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This book is dedicated to Dr. Herbert H. Richardson, 

a professor of mechanical engineering at MIT during 

my graduate school years of 1964-66. HZR, as he was 

fondly called, probably taught me more about engi­

neering than all the other teachers and professors I 

had, combined. He was an outstanding teacher who 

seemed to have a hundred different ways ofexplaining 

a complex subject in a simple and humorous manner. 

lowe much of my success in engineering to this man. 
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Preface
 
If you're like me, when you pick up a book 

you like to know something about the person 
you're trying to learn from. Quite simply, I'm a 
practicing engineer who believes anyone can 
learn engineering, as long as it is explained by 
someone who is willing to take the time to 
present the subject matter in simple enough 
terms. That's what this book is about. 

I graduated from the US Coast Guard Acad­
emy in 1960 with a B.S. in Science. I did well 
there-at least I got good grades and was near 
the top of my class. After four years at sea, I was 
selected to go to graduate school at MIT. What 
a humbling experience that school was for me! 
During the first semester, I realized that I wasn't 
nearly as clever as I thought. In fact, I quickly 
became convinced that I knew nothing about 
math and science, and that I was going to flunk 
out! 

However, as I gave up the notion that I 
knew anything, the situation gradually began to 
change. At MIT I encountered, for the first time 
it seemed, professors who were not trying to im­
press me with their knowledge and intelligence. 

ix 

They sincerely wanted me to learn. When I 
wasn't understanding something, they took it as 
a failing on their part, not mine. It seemed that 
most professors had 50 different ways to teach a 
fundamental principle. 

At MIT, I learned engineering in a way I will 
never forget, but most importantly, I learned 
that engineering is about solving practical physical 
problems by creating mathematical models that can 
be manipulated. These models allow you to learn 
a great deal about the physical problem that 
you're trying to solve. Engineering is not just 
mathematics-rather, mathematics is simply a 
tool used in engineering. 

Through my coursework at MIT in the area 
of automatic control systems, I learned that all 
engineering systems look alike mathemati­
cally-a concept that is at the heart of this 
book. Incidentally, I did manage to graduate 
from MIT with a master's degree in mechanical 
engineering and a naval engineer degree. I started 
my own consulting engineering business in 
1970. I'm still active in the consulting arena, 
and still love engineering. 
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Read Me 

1.1	 The Engineering Design 
Process in a Nutshell 

I've discovered during the writing of this 
book that it's important to know who your read­
ers are. As a reader, it's also important for you to 
know who this book is aimed at. I would like to 
think that anyone with a strong desire to learn 
the fundamentals of engineering can do so in 
the pages of this book. I do believe that, actu­
ally, but it will help a lot if you already have a 
strong foundation in mathematics-at least one 
or two semesters of calculus. 

This book is not a textbook per se. It is pri­
marily intended for those just beginning their 
engineering careers, or for practicing engineers 
who are changing fields or who need a brush-up. 
I also believe that senior technicians who want 
to press ahead into more advanced engineering 
design work can also benefit from it. For those 
whose math is a little rusty, Appendix A pro­
vides a "quick and dirty" review of both differen­
tial and integral calculus. Other mathematical 
topics, such as complex number theory, are in­
troduced and explained in the text as they are 
needed. 

Before we get into the nuts and bolts of 
modeling engineering systems, bear with me for 
a few more moments while I wax philosophical 
about the engineering process. My definition of 
engineering is the application of physics and 
other branches of science to the creation of 
products and services that make the world a 
(hopefully) better place. Your "success" in engi­
neering will likely be closely related to how 
well you can create products and services that 
your organization's customers need and want. 
Unfortunately, I have found that creating new 

products and services is a lot more difficult than 
analyzing or criticizing those that already exist. 
There are far more critics in the world than 
creators! 

Both a creative and a critical person are 
inside each one of us. To be good in engineer­
ing, you have to be able to "turn off' your criti­
cal side long enough to allow yourself to create. 
Once you have created, then you can turn the 
critical side back on to analyze and pick apart 
your creation. Watch out for all those other 
critics in the world. If you constantly listen to 
them, you will never succeed in engineering 
(or anything else, for that matter). Learn to 
encourage yourself. The praise of peers will 
follow. 

This book is about modeling and analyzing 
engineering systems. Modeling is the creative 
side of engineering, and analyzing is the critical 
side. I use the term "engineering system" in this 
book to refer to a product or device that may 
contain mechanical, electrical, fluid, and/or 
thermal components. An engineering system 
can therefore be interdisciplinary, and require a 
designer to have knowledge of many engineer­
ing fields. 

Creating an engineering design does not 
have to be a mysterious art. The more you learn 
about what is available in the way of real-world 
basic components and services, the more creative 
you will become. This book contains all of the 
fundamentals needed to develop mathematical 
models of engineering systems and to analyze 
these models. But you must make it a habit to 
collect and carefully study product and service 
catalogs of basic components so you know what 
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The Engineering Design Process in a Nutshell 

materials are readily available. Don't be afraid to 
ask "dumb" questions. Product representatives as 
well as more experienced engineers and techni~ 

cians can be the source of a great deal of knowl~ 

edge. It sounds like a cliche, but asking ques~ 

tions is really the easiest way to learn. Then, 
when you are trying to create a new design, you 
will have a lot of information in your head that 
will (almost subconsciously) help you generate 
ideas. 

Figure 1.1 shows the basic process undergone 
in developing a new engineering design. The 
design is created first in your mind, when you 
become aware of a want or need. You then make 
a list of specifications that you envision would 
satisfy that need. Then you will create (in your 
mind, at first) a product or service that meets 
these specifications. 

8 
o 

t 

In order to "give birth" to this new design 
idea, you have to get it out of your mind and 
into reality. Take care at this point. Don't let 
your (or anyone else's) critical side take over too 
soon, or your ideas will never be allowed to take 
root. 

You can transfer your "mind model" into a 
"symbolic" or even a "physical" model. It is usu~ 

ally best to work with symbolic models at first, 
because they are typically less expensive than 
physical models (but not always). A symbolic 
model might be a circuit diagram from which 
you can derive a number of mathematical ex~ 

pressions describing the behavior of your mind 
model. You can then solve these mathematical 
expressions for the answers you need. 

Once you have the first solution to your 
mathematical expressions, then-and only 
then-allow your critical side to tear apart your 
design. Don't be discouraged if the first attempt 
at meeting the specifications seems silly. Use the 

Concept 
or• 

Design 

Analysis I+­ Simplified +-(i)+ 

I+­
Model
 

of
 
Concept
Experiment 

Prototype 

Figure 1.1. The engineering design process. 
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Read Me 

results of your analysis to see how well your 
product met the specifications, and alter your 
specs and modify the design as needed. Then 
create another model to analyze. Continue to 
iterate in this manner until you have a product 
that satisfies the need. 

At this point in your design you have to ask 
yourself, "Am I confident enough in my analyti­
cal results to proceed with the construction of a 
full-scale prototype?" If the answer is no, then 
consider building and testing a physical model 
of your product. Physical model experiments can 
produce empirical solutions to problems that are 
difficult to solve mathematically or for which 
too many untested assumptions had to be made 
in order to derive the analytical model and its 
solution. Building and testing physical models 
are usually much less expensive than building 
and testing a full-scale prototype. 

Results of physical model-testing experi­
ments could lead to a revision of your specifica­
tions, a new mathematical model, or even 
another series of physical model experiments. 
Eventually you will get to the point where you 
are confident enough with your design to proceed 
to the construction of a prototype. Seriously 
consider at this point conducting experiments 
with this prototype to obtain data to verify your 
analytical and physical model results. If the 
prototype does not meet your original specifi­
cations, you may have to iterate once again 
through the design cycle before proceeding 
further. 

This is the engineering design process in a 
nutshell. It may sound long, complicated, and 
expensive. It can be, when major, complex engi­

neering systems are involved. But no matter 
how big or small the system, never short circuit 
this engineering design process! Engineers and 
technicians are not artists who create their 
masterpieces on canvas with a brush, or out of 
marble with a hammer and chisel, with little 
input from others. Instead, they are people who 
design, redesign, and then let others check their 
designs. They convert their designs into engi­
neering drawings and then they allow skilled 
craftsmen to provide feedback on how to improve 
the design to reduce production time and costs. I 
have seen and worked with too many "seat-of­
the-pants" engineers who have the engineering 
design process backwards. They first build proto­
types and then they design, often with disastrous 
results. If you do this, you may be considered a 
good "artist," but you will never be a good engi­
neer. 

1.2 An Engineer's Tool Box 

Any skilled craftsman knows that a good set 
of tools and the knowledge to use them is of fun­
damental importance in getting a job done 
properly and safely. An engineer also has 
"tools." Like the craftsman, some of these tools 
are physical in nature, but for the most part an 
engineer's tools consist of mental skills devel­
oped through study of mathematics and science. 

This book will explain the fundamental 
mathematical and scientific tools needed to 
succeed in engineering. It will also show how 
to use them in practical applications. The tools 
are mostly mathematical in nature, because 
mathematics is at the core of engineering. Please 
bear with me through the mathematics. I have 
attempted to explain each step and to make it as 
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An Engineer's Tool Box 

simple and understandable as possible. But signi­
ficant effort on your part is required. 

I have assumed in the book that you have a 
fairly good grounding in algebra and trigonom­
etry, and have had courses in both differential 
and integral calculus. If you find yourself getting 
"lost in the algebra," then brush up using a high 
school text. Calculus fundamentals are reviewed 
in Appendix A. 

When reading a new engineering text, I usu­
ally keep a notebook handy. As I encounter new 
equations in the text, I jot them down and work 
through each one until I understand exactly 
what the author is doing. I highly recommend 
this method-although it makes for slow read­
ing, it ensures that you understand the material 
covered. 

When I started my engineering career, an 
engineer's physical tools consisted of a drafting 
board and supplies, a slide rule, engineering 
reference books, and textbooks. Many of the 
engineering reference books contained log and 
trig tables to help in mathematical calculations. 
There were no electronic calculators, and digital 
computers were kept in caged air-conditioned 
rooms where only the computer folks were 
allowed. 

The electronic calculator and personal com­
puter have completely replaced many of the 
physical tools that an engineer used to use. The 
hand calculator made the slide rule and many of 
the tables in engineering reference books obso­
lete. It's hard to imagine being without a good 
calculator. 

The personal computer has revolutionized 

engineering. There are now so many powerful 
engineering and mathematical programs avail­
able for the PC and Macintosh that I think it is 
fair to say that the capabilities of these packages 
have surpassed the capabilities of the average 
user. I see many technicians and engineers using 
or attempting to use engineering and math­
ematical software packages who do not under­
stand the fundamentals. For example, dynamic 
system simulation (at the heart of engineering) 
and DSP (digital signal processing) software 
packages are available now that simply astound 
me with their capabilities. To put these pro­
grams to good use, however, you must have the 
mathematical and engineering fundamentals. 
That is what this book is all about. 

I have therefore assumed that you either have, 
or have access to, a personal computer. I also 
have assumed that you know how to use spread­
sheets such as Excel, Lotus 1-2-3, or Quattro, 
and that you know how to use a higher level 
computer programming language like BASIC. 

(Spreadsheets are a surprisingly useful engineer­
ing tool. I use them frequently to develop very 
complex simulations.) If you have some of the 
latest simulation and DSP packages, that's great 
too. But, let me give you a word of caution. Hav­
ing a computer and knowing how to run canred 
engineering programs doesn't make you an engi­
neer any more than carrying around and know­
ing how to use a slide rule made you an engineer 
years ago. The latest and fastest computer and 
the latest version of a software package are the 
"trappings" and "images" of engineering-they 
are not engineering. The fundamental knowl­
edge presented in this book is absolutely neces­
sary to make the most of any engineering design 
software package on the market. 
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1.3	 Analog Computers ­
An Anachronism? 

When I first entered graduate school, I was 
introduced to an analog computer. What an in­
credibly powerful machine it was! It could solve 
differential equations much faster than a digital 
computer could at that time (and it still can). In 
fact, an analog computer solves dynamic system 
problems instantaneously, something no digital 
computer can do. So don't get the idea that an 
analog computer is "old fashioned" and that 
digital computers are the only computer you 
need in your engineering tool box. 

In this book you will study operational cal­
culus and block diagrams. These concepts are 
particularly useful in building mathematical 
models that can be solved on analog computers. 
Once an operational block diagram of the 
dynamics of an engineering system has been 
constructed, it is easy to put it on an analog 
computer and let it solve the problem. You can 
also build electrical analogs of physical systems 
and interface these to a computer without the 
need for expensive sensors. Then you can 
quickly develop digital control algorithms. 

You may be wondering where you are going 
to find an "old" analog computer to do that. 
While it is true that you can't readily buy an 
analog computer these days, it's not because 
they are old and obsolete. It's simply because 
they were replaced by the operational ampli­
fier-an integrated circuit that became so cheap 
and easy to use that anyone could build an ana­
log computer for peanuts. Unfortunately, it 
seems that many educators have forgotten this, 
as I have run into young engineers, even elec­
tronics engineers, who have no idea how to use 

6 

operational amplifiers to build analog computers 
to solve differential equations. 

A few years ago while I was studying the 
problem of controlling a water wavemaker (see 
Chapter 7), I built an electrical analog of the 
wave tank and associated hydraulic piston and 
valve so I could study a digital feedback control­
ler. The software engineer working with me was 
amazed. How could a breadboard full of op amps 
behave like a water wavemaker? 

You willieam in this book that the dynamics 
of all engineering systems-whether electrical, 
mechanical, thermal, or fluid----ean be described 
by the same mathematical equations. That 
means mechanical, fluid, and thermal systems, 
which are difficult and expensive to construct 
and test, can be converted into electrical cir­
cuits, which are cheap and easy to test. This is 
the whole fundamental concept behind the 
"analog computer." The word "analog" really 
doesn't have anything to do with electronics, 
even though it is generally accepted these days 
that analog is anything that is not digital. The 
word analog is used to describe a system that 
behaves like another system yet has a different 
physical form. 

Today you can go to Radio Shack or an 
electronics mail-order house and buy IC opera­
tional amplifiers, resistors, capacitors, and other 
components for pennies. All you need is a little 
skill, a power supply, a breadboard, and some 
wires, and you can build an analog computer 
that can solve mechanical, fluid, and thermal 
dynamic system problems as well as electrical 
circuit problems. Once you have such an analog 
model of your system, you can also very easily 
conduct experiments with it using a digital 
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computer equipped with an analog-to-digital 
converter. Since your analog model will already 
be in electrical form, ready to interface to your 
digital computer, you won't have to go out and 
buy expensive sensors that convert mechanical, 
fluid, and thermal variables into electrical 
signals. 

1.4 A Few Words About Units 
Throughout this book I use the English 

system of engineering units, with the corre­
sponding SI units in parenthesis. I do this be­
cause, in spite of efforts made to convert the 
United States and some other leading industrial 
countries to the SI system of units, I find that 
engineers stick to the units they "th~nk" in. Let 
me explain with a story. In the early 1970s I 
made a concerted effort to get everyone in my 
firm to convert to the SI system. Then we got a 
job in Japan and I was happy that we had 
converted, since I knew the Japanese used the 
metric system and assumed they had made the 
easy conversion to the SI system. When I made 
my first presentation, much to my amazement I 
found that our Japanese clients (who were ship­
builders) did not understand the units I was us­
ing and asked me to explain what they meant in 
terms of units they were familiar with. The units 
they used turned out to be a rather strange 
system that I can only call a "Japanese naval 
architectural metric system." Even today, the 
ship-building industry throughout the world 
uses some of the strangest sets of measurement 
units you will ever encounter, and I doubt they 
will ever change to the SI system. 

Just how important are units in engineering? 
First of all, never lose sight of the fact that the 

laws of nature have no inherent system of units. 
Units are man-made. Indeed, if you run into an 
equation that cannot be made unitless (that is, 
dimensionless or without dimensions) by divid­
ing through by some combination of variables, 
then the equation does not truly describe nature 
and is probably wrong or valid only over a very 
small range of the independent variables. 
Nondimensionalizing an equation is a good way 
to check your equations and an excellent way to 
present your results. 

Of course, units are important in engineer­
ing. Many components you purchase will have 
weight, volume, or linear dimensions, and will 
consume or require power, produce a force or a 
torque, and so forth. These components may 
come from every part of the world and will make 
use of every conceivable system of units known 
to man. What do you do? You simply need to 
know how to convert from one set of units to 
another. If you can't think in the supplier's 
units, convert them to the ones you are familiar 
with or intend to use in your product. There are 
no right or wrong units to use. Just make sure 
your customers readily understand the units you 
use. 

1.5 Overview of Book 
Now-finally-I'll tell you a little bit about 

the content of this book and the way it's orga­
nized. 

Chapter 2 is probably the most important 
chapter. You will learn that there are only three 
basic types of engineering building blocks, two 
that can store energy and one that dissipates 
energy. The concepts are deceptively simple, yet 
extremely powerful. 

7 
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Chapter 3 begins the process of teaching you 

how to build math models of any engineering 

system. It covers all of the model-building 

techniques that have been developed over the 
years in many branches of engineering. You will 

discover the mighty first-order linear ordinary 

differential equation, the very backbone of engi­

neering. From my experience, learning how to 

build math models is the hardest part of engi­
neering, because it involves creating. I have 

spent a great deal of time on this chapter and 

tried to make it as easy as possible to grasp. 

Chapter 4 introduces you to the analytical 
side of engineering. You'll learn how to solve 

the first-order linear differential equation math 
models you developed in Chapter 3. This is also 

a very important chapter. First-order linear 

differential equations can be used to describe 

many facets of engineering, from the flow of 

ground water through porous soils to the flow of 

electrons through electrical circuits. The so­

called time and frequency domain solutions to 
these equations form the basis of all engineering 

analysis. 

Chapter 5 is one of two chapters in the book 

intended to help you bridge the gap between 

theory and the solution of practical engineering 

problems. A problem is selected that involves 

modeling and analyzing a combined mechanical 

and electrical engineering system. The example 

helps emphasize that all engineering systems 

look alike mathematically. It shows how two 

first-order linear differential equations lead to a 

second-order linear differential equation, the 

subject of the next chapter. 

8 

Chapter 6 introduces you to the next impor­

tant subject, second-order linear differential 

equations. This chapter addresses both the 

modeling and analysis of systems that can be 
described by these equations. You will learn that 

modeling systems containing two independent 

ideal energy storage devices always leads to a 

second-order linear differential equation. The 
material contained in this chapter, along with 

that contained in Chapters 3 and 4, is the foun­

dation of any branch of engineering. 

Chapter 7 is the second chapter in the book 

that relates theory to practical engineering. This 

time a real-world problem is selected that com­

bines fluid, mechanical, and electrical systems 

modeling and analysis. You will see how every­

thing you learned in the previous chapters is 

applied to solving complex engineering prob­

lems. 

Chapter 8 is intended to lead you into the 
world of more complex engineering systems 

with the confidence that what you learned in 

the previous chapters is all that is required to 

understand such systems. You will learn that no 
matter how complex an engineering system is, it 

can be broken down into combinations of first­

and second-order linear differential equations. 

Appendix A provides an opportunity for you 

to review engineering calculus, for those who 

may need it. It covers the high points of both 

differential and integral calculus. You need to be 

familiar with at least the amount of calculus pre­

sented in this appendix to understand the rest of 

the material in this book. 



Overview of Book 

Appendix B contains the physics behind the 
engineering building blocks covered in Chapter 
2. At first I was going to put this information in 
Chapter 2, but it made for a very long chapter 
and I didn't want readers to get bogged down in 
all the math at the very beginning of the book. 

The information in this appendix is very power, 
ful and very useful, however, and I strongly 
recommend that you peruse and understand it. 

I hope you enjoy the book and that it helps 
you achieve your goals in engineering. 
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Chapter 

Basic Building Blocks 
for Modeling
 
Engineering Systems 

Objectives 
At the completion of this chapter, you will be able to: 

• Define the basic concepts • Define the basic concepts of 
of voltage, current, work, pressure and mass/volume 
power, and energy as related rate of flow in fluid systems. 
to electrical systems. 

• Identify the fundamental 

• Identify the fundamental fluid components and 
electrical circuit elements write their describing 
and write their describing equations. 
equations. 

• Define the basic concepts

• Recognize two important of temperature and heat 
tools used in formulating flow in thermal systems. 
math models: impedance and 
operational block diagrams. • Identify the fundamental 

thermal elements and 

• Define the basic concepts write their describing 
of motion and force as they equations. 
relate to mechanical compo­
nents. • Recognize the analogies 

that can be drawn between 

• Identify the fundamental the fundamental elements 
mechanical components of all four types of systems: 
and write their describing electrical, mechanical, fluid, 
equations. and thermal. 
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2.1 Introduction 
We'll now discuss how to build mathemati­

cal models of engineering systems. All of the 
material you will encounter in this chapter 
should be somewhat familiar, since it is covered 

in most first courses in physics. However, the 
subject matter is presented differently. If you 
don't understand something, I strongly suggest 
that you get a first-year college physics text and 
refer to it as required as you read though this 
chapter. 

Throughout this book I deal primarily with 
linear equations because they are far easier to 
work with than nonlinear equations, and be­

cause they give you the quickest insight into the 
physical behavior of engineering systems. A 
linear equation is an equation in which a 
change in the input or independent variable 

results in a proportional change in the output or 
dependent variable. Take, for example, the 

equation for the volume of a cylinder V given by 

(2.1) 

where r = radius of the cylinder 

h = height of the cylinder. 

