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Preface

This set of lecture notes presents a new approach to the representation
theory of the symmetric group — more precisely: to the character theory
of the symmetric group over a field of characteristic zero. Knowledge of
the classical theory is unnecessary — perhaps, even a hindrance to the
understanding of this new theory which is in many ways more immediate,
more efficient, more transparent, and more elementary due to the new tools
that lie behind the word "noncommutative".

The ordinary character theory of the symmetric group is a commutative
theory based on the commutative algebra of class functions or, equivalently,
the algebra of symmetric functions. The monographs of James and Ker-
ber [JK81] and of Macdonald [Mac95] are general references on the subject.

The noncommutative character theory is based on a noncommutative
algebra which maps onto the algebra of class functions. The underlying
idea is to transfer problems to the noncommutative superstructure, and to
solve them in that setting.

Louis Solomon was the first to introduce this idea onto the character
theory of the symmetric group, in a seminal article of 1976. Since then,
Armin Jollenbeck and Christophe Reutenauer have been among the main
architects of the theory, as well as the members of the research group in
Paris: Gerard Duchamp, Israel Gelfand, Florent Hivert, Daniel Krob, Alain
Lascoux, Bernard Leclerc, Jean-Yves Thibon, to name a few. Our presen-
tation of the material grew out of several lecture courses held in Kiel during
the past years. It is self-contained and suitable for undergraduate level.

The main text is subdivided into three parts. Basic properties of the
algebra of class functions are rederived in Part I. Part II contains the con-
struction of the noncommutative superstructure and plays the key role here.

vii



Various applications are then given in Part III.
We have included three appendices to supplement the main text, in

rather different ways. Appendix A contains a short and self-contained dis-
patch of the character theory of finite groups in general, to the extent
needed here. Appendix B contains a simple proof of Solomon's theorem.
In Appendix C, a new approach is presented, to the Robinson-Schensted
correspondence and related results of Knuth and Schiitzenberger which are
at the combinatorial core of noncommutative character theory.

The reader is referred to the introduction for much more details on the
ideas of the noncommutative theory and the thread of this manuscript.

We wish to express our thanks to the Research Chairs of Canada and,
in particular, to Deutsche Forschungsgemeinschaft for generous support
through the last years*. We would also like to thank Adalbert Kerber.
This project would not have been possible without him. Besides, sincere
acknowledgement is due to those who helped us by a careful scrutiny of the
manuscript: thank you, Bill Boshuk; pakk, Wilbur Jonsson; merci beaucoup,
Luc Lapointe; vielen Dank, Christophe Reutenauer.

September 2004

'Research projects DFG BL-488 and DFG Scho-799.
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Chapter 1

Introduction

Representation theory is the study of groups G and algebras A by means
of homomorphisms

d:G^GLK(V) and D : A -» EndK{V),

into the group of invertible linear endomorphisms, respectively, the algebra
of endomorphisms of a vector space V over a field K. This brings powerful
tools of linear algebra to bear on the theory of groups and algebras. The
group algebra KG of G over the field K connects the two theories, since,
by linearity, any representation d : G -+ GL# (V) of G extends to a repre-
sentation D : KG —> End/f (V) of KG, which is united in the sense that the
image of the identity element of G under D is the identity of Endft-(V). By
restriction, any unital representation D : KG —> End/c (^) defines a homo-
morphism d : G —> GL#(V). The representation theory of groups may thus
be viewed as a special case of the representation theory of algebras with
identity, with the restriction to unital representations.

The theory of modules for groups and algebras works equally well, be-
cause any unital representation d of G, or D of A, turns V into a unital
G-module, or j4-module, by setting

vg := v(gd) or va := v(aD),

for all v G V and g £ G, a £ A. Conversely, any unital G-module, or
A-module, provides, in an obvious way, a representation of G, or A. In
what follows, all modules are assumed to be unital and finite-dimensional,
since the representation theory of finite symmetric groups is the focus of
this study.

A linear subspace N of an A-module M is an A-submodule of M if iV
is closed under the action of A, that is, if na £ N for all n £ N and a £ A.
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2 Noncommutative character theory of the symmetric group

The building blocks of the representation theory of an associative al-
gebra A with identity are the simple or irreducible A-modules M ^ {OM}
whose only A-submodules are N = {OM} and N = M. An A-module M
is semi-simple or completely reducible if M is the direct sum of irreducible
A-modules. Equivalently, any A-submodule N of M has an A-module com-
plement in M, that is, there exists an A-submodule N' of M such that
NnN' = {0M} and M = N + N'.

Assuming right multiplication, the algebra A is an A-module which is
called the regular A-module and denoted by AR. The A-submodules of AR

are the right ideals of A. The algebra A is called semi-simple if the regular
A-module AR is semi-simple.

It can be shown that, in this sense, if A is semi-simple, then so is every
A-module.

The principal tasks of the representation theory of semi-simple algebras
may be summarised as follows:

1. Classify the isomorphism classes of irreducible A-modules and display
a representative of each class.

2. Find ways to decompose an arbitrary A-module into irreducible A-sub-
modules.

In the representation theory of finite groups, the following result is cru-
cial.

Maschke's Theorem. If G is a finite group and K is a field of charac-
teristic not dividing the order of G, then KG is semi-simple.

Let M be a G-module and let d : G —> GLK(M) denote the correspond-
ing representation of G. The mapping

XM : G -> K , g^ tr{gd)

is the character of G afforded by M, where tr : End^-(M) —» K denotes
the trace function. It is readily seen that \M ls constant on the conjugacy
classes of G. Any such map G —» K is a class function of G. The linear
space of all class functions of G is denoted by C£K(G).

Let KG be semi-simple, then the character afforded by M indeed "char-
acterises" M. For, in this situation, two G-modules M and M' are isomor-
phic if and only if XM = XM'- We say that \M ls irreducible if M is
irreducible. Then any character of G is a linear combination of irreducible
characters with nonnegative integer coefficients, and these coefficients de-
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termine the underlying G-module, up to isomorphism. If, in addition, K is
a so-called splitting field of G, there is the explicit formula

expressing any a G C£K(G) as a linear combination of the irreducible char-
acters x of G, with coefficients given by the scalar product

As a consequence, for any G-module M, there is the isomorphism of G-
modules

where Ix is an irreducible G-module affording \, f°r each irreducible char-
acter x °f G. A short and self-contained dispatch of the theory of finite
group characters, up to this point, is contained in Appendix A.

If the characteristic of K is positive and divides the order of G, then the
group ring KG is not semi-simple. The so-called modular representation
theory of G arising therefrom is of a totally different nature. Therefore, it
is assumed throughout that K is a field containing the field Q of rational
numbers as a subfield.

* * *

Let N := {1,2,3,...} be the set of positive integers. Put No := N U {0}
and

n, :={l , . . . ,n}

for all n G No. The symmetric group <Sn consists of all bijections (or
permutations) n : ri| —* Jh- ^n examples, we write n £ <Sn as a word or as a
product of cycles as usual. For instance, the permutation

1 2 3 4 5 6 7 8 9

reads as n = (14 6 2) (3) (5) (7) (8 9) = (14 6 2) (8 9) as a product of cycles
and as IT = 413652798 as a word. Products TTCT of permutations are to
be read from left to right: first TT, then a. We write idn for the identity
inS n .



4 Noncommutative character theory of the symmetric group

We shall see later on that Q is a splitting field of Sn. In addressing the
representation theory of Sn, the general theory sketched above therefore
shows that the following two problems require solutions:

1. Determine the irreducible characters of <Sn.
2. Find ways to evaluate scalar products (a, x)s > where a is an arbitrary

character of >Sn and x is a n irreducible character of Sn.

Specht modules and matrix representations of the symmetric group will not
be considered here.

The symmetric group Sk and also the direct product Sk x Sn-k occur
as subgroups of Sn in a multitude of ways whenever 1 < fc < n — 1. In
this sense, any character of Sn yields a character of Sk, or of Sk x Sn-k,
by restriction. Conversely, any character of Sk, or of Sk x <Sn_fc yields a
character of Sn, by induction. There is the general idea to deduce results
for .^-characters from the character theory of Sk, Sn-k, and Sk x <Sn_fc,
which are assumed to be "well understood", since k and n — k are both < n.
The major tools of this inductive method are induction and restriction of
characters together with Frobenius' reciprocity law.

The inductive method may be described elegantly in terms of the bial-
gebra of class functions [Gei77], which is defined as follows. The underlying
vector space of this bialgebra is the direct sum

n>0

To each class function a of Sk and each class function /3 of Sn-k may be
associated a class function a^/3 of Sk x Sn_k, in a natural way (see 3.2).
The product on C arises from the concept of induction:

The restriction of class functions leads to a coproduct on C, that is, a linear
mapping C —> C ® C. It is defined by

fe=O

for all class functions a of Sn. Here ik,n-k denotes the natural linear
isomorphism C£K(Sk) ®C(.K{Sn-k) —> C£x(^k x <Sn-fc)- The coproduct j is
an algebra map (C, •) —* {C®C, •$>), where •$ is the product on C®C arising
from • (see 2.8). In other words, (C,;[) is a bialgebra. By orthogonality,
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the scalar products (•,•)_ on the linear spaces C ĵ<(«Sn) extend to a single
bilinear form on C. The bialgebra C is self-dual with respect to this form,
that is,

for all a, (3,7 e C, where (•, •) is the bilinear form on C ® C such that

for all oti,ot2,Pi,P2 S C. It is this self-duality that mirrors Probenius'
reciprocity law.

The bialgebra of class functions contains the classical representation
theory of the symmetric group — in terms of ordinary, that is to say,
commutative character theory.

For example, if \ is an irreducible character of Sk, and ip is an irreducible
character of Sn-k, then x • V" is a character of <Sn. It is a classical and
fairly intricate problem to decompose this induced character into irreducible
characters of Sn. An answer is provided by the Littlewood-Richardson
Rule [LR34]. In terms of the bialgebra C, this remarkable result becomes
a description of the structure constants with respect to that linear basis
which consists of all irreducible characters of all symmetric groups Sn.

Chapter 2 contains parts from the theory of coproducts and bialgebras,
to the extent needed, while more details concerning the definition and basic
properties of the bialgebra C are given in Chapter 3.

Each of the bialgebras A considered here is an inner direct sum

•A = (^ An
n€No

of linear subspaces An such that

n

An * Am c An+m and AnS c ^ Ak ® An-k ,

for all n, m G No and Ao = K, where * denotes the product and 5 denotes
the coproduct on A. This means that A is graded and connected. Any such
bialgebra A is actually a Hopf algebra.

The algebra of symmetric functions A is isomorphic to C. Andreij Zele-
vinski's approach [Zel81b] to the representation theory of finite classical
groups builds on this particular type of commutative Hopf algebra.
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However, knowledge of the theory of symmetric functions, or the theory
of Hopf algebras, is not necessary here.

The origin of noncommutative character theory is Solomon's discov-
ery [Sol76] of a subalgebra of the group algebra of an arbitrary finite Cox-
eter group W which maps into the algebra of class functions of W. His
results in case W = Sn are briefly revisited below. In our approach, they
serve as backdrop and source of motivation, and not as structural building
blocks.

Some notations are needed. Many interesting objects in the theory are
indexed by partitions or compositions. It is convenient to represent these
indices in terms of words in a free monoid N* over the alphabet N. The
multiplication in N* is concatenation. We write q.r for the concatenation
product of q, r G N* in order to avoid confusion with the ordinary product
in N. Any q £N* may be written uniquely as a product

where qx, q2, ... , qk G N. The identity element 0 of N* is the empty prod-
uct. If 9i + 92 + "'" + 9fc = n € No, then q is a composition of n, denoted
by 9 |= n. If, in addition, qi > q2 > • • • > qk, then q is a partition of n and
we write q\- n.

Let n G No and q = qx qk |= n. Deno te by Pi = (P?,...,P%) t h e
set partition of n, consisting of the successive blocks of order qi in n,, for all
i £ fcj. For example, P 2 1 2 = ({1,2}, {3}, {4,5}). The Young subgroup of
type q in Sn is

.S, := {TT G Sn | P?TT = P* for all i e fcj.

If IT, a e Sn, then clearly Sqit = Sqa if and only if Pfir = P?a for all i € kj.
Therefore, the set

Sq :— { v € Sn | u\PQ is increasing for alii G fc,}

is a transversal of the right cosets of Sq in Sn. The symmetric group Sn acts
on these right cosets, by right multiplication. The corresponding character
£9 = ( l s j 5 " is the Young character of type q. The set of Young characters
{£p \p \- n] is a linear basis of C£K(^U) (see 12.3). Observe that the linear
space C&K{Sn) is a ring with multiplication defined by (a/3)(7r) = a(7r)/?(7r)
for all a,/3 G ClK(Sn) and n G Sn.
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The Mackey formula [CR62, (44.3)] yields a multiplication rule

and a combinatorial description of the coefficients Jn^(s) £ No. Solomon's
far-reaching discovery was a noncommutative refinement of this rule for the
elements Eq := J2uesi v-> 1 t= n> °f t n e group algebra KSn:

s\=n

with the same coefficients as above. As a consequence, there is the following
result.

1.1 Theorem. (Solomon, 1976) Let n e N. The linear span Vn of the
elements Eq, q (= n, is a subalgebra of the group algebra KSn.

Furthermore, the linear map c,, : Vn —> C^K{Sn), defined by Eq H-> ^9

/or all q \= n, is an epimorphism of algebras.

Several different proofs of this result have since been given (see, for
example, Tits' appendix to Solomon's original paper [Sol76], or [BBHT92;
BL93; BroOO; GR89; Ges84; Reu93; vW98]). A short and transparent proof
of Solomon's theorem may also be found in Appendix B.

The elements Eq, q (= n, actually form a linear basis oiVn. To see this,
observe that for any n 6 Sn, we have n £ Sq if and only if the descent set

Des(7r) = { i e n - 1, | in > (i + l)n }

of IT is contained in the set {q\,qi + q%, • • •, q\ + ... + qi-i} of partial sums
of q. The elements

AD := Yl n (D ̂  n-1,)
Des(7r)=D

of KSn are clearly linearly independent, and

DC{q1,q1+q2,...}

for all q (= n. An inclusion/exclusion argument implies that both sets
{ Eq | q |= n } and { AD \ D C n — 1| | are linear bases of T>n. Accordingly,
the algebra T>n is referred to as the Solomon descent algebra of «Sn.

7
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Noncommutative character theory of the symmetric group

The direct sum

has if-basis { E9 | q £ N* }. We define the structure of a bialgebra on V, as
follows. The multiplication is given by

^r , ^q

for all q,r £ N*, and linearity, so that (P, *) is a free associative algebra
over the set of (noncommuting) variables { S™ | n £ N }. As a consequence,
there is a unique coproduct J. on V such that (D, *, I) is a bialgebra and

for all n £ N. Here, by definition, 2° is the identity S 0 of (£>,*).
The bialgebra (P, *, i ) is isomorphic to the algebra of noncommuta-

tive symmetric functions. The latter was introduced by Gelfand et al.
in [GKL+95] and has been further studied extensively in so far five subse-
quent papers [KLT97; DKK97; KT97; KT99; DHT02].

Defining a bilinear form on V by

for all q, r £ N*, we are in a position to state and proof the following result.

1.2 Theorem. The linear map T>->C, defined by Eq H-> f« for all q E N*,
is an isometric epimorphism of bialgebras with respect to (•, •) and (•, •)

The homomorphism rules for the products and the coproducts on T>
and C follow from the definition of (V, *, ! ) and the corresponding rather
immediate identities in C:

f«£«=£r-« and Cl=
k=0

for all r, q £ N* and n £ N (see 3.2 and 3.9).
The interesting fact that the simultaneous linear extension of Solomon's

epimorphisms cn is an isometry, follows from Solomon's theorem: observe
first that the identity Sn = {idn} and Frobenius' reciprocity law imply

8
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for all q \= n. Now, for arbitrary q,r \= n, comparing the coefficient of idn

on both sides of (1.1), gives

s|=n

As a consequence of Theorem 1.2, there is a noncommutative character
theory which is satisfying at least to some extent. Every <Sn-character has
a counterpart in T>n and the epimorphism V —> C allows one to transfer ev-
ery problem involving restriction, induction and scalar products of charac-
ters. However, this noncommutative setup builds on the formal procedure
of passing from a polynomial ring in the set { £n | n G N } of commuting
variables to the free associative algebra over the set { H" | n G N } of non-
commuting variables. This turns out to be too restrictive, even in view
of the classical results on irreducible characters of Sn. For, unfortunately,
suitable noncommutative counterparts in T> of irreducible characters (which
should allow significantly simplified arguments in the noncommutative su-
perstructure) cannot be found.

* * *

Due to Jollenbeck ([J6198], see also [J6199]), there is the crucial idea to
construct a proper extension of the bialgebra T> (and Theorem 1.2), in order
to fill this gap. The bialgebra of permutations, introduced by Malvenuto
and Reutenauer in [MR95], provides the general framework for this purpose.
The underlying vector space of this bialgebra is the direct sum

and has the set of all permutations as a linear basis. The product in V may
be described by
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for all permutations n G Sn, a G <Sm, where the sum is taken over all
permutations 7 G Sn+m such that iy < jj if and only if m < j-K for all
i, j G TTJ, and 17 < jj if and only if (i — n)a < (j — n)a for all i, j G n + m\n,.
For example,

12*21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421.

The unique element 0 of <So, the empty permutation, is the identity of (V,*).
A combinatorial description of the coproduct on V is

for all 7T G <Sn, where, for each fc G nj U {0}, «fc G 5fc and /3fc G Sn-k are
determined by the conditions that ia^1 < ja j" 1 if and only if iir~x < jn~1,
for all i,j G kj, and (i - k)^1 < (j - k)^1 if and only if ZTT"1 < JTT"1, for
all i , j G nj\fcj. For example,

4132| =

A bilinear form on V is defined by

J l if 7T = O-1,

\y otherwise,

for all permutations IT and a. Malvenuto and Reutenauer [MR95] showed
that V is a self-dual bialgebra, and that (V, *, | ) as denned above is a sub-
bialgebra of V. The bialgebra of permutations is introduced in Chapter 5.
In view of applications, it is suitable to use an approach which builds on
Stanley's theory of P-partitions [Sta72], which is briefly revisited in Chap-
ter 4 for that reason.

The algebra V maps onto C, as follows. The cycle type of a permuta-
tion 7T in <Sn is the partition p of n obtained by concatenating the lengths
of the cycles occurring in the cycle decomposition of vr, in a non-increasing
fashion. It is well-known that two permutations TT, a in Sn are conjugate
in Sn if and only if they have the same cycle type.

Let IIn G KSn be primitive for all n G N, that is, n n | = IIn(8»0+0®nn.
Assign to ip G KSn the class function cn(<p) of <Sn which maps each vr in <Sn

of cycle type p = pi pi h n to
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This defines a linear map

It is an important observation that cn is in fact a homomorphism of algebras
from (V,-k) into (C,»); see Chapter 7. Assuming a mild condition on the
primitive elements IIn (namely that the coefficient (IIn, idn) of the identity
in Tin is 1), c is onto and coincides with Solomon's epimorphism cn from
T>n onto C£K(STI) when restricted to T>n, for all n £ No.

The algebra map cn : V —> C is not a bialgebra map nor an isom-
etry. However, for properly chosen primitive elements IIn, cn has these
properties when restricted to the coplactic algebra Q C V, which con-
tains V as well as suitable noncommutative irreducible characters. This
bialgebra was discovered by Poirier and Reutenauer [PR95]. Its defi-
nition relies on the famous Robinson-Schensted correspondence [Rob38;
Sch6l]. In his thesis [J6198], Jollenbeck considered a smaller extension T
of T> which is revisited in Chapter 6.

Standard Young tableaux of shape p are realised as permutations in what
follows. The link to the usual notion of a tableau (see, for example, [Ful97])
is given by the concept of juxtaposing the rows of a Young diagram. For
example, consider the usual picture

5
2
1

7
6
3

8
4

of an array of numbers increasing in rows and decreasing in columns. Jux-
taposing the rows from top to bottom, yields the standard Young tableau

57268134 £ S8

of shape 3.3.2. The set of all standard Young tableaux of shape p \- n is
denoted by SYTP C Sn.

The Robinson-Schensted correspondence yields a bijection

SYTp x SYTp, TT ,—> (P(TT), Q(TT)). (1.2)
phn

Following Schensted, its first component P(TT) is called the P-symbol of n,
while its second component Q(n) is called the Q-symbol of tr. Collecting
together all permutations TT e Sn with a given <5-symD°l cr, we obtain a
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coplactic class

Aa = { v £ Sn | Q(TT) = a }

in Sn, for all a £ (Jphn SYTP. We write £/l for the sum of A in A'.Sn,
for all subsets A C Sn. The coplactic algebra Q is denned as the linear
span of the sums YLAa of all coplactic classes. As already mentioned, it
is a sub-bialgebra of the bialgebra V of permutations and contains V; see
Chapter 8.

A theorem of Schiitzenberger [Sch63] states that P(TT) = Q(n~1) for all
iv £ Sn, which implies that

( E ^ , T.AV) = #{ TT e Sn | Q(TT) = a, P(TT) = z,} = { \ lf f = 9>

I 0 otherwise,

for all a £ SYTP and v £ SYT9, since (1.2) is a bijection. Furthermore, for
each p \- n, there exists a standard Young tableau a of shape p such that
SYTP = Aa; hence, denoting by Zp the sum of SYTP in KSn, there are the
noncommutative orthogonality relations

r ^ U otherwise,

for all partitions p and q of n. Note that, by definition, (Zp, Z9) is equal
to the number of standard Young tableaux 7r of shape p such that n~1 is
a standard Young tableau of shape q. The reader is encouraged to ver-
ify (1.3) for small values of n. Appendix C contains a new proof of the
Robinson-Schensted correspondence and related results of Knuth, Schen-
sted and Schiitzenberger, which builds on [BJ99].

When choosing suitable primitive elements IIn in Qn := Q n KSn for
all n £ N, we get the following concluding result of Part II, in Chapter 9.

1.3 Main Theorem. c n | e : (<2,*, i ) —» (C,«, j) is a graded and isomet-
ric epimorphism of bialgebras, that is, cn(Qn) = C£ft-(<Sn) and

(a,P)v = (cn(a),cnmc,

cn(a*fi) = cn(a)»cn{(3),

(cn®cn)(al)=cn(a)l

for all n £ No and a,f3 £ Q.

(1.3)

{(3),
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This is a slight extension of a result of Jollenbeck, who considered a
particular series (u>n)neN of primitive elements (see 9.4). The epimorphism
V —> C associated with this series will simply be denoted by c. Any inverse
image under c in V of a character \ afforded by the <Sn-module M is called
a noncommutative character corresponding to x, or M.

* * *

By recourse to the noncommutative theory, the ordinary character the-
ory of the symmetric group can be deduced by means of simple noncommu-
tative computations in the coplactic algebra. Many classical results serve
as examples in the third part of this book.

To start with, we shall consider the class functions £p := c(Zp) of Sn

indexed by partitions p of n. The Main Theorem together with the non-
commutative orthogonality relations (1.3) implies that { C p | p ^ n } is a n

orthonormal basis of CtK{Sn)- In Chapter 10, it will be shown that this is
in fact the set of all irreducible characters of Sn and, in particular, that Q
is a splitting field of Sn. Accordingly, the sum Zp of all standard Young
tableaux of shape p in KSn is a noncommutative irreducible character of Sni

for each p\- n.
Let 6 be a character of Sn with noncommutative counterpart A in Q.

If A is a sum of permutations, say, A = J2TT&D ^ t n e n

(5,C\ = MA),c(Zp))c = (A,Zp)p = ID"1 nSYTp|.

The scalar product on the left hand side yields the multiplicity of the ir-
reducible character £p in S. Its noncommutative counterpart on the right
hand side gives, by definition, a combinatorial description of this multi-
plicity, namely the number of standard Young tableaux IT £ SYTP such
that TT"1 € D. This is a leading point for applications of noncommutative
character theory.

For example, the sum )C«Sra = X^es ^ ŝ a n i n v e r s e image of the regular
character XKS °^ '-'" under c and contained in Q — a noncommutative
regular character. It follows without difficulty that

(*/«„>CP)C = &Sn,7?)v = sytp := |SYTP|.

In other words, the multiplicity of C,p in the regular c>n-character is equal
to the number of standard Young tableaux of shape p. But the same scalar
product yields the degree deg£p of the irreducible character C,p. Hence,
denoting by Mp an irreducible module affording the character £p for all
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partitions p of n, we may conclude that dim Mp = deg (p = sytp and

(1.4)
p\-n

This fundamental identity has as combinatorial refinement the decomposi-
tion

p\-n cr€SY"P>

of Sn into coplactic classes. Indeed, c(Aa) — C? actually for any a 6 SYTP.
When applying c, the latter equality thus turns into (1.4), expressed in
terms of the corresponding characters.

In Chapters 11-13, few-line proofs are given in the same fashion of some
classical results including the Littlewood-Richardson Theorem, the Branch-
ing Rule, Young's Rule and a combinatorial description of the Kostka num-
bers. Also without difficulty, the recursive formula for the irreducible char-
acter values known as the Murnaghan-Nakayama Rule can be stated and
proved more generally as a formula for so-called skew characters, which re-
duces to the classical rule (due to Murnaghan and Nakayama) as a special
case.

Further applications concern the descent characters 6D — c(AD) in-
dexed by subsets D C n — 1, in Chapter 14. To conclude, results of Krask-
iewicz-Weyman [KWOl] and Leclerc-Scharf-Thibon [LST96] are recovered
in Chapter 15 on the cyclic characters of Sn, which are induced from the
cyclic subgroup generated by a long cycle.
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Chapter 2

Coproducts

The classical representation theory of the symmetric group is distinguished
by its combinatorial nature. Not surprisingly, major parts of the theory
may be described elegantly by means of coproducts, or co- and bialgebras
arising from these coproducts. We refer to Joni and Rota [JR82] who point
out

that the notion of coalgebra, bialgebra, and Hopf algebra, re-
cently introduced in mathematics, may give in a variety of cases a
valuable formal framework for the study of combinatorial problems
... interesting both the combinatorist in search of a theoretical hori-
zon, and the algebraist in search of examples which may point to
new and general theorems.

However, only those definitions needed here (and their illustration through
examples) will be presented. Interested readers may find more details
in [JR82; Mon93; Swe69].

Throughout this chapter, (A, *) is a K-Algebra. All tensor products are
understood to be taken over the field K.

Observe that A is a /^-vector space and * : A x A —> A is a bilinear
mapping. Linearising *, we obtain a uniquely determined linear mapping

^ : A® A —> A

such that (x ® y)/j, = x * y for all x, y € A. Conversely, the multiplication *
in A may clearly be recovered from \i. Dualising the linearised product //,
we define:

17
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2.1 Definition. The pair (C, 6) is a K-coalgebra if C is a K-vectoi space
and

5 :C

is if-linear. In this case, the mapping 5 is a coproduct on C.

2.2 Example. Let KN* be a if-vector space with if-basis N* and define
a linear mapping / i : KN* <g> ifN* -> XN* by

(g (8) r)n = g.r,

for all q,r £ N*. The corresponding multiplication turns KN* into the
ordinary semigroup algebra of the monoid N* over K. Extending

N* -^KN*®KW,q^—> ]T u®v

u.v=q

linearly, there is a coproduct on KN* which is denoted by A.

