

THE B O O K

of

Alexander Charalabidis

It
No Starch Press
San Francisco

THE BOOK OF IRC. Copyright ©2000 By Alexander Charalabidis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10—02 01 00

Trademarks

Trademarked names are used throughout this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Project Editor: Karol Jurado

Technical Reviewer: M.D. Yesowitch

Cover and Interior Design: Derek Yee Design

Copyeditor: Gail Nelson

Composition: Derek Yee Design

Proofreader: John Carroll

Indexer: Nancy Humphreys

Distributed to the book trade in the United States and Canada by Publishers Group West, 1700 Fourth Street,

Berkeley, California 94710, phone: 800-788-3123, fax: 510-528-3444.

For information on translations or book distributors outside the United States, please contact No Starch Press

directly:

No Starch Press

555 De Haro Street, Suite 250, San Francisco, CA 94107-2365

phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been

taken in the preparation of this work, neither the author nor No Starch Press shall have any liability to any person

or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the informa-

tion contained in it.

Library of Congress Cataloging-in-Pubtication Data

Charalabidis, Alexander.

The book of IRC / Alexander Charalabidis.

p. cm.

Includes index.

ISBN 1-886411-29-8

1. Internet Relay Chat. I. Title.

TK5105.886.C48 1999

005.7'l376-dc21 99-10403

ir

BRIEF CONTENTS

Chapter 0
Instructions for Internet Dummies

1

Chapter 1
IRC? What's That?

11

Chapter 2
Your IRC Survival Kit

19

Chapter 3
Windows IRC Clients

33

Chapter 4
Unix Clients

41

Chapter 5
IRCing on the Macintosh

55

Chapter 6
Connecting to a Server

73

Chapter 7
Channels

99

Chapter 8
Communication

125

Chapter 9
Finding People on IRC

147

Chapter 10
Creating and Managing a Channel

157

Chapter 11
Enhancing a Client with Scripts

187

Chapter 12
IRC Operators

201

Chapter 13
CTCP

207

J

Chapter 14
DCC

217

Chapter 15
Server and Network Commands

227

Chapter 16
Odds and Ends

239

Chapter 17
Abuse and Security Issues

253

Chapter 18
Installing, Running, and

Operating an IRC Server

265

Chapter 19
IRC Robots

289

Chapter 20
The Soapbox and More

295

Appendix A
Network and Server Lists

307

Appendix B
Terminology

313

Appendix C
Countries on IRC and Domain

Decoder

321

Appendix D
Useful Addresses

327

Appendix E
Server Numerics

331

Appendix F
Sample Server Configurations

339

CONTENTS IN DETAIL

INSTRUCTIONS FOR INTERNET DUMMIES

0.1 Help! Where's the On Button? 2
0.2 Equipment 2
0.3 Computing and the Internet for Beginners 5
0.4 Internet Service Providers 6
0.4.1 Connecting to the Internet via a PPP Dial-Up 7
0.4.2 Connecting to the Internet via Dial-In 7
0.5 Starting Out on the Internet and Using Basic Services 8
0.5. / Using the World Wide Web 8
0.5.2 Using FTP 9
0.5.3 Using Telnet 9

1

IRC? WHAT'S THAT?

1.1 S o . . . What's It All About? 12
1.2 Origin and History of IRC 13
1.3 Technical Concept 15
1.4 What IRC Has to Offer 16
1.5 IRC for Company Use 17

2
YOUR IRC SURVIVAL KIT

2.1 Saints and Sinners 19
2.2 Safety First 20
2.2.1 Trojan Horses 20
2.2.2 Nukes 22

2.2.3 Insert Card to Continue 22
2.3 The Virtual Tourist's Guide to IRC Networks 23
2.3. / Formation of IRC Networks 23
2.3.2 Bright Lights, Big City 25
2.3.3 Small-Town World 25
2.3.4 Foreign Exchange 26

\
2.3.5 All Things Special 26
2.4 Somebody Asked Me to Meet Him . . . Where? 27

2.5 IRC Clients and Servers 27
2.5. / Differences among Clients 28

2.5.2 Differences among Servers 29
2.5.3 Client Commands versus Server Commands . 29

2.6 Software Licensing 30

2.7 Basic Commands 31

WINDOWS IRC CLIENTS

3.1 mIRC 33

3.1.1 Setup and Use 34
3.2 Pirch 36

3.2.1 - Setup and Use . 37

3.3 Visual IRC 37

3.3. J Setup and Use 38

3.4 Other Windows Clients 39

4
UNIX CLIENTS

4.1 Getting a Client 42

4.2 ircll 43
4.3 sire 44
4.4 BitchX 44

4.5 Installation of ircll and Related Clients 45

4.5.1 tar, gzip, and Feather 45
4.5.2 Configuring ircll 48

4.5.3 Compile 50
4.5.4 Binaries 50

4.5.5 Setting the Environment 51

4.5.6 The .ircrc File 53

5
IRCING ON THE MACINTOSH

5.1 Mac Users Do IRC with Style 55
5.1.1 General Downloading Instructions 56
5.1.2 ' Choosing the Right Client 57

5.2 Ircle 58
5.2.1 Setup and Use 60
5.3 ShadowlRC 61

5.3.7 Setup and Use 63
5.4 Snak 64

5.4.1 Setup and Use 66
5.5 MaclRC 66

5.5. / Setup and Use 67
5.6 ChatNet 68

5.6.1 Setup and Use 70
5.7 Summary 71

6
CONNECTING TO A SERVER

6.1 Selecting a Network and Server, and Connecting 74
6.1.1 Internet Addressing 75

6.1.2 /re// 76

6.1.3 Graphical Clients and mIRC 76
6.2 Things That Can Go Wrong 78

6.2.1 K-lined, or You Are Not Welcome . . . 78

6.2.2 Ping Timeout 79
6.2.3 No More Connections/Server Full 80

6.2.4 Connection Refused 80

6.2.5 Unable to Resolve Server Name 81

6.2.6 Illegal Nickname 82

6.2.7 Nickname or Channel Temporarily Unavailable 82

6.2.8 Ending Up on a Different Server 82

6.2.9 No Authorization 83

6.2.10 Ident Required/Install Identd/Bad Username 83
6.3 Welcome to the Internet Relay 85

6.3.1 The Message of the Day 86

6.3.2 Your Identity on IRC , . . 87

6.3.3 Nickname Registration and Ownership 88

6.3.4 The Realname Field 88

6.4 User Modes (Umodes) 89
6.4.1 Umode i 89

6.4.2 Umode w 90
6.4.3 Umode s 90
6.4.4 Umode o 90
6.4.5 Umode d 90
6.4.6 Umode r 90
6.4.7 Other Umodes 91
6.5 Changing Servers: The SERVER Command 91

6.6 Disconnecting from a Server 92

6.6.1 Nickname Collisions 93
6.6.2 Operator Kill 94

6.6.3 Server Downtime 94

6.6.4 Ping Timeout 95
6.6.5 Connection Reset by Peer 95

6.6.6 Excess Flood 95

6.6.7 Kill Line Active 96
6.6.8 Other Types of Connection 96

CHANNELS

7.1 Obtaining a List of Available Channels 101

7.7.7 Disconnecting When Using LIST 103

7.1.2 Strange Channel Names 104
7.1.3 Argh! The List Keeps Scrolling Off and I Miss Most of It 104

7.1.4 I Give Up—Nothing Is Working 105
7.2 Selecting a Channel from the List and Finding the Right Channel 105

7.3 joining a Channel 106
7.3.1 No Such Channel 108

7.3.2 How Did I End Up on Channel #? 108
7.3.3 Banned from Channel 108

7.3.4 Bad Channel Key 109

7.3.5 Channel Is Full 110
7.3.6 Kick or Ban after Joining 110

7.3.7 I Joined a Channel on the List and It's Empty! 110

7.3.8 Nickname or Channel is Currently Unavailable 111

7.3.9 Invite-Only 111
7.4 Who Is on the Channel? 112

7.5 Channel Operators 113
7.5.1 Channel Bots 114

7.6 Moderated Channels and Woice 116
7.7 Channel Events 116

7.7.7 Mode Changes 117
7.7.2 Joins, Parts, and Quits 117

7.7.3 Nick Changes 118

7.7.4 Kicks 118
7.8 Leaving a Channel 118
7.9 Joining Multiple Channels 119
7.9.1 Switching between Multiple Channels 119
7.10 Channel 0 120
7.10.1 The Channel #2,000 Trick 120
7.11 Netsplits and Lag 121
7.11.1 Netsplits 121
7.11.2 Server-Server Lag 123
7.11.3 Client-Server Lag 124

8
COMMUNICATION

8.1 Types of Messages You May Receive 126
8.1.1 Public Messages on a Channel 126
8.1.2 Private Messages 126
8.1.3 Notices 127
8.1.4 CTCP Requests 127
8.1.5 DCC Requests 128
8.1.6 Wallops 128
8.1.7 Operator Notices 129
8.1.8 Local Machine Messages and Talk Requests 130
8.1.9 Actions , 131
8.1.10 Server Notices 131
8.1.11 I Joined a Channel and Nothing's Happening/ 131
8.2 Etiquette 132
8.3 Ignoring Messages 133
8.3.1 Ignoring with ircll 133
8.3.2 Ignoring with mIRC 134

8.3.3 The SILENCE Command 135
8.4 Sending to a Channel 135
8.4.1 Sending to a Channel While Not on It 136
8.4.2 Communicating with Multiple Channels 136
8.5 Sending Private Messages 137
8.5. J Using QUERY 137

8.6 Strange Characters in Messages 138
8.7 Colored Text and Highlights 138
8.7.1 Using Highlights with ircll 139
8.7.2 Using Highlights and Color with mIRC 140

8.8 Smile)
8.9 Actions
8.10 Common Abbreviations
8.11 Autogreets
8.12 Keeping Track of Events by Logging
8.12.1 Logging with ircll
8.12.2 Logging with mIRC
8.13 Communication Problems
8.13.1 Can't Send to Channel
8.13.2 Text Is Scrolling on a Single Line
8.13.3 I Can't See My Nickname Before My Messages

141
141
142
143

143

143

144

144

144

144

145

FINDING PEOPLE ON IRC

9.1 WHOIS
9.2 WHOWAS
9.3 WHO
9.4 NOTIFY and ISON
9.5 NAMES
9.6 Finding the Operators of a Channel
9.7 Network Services
9.8 Finger
9.9 Finding Someone's Location
9.10 How Not to Be Found

148
148
149
151
151
152
152
153
154
154

10
CREATING AND MANAGING A CHANNEL

10.1 Creating a New Channel
10.2 Channel Operator Status
10.3 Channel Modes
10.3.1 Mode b (Ban)
10.3.2 Modes i (Invite-Only) and I (Invitation)
10.3.3 Mode k (Key)
10.3.4 Mode I (Limit)
10.3.5 Mode m (Moderated)
10.3.6 Mode n (Noexternal)
10.3.7 Mode o (Operator)
10.3.8 Mode p (Private)
10.3.9 Mode s (Secret)
10.3.10 Mode t (Topicsetbyops)

158
158
159
160
160
161
161
161
161
162
162
162
162

70 .3 .77 Mode v (Voice)
10.3.12 Viewing a Channel's Mode
10.3.13 Mode e (Exception)
10.3.14 Multiple Mode Changes
10.4 Creating a Private Channel
/ 0.4.1 Inviting
10.5 Kicks and Bans
10.5.1 Correct Use of Host Masks in Bans
10.5.2 Ban Problems
10.6 Server-Generated Mode Changes
10.7 Channel Security
70.7.7 Nethacks
10.7.2 Flooders and Cloners
10.7.3 Colliders
10.7.4 Secure Auto-Ops
10.7.5 If a Takeover Does Happen
10.7.6 Be Careful Who You Op
10.7.7 Suspect until Proven Guilty
10.8 Channels with No Operators
10.9 Desync
10.10 Channel Services and Registration
10.10.1 Undernet's X and W and Similar Services
10.10.2 DALnet ChanServ

163
163
163
163
164
165
165
766
768
169
170
770
772
774
774
776
177
178
179
180
182
783
783

11

ENHANCING A CLIENT WITH SCRIPTS

11.1 What Scripts Are
11.2 Why Use a Script?
11.3 Selecting a Script
11.4 Obtaining a Script
11.5 ircll Scripts
11.5.1 Phoenix, TextBox, and Atlantis
11.5.2 PurePak
11.5.3 LiCe
11.5.4 JoloPak
11.5.5 Generic Scripts
11.6 mIRC Scripts
11.6.1 iiOn, QPro, vyxx, and a Few Others
1 1 7 Write Your Ownl
11.7.1 Aliases
11.7.2 Events
11.7.3 Conditions
11.7.4 User-Defined Variables

187
188
188
189
189
189
190
190
190
190
191
792
192
792
793
794
794

11.7.5 Server Numerics 194
11.7.6 Practical Scripting Tips 196

12
IRC OPERATORS

12.1 Who They Are 201

12.2 What They Do 202
12.3 How Did They Become IRC Operators? 203

12.4 Finding IRC Operators 205

13
CTCP

13.1 CTCP Explained 207

13.1.1 Sending CTCP Requests 208
13.1.2 Replying to CTCP Requests 209

13.2 CTCP Commands 209

13.2.1 PING 210
13.2.2 VERSION 210

13.2.3 FINGER 211
13.2.4 TIME 211

13.2.5 ACTION 211

13.2.6 ECHO 212
13.2.7 CLIENTINFO _ 212

13.2.8 USERINFO ' 212
13.3 PRIVMSG and NOTICE 213

13.4 Customizing CTCP Replies 214

14
'C'""' DCC

14.1 DCC Chat 218
14.1.1 Initiating a DCC Chat 218

14.1.2 Accepting or Denying a DCC CHAT Request 218

14.1.3 Communicating over a DCC CHAT Connection 219
14.2 File Transfers via DCC 219

14.2.1 Offering a File via DCC 220

14.2.2 Receiving an Offered File 220
14.2.3 Resuming Interrupted Transfers 220
14.2.4 File Servers and XDCC 221

14.3.2 What's This DCC Server Thing?
14.3.3 Sound-Related DCC
14.3.4 More DCC Options and the Big Secret
14.4 DCC from Behind a Firewall or Proxy

223
223
224
224

15
SERVER AND NETWORK COMMANDS

15.1 LUSERS
15.2 LINKS
15.3 ADMIN
15.4 STATS
15.4. / SLATS C
15.4.2 STATS H
15.4.3 STATS /
15.4.4 STATS K
15.4.5 STATS L
15.4.6 STATS M
15.4.7 STATS O
15.4.8 STATS T, Z, and D
15.4.9 STATS U
15.4.10 STATS Y
15.5 INFO
15.6 TIME
15.7 TRACE
15.8 VERSION
15.9 Other Server Commands

227
229
230
230
230
231
231
231
231
232
232
232
232
232
234
234
234
235
236

16
ODDS AND ENDS

16.1 IRC over the Web—Java Clients
16.2 Writing a Client
16.3 IRC via Telnet
16.4 IRC for the Sight-Impaired
16.5 Jupitered Servers
16.6 Online Help Services
16.6.1 Getting Help with Windows Clients
16.6.2 Getting Help with Unix Clients
16.6.3 Getting Help with Mac Clients
16.6.4 Getting Help for Other Clients

239
240
241
242
242
243
245
245
247
247

16.7 The Protocol 247
16.8 Other Types of Real-Time Online Communication 248
16.8.1 Web Chat 248
16.8.2 Talk 248
16.8.3 WWCN 249
16.8.4 ICQ 249
16.9 IRC for Other Platforms 249
16.9.1 Amiga 249
16.9.2 Atari 250
16.9.3 MS-DOS 250
16.9.4 VMS 251
16.9.5 OS/2 251
16.9.6 WebTV 252
16.9.7 BeOS 252

17
ABUSE AND SECURITY ISSUES

17.1 Flooding 253
17.1.1 MSG, NOTICE, and CTCP Floods 254
17.1.2 Nick Floods 254
17.1.3 Topic Floods 255
17.1.4 Public Floods 255
17.1.5 DCC Floods 256
17.1.6 Mode Loops 256
17.1.7 Leave join Floods 256
17.2 Hacking 256
17.3 Channel Takeovers 257
17.4 Harassment 257
17.5 Spoofing 258
17.6 Password and Credit Card Number Thieves 258
17.7 Denial of Service Attacks 259
17.7.1 Nukes 259
17.7.2 ICMP Flooding and Smurf 261
17.8 Spam and Mass Messaging 262
17.9 Account Security 263

18
INSTALLING, RUNNING, AND OPERATING

AN IRC SERVER

18.1 System Requirements 266
18.2 IRC Server Software 266
18.3 IRC Daemons 267

18.3.1 Ircd/hybrid (EFnet) 267

18.3.2 Ircu (Undernet) 268
18.3.3 lrcd2.9and2.10(IRCnei) 268
18.3.4 dal4.6 (DALnet) 269

18.3.5 Conference Room 270

18.3.6 Others ircds and Platforms 270

18.3.7 Adding Services 271
18.4 The ircd.conf File 271
18.4.1 A: lines (All ircds) 271

18.4.2 M: lines (All ircds) 271

18.4.3 I: lines (All ircds) • 272
18.4.4 Y: lines (All ircds) 273

18.4.5 O: lines (All ircds) 273
18.4.6 C: and N: lines (All ircds) 273

18.4.7 H: and L: lines (All ircds) 274

18.4.8 K: lines (All ircds) 274

18.4.9 P: lines (All ircds) 274

18.4.10 R: lines (All ircds) 274
18.4.11 D: lines (EFnet) and Z: lines (DALnet) 275
18.4.12 V: lines (IRCnet) 275

18.4.13 Q: lines (EFnet, Undernet, IRCnet) 275
18.4.14 Q: lines (DALnet) and U: lines (Undernet) 275
18.4.15 E: lines and F: lines (EFnet) 276

18.4.16 T: lines (Undernet) ' 276

18.4.17 D: lines (IRCnet and Undernet) 276

18.5 The MOID ' 276

18.6 IRC Operator Commands 277

18.6.1 OPER 277

18.6.2 KILL 278

18.6.3 CONNECT 279

18.6.4 SQUIT 280

18.6.5 DIE 281

18.6.6 RESTART 281

18.6.7 STATS 282

18.6.8 TRACE 282

18.6.9 REHASH 282

18.6.10 DEOP 283

1 8.7 Monitoring a Server
18.8 The Price of Power
18.8.1 Channels
18.8.2 IRC Cops
18.8.3 . . . And Justice for All
18.8.4 Bots
18.9 Networking

283
284
285
285
286
286
287

19
IRC ROBOTS

19.1 Description of a Bot
19.2 Uses for Bots
19.3 Types of Bots
19.4 Eggdrop
19.4.1 Obtaining and Installing the Eggdrop
19.4.2 Running the Eggdrop
19.5 Combot

290
290
291
292
292
293
293

20
THE SOAPBOX AND MORE

20.1 The Users of IRC
20.2 Privacy and Anonymity
20.3 Censorship
20.4 IRC Addiction
20.5 Pornography on IRC
20.6 IRC and Software Piracy
20.7 Kids on IRC
20.8 In Conclusion

296
296
297
299
301
302
303
304

NETWORK AND SERVER LISTS

A. 1 Table of Networks
A.2 Servers and More Networks

307
309

B
TERMINOLOGY 313

COUNTRIES ON IRC AND DOMAIN DECODER 321

USEFUL ADDRESSES 327

E
SERVER NUMERICS 338

F
SAMPLE SERVER CONFIGURATIONS

F.I Basic Configuration (hybrid 5.3 Server)

F.2 Advanced Configuration (Bahamut Server)

339

342

Index

PREFACE

Hello, and welcome to The Book of IRC. In this episode . . . sorry, I got
carried away. What I really want to say is welcome to the unique world of
communication we call IRC, and that I've done my best to create a book
about Internet Relay Chat that is not just informative and also technical,
but easy to understand and use.

In this effort, I've received help from many people, and special thanks
are due to some of them: Dr. Joseph Lo who, when not neck-deep in
research, took the time to contribute great material for Macintosh users;
Alice Loftin, for editing out some of my worse grammatical blunders,
adding substance and content to some of the chapters and being support-
ive throughout; M.D. Yesowitch for reviewing text that was sometimes,
well, not exactly top of the line and coming up with some great improve-
ments; Gail Nelson for making sure I stayed between the lines (and app-
ropriately admonishing me when I didn't); the team at No Starch Press,
who have been very understanding (and inordinately tolerant) of my
frequent transgressions of deadlines; Josh Rollyson and the mysterious
Swede known as Queux; and several more individuals, who have in their
small ways helped this book with their input and contributions.

Whether I've succeeded in creating a book you will find truly useful
and helpful is for you to say and your comments are welcome at
comments@bookofirc.com. Please note that the volume of comments
may not permit me to reply to each one individually, but all will be read
and considered for the next edition.

Changes in the IRC world will be rapid, and there is a Web site for
updates that occur after the release of this book. It's not reasonable to
believe that this book will be up to date forever—that's a practical
impossibility since IRC (and the Internet as a whole) is an ever chang-
ing world. Take the time to visit the book's Web site at
http://www.bookofirc.com/, where the latest updates to the book's
contents will be posted, and some things that simply did not fit into
this book are covered — and possibly much more, as time allows . . .

I hope this book will answer most (if not all) of your questions about
IRC and everything around it. And remember, if there's something you
think is missing, just let me know .. . and don't be afraid to ask questions.
There are many good people on IRC who are willing to help. Who knows?
It might even be me that you run into.

Alex Charalabidis
November 7999

INSTRUCTIONS FOR
INTERNET DUMMIES

This is not meant to be a book about
using the Internet. There are many

fine books out there that will serve a
"Internet dummy" much better than this

one, if only for the simple reason that they
were meant to be books about using the
Internet. Still, I'm taking into account the fact
that many readers of this book, even some who
have an Internet connection, may have only a
superficial acquaintance with the Internet and
could use some help with getting connected or
understanding more about it. If you're already
hooked up and know your way around, skip
ahead to Chapter 1 if you prefer. But I still sug-
gest you skim through this one and see if
there's anything you can use.

I don't even take for granted that the reader owns a computer.
Many people use one at work but have seen no reason to purchase one
for themselves. In fact, this was the case with me; I bought my old, used
Atari 1040 STF (a fine machine indeed) with hooking up to the Internet
in mind, although I did get to play some really hot games on it (while I
no longer have it). In retrospect, my employer probably wouldn't have
minded if I had hijacked the machine at work for Internet purposes—
but your employer may not be so agreeable.

0.1 Help! Where's the On Button?

If you belong to the category of people who are neither computer savvy
nor Internet wise, most of the information you have (good and bad)
about the Internet comes from the media, and more likely than not
companies providing Internet access have bombarded you with adver-
tisements. If we count the advertising campaigns of companies like
CompuServe and America Online (AOL) and the legendary quantities
of free trial disks sent out (zillions would be a fair estimate), we might
say the Internet has reached everyone—if not on their computer, at
least in their mailbox. Indeed, in countries like the United States, AOL
deprived the computing community of a never-ending supply of free
floppy disks when it switched to sending out CDs instead.

Neither of these sources (media and advertisement) is sufficient for
gaining adequate knowledge about connecting to or using the Internet.
The media don't seem to notice the Internet unless there's a
controversy about it that they can exaggerate enough to present to the
public as news. Advertisers oversimplify things and hype them up as
much as they can—often more, largely because they can get away with it.
If you sometimes get the impression they think you're stupid, you're
right. Fear not! You have The Book of IRC. It may not turn you into a com-
puter guru overnight, but you'll get straight answers for a change. This
is where some of the misconceptions and rumors end.

For the rest of this chapter and in some of those that follow, we'll
deal with getting an Internet connection and setting it up for use with
Internet Relay Chat. We'll take a close look at the most common meth-
ods of connecting to the Internet and Internet Relay Chat services, as
well as the necessary equipment.

0.2 Equipment

First of all, you'll need access to a computer (tell me if I'm stating the
obvious). You can use IRC and the Internet from practically any computer.
The difference is that newer, more powerful machines are capable of

handling a number of different tasks while connected, whereas older
ones (pre-1990, mainly) can only act as a terminal connected to a more
powerful computer in a different location; they depend largely on the
resources that computer offers. If you don't have a computer, consider
whether you intend to use it for more than just the Internet and what
you expect from it.

If you want the full package, including pretty pictures, high-speed
connections, the ability to play the latest games, and everything else
modern computers can do, you should opt for a recent model capable
of handling just about anything. If you'd rather start with the most basic
package to see if you like using it (or to find out whether IRC is the
thing for you), a text-based environment will do just fine. You can find
an older, used machine dirt cheap or even dig one up for free from your
company's surplus equipment storage room. If you find you don't like
IRC, a no-frills machine makes a fine typewriter, offers you plentiful
games, and gives you access to the whole wide world of the Internet.
These days you can get even fairly powerful used or reconditioned
machines for a decent price.

If you plan on buying a new computer and don't think you have the
expertise to select the right one, ask a knowledgeable friend to help you
out. You should thoroughly scrutinize your prospective buy and not take
the salesperson's word for it, or you might end up buying the kitchen
sink whether you like (or even use) it or not. The computer market is
full of white elephants—machines packed with gadgets you may never
want or need, but could end up paying for anyway. Salespeople are
doing a good job when they sell you one of these, but it doesn't look
good on your bank statement.

Regarding the bells and whistles they will inevitably offer you, try to
make a good guess of what your needs will be over the next couple of
years. Contrary to the popular myth that computers are obsolete by the
time you leave the store, a well-equipped modern machine provides you
with all the power you need for a long time. Think . . . do you need that
ultra-snazzy-jazzy sound system? Can you live without the latest in gam-
ing gadgets? Personally, I'd opt for a bare-bones system and make my
own selection of choice gadgets, but then I'm a professed geek who
enjoys building computers out of spare parts. It's a fact that you can get
a decent deal on packages that include these options and avoid the has-
sle of installing them yourself (and trying to make the more obstinate
ones work with your computer)—plus you'll have a warranty that says
the box will work with them in it. And you thought buying a car was bad!
Make sure the deal includes an operating system (OS — the layer of pro-
grams that actually lets you communicate with the machine) such as
Windows or the Mac OS.

The computer, regardless of its other capabilities, must have a tele-
communications device (its equivalent to a phone), which will usually

Instructions for Internet Dummies 3

be a modem (modulator-demodulator, for the acromaniacs out there).
Either a card or a box (depending on whether it's inside the computer
case or attached to it by a cable), this little device converts data from
your computer into signals capable of traversing a telecommunications
line. It also converts incoming signals back into something the
computer can understand.

Regardless of what type of modem you choose, don't pinch pennies
on this piece of equipment. Major brands such as Zoom or US Robotics
will be more expensive, but also tend to be far more reliable than the
nameless bargain modem. External modems are more expensive and
require a separate power supply, but they're easier to move or take apart
and generally have a helpful, independent function display of their own.
New computers tend to come with one installed, though you won't often
get a brand-name modem in a "package deal" machine.

Modem speed is another factor to consider. You usually have a
choice between speeds of 33.6 and 56 Kbps (that's kilobits per second).
If your salesperson calls it "kilobytes (rhymes with "bites"), either you're
getting an incredibly good deal, or he doesn't have a clue what he's talk-
ing about and you should make an excuse and get out of the store. This
figure is the maximum speed at which your modem can shovel data
down a line. Higher is better, but ordinary connections cannot handle
speeds higher than 53 Kbps under ideal conditions, so 33.6 isn't such a
bad choice.

One more absolutely necessary item is a working telecommunica-
tions line^a regular phone line will do just fine. Low line quality can
seriously impede the functioning of your network connection, though.
If you plan to spend long hours on the Internet or transfer a lot of data
on a regular basis, you may need a dedicated phone line. In this case,
getting a more expensive ISDN link is worth the investment, since it can
accommodate much more traffic—provided you also have the hardware
to take advantage of its capabilities.

Cable lines and DSLs (Digital Subscriber Lines) are becoming
increasingly available and offer much faster speeds than your ayerage
modem connection. However, other cable modem users and TV usage
from other people on the same line can strongly affect the performance
of a cable link. DSL is probably the connection type for the future (it's
basically just a regular phone line with a twist), but it isn't widespread
yet and it costs a fair bit more than a regular modem connection. Even
in major cities, it may be available only in limited areas. Either of these
two options generally requires special hardware and considerable setup
fees. If you choose one of these options, however, you can do without a
modem.

More recently it's become possible to connect to the Internet and
IRC via a TV set with some additional hardware or even a games console.
I will not go into details about this means of connecting, since they don't

use a full computing environment, and the companies selling the equip-
ment should provide setup instructions. The IRC software that accom-
panies these devices is extremely poor in features and functionality and
won't satisfy even the most undemanding user for long. Depending on
future developments in this area, a future edition of this book may cover it.

0.3 Computing and the Internet for Beginners

First and foremost, always remember that the computer is only a
machine! Computer phobia is all too common and quite unjustified. A
computer is as dumb as any other machine, and if a human doesn't tell
it exactly what to do, it sits there like the pretty (or ugly, depending on
your personal aesthetics) piece of inanimate silicon, plastic, and metal it
really is. When a computer appears to have a mind of its own, as it often
will, and refuses to listen to human reason, it's not trying to intimidate
you, even though this is precisely what it achieves. The cause of this
behavior, though undiscovered, is widely believed to be the work of
gremlins. Now there's an explanation I can live with.

Second, the Internet—and especially IRC—is definitely not an envi-
ronment for total beginners. Anyone wishing to use the Internet, and IRC
in particular (which involves more technicalities than most of the Inter-
net) , should have at least a basic degree of familiarity with computers.

In short, if you don't comprehend the meaning of terms like direc-
tory, file, or reboot, you should learn more about computers before
attempting to use the Internet. A good, basic book will do just fine. This
will save you and other users a lot of frustration. In the IRC environment,
you do most of your communicating with humans, not machines, and
newcomers are more welcome when they're visibly trying to educate
themselves instead of blundering about trying to "do the Net thing"
without blowing up their machine. A friendly attitude gets you a lot of
help from more-experienced users, but their patience is not limitless.

If you know nothing about computers, please, please learn to oper-
ate yours before getting onto the Internet. You will often find it
necessary or desirable to install new software or hardware on your
machine or perform other important maintenance tasks, so it's essential
that you be familiar with enough of the basics to handle such relatively
simple things.

And remember (once more)—a computer is a machine, a bit more
than a glorified calculator, but essentially a number-crunching device.
It's about as complex and intricate as machinery comes, but if you can
drive a car, you can probably handle a computer with the same ease
(well, almost) after a bit of practice. Fortunately or unfortunately, tak-
ing part in everyday road traffic requires a license, while using the
Internet doesn't. It may well be said that a networked computer is just

Instructions for Internet Dummies 5

about the most complex device you're allowed to operate without train-
ing or a license.

In the same way you need a driver's license before rolling out of the
garage, don't venture out into the Internet traffic without knowing how
to operate your "vehicle." This might sound like elitism coming from
someone who's been around a while, but in my experience ignorance,
rather than redundancy, causes the most damage and annoyance on
the Internet.

0.4 Internet Service Providers

Owning the equipment and software for connecting to the Internet
is one half of the deal. The other half is getting a link through which
you can connect. Unless you're fortunate enough to have free Internet
access from a university or your workplace, you'll have to buy an acc-
ount with an Internet service provider (ISP), often referred to simply as a
provider. Nowadays, with ISPs springing up faster than mushrooms in
the dark, you're likely to have a wide selection of providers—especially
in larger cities, where the number of options available may reach well
into three digits.

If you have an Internet connection you can use or borrow for a
while, an extensive list of ISPs is available via the World Wide Web
(http://www.thelist.com). Otherwise, the Yellow Pages and computer or
Internet magazines should be a good source of information—the Yellow
Pages may be more helpful, as they're more localized.

