vehicle. This change in 
strategy is favored by the capability of stereo 
cameras mounted on top of the harvester cabin to 
situate the rows ahead with respect to the vehicle-
fixed system of coordinates. Placing the camera 
on the cabin provides a more compact solution 
than offset locations at the outermost end of ex-
tension bars, as protruding linkages are always 
problematic in dense environments. Any plant 
stem or leaf might hit the camera and alter the 
optimum orientation angle. The density grid re-
sulting from processing two stereo images cap-
tured from the cabin roof clearly identifies the 
position and dimensions of the five rows perceived 
in the field of view of the camera. Note that the 
3D density (d3D) represented in the final grid was 
properly range-compensated according to the 
approach explained before and practically exe-
cuted with Equation 5. The density grid of Figure 
7 (bottom right) representing the five rows of corn 
is composed of square cells of 10 cm side and 1.5 
m depth, which give a grid resolution of 60 x 150 
cells, i. e. a field of view 6 m wide and 15 m long. 
The computer resources required to deal with 
density grids are significantly less demanding 
than those involved with 3D renderization, recon-
struction, and data processing. Grid resolutions 
such as those used in the examples of Figure 7 
are much easier to handle than the original 51480 
correlated points comprising the disparity image 
that led to the five-row grid. The fact that the five 
rows of corn are parallel in the density grid, while 
there is a vanishing point in the original gray-
level image (bottom center in Figure 7), indicates 
that coordinate transformations and scene recon-
struction were correctly executed. These tests 
were conducted in the USA Midwest where ha-
bitual corn spacing is 76 cm (30 inches).
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FUTURE RESEARCH DIRECTIONS

Stereoscopic cameras provide a wealth of percep-
tual information at such a high rate that no other 
commercial sensor can currently match them. Yet, 
no sensor is perfect and therefore redundancy with 
other sensors will most likely be necessary in the 
forthcoming years, but as technology advances, 
the capabilities of these cameras will be higher 
and higher. At the beginning, only cutting-edge 
high technology projects, such as Mars Pathfinder, 
implemented them as key perception sensors. 
However, the popularization of binocular com-
pact stereo rigs has extended their use to a wide 
variety of engineering fields. Agriculture is one 
of them. However, in spite of being a field where 
robotization can provide great benefits, mostly 

due to the need of performing repetitive tasks in 
semi-structured and harsh environments, it has 
been to a great extent overlooked. Yet, potential 
is prominent and interest high. The deployment of 
intelligent vehicles for off-road applications will 
surely induce research, projects, and prototypes 
with stereoscopic cameras over the next decades.

CONCLUSION

This chapter gives a general view of the appli-
cability of stereo vision perception to the design 
of intelligent off-road vehicles, and provides a 
framework to integrate stereo cameras in intel-
ligent equipment performing common tasks in 
agricultural systems. The methodology proposed 

Figure 7. Automatic steering of a corn harvester based on stereoscopic vision
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starts finding the most favorable configuration of 
the sensor in relation to lenses and baselines, and 
continues setting the basic steps in the process-
ing of 3D data by reducing the impact of noise, 
transforming the initial coordinates to a convenient 
frame, and conditioning the perceptual information 
through the concepts of 3D density and density 
grids. All these consecutive stages constitute the 
necessary preparation onboard for the execution of 
decision-making routines in real time. The whole 
process has been illustrated along two particular 
applications of high interest in agricultural robot-
ics: global 3D terrain mapping and automated 
driving. The novelty of real time stereo technol-
ogy, and the elevated requirements of safety and 
precision demanded by manufacturers of agri-
cultural vehicles, place the practical realization 
of intelligent vehicles –and derived commercial 
expansion– in its infancy. However, the inexorable 
flow of technology towards vehicle automation 
and agricultural robotics in the upcoming years 
presages a very active role for stereoscopic vision 
as the chief provider of 3D perception.
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KEY TERMS AND DEFINITIONS

3D Density: Number of stereo-correlated 
points per volume unit, represented as d3D.

3D Point Clouds: Discrete set of points 
providing a three-dimensional representation of 
the scene. Every valid pixel in a disparity image 
corresponds to a unique point in its corresponding 
3D point cloud.

Density Grid: Regular grid covering the space 
of interest in front of the camera whose cells 
carry 3D density information. It can be either 
two-dimensional or three-dimensional.

Disparity Images or Disparity Maps: Im-
ages with the same resolution of the left and right 

stereo images, but carrying the disparity value 
for every pixel matched. The intensity value of 
each valid pixel is proportional to its disparity 
value. They provide the depth, or ranges, of all 
the objects detected.

Disparity: Horizontal distance measured in 
pixels between the position of the same point of 
the scene detected in both left and right stereo 
images. Only left-right correlated pixels will 
have an associated disparity value and therefore 
3D information.

Intelligent Vehicle: Conventional or concept 
vehicle equipped with artificial intelligence tech-
niques that automate some of its basic functions.

Stereo Baseline: Horizontal distance com-
prised between the optical centers of the two lenses 
mounted on a binocular camera. The baseline is 
a fundamental parameter to determine the field 
of view of the camera.

Validity Box: Portion of volume delimited 
by intersecting orthogonal planes where 3D loca-
tions have high likelihood of occurrence. Points 
of the cloud located outside the Validity Box are 
discarded and considered stereo mismatches.



286

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  15

INTRODUCTION: DEPTH 
ESTIMATION AND VIEW SYNTHESIS

With rapidly growing market for three-dimension-
al (3D) movies, 3D TVs, and 3D gaming, we may 
now be entering a time called the “Era of 3D”. 
The general public has also started to become 

comfortable with stereoscopic vision. However, 
there are concerns about the effects on the human 
body from continuously watching 3D images, 
for examples, visually induced motion sickness 
(VIMS), visual fatigue, and asthenopia. Although 
their mechanisms are still not fully understood, 
there is a great need for more knowledge about the 
effects of those products on users and guidelines 
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ABSTRACT

The most widely known theory of motion sickness and asthenopia are based on the concept of sensory 
conflict, a disagreement between vergence and visual accommodation while viewing stereoscopic images. 
Visually induced motion sickness (VIMS) can be measured by using psychological and physiological 
methods. We quantitatively measured vergence, visual accommodation, head acceleration, and body 
sway before and during exposure to conventional and new stereoscopic movies. Sickness symptoms 
appeared with exposure to stereoscopic images. We found that some analytical index for stabilograms 
increased significantly when the subjects viewed a 3D movie. VIMS could be detected by using these 
indices. While lateral sway is dependent on the transverse component of head movement while watch-
ing the conventional stereoscopic movie, we examine whether this tendency is reduced by Power 3D.
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for safety watching 3D images. We herein show 
the effects of stereoscopic images that may cause 
the VIMS or the simulator adaptation syndrome 
(SAS) in human. The goal of this chapter is to 
present a new technology to counter the causes 
of the VIMS.

On the other hand, an increasing number of 
people need to perform near-visual tasks such as 
operations on video display terminals (VDTs) with 
the development of computers and the widespread 
use of the Internet. Working under such conditions 
for several hours induces the contraction of the 
muscles involved in focus adjustment around 
the eyeball, such as the ciliary muscles. The 
abnormal contraction of ciliary muscles due to 
the performance of a near-visual task for several 
hours causes various vision problems such as as-
thenopia and visual loss. Further, this contraction 
has been reported to induce the cervicobrachial 
and psychoneurotic syndromes (Gomzi, 1994; 
Nakazawa et al., 2002).

For persons afflicted with pseudomyopia, 
performing stretching exercises of the ciliary 
muscles alleviates strain and temporarily improves 
the myopic condition. These exercises can be per-
formed by alternately repeating the negative and 
the positive accommodation of the eye. Miyao et 
al. (1996) experimentally demonstrated that the 

accommodation of the eye was possible by gaz-
ing at stereoscopic images displayed on a liquid 
crystal display (LCD) or a cathode ray tube (CRT).

Human beings perceive three-dimensional 
(3D) objects by the simultaneous vergence and 
lens accommodation in natural binocular vision. 
The depth of vergence and accommodation agreed 
under natural viewing conditions. They also per-
ceive virtual images by using the same mechanism. 
A general stereoscopic view is obtained by using 
the binocular parallax (Figure 1).

It has been commonly explained that lens ac-
commodation makes us focus on the surface of a 
display although the optical axes of lens are crossed 
at the virtual image (Figure 2) while viewing 
stereoscopic images (Cruz-Neira et al., 1993). 
There is discrepancy between vergence and  
accommodative focus. That is, there is contradic-
tory depth information between vergence and 
accommodation, called discordance, in the  
visual system. According to previous textbooks 
on 3D imaging, the VIMS and asthenopia are 
caused by this discordance. However, it seems to 
be an incorrect explanation. It has been shown 
that our focus is not always fixed on the surface 
of a display while viewing a stereoscopic image 
as follows:

Figure 1. Binocular parallax. (a) near vision and (b) far vision



288

Effectiveness of New Technology to Compose Stereoscopic Movies

Under natural viewing conditions with bin-
ocular vision, we measured lens accommodation 
for 40 s (Hasegawa et al., 2009; Omori et al., 
2009), while spherical images moved virtually 
toward and away from the subject on a head-
mounted display (HMD), a liquid crystal display 
(LCD), and a cathode ray tube (CRT). Displays 
were positioned such that an image appeared in 
the upper portion of a dichroic mirror placed in 
front of the subject’s eyes. 2D and 3D moving 
images were observed through reflection in the 
dichroic mirror, and refraction could be measured 
at the same time by transmitting infrared rays 
through the dichroic mirror. The refractive index 
of the right lens accommodation was measured 
by using a modified version of an original ap-
paratus with an accommodo-refractometer (Nidek 
AR-1100) when the subjects gazed at the pre-
sented image via a small mirror with both eyes 

(Miyao et al., 1992). The refraction in the case of 
the subjects was less than +0.5 Diopter (D), so 
both eyes were emmetropic. As a result, accom-
modation was set to approximately 3 (D) in front 
of the eyes even when the stereoscopic sphere 
reached the nearest point. Immediately after the 
sphere flew across the distant sky, the accom-
modation was approximately 1 (D). The synchro-
nization of the accommodation with the movement 
process of the sphere is shown only in the 3D 
movie. Hence, the ciliary muscle is repeatedly 
strained and relaxed while the vision contains 
virtual movement of 3D images. Moreover, focal 
accommodation in the near-vision condition did 
not differ greatly with the different types of display. 
It was also shown, irrespective of whether the 
liquid crystal shutter glasses were used, that ac-
commodation was easy and comfortable when 

Figure 2. Vergence and lens accommodation



289

Effectiveness of New Technology to Compose Stereoscopic Movies

focusing on virtually distant movements on the 
considered displays.

Patterson and Martin (1992) reviewed stereop-
sis and pointed out that the perceived depth for a 
crossed disparity follows predictions derived from 
constancy in most cases, whereas the perceived 
depth for an uncrossed disparity is frequently 
less than the predicted value. They reported that 
among several possible distance cues related to 
the computation of the perceived depth, one set 
of cues involves proprioceptive information from 
accommodation, vergence, or both.

Depending on the audiovisual condition, ste-
reoscopic videos that use binocular stereoscopic 
vision often induce the unpleasant symptoms 
of asthenopia, headache, difficulty in focusing, 
dizziness, disorientation, and nausea (Ukai et 
al., 2008). Ataxia in stereoscopic video-induced 
sickness has been reported previously. The influ-
ence of video-induced motion sickness on the 
body has been measured by employing subjective 
scales such as the simulator sickness question-
naire (SSQ) (Kennedy et al., 1993). Further, it is 
also measured by quantitatively investigating the 
relationship between external factors and internal 
conditions using physiological indices such as 
respiratory functions, electrocardiograms, skin 
electrical activity, fluctuation of the center of grav-
ity, and electrogastrograms (Holomes et al., 2001; 
Himi et al., 2004; Yokota et al., 2005). However, 
there is no established methodology detecting 
the VIMS due to 3D movie in an early stage. An 
objective index are required to measure degree 
of the VIMS, which is also useful in examining 
whether a developing 3D movie can be regarded 
as a safety product.

Recent studies suggest that maintaining pos-
tural stability is a major goal of animals (Stoffregon 
et al., 2000) and that they experience sickness 
symptoms in circumstances where they have not 
acquired strategies for maintaining their balance 
(Riccio & Stoffregon, 1991). In the next section, 
backgrounds involved in the VIMS and stabilom-

etry are reviewed as a preparation to introduce 
our methodology evaluating VIMS.

BACKGROUND

Visually Induced Motion 
Sickness (VIMS)

Historical chronicles of the human experience 
with motion sickness-like symptoms date back 
at least to Hippocrates, and while Julius Caesar, 
Lawrence of Arabia, and Admiral Nelson suffered 
bouts of sickness (Money, 1972), adaptation and 
repeated exposure minimized these adverse effects 
(Kennedy & Kennedy, 2007).

More recent human encounters with motion 
environments, including simulators, virtual envi-
ronments and even some commercially available 
video games that create the illusion of motion, 
demonstrate the general rule that motion sickness 
adversely affects operational efficiency among 
susceptible individuals (Benson, 1978). Although 
the most widely known theory of motion sick-
ness is based on the concept of sensory conflict 
(Oman, 1982; Reson, 1978), Riccio and Stoffregen 
(1991) argued that motion sickness is not caused 
by sensory conflict but by postural instability. 
The VIMS has been attributed to a disagreement 
between vergence and visual accommodation 
while viewing 3D images (Okuyama et al., 1996). 
Stoffregen and Smart (1999) reported that the 
onset of motion sickness may be preceded by 
significant increases in the postural sway (Stof-
fregen et al., 1999). The equilibrium function in 
humans deteriorates when viewing 3D movies 
(Takada et al., 2007).

Nowadays, liquid crystal displays (LCDs) are 
extensively used as general visual display termi-
nals. They have several features such as large 
display size, reduction in weight and size because 
of miniaturization, and low power consumption. 
However, users viewing movies on LCDs often 
complain of the blurring and bleeding of images 
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and experience VIMS. Typical LCDs are said 
to be inferior to cathode-ray tube displays with 
regard to motion picture display. This is because 
while the later is an impulse-based display and the 
temporal waveform of each pixel is a luminance 
impulse that is only a few milliseconds long, a 
typical LCD (a conventional LCD) is a voltage-
hold-type display, which implies that the voltages 
across the pixels are held during the entire frame 
period (16.7 ms). A voltage-hold-type display has 
a blur in its motion-frame picture because while 
human eyes track the movement of the picture, 
the picture is fixed for a certain period (field pe-
riod) and a time gap is generated in its display. 
These problems can be avoided in LCD displays 
by using the pseudo-impulse driving method to 
realize a higher performance. The blurred im-
ages on the LCDs sometimes induced “image 
sickness” in viewers, which is an unpleasant 
feeling that is similar to motion sickness. On the 
other hand, optokinetic stimulation is known to 
trigger motion sickness (Lestienne et al., 1977). 
In particular, anterior displacement of the centre 
of gravity remarkably increased during the body 
sway when random dots were rotated vertically at 
a speed of 40-60 deg/s as optokinetic stimulation 
to the subjects. The conventional LCD might ag-
gravate symptom of the motion sickness that was 
caused by some sensory conflicts. Furthermore, 
newly developed optically compensated bend 
display could suppress the symptom of the motion 
sickness (Fujikake et al., 2007).

VIMS can be measured by psychological 
and physiological methods, and the simulator 
sickness questionnaire (SSQ) is a well-known 
psychological method for measuring the extent 
of motion sickness (Kennedy et al., 1993). The 
SSQ is used herein for verifying the occurrence 
of VIMS. The following parameters of autonomic 
nervous activity are appropriate for the physiologi-
cal method: heart rate variability, blood pressure, 
electrogastrography, and galvanic skin reaction 
(Holomes and Griffin, 2001; Himi et al., 2004; 
Yokota et al., 2005). A wide stance (with midlines 

of the heels 17–30 cm apart) reportedly results in 
a significant increase in the total locus length in 
the stabilograms for individuals with high SSQ 
scores, while the length in those of the individuals 
with low scores is less affected by such a stance 
(Scibora et al., 2007).

Stabilometry

The human standing posture is maintained by the 
body’s balance function, which is an involuntary 
physiological adjustment mechanism termed the 
righting reflex (Okawa et al., 1995). To maintain 
a standing posture when locomotion is absent, the 
righting reflex, centered in the nucleus ruber, is 
essential. Sensory signals such as visual inputs 
and auditory and vestibular inputs as well as 
proprioceptive inputs from the skin, muscles, and 
joints are involved in the body’s balance function 
(Kaga, 1992). The evaluation of this function is 
indispensable for diagnosing equilibrium distur-
bances such as cerebellar degenerations, basal 
ganglia disorders, and Parkinson’s disease in 
patients (Okawa et al., 1996). Stabilometry has 
been used for evaluating this equilibrium function 
qualitatively and quantitatively. The stabilometry 
is useful not only for medical diagnosis but also 
for achieving control of upright standing by two-
legged robots and for preventing elderly people 
from falling (Fujiwara and Toyama, 1993).

Even when a young, healthy individual at-
tempts to stand still, the centre of gravity of his/
her body and the centre of pressure (COP) under 
his/her feet move relative to a global coordinate 
system (Collins & De Luca 1993), which is 
induced by the complex sensorimotor control 
system. A plot of time-varying coordinates of the 
COP is known as a stabilogram. The COP could 
be measured in accordance with stabilometry 
in which many of the earlier studies limited the 
analysis of the plots to summary statistics, i.e., 
calculation of the length of sway path (total locus 
length, L), average radial area (area of sway, A), 
locus length per unit area (L/A) etc. (Suzuki et 
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al., 1996). These parameters have been proposed 
to quantify the instability involved in the standing 
posture, and such parameters are widely used in 
clinical studies. In particular, the last parameter 
(L/A) depends on the fine variations involved in 
posture control (Okawa et al., 1995). This index 
is then regarded as a gauge for evaluating the 
function of the proprioceptive control of standing 
in human beings. However, it is difficult to clini-
cally diagnose the disorders of the balance func-
tion and to identify the decline in the equilibrium 
function by utilizing the abovementioned indices 
and measuring patterns in the stabilogram. Large 
interindividual differences might make it difficult 
to understand the results of such a comparison. 
Thus, Collins and De Luca (1993) introduced 
another method known as stabilogram diffusion 
analysis that provides a quantitative statistical 
measure of the apparently random variations 
of the COP trajectories recorded during quiet 
upright stance in humans. This analysis gener-
ates a stabilogram diffusion function (SDF) that 
summarizes the mean square COP displacement 
as a function of the time interval between COP 
comparisons. SDFs have a characteristic two-part 
form that suggests the presence of two different 
control regimes: a short-term open-loop control 
behavior and a longer-term closed-loop behavior 
(Peterka, 2000).

Mathematically, the sway in the centre of pres-
sure (COP) is described by a stochastic process 
(Emmerrik et al., 1993; Newell et al., 1997). The 
anterior-posterior direction y was considered to 
be independent of the mediallateral direction x 
(Goldie et al., 1989). We examined the adequacy 
of using stochastic differential equations (SDEs) 
on the Euclid space E2 ∋ (x, y)
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and investigated the most adequate equation as 
mathematical models that generate the stabi-
lograms. Here, pseudorandom numbers were 
generated by the white noise terms wx(t) and 
wy(t). Constructing the nonlinear SDEs from the 
stabilograms in accordance with the following 
equations (Takada et al., 2001):

U x G x const

U y G y const

x x

y y
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= − +
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2
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we observed that their temporally averaged po-
tential functions Ux and Uy have several minimal 
points, where G(z), the distribution of the observed 
point z, is related in the following manner to Uz(z), 
the (temporal averaged) potential function, in the 
stochastic differential equation (SDE), which has 
been considered a mathematical model of the 
sway. In the vicinity of these points, a local stable 
movement with a high-frequency component 
can be generated as a numerical solution to the 
SDE. Hence, fluctuations could be observed in 
the neighborhood of the minimal points. A high 
density of the observed COP can be expected in 
this area on the stabilogram; the sparse density 
(SPD) is regarded as an index for its measurement 
(Takada et al., 2003).

The correlation between head movement and 
the movement of the center of gravity has been 
investigated in general, and a corporative effect 
was seen in their relationship (Sakaguchi et al., 
1995). By showing a stereoscopic movie to the 
subjects, Takeda et al. (1995) verified that there 
is a corporative correlation between the head 
movement and the sway. In the control theory, 
the transfer function analysis is widely used for 
investigating a system. We denote the Fourier 
transform by a capital letter corresponding to the 
letter of the function being transformed (such as 
y(t) and Y(f)). The transfer function H(f) is defined 
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as a Fourier transform of the impulse response 
h(f). In our experiments, we cannot observe the 
output signal of the transfer system but only the 
signal added to the noise n(t). On the basis of a 
theorem (Winner-Khinchine):

Wxx = |X(f)|2 = σx
2 F(Rxx),  (2)

we can easily estimate a power spectrum Wxx. On 
the right-hand side of Equation (2), σx expresses 
the standard deviation, and F(Rxx) indicates the 
Fourier transform of the auto-correlation function 
with respect to the signal x(t) (Kido, 2007).

In the next section, our researches are herein 
reviewed. By using the SSQ and stabilometry 
(body sway), we examined whether the VIMS 
was induced by a stereoscopic movie. The aim 
of our study is to propose a methodology to mea-
sure the effect of 3D images on the equilibrium 
function. Moreover, we wondered if the noise 
terms vanished from the mathematical model 
of the body sway. Using our Double-Wayland 
algorithm (Takada et al., 2006), we evaluate the 
degree of visible determinism for the dynamics 
of the sway. We also investigate the relationship 
between the body sway and head acceleration by 
using a transfer function analysis.

METHODOLOGY TO EVALUATE 
VISUALLY INDUCED MOTION 
SICKNESS (VIMS)

Problems

There have been VIMS and eye-strain issues in 
stereoscopic movies. Why are stereoscopic im-
ages unnatural for human vision? According to a 
common view, these issues are caused by a certain 
sensory conflict while viewing stereoscopic im-
ages. A clue to solve this difficult problem can be 
obtained by using psychological and physiological 
methods. However, there is no established method 
that can measure the degree of VIMS. Herein, 

we assume that the input signal, x(t), is the head 
acceleration in the transfer system to control the 
body sway (or maintain the upright posture). The 
transfer function that controls the sway is estimated 
as discussed in the following paragraphs (Takada 
et al., 2009b). In this section, we support our 
hypothesis: VIMS changes the system to control 
the body sway.

Subjects

Ten healthy volunteers (age: 23.6 ± 2.2 years) 
participated in our study. All of them were 
Japanese and lived in Nagoya and its surround-
ing areas. They provided informed consent prior 
to participation. The following subjects were 
excluded from the study: subjects working in 
the night shift, those dependent on alcohol, those 
who consumed alcohol and caffeine-containing 
beverages after waking up and less than 2 h af-
ter meals, those who had been using prescribed 
drugs, and those who may have suffered from an 
otorhinolaryngologic or neurological disease in 
the past (except for conductive hearing impair-
ment, which is commonly found in the elderly). 
In addition, the subjects must have experienced 
motion sickness at some time during their lives.

We ensured that the body sway was not affected 
by environmental conditions. By using an air con-
ditioner, we adjusted the room temperature to 25 
°C and kept the room dark. All subjects were tested 
from 10 a.m. to 5 p.m. in the room. The subjects 
wore an HMD (iWear AV920; Vuzix Co. Ltd.) 
on which two types of images were presented in 
a random order: (I) a visual target (circle) whose 
diameter was 3 cm and (II) a conventional 3D 
movie that shows a sphere approaching and mov-
ing away from the subjects irregularly.

Design

The subjects stood without moving on the detection 
stand of a stabilometer (G5500; Anima Co. Ltd.) 
in the Romberg posture with their feet together 
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for 1 min before the sway was recorded. Each 
sway of the COP was then recorded at a sampling 
frequency of 20 Hz during the measurement, 
while the head acceleration was simultaneously 
recorded by the active tracer (AC-301A; GMS 
Co. Ltd.) at 50 Hz. The subjects were instructed 
to maintain the Romberg posture for the first 60 
s and a wide stance (with the midlines of heels 20 
cm apart) for the next 60 s. The subjects viewed 
one of the images, i.e., (I) or (II), on the HMD 
from the beginning to the end.

Simulator Sickness 
Questioner (SSQ)

The SSQ was filled before and after stabilometry. 
After the exposure to a conventional 3D movie (II), 
scores for SSQ-N (nausea), SSQ-OD (eyestrain), 
SSQ-D (disorientation), and SSQ-TS (total score) 
were 11.4 ± 3.7, 18.2 ± 4.1, 23.7 ± 8.8, and 19.8 
± 5.3, respectively. Sickness symptoms seemed 
to appear with the exposure to the stereoscopic 
images although there were large individual  
differences.

Stabilograms

We have shown typical stabilograms (Fujikake et 
al., 2009). In these stabilograms, the vertical axis 
shows the anterior and posterior movements of 
the COP, and the horizontal axis shows the right 
and left movements of the COP. The amplitudes 
of the sway that were observed during exposure 
to the movies tended to be larger than those of 
the control sway. Although a high density of COP 
was observed in the stabilograms, the density 
decreased in stabilograms during exposure to the 
conventional stereoscopic movie. Furthermore, 
stabilograms measured in an open leg posture 
with the midlines of heels 20 cm apart were 
compared with those measured in the Romberg 
posture. COP was not isotropically dispersed but 
was characterized by the considerable movement 
in the anterior-posterior (y) direction (Fujikake 

et al. 2009). During exposure to 3D movie, the 
diffusion of COP was larger in the lateral (x) 
direction and had spread to the extent that it was 
equivalent to the control stabilograms. Moreover, 
we calculated several indices that are commonly 
used in the clinical field (Suzuki et al., 1996) for 
stabilograms, such as “area of sway,” “total locus 
length,” and “total locus length per unit area.” The 
new quantification indices were termed “SPD” and 
“total locus length of chain” (Takada et al., 2003). 
According to the two-way analysis of variance 
(ANOVA) with repeated measures, there was no 
interaction between the factors of posture (Rom-
berg posture or standing posture with their feet 
wide apart) and images (I or II). With respect to 
the total locus length and the sparse density, there 
were main effects in response to both factors (p < 
0.01). Multiple comparisons revealed that these 
indices significantly increased when the subjects 
viewed the 3D movie (II) on the HMD with the 
Romberg posture. A similar result was statistically 
obtained with the comparison of images (I or II) 
on a LCD (Takada et al., 2008). VIMS could be 
detected by these indices for stabilograms.

Transfer Function Analysis

When the subjects stood with their feet close to-
gether (Romberg posture), the coherence function 
between the head acceleration x(i) and the move-
ment of the centre of gravity y(j) was estimated as

cohx(i)y(j)(f) = |Wx(i)y(j)|
2 / (Wx(i)x(i) Wy(j)y(j)),  (3)

where i and j expressed the component (1: lat-
eral and 2: anterior/posterior). By using the Fast 
Fourier transform algorithm, we estimated the 
power spectrums Wx(i)x(i), Wy(j)y(j). On the basis 
of Equation (3), we calculated cross spectrums 
Wx(i)y(j). The coherence indicates an index for the 
degree of the linear correlation between the input 
and the output signals (0 ≤ coh ≤1). There exists 
a completely linear correlation between these 
signals when coh = 1. We assumed that a linear 
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system intervenes between the head and the body 
sway only if coh ³ 0.12 (significant correlation 
coefficient for N = 512, p < 0.01). Moreover, we 
estimated the transfer function as follows:

H(f) = Wx(i)y(j) / Wx(i)x(i),  (4)

and the transfer function gain (TFG) |H(f)|. When 
the subjects stood with the Romberg posture, the 
transfer function analysis was implemented with 
the head acceleration (input) and the body sway 
(output). We estimated the coherence function 
(3), i.e., cohx(1)y(1)(f), cohx(1)y(2)(f), cohx(2)y(1)(f), and 
cohx(2)y(2)(f). For any frequency, cohx(1)y(1)(f) and 
cohx(1)y(2)(f) were less than 0.12 (significant cor-
relation coefficient for N = 512, p < 0.01). On the 
other hand, cohx(2)y(2)(0.51) was more than 0.12. 
cohx(2)y(j)(0.51) and cohx(2)y(j)(7) during the exposure 
to the 3D movie (II) remarkably increased for j = 
1, 2 (See Figure 3).

Complex System Analysis

By estimating the translation errors, we math-
ematically measured the degree of determinism 

in the dynamics of the sway of COP. Represen-
tative results of the Double-Wayland algorithm 
are derived from the lateral sway x as shown in 
Figure 3. Whether subjects were exposed to the 
3D movies or not, Etrans derived from the temporal 
differences of the time series x, y was approxi-
mately 1 (Figure 4). These translation errors in 
each embedding space were not significantly 
different from the translation errors derived from 
the time series x, y. Etrans > 0.5 was obtained by 
the Wayland algorithm, which implies that the 
time series could be generated by a stochastic 
process in accordance with a previous standard 
(Matsumoto et al., 2002). The threshold 0.5 is half 
of the translation error resulting from a random 
walk. The body sway has been described previ-
ously by stochastic processes (Collons and De 
Luca, 1993; Emmerrik et al., 1993; Newell et al., 
1997), which was shown with the Double-Wayland 
algorithm (Takada et al., 2006). Moreover, 0.8 < 
Etrans < 1 obtained from the temporal differences 
of these time series exceeded the translation er-
rors estimated by the Wayland algorithm. The 
exposure to 3D movie would not change it into 
a deterministic one. Mechanical variations were 
not observed in the locomotion of the COP. We 
assumed that the COP was controlled by a station-
ary process, and the sway during exposure to the 
static control image (I) could be compared with 
that when the subject viewed 3D movies. Indices 
for stabilograms might reflect the coefficients in 
stochastic processes although the translation error 
did not exhibit a significant difference between 
the stabilograms measured during exposure to 
the static control image (I) and the conventional 
3D movie (II).

Controversies

Scibora et al. (2007) concluded that the total locus 
length of subjects with prior experience of mo-
tion sickness increases with exposure to a virtual 
environment when they stood with their feet wide 
apart, whereas, in our study, the degree of sway 

Figure 3. Significant coherence
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was found to be reduced significantly when the 
subjects stood with their feet wide apart than when 
they stood with the Romberg posture. A clear 
change in the form of the potential function (1) 
occurs when the feet are wide apart. Irrespective of 
posture, the indicators involved in the stabilogram 
(total locus length and SPD) during exposure to 
the conventional 3D movie (II) were greater than 
that during exposure to the control image (I). 
Moreover, the total locus length of chain tended 
to increase when the subjects were exposed to the 
conventional 3D images (II) compared that when 
they were exposed to (I). Hence, we noted postural 
instability with the exposure to the conventional 
stereoscopic images (II) by using these indicators.

The variance in the stabilogram depends on the 
form of the potential function in the mathemati-
cal model of the body sway (SDEs); therefore, it 
is important to focus on the nonlinearity of the 
potential function. The total locus length was 
increased during the exposure to the conventional 

3D images (II), which might be caused by the 
diminution of the gradient in the bottom of the 
potential function. We herein note that it is pos-
sible to estimate the decrease in the gradient of the 
potential function by using the SPD by performing 
a one-way analysis of variance.

SOLUTIONS AND 
RECOMMENDATIONS

New Processing of 
Stereoscopic Images

Recently, a novel 3D video construction method 
has been developed to prevent video-induced 
motion sickness (Yasui et al., 2006; Kakeya, 
2007). Humans perceive actual objects by si-
multaneous vergence and accommodation of the 
lens, but stereoscopic videos generally consist 
of the unnatural images perceived along a fixed 

Figure 4. Results of Double-Wayland algorithm
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optical axis of lens, negating such vergence and 
accommodation. Stereoscopic images that are 
prepared using the Power 3D method reduce the 
inconsistency between experienced and actual 
senses (Nishihira & Tahara, 2001). This is why the 
Power 3D approach counters the cause of VIMS.

With respect to a general stereoscopic view, 
the images are composed of photographs taken 
by two cameras or by computer graphics (CG). 
Camera axes are fixed and crossed at the point 
of the virtual image at which the creator expects 
viewers to gaze. That is, viewers would suffer from 
finding the anomalous vergence if they looked at 
the other elements in a stereoscopic flame. Ac-
cording to International Workshop Agreement 3 
(IWA3), International Organization for Standard-
ization (ISO) suggested that the popping-out effect 
not be used considerably (Figure 2). We herein 
introduce a new technology to construct stereo-
scopic movies (Power 3D). The new technology 
(Nihihara & Tahara, 2001) sets each camera axis 
as well as human beings that change the vergence 
angle corresponding to the visual distance of 
subjects for photography (Figure 5). Moreover, 
camera axes are also set to be parallel as well 

as natural binocular vision in order to construct 
the background (Figure 5a). These elements of 
far/near visions are superimposed on the flame 
(Figure 5c). Viewers might not feel a sense of 
incongruity if they gaze at any elements in the 
flame. This technology has already been applied 
to the “Eyesight-Recovering Stereoscopic Movie 
System” produced by Olympus Visual Communi-
cations Co., Ltd. Parallax images for each eye are 
alternately presented at 75 Hz for the prevention 
of photosensitive seizures.

We assume that the high density of observed 
COP decreases during exposure to stereoscopic 
images. In this section, we showed that the sparse 
density (SPD) was a useful index in stabilometry 
to measure VIMS. Our previous studies have 
shown that the degree of video-induced motion 
sickness is reduced in body sway by viewing 
stereoscopic videos prepared by using this 
method on the HMD (Takada et al., 2009a) and 
on an LCD (Takada et al., 2009d), respectively. 
In the next section, we present an application  
of this new technology, Power 3D, to health  
promotion.

Figure 5. A stereoscopic image constructed by Power 3D method
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FUTURE RESEARCH DIRECTIONS

Applications

We assume that it is possible to improve an 
abnormal accommodative function of the lens 
by activating the muscles by alternately repeat-
ing negative and positive accommodation. By  
improving the abnormal accommodative function, 
we can improve or prevent these vision problems. 
We call this operation “accommodation training 
(AT).” In Japan, an apparatus called MD-SS was 
developed by Kobayashi (1994). The objective 
of this apparatus is to recover visual acuity. This 
apparatus works by using a Landolt ring drawn 
on a flat plate that moves back and forth over a 
distance of 2 m in order to encourage alternately 
repeating negative and positive accommodation 
in the observers. However, a large space was re-
quired to employ the AT with the use of this MD-
SS. On the other hand, the Eyesight-Recovering 
Stereoscopic Movie System is commonly known 
as “Dr. Rex.” In the Dr. Rex, an LCD displaying 
stereoscopic videos and the visual acuity recovery 
device equipped with liquid crystal shutter eye-
glasses. Dr. Rex Eye Care Program contains some 
stereoscopic video contents that simulate near and 
distant visual conditions (Figure 6). Alternately 
displaying the videos on the LCD and device at 
appropriate intervals is expected to improve and 
prevent myopia, presbiopia, and visual fatigue. The 
abnormal contraction of ciliary muscles due to the 
performance of a near-visual task for several hours 
causes various vision problems such as asthenopia 
and visual loss. However, these problems can be 
resolved by activating the muscles by alternately 
repeating negative and positive accommodation. 
In this study, we have verified the effect of ac-
commodation training that uses the strategy of 
presenting a stereoscopic movie to myopic youth 
and measuring the spherical diopter (SPH), visual 
acuity (far/near vision), and subjective index of 
asthenopia obtained using a visual analog scale 
(VAS). The results of subjective evaluations before 

(pre) and after (post) viewing the stereoscopic 
videos were compared using the Wilcoxon signed 
ranks test, where the significance level p was set 
to be 0.05.

a)  Myopic population will be increasing in 
the near future with the rapid development 
of industry or other social factors in some 
countries. Thirty two myopic students aged 
20 ± 1 years (16 males and 16 females) were 
chosen as the subjects. One group performed 
the AT for 6 min, and the other group un-
derwent a near-visual task during the same 
period as the control group. The uncorrected 
distant visual acuity increased in 17 of the 
32 subjects (53.1%). The visual acuity on 
day 11 was considerably higher in the AT 
group than in the control group (p < 0.05). 
The visual acuity improved in the AT group. 
This result suggests that the AT has a cumu-
lative positive effect on eyesight. The AT 
would prevent the deterioration of visual 
acuity even though there was no significant 
difference in the SPH between the groups. 
We considered that the AT using the stereo-
scopic movie did not deform the lens, thus 
not improving myopia fundamentally. 
However, the visual acuity and the near-point 
accommodation function were enhanced by 
this accommodation training, which also led 
to a decrease in asthenopia (Sugiura et 
al., 2010).

b)  Visual inspection workers suffered from 
eye fatigue after their work. We have inves-
tigated the visual acuity improving effect 
of the device using stereoscopic videos for 
22 visual inspection workers aged 37 ± 6 
years. These subjects were also divided 
into two groups. One group underwent the 
Dr. Rex treatment, in which they viewed a 
stereoscopic video for 6 min after the visual 
inspection work, and the other group was 
not given any task to perform during the 
first three consecutive days. Thereafter, the 
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groups switched tasks, and the experiment 
was performed in a similar manner to col-
lect data without the influence of task order. 
The above-mentioned items were performed 
before the visual inspection work on the 
morning of the first day and after the treat-
ment for the six experimental days. Although 
the dioptric comparison between the control 
and the Dr. Rex treatment groups showed 
that there was no significant difference be-
tween the values for the groups (p < 0.05), 
the binocular BVA increased in 13 of the 
22 visual inspection workers (59.1%). The 
visual acuity of the control group without the 
Dr. Rex treatment showed an improvement. 
The myopic tendency increased because of 
the visual inspection work. Moreover, it was 
possible that the subjects became skilled in 
the vision test. However, the results obtained 
from the Wilcoxon signed ranks test showed 

that the distant visual acuity in the Dr. Rex 
treatment group increased considerably as 
compared to that in the control group (p < 
0.05). As compared to the near-visual acu-
ity in the control group, that in the Dr. Rex 
treatment group had increased significantly 
on day 3 (p < 0.05). The VAS in the Dr. Rex 
treatment group also increased significantly 
on day 3 as compared to that in the control 
group. There seemed to be not only an visual 
acuity improving effect but also a reduction 
of the visual fatigue by the Dr. Rex treat-
ment for more than 3 consecutive days (M. 
Takada et al., 2010).

c)  Presbiopic population will be also increase 
in the near future with an aging society. After 
the age of 40 in most people, and by the age 
of 45 in virtually everyone, a clear, comfort-
able focus at a near distance becomes more 
difficult with eyes that see clearly at a far 

Figure 6. Idea involved in the Dr. Rex Eye Care Program
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distance. This normal condition is known as 
presbyopia, and it is due both to a lessening 
of flexibility of the crystalline lens and to a 
generalized weakening of the ciliary muscle. 
We have reported that both the uncorrected 
binocular near- and distant-visual acuities 
improved in middle-aged subjects, sug-
gesting that viewing stereoscopic videos 
reduced strain and increased the flexibility 
of the ciliary muscles, which temporarily 
recovered the visual acuity. In contrast, di-
optric measurements did not change in the 
eyes of members of either group. The dura-
tion of treatment may have been too short 
to modify the eyeball (lens) structure. It is 
suggested that the short-term repeated use 
of the Dr. Rex visual acuity recovery device 
would increase the near-visual acuity. We 
expect that this may assist the improvement 
in and prevention of presbyopia (Takada et 
al., 2009c).

Based on the Dr. Rex visual acuity recovery 
device, a Web-based system will be developed to 
diffuse the health promotion. The frequency at 
which parallax images for each eye are alterna-
tively presented must be tuned to fit the frequency 
on household displays. Through the Web-based 
system, we will be able to obtain considerable data 
to elucidate the Dr. Rex visual acuity recovery 
device. In the future, we suggest that the apparatus 
be used for several months in order to verify its 
long-term effects on visual acuity and asthenopia.

Theory

Human beings perceive actual objects with si-
multaneous vergence and lens accommodation 
in binocular vision. Virtual images are perceived 
via the same mechanism, although, as we previ-
ously reported, the focus is not always fixed on 
the surface of a display when stereoscopic images 
are being viewed. We should investigate the ef-
fect of stereoscopic images on the visual func-

tions with careful deliberation. We have already 
developed a method to simultaneously measure 
accommodation and vergence in order to provide 
further support for this theory. In the next step, 
we use “Power 3D” to test visual functions in a 
stereoscopic view with a very wide amplitude. We 
also measure the accommodation and vergence in 
natural vision to confirm that these measurements 
are correct. We found that both accommodation 
and vergence were consistent with the distance 
from the subject to the object using the Power 3D 
system (Figure 7).

CONCLUSION

In order to evaluate the VIMS, we performed the 
simultaneous recording of the center of gravity 
with the head acceleration during the exposure 
to a 2D image and a 3D movie in this study. 
According to the transfer function analysis, the 
anterior/posterior head acceleration could affect 
the lateral body sway during the VIMS caused 
by the 3D movie. In addition to the analysis of 
stabilograms, the transfer function between the 
head posture (input) and the body sway (output) 
is considered to be useful for the prediction/detec-
tions of the VIMS.

Power 3D was developed by Olympus Visual 
Communications Co. Ltd. as a 3D technology 
that does not induce 3D sickness (uncomfort-
able feeling of nausea when viewing unnatural 
stereoscopic movies). The Power 3D approach 
counters the cause of VIMS because the technol-
ogy uses free-viewpoint binocular stereoscopic 
graphics. Using Power 3D, subjects can see very 
close stereoscopic images in front of their face 
as well as distant mountain views. Conventional 
3D views are generated with fixed-viewpoint 
binocular stereoscopic graphics. When subjects 
view a close target (crossed view), far mountains 
cannot be fused. When they see far mountains, 
the close target (crossed view) is split, and two 
targets are seen.
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KEY TERMS AND DEFINITIONS

Accommodation: Accommodation is the 
process by which the eyes change optical power 
to maintain a clear image (focus) of an object as 
its distance changes. Human beings vary optical 
power by changing the form of the elastic lens using 
the ciliary body (<15 diopters). Accommodation 
is also closely related to vergence movements as 
follows. Under normal conditions, changing the 
focus of the eyes to look at an object at different 
distances will automatically cause vergence and 
accommodation.

Camera Axis: Camera axis is the optical axis 
of a camera. Each camera axis is shown as an 
imaginary line passing through the optical center 
of the lens system of a camera and perpendicular 
to the focal plane (Figure 5). Camera axes are 
fixed and crossed at the point of the virtual im-
age at which the creator expects viewers to gaze.

Head Acceleration: Head acceleration is au-
tomatically caused by stabilization of the visual 
field in human beings. Righting reflexes can be 
subcategorized as follows: optical; neck; body-
on-head; body-on-body; and labyrinthine, which 
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plays a key role in the control of head posture. 
Some of the reflexes and neuroanatomy have 
been defined and illustrated separately. However, 
collective reflexes and their interactions have not 
been elucidated, although a cooperative effect was 
seen in the relationship between head movement 
and the movement of the center of gravity.

Motion Sickness: Often occurs because the 
vestibular information cannot be combined with 
the visual information. The visual field becomes 
unstable if there is a disagreement between the 
visual and vestibular information; this causes 
the vestibulo-ocular (VO) and optokinetic (OK) 
reflexes, respectively. The VO reflex cooperates 
with the OK reflex; this stabilizes the visual field 
in human beings.

Parallax: Parallax is an apparent displacement 
or difference in the apparent position of an object 
viewed along 2 different lines of sight. Exagger-
ated convergence, as mentioned below, is termed 
cross-eyed viewing (for example, focusing on the 
nose). As shown in Figure 1a, a double background 
is seen during cross-eyed viewing. When look-
ing into the distance, the eyes diverge until their 
lines of sight are parallel, effectively fixating the 
same point at infinity. In this case, 2 fingers are 
seen (Figure 1b).

Stabilometry: Stabilometry has been used 
for the qualitative and quantitative evaluation of 

equilibrium. A projection of a subject’s center of 
gravity onto a detection stand is measured as the 
average of the center of pressure (COP) of both 
feet. The COP is traced for each time step, and 
the time series of the projections is traced on an 
xy plane. The temporally vicinal points are con-
nected to create a stabilogram. The body sway 
is complemented by the optical righting reflex 
(Figure 2).

Vergence: Vergence is the simultaneous move-
ment of both eyes in opposite directions to obtain 
or maintain single binocular vision. When an 
organism with binocular vision looks at an object, 
the eyes must rotate around a vertical axis so that 
the image is projected at the centre of the retina 
in both eyes. To look at an object that is closer, 
the eyes rotate towards each other (convergence), 
whereas to look at an object that is farther away, 
the eyes rotate away from each other (divergence). 
Vergence is measured by the angle of inclination 
between these 2 lines (Figure 2).

ENDNOTE

1  This work was supported in part by the Hori 
Information Science Promotion Foundation.
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Low-Complexity Stereo 
Matching and Viewpoint 

Interpolation in Embedded 
Consumer Applications

ABSTRACT

Viewpoint interpolation is the process of synthesizing plausible in-between views - so-called virtual camera 
views - from a couple of surrounding fixed camera views. To make viewpoint interpolation possible for 
low/moderate-power consumer applications, a further quality/complexity trade-off study is required to 
conciliate algorithmic quality to architectural performance. In essence, the inter-dependencies between 
the different algorithmic steps in the processing chain are thoroughly analyzed, aiming at an overall 
quality-performance model that pinpoints which algorithmic functionalities can be simplified with minor 
global input-output quality degradation, while maximally reducing their implementation complexity w.r.t. 
arithmetic and line buffer requirements. Compared to state-of-the-art CPU and GPU platforms running 
at several GHz clock speed, our low-power 100 MHz FPGA implementation achieves speedups with one 
to two orders of magnitude, without impeding on the visual quality, reaching over 100 frames per second 
VGA high-quality, 64-disparity search range stereo matching and enabling viewpoint interpolation in 
low-power, embedded applications.
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INTRODUCTION

Figure 1 shows a typical eye-gaze correcting 
video conferencing application where virtual 
camera viewpoint interpolation restores straight 
eye contact to video tele-conference participants 
by interpolating surrounding views of the user/
viewer/participant captured through cameras all 
around the display. This principle can be extended 
towards rendering multiple, adjacent, interpolated 
viewpoints for auto-stereoscopic, shutter-glasses-
free 3D displays, where depth impression is 
obtained by rendering – for each pixel - up to ten 
different images in different viewing cones (see 
Figure 1 (top)), two of which being captured by 
the viewer’s eyes. Ultimately, these dozens of 
views are calculated through viewpoint interpo-
lation from a single pair of cameras, capturing 
stereoscopic content.

An essential DSP kernel in this process is the 
extraction of depth from the stereo cameras. 

Though we humans do not experience the diffi-
culty of perceiving depth from our binocular view 
on the outside world, this depth extraction – also 
called stereo matching – is an incredibly complex 
processing step that only recently has been 
ported to embedded platforms (Woodfill, 2004; 
van der Horst, 2006) at the expense of the  
quality of the extracted depth image (also called 
dense depth map) in targeting near-to-real-time 
performances.

Figure 2 confirms we achieve competitive, 
real-time processing (over 100 frames per second 
at VGA resolution, including frame buffer access 
latency), while preserving high-quality standards, 
as confirmed by the very low Bad Pixel Error Rate 
(BPER) reported in Figure 2(d), following the 
definition of (Scharstein, 2002), i.e. the average 
difference between calculated and ground truth 
disparities over all pixels in the image (cfr. Fig-
ure 2(b)), using the test images of http://vision.
middlebury.edu/stereo/. The black arrows refer 

Figure 1. Interpolation of Left/Right camera views into a rendered virtual viewpoint for eye-gaze correc-
tion in video teleconferencing (bottom), possibly augmented with auto-stereoscopic 3D displays where 
each pixel projects multi-directional viewing cones from which two are captured by the viewer’s eyes (top)
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to the presented FPGA solution, and the grey 
arrows correspond to a comparable solution on 
GPU from one of the co-authors, with one order 
of magnitude higher clock speed, though reaching 
a 15 times lower frame rate (or Million Disparity 
Estimations per second – MDE/s) at a marginally 
higher quality (lower BPER: 7.65% versus 8.2%).

STEREO MATCHING AND 
VIEWPOINT INTERPOLATION

The main principle of viewpoint interpolation, 
e.g. the mid-viewpoint extraction of Figure 3, is to 
shift pixels halfway between their corresponding 
positions in a Left/Right image pair. Since pixels 
attached to foreground objects show a larger dis-
placement (called disparity, inversely proportional 

to depth) from the Left to the Right image, than 
background pixels (see Figure 3(b)), a dense (i.e. 
for each pixel in the image) depth map should first 
be extracted, see Figure 3(b’): dark-grey pixels 
correspond to the background, light-grey pixels to 
foreground objects. This process is called Stereo 
Matching, and shows some resemblance with 
Motion Estimation in video coding. However, in 
contrast to the rectangular windows used in mo-
tion estimation with Sum-of-Absolute-Differences 
(SAD) matching cost, high-quality stereo match-
ing demands irregular shaped windows, so-called 
Adaptive Support Windows, with a more robust 
cost function: the Hamming distance in the Census 
Transform. This is an important difference that 
has major consequences on the hardware design 
choices. A large part of the chapter is devoted to 
these issues.

Figure 2. Frame rate (a) - (frames per second – fps) and quality (a,d) figures of merit (Bad Pixels Error 
Rate – BPER – cfr. definition in (b)) on different platforms (CPU, GPU and proposed FPGA implemen-
tation). The arrows compare implementations on FPGA (black arrow) and GPU (grey arrow) of the 
same/similar reference stereo matching code from two authors of this chapter.
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Additionally, in this stereo matching process, 
some pixels around the object boundaries are 
occluded in one of the two views, and hence it is 
a quite challenging process to faithfully extract 
depth information around object boundaries/
edges, and select in the succeeding viewpoint 
interpolation process the appropriate pixels from 
the left and right images to fill in the holes left 
by the occlusions after pixel shifting to an inter-
mediate viewpoint. The present chapter will not 
dive into the details of viewpoint interpolation; 
instead, we pinpoint the intricate relationship 
between stereo matching and viewpoint interpo-
lation, and how the final target of viewpoint in-
terpolation influences the stereo matching specs. 

For more information about viewpoint interpola-
tion, the reader is referred to (Lu, 2007; Lu, 2009b).

Though incorrect depth and occlusion estima-
tions at the object edges lead to disturbing ghost-
ing artifacts in the viewpoint interpolated image 
(see Figure 3(d)), the depth map does fortunately 
not have to be perfect for viewpoint interpolation 
applications (in contrast to metrological applica-
tions): boundary edge-preservation and the noise 
reduction of depth map specific noise are the main 
attention points, since they directly influence the 
viewpoint interpolation; all other aspects are less 
critical. Consequently, some freedom is left to 
make compromises between the stereo matching 
and associated viewpoint interpolation quality 

Figure 3. Stereo matching (a) extracts disparity (b) and its inverse, i.e. depth (b’), from left and right 
camera views. An interpolated view (halfway) is obtained by shifting all pixels over half their respective 
disparity (c). If not properly handled, occlusions create disturbing ghosting artifacts (d).
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on one hand, and the hardware implementation 
complexity on the other hand. The result is that 
we achieve high-quality stereo matching and 
viewpoint interpolation, while reaching - at mod-
erate implementation cost - one to two orders of 
magnitude frame rate performance increase over 
state-of-the-art solutions, see Figure 2.

ALGORITHM-HARDWARE CO-
DESIGN IN STEREO MATCHING 
AND VIEWPOINT INTERPOLATION

Algorithmic/Visual Quality 
versus Hardware Complexity

This chapter serves the purpose of providing 
some insights on how aforementioned quality-
complexity compromises are made. We here 
follow a tutorial approach giving a high-level 
overview of the design choices, heavily relying 
on visual results shown throughout the figures. 
We will guide the reader throughout three main 
stages of the design process, following a top-down 
pathfinding approach:

• A high-level algorithmic overview of the 
different processing steps in the full end-
to-end pipeline, giving the reader a feeling 
of some important DSP kernels and identi-
fying some important attention points.

• A “hardware-friendly” algorithmic re-
finement step with important algorithmic 
modifications that keep high-quality visual 
results while relaxing rebellious hardware 
constructs. Many images will be worth 
a thousand words to explain the design 
choices. The reader will gradually become 
familiar to concepts like Support Window, 
Line Buffers, arithmetic complexity reduc-
tion, … little by little being confronted to 
more hardware related aspects.

• A low-level hardware view with registers, 
line buffers and arithmetic parallelization 

constructs, clearly supporting our claims 
w.r.t. implementation complexity. We 
show final performance figures, comparing 
frame rate and MDE/s (Million Disparity 
Estimations per second), accompanied by 
RTL complexity figures (number of ALUs, 
RAM blocks, …).

Census Transform and 
Adaptive Support Regions

The target application being a symbiosis of Figure 
1’s eye gaze correction and auto-stereoscopic 
3D display rendering for mobile video chatting, 
a Left/Right Image pair taken from webcams at 
each side of the mobile display (instead of one 
single top camera – see Figure 1(d)) should be DSP 
processed in order to create up to ten intermediate 
viewpoints of the user’s picture, each rendered 
in a different direction through a lenticular sheet 
covering the display, see Figure 1(c). Even with 
moderate resolution images, high image data 
processing rates will be required to sustain such 
real-time, multiview rendering.

Figure 2 shows competing PIV CPUs, 
GeForce 8800 GPUs and recent FPGA/ASIC 
implementations, where the latter are the main 
candidates for low-power, mobile applications. 
Though providing acceptable frame rates and/
or image sizes, they unfortunately suffer from 
a high Bad Pixel Error Rate (BPER- see Figure 
2(b)) defined by Middlebury’s Stereoscopy Best 
Practice Reference (http://vision.middlebury.edu/
stereo/), exhibiting large pixel value differences 
between the calculated, interpolated viewpoint 
and its ground truth from Middlebury’s test set 
(Scharstein, 2002). Additionally, for this prior 
art implementations, it is unclear how the quality 
degrades with radiometric variations in the Left/
Right image pair, i.e. when the average luminance 
in left and right images are different.
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Census Transform

In terms of robustness to radiometric differences, 
(Hirschmuller, 2007) evaluated different cost func-
tions, e.g. rank, census, and etc. Census Transform 
is often preferred in hardware implementations 
(Chang, 2010), compared to other wide-spread 
cost functions, like Sum-of-Absolute-Differences 
(SAD) and Normalized Cross-Correlation (NCC): 
SAD is very sensitive to radiometric variations, 
while NCC (very robust to radiometric varia-
tions (Zhang, 2009c)) is too costly for hardware 
implementation due to its normalizing factor, i.e. 
the sqrt() function in its denominator.

The simplicity of the Census Transform with 
its local weights window and Hamming distance 
calculations (see Figure 4(a)) does not impede on 
its robustness to the stereo matching process in 
practical conditions where left and right image 
might exhibit very different luminance levels from 
mismatched cameras, as shown in Figure 5(a): 
with SAD an unrecognizable depth map with a 
disastrous 96% BPER is obtained for the Left1/
Right1 image pair with mismatched luminance, 
while with the Census Transform a very reason-
able depth map is obtained with a lower than 10% 
BPER, which might be regarded as a very good 
threshold of fidelity. We will come back on the 
Census Transform and its quality implications 
when touching the subject of viewpoint interpola-
tion later in this chapter.

Adaptive Support Regions

For those familiar with video coding, we might 
say that stereo matching is very similar to motion 
estimation in video coding: a square region of 
pixels in a frame is compared to a large, rectangu-
lar region in another frame (in video coding this 
is another time frame; in stereo matching this is 
another camera) - called a search region - in a slid-
ing approach. Figure 4(b) illustrates the concept: 
a square region of pixels around pixel x in the left 
frame is compared to the corresponding square 

region at position x-d in the right frame, with d 
being the hypothesis disparity (motion vector in 
video coding terminology). All values of d from 
0 to dmax (the disparity range) are traversed and 
the best matching position is selected through a 
Winner-Takes-All (WTA) approach.

The matching cost in comparing two square 
regions of pixels (one at position x in the left 
image, the other at position x-d in the right im-
age) is often taken (similar to video coding) as 
the Sum-of-Absolute-Difference (SAD) over 
all pixels taken two by two over the two square 
regions. However, in contrast to video coding 
where the average luminance over successive 
frames remains fairly constant since the frames are 
captured by the same, unique camera with fixed 
capturing parameters, the frames to match in stereo 
matching come from two different cameras and 
hence might exhibit very different luminances, 
incuring a severe matching cost bias to which the 
stereo matching is very sensitive. Hence, other ap-
proaches, already mentioned earlier – e.g. Normal-
ized Cross Correlation, Census Transform - have 
been proposed, from which we have selected the 
latter, as explained in previous section.

Moreover, stereo matching differs substan-
tially from motion estimation in video coding 
in the sense that stereo matching should deliver 
physically correct disparity vectors to create 
proper viewpoint interpolation results, while in 
video coding the motion vectors should be good 
enough as to minimize the bit coding entropy 
energy (i.e. the randomness of the sequence of bits 
representing the motion vectors), and sometimes 
this criterion does not coincide with the physical 
motion vectors fidelity. In practice, this deviation 
from physical reality occurs when square regions 
of pixels intersect image regions from two differ-
ent objects in the scene. Therefore, another key 
aspect to obtain accurate depth maps in the stereo 
matching, is adaptive cost aggregation. Tombari 
et al. (Tombari, 2008) evaluated different meth-
ods of local cost aggregation. Among them, the 
adaptive weight method (Yoon, 2006) reaches top 
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matching accuracy. It assigns an adaptive weight 
to each support pixel based on its spatial distance 
and color difference to the anchor pixel. Though 
producing accurate results, the adaptive weight 
method is computationally intensive and consumes 
a lot of memory, due to its pixel-wise adaptive 
weight. Another concept is found in Adaptive 
Support Regions (Zhang, 2009a; Zhang, 2009b; 
Zhang, 2009c; Zhang, 2009d; Lu, 2009a). These 

are irregularly-shaped regions (in contrast to the 
square regions with motion estimation in video 
coding) where all pixels surrounding pixel x have 
a similar pixel value, and hence are believed to 
be part of the same object in the image. Support 
Regions may hence be regarded as edge-preserving 
micro-segments in the image, similar to (Zitnick, 
2004), with the slight nuance that Adaptive Sup-
port Regions partially overlap each other. The 

Figure 4. The (mini-) Census Transform (a) compares the (example) pixel values with the window 
center pixel value to create Hamming Distance Vectors for each image (Left and Right Census Vector). 
Disparity estimation for fixed regions (b) and Adaptive Support Regions (c) for all candidate disparity 
values (d=0 to d=dmax). Left and Right image might have different support region shapes, and hence 
a Correlation Region (d) is extracted to correlate the results from the Left-to-Right and Right-to-Left 
disparity estimation.
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stereo matching (or motion estimation in video 
coding) of Figure 4(b) should then be adapted to 
the one shown in Figure 4(c), with the additional 
constraint that:

• The number of pixels may vary from one 
region to the other, which influences the 
matching cost criterion (and hence this 
pixel count per region has to be tracked), 
and

• Two differently shaped pixel regions to 
be compared should be restricted to their 
common Correlation Region, as shown in 

Figure 4(d). How these Adaptive Support 
Regions (ASR) are determined will be ex-
plained in a while. At this point in time, 
let’s rather confirm the superiority of ASR 
over Rectangular (Rect.) regions, as shown 
in Figure 5(b): ASR with SAD is twice bet-
ter in BPER than Rect. with SAD, but re-
mains worse than ASR combined with the 
Census Transform, which exhibits a BPER 
of 7.2%, well below 10% and is hence to 
be considered as a high-quality depth map 
(Figure 5(b)-Bottom-Right). Additionally, 
as explained earlier, the Census Transform 

Figure 5. (a) Depth map and its quality (BPER) for Adaptive Support Region (ASR) with Census Trans-
form, compared to SAD with different luminance values for Left and Right images (Left1, Right1) (b) Depth 
map quality for different settings in the disparity estimation under matched luminance levels between 
Left and Right image (Left2, Right2): Rect = Rectangular window, SAD = Sum of Absolute Differences, 
ASR = Adaptive Support Region.
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is fairly insensitive to luminance varia-
tions (see Figure 5(a)-Bottom) and 
hence Census Transform combined with 
Adaptive Support Regions is the selected 
approach for performing stereo matching 
at high quality.

Line Buffers in Census Transform 
and Adaptive Support Regions

To reach a desirable quality-complexity trade-off 
it is important to have a closer look at the impact 
of the so far explained Census Transform and 
Adaptive Support Regions on the hardware imple-
mentation. In contrast to full-featured computer 
systems disposing of a wealth of RAM memory, 
embedded systems and in particular FPGAs and 
ASICs have only scarce memory resources, and 
every memory register and RAM block should be 
well-used in order to avoid slow off-chip memory 
accesses, which would impede on the final system 
performances. Consequently, unlike in classical 
image processing software engineering where full 
frames are kept in memory, our design reads the 
images in progressive scanline order and stores 
only a limited number of successive lines in a 
so-called Line Buffer, as shown in Figure 6. The 
most recently read pixels (e.g. values 0, 3 and 1 in 
the bottom part of Window W in Figure 6(a)) are 
pushed into the lowest Line Buffer SRAM L2 of 
Figure 6(b) and remain available for processing 
unless they are pushed out of the upper Line Buffer 
SRAM L1, as exemplified by the values 1, 3 and 4 
in the upper part of window W in Figure 6(a). All 
values of the window W can then simultaneously 
be accessed for a (in this example) 3x3 window 
processing. When window W moves one pixel 
to the right, the corresponding underlying 3x3 
pixels will be available in the WinReg registers 
of Figure 6(b). Obviously, the height in number 
of lines of window W determines the number of 
image lines to buffer: height-1 lines should be 
stored (see Figure 6(a): 2 lines L1 and L2, for a 
3x3 window).

In FPGA and ASIC design, this is an important 
metric to be taken into account. In particular, the 
Census Transform of Figure 4(a) with a window 
size of 5x5 pixels, and the simplified Adaptive 
Support Region construction with limited vertical 
span (see Figure 7(c) - center), result in a limited 
Line Buffer cost.

Figure 7 shows the basic idea behind the con-
struction of the Adaptive Support Regions: a 
two-by-two-armed cross (two horizontal arms, 
two vertical arms) is constructed around pixel x 
by successively adding pixels to the region as 
long as their luminance difference with x is below 
a certain threshold – the Luminance Difference 
Threshold (LDT) - see Figure 7(a). For each 
vertical position Vd below/above (and including) 
x (see Figure 7(b)) a horizontal arm is construct-
ed following the same principles to the left hl and 
the right hr. A detailed description of the involved 
calculations can be found in (Zhang, 2009d).

The stereo matching quality variations for 
different horizontal and vertical arm lengths of 
the cross spanned over each pixel x is shown in 
Figure 7(c). We clearly see that an acceptable 
BPER lower than 10% is reached for the vertical 
arm lengths choice V=5 of Figure 7(c)-center. 
Making the vertical arm length adaptive below 
this number in a kind of Adaptive Vertical Sup-
port Region approach (see Figure 7(c) “V=adapt”) 
does not modify the quality of the outcome, and 
does not provide any hardware implementation 
advantages.

The horizontal arm length has only a minor 
impact on memory requirements, but it will impact 
the involved arithmetic logic and the number of 
registers and parallel processing paths. In view of 
the quality results shown in Figure 7(c), a maxi-
mum horizontal arm length of 15 is selected. Note 
that the horizontal arm lengths remain adaptive 
(below a length of 15), otherwise there would be 
no Adaptive Support Region creation possible, 
since the vertical arm lengths are now fixed.
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Run-Time Parameters for 
Viewpoint Interpolation

Thus far, we have made some algorithmic choices 
- the Census Transform and Adaptive Support 
Regions - and fixed their hardware-sensitive pa-
rameters in order to limit the Line Buffer memory 
requirements to a limited number of image lines 
to store. We also have verified their robustness 
against parametric variations, e.g. the luminance 
variation robustness, reported in Figure 5(a).

One algorithmic parameter (hardly influencing 
the hardware) remains to be studied: the Lumi-
nance Difference Threshold (LTD) of Figure 7, 
used in the two-by-two armed, cross-based Adap-
tive Support Region construction: the larger the 
allowed LTD, the larger the support regions will be, 
but also the higher the risk that edge preservation 
is endangered. Fortunately, according to Figure 8 
showing the Normalized Error (i.e. the Bad Pixel 
Error Rate scaled between 0 and 1 for the most 
common test images of the Middlebury data set) 

Figure 6. 2D local window processing based on extracting a square region from a Scan-Line Buffered 
image through Line Buffers L1 and L2 (a) implemented in SRAM-blocks on FPGA (b)



317

Low-Complexity Stereo Matching and Viewpoint Interpolation in Embedded Consumer Applications

with sweeping LDT values, for image regions 
ranging from Non-Occluded regions (nonocc) to 
Depth Discontinuity (disc) regions (Scharstein, 
2002), a comfortable LDT setting valley V exists 
in which the depth image fidelity is high (i.e. low 
Normalized Error). The Venus test image (dashed 
curves in Figure 8) from the Middlebury data 
set exhibits a more peculiar Normalized Error 
behavior (with scaling parameters following the 
average of the common image data set), extend-
ing the best LDT valley V to V’, yet keeping the 

LDT parameter range acceptably small in most 
practical applications.

Hence, the final quality of the stereo matching 
and viewpoint interpolation – though being de-
pendent on the LDT parameter - remains high in 
this valley V setting range, as confirmed by the 
depth maps (top) and viewpoint interpolation 
(bottom) results of Figure 9 for the Teddy test 
sequence; visual results for other Middlebury test 
sequences can be found in (Zhang, 2011). For 
extreme LDT values far away from the valley V 
in Figure 8, the stereo matching and viewpoint 

Figure 7. Cross-based (a) Adaptive Support Region extraction (b) and the depth map results (c) for dif-
ferent values of the Horizontal and Vertical arm lengths
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interpolation results might exceptionally deterio-
rate as in Figure 10, with the jagged roof of 
Figure10-right only appearing for LDT values in 
the right-most saturation region of Figure 8.

We may thus conclude that our stereo match-
ing and viewpoint interpolation is robust against 
parametric variations, while at the same time be-
ing hardware-friendly w.r.t. memory requirements.

Figure 8. Depth map quality (Normalized Error, scaling BPER between 0 and 1 for the most common 
images) over different regions of the image (Non-occluded, All, Discontinuous, as defined by the Middle-
bury benchmark) as a function of the Luminance Difference Threshold (LDT) parameter of Figure 7 
(a,b), with best values in Valley V for the most common images, and V’ when including exceptional cases.
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PROCESSING PIPELINE 
HARDWARE IMPLEMENTATION

Having introduced the essential building blocks of 
the stereo matching pipeline, we now proceed in 
providing an overview of the remaining process-
ing steps related to the refinement of intermediate 
depth maps. Figure 11 inventories the three main 
processing steps as embedded on our Stratix-III 
EP3SL150 FPGA implementation:

A pre-processing step with the Census Trans-
form and the Adaptive Support Region extraction. 
Hamming distances between input images L and 

R are expressed in Census Vectors (left L to right 
R, and right R to left L), effectively represented 
as two output images a and b that will be further 
processed for creating intermediate, moderate 
quality depth maps. The actual Stereo Matching 
where the Census Vectors Hamming distances are 
aggregated in parallel for each hypothetical dis-
parity i.e. the matching from the Left to the Right 
image, is calculated over all possible disparities 
concurrently with the best match selected by a 
Winner-Takes-All step, in accordance to Figure 
4(c) with the (equivalent to motion estimation in 
video coding) search window in the right image. 

Figure 9. Depth map (top) and Viewpoint Interpolation (bottom) quality for two settings of the Luminance 
Difference Threshold (LDT) parameter inside region V (LDT=6 to 25) of Figure 8
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A similar procedure from Right to Left is calcu-
lated by reusing the same but time-shifted ag-
gregation results, effectively creating two inter-
mediate depth maps A and B

The post-processing combines these two depth 
maps A and B through a consistency check into a 
combined depth map C, which is further denoised 
to create the unique final depth map D.

Figure 11 also shows some FPGA specific I/O 
hardware fabrics: data is processed through Sourc-
es and Sinks for data I/O and Slaves (registers) 
for I/O control. Avalon Source, Avalon Sink and 
Avalon Slave in Figure 11 are industry-standard 

on-chip interconnection interfaces defined by 
Altera (Altera, 2009). The links to external DDR2 
memory are used for providing video source and 
disparity map storage, and all stereo matching 
processing remains on-chip, with image data 
entering in scanline order. The FPGA has suffi-
cient on-chip RAM to store a limited number of 
successive scanlines as to allow processing over 
small 2D windows, typically 5 up to a dozens 
of scanlines for SVGA resolution. Key to the 
best processing throughput is to fully pipeline 
all processing steps, i.e. except for the pipeline 
latency, a new income pixel gets its disparity at 

Figure 10. Depth map (top) and Viewpoint Interpolation (bottom) quality for two settings of the Lumi-
nance Difference Threshold (LDT) parameter outside region V (LDT=6 to 25) of Figure 8
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the end of the pipeline, and valid disparities come 
successively in scanline order, synchronized with 
the input pixel rate.

Pre-Processor

Besides the Census Transform and Adaptive Sup-
port Region calculation, minor other processing is 
performed, e.g. median filtering for denoising (also 
present in other steps of the processing pipeline), 
which we will not further elaborate on. Several 
transformed images (e.g. a and b of Figure 11) 

that contain census vectors and support region 
information are generated for the original stereo 
image pair. Important to know is that the output 
of the preprocessor does not contain disparity hy-
pothesis, and involved processing is performed on 
the left and right image separately. The non-zero 
disparity hypothesis is left to the stereo matcher, 
which uses the census vectors and adaptive support 
regions calculated in the pre-processor.

Figure 11. Pre-processor, Stereo Matcher and Post-processor FPGA flowgraph, reading Left/Right im-
ages (L, R) from DDR2 SDRAM, creating Census Transformed images (a, b), Left-to-Right and Right-
to-Left depth map estimations (A,B), combined to a single depth map (C), denoised to (D) and providing 
additional occlusion information (O) for viewpoint interpolation.
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Stereo Matcher

Following the processing pattern explained in 
Figure 4(c) and (d), a Left-to-Right and Right-to-
Left depth map estimation is performed, creating 
the images A and B of Figure 11. The Adaptive 
Support Regions of the Left and Right (Census 
Transformed) images are matched according to 
Figure 4(c-d) by decomposing the regions in suc-
cessive lines and calculating over each line the 
matching or Aggregation Cost for all possible 
hypothesis disparities d (d=0→3 in Figure 12(c)). 
The decomposition in lines is taken care by Line 
Buffers in a similar way as explained in Figure 6, 
for each Cost Aggregation process, e.g. the Left-
to-Right aggregation in Figure 12(a). Interestingly, 
the information for the Right-to-Left aggregation 
of Figure 12(b) is available at almost the same time 
instance; there are nevertheless slight time shifts, 

as suggested by Figure 12(c), compensated for by 
additional line-up buffers so that Left-to-Right 
and Right-to-Left results can be appropriately 
combined in the final decision taking.

Figure 13 shows the parallelized cost aggrega-
tion process for concurrently computing four 
disparity hypotheses (d=0→3) in more details. In 
essence, the process involves the Census Trans-
formed images a and b from Figure 11 containing 
– as indicated in Figure 13 - Hamming distances 
(HammingDist) between Left and Right Census 
Transformed image frames. For each disparity 
value, a raw matching cost is calculated (a kind 
of difference between left and right pixels) for 
each pixel involved in the 2D correlation region 
of Figure 12(a). All raw matching costs in a 2D 
correlation region are also aggregated in parallel 
and a Winner-Takes-All (WTA) best match pro-
vides the answer to which disparity hypothesis is 

Figure 12. Left-to-Right Aggregation Cost over Adaptive Support Regions (a) is decomposed over suc-
cessive lines (b) with all disparity estimations in parallel (c)
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the one to be chosen as the final disparity for the 
given pixel (x,y). This process is performed in 
scanline order with the appropriate line buffers 
pixel by pixel, such that for each new pixel that 
is read into the system, an output disparity value 
is provided with a minimal delay equal to the 
pipeline latency. Disparity values are hence also 
output in scanline order at the rate the images are 
input into the system.

For simple illustration, Figure 13 only shows 
4 threads working in parallel, each associated with 
a disparity hypothesis. In principle, the proposed 
parallel architecture supports any number of 
parallel threads, depending on the maximum 
desired disparity. Our EP3SL150 FPGA imple-
mentation supports up to 64 parallel threads, which 
corresponds to evaluating 64 disparity hypotheses 

concurrently. In this case, the raw cost computing 
and cost aggregation modules are simply dupli-
cated, but the WTA becomes a tree-like structure.

Figure 14 shows how the arithmetic complex-
ity in the cost aggregation can be further reduced. 
First, instead of performing a pixel-by-pixel ad-
dition process over the 2D region around pixel p 
(Figure 14(a)), the 2D region is decomposed in 
a separable way into several horizontal stripes 
in which the summations are done according to 
Figure 14(b), followed by a vertical summation as 
shown in Figure 14(a)-(b-c). The horizontal sum-
mation is done with the help of integral comput-
ing, where the sum of all values from a to b in a 
horizontal stripe of Figure 14(b) can be calculated 
as the difference between the sum of values from 
0 to b and the sum of values from 0 to a. These 

Figure 13. Data path for calculating the final aggregation cost (best d), starting from the Left/right data 
of Figure 12(c)
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sums are pre-calculated, before actually starting 
the calculation process of Figure 14(b)-(c). More 
details can be found in (Zhang, 2009d).

A second trick to reduce the complexity consists 
in avoiding divisions, see Figure 14(c). Actually, 
since the support regions have an irregular shape 
(no square regions) which adapts to the region 
around the pixel under test (cfr. Adaptive Support 
Regions section), the number of involved pixels 
in the aggregation varies, and hence the calcula-
tion of the average aggregation cost involves in 
principle a division by the (varying) number of 
pixels. Fortunately, as observed in Figure 14(c), 
the mathematical relation for deciding between 
two candidate disparities d0 and d1 (with the av-
eraging denominator PixCount) can be easily 
transformed in a way where the divisions are 
replaced by multiplications, hence avoiding com-
plex arithmetic processes, difficult (or costly) to 
implement in hardware.

Finally, all DSP calculations of the proposed 
solution are floating-point operation free, which is 

a distinctive advantage over e.g. GPU implementa-
tions using floating-point operations by default.