A subalgebra of A is a linear subspace T of A such that T*T C.T, that
is

(T (8) T)n C T.

Dualising again:

2.3 Definition. Let (C, S) be a coalgebra. A linear subspace T of C is a
sub-coalgebra of C if

TJ C T <g> T.

For example, the linear span of all partitions in N* is a sub-coalgebra
of the coalgebra (KN*,A) denned in 2.2.

Any common property of algebras may be translated into a suitable co-
property of coalgebras. To give another example, let K& '• A <g> A —+ A <g> A
denote the linear mapping such that (x (g> D)KA = y ® X, for all x,y £ A,
and observe that A is a commutative algebra if

KAfl = fl.

This leads to:

2.4 Definition. A coalgebra (C, S) is cocommutative if

5 =
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It is left to the reader to establish the notions of coassociativity, counit,
and so on, since these concepts are not needed in what follows.

2.5 Example. As (1.2)A = 0 <g> 1.2 + 1 ® 2 + 1.2 <g> 0, the coalgebra
(KN*, A) denned in example 2.2 is not cocommutative. A cocommutative
coproduct S on KN* is obtained as follows: For any q = qi qu S N* and
any subset J = {j\,... ,ji} of {1 , . . . , k} such that ji < j 2 < • • • < ji, put

and CJ := k\J. Then the coproduct S : KN* -+ tfN* <g> /CN* is defined by

qS := Y^ 1J ® 9c
Cfc,JCfc,

for all g £ N*, and linearity.

2.6 Definition and Remark. Let (C, S) be a coalgebra and

be a bilinear mapping. Let (•, •)® : (A<g> A) x (C®C) —• if be the unique
bilinear form such that

(ai ® a2 , ci ® c2 )® = (a i , ci) (a2 , c2 )

for all 0,1,0,2 € .A, c\,ci e C. Then the algebra A and the coalgebra C are
called dwa/ mt/i respect to (•, •) if

for all x, y G A, z G C.
Note that the bilinear form (•, •) is not necessarily regular. Here regular

means that (a, c) = 0 for all c G C (respectively, a G A) implies that
a = 0 (respectively, c = 0). So, for instance, the algebra {A,*) is dual to
any coalgebra (C, 5) with respect to the trivial form A x C —> if which
maps every pair (a, c) € A x C to zero.

2.7 Example. The algebra (ifN*,.) and the coalgebra (KN*,A) denned
in 2.2 are dual with respect to that bilinear form (•, •) on KN* which
turns N* into an orthonormal basis of KN*. Indeed, for any q, r, s G N*,

(r <g> s , gA)® = y ^ (r 0 s, u
U.v=q

U.v=q
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{ 1 if r.s = q

0 otherwise

= (r-s,q).

The notion of a bialgebra is crucial for the noncommutative approach
to the character theory of the symmetric group.

2.8 Definition. Multiplying "component-wise", there is a product *® on
A <g> A such that

(a! <S> a2) *® {b\ <8 b2) := (ax * bi) <g> (a2 * b2)

for all a\,a2, b\, b2 € A. The linearisation (̂ 4 <g> A) <g> (A <g> A) —• A ® A of
this product is denoted by /i®.

The triple (A, *, 5) is a K-bialgebra if (J4, <S) is a if-coalgebra such that
S is a homomorphism with respect to * in the following sense:

(x * y)S = (xS) *$ (y5)

for all x,y £ A; that is, fi5 = (5
As usual, a linear subspace 5 of a bialgebra A is a sub-bialgebra if B is

a subalgebra and a sub-coalgebra of A.

2.9 Example. (A"N*, .,5) is a bialgebra, where 5 is the cocommutative
coproduct on KN* defined in 2.5. For, if q = Qi ^fc,r = r\ r; G N*
and n := k + I, then

, . - V V . . . .

(q.r)o = > (q.r), ® (q.r),
JCn,

= Efc Y,Ja*

= Y T q, -r

JlUj2

Note that 5 is the unique coproduct on J^N* such that (KW,.,5) is a
bialgebra and n5 = n <g> 0 + 0 ® n for all n € N, since N generates if N* as
an algebra.
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In 9.7, we shall see that the bialgebra (KN*,.,S) is isomorphic to the
bialgebra (T>, *, J.) defined in the introduction.

2.10 Definition. Let (A,*,6), (£,», A) be bialgebras. Let

(•, •) : AxB-*K

be bilinear and define r : B x A —> A x B, (b, a) i-» (a, 6). Then 4̂ and 5
are said to be dual with respect to (•, •) if {A,*) is dual to (B, A) with
respect to (•, •) and (B, •) is dual to (A, 5) with respect to r{ •, •). When
(A,*,5) = (B,»,A), then A is called self-dual with respect to ( • , • ) . In
particular, if (•, •) is a symmetric bilinear form on A, then A is self-dual
if and only if

( a i * a2 , a3 ) = ( a x <g> a 2 , a3S ) ( 8

for all Oi, <22, <i3 £ A.

2 . 1 1 Definition. Let n S N and g = QJ qi \= n, then (,{q) := / is the

length of g. We set

q? :=q1---qim1\---mn\ £ N,

where m^ denotes the multiplicity of the letter i in q, for all i € nj.
Furthermore, r G N* is a rearrangement of ^ if f(g) = f(r) and there

exists a permutation n E Si such that r = (j^ qi^. In this case, write
r ss <jr. In other words, r ss 9 if and only if r may be obtained by rearranging
the letters of q.

2.12 Example. The bialgebra (KN*, .,5) considered in 2.9 is self-dual
with respect to the bilinear mapping (•, •), defined by

f r\ .= { q? if q ~ r
1 0 otherwise

for all q,r G N*. Indeed, there is the perfect analogue of the binomial
coefficient

for all r, s € N*. Hence

(r®s,q5) =
JCfc,
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#{ J\qj « r }r?s? ifgwr.s

0 if g 96 r.s

(r.s)? if qzzr.s

0 if g 96 r.s

for all q, r,s € N*.

If (B, •) is a if-algebra, then a homomorphism of algebras from A to B
is a linear map <p : vl —> B such that (o * b)ip = {cup) • (bip) for all a, b £ A,
that is,

2.13 Definition. Let (C,6) and (B,A) be coalgebras, then a homomor-
phism of coalgebras from C to B is a linear map <p : C —> B such that

that is: (cy?)A = (c8)(<p (8) y>) for all c£ C.
Of course, a homomorphism of bialgebras is a simultaneous homomor-

phism of algebras and coalgebras.

An illustration of the formalism introduced so far follows which will be
of use in Chapter 9. Recall that a linear map <p from a K-vectov space A
with bilinear form (•, • )A to a K-vector space B with bilinear form (•, • )B
is isometric if

, a2tp)B

for all 0,1,0,2 £ A.

2.14 Proposition. Let (A, *, S) and (B,», A) be self-dual bialgebras and
suppose the underlying bilinear form on B is regular, then each isometric
epimorphism of algebras from A onto B is an isometric epimorphism of
bialgebras.

Proof. Denote the bilinear forms on A and B by (•, • )A and (•, • )B, re-
spectively. Let tp be an isometric homomorphism of algebras from A to B
and assume that <p is onto.

 q, r,s
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Let a £ A and 6j, 62 6 B and choose ai, 1x2 E A such that a\(p ~b\ and
= 62 to obtain

(a5)(ip <g) 93), &! (8) 62 ) = ( ( a < ) ( ^ 8 y ) , i V ® 2V )
/ B,® \ / B,®

= ( (aS)((p ® v?), (ai ® a2)(<p

= {a, ai*a2)A

>, (a1*a2)(p

>h 'IB,®

Regularity of (•, • )B thus implies the homomorphism rule for the coprod-
ucts. D

 a\(p





Chapter 3

The Bialgebra C of Class Functions

Basic elements of character theory can be gathered together with the spe-
cific properties of symmetric groups arising from their inductive structure
and put to use in the bialgebra of class functions introduced by Geissin-
ger [Gei77].

As indicated in the introduction, the notions of induction and restriction
of class functions naturally yield a product •, and a coproduct j , respec-
tively, on the direct sum

c -.= 0 ceK(sn)

turning it into a commutative bialgebra. Induction and restriction are
intimately linked by Frobenius' reciprocity law which, in the language of
bialgebras, occurs as a self-duality of C, once the scalar products (•,-)
on C(.K{Sn), n € No, are properly extended to C.

Due to Frobenius, the algebra (C, •) is isomorphic to the algebra of
symmetric functions A over K, which is therefore equally suitable to encode
the commutative part of the theory (see 3.8). The standard reference for
the theory of symmetric functions is Macdonald's monograph [Mac95].

Let us start with the construction of the bialgebra structure on C. A
concrete realisation of the direct product Sk x «Sj (A;, I € No) as a subgroup
of Sk+i is obtained as follows.

3.1 Notation and Remarks. Let k, I £ No and put n := k + l. For any
IT £ Sk and a G Si, let TT#<7 be the permutation in Sn acting on Aj according
to 7T, and on n, \ fcj according to a. More formally, define TT#CT by

{ in if i < k,

{i-k)a + k i f i> fc,
25
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for all i £ n,. Then Sk,i = >Sfc#<S/ is the Young subgroup of Sn of type k.l
and the mapping

Skx Si -> Sk.i, (TT.CT) H-» TT#CT

is an isomorphism of groups.

3.2 Definition and Remark. Let k,l £ No. For all a £ C(.K{Sk) and
/3 £ C£K(Si), define Q # | 3 : SkA -> K by

(a*/?)(7r#<7):=a(7r)/3(<7),

for all 7T G 5fc and cr € 5(. Then a#/3£ CtK{Sk.i)- Now set

the class function of Sk+i induced by aff/3 (see A.2.8 in Appendix A).
Then • is linear in both components. By bilinear extension, we obtain the
outer product • on C = ©n>oC^if(<5n).

For example, if q \= n and r \= m, then there is the multiplication rule

for the corresponding Young characters, by transitivity of induction
(see A.2.8).

3.3 Proposition. Let k,l £ No, then for any character x of Sk and any
character ip of Si, the outer product X'ip *s ° character of Sk+i.

Proof. Let M be an .S^-module affording x> and let N be an >S;-module
affording I/J, then M <8> N is an Sk x 5(-module, hence also an .S^.i-module,
by 3.1. The character of Ski afforded by M&N is readily seen to be x*1/1-
Thus X'^ ls induced by the character x*^^ of <Sfc.z, hence itself a character
(see A.2.10). D

3.4 Notation and Remarks. Let n e No and g (= n. Denote by Cq the
conjugacy class in Sn consisting of all permutations n in Sn with cycle type
obtained by rearranging q. Then C~l = { TT"1 | TT € Cq } = Cq and Cr = C,
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for any rearrangement r of q.* In particular, the number of conjugacy
classes in Sn equals the number of partitions of n. If a 6 C£fc(Sn), it is
convenient to denote the unique value of a on any element TT 6 Cq by a(Cq),
for all q \= n. In fact, we shall sometimes consider a = ^ n e N o an G C with
otn S CIK{SJI) for all n € No and write a{Cq) = an(Cq) for all q \= n, by
abuse of notation.

We leave it to the reader to verify that the order of the centraliser Csn (TT)
in Sn of an element IT e Cq is equal to the number ql denned in 2.11, that
is,

q? = n\/\Cq\.

3.5 Notation and Remarks. Let char, denote the characteristic func-
tion of Cq in Cixi^n), mapping •K £ Sn to one or zero according as IT € Cq

or not. Then charg = charr for those q,r \= n such that q w r and
{ c h a r p | p h n } is a if-basis of C(.K{Sn). Using suitable scalar multiples
of the characteristic functions, namely

ch9 := qldnarq

for all q €N*, there is a linear basis { chq | q € N* } of C with the following
useful property:

3.6 Proposition. Let n £ No, then

for all q \= n and a €

Proof. By definition, {a, ch,)5 = 1/n! X^ec, qta(n) = a{Cq). •

The structure of the algebra (C, •) has a simple description in terms of
this basis.

3.7 Theorem. (C, •) is an associative and commutative algebra. Further-
more, for all q,r € N*,

chg • chr = ch,.r .

In other words, C is a ring of polynomials in the set of (commuting) vari-
ables chn, n G N.

'This redundance will be advantageous at a later stage (see, for instance, 3.13).
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Proof. Let k, I € No, n = k + l, q \= k and r J= I, then, by definition of the
outer product,

(ch, • chr)(7r) = — J2 V

= q-m \{a

for each -n £ Sn. This is zero unless n £ Cq.r, since Cq#CT C Cqr. If
•K G C,.r, then (ch, • chr)(7r) = ^g?r?|C,#CP||C5n(7r)| = (g.r)?. This
proves the multiplication rule. All the remaining claims follow, as the
elements chp indexed by partitions p GN* constitute a linear basis of C. D

3.8 Remark. The preceding result allows us to define Frobenius' charac-
teristic mapping from C to the algebra of symmetric functions A over K,
as follows.

The algebra A is a subalgebra of the algebra of formal power series over
K in infinitely many variables xi,x2, More precisely, the symmetric
power sums pn, defined by

for all n € N, are algebraically independent over K and form a set of algebra
generators of A (see [Mac95, (2.12), p. 24]). Thus, by the above theorem,
the Frobenius characteristic F : C —> A, defined by chn i—> pn for all n € N,
is an isomorphism of algebras.

The image of the trivial 5n-character under this isomorphism is the
complete symmetric function hn, which is the sum of all monomials in
Xi,a;2,... of degree n, while the sign character of Sn (see 10.6(ii)) is mapped
to the elementary symmetric function en = ]Ctl<»2<-<iI, xhx*2 '' 'xin-

The Frobenius characteristic is the link between the representation the-
ory of the symmetric group and of the general linear group as discovered
by Schur in his dissertation [SchOl] and a famous subsequent paper [Sch27].
As a part of this, the symmetric function corresponding to an irreducible
>Sn-character \ was determined and is now referred to as the Schur function
corresponding to \ (see [Mac95, I, 7]).

The coproduct on C arises from the restriction of class functions.



Chapter 3. The bialgebra C of class functions 29

3.9 Definition and Remarks. Canonically,

c®c = ( © ciK{sn)) ® ( 0 ciK{sn)) = 0 (aK{sk)®aK{sl)}.
neNo neNo M€N0

If k, I € No, then the set { char, ® charr | g h fc, r h Z} is a linear basis of
C îc(<Sfc)®C ĉ(<SO> while the elements charq #char r (q \- k, r \- I) constitute
a linear basis of C(,K{Sk.i), by 3.5. Denote by

ik,i •. aK{Sk)®ceK{Si) -+ ceK(skJ)

the linear isomorphism which takes charg <g> charr t—> char9 T^char,. for all
9 h k, r\r I and define linear mappings

in-CtK{Sn)^

for all n € No. The coproduct | : C —> C ® C is then defined as the unique
common linear extension of all J,n, n S NQ.

For example, for the trivial character £" of Sn, there is the coproduct
rule

fc=O

since the restriction of £" to the subgroup Sk.(n-k) is the trivial character
£k^£n-k o f 5fci(n_fc) for a n fc € njU {0}.

3.10 Lemma. (C, j ) is a cocommutative coalgebra. Furthermore,

JCfc,

/or aW q = ^ gfc € N*.

Proof. Let a, b £ No, n := a+b and q = qi f̂c |= n, then the intersection
of C9 with 5a.t is the union of all conjugacy classes Cr#Ca of »Sa (, contained
in Cq. The binomial formula for (r.s)?/(r?s?) mentioned in 2.12 gives

= q?

rl-o s\-b
 char9 T^char,
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rha shb

rha shb

cho ^cua
qj qcj

r\-a s\-b J <Z kt

JCfc,

Taking inverse images under ia>t and summing over all possible values of a
and b such that a + b = n yields the asserted formula for the coproducts.
Cocommutativity is now readily seen. •

In order to complete the picture, consider the orthogonal extension of
the standard scalar products on C£fc(Sn), n £ No'.

3.11 Notation and Remarks. Define

( { a , / 3 ) i f k = l,

for all k,l G No and all a G C£K(Sk), (3 G ClK{Si). This gives rise to a
regular and symmetric bilinear form

(•, • )c : C x C -> K

on C = ©ngN0 C^K{STI), by bilinearity. Furthermore, denote the unique bi-
linear form on C®C inherited from (•, •) (as described in 2.6) by (•, •) ,
then

for all ai,a2,(3i,/32 G C.

Frobenius' reciprocity law (see A.2.9) for all symmetric groups G = Sn

and all subgroups U = Sk.i, k + 1 — n, yields:

3.12 Reciprocity Law. (a • /?, >y)c = (a ® /?, 7 |)C ( g ) C, for all a, /3,7 G C.
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Proof. Let k, I, n 6 No such that n = k +1 and let a, (3 and 7 be class
functions of Sk, Si and Sn, respectively, then

a+b=n

"Skllk" / c®c

= (a./3,7)c.

D

Note that 3.6 implies

(ch ch ) - / ql l f q ~ V
c 1 0 otherwise

for all q,r £ N*. Therefore, considering basis elements a = chr, j3 = chs,
7 = chq of C, it follows that an alternative proof of 3.12 was given in 2.12
already.

We summarise this chapter with the following

3.13 Theorem. (C, •, j.) is a commutative and cocommutative graded bial-
gebra and self-dual with respect to (•, •) . For all q = qi qj.,r £ N*,

chq

and

JCfc,

Herein, the fact that (C, •, J,) is a bialgebra is an immediate consequence
of 2.9, since the linear map (KN*,., 6) —* (C, •, [), defined by q 1—» chg for
all q € N*, is a homomorphism of algebras and of coalgebras.
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Chapter 4

Shapes

The notion of a shape is inspired by Stanley's theory of P-partitions [Sta72].
However, the study of partial orders on a finite set here should be viewed
as a helpful tool for a transparent approach to the noncommutative bial-
gebras introduced in the chapters that follow, rather than an introduction
to this field of combinatorics. The main goal of this chapter will be to
make available an inductive technique (appearing in Lemma 4.11) which
was introduced by Gessel in [Ges84].

In what follows, < denotes the usual order on the set Z of integers.

4.1 Definition. Let 5 be a finite set, —>s be a total order and <s be a
partial order on S. Then the triple

is a shape, often simply written as S instead of (5, —>s,<s). If n = |5|,
then there is a unique order respecting bijection

the natural labeling of 5. Two shapes 5 and T are isomorphic if there exists
a bijection ip : S —» T which is an isomorphism of ordered sets from (S,<s)
to (T, <T) and from (5, ~>s) to (T, ->T). We write S ~ T in this case.

4.2 Remark. Let S be a shape and n := \S\, then the natural labeling is

of 5 yields an isomorphism of shapes

where the partial order <s on n, is defined by i <s 3 if and only if u s <s jts,
for all i,j £ n,. However, in some situations, when studying combinatorial

35
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properties of shapes, the focus on partial orders of n, turns out to be incon-
venient and restrictive.

4.3 Special case. Let S be a shape and assume that <s is a total order
on S. Let n := \S\, then there is a unique order respecting bijection ip from
{S, <s) onto (nj, <), and IT := is<p £ Sn. The shape S is isomorphic to the
7T -shape

with total and partial order defined by

i —>TT j '• ^=>- i < 3 and i <„ j : <=> in < jit

for all i,j £ n,. The natural labeling of the 7r-shape is LS,, = \dn.

Proof. This follows directly from the above remark. Indeed, for all i,j £ nj,
i diS j means its < s JLs, by definition, hence in < jw after application
of <p. This implies S(TC) = (n,, <, ̂ s ) ^ S. D

An important class of examples is provided by shapes which are con-
tained in Z x Z and equipped with orders defined as follows.

4.4 Definition and Remark. For all (i,j), (k,l) £ Z x Z, we define

(hj) <zxz (k,l) : <=> i < k and j < I

and

(i,j) —> (k,l) : ^=> i > k o r ( i = k a n d j < I).

Then <zxZ is a partial and —> is a total order on Z x Z.

Any finite subset S C Z x Z can thus be viewed as a shape, with
total and partial order inherited from -+ and <zxz, respectively. A more
detailed analysis of shapes essentially of this kind follows in Chapter 6. For
the time being, they may be viewed as a nice tool to illustrate the abstract
definitions. Consider the following picture: Any element x — (i,j) £ Z x Z
is called a cell and will be illustrated by a square box. The first component
i of x gives the row of Z x Z containing x, with the understanding that the
i-th row lies below the (i + l)-th row. Similarly, the second component j
of x gives the column of Z x Z containing x. Here the j'-th column lies to
the left of the (j + l)-th column. For example, the picture corresponding
to the five cells of the shape S = {(1,1), (1,2), (1,3), (2,1), (2,2)} is
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1 2 3

For x £ Z x Z, insert a diagonal of negative slope ( \ ) into the cells
y £ F\ {x} such that x <zxz V, and a diagonal of positive slope ( / ) into
the cells y £ F\{x} such that x —> y to get the following helpful illustration
of 4.4:

4.5 Proposition. For all x,y,z € Z x Z,

<zxz 2/

ZxZ,

?/

/n oi/ter words, for each z £ Z x Z, it/ie mapping Z x Z —
zs an isomorphism of ordered sets for both orders < z x z

This is immediate from the definition.

4.6 Example. Let S C Z x Z be finite, then 5 is a shape with total and
partial order inherited from —> and <zxz> respectively, as described above.
By 4.5, it is not necessary to fix the offset of 5 in Z x Z, up to isomorphism
of shapes. For example, let us say that the shape S is illustrated by

Then, according to the definition of —> on Z x Z, the natural labeling of S
is taken row by row, from top left to bottom right as follows:

and

and
 x —><zxz 2/
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4.7 Definition. Let 5 be a shape and n :— \S\. Any permutation TT G Sn

is a standard Young tableau of shape S if the bijection

or, equivalently, the bijection

is monotone. The set of all standard Young tableaux of shape 5 is denoted

Zs :=

by SYTS. We put

TT€SYT S

4.8 Special case. SYTS^ = {TT} and Zs^ = TT, for all permutations TT.

Proof. Let TT G Sn and recall that, by definition, i <„ j is equivalent to
in < JTT, for all i, j G nj. It follows that v G SYTS^ if and only if in < jft
implies iv < jv, for all i, j G ri|, which proves our claim. •

4.9 Example. To illustrate the notion of a standard Young tableau in
the case of a subset S C Z x Z of order n, let TT G Sn and put a := LI1TT.

Following the conventions used for the components of a matrix, the image
xa G N may be written into the cell x, for all x G S. In other words,
the images ITT, 2TT, . . . , rnr are entered in the shape S, row-wise from top to
bottom according to the natural labeling of S. Due to the illustration of
the partial order <zxZi w e then have TT G SYT if and only if the entries
ya in all cells y G S weakly to the right of and above the cell x G S are
larger then the entry xa in x. For example, for the shape

mentioned in Example 4.6, the standard Young tableaux of shape S corre-
spond to the bijections S —> 5j visualised as follows:

1 2 3 1 2 4 1 3 4 2 3 4

Accordingly, SYTS = {4512 3, 35124, 25134, 15234}.
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4.10 Notation and Remarks. Let (S, —>s,<s) be a shape and assume
that x,y € S are incomparable with respect to <g. Then we may define a
shape

S(x, y) := (S, -*s, <s(x,y))

by

a <s(x,y) b : <=> a <s b 01 (a <s x and y <s b),

for all a,b 6 S. The order <s(x,y) is the smallest refinement of <s such
that x <s(x,y) y- In particular, SYTs(x'y) C SYTS. Note that, repeating
this procedure shows that SYT ^ 0 for all shapes T, by 4.8.

The following observation, which will be of interest throughout the next
chapter, is due to Gessel [Ges84].

4.11 Lemma. Let (S,—>s,<s) be a shape and assume that x,y € S are
incomparable with respect to <s, then

Proof. It suffices to prove that SYTS is the disjoint union of SYTs^l2/^ and
SYJS{y,x)_ As w a g m e n t i o n e d aiready in 4.10, we have SYTs(x>!/) C SYTS

and SYTs(!/'x) C SYTS.
Assume that there exists an element n G SYTs(x>!/) n SYTs(v!:r), then

a := C 1 ^ is monotone with respect to both <s(x,y) a nd <s(y,x)- In par-
ticular, xa < ya and yoc < xa, hence xa = ya, contradicting injectivity
of a.

Furthermore, for any TT € SYT5, the mapping a :— L~1-K is injective
again, and hence xa < ya, or ya < xa. This implies ir G SYTs^x'2/\ or
IT G SYT^'1). D

For the sake of a better motivation, here is a typical application of 4.11
due to Stanley [Sta72], only the trivial part of which will be needed in what
follows.

4.12 Corollary. Let (S, —->s, <s) be a shape of order n. If S = (n,, <, •<§)
denotes the corresponding shape isomorphic to S as defined in 4- 2, then

r€SYTs

In particular, any shape T is isomorphic to S if and only if SYT = SYT
or, equivalently, Zs = ZT.
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Proof. First observe that if ^ 5 is a total order on n,, then d:S=<n for the
unique element it of SYT as asserted, by 4.8.

In general, for all n G SYT and i,j G ri| such that i ^ 5 j , we have
in < JTT, hence

7reSYTs

The remaining inclusion will be proven by induction on the number of pairs
of incomparable elements in (5, <s). Let x,y G S be incomparable with
respect to <s- Let i, j G n, be such that i <v j for all

n G SYTS = SYTS(: r i ! / ) U SYT s ( y ' x ) ,

then, inductively, i d>s(x,y) j and i <s(y,x) 3- A quick look at the definition
of S(x,y) reveals that this implies i -<$ j : proving the second asserted
inclusion, and completing the proof of the first claim.

If T is a second shape, then S ~ T1 certainly implies that any standard
Young tableau of shape S is also a standard Young tableau of shape T and
vice versa. Assume conversely that SYT = SYT , then

±s= n ^= n *-==**•
7T6SYTS 7reSYTT

and thus T~ (n,,<, <T) = (nj,<,ds) ^ S. D

4.13 Definition and Remark. Let (S,^s,<s) and ( T , - » T , < T ) be
shapes, then the shape (U, —>[/, <u) is a semi-direct union of S1 with T if
there is a shape (5', —»s', <s') isomorphic to S, and a shape (T', —>T<, < T ' )
isomorphic to T such that 5 ' n T' = 0 and

U = S'U T', <u=<s> U <T' and ->y=-»s' U ->T/ U(S" x T').

The semi-direct nature of this union arises from the definition of the total
order —»[/. For arbitrary S and T, such a semi-direct union U exists, by
standard set theoretic arguments, and any two semi-direct unions of 5 with
T are isomorphic. Furthermore, if S and T are shapes isomorphic to S and
T, respectively, then any semi-direct union of S with T is isomorphic to U.

4.14 Example. Let S, T be shapes in Z x Z (with orders inherited from
—> and <zxz) belonging to the isomorphism classes of

and
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respectively, then any semi-direct union of S with T belongs to the isomor-
phism class of

4.15 Definition. Let 5 be a shape. For any subset T C S, there are a
total order and a partial order on T, obtained by restriction:

->T:=->S n(T x T) and <T-=<s n(T x T).

The shape (T, —*r, <x) is a sub-shape of S.
Any sub-shape / of S is an ideal of S if the two conditions y £ I and

x <s y imply that a; S / , for all x,y E S. We write / < S in this case.

4.16 Special case. Let n 6 N and 7r € Sn, then the ideals of the TT-shape
5(71") are given by

- 1I?!