Your best option is to ask around. If you have friends in the area
who are already connected, they can probably give you a more objective
view of the quality of a provider's services. If you don't have someone to
guide you, you will have to rely on other channels of information.

Magazines generally have ads for large providers with POPs (points
of presence) in many places; advertising hype, which you can disregard,
fills these ads. Unless you're very unlucky or in a really remote place,
you'll easily locate the voice phone numbers of one or more ISPs in your
area. Larger providers may have a toll-free number staffed by salespeo-
ple, while smaller ones more often have someone who also deals with
customer or tech support making the sales contacts.

Naturally, each provider will try to talk you into buying from itself.
Allow the rep to rattle off the virtues of the establishment, then ignore
what he or she just told you and try to establish the individual's attitude
and level of knowledge. You probably hate random salespeople patroniz-
ing you over the phone as much as I do. Some of them use tech talk to
impress and confuse the less knowledgeable—a time-honored sales tactic.

Pay more attention to helpfulness and don't let the salesperson
impress you with jargon and promises of the glorious benefits coming
to customers of that particular provider. Also don't let numbers and
statistics dazzle you—after all, you care about good Internet service,
not surveys or promises. In fact, you're very likely to discover that small
providers take better care of their customers and are more flexible, fast,
and efficient in dealing with problems.

0.4.1 Connecting to the Internet via a PPP Dial-Up
PPP is by far the most common way of connecting today. Using special
software, your machine connects to the Internet by dialing your ISP's
telephone number. The machine responding to incoming calls identi-
fies you after you send it a unique user ID and password. It then assigns
you an Internet Protocol (IP) address, thus making your machine a part of
the Internet. The majority of providers draw from a pool of IP addresses
(which a competent authority assigns to the provider) to give you a ran-
dom address that no one else is using at the time you call in. If your
provider uses this method, you have a different IP address each time you
connect. This is known as a dynamic IP system.

Other providers give you the same IP address each time you con-
nect and maybe even assign a unique Internet name to your machine.
This is a static IP system and often costs a bit more. Your ISP should sup-
ply you with the software and instructions necessary for connecting in
this fashion; make sure it does so before you buy an account, and don't
forget to ask for its customer support phone number in case you get stuck.

PPP is a good, fairly simple way of connecting for the Windows,
Macintosh, and Amiga platforms (if you're using Unix, DOS, or an Atari
machine, it's much more technical and not suitable for the beginner).
It has the advantage of putting all your Internet programs on your own
machine so you can modify the setup at will. Its main drawback is the
relatively slow speed of modem connections.

0.4.2 Connecting to the Internet via Dial-In
This was the most widely used method of connecting before PPP took
over. Most ISPs no longer offer plain dial-in connections, though BBSs
and providers wishing to offer an extra service for lower-tech users still
use it. Be sure to check whether your intended ISP offers a dial-in service
if this is how you plan to hook up.

With a dial-in account, you use a simple terminal program to con-
nect to your ISP's number. After you log on, this program makes your
system a terminal of a machine the ISP owns and maintains (these
machines almost universally use Unix-type multiuser operating systems).

Instructions for Internet Dummies 7

An account that entails using a Unix machine from a command line is
called a shell account.

A dial-in account is an excellent way of connecting for users with
low-end machines (not everyone owns a Pentium). Even old machines
like Atari STs and PC-XTs can easily connect to the Internet if they act
as a networked machine's terminal. The advantage is that such an
account requires minimal local resources and little configuration, and
you are not responsible for maintaining the networked machine.

Dial-in is also ideal for people with old, slow modems, for whom
using PPP would often be agonizingly slow because the modem commu-
nicates with the provider's machine less efficiently than when it acts as a
terminal. The drawback is that you usually depend on the ISP's staff for
updating and configuring the machine and software available on it, and
you may not have access to useful utilities. If you prefer to work in a
graphical environment or have trouble understanding text-based
systems, it's likewise probably not for you.

0.5 Starting Out on the Internet and
Using Basic Services

Before starting out with IRC, I recommend that you familiarize yourself
with a few of the basic, easier-to-use parts of the Internet. You'll soon
encounter one or both the World Wide Web and FTP when searching
for information or obtaining essential files. First, though, we'll have a
look at the most common services offered on the Internet—sooner or
later you'll make use of these, whether in conjunction with IRC or not.

0.5.7 Using the World Wide Web
The World Wide Web is what less knowledgeable people think of as
the Internet. Actually, it's no more than a system of linked documents
(called hypertext documents), which has grown to immense proportions
and now contains millions upon millions of pages, covering just about
every topic our literate species has written about. If you're in need of
information, this is the place you should look first. (Hypertext is the
same system you encounter in DOS or Windows help files when you
select a word in a document and press ENTER or click to call up another
document.)

The basis of this system is twofold: HTTP, HyperText Transfer Pro-
tocol, requests documents and transfers them between machines.
HTML, HyperText Markup Language, consists of special instructions
embedded in documents that control the characteristics of the page, its
attributes (color, font size, pictures, and so forth), and also make it pos-

I sible to call up another page or perform a function by selecting part
of the text.

All of this requires special software known as a browser. Netscape,
Microsoft Internet Explorer, Mosaic, and Lynx are some well-known
browser programs; you probably have one of them on your machine.

0.5.2 Using FTP

FTP (File Transfer Protocol) transfers files over the Internet. Designed
especially for file transfers, it's much simpler than the Web and often
faster. FTP is especially useful for obtaining software, including updates
of programs you use for IRC.

FTP client programs are very simple to use and need little explain-
ing. You simply connect to an FTP server machine somewhere on the
Internet, downloading or uploading files and disconnecting when
they're finished.

A special case of FTP is anonymous FTP. Public FTP servers, which
allow the general public to access files stored on their system, use this
system. Smaller FTP sites are often specialized and offer certain kinds of
software, while larger ones offer an incredible variety of files for any con-
ceivable machine and purpose.

When you connect to an FTP server, it asks you to give a user name
and a password. If you have a personal account on the FTP server
machine, such as one your provider has assigned, enter the appropriate
user name and password when asked or even before connecting, if your
FTP program has such a feature. If you plan to use anonymous FTP, sim-
ply enter anonymous or ftp when prompted for a user name; use your
email address as the password. Note that anonymous FTP servers are
likely to have restrictions on the number of users who may use it simulta-
neously, and may permit anonymous FTP only outside business hours.

0.5.3 Using Telnet

Telnet, one of the cornerstones of using remote machines, is simply a
means of connecting to another networked machine. What you can do
on the remote machine depends on your access level. Telnet programs
are extremely simple to use, as they're little more than a terminal, and
some can also double as a regular terminal program and dialer. You use
them by entering the address of the remote machine (either on the
command line or in the appropriate field, depending on the program)
and specifying a port to which to connect.

A port is essentially an address on a machine—compare it to a tele-
phone extension, in which a number indicating the extension follows
the number of the regular telephone network. The competent authority
assigns port 23 to telnet. This means if you wish to connect to the

Instructions for Internet Dummies 9

remote machine and log in as a user of that machine, you should specify
23 as the port to connect to.

Connecting to a port other than 23 results in refusal of your con-
nection, since that port might not be open to connections or, if the port
belongs to a service other than telnet, it may behave differently than a
standard telnet port. Some machines run services meant to be "telnet-
table," listen on predefined ports, and interact with users coming in via
telnet—however, you would have to know the number of those ports in
advance.

Why do you need to know this? This is as much as I can offer on a
subject that really falls outside the scope of this book. Let's get on to the
subject you really want to hear about.

IRC? WHAT'S THAT?

IRC, or Internet Relay Chat, is a multi-
user, real-time communication system

hundreds of thousands of people all
over the world use. That's a lot of long

words to describe something as simple as text-
based chat, but then it's complex and interest-
ing enough to have whole books written about
it. This is the latest and, I modestly hope, the
most comprehensive and helpful one to date.

If you're already a regular IRC user, you know how much entertain-
ment and knowledge you can gain from it. I and the people who helped
me to write this book hope it will help you understand IRC even better.

If you've never used IRC before, this book contains all the instruc-
tions, hints, and rules you'll need. It is the first book to cover IRC in
this much detail and is designed for even a total beginner to under-
stand, as well as providing a valuable source of information for the
more experienced user. Even for those who really know their way

around, here it is: everything you always wanted to know about IRC but
never thought of asking.

1.1 So ... What's It All About?

It's about communication. IRC is yet another facet of the ongoing revo-
lution in telecommunications called the Internet, and one of the most
fascinating ones. Sure, it's easy to hook up to an online service, open
Netscape or Internet Explorer and do your shopping, gather information
on anything from quantum physics to horticulture, or just hop from one
"home page" to the next, but that's not all there is to the Internet. IRC
makes the most of it by offering something beyond the Web and email:
the ability to communicate directly, interactively, and in real time with
any single person or group you wish to.

IRC is more than entertainment. It's active communication. You
can buy all the latest, greatest, state-of-the-art (and pricey) "interactive"
software but you'll still only have a bunch of electrons staring back at you.
Instead, you can tune into IRC and its diverse multitude of channels and
join an online society made up of real people, not computer-generated
aliens to be shot down ad lib, not gremlins inside your computer, not
programs made to entertain you at your command. It's important to
always remember that IRC consists of real people, with all the faults and
advantages that implies.

When it comes to real-time communication over the Internet, you
have several options: proprietary systems like the chat rooms on America
Online or Prodigy that are available only to members, the likes of Instant
Messenger or ICQ, IRC, or local bulletin boards, to name the most widely
used means. Each has its advantages and disadvantages, and the choice
is not always easy.

I won't try to explain the pros and cons of all forms of online chat;
most are designed to be very simple. IRC is special in the way the simplicity
of text chat expands to include the parallel transfer of files, which can
be used for visual and auditory enhancement of an IRC session.

Nowhere else in the world will you find so many opportunities to
mingle with the other occupants of the global village. Be they in South
Dakota or South Africa, India or Indiana, the people are there. IRC is
where you can see the borders of nationality, race, and creed that con-
fine us in everyday life crumble more readily than anywhere else. You
could say it is global warming in its safest form.

1.2 Origin and History of IRC

A system based on a similar concept appeared on the U.S. military
network much earlier, although it did not make its way to the broader
community. But IRC as it is now known evolved from a program Jarkko
Oikarinen at Oulu University wrote in the summer of 1988 (Oulu is a
small town on the northwestern coast of Finland). Oikarinen added some
extensions to a multiuser form of the classic talk, a means of one-to-one
live communication between Internet users, which had the drawback of
not supporting three-way or group communication. Of course, the origi-
nal IRC was far simpler than modern versions, which have made IRC
one of the most complex systems on the Internet. Although there is no
longer an IRC server on Oikarinen's original machine, called the oulubox,
there is still an IRC server at the original site serving local users.

Very early on, IRC was an entirely Finnish affair and largely geared
towards Finnish users. Soon after its creation, IRC was exported, and
servers in Oulu and Gothemburg, Sweden, made the first international
connection, followed soon by Boston, Massachusetts, although the con-
nections were not stable. In those days, the Internet was still a thing of
the future, and many of today's main connections didn't exist at that
time. Nor was all communication carried over dedicated lines, especially
transcontinental and overseas.

"Internetworking" was more often than not subject to the limitations
of the regular telephone network and its tariffs, making it a costly affair
that even the fairly affluent educational institutes of northern Europe
and the United States couldn't support easily.

Since then, IRC has spread all over the world, together with the
Internet's development and as part of it. The number of regular and
circumstantial IRC users (people who use IRC regularly as well as those
who use it sporadically) is impossible to determine, but probably reaches
well into seven digits. So far, people in over 120 countries and territories
on all continents have used IRC, and it's arguably third only to email
and the World Wide Web (WWW) in popularity. By the way, opinions
on the pronunciation of IRC still vary. Some prefer to pronounce it "irk,"
while others prefer calling it "eye-are-see." Personally, I use the latter,
even though historical documents dating back to the early days support
the former, and it matches the Finnish pronunciation.

IRC's first claims to fame and recognition came in early 1991, during
the military operation to expel Iraq from Kuwait ("Desert Storm") as
well as in September 1993, following the coup against President Yeltsin
in Moscow, when local IRC users relayed reports of the situation around
the world. As far as the general public was concerned, however, it was
just "the Internet," and few commentators had the knowledge to describe
the means used—that is, IRC. Such reports of local happenings have
always been a part of IRC life, but rarely did they lead to publicity and

IRC? What's That? 13

even less often to reaching the public with serious information about
IRC. Even nowadays, a number of experienced Internet users and an
unbelievably large number of professional technical or support person-
nel working with the Internet have absolutely no knowledge of the
workings or even the existence of IRC.

With time, the complexity of all aspects of IRC has increased
greatly, making both maintaining and using it much more complicated
and involving its users with a lot more technical details than most other
Internet applications.

IRC started out in 1988 with only a handful of users, all of them also
involved in developing the software and establishing the rules that now
form the foundation of IRC. With the number of educational
institutions all over the world connecting to the Internet rising sharply
in the early 1990s and, consequently, large numbers of students at those
institutes gaining access, the number of regular users grew to reach a
maximum of 5,000 simultaneous connections in 1992.

Politics made their appearance in the IRC community pretty soon,
however, and it became apparent that not everyone shared the same
vision of the future. Some decided to follow their own way, breaking up
the first network of IRC servers into smaller ones, although few of these
splintered networks survived for long. But the changes have made mod-
ern IRC even more complicated, since the existing networks follow a
number of different standards instead of adhering to a common set of
technical and administrative methods.

Of course, you don't have to worry about that yet—they all still fol-
low a basic protocol, which is the technical foundation of IRC, so you
can expect to encounter few problems related to those differences in
the beginning. Any problems you encounter at first are more likely to
be entirely human in character and origin.

Following the fragmentation of the IRC world into a number of sep-
arate entities, the combined user count of these continued to grow at an
extremely high rate, even compared to the overall number of Internet
users, reaching 20,000 for the largest network in early 1996. With dial-up
services becoming increasingly available to the public in more and more
parts of the world, subscribers to commercial Internet service providers (ISPs)
have been the major contributors to the increase in users and, particu-
larly in the more technologically developed countries in Europe, North
America, and around the Pacific, now outnumber academic users by far.
Current trends show that the rate of growth could be as much as 30 per-
cent annually, maybe even more.

On February 22, 1999, EFnet, the largest IRC network, reached the
landmark number of 50,000 simultaneous connections. It was the opinion
of many in 1992 that IRC had reached its limits with the 5,000 concurent
users seen then. This number is still being revised upwards—it's now
acknowledged that there's no telling how high it will go.

1.3 Technical Concept

The keyword in IRC is "Relay." While "Internet" and "Chat" have obvious
meanings, "Relay" sounds a bit more mysterious. Let's have a look at the
basic concept of IRC in order to discover the meaning behind the term.

IRC, in its simplest form, is made up of two programs—a server
program that accepts connections and a client program that connects
to the server.

Of course, it isn't absolutely necessary to use a special program—
the server would view a simple network connection between you and
the server as a client. However, a client program handles some necessary
procedures automatically and provides a better and simpler user interface
than the more technical messages the client and server exchange.

IRC servers connect to each other via an IRC network of servers. Let's
use a very simple model of an IRC network for our example: two servers
and two clients. The servers are connected to each other, and each has a
client (a user) connected to it. The structure would look like this:

ServerA Server B ©

Ignore Joe for now. We'll get to him. Let's say Jack wishes to send a mes-
sage to Jill. However, their machines don't connect directly. But each
connects to a server, which is in turn connected to the server to which
the other user is connected. Therefore, Jack can make use of the indi-
rect route that exists between him and Jill. What Jack does is send server
A a message. In this message, he will tell server A the message's final
destination (Jill) and its contents.

Server A is aware of the existence of Jill, although she's not connected
to it directly, and it knows that she's connected to server B. It therefore
forwards—relays—the message to server B, which in turn sees that the
recipient is one of its own clients and sends the message to Jill, who can
then read it. Server A also adds the identity of the client sending it (Jack)
before relaying it, so the recipient knows who it's from. This transfer of
information between the servers and its users typically happens within
milliseconds, thus making the exchange of messages swift enough to
match that of real conversation.

L IRC? What's That? 15

This is why Jack doesn't need to connect directly to Jill to send his
message—the IRC environment permits an almost unlimited number
of recipients for the same message and can relay this message to all
those users at the same time. IRC permits one-on-one communication,
but its real advantage is the ability to communicate with large numbers
of people by sharing a common channel of conversation.

Let's say we add a third user. Joe is connected to server B, just like
Jill is. All three of them join a channel which they decide to call #the-hill
(naturally). They arrange the channel name by sending messages to
each other. Establishing this channel gives them a means of three-way
communication. So if Jill wants to tell Jack, "Come, let's fetch a pail of
water," and sends the message to the channel instead of sending it only
to Jack, all users on the channel receive the message. Joe sees the same
message and might decide to go with them—then the world of nursery
rhymes would never be the same.

1.4 What IRC Has to Offer

So far, so good, but what makes IRC so exciting and useful? What makes
IRC special enough for entire books on the subject? What makes hundreds
of thousands of people sit in front of a computer talking to people at the
other end of the world whom they don't know and will probably never
meet, instead of going out?

In order to understand IRC and realize why it's a good thing, you
must try it. Once you connect, it won't take long to discover whether
you love it, hate it, or find it nice for an occasional visit. Not everyone is
thrilled by it—I've observed that it often does not appeal to people who
find it necessary to be in visual contact with the people they're convers-
ing with.

For those who stay after their initial trip to IRC, the rewards can be
significant. It's more than just a pastime or something you do during your
lunch break. You may soon find yourself arranging virtual meetings
(which develop into real ones more often than you'd expect), making
new friends, including some you wish you had in RL (that is, "Real Life"),
taking part in group projects, such as managing a channel, and having
lots of fun. In fact, practically everything in life has an IRC counter- part.
It's more than a virtual society—it's a real society with a minimum of re-
strictions on your freedom of movement, as long as you follow the very
few basic and reasonable rules, which the relevant sections of this book
will explain.

IRC, for its longtime denizens and addicts, is more than just a chat
system or a meeting place—it can become a way of life. Many people
find themselves becoming more active, social, and outspoken in this
world where prejudice due to race, sex, or physical appearance is as

minimal as can be, given that its users do come from societies where
these factors tend to be a major influence on everyday interpersonal
communication. IRC can be a very educational experience—you can
interact with people you probably would never meet on a real-life social
level, people from an amazing variety of backgrounds and culture.

Its high social flexibility is another advantage. Large networks form
a single large community—a country, if you like—and smaller network
communities resemble towns. The difference is that there are practically
no space limitations. The communities can expand indefinitely in theory,
so there's no conflict about one community expanding at the expense
of another's breathing space. Anyone is free to form his or her own
community with like-minded people, or even to build a "city." IRC itself
started out as a group of people with an interest or activity in common,
and it has been growing outward ever since.

As is the case with all Internet communication methods, IRC has
the very important advantage of offering dirt-cheap, real-time communi-
cation. It's not the only live chat environment on the Internet, but it is
the one with the most versatility and potential uses. Whether for purposes
of idle chat or serious discussion, you can communicate directly with num-
erous people at the same time for no more than your regular Internet
connection costs you.

1.5 IRC for Company Use

While it is mainly a recreational environment and often maligned as such,
IRC is not without its business uses. Employers may have reason to object
to their workforce chatting the workday away on IRC, but this monster
can be tamed and put to work for company purposes.

There are already several large Internet service providers that use
IRC servers for customer support, either within the framework of a public
network or as a stand-alone service. IRC is becoming an acceptable means
of offering customer support since it uses minimal resources, does not
tie up a company's phone lines, and allows the support personnel to help
online while answering telephone calls.

For the same reason, it's also gaining recognition as a potent com-
munications tool within a company, as it will perform well on any
TCP/IP-based network and not just the Internet. It provides an ideal
environment for intra-company communication and online conferenc-
ing and requires very little maintenance once it's set up and running.

At the same time, the low cost of IRC software (in fact, the total
cost may be nil) makes it a very cost-effective solution compared to
more expensive systems with fewer features and higher maintenance
requirements.

IRC? What's That? 17

In the end, the question is not how much you can gain from IRC,
because it's there for the taking. The question is what you wish to gain,
and the options are practically limitless.

Welcome to the world of Internet Relay Chat.

YOUR IRC SURVIVAL KIT

There are a few things you really
should know before getting on IRC.

Save yourself a lot of trouble and poten-
tial damage by reading this chapter, which

I've packed with advice and helpful hints. You'll
need a compass, maps, and emergency rations
for the long trip ahead, and here is where
you'll find them—so don't skip this essential
information.

2.1 Saints and Sinners

You're likely to meet a huge number of people even your first time on
IRC—not only those with whom you talk, in public or in private, but also
those with whom you share a channel for a while, and still others whose
presence you won't immediately notice.

It would be nice to think of IRC as a place filled with good people,
but alas, as in real life, this is hardly the case. If you're unlucky, you'll
run into some despicable person within minutes of connecting—and
you're bound to run into more than one sooner or later. Don't let this
discourage you from exploring IRC.

Trust is a good thing—there's no doubt about that. It's the basis of
society. In the IRC world, there are a lot of people you can't trust. In a
nutshell, trust no one—not because everyone's untrustworthy but because
you'll find the results of misplaced trust very unpleasant and damaging,
even more so if you use your work machine for IRC.

You'll establish a circle of friends eventually—there's no hurry, so
don't try to speed up this natural process up by doing what you're told,
whether you understand it or not, in the effort to please everyone. In
the meantime, until you're capable of telling the saints from the sinners,
you would do well to be cautious. Let's go over some basic rules that will
serve you well.

2.2 Safety First

Chapter 17 will cover most of the subjects in this chapter in greater
detail. However, you need to be aware of certain dangers long before
you reach that part of the book—in fact, before you even connect to
IRC. Don't hesitate to flip ahead—the information in Chapter 17 is
more technical, but equally useful.

2.2.1 Trojan Horses

Trojan horses have been around on IRC for quite awhile now. If you've
examined any of the common antivirus packages, you've probably seen
an option to include Trojans in the scan.

If you don't remember the story of the Trojan horse, the crafty
Odysseus devised this wooden gizmo to take over the ancient city of Troy.
He left it at the Trojans' portals, disguised as an item of worship the
besieging Greeks had left behind. Actually, it sheltered a troop of Greek
soldiers just waiting to get past the city walls and jump out as the Trojans
gloated over their prize. This is where computer programs with similar
purposes and characteristics get their name.

A Trojan is technically not a virus, though it does fall in the general
category of nasty items that can attach themselves to your computer if
you're not careful. Trojans pose as desirable programs, while viruses
generally try to hide. Trojans mainly target Windows machines, but
some are designed to compromise the security of Unix hosts.

Trojans are nowadays the number one hazard for uneducated IRC
users. The number of people who have "contracted" some kind of Trojan

since January 1998, when they became widespread among Windows and
mIRC users, is unknown but substantial—enough to show this is by no
means an "it can't happen to me" thing. It can happen to anyone.

Almost all somewhat advanced programs for IRC offer the ability to
swap files with other users. However, you will also encounter unsolicited
offers of files from users you don't know. Look out for these, and refuse
to accept them. Most will be INI and EXE files, programs your computer
or IRC program can run, and in so doing firmly install a nasty program
on your computer. Some are cleverly disguised as pictures or contained
in Zip (compressed) files.

What do Trojans do? When you accept and run one (double-clicking
on the file name usually does the trick), it installs itself somewhere on
your computer—wherever its creator has told it to go—and very often
poses as a useful program, creates backup copies of itself, and activates
each time you run your IRC program or start up your machine. One of
the earlier and tamer Trojans installed a file named Winhelper. I bet you
would think twice about deleting a file with such a useful-sounding name
if you didn't know it was actually letting outsiders access your computer or
damage your files without your knowing it. Once installed, Trojans often
offer unlimited access to your machine to practically anyone. Many also
make you unknowingly offer a copy of the same Trojan to other users.

The following is not just an old wives' tale or a horror story—well,
maybe it's a horror story, but it is true. A friend asked me to take a look
at a computer that had been behaving oddly. We turned it on,
connected it to the Internet, and sure enough, some programs started
to run spontaneously, and others we called up would run with mysteri-
ously slowness or even crash. I got a tipoff from its owner when he told
me the CD-ROM drive tray would pop in and out for no apparent rea-
son. That clinched it—I did a basic check on the machine's
connections. Lo and behold, I found an unexplainable connection to
some machine in Dallas, which judging by its address was clearly a plain
old dial-up and not any kind of server.

Apparently my friend had a Trojan that actually told certain people
his machine's address so they could come and "play" as soon as he con-
nected to the Internet. When we powered up again and reconnected,
our next uninvited guest was from somewhere in France.

In other words, it's perfectly possible for someone on the other side of
the Atlantic (or the Pacific) to invade your machine, make your CD-ROM
drive do funny things, delete your thesis or business accounts (or just
steal them), use your computer as a base for illegal operations such as
trading child pornography, and wipe out your system to top it off—all
within ten minutes. Scary, huh?

Your protection is knowledge. Do not accept unsolicited offers of files.
Mistrust even those friends send you—there's no guarantee your friend
knows enough to prevent such a problem. Reject executable files and

Your IRC Survival Kit 21

WARNING

scripts altogether unless you're capable of reading and analyzing them.
If you don't actually accept and run a Trojan, you are safe. They're like
vampires—-just don't invite them into your house!

Always remember the first rule about getting files from other people on IRC. If you
don't know what it is and can't see for yourself what it does, just say no!

2.2.2 Nukes

Some of the sinners I mentioned earlier employ more straightforward
means of making your online life miserable. While you could classify
Trojan designers and "pushers" as hackers if they choose to engage in
some creative or productive activity (but they don't, so they remain
wannabe hackers), nukers are just pre-juvenile delinquents who throw
stones through people's windows. Anyone can nuke, but only about 1 in
50 of those who prove their "superior" computing skills in this way has
the vaguest idea of how the process works. Actually, even the term nuke
is a bit high-flown. I simply refer to them as Denial of Service (DoS) attacks,
and so do law enforcement agencies, since they're illegal.

Nukes are just annoying. They hardly threaten your machine's
integrity, but they can easily wreak havoc with your network connection
or cause the system to hang and force you to restart it. Windows 95, 3.11
(for Workgroups), and NT users are in a very high-risk category here.
Nukes that work on Macintosh, Windows 3.1, Windows 98, and Unix
systems are comparatively rare. Of course, new vulnerabilities show up
all the time, so by the time you read this book there may well be a new
category of nukes. You'll find descriptions and solutions for the most
common ones in Chapter 17.

Several very good websites offer up-to-date information on attacks. They also offer
help on patching your system's vulnerabilities. It's a good idea to visit these sites
before connecting to IRC and avoid nasty surprises.

A couple of sites you might find helpful are http://www.irchelp.org/
security/ and http://mirc.stealth.net/.

2.2.3 Insert Card to Continue
All the subjects I am warning you about here are considered criminal
acts in most of the civilized world. The last one you should be aware of
before connecting is no exception. In fact, it's more clearly defined as
criminal, and people have gotten into serious trouble for it.

Here it is, in a phrase: Never, ever give your credit card number or
password to anyone on IRC! As official looking and convincing as they

22 Chapter 2

may seem, none of them are up to any good. Nobody legitimate asks you
for your password or credit card number. If someone posing as some sort
of staff member threatens you with disconnection if you don't comply,
ignore that person. If you do get disconnected, it doesn't result from
ignoring that individual—he or she used some kind of DoS attack to make
the point. Don't fall for this con trick—log such events and report them
to the nearest authority on IRC (see 12.4).

2.3 The Virtual Tourist's Guide to IRC Networks

In Chapter 1,1 made a brief reference to the fragmentation of IRC. This
requires some explaining before you start connecting to any networks.

The story behind this could turn into a really long novel with lots of
sex, violence, and intrigue, and I might be able to make a fortune by
writing it under an assumed name, so I'll just stick to the basics here.

IRC servers connect to each other in order to form a network of
servers, as the figure in Chapter 1 demonstrated. The point of forming
a network is basically to allow people from different parts of the Net to
connect to the server closest to them and communicate with others who
are doing the same thing elsewhere. A network of servers acts a bit like
a postal service: The servers carry the "mail" from city to city in big, fast
vehicles, and the user just drops off the message at the local server. This
gives the user a faster connection; he or she is using a nearby server, and
the faster and more powerful connection of the organization running
the server carries traffic between users.

Not everything on IRC takes the form of a network. Many IRCs func-
tion quite well with a single server, because of the small number of users,
the location, or the ease of managing single servers as opposed to neworks.
Their disadvantage is that they depend on a single machine, and faraway
users may have slower connections. On the other hand, they don't struggle
with bickering server administrators or the need to maintain server-to-
server connections. For the sake of simplicity, I'll consider larger services
of this type networks, too, even though a single server is not a network in
the strict sense of the term.

2.3.1 Formation of IRC Networks

What determines how servers connect to each other? There is no rigid
set of rules. Servers link to form a network by mutual consent. So if John
is running an IRC server in Seatde and Jane has another in New York,
they simply have to agree on some ground rules that apply to both the
servers and their users. They then connect the servers, and they're in
business as a network. Judy in London, with a server of her own, might
agree with their policy and connect her server to theirs so that users in

Your IRC Survival Kit 23

England also have a local server. Instead of attempting transatlantic
connections with their puny modem dial-ups, these people can use
Judy's server to talk to the users on John's and Jane's servers. Long-
distance and transoceanic connections are much more reliable and
faster than they used to be, and Internet routes don't strictly follow
geographic criteria, but it's a rule of thumb that you're better off con-
necting to the closest server possible.

John, Jane, and Judy are now the proud administrators of a network
with three servers and choose to name it GossipNet. With a name, the
network also has a clearly defined public identity. Anyone who hears of
GossipNet and wants to go there will seek a list of GossipNet servers and
try connecting to the closest one.

You can link an unlimited number of servers in such a network. Net-
works with more than 100 servers have existed, and one still does. The
higher the number of servers belonging to a network, the more versatility
you can expect to find on it—but this is where the dark side of human
nature creeps in and spoils the dream.

Let's say GossipNet has grown to include 30 servers in various parts
of the world. Widely considered an agreeable place, it has several thou-
sand users. But then disaster strikes. John and Jane have a major fight
over which kind of server software to use. Because the programs they
propose are not compatible, they can't use both on servers belonging
to the same network. They fail to agree, and decide it's no longer possible
for them to live under the same roof, but the majority of server adminis-
trators share John's opinion.

So Jane takes her server and quits the network. Five more GossipNet
servers agree with her point of view and follow her into exile. These six
breakaway servers decide to stay together and form a network of their
own—and thus BlatherNet is born. As for the users of the servers on each
side of the fence, they're just confused and eventually pick the side they
feel more comfortable on. BlatherNet could expand and grow to be much
larger than GossipNet ever was, or it could fade into obscurity and finally
disband. Still, a notion of the "good old days" of harmony remains in the
minds of everyone involved.

The names in this story are fictitious, but the circumstances could
come about, and the reasons for falling out are often much more trivial.

This is how it's been since the early days of IRC, and this is what I
call fragmentation. Instead of one big, happy network of servers with
lots and lots of users, there are over 200 small networks. Most of them
are quite happy, which is probably better than having one huge, miser-
able network in which the server administrators hate each other and
plot the untimely demise of their enemies, but stay together anyway. It
sounds (and sometimes is) like a bad soap opera. The problem you'll
have is that you'll need a map to find your way through this maze of

networks. Don't worry—you'll run into this subject again in Chapter 6,
and Appendix A offers a helpful map of IRC networks.