Post-Processor

Starting from the output images of the stereo 
matcher (images a and b of Figure 15), a Left-Right 
(L-R) consistency check is performed validating 
the equality of the Left-to-Right and Right-to-
Left disparities, and in case this is not satisfied, 
the corresponding disparity value is replaced by 
its closest valid disparity, using a 2D histogram 
voting scheme.

We so obtain the unique (combined Left-to-
Right and Right-to-Left) depth map image c of 
Figure 15, which is already an acceptable depth 
map (less than 10% BPER), but still contains 
substantial amounts of horizontal stripes noise, 
which clearly reveals the (hardware-friendly) 
scanline processing nature of the algorithm. In 
order to achieve a higher quality depth map, a 2D 
histogram-based majority voting over the Adap-
tive Support Region of the pixel under test is 

Figure 14. Simplification of the Aggregation Cost calculation by (a) separable (2 x 1D) decomposition, 
(b) Integral Sum computations, and (c) division-free decision taking
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performed, replacing its disparity by the most 
often occurring disparity vector present in the 
support region of the pixel – see Figure 16 (a-b-c). 
An additional improvement can be obtained with 
median filtering, creating the image d2 of Figure 
15 from image d1. However, in view of processing 
simplification, we have tested the idea of perform-
ing majority voting first on the horizontal lines 
in the support region, followed by an additional 
majority voting along the vertical line passing 
through the pixel under test – see Figure 16 (d-e-
f) – providing an even better quality depth map, 
as illustrated in Figure 15(d). Since the quality is 
improved and the processing follows a separable 
pattern (horizontal versus vertical processing) 

similar to the one followed in the construction of 
the support region (cfr. the two-by-two armed, 
the cross-based pattern in Figure 7(a)), we have 
opted for this approach in reaching a better 
quality-complexity trade-off.

As a final remark, also observe that the origi-
nal depth maps A and B from Figure 11 contain 
directional information (Left-to-Right vs. Right-
to-Left), hence occlusion information is hidden 
in the differences between these depth maps: a 
pixel not visible in one of the views will create a 
different effect when comparing the Left/Right 
images in one or the other order. This is a wonder-
ful opportunity to catch information about object 
edges in the image, and this information is  

Figure 15. The Left-Right (L-R) consistency check (from (a,b) to (c)) and the simplified post-processing 
2x 1D disparity voting with median filtering (d), compared to the full 2D disparity voting (d1 and d2)
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transmitted (after all post-processing steps) to  
the viewpoint interpolation module: pixels ren-
dered in the viewpoint interpolated view, but 
occluded in one of the Left/Right image pair, 
should be extracted from the appropriate image, 
as suggested by the different colors in Figure 
11(O). The reader is referred to (Lu, 2009b)  
for more information w.r.t. this occlusion holes 
filling process.

FPGA Implementation and 
Performance Figures

The proposed hardware architecture is scalable for 
implementing any number of parallel computing 
threads, each responsible for the computations 
involved in a specific disparity hypothesis d in 
the range (0 … dmax). Over the processing pipe-
line shown in Figure 11, it is mainly the Stereo 
Matcher that can take benefit of the parallelization 
determined by the maximum allowed disparity 

Figure 16. 2D histogram disparity voting (b) on 2D Adaptive Support Region (a) into the pixel under 
test (c). Its separable counterpart (d,e) does not necessarily provide the same histogram (f) and output 
results, but as shown in Figure 15, the final results are very competitive (even better) than with the direct 
2D voting scheme.
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dmax; the Pre-Processor and Post-Processor are 
only slightly affected by dmax.

The actual parallelization is constrained by the 
available hardware resources on the FPGA. The 
EP3SL150 FPGA from Altera’s Stratix III family 
was selected as the implementation and evaluation 
platform, on which we have successfully imple-
mented 16, 32 and 64 parallel disparity computing 
threads, targeting different application scenarios.

Figure 17 gives an overview of the number of 
LUTs, SRAMs, etc. used by different processing 
kernels on the Stratix-III EP3SL150 FPGA, as well 
as the scalability of the Stereo-Matcher in different 
settings (dmax = 16, 32, 64) . The limiting factors 
in the current implementation are the required 
registers and hardware DSP blocks available on 
the FPGA. Balancing optimizations are possible 
by replacing some dedicated hardware DSPs with 
LUTs, and reducing the usage of pipeline registers.

To evaluate the performance of the complete 
stereo matching pipeline, additional logic com-
ponents were implemented, creating a complete 
programmable system on FPGA, including the 
Nios-II soft processor, DMAs, DDR2-SDRAM 
controller, timers and JTAG UART communica-
tion cores, etc. FPGA resources utilized by the 
complete System-on-Chip (SoC) with 64 parallel 
threads are shown in Figure 17. The Nios-II CPU 
and stereo matching cores are all clocked at 
100MHz.

Figure 18 shows the final FPGA performances 
in frames per second for four different image sizes 
(388x288 to 1024x768). The frame rates have been 
measured in two different settings:

• On-FPGA Frame rate where the data ac-
cess to external DDR2 memory is disre-
garded, and pure computing performance 

Figure 17. Hardware utilization of the FPGA resources on an Altera Stratix-III EP3SL150



328

Low-Complexity Stereo Matching and Viewpoint Interpolation in Embedded Consumer Applications

and associated frame rate is given by the 
relation 100MHz / (total pipeline cycles - 
pipeline latency cycles), corresponding to 
the first three regions of Figure 18. Frame 
rates up to 125 fps, resp. 900 fps for 
1024x768 and 388x288 images are 
obtained.

• Off-FPGA Frame rate where the data ac-
cess to external DDR2 memory is included 
(synchronization with on-board Nios-II 
processor), reducing the performances 
with by factor 2.5 to 3, but nevertheless still 
reaching 47 fps, resp. 296 fps on 1024x768 
and 388x288 video streams.

The average power consumption over the full 
Stratix-III evaluation board was measured to be 

around 5-6W (including all peripheral drivers 
that could not be disabled/disconnected from the 
main FPGA board), which is in accordance with 
Altera’s Quartus II tool power estimation, report-
ing – for the FPGA core only - a total thermal 
power dissipation of 4.8W (3.3W dynamic power, 
0.7W static power, 0.8W I/O power). Based on 
(Kuon, 2007) providing power translation rules 
for logic, DSP and memory when migrating from 
FPGA to ASIC design, the power figures for an 
equivalent 90 nm ASIC design are estimated to be 
in the range of 370 mW to 510 mW. These power 
figures are comparable to state-of-the-art 90 nm 
stereo matching ASIC solutions, reporting e.g. 
445 mW in (Liang, 2009) and 760mW to 1.2W 
in (Islam, 2008).

Figure 18. Performance figures (kCycles and Frame rate) of the pipeline of Figure 11 on Stratix-III 
EP3SL150 FPGA
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CONCLUSION

We have presented an algorithm-architecture co-
design of viewpoint interpolation where a plausible 
in-between view is synthesized from the left/right 
image pairs of a stereo camera rig. A lot of atten-
tion has been devoted in fine-tuning the algorithms 
such that quality of the rendered images is con-
ciliated with scarcity of the hardware resources, 
in combining floating-point operation-free DSP 
processing with limited scanline buffer memory. 
The stereo matching has been implemented and 
verified on an Altera EP3SL150 FPGA, process-
ing over 100 fps stereo VGA video with DDR2 
SDRAM frame access over DMA. With more 
dedicated video frame access protocols (e.g. direct 
camera data capture) overcoming some I/O syn-
chronization issues, a performance increase with a 
factor 2.5 to 3 is expected. Compared to prior-art 
CPU and GPU implementations, a performance 
increase with one to two orders of magnitude is 
obtained, without the need of high clock speeds 
(100 MHz FPGA compared to a couple of GHz 
for CPU/GPU) and hence enabling low-power,  
embedded applications.
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KEY TERMS AND DEFINITIONS

ASIC: Application Specific Integrated Circuit.
ASR: Adaptive Support Regions.
BPER: Bad Pixel Error Rate.
Census Transform: Local Transform mapping 

pixel values within a square region to a bit string.
DDR: Double Data Rate – SDRAM with data 

transfer on rising and falling edges of the clock.
DDR2: next generation DDR with speed 

improvements thanks to technology tricks on the 
chip die itself.

DMA: Direct Memory Access.
DSP: Digital Signal Processing.
FPGA: Field Programmable Gate Array.
HD: High Definition.
LDT: Luminance Difference Threshold.
MDE/s: Million Disparity Estimations per 

second.
NCC: Normalized Cross-Correlation.
SAD: Sum of Absolute Differences.
SDRAM: Dynamic Random Access Memory.
SoC: System-on-Chip.
SRAM: Static Random Access Memory.
SVGA: Super Video Graphics Adapter, 

800x600 pixels.
VGA: Video Graphics Adapter, 640x480 

pixels.
WTA: Winner-Takes-All.
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INTRODUCTION

Watermarking is the imperceptible hiding of infor-
mation about a certain digital work (image, sound, 
text, etc.) within that work itself. Watermarking 
is notoriously used to increase data security (by 
copyrighting, fingerprinting, authentication). 
Besides the increase of security, watermarking 
is also used to provide a transmission channel 

associated with some given data. The watermark 
becomes annotation data whose insertion in a 
host is meant to increase the value of the host. 
The range of possible applications of annotation 
watermarking is large. For instance, information 
related to the content of images can be embedded 
to facilitate content-based indexing, retrieval and 
manipulation of digital images and image regions. 
As for any other kind of images, copyrighting, 
fingerprinting, authentication and annotation are 
of interest for stereo images, too.

Dinu Coltuc
Valahia University Targoviste, Romania

The Use of Watermarking 
in Stereo Imaging

ABSTRACT

The manipulation and processing of stereo image sequences demand higher costs in memory storage, 
transmission bandwidth, and computational complexity than of monoscopic images. This chapter inves-
tigates scenarios for cost reduction by using reversible watermarking. The basic principle is to embed 
some data by reversible watermarking instead of either computing or storing/transmitting it. Storage 
and/or bandwidth are reduced by embedding into one frame of a stereo pair the information needed 
to recover the other frame. Computational complexity is reduced by embedding the disparity map. 
The cost of extracting the embedded disparity map is considerably lower than the one of computing it. 
Experimental results are provided.
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This chapter investigates the use of reversible 
watermarking in certain annotation applications 
meant to reduce costs associated to stereo image 
manipulation or processing. These costs refer to 
storage, bandwidth or computational effort. We 
remind that stereo images are sequences of two or 
more images of the same scene taken from slightly 
different viewpoints. Obviously, compared with 
monochrome images, stereo images demand 
more space for storing and a larger bandwidth 
for transmitting. Furthermore, three-dimensional 
(3D) information is usually recovered from two-
dimensional (2D) images by matching features 
in scenes observed from different viewpoints. 
The cost of the 3D information, besides storage 
or transmission, demands computational effort 
as well.

The basic principle of our approach is to em-
bed data, by reversible watermarking, into stereo 
images. First of all, a scheme of high capacity 
reversible watermarking is introduced. The use of 
reversible watermarking in stereo is motivated by 
two aspects: reversibility and capacity. The revers-
ibility allows, after the extraction of the embedded 
data, the recovery of the original image without 
any distortion. Nowadays reversible watermarking 
algorithms provide enough embedding capacity 
to deal with real applications. Thus, for natural 
graylevel images, the embedding bit-rate is of 
2-3 bits per pixel.

The reversible watermarking is fragile. This 
means that the embedded data is lost even in case 
of simple image processing tasks as histogram 
modification, contrast enhancement, filtering, 
image resizing, lossy compression, etc. On the 
other side, the embedded information adds some 
more value to the data and the user has no interest 
to destroy it. Therefore, if necessary, such image 
processing tasks should be performed only after 
the embedded data has been extracted.

As an immediate application of reversible 
watermarking in stereo imaging, the embedding of 
the disparity map into stereo images is discussed. 
Thus, ground truth disparity maps are embedded 
directly into stereo images, instead of being stored 

and transmitted as additional files. Furthermore, 
the disparity map is crucial for computing 3D 
information. Instead of either computing or stor-
ing/transmitting the disparity map each time the 
3D information is needed, it is simply extracted 
from the embedded watermark. The mathematical 
complexity of reversible watermark embedding 
and extraction is considerably lower than the 
one of computing the disparity map. The quality 
of the embedded images is good. Furthermore, 
the reversible watermarking can be reverted in 
order to exactly recover the stereo images. The 
embedding of the disparity map by reversible 
watermarking is discussed also in Khan et al, 
2009, Ali & Khan, 2009.

The main contribution of the chapter is storage/
bandwidth reduction for stereo images. For a pair 
of stereo image frames, the basic principle is to 
embed into one frame the information needed to 
recover the other frame. Thus, only one image is 
stored or transmitted and its content is directly 
accessible. The bandwidth and the storage size 
are halved, i.e., they are reduced to the ones of 
monoscopic images. When the stereo context is 
needed, the embedded data is extracted and the 
second image of the pair is recovered. The revers-
ible watermarking allows the exact recovery of 
one image frame. The quality of the other frame 
depends on two features: the size of the informa-
tion needed to be embedded and the distortion 
introduced by the watermarking.

The chapter ends with a general discussion 
on the use of watermarking in stereo imaging. 
The strengths and weaknesses of reversible wa-
termarking for complexity or storage/bandwidth 
reduction are presented. Further extensions are 
investigated, as well.

BACKGROUND

The major issue of this chapter is storage/band-
width reduction for stereo image pairs. This prob-
lem can be directly approached by compression. 
There is, indeed, much research on efficient stereo 
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image compression. The direct compression of 
each image frame does not exploit the high cor-
relation between stereo frames. Most of the work 
is focused on disparity estimation and disparity 
compensation (DE/DC) schemes. The basic DE/
DC principle is to use one of the images in the 
stereo pair as a reference and to estimate the other 
image by using disparity (Dinstein et al., 1989). 
The reference, the disparity and the residual error 
are further encoded. Besides DE/EC schemes, 
other schemes have been considered as well.

While size and bandwidth are considerably 
reduced, the compression-based methods have 
the drawback that, once compressed, the content 
of the stereo pair is not visible anymore. Hence, 
for any simple task (as the mere visualization) 
stereo images should be first decompressed. In 
order to eliminate this drawback, we proposed 
a watermarking based approach, (Coltuc, 2007), 
where the bandwidth and the size are halved, i.e., 
they are reduced to the ones of monoscopic images. 
The basic idea is to embed into one image, by 
reversible watermarking, the information needed 
to recover the other one. Thus, only one image 
is stored or transmitted and its content is directly 
accessible. When the stereo context is needed, the 
embedded data is extracted and the second image 
of the pair is recovered. By storing/transmitting 
only one image frame, one has stereo imagining 
at the same expense in memory or bandwidth as 
for monoscopic imaging.

As stated in the introduction, the range of 
annotation applications is large. The embedding 
of stereo by watermarking is such an annotation 
application. A rather similar application is the 
embedding of the chrominance components into 
image luminance. Only luminance is transmit-
ted and the graylevel image is directly available 
(Campisi et al., 2002). Obviously, the chrominance 
information should be extracted before color dis-
playing. Another application is the transmission of 
the audio data hidden within the video sequence 
(Swanson et al., 1997). Such applications where 
data hiding is used to improve coding efficiency 

are known as compressive data hiding (Campisi 
et al., 2002). Let us consider two more examples 
(Cox et al., 2008). Video and audio channels of 
a television signal are processed separately and 
synchronization may be lost. A typical example 
is when the motion of the lips is either ahead or 
behind the speech (lip-sync). Tektronix’s digital 
watermark encoder for synchronizing audio and 
video signals embeds a highly compressed version 
of the audio signal into the video signal. When 
all signal processing is completed, the audio 
signal is compared to the embedded one. Thus, 
any time delay is detected and removed prior to 
broadcasting. Similarly, a solution to synchronize 
the display of the lyrics with the music for some 
MP3 players is to embed the lyrics directly into 
the audio signal by using watermarking.

For compressive data hiding, the stringent 
requirement is watermarking capacity. Robustness 
(usually demanded in watermarking) is not an 
issue. One can suppose that nobody is interested 
to destroy, remove or replace the embedded data. 
Furthermore, the users are aware that usual image 
processing (lossy compression, image enhance-
ment, etc.,) can destroy the embedded informa-
tion. Otherwise stated, if the user is interested 
to take advantage of the embedded information, 
no modifications (neither signal processing, nor 
intentional attacks) are expected. Otherwise, the 
embedded information can be lost.

An original aspect of our approach is the use 
of reversible watermarking for compressive data 
hiding. We remind that reversible watermarking 
appeared to extend the use of watermarking for 
special domains, like military, legal, medicine, 
etc., where no data distortion is admitted. For such 
domains, the imperceptibility of the embedding 
is not enough. Reversible watermarking allows 
at detection not only the extraction of the em-
bedded data without any loss, but also the exact 
recovery of the original host image. Nowadays, 
the development of high capacity reversible 
watermarking schemes provides the context of a 
change of paradigm. In our opinion, the reversible 
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watermarking can be used instead of the classical 
one in most of the applications. The advantage is 
that, in certain conditions, one can get reversibility 
as a byproduct of the marking.

Such an example is the distortion-free ro-
bust watermarking paradigm, (Friedrich et al., 
2002), which joins the reversible and the robust 
watermarking. If the embedding bit-rate is high 
enough, almost any degree of robustness can be 
added to the reversible watermarking schemes 
by multiple marking (Coltuc & Chassery, 2007). 
Robust watermarking is the first one to be per-
formed. Then, by reversible watermarking, the 
information needed to invert both the robust and 
the reversible watermarking is embedded. In case 
of no attacks, the robust watermark is detected and 
the authorized party exactly recovers the original. 
In case of attacks, one can suppose that the robust 
watermark can still be detected, but the revers-
ibility is lost. The robust authentication problem 
can be approached in a similar way. To conclude, 
for the case of compressive hiding, the robustness 
is not a must. On the contrary, a high capacity is 
necessary. The capacity requirement is fulfilled by 
nowadays reversible watermarking schemes. For 
natural images, currently high capacity reversible 
watermarking algorithms provide bit-rates greater 
than 2 bits per pixel.

STEREO EMBEDDING

As said above, the basic idea of our approach 
is to embed data by reversible watermarking in 
order to save storage space, bandwidth or com-
putational complexity. Before investigating the 
use of watermarking in stereo imaging, a high 
capacity reversible watermarking scheme is briefly 
introduced.

Reversible Watermarking Scheme

The embedding capacity is the main issue of the 
reversible watermarking scheme. The highest  

capacity reversible watermarking schemes pro-
posed so far are the ones based on difference 
expansion, DE, (Tian, 2003). The basic idea of DE 
schemes is to create space for data embedding by 
expanding the difference either between pairs of 
pixels, or between pixels and their estimates. For 
instance, by expanding two times the difference, 
its least significant bit is freed and a bit of data 
can be embedded. In the following paragraphs 
we will focus on a version of the high capacity 
reversible watermarking scheme of Coltuc & 
Chassery, 2007. The scheme can provide more 
than 1 bpp in a single embedding level.

Let image pixels be indexed, for instance, on 
rows, from left to right and from top to bottom. 
Let xi and xi+1 be the graylevels of two consecutive 
pixels. Let n be a fixed integer, n≥2, and let w be an 
integer in [0, n − 1]. Let us further replace xi by Xi:

Xi = x i+ (n − 1)(xi − xi+1)+w (1)

The replacement is done if no overflow or 
underflow appears, i.e., for 8 bit graylevel images, 
0≤ Xi ≤ 255. By replacing xi with Xi, the difference 
Di between the consecutive pixels located at i and 
i+1 becomes: Di = Xi − x i+1 = n(xi − xi+1)+w. Since 
Di − w is divisible by n, the embedded codeword 
w can be simply recovered by taking:

w=Di mod n (2)

Next, once w is available, the original graylevel 
xi follows as:

x
X n x w

ni
i i=
+ − −+( )1 1  (3)

The equations (1), (2) and (3) provide the 
framework for reversible data embedding. Once 
a pair of pixels is transformed and embedded with 
equation (1), the next pair is processed and so on. 
From equation (3), it clearly appears that, in order 
to recover the original graylevel xi, the original 
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graylevel of the consecutive pixel, xi+1, is needed. 
Therefore, the detection and the data extraction 
should proceed in reverse scanning order.

At detection, for each pixel, one should know 
if the pixel was transformed or not. The classical 
solution is to use a lossless compressed location 
map. The drawback of using a location map is an 
increase in mathematical complexity because of 
the lossless compression stage. Lossless compres-
sion can be avoided by using the divisibility with 
n introduced by the transform. The idea is simple. 
An integer code r is reserved to indicate if a pixel 
was not transformed. The not transformed pixels 
are modified (by simply subtracting or adding 
some correction codes) to provide the result r for 
equation (2). Let us suppose that a pair (xi, xi+1) 
does not fulfill the conditions to be transformed. 
Then, a correction code ci should be subtracted 
from xi such that the result of equation (2) is r. It 
immediately appears that ci should be computed as:

ci = r − (xi − xi+1) mod n (4)

In order to recover the original pixel values, 
the correction codes should be stored together 
with the payload. For simplicity, let r = n−1. 
Since n−1 is reserved, the watermark codewords 
are limited to [0, n−2]. The information provided 
by the location map is replaced by the result of 
equation (2): n−1 for a not transformed pixel or an 
integer code in [0, n−2], otherwise. The scheme 
does not need lossless compression, but there is 
a certain loss in embedding capacity by reducing 
the range of the watermark codewords.

The embedding capacity of the proposed 
scheme depends on the number of transformed 
pixels (i.e., on image statistics) and on the pa-
rameter n. The theoretical upper bound of the 
embedding capacity provided by such a scheme 
is log2n bpp (for location map based detection) 
or log2(n−1) for divisibility based detection. For 
n≤ 4 the scheme operates close to the theoretical 
upper bound. By increasing n, the number of pairs 
subject to overflow/underflow increases as well 

and the difference with respect to the theoreti-
cal upper bound increases. For natural images, 
the maximum embedding capacity is obtained, 
depending on image content, for 8≤ n ≤ 15. The 
further increase of n does not provide any improve-
ment: the decrease of the number of transformed 
pixels is more significant than the increase of the 
number of bits of the corresponding codewords.

In order to match the capacity of the scheme 
with the one demanded by the application at hand, 
a simple threshold control scheme can be used. 
Thus, the pixel at the location i is transformed not 
only if no overflow/underflow appears, but also if 
xi − xi+1 is less than a certain threshold. By limit-
ing the difference, the distortion is limited, too.

Let us next consider the test stereo images Art 
and Dolls shown in Figure 1 (available at http://
vision.middlebury.edu/stereo/data/). The test 
images consist of 7 rectified views taken from 
equidistant points along a line (Scharstein &Pal, 
2005). Each stereo pair was composed by taking 
frames 2 and 6. The images are of high quality, 
full-color (24 bits), 1300 × 1100 pixels (cropped 
to the overlapping field of view).

The reversible watermarking scheme was 
introduced for graylevel images. For the case of 
color images in format RGB, a simple solution is 
to separately embed each color plane. As discussed 
above, the parameters n and the threshold control 
the capacity and the distortion of the watermark-
ing. The experimental results for the left frame 
of the two test images, namely PSNR with respect 
to capacity, are plotted in Figure 2. The PSNR 
measures the distortion introduced by the water-
marking. Greater the PSNR, higher the quality of 
the image. Together with the results for the three 
color planes, the results for the graylevel versions 
of the test images are provided as well. The gray-
level version, I(x,y), has been computed as:

I(x,y)=0.2989R(x,y)+0.5870G(x,y)
+0.1140 B(x,y)           (5)
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Figure 1. Test image pairs: Art (top) and Dolls (bottom) of http://vision.middlebury.edu/stereo/data/

Figure 2. PSNR with respect to embedding capacity by threshold control reversible watermarking scheme 
on red, green, blue and graylevel of Art (a) and Dolls (b)
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where R(x,y), G(x,y) and B(x,y) are the red, green 
and blue plane, respectively.

As it can be seen from Figure 2, the shape of 
the curves is quite similar. For both images, the 
embedding bit-rates are greater than 2 bpp. The 
results are slightly better for the test image Art. 
This is due to the fact that there are less details 
(equivalently, larger uniform areas) in Art than 
in Dolls.

Embedding Disparity Maps

In some cases, disparity maps are provided to-
gether with stereo image pairs. For instance, for 
the test images of Figure 1, the authors also offer 
ground truth disparity maps obtained by using 
the structured lighting technique described in 
Scharstein & Szeliski, 2003. Ground truth data are 
of great interest in benchmarking the performance 
of different stereo matching techniques.

The ground truth disparity maps for Art and 
Dolls test images are shown in Figure 3. They are 
provided as additional image files. For instance, 
the maps of Figure 3 are given as PNG (Portable 
Network Graphics) of sizes 108,186 bytes (Art 
left map), 107,927 bytes (Art, right map), 158,234 
bytes (Dolls, left map) and 152,410 bytes (Dolls, 
right map). Instead of keeping ground truth dispar-
ity maps in additional files, they can be directly 
embedded into the corresponding images.

Figure 2 clearly shows that the reversible 
watermarking provides enough capacity to embed 
the disparity maps. In order to embed the left 
disparity map of Art into its left frame one should 
have a bit-rate of 0.56 bits per color pixel, i.e., an 
embedding bit-rate of less than 0.2 bpp for each 
color frame. We have inserted the left ground truth 
disparity map by embedding 0.19 bpp into the red 
plane, 0.27 bpp into the green plane and 0.2 bpp 
into the blue plane. The PSNRs of the embedded 
color planes are 39.10 dB, 39.39 dB and 39.04 
dB. The embedding is completely imperceptible. 
To conclude, the average PSNR is greater than 
39 dB for an embedding bit-rate of 0.66 bits per 

color pixel. Besides the disparity map, there are 
more 18,66 Kbytes available for embedding ad-
ditional data. The embedding of the right frame 
of Art image gives similar results.

The embedding of the disparity maps of Dolls 
in the corresponding image frames demands a 
slightly larger bit-rate. For instance, for the left 
disparity map one needs 0.82 bits per color pixel, 
i.e., less than 0.3 bpp for each color plane. One 
can easily obtain this global bit-rate by embedding 
0.27 bpp into the red plane at a PSNR of 37.42 
dB, 0.39 bpp at 36.21 dB into the green plane and 
0.22 bpp at 37.32 dB into the blue plane. One 
gets a global bit-rate of 0.88 bits per color pixel 
at an average PSNR of 36.98 dB. The situation 
is similar for the embedding of the right ground 
truth disparity map.

The embedding of both ground truth dispar-
ity maps into their corresponding color frames 
is imperceptible. For graylevel images, since the 
entire embedding bit-rate should be ensured by a 
single image plane, the distortion becomes visible. 
In Figure 4 left, the result of the embedding of the 
entire ground truth disparity map into the graylevel 
version of Dolls image is presented. Compared 
with the original (center), the image looks noisy, 
but there are not any annoying artifacts. In order 
to improve the visibility, only a 256 x 256 region 
of Dolls is shown in Figure 4. Meantime, it should 
be stressed that the embedding was done by re-
versible watermarking. Therefore, the original 
image can be recovered at zero distortions from 
the marked copy.

If only one map is embedded into both image 
frames, the embedding bit-rate is halved and the 
distortion decreases accordingly. See in Figure 4 
right, the result of inserting into the graylevel 
version at half of the embedding bit-rate. The 
resulted image is less noisy than the one of Figure 
4, left. Even if the ground truth is not available, 
the disparity map can be computed and embedded. 
Then, every time the 3D information is needed, 
the disparity map is simply extracted.
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Figure 3. Ground truth disparity maps for Art (top) and Dolls (bottom)

Figure 4. Original (center) and results of ground truth disparity map embedding into a single graylevel 
frame (left), into both frames (right)
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By inserting the ground truth disparity map 
into the corresponding image files, the need of 
supplementary files is eliminated. The disparity 
maps are linked with the corresponding image data. 
The management of the information is simplified 
and the risk of any data mix up disappears. Besides 
the elegance of the approach, it should be also 
mentioned that no major artifacts are introduced 
and, the reversibility of the embedding allows 
the exact recovery of the original stereo images.

The stereo matching problem is of high 
mathematical complexity. The embedding of the 
disparity map into the stereo images reduces the 
mathematical complexity of 3D computation 
without the burden of transmitting additional 
files. Obviously, the extraction of the embedded 
disparity map is by far less mathematically com-
plex than its computation.

Stereo Embedding: Halving Storage/
Bandwidth for Stereo Images

Let Sl and Sr be the left and right frames of a 
stereo image pair. The main idea of the stereo 
embedding by reversible watermarking is to hide 
into one image (e.g., the left frame Sl), all the 
information needed to recover the other frame, 
Sr. Furthermore, Sl is stored or transmitted. The 
content of Sl is continuously available for dis-
playing or for any other tasks. When the stereo 
content is needed, the information embedded 
into Sl is extracted and Sr is recovered. The size 
of the information to be hidden is crucial for this 
approach. A straightforward solution is to embed 
the compressed residual between the two stereo 
frames, R=Sl − Sr. Depending on the embedding 
capacity, the residual can be lossless or lossy 
compressed. This solution is simple, but of rather 
limited usefulness. We have tested it on generated 
stereo images (Coltuc, 2007).

An efficient solution is to consider a disparity 
compensation scheme. The disparity represents 
the difference in position between corresponding 
points in left and right frames. In the hypothesis 

that the stereo frames are rectified, the points 
should lie on the same row. By establishing the 
correspondence for all the pixels of a frame, a 
dense disparity map is obtained. There is a huge 
literature on disparity computation (Scharstein 
& Szeliski, 2002). In the sequel, we use the sum 
of absolute differences (SAD). For each pixel of 
the left frame, Sl(x,y), the SAD is computed to the 
pixels of the left frame:

SAD x y d S x u y v S x u y v dl r
w u v w

( , , ) | ( , ) ( , ) |
,

= + + − + + +
− ≤ ≤
∑  

(6)

where the search window is of size (2w+1)
x(2w+1). Then, the disparity map is:

D x y SAD x y d
d

( , ) arg min ( , , )=  (7)

Since equation (6) establishes the correspon-
dence between the pixels Sl(x,y) and Sr(x,y+D(x,y)), 
one can estimate the right frame as:

S x y S x y D x yr l

^

( , ) ( , ( , ))= +  (8)

Finally, the estimation error is:

E x y S S x yr r( , ) ( , )
^

= −  (9)

The right frame is exactly recovered if the 
estimated right frame and the estimation error are 
available. Furthermore, if the left frame and the 
disparity are available, the right frame is estimated 
by equation (8). Therefore, as soon as one can 
embed into the left frame the disparity map and 
the residual error, one has enough information 
to recover exactly the left frame. We remind that 
the reversible watermarking is invertible, i.e., 
not only the embedded data is exactly extracted, 
but also the cover image is exactly recovered. 
The only problem is to ensure the embedding 
capacity needed to store the required additional  
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information. In order to reduce the necessary 
embedding bit-rate, the disparity map and the 
estimation error are compressed. Depending on 
the embedding bit-rate provided by the reversible 
watermarking, either lossless or lossy compres-
sion is used.

The above scheme can be immediately ex-
tended to color images. In the case of color images, 
a single disparity map is computed. Each color 
plane of the right frame is estimated by using the 
corresponding color plane of the left frame and 
the disparity map. Then, the estimation error is 
computed. The information to be embedded into 
the left frame consists of the disparity map and 
the estimation errors for the three color planes. 
Therefore, into each color channel of the left 
frame, besides the corresponding estimation error, 
only approximately one third of the disparity map 
should be embedded. It should be observed that, 
for graylevel images, the entire disparity map and 
the estimation error should be embedded into one 
graylevel frame. Therefore, better performances 
should be expected for color images.

The embedding of disparity map and estimation 
errors could have been done by classical water-
marking. For instance, the classical watermarking 
by LSB substitution ensures high embedding ca-
pacity at very low distortion. However, it should 
be observed that the exact recovery of left frame 
color channels is possible only if the correspond-
ing color channels of the right frame and their 
estimation errors are available. The embedding 
by reversible watermarking allows, at detection, 
the exact recovery of the cover image.

The size of the disparity map and the three 
estimation error planes is too big to be embedded 
without lossy compression. We have used JPEG 
compression. The compression ratio is controlled 
by four parameters (one controls the quality of the 
disparity map and the others three control the qual-
ity of the estimation error planes). The parameters 
are tuned in order to match the available embedding 
capacity provided by the reversible watermarking 
stage. Higher the compression ratio, lower the 

quality of the recovered right frame. The PSNRs of 
the reconstructed left frame in function of the size 
of the data to be embedded (bits per color pixel) 
for Art and Dolls test images are plotted Figure 5. 
The PSNR of the color image is computed as the 
average of the PSNRs of the three color planes. 
The quality of the recovered frame is slightly 
better for Dolls image. Given the high values of 
the PSNRs, even at low embedding bit-rates, the 
recovered left frames are of very good quality. 
No visual artifacts are present.

In order to evaluate the quality of the embed-
ded frame, an example is given in Figure 6. The 
left image represents a detail of Dolls test image 
embedded at 3 bits per color pixel (i.e., 1 bpp for 
each color plane) and the right image represents 
the same region embedded at 6 bits per color 
pixel. The original region is shown in center. As 
it can be seen, at low-embedding bit-rates the 
embedded image looks identical to the original. 
At high embedding bit-rates, an increase of con-
trast is visible and the image looks noisy. How-
ever, this is not a major problem since at detection 
the left frames can be exactly recovered.

The disparity compensation scheme offers at 
detection, as a byproduct, the disparity map. 
Sometimes, instead of recovering the right frame, 
extracting only of the disparity map may be suf-
ficient. This is the case of extracting 3D informa-
tion from stereo images. The direct recovery of 
the disparity map means a great saving in com-
putational complexity. As discussed above, the 
extraction of the disparity map is by far less ex-
pensive than its computation.

Solutions and Recommendations

In order to match the embedding bit-rate provided 
by the image at hand, or to simply reduce the dis-
tortions of the embedded frame, lossy compression 
is used. A good policy is to compress at higher 
rates the estimation errors and to compress at 
lower rates or even lossless the disparity map. As 
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discussed above, the disparity map is of interest 
beyond the recovery of the right frame.

FUTURE RESEARCH DIRECTIONS

We have discussed the halving of storage or 
bandwidth for stereo images. An immediate ex-
tension of this approach is for stereo sequences. 
The embedding of left frame sequences with the 
data for recovering the right frames immediately 
reduces at half the amount of data, while keeping 

the sequence visible. An interesting extension 
for the case of image sequences is to exploit the 
high redundancy existing among the left frames 
to further reduce the size of the stored transmitted 
data keeping the sequence content visible.

We discussed the embedding of the ground 
truth disparity maps (or the computed disparity 
maps) into stereo pairs or the embedding into 
one frame of the information needed to recover 
the other frame. Obviously, the increasing of the 
amount of embedded data increases the distortions 
as well. Meantime, since the embedding was done 

Figure 5. Experimental results: PSNR of the recovered right frame

Figure 6. Detail of embedded left frame of Dolls at 3 bpp (left) and 6 bpp (right) and non-embedded 
detail (center)



342

The Use of Watermarking in Stereo Imaging

by reversible watermarking, these distortions are 
removed at detection. In this context, it is inter-
esting to investigate the jointly embedding of 
more data to extend the scope of the applications 
discussed above.

CONCLUSION

The embedding of stereo information by revers-
ible watermarking has been investigated. First, the 
embedding of disparity maps has been discussed. 
This eliminates the need of storing and manipulat-
ing additional files. Meantime, at detection, the 
disparity map is provided at a low mathematical 
complexity cost, namely the cost of watermark 
extraction.

Next, by embedding more data, not only the 
disparity map, but also the estimation error, the 
bandwidth and storage requirements when op-
erating with stereo images are halved, i.e., only 
the watermarked frame is stored and transmitted. 
Compared with the stereo image compression, 
the proposed approach has the advantage that 
image content remains available during image 
manipulation. When the stereo context is needed, 
the embedded data is extracted and the other frame 
is recovered. The quality of the recovered frame 
depends on the hiding bit-rate provided by the 
reversible watermarking. The proposed approach 
can be extended to stereo sequences.

Another original aspect of our approach is 
the use of reversible watermarking. This ensures 
the exact recovery of the watermarked frames. 
Nowadays reversible watermarking algorithms 
provide enough embedding capacity for this kind 
of applications.
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KEY TERMS AND DEFINITIONS

Disparity: The difference in position between 
the correspondence points of the stereo frames.
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Fragile Watermarking: The embedded in-
formation fails to be extracted after the slightest 
modification of the embedded host data.

Peak Signal-to-Noise Ratio (PSNR): The 
ratio between the maximum possible power of 
a signal and the power of corrupting noise that 
affects the signal. PSNR is commonly used in 
image processing as a quality metric.

Reversible Watermarking: Besides the ex-
traction of the embedded information, the host 
data is exactly recovered.

Robust Watermarking: The embedded 
information can be extracted after intentional 
or not intentional modifications (attacks) of the 
embedded host.

Stereo Images: Pairs of images (left and right 
frames) of the same scene taken from slightly 
different viewpoints.

Watermarking Capacity (Payload): The 
amount of information embedded into a host.

Watermarking: Imperceptible embedding 
of information into digital host data as images, 
videos, sound, text files, etc.
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Chapter  18

INTRODUCTION

Since the early days of television and with the 
progress in television technology, there were 
consistent technical adaptations of various features 
to improve the presentation of realistic 3D. Even 
as the glasses based 3D technologies are quite 
popular nowadays, it was and is an everlasting 
dream of viewers, engineers and researchers to 
achieve the same impressive 3D image quality 
without glasses too. The formulas, equations and 

matrices used in this chapter deal with 3D tech-
nology without glasses and they are illustrated 
by examples. The matrix generation is explained 
by using the universal formula (Grasnick, 2010). 
In such cases the notation is according to Math-
ematica (Wolfram Mathematica). All samples are 
created with Mathematica 7.

DEFINITION

An autostereoscopic display is a device for rep-
resenting a 3D scene without the need of viewing 

Armin Grasnick
Sunny Ocean Studios Pte. Ltd., Singapore
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aids. There are two main principles of spatial 
impression (Grasnick, 2010)]: Spatial Existence 
(used in volumetric displays) and Binocular  
Disparity (used in stereoscopic and autostereo-
scopic displays).

“Spatial Existence” means the real presence of 
spatial information within an observed volume. 
This kind of representation can be achieved by 
projecting a sequence of flat images or light points 
on rotating flat screens (i.e. the “100 million voxel 
display” (Favalora et al., 2002)), rotating curved 
screens (i.e. the “Felix 3D display” (Langhans 
et.al., 1998)), fog screens (DiVerdi et. al., 2006) 
or varifocal mirrors (Fuchs and Pizer, 1986). Other 
volumetric technologies are multi-layer displays 
(Sullivan, 2002), light excitation in a solid medium 
(Downing, 1997), multi-lens projection (Grasnick, 
2001) and of course holographic displays (Spatial 
Imaging Group @ MIT, 2010). These and similar 
devices are also referred as “volumetric displays”. 
Because of their complex and sophisticated tech-
nologies, volumetric displays have only a little 
commercial impact today.

The 3D effect in stereoscopic displays is 
principally caused by the difference in between 
the left-eye and right-eye images (Binocular 
Disparity). Usually, an observer has to wear 3D 
glasses to separate the stereoscopic image pair 
to the “destined” eyes. If this separation doesn’t 
needs any additional 3D glasses, the device is 
typically called “autostereoscopic”. Autostereo-
scopic displays are 3D devices at which the spatial 
impression is mainly based on the reproduction of 
a disparity in between the represented perspective 
images without the requirement of viewing aids.

GENERAL PRINCIPLE

As per definition, an autostereoscopic 3D im-
pression is based on binocular disparity. The 
stereopsis is the determining principle, but all 

other monocular or binocular depth cues can be 
used to improve the 3D quality.

An autostereoscopic display has to contain at 
least two elements: A display device to represent 
the specific image data (screen image) and an 
optical modulator to separate parts of the screen 
image(s) into different parts of the viewing area.

A common display device will show the im-
ages as raster image, in which each pixel position 
can be described with two coordinates. The raster 
image is a combination of certain number of raster 
images, representing different perspective views. 
The combination rule for the screen image can be 
completely specified in a two dimensional matrix 
(Figure 1).

where

i, j  position indices
i0  first horizontal index
in  last horizontal index
j0  first vertical index
jm  last vertical index
V  perspective view number at position i, j

The optical modulator (Figure 2) is an ar-
ray of optical elements. For the most popular 
technologies, the optical elements are arranged 
in one layer. Similar to the screen image, the 
arrangement of the optical elements can be 
described also with a matrix. This matrix could 
be a transformation of the screen image matrix 
(and vice versa), at which the perspective view 
number has been replaced with the number of 
the optical element, the balance or the anchor 
point of the element. As this number represents 
now a certain characteristic and value of optical 
modulation, these values could be described as 
the “optical mode” for a specific pixel position. 

where

k, l  position indices
k0  first horizontal index
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kn  last horizontal index
l0  first vertical index
lm  last vertical index
O  optical mode at position k, l

The fundamental dimensions for an autoste-
reoscopic display design are shown in Figure 3. 

In the illustrated case, the optical layer is placed 
in between the screen and the observer.

In certain circumstances it could be preferred 
to move the optical layer behind the screen, in 
between backlight and screen (Figure 4). As in 
geometric optics, there is an upside down image 
of the object in the Figure 3 (analog to real imag-

Figure 1. Screen image matrix

Figure 2. Optical modulator matrix
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Figure 3. Optical layer as overlay

Figure 4. Optical layer as illumination
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ing) and an upright image in Figure 4 (virtual 
imaging). The projected pixel size is identical 
with the eyes distance in the most cases, but it is 
possible to insert intermediate views to reduce 
the view flipping or the accommodation-conver-
gence conflict. These principal arrangements 
works with parallax barriers, lenses or other opti-
cal layer based designs.

where

a  object distance (distance between screen 
layer and optical layer)

a’  image distance (distance between optical 
layer und observer position)

A  object size (pixel or sub-pixel size)
A’  image size (projected object size in image 

distance)

where

a  object distance (distance between backlight 
and optical layer)

a’  image distance (distance between optical 
layer und screen)

a’’  projection distance (distance between screen 
and observer position)

A  object size (backlight area in pixel or sub-
pixel size)

A’  image size (pixel or sub-pixel size)
A’’  projection size (projected image size in 

projection distance)

SCREEN IMAGE

Multiplexing

Considering existing installations and sales num-
bers, the major group of 3D displays is based on 
flat panel displays (FPD) with only one screen 
layer. Autostereoscopic displays with more than 
one layer has been presented from time to time, 
but hasn’t achieved the same level of relevance 
as single layer displays.

Spatial Multiplexing

The screen image displayed on a standard graphic 
display can be described using a 2dimensional 
data array. Anaglyph stereo might be one of the 
simplest examples for spatial multiplexing. In this 
example, the screen image is multiplexed in the 
display sub-pixels.

Sub-pixel multiplexing is a common technol-
ogy for the propagation of flat panel displays for 
stereoscopic and autostereoscopic representations. 
As a pixel is build by three sub-pixel elements 
(red, green blue), a sub-pixel combination allows 
a higher density of views on the screen (Figure 5).

A way to achieve such kind of mixing with 
pixel-based algorithms is color channel mixing 
or –permutation.

Temporal Multiplexing

By introducing dynamic system, a time param-
eter is required to locate the pixel. Probably the 
best-known case of the time sequential mode 
is the stereo shutter. This mode can be used for 
projection as well as for flat panel displays. If the 
refresh rate of the playback device is fast enough 
to avoid any flickering, the implementation in 
applications is quite easy.

COMBINATION MATRICES

A combination matrix for an autostereoscopic 
display represents the arrangement of the per-
spective views in the screen image. The screen 
image matrix is interconnected with the optical 

Figure 5. Sub-pixel multiplexing in a 
red-cyan anaglyph
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modulator matrix, but it is possible to have many 
different screen image matrices for the same opti-
cal modulator matrix.

This could be beneficial for the adaption of a 
real autostereoscopic display for different viewing 
parameters (i.e. viewing distance or 3D depth), 
numbers of perspective views (i.e. fewer num-
bers for real-time applications) or other screen 
image adjustment (i.e. shifting, tilting, scaling) 
without any change in the mechanical design or 
the optics array.

Matrix Generation

Certainly it is possible to create the same matrices 
using different mathematic algorithms. In this 
chapter, a simple solution for matrix creation is 
shown. The administration and adaption for dif-
ferent autostereoscopic displays is easy through 
setting few parameters. The equations can be 
directly used in symbolic programming.

2-Dimensional

A 2dimensional array needs at least two coor-
dinates i, j = f(x, y). Two position modulation 
parameters are used to define the increments to the 
contiguous cell in x-direction (qA) and y-direction 
(qB). Two other variables determine the repetition 
factor. These are qX and qY, at which the subscript 
explicated the direction of action.

V FractionalPart
IntegerPart
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n-Dimensional

For various reasons it could be desirable to add 
more dimensions to the formula. This might be 
necessary if the design of the device needs wave-
length separation or analysis of the polarization 
state. For such intentions, but not limited to them, 
a more universal equation could be used.
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a = position parameter as function of the ar-
ray index, qD = Dimension (position) modulation 
parameter,

qR = Repetition parameter
An example for a four-dimensional matrix 

generation is given with the following symbolic 
expression, shown in Equation (3). i=f(x), j=f(y), 
k=f(z), l=f(t).
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Box 2.
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Example: Spatiotemporal Stereoscope

Spatiotemporal is a description of space and time 
depending phenomena. This description has been 
used for the characterization of image multiplex-
ing procedures (Jang et. al., 2004).

The spatiotemporal stereoscope was intro-
duced as a virtual device or “Gedankenexperi-
ment” (Mach, 1905) to explain a 4dimensial mul-
tiplexing. This virtual spatiotemporal stereoscope 
contains two display layers with addressable 
pixels in columns and rows. Only the top layer is 
switchable to a transparent or translucent mode. 
Each layer shows a combination of two images, 
interlaced in columns. Any appropriate technique 
is used to separate the images and provide a bin-
ocular vision.

Figure 6 shows a multiplexing of 16 differ-
ent perspective images (views). The views are  
addressable by their numbers. Each pixel position 

needs now four dimensions to become traceable; 
x,y,z and t.

In this example, the front display has to become 
transparent/translucent in off-state. As is not de-
fined, if the front panel could be switched to a 
fully opaque mode, both displays are always ad-
dressed, even in off state. Setting some dimension 
parameters, the matrix can be calculated with the 
following code in Equation (4).

Setting the parameters, the output matrix shows 
the exact states (Figure 6).

(n=16, qA=1, qB=1, qC=2, qD=4, qX=1, qY=1,qZ=1, 
qT=1, i=FractionalPart[x/2]2, k=1-z, l=t)
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Figure 6. Four states of the spatiotemporal stereoscope

Table 1. Image pairs and switching state of on representation cycle

State 1 (t = 0) State 2 (t = 1) State 3 (t = 2) State 4 (t = 3)

Front display (z = 1) 0/1 (on) 4/5 (on) 8/9 (off) 12/13 (off)

Rear display (z = 0) 2/3 (off) 6/7 (off) 10/11 (on) 14/15 (on)
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Table 2 shows the number of view dependent 
on x, y, z and t.

OPTICAL LAYER

Matrices

An optical layer for a 3D display is an array of 
numerous small optical effective elements. These 
elements are arranged in a certain matrix structure. 
The computing of the optical modulator matrix 
is similar to the calculation of the screen image 
matrix.

Different to the screen image calculations, the 
result gives the number of the optics element at a 
position i, j back. This number can be described 
as a replacement for a part of the optics structure 
(i.e. an opaque or transparent shape in a parallax 
barrier). A matrix for an optical modulator could 
have a much higher resolution as the screen image. 
The necessary resolution depends on the produc-
tion technology and the type of optics.

1-Dimensional Matrix

Obviously an optical layer has to be at least 2-di-
mensional. But as this matrix can be interpreted as 
instruction for the manufacturing of the optics, the 
simplest matrix is one-dimensional. An example 
of an optical layer, where a 1-dimensional matrix 
is a sufficient description, could be a lenticular 
screen. Because the lenticulars are arranged in 
parallel lines, it is possible to describe their posi-
tions with only one parameter.
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2-Dimensional Matrix

A 2-dimensional arrangement can be used for 
more flexibility and other types of optics. Analog 
to the screen image, the 2-dimensional form is
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Box 3.

Table 2. Dependent views on x, y, z and t

X0 X1 X2 x3

z0 2 6 10 14 3 7 11 15 2 6 10 14 3 7 11 15 y0

z1 0 4 8 12 1 5 9 13 0 4 8 12 1 5 9 13

z0 2 6 10 14 3 7 11 15 2 6 10 14 3 7 11 15 y1

z1 0 4 8 12 1 5 9 13 0 4 8 12 1 5 9 13

t0 t1 t2 t3 t0 t1 t2 t3 t0 t1 t2 t3 t0 t1 t2 t3
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W FractionalPart

IntegerPart
k
q

q IntegerPart
l

qX
A

Y=










 +'
'

'




































q

n
n

B
'

 
(6)

Matrix Transformation from 
Screen Image Matrix

In the 3D display design process, the most impor-
tant parameters are belonging to the application 
of a 3D display. These parameters can be used 
to adjust the display, i.e. for a certain viewing 
distance, viewing area or depth impression.

Some of these decisions have an influence to 
the general selection of a certain optics technol-
ogy; others will affect the number of necessary 
perspective views, the moiré interferences or the 
view arrangement and combination matrix.

Therefore the first step in the development 
process should be the creation of the combination 
matrix for the major application, while the optics 
arrangement is a transformation of this underlying 
rule. In such cases, the whole matrix (or some 
matrix parameters) of the optical modulator matrix 
is (are) a function of the screen image matrix.

W=f[V]
with

q f q q f q q f q

q f q k f i l f j

A A B B X X

Y Y

' ' '

'

; ; ;

; ;

= [ ] = [ ] = [ ]
= [ ] = [ ] = [

1 2 3

4 5 6 ]];      (7)

the value of W is now the function of the param-
eters of V. See Equation (8).

TYPES OF OPTICAL LAYERS

Integral Photography

In the early 20th century, a technology was intro-
duced to record and reconstruct a real scene by 
using a number of micro lenses [Lippmann, 1908]. 
This technology is known as integral photogra-
phy, the sheet as “fly’s eye” lenses array. A main 
advantage of the integral photography (Figure 7) 
is the existence of a full parallax in horizontal and 
vertical direction.

Lenticular Screen

A lenticular (Figure 8) is a lens with refraction 
in only one direction. This lens type prevents a 
vertical parallax, but allows a higher resolution 
in this direction.

Barrier Screen: Transparent / 
Opaque

Simple in design and easy in production, a black-
white barrier might be the ideal candidate for a 
low cost autostereoscopic display. But the inher-
ent high loss of brightness is reducing the field of 
applications and prevents those displays from an 
overall use. As same as in lenses, a barrier screen 
could be used with a full parallax (pinhole barrier 
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Figure 7. Integral photography Figure 8. Lenticular screen

Figure 9. Pinhole barrier Figure 10. Barrier stripes
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– Figure 9) or only horizontal parallax (barrier 
stripes – Figure 10).

Color Barrier

To improve the brightness or perceived resolution 
of a 3D display, an arrangement of color filters can 
be used. The color filters of the barrier should have 
near the same wavelength absorption/transmission 
characteristics as the light of the screen color pixel 
(Figure 11). Because of their wavelength selective 
function, such systems are sometimes called as 
wavelength selective filter array.

Zone Plates

A zone plate (or Fresnel zone plate) is a diffrac-
tive optic (Figures 12 and 13). For 3D displays 
such a zone plate could be used as a simple in-
line hologram. If this hologram is reconstructed, 
it provides a real and a virtual focal point and 
works like a converging lens and diverging lens 
in one device.

Figure 11. Color barrier Figure 12. Circular zone plate

Figure 13. Lenticular zone plate
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As in other optical layers, a reduction of the 
vertical parallax is possible (lenticular zone plate).

Multi Layer Devices

A multi layer device reproduces screen images 
and/or the optical elements on different layers 
(Figure 14). The layers are static (spatial multi-
plexing) or switchable (temporal multiplexing). 
For definition, a multi layer device is only an 
autostereoscopic display, if a binocular separation 
is involved.

A 4-dimensional case (spatiotemporal stereo-
scope) could be possible, but has no practical 
significance at present. Different to the aforemen-
tioned devices, multi layer devices could be op-
timized for different viewing distances.

Combinations

An autostereoscopic display can be a mix of dif-
ferent devices and optics. In Figure 14, a barrier 
screen works as a lens aperture for a lens sheet. 
Other combinations are applicable besides this 

Figure 14. States of a multi layer device
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example, but such sophistications are almost based 
on a benefit-cost analysis.

AUTOSTEREOSCOPIC DISPLAY 
METRICS

Orthoscopic Viewing Zone

An autostereoscopic display is restricted to a cer-
tain viewing area. Only in this “sweet spot” area, 
the 3D impression is correct (orthoscopic). If the 
observer is moving outside the orthoscopic view-
ing zone, the 3D impression becomes blurry. The 
viewing area in a static autostereoscopic system is 
mainly defined by two parameters: The optimum 
viewing distance and the number of views.

Optimum Viewing Distance

Every autostereoscopic 3D display is designed for 
an optimum viewing distance (a). The 3D optic of 
the 3D display projects slices of the perspective 
views in the optimum viewing distance (Figure 
16). In this distance, the slices have a certain size 

(e). The value of e is usually identical with the 
average eye distance (inter-pupillary distance, 
~65mm).

On the left and right side there are more view-
ing zones. In the transition areas to the next view-
ing zone, even in the optimum viewing distance, 
the 3D scene is inverted in depth. This “pseudo-
scopic” image appears if the total number of views 
(cycle) has been passed by the observer. The 
pseudoscopic effect is caused by the inverted 
image order in the transition zone.

Lateral Freedom of Movement

The illustration in Figure 17 shows the lateral 
freedom of movement in a 5 view system.

The maximum horizontal dimension (c) in the 
orthoscopic viewing zone (yellow area) is limited 
by the product of slice size and number of views 
(n). If the slice size is constant, a higher number 
of views results in an enlarged viewing zone.

Viewing Range

Without paying attention to moiré effects, the 
minimum viewing distance (amin) is defined by:

a
b a

b e nmin

*
*

=
+

 (9)

Under the condition e*n >b, the maximum 
viewing distance can be calculated with

a a
a e n
b e nmax

* *
*

= +
−

 

But if e*n>=b, the maximum viewing distance 
would be infinity.

In far viewing distances, the slice size could 
become wider than the eyes distance. In such cases 
the impression becomes partly 2-dimensional. 
Considering the eyes distance (A), the maximum 
viewing distance is now:

Figure 15. Pinhole and fly’s eye
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Figure 16. Optimum viewing distance Figure 17. Viewing zone

Figure 18. Perceived depth
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a
a A

emax

*
=  (10)

Perceived Depth

If an observer is converging to a virtual point, 
the depth is formed by the screen disparity (d) as 
shown in Figure 18.

The perceived depth behind the screen (posi-
tive parallax) can be calculated with:

p
a

A
d

( )+ =





+ 1

 (11)

And in front of the screen (negative parallax):
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( )− =





−1

 (12)

Crosstalk vs. Channel Separation

The channel separation is the proportion between 
the left and right eye view in a 3D device. If the 
image for one eye can be seen only with this eye 
(i.e. the left perspective view can be seen only 
with the left eye, but not with the right eye), the 
channel separation reached its maximum (100%). 

The crosstalk describes the ratio of the visibility 
for the pseudoscopic image portion divided by 
the stereoscopic visibility (illuminance at eyes 
positions E). In an ideal system, the crosstalk is 
0. In this chapter, the following relations are used:

Crosstalkright = Eleft/Eright 

Channel Separation = 100% -Crosstalk  (13)

The real visibility and vision interference of 
the crosstalk depends on the image parameters 
(i.e. contrast, textures, edges, colors, shadows….) 
and parallax value. Even if it is recommended 
to reduce the crosstalk below 0.1%, it has been 
shown a 3D impression can be seen even with a 
crosstalk of more than 10%.

Also the visual system (physiologic and psy-
chologic vision) of the observer effects the 3D 
perception. People with lower eyesight or visual 
problems might have in general more difficulties 
in 3D viewing, while very experienced viewer 
could accept and enjoy even a massive crosstalk.

It is an obvious truth in stereoscopic cinema 
that a better separation in between the projections 
for the left and the right eye will result in a more 
impressive 3D impression. Also it is well known, 
a higher crosstalk could cause some discomfort. It 
is recommended in general reducing the crosstalk 
for a good 3D vision.

Figure 19. Stereoscopic pyramid, 5 views
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But there is an indication for a higher crosstalk 
in autostereoscopic systems. As the viewing area is 
restricted in an autostereoscopic system, a higher 
crosstalk could enlarge the viewing area and lead 
to a comfortable viewing experience by having 
the same 3D impression from almost every point 
in the viewing area.

View Related

Number of Views

The number of views has not only an influence 
to the viewing area; also this number defines 
the quality (density) of correct stereopairs in the 
viewing area. The orthoscopic stereopairs can be 
calculated using a pyramid model (Figure 19).

A mathematic equivalent is given with

n n
n

stereo view
view=
−

*
1

2
 (14)

View Flipping

A remarkable flipping of the objects in front of 
the screen (negative parallax) appears in case of 
strong depth and short distance if the observer 
changed the position. If the disparity is lower as 
1 pixel for the minimum slice size, the flipping 
is invisible.

Pseudoscopic Points

On a virtual line, a number of pseudoscopic points 
can be calculated. A lower number describes a 
larger orthoscopic area. If the number result is 0, 
the whole viewing area is orthoscopic.

npseudo = Pseudoscopic Points =Π*a/c 

A pseudoscopic number of 0 could be achieved 
by tracking mechanism.

FUTURE RESEARCH DIRECTIONS

The main market barriers for autostereoscopic 
3D are the limited viewing area and the lack of 
3D content. It has been shown that the increase 
of the number of perspective views will enlarge 
the viewing area. On the other hand a higher view 
number decreases the image resolution. Ultra-high 
resolution panels will support more views in the 
near future. We will explore if a combination of 
higher crosstalk and a huge number of views (many 
thousands) contribute significantly to the view-
ing area and reduce the conflict of convergence/ 
accommodation. Based on our 4-dimensional 
formula, a complete virtual test system has to be 
created, to evaluate the 3D image quality of dif-
ferent matrix combinations (screen and optics).

There are many different multi-view and 
super-multi-view systems in the market. To drive 
all these different displays, a universal 3D image 
and video format supporting a very high number 
of views will be necessary. This format should 
allow creating and multiplexing of the required 
perspective views in real time.

CONCLUSION

Autostereoscopic displays could be described as 
combination of screen image matrix and optical 
modulator matrix. As the optical layer is a trans-
formation of the screen image, a complete au-
tostereoscopic system specification requires only 
the screen image parameters and the dimensions. 
With these parameters, the display metric and 3D 
depth impression can be evaluated without a real 
system. The influence of all display parameters 
could be simulated, which allows an efficient 
adaption for different applications.
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KEY TERMS AND DEFINITIONS

Autostereoscopic: This refers to 3D display 
without the usage of glasses.

Depth Map: This refers to a 2D matrix con-
taining the depth results for every pixel.

Free-Viewpoint Interpolation: This refers to 
generating intermediate views using interpolation.
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Multi-View Autostereoscopic 
Visualization using Bandwidth-

Limited Channels

ABSTRACT

The increasing popularity of stereoscopic cinema and television paves the way for more advanced 
stereoscopic technologies, such as high-resolution multi-view autostereoscopic displays. The amount 
of information conveyed by such displays surpasses, however, the bandwidth capacity of the current 
broadcasting infrastructure. In this chapter, we will focus on technical solutions to overcome the band-
width bottleneck that only minimally affect the viewer experience. The presented solutions consist of 
(1) employing depth-based free-viewpoint interpolation with the aim to reduce the number of views that 
need to be transmitted, (2) the optimal compression of the depth and texture images while minimizing 
the resulting image artifacts, and (3) the optimal resolution considerations for a given autostereoscopic 
display.
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INTRODUCTION

Multi-view autostereoscopic displays add depth 
impression to the visualized image without requir-
ing the viewer to wear goggles. The presentation 
of more than two views (which would be sufficient 
for the stereoscopic effect) allows viewers to move 
freely within a certain range and still perceive a 
proper stereoscopic image. A further advantage 
for the viewer is the ability to slightly look behind 
objects by a small motion of the viewer.

The transmission of multi-view video to the 
display is seriously challenged by the bandwidth 
limitations of the transmission channel. Multiple 
views of each video frame have to be transmitted 
(modern multi-view autostereoscopic displays 
present 8 to 25 views), which increases the re-
quired bandwidth considerably. Especially for 
medical applications, the views are demanded to 
be of high-resolution and artifacts requirements 
are very stringent.

In this chapter, several techniques are studied 
that enable to fit the multi-view video stream in 
a bandwidth-limited channel. The focus of this 
chapter is to not only present results for individual 
steps but to show dependencies and contributions 
in the complete processing chain.

The chapter begins with a description of the 
background, which is followed by the three main 
sections. These sections present solutions for key 
problems in the overall multi-view video commu-
nication. The first main section concerns display 
and rendering aspects of multi-view presentation. 
The second section is on multi-view compression, 
particularly depth compression, as this influ-
ences the 3D rendering and the obtained quality.  
The third main section presents the study on 
resolution optimization and sampling for profes-
sional applications.

BACKGROUND

Multi-view autostereoscopic displays and the 
problem of video signal transmission for such 
displays are discussed in this section. We introduce 
the concept of stereoscopic viewing and discuss 
the broadcasting options for it.

Multi-View Autostereoscopic 
Displays

A stereoscopic display presents the viewer with 
different images for the left and the right eye. 
Provided that these images contain proper ste-
reoscopic information, the viewer will have the 
sensation of seeing depth. Principally there are 
two kinds of stereoscopic displays: the first type 
requires the viewer to wear goggles or glasses, and 
the second type, called autostereoscopic display, 
allows stereoscopic viewing without any external 
aid. The autostereoscopic effect can be achieved by 
using lenticular lenses (see Figure 1), or parallax 
barriers in order to emit different images when 
viewing under a (slightly) different angle. Modern 
so-called multi-view autostereoscopic displays 
provide between 8 and 25 views in order to achieve 
a smooth transition when the viewer moves his 
head (van Berkel, 1999; Dodgson, 1997; Maupu 
et al., 2005; Ruijters, 2009).

Multi-view autostereoscopic displays can be 
regarded as three-dimensional light field displays 
(Levoy & Hanrahan, 1996; Isaksen et al., 2000) 
(or four- dimensional, when also considering 
time). The dimensions are described by the pa-
rameters (x, y, φ), whereby x and y indicate a 
position on the screen and φ indicates the angle 
in the horizontal plane in which the light is emit-
ted. The light is further characterized by its inten-
sity and its color.

The multi-view lenticular display device con-
sists of a sheet of cylindrical lenses (lenticulars) 
placed on top of an LCD in such a way that the 
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LCD image plane is located at the focal plane of 
the lenses (van Berkel, 1999). The effect of this 
arrangement is that LCD pixels located at differ-
ent positions underneath the lenticulars fill the 
lenses when viewed from different directions; see 
Figure 1. Provided that these pixels are loaded 
with suitable stereo information, a 3D stereo ef-
fect is obtained, in which the left and right eyes 
see different, but matching information.

The fact that the different LCD pixels are as-
signed to different views (spatial multiplex) leads 
to a lower resolution per view than the resolution 
of the LCD grid (Dodgson, 1997). In order to 
distribute this reduction of resolution over the 
horizontal and vertical axes, the lenticular cylin-
drical lenses are not placed vertically and parallel 
to the LCD column, but slanted at a small angle 
(van Berkel et al., 1996). The resulting assignment 
of a set of LCD pixels is specified by the display 
manufacturer. Note that the red, green, and blue 

color channels of a single pixel are depicted in 
different views.

Broadcasting for Multi-View 
Autostereoscopic Displays

The transmission of a multi-view autostereoscopic 
video signal encounters several hurdles. These can 
be capacity limitations; the amount of informa-
tion that has to be displayed can easily exceed the 
capacity of the transmission channel. For example, 
broadcasting 9 uncompressed views of 1280 × 786 
pixels with 24 bits per pixel at 20 frames per second 
requires a channel with a capacity of 9 views × 
1280 × 786 pixels × 24 bit × 20 s-1 ≈ 4.4 Gbit/s. 
Furthermore, there can be a mismatch between the 
amount of views and their angular interval, as well 
as other camera parameters at sender and receiver 
side. This may occur especially when broadcasting 
to a multitude of heterogeneous receivers. Finally, 
there can be stringent requirements regarding the 

Figure 1. The autostereoscopic lenticular screen. The various subpixels are refracted to different angles 
by the sheet with the lenticular cylindrical lenses. In this way the left and the right eye are presented 
with different views.
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image artifacts that are visible, depending on the 
application of the autostereoscopic visualization 
(e.g., in medical applications), which can seriously 
limit the amount of lossy compression that can be 
applied. In the following sections, we will provide 
solutions to overcome these hurdles.

FREE-VIEWPOINT INTERPOLATION

Free-viewpoint interpolation allows generation of 
images in-between camera positions. A common 
way to obtain such a free-viewpoint interpolated 
image in accurate manner is to employ a depth 
image based rendering (DIBR) method (Zinger et 
al., 2010). Such methods assume the availability 
of a depth map for each camera image. The depth 
map encodes the distance to the viewer or camera 
for the content of each pixel in the camera image 
(which is called texture image in this context). In 
this section, we first propose an efficient and ac-
curate DIBR algorithm for multi-view content, and 
then describe its application to reducing the strain 
on the transmission channel when broadcasting 
multi-view autostereoscopic video data.

Image Warping

Image warping is the process of deforming the 
shape of the image, while interpolating the image 
content into the new shape. DIBR algorithms are 
based on warping the image from a camera view 
to another view (McMillan & Pizer, 1997). Let us 
specify this in some more detail. Consider a 3D 
point at homogeneous coordinates Pw = (Xw, Yw, 
Zw, 1)T, captured by two cameras and projected 
onto the reference and synthetic image plane at 
pixel positions p1 and p2. The 3D position of the 
original point Pw in the Euclidean domain can be 
written as,

Pw = (K1R1)
−1 · (λ1p1 +K1R1C1),  (1)

where matrix Ri describes the orientation of the 
camera i, Ki represents the 3×3 intrinsic parameter 
matrix of camera i, and Ci gives the coordinates 
of the camera center. Assuming that Camera 1 
is located at the world-coordinate system origin 
and looking into the Z direction, i.e. the direction 
from the origin to Pw, we can write the warping 
equation as,

λ2p2 =K2R2K1
-1 Zwp1 −K2R2C2. (2)

This equation constitutes the 3D image warping 
equation that enables the synthesis of the virtual 
view from a reference texture view and a corre-
sponding depth image. This equation specifies the 
computation for one pixel only, so that it has to 
be performed for the entire image (see Figure 2).

Proposed DIBR Algorithm

Step 1. Warping Depth Maps 
and Copying Texture Values to 
the Corresponding Locations

The depth maps are warped and textures are cre-
ated for the new viewpoint by copying the texture 
values to the pixel locations defined by depth map 
warping. The warping is specified by

[Dwarped1, Twarped1] = Warp(HD(Dref1)), (3)

[Dwarped2, Twarped2] = Warp(HD(Dref2)),

where Dref1 and Dref2 are depth maps of the first 
and second reference cameras, respectively, func-
tion HD(.) labels the pixels at high discontinuities 
and Warp(.) is a warping operation, Dwarped1 and 
Dwarped2 are depth maps, warped from Dref1 and 
Dref2, respectively. Parameters Twarped1 and Twarped2 
are textures at the new viewpoint. In equation 3, 
we use the following HD(.) function. The image 
is warped everywhere, except when the following 
condition holds (particularly on edges):
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In this condition, S is the image space, Dref 
denotes the depth map of the reference camera 
and Td is a predefined threshold. This function 
allows to remove only the warped pixels at the 
edges of high discontinuities, but only restricted 
to edges at the background side.

Step 2. Median filtering and 
defining changed pixels

Median filtering is applied to Dwarped1 and Dwarped2 
and finds the indexes Indexto_warp1 and Indexto_warp2 

of pixels whose values have changed. This index 
computation is specified by

Indexto_warp = Cracks(Median(Dwarped)). (5)

This equation is performed twice for both 
camera views. Function Median(.) is a median 
filter with a 3x3 window, and Cracks(.) detects 
pixels that have changed during median filtering.

Step 3. Texture Crack Filling 
by Inverse Warping

The cracks on warped textures are filled in by 
inverse warping, which is warping from the new 
view to the reference camera views. This covers 
the following relation:

Figure 2. Example: surface S’ is warped from the reference viewpoint to the virtual viewpoint. The change 
in the area size of the surface leads to so-called cracks that are processed by a DIBR algorithm. When 
the depth of an object in a transmitted view is known, the texture image belonging to a virtual camera 
can be accurately determined.
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[Dwarped, Twarped] = Warp-1(Indexto_warp), (6)

This is performed also for the two surrounding 
views with the corresponding input and output 
label.

Step 4. Create the Texture 
for the New View

Blending (function Blend(.)) the two warped tex-
tures and the inpainting, the resulting image gives

[Dnew, Tnew] = Inpaint(Blend(Twarped1, Twarped2)). 
(7)

After blending the two projected images, disoc-
clusions may still occur. Such areas that cannot be 
viewed from both reference cameras. The process 
of filling in those gaps is called inpainting. The 
disocclusions are not just random regions of an 
image. They are newly uncovered areas of back-
ground without texture information, and certainly 
not part of foreground objects. When we assume 
that the disocclusions should be background, we 
may use the depth information at the edges of 
the disoccluded region for inpainting with more 
accurate textures. First, we search for every pixel 
in the disoccluded region in eight directions for 
the nearest edge pixel. Then, we only take into 
account the edge pixels with the lowest depth 
value (Zinger et al., 2010).

DIBR for Multi-View Data Reduction

In order to reduce the load on the transmission 
channel, it is possible to transmit fewer views 
than are displayed on the lenticular screen. The 
missing views are interpolated after decoding the 
video stream at the receiver side, see Figure 3.

Let us consider an example of data reduction 
for transmitting multi-view video. A QuadHD 
LCD grid consists of 3840×2160 pixels. Assum-
ing that a 9-view QuadHD autostereoscopic 
display is used, it would make sense to build up 

a single view in a resolution of 1280×720 pixels 
(Ruijters and Zinger, 2009). The views that are 
used for the interpolation algorithm can consist 
of 32 bits per pixel, where 24 bits are required for 
the RGB components and 8 bits for depth  
information. Usage in clinical interventions re-
quires a minimum frame rate of 24 frames per 
second (fps). When for example 4 views are 
transmitted at 24 fps, and the others are interpo-
lated, this would require a bandwidth of 4 views 
× 1280×720 pixels× 24 fps×32 bits = 2.6 Gbit/s 
(for uncompressed video data) versus 4.4 Gbit/s 
for 9 views without depth information. Further-
more, the load on the view acquisition or genera-
tion side is reduced considerably, since only 4/9 
of the data rendered in the naive approach needs 
to be provided.

COMPRESSION

In this section, we will consider the compression 
options for multi-view video transmitted to an 
autostereoscopic display. At first, we discuss the 
lossy compression of views and introduce the 
rate-distortion curve for this approach. Then we 
discuss an innovative algorithm for compressing 
the depth map, taking into account their specific 
properties.

Lossy Compression of the Views

After the bandwidth load has been reduced by 
transmitting a limited number of views, it can be 
further reduced by lossy compression of the texture 
and depth images of each view. Specifically, it is 
possible to further optimize the compression of 
depth and texture images by jointly encoding them. 
To illustrate the problem of joint compression of 
texture and depth, let us consider the following 
two cases. First, assume that the texture and depth 
images are compressed at very high and low qual-
ity, respectively. In this case, detailed texture is 
mapped onto a coarse approximation of object 
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surfaces, which thus yields rendering artifacts. 
Alternatively, when texture and depth images are 
compressed at low and high quality, respectively, 
a high-quality depth image is employed to warp 
a coarsely quantized texture image, which also 
yields low-quality rendering. These two simple 
but extreme cases illustrate that a clear dependence 
exists between the texture- and depth-quality set-
tings. It goes without saying that this dependency 
exists in the general case as well. Consequently, 

the quantization settings for both the depth and 
texture images should be carefully selected.

To determine the most efficient set of compres-
sion ratios for the texture and depth images, the 
optimal joint texture/depth quantization settings 
for the encoder has been introduced by Morvan 
et al. (2007). In order to find the optimal joint 
quantization settings, the bit-rate control that uni-
fies the texture and depth Rate-Distortion (R-D) 
functions is created. The algorithm simultaneously 

Figure 3. (a) Two configurations for 4 transmitted views, and 9 displayed views. Solid black: transmitted 
views that can be mapped directly on an output view. Dashed: transmitted views that cannot be mapped 
on an output view. Light blue: interpolated view. (b) For the white cameras only their parameters (posi-
tion, field of view, etc.) are transmitted. The missing views are interpolated at the receiver side. Finally, 
all views are emitted to their respective angle by the lenticular display. Only the images of the gray 
cameras are rendered and transmitted.
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combines the depth and texture data into a joint 
R-D surface model where the rate R is the sum of 
the depth and texture bit rate and the distortion D 
corresponds to the rendering quality.

The rendering quality is expressed as a maximal 
Peak Signal-to-Noise Ratio (PSNR) for every joint 
bitrate, which is simply the combined depth and 
texture bit-rate. The R-D surfaces for a “Ballet” 
video sequence, using the regular settings of H.264 
(x264, 2010), can be found in Figure 4. Such a 
compression optimization was implemented using 
a slightly extended H.264/MPEG-4 AVC encoder, 
where the extension involves a joint bit-allocation 
algorithm. However, note that the proposed ex-
tension can be employed as an addition to any 
encoder, e.g., H.264/MPEG-4 AVC, JPEG-2000. 
Additionally, this joint encoding model can be 
readily integrated as a practical sub-system, be-
cause it influences the setting of the compression 
system rather than the actual coding algorithm. 
Finally, this optimal setting can be obtained with 
fast hierarchical search.

The PSNR is calculated in the following way. 
A virtual viewpoint with the same parameters as 
the center reference camera is created and to 
compute the PSNR, a comparison is made between 
the reference image and the virtual interpolated 
one. This measurement technique has been de-
scribed in Mori et al. (2009). The RGB images 
are first transformed to the YUV color space. Then 
the PSNR of the Y values is calculated.