Proof. Since <,r is a total order on n,, the only ideals of S^TT) = (ri|, <, <TT)
are /fc = {i e n, | i <,r A; }, where A: £ nj U {0}. The definition of <„ implies
that i <Ty k if and only if i G fc^jTr^1, hence i/c = fcTijTr"1. •

4.17 Example. Let 7r = 34152e«S5, written as a word, then 3 <^ 5 <n

K f f 2 <,r 4 and TT"1 = 3 5 1 2 4. The ideals I of 5(7r) are given by

0, {3}, {3,5}, {3,5,1}, {3,5,1,2} and 5,.

4.18 Remark. It is interesting here to consider a vector space V with
K-basis the isomorphism classes of shapes (although this will not be of
importance in what follows). The remarks given in 4.13 allow us to define
the structure of an algebra on V by

[S] • [T] = [U]

for all shapes 5 and T and bilinearity, where U is any semi-direct union of
S with T. Here [R] denotes the isomorphism class of R for any shape -R.

Furthermore, it is clear that an isomorphism of shapes t : S —> S' yields
a one-to-one correspondence of the ideal lattices of S and S', by restriction.
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Therefore, a coproduct A o n V may be defined by

for all shapes S, and linearity.
In fact, (V,-,A) is an associative bialgebra with identity [0]. Recall

from 4.12 that Zs depends on the isomorphism class of S only. The induc-
tion rule 5.5 and the restriction rule 5.10 show that the linear map, defined
by

[S] .—> Zs

for all shapes S, is an epimorphism of bialgebras from V onto the bialgebra
V of permutations, which is studied in the next chapter.



Chapter 5

The Bialgebra V of Permutations

In this chapter a product, a coproduct, and a bilinear form on the direct
sum

V := 0 KSn

are denned, which turn it into a self-dual bialgebra. This bialgebra of per-
mutations was introduced by Malvenuto and Reutenauer in [MR95] and
will be the general framework for the noncommutative character theory.

Here the approach is based on Stanley's theory of P-partitions discussed
in the preceding chapter in terms of shapes and corresponding standard
Young tableaux.

5.1 Definition. For all n,m € No, a £ Sn and r £ Sm, 4.12 and 4.13
show that

CT*T :=ZU

is well-defined, where U is an arbitrary semi-direct union of the u-shape
S(cr) with the r-shape S(T). Bilinearity gives a product * on V called the
convolution or outer •product on V. The definition of the semi-direct union
then implies that

KSn*KSmCKSn+m

for all n,m G No-

Recall that, for k, I £ No, there is the transversal Skl of the right cosets
of the Young subgroup <Sfcj = Sk#Si in Sk+i, consisting of all permutations
v e Sk+i which are increasing on Aj and on k_+Ji\ki. Writing EkJ for the

43
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sum of Skl in KSk+i as in the introduction, allows us to give the following
more explicit description of the outer product.

5.2 Proposition, a * /? = (a#y9)Efc', for all k,l € No, a £ KSk and

Proof. Let k,l € No and set n := k + /. By linearity, it suffices to consider
a £ <Sfc instead of a and T £ Si instead of /3. A semi-direct union of S(cr)
with 5 ( T ) can be constructed as follows. Let S' := S(a) be the cr-shape
itself and define 7 : n ~ k\ —* ni\kJ, i\—» i + fc, then, for the shape

defined by i —>T' j '• «=> i < j and i <T> j : ^=^ i 7 - 1 r < jj~1r for all
i, j g TTJ \ Aj, we have 5 ' n T" = 0. Furthermore, the mapping 7 : 5 ( T ) —> T"
is an isomorphism of shapes. Hence, for the semi-direct union U of the
cr-shape with the r-shape obtained from S' and T' as described in 4.13,

TreSYT17

By definition, TT € SYT^ if and only if ia < jo implies in < jir for all
i, j £ Aj, and (i — fc)r < (j — k)r implies iir < jn for all i,j 6 Tij\fcj.
Equivalently, I(<T#T) < j{o#r) implies in < jn whenever i,j € Aj or
i , j e n,\fcj.

In other words, TT e SYT^7 if and only if v := {<J#T)-1-K e 5fe-'. The
proof is complete upon noting that the map v i-> [pj^r)v from <SfcJ to Sn

is injective, since Ŝ*5-' is a transversal of the right cosets of Sk.i in Sn. O

5.3 Example. Let k = 3, I = 2, a = 2 31 £ 5fc and r = 2 1 € <S, written
as words. Then <7#r = 2 3 1 5 4 6 <S5. Applying 5.2 yields

= 23154(12345 + 12435 + 12534 + 13425 + 13524

+ 14523 + 23415 + 23514 + 24513 + 34512)

= 23154 + 24153 + 25143 + 34152 + 35142

+ 45132 + 34251 + 35241 + 45231 + 45321.

5.4 Remark. Recall from 2.9 that (KN*,.,5) is a bialgebra, where . is
the linear extension of the concatenation product on N* and 5 is defined
by n8 = n (g) 0 + 0 <8> n, for all n G N. As a general fact, this bialgebra

 a £ KSk a £ KSk
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structure gives rise to a convolution product * on the ring End KN* of linear
endomorphisms of KN*, as follows: If f,g £ EndK"N* and u £ KN*, then

u(f * g) = (u5)(f ® g)fi..

The outer product * on V arises from this convolution product on End KN*
once V is embedded into End KN*, via Polya action:

for all permutations TT. Here, for TT £ S^, the linear map /ff : A"N* —> KN*
is denned by sending w — w\ wn £ N* to

•KW :=wl7r w n 7 r

or zero according as k = n or not, for all w £N*. Indeed, if w € N* has
length n and 7r £ S&, <? £ Si, then

WC/TT * /<r) =

JCn,

vanishes unless n = k + I. In this case,

w(U*f<r)= ^2(TrWj).((TwCJ) = (n#o-)
JCni

\J\=k

by 5.2. This shows /„• * /„. — fni,a- For more details, see [Reu93].

5.5 Induction Rule. Let S, T be shapes, and let U be a semi-direct union
of S with T, then

Proof. By 4.12, it may be assumed that STiT = 0, U = SuT and that the
orders of U arise directly from those of S and T as described in 4.13. Let n
and m be the number of pairs (a;, y) in 5 x S and T x T, respectively, such
that x and y are incomparable with respect to <s and <T, respectively.
The formula is proved by induction on n + m. If n + m = 0, then <s and
<X are total orders on S and T, hence there are permutations a and r such
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that 5 ~ S{a) and T ~ 5(r), by 4.3. Applying 4.12, 4.13, 4.8 and the
definition 5.1 yields

Let n+m > 0. Then there exist elements x, y e S, or x, y € T incomparable
with respect to <s, or <T- Assume that x,y e S. The other case is proved
along the same lines. Observe that Ui := U(x,y) and U2 := U(y,x) are
semi-direct unions of Si := S(x, y) and S2 '•= S(y, x), respectively, with T.
Hence, by 4.11 and induction, it follows that

Zo f7T (tjS\ 1 f7oo \ 7-* T'Si 7-* 1 r7<^'2 ^T r7*J\ 1 7C/2 *7U

~k Zj = ^ ( Z j ~\~ £J ) x Zj ^ Li ~x tu ~~T~ l-i ~k Li ^ Li - | - Zj = = Zj

as asserted. D

5.6 Theorem. {V, *) is an associative algebra with identity id0 = 0, £/te
unique element of S$.

Proof. The fact that 0 € SQ acts as the identity in (P,*) is immediate
from 5.2, while the associativity of * may be derived easily from the associa-
tivity of the semi-direct union: It suffices to show that (<T*7T)*T = cr*(7r*T),
for all permutations a, ir, r. Let R, S, T be pairwise disjoint shapes such
that R ~ S(a), S ~ 5(TT), and T ~ S(T). Then the shapes V = Ru S,
W = S U T, and U = V U T with the respective order relations defined
in 4.13, are semi-direct unions of S(a) with 5(TT), of 5(TT) with S(T), and
of V with 5r(r). Simply by definition, U is also a semi-direct union of S(cr)
with W. Hence, applying 4.12 and 5.5 a number of times, we obtain

(<7*7T" ) *T = ( Z * Z ) * Z

= Zfl*(Zs*ZT)

— <7* (TT * T ) .

•
5.7 Definition and Remark. The coproduct J. on T7 is defined by

/<S(7r)
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for all n G No, 7T S <Sn, and linearity. Note that

fc=0

for all n e No.

Observing that (Sk'l)~1 is a transversal of the left cosets of Sk.i in Sk+i,
for all k, I € No, allows us to give the following explicit description of 7r | .

5.8 Proposition. Let n G N and n G Sn. For each k G n,U {0}; choose
Vk € «Sfc(™~fc) and ak £ Sk, Pk £ S«-fc so that n = ^1(afc#/?fc), then

fc=0

Viewed as a word, the permutation ak is obtained by lining up the
elements 1,2 ... ,k from TT in their present order. Similarly, the permutation
(3k is obtained by reading out the numbers k + l,...,n from TT from left to
right and subtracting k from each of them.

Proof. Recall that / := fcjTr"1 is the unique ideal of order k in S(n), by 4.16.
Furthermore, SYT7 and SYT S ^^ 7 are singletons, by 4.3 and 4.8, hence
ak e SYT7 and /3k e SYT1^7^7 remain to be shown.

For ali i , j G Aj, i < j implies

~x = i v k < j v k = j ( ) l l

hence akw~1 : £j —> / respects the usual order on fc, and / . It follows that
= ij and a^ = L^TT G SYT7.

e SYTs{7r )U is shown analogously. •

5.9 Examples . As in 4.17, let TT = 3 415 2 G >S5, written as a word, then

7T J. = 0 ® 3 4 1 5 2 + l ® 2 3 41 + 12(g)l 2 3+312® 12 + 3412® 1 + 3 41 52®0.

In particular, ("P, J.) is not cocommutative. For all n G No, 5.8 implies

fc=O

For the order reversing involution pn in Sn: defined by ipn := n — i + 1 for
all i G Mj, that is,

p n = n (n - 1) (n - 2) • • • 2 1
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when written as a word, there is the analogous rule

n

Pni = E Pk ® Pn-k •
k=0

It is left to the reader to show that, more generally, if q = q\ qk (= n
and pq := pqi# • • • #Pqk € Sn, t hen

P X- ̂  / P ® p ~\~ / p ® p
r / j r r / j r r

r,s£N* r,s£N*\{0}
r.s=q ri_i3=q

where

r^s := ri rk-i.(rk + si).s2 si

for all r = ri rk,s = Si s/ G N*\{0}.

5.10 Restriction Rule. ZS4_ = £ Z7 O Zs\7, /or any s/iape 5.
i<s

Proof. Assume first that <s is a total order on S, then there is a permu-
tation 7T such that 5 ~ S^TT), by 4.3. Prom 4.12, 4.8 and the definition of
the coproduct J.,

We proceed by induction on the number of pairs of incomparable elements
in (S, <s). Let x,y £ S be incomparable with respect to <s- Concerning
the ideal structure of S(x,y), observe, for any J C S, that:

(i) If J is an ideal of S(x, y), then y £ J implies that x £ J, as x <s(x,y) V-

(ii) If x, y G J, then J is an ideal of S(x, y) if and only if there exists an
ideal / of S such that x,y £ I and J — I(x,y). In this case, the shapes
S(x,y)\J and S\I coincide.

(iii) If x,y £ S\J, then J is an ideal of S(x, y) if and only if J is an ideal
of S. In this case, we have S(x,y) \ J = (S \ I)(x,y).

(iv) If x £ J and y £ S \ J, then J is an ideal of S(x, y) if and only if J
is an ideal of S. In this case, the shapes S(x, y) \ J and S \ I again
coincide.
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Using these observations for both S(x, y) and S(y, x), it follows by induction
that

Z s ; = zs<.*<v)i + zS{v'x)l , by 4.11

J<S(x,y) J<S(y,x)

J<S(x,y)

x,y£S\J

J<S(x,y) J<S(x,y)
x,y€S\J x£

J<S(y,x)

J2 J Sl)SJ E ZJ ® ZS(J/'I )V, by (i)

by (ii), (iii), (iv)

7<S 7<S
x>ye/ x,yes\i |{

by 4.11

7<S

which completes the proof. •
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5.11 Theorem. (V,*, I) is a bialgebra.

Proof. It suffices to show (<J*T)1 = a I *$ T\. for all permutations a, r.
Let U be a semi-direct union of S(a) with S(T), say U = SUT such that
SDT = 0, S ~ 5(CT) and T ~ S(r). Then 7 C £/ is an ideal of £/ if and only
if there exists an ideal 7j of 5, and an ideal I2 of T such that / = Ii U/2- In
this case, / is a semi-direct union of/! with 72, while C/\7 = (5\71)U(T\72)
is a semi-direct union of (S\Ii) with (T\72).

Using 5.10 and 5.5, the asserted homomorphism rule is derived as fol-
lows:

h<S I2<T

h<S h<T

E E
h<S I2<T

D

5.12 Definition and Remark. Define a bilinear form (•, •) on T3 by

= f l if0"=T-1

p 1 0 otherwise

for all permutations <r, r. This form is regular and symmetric. Furthermore,
KSn ± KSm for all n, m G No such that n ^ m.

5.13 Notation. Denote by (•, • )PK)7, the unique bilinear form onV ®V
inherited from (•, •) as described in 2.6, then

iovalla1,a2,f31,[32eV.
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This chapter concludes with the important

5.14 Reciprocity Law. The bialgebra (V,*,l) is self-dual with respect
to (•, •) , that is, for all a, /?,7 G V,

Proof. Let a,b,n G No and a G Sa, r € <S(,, IT € <Sn. Using bilinearity, it
suffices to show that

Both terms are zero unless a + b = n, by 5.1 and 5.7. Let a + b = n, then
the scalar product (<T*T,TT) is one or zero according as IT~1 = (<J#T)V for
some v a Sab or not, by 5.2.

For all k G n,U {0}, choose vk e Sk-(-n~k\ ak G Sk and (3k G <Sn_fc such
that 7T = u^l(ak^=(3k), then the scalar product

/c=0

is one or zero according as CT"1 = a a and T " 1 = /3O or not, by 5.8. But this
condition is equivalent to n = i/~1(aa#/3a) = ^ 1 ( O ' ~ 1 # T ~ 1 ) . The proof is
complete. •





Chapter 6

Frames

Alfred Young was the first to use the notion of a frame, that is, a convex
shape contained in Z x Z, in the representation theory of the symmetric
group (see, for example, [You28; You34]). The aim of this chapter is to
analyse two of the major notions introduced in Chapter 5 — the induction
rule 5.5 and the restriction rule 5.10 — in the special case of frames. For
the time being, this may be viewed as an illustration of those parts of the
abstract theory introduced so far. The applications will be seen in Part III.

As a byproduct, there is a sub-bialgebra of V, the Jollenbeck algebra J-,
which is linearly generated by the elements ZF (F a frame). It was this
bialgebra upon which the noncommutative theory introduced in [J6198] was
based.

The direct sum V of the Solomon descent algebras Vn, n £ No, is
contained in J-. In fact, Solomon's noncommutative Young characters E9

are among the linear generators 7/ of J-, as a proper choice of frames F
will show at the end of this chapter. In this way, we see that the bialgebra
(T>, *, I) considered in the introduction is a sub-bialgebra of the algebra V
of permutations.

Recall that any subset U of a partially-ordered set (M, ^) is convex if,
for all x,z £ U and y £ M, x <y < z implies that y € U.

6.1 Definition. Let F be a finite subset of Z x Z. The total order on
F inherited from the total order —» on Z x Z is denoted by —»j?, while
the partial order on F inherited from <zxz is denoted by <p. The shape
(F, —>p, < F ) is a frame if F is a convex subset of (Z x Z, <zxz)-

6.2 Example. Up to isomorphism, the frames of order 3 may be illus-
trated as follows:

53
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%

6.3 Definition. Let F be a frame, then Fj := (Z x {j}) n F is the j- i / i
column and Fi := ({i} x Z) n .F is the i-th row of F, for all z, j G Z.

Convexity allows a first simplification by the observation that, in the
case of a frame F, the standard Young tableaux of shape F may be char-
acterised locally as follows.

6.4 Proposition. Let F be a frame, n := \F\, f 6 5 n and a := C 1 ^ ,
then n is a standard Young tableau of shape F if and only if a is increasing
in the rows (from left to right) and decreasing in the columns (from top to
bottom) of F, that is, if

(i,j)a<(i,j + l)a and (k,l)a < (k+ l,l)a

for all i, j , k,leZ such that (i,j), (i,j + 1), (A;,I), (k + 1,1) £ F.

As F is convex, this is readily seen from

() < z x z ••• < z x z ( i , l ) < z x z ( i + l , Z ) < Z x Z ••• <

for all (i,j),(k,l) € Z x Z such tha t (i,j) < Z x Z (k,l).

An alternative and possibly more common description of frames may be

given in terms of partition frames.

6.5 Definition. For any partition p € N*, the set

e(p)
F(p):=\J{i}xBl

i=l

is called the partition frame corresponding to p. Let q be a second partition.
Set

F(p\q) := F(p)\F(9)

and, for brevity, V := Z F ^ and Z ^ := ZF(p)\F(?).

6.6 Proposition. For all partitions p, q, F(p\q) is a frame. Conversely,
for any frame F, there exist partitions p, q 6 N* such that F ~ F(p\q) and,
in addition, F(q) C F(p).



Chapter 6. Frames 55

Proof. Let x,y,z € Z x Z such that x <zxZ V <ZxZ z and x,z £ F(p\q),
then rr ^ F(q) implies that y ^ F(g), while z £ F(p) implies that y G F(p),
hence y £ F(p\qr). It follows that F(p\q) is convex as asserted.

The second part may be proved by induction on the order of F. How-
ever, the straightforward but somewhat tedious line of reasoning is left to
the reader. •

Which description of frames is preferred depends on the application and,
of course, on personal taste.

6.7 Notation. Denote the linear subspace of V generated by the ele-
ments ZF, F a frame, by J-. Then

n€N0

where J-n is the linear span of the elements ZF such that F is a frame of
order n, for all n £ No.

The following propositions, which show that T is a sub-bialgebra of V,
yield helpful illustrations of the results derived in Chapter 5. To begin
with, products in T are analysed by constructing a semi-direct union of
two frames. This demonstrates the function of 4.11 and 5.5.

6.8 Definition and Remark. Let F and G be frames. If F = 0 or G = 0,
let

U:=FUG,

while, for F ^ 0 and G / 0 , denote the largest element of (F, —>F) by x
and the smallest element of (G, —»G) by z and put

G':= G - z + x + {-1,1)

and

U:=FU G'.

Then U is a frame, and a semi-direct union of F with G, called the coupling
of F with G.

If F and G are nonempty, the situation may be illustrated as follows.
Start with
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F

F

±J
G

in arbitrary relative positions, then

U:=FUG' ~

where y := x + (—1,1) is the smallest element of (G1, —>).

Proof. There is nothing to prove in the case where F = 0 or G = 0.
Let F and G be nonempty, then the choice of x and z means that the

frames F and G' are disjoint. Furthermore, by 4.5, G' and G are isomorphic.
Let x = (a, 6). The cell y := (a — 1,6 + 1) is minimal in G' with respect
to —>. Convexity of .F and maximality of a; in (F, —>) imply j < b for all
(«,i) € F . Similarly, b+1 < I for all (A;,/) G 6", as y is minimal in G'
and G' is also convex. Therefore j < /, for all (i,j) G F and (A;,/) G G'.
Furthermore,

yields i> k. Hence (i, j) and (k,l) are incomparable with respect to <zxZ-
Now it is readily seen that U is also convex, and indeed a semi-direct union
of F with G. 0

6.9 Proposition. Let F and G be nonempty frames, and let U be the
coupling of F with G, then

Furthermore, if F and G are nonempty and G' is defined as in 6.8, then

(l,0)) + ZFU(G'-(O,1))

Proof. The first equality is immediate from 5.5 and 6.8.
Let F and G be nonempty and denote by x the largest element of

(F, —>F), then y = x + (—1,1) is the smallest element of ( C , —>G') and x,
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y are incomparable in (U, <[/). Furthermore,

U(x,y) ~ FU(G'

and

U(y,x) ~

as is easily seen. The second equality thus follows from 4.11. •
6.10 Example. Let k,m S N and consider the special case in which F is
a vertical bar of order k, and G is a horizontal bar of order m,

F ~ G ~ F(m) =

where lfc := 1 1 (k factors). The resulting formula

pictorially

is useful. For example, it readily implies the linear relation

fc=0

for all n £ N, where, by definition, Z° = 0 £ 5o is the identity of V.



58 Noncommutative character theory of the symmetric group

If F is a frame and I is an ideal of F, then the definition of an ideal
implies that both / and F\I are convex. Hence, by 5.10, J- is closed under
coproducts. In addition, there is an easy description of the ideals of a
frame using the Young lattice defined below which leads to the illustrative
restriction rule given in 6.13.

6.11 Proposition. Letp,q G N* be partitions such that F(q) C F(p), and
let I be an ideal of F(p\q). Then there exists a partition r G N* such that
F(«) Q F(r) C F(p) and I = F(r\q).

Proof. The set J := F(q) U I is an ideal of F(p). If J = 0, then 7 = 0 =

F(9\9).
Assume that J ^ 0. Let fc be maximal such that Jk ^ 0, then there is

a column index j 6 N such that (k,j) £ J. But (m, 1) <zxZ (&>.?') implies
Jm ^ 0; for all m G fcj. Let rm 6 N be the maximal column index such that
(m, rm) G / , for all m € Aj, and put r := ri r-̂ , then

(m, r m + 1 ) < Z x Z (m + 1, r m + 1 ) G J

implies that (m,rm+i) G J and so rm+1 < rm, for all m G fc — 1|. Hence r
is a partition, and J = F(r). The claim follows. •

6.12 Definition. Define a partial order C on the set of partitions in N*

by

F(q) C F(p).

This partially-ordered set is a lattice, the Young lattice.

Combining 6.11 with 5.10, yields:

6.13 Corollary. Let p, q G N* be partitions such that q C pr then

where the sum is taken over all partitions r such that q C r C p.

Now 6.9 and 6.13 imply indeed:

6 . 1 4 C o r o l l a r y . J- is a sub-bialgebra of (V,*,X), called the Jo l l enbeck

algebra.

Here is the link to Solomon's theory.



Chapter 6. Frames 59

6.15 Definition and Remark. Let q = q\ qi G N* and denote by
Si := qi + • •• + qi the i-th partial sum of q, for all i £ 4 then the words
p := s/.s;_i si and r := S(_i «i are partitions. The frame

HS(g) := F(p)\F(r)

may be visualised by

1 ••• 1
91

91

Any frame isomorphic to HS(g) is called a horizontal strip of type q.
Recall the definition of Pq given in the introduction to observe that

7T G SYT ^q' if and only if 7r is increasing on the successive blocks
P?, P%,..., Pf in n, of order q1: q2,..., qi, that is,

S» = SYTHS(9) and Eq = ZHS(l?).

6.16 Corollary. The linear span T> of the elements Eq = ZHS<-q\ q G N*,
is a sub-bialgebra of T. Furthermore,

for all q, r G N* and

n

fc=O

for all n G N, where S° := 0 G <S0 is the identity of (V,*).

Proof. The product rule is a special case of 6.9, since HS(r.g) is isomorphic
to the coupling of HS(r) with HS(g). Furthermore, En = idn for all n G N,
hence the coproduct rule was given in 5.9 already. •

For later use, this chapter concludes with a characterisation of horizontal
strips.

6.17 Proposition. Let F be a frame of order n, then F is a horizontal
strip if and only if idn G SYTF.
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Proof. Let q \= n such that F ^ HS(g), then

idn € S" = SYTHS(9) = SYTF.

Conversely, assume that idn €E SYT , so that

a := 6-Mdn = t-1 : (F, <F) -> (a, <)

is monotone. Then each column of F contains at most one cell. Indeed, if
i,j, k € Z such that x := (i,k),y := (j,k) £ F and i < j , then x < z x z V
and y —> x. The first relation implies xa < ya, while the second relation
implies ya — yul1 < XL!1 — xa, hence xa = ya and x = y.

Let i\,... ,in G Z be the indices of the nonempty rows of F, arranged
in decreasing order. As F is convex there are column indices a.j, bj £ Z, for
all j € kj, such that a,j < bj and i7^ = {(ij,a,j),... ,(ij,bj)}. Since each
column of F contains at most one cell, it follows that bj < a,j+i for all
j € k — 1|, by the convexity of F, and thus

- a i + l) {bk-ak + l)). Q



Chapter 7

Epimorphisms

In this chapter, the crucial link is given between the noncommutative alge-
bra V of permutations and the commutative algebra C of class functions.

Throughout, IL, is a primitive element in KSn for all n £ N, in the
following sense.

7.1 Definition and Remarks. Let n € N. An element tp € V is primitive
if ipi = </?<8>0 + 0<g>y>. The set of all primitive elements in V is a linear
subspace of P, since the coproduct J. is linear.

For each q = q\ qk £ N*, put II, := IIgi * • • • * Iiqk, then

= ( n 9 1 <g> 0 + 0 ® n g i ) *® • • • *g, (n,fc <g> 0 + 0 ®

JCfc,

since (T3, *, | ) is a bialgebra.

7.2 Example. Let n G N. The element

q\=n

is primitive, since the coproduct rule for the elements pq mentioned in 5.9
implies

r,s€N*\{0}

61
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and l{r.s) = l(r^s) + 1 for all r,s£ N * \ { 0 } .

Note that (IIn,idn)p = (Hn,pin)v = 1 and (Iln,Un)v = 2n~l for all
n £ N, since (p9)'1 = pq for all q e N*.

Linear bases of the space of all primitive elements in V have been con-
structed in [AS; DHT02].

7.3 Definition and Remarks. Define a linear mapping c n : V —> C by

cn(<p)(Cp) := (<p,Up)v

for all n € N, ip S KSn and p\- n. In other words, the value cn(y>)(7r) of
the cn-image of <p £ KSn on any element TT £ Cp is (ip, n p ) _ .

Note that c n is graded, that is, it maps X<Sn into C£fc(Sn) for all n G No.
Furthermore, it is convenient to observe that, if 7 = X^mgN0 ̂ m ^ *̂ wi*h
7 m £ KSm for all m £ No and p is a partition of n, then

7.4 Theorem. cn : (V, *) —> (C, •) is o homomorphism of algebras.

Proof. Let a,f3 £ V and p = p\ pi £ N* be a partition. Using self-
duality of V and C and applying 3.6 and 3.13, we obtain

cn(a*i3)(Cp) = (a* (3,Iip)v

JClj

JCI
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JClj

= (cn(a)»cn(/3),chp)c

= (cn(a).cn(/3))(Cp),

since Pj and pCJ are partitions, for all J C /,. D

7.5 Example. For the element H" = idra £ <Sn,

is the coefficient of idra in lip, for all p h n. Let p = px pi and set
p = p\ Pi-i, then the coproduct rule for idn given in 5.9 and self-duality
of V yield

idn_fc, n p

by a simple induction on I — £(p). If, in particular, (idn,IIn)_ = 1 for all
n € N, then en(E") is the trivial character £n of Sn-

Combining this example with Theorem 7.4, yields:

7.6 Corollary. Assume that (Hn, idn) = 1 for all n £ N, then the restric-
tion of cn to P n coincides with Solomon's epimorphism cn, for all n £ N.