2.3.2 Bright Lights, Big City

The 200-odd different IRC networks fall into various loose groupings.
The first category is the major networks. These are the metropolises on
the IRC map. Each has hundreds of thousands of regular users and visi-
tors and a multitude of channels. Diversity is the key attraction of these
networks, but as with all big cities, they have bad neighborhoods, thugs,
busy main roads (in the form of popular channels), taxi drivers (well,
maybe not), and crazy people wandering around preaching the end of
the world.

The four big "cities" (in order of relative size) are EFnet, IRCnet,
Undernet, and DALnet. Each sees over 30,000 simultaneous connections
during peak hours, and they rarely drop below the 20,000-user mark.
Almost every IRC user visits one of them at some point.

There are also smaller "cities" that have a different population and
definitely more law and order. They tend to be less than half the size of
the major networks, and single corporations own them. Talk City and the
Microsoft Chat Network are the largest of this kind, reaching 8,000 to
15,000 users during peak hours. They tend not to be as cosmopolitan as
the major networks, which have many users from all over the world. Most
of the smaller networks'users are North American.

2.3.3 Small-Town World

Not everyone feels comfortable in the metropolitan jungle of the major
networks. Many people prefer a quieter, more controlled environment.
Others just like to get away from the noise and go to a much smaller net-
work to relax every now and then. The atmosphere of these locations is
almost bucolic.

There are many small general chat networks, some really tiny and
others quite popular. Very few exceed a maximum of 1,000 simultaneous
user connections, but many offer good-quality service and have a loyal
following. They're more like the small towns and villages of the IRC map—
a place where people know each other and less-experienced users feel
more secure.

Quite a few of these small networks call themselves "family" networks.
They generally offer registration service for their users, have strict policies
on which topics they allow and which they ban. Some even go so far as
to offer Web space for their regular users and more popular channels.
Almost all based in the United States, they adhere to traditional values
in an effort to appeal to more conservative people who are looking for
a place on IRC suitable for them as well as their kids.

Your IRC Survival Kit 25

2.3.4 Foreign Exchange

It's a fact that although English is the dominant language on the Internet,
many people speak no English at all, have only a limited grasp of it, or
simply prefer to converse in their native tongue. In some countries the
cost of equipment and connectivity is very high compared to what users
and providers can afford to pay, so international links are poor and local
services are in high demand. Even English-speaking countries and
regions often have local IRC networks serving users in their area but the
majority of these networks are based in a single, non-English-speaking
country.

Local and regional networks have sprung up to cater to the needs
of these people and are booming like no other part of IRC. Some serve
a particular country, others have servers in several countries with a com-
mon language. They have become extremely popular with both local
residents and expatriates.

Networks of this kind exist in many countries. The largest ones are
located in Brazil, Spain, Portugal, and Australia and have many thousands
of regular users. Smaller but fairly popular ones exist in Mexico, Italy,
Turkey, Greece, Bulgaria, some former Soviet republics, and South Africa.
A few more countries are home to fledgling IRC networks that wish to
fill the gap in their area.

In other countries, local servers connect to a larger, global network
but are very popular with local users. This is the case in the Nordic coun-
tries, Japan, Poland, Italy, and several others whose most popular servers
exist as part of a major network (primarily IRCnet) or other, smaller
global networks.

2.3.5 All Things Special

The fourth distinct category of IRC networks includes everything meant
to serve users with a particular interest, of a certain age group, religion,
social group, or sexual orientation, and anything else that does not fall
in the above three groups of general chat networks. None of them are
very large, mostly due to the fact that they have little activity outside the
official area of interest.

The possibilities for different topics are limitless. Naturally, the most
popular involve computers, operating systems, computer games, and the
like. Others, designed for kids, offer a more protective environment and
adult supervision. Many services in this category are stand-alone servers.

2.4 Someone Asked Me to Meet Him .. . Where?

You'll often find a reference to an IRC channel on some website, or a
friend tells you to look him or her up on IRC. This in itself is not a prob-
lem, but becomes one when people neglect to mention which of the
umpteen IRC networks they or the channel reside on.

There's really no easy solution to this. You have only three options:

• Connect to a random network and pray it's the right one.

• Connect to every network you know of and see if what you're looking
for is there. Start with the major networks and work your way down.

• Ask your friend or the person maintaining the Web page that sup-
posedly mentions the item.

You have the right and the moral obligation to smack your friend for
being so vague. It's like saying, "Come to number 24 and ask for Jim,"
without giving the street name, or saying, "Meet me on a street corner,
I'll be wearing pants."

2.5 IRC Clients and Servers

As you saw in the example in Chapter 1—in which Jack, Jill, and Joe
were clients connected to servers, forming a network—IRC is based on
a client- server model. Naturally, it follows that two kinds of programs
are involved—client programs and server programs.

One of these is called an IRC daemon (ircd) or IRC server. It runs on
a machine connected to the Internet and waits for connections from the
clients—that is, connections from other machines on the Internet who
wish to use its resources.

The other is a client program that you run on your machine in order
to connect to a server. The machines don't have to be connected to the
Internet—they could be on a local network, too—but for the purpose of
this book let's assume they're all part of the Internet.

It is actually quite possible to connect to a server without a special
client program (simply using telnet), but that requires some degree of
expertise and is tiring because you need to keep sending messages or
commands to prevent the server from dumping you.

In practice, it's only useful to people who are actually writing client
programs and add-ons. It's strictly for the courageous, technically minded,
or desperate, and even advanced users rarely use telnet without good
reason. The rest of this book assumes you're using a client program, and

Your IRC Survival Kit 27

mentions "raw" IRC—communicating with a server without the special
client program—only where it's really necessary.

There are dozens of different client programs, and I can't describe
each in detail, though Chapters 3 to 5 will present all the main options.
I'll concentrate mostly on the two most popular clients: mIRCfor Windows
and ircllfor Unix, with the necessary sidesteps into Mac and ircle territory.
Over 80 percent of all users use the first two; they essentially represent
two different schools, the former more in the department of graphical,
Windows-type presentation, lavishly endowed with a host of features of
varying usefulness; and the latter offering a spartan interface, flexibility,
and speed.

Chapters 3 to 5 cover installation and setup instructions for both
programs, as well as a number of popular clients for all platforms. The
rest of this book is based on those two clients and mentions special cases
regarding others only where appropriate. However, since I intend to
describe IRC itself and not limit myself to any particular IRC-related
software, you should be able to understand and use IRC with any client
by knowing how IRC works.

Of course, there are many more operating systems besides the afore-
mentioned three. Some are declining in popularity, others are rising, and
a few have a long history but not many users. I can't offer users of those
platforms very much—it would take an encyclopedia to cover every client
for every platform, and I can't satisfy everyone.

Chapter 16 will help users of OS/2, Atari TOS, AmigaOS, and some
other more obscure platforms (obscure as far as IRC is concerned).

2.5.1 Differences among Clients

IRC clients look and feel very different, depending on the platform they
use and their individual features. The majority of clients have many fea-
tures in common, but also have significant differences. One basic
distinction is between text-based clients for environments such as Unix,
DOS, or VMS, and graphical interface clients for environments such as
Windows or the Mac OS. Another distinction is between clients with a
scripting language and those that lack one. Scripting capabilities allow a
much higher level of customization according to the individual user's
needs. Both main clients, which I'll take a closer look at, have complex
and powerful scripting languages of their own that allow the user to pro-
gram the client to do a lot more than it will out of the box.

Clients tend to have a standard set of commands that mostly conform
to the standards of ircll, the first widely used client program. A number
of modern clients have added commands of their own, many of which
perform multiple commands or special actions.

Not all clients are limited to a particular platform. For example, the
Zircon client (not one of the most popular) runs on Windows, Unix,

Mac, and OS/2. Others basically created for use with a particular operat-
ing system were ported to another system later on.

2.5.2 Differences among Servers

Ever since IRC ceased to be a single entity and splintered into several
networks, the server software in use on each network has evolved sepa-
rately. The differences are sometimes inconspicuous to the casual
observer, but quite often they're very obvious. Each server type has intro-
duced features and/or commands of its own, now unique to that kind of
server. I will mention these differences where necessary, but it's almost
impossible to know, let alone list, every exception to the rule. The server
types I cover are those the four major networks (EFnet, Undernet, IRCnet,
and DALnet) use, and I will mention the particular attributes of a server
program where necessary.

Most smaller networks use server software identical to one of these
or with minor modifications. These are too numerous to cover in detail,
so you should obtain any special information directly from those networks
after connecting to them.

Keep in mind that commands particular to one type of server do
nothing (or do something different) on a different type. These special
command sets are constantly being extended by the developers of the
server programs and you shouldn't be surprised if you get different
results with the same command when you use a different server.

2.5.3 Client Commands versus Server Commands

•'• IRC is based on client programs and server programs that follow certain
conventions laid out beforehand regarding the way they "talk" to each
other. This set of standards is known as the protocol. Both the server and
the client must comply with the protocol (speak the same language, that
is to say) in order to communicate effectively.

Servers have a set of commands to which they respond if the client
makes a request. Clients have one set of commands designed for com-
municating with the server, as well as a user interface, a second command

i set that lets a human user control it. In many cases, these two command
sets don't exactly coincide. The user interface, designed for a user to
understand (more or less, depending on the skill of its author), continues
to expand, unlike the server commands, which rarely advance.

The average client has a multitude of commands that send very sim-
ilar commands to the server. It also has single commands that expand
to several server commands. The client author may leave some server
commands out of the client's command set, seeing no need for them.

When you enter a command, your client converts it into something
the server understands and reacts upon. For example, the PART command

Your IRC Survival Kit 29

is a server command, but most clients also understand it if the user enters
it. However, for the user's convenience (or confusion), many client
authors have added a LEAVE command to the client, which for some
reason has fallen into wider use and does precisely the same thing. The
server's command list never added that command, though, so while you
can enter either LEAVE or PART, your client must send a PART com-
mand to the server. Whether you tell your client to PART or to LEAVE,
the client always tells the server you're "PARTing." You'll never notice
this distinction, unless you've gone to the trouble of reading technical
documents regarding IRC or are customizing your client with raw script-
ing (covered in later sections—you really don't need it yet).

The bottom line is, the server does not necessarily know the com-
mand your client accepts from you. Knowing the server's command set
can be a great help when you're using an unfamiliar type of client or
server or writing add-ons for your client.

2.6 Software Licensing

This is a good time to mention the licensing of software related to IRC—
the terms of use, what you may do with it and what not, and the cost.

Much software for Unix systems—including some clients and most
of the server software (ircd) used on the large networks—falls under the
GNU General Public License (GPL). Under this license, it may be freely
used, modified, and redistributed providing certain conditions are met.

Most Windows and Macintosh clients are commercial and are
released as shareware. Shareware is "try before you buy" software. You are
free to use it for a certain amount of time before paying for it and regis-
ter yourself as a user. The way this concept is implemented varies. Some
software, such as mIRC, is fully functional, and there is nothing to stop
you from using it forever without paying. It's an entirely honor-based
system, though it is not legal to continue using it after the trial period
has expired.

The other three common varieties of shareware are nagware, which
presents you with a "nag" screen at regular intervals telling you to register;
bombware, which loses part or all of its functionality after the trial period
expires; and crippleware, which has limited functionality and turns into a
full package only after payment.

Freeware clients are less common and generally not quite as good as
the commercial ones. Still, they're functional and cost you nothing.

IRC server software comes in a few different varieties as well, most of
them Unix based. There is no IRC server software for the Macintosh plat-
form, and Windows servers are commercial and rather pricey, so most
people turn to a free Unix solution for their server needs. If you're using

an Amiga or OS/2, you are in luck—there are freeware IRC servers
for both.

2.7 Basic Commands

Although they may mean little to you right now, I think this is a good
time to start with IRC commands. Most existing clients support these
commands. The exceptions are too few to merit extra attention. This
section is more helpful if you already have an IRC client installed on
your machine.

First of all, there is the concept of a command character. A client must
somehow recognize the fact that it's receiving a command. The commonly
accepted command character is the forward slash (/). On a standard
U.S. keyboard, this is the key to the right of the period (.). Modern clients
have inherited this convention from their older counterparts. The client
in turn sends commands to the server without the slash.

Because the slash is so widely accepted as the standard command
character in IRC, not all clients allow the user to change it. Even if you
can, there's really no point unless you have a good reason not to use it.
These clients consider everything not preceded by a command character
to be a message.

If you're familiar with the BBSs of old and related forms of online
chat, you'll remember how to issue commands by simply starting a
sentence with a particular word. With the extensive command set char-
acteristic of today's clients, you would have to remember a long list of
words that could not start a sentence. However, you just might run into
a client of this kind, so consider this possibility if you're trying to IRC
from an unfamiliar machine and the regular commands fail to work.

The basic structure of a command is as follows:

<command character>COMMANO parameters to the command>

For example, the WHOIS command looks like this:

/whois SomeNick

There is a command character (/), a command (whois), and a single
parameter to the command (a user's nickname). There must be no space
between the command character and the command, or unexpected things
may happen. There has to be a space between the command and its para-
meters, however. Commands are not case sensitive—you may use capital
letters, lowercase, or even mixed case, if such is your desire. WHOIS,
whois, and Whois all have the same meaning. Some commands accept

Your IRC Survival Kit 31

more than one parameter, while others take none. The command may
require parameters or they may be optional.

Here's a summary of commands you can't live without, and a few
more you could live without but wouldn't want to:

Command Required Optional Function

NICK

WHOIS

JOIN

SERVER

PART or LEAVE

LUSERS

QUIT

MSG

AWAY

Nickname

Nickname

Channel name

Server name

Channel name

Server name

Nickname(s)

and message

Message

Server name

Server name

Password

Port

Message

Changes your

nickname

Requests information

on a user

Joins a channel

Connects you to the

server specified as

a parameter,

disconnecting you

from another you

may be using

Leaves a channel

Shows information

about the server

and network

Disconnects and exits

Sends a private

message to that

nickname

Sets you "away." Use

it without the message

to cancel "away"

status.

That about wraps it up for what you need to know before connect-
ing. If you don't have an IRC client or don't like the one you have, the
following three chapters will help you choose one. Just a bit of advice:
Don't look for perfection—it doesn't exist in the world of programming.
If you have a client, never mind Chapters 3 to 5, and jump to Chapter 6.

WINDOWS IRC CLIENTS

Microsoft Windows is the most com-
mon operating system in use in homes

today, and there are a good number of
IRC clients available for use in Windows.

mIRC is by far the most popular client, although
runners-up include Pirch and Visual IRC. In
this chapter, we'll discuss all three of these.

3.1 mIRC

Version reviewed: 5.61 released September 23,1999
Home page: http://www.mirc.co.uk/
Setup guide: http://www.mirc.co.uk/install.htinl or

http://www.irchelp.org/irchelp/mirc/
The most popular IRC client program of this day and age is undoubtedly
mIRC. It's stable, easy to use, and has the bee's knees in features—what
else could a Windows user expect? Originally written by Khaled
Mardam-Bey in 1992, near the dawn of the Internet's "windows dial-up

era," it has since undergone constant updates to reflect users' wishes
and needs, as well as the unpredictable developments in the world of
IRC servers. The latest version is always available for both 16- and 32-bit
versions of Windows.

Users of mIRC make up the majority of IRC population, estimated
at 65 to 70 percent of the total. Its usability and software support make it
the number one choice for Windows IRC clients. Even those who are
not terribly computer literate find mIRC fairly easy to understand and
learn its basic functions quickly. It boasts a wealth of features, some com-
mon to all but the most basic of clients and some more for the
entertainment of the user rather than real function. For example, DCC
functions are not only supported in this client, but include a "resume"
feature that will pick up where it left off if a user gets disconnected dur-
ing DCC send or receive transmissions. Of course, this works only if the
other party/client also supports the resume function. However, since
mIRC is the most common client, this is usually not a problem.
Additional features not standard to the IRC protocol include fserve (a
multiple file server for DCC), a somewhat customizable graphical user
interface (GUI), sound, and colored text.

mIRC is nonags shareware, which means that you do not get a
reminder to register every time you open the client, nor will it cease to
function after a given period of time. However, to get the full benefit of
support and to ensure continued updates, it's best to pay the small regis-
tration fee of $20 (U.S.) or £10 (U.K.).

3.1.1 Setup and Use

Setting up mIRC is simple, even for a beginner. Download the program
appropriate to your operating system (mirc561s.exe for Windows
3.1/3.11; mirc561t.exe for Windows 95/98/NT), run the file, and open
the program. The first thing you'll see is a splash screen with informa-
tion about the creator of mIRC and registration information. At the
bottom left of the registration screen appears a little check box. Ticking
the box will ensure this screen doesn't pop up every time you run the
program — thus the "nonags" description.

Because of its overwhelming popularity, I'm going to give slightly
more detailed attention to mIRC's setup, including some recommenda-
tions, which may also serve as general guidelines with the other clients
in this chapter.

I wasn't all too happy with the default setup of mIRC on review.
Here's a list of settings I suggest, as well as some items you should check
after installing:

Add your info under File • Options • Connect. The full name and
email address don't have to be correct if you want more privacy.

Most people use the full name (the real-name, in IRC terminology)
for some other description or witticism. Enter the nickname you
prefer and an alternative in case the one you want is taken. I suggest
you also check the "invisible mode" check box for reasons I will
explain later on. You don't need the server list until we get to
Chapter 6, so you can ignore it for now.

These are the suggested settings under File • Options • Connect •
Options:

• Connect on startup: yes

• Reconnect on disconnection: yes

• Popup connect dialog on startup: no

• Move (server) to top of list on connect: no

• On connection failure options, default port number

File • Options • Connect • Local Info. The defaults here are the
best choice.

File • Options • Connect • Identd. You should enable the Identd
server. Enter your user id (which should match the userid part of
the email address you entered earlier). Make System say UNIX (not
Win32), and do not change the port to anything other than 113.
The two checkboxes should be checked, largely for security reasons.

File • Options • Connect • Firewall. This is of no use to you if you're
not connecting through a firewall. If you do have one, enter its
details here. The port will normally be 1080, but some firewalls use
23 — ask the firewall administrator.

File • Options • Sounds. This represents event beeps. Leave them
off unless you want your computer to beep more than you want it
to. They're evil.

File • Options • Sounds • Requests. The default is to not accept
sounds. This makes sense since the directory in which the sounds
are stored is empty to begin with. Change it when you start building
up a collection of sound files.

Windows IRC Clients 95

File • Options • DCC. Leave the default of "ask." Auto-get may
sound appealing but it lays you wide open to the risk of receiving
nasty files like the ones we saw in section 2.2. Leave everything else
in the DCC menu as it is—some options should not be changed
until you have a very good idea of what you want them to do.

File • Options • General. This is a collection of odd stuff you will
soon want to look at to customize your display. If you hate the
dashes between the text lines in the status window as much as I do,
this is where you change it.

File • Options • General • Servers. You need neither the finger nor
the DDE server, so resist the temptation. You may have a use for the
DDE server later on, but the finger server is unnecessary.

The mIRC help files have always been and still are very thorough,
although at times you may find it difficult to locate the help for a partic-
ular function. Consult the built-in help files first, but if you cannot find
what you're looking for, several channels on IRC offer help, such as
#mIRChelp and #mIRC.

3.2 Pirch

Version reviewed: 1.01 (Pirch98): Release date unknown
Home page: http://www.pirchat.com
Download: http://www.pu-chat.com/download/
FAQ: http://www.pirchat.com/faqs/
Pirch is (arguably) the number two Windows client, though the differ-
ence in popularity makes it a pretty distant follower to mIRC. It lacks
mIRC's luster and professional appearance, but remains a powerful
client, particularly for advanced users, with a scripting language that is
in some aspects superior.

Its large features, pop-up windows, and command lines give it a
rather cluttered appearance, so it won't appeal to people who don't
have an acre of screen space to devote to it. However, it's technically
quite adequate and definitely presents a valid alternative to mIRC. More
effort has gone into producing the 32-bit version, and development of
the 16-bit version ceased at version 0.87, although that is still functional.

Pirch also supports features not standard in other clients, including
the DCC resume function, a file server, text-to-speech (with supporting
software), and videoconferencing. The help files for the program are
outstanding, with information on how to use both the software and the
standard IRC text commands. And unlike the majority of IRC clients,
Pirch appeared to have no trouble at all with the LIST command on the

major networks: Rather than disconnecting due to the load, it pulled
the entire channel list without a problem.

3.2.1 Setup and Use
Like other Windows clients, Pirch has a standard Windows installation
process. Setting up the connection information, which includes multiple
profiles, is fairly straightforward. However, the choice of terms on the
dialog screen can be confusing. "Name" refers to the real name, and
"Username" requires a full email address. General program options are
not accessible until you have connected to a server on IRC, which I found
irritating. However, these options do get saved from session to session.

I found the current server list in Pirch hopelessly outdated but
editable, and the setup more comprehensive than mIRC's — Pirch sorts
the list by separate networks first, then by servers. The downside is that
you must close and then reopen the setup screen to save the new server
information. Also, the Ident server does not work properly. Regardless
of the user name you put into the Ident server box, Pirch sends the user
name included in your email address. The help files in this case are inac-
curate as well, stating that most servers do not require enabling the
Ident server, when the opposite is true.

Pirch is nonags shareware, and registration is $20 (U.S.), which enti-
tles the user to technical support. This client might please experienced
IRC users in spite of its quirks, but I don't recommend it for newcomers.
Many of its descriptive terms do not match proper IRC terminology, and
might therefore prevent newbies from comprehending IRC or commu-
nicating their needs clearly when seeking information from help
channel resources.

3.3 Visual IRC

Version reviewed: 1.10 Destructo Ware 4 released September 30,1997
Home page: http://www.visualirc.com/
Setup guide: http://www.visualirc.com/help/setup/
Tutorial: http://www.visualirc.com/help/tutorials/
Alternate tutorial: http://home.earthlink.net/~tm_crazy/

(Author recommended)
Visual IRC, or ViRC as it is commonly called, stood up admirably to the
test of Windows IRC clients. In addition to sporting such trendy little
toys as voice and videoconferencing, it holds up quite well against other
clients in standard operation and features. ViRC is comparable to mIRC,
with all the standard functions and several nonstandard ones, including
the ever-popular fserve, or XDCC as ViRC calls it. I only experienced
one big problem after I installed it—I could see my own text, but no

Windows IRC Clients 37

one else's! I fixed the bug easily, however, after reading ViRC's help
files, in particular the section entitled "What to do if you have prob-
lems." The help files as a whole are a little outdated and don't cover
some of the newer features, but a quick trip to a tutorial source can
answer the vast majority of questions about the program, including
these new additions.

ViRC is freeware, which means it costs nothing to use, ever. It is no
longer updated. However, the ViRC Web site is continuing to distribute
the latest version, and excellent support is still available from the URLs
mentioned above and from volunteers in the #virc IRC channels on
EFnet, DALnet, and Undernet.

3.3. 1 Setup and Use
Download the zipped file from the distribution site and create a direc-
tory for extracting its contents. The rest of the process is simple — just
click the ViRC icons in the Programs list, and you're on your way.

Starting up ViRC is pretty simple. The first time you open it, you'll
receive the setup screen, which requires input before proceeding. The
rest of the setup follows the standard for newer Windows software, with
expandable directories and lots of check boxes, not unlike mIRC. And
as is the case with mIRC, it's best to go through each section and check
your defaults before connecting to IRC for the first time. »

The server list for ViRC is quite small, but you can add more servers
easily by clicking the down arrow on the server box, opening a server list
window. The regular IRC commands, such as SERVER, WHOIS, and so
forth, seem to work fine, and a few shortcuts are available as well; some
you'll find in the aliases section of the program, and others you'll locate
by experimenting or asking in #virc.

Like many clients, ViRC has a tendency to disconnect from the
server when pulling a LIST from one of the major networks, and when
you place someone on IGNORE, you may need to remove the ignored
address from the ignore list in the setup.

One thing I really enjoyed about the program was the drag-and-
drop option for the four most common mode changes, namely OP,
DEOP, KICK, and BAN. At the bottom of the screen is a Drag and Drop
Control Center containing icons for these mode changes. Performing
these functions was as simple as dragging a nick (or multiple nicks) from
the channel nick list to the appropriate icon — the program did the rest.

ViRC also has tremendous scripting capabilities. Although they're
a bit more complicated than mIRC's, you can code in VBscript,
JavaScript, and probably any other scripting language you care to install
and use. Experienced ViRC users have practically rewritten the program
for any number of uses, making their own versions of the program much
more powerful.

Overall, ViRC is a great little Windows client and an excellent alter-
native to mlRC. You certainly can't beat it for the price! On the
downside, the program won't address new functions and developments
in the IRC world, because it's no longer updated.

3.4 Other Windows Clients

It's really surprising how few decent clients there are for a platform as
popular as Windows. Apart from the three we've taken a closer look at,
there is Xircon, which enjoys a good reputation, as well as the TCL-
based Zircon, which I find totally puzzling but which some users really
like. IrcII and BitchX are clients originally made for Unix machines, and
the attempts to port them to Windows have been unsuccessful and
unpopular, respectively.

One client I will-warn you against is Microsoft's Comic Chat. Other
users will kick, insult, and abuse you all over IRC if you forget to turn off
the Comic Chat feature. What's more, in everyone's eyes, you will
deserve the punishment. Why? It's widely regarded as a gimmicky toy
client for kids who got a computer for their birthday. If you ask a boring
old fart like me, it's an unholy creation designed to destroy IRC.

As for the rest of the clients, they are remarkably few, considering
the number of people who ask for help writing one. By now there
should be hundreds, but it's probably better that there aren't.

Windows IRC Clients 39

UNIX CLIENTS

Unix was and is the basic operating
system for computers on the Internet,

and the IRC world is no exception.
Despite the growing use of Windows and

other systems on the user level, the majority of
machines used for heavy-duty tasks such as
WWW or IRC servers use Unix. Many people
still rely on shell accounts or run Unix-style
operating systems like Linux or FreeBSD on
their own machines. The term Unix-style sys-
tems (or Unices or Unixes) defines a family of
operating systems with similar features and
functionality that have evolved out of the origi-
nal UNIX Bell Laboratories developed in 1969.
UNIXwas Bell's original term, but Unix is gen-
erally accepted and—semantics aside—will

suffice. By the way, the different kinds of Unix are called flavors. This
chapter includes some basic Unix commands you really can't live
without if you rely on such a system to get on IRC.

For a long time, ircll—an IRC client for use on Unix systems—was
the standard-setting client and the most widely used one on which oth-
ers were based. It has spawned a number of variants, some of which have
become distinctly different from their "parent."

Less widely used but also powerful clients are available for emacs
and the X Window System (a graphical user interface for Unix-style sys-
tems, not to be confused with Microsoft Windows). People who prefer to
work with Perl will feel comfortable with sire, an excellent Perl client.

This book will discuss ircll more since, besides the fact that it's the
most widely used Unix client, almost everything that applies to ircll is
valid for ircll-based clients, too. Once you're familiar with ircll, the
other, more complicated clients, as well as clients for other platforms,
become more approachable.

Now take a deep breath and hang on tight—Unix isn't easy and
you're about to jump in the deep end. Still, it's straightforward and logi-
cal, so applying simple rational thought to a problem will solve it more
often than not. Most of the instructions here apply to people who are
using an account on someone else's machine. I'm pretty confident that
those of you who run Linux, FreeBSD, or some other flavor of Unix on
their own machines know how to install a package. Please don't prove
me wrong or I'll have to rewrite this chapter in the next edition.

You 'II encounter lines beginning with a $ (dollar) character for command exam-
ples. This merely indicates a command line (prompt). On your machine it could be
a $ (dollar), % (percent), or > (greater than) sign and some text or other characters
may precede it. If it's a # (hash mark), you don't need me to tell you what it is,
since you 're the superuser. Don't tell me—I have a talent for stating the obvious.

4.1 Getting a Client

Ircll is available from practically every large public FTP or website carry-
ing Unix programs and utilities. Other clients aren't that widely available,
but you can find them without too much effort. If downloading isn't your
cup of tea (yet), skip back to section 0.4 and check out the basics of FTP
and the Web. Appendix D contains a list of good FTP sites.

If you have a disk quota (a limitation on the amount of data you
may store on the system), check it by typing quota -v at the shell prompt
and make sure you have enough space available. Smaller-sized clients such
as sire, smallirc, and tinyirc require a minimal amount of space, but
larger clients need much more. You should have at least 3MB free to

install ircll (more for the 2.9 and 4.4 versions), and as much as 7MB
for advanced ircll-based clients. If you lack the space required, use the
system's /trap directory (cd /tmp) to download, unarchive, and possibly
compile the package. Later, copy only the necessary files to your home
directory, making sure you have enough space to hold them. You will
need no less than 500KB of disk space for the resulting program file,
possibly as much as 1.5MB in case you're unable to downsize the file
with the "strip" utility.

The following FTP sites carry practically all Unix clients:

ftp.asu.net
ftp.undernet.org
ftp.funet.fi

4.2 ircll

Versions reviewed: 2.8, 2.9, and 4.4 series
License: BSD type
ircll is the ideal choice for users who want a client that can grow along
with them, adding features as they learn how to use them. It is not a
user- friendly client, but simple low-level scripting can easily correct
this; a beginner can get the hang of it without much effort. It's essen-
tially a straightforward client capable of development into a complex
and versatile tool.

ircll is quite adequate as is, but its main asset is a powerful scripting
language, enabling a user to configure it to do practically anything with
speed and a high level of efficiency. Don't worry about the scripting part
just yet—you're not being asked to program a client. Scripting will come
in handy, though, as your IRC skills develop. Chapter 11 covers scripting.

You have a choice between the classic version, 2.8.2, and later ones,
namely the 2.9 series, 4.4, and 4.4H. Updates are infrequent and each
version tends to present new bugs while fixing old ones. 2.8.2 is an excel-
lent choice if you want a rock-solid client with few, tame bugs and don't
mind missing some of the cutting-edge features in later versions.

EPIC (this stands for Enhanced Programmable IRC-II Client) is a
frequently updated variant of ircll with some added features, including
extra commands, color support, and more sophisticated scripting func-
tions. It's a valid option for beginners and advanced users alike, but does
tend to lack the stability of regular ircll.

4.3 sire

Version reviewed: 2.2
License: GPL
This client is written entirely in Perl (a modern and advanced program-
ming language), and therefore requires that you have a recent version
of Perl on your system. Its advantages lie in the small amount of space it
requires and its almost infinite configurability for anyone who cares to
play around with Perl.

The program sire conies with precise installation instructions and
a user-friendly installation interface. As long as Perl is present and func-
tional on the system, installing and using sire should be easy. Just untar
and unzip it, read the instructions, and you're practically set.

Its capabilities include almost every feature other modern clients
offer, and a competent Perl programmer can easily expand them. For
the adventurous souls who prefer Perl to C and like hacking around, this
is the ideal choice. This may also appeal to some Web designers who use
Perl anyway.

4.4 BitchX

Version reviewed: 75pl
License: BSD type
BitchX (please excuse our language, but that's really the client's name)
is arguably the most popular ircll-based client and actually evolved out
of an add-on script for ircll. It was eventually incorporated into the ircll
code thus developing a new, unofficial "strain" of ircll that has been
evolving separately, diverging a bit further with each release. While the
course of BitchX's development has taken it far from the original, though
most of the principles of using ircll still apply. Recent versions of BitchX
are based on EPIC rather than the original ircll.

BitchX codes most features that previously required scripts into the
client, allowing for more speed and ease of use. You can configure almost
all display options through variables, and the scripting language is largely
compatible with ircll and has had more functions added in the course
of development. In its current state, it should be able to perform most
functions a user would want without any add-ons. But BitchX justifies its
name when you try to configure it.