Depth Image Compression

The quality of depth images determines the 
free-viewpoint rendering result and the visual 
perception of the scene. Therefore, depth image 
compression is an important issue. Unlike most 
of the natural images, depth images are normally 
composed of flat zones separated by sharp edges. 
This property can be exploited explicitly to define 
a compression scheme that is better than standard 
proposals. Morvan et al. (2007) proposed a novel 
depth image coding algorithm which concentrates 

on the special characteristics of depth images: 
smooth regions delineated by sharp edges. The 
algorithm models these smooth regions using 
piecewise-linear functions and sharp edges by 
a straight line. To define the area of support for 
each modeling function, the image is decomposed 
into a quadtree that divides the image into blocks 
of variable size, each block being approximated 
by one modeling function containing one or two 
surfaces (see Figure 5). The subdivision of the 
quadtree and the selection of the type of modeling 
function are optimized, such that a global rate-
distortion trade-off is realized.

In this framework, two classes of modeling 
functions are used: a class of piecewise-constant 
functions and a class of piecewise-linear functions. 
For example, flat surfaces that show smooth re-
gions in the depth image can be approximated by 
a piecewise-constant function. Similarly, planar 
surfaces of the scene like the ground plane and 
walls, appear as regions of gradually changing 
grey levels in the depth image. Hence, such a 
planar region can be approximated by a single 
linear function. To identify the location of these 
surfaces in the image, a quadtree decomposition 
is employed (see Figure 6), which recursively 
divides the image into variable-size blocks, i.e., 
nodes of different size, according to the degree 
of decomposition.

In some cases, the depth image within one 
block can be approximated with one modeling 
function. If no suitable approximation can be 
determined for the block, it is subdivided into 
four smaller blocks. To prevent that too many 
small blocks are required along a discontinuity, 
we divide the block into two regions separated 
by a straight line. Each of these two regions is 
coded with an independent function. Conse-
quently, the algorithm chooses between four 
modeling functions for each leaf as follows.
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Figure 4. (a) A frame from the ‘Ballet’ video sequence; (b) R-D surface for ‘Ballet’ with H.264 video 
compression.
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Figure 5. (a) The original depth image “Teddy”; (b) The corresponding reconstructed depth image 
using the described algorithm; (c) Superimposed nodes of the quadtree for the picture in (b). (Coding 
achieved with bit rate=0.12 bit/pixel and PSNR=36.1 dB).

Figure 6. Example of depth image encoding by quadtree decomposition. Each block, i.e., node, of the 
quadtree is approximated by one linear function.
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• Modeling function f̂1 : This function ap-
proximates the block content with a con-
stant function.

• Modeling function f̂2 : This function ap-
proximates the block content with a linear 
function.

• Modeling function f̂3 : This function subdi-
vides the block into two regions separated 
by a straight line and approximates each 
region with a constant function (a wedgelet 
function);

• Modeling function f̂4 : This function subdi-
vides the block into two regions separated 
by a straight line and approximates each 
region with a linear function (a platelet 
function);

The selection of a particular modeling func-
tion is based on a rate-distortion criterion that 
trades-off the distortion and rate of the individual 
functions. More specifically, the algorithm selects 
for each quadtree block the modeling function 
that minimizes the Lagrangian R-D cost function 
according to

f D f R f
f f f f f

m j m j

j

= ( )+ ( )( )
∈{ˆ ,ˆ ,ˆ ,ˆ }

arg min ˆ ˆ ,
1 2 3 4

λ  (8)

where D fm ĵ( )  and R fm ĵ( )  represent the rate and 

distortion resulting from using a modeling func-
tion f̂j . Comparison with JPEG-2000 encoding 
has shown that this delivers higher compression 
rates for comparable PSNR, and provides images 
that lead to fewer artifacts in free-viewpoint in-
terpolation (Morvan et al., 2007).

ADAPTIVE RESOLUTION

Professional applications, such as in the medical 
domain, require very high quality visualization. 

This aspect, together with the intrinsic quality 
of the display and the quality of 3D reconstruc-
tion, influences the decision of the surgeon and 
therefore is of primary importance. When using 
encoding strategies like H.264 coding, the strain 
on the bandwidth is the largest when multiple 
changes occur in the consecutive video frames. 
In order to cope with the bandwidth constraints 
in those cases, it is possible to temporarily lower 
either the temporal resolution (frame rates) or the 
spatial resolution.

An analysis of the pixel grid of lenticular dis-
play is performed in order to determine the optimal 
spatial resolution (Ruijters, 2009). The maximum 
information density that can be conveyed by the 
lenticular display per view, is determined by the 
way the pixels of the LCD grid are refracted by 
the lenticular lenses. In modern lenticular displays, 
the lens array is slanted under a slight angle, which 
affects the distribution of the set of pixels that are 
diverted to a particular viewing angle. Though the 
allocation of the subpixels over the grid is regular, 
it is not orthogonal. The sampling theory of multi-
dimensional signals, described by Dubois (1985), 
can be used to examine the frequency range that 
can be transmitted by a certain non-orthogonal 
grid. Especially the maximum spatial resolution 
that does not lead to aliasing is of interest. When 
the resolution is too high, the lenticular display 
undersamples the transmitted images, and aliasing 
occurs. Although such images can be low-pass 
filtered to prevent aliasing, it is preferable to 
render them immediately at the optimal resolu-
tion, in order to keep the bandwidth usage on the 
transmission channel as low as possible.

The set of subpixels that are refracted to the 
same angular view can be considered to form a 
lattice. Let the vectors {v1, v2, …, vN} form a basis, 
not necessarily orthogonal, of RN. Then lattice L 
⊂ RN is defined as a set of discrete points in RN, 
formed by all linear combinations of vectors v1, 
v2, …, vN with integer coefficients. In order to 
perform a Fourier transform of a signal, sampled 
on a lattice, its reciprocal lattice is required. The 
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reciprocal lattice L* of lattice L is defined as the 
set of vectors y, such that the dot product between 
y and x is an integer for all vectors x contained 
in lattice L. Let V be the matrix, whose columns 
are the representation of the basis vectors v1, v2, 
…, vN in the standard orthonormal basis for RN. 
Then matrix W, containing the basis vectors of 
the reciprocal lattice L*, is determined by WT·V 
= I, with I being the N×N identity matrix. The 
Voronoi cell of a lattice is defined as the set of 
all points in RN closer to the origin than to any 
other lattice point. The basis V for a given lattice 
is not unique (i.e., a lattice L can be described 
by several different basis matrices V). However, 
any basis for a certain lattice L delivers the same 
unique Voronoi cell.

Let the Fourier transform of a continuous 
multi-dimensional signal uc(x) with x in RN be 
defined as:

U f u x e dxc c
j f x

RN

( ) ( ) ,= − ⋅∫ 2π  (9)

where frequency f is in RN. The Fourier trans-
formation of signal uc sampled on lattice L is 
periodical, with lattice L* as periodicity (Dubois, 
1985), leading to,

U f
V

U f rc
reL

( )
det

( ).
*

= +∑1  (10)

Consequently, if a signal that is not bandwidth-
limited within the Voronoi cell of lattice L*, is 
sampled on lattice L, spectral overlap (i.e., alias-
ing) occurs.

The transmitted and interpolated views are 
rendered on an orthogonal grid, and the Voronoi 
cell of an orthogonal lattice is a simple rectangle. 
The maximum resolution that can be visualized on 
the lenticular screen can be examined by fitting 
this Nyquist frequency rectangle range of the or-
thogonal grid on the Voronoi cell of the reciprocal 
lattice of the lenticular sample grid. As long as 

the rectangle is completely contained within the 
Voronoi cell, no aliasing occurs. If this is not the 
case, the spatial resolution is higher than can be 
visualized by the lenticular screen, and the infor-
mation loss manifests itself as aliasing artifacts.

As an example for the optimal resolution 
analysis, we consider a 9-view autostereoscopic 
display with slightly slanted lenticular lenses. 
The distribution of the views over the individual 
subpixels can be found in Figure 7. The com-
posited image can be examined considering only 
one monochromatic primary color (red, green, or 
blue), or can be evaluated for all colors together. 
The basis matrices V of the sample lattice can be 
established by taking two vectors (nonlinearly 
dependent) between adjacent lattice points. The 
LCD pixel distance is used as a metric, which 
means that two neighboring subpixels (e.g., red 
and green) have a distance of 1/3 pixel. For ex-
ample, for the color-independent lattice we take 
the vectors v1 = (5/3, −1)T and v2 = (4/3, 1)T. This 
delivers the following basis matrices V with their 
reciprocals WT:
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The individual views are rendered on an or-
thogonal grid, and the Voronoi cell of an or-
thogonal lattice is a simple rectangle. The maxi-
mum resolution that can be visualized on the 
lenticular screen can be examined by fitting this 
Nyquist frequency rectangle range of the or-
thogonal grid on the Voronoi cell of the reciprocal 
lattice of the lenticular sample grid.
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A logical choice for the resolution of the 
individual views, using a lenticular screen with 
nine views, seems to be 1/3 of the LCD pixel 
grid resolution in both directions. After all, this 
represents the same amount of information: nine 
views with each 1/3·1/3 of the amount of pixels of 
the LCD grid. We call this the 1/3 orthogonal grid. 
The Nyquist frequency rectangle of this resolu-
tion has been depicted on top of the Voronoi cell 

of the reciprocal lattice of the lenticular sample 
grid in Figure 7. Looking at a single primary 
color channel (in Figure 7(a) the green subpixels 
are used, but the lattice is the same for red and 
blue), it can be noted that the rectangle is not 
completely encapsulated within the Voronoi cell. 
This means that for monochromatic red, green, 
and blue images, there is a slight undersampling 
in certain directions, and aliasing may occur in the 

Figure 7. (a) The LCD pixel grid and the view that is associated with each subpixel. The green sub-
pixels that are diverted to view 0 are circled. (b) All subpixels that are diverted to view 0 are circled, 
independent from their color. (c) The reciprocal lattice of the green subpixels for view 0. The Voronoi 
cell of the reciprocal lattice is indicated in pink. Dotted rectangle indicated the Nyquist frequency of the 
1/3 orthogonal grid is indicated. Since the Voronoi cell does not cover the complete Nyquist frequency 
range, slight aliasing in the higher frequencies may occur. (d) The reciprocal lattice of the subpixel 
configuration of view 0, ignoring the color. Since the Nyquist frequency range of the dotted rectangle is 
fully contained within the Voronoi cell (pink), there is no aliasing in the intensity image.
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higher frequencies. If the lenticular lattice for a 
single view is considered, regardless of the colors 
of the subpixels, then the rectangle is completely 
contained within the Voronoi cell, such as in 
Figures 7(b) and 7(d). This implies that for gray-
colored images, there is no aliasing when only 
the intensities are considered, but there may be 
some aliasing between the colors. In practice, this 
behavior resembles color dithering for real-world 
images. High frequent primary-colored structures 
(such as thin lines) may suffer from slight visible 
aliasing artifacts, though.

FUTURE RESEARCH DIRECTIONS

The detailed specification in terms of accuracy 
of the warping function will soon be tested on an 
experimental real-time platform. Our contribution 
on free-viewpoint interpolation should be merged 
with the new techniques emerging from the MPEG 
3DAV working group, and benchmarking experi-
ments are ongoing. With respect to video and depth 
compression, the standardization in the MPEG 
community tends to focus on fully exploiting the 
MPEG4 AVC/H.264 coding standard for both 
signals. In this chapter, we have presented a high-
quality alternative for the depth coding, based on 
dedicated coding of local signal edges in the depth 
signal. The purpose of this algorithm is to combat 
the artifacts of MPEG4 AVC compression of the 
depth signal. However, this alternative has not 
been standardized. The third discussion regarding 
the matching of signal resolution to the display 
has shown that an analysis can reveal when alias-
ing will occur during the use of autostereoscopic 
displays. This analysis can be used to adapt the 
signal resolution such that the quality is optimized. 
It has been shown that with a lenticular display 
offering N views, the signal resolution should be 
1/N times the amount of pixels of the LCD screen. 
The proposed methodologies are key processing 
steps for the rapidly developing market of 3D 
content and displays.

CONCLUSION

This chapter has presented several approaches 
for 3D multi-view video processing for fitting the 
limited bandwidth of the transmitting channel. To 
achieve this, we have considered three solutions: 
(1) free-viewpoint interpolation based on two 
surrounding views, (2) video encoding and depth 
compression, and (3) adaptive resolution process-
ing of the multi-view images for autostereoscopic 
display. A primary conclusion of this chapter is 
that when all solutions are jointly applied, the 
framework allows for the desired bandwidth 
limitation for the 3D multi-view signals, while 
maintaining a high quality though with a slight 
quality loss compared to the unconstrained case. 
The bandwidth that can be saved by the presented 
approaches depends very much on the desired 
image quality and acceptable artifact level, but 
overall it can be concluded that an average load 
reduction of 50% (for conservative settings) to 
more than 95% (for more aggressive compression) 
can be achieved. Although the individual solu-
tions have been tested and evaluated, the degree 
to which these solutions should be applied in a 
system setup, needs to be further evaluated and 
this also depends on the actual practical system 
requirements. Next to the techniques described 
in this chapter it is also possible to reduce the 
bandwidth bottleneck by increasing the capacity 
of the broadcasting network (e.g., use solutions 
like multi-broadcast). However, that is beyond the 
scope of this chapter. With respect to the viewpoint 
interpolation, we have found that the processing 
steps of the algorithm are all useful signal pro-
cessing functions that solve most of the problems 
occurring in the view interpolation. A remaining 
issue is the accuracy of the warping function and 
the intrinsic quality of the depth map.
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Chapter  20

INTRODUCTION

Intelligent Robotics is often defined as the melding 
of perception, reasoning and actuation or, more 
succinctly, ‘sensor informed purposeful actuation’ 
as embodied in a robotic system. Central to this 
field is the ability to capture and represent 3D 
scenes (and environments) and to reason over 
them to plan and execute useful physical action, 
whether in the domain of robotic manipulators or 
mobile robots (or both together).

The ultimate, but currently impossible, ideal in 
3D capture is to imagine a ‘magic’ powder which 
can be sprayed uniformly and densely over all 
surfaces (both external and internal) of objects 
in the scene and then sucked up into a heap with 
each particle remembering the location, texture and 
colour of the surface point it was on. Subsequent 
analysis would then consist of examining this 
heap for structures enabling the segmenting out 
of object surfaces, whole distinct objects, shapes 
and topology, and also, perhaps, the recognition 
of components against a pre-developed model 
data base. Elegant representations of extracted 
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information would support efficient formulation 
of robotic action plans which may involve the 
collision-free manipulation of selected objects or 
efficient obstacle avoiding navigation through the 
environment to nominated goals or for pursuit/
avoidance, hiding, rescue etc. operations. There 
are many ways in which 3D capture can be carried 
out using a wide variety of sensor technologies, 
including ultrasound, passive and active stereop-
sis, time-of-flight laser systems, silhouette, blur, 
brightness, attenuation, radar and x-ray. Likewise, 
there are many methodologies, which can be ap-
plied in the scene (environmental) analysis phase 
to answer such questions as the identity, place-
ment, structural juxtaposition and accessibility of 
objects in the scene. Unfortunately, the ‘magic’ 
powder, as described above, does not exist, but 
many attempts have been made to approximate 
its capabilities. Many of these will be described 
in the chapter.

Once a suitable representation of the robot’s 
working environment can be forged, even if only 
partially, a variety of motion planning algorithms 
(for trajectories when considering robotic ma-
nipulators and paths when considering mobile 
robots) supporting robotic hand/eye coordina-
tion or mobile robot navigation can be applied. 
In some circumstances 3D capture and planning 
are intermingled as in the case of a mobile robot 
simultaneously exploring and navigating its 
environment. At the opposite extreme of explo-
ration in an initially unknown environment, it is 
sometimes possible and appropriate to pre-scan 
a whole working environment (e.g. shopping 
mall or city square etc.) in sufficient detail as to 
allow ’cyber navigation’ of that space as a pre-
liminary to replicating the plans with real robots 
in the real environment. Recently available large 
scale laser scanning technologies make such an 
approach very attractive when appropriate, since 
Virtual Reality like explorations can be used as 
part of the planning process and specific fixed 
objects and areas of interest annotated by hand 
with their functionality properties attached. Also, 

the localizing task can be reliably and accurately 
carried out by fusing live, on-board sensor data 
with the pre-collected model data using various 
scan matching approaches.

Carrying out a robotic task (once a plan has 
been devised) can, itself, be a special challenge, 
depending on the complexity (including dynam-
ics) of the situation, the precision to which the 
robot can be controlled and its pose (location and 
orientation) determined, the means of locomotion 
itself (wheels, tracks, propellers, legs etc.), and 
the properties of the medium (e.g. underwater, 
in a vacuum etc.). Often plans need to be revised 
to accommodate new or changed information to 
compensate for error or when mission goals are 
modified. The determination of location and ori-
entation (localization) is often an intensely sensor 
driven process, especially for mobile robot naviga-
tion in natural terrain which may also be initially 
unknown (not previously mapped or explored).

This chapter will cover all of the above sub-
topics but concentrate on the 3D capture and 
scene analysis components, covering many device 
technologies and analysis methodologies, their 
strengths and weaknesses and application domains 
in the context of intelligent robotics, providing 
many pictorial examples and an extensive bibli-
ography to invite more detailed enquiry.

BACKGROUND

There have been many and varied attempts to 
provide knowledge of the working environment 
needed to guide robots in carrying out complex 
tasks in unstructured environments successfully, 
reliability and efficiently. Generally, the less 
structured the environment the more intelligence is 
required to achieve these goals and the richer must 
be the environmental knowledge to support this 
intelligence. In structured factory environments 
(e.g. an assembly line process) robotic actuation 
can follow precise pre-trained sequences to carry 
out the required tasks. Precision and speed are the 
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essential ingredients here. However, when the 
environment is complex and possibly subject to 
change, continued sensor vigilance is required to 
guide adaptation to new situations. Whilst in some 
such situations (e.g. robot navigation on a plane 
surface) only 2D representations are necessary to 
guide path (or trajectory) planning and actuation, 
more complex, perhaps natural outdoor environ-
ments call for 3D representations to guide planning 
and actuation sequences. Thus, the acquisition and 
analysis of 3D representations are at the core of 
intelligent robotics research.

There have been a number of early surveys 
(Jarvis, 1983; Indyk & Velastin, 1994) describing 
a range of competing approaches to the acquisition 
and analysis of 3D data for intelligent robotics 
and there is insufficient opportunity to cover 
these in details here. However, some overview of 
the evolving field of 3D acquisition is appropri-
ate. Four aspects help to reveal the scope of this 
field, specifically for robotic applications. Firstly, 
the timelines of live data acquisition is crucial. 
Whilst some off-line data gathering can be carried 
out without time constraints, live data is usually 
required to be acquired in real time during an 
actual robot mission. Tradeoffs between speed, 
accuracy and density are often required, these be-
ing closely linked to what sensor instruments and 
computational resources are available. Secondly, 
whether passive or active methods are acceptable 
needs resolving. Whilst passive methods require 
no special energy sources to probe the environ-
ment (e.g. ultrasound, light, x-ray, microwave) 
they tend to be at the mercy of natural variations 
(night and day, sunlight or cloud, rain etc.). Ac-
tive methods can cause cross channelling, create 
hazards (e.g. strong laser beams are eye hazards) 
and can be detected (obviously inappropriate for 
stealth in security and military operations) and 
require energy sources (batteries etc.). The third 
aspect relates to size, weight range and cost. 
Clearly a heavy and expensive laser range finder 
would not be suitable for airborne mapping on 
a model aircraft. An ultrasound ranging system 

(Kleeman, 2003), whilst relatively inexpensive 
and light weight, would not be suitable for large 
scale outdoor navigation since its ranging domain 
is restricted to not much beyond 15 metres. The 
fourth important aspect is what kinds of surfaces 
can be ranged to. Passive systems based on ste-
reopsis, range from image defocus and optical 
flow operate only for visually busy surfaces whilst 
range from shading can operate for visually bland 
surfaces, but usually the reflective properties of 
each such surface needs to be known as do some 
of the lighting properties (e.g. direction of the 
sun). Ultrasound and laser time-of-flight ranging 
can cope with visually bland surfaces but these 
should not be too reflective (e.g. mirrors). Active 
stereopsis replaces one camera with structured 
light source to enable bland surface ranging by 
analysing the projected patterns and knowing the 
triangulation geometry of the instrument set-up.

Given some form of environmental structure 
gleaned from sensors or provided through plans 
etc., there still remains the need to evaluate how 
best a robot manipulator may pick up and put 
down selected objects without collision or how 
a mobile robot might navigate within an obstacle 
strewn space. Usually shortest path or shortest time 
solutions are sought but sometimes aspects such 
as tractability, safety or covertress may also be 
included in these formulations. In many cases the 
environmental data is acquired incrementally and 
the planner has to cope with new and time-varying 
data. Thus, the efficiency of the path (trajectory) 
planning methodology is also of concern.

Actuation itself must rely on jointed arms, 
wheels, tracks, propellers and legs, each modality 
having its own challenges in the context of the 
working environment, whether smooth, rugged, 
under water or in the air (or in space, for that 
matter). Guiding the actuation process to comply 
with the path plan is particularly difficult when 
drift forces, whether from slippage of traction or 
fluid currents, are imposed.
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RANGING METHODOLOGY

Rather than attempting to cover every approach 
to range finding aimed at providing 3D environ-
mental models for intelligent robotic operations 
a small number of specific examples within the 
direct experience of the author and for which in-
strument photographs, technical details and typical 
results can be supplied have been chosen. These 
will provide an overview of what principles are 
involved and what the strengths and weakness are 
over the range of examples presented.

Passive Stereopsis

Figure 1(a) shows a Point Grey Triclops unit with 
a three camera passive stereo monochrome camera 
system. Systems with only two cameras do not al-
low proper ranging to visual line features aligned to 
the baseline (parallel to the line between the optical 
centres of the cameras since the disparity (shift 
between camera images) cannot be discerned on 
this direction). By the addition of the third camera 
this problem is neatly overcome at the cost of some 
extra instrumentation and computer processing. 
Range is inversely related to disparity. Figure 
1(b) shows an intensity (proportional to disparity) 
disparity image of a scene with significant visual 
texture for which passive stereopsis is well suited. 
Ranging up to several metres is possible with this 

sensor, given its relatively small camera separa-
tion. The larger the base line the more accurately 
the disparity can be measured but the less is the 
overlap of images between the cameras for which 
disparity can be measured at all. Variable base 
line systems can be used to resolve this trade off 
for different range dimensions (small versus large 
scenes). The intensity image from each camera is 
also available (monochrome). The same vendor 
also markets two and three camera systems with 
colour cameras. Poor results are obtained when 
lighting is insufficient.

Active Stereopsis

To avoid the problems of passive stereopsis where 
there is insufficient surface texture or visual busi-
ness in general for which inverse range related 
disparity cannot be extracted and to introduce 
high contrast uniform visual structure, one camera 
of a passive stereopsis pair can be replaced by a 
projector which is able to cast light pattern over 
the scene. Stripe patterns running in quadrature to 
the base line are preferred but, in general, any type 
of pattern can be used. The single camera views 
these patterns as distorted from its viewpoint, 
which is displaced laterally with respect to the 
projector. The extent of these visual distortions 
contains disparity and hence range data. Figure 
2(a) shows the equipment set-up of a stripe light 

Figure 1. (a) Triclops passive stereopsis ranging camera; (b) Disparity image.
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active stereosis range system. Figure 2(b) shows 
a reconstructed 3D scene in which striped light 
range data and colour image data have been fused. 
Figure 2(c) shows raw 3D data points extracted 
using this system. One critical problem for light 
pattern based stereopsis is the difficulty of trac-
ing continuous multiple patterns (e.g. stripes) 
over range ‘jump boundaries’ where the identity 
of an individual stripe can be lost. To resolve 
this identity issue (which is crucial for the trian-
gulation geometry calculations to extract range) 
some researchers have used specific patterns for 
individual stripes, colour and/or intermittent code 
patterns for each stripe. Our system (Alexander & 
Ng, 1987) uses a temporal binary coding scheme. 
As an illustrative example, for a total of 64 stripes 
(say black on white), one image is recorded with 
all 64 turned on, another with pairs on and off, a 
third with groups of four on and off and so on up 
to 32 on and 32 off. Thus a total of (log2 64)+1 
patterns are used in a temporal sequence. Dou-
bling the resolution needs only one more image. 
Clearly, the time taken to collect the set of im-
ages is (log2 n+1) times the acquisition time for 
one image but this may not be a serious problem 
if the switching times for patterns are small. In 
our system a ‘light valve’ using electronically 
controlled stripes is used and the seven patterns 
and corresponding camera images required for our 
64-stripe system are dealt with in approximately 
0.5 seconds. Had only one stripe at a time been 
turned on to resolve the ambiguity problem, 64 
images would have been needed. In our system 
each individual stripe can be geometrically identi-
fied by the binary number represented in being 
on and off amongst the 7 images. This is known 
as a binary coded active stereopsis scheme. Our 
system can resolve range to less than 1mm for 
a scene within 50 cm of the apparatus. Unless 
a very bright light source is used (typically the 
standard collimated lighting systems of a slide 
projector is used) there is a limit to the depth of 
field over which the projected light patterns can 
be reasonably in focus to provide the high contrast 

being attempted. Enlarging the lens aperture of the 
projector increases the brightness of the pattern 
but lowers the depth of focus. Some trade-off is 
required. Our system is suitable for 3D scenes 
within a 50cm on the side cube.

It is relatively easy to fuse colour image pixel 
values on the 3D range data set and to extract 
details like surface normal, scene segmentation 
and planar region extraction is also possible (Jar-
vis, 1992a; Hoffman, 2000).

Passive Panoramic, Base 
Line Stereopsis

One of the irritating features of using regular 
cameras, even wide angled cameras, for robotic 
vision is that the frame of the image restricts 
the matching of images which may be taken 
around the robot. This ‘windowing’ problem is 
annoying when trying to match current images 
with those perhaps acquired earlier in an experi-
ment. Panoramic images acquired by pointing a 
video camera at a parabolic like mirror with its 
axis vertical resolves this dilemma very simply, 
particularly if the image can be unwarped with 
a simple computation. Furthermore, using two 
camera/mirror systems displaced along a vertical 
base line, simple panoramic stereo ranging can 
be achieved since disparity matches always oc-
cur along common radial directions between the 
cameras. Being able to mechanically separate the 
cameras along a vertical axis allows for variable 
base line panoramic stereopsis ranging to cope with 
a variety of spatial scaling regarding the working 
environment. Figure 3(f) shows a variable base 
line panoramic stereopsis ranging system (Lui 
& Jarvis, 2010) built in the Intelligent Robotics 
Research Centre at Monash University (of which 
the author is Director) and Figures 3(a,b) shows a 
pair of raw panoramic images, Figures 3(c,d) the 
corresponding unwarped pair of images, Figure 
3(e) the disparity image for this scene and Figures 
3(g,h) reconstructed range/colour views derived 
from the disparity calculations and a colour  
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image for this scene. For this system it is possible 
to choose the optimal base line for a particular 
scene. The real time performance in calculating 
the computationally intense disparities through 
area mask correlation is achieved by utilizing the 
graphic processor’s computational capabilities 
to the full.

Laser Time-of-Flight Ranging 
Cameras

Fairly recently, laser cameras which use time-of-
flight ranging by means of modulated laser diode 
light and correlation detection of reflection time 
have become available on the market but are still 
quite expensive. These are capable of ranging to 7 
metres and can supply range and intensity data at 
30 frames per second with low to medium pixel 
resolution (e.g. PMD-19k). Older models tend 
to suffer from anomalies near jump boundaries 

(where range changes abruptly) but new ways of 
avoiding such effects have emerged. Figure 4(a) 
shows a typical 3D scene and Figure 4(b) shows 
the corresponding range image. Whilst the low 
pixel and range resolution of our system limits 
the accuracy of complex shape analysis its does 
provide sufficient information for obstacle de-
tection and human gesture analysis (Li & Jarvis, 
2009). The relatively low illumination provided 
by the laser diodes is no match for the flooding of 
direct sunlight for our instrument but new models 
with narrow bandwidths are available for outdoor 
use. These devices have no problem ranging to 
visually bland surfaces but specular reflecting 
surfaces can still be a problem.

Scanning Laser Rangefinders

Whilst a laser range camera, as described above, 
is a useful instrument for some robotic navigation 

Figure 2. (a) Striped light active stereopsis equipment; (b) Fused colour and range; (c) 3D data points.
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Figure 3. (a,b) Pair of raw panoramic images; (c,d) Corresponding unwarped image pair; (e) Dispar-
ity image; (f) Variable base-line passive panoramic stereo system; (g,h) Reconstructed range/colour 
views of scene.

Figure 4. (a) 3D scene; (b) Corresponding range image.
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tasks, it is less useful for detailed shape analysis 
as may be required for robotic manipulation of 
named objects or the recognition (by shape) of 
objects in a navigation environment. Scanning la-
ser rangefinders currently available on the market 
can be used for 3D acquisition by adding dimen-
sions by scanning the collimated laser beam they 
generate for time-of-flight measurements. Both 
the Hokuyo and the Erwin Sick laser rangefind-
ers can be used for 3D range acquisition useful 
for modelling object clusters using a variety of 
scanning configurations. Both these rangefinders 
produce a line scan by revolving a mirror which 
deflects the collimated laser beam in a rotating 
line scan, the Sick over 180° and the Hokuyo 
over 240°. These can be used for detecting the 
existence of obstacles in one specific plane (usu-
ally horizontal) for robotic obstacle avoidance. 
The Hokuyo (URG-04LX-UG01) provides one 
scan in 0.1 seconds with an angular resolution 

of 0.36 degrees and range resolution of 1 mm up 
to 4 metres. The Sick unit scans at 75 Hertz over 
its 180 degree scan at 0.5° intervals. Figure 5(a) 
shows a Hokuyo scanning laser range finder in 
a rocking head configuration using a stepping 
motor and a crank to nod the head. Whilst the 
acquisition time for a 3D scan varies according to 
nod scan resolution, some highly detailed models 
can be built using this configuration. An example 
is shown in Figure 5(b). This data is suitable for 
recognising relatively small objects and supports 
robot arm/hand manipulation of these objects by 
guiding the trajectory of the manipulator to detect 
suitable gripping operations.

Whilst the Sick LMS 200 laser range finder 
has been used in a number of nodding and rotat-
ing configurations (Surmann et al., 2001, May & 
Surmann, 2007), a particularly interesting set up 
is shown in Figure 6(a). Here the rangefinder 
rotates around the axis through the central beam 

Figure 5. (a) Hokuyo rocking head laser ranging system; (b) 3D objects; (c) Range data points.
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at the 90° position of its 180° scan (Jarvis, 2008). 
Thus a semicircular planer scan is revolved around 
that axis. Continuous rotation is achieved by sup-
plying power and data signals via a very low 
resistance mercury immersion slip ring device so 
that both high currents and very low noise signals 
can be transmitted. Solid metal to carbon block 
contacts as are used in DC motors cannot provide 
this quality of contact. In our instrument, the range 
finder completes one rotation (about horizontal 
axis in our case) in between ≈ 0.5 to 5.0 seconds 
according to scan density preferences at a time 
cost. What is elegant about this configuration for 
obstacle detection, recognition, and avoidance 
tasks is that the ‘central part’ of the scan collects 
spatially denser range measurements than at the 
periphery, allowing more details to be extracted 
from the scene components directly in the planned 
forward path of the mobile robot. A typical scan 
is shown in Figure 6(d) for the scene of Figure 
6(b). This instrument can read up to a maximum 
range of 30 metres with a 3 mm range resolution. 
The speed of rotation can be changed continu-
ously at will since an accurate shaft encoder in-

dicates the rotation position without one having 
to estimate rotation speed. As an extra feature, 
our scanner has a panoramic mirror based high 
resolution colour camera system whose axis is 
fixed in relation to the range scanner frame. Un-
warped image data can be registered with range 
data as seen in Figure 6(e), for which the raw 
range data is seen in Figure 6(c). The range scan-
ner and panoramic colour vision systems are 
mounted in a gymbal rig with gyroscopic stabi-
lisation so that the pitch and roll of the robotic 
vehicle carrying the system can be largely elimi-
nated from the 3D scan. The fused range/colour 
image data can be constructed on an on-board 
computer but transmitted to a remote site via 
radio Ethernet for sensor rich remote control or 
autonomous navigation overall monitoring and/
or supervision.

Large Scale Laser Range Finder 
Environmental Modelling

Up till now all ranging schemes described were 
restricted to ‘table top’ scene scales or limited 

Figure 6. (a) Erwin sick rotating head laser ranging system; (b) Outdoor scene; (c,e) Indoor scan re-
constructions; (e) With colour fusion; (d) 3D scan data for scene of (b).
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indoor/outdoor scenes from metres to small tens of 
metres in extent (e.g. Erwin Sick rotating head laser 
scanner ranging up to 30 metres). For truly large 
scale indoor or outdoor environmental modelling 
the ‘big guns’ can be used. Two examples will be 
described here. The first, a Riegl LMS-Z420, is 
used for off-line gathering of high resolution range 
and colour data capable of modelling large 3D 
environments up to 1600 metres across but only 
by setting up the instrument at strategic locations 
for minutes to hours at a time and fusing together 
the various data sets. Obviously, only surfaces 
visible from a location can be ranged to from that 
location, so that a complex large environment 
(e.g. a city square) needs several such data sets 
to be collected. Figure 7(a) shows the instrument, 
which is about the size of a large standard fire 
extinguisher. A laser beam is scanned in a vertical 
plane using a prism reflector and the whole instru-
ment is rotated slowly about a vertical axis. Our 

instrument is fitted with a high-resolution colour 
digital camera, which takes a sufficient number 
of views around the vertical axis in a separate 
scan sequence. Figures 7(b,c,d) shows typical 3D 
reconstructions from indoor 3D data. The fused 
image/range data can be used for virtual reality 
cyberspace explorations and is particularly useful 
for trialling robot navigation strategies before the 
deployment of the physical robot (Jarvis, 2007). 
More of this later.

The second large scale laser range finder to be 
covered here, a Velodyne HDL-54E S2 (see Fig-
ure 8(a)), is capable of spinning 64 laser beams, 
spread evenly in a fan pattern in a plane, about 
an axis in that plane. It can collect up to 1.8 mil-
lion samples per second. The rotation speed can 
be varied from 5 hertz to 15 hertz. We typically 
use 10 hertz. When the instrument is mounted to 
scan about a vertical axis on top of a vehicle, 
whether robotic or not, it can provide range data 

Figure 7. (a) Riegl LMS-Z420 laser range scanner; (b,c,d) 3D Indoor colour/range construction examples.
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around the vehicle up to 120 metres away at 10 
hertz, spanning the elevation range from +2 de-
grees above the horizontal at –24.8 degrees below 
the horizontal, thus covering the space where 
obstacles which could impede the movement of 
the vehicle reside. A typical outdoor 3D scan is 
shown in Figure 8(b).

By using a panoramic surveillance camera 
mounted over the Velodyne it is possible to collect 
colour image data, which can be fused with the 
range data. However we are currently not able to 
do this at 10 hertz. Figure 8(c) shows the Velodyne 
with a Mobotix panoramic (180 degrees by 360 
degrees) camera mounted above it and Figure 8(e) 
shows a fused colour/range result for an indoor 
laboratory environment of about 15 metres square.

Cyberspace and Real 
Robotic Navigation

The robot navigation research community has, 
over the last ten years or so, expended considerable 
intellectual energy on the intriguing and important 
topic of how to construct environment maps, built 
incrementally from on-board sensor data whilst 
the robot navigates a previously unknown region 
and at the same time determines the location and 
orientation (pose) of the robot within that evolving 
map. Potentially expanding errors can be carefully 
managed with clever formulations, usually based 
on Extended Kalman Filters or Particle Filters, 
and partially corrected when closure (getting back 
to a previously measured place) can be reliably 
identified (Durrant-Whyte & Guivant, 2000).

Figure 8. (a) Velodyne HDL-54E S2 instrument; (b) Typical outdoor velodyne 3D scan; (c) Velodyne/
panoramic camera combination on robot, (d) Panoramic colour camera view of laboratory, (e) Range/
colour 3D reconstruction of laboratory.
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Much discussion has taken place concerning 
the optimal way of doing this task (Simultaneous 
Localisation and Mapping – SLAM) and just how 
reliably one can recognise closure and exploit it.

Whilst this approach is important and intel-
lectually challenging, there are many situations 
where one-off gathered or previously available 
map data can be used instead. For example in 
man-built environments, building plans would 
be available. In other cases where prior plans are 
not available or insufficiently complete, using an 
instrument, such as the Riegl described above, is 
perfectly justifiable, despite the off-line time and 
care taken in modelling the environment, if the 
robot is expected to work in that environment for 
some time, perhaps on a daily basis.

Using such detailed 3D data avoids the closure 
problem and also permits the human annotation 
of important landmarks and functional objects in 
the environment, which may be relevant to the 
robot’s task. Additionally, complex robot naviga-
tional missions can be initially undertaken in the 
cyberspace, provided by the 3D model data, prior 
to deploying the real physical robot to actually 
complete its mission in real space. Thus the gap 
between simulation and physical actuation can 
be closed elegantly.

Two robot localisation (determining location 
and orientation) experiments using Riegl data 
are described below. Localisation is one crucial 
requirement for autonomous navigation. Add 
path planning (covered later) to environmental 
mapping and localisation and one has the basic 
components of autonomous robot navigation. In 
the first experiment the unwarped images from a 
camera looking up at a panoramic mirror whilst 
the instrument is moved around an environment 
previously scanned by a Riegl laser rangefinder are 
matched against the pre-scanned data. The Haar 
image compression ‘signature’ (Liehart & Maydt, 
2002) of a live image is matched with similar sig-
natures extracted from the image data fused with 
the 3D model from a grid of viewpoints using a 
particle filter (Ho & Jarvis, 2008). The location 

of the panoramic camera system is determined in 
real time as it is moved through that environment. 
The height of the camera can also be extracted. 
This approach is called ‘appearance based’ since it 
relies solely on image matching (here the images 
used for the database are extracted from the Riegl 
model data). Figure 9 shows a typical example, 
which shows part of a localisation trace, the par-
ticle filter distribution at the current point in that 
trace and an insert showing one shot of what is 
seen by the panoramic camera when a walking 
frame carrying the panoramic camera system is 
pushed through the environment by a person. Of 
course, if the camera system were on a robot its 
location would be tracked.

The second experiment localises a vehicle with 
a Velodyne mounted on its roof as it is driven 
through a bush environment previous scanned by 
a Riegl range finder (Jarvis & Ho, 2010). In this 
case range data gathered live from the Velodyne 
is matched with the 3D data from the Riegl data. 
Locations of 13cm accuracy were obtained in a 
large-scale environment of about 150 metres x 
100 metres. Figure 10 shows a typical example.

Trajectory/Path Planning

Once an environmental model, even if incomplete, 
has been acquired and the location of the robot 
vehicle is determined, optimal collision-free paths 
to nominated goals can be calculated to complete 
the requirements of autonomous navigation. A 
detailed comparison of some well-known path 
planning methodologies are given in (Jarvis, 
2006). Only one simple method will be described 
here since planning is not the main focus of this 
chapter. Other approaches are also worth noting 
(Lozano-Perez, 1983; LaValle & Kuffner, 2000).

In a two dimensional rectangular tessellated 
floor space with obstacles, each shown as occu-
pied connected cells, it is possible to find optimal 
collision-free paths from a nominated start point to 
a nominated goal point using a procedure known 
as a Distance Transform (Jarvis, 1984, 1994). 
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Figure 9. Appearance based localization using a Riegl laser range finder and colour image data base

Figure 10. (a) Reconstructed range/colour image outdoor 3D scene; (b) Localisation (Riegl/Velodyne) 
trace in outdoor environment; (c) Typical distance transform path plan in outdoor environment mapped 
by Riegll laser range scanner
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The method permits the allocation of integer dis-
tance values to all free (not occupied by obstacle 
components) cells indicating the number of steps 
each cell is from the goal. From the given start 
position following these distance values downhill 
in a steepest descent sense will lead to the goal 
in the minimum number of steps. The same ap-
proach can be used for 3D paths, spatio-temporal 
paths and paths in partially known environments. 
Weighting related to tractability can also be easily 
accommodated (Jarvis, 2010), as can questions of 
covertness (Marzouqi & Jarvis, 2003, 2004, 2005). 
Road paths can also be accommodated (Jarvis, 
1992b). Figure 10(c) shows an optimal path from 
a nominated start point to a nominated goal for 
an outdoor environment previously scanned by a 
Riegl range finder.

DISCUSSION AND FUTURE WORK

It is clear that 3D capture plays a vital role for 
intelligent robotics whether for robotic hand/eye 
coordination or autonomous mobile robot naviga-
tion. When environments become complex and/or 
large, the representation of the 3D data becomes 
crucial both in terms of memory storage as well 
as efficient retrieval. The question of whether a 
tessellated space or some other representation is 
best for particular applications keeps coming up. 
As computation memory and power at reasonable 
prices keep increasing the debate keeps shifting 
towards elegance, efficiency and accuracy of algo-
rithms for extracting relevant features to support 
particular applications. Methods for rendering and 
segmentation for 3D display require quite different 
approaches to the support robot manipulation and 
navigation in unstructured environments.

It would seem reasonable that Environmental 
Mapping, Robot Navigation and Virtual Reality 
come together as reinforcing themes, since this 
kind of approach allows for preliminary robotic 

simulation trials and human annotation of im-
portant feature from a functional point of view.

The debate on whether passive vision (using 
video cameras) or active devices like laser range 
finders are better for much intelligent robotics 
work seems to be favouring the latter as more and 
more suitable devices come on the market. The 
questions of detectability and cross-channelling 
have not yet been fully addressed but have not been 
dominant themes amongst researches at this time.

Whilst Simultaneous Localisation and Map-
ping (SLAM) has dominated robotics research 
literature in recent times, only time will tell if this 
approach will dominate the commercial side of 
robots likely to be deployed to do everyday tasks 
in the presence of humans. The more robust and 
reliable approach of off-line mapping may take 
over from the more elegant SLAM solutions just 
as a matter of practicality and simplicity.

Efforts to find the one complete representa-
tion, which support all applications, have so far 
not been forthcoming. One would hope that in 
the future such methodologies might emerge and 
yet one suspects that they will not. Interestingly, 
in the whole domain of Artificial Intelligence a 
unifying and universal methodology has likewise 
eluded discovery.

CONCLUSION

This chapter has outlined a number of instruments 
and methodologies for capturing and using 3D 
data to support intelligent robotics, whether for 
manipulators or mobile vehicles. The improving 
quality and reducing price of newly emerging 3D 
sensors will likely change the extent to which real 
robots will play on an ever increasing role in our 
everyday lives, accommodating to changeable 
environment and task complexity and human 
centric communication modes.



394

3D Scene Capture and Analysis for Intelligent Robotics

REFERENCES

Alexander, B. F., & Ng, K. C. (1987). 3D shape 
measurement by active triangulation using an 
array of coded light stripes. SPIE: Optics . Illu-
mination and Image Sensing for Machine Vision 
II, 850, 199–209.

Durrant-Whyte, H. F., & Guivant, J. (2000). 
Simultaneous localization and map building 
using natural features in outdoor environments. 
Intelligent Autonomous Systems, 6(1), 581–588.

Ho, N., & Jarvis, R. A. (2007). Global localisation 
in real and cyber worlds using vision. Australasian 
Conference on Robotics and Automation 2007, 
10th to 12th. Dec., Brisbane, Australia.

Ho, N., & Jarvis, R. A. (2008). Towards a platform 
independent real-time panoramic vision based 
localisation system. Australasian Conference on 
Robotics and Automation 08, (ACRA 08), 3rd to 
5th Dec., Canberra, Australia.

Hoffman, I. D. (2000). Three dimensional scene 
analysis using multiple view range data. Ph.D. 
Thesis, Dept. of Electrical and Computer Sys-
tems Engineering, Monash University, Victoria, 
Australia.

Indyk, D., & Velastin, S. A. (1994). Survey of range 
vision systems. Mechatronics, 4(4), 417–449. 
doi:10.1016/0957-4158(94)90021-3

Jarvis, R., & Ho, N. (2010). Robotic cybernaviga-
tion in natural known environments. [Oct., Singa-
pore]. Accepted for Presentation at Cyberworlds, 
2010, 20–22.

Jarvis, R. A. (1983). A perspective on range 
finding techniques for computer vision. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 5(2), 122–139. doi:10.1109/TPA-
MI.1983.4767365

Jarvis, R. A. (1984). Collision-free trajectory 
planning using distance transforms. Journal of the 
Institution of Engineers, 10(3), 187–191.

Jarvis, R. A. (1992a). 3D shape and surface 
colour sensor fusion for robot vision. Robotica, 
10, 389–396. doi:10.1017/S0263574700010596

Jarvis, R. A. (1992b). Optimal pathways for road 
vehicle navigation. Proc. IEEE Tencon, Nov. 11-
13, Melbourne, (pp. 876-880).

Jarvis, R. A. (1994). On distance transform based 
collision-free path planning for robot navigation in 
known, unknown and time-varying environments 
. In Zang, Y. F. (Ed.), Advanced mobile robots (pp. 
3–31). World Scientific Publishing Co. Pty. Ltd.

Jarvis, R. A. (2006). Robot path planning: Com-
plexity, flexibility and application scope. Practical 
Cognitive Agents and Robots, Nov. 27-28, Perth, 
Australia, (pp. 3-14).

Jarvis, R. A. (2008). Sensor rich teleoperation 
mode robotic bush fire fighting. International 
Advanced Robotics Program/EURON WS 
RISE’2008,International Workshop on Robot-
ics in Risky Interventions and Environmental 
Surveillance,7th to 8th Jan., Benicassim, Spain.

Jarvis, R. A. (2010). Terrain-aware path guided 
robot teleoperation in virtual and real space. 
ACHI 2010, St. Maartins, Feb. 10-14.

Jarvis, R. A., Ho, N., & Byrne, J. B. (2007). 
Autonomous robot navigation in cyber and real 
worlds. CyberWorlds 2007, Hanover, Germany, 
Oct. 24th to 27th, (pp. 66-73).

Kleeman, L. (2003). Advanced sonar and odom-
etry error modeling for simultaneous localisation 
and map building. Proceedings of the IEEE/RSJ 
International Conference on Intelligent Robots 
and Systems, Las Vegas, (pp. 699-704).

LaValle, S. M., & Kuffner, J. J. (2000). Rapidly-
exploring random trees: Progress and prospects. 
In Proceedings Workshop on the Algorithmic 
Foundations of Robotics.



395

3D Scene Capture and Analysis for Intelligent Robotics

Li, D., & Jarvis, R. (2009). Real time hand gesture 
recognition using a range camera. Australasian 
Conference on Robotics and Automation (ACRA 
2009), Dec.

Lienhart, R., & Maydt, J. (2002). An extended set 
of Haar-like features for rapid object detection. 
Proceedings of 2002 International Conference on 
Image Processing, (vol 1, pp. 900-903).

Lozano-Perez, T. (1983). Spatial planning: A 
configuration space approach. IEEE Transactions 
on Computers, C-32(2), 108–120. doi:10.1109/
TC.1983.1676196

Lui, W. L. D., & Jarvis, R. (2010). Eye-full tower: 
A GPU-based variable multibaseline omnidirec-
tional stereovision system with automatic baseline 
selection for outdoor mobile robot navigation. 
Journal of Robotics and Autonomous Systems, 
58(6), 747–761. doi:10.1016/j.robot.2010.02.007

Marzouqi, M., & Jarvis, J. (2004). Covert robotics: 
Hiding in known environments. In Proceedings 
from 2004 IEEE Conference on Robotics, Automa-
tion and Mechatronics, 1st- 3rd December 2004, 
Traders Hotel, Singapore (pp. 804-809).

Marzouqi, M. S., & Jarvis, R. A. (2003). Covert 
path planning for autonomous robot navigation 
in known environments. Proc. Australasian Con-
ference on Robotics and Automation, Brisbane.

Marzouqi, M. S., & Jarvis, R. A. (2005). Covert 
path planning in unknown environments with 
known or suspected sentries locations. The IEEE 
International Conference on Robotics and Auto-
mation (ICRA), Spain.

May, S., Pervoelz, K., & Surmann, H. (2007). 3D 
cameras: 3D computer vision of wide scope . In 
Obinata, G., & Dutta, A. (Eds.), Vision systems: 
Applications.

Surmann, H., Lingemann, K., Nuchter, A., & 
Hertzberg, J. (2001). A 3D laser range finder 
for autonomous mobile robots. Proc. 32nd Inter-
national Symposium on Robotics, April, 19-22, 
(pp. 153-158).

ADDITIONAL READING

Arkin, R. C. (1998), Behaviour Based Robotics, 
The MIT Press Cambridge, Massachusitts, ISBN 
0-262-01165-4. 491 pages.

Artac, M, Jogan, M. Leonardis, A., and Bakstein, 
H. (2005). Panoramic Volumes for Robot Locali-
sation, in Intelligent Robots and Systems,(IROS), 
Aug., 2668-2674.

Arun, K. S., Huang, T. S., & Blostein, S. D. 
(1987). Least Square Fitting of Two 3-D Point 
Sets . IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 9(5), 698–700. doi:10.1109/
TPAMI.1987.4767965

Besl, P. J. and Mc.Kay, N. D. (1992), A Method 
for registration of 3-D Shapes, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 1492), 
239-256.

Corke, P. I., Strelow, D., & Sing, S. (2004), Om-
nidirectional Visual Odometry for a Planetary 
Rover, Proc. International Conference on Intel-
ligent Robots and Systems(IROS).

Fischler, M. A., & Bolles, R. C. (1981). Random 
Sample Consensus: a Paradigm for Model Fitting 
with Applications to Image Analysis and Auto-
mated Cartography . Communications of the ACM, 
24(6), 381–395. doi:10.1145/358669.358692

Fox, D. (2001). KLD-Sampling: Adaptive Par-
ticle Filters . In Advances in Neural Information 
Processing Systems 14. MIT Press.

Gibson, J. J. (1996). The Senses Considered as 
Perceptual Systems. Boston: Houghton-Mifflin.

Gregory, R. L. (1970). The Intelligent Eye. New 
York: McGraw-Hill.

Jain, A. K., & Flynn, P. J. (1993). Three-Dimen-
sional Object recognition Systems. The Nether-
lands: Elsevier Science Publishers.

Jarvis, R. A. (1983). Expedient Range En-
hanced 3-D Colour Vision . Robotica, 1, 25–31. 
doi:10.1017/S026357470000103X



396

3D Scene Capture and Analysis for Intelligent Robotics

Jarvis, R. A. (1984), Robotic Vision Using 3D 
Space Cube Solid Modelling Derived from Mul-
tiple Image Projections, 7th Australian Computer 
Science Conference, Adelaide,pp 18-1 to 18-11.

Kalman, R. E. (1960), A New approach to Linear 
Filtering and Prediction Problems, Trans. Of the 
ASME-Journal of Basic Engineering, 82(Series 
D0, 35-45. Krotov, E. (1989), Mobile Robot 
localisation Using a Single Image, Proc. IEEE 
International conf. on Robotics and Automation, 
Vol.2, 978-983.

Latombe, J.-C. (1991). Robot Motion Planning. 
The Netherlands: Kluwer Academic Publishers.

Leonard, J. J., Jacob, H., & Feder, S. (1999), A 
Computationally Efficient Method for large-Scale 
Concurrent Mapping and Localisation, Proc. 9th 
international Symposium on Robotics research, 
Springer Verlag, 169-176.

Lewis, R. A., & Johnston, A. R. (1977), A Scan-
ning Laser Rangefinder for a Robotic Vehicle, 
Proc. 5th International Joint Conf. on Artificial 
Intelligence, 762-768.

Marr, D. and Poggio, T.(1976), Cooperative 
Computation of Stereo Disparity, AI Memo 364, 
MIT AI Lab., Cambridge, Mass,,June.

Moravec, H. (1980), Obstacle Avoidance and 
Navigation in the Real World by a Seeing Ro-
bot Rover, PhD. Thesis, Stanford University, 
CA,USA.

Nitzan, D., Bain, A. E., & Duda, R. O. (1977). The 
Measurement and Use of Registered Reflectance 
and Range Data in Scene Analysis . Proceed-
ings of the IEEE, 65(2), 206–220. doi:10.1109/
PROC.1977.10458

KEY TERMS AND DEFINITIONS

Active Stereopsis: Extraction of range data 
using the projection of patterns on the scene and 
one laterally displaced camera.

Appearance Based Vision: Machine under-
standing of a scene by its visual appearance only.

Computer Vision: Machine understanding of 
a physical scene through image or range analysis.

Environmental Mapping: The construction 
and representation of a working environment 
computational model.

Intelligent Robotics: Sensor informed pur-
poseful actuation of a mechanical device.

Localisation: The determination of the loca-
tion and pose of a robot in its working environment.

Passive Stereopsis: Extraction of disparity/
range information from two or more images using 
only natural ambient lighting of the 3D scene.

Path or Trajectory Planning: The calcula-
tion of a collision-free path for robot navigation 
or robotic arm manipulation, subject to optimality 
constraints.

Range Finding: Determining the distances 
to object surfaces.

Simultaneous Localisation and Mapping 
(SLAM): The incremental construction of an 
environmental map as a robotic vehicle navi-
gates through an initially unknown space whilst 
simultaneously determining its location and pose.
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INTRODUCTION

Stereo vision is a reliable tool in order to exploit 
depth data from a scene, apart the pictorial one. 
The accuracy of the results depends on the choice 

of the stereo camera system and the stereo corre-
spondence algorithm. Stereo correspondence is a 
flourishing field, attracting the attention of many 
researchers (Forsyth & Ponce, 2002; Hartley & 
Zisserman, 2004). A stereo correspondence al-
gorithm matches pixels of one image (reference) 
to pixels of the other image (target) and returns 
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ABSTRACT

Vision is undoubtedly the most important sense for humans. Apart from many other low and higher level 
perception tasks, stereo vision has been proven to provide remarkable results when it comes to depth 
estimation. As a result, stereo vision is a rather popular and prosperous subject among the computer 
and machine vision research community. Moreover, the evolution of robotics and the demand for vision-
based autonomous behaviors has posed new challenges that need to be tackled. Autonomous operation of 
robots in real working environments, given limited resources requires effective stereo vision algorithms. 
This chapter presents suitable depth estimation methods based on stereo vision and discusses potential 
robotic applications.
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the corresponding vertical displacement as the 
reference pixel’s disparity, which is proportional 
to its depth. Thus, stereo vision is able to retrieve 
the third dimension of a scenery and, therefore, its 
importance is obvious in issues such as travers-
ability estimation, robot navigation, simultaneous 
localization and mapping (SLAM), as well as 
in many other aspects of production, security, 
defense, exploration and entertainment.

Stereo correspondence algorithms can be 
grouped into those producing sparse and those 
giving dense output. Feature based methods stem 
from human vision studies and are based on match-
ing segments or edges between two images, thus 
resulting in a sparse output. This disadvantage is 
counterbalanced by the accuracy and the speed 
of calculations. However, robotic applications 
demand more and more dense output. This is 
the reason why most of the relevant literature 
is focused on stereo correspondence algorithms 
that produce dense output. In order to categorize 
and evaluate them a context has been proposed 
(Scharstein & Szeliski, 2002). According to this, 
dense matching algorithms are classified in lo-
cal and global ones. Local methods (area-based) 
trade accuracy for speed. They are also referred 
to as window-based methods because disparity 
computation at a given point depends only on 
intensity values within a finite support window. 
Global methods (energy-based) on the other hand 
are more time consuming but very accurate. Their 
goal is to minimize a global cost function, which 
combines data and smoothness terms, taking into 
account the whole image. Of course, there are many 
other methods that are not strictly included in either 
of these two broad classes. A detailed taxonomy 
and presentation of dense stereo correspondence 
algorithms can be found in (Scharstein & Szeliski, 
2002). Additionally, the recent advances in the field 
as well as the aspect of hardware implementable 
stereo algorithms are covered in (Nalpantidis, 
Sirakoulis, & Gasteratos, 2008b).

ISSUES OF ROBOTICS-
ORIENTED STEREO VISION

While a heavily investigated problem, stereo 
correspondence is far from being solved. Fur-
thermore, the recent advances in robotics and 
related technologies have placed more challenges 
and stricter requirements to the issue. However, 
common problems related to outdoor exploration, 
such as possible decalibration of the stereo system 
and tolerance to non-perfect lighting conditions, 
have been barely addressed. Robotic applications 
demand stereo correspondence algorithms to be 
able to cope with not ideally captured images of the 
working environments of the robots (see Figure 1) 
and at the same time to be able to provide accurate 
results operating in real-time frame rates. Some of 
the open issues of robotics-oriented stereo vision 
methods are the handling of non-ideal lighting 
conditions, the requirement for simple calculation 
schemes, the use of multi-view stereo systems, the 
handling of miscalibrated image sensors, and the 
introduction of new biologically inspired methods 
to robotic vision.

Non-Ideal Lighting Conditions

The correctness of stereo correspondence algo-
rithms’ depth estimations is based on the assump-
tion that the same feature in the two stereo images 
should have ideally the same intensity. However, 
this assumption is often not valid. Even in the case 
that the gains of the two cameras are perfectly 
tuned, so as to result in the same intensity for the 
same features in both images, the fact that the two 
cameras shoot from a different pose, might result 
in different intensities for the same point, due to 
shading reasons. In general, stereo image pairs 
captured in real life environments often suffer from 
differentiations in illumination, as those shown in 
Figure 2. Moreover, in real environments, which 
is the case for robotic applications, the illumina-
tion is far from being ideal (Klancar, Kristan, & 
Karba, 2004; Hogue, German, & Jenkin, 2007).
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The issue is usually treated by using robust 
pixel dissimilarity measures, which are able to 
compensate for lightness differentiations. Such a 
measure is the Zero mean Normalized Cross-
Correlation (ZNCC) (Binaghi, Gallo, Marino, & 
Raspanti, 2004; Corke, 2005). However, this 
measure’s computation is rather demanding and 
indirect approaches have been employed (Sun & 
Peleg, 2003). On the other hand, Ogale and Alo-
imonos in (Ogale & Aloimonos, 2005a, 2005b, 
2007) propose and use a compositional approach 
to unify many early visual modules such as seg-
mentation, shape and depth estimation, occlusion 
detection and local signal processing. As a result 

this method can process images with contrast, 
among others, mismatches. The first-stage dis-
similarity measure used in this method is the phase 
differences from various frequency channels. 
Apart from these dissimilarity measures, a lumi-
nosity-compensated dissimilarity measure 
(LCDM) has been proposed in (Nalpantidis & 
Gasteratos, 2010b) and will be discussed in detail 
in a following section of this chapter.

Simplicity of Computations

Autonomous robots rely on their own decision-
making algorithms (De Cubber, Doroftei,  

Figure 1. Robots equipped with stereo cameras in a real environments

Figure 2. A stereo image pair suffering from illumination differentiations
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Nalpantidis, Sirakoulis, & Gasteratos, 2009). In 
the case of stereo vision-based navigation, the 
accuracy and the refresh rate of the computed 
disparity maps are the cornerstone of its success 
(Schreer, 1998). The most urgent constraint in 
autonomous robotics is the real-time operation 
and, consequently, such applications usually 
utilize local algorithms (Labayrade, Aubert, & 
Tarel, 2002; Soquet, Aubert, & Hautiere, 2007; 
Kelly & Stentz, 1998; Zhao, Katupitiya, & Ward, 
2007; Konolige et al., 2006; Agrawal, Konolige, 
& Bolles, 2007). The hardware implementation 
of already proposed algorithms found in literature 
is not always straightforward (Nalpantidis et al., 
2008b). Nevertheless, the hardware implementa-
tion of efficient and robust stereo algorithms able 
to provide real-time frame rates, especially in the 
case of moving robots, is very appealing. The 
allure of hardware implementations is that they 
easily outperform the algorithms executed on a 
general-purpose computer and, thus, the achieved 
frame-rates are generally higher. Furthermore, 
the power consumed by a dedicated hardware 
platform, e.g. ASIC or FPGA, is considerably 
lower than that of a common microprocessor and 
the computational power of the robot’s onboard 
available computers is left intact.

Multi-View Stereo Vision

Early previous work focused on developing 
stereo algorithms mostly for binocular camera 
configurations. However, redundancy can lead 
to more accurate and reliable depth estimations. 
More recently, due to significant boost of the 
available computational power, vision systems 
using multiple cameras are becoming increas-
ingly feasible and practical. The transition from 
binocular to multi-ocular systems has the advan-
tage of potentially increasing the stability and 
accuracy of depth calculations. The continuous 
price-reduction of vision sensors allowed the 
development of multiple camera arrays ready 
for use in many applications. For instance, Yang 

et al. (Ruigang, Welch, & Bishop, 2002) used a 
five-camera system for real-time rendering using 
modern graphics hardware, while Schirmacher et 
al. (Schirmacher, Li, & Seidel, 2001) increased 
the number of cameras and built up a six-camera 
system for on-the-fly processing of generalized 
Lumigraphs. Moreover, developers of camera 
arrays have expanded their systems so as to use 
tens of cameras, such as the MIT distributed light 
field camera (Yang, Everett, Buehler, & Mcmil-
lan, 2002) and the Stanford multi-camera array 
(Wilburn, Smulski, Lee, & Horowitz, 2002). 
These systems are using 64, and 128 cameras 
respectively. Most of the aforementioned camera 
arrays are utilized for real-time image rendering. 
On the other hand, a research area that could also 
be benefited by the use of multiple camera arrays 
is the so-called cooperative stereo vision; i.e., 
multiple stereo pairs being considered to improve 
the overall depth estimation results. To this end, 
Zitnick (Zitnick & Kanade, 2000) presented an 
algorithm for binocular occlusion detection and 
Mingxiang (Mingxiang & Yunde, 2006) expanded 
it to trinocular stereo.

The system proposed in (Nalpantidis, Chrys-
ostomou, & Gasteratos, 2009) is a combination 
of quad-camera sensor hardware and a custom-
tailored software algorithm. The sensory configu-
ration of the presented system consists of four 
identical cameras. The four cameras are placed 
so as their optical axes to have parallel orientation 
and their principal points to be co-planar, residing 
on the corners of the same square, as shown in 
Figure 3(a). The images captured by the upper-left 
camera are considered as the reference images of 
each tetrad. Each one of the other three cameras 
produces images to be corresponded to the ref-
erence images. Thus, for each tetrad of images 
three, differently oriented, stereo pairs result, i.e. 
an horizontal, a vertical and a diagonal one. The 
concept, as well as the result of such a group of 
cameras is presented in Figure 3(b).

The hardware configuration, i.e. the four cam-
eras’ formation, produces three stereo image pairs. 
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Each pair is submitted to a simple and rapid ste-
reo correspondence algorithm, resulting, thus, in 
a disparity map. For each disparity map a cer-
tainty map is calculated, indicating each pixel’s 
reliability. Finally, the three disparity maps are 
fused, according to their certainties for each 
pixel. The outcome is a single disparity map that 
incorporates the best parts of its producing dispar-
ity maps. The percentage of pixels whose absolute 
disparity error is greater than 1 in the non-occlud-
ed, all, and near discontinuities and occluded 
regions using the aforementioned method are 
10.8%, 12.6%, and 31.5% respectively. These 
results are significantly better than the results that 
would have been obtained if only a pair of im-
ages were to be used. The combined hardware 
and software system is able to produce accurate 
dense depth maps in frame rate suitable for au-
tonomous robotic applications.

Uncalibrated Stereo Images

The issue of processing uncalibrated images is 
common to applications where the sensory sys-
tem is not explicitly specified. The plethora of 
computations most commonly require the massive 

parallelization found in custom tailored hardware 
implementations. Moreover, the contemporary 
powerful graphics machines are able to achieve 
enhanced results in terms of processing time and 
data volume.

A hierarchical disparity estimation algorithm 
implemented on programmable 3D graphics 
processing unit is reported in (Zach, Karner, & 
Bischof, 2004). This method can process either 
rectified or non-rectified image pairs. Bidirectional 
matching is utilized in conjunction with a locally 
aggregated sum of absolute intensity differences 
(SAD). This implementation, on an ATI Radeon 
9700 Pro, can achieve up to 50 fps for 256 × 256 
pixel input images. The FPGA implementation 
presented in (Jeong & Park, 2004) uses the dy-
namic programming search method on a Trellis 
solution space. It copes with the vergent cameras 
case, i.e. cameras with optical axes that intersect 
arbitrarily, producing non-rectified stereo pairs. 
The image pairs received from the cameras 
are initially rectified using linear interpolation 
and then, during a second step, the disparity is 
calculated. The architecture has the form of a 
linear systolic array using simple processing 
elements. The design is canonical and simple to 

Figure 3. (a) The quad-camera configuration and (b) the results (up-left) and scene capturing (right) 
using a quad-camera configuration
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be implemented in parallel. The resulting system 
can process 1280×1000 pixel images with up to 
208 disparity levels at 15 fps. An extension of the 
previous method is presented in (Park & Jeong, 
2007). The main difference is that information 
from previously processed lines are incorporated 
so as to enforce better inter-scanline consistency. 
The running speed is 30 fps for 320×240 pixel 
images with 128 disparity levels. The number of 
utilized processing elements is 128. The percent-
age of pixels with disparity error larger than 1 in 
the non-occluded areas is 2.63, 0.91, 3.44, and 1.88 
for the Tsukuba, Map, Venus and Sawtooth image 
sets, respectively. Finally, (Masrani & MacLean, 
2006) proposes the utilization of a local weighted 
phase-correlation method. The platform used is 
the Transmogrifer-4 system containing four Altera 
Stratix S80 FPGAs. The system performs rectifica-
tion and left-right consistency check to improve 
the accuracy of the results. The speed for 640×480 
pixel images with 128 disparity levels is 30 fps.

The stereo vision algorithm presented in (Nal-
pantidis, Amanatiadis, Sirakoulis, & Gasteratos, in 
press) is inspired by motion estimation techniques. 
It is based on a fast-executed SAD core for cor-
respondence search in both directions of the input 
images. The results of this core are enhanced using 
sophisticated computational techniques; Gaussian 
weighted aggregation and 3D cellular automata 
(CA) rules are used. The hierarchical iteration 
of the basic stereo algorithm is achieved using 
a fuzzy scaling technique. The aforementioned 
characteristics provide results of improved quality, 
being at the same time easy to be hardware imple-
mented. Consequently, the presented algorithm 
is able to cope with uncalibrated input images. 
The presented scheme is block search-based and 
does not perform scanline pixel matching. As a 
result, it does require neither camera calibration 
nor image rectification. However, it is clear that 
block search approaches require more computa-
tional resources since the number of pixels to be 
considered is greatly increased. In order to address 
this problem, the presented algorithm employs a 

variation of a motion estimation algorithm (Yin, 
Tourapis, Tourapis, & Boyce, 2003), which is used 
for JVT/H.264 video coding (Wiegand, Sullivan, 
Bjntegaard, & Luthra, 2003). The adaptation of 
compression motion estimation algorithms into 
disparity estimation schemes can be effective 
both in accuracy and complexity terms, since 
compression algorithms also attempt to achieve 
complexity reduction while maintaining coding 
efficiency. On the other hand, CA have been em-
ployed as a intelligent and efficient way to refine 
and enhance the stereo algorithm’s intermediate 
results. Let the maximum expected horizontal 
disparity for a stereo image pair be D. The dimen-
sions of the stereo pixel matching search block 
are D×D. For each search block, the disparity 
value is determined by the horizontal distance of 
the (single pixel sampling) best match in terms of 
minimum SAD, as shown in Figure 4.

In the first stage, the disparity algorithm finds 
the best match on the quadruple sample grid 
(circles). Then, the algorithm searches the double 
pixel positions next to this best match (squares) 
to assess whether the match can be improved and 
if so, the single pixel positions next to the best 
double pixel position (triangles) are then explored. 
The general scheme of the presented hierarchical 
matching disparity algorithm between a stereo 
image pair is shown in Figure 5.

Each of the intermediate disparity maps of the 
first two steps is used as initial conditions for the 
succeeding, refining correspondence searches. In 
order to perform the hierarchical disparity search 
three different versions of the input images are 
employed and the stereo correspondence algorithm 
is applied to each of these three pairs. The qua-
druple search step is performed as a normal 
pixel-by-pixel search, on a quarter-size version 
of the input images. That is, each of the initial 
images has been down-sampled to 25% of their 
initial dimensions. The quadruple search is per-
formed by applying the stereo correspondence 
algorithm in (D/4) × (D/4) search regions, on the 
down-sized image pair (D being the maximum 
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expected horizontal disparity value in the original 
image pair). The choice of the maximum searched 
disparity D/4 is reasonable as the search is per-
formed on a 1/4 version of the original images. 
This method provides good depth estimation with 
limited calculations, even for not calibrated input. 
The experimentally calculated Normalized Mean 
Square Error (NMSE) for radially distorted (10%) 
images of the Tsukuba, Venus, Teddy, and Cones 
data sets is 0.0712, 0.0491, 0.1098, and 0.0500 
respectively. These results were in all cases less 
than 0.112% different from the results obtained 
for the original non-distorted image pairs and 

show that the discussed algorithm is robust against 
input’s miscalibrations and distortions.

Biologically Inspired Methods

The success of the human visual system (HVS) 
in obtaining depth information from two 2D im-
ages still remains a goal to be accomplished by 
machine vision. Incorporating procedures and 
features from HVS in artificial stereo-equipped 
systems, could improve their performance. The 
key concept behind this transfer of know-how from 
nature to engineering is identifying, understand-

Figure 4. Quadruple, double and single pixel sample matching algorithm

Figure 5. General scheme of the presented hierarchical matching disparity algorithm. The search block 
is enlarged for viewing purposes
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ing and expressing the basic principles of natural 
stereoscopic vision, aiming to improve the state-
of-the-art in machine vision. These principles are 
mainly involved in the aggregation step that most 
existing algorithms employ.

HVS has been studied by many branches of 
the scientific community. Physics have expressed 
color information through color spaces, while 
biology has investigated the response of the eyes 
to it and the physiology of the eye. Psychophysics 
has studied the relationship between individual 
stimuli’s changes and the perceived intensity, 
which is applicable to vision as well as all the 
other modalities. On the other hand, the gestalt 
school of psychology suggested grouping as the 
key for interpreting human vision.

Gestalt is a movement of psychology that deals 
with perceptual organization. Gestalt psychology 
examines the relationships that bond individual 
elements so as to form a group (Forsyth & Ponce, 
2002). As a consequence, a pattern emerges instead 
of separate parts. This pattern has generally com-
pletely different characteristics to its parts. Some 
of the gestalt rules by which elements tend to be 
associated together and interpreted as a group are 
the following:

• Proximity: elements that are close to each 
other.

• Similarity: elements similar in an attribute.
• Continuity: elements that could belong to 

a smooth larger feature.
• Common fate: elements that exhibit simi-

lar behavior.
• Closure: elements that could provide 

closed curves.
• Parallelism: elements that seem to be 

parallel.
• Symmetry: elements that exhibit a larger 

symmetry.

Gestalt laws have proven themselves to be 
precious tools in interpreting the way the human 
perceives his environment through vision. While 

all the laws are valuable in order to understand the 
context of an image, basic image processing tasks 
could be restricted to using the most basic ones. In 
order to express an image processing task through 
the prism of the gestalt theory, pixels should be 
considered as the elements. The correlation degree 
between them should be treated as the bonding 
relationship of the elements. The basic but at the 
same time important gestalt laws of proximity, 
similarity and continuity can then be applied in 
order to perform the given task.

As far as machine stereo vision is concerned, 
biological and psychological findings can be in-
corporated in the expression of proper correlation 
functions. Real life is the ultimate resource for 
finding right solutions in many fields of robotics, 
computer science and electronics (Mead, 1990; 
Shimonomura, Kushima, & Yagi, 2008; Berthouze 
& Metta, 2005). The natural selection process is a 
strict judge that favors the more effective solutions 
for each problem. Applying ideas borrowed from 
other sciences in technological problems can lead 
to very effective results. Consequently, further 
blending of biological and psychological find-
ings with computer vision indicates a promising 
direction towards simple and accurate computer 
vision algorithms.

DEPTH MAPS COMPUTATION

The majority of stereo correspondence algorithms 
can be described using more or less the same struc-
tural set (Scharstein & Szeliski, 2002; Nalpantidis 
et al., 2008b). The basic building blocks are:

1.  Computation of a matching cost function 
for every pixel in both the input images.

2.  Aggregation of the computed matching cost 
inside a support region for every pixel in 
each image.

3.  Finding the optimum disparity value for 
every pixel of one picture.

4.  Refinement of the resulted disparity map.
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Every stereo correspondence algorithm makes 
use of a matching cost function in order to establish 
correspondence between two pixels. The results 
of the matching cost computation comprise the 
disparity space image (DSI). DSI is a 3D matrix 
containing the computed matching costs for ev-
ery pixel and for all its potential disparity values 
(Muhlmann, Maier, Hesser, & Manner, 2002). 
Usually, the matching costs are aggregated over 
support regions. These regions could be 2D or 
even 3D (Zitnick & Kanade, 2000; Brockers, 
Hund, & Mertsching, 2005) ones within the DSI 
cube. Due to the aggregation step it is not single 
pixels that will be matched, but image regions. 
Aggregation of the matching cost values is a 
common and essential technique in order to sup-
press the effect of noise that usually leads to false 
matching. The selection of the optimum disparity 
value for each pixel is performed afterwards. It 
can be a simple winner-takes-all (WTA) process 
or a more sophisticated one. In many cases it is 
an iterative process as depicted in Figure 6. An 
additional disparity refinement step is frequently 
adopted. It is usually intended to interpolate the 
calculated disparity values, giving sub-pixel ac-
curacy or assign values to not calculated pixels. 
The general structure of the majority of stereo 
correspondence algorithms is shown in Figure 6.

Given that iterative methodologies are gener-
ally not suitable for robotic applications, due to 
computation time restrictions, the main differen-
tiations among the robotics-oriented covered al-
gorithms have to do with the dissimilarity measure 

and the dissimilarity measure’s aggregation 
scheme that they employ.

Dissimilarity Measures

Detecting conjugate pairs in stereo images is a 
challenging research problem known as the cor-
respondence problem, i.e., to find for each point in 
the left image, the corresponding point in the right 
one (Barnard & Thompson, 1980). To determine 
these two points from a conjugate pair, it is neces-
sary to measure the (dis-)similarity of the points. 
The point to be matched without any ambiguity 
should be distinctly different from its surrounding 
pixels. Several algorithms have been proposed in 
order to address this problem. However, every 
algorithm makes use of a matching cost function 
so as to establish correspondence between two 
pixels. The matching cost function is a measure 
that quantitatively expresses how much dissimilar 
(or equivalently similar) two image pixels are. 
There is a number of such measures that have 
been used in robotic vision algorithms, e.g. the 
absolute intensity differences (AD), the squared 
intensity differences (SD), the zero normalized 
cross correlation (ZNCC), phase-based measures, 
and the luminosity-compensated dissimilarity 
measure (LCDM). Each one of them has its merits 
and disadvantages regarding computational com-
plexity and lighting-differentiations tolerance. 
An evaluation of various matching costs can be 
found in (Scharstein & Szeliski, 2002; Mayoral, 
Lera, & Perez-Ilzarbe, 2006; Hirschmuller & 
Scharstein, 2007).