/n particular, in this case, cn 25 onto.
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Indeed, by 6.16, 7.4 and 3.2,

for all q — q\ q% 6 N*.
Another consequence of the above theorem concerns the images of the

elements IIg and concludes this chapter.

7.7 Corollary. Set an := (Iln,IIn)p/n for all n e N, then

c n ( n < ? ) = a 9 i •••aqkchq

for all q = q\ qk £ N*.

Proof. Primitivity of Un and self-duality of V imply c n (n n ) (C p ) =
( n n , n p ) = 0 for all partitions p ^ n in N*. This shows cn(IIn) = anchn

and also

c n (n g ) = c n (n 9 l • • • • * I I , J = c n (n g i ) • • • • • c n ( I I g J = aqi • • • aqkdnq

for all q = qi qk G N*, by 7.4 and 3.7. D



Chapter 8

The Coplactic Algebra Q

The Robinson-Schensted correspondence stated below is the combinatorial
core of noncommutative character theory.

A new non-algorithmic proof of the Robinson-Schensted correspondence
is given in Appendix C. It is well adapted to the current setting and builds
on the detailed analysis of Knuth's relations given in [BJ99]. For other
proofs and general reference on the subject, see [Ful97; Knu73; Lee96], for
example.

8.1 Definition and Remark. It is convenient for our purposes to denote
the interval of positive integers with margins a and b by (a,b), for all a
and b in N, that is:

f { c e N | a < c < b } if a < 6,
(a.b) := <

| > { c € N | 6 < c < o } i f 6 < o .

Let n € No and ir, a g Sn, then a is a plactic neighbour of n if there exists
an index i € n — \\ such that a = Tn^-K and (i — l)n or (i + 2)TT is contained
in (ill, (i + 1)TT). Here Tnii := (i (i + 1)) denotes the transposition in Sn

swapping i and i + 1, and 0?r := 0 or (n + 1)TT := 0 if necessary.
If 7T and a are viewed as words, then this means that a is obtained

from 7T by swapping the i-th and (i + l)-th letter, and that the (i — l)-th
letter to the left, or the (i + l)-th letter to the right of in (i + 1)TT in the
image line of 7r, is in between of iir and (i + 1)TT with respect to the usual
ordering of nj. This relation is symmetric.

The smallest equivalence ~ on Sn containing the plactic neighbourhood
is the plactic equivalence. The corresponding equivalence classes in Sn are
the plactic classes in Sn.

65
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Let SYTP := SYTF(p) and sytp = |SYTP| for all partitions p.

Robinson—Schensted correspondence. Let n 6 N, then there is a bi-
jection

Sn — | J SYTP x SYTP, n —> (P(ir), Q(TT))
phn

such that for all TT, a € Sn

(i) P(7r-1)=QW,
(ii) P(7r) = Pier) if and only if n ~ a,
(iii) P(?r) ~ 7r.

Such a bijection was denned algorithmically by Schensted in [Sch6l].
The first component P is the Schensted P-symbol, while Q is the Schensted
Q-symbol. It is now folklore that a different construction given earlier by
Robinson [Rob38] yields the same bijection. Both algorithms involve highly
asymmetric constructions of the P- and the Q-symbol.

However, the two components are linked by (i), which is known as
Schiitzenberger's theorem [Sch63]. By (ii), the equivalence on Sn arising
from equality of P-symbols is the plactic equivalence defined above — a
result of Knuth [Knu73]. These relations on the symmetric groups Sn can
be extended to a congruence of the free monoid N*. The quotient monoid
consisting of the corresponding congruence classes in N* has a significant
importance in algebraic combinatorics in general, due to the work of Las-
coux and Schiitzenberger [LS8l], who called it the plactic monoid.

The plactic relations stated in (iii) are readily derived from Schensted's
algorithmic description of the P-symbol (see, for instance, [BJ99]) and allow
one to give the following description of the P- and the Q-symbol.

8.2 Proposi t ion . Let n £ N and a 6 Sn, then the P-symbol of a is the
unique standard Young tableau a £ Uphn SYTP contained in the plactic
class of a, while the Q-symbol of a is the unique standard Young tableau
f3 S Uphn SYTP contained in the plactic class of a~x.

Proof. It suffices to prove the first part concerning the P-symbol, by
Schiitzenberger's theorem.

The P-symbol of a is contained in Uphn SYTP and in the plactic class
of <T, by (iii). To prove uniqueness, consider first an arbitrary standard
Young tableau a in Uphn SYTP. Surjectivity of the Robinson-Schensted
correspondence allows us to choose a permutation u £ Sn with P-symbol a.
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Then u and a are in plactic relation, by (iii), hence P(a) = P{v) = a, by
Knuth's theorem (ii). Thus, if a and a' are two standard Young tableaux
contained in the plactic class of a, then a = P(a) = P(a') = a', by (ii)
again. •

8.3 Definition and Remark. Let n € N and n,a € Sn, then a is a
coplactic neighbour of TT if o~~l is a plactic neighbour of n~1. Equivalently,
there exists an index i € n — I, such that a = 7TTnii and i — 1 or i + 2 is
contained in

the segment in the image line of n bordered by and including i and i + 1.
The reflexive and transitive cover of the coplactic neighbourhood is the

coplactic equivalence, so that a and TT are in coplactic relation if and only if
their inverses are in plactic relation. The equivalence classes in Sn arising
from the coplactic equivalence are given by equality of Q-symbols, accord-
ing to (i) and (ii), and referred to as coplactic classes. The number of
coplactic classes in <Sn is equal to the number of possible Q-symbols, that

For each n e No, denote the linear span of all sums T.A of coplactic
classes A in Sn by Qn and set

Note that the elements HA, where A is a coplactic class in Sn, constitute
a linear basis of Qn, since two coplactic classes in iSn are equal or disjoint,
so that

dim Qn =
p\-n

The linear space Q is a sub-bialgebra of the bialgebra V of permuta-
tions. This is the coplactic algebra, which was discovered by Poirier and
Reutenauer [PR95] and which contains the Jollenbeck algebra T defined in
the previous chapter. The coplactic algebra may be viewed as an algebrai-
sation of Schensted's combinatorial construction and turns out to be the
natural framework for the noncommutative character theory.

Before the above mentioned properties of Q are derived, the Robinson-
Schensted correspondence for £4 shall be illustrated as an example. Observe
that, in general, the symmetric group Sn is subdivided into several cells
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indexed by partitions p of n, according to the shape of the P-symbol and
of the Q-symbol of a permutation n e Sn.

8.4 Definition and Remark. Let n s N and p \- n, then

gp := {-K G Sn \P(ir) G SYTP}= {TT £ <Sn | Q(TT) G S Y T P }

is the Greene cell corresponding to p. The Greene cells are the equivalence
classes arising from the smallest equivalence on Sn containing both the
plactic and the coplactic equivalence. Each Greene cell is thus a union of
plactic classes and a union of coplactic classes. Note that SYTP is contained
in gP, for all p h n, by 8.2.

We mention that Greene [Gre74] discovered a way to determine the
shape of the P-symbol of a permutation TT 6 Sn directly, that is, without
recourse to Schensted's algorithm (see the final part of Appendix C).

8.5 Example. The Robinson-Schensted correspondence for the symmet-
ric group 54 is now illustrated. The Greene cells £4, £3 1 , Q2-2, £ 2 1 1 and
gi.i.i.i m £4 gj-g considered as coordinate systems. The plactic classes con-
stitute the columns, and the coplactic classes the rows of each cell. Two
plactic (respectively, coplactic) neighbours are connected by a vertical (re-
spectively, horizontal) bar, which is labelled by the corresponding swap
position.

For each p h 4, the elements of SYTP constitute the first row of the
corresponding cell gp, while the elements of (SYTP)-1 constitute its first
column. We shall see later on that SYTP is a coplactic class for any par-
tition p (see 8.8). The intersection of SYTP with (SYT)-1 (the upper
left corner, or "origin" of <7P) contains a unique element vr £ SYTP, and
TT = n~1. In fact, starting with these two axes of Qp, it is possible to round
out the cell gp for arbitrary p using proper plactic and coplactic relations.

p = 4 1234

2 1 3 4 - 2 - 3 1 2 4 - 5 - 4 1 2 3

= 3.1 2314 — 1 3 2 4 - ^ - 1 4 2 3

3 U 2

2341 — 1 3 4 2 - 2 - 1 2 4 3
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= 2.2

p = 2.1.1

3412-^-2413

3142

2

3421

2143

3 214-5-4213^-4312

3241 — 4231 — 4132

2431

1

1432

p = 1.1.1.1 4321

Once this is done, the Robinson-Schensted correspondence is described
pictorially as follows. To compute the P- and the Q-symbol of IT = 2 4 31,
say, first locate the cell ("coordinate system") containing TT, that is: Q211.
Now move from IT to the top edge of the cell, its "P-axis", and reach the
standard Young tableau a = 4213 of shape p = 2.1.1, the "P-coordinate"
of IT. Then move from n to the left edge of the cell, its "Q-axis", and
reach the inverted standard Young tableau j3 = 3421 € (SYTP)-1, the
"Q-coordinate" of n. This yields

4
2
1

4
3
1

by 8.2. Injectivity of the Robinson-Schensted correspondence guarantees
that no permutation occurs in two different coordinate systems and that
each horizontal and each vertical line in the same coordinate system inter-
sect in a unique point.

Furthermore, in this illustration, Schiitzenberger's theorem says that
taking inverses exchanges the coordinates. In particular, each permutation
•K € Sn with TT = 7T~1 is located on the main diagonal of its cell, and each
coplactic (and each plactic) class in Sn contains a unique such element.

Let it be mentioned that, as n grows large, the graph structures of the
cells in Sn grow much more complicated.

We proceed by deriving the algebraic properties of the linear space Q,
step by step.
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8.6 Theorem. Q is a sub-bialgebra of (V,*, I), called the coplactic alge-
bra.

Proof. Let n, m G No and choose coplactic classes A in Sn and A' in Sm

respectively.
There exists a subset C of Sn+m such that 12A * HA' = HC, by 5.2,

since both the embedding # : Sn x <Sm —> <Snm and the product map
iŜ .m x Snm —> <Sn+m are injective. We need to show that C is a union of
coplactic classes in order to prove that HA * ~£,A' G Q.

Let n G C and choose a coplactic neighbour a of TT in Sn+m. There
exist permutations a G A, a' G A' and v G Snm such that n = (a^fa')i',
by 5.2. Furthermore, a = TTTn+m.ti for some i € n + m| such that i — 1 or
i + 2 is contained in (z, i + 1)^.

If the intersection {i,i + 1} D np is a singleton, then VTn+mti £ 5""1,
hence CT = 7rrn+mii = (a#a')(i/rn+m,i) G C.

Assume now that both x = i^"1 and y = (i + l)v~l are contained in n,.
Then i/ G 5""1" implies x < y. In fact, it even follows that y = x + 1. As a
consequence, vTn+m^v~l = {iv~l (i + l)^"1) = Tn+m,x and thus

a = nTn+mti = (a#a')^rn+m,i = (a#a')^+m,x^ = {aTn,x#a')v.

Furthermore, ITT"1 = ra"1 and (i + l )^" 1 = ( i+ l )^" 1 . If i — 1 is contained
in (i,i + l)n, then (i - l )^" 1 G nj, hence also (i - I)!/"1 G nj. So z/ G <S"-m
implies (i — l )^" 1 = x - 1. Similarly, if i + 2 is contained in (i, i + l)n, then
(i + 2)TT-1 G ri) implies (i + 2)u~1 G n, and (i + 2)i/~1 = x + 2.

It follows that (a; - l ) ^ - 1 = (i - l ) ^" 1 or (x + 2)a~1 = (i + 2)7r~1

is contained in the interval (sa"1, (x + l)a~1}. In other words, arn ] I is a
coplactic neighbour of a, hence a r ^ G A and a G C.

The case where both i and i + 1 are not contained in TTjf may be
dealt with analogously: here we find that cr — (a#a!TmtX-n)i> and that
a Tm,x—n € A .

We have proven that Q is a subalgebra of (V, *). In order to show it is
also a sub-coalgebra, choose coefficients ca^ G K such that

where the sum ranges over all permutations a, (3 such that a G <Sfc and
f3 G <Sn_fc for some A; G nj U {0}.

We fix a G <Sfc and (3 G <Sn_/t and prove that ca%$ = ca/?/3> whenever a is
in coplactic relation with a' and /? is in coplactic relation with j3'.
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In fact, it is enough to show that ca$ = ca',p for each coplactic neigh-
bour a' of a and ca^ = caipi for each coplactic neighbour (3' of /3, for this
implies the above statement and thus EAJ. £ Q®Q. Observe first that 5.8
implies

where Aa>p denotes the set of all TT £ A such that VK = a#/3 for some
v £ <Sfc("-fe). Fix v € Sk-(-n~k') and choose a coplactic neighbour a ' of a,
say, a ' = aTk,x- Then the map TT H-» 7r' := 7rrnjX is a bijection from Aa<p,v :=
{7T £ A | vn = a#/3 } onto Aa',p,v '•= {ft £ A\vir = a'#(3 }, because 7r' =
^^Vi,! is a coplactic neighbour of TT whenever VK = a#[3. It follows that

Ca,/3 = 2Z \Aa,P,v\= 2 j \Aa> ,/3,i^\ ~ Ca',0 •

Similarly, there is a bijection ?r H-> TT' := TTniX+k from ^4Ql/3,v onto Aai/a'it,
whenever /?' — /3rn_fcjX is a coplactic neighbour of /?, which implies that
Ca,/3 = cQ)/3'. The proof is complete. •

8.7 Lemma. J- is a sub-bialgebra of Q. More precisely, the set of standard
Young tableaux of shape F is a union of coplactic classes, for any frame F.

Proof. Let n := \F\ and TT £ SYTF. It suffices to show that a <£ SYTF

implies that a is not a coplactic neighbour of n, for all a £ Sn.
Let a £ Sn such that a fi SYTF. Assume that i £ n — 1| such that

a = TTTnj. (If such an index i does not exist, then a is not a coplactic
neighbour of TT anyway.) The choice of TT implies that the corresponding
mapping a := L^TT : F —> n^ is monotone with respect to <zxz and <,
while the choice of a implies that a := C^c = otTn^ does not have this
property. As a consequence, x := i a " 1 and y := (i + l ) a - 1 are comparable
elements of (F, <z x z ) , and i < i + 1 actually implies x <zxz 2/- Each cell
z £ F with a; <zxz ^ <Zxz V is equal to x or y, since application of a yields
i < za < i + 1, hence za £ {i, i + 1}. It follows that x and y are horizontal
or vertical neighbours in F, that is: y = (r, c + 1) or ?/ = (r + 1, c), where
r, c € N such that x = (r, c).

If x and y are horizontal neighbours in F, that is ?/ = (r,c + 1), then
x —> y, hence

(i, i + l),r = { j e rzj | x -> j a " 1 -+ y } = {i, i + 1}

does not contain i — 1 or i + 2. So cr is not a coplactic neighbour of ?r as
desired.
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Assume now that x and y are vertical neighbours in F, that is y =
(r + l,c), then | / - n . Let j G (i,i + l)T\{i, i + 1} and choose u, v G N
such that ja~l = (u, u). Then y —» j a r 1 —> a; implies u = r + 1 and c < i>,
or u = r and v < c.

In the first case, x = (r, c) <zxz (f,f)) <zxz (r + 1,«) = ja'1, hence
(r, v) € F, since F is convex. Furthermore, i < (r,v)a < j and thus
j>i + 2, since (r, u) ^ {x, y}.

Similarly, in the second case, ja~l <zxz (r + I)11) <ZxZ 2/ a nd thus
(r +1 , v) G F. This implies j < (r+l, v)a < i +1. From (r + 1 , v) <£ {x, y}
it follows that j < i — 1.

In other words, in any of the two cases, neither i — 1 nor i+2 is contained
in (i, i + l)w, so that a is not a coplactic neighbour of n as desired. •

8.8 Corollary. Let n £ N and p h n , then SYTP is a coplactic class in Sn

and contained in Qp.

Proof. SYTP = SYTF^ is a union of coplactic classes, by 8.7, and con-
tained in Qp, by 8.2. But each coplactic class A in Qp has cardinality sytp,
since the restriction to A of the Robinson-Schensted correspondence yields
a bijection from A onto SYTP x {/?}, where /3 is the common Q-symbol of
the elements of A. •

8.9 Definition. For any linear subspace V of V, the radical of V with
respect to (•, •) consists of all a € V such that (a,/3) = 0 for all /3 G V.

8.10 Noncommutative Orthogonality Relations. Let n G N, then,
for all p,qh n and all coplactic classes A in Qp and A' in Qq,

r 10 otherwise.

In particular, the elements Zp, p t- n, span a linear complement of the
radical of Qn in Qn, and

for all partitions p, q of n.

Proof. This is a translation of the essentials of the Robinson-Schensted
correspondence into linear algebraic properties of Q.
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Let (12A, T,A') ^ 0 and choose a permutation a E A' <~) A~l. Then
a&A' implies P(a) G SYT9 and a"1 e A implies P(a) = Qia'1) 6 SYTP,
hence p = q.

Conversely, if p — q is assumed, then there exists a unique permuta-
tion 7T € Sn such that Q(TT) is the common Q-symbol of the elements of
A' and P{K) = Q('n~1) is the common Q-symbol of the elements of A.
Equivalently, ir E A' n A'1. This proves the first claim and implies the
orthogonality relations for the elements Zp, by 8.8.

Furthermore, if p = q, then the scalar product (EA — T.A', E5) is
zero for all coplactic classes B in <Sn. Thus, on the one hand, the ele-
ments Zp — Y.A, where p \- n and A is a coplactic class ^ SYTP in Gp,
constitute a linearly independent subset of the radical of Qn. On the other
hand, { Zp | p h n } is an orthonormal subset of Qn. Comparing dimensions,
completes the proof. •

In concluding this chapter, an immediate consequence of another result
of Schensted [Sch61, Lemma 7] is stated.

8.11 Definition and Remark. Let p = p\ pi be a partition in N*.
The conjugate partition p' of p then has length p\ and is defined by

for all i £ £ij. In illustrative terms, the partition frame F(p') corresponding
to p' is obtained by transposing the partition frame F(p) corresponding to
p, that is,

F(P') = {(y,x)\(x,y)eF(p)}.

Recall from 5.9 that pn = n (n — 1) (n — 2) • • • 21 denotes the order
reversing involution in <Sn, hence that pnK (when viewed as a word) is
obtained by reading n backwards, for all 7r 6 Sn.

8.12 Theorem. Let n € N andp h n. If A is a coplactic class in Qp, then
pnA is a coplactic class in Qp'.

A proof of this result may also be found in Appendix C.





Chapter 9

The Main Theorem

In order to complete the noncommutative superstructure, a proof and some
immediate consequences are given of Main Theorem 1.3.

A series of primitive elements u>n 6 Qn (n € N) is then constructed such
that (wn,wn)p = n and (wn, idn)p = 1 for all n G N (see 9.4 and 9.5). The
corresponding algebra map

referred to as Jollenbeck epimorphism here, will be used for applications in
the third part of this book. It is this series upon which the noncommutative
theory introduced in [J6198] was based.

We shall also address the question in which way the various epimor-
phisms cn : Q —• C may differ as the underlying series of primitive elements
II varies (see 9.8).

9.1 Main Theorem. Let Hn be a primitive element in Qn such that
(Un,Un)v = n, for all n £ N. Restricted to Q, the linear map cn then
is a graded and isometric epimorphism of bialgebras. In other words,
cn(Qn) = ClK{Sn) for all n e No, and

cn{a-k(i) = cn(a)»cn(/3),

(cn<g>cn)(a | )=cn(a) |

for all a,/3 e Q.

Proof. Let n e N and let Cn be the linear span of the elements n p , p\- n.

75
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From 7.7, it follows that

for all q £ N*. The restriction of cn to Cn is thus a linear isomorphism onto
CeK(<Sn). Furthermore, (Uq,Up)v = cn{Uq)(Cp) = chq{Cp) = (chg,chp)c,
for all partitions q, p of n, hence cn|cn is also an isometry.

Denote the radical of Qn by Rn and the kernel of CJJIQ^ by Kn, that is
Kn = Qn n ker cn. Each element of Rn is, in particular, orthogonal to any
element of Cn C Qn. The definition of cn thus implies Rn C Kn.

The codimension of Rn in Qn is equal to the number of partitions of n,
by 8.10, hence equal to the codimension of Kn in Qn, since cn maps even Cn

onto C^K-(<Sn). It follows that Rn = i^n and thus Qn = Cn + Kn = Cn + Rn.
Now let a,/3 £ Qn and choose elements ai,/?i £ C,, and 0.2,^2 6 -Kn =

.Rn such that a = ai + a2 and /? = /?i + /?2, then

(cn(a),cn(/3))c = (cnfaO.c,,^!)^ = (ai,/3i)p = (a,/3)p .

Combined with 7.4, this shows that the restriction of cn to the coplactic
algebra Q is an isometric epimorphism of algebras onto C. Since the bilinear
form (-, •) is regular, an application of 2.14 completes the proof. D

c
9.2 Remark. In the situation of the Main Theorem, the coefficient kn =
(IIn, idn) of \dn in IIn is either 1 or — 1.

This is clear for n = 1, while for n > 1, we use the Main Theorem
and 7.5 to obtain inductively

n\=n\(En,En)v

= n!(cn(S"),cn(H"))c

2

p\—n

hence also kn = 1 or kn ~ — 1.

The following additional consequence of 8.10 is worth mentioning.

9.3 Corollary. cn(E^4) = cn(Zp), for any partition p in N* and any
coplactic class A contained in the Greene cell Qv.
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Proof. The difference Zp —12A is orthogonal to each element of Q, by 8.10,
hence, in particular, to each element n p , where p is a partition in N*. •

One possible choice for IIn in the Main Theorem is the following.

9.4 Definition and Remarks. For all n 6 N, set

n- l

fe=o

where (n - k).lk := (n - k). 1.1 1 \- n for all k G n-l, U {0}. For
k

example, viewing permutations as words, o;3 = Z3 — Z 2 1 + Z 1 1 1 = 12 3 —
213 — 312 + 321 . By definition, u>n € .F. Considering the second basis
of Solomon's algebra mentioned in the introduction, 7^n~k^'1 = A^ is the
sum of all permutations 7r e Sn with descent set kj, for all A; G n — 1| U {0}
(see also 11.6 and 11.7), hence wn is actually contained in I>n.

Furthermore, the identity Z1* • Zm = Z"1-1* + Z^"1"1)-1*"1 mentioned
in 6.10, for all k, m G N, allows the definition of uin to be rewritten as

n

fc * Z n - f c .
fc=0

9.5 Theorem. For each n € N, u>n is a primitive element of KSn with
(un,wn)v = n and (wn , idn) p = 1.

Proof. The coefficient of idn in un is 1, by definition.
Recall from 6.10 that Am := YZ=Q{-l)k'Llk * 1m~k = 0 for all m > 0,

while AQ = 0. Apply 5.11 and the restriction rules for Z" = idn and
Z1 = pn stated in 5.9 to obtain

z1'

n n—i n—j

i=0 j=0 k=i

n m n—m+i

E E E (~1)fc(n
m=0 i=0 fc=i
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n m n—m
E (-l)fc+i(n -k-i) (Zji * Z"1"') ® (Z1* * Z"-fc-m)

n m n—m

((
m=0 i=0 k=0

m n—m

(J^(_l)* Z r * Z"1"*) ® ( ̂  (-l)fc(n - m - fc) Z1' * Z"
»=o Jt=o

m=0

= wn ® 0 + 0 <g> cjn .

This proves the first claim and implies that

l)fc(n - fc)K, Z1 * Z" f c ) p = n(Wn, Z")p = n,
fc=0

as asserted. D

9.6 Definition and Remarks. Set wq = uqi • • • • • Wqfc for all q =
qi qk £ N*. The Main Theorem can be applied to the Jollenbeck epi-
morphism c = c^ :V->C, denned by

for all n £ N, ip £ KSn and p h n , which extends Solomon's epimorphism
cn : Vn -* C(.K{Sn) for each n € N, by 7.6. Furthermore,

c(wq) = chq

for all q G N*, by 7.7.

Recall from 2.9 that S denotes the unique coproduct on KW such that
(KN*,.,S) is a bialgebra and nS = n<g> 0 + 0 <g>n for all n G N.

9.7 Corollary. {w9 | g G N* } is a linear basis of T>. In particular, the
map q t-> u>q (q G N*j extends linearly to an isomorphism of bialgebras

Proof. Let n G N and let uin = X^qt,, o,qEg with coefficients aq € K, then

q\=n
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by 9.5 and 5.14. The basis property of { ujq \ q G N* } thus follows from the
basis property of {Eq \q G N* }, by triangularity. The second claim now
also follows from 9.5. •

9.8 Proposition. Suppose thatHn is a primitive element in Qn such that
(Un, IIn) = n and (Tln, idn) = 1, for each n G N. Then cn and c coincide
on Q.

Proof. Let n G N. The kernel of both c and cn in Qn is equal to Rn, the
intersection of Qn with the radical of Q. Furthermore, the elements lip,
p\~ n, span a linear complement of Rn in Qn. This was shown in the proof
of 9.1.

Primitivity of Un implies that c(U.n)(Cp) = 0 for all partitions p of n of
length > 1, while

fc=0

= n.

This shows c(IIn) = chn, hence c(IIq) = chq = cn{Uq) for all q G N*. The
claim follows. •

This gives at hand a huge variety of descriptions of the map c. A linear
basis of the space of all primitive elements in Qn, however, is not known.
The space of primitive elements in Vn is ujnVn (see, for instance, [Sch, Main
Theorem 7 and its proof]).

To conclude this chapter, recall that the Solomon descent algebra Vn is
a subalgebra of the group algebra KSn and that c yields a homomorphism
of algebras onto the ring of class functions C(.K{STI) when restricted to Vn,
by Theorem 1.1.

Little is known about products in the group algebra KSn of the ele-
ments of the larger subspace Qn — except for the fact that they are not
contained in Qn in general, so that Qn is not a subalgebra of KSn. In
fact, not even the product of S 1 3 G X>4 with Z22 G Q4 lies in Q4, as is
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readily verified using 8.5. There is, however, the following generalisation of
Solomon's homomorphism rule.

9.9 Theorem. c(af3) = c(a)c(/3) — c((3a), for all n e N, a e £>„ and

Proof. If both a and /3 are contained in Vn, then this is a special case of
Solomon's theorem.

Assume that /? is an arbitrary element of Qn. The associativity law
(a/3,7) = (a, P^)v holds for permutations a, /? and 7, simply by definition
of (•, -)v, and then extends to arbitrary elements a, /3, 7 of V, by linearity.
As a consequence, for all partitions p of n,

c(al3)(Cp) = (a/3,u,p)v

= (c(a)c(/3), c

= (c(a)c(/3))(Cp),

by the Main Theorem, since ujpa e Vn C Qn. The identity c(a(3) =
c(a)c(/3) follows. An analogous argument shows c((la) = c(a)c((l). •

 a e £>
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Chapter 10

Irreducible Characters

Let n e N . The noncommutative orthogonality relations 8.10 suggest that
the elements Zp, p h~ n, of Qn be considered as noncommutative irreducible
characters of Sn. Indeed, the isometry property of the epimorphism c stated
in the Main Theorem implies that the class functions

Cp := c(Z*)

form an orthonormal subset of C£K{SU) indexed by partitions p of n. How-
ever, the problem remains to show that these class functions are actually
characters. One way to solve this problem is to establish a link to (non-
commutative) Young characters, as follows.