You should give preference to BitchX only if you're already familiar
with running ircll or some other type of advanced client and intend to
use it for operating a channel (or even a server—it's becoming increas-
ingly popular with IRC operators as well as regular users). Setting it up
is tricky, and I recommend trying it out with a precompiled binary (see
4.5.4) before attempting to install your own client in order to discover

the way it works and the settings you prefer. Most of the client develop-
ment is done on Linux systems, and there may not be a binary available
for your operating system. If you can't find one and have another means
of connecting to IRC, try asking in the #BitchX channel on EFnet (follow
the instructions in Chapters 6 and 7 if you don't know how)—generally a
number of experienced BitchX users hang out there, including its author.

Documentation in the distribution is insufficient and doesn't cover
all aspects of the client, nor is help available for all the functions and
commands added more recently. However, BitchX uses the ircll help
files by default, so that covers commands the two have in common. Several
commands use a different syntax, however, so the ircll help files aren't
100 percent accurate for this client.

The default options are unlikely to satisfy your needs completely,
so it's advisable that you carefully edit the config.h file (see 4.5.2) and
make sure you have enabled what you consider necessary while disabl-
ing other settings (such as a link looker) liable to consume excessive
machine or network resources or violate server rules. You'll probably
also want to create and edit a BitchX.formats file to customize the dis-
play and offset the psychedelic effects of the gaudy default color
scheme. No, really, it's terrible!

You should take one more thing about BitchX into consideration,
concerning system resources. Under normal operating conditions,
BitchX is more economical with CPU time than ircll, but proves to be
quite a memory hog. If you have limited memory available, it may not
be the ideal option.

4.5 Installation of ircll and Related Clients

Installation is an often complicated process. You don't have to a Unix
guru, but it does help. The following part is for those who can't install
a package with their eyes closed and need some help with it. Ircll, EPIC,
and BitchX install in practically the same way, so they'll be treated as
one here.

4.5.1 tar, gzip, and Feather
Most software available on the Internet uses some compression format
to reduce storage space and the bandwidth needed for transfers. Zip
files and self-extracting executables are very common for DOS and Win-
dows software, while Macs widely use Stuffit. They all serve the same
purpose, but nobody has agreed on one format for all platforms.

The compression formats you'll encounter for Unix software are
mainly Unix compress (with a .Z extension) and gzip (with a .gz exten-
sion). A more modern form is bzip2, which offers substantially higher

compression rates resulting in smaller files, but takes up more system
resources (and time) to compress and decompress.

It's likely you'll find more than one package for the same client
on the download site you choose. In order to download the correct
package, you should know which decompression method is available
on your system. If you're not sure, try using the whereis command at
the shell prompt.

$ whereis gzip
gzip: /bin/gzip
$ whereis uncompress
uncompress: /usr/bin/uncompress

If the command does not return a path at all but only repeats the name of
the command, the utility you tried to find is not on the system. You can
also try the which command in the same way. Note that gunzip and gzip
are two faces of the same coin, but the latter is not available on all systems.

If you have both compression utilities, you should use gunzip because
it has a significantly higher compression ratio and you'll save time down-
loading the package. Good sites should have both the .gz and .Z versions.
If the one you need isn't available at the site you chose, try a different one.

Here's how you decompress a file. If one method doesn't work, try
the other:

File Type Command

.gz gunzip file name

.gz §zip ~d '̂'e name

.2 uncompress file name

.bz2 bunzip2 file name

.bz2 bzip2 -d file name

You need not specify the characteristic extension (.Z, .gz, or .bz2).
(Note: Remember that Unix is case sensitive. Commands and file names
lacking the proper capitalization will fail.)

None of these compression utilities merges multiple files into a sin-
gle archive as PKZip or ARJ do, so you'll need a second utility. Unix-style
systems use just one widely, which goes by the name of tar. This stands for
Tape Archive, originally designed for use with system backups on tape
(it has nothing to do with road construction). Users colloquially refer to
an archive created with the tar utility as a tarball. Such an archive doesn't
need a particular extension, but using a .tar suffix is a widely accepted
convention. Files on many systems can also be decompressed by tar, so
you can often use one command to decompress and unarchive a file.

Most files you'll download will combine tar and a compression utility;
you can tell which utility from the extension. When in doubt, use the
"file" utility, which tells you what kind of file it is.

.tar Uncompressed tar file

.tar.gz Gzipped far file

.tar.Z Compressed tar file

,tgz Gzipped tar file; it expands to a .tar file when decompressed

.tar.bz2 Tar file compressed using bzip2

How you unarchive and decompress them depends on the system and
the utilities available on it. Not all work in the same way on all flavors of
Unix. The basic syntax is:

File Type Command

.tar tar xvf file name (use this if you've decompressed the file)

.tar.gz tar zxvf file name

.tar.Z tar zxvf file name

.tgZ tar zxvf file name

.tar.bz2 tar Ixvf file name

Full file names are required by tar. You may not omit the .tar extension
if there is one. Different systems may also require the following:

• Using a hyphen before the tar flags (for example, tar -xvf)

• Uncompressing the file before untarring it

You would then see a list of file names scrolling on the screen (unless you
omit the 'V" from the tar flags). This says which files you're extracting to
which path. If you have space restrictions, you may need to delete the tar
file once you've extracted the files it contains, in order to make more
space available for the installation.

Now you can begin the installation process. The install file included
in the client package contains a lot of information. Change to the direc-
tory to which you extracted the files (Is -Id tells you which one it is). From
within that directory, run the GNU configuration script (a shell script,
not to be confused with an ircll script) by typing:

$./configure

(In case you're wondering about feather, there's no such thing. I just
thought it looked kind of cute in the title.)

After extracting the files from the archive and reading the INSTALL
file, you'll have a choice between the simple way of setting it up or cus-
tomizing it.

4.5.2 Configuring ircll
You do the quick and dirty way within the directory to which you extracted
the source files:

$./easyinst

This method attempts to do most of the tasks the next few paragraphs
describe, but has little flexibility. It's a decent choice if you're installing
ircll into your home directory and not the system. I believe it's better to
do it like this:

$./configure

This method examines your system in order to set up Makefile correctly—
the compiler consults this for the compile. It results in a message declar-
ing the process is complete (unless the system has a shoddy setup with
which the compiler is unable to work). Then it says you're ready to start
the compiler unless you wish to change some of the defaults by editing
the config.h file in the /include subdirectory. This isn't absolutely neces-
sary, but I do suggest editing it and changing certain options in order to
make the client more suitable for a beginner or just to add some useful
options. Open an editor (any editor—pirn is more suitable for
beginners) to edit the file:

$ pico -w include/config.h

You can change the options by substituting #undef for #define or vice
versa—^define sets an option on, while #undef turns it off. Some instruc-
tions are in the file. If you don't understand them, leave the options they
describe unchanged. You switch other options by alternating 0 and 1,
respectively, for off and on, while you set still others with text strings.
The settings I recommend changing are the following:

ttdefine DEFAULTJERVER "change.this.to.a.server"

ffdefine DEFAULT CHANNEL NAME WIDTH 10

Enter the name of the server you'll be using most

frequently. This can also be a space-separated list

of servers. Keep the quotes.

Change this to 12 or 15—it will help with

channel lists.

tfdefine DEFAULT_CLOCK_24HOUR 1

#define DEFAULT_CONTINUED_LINE

tdefine DEFAULT_DCC_BLOCK_SIZE 512

fttefine DEFAULT_EICHT_BIT_CHARACTERS 0

tfdefine DEFAULT_HIDE_PRIVATE_CHANNELS 1

tfdefine DEFAULT INPUT PROMPT NULL

tfdefine DEFAULT_LASTLOG 44

#define DEFAULT_MAIL 0

tfdefine DEFAULT_NOVICE 1

ttdefine DEFAULT_SHOW_CHANNEL_NAMES 0

#define DEFAULT VERBOSE CTCP 0

Change the 1 to 0 if you don't like "military"

time. I'm European and I love it, but civilian

Americans generally don't.

Personally, I hate the default + (plus). This is the

character you'll see at the beginning of the next

line to indicate that it continues, or wraps, from

the previous one. I use two spaces instead

between the quote marks.

A more reasonable number nowadays is 2048.

Use 1024 if you're installing it on your own

machine and a 28.8-Kbps or slower dial-up.

You'll need to change the value to 1 if you nor-

mally use an 8-bit (extended) character set. This

applies to people who use a special character set

in their own language.

Change the 1 to 0. If you keep the 1, you will not

see the channel's name displayed in your status

bar unless the channel is public.

Setting the value (NULL) to $T> makes the nick-

name or channel to which you direct your

messages appear at the beginning of the input

line (unless you perform a command to override

this option).

Change 44 to 500, 1000, or any number you

like. This is the number of past messages that stay

in the buffer for you to recall with the LASTLOG

command.

If you do not receive mail on the machine, leave

this setting as is. Setting it to 1 tells you when you

have new mail, setting it to 2 also shows the

sender and subject. I prefer 2.

More-advanced users should set this to 0. Total

beginners can keep the 1.

Enable this (replace 0 with 1) to see the nick-

names present when you join a channel.

Substitute a 1 for the 0. This option displays

incoming CTCP requests—more about those later.

You can override all these options later—you are by no means bound
to them.

Unix Clients 49

4.5.3 Compile
IrcII and clients based on it are written in the C programming language.
In order to create an executable file (binary), you have to convert the
C code into something the machine understands. That's what the com-
piler does for you.

What you'll need in order to do this is access to a C compiler (cc or
gcc). Check for availability by typing cc or gcc at the shell prompt as you
did for the decompression programs. If the result is a message saying
"Permission denied," the system has been configured not to allow you to
use the compiler (compiling can take up too many system resources, so
many system administrators prefer to disable it for the users). The con-
figuration script you'll need also looks for a compiler and complains very
loudly if it can't find one.

If the configure script didn't complain, you're ready to compile.
In case you missed it when reading the INSTALL file, here are the basic
commands:

$ make
$ make install

If you're not used to compiling, be aware that masses of computerese
gibberish will flood your screen. How fast the flood moves depends on
your machine's horsepower. On a 486 or low-end Pentium, it may take
as much as half an hour. You'll probably see lines saying "Warning,"
referring to something the compiler didn't like in the program and
pointing to the responsible file and line. You can usually ignore these
warnings. However, if make exits with a fatal error, you have a problem,
and the compile has failed. Such a case goes well beyond the scope of
this book, and your best option is to follow the instructions in the next
section and consult a good help channel on IRC (see 16.6), or consult
your sysadmin (system administrator).

4.5.4 Binaries
"Binary? Isn't that a kind of star?" Well, yes, but in this context it has
more to do with binary numbers (remember them from school—they
have 0 and 1 as their only digits?). Here we're talking about executable
files you can run right out of the box.

If you have no compiler, you may skip the section on compiling and
configuring and see whether you can obtain a ready version of the pro-
gram (known as a precompiled binary). A precompiled binary must be
appropriate for your system. If, for example, you are using a SunOS
machine, getting a Linux binary does little good, and vice versa—after
all, square bolts don't fit in round holes. If you're not sure about the
operating system, type the following at the shell prompt:

$ uname -rs

Output might look a bit like this:

Linux 2.0.34

This would mean you're using a machine running Linux, version 2.0,
revision (or patch level) 34. This is just an example—it could just as well
read "FreeBSD 3.0-RELEASE," "SunOS 5.5," or whichever other flavor of
Unix the machine uses. You can generally ignore anything beyond the
minor version number (the second part of the second field) so, in this
example, you could just say interpret this as Linux 2.0. Often the major
version number is enough to select a binary, so you might be able to use
a Linux 2.1 or 2.2 binary in this case.

Precompiled binaries are generally less widely available. You should
only use them as a last resort. Since someone else compiled them, they
may have default options that don't suit you, and you'll have to do some
extra work to change those options; or the binaries might not work on
your machine. I admit I still have a binary that points to a Polish server
by default, available on an FTP site (a Polish IRC server administrator
contributed it), so look out.

One thing you could try is asking the system administrator for tem-
porary access to the compiler in order to perform this task. Not all
sysadmins appreciate IRC as much as we do, however, and they may con-
sider it a waste of resources because of its largely recreational use. Few
sysadmins will allow a work machine's precious memory and CPU cycles
to be hijacked for the purpose of idle chat.

4.5.5 Setting the Environment

Applications draw some of the information they need from two sources
when you run them. The first source is environment variables. They define
the properties of the system and a user's general options. Some concern
the whole system and many programs need them, while others are
entirely up to the user and only one program requires them—they may
even be optional.

IrcII and clients based on it use three user-defined environment
variables; they are called IRCSERVER, IRCNAME, and IRCNICR They
control your default server, realname (this is part of your personal infor-
mation while you're connected to an IRC server—more about it in
Chapter 6), and nickname, respectively, overriding any compile-time
defaults. Command line options can override them in turn.

You can set these environment variables from the command line and
apply them to the IRC session run thereafter; in this case they disappear

when you log out. This is the best way to use a temporary set of environ-
ment variables.

For a permanent configuration, you will have to add them to your
log-in file—the file read when you log in. Which file this is depends on
the system's setup and the shellyou use.

Shells can be loosely grouped into two families, depending on the
commands you need to set environment variables. The first is made up
of csh and tcsh. The second comprises bash, ksh, zsh, and sh. Both fami-
lies include additional variants of the above, which are too numerous to
fit into in this book. The most widely used are bash and tsch. While ksh
and csh are not uncommon, their more modern brethren have largely
displaced them.

Use the following command to find out which shell you're using:

echo $SHELL

I purposely left out the $ at the beginning of that command line
because it is characteristic of a certain kind of shell. The response you
will get will be the full path to the shell; you're interested only in the last
part—that is, if it says /bin/bash, your shell is bash. If you wanted to set
the IRCNAME environment variable, this is what you would do for csh
and tcsh:

% setenv IRCNAME "blah blah"

For bash, ksh, sh, and so forth, it would be:

$ IRCNAME="blah blah"

$ export IRCNAME

Proper capitalization, spacing, and use of quotes are essential.
The log-in file to which you add the above lines is not absolute,

but can vary from system to system. For sh, bash, and ksh it's usually
called .profile (note the leading dot). If there exists a .bashrc or
.bash_profile, use it since it takes precedence over the .profile. For
csh and tcsh, use .cshrc and .tcshrc respectively. If there is no .tcshrc,
tcsh falls back on .cshrc. In all cases, if none of these files exist in your
home directory, create the appropriate one by editing it.

Apart from the basic three variables, some ircll-based clients also
understand the IRCHOST and IRCUSER variables, which are used to
define the host name (on a machine that has more than one) and the
user name, if it can be changed. Plain ircll understands neither.

4.5.6 The .ircrc File

Many programs read a start-up file when you run them and draw some
extra information from them. These re files (run command files) are equiv-
alent in function to the INI files Windows uses. Here we'll look at personal
re files with user-specific client commands. Personal re files are hidden
files (beginning with a dot) and reside in the user's home directory.

The re file ircll reads is called .ircrc. EPIC uses the same file. BitchX
looks for a .bitchxrc but falls back to .ircrc if it can't find one. The con-
tents of an re file can be any set of client commands. It's normally read
once a successful server connection is first made. It can load before the
connection is made, but returns errors if commands in it are also sent to
the server.

You can use the re file to override default client settings—for example,
you could set MAIL to a value of 1 if the client has been compiled with 0
as the default and you don't like it that way. Apart from SET, which you
use to change client variables, you can also add LOAD commands to
load scripts automatically. Although .ircrc is really a script and you can
include scripting commands like ALIAS and ON in it, it's good to keep
those in separate files you can load from the .ircrc. A very simple .ircrc
file might look like this:

SET MAIL 1

SET AUTO_WHOWAS OFF
LOAD blah.ire

This changes two variables—MAIL and AUTO_WHOWAS—and then
loads a script file called blah.irc. Don't concern yourself with scripts yet,
as Chapter 11 is dedicated to them. Note that the re file doesn't use any
command character.

Unix Clients 53

IRCING ON THE MACINTOSH

I'm not a Macintosh user, never have
been and probably never will be. I will

not pretend to be one either. Instead
I'll turn over the stage to an expert on the

subject. I'm very pleased to have his coopera-
tion and insight as part of this book. Ladies
and gentlemen, Joseph Y. Lo and his ultimate
guide to Macintosh IRC clients.

5.1 Mac Users Do IRC with Style

As a Macintosh user, you have one of the best environments for IRC.
You have access to a user-friendly interface and a wide selection of fast,
powerful software. Best of all, you get to IRC on the Mac OS, one of the
most robust and fun operating systems in the world.

For the most part, everything you've read about general IRC so far
applies to Mac clients as well, except for a few important differences.
While most Mac clients support the IRC protocol in RFC 1459, including

all of the most commonly used commands, they tend to have many
additional features. For starters, all of them, like mIRC for Windows,
are graphical user interface (GUI) clients. This means that in addition to
having text conversations and commands, you can also interact with the
program using menus, buttons, pictures, and sounds. This seems appro-
priate to a Mac IRC client, or else you might as well just telnet to a Unix
shell account and use the fast, reliable, text-only ircll client. Another
feature common to most Mac IRC clients is that DCC file transfers are
set to MacBinary format by default. This is handy if you exchange files
only with other Mac users, but it is not compatible with other operating
systems such as Windows or Unix. Fortunately, all you have to do is go
to each program's DCC options and set it to raw binary mode or the
equivalent.

How do you get a Mac IRC client? Most large Internet service
providers (ISPs) automatically bundle an IRC client into their software
package. The bad news is that sometimes they choose a really out-of-
date, buggy client out of ignorance or stinginess. The good news is that
all of the better Mac IRC clients are shareware, so you can easily upgrade
yourself. You can download shareware off the Internet and test-drive it
for free. If you choose to keep using the program after a month, you are
obligated to pay the program's author a shareware fee of typically less
than $30—still much less than a typical commercial program would cost.
By registering yourself, you sometimes release intentional restrictions
designed to encourage you to do the right thing, and in any case you
encourage the author (typicallyjust a regular person who does program-
ming as a hobby) to continue doing good work. Unlike many
commercial software programs, all of these Mac clients come with free
support and free updates.

5.1.1 General Downloading Instructions

So how do you download all this wonderful, inexpensive software? Most
ISPs should set you up with a Web browser (typically Netscape or
Internet Explorer), which is all you need to download the installation
package for each program off the Internet. They should also give you a
free program called Stufflt Expander to decode and decompress the
installation package. You can usually just select a download link on a
Web page. The file gets saved to your disk, and Stufflt Expander
launches automatically, producing either an installer program you may
execute, or a new folder containing the installed IRC client itself. If this
is the case, thank your ISP for doing their job and skip the rest of this
section. Otherwise you need to read on, or call your ISP for help.

Most Mac software on the Internet is available in two forms: as a
compact MacBinary file of zeros and ones with a name ending in the
.bin suffix, such as ircle3.0.sit.bin, or as a larger but more flexible Bin-

Hex text file with a name ending in .hqx, such as ircleS.O.sit.hqx. In
either case, you need Stufflt Expander to handle these files. If you don't
know where that program is, use Find File under your Apple menu to
search for it on your Mac's disk drive. In the unlikely event that you don't
have it, you can get it from Aladdin Systems (http://www.aladdinsys.com/
expander).

Once you have Stufflt Expander set up, you need to save the file you
wish to download, which normally happens when you select a download
link on a Web page. If doing so brings up a long page of alphanumeric
gibberish, use your browser's Save As feature under the File menu to

• save that gibberish to your disk manually as a text file. Within the
Finder, you may then drag and drop the saved file over Stufflt
Expander's icon, and Stufflt should take care of the rest. The result may
be an installation program, which you simply double-click to execute, or
else you may see a new folder containing the desired programs with
their help and support files.

5.1.2 Choosing the Right Client

The following sections describe several major Mac IRC clients. It is a testa-
ment to the creativity and talent of Mac shareware programmers that
there are so many choices available. While many discerning users consider
Ircle the best client, no single client enjoys an overwhelming dominance,

- as is the case with mIRC for Windows or ircll variants for Unix.
So how do you know which client to choose? I will briefly describe

each client below in terms of its design philosophy, unique features, and
some pros and cons. It's really a matter of personal taste which client
you prefer. You should always look for certain basics when shopping
around, which I will refer to as the four S's: speed, stability, standards,
and support.

• Speed: The client should be responsive to commands and should
not lag your other applications.

• Stability: Under typical use, it should never crash or misbehave.

• Standards: It should support all IRC commands and protocols, thus
ensuring that you can interact with other people using similarly
standardized clients.

• Support: Finally, whether it came free or you paid for it, somebody
must support it, which means they are responsible for releasing
updates, fixing inevitable bugs, and answering your questions.

Beyond these basics, remember—this is IRC, not rocket science.
Accordingly, the client should be easy to set up and use, have an
appealing look and feel so you actually enjoy using it, and support any
special features you might fancy. Just don't become too distracted by
the rampaging featuritis that has beset most clients, and don't forget
your four S's.

What do you need to run these Mac IRC clients? All of them have a
reasonable memory size, typically from 1MB to 2MB, allowing them to
run on most Macintosh or Power Macintosh computers. Unless other-
wise noted, all will run on System 7.0 or higher, though as time goes by
more are beginning to require features found in Mac OS 8. If you can
browse the Web, you probably have the appropriate networking software
for IRC, namely either MacTCP 2.0.6 or Open Transport 1.1 or higher.
You of course need an Internet connection, such as a permanent, direct
Ethernet connection at your school, workplace, or home, or
alternatively a dial-up connection to an ISP.

5.2 Ircle

Home page: http://www.ircle.com
Setup guide: http://www.ircle.com/reference
Another setup guide: http://www.irchelp.org/irchelp/mac
Scripts, mailing lists, and links to help pages: http://www.ircle.com/

related.html
Ircle is the godfather of Mac IRC clients. It has been around the longest
and has the most features, making it the de facto gold standard against
which all other clients compare themselves. Since the mid-1990s a new
author, Onno Tijdgat, has completely rewritten and redesigned it. IRC
experts and novices alike consider Ircle a good choice because it deliv-
ers well-balanced performance in terms of our four S's. Though it's no
speed demon and appears somewhat sluggish compared to ShadowIRC,
Snak, or MacIRC, it is among the most stable Mac programs. It adheres
closely to standards for maximum compatibility with people using other
clients on Macs or even other platforms such as Windows. It accom-
plishes all these basics and is still reasonably easy to set up and use. As
for support, this is where Ircle really shines. It is one of the most fre-
quently updated clients on any platform, and thanks to its longevity and
popularity, it offers a wealth of Web sites, free scripts, help channels,
and so forth far exceeding the support for all other Mac clients.
Figure 5.1 shows a screen capture of a typical Ircle session. (A larger,
color version of all figures in this chapter may be found at the
http://www.irchelp.org/mac Web site.) The two large windows on the
left show simultaneous connections to EFnet #irchelp and Undernet
^macintosh. The top right window serves several different functions: it

lists the users in your current channel, includes easy to use mode toggle
switches, and has user-configurable buttons for common actions such as
op, deop, kick, and ban. The lower right Connections window gives you
a very clear interface to each connection. By selecting one row in the list
of connections and clicking the Connect button, Ircle can connect you
to a specific server with the nickname and username of your choice,
with optional commands such as joining your favorite channels. Finally,
the bottom Inputline window is where you type commands and conversa-
tion, with very easy-to-use palettes for color, boldface, or other text formats.

Figure 5.1: A typical Ircle session

Ircle boasts many useful, innovative features. It was the first Mac client to
allow simultaneous connections to different networks in different win-
dows, so you could chat on Undernet and EFnet at the same time, for
example. It was the first to come up with colored text; graphical "face"
representations of the people to whom you are talking, file servers to
exchange files, synthesized speech, and video streaming. Ircle also
includes many channel protection features normally reserved for
advanced scripts, including lists of friends and enemies, with options
ranging from giving ops to kicking the person, clone detection, preven-
tion of server ops, flood protection, mass features (op, deop, unban),
and automatic logging to a single file or separate daily folders. Most peo-
ple will be perfectly content with Ircle's many built-in features, though
further customization is possible through a scripting environment that
uses AppleScript—nice compared to most clients' propensity for invent-
ing their own peculiar scripting language.

Ircle is shareware. You get the usual 30 days of unrestricted use,
after which you become limited to ten-minute sessions. This "quitware"

IRCing on the Macintosh 59

approach is intentionally annoying, but the registration fee ties
ShadowIRC as the lowest-cost Mac client, and in return you get a
professional-quality, well-supported, frequently updated product.

5.2. 1 Setup and Use
Download Ircle either in MacBinary format or in BinHex (see section
5.1.1 on general downloading directions) from its home page. Once it is
properly processed you should have a folder entitled ircle <version num-
ber>. Open the folder. The Ircle application itself is called irclecversion
number> US (note that there is no space before the version number) .

For people who want to dive into IRC right away, a folder called
Chat Channels contains a dozen or so bookmarklike files, each allowing
you to chat immediately in a specific channel on a specific network. Just
double-click any of the files and Ircle automatically launches, connects
to the network, and joins the channel. This clever and convenient fea-
ture is unique to Ircle.

Setting up Ircle to use your choice of servers is a little more work
than with most other clients. Launch the Ircle application to see a con-
sole window for server messages, a narrow input line area where you
issue commands and chat, a user list window, and a connection win-
dow, which is where you connect to an IRC server. Experienced IRC
users may immediately use the input line to enter commands such as
/server irc.some.server.com to get connected. Otherwise, use the con-
nection window to create a permanent connection configuration.
Within the connection window, each row represents a possible connec-
tion. Select the first row and edit it by double-clicking or using the Edit
button. You may now select a different server and enter your personal
information (at least change the nickname from the default). When
you close the edit window and return to the connection window, sim-
ply select the Connect button to make the connection to the desired
server. Once connected, you may issue commands such as JOIN or use
the menus instead.

You can accomplish most of Ircle's functions with simple buttons or
menus, or you can use standard commands such as WHOIS for more
precise control. There are a few deviations from standards. Instead of
PING, you must use CPING to measure the lag between you and a nick-
name or channel. To ignore somebody who is harassing you, use
/ignore mask, where the mask is in the nick! user @host format. If you
just specify a nickname such as /ignore John, the command ignores only
the nick John. Currently, once you have set an ignore, everything from
that mask gets ignored, as there is no facility for ignoring only certain
types of messages, such as private versus public. To unignore, you must
use /ignore -mask (where mask is whatever you specified previously) .

r
There is also a user interface in the Preferences menu where you can set
or remove ignores.

The only serious problem with Ircle is its inability to LIST channels
properly. On large networks such as the Big Four—EFnet, IRCnet,
Undernet, and DALnet—trying to list the thousands of channels with
Ircle always causes you to disconnect due to the flood of information,
while other clients can usually manage the feat if you are on a direct
Ethernet connection. On Undernet, you may use server-side filtering to
list only those channels with more than five people, which shortens the
list sufficiently so that it works (still with inordinate slowness compared
to other clients). Fortunately, most large networks have actively updated
lists of channels on their official home pages. When in doubt, see Chap-
ter 7 for information on getting channel lists from the Web.

Ircle has some built-in help you may access under OS 8's Help
menu, or in Mac OS 7 look for the question mark icon near the upper
right of your screen. You can pull down a reference list for commands,
or read a list of answers to frequently asked questions (FAQs). For more
help, be sure to check out the Ircle home page which includes a
detailed setup guide, descriptions of the purpose of all the files and fold-
ers in the Ircle folder, and links to mailing lists and other help sites.

5.3 ShadowlRC

Home page: http://www.shadowirc.com
Setup guide: http://www.shadowirc.com/support.html
ShadowlRC has quickly become one of the best alternatives to Ircle. It's
come a long way since version 0.7, which I characterized as a "geek's
client" because its main claim to fame was the use of precompiled C
scripts for supposedly faster performance than Ircle's AppleScript
scripts. The previous version was also missing many key features, but that
has changed. ShadowlRC bills itself as "a small Mac OS IRC client,"
referring not just to its mere 650Kb of memory use, but also its simpler
look and snappier performance compared to Ircle. ShadowlRC is not
just Ircle Lite, however, as it is reasonably complete in itself and very
expandable. It scores very well on the four S's: it is very speedy, quite sta-
ble, compliant with standard commands, and has good support. There is
no online help, nor does it have a bundled help manual, but its home
page offers extensive help, including setup information and a FAQ.

Let me distinguish between the three kinds of help. By online help,
I mean help information built into the client itself, accessible typically
via the /help command without exiting the client. By bundled help
manual, I mean a separate file or application that comes with the default
installation of the client, which may be accessed by switching out of the

client and into this other file. The home page stuff is one further step
removed because it requires going to the Web.

There is no dedicated connection window, with those options
inconveniently hidden under two separate items in the File menu
instead. There is one Inputline (shown at the bottom) shared for all
windows, but without any of Ircle's useful text format palettes.

ShadowIRC's user interface resembles a simplified form of Ircle.
The sample session shown in Figure 5.2, which was set up to resemble
Ircle, shows two large windows which are connections to EFnet and
Undernet. Everything pertaining to each channel appears in one window.
For example, the user list is integrated into the right portion of each
channel window, so that you can see who is in both channels at the same
time (though you have the option of making that a separate window that
can be hidden, as in Ircle). You can make the user list narrow to show
just the nicknames (as shown in the top window), or wide to show the
user@host information (as shown in the bottom window). The topic
and mode toggle switches are in the bottom of each channel window.

Figure 5.2: A ShadowlRC session

The mode switches are in the corner of the channel window, a subtle
shadowing of the letter symbol (such as T for ±t) indicates active modes
(this is very hard to see). There is no ban list or way to see one. Like
Ircle, ShadowlRC allows multiple connections to different servers simul-
taneously. It tries to support mIRC as well as Mac colors, although
unlike Ircle's, ShadowIRC's color scheme actually works. Another cute
feature mIRC inspires is the use of pop-ups. Also, by command- or
option-clicking a word, you can perform tasks such as copying the word
to the input line, sending a CTCP version or Ping, or starting to log.

Speaking of logging, ShadowIRC is the only Mac client with full logging
features. In addition to logging everything automatically, like Ircle, it
also lets you turn logging on or off manually to record something
prospectively. You can even capture everything retrospectively in a cer-
tain window to save an event that happened already.

Ircle takes more than three times as much memory as ShadowIRC,
so it should be no surprise that you are giving up many features when
you choose this smaller, simpler client. Some features you won't find
include the file server, sounds for IRC events, CTCP sounds, speech,
channel protection (friend's list, enemy list, server op prevention, clone
detection, and so forth), and flood protection.

So what about ShadowIRC's famous precompiled plug-ins? On the
plus side, they allow you to expand or customize the client to a degree
you can't with scripts. For example, plug-ins bundled with the default
package implement the server list, user list, and pop-ups. The home
page includes links to a dozen or so third-party plug-ins that cover two
of the aforementioned missing features (file server and sounds for
events), as well other features ranging from mass features to nick com-
pletion. On the negative side, the author's push for plug-ins as a faster
alternative to conventional scripting is probably misguided, since the
speed differential would be noticeable in only a few actions, and these
speed claims haven't been verified. Moreover, typical users don't have
the requisite C-language knowledge or developer's tools to write or
modify these plug-ins. It is unclear how well third-party plug-ins will
behave with each other, and there is a real risk of running into back
doors and unanticipated bugs when you're using somebody else's pre-
fabricated plug-ins.

The bottom line is, do you want a simpler, faster, less confusing
client that has most of the important features? If so, ShadowIRC is worth
a closer look. In fact, considering how much it has improved since its
last major release, the future of this new client is very encouraging.
ShadowIRC is shareware, and after the 30-day free trial it limits each ses-
sion to 15 minutes before quitting.