This equation is linear with respect to h, but 
it is nonlinear with respect to r. You can see this 
by holding one variable constant while varying 
the other. For a cylinder where r is fixed, dou­
bling h from h to 2h doubles the volume of theo o 
cylinder, a proportional increase. Therefore the 
equation is linear with respect to h. For a cylin­
der where h is fixed, doubling the radius from ro 
to 2ro' does not result in a proportional increase 
in volume-it quadruples the volume. There­
fore, the equation is nonlinear with respect to r. 

Quite often you will want to linearize an 
equation so you can study the behavior of an 
engineering system model about a certain set of 
values for the independent variables. This set of 
values is frequently called the operating or 
steady-state point of the system. A very powerful 
equation called T aylor's Theorem allows any 
function of any number of independent vari­
ables to be expanded about an operating point. 
To fully understand and appreciate the power of 
this equation you need to understand the con­
cept of partial derivatives. (See the review of 
these topics in Appendix A if you need a quick 
brush-up.) 

Throughout the book, we'll go from the 
simplest elements to more and more complex 
systems. In this chapter, you will learn how to 
break down components found in electrical, 
mechanical, fluid, and thermal systems into 
rudimentary elements that can be described by 

simple differential and integral calculus. You 
will discover that there are only three funda­
mental elements in electrical, mechanical, and 
fluid systems, and only two in thermal systems. 
You will also discover that, from a mathematical 
point-of-view, all of the fundamental elements 

in each of these diverse fields look and behave 
exactly alike. You will learn that design and 
analysis problems in one field of engineering can 
be easily converted to another field, where other 
tools for obtaining solutions might be available. 

In the interests of space and practicality, I've 

left out some of the physics in this chapter and 
placed it in Appendix B, The Physics of Work, 
Power, and Energy in Engineering Systems. In 
order to make sure that you understand the 
physics behind all of the elements described 
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here, it would be a good idea to read through 
this appendix. 

In this chapter, I'll begin a convention that 
I'll use throughout the book. Equations that I 
feel are important enough to commit to memory 
will be boxed in. You might wonder why you 
should commit anything to memory, when you 
could just look it up in a reference book when 
you need it. I strongly believe that a certain core 
set of equations should be memorized if you're 
going to be successful at engineering. These 
equations could be compared to a minimal 
vocabulary for someone who is learning to read. 
If we didn't remember the meanings of all the 
words we use in English, how would we read or 
speak? I suppose we could sit with a dictionary 
and look each word up, but that would be rather 
painful! If you understand how these equations 
are derived and how they relate to each other, 
your engineering practice will be smoother and 
more successful. 

2.2 Electrical Elements 

I'll begin this introduction with electrical 
systems, for the following reasons. First, every 
engineer and advanced technician, no matter 
what their field of specialty, should know every~ 

thing contained in this section about electrical 
engineering, just on general principles! Second, 
many modeling and analysis concepts and tech~ 

niques are easier to explain and easier to grasp 
using electrical elements. Third, numerous tools 
and methods for analyzing electrical circuits 
have been developed over the years and all of 
these can be applied to modeling and analyzing 
mechanical, fluid, and thermal circuits as well. 

Unfortunately, I've discovered that many 
civil, mechanical, and other nonelectrical engi~ 

neers and technicians shy away from electrical 
circuits, circuit modeling, circuit analysis, and 
other such nasties. Please don't do this. If you 
want to be a really good engineer or advanced 
technician, you should know all of the electrical 
engineering fundamentals discussed in this sec~ 

tion. 

Concepts of Voltage and Current 

The concepts of voltage and current are used 
in electrical and electronics engineering to de~ 

scribe the behavior of engineering systems that 
use electricity. Electrical power supplies, genera~ 

tors, motors, transformers, and computers are 
examples of such systems. 

The term voltage is used to describe the work 
that must be performed to move a unit of elec~ 

trical charge (an electron is a minute electrical 
charge) from one point to another. Conse~ 

quently, voltage is a relative term and is often 
referred to as the potential difference between two 
points. The units for voltage are volts, and the 
units for electrical charge are coulombs. One 
coulomb of electrical charge is equal, but oppo~ 

site in sign, to 6.22 x 1018 electrons. 

Figure 2.1 is a definition sketch which shows 
a symbolic, or circuit, diagram of an electrical 
element. A voltage VI is at one end and a 
voltage V2 at the other. If V2 is not equal to VI' 
then electrical charge flows from one side of the 
element to the other. This flow of electrical 
charge per unit of time is called current and is 
given the symbol i. Current is measured in units 
called amperes or amps. 
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Figure 2.1. Definition sketch of 
electrical element. 

Figure 2.2 shows the same electrical element 
given in Figure 2.1 with different voltage values 

at each end. This figure indicates that current 
has a direction and a magnitude. If the voltage 
at point 2 is greater than that at point 1, then by 
convention we say a current flows from point 2 

to point 1. Conversely, the current flows from 
point 1 to point 2 if the voltage at point 1 is 
greater than it is at point 2. If the voltages at the 
two points are the same, no current flows. 

Since voltage is a relative term, showing a 

voltage V2 at point 2 and a voltage Vi at point 1, 

. 
I 

~AA'A~
 
iV 'RV V I 

.
 
( 

~
 2 R I 

~
 2. 1< I 

Figure 2.2. Definition sketch of electrical 
element with different voltage/current 

values. 

as was done in Figures 2.1 and 2.2, implies that 
there is some reference point associated with 
these voltages. That point is generally called 
ground or earth. Ground has no potential; that is, 
there is no place surrounding ground where 
work must be done on an electrical charge to 

move it from that point to ground. The voltage 
at point 2 can be referenced to the voltage at 
point 1. We will use the symbol V

21 
, meaning 

V
2I 

= V
2

- VI' to denote this reference. 

Concepts of Work, Power, and
 
Energy in Electrical Elements
 

Since voltage is defined as the work that 
must be done to move a unit of electrical charge 
from one point to another, we can write voltage 
between two points as 

- dllilv:21 - (2.2)
dq 

where dW
2i 

is the work that must be done to 

move the electrical charge dq from point 1 to 
point 2. A unit of measure for work is the joule. 
Equation (2.2) then defines volts as joules per 
coulomb. That is, one volt is equal to one joule 
of work per one coulomb of charge. One joule of 
work is equivalent to one watt-sec or 0.737 
ft-lbs. 

Current was defined above as the flow of 
electrical charge per unit of time. This can be 
written in the form of a derivative. That is, 

. dq
1=- (2.3 ) 

dt 
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Electrical Elements 

The units which apply to this equation are cou~ 

lombs per second, called amperes. 

Power is defined as the rate at which work is 
performed. This too can be written in the form 
of a derivative. That is, 

p=dW (2.4 ) 
dt 

The product of voltage differential across an 
electrical element and the current flowing 
through the element is equal to power. This is a 
very important concept. You can see this by 
multiplying equation (2.2) and (2.3). That is, 

v xi = dllil X dq = dlli1 = P (2.5) 
21 dq dt dt 

The units for power are 

P = V21 i = 1 volt X 1 ampere 

or 

V . - 1 joule 1coulomb P ­- 211 - X 
coulomb second 

joules 1= = watt 
second 

Since work is a transitory form of energy, we 
can rewrite equation (2.4) as 

dE =p (2.6) 
dt 

Equation (2.6) can be integrated to obtain the 
energy stored in, or dissipated by, an electrical 
element over a time interval from t = ta to t = tb' 
That is, 

dE = Pdt 

E = JPdt 

(2.7) 

The Resistor 
The most common of all electrical elements 

is the resistor. It is intentionally or uninten­
tionally present in every real electrical system. 
Figure 2.3 shows a symbolic (circuit) diagram 
and a graphical representation of this element. 
Also shown are the fundamental describing 
equations for an ideal resistor. An idealization of 
the resistor is given by 

(2.8) 

Ri is a linear function in which the voltage is 
proportional to the current and R is the con~ 

stant of proportionality. You will also often see 
the equation for a resistor written as 

(2.9) 

Equations (2.8) and (2.9) are often called 
Ohm's Law. The value of R is usually given in 
ohms, which is really volts per amp. 

The energy delivered to a resistor in the in­
terval from t = t to t = tb is given by equationa 
(2.7). We can substitute equation (2.9) into 
(2.7) and eliminate the current as follows: 

(2.7) 
repeated 
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nonlinear 
. V; - ~ V;\resistor (real) - -­l - ­

R R 
• "linear 

resistor (ideal) or 

, 
i 

(a). Symbolic or circllit (b). Graphical representation. (c). Describing eqllations for 
diagram. ideal damper. 

Figure 2.3. The resistor. 

Substitute V21 / R for i and obtain 

(2.10) 

Since R is a constant, it can be pulled outside of 
the integral sign, giving 

(2.11 ) 

We could have substituted equation (2.8) 
into equation (2.7) and eliminated V2J' If we 
take this route then we get 

Eb - E =1\Ri)idt (2.12) 
a I. 

Pulling the constant R outside the integral sign 
gives 

(2.13) 

One very important thing that equations 
(2.11) and (2.13) reveal is that a resistor dissi, 
pates power. Regardless of the direction of the 
current or the sign of the voltage, both are 
squared in the equation. Therefore, energy can't 

be retrieved from a resistor. This element only 
dissipates energy. 

By comparing equation (2.6) with (2.11) 
and (2.13) you can see that the power dissipated 
by a resistor at any instant in time is 

(2.14) 

In real electrical circuits, the energy dissipated 
by a resistor is converted into heat. Unless this 
heat is removed the resistor could burn out. 

The Capacitor 
Another fundamental electrical element is 

the capcuitor. Like the resistor, it is intentionally 
or unintentionally present in every real electri, 
cal system. Figure 2.4 shows a symbolic (circuit) 
diagram and a graphical representation of this 
element. Also shown are the fundamental de' 
scribing equations for an ideal capacitor. 

A capacitor is constructed of two pieces of 
conducting material separated by another mate' 
rial that allows an electrostatic field to be estab, 
lished without allowing charge to flow between 
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nonlinearq capacitor (real). (charge) 

"I linear l = C d L{ • 
capacitor (ideal) dt~...f--I I~·---e~ 

C 
(a). Symbolic or circuit ~, (voltage)

diagram. 
(b). Graphical representation. 

(c). Describing equations for 
Figure 2.4. The capacitor. ideal capacitor. 

the two pieces of conducting material. A capaci­ The energy delivered to a capacitor in the 
tor stores electrical energy in this electrostatic time interval from t = t to t = tb is from equa­a 
field. In an ideal capacitor, all of the energy tion (2.7) given by 
stored in the device can be retrieved and used. 

(2.18)
An idealization of the capacitor is given by 

the linear relationship 
substituting CdV;l for i dt from equation (2.17) 

(2.15) gives 

(2.19)
 

capacitance are coulombs per volt. One cou­

lomb per volt is called a farad. A farad is a very
 

You can see from equation (2.15) that units of 

Note that the limits of integration have been 
large number, so most capacitors you will run changed. Vb is the voltage across the capacitor 
into will have values given in microfarads (~f) at time t = tb and Va is the voltage at time t = tao 
which is one-millionth of a farad. The equation can be integrated to give 

Differentiating both sides of equation (2.15) 
with respect to t gives 2 V 2 

TT2 lV" 17
E - E = C.!J:l = C-Yb

- - C-Q
­

b Q [ 2 2 2 
Vadq =Cd~l (2.16)

dt dt (2.20) 

The quantity C (V 2 / 2) is the energy that wasCombining (2.16) and (2.3) gives the following a
initially stored in the capacitor at t = t andequation for the current-voltage relationship of a 
C(Vb2/2) represents the energy stored at timean ideal capacitor 
t = tb' During the time interval tb - tal the 
energy (Eb - E ) was added to the capacitor.(2.17) aI i =CdY" I

dt The energy storage feature of a capacitor is ex­
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tremely important. Numerous electrical circuits, 
including memory chips in computers make use 
of the energy storage capability of a capacitor. 

The strength of a magnetic field around and 
the voltage across an inductor are related by the 
following equation, often referred to as Faraday's 
law of induction: 

Combining equations (2.21) and (2.22) gives 

{ 
linear inductor 
(ideal) 

(2.21) 

(2.23) 

(2.22) 

v = d(Ncp) 
21 dt 

d(Ncp) = L di 
dt dt 

IV=L 
di I21 dt 

c.. -= f f ~, cit 

or, 

If no magnetic materials are present or used in 
the core of the inductor, then the strength of 
the magnetic field is linearly dependent on the 
current. That is, 

Note that the units of an inductor as deter­
mined from equation (2.23) ar~ volts times sec­
onds per ampere. One volt-second per ampere is 
called a henry (H). Like the farad, a henry is a 
large unit. Consequently, most real-life induc-

N() 
(magnetic 

flux) 

l 

The Inductor 

The third and last electrical element we will 
discuss is the inductor. Like the resistor and 
capacitor, it is intentionally or unintentionally 
present in every real electrical system. Figure 2.5 
shows a symbolic (circuit) diagram and a graphi­
cal representation of this element. Also shown 
are the fundamental describing equations for an 
ideal inductor. It is essentially the opposite of a 
capacitor. The symbol for an inductor looks like 
a wire coil because, in its simplest form, that's all 
it is. Any wire or conductor carrying a current is 
surrounded by a magnetic field. This magnetic 
field can be concentrated by winding the wire 
into a tight coil about a tube. The strength of 
the magnetic field due to one turn q> can be in­
creased by increasing the number of turns N, so 
the strength of the total magnetic field is given 
by Nq>. The magnetic field strength can be in­
creased even further by wrapping coils of the 
wire around an iron core. However, this gener­
ally makes the inductor 
nonlinear and creates hys­
teresis, as shown in the 
graph of Figure 2.5. 

~ , \ nonlinear = L cf,'~ Vii ,,,... inductor (real) dt.L 
(c). Describing equations for 

diagram. (b). Graphical representation. ideal inductor. 
(a). Symbolic or circuit 

Figure 2.5. The inductor. 
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tors you will run into will have values in the 
millihenry (mH) or microhenry (~) range. A 
millihenry is one~thousandth of a henry and a 
microhenry is one~millionth of a henry. 

The energy delivered to an inductor in the 

time interval t = t to t = tb isa 

(2.7) 
repeated 

Substituting equation (2.23) for V21 gives 

Carrying out the integration gives 

.2 ]il' .2 .2 

E - E =L!.- = L!:JL - L1... (2.24 ) 
b a [ 2. 2 2 

La 

The quantity L(ia2 / 2) is the energy that was 
initially stored in the inductor (magnetic field) 

at t == t and L (i b2 / 2) is the energy stored ata 
t == tb' During the time interval tb - t , thea
energy (Eb - Eb) was added to the magnetic field 
of the inductor. The energy storage feature of an 
inductor is extremely important. Numerous elec~ 

trical circuits including electromagnets, radios, 
and switching power supplies make use of it. 

What to Commit to Memory 

Figure 2.6 shows the three fundamental elec~ 

trical elements and one describing equation for 
each. You should commit these equations to 
memory. Also commit to memory the fact that 
power is the product of voltage and current. If 

Resistor 

Capacitor 

Inductor 

.

V (. 

--Ntv+
 
• 

V l • 
·.--II~-!. c '=" 

• 
V I. 

~


V=iR 

dV
i=C 

dt 

V=L di 
dt 

Figure 2.6. The three fundamental 
electrical elements. 

you remember all this, you will be able at any 
time to derive all of the energy equations dis~ 

cussed here and used later on in the book. 

Impedance and Operational Block 
Diagrams 

Now that you know the equations that de~ 

scribe the relations between voltage and current 
for ideal resistors, capacitors, and inductors, I 
want to introduce some very important tools 
that will help you remember these equations 
and that will make it easier to derive math~ 

ematical models of systems containing the basic 
electrical components. You will discover in later 
chapters that these tools are applicable not only 
to electrical systems, but also to mechanical, 
fluid, and thermal systems. 

Tool #1 - Impedance 

The concept of impedance is based on ob~ 

serving that a variable which flows through an 
element is impeded by the element. For ex~ 

ample, in electrical elements a current flows 

19 



Basic Building Blocks for Modeling Engineering Systems 

through a resistor due to a voltage difference 
across the resistor. The current is called the 
through variable and voltage is called the across 
variable. These terms apply to inductors and 
capacitors also. 

Figure 2.7. Representation of the imped­
ance Z of any electrical element. 

The impedance of any electrical component, 
shown in Figure 2.7, is given by 

z= Y;1 (2.25)
i 

For a resistor, the impedance ZR is given by 

(2.26) 

That is, the impedance of a resistor is simply its 
resistance. 

The relationship between voltage and current 
for a capacitor is given by 

(2.27) 

I will often use the operator D = dldt to express 
derivatives (and liD to express integrals). This 
notation helps to reduce the derivation of math 
models to mere multiplication. (It's discussed in 
more detail in Appendix A.) Using the operator 
notation, we can write this equation as 

I.
V21 = CD 1 (2.28) 

The impedance is then given by 

Iz = V,1 =_1 I (2.29)
C i CD 

The relationship between voltage and current 
for an inductor is given by 

di
Y;] =L­ (2.30)

dt 

Again using the operator notation, we can write 
this equation as 

(2.31) 

The impedance is then given by 

(2.32) 

Figure 2.8 provides a summary of the imped­
ance of electrical circuit elements. 

· 
~ l ~ \/,yZR=RI .' 
Resistor Impedance 

· 
~ l. ~ 
Y~=~I . 
Capacitor Impedance 

•4 =l])If--

l · 
......~ 

Inductor Impedance 

Figure 2.8. Impedance of 
electrical circuit elements. 
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Tool #2 - Operational Block Diagrams 

Operational block diagrams are extremely 
helpful in visualizing an engineering system and 

in communicating your design ideas to others. 

The completed diagram can also assist with 
solving the equations using analog and digital 
computers. 

An operational block represents a mathe­
matical operation. It operates on the input or 
forcing variable and transforms it into the 

output or response variable. An operational 
block is often called a transfer function. That is 
it transfers (transforms) the input variable into 
the output variable and clearly establishes cause 
and effect in a system. 

There are four basic operational blocks: 
(1) the summer 

(2) the constant multiplier 
(3) the integrator 

(4) the differentiator. 

An example of a summer is shown in Figure 
2.9. There are two input signals in this example, 

~ and ~. Input signals are designated as such by 
showing an arrow pointing into the summation 
box along with a plus or minus sign. There can 
only be one output from a summer. In this case 
it is Vy 

+ ~ 1---11 

(a). Block diagram. (b). Equation. 

Figure 2.9. The operational block 
diagram of a summer. 

An example of a constant multiplier block is 
shown in Figure 2.10. I use the notation that the 
variable on the right side of an equal sign in an 
equation is the input or forcing variable, and the 

variable on the left side is the output or response 
variable. The block diagram makes this very 
clear. 

. 
I ¥;\ =Ri 

(a). Block diagram. (b). Equation. 

Figure 2.10. The operational block 
diagram of a multiplier. 

Even though we know we can solve for i in 

terms of ~l' the block diagram does not permit 
this. You must rewrite the equation and draw a 
new block diagram as shown in Figure 2.11. 

~ I--.....{!J--·~ / 
(a). Block diagram. 

. 111 
l =- Y21 

R 

(b). Equation. 

Figure 2.11. The operational block 
diagram of a multiplier showing 

importance of distinguishing between 
input and output. 

The next block diagram we will discuss is 
the integrator. As you know, integration must 
account for the constant of integration. To handle 
this in a block diagram, a summer is added after 
the integration block, as shown in Figure 2.12. 
Be careful here. The summer and the integration 
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t 
. 
---.I	 x x = I~ idt + (X)inil 

(a). Block diagram. (b). Equation. 

Figure 2.12. The operational block 
diagram of an integrator. 

block go together, and the summer must be after 
the integrator. If it were in front and had a 
value, it would produce an incorrect answer. 

I used the integral sign in Figure 2.12 to 
remind you that it is equivalent to the liD 
operator. An equivalent integrator block dia~ 

gram is shown in Figure 2.13. 

1---.1 

(a). Block diagram. (b). Equation. 

Figure 2.13. Alternative operational block 
diagram for an integrator. 

The final block diagram we'll discuss is the 
differentiator. An example is shown in Figure 
2.14. A differentiator can sometimes be useful, 
but great care must be taken in their use. For 
example, I've designed a number of instru~ 

mentation systems that measure ship motions 
and accelerations. It is possible to directly mea~ 

sure only displacement and then differentiate to 
get velocity and acceleration. However, since 
differentiators tend to magnify noise and are 
inaccurate on a digital computer compared to 

dxX = __2 
1 dt 

(a). Block diagrams. (b). Equations. 

Figure 2.14. Operational block diagrams 
of a differentiator. 

integration, I usually use accelerometers to mea~ 

sure acceleration directly. Integration, on the 
other hand, is a smoothing operation and can be 
handled accurately on a digital computer. You 
should typically avoid using differentiators in 
your block diagrams for the three basic electrical 
components. 

We will use these tools extensively through~ 

out this book. Figure 2.15 provides a summary of 
the three electrical circuit elements. It shows 
the symbolic circuit diagram, the operational 
block diagrams, and the impedance circuit. 

2.3	 Mechanical Components
 
(Translational)
 

Concepts of Mechanical Motions 
and Forces 

Motion and force are concepts used to describe 
the behavior of engineering systems that employ 
mechanical components. Heads of disk drives, 
armatures of motors, gears, ships, and auto~ 

mobiles are just a few examples of engineering 
systems that employ mechanical components. 
Indeed, it is hard to imagine any engineering 
system that does not have mechanical compo~ 

nents. 
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NAME SYMBOL OPERA1"IONAL BLOCK I)IAGRAMS IMPEDANCE 

~, .1 ~ I i,RESISTOR ~ 
1-.- _ ~, 

~, =Ri
1? 

i 
~ • 11 

CAPACITOR ··-~II-I-"· ~ c	 1- _. - C	 dVzI 
elf 

(i),;,if 

l " 

INDUCTOR ~ ~ 
L lAJJ,e,... iPL =L D 

Figure 2.15. Summary of fundamental electrical elements. 