The lexicographic order on N* is denoted by <iex.

10.1 Lemma. Let n € N and p,q\- n, then (Eq, Zp) = 0 unless q <iex p,

Proof. If q = n, then this is part of 8.10, since H" = idn = Zn. Assume that
q = qi qi is of length I > 1, and set q := qi q\. The self-duality 5.14
and the restriction rule 6.13 then yield that

rCp

rCp

83

and
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This is zero unless the partition r = qx of length one is contained in p, that
is, unless qi < p\. Therefore (H9,ZP) ^ 0 implies that either qi < pi,
hence q <\ex p, or qi = pi and

where p = pi pk- In the second case, the proof may be completed by a
simple induction on Z. •

The following important result can now be stated and proven.

10.2 T h e o r e m . Let n G N o , then {Cp\p\~n} is the set of irreducible

Sn-characters, and C,p j= C,q whenever p^q. Furthermore,

deg C = sytp and

for all p,q\- n.

Proof. As already mentioned, using the Main Theorem, the noncommuta-
tive orthogonality relations 8.10 become

for all p, q h n. In particular, (p ^ £9 whenever p ^ q. More precisely,
comparing dimensions, the elements ( ' , p h u, constitute an orthonormal
bas]solCtK{Sn).

We employ the Young characters in order to show that Cp is actually a
character for all p h n. Let kqp € K be so chosen that

phn

for all q,p h n, that is, fc,p = (^,CP)C = {^q,^p)v for all g,p h n, by
orthonormality and 7.6. Assuming lexicographically increasing order of row
and column indices, it follows from 10.1 that Kn := {hqP)qtPhn 1S a n upper
uni-triangular matrix over Z. The determinant of Kn is thus 1, and Kn is
invertible over Z. Since £q is a character and thus a linear combination of
irreducible iSn-characters with coefficients in No, for all q h n, it follows that
Cp is an integer linear combination of irreducible characters, for all p\- n.
Now ((p, (p) = 1 implies that, for all p, either £p or —Cp is irreducible.
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But

, £
and hence, by positivity of degree, it follows that £p is an irreducible char-
acter, not -Cp. •

The preceding theorem implies:

10.3 Corollary. Q is a splitting field of Sn, for all n £ No.

Note that, by 9.3, the image under c of the sum of any coplactic class A
in Sn is an irreducible 5n-character, namely the character £p, where p \- n
such that A is contained in the Greene cell Qp. More generally, the following
result provides a perfect tool for applications.

10.4 Corollary. Let n £ No, and let Y C Sn such that TY £ Q or,
equivalently, Y is a union of coplactic classes, then c(J2Y) is a character
of Sn of degree \Y\. Furthermore, for all p \- n, the multiplicity of £p in

is equal to

(c(£y),Cp)c = sytp(y) := l ^ 1 nSYTp|,

which is the number of standard Young tableaux IT of shape p such that
7T"1 £ Y.

Proof. Applying 10.2 and the Main Theorem,

c(sr) = £(CV(Ey))c cp = £(zp> Y.Y)V e = Yl \SYJP n Y'l\ £p>
pY-n p\-n j/rn

by the definition of the scalar product on V. Hence c(52Y) is a character.
The degree of c(HY) is

( ) = \Y\

as asserted. •

10.5 Remark. For any submodule M of the regular >Sn-module there is a
suitable union Y of coplactic classes in Sn such that EY is a noncommu-
tative character corresponding to \M- Indeed, for all p \- n,
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thus by 8.3, ap pairwise disjoint coplactic classes Ap, i G Opi, in Qp may be
chosen. Then the sum of the union

phn 1=1

is a noncommutative character corresponding to xM, since c(11A?) = £p for
all p and i.

However, in view of applications, the problem is to find a noncommuta-
tive character of this type without complete knowledge of the decomposition
numbers of M. As a consequence of 8.7, such a noncommutative character
is given, almost by definition, for the huge class of so-called skew characters
of Sn (see the examples below).

10.6 Examples. Let F be a frame of order n and let p, q be partitions
according to 6.6 such that F ~ F(p\q), then the set Y = SYTF = SYTp\g

is a union of coplactic classes, by 8.7. Hence, by 10.4,

is a character of Sn of degree sytF := |SYT |, called a skew character.
Consider two extreme cases:

(i) Let Y = Sn = SYTHS(1"}, then

E
pl~n pHn A coplactic class in Qp

is a noncommutative character of Sn, corresponding to the regular
character x^s • ^n particular,

phn

If p h n and Mp denotes an irreducible <Sn-module with character
Cp, then ££?p is a noncommutative character corresponding to the
homogeneous component Hp of KSn of type Mp. Furthermore, we
have Y,QP = J2A -̂̂ > where the sum is taken over all coplactic classes
in Qv. This reflects the decomposition of Hp into sytp irreducible
submodules isomorphic to Mp.

(ii) Let n G No. The case where Y = {idn} was already analysed in 7.5.
Let Y := {pn}, then we have T.Y = pn = Z1". Hence

sgnn := C1" = c(pn)
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is a linear character of Sn, that is, a character of degree 1. This
character is the sign character oiSn. As pn is an involution, the value
sgnn(Cp) = (pn,ojp) of sgnn is the coefficient of pn in up, for all p t~ n.
If p = n, this coefficient is (—I)""1, by definition of u>n. As for idn,
using the coproduct rule for pn given in 5.9, it follows by induction on
the length of q that

for all q h n.

In addition to the irreducible characters £p (see Chapters 11 and 13), im-
portant examples of skew characters are given by the family of Young char-
acters £q (see Chapter 12) and the family of descent characters Sq (see
Chapter 14).

Note that the noncommutative sign character pn is the unique element
in >Sn with maximal descent set n — lh hence actually contained in T>n.
This allows one to apply 9.9 and to translate Schensted's theorem 8.12 as
follows.

10.7 Corollary, sgn^^ = (p>, for all n € N and all partitions p of n.

Proof. It follows from 8.8 and 8.12 that /9nSYTp is a coplactic class in Qp'.
Applying 9.9 and 9.3, we get sgnnCp = c(pn)c(Zp) = c(pnZp) = C?'. U





Chapter 11

The Murnaghan-Nakayama Rule

This result, stated and proved for the more general setting of arbitrary skew
characters, provides a recursive formula for the values of the irreducible
characters of any symmetric group Sn. Throughout this chapter, n G No is
fixed.

Let F b e a frame of order n and q \- n, then, by definition, the value of
the skew character (F of Sn on each element of the conjugacy class Cq is
given by

The more explicit recursive formula for these values mentioned above is
obtained by applying the restriction rule 5.10 and the reciprocity law 5.14.
For the sake of an example, this chapter begins with a short investigation
in the behaviour of an irreducible character of Sn under restriction to <Sn-i,
or, more precisely, to the stabiliser S^n_i)A of n in Sn.

11.1 Branching Rule. Letp\-n, then

g

where the sum ranges over all partitions q of n — 1 such that q C p.

Proof. As mentioned in 3.9, the conjugacy classes of «S(n_i).i are C
r h n - 1 , and Cr#Ci C CTA. It follows that

89



90 Noncommutative character theory of the symmetric group

ghn-l

ghn-l

for all r \~ n - 1, by 5.14 and 6.13.

We turn to the general case.

•

11.2 Definition. Let r = n r; G N* and let s» := n + • • • + r,, for
all i G /,. Put p := (si -(I- l)).(sj_i - (i - 2)) (s2 - l).si £ N* and
^ := (si-i - (I — 1)) (s2 — 2).(si — 1) G N*, omitting the zeros. Then p
and q are partitions. The partition frame F(p) has width pi and height I
and contains the frame H := F(pi.l'-1) which has "hook shape":

pi

Traditionally, the corner cell (1,1) of H is called its head, the vertical bar
in H, excluding the head, is called its leg and the horizontal bar in H,
excluding the head, is called its arm*.

Each cell in H corresponds to a unique cell in the rim

RH(r) := F(p)\F(g)

of F(p) which may be visualised by

*With regard to our visualisation one might think of a ballet dancer here.
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Any frame F such that F ~ RH(r) is called a rim hook of type r and

leg(F) := / - 1 = £{r) - 1

is called its leg length.

11.3 Theorem. Let F be a frame and q £ N*, then

where the sum is taken over all ideals I of F such that F\I is a rim hook
of order n. In particular,

p j (—l)leg(^) if F is a rim hook of order n,

I 0 otherwise.

11.4 Example. In order to calculate the character value C4'4'3^2(C"3.2.2.2),
we consider the following illustration of the preceding recursive formula:

3.2.2.2

3.2.2

3.2

3
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At each step, the rim hooks F with even (respectively, odd) leg lengths are
marked by crosses (respectively, circles). Accordingly,

= 3C21(C3) - 3C 3 1 1 \ 2 (C

= - 3 .

Before proving the theorem, we consider the partition frame F = F(p),
where p is a partition of k, say. Let / be an ideal of F such that F \ 7 is
a rim hook. Choose i,j,r,s £ N such that (i,s) is maximal and (r,j) is
minimal in F\I with respect to —>. Then (i,j) £ F,

hphj := \F\I\ =r-i + s~j + l and leg?,. := leg(F\J) = r - i.

Furthermore, by 6.11, there exists a partition p[i,j] h k — h?j such that

For example, if p = 5.5.5.4.3.3.3.1, i = 3 and j = 2, the situation is
illustrated by

1
i

X

o

X

X

X

X X

X X

The cells of the rim hook F(p)\F(p[i,j}) are marked by crosses. The head
(i,j) of the corresponding hook is marked by a circle.

It is readily seen that the mapping

is a one-to-one correspondence between the cells (i,j) of F and the ideals
I of F such that F\I is a rim hook. As a consequence, the recursive
formula 11.3 for the values of the irreducible <Sn-character £p = £F(P) reads



Chapter 11. The Murnaghan-Nakayama Rule 93

as follows.

11.5 Murnaghan-Nakayama Rule. For all m G N and all p\- m + n,
q \= m, we have

where the sum is taken over all (i,j) G F(p) such that h^j = n.

The proof of 11.3 requires a short study of the element uin and a char-
acterisation of rim hooks.

11.6 Definition and Remark. Let n G Sn and recall that the descent
set of -K is Des(7r) = {t S n — 1|| m > (i + l)n }. The number of descents of
7T is denoted by des(?r) := |Des(7r)|.

For all D C n — lh the descent class Sn{D) corresponding to D consists
of all permutations TT in Sn such that Des(Tr) = D. Note that if r =
ri r; |= n and D = {ri,ri + r%,... ,r\ + • • • + n - i } , then the descent
class Sn (D) coincides with the set SYT ^r' of standard Young tableaux of
shape RH(r). The elements of

Vn:= |J Sn(k)
0<k<n

are the valley permutations in «Sn.

The valley permutations are associated with an amazing combinatorial
world (see, for instance, [BL93]). We restrict ourselves to some immediate
results needed here.

11.7 Proposition. Let -K G Vn and put k := des(Tr), then:

(i) 1-7T > 2?r > • • • k-ir > (k + 1)TT = 1 < (k + 2)TT < • • • < mr;

(ii) jjTr"1 is an interval in rij, for all j G r^;

(iii) Des(7r-1) = Des(7r)7r - 1.

In particular, the set V"1 of inverse valley permutations is a transversal of
the descent classes in Sn.

Proof. As 7T is a valley permutation with k descents, Des(?r) = fcj, or,
equivalently, (i).

For any j € n^ choose i G k + 1| minimal such that in < j , and I E ni\ki

maximal such that Zvr < j , then (i) implies jjTr""1 is contained in the interval
(i,l) with margins i and I, proving (ii).
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Consider i £ re — 1| and view TT as a word. Then i + 1 stands to the
left of (k + 1)TT = 1 in TT if and only if m~x > (i + I)?!""1. Equivalently,
j + l € fcjTT = Des(7r)7r if and only if i £ Des(7r~1). This proves (iii).

In particular, for any a £ Vn such that Des(cr~1) = Des(7r~1), it follows
that Des(a)a = Des(7r)7r, hence des(a) = k and a £ Sn(kj). In other
words, kp = fc|7r, and both a and n are decreasing on k + 1| and increasing
on 7ij \ Aj, by (i). This shows n = a. Conversely, for any D C n — lh a
permutation a £ Sn such that Des(cr) = |£)|| and |D||g = D + 1 may be
easily constructed. D

Note that, by 11.7(i) and the definition of wn,

£ - l ) 1 " " 1 - 1 ^ (11.1)

This is the reason for the interest in valley permutations in this setting.
We proceed to a characterisation of rim hooks.

11.8 Definition and Remark. Each (r, s) e Z x Z has two predecessors,
(r — l ,s) and (r,s — 1), and two successors, (r + l ,s) and (r, s + 1), in
(Z x Z, <zxz) ah1 four of which are considered as neighbours of (r, s) in
what follows. This defines the structure of a simple undirected graph on
Z x Z. As usual, a subset S of Z x Z is said to be connected if for any
x,y £ S there exists a path (XQ, ... ,xm) in 5 such that xo = x, xm = y
and Xi-i is a neighbour of Xj for all z 6 m,.

Note that, if F and G are frames and F is isomorphic to G, then F
is connected if and only if G is connected. For, if tp : F —> G is an iso-
morphism, then x and y are neighbours in F if and only if xtp and yy? are
neighbours in G, for all x,y £ F, since .F and G are convex.

Convexity also leads to a characterisation of connected frames.

11.9 Proposition. Let F be a frame, then the following conditions are
equivalent:

(i) F is connected;

(ii) if (r,s) £ F and (r,s) is not maximal in (F, —>), then (r — l ,s) £ F

or (r, s + 1) 6 F;

(iii) if F is isomorphic to the coupling of a frame G with a frame H, then
G = 0 orH = <D.

Proof. Let G and H be nonempty frames, then the coupling of G with H
is clearly not connected. Therefore (i) implies (iii).
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Assume (iii) and let (r, s) £ F such that (r — 1, s) and (r, s + 1) are not
contained in F. Then F is isomorphic to the coupling of

G := { x £ F | x -> (r, s) }

with jy := F\G, since F is convex. Now (r, s) £ G, hence (iii) implies
H = 0. It follows that (r, s) is maximal in (F, —»), thus (ii).

To see that (ii) implies (i), let x,y £ F. We may assume that x —» y.
If, in addition, x <zxZ 2/ or y <zxz x, then any element z £ (Z x Z, <zxz)
between a; and y is contained in F. In particular, there is a path from x
to y in F as desired.

Assume now that a; and y are incomparable with respect to <ZxZ and
let a: = (r, s). Then, by (ii), (r — 1, s) or (r, s +1) lies in F, since x —* y and
x ^ y. A simple induction on the distance of x and y in the graph Z x Z
completes the proof. •

11.10 Proposition. Let F be a frame, then F is a rim hook if and only
if the following conditions hold:

(i) F is connected;

(ii) any ideal of (F, —>) is a convex subset of (F, <zxz)-

Proof. Conditions (i) and (ii) are almost part of the definition of a rim
hook.

Conversely, assuming (i) and (ii), we use induction on \F\ to show that F
is a rim hook. If \F\ < 1, then F is a rim hook anyway.

Suppose that \F\ > 1. Let (r,s) be the largest element of the chain
(F, ->), and put F' := F\{(r, s)}. Any ideal of (F', ->) is also an ideal of
(F, —•>), hence convex with respect to <zxz- In particular, F' is a convex
subset of (Z x Z, <zxz)) that is to say, a frame.

Furthermore, 11.9(ii) implies that F' is connected. Hence F' is a rim
hook, by the induction hypothesis. Let (r',s') be the largest element of
(F ' , -0 , then (r,s) = (r',s' + 1), or (r,s) = (r' - l,s'), again by 11.9(ii).
This shows that F is also a rim hook. •

This chapter concludes with the

Proof of 11.3. We first prove the claim for (,F{Cn). By definition,
CF(Cn) = c(ZF)(Cn) = {ZF,ojn)v. If \F\ ± n, this implies ZF(Cn) = 0.
Let \F\ = n. If F is not connected, then there exist nonempty frames G, H
such that ZF = ZG * ZH, by 11.9 and 6.9. Hence primitivity of un implies
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= (ZG ® ZH, wn ® 0 + 0

= 0.

Assume now that (ZF,wn) ^ 0, so F is connected. Besides, there is a
valley permutation TT G Vn, by (11.1), such that (ZF,n) ^ 0, that is to
say, n~1 € SYT^. The mapping

is thus a monotone bijection. If / is an ideal of (F,—*) of order j , then
/ = jjLp, by the definition of ip, which implies that la = jjtFa = JJTT"1

is an interval in (n,, <), by ll.T(ii). In particular, la is convex in (nj, <),
hence / is convex in (F,<ixz)- Applying 11.10, shows that F is indeed a
rim hook.

Let r = ri r; denote the type of F and set D := {r i , r i +r2,..-,r\ +
\-ri-i} C n — I,. There exists a unique valley permutation a £ Vn such

that Des(cr-1) = D, by 11.7. This implies

and thus proves the claim in the special case q = 0.
The general case may now be derived from the restriction rule 5.10:

where, as asserted, the latter sum is taken over all / < F such that F\I is
a rim hook of order n. •



Chapter 12

Young Characters

Historically, the Young characters £9 of <Sn — induced by the trivial char-
acters of the Young subgroups Sq — play a major role in the representation
theory of Sn. They are easy to handle, thanks to their definition, and yet
closely connected to the irreducible characters of Sn.

In the course of the noncommutative approach presented so far, the
use of Young characters was reduced to a standard argument in the proof
of 10.2 showing that the class functions £p are actually characters. As
a consequence, many classical results on Young characters may now be
derived at once using their noncommutative counterparts H9.

The first result is

12.1 Young's Rule. For all m, n G N and all p\- m,

where the sum is taken over all partitions r of m -\ n such that p C r and
F(r\p) is a horizontal strip (that is, isomorphic to V\S(q) for some q € N*,
see 6.15).

Proof. Let r \- m + n, then by a noncommutative computation,

97
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! iipCr

0 otherwise.

Furthermore, if p C r then (S",Zr\p) is one or zero according as idn £

SYTF(rXp) or not. By 6.17, idn £ SYTF(rAp) if and only if ¥{r\p) is a
horizontal strip. •

Note that the case n = 1 is the Branching Rule of Chapter 11.

12.2 Definition. Let n £ No, then the matrix Kn '•= (kqP)g,phn, denned
by

phn

for all q h n, is called the Kostka matrix of c>n and the number fcgp the
Kostka number corresponding to p and q.

As a consequence of 10.1, there is the following result.

12.3 Proposition. Let n £ N, then the Kostka matrix Kn is upper uni-
triangular with respect to lexicographically increasing order of row and col-
umn indices.

In particular, {£p \p h n } is a linear basis of

Though a combinatorial description of the Kostka numbers may be ob-
tained inductively from Young's Rule, observe that another application of
the Main Theorem implies directly for all q,p h n that

kqv = (£9,<p)c = (2>,Zr)v = sytp(5') = KS*)"1 nSYP | .

The Kostka number kqp is thus equal to the number of standard Young
tableaux n of shape p such that TT~1 € Sg. This combinatorial description
is readily seen to coincide with the one commonly given in the literature
using the notion of standard tableau of shape p and content q. We will
demonstrate this now for the sake of completeness.

12.4 Definition. Let n £ No and F be a frame of order n, then any
word w = W\ wn £ N* is a standard tableau of shape F if the mapping
a : F —> N, defined by iiFa = Wi for all i £ nj, has the following properties:

(i) if x <zxZ y then xa < ya;

(ii) if x <zxz V and y —> x then xa < ya,



Chapter 12. Young characters 99

for all x,y £ F. Denote by STF the set of all standard tableaux of shape F.

12.5 Example. As usual, the pictorial description helps to clarify the
definition. Let F be a frame and x £ F. Insert a diagonal of negative slope
into the cells y £ .F\{a:} such that x <zxz Vi and a diagonal of positive
slope into the cells y £ F\{x} such that y —> x to obtain

/
/
/
/

Xxx
X

Xx
X
\

X
X
X
\

X
\

X
\

X
\

According to condition (ii), xa < ya for all cells y £ F marked by a cross,
while condition (i) means that xa < ya for all cells y marked by a diagonal
of negative slope. Combining both properties, the word w ~ W) wn,
defined by w^ = iuFa for all i £ nj, is a standard tableau of shape F if
and only if a is weakly increasing in the rows and strictly decreasing in the
columns of F.

For instance, the mapping a : F(5.4.3.1\2.2.1) —> N, illustrated by

corresponds to the standard tableau w — 2.4.4.2.4.1.3.3 of shape
F(5.4.3.1\2.2.1).

12.6 Definition. Let n £ No and q = qi qk \=n. Denote by N*(?) the
set of all words r of length n in N* such that the multiplicity of the letter j
in r is qj, for all j £ Aj. The elements of N*(q>) are called words of content q.
For instance, the words w = 2.1.2.3.1 and w = 1.3.2.2.1 both have content
2.2.1 and the standard tableau mentioned in 12.5 above has content 1.2.2.3.
For all T C N*, let

be the set of all words of content q in T. Furthermore, if F is a frame, then
we set

stF{q) := \SJF{q)\ and st»(q) :=
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for all q,p £N* such that p is a partition.

12.7 Definition and Remark. Let n e No and q = qi qk |= n. Using
the Polya action defined in 5.4, the symmetric group Sn acts on N*(g) from
the left via

(TT,W) I—> nw

for all 7T e Sn, w G N*(g). For instance, if 7r = 2 4 1 3 5 € <S5 (viewed
as a word), then TT(2.1.2.3.1) = 1.3.2.2.1. This action is transitive. Let
wq := I91 kqk € N*(g), then the mapping

is a bijection, referred to as the MacMahon mapping [Macl6].
Indeed, let ir,cr € (5 9 )" 1 , then -Kwq = awq implies Sqa~1 = Sq-K~1 and

thus a = n, since Sq is a transversal of the right cosets of Sq in Sn.

12.8 Proposition. Let F be a frame of order n and q \= n, then the
MacMahon mapping yields a bijection

SYTFD(5«)-1 -~^STF(q),

by restriction.

Proof. Let q = q\ qk, ft € (.S9)"1 and set w := TTM = irwg. We need to
show that n S SYT if and only if w e ST . Recall that the set partition
Pq = (Pi, ...,P%) of nj consists of the successive blocks of order q\,..., qk
in n,.

Suppose i,j S nj such that i < j , then there exist indices u, v € Aj such
that i-K e Pq and J7r € P*. If fvr > jn, then u > v and even u > v, as i < j
and TT"1 is increasing on Pq. It follows that

lOj > Wj <£=> (Wg)j,r > (Wq)jn <=$• U > V <̂ =̂ > 17T > JTT.

In particular, TT G SYT^ if and only if w £ ST F as desired. •

12.9 Theorem. Let F be a frame, n E No and q \= n, then

(CF,ac=stF(<z),

which is the number of standard tableaux of shape F and content q. In
particular,

kqp = st"(9),

for all p\~ n.
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Proof. (CF, £% = (ZF, S>)p = |SYTF n (S")-1] = \5TF(q)\, by 12.8. D

12.10 Example . Let n = 6, q = 3.2.1, p = 4.2 h 6, then the only two
standard tableaux of shape p and content q are 2.3.1.1.1.2 and 2.2.1.1.1.3
and correspond to the pictures

and

Therefore (£3-2-\ C4-2)c = 2. The complete Kostka matrix of S6 is displayed
below.

2
1

3
1 1 2

2
1

2
1 1|3

P

<7

I7

2.15

22.12

23

3.13

3.2.1 £

32

4.12

4.2

5.1

6

I7

1

0

0

0

0

0

0

0

0

0

0

2.15

5

1

0

0

0

0

0

0

0

0

0

22.12

9

3

1

0

0

0

0

0

0

0

0

23

5

2

1

1

0

0

0

0

0

0

0

3.13

10

4

1

0

1

0

0

0

0

0

0

3.2.1

C

16

8

4

2

2

1

0

0

0

0

0

32

5

3

2

1

1

1

1

0

0

0

0

4.12

10

6

3

1

3

1

0

1

0

0

0

4.2

9

6

4

3

3

2

1

1

1

0

0

5.1

5

4

3

2

3

2

1

2

1

1

0

6

1

1

1

1

1

1

1

1

1

1

1

In general, assuming lexicographically increasing order of row and col-
umn indices, the first row of Kn consists of the numbers sytp, p \- n, that
is to say, the dimensions of the irreducible <Sn-modules, according to the
decomposition of the regular <Sn-character £* .

Note that indeed q <\ex p holds whenever kqp ^ 0 in KQ, but the
converse is false (q — 32, p = 4.12). More generally, 12.9 implies kqp — 0
whenever £{p) > £(q), since the first column of any standard tableau of
shape p (entered into the frame F(p)) contains £(p) distinct values. A com-
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plete characterisation of the non-vanishing entries of the Kostka matrix due
to Ruch-Schonhofer is part of 12.18.

We proceed to the classical results on scalar products of Young charac-
ters.

12.11 Notation. Let n £ No and q = qi qk,r = ri rj |= n. Denote
by Mq the set of all/ x k matrices M = (mij^g^jgfc, of nonnegative integers
such that

= Vi

for all i £ I}, j £ kj. Furthermore, let A4Tq denote the subset of Mq consisting
of all matrices of zeros and ones in Aiq. For instance,

/ i n o \

M =

Set mTq := \M.Tq\ and rhq := |Aij|. Finally, denote the set of all permutations

•K £ Sn which are decreasing on P[ for all i £ /j by <Sr, and set

12.12 Remark. The numbers mq are closely related to the structure con-
stants mq(s) oiVn occuring in Solomon's multiplication rule (1.1). Namely,
for any q,r,s (= n, the coefficient mq(s) in (1.1) is equal to the number of
matrices M S MTq such that the word s is obtained by juxtaposing the
rows of M from top to bottom and deleting the zeros. For example, for the
matrix M G Mf\3 considered above, we get s = 1.2.4.1. For more details,
see B.5 in Appendix B.

12.13 Proposition. sgnnf = c(Er), for all r £ N*.

Proof. Let n £ N, r = r\ r; |= n and n £ Sn, then n\pr- is increasing

if and only if (npn)\pr is decreasing, for all i £ly This implies Hr = E7' pn.
The claim follows from 9.9 and 10.6(ii). D

Recall from 8.11 that p' denotes the partition conjugate to p, for any
partition p.
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12.14 Theorem. Let n £ N and q,r \=n, then

phn

««,sgnnr)c = \S« n (51-)-1! = mrq =
phn

Proof. The third description of each of the scalar products may be ob-
tained from 12.9 and 10.7 via

phn

and

phn phn

respectively. The noncommutative calculus implies

( f , O c = (2',2r)7, = |5«n(<sr)-1|

and, by the above proposition,

(£9,sgnrinc = (2«,s% = |^ n (Sryl\.

Finally, define a mapping from Sq to M.Tq as follows. For each TT 6 <S9, let M,r
be the I x k matrix with (i, j)-component \PJ n P/'TT"1!, for all i 6 ^ , j £ i ,
then, indeed, Mff e A4£. The proof is complete upon checking that the
mapping n H-> MV yields bijections 5« n (57")-1 -» M^ and 5 ' n (.S'')-1 ->
Mg, respectively, by restriction. This is left to the reader. D

The investigation of Young characters is now brought to a close by a
derivation of the Ruch-Schonhofer characterisation of the non-vanishing
Kostka numbers, and related results.