5.3.7 Setup and Use

Getting connected requires you to use a typical connection window to
select the server you want. Go to the File menu and select Preferences,
then in the Preferences window select the Connections pop-up in the
upper left corner. Choose one of the ten connections from the list on
the left, then enter at least your nickname and server name. If you know
the server name already, enter it in the blank, otherwise use the Select
button to choose from many networks and servers, which cover all of the
Big Four except IRCnet, as well as several smaller nets. You may now use
the Open Connection menu under File to open that connection.

IRCing on the Macintosh 63

You should be aware of some quirks when using ShadowIRC.
There is no separate channel list window, so using the LIST command
just sends the output to your current window. Be prepared for the flood,
particularly since there is no FLUSH command yet, nor any support
for LIST parameters such as keyword searching or a minimum number
of people. You may IGNORE using the full nick!user@host mask,
such as /ignore *!*foo@*.aol.com. You can then remove this with
/ignore -*!*foo@*.aol.com, but there is no graphical interface, nor
is there any way to ignore specific types of messages selectively, such
as public ones versus CTCPs.

5.4 Snak

Home page: http://www.snak.com/Snak.html
Snak is another very new Mac client that has rapidly become one of the
leading choices, especially for people who find Ircle's four or more win-
dows cluttered and confusing. Instead, Snak puts everything for each
channel into one window, including the channel conversation, the user
list, and the input area where you type. It's a different look, but the objec-
tive is the same: to be the most popular, full-featured Mac IRC client.

To this end—not surprisingly—Snak scores reasonably well in the
four S's. It is among the fastest and most responsive clients. It has unfor-
tunately many stability problems, such as occasional crashes and strange
bugs, but at least the author has been fixing things quickly. When it
comes to standards, Snak goes above and beyond the call of duty, not
only using standard commands in everything, but supporting the ircll
scripting language, which is very popular and well established among
experienced IRC users. To show off this ability, the author encloses the
3,000-line ircll script PurePak, which works with only minor modifica-
tions. Support is more of an issue. The client is very new, so there is
some risk that Snak may disappear in the future or just fade away, like so
many other good programs. On the other hand, when Snak fully imple-
ments the ircll scripting compatibility, Snak users can tap into a wealth
of existing scripts, and as noted before, the author has been very respon-
sive to support issues.

In addition to the ircll scripting compatibility, Snak has a few other
unique features, such as its practical ircll-style ability to try multiple
servers per connection. It has the best IGNORE capabilities of all these
clients. You can create double-clickable setup files that open a custom
combination of your favorite connections and channels. An address
book organizes information about your IRC buddies. There is also a
Guardian adult control feature, which is fairly rough around the edges.
(I will defer offering my opinions on such features until discussing the
ChatNet client later.)

This Snak session (as shown in Figure 5.3) closely resembles that of
ShadowIRC. The two large windows are simultaneous connections to
EFnet and Undernet. The user list and input line may be optionally inte-
grated into each window. In this example, the user list is shown on the
EFnet window but hidden on the Undernet window, and the detached
single Inputline window is shown at the bottom. The number of people
in the channel and the topic are shown on top of every channel window,
which is very useful. On the other hand, the mode switches are small,
barely legible letters in the dark stripe near the upper right corner of
each channel window. The Connections window, shown on top of the
lower chat window, is similar to that of Ircle but with the unique added
feature of supporting ircll-style multiple servers per connection.

i
Figure 5.3: A sample Snak session

Snak has numerous relatively small bugs, but chances are the author
will fix them by the time you read this anyway. It should be noted that
the equally young and actively developed ShadowIRC seems much
more stable and bug-free than Snak, but then ShadowIRC is a much
less ambitious project. As far as missing features go, Snak has no chan-
nel maintenance features such as friend's lists and flood protection,
and to date lacks a file server.

Snak is shareware, with a gentle reminder at each launch, but no
crippled features. It requires Mac OS version 7.5 or newer, Drag and
Drop, and the other networking software basics.

.

5.4.1 Sefup and Use
Snak is very easy to set up and configure. When you first launch it, a
Connections window appears, offering you the choice of four networks:
Chatnet, DALnet, EFnet, and Undernet. To customize any of the con-
nections, select the line (and click the Edit button or double-click on
the line itself), then enter at least a new nickname, as well as any other
network or server information. When you are done, push the Connect
button. That's it!

For each connection, Snak uniquely allows you to specify ircll-style
server lists, so that if it fails to connect with the first server for any rea-
son, it automatically tries the next server in your list, and keeps going
until it does make a connection. Likewise, if your current server lags
after you connect, you can use /server + or /server - to go to the next or
previous one in the list. The IGNORE command works just as in ircll
too, which means Snak is the only Mac IRC client that lets you ignore
either a nickname or a user@host mask and specify the types of
messages to ignore. In addition, you can add, edit, or remove ignore
masks using a nice graphical interface, with an option to expire the
mask automatically after a preset delay.

For more help, Snak is one of the few clients that comes with a dedi-
cated manual, called "Snak Manual." This separate application walks you
through the process of connecting, some interesting features, scripting,
and a good quick reference list of all commands. Ironically, however,
Snak does not have any built-in help, so don't even bother to use /help
or search to find a help menu, and keep the manual handy.

5.5 MaclRC

Home page: http://www.macirc.com
MaclRC is similar to ShadowIRC in trying to provide a simpler, more ele-
gant alternative to full-featured clients such as Ircle and Snak (although
its simplified interface can also make it difficult to control). Mac users
have always liked MaclRC because of its uniquely Mac-oriented user
interface (shown in Figure 5.4), which encourages you to play around
with the buttons and menus and discover neat features. While only one
channel window is shown in Figure 5.4, MaclRC supports multiple connec-
tions. Channel modes and topics are shown at the bottom of the channel
window and the input window may be anchored to the upper left of the
screen. The window at the right in Figure 5.4 serves different functions
depending on which of the four small buttons on top are selected. As
shown, it serves as the user list window, displaying a very useful count of
the number of users as well as how many are channel operators.

Figure 5.4: A MaclRC session

MacIRC is one of the speediest Mac IRC clients and is very stable.
Unfortunately, it is not well supported, lacking help manuals or online
help, and offering only a few help sites on the Web. It is also lacking in
certain basic features, though these may appear in future versions.

MacIRC is shareware, and is the only Mac client with no disabling or
nagging at all. MacIRC does require many elements from more recent
system software versions, including OpenTransport and Appearance
Manager, both of which come with Mac OS 8. If you are still running
version 7, you might not even be able to launch MacIRC.

5.5.1 Setup and Use
Getting started with MacIRC requires some minimal IRC experience,
since there are no shortcuts and no built-in server list. If you are an IRC
newbie, the read-me file does suggest a few servers and describe how
to get connected step by step. Otherwise the connect window is self-
explanatory: You enter your nickname, your user name, and the server's
host name, and you'll find yourself connected blindingly fast.

MacIRC has many stylistic quirks. The MSG and NOTICE commands
and the TAB key all engage the equivalent of QUERY, whereby everything
you type subsequently is sent to that person only, until you disengage
this feature by clicking on the highlighted Msg button. This is annoying
if you just want to send somebody a quick message or notice. A single
window serves multiple duty in displaying the lists for channel users,
connections (both to servers and DCC connections), and channel bans.
You toggle these three types of lists with unlabeled buttons, while MacIRC
ignores the corresponding text commands such as /who #channelname
and /mode #channel b. Likewise, you display and set channel modes
with very small, closely spaced switches that look good but aren't very
practical. None of these flaws is unbearable, and you may even prefer
this setup, but it does take some time before you stop asking, "Where is
such-and-such feature again?"

5.6 ChatNet

Home page: http://www.elsinc.com/chatnet.html
ChatNet is unique among Mac clients in that it's commercial software,
though that may be mere semantics, as the setup section below explains.
ChatNet stands out for three main reasons: its unabashedly nonstandard
user interface, AppleTalk chat, and kid-friendly monitoring features.

First of all, ChatNet's user interface will look familiar to anybody
who has used chat programs from major online services like AOL (see
Figure 5.5). This means an all-in-one window for each channel contain-
ing the channel text, user list, and input area. (For the record, ChatNet
predates Snak in this approach.) Several common commands are avail-
able as large buttons on the left, such as Private and Whois. On top of
each channel window are the topic and channel modes.The modes are
uniquely translated into English text, which doesn't necessarily help,
since "no outsiders" isn't really much more informative than "+n" to
newbies. The user list and input line are both integrated into the same
window too, with no option to detach them like you can in Snak. When
you use ChatNet, almost everything you do tends to pop open a new
window, which can be extremely confusing, as illustrated here by the five
separate windows for (clockwise from top right) whois, console, channel
list, and two private conversations. To make things either more conve-
nient or confusing, depending on your taste, the type and location of
buttons on the left also change depending on what type of window it is.

Figure 5.5: A sample ChatNet session

The irony is, your screen tends to get even more cluttered with ChatNet
than with any other Mac client, because practically everything you do,
such as MSG or WHOIS, pops open a new window, with no options for

redirecting such output to your frontmost window or console. In fact, an
incoming DCC file transfer request triggers three new overlapping win-
dows, which you can't even see at the same time: a totally unnecessary
private (QUERY) window, a DCC transfer status window, and a file save
dialog box (you don't get to decide first if you want the file or not).
Inexplicably, many people actually seem to like this setup.

The interface itself has a non-Mac aesthetic, like a program ported
over from DOS (even though that is not the case). The buttons and
menus often look strange or appear in unexpected places. Enlarging a
window causes several screenfuls of the existing text to scroll off the
top. Perhaps most important, ChatNet tends to rename almost every
standard command in an attempt to make IRC more newbie-friendly.
For example, JOIN becomes an Enter button, and channel modes like
+tn translate into Locked Topic, No Outsiders (the latter -m mode
actually means that nobody may MSG the channel from outside it, so in
this case the translation is misleading). In my opinion, this makes it
harder for newbies to learn, since they can no longer rely upon the
wealth of existing help resources (including this book), which support
those standards.

The second standout feature of ChatNet is its completely unique
AppleTalk chat. You can chat with people from your school or company
over local AppleTalk networks. There is no need to setup a local IRC
server, nor does each Mac need connections to the Internet. Teachers
and parents don't have to worry about outsiders barging in to make
trouble, and the local network is faster and more robust than IRC. By
encouraging kids to write, ChatNet can be a useful learning tool.

Finally, ChatNet was the first to provide kid-friendly censoring fea-
tures, which may appeal to parents and teachers. The ChatGuardian
feature restricts the kind of channels a kid can join and censors inappro-
priate language from those he or she does join. The ChatWatch feature
is like a wiretap, recording all the kid's conversations for review later.
These tools may provide some protection, but in my opinion they are
more trouble than they are worth. First of all, I have yet to find a kid-
controlling tool that kids can't figure out how to evade faster than adults
can learn how to set it up. There are already kid-friendly chat servers out
there that require screened registrations, on which adult supervisors
monitor all conversations. Furthermore, as an educator myself, I believe
censorship is no substitute for proper teaching and guidance. Finally
and most important, censoring certain words doesn't make IRC safe or
even appropriate for unsupervised children.

There are a few other features worth noting. ChatNet does support
speech and sound, whereas most other clients (besides Ircle) do not. It
is the only client other than ShadowIRC to permit manual logging—that
is, it captures channel or private text on demand. As far as disadvantages
go, ChatNet is the only major client with no support for multiple network

IRCing on the Macintosh 69

connections, nor does it offer any easy way to add that capability in the
future. It doesn't use color to distinguish different types of messages,
nor does it support Ircle- or mIRC-style colored text. The rudimentary
ignore feature ignores only nicknames. The latest version added the
bare minimum of channel maintenance functions, with four buttons to
kick, ban, and op or deop (the last two buttons are confusingly labeled
as on/off, with the word op added to one side). You can ban with
nick!user@host, but there is no ban list or unban button. ChatNet cer-
tainly doesn't have any advanced features such as scripting, friends lists,
flood protection, and so forth.

And less we forget our four S's, ChatNet seems sluggish compared
to other clients, but it is reasonably stable in spite of an extra system
extension. It regrettably flaunts standards and is proud of that fact. The
support level remains to be seen for this relatively new commercial com-
pany and totally unique client, which mainstream users have not
embraced en masse.

5.6.1 Setup and Use

Although ChatNet is technically commercial software, you can still
download it free like shareware. Right from the first time you use it,
however, it limits you to 20-minute sessions until you pay the registration
fee. I found this a major annoyance, as it took me four reconnects just to
evaluate it for this review (not counting two reconnects that occurred
within a few seconds rather than after 20 minutes). Even worse, each
time I had to reestablish my test channels, since ChatNet cannot save
such configurations. Updates and support have been free to date, but
this company is still relatively new on the scene, so again you run a risk
regarding its long-term viability.

ChatNet's installation is by far the most complicated among the
clients described here. The AppleTalk chat feature unfortunately
requires you to put an additional extension called MS Listener in the
Extensions folder within your System Folder (even if you have no inten-
tion of ever using it). This in turn requires a formal installation and
reboot, not necessary for any other IRC client. After downloading and
processing, you should see the ChatNet2.1.1.sea self-extracting archive.
When launched, it in turn creates a ChatNet v2.1.1 Files folder contain-
ing the installer and manual. From that folder, launch the ChatNet
Installer and follow the directions for the easy install.

There are no shortcuts for getting started, so you will have to do it
the traditional way. If you are a typical home modem user not on an
AppleTalk network, don't be worried by the clumsy "AppleTalk network
not available" error you'll see when you first start, or by the slight delay
on every subsequent start. You should eventually get a welcome window
that lets you type a nickname and user name, and select a server-port

combination from the pop-up menu (this is really inefficient to scroll
through, especially with the large server list that comes by default).
When you have those settings selected, click the Login button to make
the connection.

From here you may use the Create Channel menu, which in turn
opens the contradictorily named Enter Channel window, where you can
type a channel name, or just use the JOIN command and avoid the con-
fusion. Each type of window has its own set of buttons on the left
representing typically used commands. The console window has these
buttons: Away, Mode, Channels (for LIST), Enter (JOIN), Users
(NAMES), Whois, and Private (QUERY). Each channel window has
these buttons: Topic, Private (QUERY), File (DCC), Ignore, Whois,
Invite, and Mode.

ChatNet doesn't offer any online help, but it does have a separate
manual in the form of a stand-alone DOCMaker application. This is by
far the most detailed of all the clients' help documents, as you might
expect from commercial software. Whether you are new or have IRC
experience, I highly suggest you read the manual from beginning to end
and not skip around, since ChatNet has many unorthodox approaches
when it comes to configuring and using the client.

5.7 Summary

We have reviewed five major Mac IRC clients, selected for their perfor-
mance and popularity. Each has its unique features and advantages as
well as its disadvantages. Ircle is the classic choice with the most features
and support, but it can also seem complicated and overwhelming, at
least at first. ShadowIRC and Snak are the new kids on the block, with
the most active development and an ever-growing list of features, but
they are also rough around the edges. Both have a simpler interface and
run fast; ShadowIRC is the leaner client and Snak goes for more fea-
tures. MacIRC looks good, runs fast, and has a certain flair, but it is
missing many features and isn't as actively developed. ChatNet inten-
tionally defies standards for the sake of user friendliness. It has some
unique features that make it a valid choice for newbies in spite of its
many weaknesses.

For up-to-date reviews of these and many other clients, check
out the IRChelp.org Mac IRC client page at http://www.irchelp.org/
irchelp/mac, the Tucows Mac IRC clients page at http://tucows.epix.net/
mac/circmac.html, or the Mac Orchard site at http://www.macorchard.
com/chathtml.

CONNECTING TO A SERVER

Having installed a client program (or
bugged someone else into doing it for

you) and familiarized yourself with the
theory and basics of IRC (What, you didn't?

Go back and start reading!), you are now ready
to connect to an IRC server. What do you need
first? Why, the name of a server, of course! How
do you get one? If you don't have a friend
who'll take you by the hand, read on.

Depending on your client, there are different ways of setting the
server or list of servers to which you intend to connect. Most clients let
you set a default server to which your client automatically connects at
start-up. Some also let you specify one or more alternative servers in case
you fail to connect to the first. Let's not rush things, though. First of all,
you'll need to choose a network, and from its available servers select the
one most likely to suit you.

6.1 Selecting a Network and Server, and Connecting

Earlier, in 2.3, we saw how the IRC world became divided into many dif-
ferent entities, each with its own special character. This structure may be
confusing, but it certainly adds variety. In order to pick the most suitable
network, ask yourself what you're expecting to find on IRC. If you want
to hang around, explore a few channels, and meet many different peo-
ple, one of the major networks is probably the best choice. If you'd
rather not jump in the deep end and prefer to practice your IRC skills
before venturing into the metropolitan jungle of the large nets, there
are numerous smaller nets, with few but friendly users and operators
who are willing to help newcomers. If your personal ethics require a
controlled environment free of potentially offensive material, one of the
smaller U.S.-based networks with strict policies is the ideal choice, often
a suitable place for your kids as well.

Browse through the list in Appendix A and pick a network that
seems likely to suit your needs. If your first choice doesn't work out,
there are always many more. Remember, quantity doesn't necessarily
mean quality—even if you're on a network with 30,000 or 40,000 users,
you'll rarely contact more than a few dozen people at a time.

Once you find a network, check its server list for the nearest server.
This step is not absolutely necessary, but it is probably a good idea. Many
networks have a generic server address that takes you to a random
server— for example, DALnet has the irc.dal.net address for that pur-
pose, and mIRC users know it as Random US DALnet server on their
server list. Don't sweat over it—a generic address will do for now.

On an off-topic note, IRC is mainly a casual chat and recreational
environment. You won't generally find serious professional topics such
as medicine or law, for the very good reason that although IRC includes
many professionals from many different fields, they prefer to frequent
channels that focus on general chat or a hobby. After all, would you be
want to end a day at work with a visit to IRC, only to devote it to an unpaid
rerun of the day's work? I might give out some free advice if a topic related
to my line of work comes up in a channel I'm on, but I don't sit and wait
for "customers." If you need a professional opinion and can't find some-
one nearby, Usenet (a collection of email-based newsgroups) is a much
better place to look. Besides, nothing prevents an unqualified person
from posing as a professional. Following medical advice from someone
on IRC who claims to be a doctor is risky at best.

As we saw in 2.5, while the technical part of client-server communi-
cation must be consistent (with slight variations, depending on the type
of server), the user interface for selecting a server and connecting to it
varies from client to client. In this book we'll take a closer look at the
means ircll and mIRC use. Most other clients follow one of these
two methods.

Whether you pick a description from a menu or enter a server
name manually, you should be familiar with the way Internet addresses
are built. This way you don't need a menu in order to make your way to
a server.

6.1.1 Internet Addressing

Two or three parts compose the name of any machine on the Internet,
using the following structure:

[arbitrary.hostname.]domain.tld

TIT) is the top level domain. It can be a generic one like COM, NET, or
EDU, which implies the nature of the organization using it (that is, com-
pany, military, educational). Some of these can be registered and used
by anyone, anywhere in the world. In other cases it denotes a country—
for example, FR for France or MX for Mexico. The country codes follow
the ISO 3166 standard (which I won't address here).

Some countries use their TLD and an extra identifier for the type
of organization. For example, COM.TR is a company in Turkey (country
code TR), and AC.IL is an educational (academic) facility in Israel (coun-
try code IL). Major TLDs using this system include Australia (AU), Brazil
(BR), the United Kingdom (UK), Japan (JP), and South Africa (ZA).

To make things even more confusing, some countries use both sys-
tems. In Canada and the United States it is also possible to have a state
or province code precede the country code—for example, FL.US (Florida)
or MB.CA (Manitoba). I've used capital letters for emphasis here, but
lowercase is more appropriate, so I'm making subsequent addresses
lowercase—there is no practical difference in this case.

The other essential part is the second level domain, which conies
before the TLD or identifier.TLD combination. This is a name the site
chooses which is registered with the competent authority. Examples are
netscape.com (home of Netscape Communications) and demon.co.uk

/ (Demon Internet, a major ISP in the United Kingdom).
Everything before the second level domain is a machine name—an

arbitrary choice of the domain's maintainers. Some indicate the function
of the machine to which they point: for example, "www" indicates a Web
server and "ftp" indicates an FTP server. It's also quite common for a
machine name to have a structure of its own, as in irc.cs.cmu.edu, where
the person maintaining the domain adds "cs" to indicate that it is part of
an internal subdivision. This particular example is the address of the IRC
machine at the computer science (cs) department of Carnegie-Mellon
(cmu.edu).

Many sites maintaining an IRC server follow the convention of
using "ire" as the machine's name. Some typical examples are

irc.mindspring.com (an IRC server operated by Mindspring Enterprises),
irc.demon.co.uk (the IRC server of Demon Internet, a company in the
United Kingdom), or irc.funet.fi (the IRC server of the Finnish University
Network).

Many IRC networks have a distinct domain name all their servers
share regardless of location, and the machine names might reflect a
server's location or the name of the organization running it, as in Las
Vegas.NV.US.undernet.org (an Undernet server in Las Vegas, Nevada),
webbernet.mi.us.dal.net (a DALnet server atwebbernet.net in Michigan),
and irc.eu.dal.net (any European DALnet server).

6.1.2 ircll
In ircll, there are three ways of selecting the server (s) the client will att-
empt to connect to when started. The first is by utilizing a list of servers
usually named ircll.servers in the /usr/local/lib/irc directory (or wher-
ever you installed the client). The list is read from the top with each server
occupying a separate line and is the system's default list. The second
method is a list set from your log-in file (usually .profile or .cshrc) and uses
the Unix environment variable IRCSERVER. The section on setting up
ircll mentioned both of these methods. The third way, which overrides
the previous two when used, is to specify the server on the command line:

$ ire SomeNick irc.server.com

In this case, you must put the nickname you intend to use as the first
parameter, otherwise you can't specify the server. You can also option-
ally add a port number by appending it following a colon. The
command line also supports multiple servers in a space-separated list:

$ ire SomeNick ire.server.com:6665 irc.other.net
ire.whatever.com:6660

If the client fails to connect to the first server, it automatically tries
the second.

The ircll help files have more to say on this topic: /help ww» cammand_Kne_opticns-

6.1.3 Graphical Clients and mIRC
Most graphical interface clients, including mIRC, supply a server list of
their own. You can expect this list to be fairly up to date, although you
will discover that some of the servers listed no longer exist or have
changed networks—this is unavoidable because of the speed with which

the IRC map changes. The majority will still be valid. In mIRC, you can
find the server list under the File menu by clicking Setup • IRC Servers.

The problem with some of these clients is that the visible part of a
server's information is usually only a description of it or its location, and
not its host name, which is the information you need for an Internet
application. For example, "IRCnet: US, MI, Detroit" helps people in and
around Michigan select their closest server, but it does not say which
server you're actually connecting to.

Here's an example: A subscriber of Mindspring (a large nationwide
ISP) who lives in Texas and wants to use EFnet might have several
servers nearby. However, that user would be better off connecting to
Mindspring's own server despite its being further away, because he will
be using Mindspring's internal network all the way and will normally get
a faster and more stable connection. So it doesn't really help that the
Mindspring server is listed merely as "EFnet: US, GA, Atlanta." Don't
worry—you'll soon be expert enough at customizing your server list and
finding out which servers are best for you. This is just to show that the
rule of thumb about connecting to your nearest server is no more than
that—a rule of thumb, and far from rigid doctrine.

With these clients, you simply pull up the server list and select the
one you wish to connect to. In mIRC, the program presents the server
list by default when you first start the program, and you can set it to con-
nect automatically to a particular server. Otherwise, you can pick one
from the IRC Servers menu. Under the same menu, you can view the
address of a particular server by selecting Edit. This is also where you'll
add and remove servers to optimize or update the list.

Figure 6.1: List of available servers

If all goes well, you should see a series of notices from the server or
the client and have a working server connection within a few seconds.
It's not always that simple, though. You may have to work on establish-
ing a set of servers that works for you before being able to connect
consistently in the shortest possible time.

When connecting to a server, you are likely to encounter a number
of problems. In most cases you'll get a message from either the client or
the server. In other cases the connection could simply refuse to work or
return an error message that doesn't help at all (mIRC is a bit notorious
for saying "connection failed" without telling you why). A lot can go wrong.
Next you'll learn of the potential stumbling blocks in your path.

6.2 Things That Can Go Wrong

The process of connecting to an IRC server can yield a surprising num-
ber of different errors and corresponding error messages, which can be
confusing if you're not familiar with the syntax.

6.2.1 K-Lined, or You Are Not Welcome ...

The notice "K-lined" means that your address matches an entry on the
server's internal list of addresses not permitted to use it; the server dis-
connects you after detecting this fact. In effect, you are banned from
using that server. Messages to that effect can take a variety of forms, but
in all cases you will not be able to use the server.

The reason you get for being K-lined is actually an arbitrary message
set by a server operator or administrator sets; there may even be no rea-
son at all. K-lines are known as such because the part of the configuration
file where the server stores these "kill lines" and checkes upon them with
each user connection consists of lines beginning with K: (so the correct
term is really K: line). Not all server operators are kind enough to provide
a reason, so it might return no more than a generic "Banned" or "You
are not welcome" notice. Don't take it personally—yet. Read on.

The most common reason for being K; lined is that the server's
operators have observed misbehavior from users within a group of
addresses (of which yours is one), and therefore have decided not to
permit any user from that group to use the server. Naturally, if you have
never used the server before, it is not your fault, nor is anyone holding
you personally responsible for some misconduct. In many cases it affects
a specific part of your ISP's addresses or even the entire ISP, and one
obnoxious user sharing the same ISP may be causing the problem. This
is a disadvantage of using a dynamic address (see 0.3).

Another reason for a K; line could be that you are expected to use a
server closer to you in terms of either network topology or geographical

IL

location. It doesn't make much sense for, say, a Swedish user to use a
server in the United States if there are local servers available in Sweden,
and vice versa. K: lines aren't the preferred way of keeping nonlocal
users out, but some server administrators use them for that purpose.

In more severe cases, you may get G-lined. Some IRC networks that
have a global abuse policy implement G: lines, networkwide K: lines (also
called global K: lines). On these networks, repeated or extensive abuse
from a site may result in simultaneous K; lining from all servers on that
network. On DALnet and other networks that use their server software,
the equivalent of a G: line is the akill. The effect is the same.

Removing K: lines is entirely at the discretion of the server's admin-
istrator. Many servers don't take too much care to remove old K; lines,
so they may remain in place indefinitely, even for years. G: lines tend to
have a set expiration date, which can be anywhere from 20 minutes to a
month after it was set, depending on the severity of complaints against
the G: lined site or user. Some modern server versions use temporary K:
lines, automatically removed after a short while. Unless you're having a
really serious problem finding a server, simply remove the server from
your list and connect to a different one. Alternately, you may ask one of
the server's operators or email the server's admin address (see 15.3) to
have it lifted—that is, if they are inclined to do so.

6.2.2 Ping Timeout
Ping timeouts are a common problem on slow connections. Perhaps you
connect to the server successfully, but after the initial connection, noth-
ing happens, and the connection closes after a minute or two with the
message "Ping timeout." This means the server got no reply from your
client from the first PING. The server must receive a PONG reply to
confirm that your client is connected and responding. The cause for
Ping timeout may be a slow network connection or a heavy load on the
server machine or your own, either delaying the PING on its way to you
or preventing the reply from reaching the server in the time it should.
Network problems are by far the more common cause.

Less common is a problem between certain servers and clients. This
used to be a major nuisance, but now—although it hasn't entirely been
fixed—newer versions of those particular servers send a message telling
you to send a response manually if you are having trouble with Ping
timeouts. If the problem is on the server side, try connecting to a differ-
ent server. You really shouldn't encounter such problems when using
modern clients.

If you're having problems connecting to all servers, there's probably
something wrong with your machine's or your site's network connectiv-
ity. If you're positive the connection to your provider is fine and nothing

needs fixing, then your provider's network connectivity is the most
likely cause.

You can use a network diagnostic utility named traceroute to check the network

path between yourself and the address you 're trying to connect to. It's very simple—
here's how:

IN WINDOWS

95 AND 98

$ traceroute <address>

Click Start and open an MS-DOS window. Enter the following: tracert <address>

6.2.3 No More Connections/Server Full
This message is not unusual, especially during peak hours. It means the
number of connections the server has allotted to your connection class
is full. Few servers have a setup that groups all users under a single class.
Instead, they define address groups with a maximum limit of users from
each group who may be connected simultaneously—for example, by
assigning all foreign addresses class 20 and setting a limit of 50 connec-
tions for class 20 in the configuration file. In this case, once the quota of
50 users is exhausted, the server rejects all foreign users attempting to
connect, with a "Server full" or "No more connections" message, until at
least one client of that class disconnects and frees the spot for another.

Another common reason for this message is that you were previously
connected to the same server and lost your connection to it, but the
server hasn't yet noticed it yet. If the server permits a maximum of one
client from any particular address, as many servers do, it detects your
attempt to reconnect as a duplicate connection from an address that's
already connected. You can either use another server or wait for the
previous connection to timeout on the server's side.

6.2.4 Connection Refused

The only cause for the "Connection refused" message is that no IRC
server was listening for connections on the machine and/or port you
tried to connect to. Make sure the server name and the port number are
correct and try again. If it continues to return the same message and
you're positive about the server's host name and port, its IRC server or
machine is having a problem. Connect to a different server—there's no
telling how long the server will be down.

6.2.5 Unable to Resolve Server Name
This indicates the failure of a name server to convert the canonical
name, the "real" name of the server like irc.server.com, into an IP
address such as 256.10.2.78. This conversion is necessary for making any
network connection.

Canonical names are more for human convenience—networked
computers (and computers in general) only understand numbers and
need them in order to make a connection. Those numbers eventually
change into a string of Os and Is, but that's something way beyond the
scope of this book. Suffice it to say that your computer is turning every-
thing you tell it into numbers and converting other numbers back into
visual signals you can understand.

Failure to resolve server names may stem from a number of differ-
ent causes. The most common is that either your local name server or
the one on which the server's address resides are out of order. Your
client sends your query to your local name server, which in turn looks
up the name server that holds the records of the server's site (server.com)
and then queries it for the IP address matching the canonical name you
have given it (irc.server.com). Naturally, your client handles the request
and response internally, so you don't notice it—unless it fails.

If this happens with all servers, it's definitely your local server that
has a problem. Your ISP's technical staff will fix it, but may not have
noticed it. If your ISP is unreachable or can't fix it for a while, your
options are either to use an off-site name server, which requires you to
know a name server's IP address, or to find an IP address from an exist-
ing list of them. PPP users would also have the added problem of having
to change the settings of their TCP/IP stack or use a separate lookup
program. Therefore, the easier solution is to find the IP addresses of the
IRC servers you use most and add them to your list separately.

Note that IP addresses are liable to change without notice (for
example, the administrator running the server may decide to use a dif-
ferent machine, or the route through which it connects to the rest of
the Internet may change), so it's better to use the canonical names. In
the case of IRC networks that use a generic domain name for all their
servers (undernet.org, for example is a generic domain name for all
Undernet servers), if the name servers serving undernet.org are down, it
will be impossible to resolve any of the network's servers. The solution is
to use an IP address or regular host name that you know corresponds to
such a server. If you don't know any, try asking on one of the other net-
works' help channel, or try the network's website if there is one.

6.2.6 Illegal Nickname

The server sends this message if you select a nickname that's already in
use or if the nickname you chose contains an unacceptable character.
Valid characters for nicknames include a to z, A to Z, 0 to 9, and the fol-
lowing special characters: back slash (\), backstroke O, caret (A) , dash
(-), pipe (I) , underscore (_), left square bracket ([), right square bracket
(]), left curly bracket ({), and right curly bracket (}).