Figure 6. General structure of stereo correspondence algorithm
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AD is the simplest measure of all. It involves 
simple subtractions and calculations of absolute 
values. As a result, it is the most commonly used 
measure found in literature. The mathematical 
formulation of AD is:

AD x y d I x y I x y dl r( , , ) ( , ) ( , )= − −  (1)

where Il, Ir are the intensity values in left and right 
image, (x, y) are the pixels coordinates and d is 
the disparity value under consideration.

SD is somewhat more accurate in expressing 
the dissimilarity of two pixels. However, the higher 
computational cost of calculating the square of the 
intensities’ difference is not usually justified by 
the accuracy gain. It can be calculated as:

SD x y d I x y I x y dl r( , , ) ( , ) ( , )= − −( )2  (2)

The normalized cross correlation calculates 
the dissimilarity of image regions instead of 
single pixels. It produces very robust results, on 
the cost of computational load. Its mathematical 
expression is:
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where W is the image region under consideration.
The LCDM, as introduced in (Nalpantidis & 

Gasteratos, 2010b), provides stereo algorithms 
with tolerance against difficult lighting condi-
tions. The images are initially transformed from 
the RGB to the HSL colorspace. The transition 
from the RGB colorspace, which is the usual 
output of contemporary cameras, to the HSL is 
straightforward and does not involve any compli-
cated mathematical computations (Gonzalez & 
Woods, 1992). The HSL colorspace representation 
is a double cone, as shown in Figure 7(a). In this 
colorspace, H stands for hue and it determines the 

human impression about which color (red, green, 
blue, etc) is depicted. Each color is represented 
by an angular value ranging between 0 and 360 
degrees (0 being red, 120 green and 240 blue). S 
stands for saturation and determines how vivid or 
gray the particular color seems. Its value ranges 
from 0 for gray to 1 for fully saturated (pure) 
colors. The L channel of the HSL colorspace 
stands for the Luminosity and it determines the 
intensity of a specific color. It ranges from 0 for 
completely dark colors (black) to 1 for fully il-
luminated colors (white).

Consequently, the HSL colorspace inherently 
expresses the lightness of a color and demarcates 
it from its qualitative characteristics. That is, an 
object will result in the same values of H and S 
regardless the environment’s illumination condi-
tions. According to this assumption, the proposed 
dissimilarity measure disregards the values of the 
L channel in order to calculate the dissimilarity 
of two colors. The omission of the vertical (L) 
axis from the colorspace representation leads to 
2D circular disk, defined only by H and S, as show 
in Figure 7(b).

The transition from the 3D colorspace repre-
sentation to the 2D one, can be conceived as a 
floor plan projection of the double cone, when 
observed along the vertical (L) axis. Thus, any 
color can be described as a planar vector with its 
initial point being the disc’s center. As a conse-
quence, each color Pk can be described as a polar 
vector or equivalently as a complex number with 
modulus equal to Sk and argument equal to Hk. That 
is, a color in the luminosity indifferent colorspace 
representation can be described as:

P S ek k
iHk=  (4)

As a result, the difference, or equivalently the 
luminosity-compensated dissimilarity measure 
(LCDM), of two colors P1 and P2, shown with 
dashed line in Figure 7(b) can be calculated as the 
difference of the two complex numbers:
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LCDM P P P P S S S S H H( , ) cos( )1 2 1 2 1
2

2
2

1 2 1 22= − = + − −
   

(5)

This equation is the mathematical formulation 
of the proposed LCDM dissimilarity measure. It 
takes into consideration any chromatic informa-
tion available, except the luminosity. Thus, it can 
tolerate and compensate for any difference and 
non-uniformity of the lighting conditions. The 
proposed measure ignores some information (L), in 
contrast to the typical AD or SD. As a result, these 
latter measures are expected to perform somewhat 
better for totally ideal lighting conditions, which 
is the case for synthetic and carefully captured test 
images. On the other hand, any deviation from 
ideal lighting conditions is supposed to leave the 
proposed LCDM unaffected, while AD or SD will 
result in more and more false-matches.

Aggregation Schemes

The dissimilarity values for all the considered 
disparity values calculated in the first step of 
a stereo correspondence algorithm comprise 
the DSI. These results can be aggregated inside 

fix-sized square windows for constant value of 
disparity. The width of the window plays an im-
portant role on the final result. Small windows 
generally preserve details but suffer from noise, 
whereas big windows have the inverse behavior. 
The window’s actual dimensions are chosen so as 
to keep a balance between the loss of detail and the 
emergence of noise, given the algorithm’s details 
and the operating situations. The simplest scenario 
of aggregation is the constant support weight 
aggregation (CSW), i.e. that of simply summing 
the values of pixels within each support window.

The summation of the dissimilarity values 
can also be a weighted one. For instance, in the 
aggregation scheme used in (Nalpantidis, Sirak-
oulis, & Gasteratos, 2008a) each pixel is assigned 
a weight w(i,j,d), the value of which results from 
the 2D Gaussian function of the pixels Euclidean 
distance from the central pixel. The center of the 
function coincides with the central pixel and has 
a standard deviation equal to the one third of 
the distance from the central pixel to the nearest 
window-border. The Gaussian weight function 
remains the same for fixed width of the support 
window. Thus, it can be considered as a fixed mask 

Figure 7. Views of the HSL color space representation. (a) The double cone representation; and (b) the 
horizontal slice at L=0
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that can be computed once, and then applied to 
all the windows.

However, the accuracy of local algorithms that 
employ CSW aggregation is generally considered 
low. Indeed, methods that use fixed support regions 
or even adaptively variable in size and/or shape 
support regions for aggregation of the computed 
dissimilarity values have been proven to produce 
results of inferior quality during the past.

Methods based on extended local method-
ologies sacrifice some of their computational 
simplicity in order to obtain more accurate results 
(Mordohai & Medioni, 2006). Adaptive support 
weights (ASW) based methods (Yoon & Kweon, 
2006a; Gu, Su, Liu, & Zhang, 2008) achieve 
this, by using fix-sized support windows, whose 
pixels contribution in the aggregation stage varies 
depending on their degree of correlation to the 
windows’ central pixel. Despite the acceptance 
that these methods have enjoyed, the determination 
of a correlation function is still an active topic.

An ASW-based method for correspondence 
search is presented in (Yoon & Kweon, 2006a). 
The support-weights of the pixels in a given 
support window are adjusted based on color 
similarity and geometric proximity to reduce the 
image ambiguity. The difference between pixel 
colors is measured in the CIELab color space, as 
this color space is based on measurements on the 
typical observer and, therefore, the distance of two 
points in this space is proportional to the stimulus 
perceived by the human eye. The running time for 
the Tsukuba image pair with a 35x35 pixels sup-
port window is about 0.016 fps on an AMD 2700 
processor. The error ratio is 1.29%, 0.97%, 0.99%, 
and 1.13% for the Tsukuba, Sawtooth, Venus and 
Map image sets, respectively. These figures can be 
further improved through a left-right consistency 
check. The same authors propose a pre-processing 
step for correspondence search in the presence of 
specular highlights in (Yoon & Kweon, 2006b). 
For given input images, specular-free two-band 
images are generated. The similarity between 
pixels of these input-image representations can 

be measured using various correspondence search 
methods such as the simple SAD-based method, 
the adaptive support-weights method (Yoon & 
Kweon, 2006c) and the dynamic programming 
(DP) method (Lei, Selzer, & Yang, 2006).

Another ASW-based approach is presented in 
(Nalpantidis & Gasteratos, 2010a). Assigning the 
right significance weights to each pixel during 
aggregation has been achieved using the ideas 
of gestalt theory. The three basic gestalt laws get 
the following meaning:

• Proximity (or equivalently Distance): 
The closer two pixels are the more corre-
lated to each other they are.

• Intensity similarity (or equivalently 
Intensity dissimilarity): The more similar 
the colors of two pixels are the more cor-
related they are.

• Continuity (or equivalently Discontinuity): 
The more similar is the depth of two pixels 
the more probable it is that they belong to 
the same larger feature and thus the more 
correlated they are.

Thus, gestalt theory can be used in order to de-
termine to which degree two pixels are correlated.

The remaining question is exactly how much a 
correlated pixel to another should contribute to it 
during the aggregation process. In other words, it 
is necessary to establish an appropriate mapping 
between correlation degree and contribution. It 
is well known, since the 19th century, that HVS 
interprets physical stimuli in a psychological, non 
linear rather than in an absolute, linear manner. 
This psychophysical relationship has been investi-
gated in depth and many explaining theories have 
been expressed (Pinoli & Debayle, 2007). The 
Weber-Fechner law is one of those theories and is 
widely acceptable. It indicates a logarithmic cor-
relation between the subjective perceived intensity 
and the objective stimulus intensity.

The mathematical expression of this psycho-
physical law can be derived considering that the 
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change of perception is proportional to the relative 
change of the causing stimulus:

p k
S
S

= − ⋅ ln
0

 (6)

where p is the perceived stimulus intensity, S is 
the actual stimulus intensity, and k is a positive 
constant determined by the nature of the stimulus. 
The algorithm presented in (Nalpantidis & Gas-
teratos, 2010a) calculates the correlation degree 
by proposing and using a mathematical expression 
of three gestalt laws, namely the laws of proxim-
ity, similarity and continuity. While all the gestalt 
laws are significant for image understanding 
applications, these three can be considered to be 
the essential ones in image processing. Trying to 
express the gestalt laws in the form of mathematical 
equations is a difficult task and requires a lot of 
consideration, as there is no all-satisfying solu-
tion. Albeit gestalt psychology theory describes 
the qualitative characteristics of perceptual or-
ganization, a quantitative description, although 
desired, is not always available. A mathematical 
expression for the above mentioned gestalt laws 
has been proposed. The normalized contribution 
of each of them is subject to the psychophysical 
law of Weber-Fechner. The mathematical expres-
sion is the following:

Let x, y be the coordinates of the central pixel, 
x′, y′ the coordinates of a pixel lying inside its 
support region and d the disparity value currently 
being considered. Proximity of the two pixels is 
taken into consideration using their Euclidean 
distance on the image plain. The distance of the 
pixel (x′,y′) from the pixel (x, y) is calculated as:

distance x y x x y yx y( ', ') ( ') ( ')( , ) = − − −2 2  
(7)

The color dissimilarity of the two pixels can 
be estimated by the AD of their color intensities. 
This metric should not be confused with the AD 

calculated in the first step of the algorithm, since 
the former ones are calculated for pixels of the 
same image. Thus, the dissimilarity between the 
pixels (x′, y′) and (x, y) is calculated as:

dissimilarity x y I x y I x yx y C C
C R G B

( ', ') ( , ) ( ', ')( , )
, ,

= −
∈
∑1

3
 

(8)

However, the AD calculated in the first step of 
this algorithm can be used to estimate the continu-
ity of the pixels (x, y) and (x′, y′). The continuity 
of two pixels can be described by the possibility 
that they both have the same depth, i.e. to share 
the same disparity value. The normalization of 
the AD calculated in the first step, results in an 
expression of the possibility that the true disparity 
value for the pixel (x′, y′) is not d. This possibility 
measure express the complement of continuity, i.e. 
the discontinuity. The less likely it is for a pixel 
(x′, y′) to have a disparity value d, the less it should 
bias the central pixel (x, y) in favor of the same 
disparity value d. The discontinuity between the 
pixels (x′, y′) and (x, y) is calculated as:

discontinuity x y d
AD x y d

ADx y d( ', ', )
( ', ', )

max( )( , , ) =  

(9)

The last three equations quantify the gestalt 
theory. On the other hand the exact impact of 
those expression on the final result, is obtained 
by applying the Weber-Fechner. The values for 
distance, dissimilarity and discontinuity used 
hereafter are normalized towards its respective 
maximum value. Consequently, the factor So of 
the Weber-Fechner law for this case is equal to 
one and can be neglected. Thus, the weighting 
factor due to each gestalt law can be calculated:

w x y d k distance x y ddist x y d x y d( ', ', ) ln ( ', ', )( , , ) ( , , )= − ⋅ ( )1
 

(10)
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w x y d k dissimilarity x y ddissim x y d x y d( ', ', ) ln ( ', ', )( , , ) ( , ,= − ⋅2 ))( )  
(11)

w x y d k discontinuity x y ddiscon x y d x y d( ', ', ) ln ( ', ', )( , , ) ( , ,= − ⋅3 ))( )  
(12)

These three weights are combined into one by 
multiplication, providing a general total weight:

w w w wtot dist dissim discon= ⋅ ⋅  (13)

The total weight is calculated for both the left 
and the right input images, obtaining wtot,l and wtot,r, 
respectively. However, distance and discontinuity 
are the same for both images considering the same 
pixel. Consequently, only dissimilarity has to be 
separately calculated for each image. Finally, the 
ASW aggregation, taking into consideration the 
weighting factor for each pixel is performed and 
results into the aggregated DSI:

DSI x y d
w w AD x y d

w w
tot l tot r

tot l tot r

( , , )
( , , ), ,

, ,

=
⋅ ⋅( )

⋅( )
∑
∑

 

(14)

TRAVERSABILITY ESTIMATION

Autonomous robots’ behavior greatly depends on 
the accuracy of their decision-making algorithms. 
Reliable depth estimation is commonly needed in 
numerous autonomous behaviors. Autonomous 
navigation (Hariyama, Takeuchi, & Kameyama, 
2000), obstacle avoidance (Nalpantidis, Kostave-
lis, & Gasteratos, 2009), localization and map-
ping, and traversability estimation are just a few 
of them (Murray & Little, 2000; Sim & Little, 
2009). Vision-based solutions are becoming 
more and more attractive due to their decreasing 
cost as well as their inherent coherence with hu-
man imposed mechanisms. In the case of stereo 

vision-based navigation, the accuracy and the 
refresh rate of the computed disparity maps are 
the cornerstone of its success (Iocchi & Konolige, 
1998; Schreer, 1998). However, robotic applica-
tions place strict requirements on the demanded 
speed and accuracy of vision depth-computing 
algorithms. Depth estimation using stereo vision, 
comprises the stereo correspondence problem. 
Stereo correspondence is known to be very com-
putational demanding. The computation of dense 
and accurate depth images, i.e. disparity maps, in 
frame rates suitable for robotic applications is an 
open problem for the scientific community. Most 
of the attempts to confront the demand for accu-
racy focus on the development of sophisticated 
stereo correspondence algorithms, which usually 
increase the computational load exponentially. On 
the other hand, the need for real-time frame rates, 
inevitably, imposes compromises concerning the 
quality of the results. However, results’ reliability 
is of crucial importance for autonomous robotic 
applications.

A wide range of sensors and various methods 
have been proposed in the relevant literature, as 
far as traversability estimation techniques are 
concerned. Some interesting details about the 
developed sensor systems and proposed detection 
and avoidance algorithms can be found in (Bo-
renstein & Koren, 1990) and (Ohya, Kosaka, & 
Kak, 1998). Movarec has proposed the Certainty 
Grid method in (Moravec, 1987) and Borenstein 
(Borenstein & Koren, 1991) has proposed the 
Virtual Force Field method for robot obstacle 
avoidance. Then the Elastic Strips method was 
proposed in (Khatib, 1996, 1999) treating the 
trajectory of the robot as an elastic material to 
avoid obstacles. Moreover, (Kyung Hyun, Minh 
Ngoc, & M. Asif Ali, 2008) present a modified 
Elastic Strip method for mobile robots operating 
in uncertain environments. Review of popular 
obstacle avoidance algorithms covering them in 
more detail can be found in (Manz, Liscano, & 
Green, 1993) and (Kunchev, Jain, Ivancevic, & 
Finn, 2006).
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The traversability estimation systems found 
in literature involve the use of one or a combina-
tion of ultrasonic, Laser. infrared (IR) or vision 
senors (Siegwart & Nourbakhsh, 2004). The use 
of ultrasonic, Laser and IR sensors is well-studied 
and the depth measurements are quite accurate 
and easily available. However, such sensors suf-
fer either from achieving only low refresh rates 
(Vandorpe, Van Brussel, & Xu, 1996) or being 
extremely expensive. On the other hand vision 
sensors, either monocular, stereo or multicamera 
ones, can combine high frame rates and appeal-
ing prices.

Stereo vision is often used in vision-based 
methods, instead of monocular sensors, due to the 
simpler calculations involved in the depth estima-
tion. Regarding stereo vision systems, one of the 
most popular methods for obstacle avoidance is the 
initial estimation of the so called v-disparity image 
(De Cubber et al., 2009). This method requires 
complex calculations and is applied in order to 
confront the noise in low quality disparity images 
(Labayrade et al., 2002; Zhao et al., 2007; Soquet 
et al., 2007). However, if detailed and noise-free 
disparity maps were available, less complicated 
methods could have been used.

Such a method is found in (Nalpantidis, 
Kostavelis, & Gasteratos, 2009). The disparity map 
obtained by a stereo correspondence algorithm 
is used to extract useful information about the 
navigation of a robot. Contrary to many imple-
mentations that involve complex calculations upon 
the disparity map, the proposed decision making 
algorithm involves only simple summations and 
checks. This is feasible due to the absence of 
significant noise in the produced disparity map. 
The goal of the developed algorithm is to detect 
any existing obstacles in front of the robot and 
to safely avoid it, by steering the robot left, right 
or to moving it forward. In order to achieve that, 
the developed method divides the disparity map 
into three windows, as in Figure 8.

In the central window, the pixels p whose 
disparity value D(p) is greater than a defined 

threshold value T are enumerated. Then, the enu-
meration result is examined. If it is smaller than 
a predefined rate r of all the central windows 
pixels, this means that there are no obstacles 
detected exactly in front of the robot and in close 
distance, and thus the robot can move forward. 
On the other hand, if this enumeration’s result 
exceeds the predefined rate, the algorithm exam-
ines the other two windows and chooses the one 
with the smaller average disparity value. In this 
way the window with the fewer obstacles will be 
selected. The values of the parameters T and r 
play an important role to the algorithm’s behavior. 
Small values of T in conjunction with small val-
ues of r favor the hesitancy in moving forward, 
ensuring obstacle avoidance but at the same time 
being susceptible to false alarms due to noise. On 
the other hand, the opposite scenario is less sus-
ceptible to false alarms but may be proven risky.

Traversability estimation is also a significant 
part of visual mapping applications. A 2D map 
can be computed from stereo image pairs. Using 
the disparity map obtained form a stereo corre-
spondence algorithm a reliable v-disparity image 
can be computed (Labayrade et al., 2002; Zhao 
et al., 2007). The terrain in the v-disparity image 
is modeled by a linear equation. The parameters 
of this linear equation can be found using Hough 
transform (De Cubber et al., 2009), if the camera-

Figure 8. Depth map’s division in three windows
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environment system’s geometry is unknown. 
However, if the geometry of the system is constant 
and known (which is the case for a camera firmly 
mounted on a robot exploring a flat, e.g. indoor, 
environment) the two parameters can be easily 
computed beforehand and used in all the image 
pairs during the exploration. A tolerance region 
on either side of the terrain’s linear segment is 
considered and any point outside this region is 
considered as an “obstacle”. The linear segments 
denoting the terrain and the tolerance region 
overlaid on the v-disparity image are shown in 
Figure 9(a). For each pixel corresponding to an 
“obstacle” the local coordinates are computed. The 
local map, e.g. the one shown in Figure 9(b), is 
an occupancy grid of the environment consisting 
of all the points corresponding to “obstacles”.

CONCLUSION

Stereo vision is a tested, useful and popular tool 
for inferring the depth of a scene with only pas-
sive optical sensors. Robotics, on the other hand, 
evolves rapidly and demand methods that can 
serve autonomous behaviors. Within this context, 
stereo correspondence algorithms need to provide 

accurate depth maps, in real-time frame-rates, 
confronting, at the same time, any difficulties 
imposed by the robots’ environments.

In this chapter, the most interesting research 
issues of the robotics-oriented stereo vision field 
have been covered and solutions and possibili-
ties have been presented. Such issues involve the 
handling of non-ideal lighting conditions, the 
requirement for simple calculation schemes, the 
use of multi-view stereo systems, the handling of 
miscalibrated image sensors, and the introduction 
of new biologically inspired methods to robotic 
vision. Various stereo correspondence algorithms 
that have non-iterative computational structure and 
are able to cope with real life images have been 
discussed. The dissimilarity measures, as well as 
the aggregation schemes that they employ have 
been examined.

Since many stereo vision-based robotic appli-
cations demand such characteristics, the presented 
stereo correspondence algorithms comprise effec-
tive solutions, which can be used as the cornerstone 
of more advanced autonomous robotic behaviors. 
Last, such applications of stereo vision within the 
domain of mobile robotic applications are covered. 
More specifically, the use of the obtained depth 
maps by algorithms that analyze the traversability 

Figure 9. (a) V-disparity images for the image and (b) the corresponding local map
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of the field in order the robot to avoid possible 
obstacles has been examined.
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KEY TERMS AND DEFINITIONS

Dense Stereo Correspondence Algorithm: 
A stereo correspondence algorithm that estimates 
disparity values for all the image pixels.

Disparity Map: An image constituted by the 
disparity values of each pixel, being thus equiva-
lent to a depth map.

Disparity: The difference of an observed 
point’s image coordinates when viewed under 
different viewpoints.

Dissimilarity Measure: A function that 
quantitatively expresses how much dissimilar 
two image pixels are.

Sparse Stereo Correspondence Algorithm: 
A stereo correspondence algorithm that estimates 
disparity values for some of the image pixels.

Stereo Correspondence: The procedure of 
matching pixels between two images that derive 
from the same scene.

Traversability Estimation: The procedure 
of determining whether there are obstacles or 
not in a field.
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Chapter  22

INTRODUCTION

Fire incidents can cause loss of lives and damage 
to property. Damage due to fire has always been a 
major area of concern for museums, warehouses, 

and residential buildings. Conventional fire de-
tection sensors (e.g., ionization and photoelectric 
detectors) and fire sprinkler systems monitor 
only particular points in space. In most cases, 
conventional point-type detectors are installed on 
walls or on a ceiling. The delays in the activation 
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A stereo-vision-based fire detection and suppression robot with an intelligent processing algorithm for 
use in large spaces is proposed in this chapter. The successive processing steps of our real-time algorithm 
use the motion segmentation algorithm to register the possible position of a fire flame in a video; the 
real-time algorithm then analyzes the spectral, spatial, and motion orientation characteristics of the fire 
flame regions from the image sequences of the video. The characterization of a fire flame was carried 
out by using a heuristic method to determine the potential fire flame candidate region. The fire-fighting 
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and applies the continuously adaptive mean shift (CAMSHIFT) vision-tracking algorithm to provide 
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that the stereo-vision-based mobile robot was able to successfully complete a fire-extinguishing task.
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of fire detection sensors and sprinklers in large 
spaces are a major problem. Hence, the monitoring  
capabilities of point-type sensor devices are lim-
ited to a certain distance, and they are ineffective 
for monitoring large areas. These devices are not 
sufficiently flexible to detect fire incidents, and 
many fire-detection sensors and sprinklers are re-
quired to be installed very close to the monitoring 
areas. Comparatively, the video camera is a vol-
ume sensor, and potentially monitors a larger area 
and has a much higher probability of successful 
early detection of fire flames. Video surveillance 
technology is suitable for early detection of fires 
due to its low detection delay, good resolution, 
and high localization accuracy. Early detection of 
fires can certainly expedite fire-fighting efforts, 
and consequently, fires can be extinguished be-
fore they spread to other areas. To monitor large 
spaces, the use of a mobile fire-fighting robot is 
a more flexible alternative than installing a large 
number of detectors and sprinklers. When a fire 
is detected, the fire-fighting robot can move to the 
position of the fire flame and safely evacuate an 
object from the fire area. Stereo vision systems 
can provide the robot with precise depth informa-
tion about a target. Hence, the use of two cameras 
instead of one increases the suppression efficiency 
and adaptability of the robot while detecting and 
evacuating a burning object.

BACKGROUND

In recent times, research on the detection of fire 
flames using surveillance cameras with machine 
vision has gained momentum. The image process-
ing approach involves the extraction of the fire 
flame pixels from a background by using frame 
difference technologies. Healey et al. (1993) 
presented a fire detection algorithm using a color 
video input with a pre-partitioning scheme under 
some restricted conditions, without rejecting the 
similar fire-like alias. Phillips et al. (2002) and 

Celik et al. (2007) conducted studies on computer 
vision by using spectral analysis and the flicker-
ing property of fire flame pixels to recognize the 
existence of fires at a scene. Hue and saturation 
are adopted as feature vectors to extract the fire 
pixels from the visual images (Chen, 2003). Fire 
flame features based on the HSI(hue, saturation, 
intensity) color model are extracted, and regions 
with fire-like colors are roughly separated from 
the image by the color separation method (Horng, 
2005). Then, the image difference method based 
on chromatics is used to remove spurious fire-like 
regions such as objects with similar fire colors or 
areas reflected from fire flames. A fuzzy-based 
dominant flame color lookup table is created, and 
fire regions are automatically selected (Wang, 
2006). However, either the solution does not 
consider the temporal variation of flames or the 
approach is too complicated to process in real time.

Fire suppression systems usually use water to 
extinguish fires due to its good ability to suppress 
fire. Chen et al. (2004) developed a water-spraying-
based fire suppression system. The fire searching 
method is realized based on computer vision theory 
using one CCD camera that is installed at the end 
of a fire monitor chamber. However, it is necessary 
to calculate the changes in the space coordinates 
of the fire with displacement and the pivot angle 
of the CCD camera in the fire searching process. 
Ho (2009) proposes a fire-tracking scheme based 
on CAMSHIFT. The CAMSHIFT algorithm is 
applied to track the trajectory and compute the 
2D positions of the specified moving fire-fighting 
robot in real time with the aid of a vision system. 
Yuan (2010) adopted the computer vision tech-
niques to extract color and motion characteristics 
for real-time fire detection. However, the system 
was designed to move a water gun along a fixed 
path using computer-based control. Hence, the 
monitor ranges of the scene are limited and not 
sufficiently flexible.
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FIRE DETECTION AND 
SUPPRESSION ROBOT

Issues, Controversies, Problems

The basic problems associated with conventional 
fire detection sensors are that they are not suffi-
ciently reliable due to the time delay between the 
start of the fire and nonzero input in the detection 
sensor (Podržaj, 2008). A fire-fighting robot, 
equipped with vision-based fire detection technol-
ogy, is capable of eliminating the conventional 
sensor delay factor and providing fire detection 
coverage for a larger area with minimized cost. The 
overall objective of the mobile robot system is to 
develop an autonomous fire detection technology 
that is capable of identifying fires at early stages, 
alerting fire staff, and extinguishing the fire.

To enable fire detection by the robot, the main 
objective here is to develop a color vision-based 
fire detection system that is accurate and per-
forms efficiently. The image processing approach 
involves the extraction of the fire flame pixels 
from a background by using frame difference 
technologies. To achieve the segmentation of fire 
features, color processing is a better alternative 
than gray-scale processing. Color processing 
can avoid the generation of false alarms due to 
the variations in lighting conditions (e.g., natural 
background illumination) better than gray-scale 
processing. However, vision-based fire flame 
detection still has great technical challenges. Fire 
flames are non-rigid objects and do not exhibit 
primitive image features and variability in density, 
lighting, etc. (Ho, 2009).

For robot navigation and fire extinguishing, 
robots with machine vision have been attracting 
substantial attention recently. A visual feedback 
mechanism commonly used in a robot system is 
the machine vision measuring system capable 
of non-contacting measurement; this type of 
measurement is advantageous because the actual 
environment does not always allow contact with 
the surface at which the measurement is performed. 

One common problem with the acquired images 
is the accompanying noises, namely, disturbances 
caused by irrelevant objects in the background or 
foreground or by substandard illumination. As a 
visual tracking system must be capable of record-
ing image features in real time, another problem 
with most computer-based vision systems is their 
limited performance due to inadequate comput-
ing power for motion tracking after processing 
resources, including the memory, have been allo-
cated to the tasks of feature extraction and template 
pattern matching, which accounts for the handling 
of the disturbances mentioned above (Sumi, 1995; 
Di Stefano, 2003). Due to the high cost of im-
age capturing equipment and image processing 
components, the need for substantial computing 
resources by visual servoing algorithms is not 
often taken into consideration. Despite expected 
improvements on the performance of visual servo 
with image processing and control components 
operating on separate processors, the additional 
cost involved with the extra components presents 
yet another problem.

SOLUTIONS AND 
RECOMMENDATIONS

Image Capturing

Image capturing and processing are the two major 
challenges in the construction of a stereo visual 
tracking system. The main goals of these respec-
tive processes are to provide visual feedback 
and identify the objects one wants to track (in 
this case a burning target), while simultaneously 
determining their 3D positions. In the proposed 
stereo tracking system, the video-signal-capturing 
process is conducted by stereo sensors, which are 
two low-cost CMOS cameras with pixel resolu-
tions of 320 x 240. The captured synchronized 
concurrent video frames are then transmitted 
via USB to a PC, the image processor, and then 
buffered in the PC’s system memory. The frames 
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are eventually displayed in the capture windows 
using the PC’s windows driver model (WDM) 
functions. The windows driver model can reach 
a high video frame rate, while the two CMOS 
cameras can also achieve a frame rate of 30 im-
ages per second; therefore, real-time tracking can 
be achieved.

Calibration of Image-Based System

It might be expected that after the raw images are 
obtained, the next step would be to process them. 
However, camera calibration and robot hand-eye 
transformation are two fundamental steps that need 
to be taken into consideration before any reliable 
image processing or even further visual servoing 
can be performed. To obtain the 3D position of an 
object portrayed in 2D images, the relationship 
between the coordinates of the points in a 3D 
frame, in this paper the tank, and the coordinates 
of their corresponding points projected onto the 2D 
imagery plains must be found. The first step toward 
this goal is recognizing the basic characteristics 

of the cameras used to retrieve the images. These 
characteristics, generally grouped into intrinsic 
and extrinsic parameters, are shown in Figure 1.

Camera calibration can be used to obtain the 
intrinsic and extrinsic parameters of the camera. 
The intrinsic parameters, which are independent 
of a camera’s position in the physical environment, 
describe the camera’s focal length (fx, fy), princi-
pal point (Cx, Cy), and distortion coefficients. On 
the other hand, the extrinsic parameters offer 
information on the transformation between the 
coordinate systems of the camera and the concrete 
world, including a 3D translation vector t that 
provides the translational components and a rota-
tion matrix R that provides the rotational compo-
nents. For stereo camera systems, it is also neces-
sary to obtain the relative extrinsic parameters 
between the two cameras. The combination of a 
camera’s, or an array of cameras’, intrinsic and 
extrinsic parameters presents the full set of data 
needed to locate, in the outside world, the cor-
responding position of a point in images taken by 
the camera(s). M.-C. Villa-Uriol (2004) and 

Figure 1. The robot is calibrated to recognize the intrinsic and extrinsic parameters of the camera
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Hutchinson (2006) provided a complete review 
on the fundamentals and techniques of camera 
calibration.

In this work, static pattern calibration is ap-
plied to attain the cameras’ two sets of parameters 
and empower automatic edge detection. The 
key to this calibration process is the use of a flat 
checkerboard with a known geometric pattern. 
The dimensions of each square on the board are 
predetermined. Points on the board model plane 
and their projections in digital images taken by the 
to-be-calibrated cameras are passed as parameters 
to the intrinsic calibration routine.

The extrinsic calibration methods used here 
also employ digital checker-patterned board im-
ages. Assume that for every point M in the physical 
world reference frame we have m = RM + t, where 
m is the 3D coordinates of the point’s counterpart 
in the camera reference frame, while R and t are 
the rotational and translational matrices, respec-
tively, for the coordinate transformation between 
the physical world and camera reference frames. 
The extrinsic parameters of the to-be-calibrated 
cameras can be calculated linearly with the help 
of one array that stores the coordinates of chosen 
reference points in the digital checkerboard images 
and another array that contains the correspond-
ing points in the physical world. The collection 
of reference points is selected on the checker-
patterned model plane for the two cameras used 
in this chapter.

Vision-Based Fire Detection

The real-time fire-fighting robot is guided by a 
vision-based CAMSHIFT tracking surveillance 
system and is equipped with a water gun to ex-
tinguish the burning targets. The vision-based fire 
flame detection algorithm consists of five steps: 
(1) moving pixels or regions in the current frame 
of a video are determined with the motion history 
image (MHI); (2) the HSI colors of moving pixels 
are checked; (3) if the histogram of moving pixels 
is correlated with the fire flame color histogram, 

then the disordered measurement and temporal 
analysis are performed to determine if fire flame 
colored pixels flicker or not; and (4) Back-Pro-
jection and CAMSHIFT are applied to track the 
fire flame region; (5) the distance between the 
robot and the burning target is calculated through 
binocular stereo.

Moving Motion Segmentation with 
Motion History Image (MHI)

The MHI is a scalar-valued image where intensity 
is a function of the recency of motion (Davis, 1999; 
Bobick, 2001; Bradski, 2002). This moving history 
representation can be used to determine the cur-
rent movement of the object and to segment and 
measure the motions induced by the object (e.g., 
fire flame) in a video scene. MHI representations 
have the following advantages: a range of times 
from frame to frame to several seconds may be 
encoded in a single image, direct recognition of 
the motion itself is possible, motion recognition 
is not computationally taxing and real-time imple-
mentation is possible, and the motion within the 
detecting scene can be monitored. An MHI is used 
to represent how the fire flame is moving, since 
the outward boundaries of the fire flame are less 
prone to misdetection than the source regions of 
fire flame. In an MHI, the pixel intensity is a func-
tion of the motion history at that location; in the 
MHI, brighter values correspond to a more recent 
motion. It should be noted that the final motion 
locations appear brighter in the MHI.

Correlation of Spectral Characteristics

The first step in detecting possible fire flame pixel 
candidates is to transform the color space into HSI 
color space and then carry out analysis. The HSI 
color system projects the standard red-green-blue 
(RGB color model) color space along its principle 
diagonal in terms of white to black shades to avoid 
the influence of lighting changes (Castleman, 
1996). Hue is the dominant color (red, green, and 
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blue) of an area, and saturation is the colorfulness 
of an area in proportion to its brightness. Intensity 
is related to the color luminance, e.g., human skin 
occupies a small portion of the H and S spaces. The 
advantages of the HSI space are the intuitiveness 
of the components and the explicit discrimination 
between luminance and chrominance. The hue, 
saturation, and intensity components of the HSI 
model are normalized into the following ranges: 
0° ≤ hue ≤ 360°, 0 ≤ saturation ≤ 255, and 0 ≤ 
intensity ≤ 255. The computed fire flame spectral 
histogram correlation coefficient is measured by 
the compare correlation analysis. The template 
of fire flame spectral histogram, which is based 
on empirical analysis results for the fire flames 
with colors from red to yellow, was created to 
detect the flame-colored pixels (Horng, 2005). 
Hue is an attribute of the pure color of the image 
scene, and it was demonstrated that it can be used 
in assessing the prospect of numerical labelling 
of the flame colors (Huang, 2008). Hence, the 
detection of flame pixels is carried out using the 
hue channel histogram correlation analysis with 
the fire flame template, which maps the hue value 
of general flames to be distributed from 0° to 60°.

Chaotic Spatial Structure Analysis

The moving object regions with disordered ratios 
of perimeter to area for the extracted fire flame 
region Ω are defined as: P/A, where P represents 
the perimeter of the region and A represents the 
area of the region. As the complexity of a shape 
increases (i.e., the perimeter increases with re-
spect to the area), the value associated with the 
disordered ratio Ω increases. The chaotic and 
turbulent nature of a region can be detected by 
relating the extracted spatial features to the fire 
flame likelihood region and the smoke likelihood 
region (Chen, 2004). The likelihood that a flame-
like region is a flame region is highly correlated 
with the parameter Ω.

Temporal Analysis

It is not always sufficient to detect fire flame 
correctly based on color information. There are 
many objects, with similar color properties as the 
fire flame spectrum. The key to distinguishing 
between the flame and flame-colored objects is the 
nature of their motion. The flames in a fire dance 
around, so any particular pixel will only see fire 
for a fraction of the time. This kind of temporal 
periodicity is commonly known as flickering. The 
flicker of fire flame causes the spectral values in the 
fire flame region to fluctuate in time. The flicker 
in fire is also used as additional information. The 
candidate regions are checked to see whether they 
continuously appear and disappear over time. The 
level crossing rate LCR is utilized for validating 
these extracted fire flickering regions. Temporal 
variation for each pixel is computed by finding 
the level crossing rate of the most likely fire flame 
candidate region above the heuristic threshold 
value among consecutive frames. The heuristic 
threshold is determined based on the fire flame 
models in recorded video sequences.

Back-Projection

If a visual servoing system is applied to natural 
backgrounds, color data usually provides more 
reliable and flexible information than mono-
chrome data (Kim, 1996; LeGrand, 1996). The 
CAMSHIFT tracking engine is based on the his-
togram projection algorithm (Swain, 1990), which 
is a useful technique for color object recognition, 
especially for object identification in complex 
background surroundings. Histogram back-pro-
jection is a primitive operation that finds and 
identifies the association between pixel values in 
a grabbed image and the values in a particular 
histogram bin. Histogram and back-projection 
performed on any consecutive frame would gen-
erate a probability image on which the value of 
each pixel represents the probability of the exact 
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same pixel from the input belonging to the target 
histogram that was used. Given that m histogram 
bins are used, we can define n image pixel loca-
tions. Thus, we have histograms {ŷu}, u=1,…, m 
and pixel locations {xi}, i=1,…, n. Let us also 
define a function c:R2→{1,…, m} that associates 
a pixel at location xi* with a histogram bin index 
c(xi*). Then, the histograms can be computed with 

the equation ŷ c x uu i
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is, the values in the histogram bins, which origi-
nally lie in the range [0, max(ŷu)], now lie in the 
new range [0, UPPER]. In the end, the input 
pixels with the highest probability of being in the 
sample histogram will be mapped onto a 2D 
histogram back-projection image with the highest 
visible intensities.

CAMSHIFT Tracking

The CAMSHIFT algorithm is a non-parametric 
technique that can track a specified target’s 2D 
position efficiently across a series of images. When 
tracking the 2D position of a colored object, in our 
case a fire flame colored region, the CAMSHIFT 
operates on a color probability distribution image 
derived from color histograms. The center and 
size of the targeted object region is computed 
and used as settings for the search window on the 
following frame of the video sequence. Figure 
2 shows the images of the tracked object in the 
digital pictures that have been recognized and 
processed, and the green bounding ellipse presents 
the fire flame region tracked by the CAMSHIFT 
algorithm. The calculation of the color probability 
distribution is not performed on the entire image, 
but only on limited regions surrounding the cur-
rent CAMSHIFT window, which includes images 

of the specified object that are transformed into 
a discrete probability image. This tends to result 
in a large reduction in the computational costs. 
The CAMSHIFT algorithm can be summarized 
by the following steps:

• Step 1: A region of interest (ROI) window 
is selected to be the sample image for fu-
ture color probability distribution compu-
tation. In tracking procedures, this window 
is placed over the targeted object.

• Step 2: A mean shift search window is ini-
tially centered at the first frame’s data point 
position.

• Step 3: The color distribution of the region 
centered at the mean shift search window 
is calculated, producing a discrete prob-
ability image. The mean location (the cen-
troid) of the discrete probability image can 
be found within the search window by first 
obtaining moment values. Given that I(x, 
y) is the pixel value function for the inten-
sity of the discrete probability image at 
point (x, y) in the search window, one can 
compute the zeroth moment for that point.

• Step 4: The mean shift algorithm (step 3) 
is iterated, replacing (x, y) with the corre-
sponding (xc, yc), until the centroid of the 
search window region’s generated proba-
bility image converges to a constant point. 
This point should be at the center of the 
tracked target. The zeroth moment (distri-
bution area) and the mean location (the 
centroid) are stored.

• Step 5: The size of the search windows 
is set as a function of the zeroth moment 
found in Step 4 to match the size of the 
tracked object, and the center of the search 
window is placed on the following frame at 
the mean location found in Step 4. The pro-
cess is then repeated, beginning at Step 3.
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Depth Calculated through 
Binocular Stereo

The purpose of using two cameras instead of one 
to track a burning target provides data on the 
burning target’s position in a third dimension. 
The calculation of depth via binocular stereo is 
a common way to extend one’s knowledge of a 
scene from 2D to 3D (Jain, 1995). First, feature 
points are grouped into teams of two—one each in 
the two images obtained by each of the two stereo 
cameras—to create a set of stereo pairs. Then, for 

every pair, each point is envisioned as a ray. The 
two rays would intersect in the actual 3D world. 
Now suppose the 3D coordinates of the two points 
in a stereo pair are P1 and P2; the rotation matrices 
and translation vectors for the transformation 
between the two camera coordinate systems and 
the stereo coordinate system are R1, R2 and t1, t2. 
Therefore, given a point M in the stereo coordinate 
system, we have P1 = R1M + t1 and P2 = R2M + t2. 
Finally, the point where the two rays intersect is 
found to be the point M that produces the P1 and 
P2 closest to the rays (represented by straight lines) 

Figure 2. The image at the 169th frame is detected as a flame by searching the candidate regions, which 
are above the LCR threshold. The CAMSHIFT tracking algorithm is employed to track the movement 
of flame pixels, and the flame region is bounded by the green ellipse.
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in their respective camera coordinate systems. 
This approach transforms the coordinate systems 
of the two cameras into absolute coordinates. In 
this work, the real-time 3D depths of the burning 
target, tracked with the presently discussed 3D 
point measuring method involving the intersecting 
rays, are rendered using Open Graphics Library 
(Wright, 2000). The specified corner positions of 
the chessboard are processed and analyzed with 
the calibrated intrinsic and extrinsic parameters 
and the absolute coordinates are calculated via 
binocular stereo.

a.  LCR probability distribution image of flame.
b.  The moving flame pixels are separated.
c.  The CAMSHIFT tracking algorithm is 

employed.

STEREO-VISION-BASED FIRE 
EXTINGUISHING MOBILE ROBOT

The real-time stereo-vision-based wheeled mobile 
robot (WMR) is composed of a stereo-vision-
based CAMSHIFT tracking algorithm, two CMOS 
cameras (with stereo vision) for capturing images, 
and a water gun for extinguishing the burning tar-
get. To equip a mobile robot with 3-dimensional 
range detection capability, the calibration of the 
binocular vision system should be carried out. 
The inside geometry information of and spatial 
relationship between the two cameras used can be 
acquired by calibrating their intrinsic and extrinsic 
parameters. The binocular image processing sys-
tem first finds the same feature points of objects, 
then compares them to see if they are the same 
based on the epipolar geometry constraint. The 
next step is to calculate the 3-dimensional coordi-
nate of the object using the triangular perspective 
theory, and to compute the distance between the 
robot and the object.

A fuzzy controller is used to control the robot’s 
rotating direction to track the target on the front 
side. The robot follows the commands of the 
fuzzy reasoning module to manipulate the mobile 

rotation. As soon as the tracked target is followed 
without colliding with obstacles, the fuzzy reason-
ing visual system orders the mobile robot to cease 
rotating. In this work, the two main input variables 
for the fuzzy controller are the sum of the target’s 
horizontal offset position from the stereo image 
pairs Xs = Xl + Xr, as shown in Figure 3, and the 
followed target’s depth position relative to the 
robot Td. The values of Xs and Td are rescaled to 
fit the range [–1, 1]. The value of Xs consists of 
five fuzzy regions: left far (LF), left near (LN), 
zero (ZE), right near (RN), and right far (RF). For 
simplicity, these five standard triangular member-
ship functions for the fuzzy region variables {LF, 
LN, ZE, RN, and RF} are used. The value of Td 
consists of three fuzzy regions: near (N), middle 
(M), and far (F), which represent the target’s depth 
distance relative to the mobile robot.

The rotating signal θr at the fuzzy controller 
output consists of five singletons: left large (LL), 
left small (LS), zero (ZE), right small (RS), and 
right large (RL). With the values of the four 
singletons in hand, the controller output u can 
then be calculated using the defuzzifier formula. 
The fuzzy rules are listed in Table 1, which also 
represent the fuzzy associative matrix. The lines 
and columns correspond to the target’s relative 
depth distances and horizontal offset position 
values, respectively (inputs to the fuzzy reasoning 
system), while the values of the matrix correspond 
to a robot-rotating signal (output of the fuzzy 
reasoning system). Overall, the fuzzy reasoning 
system is governed by the min/max inference 
technique and the center of gravity for the de-
fuzzification step. The two cameras of the proposed 
visual servoing system track the target indepen-
dently of each other with their CAMSHIFT  
tracking engine.

EXPERIMENTAL RESULTS

The main purpose of this work is to design a 
wheeled mobile robot with stereo machine vision 
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to extinguish a burning target. The stereo visual 
system is used to analyze the images to get the 
3D coordinate position of the burning target on 
the ground, mark the region and its gravity center, 
and then the mobile robot is driven to extinguish 
the burning object with a water gun. The position 
and orientation of the stereo cameras with respect 
to the real world’s coordinate system could be 
obtained through extrinsic calibration routines. 
Both cameras are mounted at the front part of 
the mobile robot for the best effective view of the 
targeted object. As shown in Figure 4, the robot 

follows the commands of the fuzzy reasoning 
module to track the burning target with the fire 
detection function enabled and hence, the robot 
rotates to approach the fire flame on the front 
side. Demo video clips of the experiment are 
available on the Web site (http://www.youtube.
com/watch?v=dgTSsX2ezMU and http://www.
youtube.com/watch?v=JkgC-Q7ogE8).

a.  Frame 100, first camera
b.  Frame 100, second camera

Figure 3. Two main input variables for the fuzzy controller are Xs (Xl + Xr) and Td

Table 1. Fuzzy associative matrix for mobile robot steering 

θr

Td

N M F

Xs

LF LS LS LL

LN LS LS LS

ZE ZE ZE ZE

RN RS RS RS

RF RS RS RL
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FUTURE RESEARCH DIRECTIONS

Designing a visual tracking system to avoid the 
in-path obstacles is a complex task because a 
large amount of video data must be transmitted 
and processed in real time. The main task for the 
target tracking without hitting the obstacles is 
obstacle detection, which is essential for a safe 
autonomous mobile robot. Detecting obstacles 
requires an active perception of the surround-
ings. Laser scanners have the great advantage 
of providing accurate depth information that has 
to be computed from calibrated stereo images if 
cameras are used for the same task (Ho, 2009). The 
real-time object tracking and collision avoidance 
method for mobile robot navigation in indoor and 
outdoor environments using stereo vision fused 
with laser sensors is an emerging trend.

Multi-sensor fusion is necessary to cut down 
on the number of false alarms, since it can reduce 
the effects of errors in measurements. A variety 
of multi-sensors were fused together in sensor 
packages and evaluated based on a set of cost 
and performance criteria. Vision-based real-time 
detection for early fire flame detection can be fused 
with the multiple sensors in order to have a more 

robust video-based fire detection system. The 
development of a more sophisticated algorithm, 
versus the simple threshold rule, for multi-sensor 
detectors is currently under investigation.

In addition, multiple fires may break out si-
multaneously, and hence the conducting research 
on tracking multiple fire regions concurrently and 
extinguishing dynamically by the behavior of the 
flame is great technical challenges.

Significant progress has been made in visual 
servoing during the last few years. Several robust 
tracking algorithms have been developed, which 
can track objects in real time in simple scenarios. 
The proposed framework can find further applica-
tions in versatile fields like automated surveillance, 
human computer interaction, video retrieval, traf-
fic monitoring, and vehicle navigation. Further, 
motion estimation is a very active area of research 
in which new solutions are continuously being 
developed. One challenge in tracking is to develop 
robust algorithms suitable for tracking objects via 
hardware logic IP (system-on-chip technology). 
The combination of different sensors employed in 
visual servoing (e.g., audio and force sensors) is 
also a new direction for further development. Such 
hybrid sensor-based servoing provides additional 

Figure 4. Position deviations between the robot and the fire and viewpoint from the robot’s first and 
second camera after applying the visual servoing rules
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information that can be used in conjunction with a 
video-based tracker to solve problems like severe 
occlusion or estimating tracking more robustly.

CONCLUSION

This chapter proposes a stereo-vision-based 
wheeled mobile fire detecting and fighting system 
that has been successfully implemented and shown 
to work in non-ideal real-world residential build-
ings. Spectral, spatial, and temporal motion fea-
tures and a heuristic-based classifier are employed 
to extract real fire flame data and are adopted for 
helping the validation of that fire flame. Stereo 
vision tracking can be achieved by applying the 
CAMSHIFT algorithm and using two low-cost, 
calibrated USB cameras, which enable high-speed 
image capturing. A computationally efficient and 
robust implementation of the visual measurement 
and servo mobile robot can be used to obtain reli-
able real-time online 3D positioning of a particular 
burning object. Moreover, the fire-fighting system 
provides more safety in fire fighting and is very 
economical when incorporated with other fire 
alarm systems for use in large spaces. Intelligent 
and automatic control of the fire-fighting robot 
improves its detection efficiency and suppres-
sion adaptability. Experimental results show that 
real-time fire flame detection and suppression is 
achieved even under non-ideal lighting conditions.
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KEY TERMS AND DEFINITIONS

3D Tracking: Position based tracking algo-
rithm to provide feedback on the real-time posi-
tion of the specified target with a high frame rate

Fire Surveillance System: Video based fire 
surveillance technology is suitable for early detec-
tion of fires due to its low detection delay, good 
resolution, and high localization accuracy.

Fire-Fighting Robot: The mobile robot is able 
to successfully complete a fire-extinguishing task.

Stereo Vision: 3D position can be generated 
by means of two calibrated cameras.

Video Based Fire Flame Detection: Analyze 
the spectral, spatial, and motion orientation char-
acteristics of the fire flame regions from the image 
sequences of the video to detect fire.

Video Based Smoke Pattern Recognition: 
Analyze the spectral, spatial, and motion orien-
tation characteristics of the fire smoke regions 
from the image sequences of the video to detect 
fire smoke.

Visual Servoing: A visual tracking system to 
track an object and video data must be transmitted 
and processed in real time in order to feedback 
to the system.
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Chapter  23

INTRODUCTION

At present, three dimensional television (3D TV) 
is being considered as one of the next generation 
broadcasting technologies because it can pro-
vide consumers with more realistic and life-like 

visual home entertainment experiences. Up to 
now, many researchers have paid much atten-
tion to the development of 3D TV broadcasting 
technologies. Consequently, auto-stereoscopic 
3D displays based on different perspective views 
have been developed and their related 3D services 
have been provided. Above all, 3D services over 
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3D DMB Player and Its Reliable 
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ABSTRACT

This chapter introduces a 3D DMB player which can provide realistic 3D services to consumers in 
terrestrial-digital multimedia broadcasting (T-DMB) systems. This chapter also provides a parameter 
approximation method which can create auto-stereoscopic images reliably in the 3D DMB player. Since 
the bit-budget for the transmission of additional data stream is strictly limited in current T-DMB systems, 
depth-image-based rendering (DIBR) techniques have been studied to provide 3D services in mobile 
devices. In order to create the auto-stereoscopic images reliably in the 3D DMB player, exact parameters 
such as convergence distance, scale factor, and far/near clipping plane should be given in contents. 
However, some contents contain unknown or inappropriate parameter values in a real environment. This 
makes it extremely difficult to create auto-stereoscopic images and provide consumers with reliable 3D 
services. Therefore, we explain how to approximate the rendering parameters by taking mobile display 
size into consideration. Experimental results show that the parameter approximation method can create 
auto-stereoscopic images reliably in the 3D DMB player.
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T-DMB are very attractive because the single user 
environment of T-DMB is suitable for glassless 
3D viewing with mobile displays. However, the 
T-DMB system has limitation of the bit budget 
for the transmission of additional video streams 
because of its limited bandwidth (Park et al., 2009; 
Schreer et al., 2005; Jung et al., 2008; Yun et al., 
2009; Jung et al., 2010c). Actually, the bit-budget 
for the transmission of additional data stream is 
strictly limited in the current state of T-DMB. The 
T-DMB system supports about 2Mbps of useful 
data rate in the 1.536MHz channel. The additional 
data stream should be served in bitrates below 
about 64Kbps, which are insufficient to compress 
the additional color video stream efficiently. 
Therefore, the ATTEST project, which started in 
March 2002 as part of the European Information 
Society Technologies (IST), has proposed a DIBR 
technique because depth information as the ad-
ditional data can be compressed efficiently below 
64Kbps (Park et al., 2009; Fehn, 2004).

In DIBR, left and right virtual views, which 
form auto-stereoscopic image, are rendered by 
reference image and its corresponding depth image 
in auto-stereoscopic displays as shown in Figure 
1. To maintain the backward compatibility with 

traditional 2D broadcasting, regular 2D color video 
in digital TV format is used in the reference im-
age (Figure 1(a)). Its corresponding depth image, 
which stores depth information of 8-bit gray values 
with 0 at the furthest place and 255 at the nearest 
place, is just added with the same spatiotemporal 
resolution (Figure 1(b)) (Lee et al., 2007; Zhang & 
Tam, 2005; Hur et al., 2005; Lee et al., 2009). The 
two virtual views are shown in Figure 1(c); and 
their auto-stereoscopic image is shown in Figure 
1(d). The auto-stereoscopic image is produced 
by interleaving the two virtual views as shown in 
Figure 2(a), and the glassless 3D services from 
the auto-stereoscopic images can be provided to 
consumers in the displays by the parallax barrier 
as shown in Figure 2(b).

Many researchers have studied on the DIBR 
techniques for 3D data services over T-DMB (Park 
et al., 2009; Fehn, 2004; Zhang & Tam, 2005; 
Choi et al., 2009; Oh et al., 2009). Fehn (2004) 
provided the detailed descriptions of the 3D TV 
system introduced by the ATTEST project includ-
ing compression and transmission. Also, the 
high-quality DIBR technique using the shift-
sensor camera setup was introduced in Fehn’s 
work (2004). Zhang & Tam (2005) proposed the 

Figure 1. The general process of depth-image-based rendering (DIBR). (a) Reference image. (b) Depth 
image. (c) Virtual two views. (d) Auto-stereoscopic image.
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depth pre-processing algorithm using an asym-
metric filter to reduce the disocclusion areas. One 
of the inherent problems in DIBR is the disocclu-
sion that scene area, which is occluded in the 
reference image, become visible in any of the 
virtual left and right views. The asymmetric filter 
was able to reduce the disocclusion areas effi-
ciently and maintain good depth quality success-
fully while creating the auto-stereoscopic images. 
Above all, the service architecture for the DIBR 
based 3D services was proposed in Park et al.’s 
work (2009). Figure 3 shows the block diagram 
of 3D services based on DIBR in Park et al.’s 
work (2009). As can be seen, it mainly consists 
of two parts: transmitter and receiver parts. In the 
transmitter part, a depth sequence is preprocessed 
for taking advantages of both reduction of disoc-
clusion area (hole) and distortion minimization 
when virtual views are created. The preprocessed 
depth sequence and the reference sequence are 
coded by the H.264/AVC baseline encoder and 
transmitted through T-DMB channel. In the figure, 

Do and Io are original depth and reference images, 
respectively; and D and I are decoded depth and 
reference images, respectively. T1 and T2 are two 
thresholds of adaptive smoothing filters for depth 
preprocessing. In the receiver part, once both the 
reference stream and its corresponding depth 
stream are received, the auto-stereoscopic image 
sequence is created by applying 3D warping, hole 
filling, and interleaving simultaneously. The cre-
ated auto-stereoscopic image sequence is dis-
played through 3D mobile displays with parallax 
barriers. In the transmitter part, the depth prepro-
cessing is based on adaptive smoothing techniques 
which are explained in Park et al.’s work (2009). 
It is applied before encoding and this is due to the 
fact that T-DMB receivers should guarantee the 
real-time rendering with the limited computation 
power. Therefore, simple and fast 3D warping, 
hole-filling, and interleaving algorithms are used 
in the receiver part.

In this chapter, we introduce the 3D DMB 
system and the 3D DMB player which can provide 

Figure 2. Formation of the auto-stereoscopic image and glassless 3D services by parallax barrier. (a) 
Interleaving. (b) Parallax barrier.
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3D services to consumers. Here, the 3D DMB 
player implements realistic 3D services based on 
the DIBR technique. For providing reliable 3D 
services, exact parameters such as convergence 
distance, scale factor, and far/near clipping plane 
should be given for DIBR according to 3D contents 
and mobile displays. However, in a real environ-
ment, some parameters contain unknown values 
of actual contents when we create auto-stereo-
scopic images because of the content provider’s 
mistakes or transmission errors. Moreover, inap-
propriate values are given in some parameters, 
which make it extremely difficult to create  
auto-stereoscopic images in mobile displays. 
Therefore, this chapter provides a novel method 
to approximate rendering parameters which can 
create auto-stereoscopic images rapidly and pro-
vide consumers with reliable 3D services of 
various contents. By the parameter approximation 
method, we have created auto-stereoscopic im-
ages rapidly and implemented reliable 3D ser-
vices of various contents.

OVERVIEW OF THE 3D 
DMB SYSTEM

Since 3D services are provided to consumers over 
T-DMB, it is impossible to understand the 3D 
DMB system without knowledge of the current 
T-DMB system. T-DMB is a digital radio system 
for sending multimedia to mobile devices such as 
mobile phones, portable media player (PMP), and 
personal digital assistant (PDA).

The key points of T-DMB are to provide 
personality, mobility, and interactivity to con-
sumers. To be more concrete, T-DMB is based 
on Eureka-147 digital audio broadcasting (DAB) 
system by extending multimedia protocol stacks 
to provide mobile TV services (Lee et al., 2008a; 
Lee et al., 2008b). It incorporates the latest media 
coding technologies such as MPEG-4 part 3 BSAC 
(bit sliced arithmetic coding), HEAAC v2 (high 
efficiency advanced audio coding) and part 10 
H. 264 /AVC (advanced video coding) to achieve 
high performances. Moreover, T-DMB supports 
interactive data services by utilizing MPEG-4 

Figure 3. Block diagram of the DIBR-based 3D service over T-DMB (Park, Jung, Oh, Lee, Kim, Lee, 
Lee, Yun, Hur & Kim, 2009).
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BIFS (binary format for scenes). Therefore, it 
can provide audio-associated data service as 
well as downloadable data services. Represen-
tative services of T-DMB are internet service, 
on-line shopping, and pay-per-view (PPV). In 
addition, the T-DMB system is able to provide 
new 3D video and data services to consumers 
because auto-stereoscopic mobile displays are 
quite feasible due to the advancement of 3D LCD 
technologies. The disparity is relatively small in 
the auto-stereoscopic mobile displays because 
of their small sizes. Therefore, eye strain and 
visual fatigue can be reduced (Lee et al., 2009). 
As shown in Figure 4, the 3D DMB system can 
be classified into two main groups: broadcasting 
server and receiver (Lee et al., 2010; Kim, 2008; 
Oh et al., 2007). In the broadcasting server, broad-
casting 3D contents are created from stereoscopic 
camera and multichannel microphone. The 3D 
contents are coded by 3D DMB encoder and 
transmitted through 2D T-DMB channel. If the 
3D DMB services are based on DIBR, reference 
and preprocessed depth sequences are coded by 
the H.264/AVC baseline encoder and transmitted 
through conventional 2D T-DMB channel. Here, 
G.704 is an ITU-T standard for synchronous frame 
structures and gives functional characteristics of 
interfaces associated with network nodes. In the 
case of the receiver part, glassless 3D DMB por-
table receivers are employed to play 3D video data. 
Recently, implementation of 3D DMB receiver for 
3D data service is presented in Lee et al.’s work 
(Lee et al., 2010). The presented receiver is based 
on MPEG-4 BIFS technology, and implemented 
to perform the functionalities for 3D data service 
such as parsing of scene description, decoding and 
rendering of stereoscopic image pairs according 
to the MPEG-4 BIFS technology. The 3D T-DMB 
receivers should have equipments to display ste-
reoscopic images including parallax barrier strip 
displays and lenticular screens. In addition, it is 
necessary to create stereoscopic images reliably in 
the receivers (Lee et al., 2008a; Yun et al., 2008).

Although many studies have been made on 
auto-stereoscopic displays, 3D video coding, and 
DIBR based 3D services, there is little results on 
how to set rendering parameters accurately such 
as convergence distance, scale factor, far/near 
clipping plane in DIBR (Park et al., 2009; Jung 
et al., 2008; Fehn, 2004; Lee et al., 2009; Cho et 
al., 2007). However, if the exact values are not 
assigned to the parameters, it is impossible to 
create auto-stereoscopic images and provide 
consumers with reliable 3D services. In this 
chapter, we explain a novel method to set the 
rendering parameters accurately by taking mobile 
display size into consideration. We also introduce 
our 3D DMB player which can provide realistic 
and reliable 3D services to consumers.

REALISTIC AND RELIABLE 3D 
SERVICES ON THE 3D DMB PLAYER

Depth Preprocessing in 
the Transmitter Part

As mentioned above, one of the inherent problems 
in DIBR is disocclusion which is commonly re-
ferred as ‘hole’. As shown in Figure 5, the holes 
inevitably occur because the scene area, which is 
occluded in the reference image, become visible in 
any of the virtual left and right views. The holes 
are caused by the disoccluded regions of Figure 
5(a) and appear in white regions of Figure 5(b). 
Since there is no information to fill the holes in 
both the reference image and its corresponding 
depth image, it is not easy to handle the holes. 
Thus, to minimize the holes and preserve the depth 
information, two different smoothing filters are 
sequentially applied to original depth images in 
the transmitter part (Park et al., 2009). The main 
idea of the depth preprocessing is to apply two 
different adaptive smoothing filters sequentially to 
original depth images. The first filter is a disconti-
nuity-preserving smoothing filter which removes 
noise and preserves original depth information. 
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Figure 5. Holes caused by disoccluded regions. (a) Cause of disoccluded regions. (b) Virtual left view 
of ‘Ballet’ sequence (white pixels are the disoccluded regions).

Figure 4. System configuration of the 3D DMB system (Kim, 2008). G.704 is an ITU-T standard for 
synchronous frame structures and gives functional characteristics of interfaces associated with network 
nodes.
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The second filter is a gradient-based smoothing 
filter which smoothes original depth images in the 
horizontal direction and reduces holes.

The two adaptive smoothing filters iteratively 
convolve the input depth images to be smoothed 
with a 3x3 mask whose coefficients reflect the 
specific measurements at each point (Park et al., 
2009; Park et al., 2008; Jung & Jiao, 2010a; Jung 
et al., 2010d). Notice that the depth preprocessing 
procedure is employed before encoding and this 
is due to the fact that T-DMB receivers should 
guarantee the real-time rendering with the lim-
ited computational power. Then, the reference 
and preprocessed depth sequences are coded  
by the H.264/AVC baseline encoder and transmit-
ted over T-DMB. Figure 6 shows the depth  
preprocessing procedure using the adaptive 
smoothing filters. In this figure, left and right 

windows show original and preprocessed depth 
images, respectively.

3D DMB Player and Reliable DIBR in 
the Receiver Part

3D DMB Player

The target platform of the DIBR based 3D services 
is the portable player with the auto-stereoscopic 
3D display. The auto-stereoscopic display is made 
by direction-based techniques such as parallax 
barrier strip displays and lenticular screens. Ac-
cordingly, each eye of the viewer can see only the 
corresponding view by directing the light emitted 
by pixels of distinct two (left and right) perspective 
views exclusively to the appropriated eye. In our 
3D DMB player, the special parallax barrier has 
been affixed to the display of the SONY VAIO 

Figure 6. Depth preprocessing procedure using adaptive smoothing techniques (left window: original 
depth image, right window: preprocessed depth image)
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VGN-UX17LP (CPU: Intel Core™ Solo Processor 
U1400) for viewing 3D auto-stereoscopic images 
as shown in Figure 7. The DIBR technique of the 
receiver consists of three main steps: 3D image 
warping, hole filling, and interleaving. Because 
of the limited computational power and memory 
of mobile devices, a look-up-table (LUT) based 
simultaneous method has been used for real-time 
rendering (Park et al., 2009; Choi et al., 2009). 
The main idea of the LUT based simultaneous 
method is to conduct three steps of warping, 
hole filling, and interleaving simultaneously by 
directly representing the value of each pixel in the 
two virtual views on the auto-stereoscopic image 
plane. In the 3D image warping step, the distance 
of pixel movement for depth values is calculated by 
the pre-constructed LUT. Then, the holes mainly 
appear around the boundary of objects, and are 
filled simply by linear interpolation of neighbor-
hood pixels. Finally, auto-stereoscopic images for 
3D displays are created by interleaving the two 
virtual views on the 3D DMB player.

Reliable DIBR Technique

As mentioned earlier, the DIBR technique in the 
receivers consists of 3D image warping, hole fill-
ing, and interleaving. In the 3D image warping, 
a depth distance, Z(v), is computed by a depth 
value of depth images, v, using zfar (i.e., far clip-
ping plane) and znear (i.e., near clipping plane) 
as follows (Park et al., 2009; Jung et al., 2008).
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As can be seen in equation (1), two parameters, 
zfar and znear, are requirements for getting the depth 
distance, Z(v). However, most of actual contents 
do not provide these two parameter values. In 
this case, receivers should request transmitters to 
send them additionally, which can cause delays in 
rendering the contents. Moreover, if transmitters 
do not find and give the parameters, it is very 
difficult to create auto-stereoscopic images in 

Figure 7. Our 3D DMB player: the special parallax barrier is affixed to the display of the SONY VAIO 
VGN-UX17LP for viewing 3D auto-stereoscopic images
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the receivers. In order to solve the problem and 
be able to provide reliable 3D services, equation 
(1) is approximated as follows.

If we assume that zfar is 255 and znear is 1, 
equation (1) is calculated as follows (Jung & 
Jiao, 2010b).

Z v
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255
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255
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Since 254/255 can be approximated to 1, we 
can express equation (2) as the following form.
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Depth values can be converted into depth dis-
tances using equation (3) on contents which have 

unknown values of the two parameters zfar and znear. 
In addition, we can make virtual left and right 
views which generate auto-stereoscopic images 
implementing equation (3). Figure 8 shows the 
geometry of the virtual camera setup for generat-
ing virtual views. The parameters f and tc denote 
the focal length and baseline distance between 
virtual cameras Cl and Cr, respectively. From the 
geometry, the pixel positions (xc, y), (xl, y), and 
(xr, y) of the reference view, and the two virtual 
views corresponding to each point P with the depth 
distance Z have the following relationships (Park 
et al., 2009; Jung et al., 2008):
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Figure 8. The geometry of the camera setup for generating virtual views in DIBR
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where Zc and αu are the convergence distance and 
scale factor between the two virtual cameras, 
respectively. Here, the scale factor αu is obtained 
by dividing the focal length f into pixel size. 
Moreover, it has been reported that users may feel 
much eyestrain if differences between xl and xr 
are more than 3% of the image width (Fehn, 2004). 
Accordingly, the maximum differences are ad-
justed to meet 3% of the image width. Based on 
the aforementioned assumptions, αu can be cal-
culated as follows.
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where w is the image width. We assume that tc 
=60mm because general distances between left 
and right eyes are about 60mm. To maximize the 
differences between xl and xr, we set Z(xc,y)=1 and 
Zc=255. Then, αu is computed by equation (7).

αu w= ×0 0005.  (7)

Left and right virtual views are created reliably 
using equations (4)-(7), even if contents contain 
unknown or inappropriate parameter values. By 
equations (4) and (5), disocclusion area (hole) is 
inevitably produced. The holes are filled using 
linear interpolation algorithm in the two virtual 
views. Then, auto-stereoscopic images are gener-
ated by interleaving the two virtual views. As a 
result, it is possible to provide consumers with 
reliable 3D services even if contents contain 
unknown or inappropriate parameter values. 
Moreover, the computational cost of the rendering 
procedure is reduced because the depth distances 
are computed by equation (3) instead of equation 
(1). It is very effective for mobile devices with 
the limited computational power and memory.

EXPERIMENTAL RESULTS

To evaluate the effectiveness of the parameter 
approximation method, five typical sequences, 
each consisting of the reference sequence and the 
corresponding depth sequence, were used for the 
tests. All experiments were performed on the 3D 
DMB player. As shown in Figure 9, they are ‘In-
terview’ and ‘Orbi’ from Heinrich-Hertz-Institute 
(HHI), ‘Ballet’ and ‘Breakdancer’ from Microsoft 
Research, and ‘Etri_CG’ from Electronics and 
Telecommunications Research Institute (ETRI), 
respectively. All test sequences for the experiments 
are adjusted to the size of 320x240 pixels. Since 
the image width w is 320, the scale factor αu is 0.16 
by equation (7). In addition, a depth distance Z(v) 
corresponding to a depth value v is computed by 
equation (3). Z(v) corresponding to v is distributed 
as shown in Figure 10. The distribution is nearly 
equivalent to that by equation (1). By equation (6), 
the maximum differences between xl and xr are 
approximately 10, and this means that consumers 
would feel much eyestrain if disparity between xl 
and xr is more than 10 pixels.

Figure 11 shows two auto-stereoscopic im-
ages of the ‘Interview’ sequence each created by 
equations (1) and (3). It can be observed that the 
parameter approximation method can create 
nearly identical auto-stereoscopic images obtained 
by equation (1) on the 3D DMB player. Figure 
12 shows the success rate of creating auto-stereo-
scopic images from the test sequences. In the 
table, P means that the test sequence is success-
fully played on the 3D DMB player. The success 
rate evaluates how many sequences are success-
fully played from the 5 test sequences by the 
proposed method. It can be observed that our 
method is able to create auto-stereoscopic im-
ages of various contents reliably on the 3D DMB 
player. That is, even if contents do not contain 
some of parameter values such as near/far clipping 
plane, our DMB player can create auto-stereo-
scopic images reliably. Therefore, reliable and 
realistic 3D services can be provided to consum-
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Figure 9. Examples of five test sequences (left: reference images, right: depth images). (a) Interview. 
(b) Orbi. (c) Ballet. (d) Breakdancer. (e) Etri_CG.
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ers by the parameter approximation method. 
Moreover, the parameter approximation method 
has the merit of reducing computational cost 
because of its simplified computation. To verify 

the effectiveness of the computational cost, we 
measured time it took to create the auto-stereo-
scopic images using separately equations (1) and 
(3). As shown in Figure 13, the average process-

Figure 10. A depth distance Z(v) versus a depth value v

Figure 11. Auto-stereoscopic images of the ‘Interview’ sequence (a) created by equation (1) and (b) 
created by equation (3)
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ing time of the parameter approximation method 
is 0.053 sec per image (s/image). Such results 
indicate that our method reduces 26.4% (0.019 s/
image) of the processing time as compared to 
equation (1). This means that our method is very 
effective in terms of computational cost for creat-
ing auto-stereoscopic images as well. Addition-
ally, the 3D DMB player can play both 2D and 
3D contents. If consumers want to view 3D con-
tents on the player, they have only to switch on 
the parallax barrier button located at the top of 
the player.

FUTURE RESEARCH DIRECTIONS

The glassless 3D services can be implemented 
in the DMB player by the parallax barrier. 
However, the viewer’s eye should be located 
at a specific sweet position because each of the 
auto-stereoscopic images is pointing to a specific 
eye position as shown in Figure 7. It is inevitable 
that viewers keep their eyes firmly fixed on the 
sweet position to consume 3D contents in the 
DMB player. Therefore, camera eye tracking is 
required to solve this problem and improve the 

Figure 12. The success rate of creating auto-stereoscopic images from the test sequences (the success 
rate evaluates how many sequences are successfully played from the 5 test sequences and P means that 
the test sequence is successfully played on the 3D DMB player)

Figure 13. Comparison of average processing times for creating auto-stereoscopic images by equations 
(1) and (3) (Experiments were performed on the 3D DMB player (CPU: Intel Core™ Solo Processor 
U1400). The unit of this test is sec per image (s/image).)
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3D viewing environment for the parallax barrier 
auto-stereoscopic displays (Kim & Kim, 2008; 
Strandvall, 2009; Zhang & Zhang, 2010; Zhu & 
Ji, 2005). Further studies on the real-time robust 
eye tracking under variable lighting conditions 
and face orientations are needed. In addition, it 
has been reported that the depth perception rate 
is undesirably decreased by coding (Park et al., 
2009). This is due to the fact that high frequency 
components of depth images are filtered by lossy 
compression techniques such as H.264 and thus 
coding artifacts occur. Consequently, further re-
search should be carried out to improve the depth 
perception rate in the future.

CONCLUSION

In this chapter, we have introduced a 3D DMB 
player which provides consumers with realistic 
3D services. We have also provided an efficient 
DIBR technique for reliable 3D services on the 3D 
DMB player. For the reliable 3D services, we have 
explained a novel method to approximate render-
ing parameters by taking mobile display size into 
consideration. By the parameter approximation 
method, we can create auto-stereoscopic images 
reliably even if contents contain unknown or 
inappropriate parameter values. Our method also 
reduces computational cost because of its simpli-
fied computation. Experimental results show that 
our method reduces 26.4% of the processing time 
as compared to conventional methods. Therefore, 
it is demonstrated that our method can create auto-
stereoscopic images of various contents reliably 
and rapidly on the 3D DMB player. Consequently, 
our method can provide consumers with realistic 
and reliable 3D services over T-DMB as well. 
We believe that our method will contribute to 
the popularization of 3D services based on DIBR 
over T-DMB.
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KEY TERMS AND DEFINITIONS

ATTEST: The advanced three-dimensional 
television system technologies (ATTEST) proj-
ect aims to prove a novel concept for a 3D-TV 
broadcast chain, and their essential requirements 
are the backwards compatibility with existing 2D 
broadcast and flexibility to support a wide range 
of different 2D and3D displays; It is part of IST.

BIFS: The binary format for scenes (BIFS) 
is a binary format for two or three dimensional 
audiovisual content, and is based on VRML and 
part 11 of the MPEG-4 standard; MPEG-4 BIFS 
is used in DMB.

BSAC: The bit sliced arithmetic coding 
(BSAC) is an MPEG-4 standard (ISO/IEC 14496-3 
subpart 4) for scalable audio coding, and its sup-
port for scalability allows for nearly transparent 
sound quality at 64 kbps and graceful degradation 
at lower bit rates.