12.15 Definition and Remark. Let q = qi.. .qk and p = pi.. .pi be
compositions of n £ N, then q is dominated by p if

9i H h qi < p \ H \~Pi,

for all i 6 fej, where qi := 0 or pj := 0 for i > k or j > I if necessary. We
write q <C p in this case.

Note that q C p implies q <\ex p and £(p) <

and

d £(p)
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Two helpful observations follow.

12.16 Proposition. Let n e N, p, q = qx qk \- n such that q <€. p and
p ^ q. Then there exist indices i,j 6 1} with i < j such that

\ 9i g.-i-fe + l)-9i+i qk-i ifqj = 1,

is a partition of n and q <§; <? <C p.

Proof. Let i e ^, be minimal such that 2^,=1?» < J^y=1Pi, then « < A;
and gi_i = pj_! > Pi > qi in case z > 1. Let i > i be maximal such that
qj = qi+\, then qj > qj+i in case j < k. With this choice of i and j , q is a
partition of n, and clearly q <^q~-

Let m € fcj and set sm(r) := r\ + • • • + rm for all r = rx r; e N*.
Assume that sm(p) = sm(q) for some i < m < j , and choose m minimal
with this property. Then sm(p) < n implies m < £(p), and sm_i(p) >
sm-i(q) implies pm+i <pm < qm = qm+i, hence

sm+i(p) = sm(p)+pm+i < sm(q)+qm+i = sm+1(q),

a contradiction. Thus sm(p) > sm(q) + 1 = sm(q) for all i < m < j , while
«m(p) > Sm(?) = sm(q) holds anyway for m < i and m > j . This shows
^ <IC p as asserted. •

12.17 Proposition. Let p = pi pt e N* be a partition, then

for all j e lj.

Proof. Let /' = £(p1) = px and define 77̂  to be one or zero according as
i < Vv or not, for alii e Vj and 1/ e N, then

j i 1' V j t'

v=l v=\ i=\ i=l i/=l t=l

for all j e /j as asserted. D

12.18 Theorem. Let n € N and p,q h n, i/ien i/ie following conditions
are equivalent:

(i) g«p,

(ii) (^,Cp)c>0;



Chapter 12. Young characters 105

(iii) rh{ ± 0,

(iv) there exists a standard Young tableau of shape p and content q,

(v) £q — £p is a character of Sn.

The equivalence of (i) and (ii) is known as the Ruch-Schonhofer theo-
rem [RS70; Ruc75], while the equivalence of (i) and (iii) is known as the
Gale-Ryser theorem [Gal57; Rys57].

Proof. The equivalence of (ii) and (iv) is immediate from 12.9.
Assume (i) and prove (v) by induction on the lexicographic order of q.

Uq=p, then £« - £p = 0.
Suppose q = q\ qk ̂  P and choose i, j , q as in 12.16, then £' — £p is

a character, by induction.
Furthermore, x = £g"9i - £ ^ + 1 ^ - 1 ) (respectively, x = Zqi'qj -£{qi+1)

if qj = 1) is a character, by Young's Rule 12.1. Choosing r € N* such that
q w qi.qj.r, it follows that £9 — £' = x • ^r is a character as well, by 3.3.
Now (v) follows from

In return, (v) implies (£q,Cp)c > {Zp,(p)c = 1, by 12.3, thus (ii); and (ii)
implies

r\-n

by 12.14 and 10.7, hence (iii).
Finally, assume (iii) and choose M — (rriij) € M? , then, by 12.17,

i o *(p') tip') i t(p') j

for all j £ t(q)\, which shows (i). The proof is complete. O
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12.19 Corollary. Let n s N and p \- n, then £p is the unique common
irreducible constituent of £p and sgnn£p'. Furthermore,

Proof. On the one hand, by 12.3 and 10.7,

as asserted. On the other hand, for each q\- n such that (^p, C,q)c ^ 0

P' ,C9)c , it follows that

and

mP' = (^,sgnnep')c > (C9,sgnne')c > 0.

By 12.18, this yields p <^ q and q <C p, hence p = q. D



Chapter 13

The Littlewood—Richardson Rule

A significant problem of the theory is to specify the structure constants
(Cp • CqXr)c of the algebra C of class functions. The first combinatorial
description of these multiplicities was given by Littlewood and Richard-
son [LR34]. In the noncommutative approach presented here, the intrinsic
description —

13.1 T h e o r e m . For all partitions p,q,r £ N*, the multiplicity

is equal to the number of standard Young tableaux n of shape r such that
ir~1 is a standard Young tableau of shape U, where U is the coupling of
F(p) with F(q).

— is also of combinatorial nature, the structure constants being given by
the cardinalities of certain sets of permutations.

13.2 Example. Let p := 3.1, q := 4.3.1 and r := 5.4.3. Count the permu-
tations 7T € S12 such that TT and TT"1 when entered, respectively, in

and
E

row-wise from top to bottom, are increasing in rows and decreasing in
columns. There are precisely two such permutations, namely

7T = 9 (10 ) ( l l )267(12)13458 and a = 9(10) (11)26781345 (12),

hence (<^31 •C4 ' 3 ' \C5 ' 4 ' 3 )C = 2. For instance, entering -K and TT"1, gives

107



108 Noncommutative character theory of the symmetric group

TT

9
2
1

10
6
3

11
7
4

12
5

oo

and 7T
[ 4 | 9 jlO

11
12

A second description may be obtained as follows.

13 .3 T h e o r e m . For all partitions p,q,r £ N*, the multiplicity

0 otherwise

is equal to the number of standard Young tableaux n of shape q such that
n~l is a standard Young tableau of shape F(r)\F(p). In particular,

Proof. Using the self-duality 5.14 and applying the restriction rule 6.13,

0

., if p C r

otherwise.
•

13.4 Example. Consider the partitions p := 3.1, q := 4.3.1 and r := 5.4.3
once more. Look for permutations n £ <Ss such that n and TT-1 may be
entered, respectively, in

and

The only two possibilities are given by

TT = 5 6 7 2 3 8 1 4 and cr = 56723418,

the first of which may be illustrated by:

7
IX and 7T 1
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For the sake of completeness, we note that the second description may
be translated into the original Littlewood-Richardson Rule as follows.

Let q = gi qk be a partition of n and let q := qk qi denote the
word in N* obtained by reading q backwards. Then SYT9 C S^, by 6.4
and 6.15.

For any frame F, restricting the MacMahon mapping M defined in 12.7
to

L := SYTF n (SYT9)-1 C SYTF n (S^)'1

yields an injective mapping L —> ST (g), by 12.8. If TT G L and w =
w\ wn := TTM, the cell intf, \ is contained in the (k -f 1 — w,)-th row

of F(q), for all i S n,. It follows that, for any w S ST (q), there exists an
inverse image IT £ L such that TTM = w if and only if

Vk{wi U>i) > Vk-l(wi Wi) >•••> Vl(wX Wi),

for all i £ fcj, where Uj(wi Wi) denotes the multiplicity of the letter j in
u>i Wi, for all j £ fcj.

For instance, for the frame F := F(r\p) and the permutation 7r =
5 6 7 2 3 8 1 4 considered in Example 13.4,

w = ^ ( l 1 ^ 3 ^ 4 ) = 3.3.3.2.2.3.1.2,

and q = 1.3.4.
For any such word w, we consider the word w obtained from w by

replacing the letter i by k + 1 — i, for all i G kj. Then w has content q and
is a so-called lattice permutation, that is to say, it has the characteristic
property

Vl(wi Wi) > V2{wi Wi) >•••> Vk(w\ Wi),

for all i e kj.
The same example gives the lattice permutation

w = 1.1.1.2.2.1.3.2

of content q = 4.3.1.
Finally, rotate F by 180 degrees to obtain the frame S, so w 6 STF(q)

if and only if w, now entered row-wise from bottom right to top left, is
increasing in the rows and strictly decreasing in the columns of S.

In the example, the rotated frame S is
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and indeed, the lattice permutation w = 1.1.1.2.2.1.3.2, entered from bot-
tom right to top left, is increasing in rows and strictly decreasing in columns.

But

implies £s = £F, by 9.9, which proves the

13.5 Littlewood—Richardson Rule. For all partitions p, q, r, the mul-
tiplicity

(Cp-C9,Oc

is equal to the number of lattice permutations of content q in N* which, once
entered in F(r\p) row-wise from bottom right to top left, are increasing in
the rows and strictly decreasing in the columns o/F(r\p).

It seems worth mentioning that, in the case of a horizontal strip F(r\s) =
HS(Q), Theorem 13.3 combined with the Littlewood-Richardson Rule leads
to another description of the Kostka numbers

kg,P = (C, C)c = (CAs, Cp)c = (Cr, C • C)c

in terms of lattice permutations.
This chapter concludes with the following

13.6 Remark. Consider, more generally, four partitions p, q, r and s,
then

{CXpXAq)c = {Zr^,ZAq)v = |SYTr\p n (SYT8^)-1]

is equal to the number of standard Young tableaux TT of shape F(r\p) such
that TT"1 is a standard Young tableau of shape F(s\q). It is readily seen
that this description of the scalar product of two skew characters coincides
with the one given by Zelevinsky in terms of pictures [Zel81a].



Chapter 14

Foulkes Characters
and Descent Characters

A brief demonstration of the use of noncommutative character theory with a
view to combinatorial applications follows. Consider the Eulerian numbers,
defined for all k, n £ No by

Foulkes suggested looking for proper <Sn-characters rf1* of degree en'k and
applying character theoretical techniques to study these numbers [Fou80].
In the noncommutative setting, the observation 10.4 is a perfect tool for
providing characters with a given degree. For the Eulerian numbers, define

En'k := { 7T G Sn | des(Tr) = k }

and

for all n,k € No. Observe Hn'k G Q, since any two coplactic neighbours
have the same descent set, and, in particular, the same number of descents.
Applying 10.4 yields:

14.1 Theorem. Letn S N, then for all k £ No, r/"'fc is a character of Sn of
degree en'k, called the Foulkes character corresponding to n and k [Ker9l],
and

vn'k = J2sytP(En'k) <P = Y1 I S Y J P n (•E"''')"1! Cp-
phn p\-n

Furthermore, the sum Y^kZo T/™'*: *s the regular Sn-character, and T]n'k = 0

111
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whenever k > n. In particular,

en,k = ^ s y t P ( £ « ^ ) sytP = J2 |SYTP n (E^)-1] sytp

p\~n p\-n

and

n-l

k=0

A nice illustrative description of the decomposition numbers

sytp(En'k) = |SYTP n (E^y1]

of the Foulkes characters is based on the following observation.

14.2 Proposition. Let n € No, p\- n and n e SYTP, and put a :=

then for all i £ n — 1|,

i e Des(7r"1) «=> ia^P^ <(i + l ) ^ " 1 ^ ! ,

where P\ : Z x Z -» Z, ( i , y) i—> x denotes the projection onto the first
component.

In other words, i is a descent ofir~l if and only ifi stands strictly below
(i + 1) in F(p), once TT is entered in F(p) row-wise from top to bottom.

Proof. The definitions of ip and a imply ZTT"1 > (i + l)n~1 if and only if

(2/1,3/2) : = ( i + I ) " " 1 = (* + 1 ) T T ~ V —> ZTT"1^ = i a " 1 =: (XLX2),

for arbitrary n. The latter is equivalent to x\ < y\, or xi = yx and a;2 > j/2,
by the definition of —>. But a;i = y\ and x2 > 2/2 would imply that y <zxz x
and thus i + 1 = ya < xa = i, since ?r G SYTP. It follows that this case
never occurs. D

14.3 Example. For the standard Young tableau 7r = 6 2 5 1 3 4 o f shape
p = 3.2.1,

a

The elements j 6 5, such that i stands strictly below i + 1 are printed in
boldfaced type, and Des^" 1 ) = Des(425 631) = {1,4,5}. The complete
list of standard Young tableaux TT of shape 3.2.1 such that des(7r^1) = 3 is
given by

6
2
1

5
3 4
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3
2
1

T
2
1

6
4

6
3

5

5

6
3
1

~5
2
1

5
2

4
3

4

6

4
3
1

T
2
1

6
2

5
4

5

6

6
2
1

4
3 5

together with the one already mentioned. In particular, 14.1 implies

Foulkes characters have a natural decomposition into descent characters,
which are denned as follows.

14.4 Notation. Mapping

n—> D{r) := {r -\ _i} C n - l h

defines a bijection {r\r f= n } -> { T | T C n - 1 , } , and |D(r)| = ^(r) - 1,
for all r \= n.

14.5 Definition and Remark. Let r £ N* and set Z> := D(r). Recall
that the rim hook RH(r) of type r has been defined in 11.2. We set

;== ZRH(r) =
TT =

and

<5r : = c ( A r ) .

Sr is the descent character corresponding to r. Since En'k is the disjoint
union of the descent classes Sn(D) (D C n — 1\, \D\ = k),

H n , f c = and
r]=n

(r)=fc+l
r|=n

l(r)=fc + l

for all n,k G No. In particular, the sum of all descent characters 5r, r \= n,
is the regular <Sn-character.

Another application of 10.4 is:

14.6 Theorem. Let q (= n and set D := D(q). Then 8q is a character
of Sn of degree \Sn{D)\. For all p \- n, the multiplicity of the irreducible
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character £p in 5q is given by

(6", Cp)c = (A«, V)v = syt"(5n(I>)) = \Snipyx n SYT"*|,

which equals the number of standard Young tableaux n of shape p such that
Des(7r"1) = D.

14.7 Example. The illustrations of all standard Young tableaux TT of
shape 3.2.1 such that des(?r~1) = 3 given in Example 14.3 yields

The preceding results suggest proceeding to a more detailed analysis of
the descent characters.

Recall from 5.9 that

q^r := qi qk-i-(qk + n).r2 rt

for all q = q1 qk and r = r\ rt in N* \ {0}.

14.8 T h e o r e m . For all q,r e N* \ { 0 } ,

A9 * Ar = Aq-r + A9"-""

and

Si •Sr = 5q-r + 6q'->r.

In particular, the cardinalities

U ••= \Sm(D(q))\,

where m £ N and q \= m € N, are given by the recursive formula

_ (m + n\
J q n ~ \ r r , I J 1 ~ Jq^-jn ,

\ " l /

for all n e N, and fm = 1, for all m e N.
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Proof. The formula for the product of A9 and A r (and hence of 5q and Sr)
is an immediate consequence of 6.9. Comparison of degrees in the special
case r = n £ N yields the recursive formula. For, 5n = £n is the trivial
character of Sn and

deg (x • <f) = (x • V. chlm+rv)c

J C n-(-Tn|

m + n
deg x deg </?,

for all characters x of Sn, <p of <Sm. D

14.9 Corollary. Let n G No, and denote by T a transversal of the rear-
rangement classes of the compositions of n, then the set { 6q | g £ T } is a
linear basis of CixiSn)- More precisely, for all q £ T, p h n,

{ 1 j/p = r,

0 ifp<\exr,

where r denotes the partition obtained by properly rearranging q.

Proof. Observe that SYTRH(9) C SYTHS(<?), hence

for all q £ N* and all partitions p. The unique partition obtained by
rearranging q is denoted by r. By 12.3, (A9, Zp)p ^ 0 implies that p > j e x r,
since £q = £r. Let q = Qi %, and assume that p is a rearrangement of q.
Then, putting qi := qi qj for all j £ fc, and using induction,

'-J9fc-1-)'9fc Z p ) — (A9''"2'-1 9'1-1'-'9' ' Z p )

'V



116 Noncommutative character theory of the symmetric group

= 1,

as the partitions obtained by rearranging qk~1,_1qk, (qk~2^qk-i)-qk,
qk~2^ 9fe_ii_i qk and so on, are lexicographically larger than p. •

14.10 Remark. Let n G No, q \= n and denote the composition of n
obtained by reading q backwards by q, then pnAqpn = Aq implies

Sq = 6q,

by 9.9. But the equality 5q = 5r does not necessarily hold for arbi trary

q and r contained in the same rearrangement class. For instance, S21-1 ^

S1-2-1, a n d t h e s e t {S4,531,6211,51-21} i s a l i n e a r b a s i s of C£K{S4). O t h e r

examples can be found in 14.7. In general it is not known (explicitly) when
the descent characters 5q and Sr coincide. Here is a strange result due to
Lehmann [Leh96], which we state without proof.

Denote the n-th power of s with respect to ._, by s o n, for each s G
N* \ {0} and n e N, that i s s o n : = s L J . . . 1 J s (n factors). Furthermore,
let

soq:= (soq1).(soq2) (soqk),

for any q = q\ qk G N*, then:

Theorem. 6« = 6r if and only if 5soq = 6sor, for all q,r,s G N* \ {0}.

F o r i n s t a n c e , p u t t i n g s : = 3 . 1 . 2 a n d c o n s i d e r i n g t h e i d e n t i t y S21 = 512,

j3.1.5.1.2.3.1.2 _ ^so2.1 _ jsol.2 _ ^3.1.2.3.1.5.1.2



Chapter 15

Cyclic Characters
and the Free Lie Algebra

In what follows, n £ N and e is a primitive n-th root of unity in K.

15.1 Definition and Remarks. Let r = (1 2 .. . n) £ Sn denote the
standard cycle of length n in Sn, then the cyclic subgroup Z of <Sn generated
by r has order n. The elements

n-l

t = 0

indexed by j £ n — !tU {0}, are (up to the factor ^) mutually orthogonal
idempotents in the group ring KZ of Z. The corresponding characters

of Z are irreducible and of degree one.

The study of the induced characters (ipj)Sn, the cyclic characters of Sn,
closes our investigations. We shall derive a combinatorial description of the
decomposition numbers ((ipj)Sn, Cp)c which was discovered by Kraskiewicz
and Weyman in 1987 ([KW87], see [KWOl]).

The case where j = 1 is of particular interest. The character
(V'l)5" provides a link between the Solomon descent algebra and the
free Lie algebra which is briefly indicated (but certainly not exploited)
at the end of this chapter. Reutenauer's monograph [Reu93] serves
as a general reference on the topic (see also [Gar89; GR89; GKL+95;
KLT97]).

117
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15.2 Definition. The major index of a permutation TT G Sn is the sum of
its descents:

maj TT := V J i.
ieDes(Tr)

Following Klyachko [Kly74], we define

Kn(t) :=

for all * G K and, in particular, Kn := Kn(e). If M» denotes the sum of all
TT G Sn such that maj TT = i modulo n, for all i G No, then

n-1

DCn-1, i=0

where ED = £ i e D * fo r a11 D £ N.

The first result needed here is due to Klyachko [Kly74]. For convenience,
we set t := i\.

15.3 Theorem. (Klyachko, 1974) LKn = ni and Kni = nnn. In particular,
2

K =

Proof. Let TT 6 5 n i then d G n, is a cyclic descent of TT if d G Des(Tr) or
d = n and TOT > ITT. Denote the set of all cyclic descents of TT by cDes(?r).

Reading modulo n if necessary, observe that d = TITT"1 is a cyclic descent
of 7T, while d — 1 is not, since dir = n. Similarly, d — 1 is a cyclic descent of
7TT, while d is not, since (d + 1)TTT = m — 1. All other cyclic descents of -K
and TXT coincide, that is, e ^ d — l ,d is a cyclic descent of TT if and only if
e is a cyclic descent of TTT. It follows that

maj (TTT) = Y 3=
eGcDes(Trr) eScDes(Tr)

modulo n, for all TT G Sn. As a consequence, for all i G n — 1|U {0}, we have
KnTl = e~lKn, hence «nt = n« n .

To prove the other multiplication rule, observe first that the number
cdes(?r) of cyclic descents of n is invariant to left multiplication with r .
More precisely, d G ri] is a cyclic descent of TT if and only if d — 1 is a cyclic
descent of TTT (modulo n), for all d G ri|- This implies

maj (T1TT) = maj TT — •£ cdes(Tr)
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modulo n, for all i £ n — 1|U {0}, hence

n - l

i=0 ireSn

n - l

i=0

n - l

n j=0

= n J2
7TGSn

cdes(rr) = l

But, for each d £ nj, there is a unique permutation n €. Sn such that
cDes(7r) = {d}, namely IT = rd. The above computation may thus
be rounded out to iKn = m as asserted. Both formulae imply K£ =
(~Knt)Kn — Kn(£tKn) = KnL = nKn. D

A second crucial property of Klyachko's idempotent was discovered by
Leclerc-Scharf-Thibon [LST96].

15.4 Lemma. Let i e N and denote the order of el by d, then

Kn(el) = Kd(ez) * • • • * Kdje*).

n/d factors

Proof. The proof is done by induction on m := n/d. There is nothing to
prove for m = 1. Let m > 1, then inductively and by 5.2,

Kd(el) * • • • * Kd{e%) = Kd(el) • «„_<*(£*)

But maj (TX#<J)V = maj (TT#CT) = maj TT + maj <r modulo (i for all TT G 5^, a £
Sn_d, v £ Sd(n-d\ as is immediate from the definition of # and Sd(n-d\
The proof is complete upon noting that <Sd(n~d) is a right transversal of
Sd.{n_d) inSn. •

15.5 Corollary. Let i £ N and denote the order of el by d, then

c(Kn(e')) = chdn/d.
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Proof. According to the lemma above, it suffices to prove c(«n) = chn.
For this implies c(Kd{s1)) = chd, since s* is a primitive d-th root of unity,
hence

< : ( « ; „ ( £ * ) ) = c(Kd(£l) * • • • * « < * ( £ * ) ) = ciKdie')) ••••• c ^ e ' ) ) = cbdn/d

as asserted.
Choose ap € K such that c(^Kn) = ^Zp\-naPdnarp, then in C^x(<^n)

( ) ( ) = c(i«n) = ^ apcharp ,
phn pHn phn

by Solomon's theorem 1.1 and Klyachko's theorem 15.3. As a consequence,
ap is zero or one, for all p h n . Let A denote the set of all partitions p of n
with ap = 1, then

i
pi-

Thus, to complete the proof, an = 1 remains.
Proposition 11.7(iii) gives (AD,wn)p = (-1) | C | for all D C n - 1,. This

implies

n - 1

'/ : Tl.
D C n - 1 , i = l

JJ(1-e') =
D

The preceding results allows us to deduce the main result of this chapter.

15.6 Theorem. (Leclerc, Scharf, Thibon, 1996) For all j € n - l , U {0},
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Proof. Let d, denote the order of e\ for all i € No. The cycle type of T1 is
then d™ \ for all i e No, and the definition of {ipj)Sn implies

i=0 cr€5n t=0

for all n £ Sn. Use 15.5 to deduce

n—1 n—1n—1

(V',)5" = £ E e"ijc(«n(^)) = i E E(£fc"j)
t=0 fc=O i=0

as asserted. •

In other words, Mj is a noncommutative cyclic character of Sn, for all
j En- l |U{0 | .

15.7 Corollary. (Kraskiewicz, Weyman, 1987) Let p\- n, then

equals the number of standard Young tableaux TT of shape p such that
maj n~l = j modulo n, for all j S n — 1| U {0}.

In [LST96], Theorem 15.6 was derived from Corollary 15.7. Our proof of
Theorem 15.6 follows [JSOO], where, more generally, decomposition numbers
are given for iS^-characters induced from arbitrary cyclic subgroups of Sn.

Another variant of the Kraskiewicz-Weyman result is the following.

15.8 Theorem. Let p\- n and i G N, then

n-l

j=0

where syt^ = (Mj, Z p ) p for all j G n - 1, U {0}.

This result is sometimes attributed to Springer [Spr74].

Proof. Denote the order of T* by d, then
n - l

j=0

by 15.5. D
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15.9 Example. The standard Young tableaux in S4 are illustrated below.

| 1 | 2 | 3 J 4 | 1 1 I 2 I 3 I I | 2 | 4 3 4

3
2

r-i T]

4
2
1 A)

4

l

3
1

4
2

2
1

4
3

In general, for p \- n and n e SYTP, it follows from 14.2 that maj 1 is
the sum of all i S n—l\ such that i stands strictly below (i + 1) in F(p), once
•K is entered in the partition frame F(p) row-wise from top to bottom. These
values are printed in boldfaced type in the above illustration. Applying 15.7,
we get

For arbitrary n,

n - l

is the regular iSn-character. Furthermore, {tpj)Sn = (lAfc)5" whenever there
is the identity gcd(j, n) = gcd(fc,n) of greatest common divisors.

Note that the symmetric group Sn acts on the conjugacy class Cn, by
conjugation. The character (tpo)Sn is afforded by this action, since V'o is
the trivial character of Z and Z = Csn(r).

More significantly, the cyclic character (ipi)Sn is intimately linked to
the free Lie algebra as we shall explain now, concluding this chapter.

Consider the tensor algebra T(V) over a finite dimensional /f-vector
space V and denote the homogeneous component of degree n in T(V) by

Tn(V):=V-
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This is an (<Sn, GL(y))-bimodule. The action of Q\-{V) from the right is the
diagonal action, while for the Sn-action from the left, we have

n(vi ® • • • <g> Vn) = Vin <g> • • • <S> Vmr

for all n e Sn, vi,..., vn € V.
At the beginning of the last century Schur studied the structure of

T(V) as a GL(V)-module. In his thesis [SchOl] and the famous pa-
per [Sch27], Schur was able to describe the decomposition of Tn(V) into
irreducible GL(K)-modules using the irreducible representations of the sym-
metric group Sn.

The usual Lie bracket [a;, y] := xy — yx defines a Lie algebra structure on
T(V). A classical result of Witt [Wit37] says that the Lie subalgebra L{V)
generated by V is free over any basis of V, and the homogeneous component
Ln(V) := Tn(V) H L(V) of L(V) is a GL(y)-submodule of Tn(V). Griin
showed

Ln{V) = u;nTn(V)

(see [Mag40]). In 1942, Thrall raised the question how Ln(V) decomposes
into irreducible GL(K)-modules [Thr42].

For any decomposition u>nKSn = ©„[_„ a,pMp into irreducible Sn-
modules,

Ln(V) = ojnTn(V) s* unKSn ®KSn Tn(V) = @ap(Mp ®KSn Tn(V)).
phn

By Schur's fundamental result, Mp®xsn ^ ( V ) is either 0 or an irreducible
GL(V )̂-module, hence the GL(y)-module structure of Ln(V) is completely
determined by the multiplicities ap of the Lie module

Ln = ujnKSn

of Sn. In his pioneering paper [Kly74], Klyachko also proved the multi-
plication rules u)nKn = nKn and KnLjn = ntJn. Combined with 15.3, these
identities imply that

Ln = u)nKSn = KnKSn S iKSn.

The isomorphism on the right is left multiplication with ^i. It follows that
(ipi)Sn is the character of Ln and that

phn
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by 15.7. In this spirit, Thrall's problem was finally solved by the work of
Klyachko, Kraskiewicz and Weyman.



Appendix A

Elements of Representation Theory

We start with a proof of

Maschke's Theorem. If G is a finite group and K is a field of charac-
teristic not dividing the order of G, then KG is semi-simple.

Proof. Let / be a right ideal of KG and choose a linear projection <p from
KG onto /, that is, a surjective linear map <p : KG —> / such that <p2 = <p.
Let gg : KG —> KG denote right multiplication with g, for all g e G, and
define a linear map KG —* KG by

g€G

For any u £ KG, h £ G, we then have

(uh)<f = u^2 QhQg-itpQg = u Y^ ehg-i(PQg Z=UYL &g-l<PQgh = (u(p)h
gEG geG g<EG

and

Y l l Y 2 I g -
geG

Thus (p is a homomorphism of ii'G-modules, mapping KG into / . In par-
ticular, the kernel J of <p is also a right ideal of KG.