Because IRC originated in Scandinavia, many servers consider the
following pairs of special characters to be the same due to the layout of
Scandinavian keyboards: left square bracket (]) and left curly bracket
(}); right square bracket ([) and right curly bracket ({); and pipe (I) and
backslash (\). These characters correspond to lowercase and uppercase
letters on a Scandinavian keyboard. Because IRC is not case-sensitive,
each pair is regarded as being the same character.

The leading character cannot be a number or dash. If the nickname
is valid and someone else is using your first choice, you can set most
clients to fall back automatically to an alternative nickname. If this also
fails or your client has no such feature, the server prompts you to enter a
new nickname manually before it will accept you. If you don't enter a
new nickname soon enough, the server disconnects you with a Ping
timeout (see 6.2.2).

This problem can present itself to users trying to connect to servers
or networks running Quarterdeck's IRC server software. Part of this soft-
ware's nonstandard behavior includes rejecting nicknames that would
be quite legitimate on other servers, such as those with an underscore in
them. If you can find nothing else wrong with your nickname, try using
one made up entirely of letters.

6.2.7 Nickname or Channel Temporarily Unavailable

This message will only show up on servers running IRCnet's server
software. In this case, the nickname was recently in use by someone who
didn't sign off "normally" as seen from your server. A protective mecha-
nism unique to this type of server prevents use of the nickname for
approximately 15 minutes after the user's signoff. You will need to select
a new nickname with the NICK command (see 2.7) before the server
accepts you. You may change back to the original one after the nick
delay expires and the nickname becomes available again.

6.2.8 Ending Up on a Different Server

This is not a common problem—in fact, it often isn't a problem at all
and may well go unnoticed. If a server is taken down permanently or
temporarily, in order to spare the server's regular users the trouble of
looking for another server, its administration may choose to redirect

people trying to connect to it to a different server. It can be a problem if
the server you end up connecting to refuses you with one of the errors
mentioned here because of a difference in configuration, or if the server
you get redirected to is not on the same network as the one you origi-
nally connected to. An example of the latter is what happened to users
of America Online's IRC servers. AOL used to maintain servers on all
four major networks. In November 1998, it was forced to remove its
EFnet server from that network. It then proceeded to take down the
servers on IRCnet and DALnet of its own accord, leaving only its
Undernet server up. As if this weren't enough of an inconvenience to
users, AOL also redirected the addresses of its former EFnet, DALnet
and IRCnet servers to point to the remaining Undernet server, so every-
one trying to connect to any AOL server would end up on Undernet
whether they liked it or not. Needless to say, the company made no
friends in doing this.

6.2.9 No Authorization
You can expect this message to appear when you're trying to connect to
a foreign server. Also, many servers accept few or no users from outside
their domain, and attempts to connect return the error.

If this happens to you while you're trying to connect to a server you
normally can access, the most likely explanation is name server failure.
The server attempts to convert the IP address from which it detects your
connection into a canonical host name, using the same procedure
described earlier (see 6.2.5) for lookup of the server's IP address. The
difference is that it's requesting the reverse of what you asked for—IP to
name instead of name to IP.

Apart from regular DNS problems, some ISPs have simply omitted
or neglected adding reverse records for their addresses, not considering
it essential to smooth operation. But unlike the case on most Internet
connections, on IRC this practice can and will cause problems. Many
servers, on the large networks in particular, refuse to accept users whose
IP address will not resolve to a canonical host name. If you can confirm
this as the problem, ask your ISP to see to it that reverse DNS is enabled.
As long as you have this problem, you'll have fewer servers available.

6.2.10 Ident Required/Install Identd/Bad User name
Depending on your local machine, you'll either encounter these mes-
sages frequently or very rarely. A number of servers, especially on the
major networks, require the presence of an ident server on the machine
from which the client connection originates—in short, yours. "Install
identd" often appears as a K: line reason, too.

If your client is running on your own machine, as is the case with
PPP dial-ups, the server looks for this server on your machine. Naturally,
few users go to the trouble of installing a separate identd on their
machine. The IRC clients usually cover this by emulating it and listening
for ident requests in order to send the appropriate response. This is the
case with Windows and Macintosh clients.

Ident queries go to port 113 of a machine. Your IRC client, if it's
capable of emulating an ident server, listens for incoming queries on
this port and, if you have it set up correctly, also send a valid reply, after
which the server considers you "idented." Not all servers have rigid rules
regarding ident, but it's a good thing to have in place. Developments on
EFnet in particular have reduced the number of servers providing access
for unidented hosts.

The response sent must match your declared user name, and the
ident type should be set to UNIX. This may not be true—for example,
in the case of a Windows machine—but tell the server what it wants to
hear anyway. If the user name does not match the one you have told
your identd to send, the server considers your ident response invalid,
unidents you, and naturally refuses you if the server won't accept
unidented users. mIRC has port 113 and UNIX set by default under File
• Setup • Identd. All you have to add is the user ID. If you don't add it, it
will be taken from the email address.

Your user name and matching ident response can be practically any
arbitrary string of up to 10 characters. An important issue comes into
play here, to which you should give thought. Of course, on a machine
you yourself run and maintain, you can set your user name to be any-
thing you like and hide your real log-in name, but even if you do, bear
in mind that total anonymity is an illusion. Either directly or with the
cooperation of your ISP, your identity can be found. By the way, user
names such as "me," "ask," or "guess" are considered stupid since they're
obviously both fake and unimaginative. Your credibility also suffers from
silly fake user names or mixed upper- and lowercase user names. Some
servers reject user names like that altogether.

If you aren't the supervisor of the machine running your client, the
system administrator must install the identd. If there is no identd and
the sysadmin is not willing to install one, that will definitely reduce the
number of servers you may use, especially on the larger networks. On a
commercial ISP, it indicates a lack of interest in customers' needs.
Installing an identd isn't such a big deal and doesn't consume untold of
hours of working time. In fact, it's a rather trivial task, and you shouldn't
accept any excuses for the ISP's failure to do it. If the machine belongs
to an educational or government site and the people responsible for the
machine don't want to install it, fine. You can't force them to.

A special case of identd problem involves machines behind a firewall
or using a proxy. Because you appear to be connecting from another

machine, any identd you run on yours goes unnoticed. Unless the fire-
wall or proxy administrator pulls a few nifty tricks with the configuration,
clients from these machines will not be able to ident. This is tricky busi-
ness—it makes the firewall less effective, and you can't really expect any
firewall administrator to bother with it.

6.3 Welcome to the Internet Relay

If all goes well, you make a successful connection to an IRC server. The
first four lines you see look something like this:

*** Welcome to the Internet Relay Network
SomeNic k! george(5>my. provider. com
*** Your host is irc.webbernet.net, running version 2.9.5/Sc8-

: a2/Mr2
*** This server was created Wed Jan 20 1999 at 21:03:58 EST
*** umodes available oirw, channel modes abiklmnopqstv

A report on the server's and network's current status follows:

- . ' . *** There are 7444 users plus 28298 invisible and 8 services on 66
servers
*** 159 operators online

•:,., *** 19 unknown connections
*** 14582 channels formed

, *** i nave 2234 clients, l services and l servers
*** Current local users: 2234 Max: 3068
*** Current global users: 35742 Max: 39293

Most of this makes sense, but the rest looks like some computerese con-
spiracy aimed at undermining your mental health and self esteem.
Perhaps we should look at each line individually:

*** Welcome to the Internet Relay Network
SomeNic k!george@my.provider.com

This line means that the server has accepted your connection, and
you're now known by the nickname of "SomeNick." It also recognizes
you as coming from the host named "my.provider.com," and this host
confirms that your user name is "george." Depending on the type of
server, it may give your full user mask (see 6.3.2) or just the nickname.
Servers running customized software may replace "Internet Relay Net-
work" with the network's name.

*** Your host is irc.webbernet.net, running version 2.9.5/Sc8-
a2/Mr2

The first part is obviously the server's name, but the second part is
rather cryptic. This is the server's 'Version" and identifies the type of
server. In this example it stands for the 2.9.5 basic server version. This
server is also running a patch (an add-on or bug fix—in this particular
case, an add-on) to add some features to the server that aren't part of
the basic 2.9.5 code and that the administrator wishes to have. This is
indicated by a plus sign(+) or slash mark(/), followed by the patch's
identifier, and is present on a lot of networks' servers. It is often a server
requirement.

*** This server was created Wed Jan 20 1999 at 21:03:58 EST

This doesn't mean the server has existed only since that date and time,
but says when the current version of the server software was installed on
the machine.

*** umodes available oirw, channel modes abiklmnopqstv

Oh gosh, more cryptic messages. These two strings indicate the settings
(modes) available for users, also known as umodes (see 6.4) and channel
modes (see 10.3) and characterized by certain letters. These strings differ
depending on the type of server—for example, umode r and channel
modes a and q are particular to an IRCnet server such as
irc.webbernet.net, and the rest are present on all but the most divergent
types of servers.

The server sends the next four to seven lines to the connecting
client, but you can also request them at any time with the LUSERS com-
mand. They inform you of the network's and server's current status. The
total number of users on the network is the sum of visible and invisible
users. Unknown connections are nothing more than incoming connec-
tions the server hasn't yet accepted and classified. The final two lines are
not standard, but many server administrators like to make that informa-
tion visible.

6.3.1 The Message of the Day
At the end of all this information you'll find the all-important MOTD—
the server's Message of the Day. This text file, stored on the server
machine and sent to all successfully connecting clients, describes the
server's rules and policies, and sometimes contains useful information
and announcements. Despite its name, it's rarely a message "of the day
and will sometimes be months old, depending on how satisfied with its

contents the server's administrator is. The amount and nature of the
information it contains varies according to how conscientious that
administrator is about informing the users of what they should know
and of developments in the IRC world.

Although you'll soon become expert enough to get into the habit of
ignoring it (I won't throw any stones here—when I started out, it didn't
take me long to find out how to make it disappear), you should read it
at least the first time you connect to a particular server. Both ircll and
mIRC provide a setting that suppresses display of the MOTD—this is
convenient if you want less noise when connecting, but even a server you
regularly connect to offers new and important information once in a
while, so you're better off reading it regularly.

The MOTD is often much longer than your screen or window. If your client has a
scrollbar in the window, back up to read the part you missed. With ircll and simi-
lar clients, do the following:

/set holdjnode on

/motd
/set hold mode off

6.3.2 Your Identity on IRC

While you're connected, other users know you in two different ways.
The first is simply your nickname, which people need in order to reach
you and see you on IRC. It's used as a destination address for messages
and an identifier for server queries regarding you.

The second way is more complex and consists of three parts. The
first part is your nickname. This is followed by an exclamation mark (!),
which serves as a separator between it and the next field, which is your
user name. Another separator, an at (@) character, follows. The last part
is your host name or the IP address you're connecting from. (As I said
previously, host names and IP addresses are equivalent for connecting,
but the server treats them as text strings, and therefore they're consid-
ered different). The final result looks like this:

SomeNicklgeorge@my.provider.com

Nickname!username@host.name

This is your identity for sending to the server. Every item the server
receives from your connection automatically gets this added to it as the
sender's identity. If you send a message destined for a user or another
server, this full version will be forwarded to the recipient along with the
message. This is your user mask on IRC.

6.3.3 Nickname Registration and Ownership
If the network you connected to has a nickname service, you'll be able
to reserve a nickname for your own use. Depending on the service's fea-
tures, you may also be allowed to forbid others to use it in your absence
or add personal information to your registration for others to see. Refer
to Appendix A for information on the availability of nickname registra-
tion services. The usual nickname for this type of service is NickServ,
and you can request help on how to use it by sending it a message:

/msg nickserv help

Just as you may have exclusive use of a nickname by registering it with a
nickname service, you may try to use a nickname already registered to
someone else. If the nickname's owner has instructed the server to for-
bid its use by others, the server sends you a notice immediately after you
connect or change to that nickname. This notice says that the nickname
is reserved and you must either change it or the service will disconnect
(kill) you for unauthorized use of a registered nickname or change your
nickname to something else. It usually allows no more than a minute for
you to change nicknames. If you receive a notice saying something like
that on a network you know has no nickname service, ignore it—some-
one is trying to make you release the nickname so they can use it.

As of April 1999, DALnet no longer allows use of NickServ in this manner.
Messages must be directed to nickserv@services.dal.net.

6.3.4 The Realname Field
Part of your identity will be your realname. This did originally contain a
user's real name, but nowadays is used more often for displaying a witty
comment or the location of a user's Web page. The text in the realname
field is quite arbitrary. If you're using a client on your own machine, such
as mIRC, you can easily set the text you want to display by adding it to
your client's setup. Of course, there's nothing wrong with using your
actual name, it's simply common to put something different in the space
reserved for it.

If you're using a Unix system, setting the realname isn't that simple,
and you'll have to go through the procedure of setting the IRCNAME
environment variable, which you should already have mastered while
setting up your client. If not, please return to 4.5.5 and follow the steps
for changing your realname.

6.4 User Modes (Umodes)

All servers permit a user to use certain settings that influence the status
of the session. The number and function of these settings varies greatly
among different server types, so we'll limit ourselves to looking only at
those that are present on most servers or are most important. Setting or
removing a user mode for yourself is simple:

/mode <your_nickname> +/-<mode>

Using the plus (+) before the letter corresponding to the user mode
activates it, while the dash (-) unsets it. Omitting a prefix is the same as
using a plus sign. User mode letters are case sensitive—W is not the same
as w and may have a quite different effect or may not have a meaning at all.

6.4.1 I/mode /
This is the most widely used user mode. User mode i (invisible), when
set, makes a client invisible to certain types of user listings and scans. It's
used for more privacy and to avoid harassment. This is also the solution
to the problem of being targeted by spam bots. Many servers automati-
cally set it for a user upon connecting, in which case you'll see a notice
that looks somewhat like this:

*** Mode change "+i" for user SomeNick by SomeNick

You can also set it manually:

/mode SomeNick +i

Use-i if you do not agree with it and the server has set it automatically,
or if you no longer wish to be invisible. Some modern clients, including
mIRC, allow you to set umode +i automatically upon connecting, even if
the server doesn't do so.

To set yourself as invisible automatically after connecting, whether the server does
so or not, follow these steps:

Go to File • Options • IRC Servers and check the Invisible Mode box.

Add a MODE $N +i command to your .ircrcfile.

6.4.2 Umode w
This lets you receive wallops, which are a special type of message servers
or IRC operators send out, usually announcing some network event.
Only IRC operators need to see them, so you might as well leave it off.
On some networks, only IRC operators can receive them, and user mode
+w does nothing for the regular user.

6.4.3 Umode s
Umode s is the perfect way of getting your screen flooded with countless
useless server notices. Umode s sends you all sorts of server notices, and
there are often additional umodes that allow someone to monitor only a
certain type of notice. Trust me—you don't need it.

6.4.4 Umode o
This user mode indicates that IRC operator status is active—therefore
it's available only to IRC operators. Trying to set umode +o is useless,
since it's not obtained with a mode change, but with the OPER com-
mand (see 18.6.1), which only authorized users can use.

6.4.5 Umode d
Service robots often use umode d (dumb), which is not available on all
server types. On those networks that do allow users to use it, it prevents
channel text from reaching the client and so is not very useful.

6.4.6 Umode r
Umode r is unique to IRCnet servers and others with the same server
software, but unlike other umodes specific to one type of server, this one
can be annoying. The server automatically sets it when a user connects;
it indicates that the server will allow you to use it as a server, but doesn't
give you access to the full, regular command set. The r stands for
restricted. This restriction lies in the fact that you may not change your
nickname without disconnecting from the server, and may not use chan-
nel operator commands, even if you are given channel operator status.
Perhaps neither of these interests you yet, but it's good to know this,
since you could run into this problem later on. The solution is usually to
use a server that is closer to you geographically. If you already are, use
the WHOIS command to check whether your host name is resolving—
some servers impose the restriction on unresolved hosts instead of
forbidding them to use the server (see 6.2.9).

6.4.7 Other Umodes

A variety of other modes exist that IRC operators use for monitoring the
server. None of these are of any interest to the average user, so you'll do
fine without them. Some umodes might be in use on different types of
servers, but function differently—i, o, s, and w are the only ones you can
expect will do the same thing on almost all servers.

The most interesting mode available on several small networks is
known as x, a, or z depending on the network. The server can automati-
cally set it, just like user mode i, and it hides the first part of your host
name by replacing it with some other text. In effect, it fakes a user's host
name and thus provides effective protection against DoS attacks, for
which the attacker needs to know the target's address. If your small net-
work server automatically sets a mode other than +i for you, this is
probably it.

6.5 Changing Servers: The SERVER Command

Once you're connected to a server, you don't have to keep using the
same one for your entire IRC session. If for any reason you want to use a
different server, all good clients support the SERVER command, which
lets you change servers without having to quit and restart your client. Its
use is simple:

/server irc.otherserver.net

! You can also specify a port on the new server other than the default by
appending the port number:

/server irc.otherserver.net 6665

Though typing the command is really simpler, mIRC users can also dis-
connect first with the connect-disconnect button (leftmost on the
toolbar) and then select a new server from the list.

Depending on the client you're using, one of two things may hap-
pen: Either your client closes the connection to the current server and
initiates the new one, or it holds the old connection until the new one is
established. This concerns only the TCP (network) connection—once
this has been established, the old connection closes, even if the new
server denies you access. If you're using ircll, you can select a server
from the internal server list.

This is how it works: Each server you try to connect to gets added to
this list with a number; you can view the list by typing /server. Then you
can use the corresponding number instead of the server's name. You

can also add the system's default servers to the internal list by using the
-a switch from the command line when starting the client.

During your attempt to connect to the new server, you are liable to
encounter any of the problems described in section 6.2. Using older ver-
sions of ircll, there is one more you may have to deal with. When you
connect to a new server, the connection may just hang, leaving the cur-
sor stuck in the top part of the window. After a while you get a message
that the connection has failed and you return to the previous one, but
your first connection has timed out while the cursor was stuck.

More recent versions of ircll have corrected this problem, but the
older versions are still widely used. It affects all versions up to 2.8.2.
These versions allow the connections to block the client until the return
of a conclusive response (failure or success).

Blocking also means that the client, apart from not responding to
your key presses, won't send PONGs in response to the current server's
PINGs and the server is very likely to drop it with a ping timeout and
lose the connection whether client establishes a new one or not.

6.6 Disconnecting from a Server

At any time, you may close your connection to the IRC server. This is
done via the QUIT command. Depending on the client you're using,
there may be one or more synonyms for that command—for example,
BYE, EXIT, or SIGNOFF. In fact, some clients use one of these options
rather than QUIT.

/quit

Closing the status window in a graphical client usually does the same,
but doesn't confirm that the server has also closed the connection from
its side. QUIT sends a QUIT command to the server and thus makes a
clean disconnect by letting the server know you're leaving—otherwise it
might take a while to notice that your connection is dead. Using QUIT
or one of its synonyms, you simultaneously close your client application.

A message with arbitrary content may follow QUIT (and other com-
mands with the same effect). If you add no message, it either sends none
or defaults to a simple message like "Leaving." Your QUIT, plus the mes-
sage (signoff reason) is sent to all channels you are on at that time. You
do not need to leave a channel before leaving IRC. The server's opera-
tors may monitor QUITs (and the messages) on most networks. The
messages are limited to a certain length, normally about 70 characters,
more on DALnet and similar networks.

/quit Didn't wanna be here.

Technically, the QUIT command initiates the closure of your TCP con-
nection to the server and exits the client program. Under some
circumstances, though, the connection may be faulty and QUIT may not
reach the server, or the server's acknowledgment of reception may
never reach the client. In these cases, QUIT simply shuts down the
client program with no visible response from the server's side.

Under ircll, DISCONNECT closes a server connection without also
exiting the client. Similarly, mIRC, like most other graphical interface
clients, allows a simple disconnect when you select File • Disconnect or
click the leftmost icon on the toolbar.

Disconnections are frequently involuntary, with a variety of possible
causes. Your client usually gives you an indication of the cause. Let's
have a look at these annoying events, which can happen out of the blue.

6.6.1 Nickname Collisions
Nickname collisions are less common than they used to be, since modern
servers don't allow collisions, malicious ones in particular, to happen too
often. Collisions are still possible, though, especially under bad network
conditions, but users can avoid most incidentswith a little care.

A collision occurs if a server detects more than one instance of a
nickname on the network. This should not be possible and is a violation
of the protocol, so the first server to detect such a thing issues a KILL
command for one or both offending clients, forcing at least one of them
off the network by having the server they are using disconnect them.

Collisions are identified by their characteristic messages, which your
client may format to make more understandable. A typical message you
might see is:

*** You have been rejected by server irc.someserver.net

Some very nasty-looking garbage sometimes follows this message. Other
users on a channel you were on at the time would see something like this:

*** Signoff: SomeNick (Killed (irc.someserver.net <-
ire.server.com(?)))

In this case, irc.someserver.net detected the nickname you were using,
SomeNick, as in use by two different sources. Depending on the servers'
and colliding clients' position on the network, the signoff message may
appear in a number of different formats. The example above is a very
simple one.

6.6.2 Operator Kill

Unless you're guilty of misbehavior, you should never get disconnected
with one of these messages. These disconnections result when an IRC
operator, a client with special privileges as opposed to a server, issues a
KILL command for your nickname. The sections on IRC operators,
scripts, bots and abuse cover how and why this happens. As a rule, IRC
operators do not use KILL lightly—your client has violated the servers'
or network's rules. Operator KILL may appear in two different formats,
depending on whether the operator is on the same server as you (local)
or a different server (remote).

Some clients exit upon receiving a KILL from a local operator. The
reason for the kill almost always follows an operator KILL command;
this can be arbitrary text, but more often states why you got killed. The
message you see looks like this:

*** You were killed by operator EvilOper (get off my server)

Users occupying the same channels see the following, depending on
whether the kill was local or remote:

*** Signoff: SomeNick (Local kill by EvilOper (get off my server))

or

*** Signoff: SomeNick (Killed (EvilOper (get off my server)))

An operator kill does not prevent you from reconnecting unless a K: line
or G: line follows it, in which case you'll see a server notice like those
described in 6.2. Automatically reconnecting to the same server after a
kill is not a good idea, by the way. Most operators view it as a "bouncy"
client that can't take the hint that it's not welcome, and they then set a
K: line.

6.6.3 Server Downf/me
IRC servers are no more than machines and programs, and therefore
are subject to malfunctions, like any computer-related system. If an
operator or administrator takes down the server intentionally, you might
receive a notice first, advising you to wait before reconnecting or to con-
nect to a different server. If it simply crashes out of the blue, you'll
receive no warning.

In either case, the result is the same—you'll appear to lose the con-
nection for no obvious reason. Because it takes a finite time for a server
or machine to restart and begin accepting client connections again, if
you attempt to reconnect immediately, you won't be able to, and your

client will return the message "Connection refused," just hang, or return
a network error if the machine has crashed, not just the IRC server on it.

6.6.4 Ping Timeout

Probably the most common signoff for a new user is the Ping timeout.
As described in 6.2.2, Ping timeouts result when a server doesn't receive
a PONG within a certain time after sending you a PING. The server
sends PINGs are sent at regular intervals if the client hasn't been
active—usually between 90 to 240 seconds—and should evoke a PONG
from the client. If a client fails to respond to a PING within a certain
time, the server considers it no longer present and closes the connec-
tion. mIRC users will see PING? PONG! messages in their status window
to indicate this is happening; other clients do not. Either way, responses
are handled automatically and manual intervention is not necessary.

6.6.5 Connection Reset by Peer

What the heck is a peer, anyway? This apparently cryptic and confusing
message is actually quite straightforward. If yours is the client being dis-
connected, it means the server closed the connection. If you see
someone else disconnected with this message, the client closed the con-
nection (in networking, the two connected parties are known as peers),
but did not disconnect normally. It isn't really very helpful, since only
the end that closed the connection knows the actual reason for the clo-
sure. Compare it to losing a phone line. If the other party hung up
before the conversation was through without saying goodbye, or mum-
bled it while hanging up, you won't really know why the call ended.
You'll just know the caller is gone and you'll hang up, too.

This type of quit is also associated with some of the DoS attacks
(nukes) we went over in 2.2.2 and will encounter again in Chapter 17.

6.6.6 Excess Flood

In order to prevent the server from taking too much of a load from a
single client, there is a limit to how much data a server accepts from one
client within a certain amount of time. A typical value for this limit

: would be 1 KBps, meaning the server automatically disconnects any
client detected sending more than 1KB of data within a second. There
are two possible reasons for getting disconnected like this, and you can
avoid them with a little care. A well-configured client is unlikely to get
disconnected for excess flooding.

The first reason is that you may really be sending too much data.
Sending text files and ASCII art to someone or to a channel may look
pretty or help you make a point, but if you attempt to send it all at once,

you're likely to be disconnected or, as it's better known on IRC, you
flood off. The size of the file may be less than the critical limit, but file
size increases with the addition of the instructions the server needs
(invisible to the user) to forward the message to its recipient(s); your
client adds these instructions to each message.

Unless your client has a timing mechanism that leaves an interval
between messages in order to slow down the rate at which it sends mes-
sages, sending even small files may disconnect you.

The second reason for flooding off is an attack on your client or
channel with the intent of forcing your client (and possibly all the others
on the channel, too) to send data to the server at a fast enough rate to be
disconnected. Flood protection, covered in Chapter 17, can prevent this.

Section 17.1 gives a full explanation of flood attacks. If you do get
flooded off, follow those instructions. A properly configured client
never yields to this kind of attack, and most modern clients are fairly
flood resistant by default.

6.6.7 Kill Line Active

This is the operator kill we looked at earlier, taken a step further. An
operator may deem that KILL wasn't sufficient or notice that the offend-
ing client keeps reconnecting, and set a K: line just like the one
mentioned in 6.2.1. The message will be totally unambiguous, saying "Kill
line active" or "K-lined," sometimes followed by a reason or the time the
K: line is in effect, if it's a temporary one. If you're positive you are not
at fault, then you've had a bit of unusually bad luck—the operator set a
K: line for some- one else who happens to be sharing a host mask with
you while you're connected to the server. Operator-set K: lines are effec-
tive immediately and result in instant disconnection of all clients
matching the K: line, without allowing them to reconnect. Not all K-
lined signoffs are real—some people find it funny to quit with such a
message. On DALnet servers the message is "User has been banned."

6.6.8 Other Types of Disconnection

Bad network connections between you and the server cause other less
common disconnections. Many of these result in the message "Ping
timeout" or "Connection reset by peer," but there are any number of
network-related disconnections, such as "No route to host" or "Network
is unreachable" or "Host is unreachable." In these cases you should check
the connectivity of your local service (for example, if you're unable to
retrieve documents from off-site Web servers, your local service has lost
its connection to the rest of the world). Ping and traceroute are the
tools for doing this, and are widely available from most sites carrying
networking software (if you're using a Windows 95 or NT or a Unix

system, these utilities are almost certainly present on your system).
If your end of the connection looks all right, the failure is probably

on the server's side, and connecting to a new server should solve it. Use
the utilities described above to make sure the server you've selected is
reachable, since in the event that part of the backbone network breaks
down, you may find large segments of the Internet unreachable from
where you are. The section regarding abuse in Chapter 17 will cover dis-
connections caused by network attacks on one of the connected machines
(nukes). However, nukes look like the disconnects mentioned here and
are often indistinguishable.

Finally, on the largest networks, and particularly EFnet, you may see
the message "SENDQ limit exceeded" or something to that effect. This
commonly means you attempted to retrieve a list of channels, and the
amount of the data sent back was too great to maintain the connection
between client and server. If you simply must have a list of every channel
on the network, you can try changing servers in search of one that will not
disconnect you, or visit http://www.irchelp.org on the Web and view the
channel list there.

Now that we've been through all the nasty technical details of con-
necting successfully to a server and staying there, we can do what we
came to do—let's get into a channel to chat!

CHANNELS

What has made IRC so popular is the
idea of users convening in channels.

You may know them as rooms from other
online chat systems, but the correct term

on IRC is channel. Still, some IRC services call
them rooms, so we'll have to live with the fact
that both terms are in use. In a way, the terms
describe the difference between the old idea of
entering rooms where some sort of party is going
on, and the concept of tuning into channels on
a forum similar to CB radio.

Instead of everyone connected seeing everyone else and all public
messages going to all other users on the network, each user can choose
to join one or more channels of his or her choice and communicate
only with other users who have selected the same channel.

Channels are identified by a name, which usually reflects the topic
of discussion in that channel or the kinds of people that frequent it. The

subject matter is entirely arbitrary, as is the name. Anyone can create a
channel, name it whatever they like, and talk about anything they care
to talk about. The only exception to this is channels on a network that
enforces a policy about the kind of channels its users may create—for
example, one that forbids sex channels.

In theory, a channel can have as many users as are connected to the
network on which the channel exists. If a network has 10,000 clients con-
nected, it's theoretically possible to have all 10,000 on the same channel.
Not that you'll ever see any channel of this magnitude on IRC—the maxi-
mum number I've actually observed is about 1,000, which is huge
enough. Just imagine trying to keep up with the combined messages of
999 users. Channels are highly configurable, though, and it's possible to
set up even one that size so as to prevent total and utter chaos.

Channels often also have a topic—an description of the channel
and its purpose or a comment related to some event on the channel
itself. This is the second identifier a channel may have, but is usually not
as descriptive as the name. Channels are not required to have a topic
indicating what's going on, and many don't. Many channels are quite
happy with no topic at all.

Channels can be present and available throughout a network, or
their presence may be limited to a single server or group of servers.
Global channels, accessible from all servers of the given network, are
invariably characterized by a leading hash mark (#) in their name. Local
channels, which only users of a specific server may join, begin with an
ampersand (&).

A less common type of channel exists only on servers matching a
certain mask, but is considered global within this group of servers. Their
names begin with a hash mark, but include the server mask, appended
following a colon (:). For example, #friends:*.be would be available only
to people using servers matching the *.be mask—Belgian servers, since
BE is the country code for Belgium. You won't often encounter these,
but they can be very useful under some circumstances. In order for this
kind of channel to work on all servers matching the *.be mask, the
servers must be directly connected.

To summarize this, a channel named #ThisChannel is global,
whereas you can only reach a channel named &ThatChannel from one
server. Channels beginning with & on different servers can have the
same name, without interfering with each other. Finally, you can only
reach a channel with the name #Canadians:*.ca from servers matching
the mask *.ca—Canadian servers in this example.

A fourth type of channel has a plus (+) prefix, and is not available
on all types of servers—only Undernet and IRCnet servers support them.
This kind of channel has the added characteristic of disallowing channel
management commands and is actually a very old feature that has been
reintroduced without too much success. The purpose of modern-day

plus channels was to offer an environment without the channel politics
and power play that usually results from having a power structure, as is
the case with global channels. The newest versions of IRCnet servers
have an additional form of channel beginning with an exclamation
mark (!), but so far most clients don't support them, and they are
obscure in function and purpose.

As a matter of convenience, all channels I mention from here on
will be regular global channels unless otherwise stated.

Global channels are the majority, and have many more potential
uses and problems. We have already seen the different IRC networks
that are not related to each other and have no interconnection. Like-
wise, a channel on one network may have a counterpart on another that
shares only its name. For example, the EFnet #irchelp channel is totally
different from the Undernet #irchelp channel—each has its own
settings, rules, users, and operators. In some cases, the same people
maintain channels with the same name on various networks, and these
channels look similar. Each must be joined and maintained separately,
though, and of course they require separate server connections.

Now let's see how to find and join a channel.

7.1 Obtaining a List of Available Channels

All servers keep the current channel list in memory, and most allow a
user to retrieve a large part of it. This is done using the LIST command.

Depending on your client, you may also be able to sort the list and
limit it to a group of channels with common characteristics. The server,
although it keeps a complete list of channels—the number of which may
well exceed 20,000 channels on the largest network—also keeps track of
secret channels that don't appear in a list. The operators of these secret
channels have added a setting telling the server not to divulge any infor-
mation regarding them or their users (see 10.3.9).