Motion is a term used to describe the velocity v and the other is moving in the same
2 

movement of a point relative to another, and it straight line at a velocity vr Since velocity is a
 
is described using the terms distance, velocity, relative term, this figure implies the existence of
 
and acceleration (see Appendix A if you need a a reference that is fixed.
 
brush-up). The three are related by differentia­

tion or integration. If you know one, you can
 
obtain the other two.
 

~ 
straight 

- .L line path 
Figure 2.16 is a symbolic or "circuit" diagram 

of a mechanical component whose ends are 
undergoing translational movement. One end of Figure 2.16. Symbolic diagram of a trans­
this component is moving in a straight line at a lational mechanical component. 
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. 
IS := Xz 

-

xz.---------' 

/straight line 
J_ path 

point 2 

Figure 2.17. Symbolic diagram of a
 
translational mechanical component
 

showing reference point.
 

Figure 2.17 shows the same mechanical 
component as in Figure 2.16 but with the fixed 
reference shown. The component is moving in a 
straight line and I've shown the distance, veloc~ 

ity, and acceleration of points 1 and 2. 

From this figure we can write the following 
equations describing the motion of point 2 rela~ 

tive to point 1: 

(2.33 ) 

. . . 
V21 = v2 - VI = X2 - XI = X 21 (2.34) 

a21 =a2 - a l =v2 - \\ 

=V21 =x2 - j\ =X21 
(2.35) 

Relative motion between the ends of a me~ 

chanical component can't exist without a force 
being present. When relative motion exists, the 
mechanical component is placed in a state of 
tension or compression. The associated force has 
both a magnitude and a sign. The conventions 
used are shown in Figure 2.18. 
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Figure 2.18. Symbolic diagram of a trans­
lational mechanical component showing 

direction and magnitude of force. 

Note that power is the product of the force and 
velocity: 

Power = Fv 

Refer to Appendix B.2 for more details on work, 
energy, and power. 

The Damper or Dashpot 

A damper (sometimes called a dashpot) is a 
mechanical component often found in engi~ 

neering systems. The shock absorbers in your car 
are an example of a mechanical damper that is 
intentionally designed into every car. A typical 
shock absorber is shown in Figure 2.19. The 
device consists of a piston that moves inside a 
cylinder filled with hydraulic fluid. Small holes 
are drilled through the piston so fluid can move 
from one chamber to the other. As the piston 
moves relative to the cylinder, the fluid is forced 
through these small openings, creating resisting 
fluid shearing forces. If the mass and springiness 
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+-F
 

Cylinder Piston Holes 

Figure 2.19. A typical mechanical damper. 

of the piston and cylinder are small, then the force will be a func­
tion of the relative velocity between the piston and the cylinder. 

Figure 2.20 shows a symbolic (circuit) diagram of this compo­
nent along with a graphical representation and the fundamental 
describing equations for an ideal damper. The symbol implies 
that this component has no mass and the connecting rods have 
no springiness. Furthermore, because this is a translational com­
ponent, the forces act along the same single straight line that 
characterizes the motion of the two ends. 

nonlinear
F ,~damper (real) 

linear
damper (ideal) 

.. , 

(a). Symbolic or circuit 
diagram. 

(b). Graphical representation. 

1 
F == b(v2 - VI ) =bV21 OR V21 =- F 

b 
(c). Describing equations for 

. ideal damper. 

Figure 2.20. The ideal damper. 

25 

An ideal damper is a linear 
component described by 

F == b(v2 - VI ) == bV21 ~ 

(2.36) 

or 

I v,,=~F 1(2.37) 

Knowing the units of F and 
v, you can see that the units of 
the damping force constant b 
are lb-sec/in. 

Like the electrical resistor, 
the energy delivered to a mech­
anical damper cannot be 
retrieved. This energy is dis­
sipated to the surroundings in 
the form of heat. (Refer to 
Appendix B for the derivation 
equations. ) 

The power dissipated by the 
damper is 

P = F X V21 = (bv21 ) X V21 

=bvil (2.38) 

or 

P =F X V21 =F x (~ F ) 

=!F2 

b (2.39) 
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The Translational Mass 
All real mechanical components used in 

engineering systems have mass. In general, the 
mass is distributed in three~dimensional space. 
However, it is frequently possible (and very con~ 

venient) to treat a component as if all of its mass 
were concentrated at a single point called the 
center of gravity, or c.g. That is, we lump the 
mass together into one point and end up with an 
ideal, lumped parameter component. If we further 
consider only a lumped parameter mass moving 
in a straight line, then we have a translational 
mass. 

The symbolic diagram that will be used for a 
translational mass component is a little peculiar. 
So, let's build up to it slowly. Figure 2.21 shows a 
lumped mass moving in a straight line. Accord~ 

ing to N ewton, if the mass m is not changing 
then 

dv d 2xF=ma =m_2 =m__2 (2,40) . 
2 dt dt2 

Now let's write equation (2,40) in terms of 
relative velocity between points 2 and 1 

dv21
F=m (2,41)

dt 

Moving 

and then determine what conditions we have to 
place on point 1 for equation (2,41) to apply. If 
we differentiate equation (2.34) we have 

dv2] _ dV2 _ dv] 
(2,42) 

dt dt dt 

Now if we combine equations (2,41) and (2,42) 
we get 

dv]F=mdv2 _m (2,43)
dt dt 

Finally, compare equation (2,43) with equation 
(2,40). The two equations are equal only when 
Vj is constant. In that case dv} / dt will equal zero. 
This means that point 1, the reference, must be 
stationary or moving at a constant velocity in 
order for equation (2,41) to be true. 

The symbolic diagram we will use to repre~ 

sent the translational mass component is given 
in Figure 2.22. The dotted line at one end of the 
element will serve to remind us that 

(a)	 there is no physical connection be~ 

tween point 2 (the mass) and point 1 

(b)	 point 1 must be stationary or moving at 
a constant velocity. 

(c)	 no force is trans­
mitted to point 1. 

Reference Figure 2.23 shows 
the symbolic (circuit) 
diagram of the transla~ 

tional mass along with a 
graphical representation

Point 2 
and the fundamental de~ 

Fixed scribing equations. Note
Reference 

that the graph shows a 
Figure 2.21. Lumped mass moving in a straight line. plot of momentum versus 
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_______ v
2, , ..,, 

o-------~ or o------~ 
: 

~F 
v1 =0 v1 =0 

or v1 =const or v1 =const 

Figure 2.22. Symbolic diagram for translational mass. 

E 
~ 

V:z.	 V;=Oor~nst "E 
E 
oLLo~_r	 E 

Q) 

m 

(a). Symbolic or circuit
 
diagram.
 

nonlinear 
mass (real)"", F =	 t')') d Vz"I
 

I
 
I	 

dt 
~m linear
 
1 mass (ideal)
 

112, = /n [Fdf 
&1'21 

(c). Describing equations for (b). Graphical representation. 
ideal mass. 

Figure 2.23. The ideal translational mass. 

velocity. Momentum is the product of the mass Knowing the units of F and v, you can always
 
of a moving object and its velocity. Force is determine the units of mass as F/ (dv / dt) =
 

equal to the rate of change of momentum. That Ib-sec2/in.
 
is
 

The energy delivered to the mass in the time 
F= d(mv) (2.44 ) interval t = t to t = tb by a force F( t) is

dt	 a 

Only when m is constant can we pull the m 
(2.47)outside of the differential. If m is constant then 

the mass is called an ideal (or Newtonian) mass. 
That is, Substituting (2.45) into (2.47) to eliminate F 

gives 
21 (2.45 ) I F= m dv Idt 

or 

V 21 =~ fFdt (2.46)
m 
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Carrying out the integration gives Figure 2.24 shows a symbolic (circuit) diagram 

E _ E = m[ viI ]V 
21b 

b a 2 _ m(v 2 
- 2 2Ib -

v2 )
21a 

of a spring along with a graphical representation 
and the fundamental describing equations. The 
symbol implies that this component has no mass 

V21a 

(2.49) 

Let's examine equation (2.49). The quantity 
(mI2)v2

21a 
represents the energy of the mass at 

time t = ta and the quantity (ml 2)V2
21 

b represents 
the energy at time t = tb' These quantities are 
identical to those of the capacitor. Like the 
capacitor, the mass is an energy storage device. 
The energy stored can be completely retrieved. 

The Translational Spring 
Nearly all materials used in mechanical 

systems exhibit an elastic effect that we call a 
spring. When a force is applied to these materi­
als they deform. When the force is removed, 
they return to their original shape. A spring is 
a fundamental mechanical component found 
intentionally or unintentionally in almost every 
mechanical engineering system. The springs in 
your car are a good example. Steel is shaped into 
a coil so the mass of the spring is mini­
mized and its elasticity maximized. 

~	 \'I r	 r 
F~
I< 

(a). Symbolic or circuit 
diagram. 

or damping. Furthermore, because this is a trans­
lational component, the forces act along the 
same single straight line that characterizes the 
motion of the two ends. 

An ideal spring is described by 

F=kx21 
(2.50) 

where k is a constant of proportionality relating 
the force F to the deformation X21 of the spring. 
Knowing the units of F and x, you can easily 
determine the units of k as FIx = lb/in. 

Since we want to describe all of the compo­
nents in terms of velocity and force, we'll differ­
entiate equation (2.50) as follows 

(2.5 I) 

Rearranging gives 

1 dF 
v -- ­ (2.52)

21 - k dt 

nonlinear 
spring (real)

"',
I 

I 
I 

,} Ik. 
~ 
I 

linear 
spring (ideal) 

F 

(b). Graphical representation. 

Figure 2.24. The ideal spring. 
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or 
:::	 1 dF 

I<. dt 

(c).	 Describing equations 
for ideal spring. 
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Also we can integrate (2.51) as follows 

or 

(2.53 ) 

The energy delivered to the spring in the 

time interval t = t to t = tb by a force F( t) is a 

(2.54 ) 

Substituting (2.52) into (2.54) to eliminate v 
gives 

E - E =SI"F(! dFl--lt 
b Q k dt rla 

(2.55) 

Carrying out the integration gives 

__F,zb F2 
Q_ (2.56) 

2k 2k 

Let's examine equation (2.56). The quantity 

F/ / 2k represents the energy of the spring at 
time t = t and the quantity Fb2/ 2k representsa 
the energy at time t = tb' These equations are 
identical to those of the inductor. Like the 
inductor, the spring is an energy storage device. 
The energy stored can be completely retrieved. 

What to Commit to Memory 

You now have all the building blocks you 
need to mathematically model engineering sys~ 

tems comprised. of translational mechanical 
components. In the next section we will look at 
rotational mechanical components, so we can 

model any mechanical system. However, before 
you move on, the following basic equations 
should be committed to memory: 

DASHPOT 
F ~ lI; F .. :O~.......-­

h 

MASS 

F .~ D-~-~ =0 Or elmst 
dv 11'n F=m-2_ 

dt 

SPRING 

dF
F=kx21 OR -=kV21

dt 

Figure 2.25. Translational mechanical 
elements. 

Just as I asked you to do with the basic elec~ 

trical components, make these equations a part 
of your life and know them as well as you know 

your name! 

The tools associated with operational block 
diagrams and impedance that you were intro~ 

duced to when we investigated the basic electri~ 
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cal components also apply to the three basic 
translational mechanical components. You 
should now review What to Commit to Memory 

in the previous section on electrical elements. 
The block diagrams and impedances for the basic 
translational mechanical elements are given in 
Figure 2.26. 

Analogies and Similarities 
It has probably occurred to you by now that 

there are a lot of similarities between the equa~ 

tions describing mechanical and electrical com~ 

ponents. Let's look into this in more detail. In 
Table 2.1 I have arranged the equations in such 
a way that it is obvious that they have the same 
form. If we were to agree that: 

.
 

(1) voltage in an electrical system is analo~ 

gous to velocity in a mechanical system, and 

(2) current in an electrical system is analo~ 

gous to force in a mechanical system, 

then the electrical and mechanical components 
are analogs of one another. Resistors behave like 
dampers, capacitors like masses, and inductors 
like springs. 

We could, however, just as easily arrange the 
equations as shown in Table 2.2. Now, if we 
were to agree that: 

(1) voltage is analogous to force, and 
(2) current is analogous to velocity 

then we have again made electrical and mechan~ 

ical components analogs of one another. 

Figure 2.26. Summary of translational mechanical elements. 
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Table 2.1. Electrical-Mechanical Analogies - Version 1 

Electrical Mechanical 

Resistor 21 DamperI = ~ F Iv

21Capacitor I F=m dV I Mass 
dt 

1 dF 
v --­Inductor Spring

21 - k dt 

Table 2.2. Electrical-Mechanical Analogies - Version 2 

Electrical Mechanical 

Resistor DamperI V21 = Ri I I F= bV2J I 
1 dF 

SpringCapacitor v =--I i =Cdv" I 21 k dt dt 

Inductor Mass"il = L dt I F= m dv" I
dt~ 

I cannot overemphasize the importance of 
these mathematical analogies! In my opinion, 
they are one of the wonders of the world, and 
a terrific tool that can make your engineering 
design life easier. These analogs allow you to 
"see" and "feel" the behavior of aU systems, re­

gardless of your engineering background. 

Which analogy is "correct"? Both! It really 
doesn't matter which one you choose, as long as 

you are consistent. I prefer the voltage-velocity 
and current-force analogy (Table 2.1), because 

it keeps the concepts of across and through vari­
ables the same in both electrical and mechanical 
engineering fields. That can be important when 

drawing schematic diagrams of systems and using 
the impedance tools introduced earlier. I'll be 
using the analogies that maintain the across and 
through variable relationships (Le., those in 
Table 2.1) throughout this book. 
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2.4	 Mechanical Components 
(Rotational) 

Concepts ofAngular Motions and 
Torques 

Angular motion and torque are concepts used 
to describe the behavior of a certain class of 
mechanical components that undergo rotation. 
If an axis can be found about which all particles 
in a mechanical element rotate, then pure rota, 
tional motion exists. Motor armatures, ship pro' 
pellers, and engine drive shafts are just a few 
examples of mechanical components in pure 
rotation. 

Angular motion is a simple extension of 
linear motion and is easy to understand. Figure 
2.27 shows a rotating shaft. The angular dis, 
placement e, angular velocity 00, and angular 
acceleration a are all similar to linear displace, 
ment, velocity, and acceleration. However, in, 
stead of distance as a unit of measurement, we 
use an arc of a circle, called a radian or degree, 
to measure angular displacement. There are 27t 
radians and 360 degrees in a circle, so we can ex, 
press angular velocity in radians per second or 
degrees per second. Similarly, we can express 

8=(t) 
ro=a 

Reference 

Figure 2.27. Rotating shaft. 

Figure 2.28. Rotating shaft 
with lever attached. 

angular acceleration in radians per second per 
second or degrees per second per second. 

Torque is to rotational mechanical com' 
ponents as force is to translational components. 
Torque is best viewed as a force acting on a lever 
arm. For example, Figure 2.28 shows a lever 
attached to the end of the shaft shown in Fig, 
ure 2.27. A force F is applied a distance I away 
from the center of the shaft. A torque Q, equal 
to F x I, is applied to the shaft. The units of 
torque are force times length or in,lbs. 

As we did with translational mechanical 
elements, we can now visualize a generalized 
rotational mechanical element, as in Figure 
2.29, and write the relative motion equations 

Bz . lUi. I 0<2, ~ I lUi I 0(, 

)J J J=~_Q 

( generalized element 

Figure 2.29. Definition sketch for general­
ized rotational mechanical element. 
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-a21 =W21 =W2 WI 

=e - e=e (2.59)2 l 21 

For rotational mechanical components, 
power is expressed as 

Power = QC021 (2.60) 

Refer to Appendix B.3 for more details. 

The Basic Rotational Mechanical 
Components 

As you might expect,· the same three funda­
mental mechanical elements, the damper, mass, 
and spring that we discussed in the translational 
mechanical section, also exist as rotational 
mechanical elements. We will therefore pass 
through these quickly, pointing out significant 
differences when appropriate. 

The rotational mechanical damper symbolic 
diagram is shown in Figure 2.30. The torque is 
given by 

I Q= B( ffi, - ffiJ ) = Bffi2J , (2.61 ) 

This equation is essentially identical to the one 
for the translational damper. The capital B is 
used to distinguish the rotational damper value 
symbol from that used with the translational 
damper. B has units of torque per unit of angular 
velocity, or in-lb-sec. 

B 

Figure 2.30. Rotational damperjdashpot. 

The rotational mechanical mass symbolic 
diagram is shown in Figure 2.31. Newton's laws 
of motion applied to a pure rotational mass re­
sult in 

2J (2.62)I Q ~ [dffi I
dt 

This equation is essentially identical to the one 
for the translational mass. The same restrictions 
apply to the reference angular velocity as were 
noted for the translational mass; that is, the 
reference point for angular velocity must be 
either stationary or moving at a constant angu­
lar velocity. 

Figure 2.31. Rotational mass. 

The rotational mechanical spring symbolic 
diagram is shown in Figure 2.32. The torque is 
given by 

(2.63 ) 
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~
 
k 

Figure 2.32.
 
Rotational spring.
 

or by 

(2.64 ) I Q= KJ",,,dt = K6" I 
This equation is essentially identical to the 
equation for the pure translational spring. The 

DASHPOT
 

capital letter K is used to distinguish rotational 
springs from translational springs. 

What to Commit to Memory 

Figure 2.33 shows the three fundamental ro­
tational mechanical components, their symbolic 
diagrams and the equations you should always 
remember. Figure 2.34 provides a summary of 
the symbolic diagrams, operational block dia­
grams, and impedances for these building blocks. 
Go over each of these and note how similar they 
are to those shown in Figure 2.26 for the me­
chanical translational elements. 

INERTIA Q = /dm21 

dt 

Wi Wi Q= K8 21QSPRING ~ ~ a- OR~ 
K 

: 
dQ 
-= Kro 21
dt 

Figure 2.33. Rotational mechanical elements. 
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NAME SYMBOL OPERATIONAL BLOCK DIAGRAMS IMPEDANCE 

~ Co.),

ROTARY Q~Q ~B~ ~~~' ~ZB~2' 
DAMPER OR B I

where i!. = BDASH POT 

(vu),;"il' 

~ .. o .,. 
ROTARY Q~l-~_f v~ID~ ~k~~' Q-1ZI ~:ll
INERTIA 

I I 
where. Z r ::ro 

(Qjint'f 

Q ~ AJj GROTARY w~ ~'1< Q-1Z~~'~ 
SPRING K D

uherc 21<. =K 

Figure 2.34. Summary of rotational mechanical elements. 

2.5 Fluid Elements 

Concepts of Pressure and Flow 

A fluid is matter in a state which cannot sus­
tain a shear force when it is at rest. For example, 
Figure 2.35 shows a circular "shear box" filled 
with a fluid. A minute force F will cause the 
contents of the upper half to spill. When the 
box is filled with a solid, a large force is required F~O 

,to shear the material. A fluid can be a liquid or a 
gas. The only difference between the two is re­
lated to the ease with which a gas can be com­ --etI 
pressed relative to a liquid. A fluid can be F~O 

looked on as a quantity of small particles of mat­ side view 
ter that behave in such a manner that properties 

Figure 2.35. Circular box filled with a(pressure, mass per unit volume, etc.) can be 
fluid. Upper half will slide over lower half 

measured at every point in the fluid. immediately when a force F is applied. 

35 

•. • . . I.. . . . ,. . .. . . 
_. • fluid • .'. ' . ..
.. .. . . .
 



Basic Building Blocks for Modeling Engineering Systems 

Pressure in a fluid is defined as force per unit 
of area exerted in a direction that is perpendicu­
lar to the unit area. Pressure has the dimensions 
of force per length squared, the same as stress. 
Pressure is similar to the concept of normal 
stress in a solid. 

In actuality, a fluid can sustain a shear force, 
but only when there is relative motion between 
fluid particles. For example, the flow of water in 
a river exerts a shear force on the bed of the 
river because the velocity of the water u varies 
as a function of the distance from the river bed 
y. At the river bed (y = 0) the water velocity is 
zero. Near the surface of the river (y = depth 
of the water) the water velocity is near its 
maximum. A so-called velocity gradient therefore 
exists in the water causing relative motion be­
tween fluid particles. The velocity gradient can 
be expressed as a derivative (du/dy) where du is 
the incremental change in water velocity and dy 
is the incremental change in depth. The shear 
stress 't, defined as a force per unit area exerted 
tangentially to that unit area, is proportional to 
the velocity gradient. That is: 

du 
1'= J.l­ (2.65)

dy 

where Il is the constant of proportionality, 
called the absolute viscosity of the fluid. Fluids 
which obey equation (2.65) are often called 
Newtonian fluids. (This, of course, is a simpli­
fication of fluid behavior; real fluids are more 
complex.) 

Rate of flow of a fluid is defined as either the 
amount of mass or volume of fluid moving past a 
boundary in a unit of time. Mass rate of flow is 

generally used when dealing with a gas and 
volume rate of flow when dealing with a liquid. 