If u € /, then also ugg-i = it*?"1 € / and hence ugg-i(p = ugg-i, for all
g £ G. This implies u(p = \G\u for all u £ I.

As a consequence, l/|G|y> is a projection of KG-modules from KG
onto /, hence KG — I © J and J is a /fG-complement of / in KG. •

125
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A.I Semi-simple Algebras

A short account is now given of the general structure theory of semi-simple
algebras. Maschke's Theorem will allow us to apply the results to the group
ring KG of any finite group G later on.

Throughout, A is an associative algebra with identity element 1^. For
the sake of clarity, finiteness of dimension and semi-simplicity of A are
assumed only where necessary.

Let M, N be ^-modules. If TV is an A-submodule of M, write N <A M.
A linear mapping <p : M —> N is an A-homomorphism if {rrvp)a = (md)ip
for all m € M, a € A. If, in addition, <p is bijective, we say that <p is an
A-isomorphism and write M =A N.

A.1.1 Schur's Lemma. Let M, N be A-modules, and assume that M is
irreducible. If <p : M —> iV is a nonzero A-homomorphism, then M<p is
irreducible and ip : M —> Mip is an A-isomorphism. In particular, the ring

EndyjM := < <p : M —> M (p is an A-homomorphism >

of A-endomorphisms of M is a skew field. If, in addition, K is algebraically
closed, then End^M = K\6M•

Proof. The kernel kenp is an A-submodule of M. The irreducibility of M
implies kertp = 0, hence ip : M —> Mip is bijective. In particular, M<p is
also irreducible.

If M = N and K is algebraically closed, then there exists an eigenval-
ue A of <p in K. For the endomorphism ip — Aid^ 6 End^M,

0 / ker(<p - AidM) <^ M,

and therefore ip = AidM- •

A typical application of Schur's lemma is the following.

A. 1.2 Corollary. Let I be an irreducible (that is, minimal) right ideal of
A and x £ A, then the right ideal

xl := {xy\y £ 1}

of A is either 0 or A-isomorphic to I.

Proof. Apply Schur's lemma to the yl-homomorphism / —> A, a *-+ xa. D
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A.1.3 Proposition. Let A be semi-simple. For any irreducible A-module
M, there exists an irreducible right ideal I of A such that I =A M.

Proof. Let m e M such that m ^ OM- Then m = m\A e mA <A M
and so mA = M, as M is irreducible. In other words, the ^4-module
homomorphism

H : A —> M, x h-> mx,

is surjective. Furthermore, J := ker/i is a right ideal of A, that is, an
A-submodule of AR. Now semi-simplicity of A implies that there exists a
submodule I of AR complementing J. As I D J = 0 and I + J = A, it
follows that [i\i : I —* M is injective and Ifi = (I + J)fi = Afi = M. Hence
/i|j is an isomorphism of A-modules and, in particular, J is irreducible. •

Let M be an irreducible ^.-module, then the homogeneous component
of type M in A is

Note that, if A is semi-simple, then AM ^ 0, by the preceding proposition.

A.1.4 Proposition. Let M be an irreducible A-module, then AM is an
ideal of A.

Proof. By definition, AM is a right ideal of A.
Let x £ A and choose a right ideal 7 of A such that M =A I, then

xl = 0 or xl =A I =A M, by A.1.2, and therefore xl C AM in either case.
Hence AM is also a left ideal of A. •

A.1.5 Theorem. Let A be semi-simple, and let T be a transversal of the
isomorphism classes of irreducible A-modules. Then T is finite, and

Proof. Semi-simplicity of A allows one to write A as an inner direct sum of
a certain set of irreducible right ideals of A. By definition, each of these is
contained in a homogeneous component AM of A, for some M e T . Hence
A = Y,M AM- Furthermore, by A.1.3, AM + 0 for all M e T .

Let M e T . Again by semi-simplicity, there exists a right ideal J of A
complementing AM- Let e S AM and / € J such that 1,4 = e + / . Let I
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be an irreducible right ideal of A such that I ^A M, then

for any right ideal / ' of A such that / ' =A M. For, otherwise, xl ^ 0 for
some x £ I' and thus / =A XI Q I'•> by A.1.2, contradicting the choice of I.
It follows that AMI = Y2psiAM ^'^ ~ 0 anc^ m particular, el = 0. Hence,
for any x € / ,

x = \AX = ex + fx = fx 6 Jx C J

and therefore I C J. This shows that J contains the sum U of all homoge-
neous components AN, N G T\{M}, in A. In fact, it follows that J = U,
as J n AM = 0 and A = AM + U. In particular, AM CIU = AM n J — 0,
which shows that yl is the inner direct sum of the family (J4M)M€T-

Choose Mi,...,Mk € T and ê  s .AM,-) 1 < .7 < &> such that 1,4 =
ei + • • • + efc. Assume that there exists an A-module M € T \ {Mi,. . . , Mk},
then for all x £ AM,

x = xlA = xex + • • • + xek e (AMl +•••+ AMk) n A M = 0,

hence AM = 0, a contradiction. It follows that T = {Mi,..., Mk} is finite
as asserted. •

The centre of A, defined by

Z(A) := { a e A \ ab = ba for all b £ A } ,

is a commutative subalgebra of A containing 1^.

A.1.6 Corollary. Let A be semi-simple, and let T be a transversal of the
isomorphism classes of irreducible A-modules. If, for any M € T, eM £ AM
is so chosen that

±A — / e*r .

MeT

then eM £ Z(A) and

f eM if M = N
- <

I 0 otherwise,

for all M, N £ T. Furthermore, eM is the identity of the subalgebra AM
of A, for all M £ T.
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Proof. If M, N G T such that M / TV and aM € AM, CLN & AN, then the
product aM^N is contained in AM n A#, since AM and AJV are ideals of A,
hence vanishes, by A. 1.5.

This implies eM&N = 0 whenever M f= N and thus also CM =
X̂Af eMeN = eM^Mt for all M € T. More generally, it follows that

= 0 whenever a j j £ A M and M ^ N, hence BM^M = 1A<IM = aM =

= O-M^M for all aM £ AM- In particular, AM ^ 0 implies e « ^ 0.
Finally, if a is an arbitrary element of A, then there exist elements
€ AJV (N € T), such that a = J ^ a j v , by A.1.5. It follows that
= e.MaM — O-M^M = «eM, hence e « € ^ (^) ) for all M € T. •

An element e € A is an idempotent if e 7̂  0 and e2 = e. Furthermore,
two idempotents e, / € A are orthogonal if e / = 0,4 = fe. Accordingly,
the preceding result states that the elements e^, M G T, are mutually
orthogonal idempotents in the centre of A. They are the central primitive
idempotents of A.

A more detailed analysis of the case in which A is of finite dimension
over K concludes the first part of this appendix.

A.1.7 Proposition. Assume that A is finite-dimensional and M is an ir-
reducible A-module, then there exist right ideals I\,... ,1^ of A each of which
is A-isomorphic to M, such that AM is the inner direct sum of (I\,..., Ik)-

Proof. By definition, there are right ideals Ii,... ,In of A such that AM —
^2j Ij and Ij =A M for all 1 < j < n. If the sum of the family (I\ , . . . , / „ ) is
not direct, there is an index m such that Im PI J ^ 0, where J = Ylj=tm Ij-
Hence Im n J = Im, since Im is irreducible, and so Im C J . It follows
that AM — J and after a finite number of steps a family of submodules
decomposing AM directly. •

For any algebra (B, -, +), denote the opposite algebra (B,~, +) of B by
Bop, where the product 7 is defined by a'b := b • a for all a,b £ B.

A.1.8 Theorem. (Wedderburn) Let A be semi-simple and finite dimen-
sional, and let T be a transversal of the isomorphism classes of irreducible
A-modules, then the algebra A is isomorphic to the direct sum

MeT

of matrix rings over skew fields, where kM '•= dim/f AM I dim/f M denotes
the multiplicity of M in AM, for all M e T .
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Proof. By Schur's lemma, End^M is a skew field, for all M G T. Further-
more, A.1.4 and A.1.5 imply End^M = EndAMM.

Again by A. 1.5, it thus suffices to consider the case where A = AM for
some M E T , and to show that

in this case, where k = dim A/ dim M. Choose irreducible right ideals
/ i , . . . ,/fc of A according to A.1.7 such that Ij =A M for each j and A
is the inner direct sum of the family ( / j , . . . , /&). (Considering dimensions
yields that indeed k direct summands will occur here.)

For any b G A, left multiplication with b, defined by Â  : A —> A, a H-+ ba,
is an yl-endomorphism of the regular j4-module AR. Furthermore,

A —-» EndAAR, b .—> Ab

is an anti-isomorphism of algebras with inverse given by <p i—> l^V- For
each 1 < j < k, let Lj : IJ -* M be an ^-isomorphism and nj : A —> Ij the
projection onto Ij (along J2%^j ^*)- Then for all y GEND R

Furthermore, as is readily seen, the mapping <p i—> (<^ij)i<i,j<A; is an iso-
morphism of algebras EndAAR —> (End^M)fcxfc. D

A.2 Finite Group Characters, the Basics

Throughout, G is a finite group and K is a field of characteristic zero. Any
G-module M is assumed to be of finite dimension.

A.2.1 Definition and Remark. Let M be a G-module, and let

dM -G —> GLK(M), g i—> (gdM • m H-> mg)

be the corresponding representation of G. The trace of the endomorphism
gdM of M is denoted by xM(9) : = tr(ff^M)i for all g £ G. Then the mapping

is the character of G afforded by M (or the character of M) and

degXM :=dim*rM

its degree. The character x M ls irreducible if the module M is irreducible.
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A.2.2 Examples.

(i) The character of the regular module (KG)R is called the regular char-
acter of G. For any g G G, the matrix of gdxG with respect to the
linear basis G of KG is a permutation matrix. As hg / h for all
g S G \ {1G}> h € G, we obtain

(ii) The trivial character of G, defined by g i—» 1 for all j 6 G, is irre-
ducible. The underlying G-module is the trivial G-module and is of
dimension 1 over K.

The essential structural information about any G-module M is captured
by the character \M afforded by M, as shall be shown now. To begin with,
observe that

dimK M = deg xM = X M ( 1 G ) ,

since 1G^M = '^M-
Now let M' be a second G-module and suppose <p : M —> M ' is a G-

isomorphism, then (mg)(p = (mip)g, for all 5 e G and all m 6 M, hence
1)- In particular,

tr(gdM) = tr(ip~1(gdM)if) = tr(gdM>),

for all g £ G. This shows:

A.2.3 Proposition. Characters of isomorphic G-modules coincide.

Simple properties of the trace mapping also lead to the following obser-
vations.

A.2.4 Proposition. For all G-modules M, M\, Mi, we have:

(i) If M is the inner direct sum of Mi and M2, then XM = XM + XM •
(ii) Xjvf + XM is the character of the G-module Mi © M2 (outer direct

sum).

Combining A.2.4 with Maschke's Theorem gives:

A.2.5 Corollary. Any function a : G —> K is a character of G if and
only if there exist irreducible characters xii • • •; Xm of G and nonnegative
integer coefficients a i , . . . , a m such that a = aixi + • • • + o,mXm-
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Furthermore, for any g,k 6 G and any G-module M, we have

XM{k~Xgk) = tr((kdM)~1(gdM)(kdM)) = tr(gdM) = XM(s)-

Hence xM is a class function of G in the following sense.

A.2.6 Definition and Remark. Two elements g,h € G are conjugate in
G if there exists an element k e G such that k~1hk = g. The corresponding
equivalence classes in G are the conjugacy classes of G. Any function
a : G —» K which is constant on the conjugacy classes of G is a class
function of G. The linear space of all class functions of G (with ordinary
pointwise addition and scalar multiplication) is denoted by C£K{G). For
all a,f3£aK(G), put

' ' g€G

The mapping (•, •) : Clpc{G) x C£K(G) —> K is a regular and symmetric
bilinear form on C£K{G).

A.2.7 Example. Let x be a character of G. Considering the regular G-
character \KG mentioned in A.2.2(i) gives

(x, xKG)G = |Gi H x(g) XKoia'1) = X(IG)

We now turn to the simple but powerful notions of induction and re-
striction of class functions.

A.2.8 Definition and Remarks. Let U be a subgroup of G. Then, on
the one hand, a\u € C(K(U), for all a S C^K(G). The /ST-linear mapping

is called restriction.
On the other hand, for each a e Ku := {/3\/3 :U -> K}, define a

mapping aG : G —> K by

x-^x&U

then a G <E C£K{G). The X-linear mapping (-)G : Ku -> C(.K(G), a >-> aG,
is called induction. The class function a G of G is said to be induced by a.
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It is easy to show that induction is transitive as follows: For all a £ Ku

and all subgroups V of G such that U C.V,

(avf=aG.

Induction and restriction come together in the following important re-
sult:

A.2.9 Frobenius' Reciprocity Law. Let U be a subgroup of G, then,
for all a 6 C£K(U) and (3 € C£K(G),

The straightforward proof is left to the reader.
Restricted and induced characters are again characters. To see this, let

U be a subgroup of G, then the linear subspace KU := (U)K of KG is
a group algebra of U over K and a subalgebra of KG. So, on the one
hand, any i^G-module is also a KU-module, by restriction. On the other
hand, for any KU-modu\e N, the tensor product N®KU KG of N with the
(KU, if(?)-bimodule KG is a KG-module with corresponding representa-
tion D such that

(n ®KU a)(gD) = n ®KU (ag),

for all n £ N, a e KG and g 6 G.

A.2.10 Theorem. Let U be a subgroup of G, M be a G-module and N be
a U-module, then:

(i) XM\U is the character of the U-module M.

(ii) (xN)G ^ the character of the G-module N ®KU KG.

Proof, (i) holds by definition. Let B be a linear basis of TV and R be a
transversal of the right cosets of U in G. Then the set

T:={b®KUr\{b,r)eBxR}

is a linear basis of N ®fcu KG. Let g E G, b £ B and r S R. Choose u € U
and r' £ R such that rg = ur', then

(6 ®KU r)g = b ®KU (rg) - b ®Ku (ur') = (bu) ®KU r'.

Expanding (b ®KU r)9 linearly in the elements of T, it follows that b ®KU r

occurs only if r = r'. More precisely, in this case, the coefficient of b ®KU r
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in {b®xu i~)g is equal to the coefficient of b in bu = b{rgr-1) when written
in the basis B of N. Let d^ '• U —> GLK(N) be the representation of U
corresponding to TV, then

tr(gD) =

rgeUr

rER

1

= (xN)G(g),

as y v is a class function of U. D

A.3 Orthogonality Relations

A little-known result due to Frobenius [Fro99, Section 5] is used to trans-
late A. 1.6 into the orthogonality relations for the irreducible characters
ofG.

A.3.1 Proposition. Let V be a finite dimensional vector space over K,
and let <p, tp be linear endomorphisms ofV. If (p2 = <p and (V<p)ip C Vip,
then tr(v?V) = *i{i>\v<t)-

Proof. Let B = (b\,. ..,bn) be a basis of V such that Bx — (bi,..., bk) is
a basis of Vtp. Denote by A G Kkxk the matrix of ip\vv corresponding to
the basis B\, and by Ek the identity of Kkxk, then the matrices of tp and ip
corresponding to B are respectively

(Ek 0\ . . (A Q
<p~t \ and tf~(
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Hence the matrix of <pip corresponding to B is given by

A 0
0 0

In particular, tr(ipip) = tr(A) = tr(V>|w)- D

A.3.2 Frobenius' Lemma. Let e = Y2X&G exx £ KG be an idempotent
and I = eKG, then for all g G G:

X/(ff) =

In particular, d i m ^ / — \G\el .

Proof. Let g £ G and denote by (p : KG —> KG, x i-> ex, left multiplica-
tion with e, and by ip : KG —> KG, x H-> xg right multiplication with g.
Proposition A.3.1 may be applied to ip and ip. Indeed, as e2 = e and / is a
right ideal of KG, we have (KG)<p = eKG = I, ip2 = ip and lip C / . Hence

X[{g) — MV1!/) = tr(iprp).

But, for all h £ G, htpip = ehg = J2xeG ex xhg. As xhg = h if and only if
x = hg^h'1, for all x, h € G, it follows that

In case g = IG, it follows that I G ^ = X/(1G) = dim^- / . D

The set of all sums J2gec 9> m ^"^> where C is a conjugacy class of G,
is a linear basis of the centre Z{KG) of KG. In particular,

dim*: Z(tfG) = /i := # { C | C conjugacy class of G }.

h is the dass number of G. Furthermore, each element of the centre of
KG is constant on conjugacy classes, so that Frobenius' lemma acquires
the following simple form for central idempotents.

A.3.3 Corollary. Let e C Z(KG) be an idempotent and I = eKG, then

e = i/\G\
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Combined with A. 1.6, this gives the

A.3.4 Orthogonality Relations. For all irreducible G-modules M, N,

( (dimK Mfj 6\mK H if M ^KG N,
(xM'XN)G =

where H is the homogeneous component of KG of type M (see A.1.4).

Proof. Let M be an irreducible G-module, then the homogeneous compo-
nent H of KG of type M is an inner direct sum of k = dim/f H/ d\n\K M
copies of M, by A.1.7, hence

XH = kxM,

by A.2.4. Let e denote the identity of H. Then, by A.1.6, e is a central
idempotent in KG and H — eKG.

Choose another irreducible G-module N, denote the homogeneous com-
ponent of KG of type N by L and the identity of L by / . By A.3.3, the
coefficient of 1Q in the product ef is

1 ' gh=la I * gh=lO

~ ~\G\

where / = dim/<- L/ dim/f N. But ef is equal to e or 0 according as M =KG
N or not, by A.I.6. It follows that (XM>XN)G = 0 if M and N are not
isomorphic, whereas in case M =KG N, we have xM = X^, k = 1 and

(XM,XM)G = k2 \G\ e l o = k2 6\mK H = (dim* M)2/d\mK H,

which completes the proof. D

The orthogonality relations imply that the set of irreducible G-
characters is linearly independent in C£K(G)- Therefore, combin-
ing A.2.3, A.2.4(i) and Maschke's Theorem gives:

A.3.5 Theorem. Let N, N' be G-modules, then N ¥KG N' if and only

lf XJV — XN1 •

Another consequence is that the number t of mutually non-isomorphic
irreducible G-modules is bounded above by the class number h of G, since



Appendix A. Elements of representation theory 137

the dimension of CIK{G) is equal to h. In general, t < h, as the example
of the cyclic group of order 3 over the field Q of rationals shows. However,
there is the following clarifying statement.

A.3.6 Theorem. Let T be a transversal of the irreducible G-modules, and
denote by h the class number of G, then the following conditions are equiv-
alent:

(i) \T\=h;
(ii) dim/f EndxGM = 1 for all M e T;

(iii) {XM \M £T} is an orthonormal basis ofC£K(G).

The field K is called a splitting field of G if one (and hence all) of the
conditions (i)-(iii) in A.3.6 hold.

Note that, if K is algebraically closed, then (ii) holds, by Schur's lemma,
hence K is a splitting field of G.

Proof of A.3.6. Denote the homogeneous component of KG of type
M by HM, for all M e T, and set kM '•= 6\mK HMI d\mK M. Then
Wedderburn's structure theorem A. 1.8 implies

kM d\mK M = dim/c HM = k2M dim if EndxG-M.

for all M <E T. If (iii) holds, then {d\mK M)2/6\mKHM = {xM,XM)G = 1
for all M £ T, according to the orthogonality relations A.3.4, hence kM —
dirriif M and thus dim/f EndxG-^ = 1 for all M e T . So (iii) implies (ii).
Note that, conversely, (ii) implies (XM'XM)Q ~ •*• ^or a^ ^ G T.

Assuming (ii), it actually follows that EndifGM = ifidjv/ for all M s T ,
by Schur's lemma. Hence, on the one hand, the centre of the matrix ring
(EndxGM)kMXkM over the field K\dM consists of scalar multiples of the
identity matrix only, for all M e T . On the other hand, the ideal decom-
position KG = (&MHM derived in A.I.5 gives the direct decomposition
Z{KG) = 0 M Z(HM) of the centre of KG. Apply Wedderburn's theorem
once more to obtain

h = dim*- Z{KG) = J2 d>™K Z(HM) = ^ 1 = |T|
MeT MeT

and hence (i). Furthermore, (iii) follows, since (i) implies that the irre-
ducible characters of G form a basis of C£K{G), while (ii) implies their
orthonormality, as was mentioned already.

It remains to be shown that (i) implies (iii). Assume first that K is
algebraically closed. Then (ii) holds, by Schur's Lemma, and thus also (i)
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and (iii), as we have just seen.
Now consider an arbitrary field K of characteristic 0, and let L be an

algebraically closed extension field of K. Then Z(KG) is a subring of
Z(LG). Assume that (i) holds and denote by eM the identity of HM, for
all M e T. Then { e M | M e T } i s a if-basis of Z(KG), by (i) and A.1.6.
As dinu Z(LG) — h = A\mK Z(KG), A.1.6 also shows that { eM | M e T }
is an L-basis of Z(LG), namely the unique basis consisting of orthogonal
primitive idempotents. Therefore, { \M | M € T } is the set of irreducible
characters of G over L, by A.3.2 and A.I.7. This implies (iii), and the proof
is complete. •

A.3.7 Corollary. Let K be a splitting field of G, then for any a &C£K(G),

x

where the sum is taken over all irreducible characters x of G.
The short account of the classical representation theory of finite groups

ends here.
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Solomon's Mackey Formula

Let n £ N. A short proof follows of the Mackey formula

for Young characters corresponding to compositions q,r of n (with certain
nonnegative integers m^(s)), and of Solomon's noncommutative analogue

s\=n

in the group algebra of Sn. These identities imply Solomon's theorem 1.1.
The approach presented here is essentially due to Bidigare [Bid97] (see

also [BroOO]).

B.I Definition. An /-tuple Q = {Qi,-.. ,Qi) is an ordered set partition
of nj if Qi,..., Qi are mutually disjoint and nonempty subsets of n, such
that n, = Qi U • • • U Qi. Let qt — |Qj| for al i i e 4 then

typeQ :=qi.q2 qi

is a composition of n, the type of Q. For example, the set partition Pq of U]
consisting of the successive segments of size qi,q2, • • • ,qi in ih n a s type q.

The set of all ordered set partitions of n, of type q is denoted by IIg, for
all q (= n, so that

n=

is the set of all set partitions of TZJ.

139
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The natural action of the symmetric group <Sn on r^ extends to an action
on II, via

QTT = (Qnr,..., QIK)

for all Q = (Qi,..., Qi) £ II and TT € Sn. The stabiliser of Pq in Sn is Sq,
the Young subgroup corresponding to q, while the orbit of Pq is II,. In
particular, the character afforded by the permutation module KTLq is the
Young character £9 = (Is,)5", that is, £9(TT) is equal to the number of all
set partitions Q £ Hq such that QTT = Q, for all ir £ Sn.

B.2 Definition and Remark. Define a product A on II by

, ... ,PlnQ1,...,PlnQkr

for all (Pi,...,Pi),(Qi,...,Qk) G n, where the hat check on the right
hand side indicates that empty sets are deleted. This product turns II
into a semigroup with identity (nj). More importantly, the product A is
Sn-equivariant, that is,

(P A Q)TT = PIT A Qn,

for allP,Qen, neSn.

B.3 Proposition. The fixed space B of Sn in the integral semigroup al-
gebra ZII is a subalgebra of ZII, with linear basis consisting of the orbit
sums

Q
type Q=q

indexed by composition q of n. Furthermore,

Xr A Xq = J2 mrq{s)Xs

forallq,r \= n, where mrq{s) = \{Q £ Hq \ Pr A Q = Ps } | .

Proof. If / , g € ZII are fixed by Sn, then so is / A g, since the product A is
iSn-equivariant. Thus B is a subalgebra of ZII. The orbit sums Xq, q \= n,
clearly constitute a linear basis of B.

Let q,r,s (= n. To describe the structure constants mq(s), it suffices to
consider the coefficient of any 5 G II of type s in the product Xr A Xq.
Take S = P3, then mrq(s) is equal to the number of pairs (R, Q) £ IIr x Ilq
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such that R A Q = Ps, by definition. However, the latter identity already
implies R = Pr. U

B.4 Corollary. Let n £ Sn, then the linear span Bn of the elements

Q,

Qn=Q

indexed by composition q of n, is a subalgebra o/ZII. Furthermore,

Xr'* A X"'' =
s|=n

for all q, r \= n.

Proof. Let Q, R £ U, then R A Q is fixed by -K if and only if both Q and
R are fixed by TT. Thus, for q, r (= n, the identity

type fi=r type Q=q s\=n

stated in B.3 will turn into the identity Xr^ A Xi<* = ^ s ( = n mrq(s)Xs'7r if
only those summands are considered which are fixed by w. O

The preceding results allow us to deduce the multiplication rules we are
aiming at, as follows.

First, let TT € Sn and consider the sum of the coefficients on both sides
of the equation

Xr'« A X** =
s|=n

On the left hand side, we get the number of pairs (R, Q) G IIr x Uq such
that R-ir = R and Qir = Q, that is, £r(7r)£9(7r). Similarly, on the right hand
side, the number of summands of Xs'* is equal to the number of S £ Us

such that Sn = S, hence the coefficient sum is 2s|=n Tn'q(s)^si^) here. This
proves £r(7r)£9(7r) = X)s|=nm<j(s)£s(7r)' f°r a^ n e $„., hence the Mackey
formula for the Young characters £r, £9.

To prove the noncommutative analogue, B.3 is transferred into the group
ring ZSn.

The linear space Zllin of ZII is a two-sided ideal of ZII, by definition
of A, and an «Sn-submodule of ZII. More precisely, the bijection from III"
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onto Sn mapping ({ai},..., {an}) to the permutation TT £ Sn with i-n = at

for all i £ nj extends to an isomorphism of <Sn-modules

i: Zllin -> 1Sn ,

by linearity. Each element of B acts on Zllin, by left multiplication, and
this action commutes with the action of <Sn, since (/Aa)7r = fnAcnr = /Aavr
for all / £ B, a £ Zllin, TT G «Sn. In other words, the map

defines an anti-homomorphism of algebras from B into End^ZIIin. This
is isomorphic to Er\dsnZSn, via

Finally, there is the usual anti-isomorphism of algebras from EndsnZ<S,j
onto ZiSn, defined by

The composition f3 = fi\f5ifiz of these three maps is a homomorphism of
algebras from B into 7LSn such that

•9A({l} , . . . , (n»V = S9

for all q (= n. Applying /3 to the multiplication rule for the elements X9

stated in B.3 gives

s|=n

as desired.

B.5 Remark. Let q = gi %,r = ri r;,s [= n. As already men-
tioned in 12.12, the structure constant mrq(s) of P n can be described com-
binatorially as the number of certain matrices with nonnegative integer
entries. To see this, we use the description of mrq{s) given in B.3. Assign-
ing to each Q £ 11, such that Pr A Q = Ps the matrix M = (mi:j) £ Mrq

defined by

mij = \P[nQj\

for all i £ /,, j £ fc,, there is a bijection from { Q € Uq \ Pr A Q = Ps } onto
the set of all M € M.rq such that the word s is obtained by juxtaposing the
rows of M from top to bottom and deleting the zeros.
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Young Tableaux and Knuth Relations

A proof follows of the Robinson-Schensted correspondence stated in Chap-
ter 8, and its supplement 8.12. Throughout, n G " is fixed.