Depending on the network, between 30 and 60 percent of all chan-
nels are secret and therefore are missing from the list. This accounts for
the difference between the number of channels you receive in a listing
and the total number you may have noticed in the output of the
LUSERS command (see 15.1).

The basic syntax of the LIST command is simply

- /list

and the response looks a lot like Figure 7.1.
Depending on your client, the information appears either in your

main window or in a special channel list window.

tarNET Cstruic* T*aB - Fora a http;//HHH.aftar
ixiaa KDD el 21 at Julio Mnnt epuntataltl ^
• nooda ara loualu. dark and daap.. but I'D* ',

Figure 7.1: Using the LIST command

In Figure 7.1 above, you see a small list of channels. The number
following the channel name is the number of users currently on the
channel, and the text after the number is the channel's current topic. If
the name of a channel is longer than ten characters (including the hash
mark), many clients will truncate it. You have to change your client's
settings to make it display full channel names that are longer or to make
it show more of the names.

Of course, the list may already be too large, so you may want to see
less of it anyway. Most clients allow you to limit the number of channels
displayed: They filter the list for channels with characteristics you
define by adding some parameters to the LIST command. Not all of
them will apply to all clients, but you can expect a good client to sup-
port most of them. Some of the flags and parameters LIST is likely to
support are as follows:

-topic
-min X
-max Y
-wide

^channel
•string*

Shows only channels that have a topic set.

Skips all channels with fewer than X users.

Skips all channels with more than Y users.

Displays a list with full channel names and the

number of users. The topic, if any, is ignored.

Shows the list entry for #channel only.

Shows only list entries containing string in the

channel name.

Examples:

/list -min 5 -topic Shows all public channels with at least 5 users

and a set topic.

/list -max 25 #a* Shows only global channels with less than 26 users

and beginning with the letter A.

/list -min 10 -max 20 Shows all channels with over 9 and under 21 users.

/list #joyride Shows the entry for the channel named #joyride,

including its topic if it has one. If this channel is set

secret, you would have to be on the channel in order

to see it in a list.

LISTing is often easier said than done. You may encounter a variety of
problems while trying to get a list of channels.

7.1.1 Disconnecting When Using LIST

Oops—you asked for a list, got 150 or 300 channels, maybe even none,
and got booted from the server. This is an extremely common problem,

,. especially on regular dial-up connections to one of the major networks.
It results from a combination of the speed of your connection to the
server, the server's setup, and the size of the list itself. On the larger net-
works, there may be as many as 10,000 channels on the list the server

; returns. This is a hefty amount of data, and a regular dial-up connection
often has trouble handling it.

The disconnection occurs when data waiting to go to a destination
exceeds the maximum the server's configuration allows, orwhen it
takes the client so long to receive the list that a Ping timeout occurs.
Each server sets the values for the maximum amount of data to queue
for a client and the Ping interval separately, which explains why you

; . • can use LIST with no problems on one server while you get
• '•'; disconnected on another.

If the maximum amount of data allowed is less than the size of the
list, many connections, especially dial-ups, can't absorb the excess data

i fast enough to bring the contents of the buffer below the maximum
allowed. Often the server's administration may not be aware of the prob-
lem—server administrators tend to have very fast connections to the
server, and most of them rarely use LIST since they know their way
around well. Sending an email to the server (see 15.3) asking its admin-
istrators to raise the limit for your connection class may prompt them to
solve this problem.

• :•- . . Trying to reduce the amount of data by requesting a limited list will
not help—for any listing concerning more than an individual channel,
the server sends the whole list, and your client sorts it and displays the
part you want to see.

Since it's generally easier for servers to provide a solution to this
problem on their end than to ask all users to increase their connection's
bandwidth (which would be unrealistic, considering the extra cost for
both bandwidth and hardware on the user's end), server administrators

often cooperate if you bring the problem to their attention. As far as
the server software is concerned, only the Undernet and DALnet code
and versions based on it do a limited amount of filtering the list before
sending it to the client, thus making it possible to reduce the amount of
data a server returns.

Since you're probably not inclined to wait the hours or days it will
take the server to fix the problem, you should try a few more servers on
the network and see if any return a list without disconnecting you.

7.1.2 Strange Channel Names
Once you get a large list from a server, you'll probably notice a number
of channels with what appear to be nonsensical names made up of
sequences of strange characters. The majority of these are actually quite
normal channels. What you are seeing is the ASCII rendition of the
Japanese Kanji characters that make up the channel name. These are
identifiable as such because they contain many square bracket ([), dollar
sign ($), and B characters. Korean and Chinese channels look similar.

Sometimes you'll also see apparently normal names with one or two
unusual characters. These are channels that use a slightly different,
although Latin-based, character set. Many of these are in a Nordic lan-
guage; others may be German, French, Portuguese, or Spanish. In order
to join one of these, you have to switch character sets, unless your upper
character set (character codes 128 to 255) includes these particular
characters and you can easily access it. Windows users should be able to
reproduce them without too much trouble. IrcII-based clients can pro-
duce most of those characters using the DIGRAPH command.

Hebrew, Cyrillic, Arabic, and Greek generally translate to a series of
vowels interspersed with other characters.

7.1.3 Arghi The List Keeps Scrolling Off and
I Miss Most of It
Solving this little problem depends on whether your client can pause
during the display of the list. Some older clients aren't geared to handle
the length lists can reach nowadays. In other clients, it's simply a missing
feature.

If you're using ircll, the process of making the list display one
screen at a time is fairly simple:

/set holdjnode on
/list [flags] [parameters]

This makes the display pause after each screenful of entries. Press the
ENTER key to bring up the next screen. If you think you've seen enough,

use the FLUSH command to clear the remaining part of the list. Use
/set hold_mode off to keep the display from pausing after every screen-
ful, although it isn't a problem if you leave hold_mode on for the whole
session—under some circumstances you may want it on anyway.

With other clients, you'll have to rely on the client's scrolling features,
if any. Most, including mIRC, open a new window to display the list, and
you can use the scroll bar to reach information that has scrolled off.

7.1.4 / Give Up—Nothing Is Working

It's unlikely to happen on the smaller networks, but sometimes on the
larger networks things simply refuse to work for you. Two of the major
networks have a Web service you can contact to get a fairly current list of
channels. EFnet's #irchelp team provides one. IRCnet has its own, which
the administrator of the network's main Swedish server creates and hosts.

Both these services are easy to use, updated frequently, and search-
able. Normally they work fine, but they depend on a single server for
the listing they take at regular intervals. Any negative conditions (such
as a netsplit—see 7.11) affecting their server at the time they take the list
has repercussions on the list.

Here are the channel listing services on the Web:

http://wNvw.irchelp.org/chanlist
http://www.ludd.luth.se/irc/list.html
http://wvrw.liszt.eom/
http://users.dal.net

EFnet

IRCnet

Many other networks

DALnet (You must be a registered user.

This allows you to search the reg-

istered channel database. It does not

show you what channels are active at

the moment.)

7.2 Selecting a Channel from the List and
Finding the Right Channel

Unless you've successfully limited your search to something very spe-
cific, the list of channels you'll get with the LIST command will be made
up of a variety of channels with names that may or may not indicate
their nature and subject. You'll probably find many of them uninterest-
ing, silly, or even offensive. At this point we should say something about
the legitimacy of IRC channels. The large networks and their servers
exercise no form of censorship over the names of channels or their con-
tents (see 20.4). The network is legally just a carrier and therefore
cannot and will not be held responsible for any immoral or illegal activi-
ties among the people using its services.

The large number of "sex channels" may strike you as peculiar.
Many of these are nothing more than pornography trading posts. Oth-
ers of a more serious nature really intend to deal with sex—some as a
meeting ground for those who believe "netsex" is a viable alternative or
supplement to real sex, others for discussing fetishes or personal inter-
ests, and others for meeting those with matching sexual interests (for
example, channels to meet homosexuals, extremely hairy people, obese
people, and so forth). In the Internet environment, where many social
taboos don't apply and where people often cast their inhibitions aside
under the impression of anonymity, this isn't really surprising. Quite a
few of these sites are also localized and act as a kind of virtual singles
bar.

Channels specializing in the pornography trade have names like
#sexpics and commonly have a word like pix or pics in their name (see
20.6). Since they wish to attract customers, they are almost all public and
will appear on the list. You can safely assume that channels beginning
with a row of exclamation marks or "100%" are pornographic sites try-
ing to stay at the top of alphabetically ordered channel lists. These are
generally the seedier ones.

Equally common are a group of channels with the mysterious
phrase warez written all over them—warez this, warez that, get your
warez here, and so forth. These channels are essentially dedicated to the
discussion or trafficking of pirated software (see 20.7). Software pirates
are extremely active on IRC, and the more prominent and skilled
among them form very exclusive groups in an almost guild-like fashion.

Many prominent users on the more populated warez channels are
expert IRC users, sometimes decent hackers, who do not care for people
looking for illicit freebies. Most networks don't mind their presence—if
the law wishes to get them, they a're pretty obvious and don't need any
pointing out.

In the beginning, you'll probably be more comfortable on a
medium or small general chat channel with no more than about 20
users. Chat channels of this kind can become really large, with the num-
ber of users well into three digits. This makes them chaotic and almost
impossible to follow. Start with one of the chat or bar channels you'll see
on the list. Choose one with an attractive, friendly topic, and you're
ready to join.

7.3 Joining a Channel

Becoming part of a channel is simple. With the JOIN or CHANNEL
command, your client sends a JOIN to your server, which in turn checks
to see whether you have permission to join the channel you specified.

Let's say you want to join a channel named #somechannel (remem-
ber that the hash mark is an integral part of the channel name, and you
must use it). The command is simple:

/join ftsomechannel

The server runs a brief check on the channel's settings and decides
whether you may join it—usually you can for a public channel. If the
server accepts your JOIN command, you'll see code resembling this:

*** Apatrix (apatrix@ircd.webbernet.net) has joined channel
#irchelp
*** Users on ttirchelp: Apatrix @>Vamps elib @Lindy_ @wmono @Garfr
@MHz ^turtle @>WishBone gDemiShade (Wolo

*** Topic for ttirchelp: Ask your IRC question or visit

www.irchelp.org
*** #irchelp Garfr 917596918
*** ttirchelp 884520350

This shows you the nickname of all the channel's users, which now
include you, and the nickname and host mask of the user who just
joined the channel—you again. The lower two lines look a bit cryptic,
but this is only because I took the example from a client who does not
translate server jargon into something readable. mIRC is more helpful
and translates them into something more understandable.

The first of these cryptic lines shows who set the current channel
topic and when. The second line is the channel's time stamp, which says
when it was created. Both of these times are expressed in "epoch"
time—essentially, seconds elapsed since midnight, Greenwich mean
time, on January 1,1970. This is the standard way of timekeeping on the
Internet. Most clients by default convert these time stamps into more
readable standard (and local) time.

As you see, there are 11 nicknames listed. The number of users
could of course be a lot higher and even range into the hundreds, with a
screenful or more of nicknames appearing. Note that the at (@) sign
before nine of the nicknames is not part of the nick, but indicates chan-
nel operator status, which we'll look at a bit later on. Other clients, such
as ircle, use a different color for nicknames with channel op status (ircle
displays them in red). Some clients—mIRC, for example—open a new
window for the channel, along with a list of nicknames. Messages sent to
the channel appear in the new window, and the channel's vital statistics
show up in the status window.

Here you've been told to use /join #channel—the complete com-
mand line. Depending on your client, there may be one or more
shortcuts to joining a channel. You may be able to add the channel's

name to a list stored and loaded along with the client, and join a chan-
nel by calling up the list and clicking the channel or by using a shorter
form of the command itself.

A typical example many clients and add-on scripts use is /j channel.
Note the lack of the otherwise omnipresent hash mark. The client hasn't
left it out—the client will add it and the server will receive the complete
JOIN #channel command. In the beginning, though, it's better to famil-
iarize yourself with the real commands. This way you can use IRC from
practically any client and will not depend on a single platform or client.

Most channels are public and let you join with no more than the
JOIN command, but this isn't always the case. Let's have a look at the
possible snags you may run into.

7.3.1 No Such Channel
You're positive that channel exists! Sure it does—but consider what we
said a paragraph ago about the correct and full syntax of the JOIN com-
mand. The channel name you specified didn't begin with a valid
character. The /join #somechannel command works, and /j somechan-
nel might also, but /join somechannel will not, unless you have a strange
piece of add-on scripting (which you shouldn't) or an ultrasmart client
that understands your mistakes and corrects them, which naturally doesn't
teach you much.

So, depending on your client, remember to use the hash mark
where it's needed. In this case, you forgot it. Oops! Let's try again.

7.3.2 How Did I End Up on the Channel #?
You typed a space between the hash mark (#) and the channel name.
Try it again without the space. # is a valid channel name on its own.

7.3.3 Banned from Channel
This is not unusual, especially if you've encountered a few K: lines while
connecting to a server. In such a case you can be fairly sure others con-
sider your provider or host a source of trouble and think its users should
be kept off servers and out of channels. You'll get this response to your
JOIN command if the server sees that your user mask matches an entry
on the channel's banned list.

This straightforward message says you're banned from the channel.
Less explicit clients just tell you you're "unable to join channel (+b)."
This may not seem very enlightening—what the devil is -i-b and how on
earth did it get there?

A channel's operators set bans by adding a +b setting (channel
mode; see 10.3.1) for a certain nickname and/or host mask (see 10.5).

So +b means that you are banned from the channel. Channel bans oper-
ate independently—each channel has a separate list of bans—and they
last until the channel closes or one of its operators removes them.

If you have never been to the channel, obviously you didn't cause
the ban to be set. Rather, it was the same local obnoxious user you
glimpsed while you were looking at the K: lines in section 6.2.1. If you
want to be sure, though, you can look at the channel's ban list when
you're not on the channel, with the following command:

/mode #channel b

Check the list returned and see which entry matches your host mask. If
there are a lot of bans affecting whole domains or even *!*@* (which of
course matches everything), the channel may have been attacked and
taken over.

We'll deal with takeovers later on (see 10.7)—for now, don't panic,
just pick a new channel. After all, it's always better to be somewhere
where you're welcome. Don't insist enjoining the channel. You'll most
likely fail—you will just feel frustrated, and the ban will be renewed.
Users of large Internet providers like AOL, Netcom, and AT&T are
more likely to encounter this problem. The explanation is simple: The
more users a provider has, the more idiots and abusers use its services
and make the site unwelcome. If the provider also uses an addressing
system that makes it hard to ban only a specific part of it, channel opera-
tors eventually end up banning the entire site in order to rid themselves
of a single annoying user. It's not fair to the rest of the users, but chan-
nel operators have this right, and some see it as their duty toward the
channel's users. They do as they see fit for the purpose of maintaining
order on their channel. AOL users in particular get the worst deal
because of the way their dynamic IP addressing works: The pool of
addresses from which it draws is immense, and an abuser can have a rad-
ically different address each time he or she connects. This doesn't leave
channel operators with much choice.

7.3.4 Bad Channel Key
One way those managing the channel safeguard its privacy is by setting a
password that the user wishing to join must supply. All servers store this
password and compare it with all JOINs for that channel. If the user
doesn't supply any password or sends one that doesn't match the exist-
ing password, the server forbids the user to join and gives the error
message "Bad channel key." If you do know the password—known as the
key (see 10.3.3)—join the channel as follows:

/join ftchannel keyword

7.3.5 Channel Is Full

Another feature used for running a channel is the ability to limit the total
number of users the channel may have. In this case, the server checks the
current number of users on the channel against the maximum limit set
and doesn't allow anyone to join if this limit has been reached.

7.3.6 Kick or Ban after Joining

Because of the limited number of bans a single channel may have, larger
channels often also have an informal ban list. One or more clients on
the channel, often robot clients, keep their own ban list independent of
the current channel ban list, and check each user attempting to join
against this list. When the client sees an unwanted user, it bans that per-
son and kicks him or her off the channel automatically. Bans set in this
way usually don't last long—most of these robots also automatically
remove the ban after a while to avoid cluttering the available space on
the ban list and to leave a few slots open for nonregular bans that may
be necessary. It's essentially a combination of a ban (+b), followed by a
KICK command (see 10.5)—these are separate commands, so you will
first see a ban matching your host mask, then you'll get thrown out of
the channel. The command generally looks like this:

*** Mode change "+b *!*@my.provider.com" by MeanBot
*** You have been kicked from channel #Somewhere by MeanBot (Co
sit in a corner.)

This type of ban happens for the same reasons as a regular ban.

7.3.7 I Joined a Channel on the List and It's Empty I

Unless it was a channel with very few users, who may all have left by the
• • • • • • - time you read the list and joined, the reason for this appears in the list

itself. The client often truncates long channel names (see 7.1), so what
you saw was not the full name of the channel but only its beginning.

One example of a channel that used to be particularly confusing
was a channel named #marriages—users kept joining it and finding it
empty, despite the fact that a fair number of users appeared on the list.
This is a good example of how a truncated channel name that looks like
a complete name can be misleading. Further investigation showed that
the name of the channel was really ftmarriagesex, which most of those
users had absolutely no intention of joining.

Another cause for this could be a netsplit (see section 10.6)—during
the time it took for you to receive and read the list and attempt to join
the channel, your server disconnected from the rest, effectively empty-
ing the channel as far as your server is concerned. They should be back

within minutes—check LUSERS (see 15.1) to confirm that it's a split
and not some other problem. If the total number of users and server is
much lower than it should be or your own servers says it has no servers
connected to it, this is the case.

7.3.8 Nickname or Channel Is Currently Unavailable

This message is particular to servers running IRCnet code and is techni-
cally very similar to the nick delay problem mentioned in 6.2.7. This
condition, known as channel delay (CD), occurs when the channel loses
its operators by irregular means and is empty—either its last operator
becomes the victim of a KILL command, or a netsplit leaves all opera-
tors on the other side and no users on your side. The channel should
open again as soon as the split is fixed and the operators return, as

, ... viewed from your server. If they don't return within a certain time (a
. r, •• minimum of 15 minutes), the CD expires and the channel opens again

anyway. Each server implements CD individually, so another server will
allow you to join if the circumstances causing the delay are not present
according to that server.

7.3.9 Invite-Only

This means the channel has been set to allow only users who have
i , received an invitation from one of the channel's operators to join. The

server checks whether there is an invitation for you to join the channel
and forbids you to join if there is none. If you are invited, you see a line
like this:

*** Inviter invites you to channel #friends

The invitation stands for as long as you're connected to the server. If
you disconnect from the server for any reason, you'll need a new invita-
tion to join the channel.

Obviously, the users of an invite-only channel desire their privacy
and often also set it as secret. Trying to obtain an invitation is more trou-
ble than it's worth, especially if you haven't been on that channel
before. You would have to find and contact one of the channel's opera-
tors, but you won't get much better results than if you were trying to get
into a house when the owners have declared they want no visitors.

Channels 111

7.4 Who Is on the Channel?

Having successfully joined a channel and seen the nicknames of the
users on it, you'll probably want to know more about the people who are
there with you.

If you just want to see the list of asterisked (*) nicknames again, use
the NAMES command:

/names #channel

Some clients let you substitute an asterisk for the current channel:

/names *

This command returns a list of nicknames the same as the one you saw
right after joining the channel. If users have left or joined the channel
since you joined it, the NAMES list reflects these changes.

WARNING Do not use NAMES without giving a parameter! If you want to argue the point,
see section 9.5.

If you're using mIRC, you generally won't need the NAMES command,
since you'll be able to see all nicknames on the channel by scrolling
through the list on the right-hand side of the channel window. Other
graphical clients display it on the left-hand side.

For a more detailed list of everyone on the channel, you need the
WHO command. This takes the same parameters as NAMES, but some
clients allow additional filtering of its output. Here's a typical WHO list,
assuming you're on channel #irchelp:

#irchelp Kefka H Anarchy@202.188.232.21 (2 Blood is live in its
purest form)
#irchelp Apatrix_ H@ alc@egnatia.ee.auth.gr (6 Agent of Chaos)
#irchelp Nyctea H satan@sblOOb-3l2.cc.tut.fi (8 Nyctea scandiaca)
#irchelp zaoli H ~zaoli@zaoli.umo.cz (9 dA blue power)
#irchelp pht H@ svobodam@irc.vsp.cz (9 Michal *pht* Svoboda)
#irchelp Rince H@ rince@serpens.swb.de (6 Auf dem Datenhighway to
hell...)
tfirchelp Engerim H@ engerimgkip.sateh.com (8 Thomas 'Engerim'
Kuiper)
tfirchelp EmleyMoor H(5> philipr@admin.irc.demon.net (l Phil
Reynolds)
#irchelp DemiShade H@ demi@idle.cs.hut.fi (5 Jani Joki)
#irchelp MHz H*@ mhz@irc.webbernet.net (l Hold your flame till
your dream ignites)

tfirchelp Nevermjid H@ bart@relics.org (l Bart Crombe)
ftirchelp Apatrix G*@ apatrix@ircd.webbernet.net (0 Web Net IRC)
*** ttirchelp End of /WHO list.

Right, let's try and make some sense out of these cryptic lines. The first
bit is obviously the name of the channel and the second is the user's
nickname. The fourth bit should be the address, but what on earth is
the rest?

In the third column, you'll see one or more characters explaining
the user's status as far as the server is concerned. It contains one of two
characters—either G or H—to indicate whether that user has declared
himself gone (used the AWAY command to indicate his or her absence
from the keyboard) or is here. This doesn't mean much, since many peo-
ple never bother to set themselves away when leaving. I often forget to
set myself here again when I return.

One or more of the following characters may follow the leading H:
or G: an at sign, an asterisk, and a plus sign. The at sign indicates that
user is an operator of the channel. The asterisk stands for IRC (server)
operator. Finally, the plus sign means the user has a voice on a moder-
ated channel (see 7.6). Depending on the type of server, you may also
see a couple of different characters, most commonly a d, which means
the client is in "dumb" mode and is not following the channel's conver-
sation. This mode is used mainly for service robots and is available only
on Undernet and similar networks.

The final part in the parentheses is no more than the ircname or
real name (see 6.3.4), but the number in front of it is less easy to explain.
This is the distance between your server and that user's server, measured
in server hops—how many server links connect you and the other user.
For the client performing the WHO command, the value is always 0,
since there is no way in the world it could be on a different server than
itself. Whether you see the number depends on the client's setup.

7.5 Channel Operators

I've made many references to channel operators and attributed mysteri-
ous powers to them, such as making a channel secret or kicking people
out. What are channel operators and what's so special about them? Are
they people? Are they machines? Are they something else we dare not
imagine?

Channel operators are users with certain privileges on a channel.
They control the channel by using a special set of commands that can
change the channel's settings or modes (see 10.3) and topic, invite peo-
ple to the channel, or remove unwanted users. They are usually called

ops for short—other terms are chanops or chops. We'll settle for the most
widely used expression, ops, from now on.

Ops don't appear on a channel magically. Something has to make a
user a channel operator. There are three ways of obtaining channel op
status. The first is being the first user to join a channel, in which case the
server automatically gives you ops. The second is getting assigned op
status by a user who already is an op or by identifying yourself to a chan-
nel server that will check whether you are an authorized user and, if so,
assign you op status. The third method, possible only on networks with a
channel service, involves identifying yourself to the service with a special
password. A user with ops is basically just a channel setting that means
this user has operator privileges. An at sign prefixes that user's
nickname whenever it appears in conjunction with the channel.

Channel ops last as long as the opped client is present on the chan-
nel. If the user leaves the channel for any reason, he or she must obtain
ops again by one of the means mentioned above.

A channel may have any number of ops—from no op at all, to every
user having ops. Only the number of users on the channel limits the
potential number of ops. Having a channel with no ops can be a prob-
lem, though. Without ops, no one can change the settings of a channel,
or remove obnoxious users from it. In Chapter 10, I'll show you how to
become a channel operator by creating a channel.

The power of a channel operator over the channel is absolute and
subject to control only by other operators. Unless another op questions
the op's actions, he or she is free to change the modes, kick people, ban
them, and give out ops to others at will.

Some networks with a channel service allow a hierarchy of ops on a
channel and permit a super-op or founder to assume a higher level of con-
trol (in which case the rule of absolute power applies to a single
person). Apart from that case, the ops of a channel are equal and may
also deop each other—that is, remove operator status from a user who is
an op at the time. This technically also changes the channel's settings
(makes a mode change).

You might wonder how a channel keeps its operators with people
coming and going all the time. In the case of larger channels with a lot
of regular users, there are enough people to keep at least one regular
operator on the channel at all times.

Many channels, especially medium and small ones, rely on a differ-
ent method of keeping the ops on a channel. You'll soon encounter one
of the tools for doing this.

7.5.1 Channel Bots
Bots (short for robots) are the prime tool for maintaining a channel op
at all times even if none of the regular users is on the channel. Also

known as automatons (automata if you're into linguistic semantics), IRC
bots are programs with a variety of uses, not all of them innocent. They
are used most widely as channel management tools.

A channel bot doesn't look any different from a real live user on
IRC. Technically, it's a client. Its purpose is to sit on a channel day in
and day out and perform channel management functions, either by
monitoring channel events and reacting to them or by following instruc-
tions from users authorized to send it commands.

The bot needs to maintain a constant network connection, so most
bots run on Unix machines with such a connection, independent of
whether their owner is logged into the machine or not. Dial-ups are gen-
erally not suitable for running bots, since they require constant use of a
phone line to stay connected. Also, the bandwidth of a plain modem
connection is generally a fraction of that of a machine with a permanent
link, making a bot (or any other client on it) less stable and more sus-
ceptible to attacks. Since one purpose of bots is to ward off possible
attacks on a channel, this can be a strong liability. Cable and DSL are
better options.

Since, all too often people use bots for much more than just channel
maintenance, many servers have a policy forbidding users to connect
hots and a standing order for the server's operators to "shoot on sight"
or even K: line (see 6.2.1) any address found running one. Another rea-
son for this is the large number of badly configured bots: They can mess
up channels and cause users to look for the server's operators to kill it
off; they use up network resources by triggering loops; and "vanity" bots
hold an entire channel and take up a full-time connection that real
users might need during peak hours.

I have nothing against bots on principle. As an IRC operator,
though, I've had many opportunities to observe how people use them to
harass others. In my opinion, the problems bots create are at least equal
to the benefits users gain by their presence. It's simply not feasible to
sort them into good bots and bad bots, so banning them all is a valid
option many server administrators resort to so they can curb abuse.

A well-configured bot can help maintain a secure channel. You can
even program them to entertain or inform a channel's regulars and visi-
tors with funny automated responses or timed announcements. Chapter
19 offers more information about bots and setting them up.

You can usually identify a channel bot by the way it remains in the
channel saying nothing or limiting itself to obviously automatic
responses. Another characteristic is that they may immediately op a user
upon joining, announce the user's presence, or send joining people an
automated message (which isn't really smart but is quite popular).

Bots are special programs that act as unsupervised clients on IRC.
With the high level of sophistication of some modern clients and add-on
scripts, these programs are often as effective as a bot. The line between a

high-powered script and a bot is growing thinner all the time, and many
users already prefer the script method to keep their channels going.

7.6 Moderated Channels and + Voice

Moderated channels don't quite fit the common definition of modera-
tion. On a moderated forum such as a mailing list, a person who acts as
the moderator must approve contributions, and may forward or reject a
posting. Moderation on an IRC channel merely allows some users to
send messages to it and prevents others from doing so. The sender of a
message must be an operator or approved by an operator, but the mes-
sage itself is not submitted for approval before it's sent to the channel.

Moderated channels are used for IRC classes, news channels, guest
lectures, IRC weddings, and other events where attendance is expected
to be high but the channel owners want to keep the traffic low. Some
IRC networks such as GlobalChat have guest lectures where the modera-
tor and the guest lecturer have voices. When you submit a question, the
moderator approves the question by typing it to the channel, and the
lecturer answers it on the channel.

Moderated channels have an additional setting permitting only cer-
tain users to send messages to the channel. Those who may speak on a
moderated channel are its operators and those users to whom they have
given a voice. This voice is a channel mode, like operator status, but per-
mits the user to speak without giving him or her full operator privileges.
On the WHO list, a voiced user appears with a plus sign in the same
place as an operator's at sign. Ops can give or remove the voice just as
they can channel ops, and the voice is also valid for as long as the client
is on the channel.

A user can have a voice and ops at the same time. This is really
redundant, since an op has a voice anyway and is useful only if the user's
ops are taken while still on the moderated channel. As long as the user
has ops, the voice is not visible, but is known to the server. If the ops are
removed and only the voice remains, the server displays the plus sign
indicating the user has a voice.

7.7 Channel Events

In addition to the messages sent to the channel by the people on it,
many others appear, and some look very cryptic. These notices are
known as events and indicate a change in the channel's user list or char-
acteristics. Let's have a look at the various notices you may see while on
a channel—mIRC users normally see some of them in the status window,

but can set the client to display some or all in the channel window as
well by selecting Options, then IRC Switches from the File menu.

7.7.1 Mode Changes
These are notices indicating a change to the channel's settings (modes).
One of the channel's operators usually performs mode changes; these may
be one of the changes I've already mentioned or others I'll discuss later.

t' -• A typical mode change looks like this:

*** Mode change "+m" on channel tfSomewhere by ChannelOp

^j ; This says what kind of change was made on which channel and by
whom. In this example, the mode change was +m, which means moder-
ated mode. The op named ChannelOp added moderated mode to the
channel named #Somewhere. I will explain the mode changes and what

: .I. ' '",< ' each of them means in detail later (see 10.3).
In some cases a server rather than a user may make the mode

change. This is a consequence of net joins, which I'll take a closer look
at in section 7.11.

On networks with channel services, one of these services may make
the mode change, following instructions from the channel's owner or
another authorized person. The service robot isn't necessarily visible on
the channel.

7.7.2 Joins, Parts, and Quits
Each time a new user joins the channel or an existing user exits by
either leaving the channel or quitting IRC altogether, the channel will
be sent a notice describing the change.

A typical join notice looks just like the one you saw right after join-
ing the channel and contains the nickname and host mask of the user
joining and the name of the channel he or she just joined:

*** Brenni (s@ti33a95-0l82.dialup.online.no) has joined channel
#irchelp

In the same way, the server also announces a user's departure from
the channel:

*** Brenni has left channel #irchelp

As in this example, not all clients display the user (a host of the user leaving.
As we saw earlier, when a user quits IRC, any channel he or she is

on is sent a notice. If the user adds a message to the quit, this also

appears here. As with regular parts, some clients show the host mask of
the client signing off while others don't.

*** Signoff: Hello4lm (Quit: Leaving)

7.7.3 Nick Changes
If any user on the channel changes his or her nick with the NICK com-
mand, the channel will show this self-explanatory message:

*** Cuest53962 is now known as sOuLfLy

7.7.4 Kicks
Kicks appear if one of the operators decides a user should not be on the
channel and uses the KICK command.

*** GENTELMAN has been kicked off channel #chatzone by Dafinka
(idle 120 min)

This tells the channel who got kicked by whom, on which channel, and
why. The explanation in the parenthesis is meant to inform the chan-
nel's users and its other operators of the reason for the kick. It can
actually be arbitrary text and is just as often used to add smart comments
for the entertainment of the channel if the actual reason for the kick is
obvious. Many channels object to people idling—sitting on the channel
saying nothing for a long time—and will kick them after a while.

7.8 Leaving a Channel

You leave a channel by simply using the PART or LEAVE commands,
whichever your client supports, or closing the channel window if your
client opens separate windows for each channel. If your client (and the
server) supports it, you can also leave a parting message in the same way
you leave a message with QUIT. If it doesn't, you might be able to add
this feature with an alias or send it with a raw server command. Chapter
11 deals with aliases and other scripting commands.