DIBR: The depth-image-based rendering 
(DIBR) is defined as the process of creating two 
(left and right) virtual views of a real-world scene 
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from mono-scopic color video and its correspond-
ing per-pixel depth information.

DMB: The digital multimedia broadcasting 
(DMB) is a digital radio transmission technology 
developed by South Korea as part of the national 
IT project for sending multimedia such as TV, 
radio, and data-casting to mobile devices such 
as mobile phones.

Eureka-147 DAB: The Eureka-147 digital 
audio broadcasting (DAB) is the most commonly 
used and is coordinated by the World DMB Fo-
rum, which represents more than 30 countries; it 
was defined in the late 1980s, and is now being 
introduced in many countries.

HEAAC: The high efficiency advanced audio 
coding (HEAAC) is an extension of advanced au-
dio coding (AAC) using spectral band replication 
(SBR) and parametric stereo (PS), and designed 
to increase coding efficiency at low bitrates by 
using partial parametric representation of audio.

IST: Information Society Technologies (IST) 
is one of the thematic priorities in the European 
Union Sixth Framework Program for research and 
technological development set during the period 
of 2002-2006.
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INTRODUCTION

A digital tridimensional model is a numerical 
representation of the visual features of the object. 
From the digital model, it is possible to compute 
a realistic representation of the object in a bidi-
mensional image. This image through the use of 
some techniques as prospective and shading, can 
emulate the human eye perception, giving a real-
istic representation of the object tridimensionality. 
A 3D visualization system, generally, is composed 

of two elements: the scene, a mathematical rep-
resentation of the tridimensional objects, and the 
render, the technique to compute the 2D images 
of the scene.

The applications based on the tridimensional 
model processing are today very diffuse thanks 
to the increasing availability of tridimensional 
graphic devices and the decreasing trend of the 
cost of computational power. These applications 
are used in many fields such as design, archeology, 
medicine and entertainment. The chance to use 
digital 3D model can have many advantages. It is 
possible to use the model for digital simulation or 
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ABSTRACT

The digital models of real objects are used today in many fields: medicine, archeology, and entertainment 
are some examples of areas in which these models are applied. Generally, the first step of the creation 
of a real object’s 3D model consists in capturing the geometrical information of the physical object. 
Real objects can be small as coins or big as buildings: the different requirements have brought to the 
development of a very variegated set of techniques for the acquisition of geometrical information of the 
object. The aim of this chapter is to present and explain the techniques the 3D scanners are based on 
and compare them in terms of accuracy, speed, and applicability, in order to understand advantages 
and disadvantages of the different approaches.
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to create a modified digital version of the object. 
In the entertainment field, the 3D modeling allows 
to use real objects or people for the creation of 
characters or environments in the digital anima-
tion. Furthermore, for the study of large objects 
like buildings or geographical regions it can be 
very useful handling scalable digital models.

The digital 3D model can come from two 
different ways: Computer Aided Design (CAD) 
and physical object measurement. In a CAD 
environment, simple objects can be represented 
through simple equations: for instance, the equa-
tion x2+y2+z2 = r2 can be used for representing 
a sphere with radius r. Although these simple 
equations can seem limitative, the set of represent-
able objects can be extended through a technique 
called Constructive Solid Geometry (CSG); this 
technique is based on the combination of simple 
solid objects (e.g., cube, cone, sphere) in order to 
create more complex objects through operations 
as union, intersection, difference (e.g., a tube can 
be seen as a difference of two cylinders with dif-
ferent radius). Anyway, this method is not suitable 
to describe a large class of real objects and then is 
not commonly used. Nowadays, the CAD software 
allows the creation of very complex models that 
are, generally, based on Non-Uniform Rational 
B-Spline (NURBS) (Piegel, 1997), a mathematical 
model that allows the generation of curves and 
surfaces with great flexibility and precision. The 
NURBS is suitable for handling both analytic and 
freeform shapes.

On the other hand, the digitization through 
physical object measurement is a process that 
allows for obtaining the 3D model in a semi-
automatic way. It is based on the measurement of 
geometric features of the object and on its visual 
features as the color and texture. With respect 
to the CAD, the digitization is characterized by 
a generally faster creation process and a higher 
(or, at least, measurable) level of accuracy. Fur-
thermore, the digitization, being substantially a 
measurement process, does not require artistic 
abilities for the operator.

The applications that make use of digitization 
form a huge class. For instance:

• The archeology and the arts are charac-
terized by two divergent necessities: it is 
very important to preserve an artwork, but 
it is also desirable that many people can 
appreciate it. The virtual museum allows 
a larger public access than a real museum 
without risk for the exposed objects and, 
at the same time, it can be a way to attract 
visitors to the real museum. The user inter-
ested to a single artwork has the possibil-
ity of explore it directly and in a deep way. 
In fact, if an artwork is placed in a theca, 
the field of view can be strongly limited, 
while, as the 3D model can be observed 
from different points of view and at dif-
ferent scales, every details of the object 
can be appreciated from its realistic virtual 
copy. Furthermore the 3D modeling can 
improve both the study of an artwork and 
the accuracy of the cataloging.

• There are several applications in which 
3D model of human parts are used. In vir-
tual fashion a model of each customer is 
acquired, allowing the computation of the 
cloth size. Then, the model can be dressed 
with different clothes in order to drive the 
customer through the shopping. In medi-
cine, the 3D models of organs can help the 
physician in the diagnosis; for instance, the 
3D ultrasonography is used to check the  
fetal morphology.

• The representation of an object through 
the quantification of its features allows 
for performing an efficient comparison of 
different objects belonging to the same 
class. This concept is applied in different 
contexts. For example in manufacturing 
it is applied for the quality control, while 
in security it is applied for identity iden-
tification through anthropometric mea-
surement (biometrics). Both the applica-
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tions can take advantages from the use of  
3D digitization.

• The virtual environments are very impor-
tant for the training for critical tasks or 
dangerous procedures where the human er-
ror have to be limited at the minimum. An 
example is the virtual surgery, where the 
doctor can practice on a virtual patient for 
gaining experience before performing the 
surgery. Furthermore, surgeons can prac-
tice operations multiple times without the 
use of limited resources as cadavers or ani-
mals. One of the first applications of virtu-
al training was flight simulator. It was used 
both for the training and the evaluation of 
pilots. Often, in these applications the 3D 
models are combined with haptic devices, 
in order to enrich the virtual reality experi-
ence with tactile sensations.

• The design and reverse engineering find a 
great help in the use of 3D models. Some 
designers, especially in the architecture 
field, prefer to create physical prototypes 
first (e.g., using clay) and then digitize 
them. The 3D models can then be included 
in simulation or presentation. Furthermore, 
in some cases legacy objects whose digital 
version is not available have to be reen-
gineered or included in new projects; for 
these cases, as well as for reverse engineer-
ing, a 3D digitization is usually a less ex-
pensive and a more accurate solution than 
the manual modeling.

• In the last decade, the number of movies 
with 3D digital characters is strongly in-
creased. Besides 3D animation movies, the 
use of a 3D model of the actor allows to 
avoid laborious makeup sessions for add-
ing particular physical features or the use 
of stuntmen for dangerous scenes. Also, 
many video games are inspired to real per-
sons, as sport games, for example. Since 
the realism of the game is directly related 
to the fidelity of the avatars, the advantag-

es of the use of an accurate 3D scanner is 
evident.

Different applications can have very different 
requirements. For example, for the reconstruction 
in virtual archeology a good accuracy and a low 
invasivity are required, but generally the acquisi-
tion time is not an important constraint. Instead, in 
videoconference applications, real-time process-
ing is needed, while the quality of the modeling 
is secondary. Furthermore, as the information is 
generally about the facial mimic, the acquisition 
and the reconstruction techniques can be based 
on a face model. In the industrial quality control 
is important to have a fast reconstruction at a low 
cost because the same operations are repeated for 
many objects of the same type. Hence, the a priori 
knowledge on the object can be used to achieve 
a more robust and fast reconstruction.

The different requirements for 3D digitization 
applications have brought to different systems 
for realizing the 3D reconstruction. The typical 
device to collect the geometric information of 
the real object is the 3D scanner. There are many 
types of 3D scanner and they are very variegated. 
Generally these devices realize a measure of the 
3D coordinates of points sampled on the surface 
of the target object. The idea is to collect a cloud 
of points in order to allow the computation of the 
model of the real object surface. Some kinds of 
these devices are able to capture the texture infor-
mation of the scanned object too; this information 
can be very useful for the creation of more realistic 
tridimensional model graphical representation.

The physical principle exploited for computing 
the 3D coordinates of the points divides the scan-
ners in different categories, as sketched in Figure 
1. In the following sections, the devices that belong 
to each category will be described, their working 
principles will be explained, and their advantages 
and disadvantages will be consequently discussed.



454

3D Scanner, State of the Art

3D SCANNERS

Two different approaches are used by the 3D 
scanner systems for measuring the geometrical 
features of an object. The first one is based on the 
interaction between a sensor and the surface of the 
object; the systems using this approach are called 

contact 3D scanner. The second one is based on 
the interaction between a radiation (electromag-
netic or sound) and the surface of the object, in 
this case the systems are called non-contact 3D 
scanners. In the following these two categories 
will be illustrated in depth.

Figure 1. 3D scanner taxonomy
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Contact 3D Scanners

In contact 3D scanners the surface of the object 
is probed through the physical touch. There are 
mainly two types of these systems: Coordinate 
Measuring Machine (CMM) and Joined Arm. 
The first is composed of a tactile probe attached 
to a vertical arm, which can be moved along the 
horizontal plane (Figure 2). The movement of the 
probe is allowed by the three orthogonal axes in 
a typical three dimensional coordinate system. 
The probed coordinates result directly from the 
displacement of the actuators along each axis. The 
object is placed on a reference plane where the 
probe can explore it. The movement of the probe 
can be performed both automatic and manually 
operated. Generally, these systems enjoy a good 
accuracy (Helmel Checkmaster 112-102 allows 
for an accuracy of 9 μm (“Checkmaster Manual 
CMMs,” 2010)) and they are used mostly in manu-
facturing. The disadvantages are that the working 
volume is bounded by the structure and that the 
acquisition direction is only vertical.

The Joined Arm is composed of a chain of 
articulated links with a probe as end effector. The 
3D coordinates of the probe result as the compo-
sition of the rototraslations operated by each link. 
Since, as for the CMM, the point coordinates are 
computed through the position of the mechanical 
components, these systems are generally sensitive 
to temperature and humidity variations. For this 
reason, in order to provide good performance, 
they require a high mechanical technology to  
be realized.

The main differences with respect to the CMM 
are in the mechanical structure. Since generally 
the arms have a greater degree of freedom, they 
can be used for a larger class of objects. The arms 
are typically manually operated, while the CMM 
can be more easily automated. Both these devices 
can be very precise (Cam2 Quantum Arm has an 
accuracy of 0.018mm (“The FaroArm Family, 
“2010)), but they are relatively slow compared 
to the non-contact scanner systems. Furthermore, 

these methods are invasive and so they are not 
suitable for delicate object (e.g., archaeological 
artifacts). Another disadvantage is the price, as 
these systems are not generally cheap. It should be 
noticed that the tactile probe of both these system 
can be substituted with another kind of sensor, for 
realizing a non-contact measurement. In this case 
the systems are no longer belonging to the class 
of contact 3D scanners.

Non-Contact 3D Scanners

In non-contact systems, the sampling of the 
surface is performed by the interaction between 
some kind of radiation and the object surface 
itself. Depending if the radiation is supposed to 
pass through the object or if it is reflected by the 
object surface, these systems can be divided in 
two sub-categories: transmissive and reflective.

Transmissive Systems: Industrial 
Computed Tomography

In transmissive systems the object has to be po-
sitioned between the emitter (which irradiate the 
object) and receiver (which collect the radiation 
attenuated by the object). The main representa-
tive of this category is the Industrial Computed 
Tomography. The radiation, a beam of high energy 
photons generated by an X-ray tube, penetrates 
the target object and is captured by a 2D detector 
as a digital radiograph image. The 3D models are 
reconstructed from a set of 2D X-ray images of 
the object taken from different views. The views 
are obtained rotating the object, which, to this 
aim, is positioned on a turn table that can rotate 
with a high precision (0.25 to 1 degree steps are 
commonly adopted). From this series of 2D ra-
diographs through, generally, the back-projection 
algorithm (Feldkamp, 1984) it is possible to com-
pute a 3D voxel model. The three-dimensional 
resolution of the obtained model ranges from a 
few micrometers to hundreds of micrometers, and 
depends on the pixel size of the X-ray detector. 
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This kind of system allows the reconstruction of 
both external and internal surfaces and the method 
is unaffected by certain visual object properties 
(dark, reflective or transparent surfaces). The 
structure of the hardware makes the system suit-
able for relatively small objects.

It should be noted that the density and the 
thickness of the object affect the energy collected 
by the X-rays detector. Furthermore the reconstruc-
tion of the model from the 2D radiograph images 
is computationally intensive. An example of this 
system is Nikon XT H 22 5 (“Nikon Metrology 
- XT H 225,” 2010), it has an accuracy of 0.001 
mm but the scanning volume is limited to 30 cm 
× 30 cm × 30 cm (Table 1).

Reflective Systems

The reflective systems exploit the radiation re-
flected by the object surface for estimating the 
position of the points of the surface. They can be 
classified from the type of radiation they use. In 
particular, optical systems use optical radiation 
(wavelength between 100 nm and 300 μm), while 
non-optical systems use sound or non-optical elec-
tromagnetic radiation to make the measurements. 
Since optical systems form the main category of 
3D scanners, they will be considered in deep in 
the next section.

The class of non-optical systems is composed 
by devices based on radar and sonar systems. Al-

Figure 2. Coordinate measuring machine
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though the radiations exploited are very different 
(the radar uses electromagnetic microwaves, the 
sonar uses sound or ultrasound waves), both of 
them are based on the principle of measuring the 
time-of-flight of the emitted radiation: from the 
time required for the wave to reach the object 
and return to the system, knowing the speed of 
the utilized radiation, it is possible to estimate 
the distance covered by the radiation, which can 
be considered equal to the double of the distance 
of the object from the scanning device. As this 
principle is used also for a class of optical scan-
ners, it will better explained in the next section.

Due to the use of microwave radiations, radar 
systems have a very large depth of field, up to 
400 km, and can perform ground penetrating 
reconstructions. A typical application is for air 
defense. These systems are quite expensive and 
generally have low accuracy.

When a sonic wave is used, as in sonar sys-
tems, the measurement is insensitive to the optical 
properties of the object and can be applied for the 
reconstruction in environments where the optical 
radiation would be distorted or too much miti-
gated, as the underwater setting. These systems 
are characterized by a low accuracy due to low 
signal to noise ratio.

OPTICAL 3D SCANNERS

The ability of reconstructing an object without 
physically touching it has important advantages: 
it is applicable to delicate objects (e.g., archeology 
artifacts), and the use of radiation allows, generally, 
high speed of acquisition and wide reconstruction 
(e.g., landscape reconstruction). Furthermore, due 
to the availability of inexpensive optic sensors, 
very low cost systems can be realized. Depending 
on the source of the radiation (device emitted or 
environmental), these optical 3D scanners can 
be divided in two sub-categories: passive and 
active systems.

Passive Systems

The passive systems do not emit any kind of ra-
diation themselves; they usually use the reflected 
ambient radiation. Generally, they are based on the 
use of Charge-Coupled Devices (CCDs), the clas-
sical sensors that are embedded in the commercial 
digital cameras. The sensors collect images of the 
scene, eventually from different points of view or 
with different optical setup. Then, the images are 
analyzed in order to compute the 3D coordinates 
of some points in the scene.

The passive scanner can be very cheap; nor-
mally, they do not need particular hardware but 
typically do not yield dense and highly accurate 

Table 1. Some examples of industrial 3D scanners 

Model Measuring Method Scan Range (depth of 
field)

Accuracy Acquisition Speed

Leica ScanStation 
C10

Tof, pulsed range finder 300 m 2 mm (at 50 m) 50,000 points/s

Leica HDS6200 Tof, phase shift 80 m 5 mm (at 25 m) 1,000,000 points/s

Metris MCA II Physical contact 3.6 m 0.1 mm

3D Digital Corp. 
e-scan

Laser triangulation 300 – 650 mm 0.135 mm (at 300 mm) 700 points/s

Nikon XT H 225 Computed Tomography 300 mm 0.001 mm

Faro Laser ScanArm Physical contact/ Laser 
triangulation

3.7 m 0.016 mm
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digitization. Often, with these scanners the 3D 
points’ computation is not easy and a heavy 
computational effort can be required. Examples 
of these systems are based on stereoscopy, shape-
from-silhouettes, shape-from-texture (or contour) 
and defocus (Wholer, 2009).

Stereoscopic Systems

The stereoscopic systems are based on the analysis 
of two (or more) images of the same scene, seen 
from different points of view. The 3D points of 
the scene are captured as their 2D projection in 
the taken images. If the corresponding 2D points 
are found on couples of images, their projected 
rays can be estimated and the 3D coordinates of 
the point are recovered as the intersection of the 
projection rays (Figure 3). This reconstruction 
method is known as triangulation. It should be 
noticed that this method requires the complete 
knowledge of the camera parameters: their (rela-
tive) position and orientation, but also their internal 
parameters: focal length, optical centre, CCD size, 
and distortion parameters.

The camera parameters are determined during 
a phase called calibration. Generally, this phase 
is performed before the scanning session, using 
a particular scene, such as a chessboards or 
simple objects, where the correspondence problem 

(i.e., the matching between the projections of the 
same points in the 3D space on the acquired im-
ages) can be easily solved. It is also possible to 
compute an estimation of the calibration param-
eters directly from the images of the object 
(Mckinley, 2001).

The real problem of this kind of system is the 
computation of the correspondence pairs of the 3D 
points. For this reason the stereoscopic technique 
is generally used for the reconstruction of particu-
lar objects in which the correspondence problem 
can be solved easily. Since using standard image 
processing techniques it is relatively simple to 
extract peculiar points (such as the corners of an 
object) from an image, these methods are applied 
for the reconstruction of building or, in general, 
of objects in which the edges are evident.

A possible approach for reducing the computa-
tional complexity of the correspondence problem 
consists in capturing many images in which the 
point of view slightly changes. Since the position 
of a point on an image will be slightly different 
from that on the next image, the search for the 
correspondence for each point can be performed 
only in a small portion of each image. However, it 
should be considered that in this case the complex-
ity of the estimation of the calibration parameters 
can increase.

Figure 3. Stereoscopic system
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The main advantages of these techniques are 
the potential low cost of the hardware needed and 
the non-invasivity of the method. The generally 
low accuracy and the sensitivity to the calibration 
phase limit the diffusion of these systems in real 
applications.

Shape-from-Silhouettes

The silhouette systems (Potmesil, 1987; Vaillant, 
1992) compute the model as composition of the 
contours of the object taken from different points 
of view. To this aim, the typical scanner of this 
category is composed by a turn table (where the 
object is placed on), a flat background (which 
simplify the contour extraction procedure), and 
a single camera.

While the object rotates the camera capture an 
image from which the contour is extracted. Each 
contour can be seen as a cone of projected rays 
that contains the object. The intersection of these 
cones determines the approximate shape of the 
object. This system has the benefit that is realiz-
able easily and with low cost hardware, but has the 
strong limitation that only convex object can be 
accurately reconstructed. In fact, the cavities of an 
object are not visible in the projected silhouettes 
and then they cannot be reconstructed, which 
limit the use of these systems in real applications.

Shape-from-Texture & 
Shape-from-Contour

Techniques that extract information about the 
object’s shape from the its texture or contour 
provides useful clues for 3D digitization and are 
interesting results of the computer vision theory, 
but are rarely implemented for real 3D scanners. 
In fact, these techniques are not able to compute 
the 3D coordinate of object points, but only the 
surface curvature (up to a scale parameter) or  
its orientation.

Shape-from-texture is grounded on the hypoth-
esis that the surface of the object is covered by a 

texture characterized by a pattern that is repeated 
with regularity. By means of the analysis of the 
texture distortion, it is possible to compute the 
curvature of the surface. The surface normals 
are estimated from the analysis of the local inho-
mogeneities (Aloimonos, 1986). Furthermore, a 
diffuse illumination of the scene is required, as 
the shading can influence the texture analysis.

A similar technique is called shape-from-
contour. In this case the surface orientation is 
computed through the analysis of the distortion of 
a planar object. For example, if the object contour 
is known to be a circle (e.g., a coin), while the 
contour of the acquired object is elliptical, it is 
possible to estimate the surface orientation that 
realizes this distortion.

Shape-from-Defocus

In the shape-from-defocus systems (Levin, 2007), 
the defocus produced by a lens is driven to al-
low the extraction of depth information. In these 
scanners, a conventional camera captures several 
images of the same scene using different focal 
lengths. Generally, this method can make use of 
a single camera that records all the images for the 
different focus set-ups. The frequency content of 
the same region in different images is used for 
identifying in which image the considered region is 
on focus. Since from the focal length the distance 
of the plane of focus from the optical centre is de-
termined, then knowing the region on focus for a 
given focal length gives the distance of that region 
from the camera too. Typically, these systems are 
not able to make very precise reconstruction, as 
the accuracy depends on the set-up (depth field). 
Besides, this technique can be applied only on 
texturized objects. However, these systems can 
be realized using low cost hardware, and, being 
optical passive, they are non-invasive.
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Active Systems

The active systems emit some kind of radiation 
and the interaction between the object and the 
radiation is captured by a sensor. From the analysis 
of the captured data, knowing the features of the 
emitted radiation, the coordinates of the points 
can be obtained. As a matter of fact, they are the 
most common scanner systems. Among the several 
kinds of scanners that belong to this category, the 
most exploited principles are: time of flight (ToF), 
phase shift and active triangulation. However, 
interferometry scanners found application for 
specific problems, such as the digitization of very 
small objects, while illuminant-based techniques 
have theoretic interest especially for applications 
where the color of the object have to be captured.

Time-of-Flight

Time-of-flight (ToF) systems measure the distance 
from scanner to surface points through the measure 
of the time employed by the radiation to reach the 
object and come back to the scanner. Knowing the 
speed of the radiation and the roundtrip time, it is 
possible to compute the distance and, knowing the 
direction of the emitted radiation, the 3D points’ 
coordinates (Gambino, 2005). Hence, changing 
the direction of the emission, the system can cover 
the entire field of view.

Depending on the type of waves used, such 
devices are classified as optical radar (optical 
waves), radar (electromagnetic waves of low 
frequency) and sonar (acoustic waves). The opti-
cal signal based systems are the most used type. 
Such systems are sometimes referred to as LIDAR 
(LIght Detection And Ranging) or LADAR (LA-
ser Detection And Ranging). These systems are 
characterized by a relatively high speed acquisi-
tion (10,000–100,000 points per second) and their 
depth of view can reach some kilometers.

Generally, the optical ToFs accuracy is limited 
because the high speed of radiation that is used. 
In fact, for measuring the distance with 1 mm 

accuracy, it is necessary to be able to measure a 
time range in the order of picoseconds. Hence, 
these systems are generally applied in long-range 
3D measurement of large object, such as building 
and geographic features. The optical properties 
and the orientation of the surface with respect to 
the emitted ray affect the energy collected by the 
photo detector and can cause loss of accuracy.

As said above, these systems are often used to 
geographic reconstruction; the aerial laser scan-
ning is probably the most advanced and efficient 
technique to survey a wide natural or urban ter-
ritory. These systems, mounted on an airplane or 
on a helicopter, work emitting/receiving up to 
100,000 laser beams per second. The laser sen-
sor is often coupled with a GPS satellite receiver 
that allows recovering the scanner position for 
each acquired point. Hence, each point can be 
referred to the same reference system and the 
acquired points (which can form a dense cloud of 
points) can be related to a cartographic reference 
frame, for an extremely detailed description of 
the covered surface (Visintini, 2007). ToF scan-
ners are often used in environment digitization. 
A relatively recent application is the digital crime 
scene reconstruction; through the digital model the 
police are helped in the scene analysis task. For 
this aim, the typical scanner model is composed 
by a rotating head which permits a wide field of 
view; for example the model Leica ScanStation 
C10 (“Leica ScanSystem C 10”, 2010) has a field 
of view of 360° horizontal and 270° vertical.

Another kind of ToF system is the Zcam, 
produced by 3DVSystems (Yahav, 2007), which 
provide in real-time the depth information of the 
observed scene. The scene is illuminated by the 
Zcam which emits pulses of infra-red light. Then 
it senses the reflected light from scene pixel-wise. 
Depending on the sensed distance the pixels are 
arranged in layer. The distance information is 
output as a grey level image, where the grey value 
correlates to the relative distance.
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Phase Shift

Phase shift systems use a laser beam whose power 
is sinusoidally modulated over the time (Figure 
4). From the phase difference between the emitted 
and reflected signal, it is possible to compute the 
roundtrip distance. In fact, the phase difference 
between the emission and reflection signal is 
proportional to the travelled distance, as: d = c 
Δϕ / 4πf, where d is the object distance, Δϕ is the 
phase shift, c is the light speed, and f is the light 
frequency. Since the phase can be distinguished 
only in the same period, the periodicity of the signal 
generates ambiguity. To resolve this ambiguity, 
multiple frequency signals are used. This method 
has performances quite similar to the ToF method, 
but can reach a higher acquisition speed. An ex-
ample of this system is Leica HDS6200 (“Leica 
HDS6200,” 2010), it has an accuracy of 2 mm at 
25 m and an acquisition speed of 1,000,000 points 
per second (Table 1).

Active Triangulation

In active triangulation systems the scene is il-
luminated by a coherent light source from one 
direction and viewed from another. These systems 
primarily differ by the light structure used (a single 
spot or a laser sheet beam or coded light) and the 
scanning method (moving the object or moving 
the scanning mechanism).

If the source is a low-divergence laser beam, 
the interaction of this radiation with the surface 

object will produce a spot, which can be easily 
detected by a sensor (typically a CCD). The ori-
entation and the position of the source and the 
sensor are typically known. From the spot location 
on the sensor, the line between the sensed spot 
and the camera centre point can be computed. As 
the laser line is known, the 3D point will results 
as the intersection point between the camera line 
and the laser line (“EScan Specifications,” 2010). 
Hence, the point 3D coordinates can be calculated 
by triangulation (Figure 5). If the laser orienta-
tion and position are not known, it is possible 
to calculate the coordinates using two or more 
cameras as in stereoscopic method. In this way, 
the system acquires one point per frame, while 
using a different light source more points per frame 
can be captured. In fact, when a laser sheet or a 
matrix spot is used, it is possible to reconstruct 
more points at a time for a single frame.

As the laser sheet illuminates a plane in the 
space, the camera captures the contour resulting 
from the intersection of this plane and the object 
surface. Then, for any image pixel on the contour, 
the corresponding 3D point on the object surface 
is found by intersecting the ray passing through 
the pixel and the laser 3D plane equation. The use 
of a matrix spot allows to sample a region instead 
of a line (as done by the laser sheet), and it can 
be potentially the faster solution for surface ac-
quisition. However, the problem of matching 
every beam with its projected point acquired by 
the camera is more complex than in the single 
beam case.

Figure 4. Phase shift system
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Whenever a moving object have to be acquired, 
the use of a matrix spot would be required, with 
strong constraints on the speed of acquisition. 
However, generally, in such an applications, this 
technique is not used because the problem of the 
points correspondence. The typical approach used 
in this case is instead the projection of a structured 
light pattern.

There are many different techniques based on 
the projection of structured pattern, and generally 
they make use of a calibrated camera-projector 
pair (Salvi, 2004). The aim of these techniques is 
to characterize each point by projecting a differ-
ent light pattern for a different direction. Hence, 
the illumination is used like a code, allowing 
the correct identification of each direction. The 
encoding is realized using different strategies 
as colored stripes (Wust, 1991) or time-coded 
stripes (Rusinkiewicz, 2002). The colored stripes 
encoding presents an important problem: both the 
surface color of the object and the ambient light 
influence the color of the reflected light. For this 
reason, to reconstruct a colored (or textured) object 
other kinds of coding are preferred.

In (Rusinkiewicz, 2002), a structured-light 
rangefinder scanner using temporal stripe cod-
ing is proposed. Using a projector and a camera 

synchronized at 60 Hz, four successive frames 
are exploited to acquire a 115×77 matrix points. 
For each frame, a set of black/white stripes is 
projected. Observing as a pixel change its color 
(from white to black and from black to white) in 
different frames, it is possible to compute which 
stripe is illuminating the pixel and then, through 
the triangulation, the 3D position of the point. 
Actually, the entities that carry the code are not 
the stripes, but the stripes boundaries: in this 
way, a more efficient coding is possible. In fact, 
a single stripe can carry a bit (the stripe can be 
black or white), while a boundary can carry two 
bit (it can have a stripe on the left white and on 
the right black, and so on).

In (Huang, 2006), it is proposed another very 
efficient scanner system. This system uses three 
phase-shifted sinusoidal grayscale fringe patterns, 
to provide pixel-level resolution. The projector 
and a camera are synchronized at 120 Hz with a 
resolution of 532×500 points per frame; the system 
accuracy is 0.05 mm. For each pixel, the phase 
from the three pattern intensities is calculated. 
This information determines the correspondence 
between the image field and the projection field. 
The phase map calculated from the three images 
camera can be converted to the depth map by 

Figure 5. Active triangulation system
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a phase-to-height conversion algorithm based  
on triangulation.

With this system it is possible to realize a real-
time reconstruction. For example, the system is 
able to measure human faces, capturing 3D dy-
namic facial changes. In order to provide a high 
definition real-time reconstruction, a Graphics 
Processing Unit (GPU) is employed to compute 
the 3D coordinates points. These devices have a 
highly parallel structure that makes them more ef-
fective than typical CPUs for a range of complex 
algorithms (Zhang, 2006). GPUs are very useful 
in the reconstruction problems because typically 
these problems are characterized by parallelizable 
computations.

All the active triangulation system, gener-
ally, are characterized by a good accuracy and 
are relatively fast. The strong limitation of these 
systems is the size of scanning field, since the 
depth of field is proportional to the sensor/emitter 
displacement and the emitter power. Then these 
systems are not usable for digitization of large 
objects. Furthermore object’s color and ambient 
illumination may interfere with the measurement.

Shape-From-Shading and 
Photometric Stereo

The shape-from-shading problem consists in the 
estimation of the three-dimensional shape of a 
surface from the brightness of an image of that 
surface. The first formulation of this problem 
was proposed in the 70’s (Horn, 1975). The work 
showed that the problem implies the solution of a 
nonlinear first-order differential equation called 
the brightness equation.

Today, the shape-from-shading problem is 
known to be an ill-posed problem, which does 
not have a unique solution (Brooks, 1983). What 
makes difficult to find a solution for this problem 
is often illustrated by the concave/convex ambi-
guity that is the fact that the same shading can 
be obtained both for a surface and its inverted 
surface, for a different direction of the illumi-

nant. Moreover, this kind of ambiguity can be 
widely generalized. In (Belhumeur, 1999), it is 
showed that, given the illuminant direction and 
the Lambertian reflectance (the fraction of light 
that is reflected, aka albedo) of the surface, the 
same image can be obtained by a continuous fam-
ily of surfaces, which depends linearly by three 
parameters. In other words, neither shading nor 
shadowing of an object observed from a single 
viewpoint can provide the exact 3D structure of 
the surface.

However the problem can be solved under sim-
plified conditions. The first one is the use of direc-
tional lighting with known direction and intensity. 
But, again, this simplification is not enough and, 
in order to solve the problem, knowledge about 
reflection properties of the surface of the object 
is also required. In particular, the surface should 
be Lambertian, namely the apparent brightness of 
the surface has to be the same when the observer 
change the angle of view, and the albedo should be 
known. As the method implies the use of a known 
radiation, it can be considered as belonging to the 
active systems class. Under these conditions the 
angle between the surface normals and the incident 
light can be computed. However in this way the 
surface normals are derived as cones around the 
light direction. Hence, the surface normal in a given 
point is not unique and it is derived considering 
also the values of the normals in a neighborhood 
of the considered point and making the assump-
tion that the surface is smooth.

When a photometric stereo technique is used, 
the problem is simplified by illuminating the scene 
from different positions (Higo, 2009; Hernández, 
2008). With this technique, introduced in (Wood-
ham, 1980), it is possible to estimate the local 
surface orientation by using several images of 
the same surface taken from the same viewpoint, 
but under illumination that comes from different 
directions. The light sources are ideally point 
sources, which position is known with respect the 
reference system, oriented in different directions. 
The lights are activated one at a time, for each 
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captured frame, so that in each image there is a 
well-defined light source direction from which 
to measure the surface orientation. Analyzing the 
sequence of intensity changes of a region, a unique 
value for the surface normal can be derived. In 
general, for a Lambertian surface, three different 
light directions are enough to solve uncertainties 
and compute the normals.

This approach is more robust with respect to 
shape-from-shading, but the use of synchronized 
light sources implies a more complicated 3D 
system, which can strongly limit the acquisition 
volume. On the other hand, the availability of 
images taken with different lighting conditions 
allows a more robust estimation of the color of 
the surface.

Moiré Interferometry

The Moiré interferometry is a technique used for 
detecting and measuring deformations in a quasi-
planar surface. The method utilizes the interference 
effect between some form of specimen grating 
and reference grating (Idesawa, 1977).

The principle of the method is that projecting 
parallel equispaced planes or fringes on the surface 
of the object and observing the scene from a dif-
ferent direction, the observed fringes will appear 
as distorted by the surface shape. By comparing 
the observed fringes with a reference fringes 
(by means the interference), the measurement 
of displacement from the plane can be obtained. 
In more detail, measuring the fringe distances 
obtained from the superimposition of the grating 
projected with the grating observed and know-
ing the projection and observation angles, the 
z coordinate can be determined. This technique 
allows a high accuracy (on the order of microm-
eters), but for a very small field of view. In fact, 
the grating projected have to be very dense (e.g., 
with 1000–2000 lines/mm). This characteristic 
limits the method to microscopic reconstruction.

Holographic Interferometry

A hologram is the recording of the interference 
pattern formed by a reference laser beam and the 
same beam reflected by the target object. It can 
be obtained by splitting a laser beam in two parts: 
one is projected onto the object and the other one 
goes directly to the camera.

The holographic interferometry is a technique 
for measuring vertical displacement by compar-
ing the holograms of the same object at different 
states. In particular, vertical displacements can 
be estimated comparing images taken while the 
object is moved along the vertical axis. The images 
are analyzed to detect the peak of the interference 
pattern for each pixel, which allows for computing 
the height of the considered pixel. The systems 
based on this technique are quite expensive, but 
allows sub-nanometer measurement. Since the 
field of view is very small, generally, the method 
is applied for objects of size of few millimeters.

Hybrid Techniques

In the previous sections, an overview of many 
techniques characterized by complementary 
strength and weakness has been presented. For 
exploiting the advantages of each approach many 
real systems can implement more than one tech-
nique. For instance CAM2 Laser ScanArm V3 
(“3D Measurement,” 2010) is a Joined Arm where 
the probe is an active triangulation laser scanner, 
combining the precision and the speed of the ac-
tive system with the mobility of the Joined Arm.

Another example is a system that combines 
photometric techniques with structured light (Lu, 
2010). The reconstruction is performed using a 
multi-resolution scheme where the structured 
light method is used to acquire the low resolu-
tion geometry of the surface and the photometric 
stereo is used to capture the fine surface normals. 
The result is a high resolution model. A further 
example is represented by the optical 3D scan-
ner system that can be enriched with a couple of 
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emitter and receiver that exploit another kind of 
radiation (such as sonic, microwave radiation) for 
the objects or environments in which the optical 
radiation cannot be applied.

The combination of multiple techniques 
generally allows a more robust systems and an 
improvement of the accuracy. The price to be 
paid is the complexity and then the cost of the 
system. Sometime, in the digitization of a single 
object it can be useful to employ several scanners 
(Levoy, 2000). For instance, it happens for large 
objects scanning, where an accurate 3D measure-
ment cannot be realized in a single session. In this 
case, the use of scanner with a large field of view 
(FoV) can be used to capture the main shape of 
the object, while the details can be captured in 
several scanning sessions using an 3D scanner 
with an higher resolution (but a lower FoV). As, 
generally, each system provides a points cloud, it 
is possible to combine the different data to realize 
a single tridimensional model. The operation of 
transforming the different clouds of points such 
that they refer to same coordinate system is called 
registration. This operation consists in the com-
putation of a rototraslation matrix for each points 
cloud by identifying the overlapping subsets of 
points. Among the algorithms for addressing this 
task, probably the most famous is Iterative Closest 
Points (ICP) (Besl, 1992).

FUTURE RESEARCH DIRECTIONS

There are many aspects of scanners systems that 
should be considered for future research. The first 
aspect concerns the strategies which can be applied 
to face the situations in which a single system is 
not able to obtain a good measure. For example, 
the properties of the object material (e.g., trans-
parency or reflectance) can degrade the measure 
obtained using reflective systems (Tongbo, 2007; 
Hullin, 2008). In (Hullin, 2008) it is proposed a 
technique based on the immersion of the transpar-
ent physical object in a fluorescent liquid, which 

highlights where the laser sheet impacts the object 
surface allowing the reconstruction.

A second aspect regards the diffusion of the 
acquisition systems. The 3D scanners present on 
the market are generally high cost devices. There 
are some studies about how obtain an acquisi-
tion system using off-the-shelf hardware (e.g., 
webcam, projectors, etc.) (Ho, 2009; Drenik, 
2008; Reznicek, 2008). These methods generally 
allow to obtaining low cost systems, but they are 
characterized by a low accuracy. An important 
research direction regards the improvement of 
the accuracy of 3D scanner based on common use 
devices. The trend of the improvement of cameras 
and projectors resolution is a further incentive for 
the development of low cost and high accuracy 
acquisition systems.

Besides the costs, other features can be im-
proved. For instance, the field of view can be a 
strategic feature for application such as environ-
mental scanning, where sensors with large FoV 
are required (De Ruvo, 2010). In (Hu, 2009) a 
laser scanner that allows a large scale reconstruc-
tion is presented. Besides featuring a large FoV 
(360° horizontal and 330° vertical), it integrates 
the structured light measurements with stereo 
photogrammetry for accurately locating the edges 
of the objects of the scene. The power and compu-
tational costs of a system or its physical features, 
such as the weight and the size, can be obstacles 
in its use for mobile robots or portable devices. 
The implementation on low demanding hardware 
and the integration of different techniques can al-
low for obtaining relatively low cost system for 
unmanned vehicles (Nagai, 2009; Ryde, 2009).

Another aspect regards the use of several 
techniques in order to exploit the different features 
of each of them. For example, for the detailed 
reconstruction of big object can be useful using 
a kind of scanner for a global low accurate recon-
struction and adding the details using another kind 
of scanner that operates with high accuracy but in 
limited regions of the object. The merge of the two 
techniques allows a high accurate reconstruction 
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of a big object (Zheng, 2008). In general, using 
a combination of several approaches guarantees 
a more robust and more accurate reconstruction. 
Hence this field of research can determine im-
portant improvement for the scanning problem.

CONCLUSION

In this chapter, an overview of the techniques 
used to implement the 3D scanning devices has 
been provided. The systems have been classified 
in a taxonomy that privileges, as criterion for the 
classification, the physical principle exploited 
to extract the 3D information. However, other 
properties of the scanning systems can be used 
as classification key. For instance, among oth-
ers, the accuracy, the resolution, or the speed of 
acquisition can characterize a scanner system, 
but these properties are more related to an actual 
implementation of the systems than to a class of 
scanners and hence are not suited for a structured 
treatment of the subject. On the other hand, these 
properties have to be considered when a scanning 
system has to be chosen and are often critical for 
the choice. Obviously, there is no way for indi-
cating a scanner system as the best one, because 
each model has been designed for a specific field 
of application.

In (Catalan, 2007) a method for evaluating 
the 3D scanners is suggested. It considers some 
important features (e.g., field of view, accuracy, 
physical weight, scanning time) and for each 
feature it associates a weight. By giving a score 
for each feature of each scanners considered, a 
single final score can be computed as the sum of 
each score. Anyway, probably the three principal 
aspects that should be considered in order to choose 
a 3D scanner are the properties of the objects to 
acquire (size and material features), the accuracy 
required, and the budget, under auxiliary con-
straints such as the speed of acquisition required 
and the environmental conditions.

Some attention should be paid also to the human 
aspects: some models require a deep knowledge 
of the principles exploited by the scanners and 
can be used only by trained people. An impor-
tant aspect to note about every 3D scanner is the 
calibration procedure. Generally the 3D scanners 
have different setup and the points cloud recon-
struction is possible only if the set-up parameters 
are known. The aim of calibration phase is the 
estimation of setup parameters. This phase is criti-
cal for many types of scanner and the time spent 
for it can vary from some minutes to hours with 
respect an acquisition time of just some seconds 
or less. Furthermore, the precision of the system 
is, typically, strongly connected to the quality of 
calibration executed.

However, as the technological advances im-
proves the computational power and the perfor-
mance of the devices, more attention is paid by the 
scanner designers for making the systems more 
users friendly. In fact, in the last decade many 
research works are related to the estimation of the 
calibration parameter without a proper calibra-
tion stage. In this track, an interesting approach, 
mainly oriented to the stereoscopic techniques, is 
the passive 3D reconstruction, which allows the 
estimation of the calibration parameters after the 
acquisition session.

Since devices for the fruition of 3D contents 
are becoming widely available to the consumer 
market, compact and easy-to-use devices for 
producing 3D contents are likely to be proposed. 
Hence, it can be envisioned that the miniatur-
ization of components such as CCD sensors or 
pico-projectors will be exploited for implementing 
small, point-and-click optical devices.
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KEY TERMS AND DEFINITIONS

3D Measurement: Procedure for obtaining 
the geometrical properties of a real object.
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3D Model: Numerical representation of the 
geometrical (and sometime also the visual) prop-
erties of an object.

3D Scanner: Measuring device for obtaining 
the 3D model of a real object.

Active 3D Scanner: Family of 3D scanners 
which make use of an emitted radiation for per-
forming the 3D measurement.

Cloud of Points: Representation of the geom-
etry of an object by means of a set of 3D points 
sampled on the surface of the object.

Object Digitization: Procedure for obtaining 
the 3D model of an object.

Passive 3D Scanner: Family of 3D scanners 
which make use only of the reflected environ-
mental light for performing the 3D measurement.

Triangulation: Technique for estimating the 
3D coordinates of a point from its 2D projections.
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ABSTRACT

This chapter is aimed at introducing the fundamentals of three-dimensional (3D) imaging to scientists, 
students, and practitioners while also documenting recent developments in the ability to rapidly digitize 
real-world environments. We begin with a survey of popular 3D sensing options and list factors that 
challenge 3D imaging in outdoor environments. The survey guides the reader towards the choice of a 
3D sensor for his or her application of interest. Then, we describe 3D data acquisition strategies and 
integration methodologies for multi-view range data from laser scanners, multi-view image data from 
cameras mounted on a mobile platform and multi-sensor localization based 3D mapping. We explain 
the steps involved in creating 3D models from raw sensor data for each of these data acquisition strate-
gies. Finally, we document research results obtained in the Imaging, Robotics and Intelligent Systems 
Laboratory at the University of Tennessee, Knoxville from 3D imaging prototypes developed for auto-
mated pavement runway inspection and urban mapping.
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INTRODUCTION

Over the last decade, many research efforts have 
focused on the development of 3D imaging solu-
tions for photo-realistic 3D scene building, 3D 
scene description, and 3D data visualization. The 
efforts broadly fall into three categories:

1.  building ready-to-deploy system prototypes 
with easy-to-use acquisition interfaces;

2.  formulating and implementing algorithms 
for processing and integration of acquired 
datasets;

3.  demonstrating the advantages of 3D 
sensing-based innovations over existing 
methodologies.

As researchers following and contributing to 
the literature in the area of 3D sensing for map-
ping and inspection applications, this chapter 
draws upon our experience from several projects 
including 3D under-vehicle inspection (Sukumar 
et al., 2007), reverse-engineering of automotive 
components (Page et al., 2009), road surface 
inspection (Yu et al., 2007), terrain modeling 
(Sukumar et al., 2006) and mapping of hazardous 
environments (Grinstead et al., 2006). The breadth 
of applications that we addressed in the last decade 
helped us realize that 3D imaging system design, 
especially in outdoor environments, can be a chal-
lenging problem with a steep learning curve. We 
hope to document some of the lessons learned in 
operating 3D sensors outside of controlled labora-
tory environments in large-scale outdoor environ-
ments. Our anticipation is that with augmented 
reality concepts and three-dimensional television 
making the foray into the consumer markets, we 
will soon be witnessing an increased demand for 
generating photo-realistic 3D immersive environ-
ments for these new devices. This chapter, we hope, 
will act as a knowledge dissemination source for 
entrepreneurs and early researchers who wish to 
learn the challenge and solution space with 3D 
sensing in outdoor environments.

With this motivation, we begin by introducing 
the fundamentals of 3D sensing and mapping in 
the background section. We will address questions 
like - What sensing methods are available? What 
accuracy can one expect from these sensors? Is 
a particular sensing methodology too slow? Is 
a sensing technique illumination sensitive? We 
present a brief overview of the underlying prin-
ciples of active and passive 3D sensing methods 
and explain why some sensors are better suited 
than others to outdoor mapping applications. This 
section briefly explains concepts of 3D shape ex-
traction using principles of stereoscopy, triangula-
tion, time-of-flight etc. and provides appropriate 
reference links for detailed descriptions. We then 
expand upon the particular challenges and require-
ments of 3D sensing in outdoor environments. 
Based on these requirements, we argue that very 
few sensing methods are suitable for real-world 
deployment challenges. We pick laser-scanner 
(both triangulation-based and time-of-flight) 
based systems and image-based 3D reconstruction 
systems as potential sensors for outdoor mapping 
applications and discuss them in greater detail.

In the section following the background, we 
describe data integration strategies for multi-view 
range data, multi-view image data and mobile 
scanning using line profile scanners. We explain 
the range data integration approach as that of imag-
ing a scene of interest from different viewpoints 
and registering the multi-view scans into one 
common co-ordinate system. Such methods have 
already been used in applications for site verifica-
tion (Sequiera et al., 2007), building information 
models for energy efficiency simulations (Okorn 
et al., 2010) etc. We then contrast the range data 
integration approach with mobile scanning, where 
the concept is to mount 3D sensors on a manned/
unmanned or remotely operated mobile platform 
equipped with a suite of different localization 
sensors. The line-profiles from the 3D sensors, 
after further processing and alignment based on 
localization information, deliver geometrically ac-
curate, geographically meaningful photo-realistic 
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3D models of the scenes of interest. This approach 
has been exploited by the mobile robotics research 
community for 3D mine mapping (Thrun, 2003) 
and urban mapping (Früh & Zakhor, 2001) etc. 
We explain design ideas and mobile scanning 
methodologies that use multiple laser line profile 
scanners and also present a multi-sensor approach 
using localization hardware for 3D mapping  
in detail.

We present research results obtained in the 
Imaging, Robotics and Intelligent Systems 
Laboratory (IRIS) at the University of Tennessee, 
Knoxville (UTK) while implementing and test-
ing our localization-based 3D sensing system in 
a separate Section. The specific focus is on the 
following applications listed below:

• Automated Runway/Road Pavement 
Inspection – addressing the need for illu-
mination-independent automated detection 
and analysis of airport runway cracks, in 
contrast to camera-based systems that are 
still under development.

• Urban mapping – catering to the gaming 
and simulation community by provid-
ing augmented photo-realistic immersive 
environments.

• Mapping of hazardous environments – 
arising from the need for mapping and ar-
chiving large scale radioactive or hazard-
ous environments for future cleanup and 
maintenance.

With real-world deployment experience, we 
demonstrate 3D imaging prototypes as significant 
improvements over existing camera-based vision 
systems. In the conclusions section, we identify 
issues and challenges ahead of us in new sen-
sor development and design, the need for better 
localization sensors and the ability to integrate 
uncertain multi-sensor data. Our hope is that the 
conclusions drawn in this section will inspire  
innovation in each of these fertile areas for  
future research.

Figure 1. Classification of popular 3D imaging methods based on the physics of range sensing. Of these 
methods, we find the time-of-flight approach and the triangulation approach meeting accuracy, reso-
lution, and real-time acquisition requirements for our large-scale mapping applications. The passive 
image-based pose and 3D structure recovery, particularly shape from motion, shows immense potential 
as a relatively inexpensive solution (please see the additional reading section for descriptive references 
for the 3D sensing methods).
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BACKGROUND: 3D 
SENSING METHODS

Overview of 3D Sensing Techniques

In this subsection, we discuss 3D sensing meth-
ods and weigh their suitability for mapping in 
outdoor environments. We begin by presenting 
a classification of different techniques in Figure 
1. The classification is based on a study similar 
to the review of Blais (2004) on 3D range sens-
ing in which different 3D sensing methods are 
categorized as passive or active. The major dif-
ference between active and passive techniques 
is that active sensors cast an external source of 
illumination (as a structured pattern, lasers etc.) 
to infer depth while passive methods are primar-
ily image-based.

We begin our discussion with passive tech-
niques for 3D imaging. The popular stereo ap-
proach is similar to the way humans perceive 
depth and involves two cameras taking a picture 
of the same scene from two different locations at 
the same time. Just like our eyes, image-based 
passive 3D reconstruction methods take 2D pic-
tures as projective inputs of the 3D world and 
recover depth using computational substitutes of 
human perception. One computational approach 
is to estimate depth information by matching 
correspondences in the images from the two 
cameras and applying epipolar geometry. The 
alternate approach avoids matching individual 
pixels and instead models disparity between ste-
reo pairs into a regularized global energy function 
that is iteratively optimized for a tradeoff between 
intensity disparity and smoothness support from 
neighboring pixels. With additional knowledge 
of camera parameters and focal length the dispar-
ity at each pixel estimated using the energy func-
tion is converted to range measurements. An 
extension of passive stereo that uses only a single 
camera is the shape from motion method. Shape 
from motion algorithms are also based on epipo-
lar geometry, the difference from stereo being that 

frames in a video are considered as data of the 
same scene taken from different viewpoints. Pas-
sive triangulation algorithms, both shape from 
stereo and shape from motion, are challenged by 
the ill-posed problem of correspondence in stereo 
matching. We will be revisiting shape from motion 
principles in detail in the next Section.

Another scheme to extract 3D shape is via the 
principle of focusing and defocusing. The methods 
infer range from two or more images of the same 
scene, acquired under varying focus settings. By 
continuously varying the focus of a motorized lens 
and estimating the amount of blur for each focus 
value, the best focused image is determined. A 
model linking focus values and distance is then 
used to approximate distance. The decision model 
makes use of the law of thin lenses and computes 
range based on the focal length of the camera and 
the image plane distance from center of the lens. 
However, this method has its limitation in the fact 
that blur estimation influences the focal length 
computation and the derived range. The system 
required for the imaging process is best suited for 
microscopy applications, but not as well-suited 
for wide-area mapping.

While shape from stereo, shape from motion, 
shape from focus/defocus infer 3D geometry from 
two or more images, there exist methods for shape 
recovery from a single image. Shape from texture 
and shape from shading techniques fall in this 
category. Shape from shading uses the patterns of 
light and shading for establishing a fundamental 
equation from a single image relating the image 
intensity and 3D surface slope. The fundamental 
equation, the idea of the reflectance map, and a 
Lambertian assumption about the surface helps 
approximate the underlying shape by solving a set 
of differential equations (Trucco & Verri, 1999). In 
real-world environments, the physics and the math-
ematics required to solve for structure becomes 
complicated. The Lambertian model assumption 
for shading in outdoor conditions can be grossly 
inaccurate leading to error and discontinuity in 
the recovered 3D structure. Shape from texture 
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(Witkin, 1981) is also a single image technique 
that leverages the distortion observed in texture 
created during the imaging process when a 3D 
point in space is projected into a 2D plane. The 
method selects a representation scheme adequate 
for the texture cues in the image, computes the 
chosen distortion parameters in a representation 
scheme, and combines the distortion with texture 
gradients to estimate local orientation of the sur-
face at each pixel.

Recently, Saxena et al. (2008), Hoeim et al. 
(2005) and Criminisi et al. (2000) propose methods 
for inferring 3D structure from a single image. 
Criminisi et al. (2000) recover 3D structure by 
finding the vanishing point and vanishing line 
using line segments in the 2D image. Hoeim et al. 
(2005) use spatial features to define superpixels 
to classify and associate pixels in the image to 
different 3D planes. Saxena et al. (2008) imple-
ment a machine learning approach to estimating 
3D structure by supervised learning of monocular 
depth cues using ground truth range data. These 
methods are very good tools for the extraction of 
low-level 3D information from a 2D scene such 
as the distance between two object features in an 
image, identifying planar regions in the image, 
or classifying the ground, horizon and sky. These 
methods are not best suited for reconstructing 
a scene at a desired accuracy. In other words, 
techniques recovering 3D structure from a single 
image are very useful methods when further image 
acquisition in the scene is not possible and the only 
evidence of the scene-of-interest is a photograph.

Our interest in this chapter is the ability to build 
systems that can quickly image a scene of interest 
in outdoor environments. Most of the passive tech-
niques discussed thus far fall short of the desired 
depth accuracy of the recovered 3D structure. The 
passive variants for shape recovery listed under 
the active sensing category in Figure 1 improve 
upon the passive methods discussed thus far by 
introducing an additional source of illumination. 
For example, the structured lighting approach 
projects a pre-designed pattern of pixels, usually 

in the form of grids and bars, and observes the 
deformation of the pattern on the surface of the 
object to learn about the 3D shape. Photometric 
methods use additional hardware in the form of 
an optical receiver that includes a photo sensor 
configured to detect spatio-temporal modulated 
optical signals directed at the scene from a set 
of spatially separated optical transmitters. The 
receiver also converts the optical signals from 
each of the optical transmitters to a correspond-
ing electronic signal that is further analyzed 
to determine geometric properties of the scene 
using principles of interferometry. Active depth 
estimation using holography is another idea that 
uses a special interference pattern created in a 
photosensitive medium like photographic film. 
The third dimension of depth is inferred from 
the combined beams of the interference pattern 
projected and reflected off the surface of interest. 
Spatial interferometry based sensors provide high 
accuracy for applications requiring short range (on 
the order of a few meters), but can have issues 
with dynamically changing scenes or when the 
scene is imaged using a mobile platform.

We are left with two methods from the clas-
sification chart, namely the active triangulation 
and time-of flight systems. Both these systems 
are laser-based. With the active triangulation 
scheme, a laser in the visible spectrum (usually 
a line laser) illuminates the scene. The laser line 
traces the surface shape of the scene as a curve 
which is imaged using a high speed camera. The 
camera samples the curve traced by the laser into 
points representing the scene. By using a special 
calibration procedure to estimate depth, the surface 
profiles can be mapped into a metric 3D structure. 
The idea is that by moving the camera and laser 
arrangement relative to the scene of interest while 
simultaneously accumulating and sampling the 
curve traced by the laser profile we can build a 
3D model of the entire scene. This approach can 
be configured to a high degree of accuracy and 
readily lends to applications where the scene 
is static and a mobile platform can be used to 



476

3D Imaging for Mapping and Inspection Applications in Outdoor Environments

reconstruct the scene. But, being camera-based, 
such a system will have the same field-of-view 
restrictions as the passive methods. On the other 
hand, the time-of-flight systems are based on 
physical principles of estimating distance from 
a scene by shooting out a laser and sensing the 
reflection. With the knowledge of the speed of 
the laser, the observed time taken for the laser to 
travel, reflect and return is then used to compute 
the distance from the laser source. The time-of-
flight approach does not provide high accuracy as 
the laser triangulation methods but usually spans 
a larger field of view and range.

Each acquisition method has its own advan-
tages and disadvantages. Based on the application 
of interest and the application requirements a 
practitioner has to consider several factors before 
building a 3D imaging system. We list some of 
the factors in the following paragraphs.

Factors to Consider in 
Choosing a 3D Sensor

We discussed popular 3D sensing options avail-
able to us. However, if we were to pick a sensor or 
design a new one for a new application of interest, 
we have to evaluate sensors across several limiting 
factors. We list a few factors that we researchers 
typically use before conceptualizing a 3D system 
configuration.

• Depth accuracy and spatial resolution: 
The most critical aspect in the choice of a 
sensor is the depth accuracy and the spa-
tial resolution. For inspection applications, 
being able to detect very fine features that 
are only a few millimeters deep, long, and 
wide is significant whereas with mapping 
applications, centimeter level accuracy 
may be sufficient.

• Field-of-view and range of operation: 
Each 3D sensing method discussed thus 
far operates at a fixed range - a minimum 

and maximum distance between the sen-
sor and the scene. The accuracy, resolution 
and the precision of the sensor is specific 
to this range. Also, for a fixed range both 
laser scanners and camera based systems 
have limited field of view. Both field-of-
view and the range of operation are as 
important as depth accuracy and spatial 
resolution while choosing a 3D sensor. As 
an example, while designing a robot for 
3D under-vehicle inspection applications 
(Sukumar et al., 2006), we expected that 
the range of operation and the field of view 
will be limited by the ground clearance of 
an automobile. Our choice of the sensor for 
the robotic imaging system had to be based 
on the need to accommodate the variance 
in the ground clearance of a variety of cars 
and automobiles from different manufac-
turers (typically varying from a minimum 
of 10 centimeters in compact cars to 90 
centimeters in large trucks). In an applica-
tion where a robot carries a 3D sensor to 
map the under-carriage of an automobile 
factors like size and weight of the sensor 
also become important.

• Speed of acquisition: The speed of acqui-
sition determines how much area we can 
image per unit time using a sensor. The ac-
quisition rate indirectly dictates the density 
of sampled points in the final 3D model. 
Today, 3D area imagers require a few sec-
onds to capture a square-meter of a scene 
while 3D line profilers are the high speed 
acquisition devices capable of capturing 
several thousand profiles a second.

• Sensor cost: We had noted earlier that 
accuracy and precision of active sens-
ing methods is much more reliable than 
image-based passive 3D sensing methods. 
But, laser scanners can be expensive - in 
the range of a few thousand United States 
dollars. Vision-based 3D sensing on the 
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other hand, using shape from stereo or 
shape from motion techniques, only cost 
as much as the camera and the integration 
software; this is potentially orders of mag-
nitude less than a high resolution 3D laser 
range scanner.

• Photo-realism: Most mapping applica-
tions require a photo-realistic reconstruc-
tion of the scene - an accurate spatial and 
spectral construction with geometry and 
color information. This requirement can be 
a limiting factor in the choice of the sen-
sor. Today, some of the laser-range scan-
ners are packaged with a high-resolution 
camera that is calibrated to register the 2D 
color information onto the 3D point cloud 
from its sensing electronics. However, 
if the laser scanners are operated as line-
profile scanners instead of area-scanners, 
color integration has to be considered as an 
additional task during integration.

• Power requirements: One often ignored 
aspect of scanning in outdoor environ-
ments is the need for transportable power. 
While most camera-based systems can run 
on off-the-shelf batteries, laser scanners 
and other hardware for 3D acquisition are 
power-hungry devices. The voltage and 
the wattage requirements have to be con-
sidered during the system design. Most 3D 
sensors today are designed to operate out 
of line supply. For mobile scanning appli-
cations in outdoor environments, access to 
a line supply may not always be possible. 
Applications such as runway inspection, 
requiring several laser range scanners to 
operate over a period of several hours, 
need deep-cycle batteries with heavy-duty 
inverters as a source of power. Low-power 
line-profile scanners can be operated using 
cheap off-the-shelf thermal batteries for 
several minutes.

• Availability of software development 
toolkits: Most commercial off-the-shelf 
sensors do come with acquisition software. 
Even if not packaged along with a sensor 
purchase, the software may be available 
for an additional cost. Sensors still in the 
prototype phase may not have software 
support. Even when acquisition software 
is available, we have realized that software 
development toolkits (SDKs) instead of 
pre-compiled packaged software are more 
useful for the design of a custom 3D im-
aging system. SDKs enable programmable 
control, acquisition and integration of the 
sensor data considerably reducing the time 
between acquisition and model integration 
while also leveraging innovative system-
design using the sensor.

• Ambience and illumination assump-
tions: Some sensors require specific il-
lumination configurations to operate and 
may not be readily amenable to outdoor 
environments. Some sensors can also be 
very sensitive to illumination changes. 
For example, photometric stereo-based 
techniques can be thrown off by sunlight 
while most other camera-based passive 
techniques are illumination sensitive. The 
reliance of sensor accuracy on ambient 
conditions, specular nature of the material, 
etc. is not a desired characteristic for an 
outdoor mapping system. Even an active 
system such as a structured light system 
may not be effective in an outdoor envi-
ronment. The intensity of active and struc-
tured illumination can be overwhelmed by 
the intensity of sunlight. The workaround 
for illumination sensitivities that a practi-
tioner might be able to employ is to con-
duct the 3D data acquisition in the dark at 
night without sensor limitations.
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On evaluating sensing techniques along the 
aforementioned factors for mapping and inspec-
tion applications we are able to narrow down 
our options. In outdoor environments where 
centimeter accuracy is sufficient, time-of-flight-
based scanners appear to be the ideal choice. 
Vision-based systems, especially those using shape 
from motion algorithms, sound very promising for 
centimeter level accuracy also. However, for crack 
inspection and detection millimeter accuracy is 
desired and only laser triangulation systems are 
able to digitize high accuracy high fidelity 3D 
geometry at the rate of a few thousand profiles 
in one second. But, we already know that trian-
gulation systems have a limited field of view and 
sunlight can overwhelm the structured light (even 
if the illuminant is a high power laser). In such 
situations when large areas need to be digitized, 
our recommendation is to use an array of laser 
triangulation sensors with each sensor mounted 
with an optical filter tuned at the wavelength of 
the illuminating laser.

DATA ACQUISITION AND 
INTEGRATION STRATEGIES 
FOR 3D MODELING IN 
OUTDOOR ENVIRONMENTS

After choosing a sensing mechanism, we still 
need to understand different data formats from 
sensors. The data format influences how we 
collect and integrate data into 3D models. We 
broadly categorize data acquisition strategies into 
the multi-view approach and the multi-sensor ap-
proach in Figure 2 and discuss ideas to integrate 
3D structure recovered from range data, image 
data and range-profile data in this Section. We 
begin with the multi-view range data integration, 
and later present 3D image data integration fol-
lowed by multi-modality integration techniques 
implemented at UTK.

Multi-View Range-Data Integration

A typical off-the-shelf time-of-flight laser range 
scanner is designed to operate both in continuous 

Figure 2. Data acquisition and integration strategies for 3D modeling in outdoor environments. We also 
illustrate the multi-view approach where several snapshots of the same scene are acquired in contrast to 
the continuous acquisition of line profiles aligned based on position and orientation information from 
localization hardware.
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mode (delivering the 3D structure of its entire 
field-of-view) or in line-profile mode (sampling 
one line at a time) as illustrated in Figure 2. The 
continuous mode operation output is usually a 
range image or a scattered point cloud. The output 
while operating as a line scanner is a profile that 
needs localization information to be aligned. The 
multi-view approach applies to most ‘area’ imag-
ers like a digital camera or a range scanner set to 
digitize its entire field of view. The strategy is that 
the imaging system acquires a single snapshot of 
the outdoor scene at a time. The imaging system is 
then transported to different vantage points from 
where we scan the scene again. We illustrated this 
in the bottom left inset in Figure 2. We showed 
the multi-view scans in red, green and blue point 
clouds. We can register these point clouds to a com-
mon co-ordinate system and build the 3D model of 
the environment. This can be done manually using 
software programs like MeshLab, Rapidform, 
or GeoMagic, or using implementations of the 
Gaussian Fields framework (Bougherbel, 2005). 
With the multi-sensor approach, the strategy is 
to use line profile scanner(s) along with local-
ization hardware like global positioning systems 
and inertial measurement units to align profiles 
sampling the 3D structure of the scene.

Image-Based Multi-View 
3D Reconstruction

For each image pair in the sequence, discrete fea-
tures are detected, sifted to find the corresponding 
matches between the successive image frames, 
and then used to determine the motion estimate 
of the camera platform between the views. We 
use a calibration approach where the intrinsic 
parameters of the camera used in the system are 
estimated by collecting images of planar grid 
patterns at different orientations and feeding it 
to Zhang’s calibration method (Zhang, 2000). 
We prefer the calibrated approach to uncalibrated 
approaches, such as (Pollefeys, 1999), because of 
the dependable accuracy with the 3D structure and 
the reduced computations aiding real-time local-
ization. A block diagram for image-based motion 
and structure estimation following (Pollefeys et 
al., 1999) is outlined in Figure 3.

After offline calibration, the online motion and 
structure estimation from images begins with 
feature detection. There are a number of feature 
detectors available for this task, and the standard 
Harris corner detector (Harris & Stephens, 1988) 
appears to be the most common in the literature 
due to its robustness to noise, stability and per-
formance (Schmid et al., 1998). In Figure 4, we 
show the Harris corners as red and green markers 
on two successive frames on one of our experi-

Figure 3. Block diagram for image-based motion and structure estimation following (Pollefeys et al., 1999)
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mental datasets in the downtown area of Knoxville, 
Tennessee. The Harris features are used as the 
starting locations for a window-based intensity 
correlation matching. This matching process is 
typically an O (N2) operation which can be ac-
celerated by reducing the search space. We do 
this by restricting the search range to those features 
in the second image that lie within a distance of 
R pixels of the same feature in the first image. 
This radius is determined based on the assumed 
range of velocities of the mobile platform, as 
compared to the acquisition rate of the camera. 
The resulting correspondences are then filtered 
using an algorithm based on dominant mode of 
the correct matches.

The bottom images in Figure 4 show the image 
frames with the motion tracks of observed features 
superimposed. Notice that while the majority of 
the feature tracks indicate motion along the same 
direction, some of them exhibit anomalous be-

havior. Such anomalous motion tracks are called 
outliers which result mainly from noise – either 
through the estimated motion of features in the 
scene or by false matches from the correlation 
stage. Removal of these noisy feature tracks in-
creases the video localization system’s robustness 
to noise, and provides a more accurate estimate 
of the platform’s pose.

The most common method to remove such 
outliers and make pose estimation robust to 
noise is through a “random sample consensus 
algorithm” (RANSAC). The RANSAC approach 
is a probabilistic solution, introduced by Fischler 
and Bolles (1981). A small subset of feature cor-
respondences are randomly selected from the set 
of all feature tracks estimated after correlation 
matching. This subset of correspondences defines 
a fundamental matrix F for the image pair. F is 
a rank 2, 3 by 3 matrix. For simple projection 
models, the minimum cardinality of the feature 

Figure 4. Pictorial description of the structure and motion estimation algorithm on video frames. The 
top images represent two successive frames collected while experimenting in the downtown area of 
Knoxville, Tennessee. The bottom left image shows the motion vectors estimated from the image data 
and the bottom right image shows the result of outlier rejection. The inliers of the motion matches are 
then used to compute the 3D motion of the camera that generated these images.
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track subset is three. Several modifications are 
available based on motion assumptions and the 
projection model such as the 5-point (Nister, 
2004), 6-point (Hartley & Zisserman, 2000) and 
8-point (Hartley, 1997) matching algorithms that 
will recover the matrix F as a linear system relat-
ing correspondences between successive image 
frames. Next, the epipolar error ei is computed 
for all feature tracks, measuring the distance of 
each feature from its corresponding epipolar line, 
defined by the computed elements Fi. Since, the 
subset of correspondences can contain errors, we 
will have to evaluate a sufficiently large number of 
such feature subsets. Each evaluation will provide 
a hypothesis about the state of the camera system 
and the structure. The RANSAC procedure iter-
ates through all these hypotheses to choose a set 
of feature tracks that have maximal support. The 
cost function in RANSAC is usually the mean 
epipolar error. If the mean epipolar error for a 
subset is less than that from previous iterations, 
the current fundamental matrix and its associated 
mean epipolar error become the best estimate for 
this two-frame motion. The process is then iter-
ated until convergence within a threshold. We 
illustrate this procedure in Figure 5 in a simplified 
line fitting example.

The green markers in Figure 5 represent the 
inliers and the red the outliers. The problem of 
estimating F then in this simplified line-fitting 

example is to randomly select two points from 
the data of matches and then seek the support 
from other matches iteratively. The linear model 
F that relates the image features in successive 
frames is evaluated based on the distance between 
each feature track and the linear motion model. 
Through the iterative procedure, several hypoth-
eses are evaluated and the one that converges to 
maximal support is chosen. The number of 
minimal subsets Mh (equation 1) to evaluate de-
pends on the feature detector. In equation (1), p 
refers to the probability that a pixel in the image 
is a feature, ε is the error associated with the loca-
tion of features detected by the feature detector 
and s is the choice of the n-point matching algo-
rithm. If using the 5-point algorithm, s = 5. When 
the threshold for support search is set appropri-
ately in RANSAC, the algorithm has been proved 
to be robust in rejecting outliers as shown in 
Figure 4.

M ph
s= − − −log( ) / log( ( ) )1 1 1 ε  (1)

When the iterative procedure is complete, 
the best estimate of F is computed by removing 
all features that were considered outliers with 
an epipolar error greater than two pixels and re-
computing F using all the inlying feature matches. 

Figure 5. Inlier classification using RANSAC. This n-point matching algorithm generates different 
hypotheses by randomly sampling the motion matches and fits a model-based on the minimal subset. 
Competing hypotheses are iteratively scored based on a threshold to choose the one with maximal support.
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The pre-computed camera calibration matrix K is 
used to calculate the essential matrix E via

E K FKT=  (2)

The next step of motion calculation is to extract 
the translation and rotation parameters from E. It 
can be shown that the translation vector Ts is the 
solution to min||ETTs|| - the unit eigenvector with 
the smallest eigenvalue of the matrix EET. The 
sign of the translation vector can be determined 
by using the constraint that the imaged scene 
must be in front of the camera. Determining the 
solution to the rotation matrix R involves solving

min ( [ ] ) ,R T ET
s x

T− −  (3)

which can be efficiently solved using a quater-
nion form. The output of this motion estimation 
system is a 5 degree of freedom (DOF) motion 
state with an unknown scale factor γ. We use an 
absolute distance measurement from the onboard 
laser range scanner to provide the scale factor γ.

So far, we described the state estimation from 
images. We now describe the structure estimation 
process. Though several methods exist for 3D 
reconstruction from images (Ma et al., 2003), 
the fast factorization approach for projective 
reconstruction appears to be the most suited for 
our application. Note, that the structure estima-
tion algorithm that we use is not a two-frame 
method but a multi-frame method to counter the 
effect of vibrations in the robotic platform. For 
the sake of simplicity, the geometry estimation 
was explained based on the two-frame method 
in earlier paragraphs and is easily extendable to 
multiple frames.

Let us now consider recovering the projective 
structure from matched features in a video frame. 
Suppose the jth point in the ith frame, xij is pro-
jected from the scene point Xj byλij ij i jPXx = , 
where λij and Pi  denote the projective depths and 

projection matrices, respectively. Given Np 
matched points in Nf frames we have:
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where the matrix on the left hand side is the mea-
surement matrix.

The initial depth values can be set to unity or 
be obtained with Sturm and Triggs’ method (Sturm 
and Triggs, 1996). After the depth values are nor-
malized, we find the nearest rank-4 approximation 
of the measurement matrix using SVD (Singular 
Value Decomposition), based on which the camera 
matrices and 3D reconstructed points are derived. 
These reconstructed points are re-projected into 
each image to obtain new estimates of the depths. 
The process is repeated until the variations in the 
projective depths are negligible. The step-by-step 
iterative projective reconstruction algorithm can 
be summarized as shown below.

1)  Normalize the image data using isotropic 
scaling.

2)  Start with an initial estimate of the projective 
depth values.

3)  Normalize the depth values
(3.1)  Rescale each column of the mea-

surement matrix so that

         λij ij
T

ij
i

N f
2

1

1x x
=
∑ = .

(3.2)  Rescale each triplet of rows of 
the measurement matrix so that

λij ij
T

ij
j

Np
2

1

1x x
=
∑ = .

(3.3)  Repeat until there is no significant 
change in the measurement matrix.

4)  Form the measurement matrix, find its near-
est rank-4 approximation using SVD and 
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decompose to find the camera matrices and 
3D points.

5)  Re-project the points into each image to 
obtain new estimates of the depths.

6)  If the variations in the projective depths are 
small enough, stop. Otherwise repeat (3)-
(6). The initial depths can be set to ones or 
obtained using Sturm and Triggs’ method or 
a method from (Mahmud and Hebert, 2001).

The output of the procedure is a projective 
reconstruction that we need to transform into a 
metric reconstruction. Towards that goal, we need 
to find a projective transformation matrix H and 
update the projective reconstruction by HXj. Us-
ing the dual absolute quadric Ω*  we have 
ωi i i

TP P* *~ Ω1  where ωi i i
TK K* = with Ki as the 

camera’s intrinsic matrices (Sturm & Triggs, 
1996). A linear solution of Ω*  can be obtained 
by imposing additional constraints on the camera’s 
intrinsic parameters, such as zero skew, unit aspect 
ratio, and zero principal point, and the rank-3 
property is applied for improved accuracy. Note 
that we already computed the K matrix from 
apriori calibration. The projective transformation 
m a t r i x  i s  o b t a i n e d  b y  f o r c i n g 
H H diagTΩ1 1 1 1 0* ( , , , )=  and projective recon-
struction is elevated to metric reconstruction by 
P PHE i i, =

−1 andX HXE j j, = . Finally, bundle 
adjustment is carried out to minimize the projec-
tion errors over several frames by computing the 

min , ,,
xij E i E ji j

P X−∑
2
. Once the sparse points 

are reconstructed, dense matching is carried out 
to transform each pixel in the 2D image into a 3D 
point. Based on the sampling density requirement 
on the final 3D model, interpolation is also carried 
out.

Our experience with implementing image-
based motion estimation encourages the imple-
mentation of vision-based navigation in structured 
environments with buildings where GPS sensors 
can fail. However, we also realize that motion 

estimation from video can be perturbed by several 
factors. Illumination change, wind, weather, type 
of motion (as in rotation only or translation only), 
moving objects in the scene, multiple layers of 
objects in the camera’s field of view can affect 
pose recovery. At the feature detection stage, 
there is error about the pixels that are mistakenly 
classified as features, and in environments with a 
significant amount of vegetation several features 
in the image could appear as potential matches 
in the correlation matching phase creating con-
fusion with several hypothesis with support in 
the RANSAC stage. The structure estimation is 
completely dependent on the initial sparse recon-
struction and the estimation of the fundamental 
matrix. We believe that uncertainty analysis has 
to be performed at the geometric estimation stage 
to improve the localization accuracy.