The approach is inspired by the illustrations of the Robinson-Schensted
correspondence for S4 given in 8.5 and is subdivided into four parts. In the
first part, which builds on the theory of frames established in Chapter 6,
the noncommutative orthogonality relations 8.10 for the elements Zp, p h n,
are derived. The second part follows [BJ99] and contains a combinatorial
structure theorem on the Greene cells Qp in the spirit of 8.5 which is solely
based on the definition of plactic and coplactic equivalence. A counting
argument due to Leeuwen [Lee96] then allows us to prove the Robinson-
Schensted correspondence in the third part. In final part four, a brief study
of the so-called Greene invariant leads to a proof of 8.12.

Before starting, recall that a is a plactic neighbour of n if there exists
an index i G n — 1| such that a = Tn^n and (i — l)n or (i + 2)ir is contained
in the interval (z7T, (i + 1)TT), for all IT, a e Sn (see 8.1). It will be convenient
to write

in this case, and to denote the smallest equivalence on *Sn containing
K

the plactic equivalence, by ~ . Similarly, write

if a is a coplactic neighbour of ?r, that is, if a~l >-' TT"1 or, equivalently,
if there exists an index i G n — 1| such that a — "KTn^ and i — 1 or i + 2
is contained in (i,i + l)n (see 8.3). The coplactic equivalence is denoted
by ~ , so that a ~ TT if and only if cr"1 ~ TT"1. The subscript K refers
to Knuth.

143
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C.I Young Tableaux

C.I.I Theorem. SYTP is a coplactic class in Sn, for all p \- n.

Proof. Lemma 8.7 implies that SYTP is a union of coplactic classes (with-
out recourse to the Robinson-Schensted correspondence). We use induction
on n to show that, conversely, n ~ p for all IT, p £ SYTP.

This is clear if n < 2. Let n > 3 and 7r,p € SYTP. Set F := F(p),
a := i>pln and /? := i~lp, then both na~1 and n/3"1 are maximal elements
of (F, <F), since na~1 <p y implies n <ya and thus ya = n for all y £ F,
and similarly for /?. In particular, by 6.11, there exists a partition q such
that F\{na-1} = F(q). Furthermore, 7r' := tF(q)a 6 SYT9. The image
line of TT' is obtained by removing n from the image line of TT. In case
noTx — n/3"1, it follows that

by induction, hence also TT ~ p.
Assume that na~l ^ n^1, and let z be the infimum of na~1 and n(3~l

in {F,<F). The set

G:={w£F\z<Fw}

is a partition frame containing z, and so is G\{na~1,n/3~1}. In particular,
there is a maximal x element of G\{na~1,n/3~1} with respect to <zxZ-
Notice that na~1 —> x —+ n/3"1, or n/3"1 —> x —> na"1. Furthermore, x is
also a maximal element of H := F\{na~1,nP~1} with respect to <zxz- In
particular, there is an element a £ SYT^ such that (n — 2)S~1 = x, where
5 := i~la : H -> n-%.

Now define 7 : F —> n, by 7|/f := J, (n — 1 ) 7 - 1 := n/3"1 and n 7 - 1 :=
na~x, so 7 is monotone, by the maximality of nfi~x ^ na~~l. This implies
1/ := LF-f 6 SYTP. From n-y"1 = na^1 it follows that

as was already shown above. Furthermore, the choice of x implies that
n — 2 £ (n — 1, n)v and so, by definition,

Finally, n(7rn_i)~1 = n/3^1, hence
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as above. Combining all three observations, it follows that TT
K •

C.1.2 Lemma. Let p \- n, then there exists a standard Young tableau
•K G SYTP such that n = n~l.

Proof. Let F = F(p), p = pi pi and p ' = p[ p'm. Denote by a the
mapping F —> F reflecting each of the columns F^, j G mi, at its centre:

More precisely, define a : F —> F by {i,j)a :— (p't + 1 — i, j), for all i e l , ,
j G gij. As is immediate from the definition, a2 = idp. Furthermore,
<T : (F,<F) —+ (.F, —»jr) is monotone. For, if ( i , j) ,(u,u) G F such that
( M ) <ZxZ (W)W), theni < u implies p£ > p^ and hence p^+l—i > p'u + l—u,
so j < v allows one to conclude (i,j)a = (p^ + l — i,j) -+ (p'u + l —u,v) =
(u,v)a.

As a consequence, TT := iFaiz} is contained in SYT = SYTP, since
L^TT = 0 7 , 1

implies that •K2 = idn.
is monotone from (F,<F) to (n,, <). Furthermore, a2 = i>

D

1
3
6

2
4
7

5
8 9

6
3
1

7
4
2

8
5 9

For example, enter the numbers 1, . . . , 9 in the partition frame F =
F(4.3.2) according to the natural labeling of F to obtain

and hence

by reflecting each of the columns at its centre. Reading out the entries
again gives 7T = 6 7 3 4 8 1 2 5 9 G « S 9 . In fact, n G SYT 4 3 2 and n2 = id9.
Let it be mentioned that, for an arbitrary frame F , the same construction
gives an element TT G SYT such that TT = ir~l.

The induction and restriction rules of Chapter 6 now allow us to derive
the noncommutative orthogonality relations for the elements Zp, p h n.

C.I .3 Theorem. Let n G N and p,q \- n, then

_jlifp = q,
p 10 otherwise.
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Proof. Let p = p\ pk and q = qi qi be partitions of n. By C.I.2,

Set q := qi qi, then 6.4 implies SYT9 C 5«, hence (7J>,7fl)v <
(Zp, EF) . An argument similar to the one given in the proof of 10.1 follows,

hwhich shows that

The symmetry {V,7>q)v = (Z«,Zp)p then implies (Zp,Z«)p = 0 if p =£ q,
and furthermore (Z9,Zg) < 1, which completes the proof.

If q = n, then (ZP,H9) = (Zp,idn) is one or zero according as idn £
SYTP or not. By 6.17, the latter condition is equivalent to saying that F(p)
is a horizontal strip, hence that p — n.

Assume that I > 1 and set s := qi q2. Then, applying 6.15, 5.14, 6.13
and 6.17,

rCp r

where the latter sum is taken over all partitions r C p such that F(p\r) is
a horizontal strip of order q\. In particular, p\ < qi implies (Zp, H9) = 0,
since in this case even none of the subsets of F(p) of order qi is a horizontal
strip. If pi — qi, there exists a unique partition r C p such that F(p\r)
is a horizontal strip of order qi, namely r = p2 Pk- Hence (ZP,E?) =
(Zr,Hs) in this case. Induction finishes the proof. •

C.I .4 Example . In case n = 4, the fruits of the results derived on the
preceding pages may be summarised and illustrated as follows. The sets

SYT4 ={1234},

SYT31 ={2134,3124,4123},

SYT22 ={3412,2413},

SYT21-1 ={3214,4213,4312},

SYT1111={4321}

are coplactic classes in (S4, by C.I.I. Furthermore, for each p h 4 , SYTP

and (SYTP)- 1 may be considered as coordinate axes which intersect in the
unique element TTP £ SYTP n (SYTP)~1 obtained by entering the identity
in the partition frame F(p) and then reflecting each of the columns at its
centre, by C.I.2 and C.I.3. The element np is the origin of the coordinate
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system indexed by p we are after (see 8.5). For instance, if p = 2.1.1, then
7TP = 3 21 4. If plactic neighbourhood is illustrated by a vertical bar and
coplactic neighbourhood is illustrated by a horizontal bar, each of which is
labelled by the respective swap position (as in 8.5), then we get

3214 — 4213 — 4312

3

3241

2

3421

C.2 Carpets

The results that follow .allow to complete the illustrative picture coming
along with the above example, by means of the local crochet procedure C.2.2,
which was introduced in [BJ99].

Recall that pn = n (n — 1) (n — 2) • • • 2 1 denotes the order reversing
involution in Sn.

C.2.1 Proposition. Let IT,a G <Sn, then the following conditions are
equivalent:

(i) IT is a plactic neighbour of a;

(ii) pnn is a plactic neighbour of pna;

(iii) npn is a plactic neighbour of apn.

Here, the word plactic may be replaced by the word coplactic.

Proof. By definition, ipn = n + 1 — i for all i € nj.
Let 7T, a e Sn be plactic neighbours, then there exists an index i £ n — l\

such that a = Tny{ IT and (i — 1)TT or (i + 2)7T is contained in {in, (i + l)7r).
Clearly, apn = Tn^pn) and pna = pnrn^ = Tn)n_i(pn7r). Concerning

left action of pn, the identities (i - \)TT = (n — i + 2)pn7r, (i + l)?r =
(n — i — l)pn7r, in — (n — i + l)pnn and (i + 1)TT = (n — i)pnn imply that
(n — i — l)pnn or (n — i + 2)pnir is contained in ((n — i)pnn, (n — i + l)pnn),
hence (ii).

Concerning right action of pn, note that, for arbitrary a, b £ r^, the image
under pn of the interval (a, b) in nj is the interval (apn,bpn). Therefore
(i — l)npn or (i + 2)pnir is contained in (inpn, (i + l)npn). This implies (iii).
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The reverse implications follow from p\ = \dn.
Considering the inverse permutations, gives the equivalences for the

coplactic neighbourhood. •

C.2.2 L e m m a. Let  TT £ <Sn and  assume  that  i,j £ n—\\  so  that

7T Tnti ^K 7T £s  Tnj It,

then  there  exists  a permutation  a  £ «Sn such  that

The following is a useful illustration of the preceding crochet lemma.
Illustrating again plactic and coplactic neighbourhood by a vertical and
horizontal bar respectively, the assumption in C.2.2 may be represented by
the incomplete stitch

•K —— ffTni

which, by the claim that follows, may be completed out to

TT  - £ - 7TTn

3

by an appropriate crochet procedure, namely by the case-by-case proof that
follows.

P r o o f . L e t » = f j

a b c d

a G (b,  c) or d  £ (b,c),

and

i - 1 £ (M + I)*- or i+ 2 E (1,1  + 1)

Without loss of generality, by C.2.1, assume that

a£(b,c)  and i —  1 £ (z, i + l)ff

using pnTT,  irpn, or Pnirpn  instead of n  if necessary.
We consider two cases:

then
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e a s e l . \{i,i + 1} l"1 {a, b, c}\ < 1, then

arn,i € (6rni i )crni f)

and so 7rTnii ^ Tnj- (TTTV^J). Furthermore, z — 1 ^ (i,i + l)rnii7r would
imply that {b,c} = {i — l,i + 1} and hence a = i, a contradiction. This
shows (rnj TT) rni,- *—rnj- TT. In other words, a := rnj 7rrnij completes the
stitch.

case 2. {i, j + 1} C {a, 6, c}, then i - l g {«,« + l)w implies {z, i + 1} =
{a, c} and 6 = i — 1. Since a £ (b,c), it follows that c = i + 1, a = i, hence

TTTn.t ^ T n , i - 1 (7TTn,i) = (Tn>j 7r) Tn > i_i ^ TnJ-7T.

In this case, a := Tnj_\ irTnti completes the stitch, and we are done. •

C.2.3 Lemma. Ifn,a,a' G Sn such that IT -—• a, TT •—- a' and a ~ a',
then a = a'.

In particular, the permutation <j in C.2.2 is unique.

Proof. Let a = TTTn<i, <r' = 7rrnij. Since a ~ a', there exist <j\,... ,(Tk £
Sn such that

a = a 1 { r a 2 i r • • • ^ ak = a'.

In particular, there are indices j2,...,Jfc 6 n — 1| such that c ' =
rn,jfc •• -Tnj2a, hence

Now assume that i ^ /, then there exists an index m £ n — lt such that m
and m + 1 occur in different orders in the image lines of n and 7rrnj( r n j .
But, as is immediate from the definition, the orders of m and m + 1 in
the image lines of any two plactic neighbours are the same. Hence m and
m + 1 also occur in different orders in the image lines of TTTn^Tn^ and
Tnjk • • • Tn>j2TT, a contradic t ion. •

C.2.4 Example. The coordinate system corresponding to the partition
p = 2.1.1 of n = 4 set off in C.I.4 may be rounded out by four uniquely
determined stitches, as follows. Start with the upper left corner, or origin,
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= 3214of

3214 — 4213 — 4312

3

3241

2

3421

its plactic neighbour T^TT = 3241 and its coplactic neighbour 71T43
4213. The unique completion of this stitch is given by a = 42 31:

3214 — 4 2 1 3 - ^ - 4 3 1 2

3 2 4 1 ^ - 4 2 3 1

2

3421

Carry on with the second coplactic neighbour 4312 of 4213, together with
its plactic neighbour a — 42 3 1, to get

3 214 — 4 2 1 3 - 2 - 4 3 1 2

3 2 4 1 - 5 - 4 2 3 1 — 4 1 3 2

2

3421

Another two such stitches complete the third row and yield

3214 — 4213-2-4312

3241 — 4231 — 4132

3421 — 2431 — 1432

as in 8.5.
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A formal implementation of the crochet procedure follows.

C.2.5 Corollary. Let Bo, Bi be plactic classes in Sn. Assume that there
exists an element 0o G Bo, and an element f}\ g B\ such that /?o *--'„ Pi,
then the coplactic neighbourhood induces a one-to-one correspondence be-
tween the elements of Bo and B\. In other words, for any n0 £ Bo, there
exists a unique K\ G B\ such that ~KQ V_ 7r1; and vice versa.

Here, the words coplactic and plactic may be exchanged.

Proof. Let 7r0 G Bo, then there exist permutations c^ 0 ' , . . . ,c*(m) G Bo

such that

Applying C.2.2 a number of times, yields permutations 7 ^ , . . . ,7^m^ G Bi
such that

0 = -,(0) w (i) _ ^ (m)

and Q^*) -—- 7W, for all i G m,. In particular, the permutation 7Ti := 7(m)
is a coplactic neighbour of TT0 in B\. Furthermore, 7ri is unique with this
property, as is immediate from C.2.3. Thus any TTQ € Bo has a unique
coplactic neighbour TTX S B J . Due to the symmetry in Bo and B\ and the
symmetry of coplactic neighbourhood, the claim is proved.

By considering inverse permutations, the analogous assertion is obtained
for coplactic classes and plactic neighbourhood. •

C.2.6 Definition and Remarks. Consider the smallest equivalence on
Sn refining both ~ and ~ . Inspired by the illustrations, the cor-
responding equivalence classes are called carpets. This means that two
permutations n and a in Sn are contained in the same carpet in Sn if and
only if there exist permutations 7r0,..., iXk G Sn such that TT = TT0, a = itk
and, for all i e L T I ^ W •ni or TTJ-I •^-^ TTJ.

By definition, any carpet is a union of plactic as well as coplactic classes.
In particular, for any partition p h n , there exists a unique carpet Tp in Sn

containing SYTP, by C.I. 1.

C.2.7 Corollary. Let T be a carpet in Sn. If Ao, Ai are coplactic and
BQ, B\ are plactic classes in T, then
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Proof. We first show that \A0 D Bo\ = \A0 D Bi\. Assume there exist
permutations A £ Bi, ft € BQ such that /?i -^ /30. Applying C.2.5

yields a bijection w : Bo —* B\ such that flip = /? if and only if /? -—-_, j3,
K

for all /3 € -Bo, ,3 £ B\. By restriction, there is an injective mapping
Ao n Bo —> ̂ o n Bi and so |>lo n -Bo| < \A0 (~l 5i | . Symmetry in i?o
and 5i implies equality. For arbitrary B\, the result follows by induction.
Furthermore, the equality \A0 n B\\ = \A\ n 5 j | can be deduced along the
same lines once the roles of plactic and coplactic classes are exchanged. O

An immediate consequence of C.2.7 and the noncommutative orthogo-
nality relations is:

C.2.8 Corollary. Letp \- n, then for all coplactic classes A and all plactic
classes B contained in Tp,

\AnB\ = l.

Furthermore, the carpet Tp consists of sytp coplactic classes, and of sytp

plactic classes, each of which contains sytp elements and a unique element n
with •n = n~1. In particular,

\Tp\ = (syf)2.

Proof. The carpet Tp is a union of coplactic classes, one of which is, by
definition, Ao := SYTP. Furthermore, for the plactic class Bo := ^J"1,

by C.1.3. This implies Bo C Tp and thus \A n B\ = 1 for all coplactic
classes A and all plactic classes B in Tp, by C.2.7. In particular, any
plactic class in Tp has a unique element in common with Ao, while any
coplactic class has a unique element in common with BQ. Hence there are
precisely \Ao\ = sytp = |J5o| plactic as well as coplactic classes in Tp. Any
two coplactic and any two plactic classes in Tp have the same cardinality,
by C.2.5, and hence the cardinality sytp of AQ and BQ- Finally, for any
plactic or coplactic class C in Tp, |Cn C~1\ = 1 implies that C contains a
unique element vr with IT = n~1. •

Let p, q \- n, then SYTP is a coplactic class in Tp, while (SYT9)"1 is a
plactic class in Tq. The remaining part of the noncommutative orthogo-
nality relations C.1.3 implies |SYTP n (SYT9)"1! = (Zp, 7fl)v = 0, hence

Tp n Tq = 0 (*)



Appendix C. Young tableaux and Knuth relations 153

whenever p ^ q, by C.2.8. In other words, Sn contains the set { Tp | p \- n }
of mutually disjoint "coordinate systems" in the sense of 8.5. However, the
problem remains to show that each permutation TT e Sn is in fact contained
in Tp for some p h n .

C.3 A Counting Argument

Corollary C.2.8 and (*) above imply
i . .

< n! .
phn phn phn

The difference n! — ̂ 2pi-n(syf)2 counts the elements of the carpets T ^
{Tp \p h n} . An argument due to Leeuwen [Lee96] follows which shows
that this difference is zero.

C.3.1 Notation. Let p, q be partitions. Denote by pflq the unique parti-
tion r in N* such that F(r) = F(p) n F(g), and by p\Jq the unique partition
s in N* such that F(s) = F(p) U F(g). Furthermore, set

p ~ : = { r h n — l | r C p } a n d p + : = { s \ - n + l \ p C s } .

C.3.2 Proposition, syf = ]T)q6p_ syt9, for all phn.

Proof. This is a consequence of 6.15, 5.14 and 6.13, since

= T syt*.
9€p- D

C.3.3 Proposition. For all partitions p, q:

(i) p e ? + ^ q£p~;

(ii) |p+| = |p"| + l;
(iii) |p+ D q+\ = \p~ fl q~| whenever p ^ g.
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Proof. The first statement holds by the definition of q+ and p~. Let
n £ N and p = p\ pi h n. Putting pi+\ := 0, we observe that |p+| =
# { i £ h\Pj > Pj+i } + 1 = \P~\ + 1> which proves (ii).

Let r S p+ n q+, then q C r, p C r and hence also pU q C r. However,
|F(r)\F(p)| = 1 = |F(r)\F(g)| implies that

|F(r)\(F(p) U F(9))| - |(F(r)\F(p)) D (F(r)\F(g))| e {0,1}.

In fact, |F(r)\(F(p) U F(g))| = 0 and F(r) = F(p) U F(g), since p ^ q. This
shows that either p+ H q+ = $ (and |p+ D g+| = 0), or p+ (~l q+ = {pU?}
(and |p + ng + | — 1). Along the same lines, it is seen that either p~Hq~ = 0
(and \p~ r\q~\ = 0), or p ~ n ^ " ={pfl g} (and |p~ r\q~\ = 1).

It remains to show that \p+ Hq+\ = 1 if and only if \p~ Hq~\ = 1, but
this is readily done. •

C.3.4 Lemma, (n + l)sytP = EgeP+ syt9> for al1 P^n-

Proof. The assertion is immediate if n = 0. Let n > 0, then by induction,

(n + l)sytp = sytp + n ^ sytr , by C.3.2
r€p~

; sytp + > \p 0 s |syts
shn

sytp + \p~ ||sytp| + ^T \p+ fl s+ |syts , by
shn

IP+ n
shn

= E E
shn

= E E
r€p+ s€i—

= E sytr-
D
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C.3.5 Theorem, n! = E p

Proof. Observe that if n = 0, both sides are equal to 1. If n > 0, it follows
by induction and C.3.2, C.3.3(i), C.3.4 that

phn p\-n q£p~

= £ (£syt»)syt*
qhn- l p€q+

= n £ (syt*)2
qhn-l

= n! .

D

This result implies:

C.3.6 Corollary. Sn is the disjoint union of the partition carpets Tp,
phn.

Combined with C.2.8, this allows us to give a
Proof of the Robinson-Schensted correspondence. Let TT e Sn,

then there exists a partition p\- n such that n € Tp, by C.3.6. The plactic
class B of 7r is also contained in Tp, hence intersects the set [jqi-n SYT9 in
a unique permutation P(n) £ SYTP, by C.2.8. This defines a mapping

SYT"
qhn

such that P{n) ~ TT for all ir e Sn, since TT and P(ft) are contained in the
same plactic class. In fact, the definition implies that P(n) = P(c) if and
only if n and a are contained in the same plactic class, that is, if and only
if 7T ~ a.

Let Q(?r) := P^"1) for all vr £ Sn. If 7r,<7 e 5n such that P(TT) =
P(cr) and Q(TT) = Q(<r), then TT and <r are contained in the same plactic
class B' and TT~1 and cr"1 are contained in the same plactic class B, say.
But B and B' are contained in the same carpet Tp for some p \- n, so
that B" 1 n S' is a singleton, by C.2.8. This implies TT = a, hence the map
iv H-> (P(TT),Q{-K)) is injective.



156 Noncommutative character theory of the symmetric group

Surjectivity now follows from C.3.5, or by definition, since for each pair
(a, j3) G SYTP x SYTP the plactic classes Ba and Bp of a and /? respec-
tively are contained in Tp, thus again Ba n {Bp)~x contains a (unique)
permutation TT, by C.2.8, and P(TT) = a, Q(ir) = P(TT~1) = /3 follows.

The proof of the Robinson-Schensted correspondence is complete. •
Note that, as a consequence, Tp is the Greene cell Qp defined in 8.4, for

all p \- n.

C.4 The Greene Invariant

For any permutation n £ Sn, Greene [Gre74] discovered a way to determine
the partition p of n such that it G Gp, as follows.

C.4.1 Definition and Remark. Let vr G Sn and k £ n,. A subset / of
n, then has n-level k if it may be written as a union of subsets Ix,...,Ik
such that •K\IJ is increasing for all j G Aj. Denote the maximum among the
cardinalities of all subsets of n, of 7r-level k by sk, and let / G n, be minimal
such that si = n. Then the Greene invariant of n is defined by

g(7r) := sx.fa - si) (si - sj_i).

Note that g(?r) is a composition of n. It is also important to observe that, in
general, there is no set partition {/i,..., I{\ of nj such that TT\IJ is increasing
for all j G lj and g(7r) = |/x| \Ii\. For instance, the Greene invariant of
the permutation

7r = 247951368G«S9

is g(7r) = 5.3.1. In fact, I = {1,2,5,8,9} is the unique subset of 9, of
7r-level 1 and cardinality 5, while / ' = {1,2,3,4,6,7,8,9} = {1,2,3,4} U
{6,7,8,9} is the unique subset of 9j of 7r-level 2 and cardinality 8.

Greene's result is:

C.4.2 Theorem. (Greene, 1974) Let vr G <Sn, then p = g(n) is a partition
ofn and IT £ Q?'.

This has as consequence Theorem 8.12, as we shall show below. The
proof of Greene's theorem is done in three steps and does not differ sub-
stantially from the original one.

C.4.3 Proposition. g(7r) = g(7r~1), for all n £ Sn.
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Proof. Let U C n,, then TT is increasing on U if and only if -K~1 is increasing
on t/vr. Thus, if / C n, and k en,, then 7 has 7r-level k if and only if In has
(7r-1)-level fc. This implies the claim. •

C.4.4 Proposition. Let ir, a £ Sn such that a is a coplactic neighbour of
•K, theng(a) -g(n).

Proof. Since the coplactic neighbourhood is a symmetric relation, it suf-
fices to show that, for each subset I of n^ of a-level k, there exists a subset J
of n, of vr-level k such that |/ | = \J\.

Suppose 7 C n, has c-level k. If 7 also has vr-level k, there is nothing to
be done.

Assume now that 7 does not have 7r-level k. Let i £ n — l\ such that
7T = (JTn<i and i — 1 or i + 2 is contained in (i, i + 1)^. Put a := ia~x and
6 = (i + 1)<7-1 and choose mutually disjoint subsets I\,..., Ik of 7 such
that a\ii is increasing for all j £ fc, and / = Ji U • • • U 7*. We may assume
that these subsets are mutually disjoint.

Then a and b are both contained in Iu for some u E fcj. In particular,
a < b. Let c € (a, 6) such that ca G {i - 1, i + 2}.

Consider the case ca = i — 1. If c ^ 7, then J := (I \ {a}) U {c} has
7r-level fc, as is readily seen. If c £ Iv for some u G fej, define

Ju := (7, n (c + 1,6)) u (/„ \ (c+ 1,6)),

J« := (/„ n (c + 1, b)) U (/„ \ (c + 1, b))

and Jw := Iw for all w ^ u,v. The (disjoint) union J of these sets then has
7r-level fc and cardinality |7|.

An analogous argument can be given in case ca = i + 2. D

C.4.5 Proposition. Ifphn and a £ SYTP, then g(a) = p.

Proof. Let n £ N and p — pi pi V- n. Denote the i-th partial sum of p

by Si := p\ -\ 1- pi, for all i € /,. Then

n := ((«,_! + 1) •••«,) ((*,_a + 1) • • • 5 , - i ) • • • (l • • • S l ) G SYT"

and g(7r) =p. The claim follows from C.I.I and C.4.4. D
Combining C.4.3, C.4.4 and C.4.5 with C.3.6, gives C.4.2.
Greene's theorem brings us in a position to state and prove the following

slightly extended version of 8.12.
C.4.6 Theorem. Letp \- n. If A is a coplactic class in Qp, then pnA and
Apn are coplactic classes in Qp .
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Proof. Let A be a coplactic class in Gp, then pnA and Apn are also coplactic
classes in Sn, by C.2.1. In particular, pnGp and Qvpn are Greene cells (or
carpets) in Sn. To complete the proof, it suffices to show that pnGp =
gp' = gPpn. In fact, it is enough to show that g(gn^) = p' for some
permutation vr G Gp, for this implies pnGp n Gp' ^ 0, hence pnGp = Gp ,
and also Gppn = (puG")'1 = {G^)'1 = Gp'.

Let p = pi p; h n and denote the i-th partial sum of p by Sj :=
Pi + V Pi, for all i € ij. Consider the permutation

S l ) G SYTP C Gp

again and assume that / is a subset of nj of (pniv)-\evel k of maximal cardi-
nality. Then / D Pf has cardinality at most k for all i G 4 since (/9n7r)|Pf
is decreasing. It follows that

k i k

nir)i = \I\ <

where we used the observation 12.17 on the partial sums of p'.
Conversely, define Ij := {j, si + j , . . . , sp'._i + j} for all j e pij, then

\Ij\ = Pj and (yCnTr)!/̂  is increasing. This implies

and completes the proof. D
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