The law of conservation of mass is often 
applied to a fluid to determine flow conditions 
at one point in a fluid, given the conditions at 
another. For example, Figure 2.36 shows two 
pipes with a gas flowing in one and a liquid in 
the other. At one end of each pipe the pressure 
is PI and the area is AI' At the other the pressure 
is Pz and the area is Ar In the pipe carrying the 
gas, the mass density (mass per unit volume) 
varies and is PI at one end and Pzat the other. In 
the pipe carrying the liquid, the mass density is a 
constant, p. The mass rate of flow qmI entering 
the pipe must equal the mass rate of flow qmz 

exiting the pipe since no mass is being stored 
inside the pipe. That is 

or 

(2.66) 

(This is commonly called the "mass continuity" 
equation.) 

Note from equation (2.66) that the units of 
mass rate of flow are slugs/ft3 X ftZ x ft/sec = 
slugs/sec. (Note: a "slug" is the amount of mass 
which accelerates at the rate of 1 ft/secz under 
the action of 1 lb of force.) 

If the fluid is incompressible, PI and Pz are 
equal to P which cancels out of both sides of 
equation (2.66). Equation (2.66) then reduces 
to 

(2.67) 

That is, the volume rate of flow qv must be equal 
at both ends of the pipe. 

36 



Fluid Elements 

A.z. U,.
U A, ~c::... 

~ :J'lt' Ii 
:J: I P, 

Incompressible liquid (pz = pz) 

Figure 2.36. Two pipes with a gas flowing in one and a liquid in the other. 

Another very useful equation can be found 
by applying Newton's laws of motion to an ideal 
fluid in steady flow conditions. An ideal fluid is 
one that is incompressible and has no viscosity. 
Steady flow means that particles of fluid are fol­
lowing a path in space that does not vary with 
time. Such paths are often called streamlines and 
bundles of streamlines are called streamtubes. A 
streamline or streamtube looks and behaves ex­
actly like the tubes shown in Figure 2.36. 

Let's examine the streamtube shown in 
Figure 2.37. If the pressure Pl , elevation hl , and 
velocity U

j 
of a point along the tube is known, 

then the pressure P2 , elevation h2, and velocity 
U

2 
of another point along the tube are related by 

(P2 - PI) + pg(~ -~) 

+£.(U2 
- U2

) =02 2 I 
(2.68) 

Equation (2.68) is often called Bernoulli's equa­
tion. It is extremely useful when dealing with 
fluids and will be now used, together with the 
mass continuity equations given by equations 
(2.66) and (2.67), to describe equations for the 
three fundamental fluid elements. 

As we know, power is the rate at which work 
is done. Referring again to the streamtube in 
Figure 2.37, we can write an expression for the 
power required to force the fluid into the en­
trance of the tube at point 1 as 

d~ dvol
Powefj =- =PI-- =Plq (2.69)

dt dt v 

(See Appendix B.4 for more details.) Similarly, 
the power expended by the fluid exiting the 
streamtube can be found by 

(2.70) 

Subtracting (2.70) from (2.69) gives the 
net power as the product of the pressure 
difference across the tube ends and the 
volume rate of flow through the tube. 
That is, 

(2.71 )Figure 2.37. A streamtube. 
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The Fluid Resistor 

Figure 2.38 shows a symbolic 
(circuit) diagram of a fluid resistor 

~I
along with the fundamental describ­
ing equations for an ideal fluid re­
sistor. Due to the form of Bernoulli's 
Equation, most fluid resistors are 

(a). Symbolic or circuitnonlinear. For example, sharp-edged 
diagram.

orifices are frequently used in fluid 
systems to measure flow. Figure 2.39 

nonlinear 
fluid resistor 

• (real) 
./ 
: ~RF 
, I 

linear fluid 
resistor (ideal) 

(b). Graphical representation. 
shows such an orifice installed in a 
section of pipe. If the pipe is level so that gravity 
has no effect on the flow, then from equation 
(2.68) we can write 1, = 

(2.72) 

01"" 

From equation (2.67) we can write 

(2.73) (c). Describing equations for ideal 
fluid resistor. 

Substituting (2.73) into (2.72) gives 
Figure 2.38. The ideal fluid resistor 

or 

You can see that if Al is much smaller than A 2, 

then the quantity A 
l 
2 / A/ will be much smaller 

than 1 and can be neglected. Equation (2. 74) 
then reduces to 

A2. CT~·~ee.f;eJnAl 
I!JU~~Q, A, 

11,U, 

(2.75) Figure 2.39. A sharp-edged orifice. 
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Using the relationship	 pressure differential across the ends of such a 
tube is related to the volume rate of flow through 
the tube by 

(2.77)we can also write (2.75) as 

where D is the tube diameter, l is the tube length, 
and Jl is the absolute viscosity of the liquid. 

or more precisely as Compare (2.77) with the equation for an 
ideal electrical resistor 

(2.76) 
~1 =Ri 

If we let 128Jll/ nD4 = Rf in (2.77) then we can
where the absolute value allows the sign of P21 to 

rewrite (2.77) aschange as the flow direction changes. You can 
see that the pressure difference is a function of 

(2.78)the square of the volume rate of flow, causing 
the orifice to be a nonlinear resistor. 

A comparison of (2.78) with the electrical resis­
Of course equation (2.76) could be linear­

tor equation shows they are completely analo­
ized about an operating point defined as qvo' 

gous when the volume rate of flow is taken as the
using Taylor's Theorem described in Appendix 

analog of electrical current and pressure differen­
A, if a linear resistor were required. However, 

tial is taken as the analog of electrical voltage 
there are linear fluid resistors. Incompressible 

differential.
flow through a very small diameter tube (capil­
lary) results in a linear relationship with the The energy delivered to a fluid resistor in the 
pressure differential across the ends of the tube interval from t = t to t = tb isa 
and the volume rate of flow through the tube. 
Many soils and porous plugs made out of cinder 

(2.79)
material exhibit a linear relationship between 
pressure and flow. 

Substituting equation (2.78) into (2.79) and
A capillary tube is basically an orifice whose 

eliminating qv gives
length is much greater than its diameter. The 
flow in such tubes is laminar; that is, it moves in 
layers, or laminas, and fluid particles do not 
bounce around from one layer to another. The 
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Alternatively, we can use equation (2.78) to 
eliminate P21 

(2.81) 

Just as we saw with the electrical resistor, equa­
tions (2.80) and (2.81) reveal that a fixed resis­
tor dissipates power regardless of the direction of 
the fluid flow. Mathematically, an ideal fluid re­
sistor behaves exactly like an ideal electrical resistor 
when the voltage-pressure and current-flow analogy 
is used. 

The Fluid Capacitor 

Fluid capacitors are found in numerous 
hydraulic and pneumatic systems. Reservoirs, 
pressurized tanks, spring-loaded accumulators, 
and air-charged accumulators are examples of 
commonly encountered fluid capacitors. 

An open reservoir is often used in a hy­
draulic system as a capacitor. Figure 2.40 shows 
the general arrangement of such a capacitor. A 
volume rate of flow qv enters the bottom of the 
tank causing the level of the tank h to increase. 
This increased fluid level also increases the pres­
sure p at the bottom of the tank. 

The mass continuity equation applied to the 
tank gives us 

_A dh 
qv - dt (2.82) 

We can also see that the pressure at the bottom 
of the tank is equal to the weight of the fluid in 
the tank divided by the area. That is 

T 
h=f1uid level 

~ 

-----------­

--­

t 

Area, A 

Fluid 
density, p 

Figure 2.40. Fluid reservoir. 

p= pghA =pgh (2.83 ) 
A 

Equation (2.83) can be rearranged and then dif­
ferentiated to give 

dh 1 dp
-=-­
dt pg dt 

(2.84) 

Substituting (2.84) into (2.82) to eliminate 
dhldt gives 

qv ( AJdP 
= pg dt 

(2.85) 

Compare (2.85) to the equation for an ideal 
electrical capacitor: 

i=Cd~1 
dt 

Clearly the two equations are mathematically 
the same if we define (AI pg) to be a fluid capa­

40 



Fluid Elements 

citance Cf and we use the electrical voltage­
fluid pressure and electrical current-fluid flow 
analogy. Equation (2.85) can then be written as 

(2.86)
 

where Cf= A/pg. 

An accumulator is another form of fluid ca~ 

pacitor. A spring~loaded accumulator is shown 
in Figure 2,41. In this type of accumulator a 
spring rather than gravity provides the pressure 
increase. A volume rate of flow qv entering the 
bottom of the tank causes the spring to compress 
a distance x. This increases the pressure p in the 
tank. 

The pressure in the tank is also equal to the 
force exerted by the spring on the fluid divided 
by the area. That is 

kx 
p=­ (2.88)

A 

where k is the spring constant. Equation (2.88) 
can be rearranged and then differentiated to 
give 

dx Adp 
(2.89)

dt k dt 

Substituting (2.89) into (2.87) to eliminate 
dx/dt gives 

(2.90) 

k 

A 

p 

Equation (2.90) can then be written as a fluid 
capacitor 

(2.91 ) 

The energy delivered to a fluid capacitor in 
the time interval from t = ta to t = tb is given by 

(2.92) 

Figure 2.41. Spring-loaded accumulator. 

The mass continuity equation applied to the 
tank gives 

Equation (2.91) can be rewritten using differen~ 

tials as 

(2.91 ) 
rewritten 

dx 
q =A­

v dt 
(2.87) Substituting Cfdp for qvdt in equation (2.92) 

gives 
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(2.93 ) 

Equation (2.93) can be integrated to give 

(2.94) 

The quantity Cf (P
2 /2) is the energy that was a 

initially stored in the capacitor at t = t and a 
C/Pb2/2) represents the energy stored at time 
t = tb' During the time interval tb - t , the energya
Eb - E was added to the fluid capacitor. You can a 
see that fluid capacitors, like their electrical 
cousins, can store energy. This energy can be re­
trieved and used later when needed. 

The Fluid Inductor 
A mass of fluid in motion is quite similar to a 

solid mass in motion. The fluid mass has inertia 
and a force is required to accelerate or decelerate 
the fluid. Figure 2,42 shows an ideal (no viscosity 
and hence no friction forces) incompressible fluid 
in unsteady (flow velocity is not a constant) flow 
through a pipe. Let's apply Newton's laws of mo­
tion to the mass of fluid in the pipe. 

Figure 2.42. Ideal incompressible fluid in 
unsteady flow through a pipe. 

The fluid mass is pAl, the net force acting on 
this mass is A(pj - P2), and the acceleration of 
the fluid mass is dU / dt. From Newton's laws we 
can write 

dU 
A(Pl - pz) =pAi­ (2.95)

dt 

Since qv = AU and PJ2 = Pj - P2' equation (2.95) 
can also be rewri tten as 

=(Pi) dqv (2.96) 
P1Z A dt 

Compare equation (2.96) with the equation 
for an electrical inductor: 

V =L di 
ZI dt 

Clearly this equation is analogous to (2.96) if we 
define (pl /A) to be a fluid inductance If and we 
use the electrical voltage-fluid pressure and 
electrical current-fluid flow analogy. Equation 
(2.96) can therefore be written as 

- I dqvP12 - f­ (2.97)
dt 

You can see that, mathematically, an ideal fluid 
inductor behaves exactly like an ideal electrical in­
ductor. 

The energy delivered to a fluid inductor in 
the time interval from t = t to t = tb is given by a 

Substituting equation (2.97) into this equation 

to eliminate PJ2 gives 
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(2.98) 

Equation (2.98) can be integrated to give 

2 ]q'b
E -E = I !b... 

b a f [ 2 
q,a 

2 2 
= I qvb _ I qva (2.99)

f 2 f 2 

The quantity If (qva2 /2) is the kinetic energy 
associated with the initial flow rate at t = t and a 
If (qvb2 

/ 2) is kinetic energy associated with the 
final flow rate at t = tb' During the time interval 
tb - t , the kinetic energy Eb - E was added to a a 
the fluid. 

What to Commit to Memory 

You should always remember that equations 
associated with fluid mechanics are based on 
applying the mass continuity (conservation of 
mass) and Newton's motion laws to a fluid. You 
should be able to write mass continuity from 
memory in the form 

You should also be able to write Bernoulli's 
equation from memory and know that it strictly 
applies to a frictionless fluid in steady flow. Re­
member the equation in one of these two forms 

or 

If you remember these equations, you will 
always be able to derive the elemental equations 
for a fluid resistor, fluid capacitor, and a fluid 
inductor. Also keep in mind when working with 
fluid systems that the three fundamental build­
ing blocks are not as easy to spot as are their 
electrical counterparts. So make it a habit to try 
to identify the three fluid building blocks when­
ever you encounter a fluid system. (You could 
start with the fresh and hot water supplies in 
your home.) 

Figure 2.43 shows the symbolic diagrams, 
operational block diagrams, and impedances for 
the three fundamental fluid elements. As you 
review these, note how similar they are to the 
three fundamental electrical and mechanical 
elements in Figures 2.15, 2.26, and 2.34. 

2.6 Thermal Elements 
Concepts of Temperature and Heat 

The concepts of temperature and heat are 
encountered in almost all engineering systems. 
Heat must be dissipated from electrical circuits 
or the elements will burn out. Heat produced by 
friction between mechanical elements can cause 
them to seize if the heat is not removed. Fluids 
are frequently used to transfer heat from one lo­
cation to another. 

We qualitatively think of temperature as a 
measure of how "hot" or "cold" an object is. This 
implies that temperature is a relative term, and 
indeed it is. A quantitative measure of tempera­
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NAME SYMBOL OPERATIONAL BLOCK DIAGRAMS IMPEDANCE
 

~ ~ 
wJw,.. ZR = 1?1' 

~I =R'2v 

'f C, (p) . .,£- "",­
FLUID P ~...-II ~"'---Jr 
CAPACITOR 

~t=; r:r;J19 
ftl, 

FLUID 
RESISTOR 

FLUID 
INDUCTOR 

rtl .I~I ~! 

~ertt- Zl. .. I,lJ 

Figure 2.43. Summary of fluid elements. 

ture is obtained with a thermometer and a variety 
of scales are in use today. For example, the Cel­
sius or centigrade scale was developed based on 
the freezing and boiling points of water. The 
temperature at which solid water (ice) changes 
to liquid water is equal to 0 degrees Celsius 
(O°C) and the temperature at which liquid water 
changes to gaseous water (steam) is equal to 100 
degrees Celsius (lOO°C). 
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When two bodies at different temperatures 
are brought in contact with one another, heat 
flows from the body with the higher temperature 
to the body with the lower temperature. When 
this happens, energy is transferred from the hotter 
to the colder body. Heat is defined as the energy 
that is transferred from one body or system to 
another as the result of the temperature differ­
ence between the two. 
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Concepts of Work, Power, and 
Energy in Thermal Elements 

When mechanical work is done on a body, 
its temperature will rise unless heat is removed 
from the body. The First Law of Thermo­
dynamics states that work and heat can be con­
verted from one to the other. Consequently, the 
units of heat and work are equivalent. In the 
English system, temperature is usually measured 
in Fahrenheit degrees and heat in British Ther­
mal Units (BTU). One BTU is equivalent to 
778.172 ft-Ibs. In the SI system, temperature is 
measured in degrees centigrade and heat in 
joules. You will recall from our study of electri­
cal elements that one joule is equal to one watt­
sec, or 0.737 ft-Ibs. 

There are three basic ways in which heat 
can be transferred from a hotter to a colder body: 
convection, radiation and conduction. Convec­
tion-type heat transfer takes place primarily in 
liquids and gases. Heat is transferred as the result 
of matter moving from one location to another 
due to currents set up by the temperature differ­
entials. Radiation-type heat transfer takes place 
as a result of energy carried by electromagnetic 
waves. Conduction-type heat transfer usually 
involves substances in the solid phase. Heat is 
transferred at the atomic level without any 
visible motion of matter. 

Thermal Resistance 
All material offers some resistance to heat 

flow. When a material offers a large degree of 
resistance it is often called an insulator. Figure 
2.44 shows a section of an insulative material. 

It has been found through experimentation 

.' ...... 

< 
Figure 2.44. Heat flow through a 

conducting material. 

that the rate of heat transfer qh between two 
surfaces of area A is proportional to the area and 
the temperature gradient dT / dx. In equation 
form, 

(2.100) 

By using a constant of proportionality kc we can 
write equation (2.100) as 

(2.101) 

The constant of proportionality kc is called the 
thermal conductivity. The negative sign indicates 
that heat flows from the direction of decreasing 
temperature. 

Applying equation (2.101) to Figure 2.44 
gives 

(2.102) 
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Symbol Meaning 

qh rate of heat flow 

English units 

BTU/hr 

SI units 

joules/sec 

kc thermal 
conductivity 

BTU 

hr ­ ft Z - (deg F / ft) 

joules 

sec _mz -(deg C / m) 

A cross-sectional area ft2 m2 

Tz hotter temperature deg F degC 

Tj colder temperature deg F degC 

X thickness of material ft m 

Take careful note of the units in this equation. 
They are given above in both English and SI 
units. 

If we rewrite equation (2.102) in the form 

(2.103) 

and then compare this with the equation for an 
electrical resistor 

'SI = Ri 

we can see that the two equations are identical 
provided we think ofX/ kcA as a resistor (thermal), 
temperature as a voltage, and rate of heat flow as 
an electrical current. Drawing this analogy, we 
can then write (2.103) as 

(2.104) 

where 

R=~ 
t kA 

c 

We must be very careful with this analogy 
when it comes to looking at power relationships. 
The rate of heat flow qh corresponds to power, as 
a consequence of the equivalency of heat and 
work stated by the First Law of Thermodynamics. 
Consequently, 
(2.102), or in te

power 
rms of R

is 

cas 
given by equation 

(2.105) 

Thermal 
Capacitance 

All materials have some capacity to store 
heat. The capacity of a material to store heat is 
called its specific heat. It is defined as the amount 
of heat per unit mass that must be added to the 
material to raise its temperature one degree. 
Specific heat c is, in general, a function of tem­
perature and can be written as 

1 dQ
c=c(T)=-­ (2.106)

mdT 
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where m = mass of the material 

dQ = amount of heat required 

dT = temperature rise due to addition 
ofdQ 

If we restrict attention to small variations of 
temperature, then e can be taken as a constant. 
In that case equation (2.106) can be written as 

dQ=emdT (2.107) 

Dividing through by an incremental time dt, 
gives 

dQ dT
-=qh=em- (2.108)
dt dt 

Let's compare equation (2.108) with the 
equation for an electrical capacitor: 

dV 
i=C 

dt 

You can see that the two equations are identical 
if we think of em as a capacitor (thermal), 
temperature as a voltage, and rate of heat flow as 
an electrical current. In this case we rewrite 
equation (2.108) as 

dT 
qh = Ct -;]t (2.109) 

where 

C/ =em 

Once again, you must be careful with this 
analogy when it comes to looking at power 
relationships. Quite often we are interested in 
how much heat is stored in a material. This can 
be obtained by integrating equation (2.109). 
That is, 

Q=m edT (2.110)J
T2 

T1 

If e is taken as a constant, then equation 
(2.110) can be integrated giving 

Q=me(I; - 1;) (2.111) 

Thermal Inductance 

There is no known thermal phenomena 
which stores thermal energy as a function of the 
rate of change of the heat flow rate. Conse­
quently no analogies with electrical inductance 
can be drawn. 

What to Commit to Memory 

The equations for thermal resistance and 
thermal capacitance given above will likely 
serve many of your needs when modeling engi­
neering systems. You should commit to memory 
the analogies with the electrical resistor and 
capacitor. 

Figure 2.45 shows symbolic diagrams, oper­
ational diagrams and impedances for the two 
fundamental thermal elements. Compare these 
with the electrical, mechanical, and fluid "resis­
tors" and "capacitors." You will see that the 
equations are identical. However, don't forget 
that power in thermal systems is not equal to the 
product of the across variable (temperature) and 
the through variable (heat flow rate), as is the 
case with the electrical, mechanical, and fluid 
systems. The through variable for thermal sys­
tems, heat flow rate, is itself power. 
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NAME SYMBOL OPERATIONAL BLOCK DIAGRAMS IMPEDANCE 

1", 
THERMAL 7;.~ ~'~ 'I t[1t. tl" .17?t I 72,. '£1, .IZRI li,
RESISTOR 'Rt 

7?t whef'te ~ ="Rt 
'l :: "Tz, Tz, = 1?t?J,"'­"Rt 

'lit 
THERMAL T ...

-+ 

-oooolCI t~···_··~ 
T iLiDI fJ,.CAPACITOR Jr ,Jr 

- c dT If.1t - t:it r =C 117 df to (rJ,;";ft 
() 

Figure 2.45. Summary of thermal elements. 

2.7 The Importance Note that I have included thermal systems 
of Analogies in this summary, but placed them in a box to 

This chapter is probably the most important remind you that the product of temperature 

chapter in this book. It covers what I believe to (across variable) and rate of heat flow (through 

be the most important fundamentals of engi~ variable) is not power. 

neering. If you understand this material and 
The real beauty of analogies lies in the way

commit to memory the basic formulas, you will 
in which mathematics unifies these diverse

have a solid grounding for any engineering 
fields of engineering into one subject. That

work. 
means tools developed for solving problems in 

Throughout this chapter I have repeatedly one field can be used to solve problems in an, 
pointed out how the equations describing the other. This is an important concept, since some 
three fundamental components in electrical, fields, particularly electrical engineering, have 
mechanical, and fluid systems are identical if the rich sets of problem~solving tools that are fully 
proper analogies are drawn between across and applicable to other engineering fields. The more 
through variables. I have also pointed out that you work with engineering problems and these 
the product of the across and through variables analogies, the more intuitive your engineering 
for these three vastly different engineering sys~ skills will become. The result-the good engi~ 

tem building blocks is equal to power. Table 2.3 neering judgment so essential to success in any 
summarizes what we've covered so far. type of engineering field. 
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Table 2.3. Analogies summary. 