THE UNIVERSITY OF 
TENNESSEE APPROACH

We have included three different 3D acquisition 
methods (triangulation-based, time-of-flight 
and structured lighting) into our architecture. 
The reason behind including these methods was 
through initial experiments, where we concluded 
that the triangulation-based 3D sensing matched 
our requirements for high speed and high ac-
curacy crack inspection (though we realized we 
might have to use an array of sensors for larger 
fields of view); for urban terrain like buildings 
the RIEGL time-of-flight-based scanner was the 
better option, and for mapping terrain for simula-
tors, the SICK scanner’s accuracy and resolution 
seemed to be sufficient. Hence, our software and 
hardware design accommodates all three types of 
scanners. In this section, our focus is more on the 
image acquisition system than the processing. We 
had argued that the map of any environment can 
only be as good as the 3D sensing method and the 
localization hardware. The modular architecture 
was hence formulated to include different types 
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of sensors making the 3D mapping process less 
dependent on the application in hand. Different 
versions of the 3D mapping system that we have 
developed are shown in Figure 6.

The sheet-of-light triangulation-based 3D 
sensor (IVP RANGER SC386) that we use is 
capable of acquiring 2000 profiles/second that 
corresponds to 6 mm separation between succes-
sive profiles driving at 30 miles/hour. In terms of 
accuracy, our system that was placed 70 cm above 
the road surface and configured for a baseline of 
70 cm and a triangulation angle of 45 degrees 
gives 1 mm accurate depth information. The price 
that we pay, however, in using such a system is 

the field-of-view. We are able to scan a 0.6 m 
wide section of the road using a single sensor. We 
believe using an array of such sensors is a pos-
sible solution to large area micro-scale data col-
lection. For other applications such as terrain and 
urban mapping, we list the specifications of the 
sensors we recommend in Figure 7.

To assign global references to our integrated 
maps, we collect physical location information 
by setting up a GPS base station and placing a 
receiver on the mobile platform. The GPS data is 
accurate up to 3 cm in the motion direction and 
gives us 10 samples of position information in 
one second. The GPS can be thought of as sam-

Figure 6. The sensor architecture lends to different levels of modularity with large-scale mapping. After 
testing a development prototype on a push cart (middle row), we have improved towards application-
specific professional packaging (bottom row).
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pling the 3D motion of the mobile platform that 
houses the sensors. In the prototypes shown in 
Figure 6, we see a video camera mounted on a 
rod, whose image axis is orthogonal to the surface 
of interest. We prefer the orthogonal field-of-view 
for generating texture because it makes the reg-
istration of range and intensity profiles easy and 
considerably improves integration time without 
having to consider CCD calibration and rectifica-
tion of images. In addition to using video for 
texture, we use additional cameras to help estimate 
the motion of the sensor platform as back up to 
GPS satellite signals that may intermittently be 
unavailable during certain time intervals of the 
day. As a backup localization system, and for 
compensating for the vibrations and the resulting 
oscillations on the mobile platform caused by the 
suspension system in unstructured terrain, we 
used an inertial measurement unit (IMU) for 
measuring the orientation Euler angles (roll, pitch 

and yaw) of the sensor mount during data collec-
tion.

We have built our system by choosing sensors 
based on the application requirements. These 
sensors fall into two categories as pose-recovery 
sensors (GPS, IMU, cameras) and structure-
recovery sensors (cameras and laser scanners) 
with the potential of also using some structure 
recovery sensors to infer pose. Though the idea 
of mapping appears trivial once the GPS provides 
global location and IMU provides relative orienta-
tion information to align the 3D profiles from the 
laser scanners into a global co-ordinate system, we 
have to discuss several issues before we actually 
deliver an integrated 3D model. In this section, 
we describe the procedure for integrating the data 
collected from multiple sensors into one complete 
single multi-modal 3D dataset. The processing 
steps that we implement are shown in a block 
diagram in Figure 8. The task of spatial alignment 

Figure 7. Specification of the components in our modular approach along with some design notes towards 
reproducing our system. We have included the size and weight factors to emphasize the portability and 
robustness. We have also provided the sensor characteristics and their expected accuracy that will later 
be used as a bound in the noise model for the sensors.
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is not trivial because each of the measurement 
systems has its own reference coordinate system 
differently oriented in free space. As a first step 
toward integration and fusion of the data, we use 
the GPS coordinate frame as our reference frame 
and transform the range and intensity profiles to 
that frame without losing geographic location 
information of the scene.

We need to deal with another important issue 
before transforming the data to the real-world 
coordinates. We attribute this issue to different 
acquisition rates from different sensors. The GPS 
supplies data at a frequency of 10 Hz, the video 
camera at 30 Hz, the IMU at 100 Hz, while the 
range profiles are acquired at nearly 2000 Hz. We 
have two ways of resolving this issue: (1) Discard 
the range data and use the profiles that are time 
synchronized with the GPS data or (2) use all the 
points of the range data and align the profiles 
based on an interpolated GPS path at the time 
instants when we have acquired the range data. 
We lose more information in discarding acquired 
data by choosing the former solution. We hence 
suggest cubic spline interpolation of the GPS path 
as a 3D curve at time stamps recorded by the range 
sensor. The IMU orientation data also needs to 
be interpolated. Having characterized our IMU 
sensor, we apply moving average smoothing 
techniques to reduce the noise in its measurements 
before interpolation. The uncertainty analysis 

block takes care of the belief propagation on sen-
sor data before spatial alignment in such situations.

We denote the Euler angles of roll, pitch and 
yaw from the IMU by (ω ϕ κt t t, , ) and the 3D 
range measurements at a particular time t by Dt 
= (xt

r, y
t
r, z

t
r). We assume that we have already 

interpolated the localization sensor data to syn-
chronize in time with the range profiles. Let the 
GPS measurements be (xg,yg,zg) considering the 
moment arm distance along each dimension of 
the range sensor from the GPS receiver. Now the 
mapping to the real-world co-ordinate system Wt 
of the profile acquired for that instantaneous time 
t can be computed using

RtDt+Pt = W,  (5)
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T= [ , , ] is the measurement from 
the 3D range sensor and
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T=   [ , , ] is the position of the range 
sensor through GPS measurements.

The transformation and alignment based on 
multi-sensor data collected over a time period 

Figure 8. Block diagram for integrating multi-sensor data into a 3D model. The sensors provide lo-
calization and structure information which is fused and aligned into a 3D model. We have included an 
uncertainty analysis step before the alignment to handle dynamic situations in the real world.
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gives us an unorganized point cloud of data that, 
for visualization purposes, we triangulate using 
the method described by Hoppe in (Hoppe et al., 
1992). Our experience indicates that triangula-
tion should be performed on smaller patches as 
the data is acquired and later merged into a large 
3D dataset. The dense point cloud is converted 
into a mesh that can be textured using the color 
images from the video. By the design of our setup 
and initial hardware registration step, we can map 
the color pixels in the CCD to the range profile 
as a quick method for multi-modal visualization. 
The process of digitizing a real world scene by (i) 
sampling the geometry as points and profiles Dt, 
(ii) sampling color using cameras and (iii) align-
ing geometry and color in a global co-ordinate 
frame can be better understood from illustration 
in Figure 9.

APPLICATIONS

Airport Runway/Road 
Pavement Inspection

The main goal of road surface inspection is being 
able to identify crack patterns, rut depths and the 
roughness of the cracks. The depth information 
is of particular significance in airfields because 

the rating scheme for the runway surface (Walker, 
2004) is not dependent on the length and width 
of the cracks alone, as is the case with pavement 
distress applications, but also on the depth. Crack 
depths on the order of a few millimeters require 
high precision distance measurements. Therefore, 
the design requirements for a comprehensive 
airfield data collection system should address 
accuracy and precision in three dimensions of 
measurement, speed of acquisition, time required 
for post processing, and ease of visualization  
and evaluation.

With current data collection methods confirm-
ing the necessity to integrate several heterogeneous 
technologies, we further identify the scope for 
improvements in system design by addressing 
the time of acquisition and processing and list the 
important characteristics of a real-time deployable 
system. An ideal road data collection system must 
operate in real-time data acquisition and real-time 
post processing speeds. The duration required 
for data analysis should not overwhelm the time 
required for acquisition. A single pass data col-
lection should be sufficient for cost-effective 
distress identification and localization in roads 
and runways. The critical aspects in the design 
are the accuracy and robustness of the system 
and its extendibility to arbitrary terrain, which 
would represent an improvement over current 

Figure 9. Spatial integration of multi-sensor data requires a global reference frame and interpolation 
to consider different sampling rates of sensors. The range profiles are in a local co-ordinate frame that 
is transformed into the GPS co-ordinate frame based on the self-localization data and integrated as a 
textured 3D model.
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state-of-the-art methods assuming relatively 
planar surfaces in their design. We also note that 
in addition to detecting and classifying cracks, 
depth information is also important for the de-
tection of object debris and other anomalies like 
vegetation that should not exist on an asphalt or 
concrete runway. An advanced system is needed 
that is also able to operate independently from 
illumination requirements.

State of the Art

Related work towards pavement distress, espe-
cially on airport runways and army maintained 
highways, dates back to the early 1980’s. The 
pavement management system (PMS) concept 
was proposed by the U.S Army (TM 5-623, 1982) 
and has since then undergone metamorphosis, 
keeping pace with improving imaging technology. 
However, transportation departments met with 
limited real-time success using digital imaging 
techniques towards automatic crack detection 
and filling (McGhee, 2004) until the late nineties. 
Non-visual sensors and several improvements on 
image-based methods were proposed during this 
period. We summarize these methods in Figure 
10 and discuss the advantages and disadvantages 
of the different types of sensing methodologies.

Today, analog films have been completely 
replaced by digital cameras. Among digital sys-
tems, video cameras are preferred to line scan 
methods for the ease of use without special illu-

mination requirements, though line scan methods 
offer very high resolution data. Such video-based 
vision systems have two major drawbacks in 
extension to pavement inspection. They do not 
provide sufficient depth information and also have 
ambient illumination requirements. Range sensors 
that directly give depth measurements have lim-
ited field of view while profilometers and acous-
tic sensors, though inexpensive, can only provide 
low resolution and low dynamic range.

In 1987 Mendelsohn listed several of these 
methods including acoustic sensors and profilom-
eters, and suggested that the imaging modality 
was a promising approach (Mendelsohn, 1987). 
At that time, the processing and image acquisi-
tion speeds challenged the feasibility of a fast and 
efficient inspection system. Several surveys were 
conducted to make an assessment of the feasibility 
of incorporating image acquisition and processing 
methods for both development and implementa-
tion of automated road surface inspection (Howe 
& Clemena, 1998; Wang, 2000). The conclusions 
of the surveys, encouraged by improving hardware 
and processing equipment, have led to most of 
the commercial video-based systems available 
today; these primarily consist of an array of high 
speed imaging sensors supported with illumina-
tion equipment. The video data from such systems 
(Meignen, 1997) promises to be sufficient for 
distress detection, but requires additional spatial 
information for crack filling after detection and 
maintenance. A potential solution AMPIS (Chung 

Figure 10. Summary of technologies demonstrated for road surface inspection
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et al., 2003) was proposed that combined GPS in-
formation with video to create GIS-like databases 
of road surfaces. AMPIS claims improved road 
network identification, pavement inspection for 
better maintenance and data management over 
the base framework of PMS.

Hass et al. (1992) proposed a system that in-
corporated a laser range sensor for depth measure-
ments to overcome the shortcomings of the video-
based system. They concluded that combining 
laser range data and video image data can provide 
overall better accuracy and speed of crack detec-
tion, although due to the time consuming aspect 
of laser range sensing in 1992, they demonstrated 
range imaging for crack verification after the de-
tection using the video-based system. Several 3D 
approaches have been demonstrated since then. 
Laurent et al. (1997) proposed a synchronized 
laser scanning mechanism to capture high preci-
sion 3D range and texture profiles. Bursanescu 
and Blais (1997) reiterated a 3D optical sensor as 
the answer to high resolution and high accuracy 
acquisition and redesign a sensor to meet the 

specific requirements of the pavement inspection 
application. They demonstrated six such sensors 
mounted on a mobile platform acquiring data at 
normal highway speeds. We were able to imple-
ment design ideas from several of these papers 
into our approach.

Results with the UTK Approach

To demonstrate proof of concept, we tested our 
system on several pavements with different types 
of cracks and present here some of those results. 
One such area of interest is shown as an inset along 
with the GPS path on a satellite map overlaid on 
Google Maps and the multi-modal integrated 
dataset in Figure 11. The discontinuity in the GPS 
path shown on the inset image is because we did 
not return precisely to the starting point. To draw 
attention to the resolution at which we have im-
aged we show some magnified images of cracks 
and rough asphalt surfaces in the same figure.

We have color-coded the depth to emphasize 
the cracks. The small cracks on the right inset are 

Figure 11. Multi-modal integrated 3D data of an area of interest with three small zoomed in sections of 
areas with different roughness and depth of cracks. The zoomed in sectional views show the color and the 
color-coded range data side-by-side. Our system is calibrated for high accuracy (order of millimeters) 
to even sense depth variations caused by the asphalt chips on the surface.
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about 2 cm wide and 1 cm deep while the longi-
tudinal crack in the top-left inset is 3 cm wide and 
3 cm deep. We have not shown the entire path 
(75m) at that high resolution considering the size 
of the data and memory resources required to 
render the model. We illustrate the ability to 
digitize large swaths of data where even large-
area alligator cracks can be detected in Figure 12. 
Figure 12 (a) zooms in on a small distressed sec-
tion of a road digitized using our system. The 
deep alligator cracks and a longitudinal crack are 

visible in the 3D model. Figure 12 (b) demonstrates 
our ability to detect foreign object debris (the red 
section of the color-coded image) with relative 
ease compared to commercial video-based sys-
tems. With the gray shaded inset, we also note 
that the dataset in Figure 12 (b) shows perceivable 
geometric details that can differentiate gravel and 
asphalt surfaces. Figure 12 (c) is a texture mapped 
3D model of an area inside a parking lot. The 
video sensor in our system is used to generate the 
texture and is registered with the 3D range profiles.

Figure 12. Large swaths of digitized areas at very high resolution. (a) Alligator cracks detected on the 
road surface. (b) Detection of foreign object debris based on 3D information. (c) Textured visualization 
of asphalt pavements.
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Improvements Over the State-of-the-Art 
Systems

With the 3D models that we have integrated, 
crack detection has become easy with simple 
threshold-based algorithms giving us fast and 
accurate results. We have overcome the illumi-
nation requirements of the contemporary video-
based systems and are able to scan while driving 
at 30 miles/hour at 3 mm depth accuracy on the 
cracks and 6mm distance between profiles. With 
data samples from four sensors supplying data at 
different rates, we have integrated accurate photo-
realistic 3D models for surface condition archival 
and convenient visualization. Our modular design 
enables the replacement of sensors to map larger 
areas, albeit with slightly reduced accuracy based 
on the requirements of the application in hand. 
Our datasets encapsulate color and geometric 
information and allow application of existing 
color-based and geometry-based crack detec-
tion/classification algorithms. Our output of real 
world terrain as triangle mesh datasets can easily 
be used as input to finite element analysis based 
vehicle-terrain simulators.

URBAN MAPPING

The motivation for large-scale terrain mapping is 
improved strategic planning in security situations. 
Unmanned vehicles have been deployed in several 
defense and security applications to provide a 
priori information about unknown unstructured 
environments with minimal risk to human life 
(Gage, 1995). These vehicles are armed with 
sensors and are capable of avoiding obstacles to 
navigate in an unknown environment as well as 
reporting concerns in different scenarios such 
as a battlefield (Freiburger et al., 2003), civilian 
security (Courtright, 1991), disaster management 
(Murphy, 2004), or in a patrol/surveillance mis-
sion (Klarquist, 1999). In such missions, the 3D 
environment map of the surveyed area of interest 

is useful feedback for organizing future action 
and deployment of resources in a much more 
efficient manner. For this reason, we require a 
modular multi-sensor system and processing pack-
age that can be mounted on unmanned vehicles/
mobility platforms to generate photo-realistic, 
geometrically accurate geo-referenced 3D mod-
els of the area of interest. Such a system should 
be able to generate 3D models without making 
any assumptions about the vehicle trajectory and 
ambient illumination and should also consider the 
uncertainties involved in a dynamic unstructured 
environment. Real-time data collection and pro-
cessing is also desired.

We are focused on digitizing real world en-
vironments without having to worry about the 
failure of the GPS or the inconsistencies in vision-
based recovery. Hence, an independent modular 
system with the processing interface dedicated for 
mapping can expedite the map building process 
and improve mapping accuracy. Based on the 
level of detail that we desire in the environment, 
such a system should be modular and flexible in 
the system design, making the data collection 
and processing less cumbersome. Also, the map 
building process using the unmanned vehicles 
that are usually operated in stealth mode should 
be independent of ambient illumination capable 
of acquiring visual results both during the day and 
in the night. The hope and promise is that such 
a system would be faster and more realistic than 
computer graphics based design.

State-of-the-Art Methods

In the early attempts at terrain modeling, large 
swaths of coarse terrain data were acquired us-
ing airborne video systems (Baillard & Maître, 
1999). Moving away from air-borne systems to 
easily accessible ground vehicles, an inexpensive 
approach of recovering 3D structure of buildings 
and cityscapes from video (Pollefeys et al., 2000) 
was demonstrated on cases where the shape could 
be recovered using stereo principles from suc-
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cessive image frames. Zhao and Shibaski (1997) 
demonstrated that using range sensors and a line 
CCD as extra data for registration and integration to 
create textured 3D models of urban environments 
was a faster and efficient approach to urban scene 
modeling compared to the aerial survey that was 
the state-of-the art at that time.

The MIT City scanning project (Antone & 
Teller, 2000) that inferred structure using spheri-
cal nodules was another effort in that direction. 
Inspired by Zhao and Shibaski (2001), Christian 
Früh (2001) came up with the idea for urban 
mapping using two laser range profilers in an 
orthogonal arrangement along with digital cam-
eras. He demonstrated the system mounted on a 
truck and driving at normal highway speeds to 
collect data that was processed offline. With his 
orthogonal arrangement, he was able to compute 
centimeter level accuracy by matching succes-
sive laser scans against each other and between 
the two sensors. The horizontal laser scans were 
used to approximate a component of the acquisi-
tion vehicle’s motion. With the vertical scanner 
providing the façade of the urban structure, he 
proposed two different approaches in using in-
formation from aerial maps to minimize global 
localization error using laser scans alone. One of 
those methods was to use cross correlation and the 
other a Markov-Monte Carlo technique to acquire 
3D models in a matter of few minutes subject to 
traffic conditions. The two major drawbacks of 
this approach are the availability of the aerial map 
and the magnitude of global error that accumulated 
over 100m of data.

Zhao and Shibaski (2001) further improved on 
Konno et al. (2000) who proposed three single-
row laser range scanners and six line cameras 
mounted on a measure vehicle (GeoMaster), with 
a system equipped with a GPS/INS/Odometer-
based navigation system. Their sensor mount 
outputs three kinds of data sources: laser range 
points, line images, and navigation data. Either 
the laser range points or the line images are in 
the sensor’s local coordinate system at the time 

of measurement. They are synchronized with the 
navigation data using the sensor’s local clock and 
integrated into 3D models offline. The motivation 
behind these urban scanning projects described 
so far are more on digitization than accuracy of 
digitization with expected errors on the order of 
a few centimeters. These methods did not address 
the uncertainty in the measurement process and 
the dynamic environment towards map building.

Results with the UTK Approach

We tested our system acquiring several miles of 
data in and around Knoxville, Tennessee and pres-
ent some of the results using a RIEGL scanner in 
Figure 13. There are three examples depicted in 
the figure. The first one in Figure 13(a) shows a 
shopping center digitized and textured by driving 
our imaging prototype along the road in the park-
ing lot in front of the shopping center.

The second one is the Women’s Basketball 
hall of fame building near the University of Ten-
nessee campus (Figure 13 (b)). We also show the 
path of our acquisition platform on a satellite 
image as an inset in the same figure. These mod-
els are accurate up to a few centimeters and ex-
tremely dense with each model consisting of no 
more than 100,000 points. Mapping the Hall of 
fame building was a challenge. The building is 
along a curve in the road and mapping using 
image-based techniques was non-trivial. We also 
had reservations about the availability of GPS 
signals, as the building was very close to the urban 
canyon in the downtown area. Our instrumentation 
and integration method successfully handled the 
situation, resulting in the accurate and photo-re-
alistic model.

We present another model integrated using our 
system in Figure 13(c). We mapped a 1 kilometer 
long path around the mall area on Chapman High-
way, Knoxville without any prior knowledge about 
the area. We have shown magnified sections of 
the Goody’s store to indicate the sampling density 
achievable using our system without having to 
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compromise on the texture quality. Our acquisi-
tion took about 10 minutes, further emphasizing 
our ability to quickly produce 3D models of urban 
environments. For large datasets spanning several 
miles, we process datasets offline. A mile of data 
usually takes approximately one hour of process-
ing on off-the-shelf desktop computers.

Improvements Over the 
State-of-the-Art Systems

In essence, we have documented mobile mapping 
prototypes consisting of four main components: 
hardware for 3D geometry and texture acquisi-
tion; hardware for positioning and orientation 
(pose and trajectory) measurement; a mobile 
platform which moves the sensing package past the  

Figure 13. Large areas of urban environments digitized at very high geometric resolution with high 
fidelity texture. (a) BI-LO shopping complex in Knoxville. (b) The women’s Basketball Hall of Fame 
building. (c) The 3D rendering of a shopping mall with the zoomed inset of the Goody’s store on Chap-
man Highway in Knoxville. The sampling density of digitization and the photo-realistic rendering are 
key enhancements with our systems. Our output models are triangle meshes that are easy to embed in 
immersive virtual environments.
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environment to be digitized; and software to per-
form the necessary information fusion to combine 
the data from different sensing modalities and to 
process the resulting model to fit the application 
at hand. While other researchers have developed 
3D terrain acquisition systems, these tend to be 
fixed in regards to the hardware and the fusion 
methods used. In contrast, our system treats the 
components independently with the following 
improvements in accuracy, resolution and pho-
torealism. Our system promises mm- to cm-level 
accuracy as required. Our contributions over the 
state-of-the-art are particularly with respect to 
the accuracy at which we are able to image and 
simplicity in integration towards efficient process-
ing and realistic visualization. The modularity 
inherent in our design allows the system to be as 
robust to real world environments as the individual 
components, at the same time being independent 
of application-specific hardware modifications. 
In other words, our design is capable of easy 
integration when mounted on an aerial vehicle 
or a ground vehicle based on operational need 
without requiring excessive reconfiguration. The 
modular design enables us to treat accuracy and 
resolution as parameters of the system to suit the 
application in hand.

CONCLUSION

In spite of the tremendous advances in 3D sensor 
design, 3D sensors are sensitive to several fac-
tors. Up to now, no design exists for a single 3D 
camera/device, analogous to the digital camera 
design for 2D pictures, that can adapt to work 
with the same quality and reliability both indoors 
and outdoors. 3D sensing appears to be affected 
by a multitude of factors in addition to the known 
issues with color cameras. Moreover, handling 
occlusions has to be addressed in 3D sensing. 
When using a mobile system or a range scanner, 
objects in the scene can occlude other objects 
within the field-of-view especially in outdoor 

environments. Filling up missing data caused by 
view-occlusions can be a time consuming task 
requiring several acquisitions.

The fusion approach we presented tries to 
compensate for some of the issues with 3D sens-
ing. However, it has its limitations. If the sensors 
are all functional and perfect, there would be es-
sentially no error in the integrated 3D map after 
the spatial alignment. However, the sensors are 
noisy and can fail. The noise manifests in the 
localization measurements and also in the 3D 
structure measurements. Uncertainty in the state 
recovered during self localization propagates 
as uncertainty into the integrated map. Hence, 
before we claim robustness to noise and a bound 
on the error in the integrated 3D map, we have 
to handle uncertainty from both of these sources. 
Our modular design of including different sensors 
minimizes the measurement uncertainty in the 
geometric samples of the scene, but we still have 
to deal with the uncertainty in localization. Also, 
if the mapping has to be performed autonomously, 
localization appears to be much more significant 
and a more challenging problem requiring mod-
els for predicting expected uncertainty from the 
sensors. There is a significant need for less noisy 
localization/pose estimation sensors and better 
uncertainty handling methods.
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KEY TERMS AND DEFINITIONS

Bundle Adjustment: The bundle adjustment 
procedure simultaneously refines the 3D coor-
dinates describing the 3D scene geometry along 
with the parameters of relative motion and intrinsic 
optical characteristics of the camera used to acquire 
the images that are used in the 3D reconstruction. 
Most feature-based 3D reconstruction algorithms 

use a bundle adjustment procedure as an attempt 
to minimize the reprojection error of image points 
in a 3D world.

Camera Calibration: The term camera cali-
bration can refer to (a) geometric calibration or (b) 
photometric calibration. Geometric calibration is 
the process of finding/estimating the parameters 
of the camera (usually using projection models 
allowing for some distortion) that transforms 
the 3D real world scene into a gridded 2D im-
age. Photometric calibration on the other hand 
is more relevant to photometric and stereoscopic 
methods, refers to the mapping of colors in one 
image to another. Both photometric calibration 
and geometric calibration is typically performed 
before the data acquisition.

Triangulation: Based on trigonometry and 
geometry (especially the properties of triangles), 
triangulation is the process of determining the 
location of a point by measuring angles to it 
from two end points of a fixed baseline. Every 
real-world scene point can be considered as the 
vertex of a triangle consisting of the scene point 
and the two end points of a fixed baseline. With 
angles at the base line known and the length of 
one of the sides of the triangle (baseline) known, 
triangulation refers to the trigonometric formu-
lation to estimate the distance of the scene point 
from the fixed baseline acquisition setup.
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ABSTRACT

The use of 3D scanning systems for acquiring and analyzing the external shape features of arbitrary 
objects has different applications in different cultural, scientific, and technological fields. In this work, 3D 
laser scanning techniques are used, for the first time, to our knowledge, as a novel and non-destructive 
application for the morphological study of meteorite impact rocks. The subject of the study was a rock 
displaying impact textures and associated with the Karikkoselkä impact crater (Finland) (Lehtinen et 
al. 1996). This methodology permitted: (1) a computerized three-dimensional modelling to be carried 
out on the bulk impact-related rock; (2) other more specific characterizations to be performed, such as 
detailed topographic studies of its surface impact features; (3) some physical properties of the rock to 
be determined (volume); (4) the shatter cone impact texture to be completed with a realistic estimation 
of its convergence angle; and (5) a broad demonstration of the significance and effectiveness of 3D laser 
scanning techniques as a complementary tool for the study of this type of meteoritic impact-related rocks.
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INTRODUCTION: IMPACT ROCK 
(KARIKKOSELKA IMPACT CRATER)

Numerous studies on terrestrial rocks have shown 
they have different types of geological features 
which can be used as micro or macro-markers of 
large impact events (Koeberl & Martinez-Ruiz, 
2003). Certain shock effects have been shown to 
be uniquely and unequivocally associated with 
meteorite impact craters. These include, among 
others, multiple sets of microscopic planar de-
formation features, mainly in quartz and feldspar 
grains, high-pressure mineral phases (e.g. stisho-
vite, coesite) and shatter cones (impact textures 
which form when the shockwave from a meteorite 
impact event passes through and modifies the tar-
get rocks). The study and detailed characterization 
of these impact-related signatures in terrestrial 
environments encompasses the use of classical 
mineralogical and geochemical techniques and 
the development of theoretical, numerical and 
experimental models.

The impact rock used in the work (Figure 1) 
was sampled by one of the authors (JMF) in the 
Karikkoselka area of Finland and forms part of the 
lithotheque at the Spanish Centro de Astrobiologia. 
The well known northern European Fennoscan-
dian Shield has at least 32 impact structures, of 
which 10 are located in Finland (see Earth Impact 
Database, Spray, 2009). This shield is extremely 
important for impact cratering research, since it 
is well exposed, easily accessible and has been 
mapped in detail (Plado & Pesonen, 2002). The 
Karikkoselka structure (62º13’ N; Long. 25º15’ 
E) was proposed as a meteorite impact crater by 
Lehtinen et al. (1996). The crater is the smallest of 
those so far identified in Finland, with a diameter 
of 1.5 km and a depth of 150 m. The geological 
setting corresponds to the Central Finnish Granite 
Complex dating from the Paleoproterozoic Age. 
The target rock is of porphyritic granite from a 
site where many shatter cones have been found. 
In general terms, shatter cones can be defined as 
unusual, striated, horse-tailed conical fractures, 

measuring from millimetres to meters in length 
aand produced in different types of rocks by the 
passage of a shock wave (Sagy et al. 2002), al-
though the mechanism by which they are formed 
is not well understood (Dawson, 2009). The 
directional striated surfaces of shatter cones are 
positive/negative features. An extremely interest-
ing (and useful) feature of shatter cones is that the 
tips point toward the origin of the shockwave. 
This means that they can be used to reconstruct 
the location, size and shape of prehistoric impact 
craters that have subsequently been modified by 
later processes. Shatter cones are usually formed 
at pressures between 2 and 6 GPa, although 
rocks have been found that had been subjected to 
pressures around 25 GPa (Milton 1977). Further 
information on impact textures can be found, for 
example, in Dietz 1947, Amstutz, 1965, Milton, 
1977, Roach et al. 1993, Gibson & Spray, 1998, 
Baratoux & Melosh, 2003 Sagy et al. 2002, 2004, 
Lugli et al. 2005, Dawson, 2009, Ferrière L. & 
Osinski, 2010).

The impact rock from the Karikkoselka impact 
crater (Figure 1) is a red-coloured granitic speci-
men, measuring 131.10 mm x 82.30 mm x 92.80 
mm, with a rough surface marked with incomplete 
but well-defined shatter cone textural features.

3D LASER SCANNER TECHNIQUES

We began our research projects, by questioning 
site and artefact documentation methodologies 
when participating in periodical archaeological 
campaigns. We first became acquainted with laser 
scanners in 2003 through the Leica company, 
which put one at our disposal for a data acquisi-
tion test. The modelling subject chosen was the 
statue of Cibeles in Madrid and the project was 
duly carried out after obtaining the necessary 
licences. The experience was briefly analysed in 
the journal of the Colegio Oficial de Ingenieros 
Técnicos y Topografía (Farjas & Sardiña, 2003). 
The images thus obtained were quite surprising 
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and, impressed by the device’s capacity for data 
capture, to further analyse its possibilities for 
data handling we decided to carry out a series 
of projects. One of the first of these was the 3D 
modelling of a replica of the statue of a Xian 
warrior. The model was obtained to an accuracy 
of within 1 cm. Using our knowledge of photo-
grammetry we carried out several tests and had 
to adapt the shapes and colours to the new data 
acquisition system.

We then applied laser scanner technology to 
objects belonging to the national heritage and 
compared the results with those obtained by 
photogrammetry, publishing the results of the first 
analyses (Farjas & Bravo 2007). A partial sum-
mary of these projects was presented in Farjas, 
M. & García Lázaro F.J. 2008.

Later on we undertook the modelling of the 
Abrigo de Buendía prehistoric site, and then 
used the same methodology for the laser scan-
ning survey of Los Zarpazos in the Atapuerca 
archaeological site (Burgos, Spain). Other projects 
was used to test the capacity of laser scanning to 
reproduce natural spaces in three dimensions, 
with the later addition of data from a short range 
scanner (Farjas et al. 2009).

In the laser scanner projects the general pro-
cedure consisted of:

• Pre-editing of the data capture. If the scan 
was too dense, re-sampling or segmenta-
tion was carried out.

• Registration of each point cloud in the cho-
sen project reference system, generally lo-
cal or global.

Figure 1.Meteorite-impact related rock which was used in the project. It comes from the impact crater 
area of Karikkoselka (Finland). Note its surface textures, which are indicative of an impactogenic ori-
gin. The detailed analysis by using 3D laser techniques is extremely important to both determine and 
characterize the morphological features caused by the shock condition.
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• Elimination of unwanted or erroneous 
points.

• Three-dimensional modelling.

The final results consisted of 3D models of the 
site, orthophotos, cartographies and videos. After 
the processing the data acquired by laser scanner, 
orthophotos can be obtained from the 3D point 
clouds. As these already contain the radiometric 
information, the process is a direct orthogonal 
projection of the point clouds onto a reference 
system defined by the user. The system does not 
necessarily have to be parallel to the scans, but can 
be whichever is best adapted to the zone geometry. 
The orthophoto can then be exported to a CAD 
document for cartographic editing.

We experimented with different methodologies 
for the registration of artefacts (Farjas 2007). In 
Atapuerca a short-range Konica Minolta laser 
scanner was used to include scratch marks made 
by tigers in the model. The work carried out so far 
is focussed on a methodological comparison of 
new systems of data acquisition with traditional 
photogrammetry and the latest versions with cor-
relation options presently available. In general, 
we would recommend that before undertaking a 
project with laser scanner systems the objectives 
should be evaluated so as to form a basis for a 
decision on the best data acquisition method that 
meets the needs of the project.

Carrying out a study of the techniques involved 
in 3D laser scanner modelling of archaeological 
sites and artefacts, in previous works we examine 
experiences in the use of laser scanner technolo-
gies. Laser technology has been shown to have a 
wide range of uses in the field of three-dimensional 
object registration. It is used in architecture and 
engineering to survey buildings, domes and 
bridges as well as to inspect components during 
factory production processes. At the present we 
apply these new technologies in new science fields.

In geology, a subject involved in the present 
study, the graphic registration of rocks has tradi-
tionally been accomplished by techniques such 

as photography or hand-sketches. Our aim is to 
analyse the possibilities of laser scanning for the 
storage, diffusion and metric analysis of rocks of 
morphometric interest.

For the study, we used a 3-D NextEngine 
scanner (Figure 2), which captures objects in full 
colour by low-cost precision multi-laser systems 
applying 3D optical triangulation techniques.

The scanner has its own data-processing soft-
ware (ScanStudio HD), which can explore, align, 
merge and clean the scanned images. It can export 
data to different types of files (STL, OBJ, VRML, 
U3D among others), produce results in the form 
of 3D models compatible with design programs 
such as SolidWorks, 3DS Max, ZBrush, Rhino, 
Modo, Matemática, and print them in ZCrop, 
Stratasys and other 3D printers.

The scanner dimensions are: 224mm long, 
91mm wide and 277mm high. It contains laser 
optics, cameras and processing equipment and 
uses four classes of 1M 10 mW matrices (650nm 
wavelength), solid state lasers and twin CMOS 
RGB 3.0 megapíxel image sensors to capture 
geometry and colour textures. Studio lighting 
includes white light illuminators with triphospho-
rus for the whole colour range. Acquisition speed 
is 50,000 points per second. There are no pre-

Figure 2. NextEngine scanner
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established object limits and there are two types 
of scan: wide and macro, according to object size 
and resolution of the output files. In macro mode, 
the visible area is 130 x 97mm for object-scanner 
distances around 178mm. In wide mode, visible 
area is 343×256mm for a range of around 406mm. 
Resolution, colour texture and precision are all 
different in the two modes. Macro uses a resolu-
tion of 200 dpi and 400 dpi point density on the 
surface and achieves a precision of ± 0.127 mm. 
In wide mode, resolution is up to 75 dpi, density 
150 dpi and precision ± 0.381mm.

The auxiliary equipment includes a turntable 
controlled by NextEngine (ScanStudio HD) soft-
ware, which can stand weights of up to 9 kilos, 
which is both stable and useful for 360º scanning. 
Rotation intervals can be set so that the object 
turns through a certain angle for each scan in the 
sector. Various 3D sections of the object can be 
acquired and later the sections can be merged into 
a single model using the same program.

The methodological possibilities of the device 
were explored in a pre-study phase, using different 
objects and textures, in order to define the final 
scanning procedure and the different methods of 
processing the data acquired (Figure 3).

The results of the pre-study phase were used 
to calculate the scanning times required for mod-
elling rocks with impactogenic textures, also the 
best configurations for different surface features 
and the methods that could be used to merge the 
different unmarked scans and without altering the 
surface of the object (an indispensable condition 
of the project was that it should be non-contact). 
The trials were thus used as a basis for defining 
optimal project methodology.

3D MODELLING OF 
IMPACTOGENIC ROCK FROM 
THE KARIKKOSELKÄ LAKE

The work was divided into the following phases:

• Data acquisition.
• Data treatment and processing.
• Visualisation of results.

Before data acquisition could begin, the fol-
lowing parameters had to be defined:

• Scanning system.

As mentioned above, the NextEngine scanner 
is equipped with two complete scanning systems, 
with two cameras and two laser sets with the 
corresponding optical systems to obtain high-
precision results at all possible distances. There 
were two data acquisition options:

• Macro: used for scanning small objects 
(e.g. mobile phones) with good resolution. 
In this scanning mode, the ideal scanner-
object distance is 6.5” (16.5cm) with a 
maximum precision of ±0.381mm.

• Wide: used for larger objects (about the size 
of a shoe box). Recommended scanner-ob-
ject distance is 17” (43cm) and maximum 
precision ±0.381mm.

It should be mentioned here that for dark, 
glossy or transparent objects it may be necessary 
to apply a thin coating of PowderPen (talcum 
powder) to reduce reflectance, as we discovered 
with the first pyramid-shaped object in the trials. 
For objects that have no natural marks on their 
surface to facilitate alignment, these can either 
be given small artificial marks or they can be 
scanned together with a second object with clearly 
defined features ((e.g. a ruler) to help in merging 
the different scans.

• Positioning of the object and choosing lo-
cation and number of scans.

Before scanning, it is advisable to make a de-
tailed visual study of the object in order to choose 
the right position on the turntable. The object’s 
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morphology needs to be assessed so that it can 
be placed in whatever position will reduce the 
number of required scans to the minimum. The 
aim should be to scan the largest possible surface 
area with the minimum possible number of scans. 
In this way we not only improve precision but 
also reduce the volume of data acquired and thus 
make data handling easier.

After data acquisition comes the data handling 
phase. Most laser scanners are equipped with 
their own specific software applications to deal 
with the large number of points acquired in each 
scan. It should be remembered that in this stage a 
traditional CAD system would not be able to deal 
with this information without the help of the laser 

Figure 3. Pre-study trials carried out with the chosen laser scanner equipment
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scanner software. The general procedure consists 
of the following phases:

• Design or project of the capture positions.
• Data acquisition and scanning of object.
• Alignment of scans from different posi-

tions of the rock on the turntable (the set of 
images by sectors for each position of the 
rock is known as a family).

• Elimination of noise and cleaning of 
information.

• Alignment of the models obtained from 
each position of the rock on the turntable 
(scan families).

• Simplification of the model.
• Merging of the different scan families.
• Manual cleaning and refinement of model 

(optional).
• Preparing the model for treatment by CAD 

programs.
• Exporting the results.

Most of these processes are done interactively. 
Visualisation of the results can be performed 
before or after data handling. The quality of the 
results will depend to a large extent on the deci-
sions taken on correctly ordering the procedures. 
The following results can be obtained from the 
3D scan files:

• Point clouds.
• Triangular mesh surfaces.
• A solid object without photorealistic sur-

face textures.
• A solid object with photorealistic surface 

textures.
• Parallel aligned sections of the object.

In the phase previous to the study of the Karik-
koselkä rock, specific features and handling re-
strictions were analysed, the total number of scans 
required for complete 3D imaging were defined 
and the ideal scanning distance was calculated.

As our aim was to achieve maximum scan-
ning precision and the sample was small in size, 
the macro scanning option was chosen, since the 
visible area of this mode (130 x 97mm) covered 
the rock dimensions and offered a precision of 
0.127mm.

We also bore in mind the fact that the rock 
surface contained a series of small dark minerals 
(biotite, amphiboles) that could be used as com-
mon points for different scans and would also be 
useful in the alignment phase. To guarantee the 
identification of common points in different scans, 
a ruler graduated in centimetres was placed on the 
rock over the scanned space.

After a study of its morphology, it was decided 
to place the rock in three different positions (pro-
viding three scan families) to capture the entire 
surface. A total of twelve scans were obtained: 
six in Position 1 (Family A – first scan), three in 
Position 2 (Family B – second scan) and three in 
Position 3 (Family C – third scan).

The laser scanner’s integrated camera was used 
to capture images and select the sweep zone in each 
position. The 3D laser scanner is connected to a 
laptop computer when operating which provides 
control of all actions carried out. It also captures, 
saves and processes the information sent to it from 
the scanner (Figure 4).

The aim of the first scan was to obtain a digi-
tal register of the maximum surface of the rock 
in order to optimise the total number of subsequent 
scans. The 360º of a complete revolution of the 
turntable were divided into six 60º segments, each 
of which registered the surface exposed in the 
segment.

When the rock has been placed on the turntable 
and the program has been started, the configura-
tion of the scanned parameters is indicated on 
the computer screen and data capture can begin 
(Figure 5).

As mentioned above, the macro maximum 
precision option was chosen combined with the 
slowest standard speed “SD” (95s) to obtain the 
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Figure 4. Data capture process. The 3D laser scanner is connected to a laptop computer when operating 
which provides control of all actions carried out. It also captures saves and processes the information 
sent to it from the scanner.

Figure 5. View of the parameter configuration screen of first scan
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highest degree of detail from the rock surface and 
the highest quality in the final results.

The sliding object-colour control on the device 
was set at 50% and finish was set to shiny as the 
rock surface was considered to have a glossy 
texture. The smallest triangle size was selected to 
improve the precision of the results. Smoothness 
was set at the lowest setting of 1 (from 1 to 5) as 
the surface was somewhat rough due to shatter 
cones and other surface markings.

Finally, the autoalign option was deactivated 
and the manual option was chosen for aligning 
scans and scan families, in order to have a more 
complete control of the process and improve 
precision. After setting all the variable elements 
in the menu and centring the rock in the viewer, 
the scan command was given.

In the second and third scanning positions, the 
aim was to cover the shaded zones, which could 
not be previously registered. These consisted of 
the lower zone on which the rock had rested on 
the turntable and the upper zone on which the 
ruler had been placed.

Scanning parameter configuration was the 
same in both cases as that used in the first posi-
tion, the only difference being the zone registered 
in each position. In the second position the bot-
tom zone was registered and the upper zone was 
registered in the third position.

DATA TREATMENT METHODOLOGY

Aligning Scans from Each 
Rock Position (Align Family)

After finishing the scanning program, the scans 
from each family must be aligned. To do this, two 
scans from each family are selected on each of 
which at least three identical positions have been 
identified (families A, B and C) (Figure 6). After 
this procedure, the complete set of scans can be 
automatically aligned.

To align the six scans belonging to Family A, 
work began with scans A1 and A6 and the Align 
command was given. The degree of precision 
achieved in the alignment was 0.381mm. Families 
B and C were treated in the same way, with a 
precision in B of 0.381mm and the highest was 
obtained in Family C at 0.0254mm.

Eliminating Noise (Trim)

When all the families have been correctly aligned, 
the next step is trimming, which consists of elimi-
nating noise and any irrelevant elements that may 
have been registered during the rock scans. This is 
a laborious process that requires a certain ability 
for spatial visualisation and also mastery of the 

Figure 6. Results obtained in the alignment of scans from each position. To align the six scans belong-
ing to Family A, work began with scans A1 and A6 and the Align command was given. The degree of 
precision achieved in the alignment was 0.381mm. Families B and C were treated in the same way, with 
a precision in B of 0.381mm and the highest was obtained in Family C at 0.0254mm.
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rotate, drag and zoom commands activated by 
the mouse buttons.

The data is cleaned up by eliminating the aux-
iliary elements used in the rock scans, including 
the ruler used for alignment, the turntable and the 
vertical support bar. Some noise also had to be 
removed from around the rock (Figure 7).

All the cutting tools were used, the polygonal 
most of all, being the best adapted to the shapes 
of the elements that had to be eliminated. Even 
though it was also the slowest option, it offered 
the best guarantee against the involuntary  
removal of valuable elements. The final results 
in each of the three positions can be seen in  
Figure 8. All the elements registered in the scan-
ning phase that did not belong to the rock have 
been eliminated.

Align Families Option

At this point we now have three 3-dimensional 
images, corresponding to the three positions of the 
rock (scan families), which have been aligned and 
cleaned of extraneous matter but are independent 
of each other. In other words, we have the rock 
divided into three separate blocks. In this stage 
of the treatment a single model is obtained by 
means of the common points in the blocks. The  
alignment process is exactly the same as that de-
scribed above for the alignment of scan families 
in which at least three common points must be 
identified between two families.

After studying the results of the noise elimi-
nation process, the next procedure was to align 
the scans. The A and C families were selected for 
this stage, since they had more clearly identifiable 
shared common points than the other possible 

Figure 7. Removing noise from the model in Position 1(Family A)

Figure 8. Results obtained in the trimming process
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combinations (Figure 9). Since there were now 
no auxiliary elements left in the model to help 
with alignment (the ruler had been removed in 

the previous stage) this work had to be done with 
reference to the surface features of the sample and 

Figure 9. Results of scan alignment

Figure 10. Information on the number of points and triangles in the model
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thus required extreme care so that the process was 
slowed down considerably.

The precision achieved in aligning Families 
A and C and Families A and B was 0.015 in 
(0.381mm).

Fuse Option

After aligning all the scans, we now have a model 
composed of different overlapping meshes. With 
the merging tool, the aim is to simplify the data 
into a single mesh of the scanned object without 
overlaps and to eliminate any gaps in the model.

The merging process was long and complex 
and several unsuccessful attempts were made. A 
problem arose when all the merging options had 
been configured and the fuse command was given. 
At this point the program suddenly closed down 
without warning, so it was decided to reduce the 
number of points and triangles. The simplifica-
tion process is described below. Information on 
the number of points and triangles was obtained 

from the main menu (Model Information option) 
(Figure 10).

According to the NextEngine instructions, 
between one and one and a half million points 
were needed to obtain results, so the RE-Generate 
Scan(s) command was given (Fuse menu). The 
number of points and triangles was reduced to 
about half the original number, although merging 
could have been carried out with higher numbers 
than those recommended (Figure 11).

The tolerance of the final merging was 0.0050” 
(0.127mm) and the finished model was then stored 
(Figure 12).

Manual Refinement and Polishing of 
the Model (Polish)

As stated above, manual model refinement is an 
optional process. We decided to leave out this stage 
so as not to alter the rock’s virtual morphology.

Figure 11. Information on number of points and triangles after the number had been reduced
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Saving and Exporting

By means of the File menu and the Save and Save 
as commands, all the changes made to the model 
and the information can be saved in a file in any 
of the directories. The file containing the model 
was exported in different formats (PLY, OBJ, STL, 
VRML, XYZ, U3D, IGES and STEP) so that it 
could later be studied with different programs 
and converted, via bridge programs, to AutoCad 
or other 3D systems for geometrical analysis.

After completing all the data capture and treat-
ment processes, the final results can be visualised 
in four different modes: the realistic model (Fig-
ure 13), the colourless solid model (Figure 14), 
model with triangles (Figure 15) and the points 
model (Figure 16). This section will explain some 
of the possible options and analyses that can be 
performed.

One of the possibilities is to produce a carto-
graphic document, an example of which is shown 
in Figure 17.

MODEL PRECISION ANALYSIS

After obtaining the three-dimensional model of 
the rock with impactogenic textures, a study was 
carried out to determine the degree of precision 
achieved, which involved an analysis of each of 
the factors that influenced the model generation 
process. The first variable to be considered was 
the uncertainty of the data acquisition process, due 

Table 1. Results of the merging of scans 

MERGING OF SCANS Standard deviation O (mm)

FAMILY A = 1+2+3+4+5+6 0.3810

FAMILY B = 1+2+3 0.3810

FAMILY C = 1+2+3 0.0254

A+C 0.3810

A+C+B 0.3810

Figure 12. Results of merging
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Figure 14. Solid model

Figure 13. Realistic model
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to the technical characteristics of the measuring 
device. According to the manufacturer’s technical 
specifications, the precision of the absolute posi-
tion of each of the measured points is 0.127mm at 
a distance of 16.5cm. This uncertainty is known 
as instrument error and can be expressed as ei:

ei = 0.1270 mm 

The second factor that influences the final 
precision is the accuracy with which the scans are 
merged, which depends on the standard deviation 
of the transformation calculations, for which the 
ScanStudio HD program was used. The results 
are shown in Table 1.

This parameter will be given in the complete 
model by the quadratic component of the errors 
made in joining pairs and is expressed as:

e mmu = + + + + =0 38102 0 38102 0 02542 0 38102 0 38102 0 7620, , , , , ,  
(1)

After obtaining all of the errors that affect the 
model, the total uncertainty can be expressed as 
the quadratic component of the values that form 
these variables:

e e e mmT i u= + =2 2 0 7725,  (2)

To verify this result, measurements were taken 
of three characteristic distances on the rock itself 
by means of a caliper with a precision of 0.01mm: 
these distances were: maximum length, width and 
height, as shown in Figure 18.

The results obtained with the caliper were as 
follows:

Figure 15. Mesh model
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Figure 17. Solid model

Figure 16. Points model
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• Maximum length (L1): 131.10mm.
• Maximum width (L2): 82.30 mm
• Maximum height (L3): 92.80 mm

Since the traditional method of measuring by 
caliper is more common than generating point 
clouds by laser scanners, the measurements ob-
tained in this comparison were taken as the “real” 
values and the differences found as the “absolute 
errors”. The ratio between the absolute error and 
the real value determines the relative error. The 
arithmetic mean of the relative errors will be the 
arithmetic error, and if we calculate the square 
root of the square of the sum of the absolute errors 

divided by N (number of readings) the standard 
deviation is obtained.

The same distances were analysed ten times 
each with MiniMagics software. To obtain the 
measurements of the three series, the 3D model 
was rotated several times and the zoom was used 
to select the required points (Figure 19).

In order to determine the precision of these 
dimensional measurements, the uncertainty cal-
culations were carried out as shown in Tables 2, 
3 and 4.

If we consider the relative values obtained and 
select the least favourable, i.e. 0.63% and apply 
it to the greatest rock length magnitude, i.e. 

Table 2. L1 error calculation table 

l1(mm) 
MiniMagics

L1(mm) 
Caliper

ABSOLUTE 
ERROR L1-

l1(MM)

RELATIVE 
ERROR

MAXIMUM 
ERROR IN 
LENGTH

ARITH. 
ERROR

STANDARD 
DEVIATION

131.823 131.100 0.723 0.55% 0.62% 0.42% 0.15%

131.301 131.100 0.201 0.15%

131.811 131.100 0.781 0.60%

131.853 131.100 0.753 0.57%

131.043 131.100 0.057 0.04%

131.666 131.100 0.566 0.43%

131.213 131.100 0.113 0.09%

131.915 131.100 0.815 0.62%

131.894 131.100 0.794 0.61%

131.825 131.100 0.725 0.55%

Figure 18. Solid model: Measuring maximum length, width and height with a caliper
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L1=131.100mm, we can estimate that the maxi-
mum error made when obtaining a distance be-
tween two points on the model is 0.826mm. 
However, if we consider maximum arithmetic 
error, i.e. the mean value of the relative errors, 
and again apply it to the length of greatest mag-
nitude, a mean error of 0.65mm is obtained. This 
could be considered as an estimator of the pos-
sible mean error when determining distances with 
the program.

If we take the arithmetic mean of the ten lengths 
of each of the series and compare it with the means 

obtained from the caliper, we will obtain a value 
for the precision with which the work has been 
carried out (Tables 5, 6 and 7).

From this data we can conclude that the preci-
sion obtained in scanning the rock is 0.05%, i.e. 
0.651mm. This value is somewhat lower than the 
precision that can be attained with NextEngine 
for a scanning distance of 0.77mm.

Figure 19. Measured by the MiniMagics program
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DIMENSIONAL ANALYSIS 
OF THE MODEL

The ScanStudio HD version that we worked with 
includes a Demo Option with a series of optional 
CAD tools. Our version could only work in Demo 
with the Orient and Spline tools, which showed 
the results on the screen but could not export them 
to other programs. These options were analysed 
and the CAD Tools Demo results obtained for the 
model were as follows:

• Orient: allows the rock to be turned through 
the three X, Y and Z axes until the desired 
position is achieved, acting either on the 
cube or on the model itself (Figure 20).

• Spline: allows the rock to be split into as 
many parallel planes as required to obtain 
the intersection lines between the planes 
and the model, creating a new data family 
(Figure 21).

Table 3. L2 error calculation table 

l2(mm) L2(mm) 
Caliper

ABSOLUTE 
ERROR l2-L2 

(mm)

RELATIVE 
ERROR

MAXIMUM 
ERROR IN 
LENGTH

ARITH. 
ERROR

STANDARD 
DEVIATION

82.706 82.300 0.406 0.49% 0.63% 0.32% 0.12%

82.258 82.300 0.042 0.05%

82.512 82.300 0.212 0.26%

82.819 82.300 0,519 0.63%

82.553 82.300 0.253 0.31%

82.309 82.300 0.009 0.01%

82.080 82.300 0.220 0.27%

82.237 82.300 0.063 0.08%

81.917 82.300 0.383 0.47%

81.814 82.300 0.486 0.59%

Table 4. L3 error calculation table 

l3(mm) L2(mm) 
Caliper

ABSOLUTE 
ERROR l2-L2 

(mm)

RELATIVE 
ERROR

MAXIMUM 
ERROR IN 
LENGTH

ARITH. 
ERROR

STANDARD 
DEVIATION

92.806 92.800 0.006 0.01% 0.58% 0.16% 0.07%

92.869 92.800 0.069 0.07%

92.869 92.800 0.069 0,07%

92.863 92.800 0.063 0.07%

92,503 92.800 0.297 0.32%

92.726 92.800 0.074 0.08%

92.745 92.800 0.055 0.06%

92.265 92.800 0.535 0.58%

92.567 92.800 0.233 0.25%

92.913 92.800 0.113 0.12%
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In order to carry out a deeper metric analysis 
of the model, we started by trying to use the Au-
toCad program. To pass from one .obj file to 
another with AutoCad.dwg format, we used OBJ 
Import for AutoCad (SYCODE), a company that 
develops software for computer-assisted design 
(CAD) systems. These solutions come in the form 
of independent applications or plug-ins that work 
within the principal CAD systems: AutoCAD, 
Inventor, 3D Studio Max, Maya, Pro / ENGINEER, 
Kubotek, SolidWorks, Solid Edge, SpaceClaim, 
Alibre Design, Rhinoceros, IronCAD, INOVATE, 
IntelliCAD, Bricscad, Acrobat and SketchUp, etc.

The results obtained were in the form of a file 
of 72MB, a size which excessively complicated 
the working of AutoCad 2008, as this software 
has not enough capacity to manage files of these 
characteristics. AutoCad showed the rock on the 
screen in the form of a mesh (Figure 22) and when 

we tried to transform this into a solid view of the 
rock the program was inclined either to shut down 
without warning or, after a long wait, give up the 
task as impossible.

We therefore abandoned this option and con-
tinued the search for a program better adapted to 
the characteristics of the file that would allow us 
to carry out the dimensional analysis that was the 
objective of our study. After a lengthy search, it 
was decided to work with the free 3D MiniMag-
ics visor from the Materialise Group, which can 
execute 3D files with .STL extension. This com-

Table 5. Calculation of the mean values of distances obtained with MiniMagics 

L1(mm) Mean value 
L1(mm)

L2(mm) Mean value L2 
(mm)

L3 (mm) Mean value L3 
(mm)

131.923 131.751 82.706 82.341 92.806 92.713

131.301 82.258 92.869

131.811 82,512 92,869

131.853 83.119 92.863

132.043 82.953 92.503

131,666 82.309 92,726

131.213 82,080 92.745

131.915 82.237 92.265

131.894 81.917 92.567

131.825 81.314 92.913

Table 6. Calculation of the mean values of distances obtained with MiniMagics 

MEASURE REAL (mm) MEASURE (mm) ABSOLUTE ERROR 
(mm)

RELATIVE ERROR

L1 131.10 131.75 0.6514 0.50%

L2 92.30 82.34 0.0405 0.05%

L3 92.80 92.66 0.136 0.15%

Table 7. Results of estimators 

Arithmetic error 0.23%

Standar deviation 0.17%

Maximum error in length 0.50%
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pany, from Leuven in Belgium, is well-known for 
the development of industrial and medical proto-
types. Besides possessing the largest capacity for 
rapid prototyping equipment in Europe, it has a 

worldwide reputation for providing innovative 
software solutions. It is a leader in 3D digital 
printing and software and plays a leading role in 
dental image-processing and surgery simulation.

Figure 20. Orienting

Figure 21. Spline options
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We now had two software systems by which 
to obtain the results: the treatment of the scanned 
3D model by the ScanStudio HD model, or the 
model imported from the MiniMagics program.

A dimensional analysis was performed with 
MiniMagics. In this, selected points could be 
chosen from the 3D model and the basic geo-
metrical analysis could be carried out on screen. 
The surface area and the volume of the rock were 
thus calculated in this way (Figure 23).

RESULTS AND CONCLUSION

This paper describes for the first time a novel ap-
plication of 3D laser scanner techniques for the 
morphological study of meteorite impact rocks. 
The results obtained from the preliminary stage 
of the research, which consisted of testing the 
analytical procedures on a wide variety of objects 
and surface textures, including rocks, were crucial 
for establishing the most favourable modelling 
conditions under which the study of the real impact 

Figure 23. Volume and surface of the rock in MiniMagics

Figure 22. 3D view of the rock in AutoCad
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material from the Karikkoselka meteorite impact 
crater was carried out. The three-dimensional 
modelling of the rock was successfully achieved. 
The finished model can be visualized in four dif-
ferent ways: (1) a realistic model; (2) a colourless 
model; (3) a network model using triangles, and 
(4) a network model using dots. This modelling, 
together with the possibility of orienting and 
splining the virtual image obtained, facilitated 
the dimensional analysis of the rock (volume: 
257547.269 mm3; surface: 26855.266 mm2, with a 
scanning precision of 0.50% = 0.651 mm), as well 
as determining other characteristics on its surface, 
including investigation of the shatter cones. For 
this, in addition to assembling a detailed graphic 
representation of the superficial roughness of the 
impact rock (maximum depth of shatter cone striae: 
2.47 mm and maximum width: 14.03mm) (Figure 
25), it was also possible to make a geometrical 

estimation of the convergence angle (Figure 24) 
of the incomplete shatter cone: 39.31º

This work confirms the importance and effi-
ciency of 3D laser scanning techniques as a 
complementary tool for the scientific study of this 
type of rocks impacted by meteorites, and opens 
a new line of research in the context of meteorites 
and planetary geology. It can be used in both the 
field and laboratory, as well as for scientific and 
museological purposes (e.g. geological heritage, 
remote accessing, non-presential teaching).

FUTURE RESEARCH DIRECTIONS

The results obtained confirm that the application 
of 3D laser techniques for the morphological study 
of meteorite impact rocks yields extraordinarily 
useful information (which can be quantified and 
processed), regarding the effects caused by the 

Figure 24. Measurements of the convergence angle in MiniMagics program
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meteoritic impacts on terrestrial target rocks. 
This research study opens a new field of work in 
relation with meteorites and planetary geology 
studies, not only for a more complete character-
ization of the geological features associated to the 
impact-related materials, but also because it could 
complement the classical mineralogical and cos-
mogeochemical studies. In the future, we attempt 
to carry out this type of computerized analysis 
directly on some selected meteorites, showing 
morphological and textural features (e.g. oriented 
shape, friction striae, fusion crust, etc) which are 
reflecting the complex ablation processes which 
they undergone during their atmospheric entry.
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KEY TERMS AND DEFINITIONS

3D Laser Scanning: Data acquisition sys-
tem of a given surface or object in a systematic, 
automated manner, within a coordinate system.

Impact Rocks: Stones associated with mete-
orite impact craters.

Meteorite: Stony, stony-iron or metallic natu-
ral object (normally from the asteroids, the Moon 
or Mars) that are the remains of a meteoroid that 
has reached the earth’s surface. Recently meteor-
ites have been also found on Mars.

Morphological Modelling: 3D representation 
of a surface.

Shatter Cones: Small, cone-shaped fractures 
formed by the shock of a meteorite impact.
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ABSTRACT

The concept of Mixed Reality (MR) aims at completing our perception of the real world, by adding ficti-
tious elements that are not perceptible naturally such as: computer generated images, virtual objects, 
texts, symbols, graphics, sounds, smells, et cetera. One of the major challenges for efficient Mixed 
Reality system is to ensure the spatiotemporal coherence of the augmented scene between the virtual and 
the real objects. The quality of the Real/Virtual registration depends mainly on the accuracy of the 3D 
camera pose estimation. The goal of this chapter is to provide an overview on the recent multi-sensor 
fusion approaches used in Mixed Reality systems for the 3D camera tracking. We describe the main 
sensors used in those approaches and we detail the issues surrounding their use (calibration process, 
fusion strategies, etc.). We include the description of some Mixed Reality techniques developed these last 
years and which use multi-sensor technology. Finally, we highlight new directions and open problems 
in this research field.
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INTRODUCTION

In MR applications the vision-based approaches 
are often used to achieve the camera tracking. 
Vision-based techniques estimate the camera 
pose using only the visual information extracted 
from the acquired images. In most MR applica-
tions, camera tracking remains a difficult task 
which must be accurate and stable. It is known 
that a non-robust tracking or not enough accurate 
can generate a “jitter” effect on the Real/Virtual 
registration, and often leads to tracking failure. In 
order to deal with this problem, some MR systems 
use artificial markers, called also fiducials. The 
main idea consists in placing in the environment 
several markers among which the content, the 
size, the position and the orientation are known by 
the system. By using image processing methods, 
the MR systems can then extract and identify the 
markers and thus localize the camera. However, 
theses methods suffer generally from a lack of 
accuracy when the markers are occluded or in 
the case of blurring effect generating by abrupt 
motion of the camera. Other MR systems use 
Markerless tracking approaches in order to esti-
mate the camera pose. The principle consists in 
using salient geometric features (points, edges, 
silhouettes) existing naturally in the scene. In this 
case, the registration between the Real and Virtual 
worlds is realized thanks to the alignment of the 
2D information extracted from the images with 
the 3D model of the scene. These methods usually 
give a more precise solution than marker-based 
techniques. However, their main disadvantage lies 
in the reliability of the 2D-3D matching process. 
Indeed, an erroneous matching would engender 
false camera pose estimation. Furthermore, 
vision-based approaches remain very sensitive to 
working conditions. Their performances decrease 
significantly when they are used in uncontrolled 
environments where situations such as change in 
brightness, occlusions and sudden motion arise 
rather often. Multi-sensors techniques which com-
bine various technologies and methods seem to 

open a new way to resolve the lack of robustness 
of vision-based methods. They generally fuse a 
vision-based tracking approach with measure-
ments obtained from localization sensors (inertial, 
GPS, etc.) to compensate for the shortcomings of 
each technology when used alone.

The objective of this chapter is to present some 
original solutions which use multi-sensors technol-
ogy in order to estimate the camera localization.

STATE OF THE ART

The idea of combining several kinds of sensors 
is not recent. The first multi-sensors system ap-
peared with robotic applications where, for ex-
ample, Vieville et al. (1993) proposed to combine 
a camera with an inertial sensor to automatically 
correct the path of an autonomous mobile robot. 
This idea has been exploited these last years by 
the community of Mixed Reality. Several works 
proposed to fuse vision and inertial data sensors, 
using a Kalman filter (You et al., 1999) (Ribo et al., 
2002) (Hol et al., 2006) (Reitmayr & Drummond, 
2006) (Bleser & Stricker, 2008) or a particular 
filter (Ababsa et al., 2003) (Ababsa & Mallem, 
2007). The strategy consists in merging all data 
from all sensors to localize the camera following 
a prediction/correction model. The data provided 
by inertial sensors (gyroscopes, magnetometers, 
etc.) are generally used to predict the 3D motion 
of the camera which is then adjusted and refined 
using the vision-based techniques. The Kalman 
filter is generally implemented to perform the 
data fusion. Kalman filter is a recursive filter that 
estimates the state of a linear dynamic system 
from a series of noisy measurements. Recursive 
estimation means that only the estimated state from 
the previous time step and the current measure-
ment are needed to compute the estimate for the 
current state. So, no history of observations and/
or estimates is required.

You et al. (1999) developed a hybrid sensor 
combining a vision system with three gyroscopes 
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to estimate the orientation of the camera in an 
outdoor environment. Their visual tracking al-
lows refining the obtained estimation. The system 
described by Drummond and Reitmayr (2006) 
combines an edge-based tracking with inertial 
measurements (angular velocity, linear accelera-
tion, magnetic fields). The visual tracking is used 
for accurate 3D localization while the inertial 
sensor compensates errors due to sudden motion 
and occlusion. The measurements of gravity and 
magnetic field are used to limit the drift problem. 
The gyroscope is employed to automatically 
reset the tracking process. Data provided by the 
two sensors are combined with an extended 
Kalman filter using a constant velocity model. 
More recently, Reitmayr and Drummond (2007) 
proposed to use the GPS positions to re-initialize 
visual tracking when it fails. Thus, initialization 
of the visual tracking is obtained by defining a 
search area represented by an ellipse centred on 
the GPS position.

Recently, Bleser and Stricker (2008) proposed 
to combine a texture-based tracking with an inertial 
sensor. The camera pose is predicted from data 
provided by the accelerometers using an Extended 
Kalman filter (EKF). In order to estimate the 
pose, the EKF fuse the 2D/3D correspondences 
obtained from the image analysis and the inertial 
measurements acquired from the inertial sensor. 
A rendering of CAD model (textured patches) is 
made using the predicted poses. This allows align-
ing iteratively the textured patches in the current 
image to estimate the 2D motion and to update 
the estimate given by the filter. Natural feature 
points are tracked by a KLT (Kanade Lucas To-
masi) tracker. The motion model assumes constant 
acceleration and constant angular velocity. This 
approach needed offline preparation for generat-
ing a textured CAD model of the environment.

Hu et al. (2004) proposed to combine a camera, 
a GPS and an inertial gyroscope sensor. The fusion 
approach is based on PPM (Parameterized model 
matching algorithm). The road shape model is 
derived from the digital map with respect to GPS 

position, and matches with road features extracted 
from the real images. The fusion is based on a 
predictor-corrector control theory. After check-
ing data integrity, GPS data will start a new loop 
and reset gyro’s integrated. Gyro’s prediction will 
be feedback into the gyro integration module as 
a dynamical correction factor. When the image 
feature tracking is failed, gyro’s prediction data 
is used for the camera pose estimation.

Ababsa and Mallem (2007) proposed a particle 
filter instead of the Kalman filter. Particle filters 
(PF), also known as methods of Monte-Carlo se-
quential, are sophisticated techniques for estimat-
ing models based on simulation. PFs are generally 
used to estimate Bayesian models. They represent 
an alternative to extended Kalman filter, their 
advantage is that they approach the optimal Bayes-
ian estimation using enough samples. Ababsa et 
al. merged data from fiducial-based method with 
inertial data (gyros and accelerometers). Their 
fusion algorithm is based on a particle filter with 
sampling importance resampling (SIR). As the 
two sensors have different sampling frequency, the 
authors implemented two complementary filters. 
Thus, if there is no data of vision (e.g. occlusion), 
the system uses only data from the inertial sensor 
and vice versa.

Aron et al. (2007) used the inertial sensor to 
estimate the orientation of the camera only when 
the visual tracking fails. The orientation allows 
tracking the visual primitives by defining a search 
area in the image to perform the features match-
ing. A homography is estimated from this set of 
matched features to estimate the camera pose. 
The errors of the inertial sensor are taken into 
account to optimize the search area. Unlike the 
approach proposed by Aron et al. (2007) which 
only estimates the camera orientation, Maidi et 
al. (2009) used an inertial sensor to estimate both 
the position and the orientation. Their multimodal 
system allows tracking fiducials and handling 
occlusions by combining several sensors and 
techniques depending on the existing conditions 
in the environment. When the target is partially 
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occluded, the system uses a point-based tracking. 
In presence of a total occlusion of the fiducials, 
inertial sensor helps to overcome the vision fail-
ure. However, the estimation of position from 
acceleration produces drift over time resulting 
in a tracking failure.

The idea of combining sensors following the 
assistance scheme seems more interesting than the 
data fusion. Indeed, assistance approach makes 
the system more intelligent so that it can adapt 
itself to different situations and uses at each time 
only the data provided by the available sensors. 
In next sections we discuss issues and problems 
dealing with conceiving such systems and we give 
in details of some original solutions.

MULTI-SENSORS SYSTEM 
USING ASSISTANCE SCHEME

MR systems used in outdoors environments must 
satisfy several criteria in order to be accepted by 
the end users. Existing projects in this field aim 
at developing systems encompassing accurate 
multi-sensors based 3D localization, a realistic 
visualization via mobile devices and interaction 
techniques according to the mobility aspect and 
the needs of end users. According to these criteria, 

such systems are generally composed of tablet PC 
which consists of a handheld display device and 
the processing unit. This device is connected to 
the 3D localization system, usually composed of 
three sensors (see Figure 1): a GPS receiver worn 
by the user and an inertial sensor attached rigidly 
to a camera. The GPS returns a global positioning. 
The inertial sensor estimates 3D orientations, ac-
celerations, and angular velocity and 3D magnetic 
fields. The camera is used for both the visual 
feedback and recovering the camera poses. The 
objective for this section is to carry out a generic 
solution for the 3D localization adaptable to dif-
ferent types of outdoor environments.

Using the assistance scheme implies that the 
system must be subdivided in two subsystems: a 
main subsystem and an auxiliary one. The main 
subsystem corresponds to the visual tracking 
because it is more accurate. The auxiliary subsys-
tem is used only when the visual tracking fails; 
it is composed of the GPS and the inertial sensors. 
Figure 2 provides a flow chart to describe the 3D 
localization process using our assistance scheme.

Vision Subsystem

The camera pose is computed using its intrinsic 
parameters and the knowledge of the position of 

Figure 1. Mixed reality system for outdoor application
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3D reference points (3D model of the scene) and 
their 2D projections into the image (2D/3D match-
ing). Indeed, according to the pinhole model, the 
camera pose is formalized as an error minimiza-
tion between 2D points and the projection of 3D 
points using the camera pose parameters. Several 
algorithms can be used to perform this non-linear 
minimization problem such as Newton method 
or orthogonal iteration (OI) algorithm (Lu et al., 
2000). In this case, the pose estimation is formu-
lated as a minimization of metric error based on 
the collinearity in the scene space. In addition, 
the vision subsystem often needs an initialization 
setup. This step is delicate; it consists in matching 
the 3D visible points of the model with their 2D 
projections in the initial view in order to estimate 
the initial localization of the camera. The obtained 
2D/3D matching must be maintained from one 
image to another in order to update the pose 
estimation. For this, the vision subsystem uses 
a point-based visual tracking where the tracked 
points correspond to the 3D feature extracted from 
the 3D model. The initial matching is updated with 
2D/2D visual tracking. Moreover, the estimated 

pose must verify some coherence criteria to check 
neither it is plausible or not. A failure makes the 
system mostly rely on the Auxiliary subsystem.

Auxiliary Subsystem

This subsystem (Zendjebil et al, 2008), composed 
of GPS and inertial sensor, replaces the vision 
subsystem when this one fails. The position and 
orientation given by the vision subsystem are 
substituted by the absolute position provided by 
the GPS receiver and the orientation given by the 
inertial sensor. The use of the Auxiliary subsystem 
is not limited only to replace the vision subsystem. 
The Auxiliary subsystem is also used to initialize 
the vision subsystem. Moreover, from the posi-
tion and orientation given by this subsystem, we 
can measure the accuracy of the 3D localization 
estimated by the vision subsystem by defining 
some confidence intervals. The Auxiliary sub-
system is composed of two modules: prediction 
and correction. The prediction module is used to 
predict accuracy errors of the localization system. 
It is based on online training of the error between 

Figure 2. The system data flow scheme
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the two subsystems. Once the localization system 
switches to the Auxiliary subsystem, the error is 
predicted following a Gaussian model and used 
to improve the position and the orientation pro-
vided by the GPS and the inertial sensor. The two 
parts composing the system interact continuously 
with each other. Also, the use of GPS for position 
estimation solves the problem of inertial sensor’s 
drift, which is used only for orientation estimation.

System Calibration

Certain prerequisites are essential for the proper 
functioning of such system. In fact, each sensor 
provides data in its own reference frame. The 
inertial sensor computes the orientation between a 
body reference frame attached to itself and a local 
level reference frame. Also, the GPS position is 
expressed in an earth reference frame defined by 
WGS84 (World Geodetic System) standard. For 
registration, we need to estimate continually the 
camera pose which relates the world reference 
frame to the camera reference frame. Thus, the 
3D localization provided by the Auxiliary system 
must be aligned with the camera reference frame. 
The several sensors must be aligned in a unified 
reference frame in order to have the same posi-
tion and orientation of the point of view. So, the 
hybrid sensor must be calibrated to determine 
the relationships between the several sensors and 
thus to unify the measurements. The accuracy 
of the Auxiliary subsystem depends on the ac-
curacy of the calibration processes. In this case 
two calibration processes are performed offline. 
The first one consists in estimating the relation-
ship between inertial sensor and camera (Inertial/
Camera calibration). The second one estimates the 
transformation which maps the GPS position to the 
camera position (GPS/Camera transformation).

Initialization: 2D/3D Matching

The initialization process is an important issue 
for the vision-based localization approaches. It 

represents the process that matches 3D visible 
points with their 2D projections in the initial view. 
A bad matching affects the 3D localization estima-
tion. However, there are not reliable and accurate 
automatic methods. We can find some approaches 
that are based on objects recognition (Zollner et 
al., 2008) or rendering patches (Bleser & Stricker, 
2008). These approaches require a substantial da-
tabase (respectively objects images and patches). 
The main idea is to avoid a full manually points 
matching done by user. One solution consists in 
making a rendering of a wire frame model with a 
fixed point of view or using the position and ori-
entation given by the Auxiliary subsystem. Then, 
the user manually registers the projected model 
over the real view by moving around the camera. 
Once the registration is validated, the second step 
consists in identifying the 2D correspondences. 
For this, the process detects the corners close 
to the projections of the 3D points using Harris 
detector (Harris, 1993). Then, the initialization 
setup performs 2D-2D matching. To improve the 
2D-2D matching, a descriptor-based method is 
used. So, a SURF descriptor (Bay et al., 2008) is 
associated to each 3D point. SURF (Speeded Up 
Robust Features) is a scale and rotation invariant 
detector and descriptor. The use of this descriptor 
allows obtaining a robust and efficient matching 
procedure. Indeed, around the 2D projection of 
the 3D points, we detected Harris corners. Once 
the descriptor of the detected points is computed, 
the process looks for the most similar point which 
has the shortest distance between its descriptor 
and the descriptor of the 3D points. A RANSAC 
(Fischler & Bolles, 1981) algorithm is used to 
discard outliers.

Visual Tracking

Once the vision system is initialized the visual 
tracking can start. To estimate the camera pose, we 
must keep the 2D/3D matching for each current 
view. This can be achieved by using a frame-to-
frame 2D points tracking. Tracking consists in 



534

3D Camera Tracking for Mixed Reality using Multi-Sensors Technology

following features from one frame t-1 to another 
frame t. Several approaches can be used such as 
correlation matching methods; however they are 
very expensive in computing time. To track 2D 
features in real time, the chosen method must be 
fast and accurate. For that Tomasi and Kanade 
(1991) Tracker can be adopted. This algorithm 
used an optical flow computation to track features 
points or a set of predefined points from the previ-
ous image It-1 to the current image It. Therefore, 
this algorithm tracks a set of 2D points associ-
ated to visible 3D points. Briefly, 2D points are 
searched in the neighborhood of its position in 
view t-1 based on the minimization of brightness 
difference. To minimize the time computation, 
the KLT tracker uses a pyramid of images for the 
current view. Therefore, tracking is done at the 
coarsest level and then propagate to the finest. 
This allows following the features over a long 
distance with great precision. The approach is 
fast and accurate, but it requires that the tracked 
points are always visible. So the approach does 
not handle occlusions.

Failure Tests

The pose estimated by vision can be wrong. So, 
we need to handle errors in order to switch to the 
Auxiliary localization subsystem. The errors are 
due to several factors mainly occlusions, sud-
den motion and the change of brightness. These 
conditions affect the visual tracking. Therefore, 
some criteria are defined to quantify the quality 
of the estimated pose. If one of these criteria is 
not verified, the pose is rejected and the system 
switches to the Auxiliary subsystem.

Number of Tracked Points

The number of 2D/3D matching points affects 
the accuracy of the minimization process used to 
estimate the camera pose. Indeed, the more we 
have a large set of 2D/3D matched points, the more 
the estimated pose is accurate and vice versa. For 

this, we define a minimum number of matching. 
Below this threshold, it is considered impossible 
to estimate the pose with the vision subsystem.

Projection Error

The number of matched points is not sufficient 
to ensure the accuracy of the pose estimation; the 
projection error criterion can also be used. This 
error represents the average square of the differ-
ence between the projection of 3D points using 
estimated pose and the 2D points. If the error is 
large, greater than an empirical threshold, the pose 
is considered wrong.

Confidence Intervals

The data provided by the Auxiliary subsystem can 
also be used as an indicator of the pose validation. 
In fact, from the position and orientation given 
by the Auxiliary subsystem, confidence intervals 
are defined. They are represented by an ellipsoid 
centered by the orientation provided by the inertial 
sensor and an ellipse which center is determined 
by the 2D position given by GPS. The axes of the 
ellipse or the ellipsoid can be defined 3*σ (stan-
dard deviation of the offset between the camera 
pose and Auxiliary estimation) or empirically. 
If the pose computed by the vision subsystem is 
included in these confidence intervals (position 
in the ellipse and the orientation in ellipsoid), the 
pose is considered correct.

Error Prediction

The estimation of the 3D localization provided 
by the combination of the GPS and the inertial 
sensor is less accurate then the vision-based es-
timation. The computation of the produced error 
is important in the localization process. Indeed, 
it allows quantifying the quality of measurements 
in order to improve the 3D localization estima-
tion provided by the Auxiliary subsystem. The 
error represents the offset between the camera 
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pose and the position and orientation deduced 
from GPS and inertial sensor. When the vision 
fails, this error must be predicted. For that, the 
error is modeled as a regression with a Gaussian 
process (Williams, 1997). The Gaussian process 
is a stochastic process which generates samples 
and can be used as a prior probability distribu-
tion over functions in Bayesian inference. During 
visual tracking, the offset between the Auxiliary 
subsystem and the vision subsystem is recorded 
for the online training step. When the visual track-
ing fails, the Gaussian process predicts the offset 
made by GPS and the inertial sensor. This offset 
which is represented by the mean error is used 
to correct the estimation of the 3D localization.

System Operation

The localization system operates using a finite 
state machine scheme (see Figure 3). A finite state 
machine is an abstract model composed of a finite 
number of states, transitions between those states, 
and actions. This formalism is mainly used in the 
theory of computability and formal languages.

We identify three states: the Auxiliary pre-
dominance state, the initialization state and the 
visual predominance state. The transitions between 
different states are as follows: At the initialization 
state, the Auxiliary subsystem provides an estima-
tion of the pose (1). This estimation is refined 
with vision subsystem (2). When the visual track-
ing fails, the Auxiliary subsystem takes over to 
estimate the 3D localization (3). Since the Aux-
iliary subsystem is less accurate than the vision 
subsystem, the estimation is corrected taking into 
account the predicted error. Thereafter, the estima-
tion is used to re-initialize the visual tracking (4).

System Behavior in Real 
Conditions of Use

The proposed system is developed using ARCS 
(Didier et al., 2009) (Augmented Reality System 
Component), a component-programming system. 
ARCS allows to prototype rapidly Augmented and 
Mixed Reality applications and facilitates interfac-
ing multiple heterogeneous technologies. On the 
one hand, ARCS uses a programming paradigm of 

Figure 3. The state machine scheme of 3D Localization system’s operation
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classical components specially designed to meet 
the constraints imposed by the MR applications 
(especially real-time constraint). On the other 
hand, ARCS is based on a finite state machine 
which allows switching from one state to another 
state called sheets. This feature facilitates the 
implementation of our hybrid system. We tested 
this 3D localization system on real data acquired 
in outdoor and real conditions.

The camera was calibrated offline using the 
Faugeras and Toscani (1987) algorithm in order 
to compute its intrinsic parameters. The hybrid 
sensor was calibrated using a set of reference 
data (GPS positions and images for GPS/Camera 
calibration and inertial sensor orientations and 
images for Inertial/Camera calibration). Several 
experiments have been achieved to study the 
behavior of the proposed system when used in 
outdoor environments. The first experiment con-
siders a straight line as a truth data. The origin 
of this line is defined in front of the origin of the 
world reference frame. This line is sampled, and 
for each sample we take a set of data acquisitions, 
namely images and GPS positions. The sensors 
are mounted on a tripod to ensure more stabil-
ity. The reference measurements are taken with 
a telemeter which accuracy is about 0.15m. For 
each acquired image, we calculated the position 
and the orientation of the camera.

From GPS data and the transformation es-
timated during the calibration step, we deduce 
the absolute position with respect to the world 
reference frame associated to the real scene. By 
comparing the different estimated positions to the 
reference positions, we find a mean offset about 
(1.8374m; 1.4810m). The same GPS positions 
compared to the camera’s positions give a mean 
error equal to (1.7321m; 1.4702m) with a stan-
dard deviation (1.8314m; 1.0116m). The second 
experiment focused on the relative position be-
tween two successive fixed positions. In average 
the offset between the reference position and that 
obtained with the GPS is about 0.7817m with a 
standard deviation equal to 1.06m. Similar values 

are given by the vision subsystem, i.e. an offset 
mean about 0.8743m with a standard deviation of 
0.9524m. Therefore, these results demonstrate that 
the movement provided by the two subsystems 
is consistent. The third experiment performed 
several continuous recordings of GPS/camera 
positions. The two sensors are time-stamped in 
order to synchronize them and to retrieve the set 
of data acquired at the same time. The positions 
given by the vision and the GPS without correction 
are compared and the obtained errors are about 
0,9235m in the x-axis (with a standard deviation 
of 0.6669m) and 0.8170m in the y-axis (with a 
standard deviation of 0.6755m).

In addition, in order to study the error prediction 
approach we first used a set of 76 data acquired in 
continuous manner to perform the error training. 
Then, the Gaussian process is used with the last 
30 data to predict errors. The mean offset between 
the predicted error and the real one is about (µx 
= 0.2742m; σx = 0.4799) and (µy = 0.5757m; σy 
= 0.5097m). The positions provided by the GPS 
receiver are then corrected using this predicted 
error. This allows improving the 3D localization 
provided by the Auxiliary subsystem. To assess 
the accuracy of the inertial sensor, we compared 
the orientations produced from the gyroscope to 
those computed by the vision pose estimation al-
gorithm. For that, a video with several orientations 
in an outdoor environment has performed. Both 
orientations have the same behavior. However, 
in some cases, we found that external factors can 
affect the inertial measurements, particularly in 
defining the local reference frame where the x 
axis is in the direction of the local magnetic north. 
This causes errors in the orientation estimation.

To solve this problem the rotation between the 
local reference frame associated to inertial sen-
sor and the world reference frame is re-estimated 
continuously. The behavior of the whole system is 
also tested. The initialization process allows hav-
ing the matching of the 3D visible points from the 
3D model with their projections in the first view. 
From this 2D/3D matching, the set of 2D points 
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are defined and tracked frame to frame. For each 
frame, the wire frame model is registered using 
the positions and orientations obtained from the 
hybrid localization system. In Figure 4, the green 
color projection is obtained from the positions and 
orientations provided by the vision subsystem. 
The wire frame model is well superimposed on 
the real view which demonstrates the accuracy 
of the camera pose estimation. In magenta, the 
projected model is obtained with the positions and 
orientations provided by the Auxiliary subsystem. 
Figure 4 show that when vision fails, the localiza-
tion system switches to the Auxiliary subsystem to 
provide 3D localization. The localization is cor-
rected with the predicted error which contributes 
to improve the estimation.

Figure 5 show that during the occlusion of the 
tracked points, the Auxiliary subsystem provides 
always an estimation of the position and orienta-
tion of the camera. Therefore, even when a total 
occlusion occurred, the system can provide a 
rough estimation of the 3D localization. This 

would not be the case if we used individually the 
camera.

CONCLUSION AND FUTURE WORKS

In this chapter, we presented a generic solution 
for 3D camera localization using multi-sensors 
technology. The system combines a camera, a GPS 
and an inertial sensor; it is designed to work in 
outdoor environments. Instead to fusion all data, 
the proposed system is based on an assistance 
scheme. It is composed of two parts which work 
in a complementary manner and controlled by 
a finite state machine allowing continuous 3D 
localization. The vision subsystem, representing 
the main part, uses a point-based visual tracking. 
Once the vision fails, the system switches to Aux-
iliary subsystem which is composed of the GPS/
inertial sensors. The Auxiliary subsystem is less 
accurate then the vision subsystem, especially 
the GPS positioning. Hence, a prediction stage is 
performed to improve the accuracy of the Auxiliary 

Figure 4. Registration of the 3D model using the poses obtained with our hybrid system

Figure 5. Registration of the 3D model using the auxiliary subsystem: Occlusion case
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subsystem. Furthermore, the Auxiliary subsystem 
is used to define confidence intervals to validate 
visual tracking. The 3D localization provided by 
the two subsystems is used to learn, on-line, the 
errors made by the Auxiliary subsystem. The two 
subsystems interact continuously to each other. 
The obtained results are quite satisfactory with 
respect to the purpose of MR systems. They have 
shown that the proposed system has quite good 
accuracy compared to other approaches.

The system was tested in outdoor environ-
ment and has demonstrated its capacity to adapt 
itself to the several conditions occurred in such 
environments. For example, when a total occlu-
sion of the scene model is occurred, the Auxiliary 
system takes over the 3D localization estimation 
until the vision becomes operational. However to 
increase the robustness and the efficiency of the 
whole system, improvements must be made in 
several parts. Actually, within the implemented 
vision-based method, the tracked points must be 
always visible. So, one challenge is to develop a 
tracking method which can handle visual occlu-
sions and update automatically the set of tracked 
points by adding, in real time, new visible points. 
In addition, other markerless tracking approaches 
can be combined with the point tracker such as 
edge-based methods (Ababsa & Mallem, 2006) 
to improve the accuracy of the vision-based pose 
estimation. Also, the fusion process can be opti-
mized if we consider the motion dynamic of the 
camera given by the IMU sensor. On the other 
hand, the experiments have shown that the GPS 
signal can be obstructed when the user is quite 
near the buildings. So, when the system switches 
to the Auxiliary subsystem, the position could 
not be estimated. This problem can be solved by 
adding other kinds of positioning sensors which 
can replace the GPS (RFID, WIFI, etc.). The 
main idea is to develop a ubiquitous tracking 
system composed of a network of complementary 
sensors which can be solicited separately and in 
real time in terms of the situations occurred in  
the environments.
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Recovering 3D Human Body 
Postures from Depth Maps 

and Its Application in Human 
Activity Recognition

ABSTRACT

We present an approach of how to recover 3D human body postures from depth maps captured by a 
stereo camera and an application of this approach to recognize human activities with the joint angles 
derived from the recovered body postures. With a pair of images captured with a stereo camera, first 
a depth map is computed to get the 3D information (i.e., 3D data) of a human subject. Separately the 
human body is modeled in 3D with a set of connected ellipsoids and their joints: the joint is parameter-
ized with the kinematic angles. Then the 3D body model and 3D data are co-registered with our devised 
algorithm that works in two steps: the first step assigns the labels of body parts to each point of the 3D 
data; the second step computes the kinematic angles to fit the 3D human model to the labeled 3D data. 
The co-registration algorithm is iterated until it converges to a stable 3D body model that matches the 
3D human posture reflected in the 3D data. We present our demonstrative results of recovering body 
postures in full 3D from continuous video frames of various activities with an error of about 60-140 in 
the estimated kinematic angles. Our technique requires neither markers attached to the human subject 
nor multiple cameras: it only requires a single stereo camera. As an application of our body posture 
recovery technique in 3D, we present how various human activities can be recognized with the body 
joint angles derived from the recovered body postures. The features of body joints angles are utilized 
over the conventional binary body silhouettes and Hidden Markov Models are utilized to model and 
recognize various human activities. Our experimental results show the presented techniques outperform 
the conventional human activity recognition techniques.
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INTRODUCTION

Through several million years of human evolution, 
stereopsis is one of the unique functions in the 
human vision system, allowing depth perception: 
it is a process of combining two images projected 
to two human eyes to create the visual perception 
of depth. Learned from the human stereoscopic 
system, a stereo camera was invented to synchro-
nously capture two images of a scene with a slight 
difference in the view angle from which depth 
information of the scene can be derived. The depth 
information is generally reflected in a 2-D image 
called a depth map in which the depth information 
is encoded in a range of grayscale pixel values. 
Since its first commercial product in 1950s, Stereo 
Realist, introduced by the David White Company, 
there have been continuous developments of a 
stereo camera until now with the latest products 
such as a digital stereo camera, Fujifilm FinePix 
Real 3D W1 and a stereo webcam, Minoru 3D. 
Lately, 3D movies, in which depth information 
is added to RGB images, have received a lot of 
attention with the latest success of a film, Avatar 
released in 2009. Watching 3D movies and 3D 
TVs with the special viewing glasses is becoming 
a part of our lives these days.

Another area where the depth information 
could be valuable is the field of human com-
puter interaction (HCI). In this area, 3D motion 
information of a user is utilized to better control 
external devices such as computers and games. 
In the conventional ways, capturing 3D human 
motion or movement (i.e., a sequence of human 
postures) is typically done using optical markers 
or motion sensors. Such systems are capable of 
producing some kinematic parameters of human 
motion with high accuracy and speed using wear-
able optical markers or sensors. However, it is 
inconvenient to a user who needs to wear specially 
designed optical markers or sensor-suits when run-
ning these systems. This disadvantage combined 
with the high cost equipment makes the systems 
impractical in daily use applications. In the case 

of using motion sensors, a user has to hand-hold 
controllers equipped with accelerometers or gy-
roscopes. One good example is the Wii controller 
of Nintendo which uses optical sensors and ac-
celerometers to recognize the hand motion of the 
user to control the games. Lately, some efforts are 
being made to capture the whole body movement 
without the markers or motion sensors. Using a 
stereo camera and its derived depth map is one of 
options, since depth maps may provide sufficient 
3D information to derive human body motions in 
3D. Although this approach should open a new 
possibility for various novel applications in HCI 
such as games and u-lifecare, obtaining human 
body postures in 3D directly from depth maps is 
not very straightforward.

There have been some attempts to develop 
marker-less systems to estimate human motion 
from a sequence of monocular images or RGB im-
ages, only reflecting 2-D information. Because the 
3D information of the subject is lost, the efforts to 
reconstruct the 3D motion of the subject from only 
monocular images face difficulties with ambiguity 
and occlusion that lead to inaccurate results (Yang 
& Lee, 2007). Therefore, most marker-less systems 
use multiple cameras to capture 3D human motion. 
Through such systems, the 3D information of the 
observed human subject is captured from different 
directional views, thereby providing better results 
of recovered human motion in 3D (Knossow et al., 
2008; Gupata et al., 2008). However, it is usually 
complicated to setup such a system, because it 
requires enough space where the cameras can be 
installed. Also it requires synchronization of the 
cameras. Thus, there are always some tradeoffs 
between the flexibility of using a single camera 
and the ability to get the 3D information using 
multiple cameras.

Another way of recovering a series of human 
postures or motion in full 3D is to utilize the in-
formation in depth maps. However, there has been 
little effort to recover 3D human body postures 
using this approach. Some conventional works to 
estimate human body postures from depth maps 
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can be classified in the following two approaches: 
namely the matching-based approach and the 
model-based approach. In the matching-based 
approach (Yang & Lee, 2007), one tries to match 
a depth map with a set of generated human body 
postures to find the most compatible human body 
posture in the depth map. In the model-based ap-
proach (Urtasun et al., 2006), one creates a human 
body model and fits the model to the given depth 
map to estimate its corresponding human body 
posture. In this chapter, we present an approach of 
recovering human body postures from depth maps 
based on the framework of the model-based ap-
proach. However, in our approach we have added 
a novel step of detecting human body parts and 
incorporated it into our co-registration algorithm 
such that human body postures can be estimated 
in a more efficient and generalized framework.

The chapter begins with a survey of the con-
ventional approaches including the use of optical 
markers and multiple cameras to capture 3D human 
body postures. We discuss their advantages and 
disadvantages in comparison with our approach 
of recovering 3D human body postures directly 
from depth maps without using optical markers 
or multiple cameras. In the following sections, 
we present technical details of our method with 
examples and demonstrations. Subsequently, as 
an application of our technique in human activity 
recognition (HAR), we present a section of how 
various human activities can be recognized with 
the derived body joint angles from the recovered 
body postures. We conclude the chapter with 
future research directions.

BACKGROUND

In general, there are two main frames of human 
motion (or a time-series of postures) capture 
systems. One is the optical system (i.e., video 
sensor based), which uses video cameras to obtain 
images and applies image processing techniques 
to reconstruct human motion from the acquired 

images. The other is the non-optical (i.e., motion 
sensor based) system, which uses gyroscopes (to 
measure angular velocity), accelerometers (to 
measure acceleration), or magnetic sensors (to 
measure the position and orientation of magnetic 
markers) to capture human motion. Here, we 
mainly focus on the systems using optical devices.

Most conventional optical systems to acquire 
human motion commonly use markers. Basically, 
the users are required to wear optical markers, so 
that the cameras can locate the position of the hu-
man body parts where the markers are attached. To 
avoid the effects of occlusion, additional cameras 
are installed at different locations. The number of 
the cameras might be up to several hundreds to 
make sure the full coverage around the human 
subject. In this method, the kinematic parameters 
are estimated using the relative locations of the 
detected markers. For instance, the kinematic 
angles at the knee joint are estimated based on 
the 3D coordinates of the detected markers at the 
ankle, knee, and crotch. The main advantages of 
the method are fast processing speed and high 
accuracy. For example, capturing human body 
postures via VICON exhibits a recording frame 
rate up to 240 frames-per-second that is enough 
to capture human activities with fast move-
ments. However the devices for this approach are  
very expensive.

Nowadays, there are increasing research efforts 
to develop a marker-less system to recover hu-
man body postures in 3D from video. Obviously, 
the video is conveniently recorded with a normal 
camera to provide a sequence of monocular im-
ages. The articulated human body model was 
reconstructed from some detected regions of the 
human body in monocular images using the inverse 
kinematics (Taylor, 2000). In other approaches, 
a probabilistic model was designed to establish 
the relationship between the human postures and 
the cues from images like color, contours, and 
silhouettes. Machine learning techniques such 
as the sampling by the Monte-Carlo method (Lee 
& Cohen, 2006) were applied to find the human 
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body posture most probabilistically compatible 
with the information given in the images. How-
ever, as the depth information is lost (i.e., the 3D 
object is projected into a 2-D image), there will 
be an ambiguity of reconstructing a 3D human 
posture from a monocular image. The appear-
ance of a human subject in an image might also 
correspond to many possible configurations of 
the human posture in 3D. Due to this limitation, 
most previous researches based on a monocular 
image concentrate only on detecting the human 
body parts (Hua et al., 2005; Ramanan et al., 2007; 
Roberts et al., 2007).

Rather than processing on a single image, 
a lot of attempts have been proposed to utilize 
monocular images acquired with multiple cameras 
to get more accurate results of recovering human 
body postures. For instance, a setup with multiple 
cameras described in (Horaud et al., 2009; Knos-
sow et al., 2007) was composed of six cameras 
installed at different locations to estimate motion 
of a tracked subject. Typically, the information 
in monocular images with different directional 
views is combined to reconstruct the 3D data of 
a human subject. The 3D data might be presented 
by 3D voxels or by a cloud of 3D points. Thus, 
with each presentation of 3D data, there are dif-
ferent ways to reconstruct human body postures. 
In (Sundaresan & Chellapa, 2008), the authors 
presented a method to segment the 3D voxels into 
different body parts and registered each part by 
one quadric surface to reconstruct the articulated 
human model. To segment the 3D voxels, they 
mapped the voxels’ coordinates into a new domain 
using the Laplacian Eigenmaps where they could 
discover the skeleton structure (1-D manifolds) 
of the 3D data. Based on this skeleton structure, 
they could assign the 3D data to corresponding 
human body parts using probabilistic registration. 
Some other methods like ISOMAP (Chu et al., 
2003; Tenenbaum et al., 2000), Locally Linear 
Embedding (Roweis & Saul, 2000), or Multidi-
mensional Scaling (Cox & Cox, 2001) are also 
available to recover the human skeleton structure 

of the 3D voxels. Meanwhile, with another form 
of representation of 3D data, a cloud of 3D points, 
in (Plankers & Fua 2003), the authors modeled 
the human body with an isosurface, called the soft 
object. The shape of the soft object was controlled 
by the kinematic parameters of the human model. 
The least-square estimator was used to minimize 
the differences between the soft object and the 
cloud of 3D points, consequently finding the hu-
man body posture most fitted with the 3D data. 
Rather than using a single surface like the soft 
object, in (Horaud et al., 2009), they used a set 
of surfaces with ellipsoids to present the human 
body. In order to perform the registration of the 
ellipsoids to the 3D data, each 3D point was cast 
into one ellipsoid using the datum distance and 
the least-square estimator was utilized to draw 
the ellipsoids close the 3D data.

Although the marker-less systems using mul-
tiple cameras to recover human body postures can 
overcome the disadvantages of the system using a 
single camera with the ambiguities and occlusions 
of the 3D data when presented in a monocular 
image, there are still some remaining limitations 
in the multiple camera-based approaches. For 
instance, there is a need for extra software and 
hardware to support the transfer of large video 
data from multiple cameras over a network. Also, 
the data acquired with more than one camera 
must be calibrated to compute the 3D coordinate 
of each pixel of the recorded images within the 
same coordinate system. Moreover, the multiple 
cameras require a complicated installation. There-
fore, using a single stereo camera should be more 
flexible and practical in the recovery of human 
body postures. As mentioned, there are two types 
of approaches of recovering human body postures 
from depth maps.

The first is the matching-based approach in 
which a set of human body postures is generated 
and compared with a depth map derived from a 
stereo camera to find the best matching posture. 
In (Yang & Lee, 2007), about 100,000 human 
postures, presenting most appearances of the hu-



544

Recovering 3D Human Body Postures from Depth Maps and Its Application in Human Activity Recognition

man body in 3D, were created and stored in an 
exemplar database. However, with a large number 
of human body postures, the authors had to develop 
an efficient algorithm to organize and retrieve the 
human body posture stored in the database. To 
avoid generating all possible human postures, in 
(Olivier et al., 2009), only a limited number of 
human postures at the time index t that are close 
to the human body posture estimated at the time 
index t-1 were generated. This method evaluated 
the discrepancies between the created human 
postures and the 3D information of the new depth 
map given at the time index t to find the human 
posture best compatible with the depth map. The 
drawback of this method is that with the limited 
number of generated postures, the accuracy of 
estimating human body postures tends to be low. 
In the opposite case, with the increased number 
of generated postures, the time needed to search 
for an appropriate human posture gets prolonged.

Apart from the matching-based approach, 
the model-based approach (Urtasun et al., 2006) 
estimates human body postures directly from 
depth maps without using a set of temporary 
postures for matching. This approach models an 
articulated human body in 3D and formulates an 
estimation problem to minimize the difference 
between the human model and the information 
in a depth map to recover a human posture. Our 
technique of recovering human body postures 
presented in this chapter is based on the frame-
work of this model-based approach. However, 
we have extended and generalized the approach 
by developing a co-registration algorithm with an 

additional step of detecting human body parts in 
3D before fitting the human body model to 3D 
data (Thang et al., 2010a).

HOW TO RECOVER 3D 
HUMAN BODY POSTURES 
FROM DEPTH MAPS

The overall steps of our method of recovering hu-
man body postures from depth maps are presented 
in Figure 1. First, we preprocess a pair of stereo 
images to obtain a depth map and calculate the 3D 
information (i.e., 3D data) from the depth map. 
Separately, we create our articulated human body 
model using a set of ellipsoids and parameterize 
the model with kinematic joint angles. Finally, we 
co-register the body model to the 3D data of the 
depth map to estimate the joint angles. Our co-
registration involves the following two main steps:

• Labeling: The labeling step assigns a label 
of each human body part (i.e., an ellipsoid) 
to each point of the 3D data using the in-
formation and cues from RGB images.

• Model Fitting: after the body part label-
ing, the model fitting step fits each point to 
its corresponding ellipsoid by minimizing 
the distance between them.

This two-step co-registration process is iter-
ated to minimize the differences between the 3D 
human body model and the observed 3D data. 
Finally, the algorithm finds the best human pos-

Figure 1. Essential steps of our methodology of recovering 3D human body postures from depth maps
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ture on a frame-by-frame basis. In the following 
sub-sections, more details of each process are 
presented.

Preprocessing of Stereo Images

As mentioned, a stereo camera is used to capture 
a pair of images in a time sequence containing 
human motion. For each pair of images, we ap-
ply the stereo matching algorithm (Cech & Sara, 
2007) to compute the pixel disparities between 
them, generating a depth map that decodes the 
3D information of the scene: the pixel with higher 
disparity value is closer to the camera than other 
pixels. Continuously, we perform the background 
modeling and subtraction (Wang et al., 2003) in a 
RGB image to get the binary silhouette of a human 
subject and use the binary silhouette to extract the 
region of interest in the depth map containing only 
the 3D information of the human subject. Then, 
for each pixel belonging to the human body region 
in the depth map, we calculate its coordinate in 
the 3D space in order to estimate the kinematic 
joint angles of the human posture correctly. The 
depth value Zw of a pixel in the 3D coordinate 
system is computed by

Z
f b

dw
c=  (1)

where fc is the focus length, b the base-line, and d 
a disparity value of the pixel. The two remained 
coordinate Xw and Yw are computed by
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where u and v are the column and row index of 
the pixel in the depth map.

3D Human Body Modeling

We create the articulated human body with a set 
of ellipsoids where each ellipsoid represents one 
human body part as shown in Figure 2(a). For the 
convenience of transformation computations, we 
formulate the equation of each ellipsoid in the 4-D 
projective space as,

q X X XT T T( )= − =Q S DSQθ θ 2 0  (4)

where the constant matrix D = diag[a-2,a-2,b-2,1],b 
≥ a determines the size of the ellipsoid. The con-
stant matrix S locates the center of the ellipsoid 
in the local coordinate attached to the ellipsoid. 
Qθ  is the skeleton-induced transformation matrix. 
X = [x,y,z,1]T, indicating the coordinate of a 3D 
point in the 4-D projective space. Each segment 
of the human body model is controlled by a series 
of transformations specified by the kinematic 
parameters at each body joint, therefore Qθ is a 
matrix function of θ θ θ θ= ( , , ..., )1 2 n , where 
θ θ θ1 2, , ..., n  are n kinematic parameters. We 
separate Qθ  into a series of matrices where each 
matrix is computed based on a single parameter,

Q Q Q Qθ θ θ θ= − −n n n n( ) ( )... ( )1 1 1 1  (5)

where Q Q Q21 1 2 6 6( ), ( ), ..., ( )θ θ θ are of six degrees 
of freedom (DOF) (i.e., three translations and 
three rotations) that determine the transformation 
from the global coordinate system to the local 
coordinate system attached at the body hip. The 
other matrix element, Q TrRi i i i( ) ( )θ θ=  with i 
> 6 is the transformation matrix from the local 
coordinate system attached to the body segment 
i to the local coordinate system attached to the 
body segment i+1, where Tri  is the constant 
translation matrix dependent on a skeleton  
structure and R( )θi  is the rotation matrix at each 
body joint around the x-, y-, or z-axis. We can 
assign the value of the matrix Tri  by an identity 
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matrix if we want to add more than one DOF to 
a body joint.

Our defined human model is composed of 14 
body segments, nine joints (i.e., two knees, two 
hips, two elbows, two shoulders, and one neck), 
and 24 DOF (i.e., two DOF at each joint and six 
DOF for the transformation from the global co-
ordinate system to the local coordinate system at 
the body hip). In addition, another human body 
model using the super quadric can be created for 
better display of the results as in Figures 3 and 
4. The formulation of the super-quadric surface 
without any transformation (rotation or transla-
tion) is derived as
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where a, b, and c determine the size of the super-
quadric along the x-, y-, and z-axis, respectively.

Mathematical Relationship 
Between Human Body Model 
and Depth Information

In this section, we introduce a probabilistic dis-
tribution that represents the relationship between 
the human body posture specified by the kine-
matic parameters and the information in the cor-
responding depth map and RGB image. Let D = 
(X1,X2,…,XN) denote N points of the 3D data 
computed from a depth map and I denote a RGB 
image. The supplementary variable V = (v1,v2,…
,vN) is used to label the body part where each point 
should belong to. The posterior probability be-
tween the label V and the kinematic parameter θ  

Figure 2. Two examples of running E-steps to detect the body part labels. (a) Initial models. (b) The 
label assignments found by the first iteration of E-step. (c) The label assignments found by the last 
iteration of E-step.
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given the 3D data, D and the RGB image, I is 
expressed by,

P V I D P V P I V P D V P D V( , | , ) ( ) ( | ) ( | ) ( | , ).θ θ∝  
(7)

Obviously, the optimal kinematic parameter 
θ*  that maximizes the probability distribution 
given in (7) represents the human body posture 
that is most compatible with the 3D information 
given in the depth map. The co-registration algo-
rithm to estimate the optimal kinematic param-
eter θ* , recovering the correct human body 

Figure 3. Experimental results with (a) elbow movements in the horizontal direction, (b) elbow move-
ments in the vertical direction, (c) knee movements, and (d) shoulder movements. From the left column 
to the right: RGB images, depth maps, and recovered human postures in the front view and +450 view.



548

Recovering 3D Human Body Postures from Depth Maps and Its Application in Human Activity Recognition

posture from the given depth map is presented in 
the next section.

a)  Smoothness Prior

The smoothness prior found from the Potts 
model (Boykov et al., 2001) is given by

P V P v vi j
j Ni

N

i

( ) ( , )=
⊂=
∏∏

1

 (8)

where Ni is a set of neighbors of the point i and 
P(vi,vj) is defined by
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 γ  (9)

where γ  is a positive constant. The smoothness 
prior P(vi,vj) is used to derive the label of each 
point toward the same label of its neighbors that 
makes the labeling outcomes smooth and removes 
outliers. Here, the neighbors of one pixel in a 
depth map lie inside a circle with the center at the 
pixel’s location with its radius d=3.

b)  Image Likelihood

The RGB image containing the information of 
a human subject in a color space can be used to 
detect some human body parts, providing extra 
information for assigning the labels of 3D data. 
The detection results are integrated into equation 
(7) by the likelihood term P(I|V),

P I V I v
i

N

i( | ) = ( | ).
=1
∏ϕ  (10)

In our work, we perform the face and torso 
detection to calculate the probability of one point 
inside the detected regions getting a label ‘head’ 
or ‘torso’. The face areas are located by detecting 
the skin color in the HSV color space (Conaire 
et al., 2007).
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where c is a positive constant.
The likelihood of a pixel labeled as ‘torso’ is 

computed based on the function f(ri),

f r ei
d ri( ) ( )= −κ  (12)

Figure 4. Experimental results with (a) a walking sequence (top). Recovered human postures are depicted 
in the front view (middle) and -450 view (bottom) and (b) an arbitrary activity sequence (top). Recovered 
human postures are depicted in the front view (middle) and -450 view (bottom).
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where d(ri) is the algebraic distance from a point 
ri in a RGB image with a coordinate [xr,yr,1]T in 
the 3D prospective space to the center of the body 
Obody: Obody lies in a middle between the center of 
the face and the center of a binary silhouette. K 
is a positive constant. The algebraic distance d(ri) 
is computed by,

d r r ri i
T

e
T

e e i( )= −Q D Q 1  (13)

where De and Qe are the 3 × 3 matrices that config-
ure the size and shape of the ellipse representing 
the torso. The likelihood to assign a point as a 
‘torso’ is given by,
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c)  Pairwise Geodesic Relationship among 3D 
Points

The geodesic distance is measured by the 
length of the shortest path between two points 
on a curved surface. During the movement and 
deformation of a non-rigid object like the hu-
man body, the geodesic distance between any 
two points on the boundary surface of the object 
is preserved. Therefore, we utilize this property 
of the geodesic distance to derive the geodesic 
constraints between any two points of the 3D data 
representing the human body.

Since there are a large number of 3D points, we 
need a large number of computations to estimate 
the geodesic distance among all pairs of the 3D 
points. In order to reduce the number of computa-
tions, we assign a set of close points into a group, 
called a cell. All 3D points belonging to the same 
cell receive the same geodesic constraint. Com-
puting the geodesic distance by the shortest path 
distance in graph using the Dijkstra’s algorithm 
(Dijkstra, 1959), we express P(D|V) by
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where ic is the cell that holds the point i, d v vi jc c
( , )  

the geodesic distance between the cell ic and jc, 
Nc the number of cells, and (α,β) two positive 
constants. Two values, d v vi jc cmin( , )  and 
d v vi jc cmax( , )  define the lower and upper bound 
for the geodesic distance between a pair of labels. 
The two related labels assigned to two 3D points 
that are too far or too close are penalized to reduce 
the belief in these assignments.

d)  Reconstruction Error

The discrepancies between the human model 
created by a set of connected ellipsoids and the 
cloud of 3D points are measured by the total 
Euclidean distances from each 3D point to the 
ellipsoid corresponding to the label of this point. 
Thus, the Euclidean distance is considered as 
another factor to assign the label of each point 
during the registration process. P D V( | , )θ  is 
defined by

P D V e
i

N
d Xi vi

( | , ) =
=1

2( , , )

2 2θ
θ

σ∏
−

 (17)

where d X vi i( , , )θ  is the Euclidean distance from 
the point Xi to the ellipsoid vi and the constantσ
is variance. The Euclidean distance is calculated 
by the distance from one point to the nearest point 
lying on the ellipsoid surface. In general, to com-
pute the Euclidean distance d X vi i( , , )θ , we need 
to solve a sixth-degree polynomial equation 
(Heckbert, 1994). However, with the symmetric 
ellipsoid defined in our articulated human model, 
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a sixth-degree polynomial equation is simplified 
to a fourth-degree polynomial that has an ana-
lytical solution allowing us to compute its roots.

Co-Registration of 3D Human Body 
Model and 3D Depth Information

A human body posture that best matches the 
observed 3D data is subject to the kinematic pa-
rameter θ* that maximizes the posterior probabil-
ity given in (7),

θ θθ
* arg max ( , | , ).= ∑P V I D

V

 (18)

To solve this optimization problem, the EM 
algorithm is a suitable choice with the incorpora-
tion of the latent variable, V. Let Q(V) be the prob-
ability distribution of the label V. Our algorithm 
to estimate a human body posture from a given 
depth map is formulated in an EM framework 
with the following two key steps:

• E-step: Assuming that the current value of 
the kinematic parameter θ  isθold , E-step 
estimates the label assignments by com-
puting the probability distribution 
Q V P V I Dold( ) ( | , , )= θ  of the label given 
the information of the RGB image and the 
3D data of the depth map.

• M-step: With the label assignment Q Vold( )
found by E-step, M-step maximizes 
E P V I DQ Vold ( )[log( ( , | , ))]θ  or equivalently 
minimizes the reconstruction error be-
tween the model and the cloud of 3D points 
to estimate a new optimal value of the ki-
nematic parameterθ .

The two-step co-registration process is iterated 
to minimize the differences between the 3D model 
and the observed data and finally the correct hu-

man posture is found. More details of those two 
steps are presented as follows.

a)  E-step: Labeling

It is intractable to calculate the exact distri-
bution Q(V) of the label V. Therefore, we ap-
proximate the distribution Q(V) by using the mean 
field approach (Toyoda & Hasegawa, 2008). The 
logarithm of Q(V) is given by

log ( ) ( ) ( , ) ( , )Q V g v g v v h v vi i
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where gi(vi) is the sum of the logarithms of the 
image likelihood in (10) and the reconstruction 
error in (17), gij(vi,vj) the logarithm of the smooth 
prior in (8), and h v vi jc

( , ) the logarithm of the 
geodesic constraints in (15),

h v v P D v vi j geo i jc c
( , ) log ( | , ).=  (20)

The probability of a pixel i having a label vi, 
q v P v I Di i i( ) ( | , , )= θ  is iteratively updated 
until it approaches to a stable value by an equation
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where Z v q vi i i ivstep stepi
( ) ( )=∑  is a normalization 

factor and q v E q vstep
j

j j j
c

c step c
( ) [ ( )]=  an average 

probability of all pixels j belonging to the cell jc. 

We use 1

0
Z v

g v
i i

i i( )
exp{ ( )}  as an initial value of 

q vi i0
( ) . For simplification, we set q vstep

j
j

c

c
( )= =ε 1  

when the probability of the cell jc belonging to 
the ellipsoid ε  is largest andq vstep

j
j

c

c
( )= 0  for 

vjc
≠ ε . In Figure 2, we show two examples of 
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running E-step to detect the body part labels from 
the 3D data.

b)  M-step: Model Fitting

After the probability distribution of the label 
variables is estimated from E-step, M-step com-
putes a new value of the kinematic parameter θ  
as the solution of the optimization problem

arg max [log ( | , )]( )θ θE P D VQ V  (22)

Here, we remove the terms in Equation (7) 
independent of θ . Equation (22) can be rewritten 
as

− = =
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or arg min ( ) ( )θ
ε

εε θ
ε
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where N ε is the number of ellipsoids and Zi( )θ ε  
the nearest point of Xi lying on the surface of the 
ellipsoid ε . To reduce the number of computations, 
we set q vi i( )= =ε 1  for ε  satisfying 
q v q vi i i i( ) ( )= ≥ ≠ε ε  a n d  q vi i( )= 0  f o r 
vi ≠ ε . We solved the non-linear optimization 
problem in (23) by the Levenberg-Marquardt 
method (Murray et al., 1994; Sundaresan et al., 
2004).

To summarize, we describe the presented 
algorithm in Table 1.

Results of Recovering Human Body 
Postures from Depth Maps

In our experiments, we used a stereo camera, 
Bumblebee 2.0 of Point Grey Research, to capture 
stereo image pairs with their resolution at 640 × 
480. We asked our subjects to perform various 
motions in front of the stereo camera as depicted 

in Figure 3. Note that a sequence of frames in 
a video stream is shown from top-to-bottom in 
a column. In Figures 3(a) and 3(b), the move-
ments of the elbows in the horizontal and vertical 
directions were evaluated in our experiments. 
The subjects raised their hands up to create an 
angle about 900 between the upper hand and 
lower hand, then brought their hands down. In 
the next experiment shown in Figure 3(c), the 
subject in video performed an activity at their knee 
joints. The subject lifted his right leg up to a 900 
between the upper leg and lower leg then he did 
the same motion with the other leg. In addition, 
we considered the body movements created by 
the combination of the two kinematic angles at 
the shoulders as in Figure 3(d). To evaluate the 
reconstruction error, we generated the ground-
truth of the estimated kinematic angles by using 
the hand-label method (Gupta et al., 2008; Lee 
& Cohen, 2006). Some points were hand-labeled 
to determine the position of the body joints in the 
RGB images such as hand, elbow, shoulder, etc. 
Using the 3D information estimated from the depth 
maps, we computed the coordinate of these labeled 
points in 3D and then calculated the ground-truth 
angles. Then, we compared the kinematic angles 
of the recovered human body postures against the 
ground-truth angles and obtained the mean error 
of about 60~140 in the estimated kinematic angles.

In order to track the movements of the whole 
human body, the subjects were asked to perform 
complicated activities with all arms and legs. Fig-
ure 4 shows two video sequences and the recovered 
human body postures reflected in those sequences 
in two view angles. The average distance between 
the 3D points and the ellipsoids of the human model 
were used to evaluate the error measurements of 
the reconstructed postures. The average distance 
Dt of the frame t was computed by

D d i Nt t
i

N

=
=
∑ ( ) /

1

 (24)
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where dt(i) is the Euclidean distance between 
the point i and the nearest ellipsoid of the human 
model and N is the number of points. The mean 
error distance Dt for the walking and arbitrary 
sequences depicted in Figure 4 came out to be 
0.06m and 0.04m respectively.

HUMAN ACTIVITY RECOGNITION 
USING BODY JOINT ANGLES

Human Activity Recognition (HAR) is defined 
as recognizing various human activities utilizing 
external sensors such as acceleration, motion, or 
video sensors. In recent years, HAR from video has 
evoked considerable interests among researchers 
in computer vision and image processing com-
munities (Robertson & Reid, 2006). A key reason 
for this is its potential usefulness of the outcomes 
of such recognition in practical applications 
such as human computer interaction, automated 
surveillance, smart home, and human healthcare 
applications. A general method for video-based 

HAR starts with the extraction of key features 
from images and comparing them against the 
features of various activities. Thus, activity feature 
extraction, modeling, and recognition techniques 
become essential elements in this regard.

In general, 2-D binary silhouettes of human 
body shapes are the most common representa-
tions of human activity that have been applied for 
video-based HAR (Yamato et al., 1992; Carlsson 
& Sullivan, 2002; Niu & Abdel-Mottaleb, 2004; 
Niu & Abdel-Mottaleb, 2005; Uddin et al., 2008; 
Uddin et al., 2009). For instance, in (Yamato et 
al., 1992), a binary silhouette-based HAR system 
was proposed to transform the time sequential 
silhouettes into a feature vector sequence through 
the binary pixel-based mesh feature extraction 
from every image. Then, the features were utilized 
to recognize several tennis actions with Hidden 
Markov Models (HMMs). In (Carlsson & Sullivan, 
2002), a silhouette matching key frame-based 
approach was applied to recognize forehand and 
backhand strokes from tennis videos. Regarding 
binary silhouette-based features, Principal Com-

Table 1. The co-registration algorithm used to estimate human body postures from depth maps 

1. At the time index t, initialize the value of the kinematic parameterθt  with the value of the

kinematic parameterθt−1  estimated at the time index t-1
     2. E- step: Compute gi(vi) from the sum of the logarithms of the image likelihood in (10) and the

reconstruction error in (17) and use exp ( ) / ( )g v Z vi i i i{ }
0

as an initial value of q vi i0
( )

3. Compute g v vij i j( , )  from the logarithm of the smooth prior in (8) and h v vi jc
( , ) from the logarithm of the
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     4. Update 
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( ) has not converged, go back to step 3

     6. M-step: Estimate new values of the kinematic parameter
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7. If θt  has not converged, go back to step 2
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ponent Analysis (PCA), a feature extractor based 
on the second-order statistics, is most commonly 
applied (Niu & Abdel-Mottaleb, 2004; Niu & 
Abdel-Mottaleb, 2005; Uddin et al., 2009). After 
applying PCA, some top PCs (i.e., eigenvectors) 
are chosen to produce global features representing 
most frequently moving parts of the human body 
in various activities. In (Niu & Abdel-Mottaleb, 
2004; Niu & Abdel-Mottaleb, 2005), the authors 
utilized PC features from binary silhouettes and 
optical flow-based motion features in combination 
with HMM to recognize different view-invariant 
activities. The top flow of Figure 5 shows the 
typical processing components of the binary 
silhouette-based HAR. Once the binary silhouettes 
are obtained from RGB images, some prominent 
features, obtained through the feature extraction 
process, are then applied to a recognition technique 
to train and recognize various human activities.

Recently, more advanced HAR techniques 
have been introduced in terms of new features 
and more powerful feature extraction techniques. 
Although binary silhouettes are commonly em-
ployed to represent a wide variety of body con-

figurations, they also produce ambiguities by 
representing the same silhouette for different 
postures from different activities: especially for 
those activities that are performed toward the 
video camera. Thus, the binary silhouettes do not 
seem to be a good choice to represent human body 
postures in different activities. In this regard, depth 
silhouettes for human body representations can 
be a solution. In the case of depth-based silhouette 
representation, the pixel values are set on the 
basis of the distance to the camera and hence it 
can provide better activity information than the 
binary silhouettes. In (Uddin et al., 2008; Uddin 
et al., 2009), the authors proposed to use a new 
feature extraction technique called Independent 
Component Analysis (ICA) to produce prominent 
local features from time-sequential depth silhou-
ettes to be used with HMMs and obtained supe-
rior HAR performance than the binary silhouette-
based approaches.

However, depth silhouettes do not convey truly 
3D information of the human body postures and 
hence generates the similar problems as binary 
silhouettes: they represent the human body in dif-

Figure 5. Processes involved in the binary silhouette and 3D body joint angle-based HAR
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ferent activities from one angle view of depth. As 
the human body consists of limbs connected with 
joints, if one is able to obtain their 3D joint angle 
information, one can form much stronger features 
than conventional silhouette features that will lead 
to significantly improved HAR. In this section, 
we present an application of HAR based on our 
estimated 3D body joint angle features and HMM. 
From the time-sequential activity video frames, the 
joint angles are first estimated by co-registering a 
3D human body model to the stereo information 
and then mapped into codewords to generate a 
sequence of discrete symbols for an HMM of 
each activity. With these symbols, each activity 
HMM is trained and used for activity recognition. 
The bottom of Figure 5 shows the basic processes 
regarding 3D body joint angle-based HAR. It 
indicates that after obtaining the depth images, 
joint angles are estimated via co-registration and 
represented as features to feed into the HMMs 
to train and recognize different human activities. 
Some more details of the essential processing 
steps are given below.

3D Joint Angle Features 
in Human Activities

Once we obtain the joint angles of the 3D human 
body for each video frame as discussed earlier, 
we can utilize these to represent various human 
activities effectively. The estimated joint angles 
from a video frame of a particular activity form 
a feature vector: thus, each activity video clip is 
represented in a sequence of joint angle feature 
vectors as (F1,F2,…,FT), where T is the length 
of the activity video. Therefore, the 3D joint 
angle features from video can really contribute 
in distinguishing an activity from another: es-
pecially those activities that are not discernible 
with the conventional binary or depth silhouette- 
based approaches.

Training and Recognition via HMM

HMM has been applied extensively to solve a 
large number of spatiotemporal pattern recognition 
problems including human activity recognition 
because of its capability of handling sequential 
information in space and time with its probabilistic 
learning capability for recognition (Lawrence & 
Rabiner, 1989; Niu & Abdel-Mottaleb, 2004; Niu 
& Abdel-Mottaleb, 2005; Uddin et al., 2008; Ud-
din et al., 2009). Basically, HMM is a stochastic 
process where an underlying process is usually 
unobservable but it can be observed through 
another set of stochastic processes that produces 
observation symbols. To learn a video-based hu-
man activity in a HMM, the symbol sequences 
obtained from the training image sequences of 
distinct activities are used to optimize the cor-
responding HMM. Finally, the trained HMMs 
are used to calculate the maximum likelihood 
for recognition.

Technically, HMM is a collection of finite 
states connected by transitions. Every state is 
characterized by transition and symbol observa-
tion probabilities. A generic HMM is expressed 
as H = {S,π,A,B} where S denotes possible states, 
π the initial probability of the states, A the transi-
tion probability matrix between the hidden states 
and B the observation probability from every 
state. If the number of activities is N then there 
will be a dictionary (H1,H2,…,HN) of N trained 
models. To estimate HMM parameters, one could 
use the Baum-Welch algorithm (Lawrence &  
Rabiner, 1989).

We choose a four-state and left-to-right HMM 
in this study to model sequential events of each 
human activity. To recognize each test activ-
ity, the obtained observation symbol sequence 
O={O1,O2,…,OT} through the vector quantization 
process is used to determine the proper activity 
HMM from all the trained activity HMMs by 
means of the highest likelihood as
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decision P O Hi
i M
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where Hi indicates ith HMM and M number of 
activities. More details on regarding training and 
testing of HMMs for human activity recognition 
are available in our previous work (Uddin et al., 
2008; Uddin et al., 2009).

Results of Recognizing 
Various Human Activities

We had built a database of six different activities 
(namely, left hand up-down, right hand up-down, 
both hands up-down, boxing, left leg up-down, and 
right leg up-down) to be trained and recognized 
via our 3D joint angle and HMM-based approach. 
A total of 15 and 40 image sequences of each 
activity were prepared to be used for training and 
recognition respectively.

We started our experiments with the traditional 
binary silhouette-based HAR. Table 2 shows the 
experimental results of HMM-based HAR utiliz-
ing the IC features of binary silhouettes and joint 
angle features of 3D body model respectively. As 
ICA is superior to PCA by extracting the local 

binary silhouette features (Uddin et al., 2009), it 
was utilized for HAR where 150 features were 
considered in the feature space. Binary silhouettes 
were not appropriate to recognize the activities 
used in our experiments, yielding a much lower 
mean recognition rate of 58.33%. On the contrary, 
utilizing the 3D body joint angle features, we ob-
tained a mean recognition rate of 92.50%, which is 
far better than that of the binary silhouette-based 
HAR. The experimental results show that the 3D 
joint angle features are remarkably superior to 
the conventionally used silhouette features. The 
body joint angle features seem to be much more 
sensitive toward complex activities that are not 
discernable with the body silhouettes.

FUTURE RESEARCH DIRECTIONS

As presented, our human motion capturing system 
using a stereo camera is potentially applicable to 
various biomedical and HCI areas. However, due to 
the existing errors of recovered kinematic angles, 
our system might face difficulty with practical 
applications requiring high accurate results of 
estimating motion. For instance, in biomechanics 

Table 2. Experimental results of video-based HAR using binary silhouettes vs. joint angles 

Approach Activity Recognition 
Rate Mean Standard Devia-

tion

Binary Silhouette-Based HAR Left hand up-down 47.50% 58.33 16.78

Right hand up-down 60

Both hands up-down 67.50

Boxing 30

Left leg up-down 72.50

Right leg up-down 72.50

Joint Angle-Based HAR Left hand up-down 87.50 92.50 4.18

Right hand up-down 97.5

Both hands up-down 87.50

Boxing 95

Left leg up-down 92.50

Right leg up-down 95
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measurements, some systems need small errors 
of recovered kinematic angles in order to analyze 
the detailed motion of a tracked subject. In health 
care areas, a human motion capturing system can 
be used to help a handicap person to learn how 
to walk, run, etc. However, the system with large 
errors of estimated kinematic angles might cause 
adverse effects to the treatment of the patient. The 
other difficulty of our method relates to estimating 
human motion from tricker movements or rapid 
changes of trackers’ locations. In this situation, 
there are large variations of the human postures 
between two consecutive frames. A part of infor-
mation used to assign the label of 3D data might get 
inaccurate, causing a missing calculation of some 
body parts. For such reasons, we plan our future 
work to improve the reliability of our presented 
techniques and its robustness to handle the rapid 
and complex changes of human postures in a video 
sequence. The concerns are addressed by develop-
ing better labeling method with investigating more 
information to detect human body parts from RGB 
images as exampled in (Ninh et al., 2009). Also 
in the model fitting part of our algorithm, a large 
number of 3D points processed in the algorithm 
slow down the co-registration process and take 
into account outliers in computations that affect 
the recovering results. To mitigate this problem, 
we recently suggested a way of utilizing clusters 
of 3D points being assigned the same label of a 
body part and computing the kinematic parameters 
with a small number of clusters (Thang et al., 
2010b). This greatly reduced the computational 
time, eliminated the presence of outliers, and made 
the presented techniques more practical.

As a practical application, we presented our 
work of HAR using the derived feature of joint 
angles, which proved its superior performance 
over the conventional feature of body silhouettes. 
We believe that our presented work in this chapter 
should be able to find its use in other applications 
such as advanced HCI, video games, smart homes, 
smart hospitals, etc.

CONCLUSION

In this chapter, we have presented our marker-
less system to recover human body postures in 
3D from a sequence of depth maps acquired by 
a single stereo camera. We have described our 
methodology including how to estimate the 3D 
data of a depth map, how to create a human body 
model, and how to co-register the human body 
model to the 3D data. Our experimental results 
with real video data have shown that our method 
successfully recovers human body postures from 
depth maps: our validation indicates an error range 
of about 60-140 in the estimated joint angles. In 
addition, as an application of our technique, we 
have presented a HAR work using the derived 
body joint angles. Again our experimental results 
with real video data show that our HAR system 
produces significantly better recognition rates than 
the conventional approaches in which binary sil-
houettes are utilized to recognize human activities.
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KEY TERMS AND DEFINITIONS

Depth Map: A 2-D image representing the 
depth information of a scene using gray-scaled 
colors.
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Human Computer Interaction (HCI): A re-
search of interaction between users and computers.

Maker-Based Human Motion Capture: An 
approach of capturing human motion by attaching 
markers to the human body. The trajectories of the 
markers detected in 3D space provide the motion 
information of the tracked subject.

Markerless-Based Human Motion Capture: 
An approach of capturing human motion without 
using markers.

Stereo Camera: A type of camera composed of 
two or more lenses to allow taking some pictures 
of a scene in alternate view angles to estimate the 
information of depth.

Stereo Matching Algorithm: An algorithm 
used to generate the depth map from a pair of 
images captured by a stereo camera.

Stereopsis: A process of combining two im-
ages received from two human eyes to create a 
3D sensation about viewed objects.
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Chapter  29

INTRODUCTION

With the advancement of technology, face recogni-
tion using 3D images is slowly becoming a feasible 
option. This is because the ability to capture 3D 
images of faces accurately and efficiently is now 

becoming a reality. In the past, face recognition 
systems used 2D images to perform identification 
(Turk & Pentland, 1991; Belhumeur, Hespanha 
& Kriegman, 1997). Although 2D images can 
produce good results, they still suffer from a few 
problems, like illumination and pose changes 
(Zhao, Chellappa, Rosenfeld & Phillips, 2000). 
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ABSTRACT

Face recognition using 3D faces has become widely popular in the last few years due to its ability to 
overcome recognition problems encountered by 2D images. An important aspect to a 3D face recognition 
system is how to represent the 3D face image. In this chapter, it is proposed that the 3D face image be 
represented using adaptive non-uniform meshes which conform to the original range image. Basically, 
the range image is converted to meshes using the plane fitting method. Instead of using a mesh with 
uniform sized triangles, an adaptive non-uniform mesh was used instead to reduce the amount of points 
needed to represent the face. This is because some parts of the face have more contours than others, 
hence requires a finer mesh. The mesh created is then used for face recognition purposes, using Principal 
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Simulation results show that an 
adaptive non-uniform mesh is able to produce almost similar recognition rates compared to uniform 
meshes but with significant reduction in number of vertices.
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Since 3D images are able to overcome problems 
usually faced when using 2D images for face 
recognition, like illumination and pose changes, 
hence active research should be performed on 
face recognition using 3D images so that when 
the technology to capture 3D images efficiently 
finally arrives, the software to perform good 
recognition would also be ready.

An area that is worth investigating with regard 
to 3D face recognition is the representation of the 
3D face image. At the moment, a common method 
to capture a 3D face image is to use a 3D scan-
ner. Basically, the scanner will use either laser or 
light and shine onto the face, thereby obtaining a 
range image that consists of points with x, y and 
z coordinates. The x and y coordinate is the width 
and height of the point while the z coordinate 
represents the depth of that face point from the 
scanner. Therefore, the 3D image of the face from 
one direction is obtained.

Range image is able to represent the face ac-
curately and has been used for 3D face recogni-
tion. They are able to show the exact contours of 
the face when the point matrix is dense enough. 
However, the image size can be huge due to the 
amount of data stored which takes up storage 
space or causes long transmission time. Besides 
that, some area of the face may not need a large 
amount of points to represent it, causing some 
points to be redundant.

Therefore, face meshes have been proposed 
in the past to represent a 3D face image for face 
recognition since they require fewer points. A mesh 
consists of many small polygons that make up the 
face. The advantage of using a face mesh is that 
each polygon represents a small area of a face. If 
the polygon used is a triangle, then a small area 
that may be represented by many data points in a 
range image can be represented by only 3 points 
in a mesh image. The points in a mesh are known 
as vertices while the lines joining the vertices are 
known as edges.

In this chapter, the aim is to create a mesh 
that is able to represent a face sufficiently for 3D 

face recognition while using minimum number 
of vertices. Hence, it is proposed that an adaptive 
non-uniform face mesh be built to represent the 
original face range image. This mesh will then be 
used for face recognition purposes to determine if 
the proposed face mesh is a feasible alternative.

BACKGROUND

A typical mesh consists of many uniform little 
triangles that cover the whole face, as shown 
in Figure 1. (Xu et al., 2004) method converts 
a point cloud face into a mesh, first by using a 
coarse mesh and then subsequently refining it 
to a finer dense mesh to represent a face. After 
that, recognition is done using the face meshes. 
Although recognition usually concentrates on the 
face area around the eyes, nose and mouth, the 
whole face was converted into a finer dense mesh 
for recognition.

(Ansari et al., 2007) used a general mesh 
model of a face and deformed this model accord-
ing to the range image of the face, estimating the 
depth of the triangles using plane fitting. To obtain 
a smoother mesh, they subdivide each triangle 
into 4 smaller triangles and then deform the mesh 
again using plane fitting to get a more accurate 
mesh for the face. After that, recognition is per-
formed using a voting-based classifier. However, 
the criteria to determine whether the mesh is ac-
curate enough for the face were not discussed.

(Tanaka et al., 1993) also performed subdivi-
sion on their triangles. However, they only divided 
their mesh triangle into 2 triangles instead of 4. 
The meshes were subdivided according to their 
surface curvature and will only stop the subdivi-
sion at a certain predetermined threshold.

(Wu et al., 2001) proposed a geometric mesh 
simplification scheme for constructing multi-
resolution meshes. Using the Face Constriction 
Process (FCP), they introduce a mesh simplifica-
tion scheme that was also effective in preserving 
the face features. This was achieved by using the 
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FCP validity checking and weight ordering equa-
tion. It was claimed that their scheme has simple 
computation, saves time and is easy to implement.

(Lee et al., 2005) simplifies their meshes 
through vertex elimination and integration. This 
is achieved by removing vertices that meet the 
specified values in minimum distance and cur-
vature as well as reducing the number of meshes 
that display identical shapes. They claim that 
their proposed method reduces the face model 
interpolation time and is able to produce 3D face 
models without distorting the original model’s 
shape, size and figuration.

(Fahn et al., 2002) performs mesh simplifi-
cation by using the quadratic error metric. Us-
ing a series of edge contractions guided by the 
quadratic error metric to produce a progressive 
mesh, high fidelity approximations were created. 
It is claimed that this method is simple, fast and 
memory efficient.

However, even meshes can be modified to 
further reduce the number of points represent-
ing a face. (Fang et al., 2004) simplified their 
triangle mesh using a triangle list. Basically, they 
record out their mesh vertices in a list and then 
arrange them in a certain order. To reduce the 
amount of triangles, 2 vertices are then collapsed, 

hence substituting one vertex with an existing 
one. This is done directly using the list since it 
has been rearranged in a certain order. The aim 
of their paper was to be able to transmit their  
mesh progressively.

FACE MESH MANIPULATION

Based on what was discussed earlier, most research 
creates meshes that are uniform in size throughout 
the whole face. Finer meshes would be needed to 
represent areas of the face that have many contours 
like the nose, eyes and mouth. Hence, to obtain 
good recognition rates, a face would need to be 
represented by a fine mesh.

However, not every area of the face needs to 
be represented by fine meshes since areas like 
the forehead can sufficiently be represented by 
coarser meshes. Hence, a non-uniform face mesh 
that can adapt the type of mesh with the face area 
is proposed. This adaptive non-uniform mesh 
would be able to produce good recognition rates 
with lower amount of vertices.

Commonly, 3D images are captured and stored 
in range image format. Therefore, the first step is 
to convert the original range image format into a 

Figure 1. Uniform face mesh
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mesh. This can be performed using the plane fit-
ting method. An adaptive non-uniform mesh can 
then be obtained by either building a non-uniform 
mesh directly or building a uniform mesh first 
and then manipulating the mesh using methods 
like edge collapse or Face Constriction Process.

Range Image

Range image is an image with height, width and 
depth values for each point or pixel. The height 
and width values would be similar to those in a 2D 
plane while the depth value would be the distance 
of the point from the 3D scanner. The depth value 
would be from the direction of capture. Since the 
depth value should be constant in any type of il-
lumination, they would be able to provide more 
consistent values for different environments com-
pared to a 2D image. Having the height, width and 
depth values also enables the image to be rotated 
around, hence able to handle different pose posi-
tion. However, to have an accurate representation 
of a face, many individual points packed closely 
together would be needed, therefore causing a 
range image file size to be large. This can cause 
storage and transmission problems.

Plane Equation

A method to reduce the amounts of points used 
to represent a 3D face image is to convert the 
range image originally captured to a mesh. This 
is because an area in a mesh formed by 3 points is 
able to represent a group of range image points. To 
convert from range image to mesh, each triangle 
in the mesh would be superimposed on top of 
a group of range image points. Then, to obtain 
the depth, or z coordinate, of each point on the 
triangle, the plane equation for the group of range 
image points is calculated using the equation (1) 
(Bourke P., 1989).

Ax + By + Cz + D = 0 (1)

where the normal to the plane is the vector (A,B,C).
Therefore, to estimate the depth value of each 

point on the mesh triangle, the 3 pairs of x and y 
coordinates are inserted into the equation to ob-
tain each z values. This results in a mesh that has 
different depth at different points, corresponding 
to the range image.

Edge Collapse and Vertex Split

To manipulate a face mesh to change the sizes of 
the triangles inside the mesh, a method commonly 
used is edge collapse. Basically, an edge will be 
removed, causing two vertices to combine into 
one vertex, hence reducing the amount of points 
used for the mesh. The opposite of an edge col-
lapse is the vertex split, which means splitting one 
vertex into two. These two methods will change 
the sizes of the triangles surrounding the collapse 
or split. An edge collapse creates lesser but larger 
triangles while a vertex split creates more but 
smaller triangles. Therefore, the collapse should 
be performed at parts of the face with less con-
tours while the split should be performed at parts 
of the face with many contours. Figure 2 shows 
an example of an edge collapse and vertex split.

Face Constriction Process (FCP)

In this method, instead of removing an edge or 
vertices, the whole triangle is removed instead. 
There are 2 different methods to rebuild the hole in 
the mesh. (Gieng et al., 1997) replaces the removed 
triangle with a vertex and the 3 adjacent triangles 
surrounding the removed triangle are converted 
to edges. As for (Hamann, 1994) method, the 
investigated triangle as well as the surrounding 
triangles were removed and then the hole will be 
retriangulated. The method changes the topology 
of the mesh more drastically. Figure 3 shows an 
example of FCP by (Gieng et al. 1997).

Although the mesh manipulation methods are 
able to split the mesh, however each manipulation 
method would require extra computation. For the 
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edge collapse and vertex split method, which 
vertex to split and which edge to collapse have 
to be determined using a set of rules. For the 
splitting triangle method, which point to split at 
as well as which edge the point will be placed 
would also need to be determined. As for the FCP 
method, after removing the triangles, the point to 
join back all the points to cover the hole left would 
need to be computed. Hence, it is proposed that 
the adaptive non-uniform mesh is built directly 
instead of having a uniform mesh and then ma-
nipulating it using the methods discussed.

FACE RECOGNITION METHOD

For the recognition section, it is proposed that 
PCA (Turk & Pentland, 1991) and LDA (Bel-
humeur et al., 1997) are performed and then to 
determine the identity of the unknown probe face 
when compared with the faces in the database, 
Nearest Neighbour Euclidean Distance would be 
used. The reason for using both PCA and LDA is 
because although PCA is good for dimensionality 
reduction, it lacks discrimination ability (Mandal 
et al., 2007). Therefore, LDA is performed after 
PCA to optimize classification.

Figure 2. Example of edge collapse and vertex split

Figure 3. Example of FCP
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Principal Component Analysis (PCA)

This type of analysis is a statistical algorithm 
that is used to approximate the original data 
with lower dimensional feature vectors (Turk & 
Pentland, 1991). To use PCA for face recogni-
tion, the first step is to convert each range image 
in the database into 1D vector by concatenating 
the rows or columns into a long vector. Then, the 
mean is calculated using equation (3) by summing 
the entire database 1D vector together and then 
dividing by the amount of faces in the database. 
Each face is then centered by subtracting the mean 
image from each face image using equation (2) 
(Turk & Pentland, 1991).

x x mi i= −  (2)

where

m
p

xi

i

p

=
=
∑1
1

 (3)

Next, the data matrix is created by combining 
the centered database image side-by-side to create 
a data matrix. The covariance matrix is then be 
calculated by multiplying the data matrix with its 
transpose, as in equation (4) (Turk & Pentland, 
1991).

Ω = XXT  (4)

This is followed by the calculation of the 
eigenvalues and eigenvectors for the covariance 
matrix using equation (5) (Turk & Pentland, 1991).

ΩV V= λ  (5)

where V is the eigenvectors set and λ is the cor-
responding eigenvalues

An eigenspace is created by the sorted ei-
genvectors matrix. Finally, the centered training 
images are projected into the eigenspace created. 

The projection is the dot product of the centered 
training image with each of the ordered eigenvec-
tors calculated.

Linear Discriminant Analysis (LDA)

For LDA, the first step is to calculate the within 
class scatter matrix which shows the amount of 
scatter between training images in the same class. 
The scatter matrix is calculated using equation (6) 
where Si is the scatter matrix and mi is the mean 
of the training images (Belhumeur et al., 1997).

S x m x mi i i
T

x Xi

= − −
∈
∑ ( )( )  (6)

The within class scatter matrix, which is the 
sum of all the scatter matrices, is calculated using 
equation (7) where Sw is the within class scatter 
matrix and C is the number of classes (Belhumeur 
et al., 1997).

S Sw i
i

C

=
=
∑
1

 (7)

Next, the between class scatter matrix is calcu-
lated using equation (8) where SB is the between 
class scatter matrix, ni is the number of images in 
the ith class and m is the total mean of all training 
images (Belhumeur et al., 1997).

S n m m m mB i i i
T

i

C

= − −
=
∑ ( )( )

1

 (8)

The generalized eigenvectors (V) and eigen-
values (λ) of the within class and between class 
matrices are calculate using equation (9) (Bel-
humeur et al., 1997).

S V S VB W= λ  (9)
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Sorting the non-zero eigenvectors from high to 
low according to the corresponding eigenvalues, 
the Fisher basis vector is formed. Calculating the 
dot product of the training images with each of 
the Fisher basis vectors, the training images will 
be projected onto the Fisher basis vectors.

To identify the test image, it is projected onto 
the Fisher basis vector and the Euclidean distances 
between the test and training images is calculated. 
The class that the test image belongs to is indicated 
by the shortest Euclidean distance.

PROPOSED ADAPTIVE NON-
UNIFORM FACE MESH 
CONSTRUCTION METHOD

In this chapter, the aim is to build a face mesh from 
range image so that it contains minimal amount 
of vertices yet is still able to provide reasonable 
recognition rate. It is proposed that an adaptive 
non-uniform face mesh would be a feasible op-
tion since different parts of the face would require 
different sizes of mesh. This is because part of 
the face with more contour changes like the eyes, 
nose and mouth area would require finer meshes 
compared to the forehead area.

Although the mesh manipulation methods 
discussed earlier shows potential in changing a 
uniform mesh to non-uniform, extra computation 
would be needed to determine the factors like 
the splitting and collapsing points. Therefore, 
it is decided that instead of building a uniform 
face mesh first and then refining it through those 
mesh manipulation methods, it was decided that 
the adaptive non-uniform mesh would be directly 
built from the range image, using only the plane 
fitting method.

For the proposed method, first, a coarse mesh 
is placed over the face range image and then plane 
fitting is performed to obtain the depth of each of 
the triangles in the mesh. However, before that 
triangle is accepted as part of the non-uniform 
face mesh built, the distance of all the range im-

age points within that triangle will be calculated 
using equation (10).

Point Distance =
A x(i) B y(i) C z(i) D

A +B +C2 2 2

× + × + × +

=
∑
i

n

1

 (10)

where n is the total number of image points within 
the triangle

If the average distance is above a certain thresh-
old set, then it means that the estimated plane is 
unable to accurately represent that group of range 
image points. Therefore, that triangle will be re-
moved from the mesh and the range image points 
will remain. However, if the average distance is 
below or equal to the threshold, then the triangle 
will be accepted as part of the non-uniform face 
mesh built and that group of range image points 
will be removed from the range image. Once the 
whole image is tested with the coarse mesh, a 
finer mesh would be introduced and whole process 
will be repeated again with the remaining range 
image points.

Using this method, the non-uniform mesh 
is able to be adapted to the range image to ac-
curately represent the face. Instead of using fine 
and coarse meshes at predetermined face areas, 
this method enables the mesh to decide whether 
a certain area of the face requires coarse or finer 
meshes. Hence, no vertices would be wasted on 
areas that do not require a finer mesh.

However, due to the depth value of each triangle 
in the mesh is calculated separately, therefore 
the mesh is still disjointed. To smoothen out the 
mesh, all the z-coordinates surrounding a pixel 
location are recorded and the z-coordinate of the 
investigated location will be the median of all the 
surrounding values. To eliminate outliers in the 
face mesh, all the z-coordinates must be more than 
Q1-(1.5xIQR) and less than Q3+(1.5xIQR) where 
Q1, Q3 and IQR are the 1st quartile, 3rd quartile 
and inter-quartile range respectively. The final 
adaptive face mesh obtained is shown in Figure 4.
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It can be observed from Figure 4 that the 
finer meshes are concentrated at the eyes, nose 
and mouth areas while the forehead and cheek 
areas uses coarser meshes.

Next, to prove that the proposed adaptive 
non-uniform face mesh is able to produce good 
recognition rates, the proposed mesh recognition 
rates are compared to other uniform face meshes. 
In this chapter, face recognition was performed 
using Principal Component Analysis (PCA) 
(Turk & Pentland, 1991) followed by Linear 
Discriminant Analysis (LDA) (Belhumeur et al., 
1997). This is because although PCA is good for 
dimensionality reduction, it lacks discrimination 
ability. Therefore, LDA is performed after PCA 
to optimize classification (Mandal et al., 2007).

To obtain the training and probe data to perform 
PCA and LDA, it was decided that the z-axis depth 
data be used. The face area needed for this is 100 
pixels above the nose tip, 50 pixels below the nose 
tip and 50 pixels to the left and right of the nose 
tip. A set area was used to produce a consistent 
training and probe set.

Since the mesh does not have points at every 
location of the image, the training and probe set 
points were found by first determining which 
triangle on the mesh does the wanted point falls 

into. Once the triangle is found, the triangle plane 
equation is calculated using the (11), (12), (13) 
and (14).

A = y1(z2 - z3) + y2(z3 - z1) + y3(z1 - z2)  (11)

B = z1(x2 - x3) + z2(x3 - x1) + z3(x1 - x2)  (12)

C = x1(y2 - y3) + x2(y3 - y1) + x3 (y1 - y2)  (13)

D = -(x1(y2z3 - y3z2) + x2(y3z1 - y1z3) + x3(y1z2 - 
y2z1))           (14)

where (x1,y1), (x2,y2) and (x3,y3) are the 3 corner 
points of the triangle.

Once the above information is calculated, the 
plane equation of the triangle is known. Then, by 
inserting the x and y coordinate of the investigated 
point into the plane equation, the z coordinate of 
the mesh at that location is obtained.

After that, PCA followed by LDA can be 
performed on both training and probe sets. The 
training image that has the shortest Euclidean 
distance to the probe image in LDA eigenspace 
will be determined as the identity of the unknown 
probe person.

Figure 4. Adaptive face mesh
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RESULTS & DISCUSSION

For this chapter, the UND 3D face database was 
used (Flynn et al., 2003; Chang et al., 2003). Each 
subject in this database comprises of 2 files, which 
are a .ppm image file and a .abs data file. The 
data file contains the number of rows informa-
tion, number of columns information and values 
for 4 matrices, which are the flag, x-coordinates, 
y-coordinates and z-coordinates. The flag matrix 
uses a 1 to indicate that the position has a valid 
value and 0 to indicate otherwise. The training set 
created for this experiment consists of 50 different 
people and there are 3 meshes for each person. 
This means that there were a total of 150 training 
meshes used. As for the probe set, it consists of 
30 different people.

Face recognition was performed using PCA 
followed by LDA on the 4 different types of face 
meshes. The 4 meshes are a fully coarse mesh, a 
fully fine mesh, a fixed non-uniform mesh and 
the proposed adaptive non-uniform mesh. A fixed 
non-uniform mesh contains fine mesh between 
the eye level to the mouth level while the rest of 
the face is represented by a coarse mesh. Table 1 
shows the recognition rate for the four different 
meshes.

From Table 1, it is observed that a fully fine 
mesh provided the highest recognition rate, while 
a fully coarse mesh gave the lowest recognition 
rate. This is expected since a fine mesh is able to 
represent the contours of a face more accurately 
compared to a coarse mesh. Both non-uniform 
meshes gave slightly lower recognition rate com-
pared to a fully fine mesh. Hence, this shows that 

these non-uniform meshes could be a feasible 
alternative to represent the faces since they have 
the advantage of being constructed by fewer 
vertices as shown in Table 2.

From Table 2, it is observed that a fully coarse 
mesh contains the least amount of vertices while 
a fully fine mesh contains the most amount of 
vertices. However, with such a large difference 
in their recognition rate, therefore it would not be 
practical to use a fully coarse mesh to represent 
a face for recognition purposes even though they 
contain fewer vertices.