Across Through Power Resistor Capacitor InductorSystem 
Variable Variable Equation Equation Equation Equation 

dV V=L diELECfRICAL Voltage (V) Current (i) Vxi V=Ri i=C 
dt dt 

MECHANICAL 1 1 dFF=m dvVelocity (v) Force (F) vxF v=-F v=-­
TRANSLATION b dt k dt 

MECHANICAL Angular 1 1 dQ
Torque (Q) eoxQ eo=-Q Q =Ideo eo=-­ROTATIONAL Velocity (eo) B dt K dt 

p = I dqvFLUID Pressure (p) Flow Rate (q )
v f dt 

1------------------------------------1 
I THERMAL Temperature Heat Flow qh T =Rtqh =C dT None I 
I (T) Rate (qh) qh t dt I
L ~ 
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Chapter
 
Constructing
 
First-Order 
Math Models 

Objectives 
When you have completed this chapter, you will be able to: 

•	 Develop simple math models of engineering systems. 

•	 Define the path-vertex-elemental equation, the impedance, 
the operational block diagram, and the free-body diagram 
methods for developing math models and know how to 
use each method. 

•	 Recognize when the fundamental elements are connected 
in series or in parallel and use the associated simplifying 
equations in the development of math models. 

•	 Define and understand what is meant when a math model 
is described as a first- or second-order ordinary linear 
differential equation with constant coefficients• 

•	 Recognize and use the power of the impedance method
 
for rapidly developing math models.
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3. 1 Introduction to 
Math Models 

In the previous chapter you learned how to 
develop mathematical models of single~element, 

ideal components found in electrical, mechani~ 

cal, fluid, and thermal systems. You can model 
numerous systems found in engineering by 
breaking the system down into these fundamen~ 

tal elements and then combining the elemental 
equations to form a mathematical model of the 
complete system. An electrical system, for ex~ 

ample, might be modeled as a combination of an 
ideal resistor and an ideal capacitor. Or a me~ 

chanical system might be modeled as a combi~ 

nation of an ideal spring and an ideal mass. 

In this chapter, you will learn that when 
equations for the ideal elements are combined, a 
mathematical model referred to as a differential 
equation is obtained. This equation describes the 
behavior in time of the output (or response) 
variable of the system to a time~varying input or 
forcing variable. You will also learn that the co~ 

efficients of the differential equation are related 
to the constants associated with the ideal ele~ 

mental equations (that is, the value of the resis~ 

tor, capacitor, inductor, mass, spring, etc.). The 
ideal element constants are combined and form 
parameters which govern the most basic charac~ 

teristics of the differential equation. 

Based on my own experience and observa~ 

tion of other engineers, I've discovered that it is 
generally much harder to create mathematical 
models of systems (that is, derive the governing 
differential equations) than it is to solve the 
equations once they have been derived. In fact, 
there are many excellent software programs 
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available now that can be run on an inexpensive 
Pc. These programs can be used to prepare 
math models of engineering systems and to solve 
the resultant equations. But these programs can 
be dangerous! You must have the engineering 
basics before you can model an engineering sys~ 

tem, and you need to know how to solve at least 
basic equations so you can judge whether or not 
the output you are getting from a computer pro~ 

gram makes sense. 

I consider the material covered in this chap~ 

ter to be the true dividing line between a "good" 
engineer and a mediocre one. A good engineer 
has internalized this material so that he or she is 
able to conceptualize an engineering system-to 
"see" the differential equations that describe its 
behavior-almost automatically. When you step 
on the accelerator of your car, for example, you 
should be able to visualize the graphs of thrust 
vs. velocity and resistance vs. velocity that de~ 

termine the acceleration of its mass. Don't 
expect this to happen overnight, however. It 
comes with lots of practice! 

I spend a great deal of time in this chapter 
explaining techniques and developing tools that 
you can use to make the equation derivation 
process easier. More emphasis will be placed on 
the methods that I have found produce answers 
in the shortest period of time and that are 
easiest to remember. To keep things as simple as 
possible, only engineering systems that contain 
two fundamental elements will be discussed in 
this chapter. While this may at first seem trivial, 
you will discover that nearly every engineering 
system contains at least one component that 
can be described fairly accurately by a combina~ 

tion of two ideal elements. 



Tools for Developing Math Models 

3.2 Tools for Developing 
Math Models 

Four methods for developing mathematical 
models of engineering systems are presented in 
this section. They are usually referred to by the 
following names: 

• Path~ Vertex~ Elemental Equation Method 
• Impedance Method 
• Operational Block Diagram Method 
• Free~body Diagram Method 

The path-vertex~elementalequation method 
has a variety of names depending on the field of 
engineering in which you're involved. In electri~ 

cal engineering the method is referred to as 
Kirchoffs Laws (voltage and current). Other 
fields often call this method "derivation by first 
principles." 

The impedance method and the operational 
block diagram method seem to be used mostly 
by electrical engineers. That's too bad, because 
both methods are extremely powerful when ap­
plied to other fields as well. Learn them and you 
will save time and gain new insights into the 
systems you are trying to design or analyze, no 
matter what type of system it is. 

The free-body diagram is most commonly 
used in mechanical engineering. It is an ex­
tremely powerful method and, since nearly all 
engineering systems have some mechanical 
components, all engineers should learn how to 
use it. 

Again, I will present the first three methods 
using simple electrical circuits. This will allow 
you to better understand the important concepts 
of series and parallel "circuits" and how these 

concepts can be used to simplify the develop­
ment of math models in general. 

Path-Vertex-Elemental Equation
 
Method
 

When several of the fundamental elements 
described in the previous chapter are connected 
together, the result looks like a network of high­
ways with junctions and interconnections. For 
example, Figure 3.1 shows a complex electrical 
circuit comprised of interconnected resistors, 
capacitors, and inductors. The point where two 
or more elemental components are connected is 
called the vertex. The highway leading from one 
vertex to another is called the path. 

A ~x is always associated with the ele­
mental across variables. At each vertex, the 
across variables for each interconnected ele­
ment are identical. 

A path is always associated with the elemen­
tal through variables. The sum of the through 
variables flowing into or out of a vertex must 
equal zero. For example, in Figure 3.1, the cur­
rents flowing into and out of the vertex labelled 
V must equal zero. That is, i (flowing into the

2 j 

vertex) must equal the sum of i
2 

and i3 (flowing 
out of the vertex). 

The path-vertex equations are often called 
"laws" and are frequently named after the person 
who discovered them. In electrical engineering, 
the path-vertex equations are called Kirchoff's 
voltage and current laws. While it's great to 
honor past engineers for their contributions, 
don't let names confuse you. You learned in 
Chapter 2 that you can create a "circuit" for any 

53 



Constructing First-Order Math Models 

path 

.. 
path 

'­

path 

path L 
vertex 

r~------.A."'-----", l J 

~ - ~ v, o----~ 

~o-----_....ao..-+----~ .....---~ ......--_-.:~ 

Figure 3.1. A complex electrical circuit showing vertices and paths. Note that 
.. ". bl d·· . .. h h" . blVl' V2' ••• , V5 are across varia es an 11' 12 , ••• 18 are t roug varia es. 

electrical, mechanical, fluid, and thermal ele~ 

ment. The path~vertex~elemental equation 
method is simply a procedure that allows you to 
derive equations for any "circuit," whether it is 
electrical, mechanical, fluid, or thermal, by writ~ 

ing the elemental equations associated with 
each element in the "circuit" and using the path 
and vertex laws associated with the across and 
through variables at each vertex. Now let's look 
at this method in more detail. 

Series and Parallel Circuits 

When two fundamental engineering system 
elements are connected together, they can only 
be connected in one of two ways: in series or in 
parallel. Figure 3.2a shows two electrical resis~ 

tors (they could just as well be mechanical, 
fluid, or thermal resistors) connected in series 
and Figure 3.2b shows them connected in paral~ 

leI. The voltages (across variable) at each of the 
vertices are labelled and the electrical current 
flowing (through variable) in each resistor and 
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into each vertex is shown. The directions of the 
currents are shown by arrows, but this is arbi~ 

trary since the relative values of the voltages are 
not given. In Figure 3.2a, there can only be one 
current and it flows through both resistors. In 
Figure 3.2b, the current flowing in the circuit 
splits and part flows through each resistor. 

You can find the voltage ~ at the juncture of 
the two resistors in Figure 3.2a by writing the 
elemental equation for the current flowing in 
each resistor. For R , the current isa 

(3.1) 

and for Rb, the current is 

(3.2) 

Since the current flowing out of resistor Ra must 
flow into Rb, we can equate (3.1) and (3.2), 
giving 



Tools for Developing Math Models 

Now look at the circuit in Figure 3.2b. Note 
(3.3)	 that the voltage across each resistor is the same 

and is equal to Vj - Va' The current i is given by a 

Solving this equation for V
j 

gives 

(3.6) 

(3.4 ) 

when Va is taken as the reference or zero voltage. 
If Va is taken as ground, or reference, and set to Similarly the current i b is given by 
zero, then (3.4) becomes 

Equation (3.5) indicates that 
the voltage V

j 
is equal to the volt, 

age V2 times the ratio of the resistor 
R and the sum of the two resistors. a 
If the two resistors were equal, the 
ratio would be 

R R 1 
--=-=­
R+R 2R 2 

If R~ were twice the size of Rb' the 
ratio would be 2/3. In essence, the 
circuit shown in Figure 3.2a is act, 
ing as a voltage divider (or constant 
multiplier). If V

2 
is considered an input to the 

circuit and V
j 

the output, then the circuit multi, 
plies the input by the ratio Ral (Ra+Rb) and pro' 
vides the product as the output. 

The circuit given in Figure 3.2a and the 
describing equation given in (3.5) are extremely 
important. You will encounter them often 
throughout your career and they will be used 
many times throughout this book. 
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(3.7) 
(3.5) 

~----1' or 

Vc _-----------4 

Figure 3.2(a). Resistors110 
connected in series. 

v,--------~r__-___,-i 

Figure 3.2(b). Resistors 
connected in parallel. 
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Figure 3.3. Reducing circuit complexity by combining elements in parallel. 
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The current, i, flowing into the junction can be 
written as 

(3.8) 

since the sum of the currents flowing into a 
vertex must equal the sum of the currents flow~ 

ing out of the junction. 

Substituting (3.6) and (3.7) into (3.8) gives 

(3.9) 

or 

(3.10) 

Equation (3.1 0) reveals that resistors in parallel 
can be combined into an equivalent single resis~ 

tor, R, given by 

(3.11) 

as shown in Figure 3.3. You should note that, in 
essence, equation (3.11) allows you to reduce 
circuit complexity by replacing resistors in par~ 

allel with a single resistor. 

1
 
V -­

Series and Parallel Circuits Involving 
One Energy Storage and One Energy 
Dissipative Element 

So far we have only looked at resistors con­
nected in series and in parallel. Figure 3Aa 
shows an electrical resistor and capacitor in 
series and Figure 3Ab shows the same elements 
connected in parallel. 

Let's follow the same procedures used above 
and determine if we get similar equations. We 
will first write the elemental equations for the 
series circuit. The current through the resistor is 

. v;-\!;
1 = ----=-----'- (3.12)

R 

The current through the capacitor is 

i = Cd\!; (3.13)
dt 

As before, let's equate (3.12) and (3.13) to 
eliminate i. That gives 

v; - \!; = Cd\!; (3.14)
R dt 

-
v 

]0-----1 
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~-------. 

0'" 

~=o _. JC 

Figure 3.4(a). A resistor and capacitor in series. 

1I, 0--------_........- ...... 

1? C 

~=oo 
Figure 3.4(b). A resistor 

and a capacitor in parallel. 

Now let's rearrange this equation so all the 
terms containing V

j 
are on the left side of the 

equal sign and all others are on the right side. 
That is 

(3.15a) 

Multiplying both sides by R gives 

(3.l5b) 

While we did not derive an equation which 
gives the output voltage, V

j
, directly as a func~ 

tion of the input voltage V2, we did obtain a 
relationship between Vj and V that contains the

2 

time derivative of Vj , VI by itself, and Vr Now 
let's check the units of each term in the equa~ 

tion to make sure they are correct. Each term on 
the left side of equation 3.15b must have the 
units of volts because only volts appear on the 
right side of the equation. That is, 

d~ _
RC-+ Vz

dt 
'---v---' 

volts 

........ 
volts 

- ~ 
'-v-' 

volts 

Look at the first term. Since dVj / dt has 
units of volts per unit of time, RC must have 
units of time. That is, 

RC dVz ] =sec x volts 
[ dt sec 

The product RC is called the time constant of the 
circuit and is given the Greek symbol, 'to 

The relationship given by (3.15) is a first~ 

order linear ordinary differential equation with con~ 

stant coefficients. It is called a differential equation 
because it has both a variable and its derivative 
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in the same equation. It's called ordinary because 
it contains no partial derivative. It's called first~ 

order because it involves only the first derivative 
of the variable. It is qualified as having constant 
coefficients [C and l/R in (3.15a) and RC and 1 
in (3.15b)] to distinguish it from similar equa~ 

tions that have coefficients which vary with 
time. It is called linear for reasons which will be­
come clearer later. 

You will find out later that (3.15) can be 
solved for VI (often called the dependent, 
response, or output variable) but the solution will 
give VI as a function of time (often called the 
independent variable) as well as a function of V

2 

(often called the input or forcing variable). 

Now let's derive the equation for the circuit 
in Figure 3Ab. The current flowing through the 
resistor is 

(3.16) 

and through the capacitor is 

. _Cd~
1c- - (3.17) 

dt 

The current summation at the junction gives 

(3.18) 

Substituting (3.16) and (3.17) into (3.18) gives 

'-Cd~ ~ 1- -+- (3.19)
dt R 

Once again our final result is a first-order 
linear differential equation with constant coeffi­
cients. The equation is very similar to (3.15) in 

that it involves the time derivative of VI and VI 
by itself. 

In equation (3.19) I have purposely placed 
the time derivative of VI and VI on the right side 
of the equal sign to make a point. Ordinarily, 
you place the output (dependent) variable on 
the left side of an equation and the input 
(forcing) variable on the right. But in this case, 
which is which? Is VI the input or is i? If VI is 
the input as (3.19) implies, then we have suc­
ceeded in arriving at the desired equation and 
need go no further in solving the equation. That 
is, if VI is the input variable, then it is known as 
a function of time and therefore its first deriva­
tive can be determined. On the other hand, if i 
is the input variable then (3.19) should be re­
arranged in the form 

RCd~ + v, =Ri (3.20)
dt 1 

Now compare (3.20) and (3.15b). Clearly they 
are identical except for the right sides. As I indi­
cated with (3.15), you can solve (3.20) for VI' 
but the solution will be a function of time as 
well as the input current, i. 

Impedance Method 

You discovered in the previous section that 
symbolic (circuit) diagrams can often be simpli­
fied for purposes of analysis by recognizing ele­
ments that are in series and parallel. You found 
out that resistors in series act as voltage dividers 
and input/output relations can be written 
directly without the need for lengthy equation 
derivations. You also discovered that resistors in 
parallel can be combined into an equivalent 
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~o--------, 

or 

lI, +----0 

t-----4~--o L{ 

11'=0
Cl 

Figure 3.5(a). Impedances in series. 

V-:o =0 

resistance. This too provides direct input/output 
relations without lengthy derivations. 

In the last chapter you were introduced to 
the concept of impedance. You learned that in­
ductors and capacitors can be represented as an 
electrical impedance just as a resistor can. You 
will now discover that any circuit element in 
series or in parallel can be treated just like a 
resistor when impedances are used. By combin­
ing the concepts of impedance and the tools for 
analyzing elements in series and in parallel, an 
extremely powerful method of deriving equa­
tions for complex circuits evolves. 

Figure 3.5 shows the same two circuits 
shown in Figure 3.4 and studied using the path­
vertex-elemental equation approach to deriving 
equations. All that has been changed between 
Figures 3.4 and 3.5 is the circuit element repre­
sentation. The elements are shown in Figure 3.5 
as generalized impedances. 

.
 -
l 

r-­

Z, 
'--r­

~ o =0 

Figure 3.5(b). Impedances in parallel. 

Using equation (3.5) as a guide, we can 
write the output voltage in terms of the input 
voltage and the ratio of the impedances: 

(3.21) 

where 

(3.22) 

and 

1 
Z2=­

CD 
(3.23 ) 
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Substituting (3.22) and (3.23) into (3.2l) gives 

1 

v: - CD V- (3.24) 
1- 1 2 

R+­
CD 

This equation can be simplified by treating the 
operator lID as if it were just an algebraic vari­
able: 

1 

v: = fiB V- = 1 V- (3.25) 
I RCD+1 2 RCD+1 2 

€f) 

Cross-multiplying by (RCD + 1) gives: 

(RCD+ 1)~ =RCD~ + ~ =V; (3.26) 

. Now note that the operator 0, or d( )/ dt, is 
operating on VI. Equation (3.26) can then be 
written as 

RCd~ + v: = V- (3.27)dt I 2 

Comparing (3.27) to (3.15b) reveals they are 
identical. 

R 
~o------ __ lr-----l{ 

I c 

"=0
0--0_I_" 

Let's look at what we accomplished. Using 
simple algebra, we have taken the circuit shown 
in Figure 3Aa and derived the differential equa­
tion relating the output, VI' to the input, Vr No 
lengthy equation derivation was involved as in 
the path-vertex-elemental equation method. 
Furthermore, using the operational block dia­
gram notation you learned in Chapter 2, equa­
tion (3.25) can be reduced to a single transfer 
function block as shown in Figure 3.6. 

Now let's derive the equation for the circuit 
shown in Figure 3Ab using the impedance 
method. From the general impedance diagram 
shown in Figure 3.5b and equation (3.10), we 
can write the relationship between the output 
voltage and input current as 

(3.28) 

where from above 

(3.22) 
repeated

and 

1 (3.23 ) 
CD repeated 

2 2 =­

1LI__R_C_D__of-_'__~ V, 

Figure 3.6. Transfer function block diagram equivalent 
for a resistor and a capacitor in series. 
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Substituting (3.22) and (3.23) into (3.28) gives 

(3.29) ~ = [ R-q Ji L 
R+­

CD 
0 .......... --.1.....- __
 

which can be simplified to 
Figure 3.7(a). Electrical circuit 
containing all three elements. 

v,- R ).l (3.30)(1- RCD+l 

or 

RCD~ +~ =Ri (3.31 ) 

Here again we note that the operator D, or 
d( )/ dt is operating on the output voltage 
variable. So 

RCd~ +~ =Ri (3.32) 0----------1.....-----......-- ­dt 
Figure 3.7(b). Replace elements 

with impedances.
Comparing (3.32) to (3.20) reveals that they are 
the same. So again we have been able to write 
the differential equation relating the output to 
the input without the need for the lengthy equa, 
tion derivation we found using the path,vertex, 
elemental equation method. 

Many electrical circuits you will encounter 
are simply combinations of elements arranged as 
voltage dividers or as elements in parallel. For 
example, the circuit shown in Figure 3.7a might Figure 3.7(c). Reduce parallel 

elements to equivalent imped­look complicated, but it can easily be solved for 
ance and recognize reduced 

the relationship between V and Vin in just a out circuit as a voltage divider. 
few steps as follows: 

Step 1. Replace circuit elements with im, 
pedances as in Figure 3.7b. 

Step 3. Recognize the simplified circuit as 

Step 2. Combine parallel elements into a a voltage divider and write the output,input 

single equivalent element as in Figure 3.7c. equation by inspection in terms of impedances: 
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Step 4. Substitute elemental impedances 
and perform algebra: 

1
LDx­

~ut _ CD 
- 1 1 

~n RLD+Rx-+LDx-
CD CD 

LD L 
D 

~ut _ CD R 
~n - RLCD2 + R+ LD L

LCD2 +-D+1 
CD R 

Step 5. Write differential equation by sub­
stituting d( )/ dt for the operator D: 

( LC)d2~ut +(L)dVour + V =(L)d~n 
dt2 R dt out R dt 

The final equation arrived at in Step 5 is a 
second-order ordinary linear differential equa­
tion with constant coefficients. It is called second­
order because the second derivative of the 
output (dependent) variable is involved. You 
will study these types of equations later in Chap­
ter 6. For now, look at what we have accom­
plished. In five easy steps, we derived the math 
model for a fairly complex electrical circuit. To 
prove to yourself just how easy and fast the im­
pedance method is, stop now and try to derive 
the equation given at the end of step 5 using the 
path-vertex-elemental equation method. 

Operational Block Diagram Method 
Another tool that is very useful in visualiz­

ing how a system is working is the operational 
block diagram. In Chapter 2 we developed block 
diagrams for each of the three circuit elements 
and I stated then that it was best to develop 
these diagrams without using differentiator 
blocks. Now we will prepare a block diagram for 
the circuit of Figure 3.4. 

When you develop a block diagram, first 
write the elemental equation for the circuit. We 
did this earlier, so from equation (3.12) we have 

or 

I
~ -~.....----. . 

I I------i'~ 
R 

Figure 3.8. 

Note how this block diagram was prepared. 
First you decide which variable is going to be 
the output. Then you solve for that variable and 
put it on the left side of the equation. Start 
drawing the diagram with the. input or forcing 
variable, in this case V

2
, at the far left of the dia­

gram. Then just follow the equation drawing 
summers and multiplication blocks as needed. 

The block diagram so far shows current as 
the output. We ultimately want Vj as the out­
put, so a block diagram for the capacitor is 
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needed. Equation 3.13 is in the wrong form be­
cause it shows current as an output instead of an 
input. Following the steps, we rearrange the 

equation and draw the diagram. 

dV; 1. 
-=-l 
dt C 

or 

.
 

into the capacitor where it is integrated and pro­
duces the output voltage. 

Look at how this circuit works as viewed by 
the block diagram. Start with no initial charge 
on the capacitor and the input voltage at zero. If 
a constant voltage V * were suddenly applied to 2 

the circuit, the voltage difference out of the 
summer would equal V

2
* because V

j 
is initially 

zero. A current equal to V2* / R will initially 
flow. The output voltage V

j 
will not suddenly 

increase because the integrator takes time to 
convert its input into an output. After some 

time, Llt, a voltage V
j 
(1) will exist. This 

voltage is then subtracted from V2 * to 
give a new current equal to (V

2 
* ­

V/1) / R. Again this new current, now 

-'--+-I .!... 
C 

Figure 3.9. 

Now we can add this to our previous dia­
gram to give Figure 3.10. Notice how the output 
voltage Vj on the right side "feeds back" and is 
subtracted from V2 • This creates a voltage differ­
ence, V

2
- V

j
, which in turn causes a current to 

flow across the resistor. This current then flows 

. 
~ + 

LI, 

I 
R 

l .L 
C 

tif )
0 

1--_..... 1{ lower than it was before, gets inte­
grated during another time interval, Llt, 

and creates a higher output voltage 
V/2). Once again, the higher output 

voltage is fed back, where it reduces 
the current to the capacitor even more. The 

process continues until the current is reduced to 
zero. That occurs when Vj = V2• So you can see 
that a sudden change in the input voltage to this 
circuit passes through to the output, but only 
after the passage of time. 

(lI,) t;"if 

+­ II; 

Figure 3.10. 
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If we let the initial charge on the capacitor The block diagram for this last equation can be 
(V j ) .. be zero, use the operator l/D for the drawn as Figure 3.12. 

mit 

integral, and replace RC with 1:, then we can 
reduce the block diagram into that shown in 
Figure 3.11. 

Figure 3.11. 

From this block diagram we can write 

and 1 
~=-e 

'tD 

(In feedback~control terminology, the symbol e 
is used to indicate error between the input and 
output.) 

Combining these two equations to eliminate 
e gives 

1 
~ =-(V; -~)

'tD 

Rearranging gives 

~('fD+l)=V; 

V,= V; 
I 'fD+1 

Figure 3.12. 

As you can now see, the block diagram in 
Figure 3.10 can be reduced to the form shown in 
Figure 3.12. This latter diagram is often called 
the transfer function relating the output Vj to the 
input Vr The transfer function is expressed as 
output divided by input, or 

~ _ 1 
V; 'tD+ 1 

Note that this equation is identical to equation 
3.15b when 1: is substituted for RC and D for 
d( )/ dt in (3 .15b) . You can see that if you can 
draw a block diagram, you can reduce it to the 
desired math model you're looking for. 

Incidentally, the transfer function shown in 
Figure 3.12 is very common. You will encounter 
it many times in engineering systems. It is often 
called a first~order lag because it describes a first~ 

order differential equation and because it causes 
the output to lag the input. We'll discuss the 
importance of this transfer function in more 
detail in the next chapter. 
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Free-body Diagram Method 

You learned in Chapter 2 that symbolic 
(circuit) diagrams can be made for mechanical 
components. The "circuit" diagrams can be ana­
lyzed using the techniques presented in the pre­
vious two sections to arrive at math models for 
mechanical systems. You will now learn another 
powerful method for deriving equations for me­
chanical systems. It has its origins with 
Newton's laws of motion and involves the con­
struction of free-body diagrams. 

The free-body diagram method involves 
drawing a sketch of a mechanical component 
and labeling all of the forces and moments act­
ing on the component. If the body is known to 
be at rest or is not accelerating, the sum of all 
the forces and the sum of all the moments acting 
on the body must equal zero. If the forces and 
moments acting on the body do not sum 
to zero, then the body will undergo trans­
lational and/or angular acceleration. 
Equations describing the motion of the 
body can be obtained by setting the sum 
of the forces equal to the mass of the body 
times the acceleration and the sum of the 

ments) times the acceleration (linear for trans­
lation, angular for rotation). You must be careful 
to show all forces acting on the body, but only 
the forces acting on the body. 

Figure 3.13b shows a correct free-body dia­
gram of the block. The tension in the rope is 
identified as the force F. Note that the hand has 
nothing to do with the free-body diagram and 
that I assumed the tension in the rope acts hori­
zontally to the surface. The force due to earth's 
gravity is shown as Wand is equal to mg, where g 
is the gravitational constant. Since the block is 
not moving downward, there is an unknown 
force N acting at an unknown distance l which 
supports the block in the vertical direction. 
Since we know the block is sliding along the 
surface, we assume there is a resistive force f act­
ing along the sliding surface of the block. 

~AY~
 
(a) 

moments equal to the rotational inertia of 
the body times the angular acceleration. 

Figure 3.13a shows a block with a 
mass m being pulled by a rope along a 
horizontal surface. Constructing a free­
body diagram of the block involves isolat­
ing it in free space and showing all forces 
acting on the block. Next, choose a con­
venient axis so forces and moments can 
be summed and set either to zero, if no 
motion along that reference axis occurs, 
or to the mass (rotational inertia for mo- Figure 3.13. Constructing a free-body diagram. 
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We select a convenient set of axes and de~ 

note the positive direction as shown in Figure 
3.13b. Then we write the equations in the three 
axes shown as follows: 

Sum of forces in y direction equals zero 
(no motion in this axis) 

L~=N-W=O (3.33) 

Sum of forces in x direction equals mass 
times acceleration in x direction 

(3.34) 

Sum of moments about point 0 equals zero 
(no rotational motion of block) 

"'" c a (3.35)£.JMo =N1- W-- F-=O
2 2 

You can see from (3.33) that the unknown 
force N is equal to the weight of the block. This 
information can be substituted into (3.35) and 
that equation solved for the unknown distance l 
as follows: 

c a
W1=W-+F­

2 2 
c Fa

1=-+-­ (3.36)
2 W2 

Equation (3.36) shows that the point of applica~ 

tion of N increases as the force F increases. If l 
increases to the point where it becomes greater 
than c, the block will tip over. 

Now let's examine (3.34) in more detail. 
The frictional force f is still unknown and 

another equation is needed to determine it. One 
possible assumption is that f is related to N. This 
assumption is often made when dry surfaces slide 
against one another. In this case we use a coeffi~ 

cient of friction J.1 and write 

f=JlN (3.37) 

This allows us to determine f since we already 
know N is equal to W. 

Another possible assumption is that the 
surfaces are lubricated causing the force f to be 
proportional to the velocity of the block v. We 
can then write 

(3.38)f=bv 

where b is the constant of proportionality. You 
will immediately recognize (3.38) as the equa­
tion for a damper (dashpot) discussed in Chap­
ter 2. 

Substituting (3.38) into (3.34) and express­
ing ax as dv / dt gives 

dv
F-bv=m­

dt 
mdv 1
--+v=-F (3.39)
b dt b 

Comparing (3.39) with (3.20) shows them 
to be identical to each other when the pre­
ferred electrical/mechanical analog discussed in 
Chapter 2 is used. The damper and the mass are 
therefore in parallel. The through variable F 
divides into two parts. One part overcomes the 
damper force and the other part accelerates the 
mass-you can see this clearly in (3.34). 
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3.3 First-Order Math Models 

Now that you have tools for developing 
math models, let's use them to develop models 
for systems that are comprised of one or more 
energy dissipative elements and one energy stor­
age element. We'll look at electrical systems first 
and then move on to translational and rota­
tional mechanical systems, fluid systems, and 
thermal systems. As you read through this sec­
tion, take the time to prac­
tice developing the math 

Electrical 
Math Models 

Figure 3.14 shows five electrical circuits. 
Prepare the math models that describe the out­
put variable as a function of the input variable 
as indicated by each circuit. Use any method 
you wish, but I strongly suggest that you use: 
(1) the path-vertex-elemental equation method; 
(2)	 the impedance method; or (3) the block 

diagram method. (Or, 
try all three if you feel 

models as I suggest. I have ambitious!) Try not 
found that the more cir­ to look at my solu­

R c
cuits I analyze, the better I tions until you have 
get at analyzing circuits at least attempted to 
and the longer the analysis derive each of the 
techniques stay with me. math models.(a). Prepare math model describing Va 

as a function of i. 

V­
I V:/ L 

(b). Prepare math model describing Va (c). Prepare math model describing Va 
as a function of Vi. as a function of Vi. 

L 

V:I R	 V:/ R 

(d). Prepare math model describing Va 
as a function of Vi. 

Figure 3.14. Develop math models for these electrical systems. 
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(e). Prepare math model describing Va 
as a function of Vi. 
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"1 .... 
/ 

~D 

.!:..D l' /R 

...1..1)
---"----"-·=····14 
R.,.. 1..1) 

or 

or 

z l? I 
~ = 

__If_ \(. = --­ v. ;: II 
ZR t-ZL c R 1'1..'[) I L I

if D .,.. / 

(ffD.,.1~ = v. .. .b.. dVo ..,. II,; .. V,
I R;[T , 

........ . ..... 

(RCD.,.t)~ = RCD/1 
"'cf~' ····iI~ . 

~ RC;:rf'" ~ =RC 71 

or r~~.,. Vo = r ¥#" wher'­ 'r~RCr 

~ Qntl /,f are '7uol 

Vo = t'.z?'... ... i /i!!.J(Ze.) = i IT? .is) - iRC~"'1
~MI" (iR"'~t:.: lR ...a,· 

(RCD"'I)~ =Ri .. Rei: .... v. =R/. 
···or 

ll'"o 

(d). 

(b). 

0: 

111 

(a). 

(C). 

.(e). 

Figure 3.15. Math models for the electrical systems shown in Figure 3.14. 
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J 
vThe method I prefer to use when analyzing 

electrical circuits is the impedance method. F 
mWhile the circuits shown in Figure 3.14 are rela~ 

tively easy to analyze by either of the other two 
methods, those methods become very tedious '\ 
when the circuits are more complex. The math 
models I developed and the ways in which they (a). Prepare math model describing the 
were developed are shown in Figure 3.15. velocity v of the mass as a 

.. 

function of the force F. 
You should note several important common 

features that each of these models possess. 
First, they are all first~order ordinary linear 
differential equations with constant coefficients. 
Second, the left sides of all of the equations are 
identical except for the way the time constant is 
expressed. Finally, only the right, or input, side 
of each equation is different. 

F 

(b). Prepare math model describing the 
velocity v , as a function 

of the velocity v2 • 

Mechanical Math Models 

Figure 3.16 shows four mechanical systems 
to practice with. Prepare the math models that 
describe the output variable as a function of the 
input variable as indicated alongside each sche~ 

matico Use any method you wish, but I strongly 
suggest you use all four of the methods we dis~ 

cussed in this chapter. Once again, try not to 
look at my solutions until you have at least 
attempted to derive each of the math models. 

The method I prefer to use when analyzing 
mechanical systems is the free~body diagram 
method. However, if the systems are very com~ 

plicated, I frequently find myself reverting back 
to the impedance method. The math models I 
developed and the ways in which I developed 
them are shown in Figure 3.17. 

(c). Prepare math model describing the 
velocity v 1 as a function of the 

velocity v2. 

~ It, 

F -J_O~t--0~F 
b 

(d). Prepare math model describing the 
velocity differential v21 as a 

function of the force F. 

Once again, note the common features that 
each of these models possess. They are all first~ 

Figure 3.16. Develop math models for 
these mechanical systems. 
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(a). 
11 

r-~ .I:""
F '" 

I

--- ­
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 ~ 

.rf; t- ~. = F ~.It:.",,~nf:s.ln 

rP.=~df 
V:S £ZeJUiV 

fl.... = bv
 

i" bvrm1#=F 'Ff=~" ;-l

·····fh,dv ......., -12'" b I
 

tr :. F /
b df +V =-F, b mDt:Q 
or 

. (",,12t6)v :=F
·····1;; ~_v,-. ;=zF 7:" =··.·.··"",.b.··.·.···.·····l h? jf .,. DV = F :. j,' F u t!f.. . 

. (b). " 
~ lI.' J(i iii ••• IF :.~. _L .. . F J;:'l=r;::L2

Ern,). ]U f Inl ~. w9ml.~w =:ti".~"-'-...._I: m 
~ Vi.. b 

F =D(V% - v) 

F =I?? dv;
d!­

:.m;i=bli - "'1 
!!2c1v; + v; := v.:
hdF" ' .2 

Figure 3.17. Math models for the mechanical systems shown in Figure 3.16. 
(continued on next page) 
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(c). 
li: 

F II 
.......... "..:.: .. 

Vi 

F 

;~;dr=-k~/+6~71 
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Figure 3.17 (continued), Math models for the mechanical systems shown in Figure 3.16. 

71 



Constructing First-Order Math Models 

order ordinary linear differential equations with Fluid Math Models 
constant coefficients. The left sides are all Figure 3.18 shows three fluid systems for you 
identical except for the way the time constant is to practice with. Prepare the math models that 
expressed. Only the right, or the input, side of describe the output variable as a function of the 
each equation is different. input variable as indicated next to each sche­

matic. Use any method you wish, but again I Now compare these equations with those 
suggest that you use as many of the methods

that were developed for the electrical circuits. If 
described as possible. Once again, try not to 

you use the force-current and velocity-voltage 
look at my solutions until you have at least

analogy, you will see that the equations are 
attempted to derive each of the math models.

essentially identical. 
I really have no preferred 

method for analyzing fluid systems. 
If I get stuck, I revert back to a combi­.. nation of the vertex-path-elemental 

lC equation method and the imped­t: 
ance method. The math models I 

t ... .. developed and the ways in which I 
/ 1? l developed them are shown in Figure 

3.19. Once again, note the common 
(a). Prepare math model describing pressure P, as features that each of these models 

a function of input pressure pz. 
possess. They are all first-order 
ordinary linear differential 
equations with constant coeffi­11 :--- 71-t:1--, ~ =0 
cients. The left sides are all

~v-+Q---------fr----n2... 
identical except for the way the If/ 7?,c 
time constant is expressed. 

(b). Prepare math model describing: (1) q" as a Only the right, or input, side of 
function of Pz; (2) P, as a function of pz. each equation is different. 

Now compare these equa­

~ ~ (~=O tions with those that were 
~V~l-l --r t_ developed for the electrical 

circuits and the mechanicalRF toIi 
systems. If you use the force­

(c). Prepare math model describing: (1) q" as a 
current-flow rate and velocity­function of Pz; (2) P, as a function of pz. 
voltage-pressure analogy, you 
will see that the equations are 

Figure 3.18. Develop math models for these fluid systems. essentially identical. 
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~'ltl/va/~nr 
c/,-a,t/f 
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-
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Figure 3.19. Math models for the fluid systems shown in Figure 3.18. 
(colltillued 011 lIext page) 
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(c). 

{~= 0~ [11 
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Figure 3.19 (continued). Math models for the fluid systems shown in Figure 3.18. 
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Thermal Math Models 

Figure 3.20 shows one thermal system for 
you to practice with. Prepare the math model 
that describes the output variable as a function 
of the input variable as indicated. Use any 
method you wish, but again I suggest that you 
use as many of the methods described as possible. 
Don't look at my solution until you have at least 
attempted to derive the math model. 

I have no preferred method for analyzing 
thermal systems. Should I get stuck, I revert 
back to a combination of the vertex-path­
elemental equation method and the impedance 
method. The math model I developed and the 
way in which I developed it is shown in Figure 
3.21. Note that this is a first-order ordinary 
linear differential equations with constant 
coefficients. 

Compare this equation with those that were 
developed for the electrical circuits, the me­

, ", , 

r; 

~ 

I'"
I'" I'"
I'" ~ 

I'" I'" 
~

~ 
~

~ 
~

~
~ ill', ", 

( 
"-7?t 

Insulated box 

Prepare math model describing the temper­
ature T 1 inside the box as a function of 

temperature T2 outside the box. 

Figure 3.20. Develop math model 
for this thermal system. 

chanical systems, and the fluid system. If you use 
the force-current-flow rate-heat flow rate and 
velocity-voltage-pressure-temperature analogy, you 
will see that the equations are essentially iden­
tical. 

~'l"ivQ/~nl­
ci"C/.A.if 

r;
........................L<I__
 .......~ ..
 

iCt'b,............... YI
 

·
••·

······~'1!:zzl2ZZr7?· . ··mr··
or-

Figure 3.21. Math model for the thermal system shown in Figure 3.20. 
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Chapter 
Analyzing 
First-Order 
Math Models 

,. 

Objectives 
When you have completed this chapter, you will 
be able to: 

•	 Solve first-order ordinary differential 
equations using both numerical and 
exact solution methods. 

•	 Perform frequency analysis of first-order 
engineering systems and plot the fre­
quency responses. 

•	 Find solutions to first-order differential 
equations for step, ramp, pulse and 
arbitrary inputs. 

•	 Perform a power analysis for systems 
responding to a sinusoidal input. 
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4.1 Introduction 
In the previous chapter you discovered that 

systems modeled as a combination of an ideal 
energy storage element and an ideal energy 
dissipative element lead to first~order linear 
ordinary differential equations with constant 
coefficients. You found out that this differential 
equation usually must be "solved" in order to 
obtain the time-varying response of the system 
to a time-varying input forcing function. 

You will discover in this chapter that the 
solution provides a great deal of information 
about the behavior of the real system being 
modeled. You will first learn a simple approxi~ 

mation method of solution that can be used to 
solve any ordinary differential equation. This 
method is extremely powerful and does not 
require a great deal of mathematical skill. It will 
be used to introduce you to the various types of 
input forcing functions commonly encountered 
when modeling engineering systems. 

Once you understand the basic nature of the 
solutions to differential equations, you will then 
learn how to obtain the exact solutions. You will 
discover that exact solutions provide more 
insight into the system being modeled than do 
approximate solutions. However, exact methods 
do involve more mathematical manipulations. 

The first exact solution method you will 
learn involves separating variables so the dif­
ferential equation can be directly integrated. 
Following this you will learn a more methodical 
approach that takes advantage of the fact that 
the differential equation is linear and has 
constant coefficients. You will discover that this 
method is easy and can be used to obtain exact 

solutions to higher-order linear differential 
equations with constant coefficients. 

You will also be introduced in this chapter 
to so-called "frequency response" or "frequency 
domain" solutions and analysis. You will find 
these extremely important methods of analysis 
are nothing more than the solution of the differ­
ential equation to a sinusoidal input function. 

I can't emphasize enough just how important 
first-order linear ordinary differential equations 
with constant coefficients are to engineering 
and science. Probably 80% of all engineering 
systems you will ever encounter can be com­
pletely described by, or contain at least one 
component that can be described by, one of 
these equations. Make friends with them-they 
will serve you well! 

4.2 Response to a Step Input 

In this section, we will investigate the 
behavior of an engineering system that can be 
described by a first-order linear ordinary dif­
ferential equation with constant coefficients in 
response to a sudden change in the input. The 
sudden change of the input variable from one 
level to another is called a step input. The step 
input is an approximation of many real-world 
inputs to engineering systems. For example, 
when we tramp on a car's accelerator or flip on a 
switch that applies voltage to a circuit, we're 
applying a step input. We want to find out how 
the system responds to such an input-that is, 
we want to find the output as a function of time. 
You will first learn how to numerically solve the 
equation subjected to a step input. Then you 
will learn how to find the exact solution. 
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Numerical Solution 
Method 

Let's begin solving first,order math models 
using a model we developed in Chapter 3 that 
described the electrical circuit in Figure 3.4. 
The circuit and math model are repeated in 
Figure 4.1 and equation (4.1). 

Figure 4.1. 

RCd~ +V =v (4.1 ) dt ,0 

New labels for the voltages are used to 
clearly indicate which one is the input voltage, 
Vi, and which is the output voltage Vo' If we had 
the solution to this differential equation, Vo( t) , 
we could use it to determine: (1) how various 
values of Rand C affect the output voltage for a 
given input voltage; and (2) how the output 
voltage varies with different input voltage func, 
tions, given values for Rand C. 

First I'll show you an easy method for solving 
differential equations. It is called the "numerical 
solution" method and it can easily be set up on a 
spreadsheet or by writing a simple BASIC, 

FORTRAN, or C computer program. Take the 

math model as given by equation (4.1) and re, 
write it as 

L1V
RC-O +V =v (4.2)L1 to, 

In this equation, /),.Vo / /),.t is an a~proximation 

for the derivative, dVo / dt. Now solve for /),.Vo 

Equation (4.3) tells us that if we know Vi at 
every point in time and if we know the initial 
value of Vo, then we can use this equation to 
determine the change in the output voltage /),.Vo 
that occurs in the time interval /),.t. We can 
therefore solve equation (4.1) using a time step' 
ping process. That is, we start at time t = 0 
where we know Vo and Vi. Then we take a time 
step /),.t and use equation (4.3) to compute the 
change in the output voltage that occurs during 
this time intervaL We add this change to the 
previous value of Vo to get the new Vo' The 
process is continued until we reach some point 
in time where the variables are no longer chang, 
ing or where we are no longer interested in the 
results. 

The algorithm for numerically solving a 
differential equation is very straightforward. 
One is provided for a first,order differential 
equation in Table 4.1. Notice in this table that 
selecting a value for the time step is arbitrary. 
I've selected a value equal to l/lOth of the 
constant't = RC. We'll investigate this selection 
later but for now keep in mind that the size of 
the time step affects the speed of computing the 
solution and its accuracy. 
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Table 4.1.
 