However, for non-uniform meshes, their rec-
ognition rate is only slightly lower than a fully 
fine mesh recognition rate yet only contain about 
less than half the amount of vertices used for a 
fully fine mesh. Hence, a non-uniform mesh could 
be considered as a file size saving alternative to 
represent a face.

Comparing both the non-uniform meshes, it 
can be observed that they have similar recogni-
tion rates but the proposed adaptive non-uniform 
mesh contains an average of about 1000 vertices 
less than the fixed non-uniform mesh. This is 
because the adaptive mesh is built according to 
the contours of each individual face, using finer 
meshes only at parts of the face that needs them. 
Comparatively, the fixed mesh just assumes that 
the area between the eyes and mouth would need 
finer meshes, thereby some places within this 
area that does not need finer meshes would also 
be included.

Table 1. Recognition rate for different meshes 

Mesh Types Recognition Rate

Fully Coarse Mesh 73%

Fully Fine Mesh 87%

Fixed Non-Uniform Mesh 83%

Adaptive Non-Uniform Mesh 83%

Table 2. Average number of vertices 

Mesh Types Average Number of Vertices

Fully Coarse Mesh 922

Fully Fine Mesh 8814

Fixed Non-Uniform Mesh 3832

Adaptive Non-Uniform Mesh 2711
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FUTURE RESEARCH DIRECTIONS

Currently, a basic recognition method is used 
to compare the recognition ability of various 
different face meshes. Hence, the next step is to 
improve the recognition rate that can be obtained 
by an adaptive non-uniform face mesh. This will 
further encourage the use of this type of meshes.

CONCLUSION

In this chapter, the objective was to build a face 
mesh that is able to produce good recognition 
rates while having minimal number of vertices. 
It was proposed that an adaptive non-uniform 
face mesh be built to achieve this target, instead 
of obtaining an initial face mesh and then trying 
to simplify it using mesh manipulation methods. 
The mesh would be able to adapt different mesh 
size to different parts of the face. The proposed 
adaptive face mesh was built from the range im-
age using plane fitting. The depth of each triangle 
in the mesh was estimated using this method and 
then the average distance of all the range values 
within the triangle was calculated. If the average 
distance was within a certain threshold, then the 
triangle depth is accepted, if not, a smaller triangle 
will be used in that area to create the mesh. The 
face recognition rates obtained in simulations 
show that the proposed adaptive non-uniform face 
mesh was able to produce good recognition rates 
while using less than half the amount of vertices 
needed to build a fully fine face mesh. Hence, this 
type of face mesh should be further researched 
since they have the advantage of containing less 
vertices which causes the file size to be smaller, 
therefore having the ability to reduce storage space 
and transmission time.
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KEY TERMS AND DEFINITIONS

3D Face Recognition: Face recognition using 
3D images.

Adaptive Mesh: Mesh that adapts to the sur-
face of each different face.

Linear Discriminant Analysis (LDA): Fea-
ture extractor.

Nearest Neighbour: Classifier.
Plane Fitting: Method used to obtain mesh 

from range image.
Principal Component Analysis (PCA): 

Feature extractor.
Range Image: Image with depth values.
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ABSTRACT

Most of the works on Facial Expression Recognition (FER) have worked on 2D images or videos. However, 
researchers are now increasingly utilizing 3D information for FER. As a contribution, this chapter 
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might not always be practical. This chapter also presents a novel technique of feature extraction which 
does not require any neutral face of the test subject. A proposition has been verified experimentally that 
motion of a set of landmark points on the face, in exhibiting a particular facial expression, is similar 
in different persons. The presented approach shows promising results using Support Vector Machine 
(SVM) as the classifier.
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INTRODUCTION

Computers have now become a part of our day to 
day lives as they are being widely used for run-
ning industries, account keeping, entertainment, 
health, shopping, communication and so on. It is 
believed that in the near future the environment 
around us will embed intelligent devices which 
will assist us in our day to day activities. E.g. 
when you come back tired from the office work, 
your music player will play your favorite musical 
program and if you are drowsy and want to take 
a nap, lights will dim automatically.

To make the above scenario a reality, comput-
ing devices need to become socially intelligent as 
well, apart from their computational intelligence 
(Vinciarelli et. al., 2009). Computers need to un-
derstand day to day needs of humans, which may 
be physical, mental, emotional and so on. This is 
motivating the researchers to delve into the field 
of Human Computer Interaction (HCI).

An important avenue in HCI is human emotion 
recognition which aims at automatically under-
standing human emotions and present desired 
responses. Emotion is much of an internal state 
and sometimes even human beings find it difficult 
to understand internal feelings of a person. This 
makes human emotion recognition even much 
more difficult for computers. From the perspec-
tive of computers, there are different modalities 
reflecting emotions of a person such as facial 
expression, voice, spoken words, hand and body 
gestures etc. Out of these modalities, it has been 
found that facial expressions of a speaker account 
for about 55 percent of the effect conveyed in 
human communication, while 38 percent of the 
rest is conveyed by voice intonation and 7 percent 
by spoken words (Pantic and Rothkrantz, 2000). 
Considering the importance of facial expres-
sions in conveying emotions, automatic Facial 
Expression Recognition (FER) is developing as 
an important area of research.

Applications of Facial 
Expression Recognition

FER enables automation of services that require 
a good appreciation of the emotional state of the 
user. For example, if we understand the emotion 
of customers, a system can recommend products 
that they may be interested in. Similarly, there 
are many other areas where FER finds useful 
applications.

Facial expressions have been widely used in 
clinical research to study schizophrenia, which is 
a neuropsychiatric disorder in which patients have 
difficulty in recognizing and expressing emotions. 
Techniques of facial expression recognition have 
been used to analyze such abnormalities. Research 
has also been performed to recognize the facial 
expressions of epileptic patients while they un-
dergo seizures. This helps in understanding the 
cerebral organization when seizures take place.

In academia, FER is used for understanding 
receptivity of students towards an automated tutor-
ing system. Facial expressions of the students can 
reflect whether he finds the lecture interesting or 
not. Based on this feedback, the tutoring system 
adjusts the speed of instruction; slowing down if 
the student is bored and speeding up if student is 
grasping well.

In the field of advertising, FER is used for 
understanding the emotional responses of con-
sumers towards television advertisements or 
towards different consumer products while they 
are shopping on the internet. Recent application 
of FER has come up in the form of development 
of technologies such as targeted advertisement 
where the advertisement on the billboards adapts 
to the facial expressions of the viewer.

FER techniques are helpful in making robots 
more social. Recently robots are being designed 
in such that they are able to interact socially with 
each other and also with humans. The capability of 
FER is very helpful in facilitating robots to com-
municate with humans because for humans, the 
face to face communication is a real-time process 
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operating in times of the order of 40 milliseconds 
which is very fast for robots (Bartlett et al., 2003)

As far as surveillance is concerned, it has been 
performed mainly using face recognition rather 
than facial ‘expression’ recognition. Generally 
face recognition algorithms are effective only as 
long as the subject doesn’t exhibit any expression. 
This is not easy to achieve especially in camera 
surveillance systems where people are unaware of 
being tracked. FER is very useful in these situa-
tions. FER systems have been developed for such 
real-time situations. Another security application 
is to hide the identity of an internet user during 
a chat without hiding his expressions. In such a 
case, the person’s expressions are communicated 
using an animated avatar.

Objectives of the Chapter

Computers can recognize facial expressions from 
different kinds of data most common of which 
are videos and static images due to the ease of 
their being easy to capture. With the development 
of 3D imaging technologies, it is possible to go 
beyond 2D data and get 3D models of faces just 
as we have images in 2D. With the availability of 
3D data, more works are coming up to recognize 
facial expressions using 3D data. The present 
chapter addresses the area of 3D FER with the 
following objectives:

• To introduce the area of Facial Expression 
Recognition (FER) with a review of the 
prominent works. Special attention is 
given to works using 3D model based 
approaches.

• To provide a discussion on 3D model based 
approaches for FER, challenges and possi-
bility of future research in this area.

• To present a novel feature extraction meth-
odology for FER using 3D facial models.

The main contribution of the chapter is in the 
form of a discussion on FER with special emphasis 

on methods using 3D face models. Challenges and 
future research directions in this field have been 
discussed. To the best of our knowledge other 
works have discussed FER only in more general 
terms, not in the context of using 3D imaging 
technologies. To complement the discussion, a 
novel approach for FER using 3D face models is 
presented (Srivastava et al., 2010) which is subject 
independent; means it can recognize expressions of 
people which the computer has not seen before. It 
is proposed and validated experimentally that the 
motion of a set of landmark points on the face in 
exhibiting a particular facial expression, is similar 
in different persons. This motion is used to model 
the deformation of the face when a certain expres-
sion is exhibited. These deformation models are 
used for the task of FER.

BACKGROUND

Representing Emotions

The actual aim of facial expression recogni-
tion is to recognize the underlying emotions. In 
order to facilitate gauging emotions from the 
facial movements, psychologists have used dif-
ferent ways to represent human emotions. The 
representations can be categorized into message 
judgment and sign judgment approaches (Cohn, 
2006). Using message judgment representation, 
there is a particular facial expression attributed 
to an emotion. Thus, the way to recognize emo-
tion is to just recognize the facial expression. On 
the other hand sign judgment approach does not 
directly recognize emotion but it describes certain 
external facial movements. It tries to code all pos-
sible perceptible changes occurring on a face due 
to expressions. This approach stops at this stage 
without going into the mental state of the person. 
Further analysis is needed to recognize emotions.

One of the popular representations of emo-
tions under the message judgment approach is in 
terms of six basic universal emotions as proposed 
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by Ekman & Friesen (1971). The six basic emo-
tions are anger, disgust, fear, happiness, sadness 
and surprise. Most of the existing works on FER 
have recognized facial expressions corresponding 
to these six basic emotions. This description of 
emotions can be easily labeled and has an intuitive 
understanding for humans. But a disadvantage of 
this representation is that many facial expressions 
that we encounter in our day to day life cannot be 
categorized into these six expressions.

Another way to represent emotions under mes-
sage judgment approach is using the dimensional 
approach where emotions are characterized by 
two dimensions viz. evaluation and activation. 
Evaluation determines whether the emotion is 
positive or negative while activation determines 
the intensity of the emotion. A wide range of 
emotions can be represented using this system. 
However, in this system, expressions for fear 
and anger cannot be distinguished. Also, trained 
labelers are required for labeling emotions using 
the dimensional approach.

Using sign judgment approach, emotions 
can be defined in terms of facial actions such as 
raising eyebrows, pulling lips apart and so on. 
A facial expression can be represented as a set 
of facial actions as defined in the Facial Action 
Coding System (FACS) introduced by Ekman and 
Friesen (1978). Facial actions are called Action 
Units (AUs). An advantage of Action Units is 
that they can be combined to define a wide range 
of facial expressions corresponding to emotions 
beyond the six basic emotions. However due to 
interpersonal variations in display of emotions, 
it is hard to associate a specific set of AUs with a 
particular emotion consequently most of the work 
just recognize AUs without recognizing emotions.

A Typical FER Algorithm

Given the input data, an FER algorithm can be 
broken down into two main stages, viz. feature 
extraction and classification, as shown in Figure 
1. The techniques for feature extraction and clas-
sification depend on the type of the input data.

Types of Input Data

FER algorithms are meant for a wide range of 
applications. Depending on the application, there 
can be different types of data to be analyzed for 
FER. The different types on input data can be:

1.  Single image: Only one image is available 
which shows the facial expression to be 
recognized. It is usually accompanied by 
an expressionless image for each person in 
the database.

2.  Video: An image sequence depicting tem-
poral evolution of the facial expression.

3.  Multiple images: Multiple images means 
that the images are taken of the same person 
over a significant period of time say with a 
gap of a few months between two images.

4.  Group images or videos: The images or 
videos contain groups of persons rather than 
one person only.

5.  3D static models: This type of data contains 
the 3D models of faces which are used for 
FER. Only a single face model is used which 
bears a facial expression. In many cases a 
3D face model of the neutral expression is 
also required.

6.  3D dynamic models: Just as videos are 
sequences of images, recently sequences of 

Figure 1. A typical framework for facial expression recognition algorithms
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3D face models are also being used as data 
for FER.

7.  Both images and 3D models: Information 
from both images and 3D models can be 
combined for getting relevant features for 
FER.

The different types of data listed above can be 
captured either in a controlled environment or in 
a real world environment. A controlled environ-
ment means that the face is facing the camera, 
has minimal rigid motion, sufficient lighting is 
there and the face is unoccluded. Apart from these 
environmental conditions, the facial expressions 
are usually posed i.e. they are acted out. A real 
world environment may have variations in facial 
pose and illumination. The face may get occluded 
sometimes and the facial expressions may be 
spontaneously exhibited.

Different types of data listed above can be 
classified into 2D or 3D data based on the di-
mensionality of the space in which face is visible. 
2D data refers to the images or videos captured 
by a camera. Such data does not have any depth 
information. When depth information is also 
extracted from the scene, the resulting data is in 
3D. Another major classification of the facial data 
can be made on the basis of inclusion of temporal 
information in them. A static data refers to just 
one image (or a face model in 3D) depicting a 
particular facial expression. While a dynamic data 
contains a sequence of such images (or 3D mod-
els) each depicting the progress of the expression 
with time. The types of data can be 2D static, 2D 
dynamic, 3D static and 3D dynamic based on the 
above two bases of classification. It is important 
to choose a suitable type of data for evaluating 
FER algorithms so that real life situations can be 
dealt with.

As far as choosing between static and dynamic 
data is concerned, recently, it has been proposed 
that temporal dynamics are very important to 
distinguish between posed and natural facial 
expressions. Experiments were also conducted 

to show the importance of motion in identifying 
subtle facial expressions (Ambadar et al., 2005). 
Through the experiments it was established that the 
inherent dynamic property in motion is beneficial 
for reducing the ambiguity in recognizing facial 
expressions. Temporal dynamics can be captured 
using dynamic data.

In choosing between 3D and 2D, researchers 
had to use 2D data only due to lack of technology 
for capturing 3D facial data. However, 2D image 
(or video) based approaches encountered various 
limitations. The efficacy of the approach was 
considerably affected when pose or illumination 
changes were involved. Also, in exhibiting an ex-
pression, the facial muscles move and the change 
is reflected in the facial skin. The skin motion is 
in 3D which cannot be captured accurately with 
2D images of the face. With the improvement of 
3D imaging technologies, researchers tried to ad-
dress these shortcomings of 2D FER by utilizing 
the full 3D information about the face.

Feature Extraction

Feature extraction refers to the processing of 
raw data to extract characteristics distinguishing 
different classes of expressions. Usually the raw 
data is in the form of an image or a video (image 
sequence) from which face is detected, using 
standard face detection techniques. Details on 
face detection techniques can be found in Yang et 
al. (2002). Once the faces are detected, they are 
normalized to remove variations in them mainly 
due to size and illumination.

Feature extraction techniques can be based 
on geometrical displacement of facial features 
(geometry based approach) or the change in facial 
appearance (appearance based approach). In the 
geometry based approach, prominent landmark 
points such as eye and mouth corners are identified 
on the face. Motion of these points is modeled for 
each facial expression and these models provide 
features for further classification. On the other 
hand appearance based approaches apply image 
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filters such as the Gabor filter or Haar like filters 
on the extracted facial region. Filter coefficients 
serve as features. Appearance based approaches 
extract information from the whole face and the 
dimensionality of feature vectors is usually much 
higher as compared to that in geometry based ap-
proaches. However, on of the major limitation of 
geometry based is the need for manual intervention 
to locate the facial landmark points.

It is still a debatable issue whether appearance 
based approaches are better or geometry based. 
However, researchers are also looking into hybrid 
techniques utilizing both geometry and appearance 
for feature extraction.

Classification

Classification is the stage where the test facial 
expression is classified into one of the output 
expression classes based on the extracted features. 
Output categories are mostly either the six basic 
expressions or a certain number of Action Units. 
However, it is being argued that apart from the 
basic emotions, there are also many other emotions 
which are experienced in our daily experience. 
These emotions include fatigue, pain, thinking, 
embarrassment etc. and can be referred to as 
subtle emotions.

Among the various classification techniques, 
one of the most popular techniques is Support 
Vector Machines (SVMs). Given an image, SVMs 
can predict the facial expression in it and in the 
case of image sequence, SVMs can be applied on 
a frame by frame basis i.e. on each image frame 
a prediction result can be obtained and the final 
result can be a combination of results for each 
frame. However, in the case of image sequences, 
extra temporal information is present. Emotions 
in adjacent frames are related to each other and 
a frame by frame prediction does not utilize this 
relationship. In the case of image sequences, 
the spatio-temporal classification using Hidden 
Markov Models (HMMs) is used more often as 

compared to SVM since HMMs utilize the rela-
tionship between emotions in adjacent frames.

Classification result can either be definitive or 
probabilistic. E.g. In a test video, a probabilistic 
prediction will tell the probability of the video 
containing each of the output emotions while 
definitive prediction assigns one of the output 
emotions to the video.

Prominent Works on FER

Attempts to automatically analyze facial expres-
sions date back to 1978 with the work of Suwa 
et al. (1978). Most of the researchers have used 
either geometry based or appearance based ap-
proaches which have been introduced in the 
previous section on feature extraction. Among the 
geometry based approaches, Yacoob and Davis 
(1996) used optical flow in the regions of mouth, 
eyebrows and eyes for modeling non-rigid facial 
motions in image sequences. A planar face model 
was used for modeling rigid facial movements. 
Extracted motion parameters were used in a rule 
based framework to predict 6 basic facial expres-
sions and the neutral face. Pantic and Rothkrantz 
(2004) extracted facial landmark points on static 
images depicting both frontal (person facing the 
camera) and profile views (side-views) of faces. 
Displacement of these points from neutral face 
to expressive face was used to recognize 22 AUs 
from frontal images and 24 AUs from profile 
images. When information from both views was 
combined, 32 different AUs were recognized. 
Yeasin et al. (2006) proposed a spatio-temporal 
approach for recognizing six basic expressions 
from video and also for computing the levels of 
interest i.e. the intensity of the expression. Optical 
flow vectors projected onto a lower dimension us-
ing PCA were used as basic features. Experiments 
were conducted on videos depicting both posed 
and spontaneous expressions. Kotsia and Pitas 
(2007) used a Candide (Ahlberg, J., 2001) grid to 
track facial movements in a video till the frame 
corresponding to the highest expression intensity. 
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The displacements of nodes of the grid from the 
first to the maximum expression intensity frame 
were used to recognize six basic expressions or 
a set of AUs.

Different appearance based approaches were 
compared by Donato et al. (1999) and using 
both Gabor filters and Independent Component 
Analysis, 96% accuracy was achieved in recog-
nizing 12 AUs. One of the major works using 
appearance based approach was by Bartlett et al. 
(2005) who applied Gabor filters on the frames 
of input video and used the output magnitudes for 
recognizing 17 AUs. Different recognition engines 
such as Adaboost, SVMs and Linear Discriminant 
Analysis (LDA) were compared. Feature selec-
tion was explored using Adaboost so as to reduce 
the dimensionality of the feature vectors before 
feeding to SVM or LDA classifiers. Best results 
were obtained using Adaboost followed by SVM. 
Apart from Gabor filters, Haar filters were used by 
Whitehill and Omlin (2006) in conjunction with 
Adaboost for AU recognition and showed better 
performance as compared to Gabor filter based 
approach. Valstar et al. (2004) used the concept 
of multilevel motion history images (MMHI). 
MMHI representation is an extension of temporal 
templates which are 2D images showing motion 
history i.e. where and when motion occurred in 
an image sequence. 21 AUs were recognized 
comparing two classification schemes: (i) a two-
stage classifier combining a kNN-based and a 
rule-based classifier, and (ii) a SNoW classifier.

Considering individual limitations of appear-
ance based and geometry based approaches, re-
searchers have also combined the two approaches 
for FER. Tian et al. (2001) recognized 16 AUs 
and the neutral face by analyzing both permanent 
facial features (related to eyes, mouth, nose etc.) 
and transient facial features such as wrinkles, 
furrows etc in videos. They proposed multistate 
face and facial component models for this task. 
Ashraf et al. (2007) used Active Appearance 
Models (AAMs) to automatically recognize pain 
from video. AAMs were used to track the facial 

motions defined by both shape and appearance 
parameters. Different representations from AAM 
were used and classification was performed using 
SVMs. Wang et al. (2007) used 2D and 3D geo-
metric features and appearance features extracted 
from 2D images to quantify the difference in the 
way schizophrenic patients and healthy persons 
exhibit facial expressions. Zhou et al. (2010) 
have recognized facial events in video using an 
unsupervised method, Aligned Cluster Analysis 
(ACA), and a multi-subject correspondence algo-
rithm. Faces have been tracked across the video 
using AAMs. Geometric features are in the form 
of certain facial distances while SIFT descriptors 
computed at points around the outer outline of the 
mouth and on the eyebrows serve as appearance 
based features.

State of the Art in 3D FER

For evaluating 3D FER algorithms, there is hardly 
any publicly available facial expression database. 
To the best of our knowledge, only publicly 
available databases are BU-3DFE database (Yin 
et al., 2006) and Bosphorus database (Savran et 
al., 2008) containing static 3D face models and 
BU-4DFE database (Yin et al., 2008) containing 
dynamic 3D face models.

The approaches for 3D FER can be classified 
based on whether they utilize dynamics or not. As 
far as the dynamic approach is concerned, one of 
the earliest attempts was by Gokturk et al. (2002). 
Major facial actions of opening and closing the 
mouth and eyebrow raising are identified apart 
from neutral and smile expressions. The face was 
modeled using 19 landmark points on the face. It 
was assumed that the deformation of the face from 
neutral can be expressed as a linear combination 
of a small number of known basis vectors. Basis 
vectors were computed using Singular Value 
Decomposition (SVD) of the 3D shape trajectory 
matrix. Coefficients of the linear combination 
were used as features for classification.
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Sun and Yin (2008) proposed a spatio-temporal 
approach using 3D dynamic geometric facial 
model sequences, to tackle FER problems. The 
approach integrated a 3D facial surface descriptor 
and Hidden Markov Models (HMM) to recognize 
facial expressions. Extensive experiments were 
performed to explore three types of HMMs viz. 
temporal 1D-HMM, pseudo 2D-HMM (a combi-
nation of a spatial HMM and a temporal HMM), 
and real 2D-HMM. Other prominent works using 
3D dynamics are those of Dornaika and Davoine 
(2008) and Chang et al. (2005).

Among the earliest works on static 3D face 
data, Yabui et al. (2003) used range images for the 
task of FER. A variant of the eigenspace method 
called the ‘Eigenspace Method based on Class 
features (EMC)’ was used to get an eigenspace 
for classification. Srivastava and Roy (2009) used 
3D residues for FER. Residues are the displace-
ment of facial feature points from neutral when 
an expression is exhibited. Residues have been 
only used in 2D but its application in 3D proved 
effective than using other approaches as shown in 
their work. Wang et al. (2006), Soyel and Demirel 
(2007) and Tang and Huang (2008) have also 
performed FER using static 3D data.

Research in 3D FER is still in early stages and 
there is a lot of possibility of research in 3D FER 
as discussed later in the chapter.

3D FER: ISSUES OF CONCERN

Acquiring 3D Data

Considering the wide applicability of FER, it is 
important that 3D face models are easily acquired 
in such real life applications. Usually 3D face 
models are either captured using 3D scanners or 
reconstructed from video. 3D scanners yield a 
dense face mesh with the number of vertices large 
enough to sample the entire surface information 
of the face. Having a dense sampling is an ad-
vantage with the 3D scanners. With advances in 

3D imaging, now it is possible to get 3D videos 
in real time, at a capture rate as high as 500fps 
(Dimensional Imaging). Such data is often re-
ferred to as 4D data due to an added temporal 
dimension to 3D objects. However, even when 
fast scanners are available, they are not very suit-
able for day to day applications considering their 
cost. A complete 3D scanning system’s cost can 
range from USD 40K-150K or even $400K (3D 
Scan Company). Using lasers for scanning is also 
harmful for the eyes.

3D face models can also be reconstructed 
from videos of the person whose expressions are 
to be recognized if the person moves his face to 
show different views of his face. This technol-
ogy is known as face reconstruction. The basic 
methodology of face reconstruction uses stereo 
algorithms which use the information about the 
relative orientation of camera and the face. Us-
ing this information for different views, the 3D 
location of some prominent points on the face 
is obtained with reference to a fixed origin. 3D 
location of a large number of points on the face 
approximates a 3D model of the whole face. Once 
the face is reconstructed, it can be tracked using 
a generic 3D face model.

One of the major challenges in face reconstruc-
tion is to reduce the computational complexity 
involved. Computational complexity prevents a 
real time application involving face reconstruc-
tion. Another challenge is that reconstruction is 
accurate only for small non-rigid motions. But 
when facial expressions are involved, reconstruc-
tion can be erroneous. Facial hair also deteriorates 
quality of reconstruction. There are a few other 
disadvantages of this approach such as frame selec-
tion, sequence segmentation, structure fusion and 
bundle adjustment (See Kien, 2005 for details).

An alternative to getting the full 3D face model 
is to fit a generic 3D face model with a fewer ver-
tices to a face in a video. Fitting is usually done 
based on the locations of a few control points 
on the face. Once the face model is fitted in the 
first frame of the video, the face can be tracked 



582

Subject Independent Facial Expression Recognition from 3D Face Models using Deformation Modeling

with the help of this 3D model. The process of 
fitting the face model and 3D face tracking can 
be achieved in an automated manner in real-time 
(Zhu and Ji, 2004). This approach is very much 
suitable for real life applications.

Once the 3D face model is acquired, it can be 
represented either as a shaded 3D surface, 3D 
surface overlaid with a triangular mesh or 3D 
surface overlaid with texture (See Figure 2). 
However, for computational purposes, triangular 
mesh representation is used. A triangular mesh is 
a graph, G = (V, T) with V denoting the set of 
vertices, V p x y z= ={ ( , , )} and T denoting a set 
o f  t r i a n g l e s  T p p pi j k= {( , , )} ,  w h e r e 
p p p Vi j k, , ∈  (Stylianou and Lanitis, 2009).

Feature Extraction

A suitable feature extraction methodology needs 
to be developed for FER using 3D face models. 
In this step there are certain challenges faced by 
researchers. Some of the challenges are for FER in 
general and not just limited to 3D FER. Prominent 
challenges in feature extraction are:

• Automation: In many works there is a 
manual intervention needed to detect facial 
landmark points in 3D face reconstruction 

(Stylianou and Lanitis, 2009). This is not 
desirous for real life applications. 3D re-
construction can be combined with tech-
niques for automatic facial landmark de-
tection from 2D images. However, most of 
such techniques can only detect few facial 
landmarks and that too only in a frontal or 
near-frontal face.

• Dealing with subtle expressions: Apart 
from the six basic facial expressions, many 
times humans display mixed emotions 
which cannot be explicitly categorized 
into one of these six expressions. In order 
to characterize such expressions, an algo-
rithm which gives the probability of each 
expression will be more effective. Also, 
the expressions many times do not convey 
the emotions of a person. It is still a chal-
lenge to get the emotion of a person.

• Analysis of intensity of expressions: 
Expressions can be displayed with varying 
intensities. Most of the research deals only 
with the high intensities of expressions. 
But in practical applications, especially in 
the case of analyzing temporal evolution of 
facial expression, it is necessary to analyze 
lower intensities of facial expressions as 
well. In daily intercourses, humans usually 
display lower intensity expressions.

Figure 2. Ways to represent 3D face models. a) 3D surface + texture, b) 3D surface + triangular mesh, 
c) 3D surface (Stylianou and Lanitis, 2009)
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• Environmental changes: Real life situa-
tions involve a lot of change in the environ-
ment, especially in outdoor applications. 
This change can be of lightning conditions, 
background clutter, occlusion or confusing 
background patterns. Such changes can 
have serious affects on the feature extrac-
tion process.

Subject Independence

Apart from the above mentioned challenges, an-
other challenge is to obtain subject independency 
in a close to natural environment. Most of the 
FER approaches using 3D face models require 
a neutral 3D model of the face i.e. the facial 
model when the person exhibits no expression. 
However, having the neutral face of a person is 
only possible when the person is known and his 
neutral face has been previously captured. There 
are other difficulties as well when a neutral model 
is needed. E.g. Even if a person is monitored 
using a video camera; it is difficult to ascertain 
when the face is actually neutral. Requirement of 
a neutral 3D model limits the application of FER 
methods. The method proposed in the following 
section overcomes this limitation as it does not 
need any neutral 3D model of the test subject. 
Soyel and Demirel (2007) have also proposed a 
method no requiring neutral face model. They use 
5 normalized facial distances for FER. However, 
interpersonal variations may affect the accuracy of 
their method. E.g. using facial distances, a large 
horizontal distance between the two lip corners 
(mouth opening) may indicate lip stretching. But 
a person can have a wider mouth as compared to 
others and even in the neutral state the value of 
mouth opening may be large which may wrongly 
indicate lip stretching. These interpersonal differ-
ences will create more ambiguity in low intensity 
expressions where facial distances do not change 
much from the neutral. This limitation in their 
approach has also been analytically shown by 
Srivastava and Roy (2009).

A NOVEL APPROACH FOR 3D FER

3D Dataset Used

One of the most important factors for FER from 
3D face models is availability of a suitable data-
base. Acquisition of 3D models is more difficult 
as compared to acquiring images. Because of this 
difficulty there was lack of a widely recognized 
database for Facial Expression Recognition. Yin et 
al. (2006) at Binghamton University constructed 
a 3D facial expression database (BU-3DFE data-
base) for facial behavior research which has been 
used for evaluation of the presented algorithm.

The BU-3DFE database contains triangulated 
3D mesh models and 2D facial textures for 100 
subjects. Each subject has 3D models for 4 in-
tensities of 6 expressions and a neutral, making 
a total of 2500 3D models. Intensity of an expres-
sion refers to different stages of development 
of an expression. A low intensity level is closer 
to a neutral face and intensity increases as the 
expression progresses in time towards the peak. 
The spatial coordinates (x, y, z) and color (R, G, 
B) values are provided for all vertices in each 
facial model. Apart from this, the database also 
provides the spatial positions and color for 83 
corresponding facial points on each facial model. 
These 83 points correspond to prominent facial 
features such as corners and contours. Some of the 
sample images for 3D models in the database are 
given in Figure 3. Figure 4 shows the 83 points 
marked on the face.

This algorithm uses only the spatial locations 
of the 83 landmark points. This is beneficial in 
dealing with variations in image appearance due 
to changing illumination, occlusions etc. Feature 
extraction will be more robust to such distur-
bances because color information is not used. This 
works starts with the assumption that positions 
of these facial points are provided although while 
implementation these points need to be extracted 
automatically.
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An advantage of using only positions of land-
mark points for our analysis is that we need not 
know the spatial locations of all the vertices of the 
3D face model. This allows us to fit a generic 3D 
face model to the first frame of the video and then 
track the face. Advantages of getting the 3D data 
using this approach have already been discussed 
before as compared to other approaches.

The presented approach models the facial 
deformations when expressions are exhibited. 
Facial deformation is more prominent in some 

areas as compared to others. We can assume that 
deformation is indicated by the movement of a few 
prominent facial landmark points. To understand 
how an expression is modeled using motion of 
landmark points, consider figure 5a., where the 
right lip corner position moves from point p1 to 
p3 when ‘happiness’ expression is exhibited. We 
propose that direction of movement of this point 
will be similar in different persons when they 
exhibit ‘happiness’. Modeling deformation at this 
point is a way to model this similarity.

Let f np
i( )  represent the pth landmark point on 

the ith person at a temporal instant n. Here i = 1 
to 100 (corresponding to 100 persons in the  

Figure 3. Sample images of 3D models from the BU-3DFE database. 4 levels of intensities are displayed 
by the same person for each expression. Expressions displayed from left to right are Anger, Disgust (Top 
row), Fear, Happiness (Middle row) and Sadness, Surprise (Bottom row).

Figure 4. 83 landmark points used for analysis 
in the presented work

Figure 5. a. Movement of right lip corner while 
exhibiting happiness. We propose that this motion 
will be similar in different persons. b. Classifica-
tion scheme for the presented algorithm. Fi repre-
sents the relevant feature set for the ith expression 
while Di represents the decision value estimates of 
the query expression for the ith expression.
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database), p = 1 to 83 (corresponding to 83 facial 
landmark points); and n = 1 to Ns where Ns is the 
number of temporal samples found out by cubic 
spline interpolation. With these representations, 
pseudocode of the presented algorithm for feature 
extraction followed by classification is as follows:

Pseudocode of the 
Presented Algorithm

1.  Inputs:
 ◦ 3D models of the test face, with 

Cartesian (x, y, z) coordinates given 
at 83 landmark points corresponding 
to four levels of expression intensity.

 ◦ 3D models Xi
e  for N training exam-

ples, where i = 1,2,3…N and e refers 
to the expression. Each example has 
four gradations of the expression e.

2.  For each Xi
e , find 3D position at each facial 

point in following steps:
 ◦ Set origin of the coordinate system at 

the nose tip.
 ◦ Using Cubic spline interpolation find 

the Cartesian coordinates of the point 
at intensities between gradations j 
and j + 1, j ∈ [ , ]1 3 . Let these coordi-
nates be f np

i( )  with n = 1 to Ns denot-
ing the samples.

 ◦ Transform the coordinates of f np
i( )  

from Cartesian (x, y, z) to spherical 
coordinate system( , , )r θ φ .

 ◦ Using equation 1, find 


θp
i
0
0  and 



φp
i
0
0 , 

the parameters giving the 3D position 
of the pth

0  landmark point of ith
0

person.
3.  Using equation 2, find the feature vector for 

the ith person.
4.  Perform feature selection using the signifi-

cance ratio test.

5.  Classify the test data Xtes using one vs. all 
scheme of SVM.

Details of the algorithm are given in the next 
section.

EXPERIMENTS AND RESULTS

Cubic Spline Interpolation

In the database, there are four gradations of ex-
pressions available corresponding to only four 
temporal samples from neutral to peak of the 
expression. 4 temporal samples are insufficient 
to estimate motion direction reliably. Cubic spline 
interpolation is used to find more samples. After 
interpolation at a landmark point; say the left eye 
corner; we have Ns (= 61 in our case) temporal 
samples for each subject. After interpolation, the 
spatial positions of the points are transformed 
from Cartesian to the spherical ( , , )r θ φ  coordinate 
system. This is because just two parameters θ and 
φ directly give the directional information about 
the 3D position of a point with respect to the 
origin while Cartesian system needs three param-
eters, x, y and z for this purpose. For further 
analysis, let the θ and φ  values for f np

i( )  be 
represented by θp

i n( )andφp
i n( ) , respectively.

Deformation Modeling

To model the motion direction, the θp
i n( )andφp

i n( )

values are used for a fixed value of p (landmark 
point) say, p0. During this modeling, it is required 
to find out if there is any pattern in the θp

i n0( ) and
φp

i n0( )  values for different persons. To find this 
pattern, out of the 60 subjects in the training da-
taset, a subset I composing of 30 subjects was 
randomly selected. 2D histograms of θp

i n0( )  and 
φp

i n0( )values were plotted for all the subjects in 
the selected subset. This procedure was repeated 
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5 times to check the consistency of the patterns. 
The 2D histograms, are shown as images in Fig-
ure 6a. The figure shows that the histograms are 
consistent over all the 5 runs. This consistency 
was found for other landmark points as well. This 
shows that the temporal samples at the landmark 
point for different subjects belong to a specific 
nature of distribution and thus the motion of 
landmark point is similar in different persons. 
Also, the difference in between the histograms of 
different expressions clearly shows that the motion 
directions are discriminative and can be used as 
features for FER.

The 2D histograms are projected on each of 
the θ and φ  axes, to obtain two 1D histograms 
showing the distribution of θp

i n0( ) andφp
i n0( ) , 

separately (Figure 6b. and c.). Deformations of 
the landmark point p0 for each person are modeled 
as these 1D distributions. In order to represent 
these distributions, the parameters of these dis-
tributions are used. Few typical parameters for 
any probability distribution of a real-valued ran-
dom variable are mean, variance, skewness and 

kurtosis. Using these parameters the features for 

p0 are given by 


θp
i
0
0  and 



φp
i
0
0  which are defined as 

follows:
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where, θ( )1 0
0
p

i , θ( )2 0
0

p
i , θ( )3 0

0
p

i and θ( )4 0
0

p
i represent the 

mean, variance, skewness and kurtosis of θp
i n0
0( )  

with n varying from 1 to Ns. Similar notations are 
used for φ  as well.

For the ith
0 person, the feature vector is given 

by
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Figure 6. a. Histograms for the distribution of θp
i n0( )  and φp

i n0( )over 5 runs. b. Separate histogram for 
θp

i n0( )  c. Separate histogram for φp
i n0( )corresponding to the 2D histogram in run1 and anger expres-

sion.
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Classification

There are total 83 landmark points used for feature 
extraction. These points are distributed all over 
the face as shown in Figure 4. However, many 
of these points will be irrelevant for a particular 
E.g. when a person is happy, he will; in general; 
stretch his lips wide apart. So, the motion of the 
lip corners is relevant. While one doesn’t generally 
frown when happy. Consequently, the motion of 
the eyebrows will not be that much relevant. We 
need to perform feature selection to select relevant 
features. However since there are different features 
which might be relevant for distinguishing each 
expression from the others, features are selected 
considering the problem of discriminating one 
expression at a time from the others. Therefore, 
six individual classifiers are implemented using 
one vs. all scheme of a Support Vector Machine 
(SVM) classifier. Feature selection is performed 
using the significance ratio test (Weiss & In-
durkhya, 1998).

After feature selection on the test data, clas-
sification is performed as per the scheme given 
in figure 5b. For a test expression, classifiers for 
each expression give a decision value estimate 
indicating how much the probability of the test 
expression belonging to each expression is.  
Predicted expression corresponds to that expres-
sion for which classifier gives the maximum 
decision value.

Results

For a two class classification a reliable per-
formance measure is the Receiver Operating 
Characteristic (ROC) curves. The performance 
of a binary classification is indicated by the area 
under the ROC curve. The closer the AUC is to 
1 the better the performance of classification is. 
Results of individual classification are given in 
the form of the ROC curves along with areas un-
der the curves in Figure 7. It can be seen that the 
Areas Under the Curve (AUCs) are very close to 

1 for all the individual binary classifiers except 
in the case of fear vs. other expressions. This 
shows that less discrimination between fear and 
other expressions. Final classification results are 
presented in table 2 a in the form of a confusion 
matrix. In the confusion matrix an element (i, j) 
(i.e. row corresponding to expression i and column 
to expression j) shows the number of test samples 
which were predicted to belong to expression j 
when the sample actually belongs to expression 
i. This way the diagonal elements in the confu-
sion matrix show the correct recognition rate for 
a particular expression.

We see from the classification results, that the 
highest recognition rate of 98.8% has been 
achieved for ‘disgust’. This can be attributed to 
the fact that the most common facial motion for 
disgust is wrinkling of nose. Since our proposition 
was based on similarity of motion of landmark 
points, the more similar is this motion among 
different persons for an expression, the better the 
recognition will be for that expression. The aver-
age recognition rate is 88.1% if we ignore the 
results for the Fear expression. Even when we 
include results of Fear expression, the average 
recognition rate is 80.3%. As was evident by the 
ROC curve, there was less discrimination in be-
tween Fear and the other expressions. This is also 
substantiated by the results.

The presented method identifies the six basic 
expressions; however, it was not designed to 

Table 1. Areas under the ROC curves for individual 
classifiers for the six expressions. A higher value 
of AUC indicates better separation. 

Expression Area Under the Curve (AUC)

Anger 0.9588

Disgust 0.9543

Fear 0.7081

Happiness 0.9642

Sadness 0.9261

Surprise 0.9887
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recognize the expressionless face. This is because 
the algorithm is based on deformation modeling 
and we assume that expressionless face means 
deformation is negligible and thus modeling 
deformation is meaningless.

Comparison with a Related Work

We have presented a novel method for FER which 
does not require any 3D model for neutral face. 
We compare our approach with work by Soyel 
and Demirel (2007) using facial distances, which 

Figure 7. ROC curves for individual classifiers for the six expressions: a. Anger, b. Disgust, c. Fear, d. 
Sadness, and e. Surprise

Table 2. Confusion matrices of the classification results using the presented method. Training: 60 sub-
jects, Testing: 22 subjects.(ARR=80.4%). 

Anger Disgust Fear Happiness Sadness Surprise

Anger 79.6 6.8 1.1 1.1 8.0 3.4

Disgust 0.0 98.8 0.0 1.2 0.0 0.0

Fear 4.5 9.1 41.5 35.8 9.1 0.0

Happiness 0.0 3.9 0.0 96.1 0.0 0.0

Sadness 9.1 4.5 9.6 0.0 72.3 4.5

Surprise 0.0 0.0 6.1 0.0 0.0 93.9
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also does not require neutral 3D face model. The 
limitation of their work has been already dis-
cussed in this chapter under the topic of subject 
independence. Experiments were conducted for 
both methods on the same set of training and 
test data for 10 runs and the Average confusion 
matrix across those runs is displayed in Tables 2 
and 3. It is to be noted that we use all 4 intensity 
of facial expression in the experiments and that 
might be the reason for a low accuracy for the other 
method since as mentioned before, using facial 
distances can be less robust for lower intensity 
facial expressions. Soyel and Demirel (2007) do 
not specifically mention the intensity of expres-
sions that they have used in their experiments. 
It can be observed that the presented algorithm 
(ARR=80.4%) performs better than the related 
algorithm (ARR=77.7%). However the other 
algorithm performs much better for Fear.

FUTURE RESEARCH DIRECTIONS

The presented algorithm was evaluated using 3D 
static face models for FER. As landmark points 
are used, a dense 3D model is not necessary for 
implementation of the algorithm. The algorithm 
can be implemented using 3D data generated 
from a video sequence using a generic mesh with 
a much fewer vertices as compared to that in a 
full 3D model. A video sequence is easily obtain-
able in a real life situation. Considering 3D FER, 

there is a wide possibility of future research in the 
following areas:

Formation of a Representative 
Database

For development of algorithms for 3D FER, avail-
ability of a 3D facial expression database is a must. 
Databases presently available have been captured 
under controlled conditions mainly because avail-
able 3D scanners cannot operate satisfactorily in 
outdoor real life situations. However, for applying 
the FER algorithms in daily life applications it 
becomes necessary to evaluate them under natural 
conditions instead of a laboratory setup.

Another issue in facing a natural environment 
is about the nature of expressions in real life. 
Paul Ekman, one of the pioneers in research on 
emotions emphasizes that there are many facial 
expression that do not correspond to emotions (Ek-
man, 1978 and Ekman, 1979). These subtle facial 
expressions; such as agreement, interested, flirting 
etc; can also act as social signals or constituents 
of social behavior (Vinciarelli et al., 2009). The 
analysis of these expressions is one of the parts of 
Social Signal Processing (SSP) and the efforts in 
this direction are still in infancy. Despite of being 
in infancy SSP is now attracting attention of the 
research community. In fact, the MIT Technology 
Review magazine has presented ‘reality mining’ 
as one of the 10 emerging technologies that are 
most likely to ‘change the way we live’. Reality 

Table 3. Confusion matrices of the classification results using the method proposed by Soyel and Demirel 
(2007). Training and test data same as in Table 2.(ARR=77.7%). 

Anger Disgust Fear Happiness Sadness Surprise

Anger 73.7 8.1 4.5 0.0 13.6 0.0

Disgust 0.0 80.1 2.9 2.2 14.8 0.0

Fear 4.5 4.1 75.5 1.8 14.1 0.0

Happiness 0.0 9.5 3.2 85.5 1.8 0.0

Sadness 9.1 4.5 14.5 0.0 67.5 4.4

Surprise 2.0 0.0 9.1 5.0 0.0 83.9



590

Subject Independent Facial Expression Recognition from 3D Face Models using Deformation Modeling

mining refers to automatic analysis of everyday 
social interactions in groups of several tens of 
individuals (Vinciarelli et al., 2009). It is one of 
the main applications of SSP and involves analysis 
of facial expressions as well.

This opens up possibilities of development 
of a 3D facial expression database with faces 
captured in outdoor environment and exhibiting 
natural expressions.

Automatic Facial Landmark 
Point Detection

In the present work, we assumed that the location 
of the facial landmark points will be provided. But 
this is a non-trivial assumption. Considering the 
state-of-the-art techniques for landmark detection, 
points can be detected only either for frontal or 
for profile view of the face but these techniques 
fail with variations in facial pose. Pose variations 
play a major role in real life.

Dealing with Computational 
and Storage Complexities

Yin et al. (2008) report facing problems in pro-
cessing and storage of their 3D dynamic models. 
Because of these limitations, presently it is possible 
to record only short duration 3D videos where 
the person begins from neutral and deliberately 
shows expression and then comes back to neutral. 
Natural expressions are prolonged and so longer 
3D videos need to be recorded. Also, the BU-4DFE 
database in its present form takes around 500GB 
of storage space. Techniques need to be devised 
for compact storage of the 3D models especially 
the dynamic models.

CONCLUSION

With the increasing involvement of computers in 
our day to day lives, Human Computer Interac-
tion (HCI) is being researched a lot nowadays. 

Emotion recognition is a vital part of HCI and 
since emotions are mostly conveyed by facial 
expressions, Facial Expression Recognition 
(FER) is a research field which finds application 
in many avenues. FER has been performed since 
late 1970s; however most of the work was done 
using 2D images or videos. In 1990s, researchers 
started exploring the use of depth information 
as well for FER. Due to the additional depth in-
formation and other advantages of 3D data such 
as pose and illumination invariance, 3D FER is 
gaining pace in recent years. Researches have 
shown that dynamics of expression are crucial for 
analysis of facial expressions. This makes FER 
from 3D dynamic data more effective than using 
3D static data.

3D dynamic faces can be constructed by us-
ing laser scanners or by using 3D reconstruction 
techniques. However, from the point of view of 
application of 3D FER techniques in real world, 
these techniques are not very feasible due to their 
computational complexity or inaccuracy. A better 
approach to get 3D data can be to fit a generic 3D 
model to faces and then track them.

Most of the current works on 3D FER require 
a 3D face model for the neutral face. This paper 
presented a novel feature extraction technique for 
facial expression recognition using 3D models, in 
which there is no need to have a 3D model cor-
responding to the neutral (expressionless) face of 
the person whose expression is being analyzed. 
This makes the method very relevant in the real life 
situations where it might not be always possible to 
have the neutral facial model corresponding to a 
test expression. One vs. all scheme of classification 
was implemented using Support Vector Machines 
(SVM). For each individual classifier, a feature 
selection was performed using the significance 
ratio test. Promising classification results support 
the presented feature extraction technique.

In spite of the promise in the current 3D FER 
techniques, there are a few challenges that need to 
be tackled in order to make these techniques easy 
to implement in real life situations. This chapter 
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highlighted these challenges and also proposed 
future research directions.
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KEY TERMS AND DEFINITIONS

3D Face Model: A listing of the (x, y, z) coor-
dinates of a fixed number of points lying on the 
facial surface.This model may also be accompa-
nied by a texture image containing color (RGB) 
values at these vertices.

Facial Expression Recognition: A research 
area in which computers are made to recognize 
the facial expressions of humans.

Feature Extraction: For a classification 
problem, feature extraction is a method to extract 
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characteristics of the data that can be used to 
discriminate between different classes of the data.

Human Computer Interaction (HCI): It 
is a study on how human beings and computers 
interact with each other.

Landmark Points: Prominent points on an 
object (Face in our case). Usually these points 
are easily discernible such as corners.

Subject Independence: A subject independent 
algorithm can work on any person even if not 
seen before.

Support Vector Machines (SVMs): A super-
vised learning tool which is used for classification 
and regression problems. It finds a separating 
hyperplane in a higher dimension.
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Chapter  31

INTRODUCTION

Today, the popularity of 3D media usage in 
computerized environment and the research on 
3D content generation is increasing. 3D contents 
are frequently used in various applications such 
as computer games, movies and even in home 
environmental systems and this reputation leads 
visualization of 3D contents such as 3D videos 
and 3D images becoming more significant. For 

visualizing the 3D contents, thumbnail representa-
tion is used in order to provide a quick overview 
of multimedia files in order to allow a quick 
scanning over a large number of data. By using 
the traditional methods, the thumbnail generally 
shows the first frame of the video and for im-
ages, visual representation is generated by using 
shrinking, manual cropping or uniform scaling. 
However, these approaches do not preserve the 
important parts of the multimedia files and result-
ing thumbnails do not give the general idea of the 
content. Furthermore, in spite of the existence of 
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3D Thumbnails for 3D 
Videos with Depth

ABSTRACT

In this chapter, we present a new thumbnail format for 3D videos with depth, 3D thumbnail, which helps 
users to understand the content by preserving the recognizable features and qualities of 3D videos. The 
current thumbnail solutions do not give the general idea of the content and are not illustrative. In spite 
of the existence of 3D media content databases, there is no thumbnail representation for 3D contents. 
Thus, we propose a framework that generates 3D thumbnails from layered depth video (LDV) and video 
plus depth (V+D) by using two different methodologies on importance maps: saliency-depth and layer 
based approaches. Finally, several experiments are presented that indicate 3D thumbnails are illustrative.
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3D content databases, there is no standardization 
on the thumbnail representation for 3D contents 
while their usage area is widespread. Thus, the 
thumbnail representation is very crucial to get a 
quick overview of the content rather than down-
loading from the database and processing it.

Therefore, we propose a thumbnail genera-
tion system that creates meaningful, illustrative 
visual representations of 3D video with depth 
contents without losing perceivable elements in 
the selected video frame by using saliency-depth 
and layer based methodologies. Moreover, in or-
der to represent the 3D contents realistically and 
enhance depth perception, the resulting thumbnail 
should be in 3D. Thus, the framework constructs 
geometries of important objects as polygon meshes 
and adds 3D effects such as shadow and parallax 
mapping. Figure 1 illustrates a layout that holds 
resultant 3D thumbnails for 3D videos with depth.

While creating 3D thumbnails, it is required 
to select suitable 3D video formats since compres-
sion and coding algorithms of 3D videos show 
diversity according to the varieties of 3D displays: 
classical two-view stereo video (CSV), video plus 
depth (V+D), layered depth video (LDV) and 
multi-view video plus depth (MDV). Some of 
these formats and coding algorithms are standard-
ized by MPEG, since standard formats and efficient 
compression are crucial for the success of 3D 
video applications (F.Institute, 2008). For our 

framework, V+D and LDV formats are eligible 
because of simplicity and the depth information 
they provide. V+D format provides a color video 
and an associated depth map that stands for ge-
ometry-enhanced information of the 3D scene. 
The color video is original video itself and the 
depth map is a monochromatic, luminance-only 
video. Besides, LDV is an extension of V+D 
format. It contains all information that V+D sat-
isfies with an extra layer called background 
layer which includes foreground objects and the 
associated depth map of the background layer. 
By using the properties of V+D and LDV videos, 
we develop two different thumbnail generation 
methods based on the information they present. 
These proposed methodologies create meaningful 
thumbnails without losing perceivable visual 
elements in the selected original video frame.

In this chapter, the previous work on 3D video 
formats and thumbnail generation methods, the 
proposed framework that generates 3D thumb-
nails from video plus depth (V+D) and layered 
depth video (LDV), two 3D thumbnail generation 
methodologies based on 3D meshes and parallax 
mapping, and several experiments showing ef-
fectiveness and recognizability of 3D thumbnails, 
are presented.

BACKGROUND

We discuss 3D video formats and thumbnail gen-
eration approaches under two different subsections 
since our approach combines them.

3D Video Formats

Recently, several numbers of researches on 3D 
imaging and video formats are rapidly progress-
ing. 3D video formats are roughly divided into 
two classes: N-view video formats and geometry-
enhanced formats. The first class represents the 
multi-view video with N views. Conventional 
stereo video (CSV) is the least complex and most 

Figure 1. 3D thumbnails on a 3D grid layout
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popular format of N-view video for stereoscopic 
applications.

Otherwise, geometry-enhanced information is 
provided for 3D video formats in the second class. 
Multi-view video + depth video (MDV), layered-
depth video (LDV) and video plus depth (V+D) 
are examples of geometry-enhanced formatted 
videos. As it is referred from its name, MDV has 
more than one view and associated depth maps for 
each view. This depth data is used to synthesize 
a number of arbitrary dense intermediate views 
for multi-view displays (Gundogdu, 2010). LDV 
is one variant of MDV, which further reduces the 
color and depth data by representing the common 
information in all input views by one central view 
and difference information in residual views (Mül-
ler, 2008). Besides, foreground objects are stored 
on the background layer in the LDV format with 
associated depth information. Since geometry-
enhanced formats are complex and more data is 
stored, the disadvantage of MDV and LDV is the 
requirement of the intermediate view synthesis. In 
addition to this, high-quality depth map generation 
is required beforehand and errors in depth data 
may cause considerable degradation in quality of 
intermediate views. On the other hand, the special 
case, V+D codes one color video and associated 
depth map and the second view is generated  
after decoding.

V+D and LDV formats are appropriate for 
creating effective thumbnails for 3D videos with 
depth in order to try the efficiency of our frame-
work for both simple and complex 3D formats. 
Furthermore, our thumbnail generation system 
uses depth information that V+D and LDV formats 
satisfy for generating 3D thumbnails.

In addition to this, a video frame should be 
selected in order to create illustrative thumbnails. 
There are considerable number of researches on 
video summarization and frame selection that 
are based on clustering-based (Farin, 2002), 
keyframe-based (Mundur, 2006), rule-based 
(Lienhart, 1997) and mathematically-oriented 
(Gong, 2002) methods. However, for our work, 

video summarization and frame selection issues 
are out of scope. Thus, we apply a saliency-based 
frame selection. In this case, for each frame of 
the 3D input video, the saliency is computed 
and the frame that has the highest saliency value  
is selected.

Thumbnail Generation

Our goal is to create thumbnails from 3D videos 
with depth without losing perceivable elements 
on the selected original frame. Thus, it is essential 
to preserve the perceivable visual elements in an 
image for increasing the recognizable features of 
the thumbnail. Computation of important elements 
and performing non-uniform scaling to image are 
involved in the proposed thumbnail representation. 
This problem is similar to proposed methodologies 
for image retargeting (Setlur, 2005).

Manually by standard tools such as (Adobe, 
2010) and (Gimp, 2101), image retargeting can 
be achieved by standard image editing algorithms 
such as uniform scaling and cropping. Neverthe-
less, important regions of the image cannot be 
conserved with uniform scaling and cropping. 
Moreover, when the input image contains more 
than one important object, it leads contextual in-
formation lost and quality of the image degrades.

In addition to this, automatic cropping 
techniques based on visual attention have been 
proposed (Suh, 2003) which can be processed 
by saliency maps (Itti, 1998) and face detection 
(Bregler, 1998; Yow, 1998). Nevertheless, the 
main disadvantage of this technique is that it only 
performs for a single object and this leads loss of 
multiple features.

Another way to generate thumbnails is by us-
ing epitomes. Epitome is the miniature and the 
condensed version of the input image which con-
tains the most important elements of the original 
image (Jojic, 2003). Despite the conservation of 
important elements, this method is suitable when 
the image contains repetitive unit patterns.
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The main work behind our approach is Setlur 
(2005) image retargeting algorithm since it works 
for multiple objects by preserving recognizable 
features and maximizes the salient content. This 
method segments the input image into regions by 
using mean-shift algorithm, identifies important 
regions by a saliency based approach, extracts 
them, fills the resulting gaps, resizes the filled 
background into a desired size and pastes im-
portant objects onto it by using computed aspect 
ratios according to importance values of objects.

MAIN FOCUS OF THE CHAPTER

The objective behind this work is to create help-
ful and demonstrative 3D thumbnails for various 
types of 3D video formats. Since the proposed 
methods for generating thumbnails do not preserve 
the important features and do not give the idea of 
the content, we suggest a new thumbnail format, 
3D thumbnail.

Moreover, today 3D is popular in computer 
games, movies and home environment applica-
tions. Besides, everything included user interfaces 
will be in 3D soon. Thus we have generated the 
resulting thumbnail in 3D because by using 3D 
layouts, more objects can be illustrated on the 
thumbnail with a realistic look. 3D contents which 
are represented by multiple thumbnails can be 
epitomized with a single thumbnail by preserv-
ing the important objects in a 3D layout. Lastly, 
in spite of the popularity and widespread usage 
of 3D content databases, there is no standardized 
thumbnail representation for 3D contents such as 
3D videos.

In 3D content databases, the 3D contents are 
signified in 5 or 6 images in order to help users 
identify the 3D content. Instead of using several 
numbers of 2D thumbnails for giving information 
about the content, it is sufficient to use single 
3D thumbnail that satisfies geometry-enhanced 
information.

The inputs of our system are V+D and LDV 
formatted 3D videos. V+D and LDV formats are 
suitable for our system since the associated depth 
maps are essential for generating 3D thumbnails. 
On the other hand, with the purpose of trying 
different thumbnail generation methods based 
on saliency-depth and layer information, and the 
efficiency of our framework over both simple 
and complex 3D formats, V+D and LDV formats  
are appropriate.

In order to create 3D thumbnails for V+D 
formatted videos, the first step is to segment the 
selected frame of the input color video into regions 
with the aim of finding the important regions. Then, 
by a saliency-depth based approach, importance 
map is obtained and important objects are extracted 
from the original frame. The resulting frame with 
gaps are filled by reconstructing the blanks with 
the same texture as the given input color frame 
by successively adding pixels and the frame is 
resized to a standard thumbnail size. Next, with 
the intention of generating the saliency-depth 
based retargeted image, the aspect ratios and posi-
tions of the important objects are determined by a 
constraint-based algorithm and scaled important 
objects are pasted on to the resized background. 
Finally, 3D mesh that represents the 3D thumbnail 
is created by using the retargeted color frame and 
the associated depth map.

On the other hand, the thumbnail generation 
algorithm for LDV is similar to the proposed 
approach for V+D except some steps. Firstly, 
as well as the input color video, the associated 
background layer is also segmented into regions. 
Secondly, instead of finding salient regions and 
classifying them as important objects, foreground 
objects on the background layer are assumed to 
be important objects. Apart from these steps, the 
remaining procedure is same as the one for V+D.

The 3D thumbnail generation methodology 
for V+D and LDV are explained in detail in the 
next section.
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METHODOLOGY

System Overview

The input of our framework is the specific video 
frame of a 3D video with depth (Either LDV or 
V+D) as RGB color map and the associated depth 
map. For LDV, besides the input color video, the 
associated background layer is additional essential 
input for importance map extraction.

Firstly, the input color map is segmented into 
regions. Then, the importance map is extracted 
by using a saliency-depth approach for V+D 
formats. This step is different when the type of 
the content is LDV since the background layer 
is utilized with the purpose of importance map 
generation. Thus, while stating salient and fore-
most objects as important for V+D formats, the 
foreground objects on the background layer of 
LDV formats are important. After mapping the 
importance values, important objects are extracted, 
later to be exaggerated and the resulting gaps are 
filled with same texture as the given input color 
frame. Afterwards, the background is resized to 
the standard thumbnail size which has 192x192 
resolutions. Then, important objects are pasted 
onto the resized background by a constraint-based 
algorithm. Finally, we apply two different methods 
for the resultant 3D thumbnail: 3D mesh-based 
and parallax-mapped techniques.

Image Segmentation

In order to find the objects on the color map and 
assign their importance values, it is necessary to 
segment the color map into regions. There are 
three proposed image segmentation methods: 
mean-shift (Comaniciu, 2002), graph-based 
(Felzenszwalb, 2004) and hybrid segmenta-
tion (Pantofaru, 2005). These three approaches 
are evaluated in the work of Pantofaru (2005) 
by considering correctness and stability of the 
algorithms. According to the results, both the 
mean-shift and hybrid segmentation methods 

create more realistic segmentations than the graph-
based approach with a variety of parameters and 
both of the methods are stable. Since the hybrid 
segmentation algorithm is the combination of 
mean-shift and graph-based segmentation, it is 
more computationally expensive. Thus, we have 
preferred the mean-shift algorithm for its power 
and flexibility of modeling.

In Computer Vision, the mean-shift segmenta-
tion has a widespread usage. This algorithm takes 
spatial radius hs, color radius hr and the minimum 
region area M as parameters with the input color 
map. In this algorithm, the first step is to convert 
RGB color map into Lαβ color space since the 
method uses CIE-Luv color space which has 
Gaussian smoothed blue-yellow, red-green and 
luminance planes. The next step is to determine 
and label the clusters by neighboring pixels 
within a spatial radius hs, and color radius hr. As 
the parameters are set by users, we set hs as 6, hr 
as 5 and M as 50 after some trials for our system.

Note that this step is also applied to the back-
ground layer of LDV formats in order to identify 
the foreground objects. Thus, the color map and 
background layer are segmented into regions by 
using mean-shift algorithm for LDV.

Importance Map Extraction

The importance map extraction approach works 
differently for V+D and LDV. Saliency-depth 
based method is applied to V+D, while a layer 
based importance map extraction is used for LDV.

Saliency-Depth Based Importance Map

For V+D videos, importance map extraction is 
based on the saliency and depth information. 
After the segmentation of the color map, three 
steps are achieved for generating the importance 
map: computation of saliency based on color map, 
computation of saliency based on depth map and 
computation of overall saliency map.
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Most of the physiological experiments verify 
that human vision system is only aware of some 
parts of the incoming information in full detail. In 
order to locate the points of interest, the saliency 
concept is proposed. The graph-based visual sa-
liency image attention model is used for saliency 
computation (Harel, 2007). It is a bottom-up visual 
saliency model that is constructed in two steps: 
Constructing activation maps on certain feature 
channels and normalization.

Graph-based visual saliency method contains 
three steps: Feature extraction, activation and 
normalization of the activation map. In the feature 
extraction step, the features such as color, orienta-
tion, texture, intensity are extracted from the color 
map through linear filtering and the calculation 
of center-surround differences for each feature 
type is completed. In the activation step, single 
or multiple activation maps are extracted by using 
feature vectors and subtracting feature maps at dif-
ferent scales such as henceforth, center, surround. 
Finally, the normalization of the activation map is 
performed. The goal of this step is to concentrate 
mass on activation maps by normalizing the effect 
of feature maps and summing them into the final 
saliency value of the pixel based on the color map.

Figure 2 shows several numbers of results that 
are based on graph-based visual saliency image 
attention model. The detailed explanation of the 
algorithm can be found in the work of Harel (2007).

After calculating saliency for each pixel on 
the color map, the depth saliency is computed. It 
is observed that depth is another factor to decide 
whether an object is important or should be ig-
nored. In other words, closer objects should be 
more essential than the ones that are distant. Thus, 
we add the depth saliency for each pixel on the 
color map by using the associated depth map. A 
simple equation that is adapted from the work of 
Longurst (2006) is used in order to calculate the 
depth importance. The equation uses a model of 
exponential decay to get a typical linear model 
of very close objects.

The last step is to compute the overall saliency. 
For each region that is segmented by mean-shift 
algorithm, the calculation of the overall saliency 
of the region is processed by averaging the sum 
of the color-based and depth-based saliency of 
pixels belonging to the region.

Layer Based Importance Map

For LDV videos, we follow a layer based approach 
with the aim of importance map extraction since 
foreground objects on the background layer are 
assumed to be important. In other words, the 
closer objects should be more salient than the 
distant ones. Thus, the segmented regions on the 
background layer are extracted from the color map 
at the end of this step. This approach is simpler 
than the saliency-depth based approach which is 
applied for V+D, because we use the features of 
LDV as our basis.

Figure 2. Graph-based visual saliency image 
attention model. (a) Original Image; (b) Salient 
parts of the image (red – most salient); (c) Result-
ing saliency maps.
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Background Resynthesis

After extracting important objects from the origi-
nal color map, the background resynthesis step 
takes place. In this case, resynthesis refers to filling 
gaps of the extracted area with information from 
the surrounding area. This step is based on Har-
rison (2002)’s inpainting method. The algorithm 
reconstructs the gaps with the same texture as 
the given input color map by successively adding 
pixels that are selected. The procedure has two 
stages: pixel analysis and filling. In the first stage, 
relationships between pixels on the color map are 
analyzed and the value of each pixel that can be 
obtained by neighboring pixels is established. In 
the second stage, until all blank locations on the 
color map are filled, pixels are added by using the 
results of the pixel analysis stage. The procedure 
is capable of reproducing large features from the 
color map, even though it only examines interac-
tions between pixels that are close to neighbors. 
Then, the color map is resized to 192x192 (standard 
thumbnail size).

Pasting of Important Objects

The next step is to paste important objects onto the 
new background. The constraint-based algorithm 
is utilized with the aim of pasting each object 
according to their importance values from the 
most important to least (Setlur, 2005). The goal 
is to preserve the relative positions of the impor-
tant regions in order to keep the resized images 
layout similar to the original color map. For this 
algorithm, there are four constraints: positions of 
the important objects must stay the same, aspect 
ratios of the important objects must be maintained, 
the important objects must not overlap in the re-
targeted background if they are not overlapping 
in the original color map, and the background 
color of the important objects must not change.

From the most important object to least, this 
step reduces the change in position and the size 
of the important objects and the algorithm seeks 

whether the four conditions are satisfied or not. 
The aspect ratio and the position of the important 
objects are calculated according to the original 
and the retargeted color map.

3D Thumbnail Generation

In the 3D thumbnail generation stage, we apply 
two different approaches to get the 3D visual effect 
on the retargeted color map: 3D mesh generation 
and parallax mapping techniques.

3D Mesh Generation Technique

With the purpose of the generation of a 3D mesh 
from the retargeted color map by using the associ-
ated depth map, we follow a simple algorithm as 
illustrated in Figure 3.

The inputs of the 3D mesh generation algorithm 
are the retargeted color map and the correspond-
ing depth map. In order to create the geometry of 
the resulting 3D mesh, the vertices that describe 
points and corner locations of the mesh in 3D 
space should be extracted. Thus, positions of 
vertices on the x-y coordinate are obtained from 
the retargeted color map and the depth values of 

Figure 3. The flow order of the 3D mesh genera-
tion technique
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the corresponding vertices are acquired from the 
depth map. After obtaining all vertices, the con-
struction of triangular faces between vertices to 
form the actual 3D mesh is achieved. Next step 
is to compute the texture data and face normals. 
Since the thumbnails should be in a simple format 
and a several numbers of thumbnails should be 
displayed in applications, it is necessary to con-
sider the performance. Therefore, the constructed 
3D mesh should be simplified because for a re-
targeted image which has 192x192 resolutions, 
there exist 36864 vertices and 73728 faces with-
out simplification and this makes simultaneous 
rendering of multiple thumbnails impossible. For 
achieving the simplification, we use an edge col-
lapse algorithm based on the quadric metric ap-
proach (Garland, 1998). This method produces 
high quality approximations of polygon models 
rapidly. In order to process simplification, iterative 
contractions of vertex pairs are used and the sur-
face error approximations are maintained by using 
quadratic matrices. In addition to this, the algo-
rithm joins unconnected regions by reducing ar-
bitrary vertex pairs. Thus, after simplification it 
is guaranteed to have meshes that contains up to 
4000 faces.

Parallax Mapping Technique

Parallax mapping is a shading technique and the 
enhancement of bump mapping or normal map-
ping which is proposed by Tomomichi (2001). It 
is applied to textures in 3D rendering applications 
such as 3D games, virtual environment applica-
tions etc. and also known as offset mapping or 
virtual displacement mapping.

Parallax mapping is a simple method to give 
motion parallax effects on a polygon. In other 
words, 2D textures have more apparent depth 
when this approach is applied. The combination 
of traditional normal and height mapping creates 
3D effect without the use of additional vertices. 
By adding depth to 2D textures, the final render 
appears to have a much higher polygon count 

than it actually has. Finally, it is a per-pixel shape 
representation and can be accomplished using the 
current generation of 3D hardware.

USER EVALUATION

In order to evaluate the performance of the resultant 
3D thumbnails from 3D videos with depth and 
the proposed 3D thumbnail generation methods 
(3D mesh vs. parallax-mapped based), we have 
performed two experimental studies.

Subjects

15 voluntary subjects participated: 13 males and 
2 females with a mean age of 25.17. Two of the 
subjects were novice and others were experienced 
users with a computer science background.

Equipment

All experiments were performed on the Sharp 
Actius RD3D with 15-inch XGA (1024-by-768) 
autostereoscopic color display. For interaction, 
mouse and keyboard were used. Subjects did not 
wear any special glasses.

Tasks

In the first experiment, the task that participants 
should accomplish was to select the correct thumb-
nail from a large set of 2D and 3D thumbnails for 
a given content name in a reasonable time. This 
user study had 60 steps. For the first 30 step, 3D 
thumbnails were randomly located on the 3D 
environment and displayed in a 3D grid layout. 
In addition to this, 2D thumbnails were randomly 
positioned on the 3D grid layout for the rest. For 
each step, a target thumbnail with a given content 
name was asked to be browsed by subjects. The 
second experiment was similar to the first, but 
in this case, subjects accomplished the selection 
of the target thumbnail from a set of 3D mesh or 
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parallax-mapped based thumbnails. Other than 
this, the structure of the experiment was similar 
with the first one.

For all tests, 12 different target content names 
as illustrated in Figure 4, were asked to be browsed 
and no text labels were satisfied for thumbnails.

Results and Discussion

For the first experiment, our hypothesis was 3D 
thumbnails are illustrative than 2D thumbnails. 
In order to prove this, we recorded the search 
time and the number of clicks performed to reach 
the target thumbnail. The comparison results are 
illustrated in Figure 5. By using 3D thumbnails, 

subjects accomplished 30 experiment steps in 
142.138 seconds with 78.92 clicks, while they 
performed 87.304 clicks in 159.184 seconds with 
2D thumbnails. From the figure and total results, 
it is clearly occurred that recognition time for 3D 
is shorter than 2D. With the aim of better indica-
tion of the statistically significant difference of 
3D thumbnails, we have also performed a paired 
samples t-test on the experimental data. The mean 
error of each test case of 2D thumbnails was 
compared to the mean error of 3D thumbnails, 
and it showed that the difference between 3D 
thumbnails and 2D thumbnails is statistically 
significant with p < 0.05.

Figure 4. The target 2D, 3D and parallax-mapped thumbnails used in experiments



605

3D Thumbnails for 3D Videos with Depth

The second experimental study was based on 
3D meshes are illustrative than parallax-mapped 
images hypothesis. By using 3D mesh-based 
thumbnails, subjects completed 30 experiment 
steps in 139.476 seconds while they performed 
the test with parallax-mapped thumbnails in 
142.965 seconds. Moreover, 96.17 clicks were 
acquired to complete tasks for finding targets with 
3D mesh-based thumbnails and 101 clicks were 
obtained with parallax-mapped thumbnails. Fig-
ure 6 and total result show that thumbnails that 
are based on 3D mesh generation technique are 
more recognizable than parallax-mapped thumb-
nails. However, from the paired samples t-test 
results, this difference is not significant and our 
hypothesis was rejected because the statistically 
significant difference between the two methods 
was not acceptable (p > 0.05).

FUTURE RESEARCH DIRECTIONS

For the future work, 3D thumbnails should be 
generated for CSV and MDV formats and a 
comparison between 4 methodologies should be 
accomplished. Thence, the suitable format that 
provides a fast 3D thumbnail creation approach 
can be determined. Moreover, as our video frame 
selection is based on a saliency-based approach, 
a stronger and efficient video summarization 

technique should be applied to our 3D thumbnail 
generation system in order to get the most mean-
ingful frame that represents the entire video. As 
a result, our thumbnail generation methodology 
can be improved and more illustrative thumbnails 
for all kinds of 3D videos can be generated. Fi-
nally, additional user studies should be performed 
with the aim of the proof for the efficiency of  
3D thumbnails.

CONCLUSION

A framework that generates 3D thumbnails for 
3D videos with depth is proposed in this chapter. 
The goal of the framework is to create meaningful, 
illustrative and efficient thumbnails by preserv-
ing the important parts of the selected frame of 
the input video. The inputs of the system are two 
different video formats: V+D and LDV, and the 
generation approaches are different for each for-
mat. For V+D, the important objects are extracted 
by a saliency-depth based method. In other words, 
the visually salient and closer objects are important 
and necessary to be preserved. However, the fore-
ground objects that are on the background layer are 
assumed to be important for LDV formats. This 
method is called layer-based. After determining 
the important objects, remaining steps are same for 

Figure 5. 2D thumbnails vs. 3D thumbnails (based 
on search time)

Figure 6. 3D thumbnails based on 3D mesh gen-
eration vs. parallax-mapped technique (based 
on search time)
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all formats. Important objects are extracted from 
the color map and resulting gaps are filled. After 
that, newly created background image is resized 
to a standard thumbnail size and important objects 
are pasted on it by a special algorithm that has 4 
constraints: aspects ratios of the important objects 
are maintained, the background color and the 
positions of the important objects should be same 
as the original color map and objects should not 
be overlapping if they are not overlapping in the 
original image. In the final stage, two techniques 
are used to generate the resultant 3D thumbnail: 
3D mesh and parallax mapping methods.

Finally, we have performed two user experi-
ments in order to test the efficiency of 3D thumb-
nails. In the first experiment, we compared 2D 
thumbnails and 3D thumbnails. The experiment 
results show that 3D thumbnails are statistically (p 
< 0.05) illustrative than 2D thumbnails. Moreover, 
the second experiment’s aim is to test the efficien-
cies of the two proposed methods for generating 
3D thumbnails: 3D mesh and parallax mapping 
techniques. From the experiment results, it is 
indicated that there is no significantly difference 
between two techniques since p > 0.05. Thus, 
either the 3D thumbnail which is generated by 3D 
mesh or parallax-shading technique can give the 
3D visual effect and enhance the depth perception.
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KEY TERMS AND DEFINITIONS

3D Video: Kind of a visual media that satis-
fies 3D depth perception that can be provided by 
a 3D display.

Auto-Stereoscopic Display: A 3D display that 
helps user to see the content without help of any 
3D glasses on the flat screen.

Depth Map: A grey-scale map that includes 
depth information of the content for every pixel. In 
this map, the object that is nearest is the bright one.

Grid Layout: A type of a layout that divides 
the container into equal-sized rectangles and each 
rectangle holds one item.

Mean-Shift Segmentation: A powerful image 
segmentation technique that is based on non-
parametric iterative algorithm and can be used 
for clustering, finding modes etc.

Parallax Shading: A shading technique that 
displaces the individual pixel height of a surface, 
so that when the resulting image is seen as three-
dimensional.

Saliency: Refers to visual saliency which 
is the distinct subjective perceptual quality that 
grabs attention.

Thumbnail: A small image that represents 
the content and used to help in recognizing and 
organizing several numbers of contents.
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