Algorithm for numerically solving a
 

first-order differential equation.
 

Given: 

(1) Va at t = 0 (that is, the initial condition 
of the dependent variable) 

(2) Vi as a function of time (that is, the 
forcing function at any point in time) 

(3) Values for Rand C 

Step 1 Initialize variables: 
't = RC 
t = 0 
tend = 5't 
~t = 't/10 

Va = (Va)init 

Step 2 Increment time and check if done 
t = t + ~t 

If t = tend then stop. 

Step 3	 Compute ViC t) from the given 
function 

Step 4	 Solve for ~Va 

~v" = [RIC ('I; - v,,) ]~t 

Step 5	 Determine new Va 

Va=Va +~Va 

Step 6	 Go back to Step 2 

Spreadsheets are very useful in solving dif, 
ferential equations numerically, as math models 
can be set up very quickly. An Excel® spread, 
sheet implementing the algorithm given in 
Table 4.1 is shown in Table 4.2. Lines 1 
through 7 accept the given data (R = 1, C = 1, 
(Va)init = 0 and Viet) = 10) and compute the 
time step. Note that I have chosen Rand C so 
their product is equal to unity. That is, the time 
constant of the circuit is equal to 1 second. Line 
9 provides a label for the results showing t, Vi, 
Va and ~Va' Lines 10 through the end imple, 
ment the iterative solution technique. 

The results from this spreadsheet are shown 
in Table 4.3, and Figure 4.2 shows an Excel 
graph of the results. You can see that a constant 
voltage, suddenly applied at t = 0, does not pro' 
duce an instantaneous output. The output volt, 
age builds rapidly at first, having an initial rate 
of increase of 1 volt per 0.1 seconds (10 volts per 
second). Since Va is initially zero, you can see 
that the initial rate is from equation (4.3): 

~;; = [RIC ('I; - v,,) ] =[i(10- 0)] =10 
(4.4) 

The rate slows as the output voltage builds. You 
will recall from the block diagram discussion of 
this circuit given in Section 3.3 that this is due 
to the output voltage feeding back and reducing 
the current flowing into the capacitor. As this 
current is reduced, the charge on the capacitor 
asymptotically builds to the value of the input 
voltage. Note also that in 1 second the output 
voltage is 6.51 volts, or 65.1 % of its final value. 
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Table 4.2. First-order step response Table 4.3. First-order step 
spreadsheet implementation. response results. 

A B C 0 
1 R I 
2 C I 
3 Tau =BI"B2 
4 delt =B3/10 
5 (Vo)init 0 
6 Vi· 10 
7 Tend =5"B3 
8 
9 t Vi Vo delVo 

10 0 =$B$6 =B5 =(1I$B$3"(BIO-CIO»"$8S4 
1 1 =AIO+$B$4 =$B$6 =CIO+OIO =(1I$B$3"(B II-CII»"$BS4 

1 2 =AII+$B$4 =$B$6 =CII +011 =(1I$B$3"(B 12-C12»"$B$4 

1 3 =AI2+$B$4 =$B$6 =CI2+DI2 =(II$B$3"(B 13-C13»"$B$4 

1 4 =AI3+$B$4 =$B$6 =CI3+013 =(II$B$3"(814-CI4»*$B$4 

15 =AI4+$B$4 =$B$6 =CI4+014 =(1I$B$3"(B 15-C15»"$B$4 
1 6 =AI5+SBS4 =$BS6 =CI5+015 =(II$BS3"(BI6-CI6»"SB$4 
1 7 =AI6+SB$4 =$B$6 =CI6+016 =(lI$B$3"(B17-CI7»"SB$4 

1 8 =A17+SB$4 =$B$6 =CI7+017 =(II$B$3"(BI8-CI8»"$B$4 

1 9 =AI8+$B$4 =$B$6 =CI8+018 =(1I$B$3"(819-CI9»"$B$4 

20 =AIQ+$B$4 =$BS6 =CI9+019 =(II$B$3"(820-C20»"$B$4 

21 =A2O+$B$4 =$B$6 =C20+020 =(1I$B$3"(821-C21»"$B$4 

22 =A21+$B$4 =$B$6 =C21+021 =(lI$B$3"(822-C22»"$B$4 

23 =A22+$B$4 =$BS6 =C22+022 =(II$B$3"(B23-C23»"$B$4 

24 =A23+$B$4 =$B$6 =C23+023 =( II$B$3"(B24-C24»"$B$4 

25 =A24+SB$4 =$B$6 =C24+024 =(II$B$3"(B25-C25»"$B$4 
26 =A25+SB$4 =$B$6 =C25+025 =(II$B$3"(B26-C26»"$B$4 
27 =A26+$B$4 =$BS6 =C26+026 =(II$B$3"(B27-C27»"$B$4 

28 =A27+SB$4 =$B$6 =C27+027 =(II$B$3"(B28-C28»"$B$4 

29 =A28+$B$4 =$B$6 =C28+028 =(II$B$3"(B29-C29»"SB$4 

30 =A29+$B$4 =$B$6 =C29+029 =(II$B$3"(830-C30»"SB$4 

31 =A30+$B$4 =$BS6 =C30+030 =(1I$BS3"(B31-C31 »"$B$4 

32 =A31+$B$4 =$B$6 =C31+031 =(II$B$3"(B32-C32»"$B$4 

33 =A32+$B$4 =$B$6 =C32+032 =(II$B$3"(B33-C33»"$B$4 

34 =A33+$B$4 =SB$6 =C33+033 =(II$B$3"(B34-C34»"$B$4 

35 =A34+$B$4 =$B$6 =C34+034 =(1I$B$3"(B35·C35))"$B$4 

36 =A35+$B$4 =$B$6 =C35+035 =(II$B$3"(B36-C36»"$B$4 
37 =A36+$B$4 =$B$6 =C36+036 =(II$B$3"(B37-C37»"SB$4 

38 =A37+SB$4 =$B$6 =C37+037 =(II$BS3"(B38-C38»"$B$4 

39 =A38+$BS4 =$B$6 =C38+038 =(II$B$3"(B39-C39»"$B$4 

40 =A39+$B$4 =$B$6 =C39+039 =(II$B$3"(B40-C40»"$B$4 

41 =A4O+$B$4 =$B$6 =C40+040 =(lI$B$3"(B41-C41))"SB$4 

42 =A4I+$B$4 =$B$6 =C4 1+04 I ;(II$B$3"(842-C42»"$B$4 

43 =A42+$B$4 =$B$6 =C42+042 =(II$B$3"(B43-C43»"$B$4 

44 =A43+$B$4 =$B$6 =C43+043 =(II$B$3"(B44-C44»"$B$4 

45 =A44+$B$4 =$BS6 =C44+044 =(II$BS3"(B45-C45»"$B$4 

46 =A45+$B$4 =$B56 =C45+045 =(II$BS3"(B46-C46»"$B$4 

A B C 0 
1 R I 
2 C I 

3 Tau I 
4 delt 0.1 
5 (Vo)init 0 
6 Vi· 10 
7 Tend 5 
8 

9 t Vi Vo del Vo 

10 0 10 0.00 1.00 

1 1 0.10 10 1.00 0.90 

12 0.20 10 1.90 0.81 

13 0.30 10 2.71 0.73 

14 0.40 10 3.44 0.66 
15 0.50 10 4.10 0.59 
16 0.60 10 4.69 0.53 
17 0.70 10 5.22 0.48 

18 0.80 10 5.70 0.43 

19 0.90 10 6.13 0.39 

20 1.00 10 6.51 0.35 

21 1.10 10 6.86 0.31 

22 1.20 10 7.18 0.28 

23 1.30 10 7.46 0.25 

24 1.40 10 7.71 0.23 

25 1.50 10 7.94 0.21 

26 1.60 10 8.15 0.19 
27 1.70 10 8.33 0.17 

28 1.80 10 8.50 0.15 

29 1.90 10 8.65 0.14 

30 2.00 10 8.78 0.12 

31 2.10 10 8.91 0.11 

32 2.20 10 9.02 0.10 

33 2.30 10 9.11 0.09 

34 2.40 10 9.20 0.08 

35 2.50 10 9.28 0.D7 

36 2.60 10 9.35 0.06 

37 2.70 10 9.42 0.06 
38 2.80 10 9.48 0.05 

39 2.90 10 9.53 0.05 

40 3.00 10 9.58 0.04 

41 3.10 10 9.62 0.04 

42 3.20 10 9.66 0.03 

43 3.30 10 9.69 0.03 

44 3.40 10 9.72 0.03 

45 3.50 10 9.75 0.03 

46 3.60 10 9.77 0.02 

In 2 seconds, it's 8.78 volts or 87.8%, and in 
3 seconds it reaches 9.58 volts, or 95.8% of the 
final value. 

The response of the circuit shown in Figure 

4.2 is called a step response. The input forcing 
function takes a step at time t = 0 from its value 
of 0 at t < 0 to a value of 10 volts. There are 
other types of input forcing functions and we 
will discuss these later. For now, let's keep the 
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input function equal to a step and change its 4.3. Note that the output voltage appears to 
value to 5 volts. The results are shown in Figure have exactly the same shape as it did in Figure 
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Figure 4.2. Numerical solution of equation (4.1) math model 
to a step change in input voltage
 

(Vi = 10, R = 1, C = 1, Tau =RC = 1, deIt =0.1).
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Figure 4.3. Numerical solution of equation (4.1) math model 
to a step change in input voltage 

(Vi = 5, R =1, C = 1, Tau =RC =1, delt =0.1) . 
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4.2. Also note that at the end of 1 second the 65.1 % of the input voltage. This is the same 
output voltage is approximately 3.25 volts, or percentage we found in Figure 4.2. 

Now let's put the 
value of the step input

10 

'\~ ~ ~ 

r-. #'" 
~ 

ri 

IJ.-l \ 
t \ 

Vo 

1 
9 
f 

1 
Ii 

voltage back to 10 volts 
9 

and vary the values of R 
and C. Before we do this, 

7 look at equation (4.4). 
6 When the product of R 

<Il 

"'6 5 and C is small, the ini~> 
4 tial rate of change of the 

output voltage will be 
large. Also, it is the prod~ 

3 

2 

uct of Rand C that af~ 

fects this rate. Thus, if R 
were to decrease to 0.50.5 1.5 2.5 3 3.5 4 4.5 

Time (sees) and C increase to 2, the 
Figure 4.4. Numerical solution of equation (4.1) math model product would remain 

to a step change in input voltage equal to unity. Figures 
(Vi = 10, R =0.5, C = 1, Tau =RC =0.5, delt =0.05). 4.4 and 4.5 show the 

voltage output when 't = 

0.5 and 2.0, respectively. 
10 

~\ 
~ 

\ ~ ~ ~ 
o--'-F 
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J"Y 
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~~ 
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l.-cY \ 
vcr \ Vo 

/ -.I 
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You can see that when 't 
9 is small, the output volt~ 

age reaches the input 
voltage level more rap~ 

idly. Note in both of 
7 

6 

these figures that when 
~ 5 
o the output voltage> 

4 

reaches approximately 
3 

65% of the input, the 
2 time is equal to 'to That's 

because the time con~ 

a stant is a characteristic of 
a 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

first~order linear ordi~ 
Time (sees) 

nary differential equa~Figure 4.5. Numerical solution of equation (4.1) math model 
to a step change in input voltage tions. It controls the 

form of the relationship(Vi = 10, R =2, C = 1, Tau =RC =2, delt =0.2). 
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between the input and the output. When we 
investigate exact solutions of first-order differ­
ential equations you will find the exact values 
given in Table 4.4 hold for the step responses. 

Note that the results we obtained for these 
percentages are not quite equal to the exact 
values listed in Table 4.4. That's because the 
numerical solution is approximate and not 
exact. The accuracy of the solution is deter­
mined to a large extent by the size of the time 
step used in the solution. Table 4.5 and Figure 
4.6 show the results previously shown in Table 
4.3 and Figure 4.2, but with the time step 
changed to 0.05 seconds (r./20). You can see 
from the table of results that the output voltage 
is now equal to 6.42 volts, or 64.2% of the input 
voltage when t = 1.0 seconds. As ~t is made 
smaller, the solution approaches the exact 
value. 

Table 4.4. 

Step response times
 
for first-order
 

linear differential equations.
 

Output as a 
Time percentage 

of input 

1 r. 

2r. 

3r. 

4r. 

5r. 

6r. 

63.2 

86.5 

95.0 

98.2 

99.3 

99.8 
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Table 4.5.
 
First-order step response results
 

(delt =0.05 seconds).
 

A B C 0 
1 R 1 
2 C I 
3 Tau 1 
4 dell 0.05 
5 (Vo)inil 0 
6 Vi" 10 
7 Tend 5 
8 
9 t Vi Vo delVo 

1 0 0 10 0.00 0.50 
1 1 0.05 10 0.50 0.48 
1 2 0.10 10 0.98 0.45 
13 0.15 10 1.43 0.43 
14 0.20 10 1.85 0.41 
1 5 0.25 10 2.26 0.39 
16 0.30 10 2.65 0.37 
1 7 0.35 10 3.02 0.35 
1 8 0.40 10 3.37 0.33 
19 0.45 10 3.70 0.32 
20 0.50 10 4.01 0.30 
21 0.55 10 4.31 0.28 

22 0.60 10 4.60 0.27 

23 0.65 10 4.87 0.26 

24 0.70 10 5.12 0.24 

25 0.75 10 5.37 0.23 
26 0.80 10 5.60 0.22 
27 0.85 10 5.82 0.21 
28 0.90 10 6.03 0.20 
29 0.95 10 6.23 0.19 
30 1.00 10 6.42 0.18 

31 1.05 10 6.59 0.17 

32 1.10 10 6.76 0.16 

33 1.15 10 6.93 0.15 

34 1.20 10 7.08 0.15 

35 1.25 10 7.23 0.14 
36 1.30 10 7.36 0.13 
37 1.35 10 7.50 0.13 
38 1.40 10 7.62 0.12 
39 1.45 10 7.74 0.11 

40 1.50 10 7.85 0.11 
41 1.55 10 7.96 0.10 

42 1.60 10 8.06 0.10 

43 1.65 10 8.16 0.09 

44 1.70 10 8.25 0.09 
45 1.75 10 8.34 0.08 

46 1.80 10 8.42 0.08 
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Figure 4.6. Numerical solution of equation (4.1) math model
 
to a step change in input voltage
 

(Vi = 10, R = 1, C = 1, Tau =RC = 1, delt =0.05).
 

Exact Solution Method lowing nondimensional version of the equation 

You've seen how easy it is to solve differen­
tial equations approximately. Now I want to d( v" J 
show you how to obtain the exact solution. (4.6)'t ~s +(V,'J=l

dt ~s 
First write the math model given in equa­

tion (4.1) in the form 
I hope this doesn't confuse you. All I have done 
is divide the output voltage by the constant

dV
O't_ +V =v (4.5) input voltage. Since both have units of volts,dt ° IS 

(Va / Vis) has units of volts/volt, which is dimen­
sionless. 

where Vis equals the value of the step input 
Note that the new dependent variable isfunction as shown in Figure 4.7. 

now (Va / Vis) instead of just Va' This will make 
Since Vis is a constant, we can divide both the solution of the equation easier. Also note 

sides of equation (4.5) by Vis and obtain the fol- that the step input is now a unit step input, 
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ViS 1------------------------­

Time 

Figure 4.7. The step input function. 

which is commonly used in linear system analy­ Now divide both sides by 1-V and multiply 

sis. Let (Va / Vis) = V and rewrite (4.6) as both sides by dt/'t 

dV
't-+V=l (4.7) dV =!dt (4.9)dt 1- V T 

This is identical to (4.5) except the output vari­
The variables have been successfully separated 

able is dimensionless and the input is now a unit 
since only terms containing V are on the left 

step function. 
side and only terms containing t are on the right 

It is possible to solve equation (4.7) by direct side. You can now integrate both sides of the 

integration. The method of solution is called equation 

separation of variables. You arrange the equation 
so all variables involving V are on one side of I

v---- dt (4.10)
dV lIt

01-V TOthe equation and all involving t are on the 
other. First write (4.7) as 

The integral on the right side of the equation is 
dV easy to solve, but you may have to look up the'f-=l-V (4.8)
dt one on the left side in a table of integrals. The 

86 



· '.­

Response to II Step Input 

result is 

1
-In(l- V) =-t 

't 

or 

In(l- V) =--
t 

(4.11)
't 

Now take the antilog of both sides of (4.11) 

I-V =e-t
/ 

T 

V = l_e-t/ T (4.12) 

Equation (4.12) is the exact solution of 
equation (4.7). We can get it back to dimen, 
sional values if necessary simply by substituting 
(Va / Vis) for V. That is 

V = v., =1- e-t/T 

V:s 
or 

(4.13) 

This is the exact solution of equation (4.5). 

One of the great advantages of an exact 
solution is that it provides you with more insight 
into the behavior of the system than the nu, 
merical solution. For example, both equations 
(4.12) and (4.13) make it very clear that the 
output voltage is a function only of (t / 't). Since 

't has units of time, (t / 't) has units of seconds/ 
second-that is, dimensionless time. Equation 
(4.12) is a completely general solution that is 
valid for all values of 't. Equation (4.13) makes it 
clear that the output voltage is directly propor, 
tional to the input voltage. ,This is a distinguishing 
characteristic of all linear differential equations and 
is why they are called linear. That is, the output is 
directly proportional to the input. 

Another great advantage an exact solution 
has over a numerical solution is you can 
precisely calculate the response of the system for 
any value of a step input voltage at any point in 
time. Figure 4.8 shows a plot of equation (4.12) 
and Figure 4.9 shows a plot of equation (4.13) 
with't == 1 and Vis == 10 volts. Figure 4.8 shows it 
all very concisely. Regardless of the values 
selected for 't and Vis, this graph shows the 
solution. (This is another advantage of non, 
dimensionalizing, as we did in equation (4.6).) 
Figure 4.9, on the other hand, shows a particular 
solution for 't == 1 second and Vis == 10 volts. 

Let's go back now and determine how 
accurate our numerical solution was as a 
function of the size of the time step. You will 
recall that we solved the equation with time 
steps equal to 't / 10 and 't /20. Table 4.6 shows 
the exact solution versus the numerical solution 
using time steps equal to 't / 5, 't / 10, and 't /20. 
You can see that acceptable accuracy is 
achieved using a time step equal to 1/l0th of the 
time constant. 

You might be wondering at this time why we 
bother with numerical solutions if exact solu' 
tions to our math models can be obtained. The 
answer is, if you can obtain an exact solution, do 
so. It is always easier and more insightful to work 
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with exact solutions. Unfortunately, it's not solve the equations numerically. Furthermore, 
always as easy as you saw here to find exact solu­ numerically solving equations also works for 
tions to differential equations. Sometimes it arbitrary input functions and nonlinear differ­
takes more time to find a solution than it does to ential equations. It is very difficult, and some­

times impossible, to 
find exact solutions 
to nonlinear differ­
ential equations. Of 
course you will have 
to experiment with 
the size of the time 
step when solving 
nonlinear differen­
tial equations to 
make sure your sol­
ution is sufficiently 
accurate for your 

o 2 5 6 purposes. That is 
(t / Tau) the major drawback 

Figure 4.8. Exact dimensionless solution of equation (4.1) math with using numerical 
model to a dimensionless step change in input voltage. methods. However, 

there are numerical 
methods that can 
automatically adjust 
the time step and 
there are better 
methods of numeri­
cally solving differ­
ential equations than 
the one I presented 
above. Two good ref­
erences on this sub­
ject are provided at 
the end of this chap­
ter. 

'I -----­ -(VIMs) 

/ 
P 

/ 
Eqn. (4.12)'­V l VolVis =1 -exp(-t/Tau) 

/ 
/~ (VolVl)l

/
/

7 
17 

0.20 

0.00 

0.10 

0.30 

0.90 
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0.80 

1.00 

.'!l0 0.50 

> 
0.40 

-~ 0.60 

10,0
 

9,0
 ~ Vis v~ / ----J-­

8.0 

/
7.0 

'I VO =Vis[1 - exp(t)] Eqn. (4.13) • V 
6.0 

f.l!l 5.00 
> /" I\. Vo4.0 

/
3.0 

/
2.0 

/1,0 

1/
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o 2 3 4 5 6 

Time (sees) Take some time 

Figure 4.9. Exact solution of equation (4.1) math model to a step 
change in input voltage (Vi = 10 volts, Tau = 1 sec). 

now and study Figure 
4.10. Learn to recog­
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Table 4.6.
 

Accuracy of numerical solution of a differential equation.
 

Time 
Output Voltage (volts) 

~t ='t/S ~t='t/10 ~t ='t/20 Exact 

0.0't 0.00 0.00 0.00 0.00 

0.2't 2.00 1.90 1.85 1.81 

OA't 3.60 3.44 3.37 3.30 

0.6t 4.88 4.69 4.60 4.51 

0.8't 5.90 5.70 5.60 5.51 

1.0't 6.72 6.51 6.42 6.32 

1.2't 7.38 7.18 7.08 6.99 

1.4't 7.90 7.71 7.62 7.53 

1.6't 8.32 8.15 8.06 7.98 

1.8't 8.66 8.50 8042 8.35 

2.0't 8.93 8.78 8.71 8.65 

2.2't 9.14 9.02 8.95 8.89 

2.4't 9.31 9.20 9.15 9.09 

2.6't 9045 9.35 9.31 9.26 

2.8't 9.56 9.48 9.43 9.39 

3.0't 9.65 9.58 9.54 9.50 

Figure 4.10. 

nize first-order differential equations and visual­
ize their symbolic representations and solutions 
to a step response. Remember that this impor­

tant class of equations represents about 80% of 
the dynamics you will encounter in engineering 
system design and analysis. 
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4.3 Response to a Sinusoidal Input 
You will now learn about so~called frequency 

analysis and frequency response of engineering 
systems. This basically means investigating the 
response of the system to sinusoidal inputs of 
different frequencies. This is an extremely 
important method of analysis, as poor frequency 
response can be a drawback in many types of 
engineering systems. For example, a telephone 
that attenuates high frequencies too much does 
not deliver intelligible speech. In an instrumen~ 

tation system, if the sensor and amplifier don't 
have a good frequency response, false measure~ 

ments may result. Frequency analysis is actually 
very easy to understand, but for some reason is 
often misunderstood. 

We just investigated the response of our 
system to a step input. That is, in equation (4.1) 
we let V,( t) equal a constant V, at t = O. The 

l	 IS 

system equation and its step response were 
found approximately and exactly. 

Now you will investigate the response of the 
same system to a sinusoidal input. That is, the 
input to equation (4.1) will be of the form 

v: = V:s sin(2nft) (4.14) 

This is a sinusoid with a maximum amplitude 
of Vis and a frequency of f cycles per second 
(hertz or Hz). Often you will see equation (4.14) 
expressed in terms of circular frequency, denoted 
by the symbol roo That is, 

v: = V:s sin((Ot) (4.15) 

where	 ro = 2nf. 

90 

You will also sometimes see sinusoids expressed 
in terms of their period, denoted by the symbol 
T. That is, 

v 
I 
= V 

IS 
sin(2n~) (4.16)T 

where	 T = 11f = 2n/ro. 

Any of these forms are fine to use and Figure 
4.11 shows all of these relationships. 

Numerical Solution Method 

We will first obtain the response of the 
system to the sinusoidal input by numerically 
integrating the differential equation. Solve the 
following equation 

~V . 
1-°+ V = V SIll 2nl't (4.17)

~t () IS :J I 

where	 Vis =10 volts, (Va) init = 0, 't = 1 second, 
andf = 1 Hz, 

and use	 M = 't/20. 

I obtained the results shown in Figure 4.12 
using the Excel spreadsheet given in Table 4.7. 
There are several important things to note in 
this figure. The response Va appears to have a 
frequency identical to the input, but it is shifted 
in time so it lags behind the input voltage Vi' 
The maximum amplitude of the output is also 
less than the maximum amplitude of the input. 
Notice also that there is an initial start~up tran~ 

sient, during which the output voltage tries to 
catch up with the input voltage but never quite 
makes it. After a while, this transient appears to 
die away. 



Response to a Sinusoidal Input 
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Figure 4.11. Various ways to express a sinusoid. 
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Figure 4.12. Numerical solution of equation (4.1) math model to 
a sinusoidal input voltage (f =0.1, Tau = 1, delt =0.05). 
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Table 4.7.
 

First-order sin response spreadsheet implementation.
 

A B C 0 
1 R 1 

2 C 1 

3 Tau =Bl*B2 

4 del t =B3(20 

5 (Vo)init 0 

6 Vi* 10 
7 f O.S 
8 Tend =S*B3 
9 

10 t Vi Yo del Yo 

11 0 =$B$6*SIN(2*PIO*$B$7*Al1) =BS =(I/$B$3*(BII-CII»*$B$4 

1 2 =A11+$B$4 =$B$6*SIN(2*PIO*$B$7*A12) =Cll+DlI =(I/$B$3*(B 12-CI2»*$B$4 

1 3 =AI2+$B$4 =$B$6*SIN(2*PIO*$B$7*AI3) =C12+DI2 =(I/$B$3*(B 13-C13»*$B$4 

1 4 =A13+$B$4 =$B$6*SIN(2*PIO*$B$7*AI4) =C13+D13 =(1/$B$3*(BI4-CI4»*$B$4 

1 5 =AI4+$B$4 =$B$6*SIN(2*PIO*$B$7*A1S) =CI4+DI4 =(I/$B$3*(B IS-C IS»*$B$4 

1 6 =A1S+$B$4 =$B$6*SIN(2*PIO*$B$7*AI6) =C1S+D1S =(1/$B$3*(B 16-CI6»*$B$4 

17 =AI6+$B$4 =$B$6*SIN(2*PIO*$B$7*A17) =Cl6+DI6 =(1/$B$3*(B 17-C 17»*$B$4 

1 8 =AI7+$B$4 =$B$6*SIN(2*PIO*$BS7*AI8) =C17+Dl7 =(1/$B$3*(BI8-CI8»*$B$4 

1 9 =AI8+$B$4 =$B$6*SIN(2*PIO*$B$7*A19) =CI8+D18 =(1/$B$3*(B 19·CI9»*$B$4 

20 =A19+$B$4 =$B$6*SIN(2*PIO*SB$7*A2Q) =CI9+Dl9 =( I/$B$3*(B20-C20))*$B$4 

21 =A2O+$B$4 =SB$6*SIN(2*PIO*$BS7*A21) =C20+D20 =(I/$B$3*(B21-C2l)*$B$4 

22 =A21+$B$4 =$B$6*SIN(2*PIO*$B$7*A22) =C21+D21 =(1/$B$3*(B22-C22»*$B$4 

23 =A22+$B$4 =$B$6*SIN(2*PIO*$B$7*A23) =C22+D22 =(1/$B$3*(B23-C23»*$B$4 

24 =A23+$B$4 =$B$6*SIN(2*PIO*$B$7*A24) =C23+D23 =(1/$B$3*(B24-C24»*$B$4 

25 =A24+$B$4 =$B$6*SIN(2*PIO*$B$7*A25) =C24+D24 =( I/$B$3*(B25-C25»*$B$4 

26 =A25+$B$4 =$B$6*SIN(2*PIO*$B$7*A26) =C2S+D25 =(I/$B$3*(B26-C26»*$B$4 

27 =A26+$B$4 =$B$6*SIN(2*PIO*$B$7*A27) =C26+D26 =(1/$B$3*(B27-C27»*$B$4 

28 =A27+$B$4 =$B$6*SIN(2*PIO*$B$7*A28) =C27+D27 =(I/$B$3*(B28-C28»*SB$4 

29 =A28+$B$4 =$B$6*SIN(2*PIO*$B$7*A29) =C28+D28 =(I/$B$3*(B29-C29»*$B$4 

30 =A29+$B$4 =$B$6*SIN(2*PIO*$B$7*A30) =C29+D29 =(1/$B$3*(B30-C30»*$B$4 

31 =A30+SB$4 =$B$6*SIN(2*PIO*$B$7*A31) =C30+D30 =(1/$B$3*(B31-C31»*$B$4 

32 =A31+$B$4 =$B$6*SIN(2*PIO*$B$7*A32) =C31+D31 =(I/$B$3*(B32·C32»*$B$4 

33 =A32+$B$4 =$B$6*SIN(2*PIO*$B$7*A33) =C32+D32 =(1/$B$3~B33-C33»*$B$4 
34 =A33+$B$4 =$B$6*SIN(2*PIO*$B$7*A34) =C33+D33 =(1/$B$3*(B34-C34»*$B$4 

35 =A34+$B$4 =$B$6*SIN(2*PIO*$B$7*A35) =C34+D34 =(I/$B$3*(B35-C35»*$B$4 

36 =A35+$B$4 =$B$6*SIN(2*PIO*$B$7*A36) =C35+D35 =(I/$B$3*(B36-C36»*$B$4 

37 =A36+$B$4 =$B$6*SIN(2*PIO*$B$7*A37) =C36+D36 =( I/$B$3*(B37-C37»*$B$4 

38 =A37+$B$4 =$B$6*SIN(2*PIO*$B$7*A38) =C37+D37 =(I/$B$3*(B38-C38»*$B$4 

39 =A38+$B$4 =$B$6*SIN(2*PIO*$B$7*A39'l =C38+D38 =(1/$B$3*(B39-C39»*$B$4 

40 =A39+$B$4 =$B$6*SIN(2*PIO*$BS7*A40) =C39+D39 =(I/$B$3*(B40-C40»*$B$4 

41 =A40+SB$4 =$B$6*SIN(2*PIO*$B$7*A41) =C40+D40 =(1/$B$3*(B41-C41»*$B$4 

42 =A41+$B$4 =$B$6*SIN(2*PIO*$B$7*A42) =C41+D41 =(I/$B$3*(B42-C42»*$B$4 

43 =A42+SB$4 =$B$6*SIN(2*PIO*$B$7*A43) =C42+D42 =(I/$B$3*(B43-C43»*$B$4 

44 =A43+$B$4 =$B$6*SIN(2*PIO*$B$7*A44) =C43+D43 ,,;{1/$B$3*(B44-C44»*$B$4 

45 =A44+$B$4 =$B$6*SIN(2*PIO*$BS7*A45) =C44+D44 =(1/$B$3*(B45-C4S»*$B$4 
46 =A45+$B$4 =$B$6*SIN(2*PI()*$B$7*A46) =C45+D45 =(1/$B$3*ffi46-C46»*$B$4 
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I repeated the numerical solution using the shown in Figures 4.13 through 4.15. You can see 
same input amplitude, initial condition, and that the amplitude of the output signal decreased 
time constant, while increasing the frequency each time the frequency was increased and the in­
of the input to 0.5, 1, and 2 Hz. The results are put signal lagged further behind the input signal. 
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Figure 4.13. Numerical solution of equation (4.1) math model 
to a sinusoidal input voltage (f =0.5, Tau = 1, delt =0.05). 
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Figure 4.14. Numerical solution of equation (4.1) math model 
to a sinusoidal input voltage (f = 1, Tau = 1, delt =0.05). 
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Figure 4.15. Numerical solution of equation (4.1) math model 
to a sinusoidal input voltage (f = 2, Tau = 1, delt = 0.05). 

You can compute a so-called signal attenu­ plot this against the corresponding frequency. 
ation factor by dividing the maximum amplitude The amount the output signal leads or lags the 
of the output signal by the maximum amplitude input signal is generally shown in degrees and is 
of the input signal. It is given the symbol A • If called the phase angle. One complete cycle of ar
these attenuation factors are then plotted sinusoid is 360 degrees, so a lead is shown as 0 to 
against the corresponding value of the input fre­ + 180 degrees and a lag as 0 to -180 degrees. In 
quency, a graph similar to that shown in Figure our system the output signal is lagging behind 
4.16 results. You can see that this system passes the input signal. This is called phase lag, and we 
low-frequency input signals without too much can compute the angle by measuring the num­
attenuation, but it definitely attenuates the ber of seconds the output signal lags behind the 
high-frequency signals. This system is often input, dividing this by the number of seconds 
called a first-order low-pass filter. Manyengineer­ for half of a cycle and multiplying by 180 de­
ing systems other than electrical circuits have grees. Figure 4.17 shows the approximate results 
exactly the same type of frequency response for this system. 
characteristic shown in this figure. You can see 

The plots shown in Figure 4.16 and 4.17 are
this characteristic in a ship responding to waves, 

called the frequency response of the system. In
for example. Very high-frequency waves cause 

several engineering fields Figure 4.16 is called
very little ship motion, but long-period (low­

the response amplitude operator (or RAO for
frequency) waves can cause a lot of motion. 

short) and Figure 4.17 is called the phase angle 
You can also compute the amount the output plot. Regardless of their name, they show in a 

signal leads or lags behind the input signal and summary form: (1) the ratio of the output and 
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input signals as a function of frequency or period of frequency or period of the input signal. Many 
of the input signal; and (2) the phase shift be­ times you will see these plots shown using log 
tween the output and input signals as a function scales. (I'll explain why in the next section.) 

1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 
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Figure 4.16. Estimated ratio of output and input voltages for 
equation (4.1) math model (Tau = 1). 
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Figure 4.1 7. Estimated phase angle between output and input 
voltages for equation (4.1) math model (Tau = 1). 
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Exact Solution 
Method 

I'll now explain how to determine the exact 
solution to a differential equation with a sinu­
soidal input. Before I do this, however, I'm going 
to digress in order to show you a more general 
way to solve differential equations. Study this 
method carefully, as we will be using it for the 
remainder of this book. 

A characteristic of a linear ordinary differ­
ential equation of any order is its adherence to 
the superposition principle. That means if G j (t) 
and Gi t) are the outputs of a linear system in 
response to inputs F/t) and F (t), respectively,2

then an output corresponding to a linear com­
bination of inputs such as Cl/ t) + cli t) 
[C

j 
and C

2 
are constants] is the linear combina­

tion CjGj(t) + C G (t). This is really what is2 2

meant when the adjective linear is used to 
describe a first-order linear ordinary differential 
equation with constant coefficients. The super­
position principle of linear systems is extremely 
important. 

The solution of any linear differential 
equation is made up of two additive parts. 
One part is called the homogeneous solution and 
the other the particular solution. When the dif­
ferential equation is arranged in its proper form 
with the response or output variable and its 
derivatives on the left side of the equal sign and 
the input variable and its derivatives on the 
right side, then the homogeneous solution is asso­
ciated with the left side of the equation and the 
particular solution with the right. The left side 
of a differential equation is often called the char­
acteristic equation and the right side the forcing 
function. 

The homogeneous solution is found by setting 
the characteristic equation to zero. That is, we 
solve the differential equation as if there were 
no input. This may at first seem odd but, as you 
will soon discover, it's easy to find this solution 
and the solution is a fundamental characteristic 
of the differential equation and the system it 
represents. 

For example, in our system presently under 
study, the characteristic equation is 

d~'t-+ V 
dt 0 

We set this to zero in order to obtain the homo­
geneous solution. That is 

dVo't_ +V =0 (4.18)
dt 0 

The homogeneous solution always has at least 
one solution of the form 

V = Aert (4.19)
o 

where A and r are unknown values. We can 
differentiate this solution once to get dV / dt.a 
Then we can substitute the assumed solution for 
Va into (4.18) giving 

(4.20) 

Dividing both sides by AeTt results in 

'tr + 1= 0 (4.21) 
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This equation must hold for all time if (4.19) is dB 
't-+B= V,'o (4.25)to be a solution to (4.18) for all time. That is, dt .. 

(4.21) requires that 

1 
r=-- (4.22) 

't 

and gives the homogeneous solution as 

= AVoH e -t/~ (4.23 ) 

The constant A is still unknown and must be 
determined from the initial conditions after the 
particular solution is found, but (4.23) is a solu­
tion of (4.18). 

Several methods are available for finding the 
particular solution to linear ordinary differential 
equations with constant coefficients. We'll use 
the so-called method of undetermined coefficients. 
This method involves finding a function that is 
similar in appearance to the input or forcing 
function, but which contains undetermined 
coefficients. The undetermined coefficients are 
found by substituting the function into the dif­
ferential equation and determining the coeffi­
cients which allow both sides of the differential 
equation to remain equal for all time. 

For example, in the case of a step input 
function we can use an undetermined coeffi­
cient that is a constant B. That is, 

VoP =B (4.24 ) 

Then we substitute this particular solution into 
our system math model and get 

Since the derivative of a constant is zero, dB / dt 
is zero and we are left with 

B=V
IS 

which holds for all time. Thus, the particular 
solution is 

(4.26) 

The complete solution is obtained by 
adding the homogeneous and particular so.. 
lutions. That is, 

or 

V -A -t/~ V (4.27)() - e + is 

We can now determine the value for the 
coefficient A using the initial condition 

v: =0 aU =0 (4.28) 

Substituting (4.28) into (4.27) gives 

o= Ae-o/~ + V = A + V 
tS IS 

or 
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The final solution then is equal to 

V -v. - V -tit 
o - is is e 

or 

v" = Vis (1 - e-tit) (4.29) 

which is the same as we obtained previously 
using the method of separation of variables. 

The method of undetermined coefficients 
for finding a particular solution can be gener­
alized as follows. The forcing function F( t) will 
always have the general form 

F(t) =eat cosbt(Pmtm + Pm_ltm-1 + ... + Po) 

+eatsinbt(qmtm +qm_lm-l +'''+qo) 

where some of the constants a, b, Po' Pm' ... qo' 
qm' ... qo may be zero. Then a particular solution 
to the differential equation of form similar to 
that of F( t) is 

y/t) = eat cosbt(kmtm+ km_1tm-1+ + ko) 

I+eat sinbt(lmtm +lm_ltm- + +lo) 

The coefficients km, km_1, ... ko' lm' lm_l' ... lo are 
determined by substituting Yp(t) into the dif­
ferential equation and choosing the coefficients 
so the equation remains equal on both sides for 
all time. 

For example, let's find the particular solu­
tion for the forcing function 

V; = V;s sin 21tft 

We will use as the general solution 

v"p = kocos 21tft + lo sin 21tft (4.30) 

where ko and lo must be determined. Substi­
tuting (4.30) into our system math model 

't dv" + v" = V;s sin 27tft 
dt 

gives
 

't!£(kocos 21tft + lo sin 21tft)

dt 

+(kocos 21tf + lo sin 27tft) 

= V sin 27tH 
IS :J. 

Carrying out the differentiation and collecting 
like terms gives 

(r21rjko+ lo) cos 21rjt + (ko - r21rjlo) sin 21rjt 

= V. sin 2 "Ntu ~"J' 

(4.31) 

We determine the coefficients ko and lo so 
(4.31) is satisfied for all time. For this to happen, 
the coefficient for the cosine term must be zero 
and the coefficient for the sine term must equal 
Vis' That means the following must be true for 
all time 

(4.32) 
and 

(4.33) 

Equations (4.32) and (4.33) are two equations 
in two unknowns, ko and lo' The simultaneous 
solution of these algebraic equations gives 

98 



Response to a Sinusoidal Input 

k = V:s 
o 1+ ('t21tf)2 

't21tfV;s
Io = 

1+ ('t21tf)2 

Substituting these constants into (4.30) gives 
the particular solution as 

v;
V = IS sin 21tft 

oP 1+ ('t21tf)2 

't21tjV; __-"----":!.-s~ cos 21tft (4.34) 
1+ ('t21tf)2 

Now add the homogeneous solution given 
by equation (4.23) and the particular solution 
given by equation (4.34) to get the complete 
solution 

't21tjV;
--"----"'s'----"...eos21tft (4.35) 
1+ ('t21tff 

Obtain A using the initial condition (V = 0 at o 
t = 0). That is, 

V = 0 = A - 't21tfV;s 2 

o 1+ ('t21tf) 

or 

The exact solution then is 

v" _ 't21tf e-,/~ 

V:s 1+ ('t21tf)2 
'-v-----' 

transient 

1. 
+ ( )2 sm21tft ­

1+ 't21tf 

't21tf 
2eos21tft 

1+ ('t21tf) 
, J 

V 

nontransient 

(4.36) 

Note the first term in this exact solution is 
the transient part noticed when we solved the 
equation numerically. After around t = 3't sec­
onds, this part of the solution approaches zero 
because of the exponential term. We are then 
left with the nontransient part of the solution 
which lasts for all time. 

The nontransient part of the solution can also 
be placed in the following simpler form 

v" = Csin(2Jift + <p) (4.37) 
V:s 

where C is the amplitude attenuation factor 
and q> is the phase lag. 

To do this, all we need are a few trigonometric 
identities and algebra. 

Recall the trigonometric identity 

Csin(<p + 8) = Ceos<psin 8 + Csin <peos 8 
(4.38) 

Compare (4.38) with the nontransient part of 
(4.36). You can see they are identical if we let 
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e= 21tjt (4.39) 

1 
Ccos<p = ( )2 (4.40)

1+ r21if 

(4.41)Csin<p = 

The angle q> is the phase lag angle. We can 
obtain an equation for it by dividing (4.41) by 
(4.40). That is, 

_C_si_n<p~ = tan<p = -( r21if) 
Ccos<p 

or 

(4.42) 

You can obtain C using another trigonometric 
identity 

(4.43) 

Substituting (4.40) and (4.41) into (4.43) and 
solving for C gives 

(4.44 ) 

Now we rewrite (4.37) using (4.42) and (4.44) 

v; = ~ v" 2sin[21t{t + tan-I(-t21tf)] 
1+ ('t21tf) 

(4.45) 

Equation (4.45) is the exact solution to our 
system math model given in (4.1) for a sinusoid~ 

al input whose maximum amplitude is Vis and 
whose frequency is f, after the initial transient 
has died out. The equation shows that the maxi~ 

mum amplitude of the output voltage is depen~ 

dent on the frequency, as well as the amplitude, 
of the input signal. The equation also shows that 
the phase lag between the input and output sig~ 

nals is dependent on the frequency of the input 
signaL Also note that the time constant, 't, plays 
a key role in determining the frequency re~ 

sponse. The time constant appears in t1;le equa~ 

tion as a multiplier of frequency. This makes it 
behave as a scaling factor for the frequency. 

We can use (4.45) to calculate the ratio of 
the maximum output amplitude to the maxi~ 

mum input amplitude, as well as the phase shift 
between the two signals, as a function of fre~ 

quency. Table 4.8 shows the results. The fre~ 

quency is listed in terms of the time constan,t 
and is increased each entry by a multiple of 10 
(an order of magnitude increase) so that a broad 
range of frequencies is covered. If t = 1 second as 
we have been using, the frequency range in the 
table goes from 0.0000159 Hz to 159,000 Hz. 
For some unknown reason it is still customary, 
particularly when presenting frequency response 
data of electrical components, to show the 
amplitude ratio using an acoustics unit called 
decibels. A decibel, abbreviated dB, is simply 
20 times the base 10 log of the amplitude ratio; 
that is, 

dB =20 log ( ~o J 
"is 

If you have a gut feel for decibels, then use 
them. Otherwise, just use the base 10 log of the 
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