Whether you use PART or LEAVE is not important as long as your
client understands both. But the server needs PART (PART is a server
command, while LEAVE is only a client command and changes to PART
when it's sent to the server), so if you intend to use a raw server

command to leave a channel, you must use PART. (Remember the
example I used in 2.5.3.)

This is the simplest form of a command to leave a channel:

/leave #somewhere

If your client lets you substitute an asterisk for the current channel,
/leave * makes you leave your current channel.
Some types of server also let you add a parting message just as you can
with QUIT.

7.9 Joining Multiple Channels

Most clients let you join more than one channel at the same time. If
your client does, you can be on as many channels simultaneously as the
server permits. The number is usually between 10 and 14 but can also be
higher—not that you'll often find yourself following conversations on 14
channels.

You can join more than one channel with a single JOIN command,
or you can join them one at a time. The JOIN command takes a comma-
separated list of channels:

/ /join #somewhere,#elsewhere,#nowhere

If you do this, you'll see a multiple version of the events you saw when
joining a single channel—three different NAMES lists, three JOIN com-
mands for your client, and three new windows will open if you're using a
client with a window for each channel.

IrcII users may have to change one of the client's settings in order to
•-":• join more than one channel. This command is /set novice off. If NOVICE

is on, joining a channel automatically makes you leave the previous one.
Add this setting to your .ircrc file as described in section 4.5.6 on setting
up the client if you're confident you can handle multiple channels.

7.9.1 Switching between Multiple Channels
The conventional way of changing channels without leaving any is to
JOIN the channel again, although you're already on it. This makes that
channel the current one. On a client with separate windows for each
channel, you simply select the window corresponding to the channel to
which you want to switch. With ircll, you need another line of low-level
scripting using the BIND command.

The BIND command lets you bind a key press to a function. In this
case, the desired function is called switch_channels. Select a control key

that you aren't using for anything else (I suggest CTRL-V) and bind it to
the function with the following line:

/bind A\ switch_channels

Note that a caret (smrr-G, A) represents the CTRL key. If you press CTRL-
back slash (A\), the client cycles through all the channels you're on until
you reach the one you want. This is another command you should add
to your .ircrc file.

An mIRC user can also define hot keys to perform functions like this.

7.10 Channel 0

The only channel not characterized by a leading symbol is the sin-
gle channel many call "the salt of IRC," because this is the channel every
user automatically joins when connecting. This channel is known as
channel 0 or the null channel. Every client connecting to a server finds
itself in channel 0. From there on the client can proceed to join other
channels, or remain there and communicate with individual users.

Channel 0 is also different as far as communications go. On this
channel other users are visible only if they have usermode -i set, and you
can't send public messages to it. Many commands you can use on nor-
mal channels will also fail to work. If you choose to join channel 0 while
you're on any other channels, you'll leave those channels. JOIN 0 is a
nifty way of simultaneously leaving all the channels you're on.

7.10.1 The Channel #2,000 Trick
Some less well-meaning people like to entertain themselves by conspicu-
ously sitting on a channel named #2,000 or something else with a
comma in it and inviting others to join that channel. Remember,
though, that the comma is a separator and not a legal character in a
channel's name. Joining channel #2,000 makes you join channel #2 and
channel 000—and you just saw what channel 0 does. How did those peo-
ple get onto that channel?

The answer is simple: The comma is not a comma. I don't know the
purpose of having a comma-like character (identical to a comma but not
a comma) in the character set, but this is how things are. You can bring
up this special character with the ALT-0130 key combination under Win-
dows (you can also view it in the Character Map). IrcII users can
produce it with the comma-comma („) digraph. This proves that what
looks like a duck and quacks like a duck isn't always a duck.

mIRC versions 5.5 and later prevent you from joining a channel this way. Its
author decided people were having too much fun "playing" with newbies.

7.11 Netsplits and Lag

It's time to meet a legendary figure who will follow you throughout your
IRC career and keep turning up like a bad penny: the Lag Monster. No
one has ever seen this insidious creature, but it is believed to lurk in the
lines and gobble data packets as they pass by. The result of this is the
annoying phenomenon known as lag. You can usually tell when this
beast is nearby because your messages take longer and longer to reach
your friends—you're lagged! According to rumor, the lag monster some-
times eats whole servers and spits them out (too much silicon in the diet
is not good, even for a horrible monster). Let's investigate the activities
of the most hated creature on IRC.

7.11.1 Netsplits

While this phenomenon is not directly related to channels, you're
bound to encounter a netsplit sooner or later while you're on a channel
and you may wonder what it means and what causes it. Some of the
events you may have observed so far could also be related to netsplits.
They affect the whole network, including channels, and result from
server connectivity problems, servers or their machines going down, or
operator intervention in the network's routing.

Users on a channel can detect a netsplit from the characteristic quit
messages. If you see one or more users sign off with the names of two
servers as the quit message, this indicates they were on the other end of
a server link that just broke. The names of the servers tell you which link
that was. On IRCnet and similar servers, the quit reason contains the
server on your side of the split (which is still visible to you) and the
server of the user who's "signing off." All other server types show the
broken link.

A netsplit occurs when two servers lose their link for any reason.
When this happens, a server or group of servers loses contact with the
rest, and both parts function as separate networks. Let's look at a small
network diagram to make it clearer:

Say the link between New York and Chicago breaks. As a result,
Chicago and all the servers behind it (Seattle, Denver, and Los Angeles)
lose sight of New York and everything behind it (Washington, London,
Paris, and Madrid), and vice versa. In effect, this creates two separate
networks. One side sees all servers of the other side disconnect and all
clients on those servers signing off as a result. A client on the Paris
server can no longer see a client on the Denver server, and vice versa.
Here's another example: The link between Denver and Los Angeles
drops. Now Los Angeles is alone. Exactly the same result applies in this
case—what changes is the proportional size of the split parts.

In a more serious case, the New York server would crash and conse-
quently drop all its links. The network would split into four pieces:
Washington and London are both alone; Paris and Madrid form a small
network of their own; and Seattle, Chicago, Denver, and Los Angeles
form another part. No part can see what's going on with the others.
They don't even know that the rest of the Net is fragmented too (unless
an observer noticed that the reason was a server crash).

^Washington D.C

If the New York server doesn't return within a few minutes, the
remaining servers refer to the part of the configuration file containing
the server connections they can make. In this part (the C: and N: lines,
see 15.4.1) the server checks for lines telling it to autoconnect to a par-
ticular server under certain conditions, and then attempts to make the
connection if these conditions are met (that is, if the server has no con-
nections at all).

This is so netsplits can be fixed automatically on the server's end
and require minimal human intervention. Let's say Washington's server
is configured to link to Chicago in the absence of New York's server;
likewise for Paris, and London automatically links to Paris. These servers
each activate their autoconnection in order to bring the network back
together despite New York's missing server. The final result would look
like this:

With New York successfully bypassed, the integrity of the network is
restored. As this happens, each server transmits its status, users, and
channel modes to the others, which then add whatever is missing to
their information and inform the channels concerned about users

t = rejoining it.
Changes made to a channel's modes during the time the servers

were not connected on one part go into effect for the rest of the
network. This important process is called syncing and is necessary to
avoid confusion and disagreement among servers regarding the chan-
nels' and users'status—the net-pathological condition known as desync
(see 10.9).

This affects channel topics and keys, so you could have different
keys and topics on the same channel, depending on what part of the
network you're on. If the topic or key is set while the information can't
be transmitted (during a netsplit or in the lag preceding a netsplit) the
servers will not negotiate it, but each part of the Net keeps its own ver-
sion of the topic or key until a change is visible to all servers.

7.11.2 Server-Server Lag
Lag is another network problem that, while it's not directly related

to channels, can be as much of a nuisance as netsplits. Lag and netsplits
often go hand in hand; one may cause the other, leading to a vicious
circle that can create tremendous chaos on a big network if it affects a
large part of the Internet, including some of its central servers. A high
load on the server machine, resulting in slow processing of network traf-
fic, can cause lag, but more often it is due to a network fault that slows
down the transmission of data between servers. As a result, the servers
on one or both sides of the defective link start queuing data destined for
the other end, putting all new messages at the end of the queue. This
results in delayed transmission.

If this happens to a centrally located hub server that has a lot of
both inbound and outbound traffic, such as server 3 in the example in
section 7.11.1, it affects much of the network's communication. If the
amount of data queued for a single destination server exceeds the maxi-
mum permitted by the server's configuration, the server closes the link
to the other server, resulting in a netsplit.

When the link is restored, all client and server connections, which
one side or the other considers to have quit, are retransmitted, along
with information about the channels' users and modes. This is a large
amount of data, and if the destination server does not receive and
process it fast enough, it can end up queued, in which case we have a
new round of lag and the potential for more netsplits. If the servers'
automatic connection features fail to create a new working set of links,
the network's IRC operators have to intervene and work around the
problem by placing the lagged servers at a less central point of the
Internet and using alternate servers as the main hubs.

7.11.3 Client-Server Lag
Another cause of delays in message transmission is client-server lag. You
can detect this by using CTCP PING (see 13.2.1) on yourself. If this
command returns a long time, the problem is either the network con-
nection between the client and the server or a heavy load on either of
the two machines.

Following a net join, the servers don't resend some information,
mainly to reduce the amount of data transferred during the sync. Most
types of server will not resend users' away status and channel topics, so
you would have to reset these after the rejoin in order to be visible
throughout the network. While you may not even notice the fact that the
away status doesn't propagate, you'll often observe that you can't see a
channel topic other users on the same channel say is there, or vice versa.

COMMUNICATION

^

Now that you've successfully made a
connection to an IRC server and

joined a channel, you're likely to see all
sorts of different messages, strange and

plain, scroll down your screen. It's quite all
right to remain silent for a while and simply fol-
low the conversation. Once you get the gist of
the current topic and think you have some-
thing to contribute to the discussion, you'll also
want to know how to send messages to a chan-
nel or individual users. However, first you must
be able to read the messages you're receiving.

With this I don't mean taking English 101 again (or whichever
other language you might be trying to follow a conversation in), but
identifying incoming messages as what they are and reacting or not
reacting according to their nature and content. We'll start by looking at
the possible messages you may receive while on IRC.

Of course, you shouldn't ignore a greeting directed at you after you
join. If someone says "Hi!" right after you join and it appears to be
directed at you, just reply by typing a greeting of your own and pressing
ENTER. You may end up in a conversation right away, which isn't really a
problem—after all, that's what you came for—but you need to familiar-
ize yourself with everything that goes on within a channel before getting
deeper into conversation.

8.1 Types of Messages You May Receive

There are a number of different kinds of messages you'll receive, each
with its own significance and use. Different message types are character-
ized by their appearance—either they show up on a certain part of the
screen or they contain certain characters indicating their nature. Your
client affects how they look as well. Here's how to identify the various
message types.

8.1.1 Public Messages on a Channel
These are the probably the first messages you'll see, and they're what
IRC is all about. Any user can send a message to the channel if the chan-
nel's settings permit it (most channels do). A public message appears in
your main screen or channel window like this:

<Greeter> Hello there!

The user nicknamed Greater sent this message to the channel. The
angle brackets (< >), which characterize a public message, contain the
nickname of the sender. The message itself follows.

If your client also opens separate windows for nonpublic messages,
these may also appear in brackets in the corresponding window, rather
than appearing in a different display format in the public message window.

8.1.2 Private Messages
It's possible to send a message to a single user or selected group of users
without having to join a separate channel. If you have any experience
with BBSs and similar chat systems, you'll know this as whispering. The
recipient of the message will see something like this:

Whisperer Hi! This is a private message that only you can see.

The asterisks (*) around the nickname mean this is a private message,
not visible to anyone else on the channel. You don't even have to be on

a channel to receive such messages. If you're running a client that opens
a new window upon receiving a private message and dedicates it to the
sender, there may be brackets around the messages. In this case the win-
dow in which private messages appear identifies them as such. In fact,
they may appear in a number of different formats depending on the
client, but will always be noticeably different from public messages.

8.1.3 Notices

A bot or other kind of service (such as a nickname or channel service)
sends notices, usually as a response to something you sent but some-
times with informative content. Some people like to use them to confuse
new users by sending them as an unusual kind of private message. On
DALnet, this has developed into an epidemic. I don't know why, but
people on that particular network tend to use notices instead of regular
messages, probably because a lot of mIRC users don't want a new win-
dow popping up for every person with whom they exchange private mes-
sages. It does have the advantage of not returning the away message
when you NOTICE a user who has set himself /away.
Another reason you see so many notices is that DALnet and, more
recently, EFnet both support a special type of notice that gives you the
option of sending a message only to the channel's operators and/or
those who have a voice in a channel. This type of message displays to the
recipients as a plain NOTICE. It is indistinguishable from a normal
NOTICE unless the sender makes it clear it's gone only to ops by adding
some text to that effect.
You can send a NOTICE to a channel, single user, or selected group,
just as with private messages, but they appear different. Generally not
used in personal communication, they appear in either your status win-
dow (for most Windows clients) or the main window, with the following
format:

• -Noticer- Thank you for joining us.

Note the hyphens (-) characteristic of notices. Most clients share this
•' convention. mIRC users see them in their status window by default.

8.1.4 CTCP Requests

CTCP stands for client to client protocol and is a form of private message
I'll describe in detail in Chapter 13. Their display and handling depends
very much on your client. CTCP is a message requesting information in
the form of an automatic response from your client.

Incoming CTCP requests in mIRC appear in red in your status win-
dow with the nickname of the sender and the keyword of the request in

square brackets ([]). For ircll, a CTCP request states that it's CTCP, so
as not to be confused with other kinds of messages.

*** CTCP TIME from Timeless

[Timeless TIME]

This means a user with the nickname TimeLess sent a CTCP request to
you with the keyword TIME. If your client doesn't recognize the CTCP
command, it may tell you that it's received an unknown CTCP or ignore
it altogether. Depending on the client, the target of a CTCP (a channel,
your nickname, or a group of users) may display along with the CTCP
request.

You should not respond to CTCP messages—after all, their point is
to elicit an automatic reply.

8.1.5 DCC Requests

DCC requests are a form of CTCP, which in turn is a form of private
message. If you think this is complicated, wait until you get to Chapter
14, which describes DCC in detail. DCC is a means of file transfer and
private communication independent of the server or network.

You see a message that you have received a DCC request and
describing the type and source of the request. It also contains extra
information your client will need if you accept the DCC request, but this
does not normally display. The message could also take the form of a
small window that opens and asks whether to accept or decline the
request.

If you're not sure where the DCC request is coming from, refuse it.
Especially if it's a DCC SEND request (a file offer), be wary, since the
data received could present a security hazard to your client or machine.
Sending files meant to render the receiver vulnerable to attack or per-
mit others to access the machine is an increasingly common method
abusers use to gain control over someone's client or machine. Don't be
afraid of offending someone by refusing a DCC SEND (or CHAT) offer.

8.1.6 Wallops

Whether these are common or rare depends on your network. There
are two forms, one from IRC operators and the other from servers.
Regular users can't send wallops. You will not receive any unless you
have user mode w set, and you don't really need it.

Typical forms of wallops are the following:

IBarron*! Behave or I'll jupe the lot of you

This means an operator with the nickname Barron sent the message as a
wallop. The contents could be anything a normal message would con-
tain. The asterisk indicates an operator rather than a server or regular
user sent it (not that regular users are allowed to send wallops nowa-
days—it's really a redundancy).

IHacker! Possible clones (8) from dialup-34.netabuse.com detected.

The above may be from an operator, but in some cases—as in this exam-
ple—it originates from a service robot with the nickname Hacker,
informing the network's operators of certain events or warning them of
potential or actual abuse.

lircd.nl.net! Remote CONNECT ircd.webbernet.net 5550 from delta

You will occasionally see this type of wallop if you have usermode w set.
What's happening here is that server ircd.nl.net is informing the
network that it received a CONNECT command from the operator
whose nickname is at the end of the notice (delta) to attempt to connect
to server ircd.webbernet.net on port 5550. This is a routing intervention
the operator considers necessary in order to correct a network fault.

A similar message appears if an operator orders a server to discon-
nect from another with the SQUIT command, and the operator's
reason for breaking the connection follows. A server sends a wallops
when the operator issuing the command is not connected to that server.

8.1.7 Operator Notices
Occasionally, if an operator thinks the server's users should be informed
of something, he or she sends a private message or notice to all users on
the server. This message looks identical to a normal private message or
notice. Usually only the contents identify it as server-wide. Some clients,
though, recognize it as such and append the mask of the group of recip-
ients to the operator's nick, thus making it clear that the message was
directed at all users of a server. Do not reply to operator notices unless
they explicitly ask you to.

Operators sometimes use server-wide CTCPs or private messages to
detect unauthorized bots, and replying to them could result in your
being considered a bot and getting killed or KJ lined.

8.1.8 Local Machine Messages and Talk Requests

On a Unix machine, a broadcast message from a user on the same
machine or the machine's superuser (root) may interrupt you. There is
a Unix command to forbid such messages from reaching you. Only mes-
sages from root override this setting and will always reach you. Messages
from root usually concern machine downtimes or usage policy, and you
should pay attention to them. To prevent messages from reaching you,
add the command mesg n to your log-in file (.profile, .cshrc, or whichev-
er you use). You can also use this command or its opposite (mesg y)
from the command prompt or from within any client supporting a com-
mand such as ircIFs EXEC.

Also, on Unix machines running a talk daemon, you can reach
users from any machine on the net by using a talk client. Talk is a simple
form of communication for one-on-one direct conversation. Abusers
sometimes use talk to create havoc on a user's display with a program
named flash. You can prevent this with the mesg n setting described
above, but you will also be unavailable to any normal talk request.

A regular talk request appears in the bottom part of your main win-
dow saying there is an incoming talk request, and tells you what to type
in order to respond and establish a talk connection. If you want to
accept the talk, you have to quit ircll first or open a new screen or
xterm, if you are able to. Flashes look like a lot of garbage telling you
that you have a talk request from your own address, and parts of the
screen start to blink. Set mesg n immediately without quitting and
restore the screen with the CLEAR command or by pressing CTRL-L:

/exec mesg n

/clear

If you want to talk to the user who sent you a talk, you can send /DCC
TALK user@host to the user and talk through the IRC window. To send
messages to the talker once you've completed the talk handshake, type
/msg @user. This applies only to ircll. Both EPIC and BitchX have
removed this function; you will have to use the conventional way of
opening a new terminal in order to reply (or quit IRC first if you cannot
open additional terminals). Additionally, it conflicts with op notices
used on DALnet and EFnet, where the target of a message can begin
with an @. You'll probably be more interested in op notices, but in
order to use them with ircll, you will have to resort to Chapter 11 and
write an alias to override the old function. Don't sweat over it yet.

6.7.9 Actions

You'll often see someone on a channel "doing" something. A leading
star characterizes this action, followed by a third-person description of
the user's action or an emotional state he or she would like to describe
in this manner. You can also use actions in private messages, where
they'll appear in a query window or with an asterisk-angle braket (*>)
prefix to indicate the action is sent privately and not to the channel.

* Doe is a pink bunny.

Joe can say it of himself. If anyone else wanted to say that Joe was a pink
bunny, it would look like a regular public message. A properly written
action looks like a sentence with the sender's nick as the noun. A bad
action is the sender's nick followed by something grammatically
unsound or incoherent. That can also happen.

8.1.7 0 Server Notices
You shouldn't normally see a server notice unless you've asked to see
some or all types of server notices by joining a channel or setting a user
mode that makes the server send you such notices. They are intended to
inform interested operators or users of events concerning the server or

f- network.
Technically, they are a distinct class of message, and you can expect

your client to treat them differently from regular notices when display-
ing them. In the beginning, you shouldn't encounter any at all—later, if
you're interested in the way servers run, Chapter 18 contains most of the
information you'll need to know.

8.1.11 I Joined a Channel and Nothing's Happening!
This is not an unusual occurrence. It could indicate some network,
client, or other technical problem, but more often than not there's sim-
ply nothing to see. Even if there are 15 or 20 users on the channel, don't
panic! Many people leave their client on a channel even while they're
away; some of the idle clients may be bots. Joining a channel and meet-
ing silence isn't all that odd, especially if you join a channel in the mid-
dle of the night or when everybody is (or should be) at school or at
work. Don't expect the absentees to have set themselves away. Most of
them will still show as here, largely because not many people pay atten-
tion to setting themselves away when they're not around.

Many people also use multiple channels and sometimes don't pay
attention to the rest when they're talking to a particular channel. They
could have the channel's window hidden when they're not following it

and check on it periodically. You're not being scorned—in fact, very
soon you'll find yourself doing the same thing.

8.2 Etiquette

There are no formal rules regarding the contents of your messages, but
you should keep two rules in mind when talking to others on IRC or
sharing a channel with them. I suggest you take these basics of etiquette
(or "netiquette," as it is often referred to) to heart:

1. Show others the same courtesy you expect them to show you.

2. Use common sense.

Always remember that your messages are going out to people—humans
with their own ideas, emotions, levels of tolerance, soft spots, and all
those other psychological quirks that make the human animal so
intriguing. As in real life, you probably won't be able to avoid the odd
faux pas, and you might even be glad others can't see your face turning
a deep beet-red color. This doesn't mean you have to be quiet and
behave as if treading on eggshells. You can be conversational and active
without offending people all the time. Disagreements and the odd fight
are a part of life, but insults aren't necessary.

Some other points you should remember in order to avoid be
coming unpopular are the following:

• Don't repeat the same message over and over. If you mistype a mes-
sage, don't correct and resend it. Leave it as is if the message is
understandable, or send only the correction. A common way of cor-
recting oneself is resending the mistyped word or phrase followed
by the word even.

• Don't flood the channel by sending large text files.

• Excessive use of colored text and highlights is generally unwelcome.

• Barging into a channel and doing an "age/sex" check isn't general-
ly appreciated.

• Using actions all the time looks silly.

• Advertising your channel or Web page usually gets you kicked out.

• Stay within the channel's topic of conversation.

ASCII art may look smart, but few people really appreciate it.
Sending too much of it will probably get you kicked out of a channel.

Experimenting with ASCII art on a channel in the midst of a con-
versation isn't polite. Create a separate channel (see 10.1) and test
it there.

8.3 Ignoring Messages

You're bound to encounter someone who appears to have no sense of
netiquette or politeness at one time or another. Some of these people
react well if you tell them their conduct is inappropriate, but others
don't. If you're an operator of the channel, you can silence the more
obnoxious ones by kicking them out. If you're not, or if someone is pes-
tering you with private messages, you can silence them with the
IGNORE command—BBS veterans know this as "forgetting." The use of
IGNORE is very different from client to client.

IGNORE is a client function and niters received messages. On the
other hand, the SILENCE command, available on DALnet, Undernet,
and similar servers, has the advantage of reducing the load on your own
client by letting the server do the dirty work. It instructs the server to
block messages from the user(s) you want to ignore rather than sending
them to you and letting your client sort out the mess.

8.3.1 Ignoring with ircll
You can use IGNORE with either a nickname or a host mask. In most
cases, the nickname is enough. People who are more persistent in their
attempt to annoy you can get past this kind of IGNORE by changing
nicknames. Clients trying to get you disconnected through flooding are
best ignored by their user (a host mask right away. In an emergency, you
can also ignore all messages by ignoring the address *@* and the mes-
sage type ALL. The basic syntax of the command for ircll is:

'' " /ignore <nickname|user@host> <type>

The message type can be one or more of the following:

ALL Everything

MSGS Only private messages

CTCP Only CTCP messages

NOTICES Only notices

PUBLIC All public channel text

WALLOPS Only wallops

CRAP Odd stuff like nick changes, joins and parts, and so forth

NONE Removes someone from the ignore list

You can specify multiple types with a space-separated list—for example:

/ignore Loser msgs notices ctcp

You can stop ignoring single types of messages or exclude them from
ALL by preceding them with a hyphen:

/ignore Loser -notices

This would stop you from ignoring notices from the user with the nick-
name Loser, but would still keep msgs and CTCPs from the same user
on ignore:

/ignore Loser all -public -crap

This would make you ignore everything except public messages and
what falls in the CRAP category (that is, you'll still be able to see the
user leave the channel). BitchX users should use nick!user@host format
for the IGNORE rather than ircll's nick or user@host.

8.3.2 Ignoring with mIRC

The command, again, is IGNORE. However, mIRC uses a different for-
mat for adding switches to include or exclude certain types of messages.
It's also able to ignore a user's host mask by entering only the nickname
in the IGNORE command.

/ignore [-switches] Nickname|nickluserghost [type]

If you want to ignore a user's address instead of just the nickname, you
must use the full nick!user@host format, using asterisk (*) and question
mark (?) wildcards where appropriate.

The following switches are recognized:

Public messages

Invites ,

Color in messages is ignored

Notices

Private messages

CTCP messages

Will automatically remove the IGNORE after N seconds

-k
-n
-P
-t
-uN

-

Using the -r switch removes the IGNORE from the nickname or host
mask.

The type of IGNORE is optional. If you don't specify any, only the
nickname is used. If you use one of the following numbers, mIRC
ignores more than just the nickname:

0 *!user@host.domain
1 *!*user@host.domain
2 *!*|5)host. domain
3 *!*user(s>*. domain
4 *!*@*.domain
5 nick!user@host.domain
6 nick!*user@host.domain
7 nick!*@host.domain
8 nick!*user@*.domain
9 nick j*@*. domain

Note that using a type makes mIRC query the server for the user@host
matching the nickname. Under conditions of lag or during a serious
flood, this is probably to your disadvantage—it would be more efficient
to manually enter the mask you want to ignore.

8.3.3 The SILENCE Command

This command is available on Undernet and DALnet servers. It sets a
server-side ignore—that is, messages from the address or user you want

* to ignore never reach you; the server blocks them.
Not all clients directly support the SILENCE command—you might

have to use RAW or QUOTE in order to send it; otherwise SILENCE
will do just fine.

/quote silence +blah@blah.com

The plus (+) prefix activates a server silence while the hyphen (-)
reverses it. DALnet and Undernet servers both automatically convert

'' user@host into nick!user@host. You cannot silence a nickname on
DALnet—it must be a user@host. Using SILENCE with your nick as the
only parameter, or using no parameter at all, displays the list of
addresses you have silenced.

8.4 Sending to a Channel

Sending to a channel is the simplest form of communication. Anything
you type that is not a command goes to your current channel or window.

The contents of the message can be absolutely anything, though both
the client and the server can restrict the message length.

8.4.1 Sending to a Channel While Not on It

You won't need to do this much, if ever, and it's more often than not
ineffective. Almost all channels are permanently set not to accept any
messages from users who aren't actually present on them. If you do want
to do this, the command is MSG (which is actually a private message)
with the channel's name as the recipient. This is because public and pri-
vate messages are identical as far as the server is concerned, and the tar-
get can be a channel as well as a user.

/msg tfSomewhere Hey! Let me in!

You can expect channel #somewhere not to accept messages from out-
side the channel, in which case the server returns the error message
"Unable to send to channel."

Messages sent to channels from people who aren't on the channel
can take a variety of forms. Unix clients generally present it like this:

(Doe/#SomeWhere) Let me in!

Version 5.61 of mIRC, which was the client's current version at the time
of writing, as well as earlier versions, make no visible distinction between
a message from a user on the channel and one from outside. This is an
omission I hope subsequent versions fix since it's confusing to see a
phantom user not on the nickname list sending messages to a channel.

This event can have various causes; either the channel does not
have mode n set (see 10.3.6) or you or the user sending the messages
are desynced from the channel.

8.4.2 Communicating with Multiple Channels

If you've joined more than one channel and are taking part in the con-
versation on all of them, you'll need a means of directing each message
to the right channel. While you can do this easily on clients that have a
separate window for each channel—you just switch to the window
required—there are also other ways of doing it.

One way is using the MSG command seen above in 8.4.1. In this
case you will be on the channel even if it isn't your current channel (the
current channel concerns only the client—as far as the server goes,
you're just present) so the server accepts the message and sends it to the
channel. If you're using ircll, you've already seen how to switch between
channels (see 7.9.1)—this is more convenient than using MSG—just

switch to the channel you wish to use and send a public message as you
would normally.

Sometimes you want to send a message to all the channels you're
on—for instance, to say you'll be away for a few minutes. The MSG com-
mand can take multiple recipients in a comma-separated list:

/msg #somewhere,#otherchannel Away for a few, don't go away!

Both channels receive an identical message regardless of which is your
current one. The AMSG command simplifies this procedure in mIRC:

/amsg Away for a few, don't go away!

On servers runningEFnet's 2.8.21/hybrid-6 version, you may no longer use
multiple targets for any type of message.

8.5 Sending Private Messages

Private messaging is the primary use of the MSG command.

/msg nickname shhhh... they can't hear us!

And indeed, they can't. Try sending yourself a MSG and seeing what it
looks like on both ends. You can also use MSG for sending a private
message to multiple recipients with a comma-separated list, as for multi-
ple channels.

8.5.1 Using QUERY

QUERY is a client command to facilitate sending private messages with-
out having to use the MSG command for each message. Clients have
replaced this command by opening a new window for each private com-
munication, but the change has led to confusion regarding the term
query. Simply sending a user a private message is not a query. Using a
dedicated window for sending messages to a user without having to use
MSG for each message is a query. I think the name of the command was
a rather unfortunate choice by the authors of early clients since the word
doesn't reflect the function performed. For ircll, QUERY works simply
like this:

/query <target>

The target can be a nickname or channel. To close a query, just type
/query while in the query window.

If you're using mIRC or another graphical client, simply close the
query window belonging to the user with whom you've ceased
corresponding.

8.6 Strange Characters in Messages

Sometimes you'll notice unusual characters appearing on your screen or
people saying things that can't possibly be in a human language.
Depending on the kind of characters you're seeing, there are different
explanations.

If seemingly random strings of characters are reeling across the
screen, you are either being flooded or, if you're connected to your host
via a simple terminal, line noise is affecting your modem. Sequences of
text with many dollar sign ($), B, and square bracket ([) characters or
word-size strings made up largely of vowels are likely to be non-English
channels, as discussed in 7.1.2. If a user spouts a stream of gibberish and
then signs off, chances are he or she fell victim to line noise and lost the
modem connection. You can expect single unusual characters to be part
of a foreign Latin-based character set such as Swedish, Finnish, or Por-
tuguese, as occurs in channel names.

8.7 Colored Text and Highlights

Some clients are capable of sending and reading bold, inverse, under-
lined, or colored text by adding certain control characters to a message.
While these can add to the effect of a message, they are client specific,
and clients of a different type than the sender's may not support them,
resulting in garbage on the receiver's screen. You should avoid them
unless you're really certain they're appropriate. The IRC community
generally frowns upon excessive use of highlights and color, especially if
you're sharing a channel with users whose clients don't support these
elements.

Different clients use different control codes for the same highlights;
don't ask me why. When mIRC introduced highlights and color in ver-
sion 4.7, for no apparent reason it diverged from the standard set by
ircll (the first client to support highlights), and other clients followed it.
The result is a double set of standards—you can expect clients other
than ircll and mIRC to follow either one. Regarding color, clients
almost universally follow mIRC. This color is not real ANSI color—it is
exclusive to the IRC clients that support it.

8.7.1 Using Highlights with ircll

Bold, inverse, and underlined text are all supported by ircll. More
recent Unix clients based on ircll are also capable of reading ANSI and
mIRC color—ircll requires extra scripting to display or filter out color-
related codes. Certain control characters surround highlighted text,
depending on the type of highlight. These characters are (the A charac-
ter means that you press the CTRL key along with the letter or under-
score) :

*B Bold
AV Inverse
A Underlined

When adding highlights to a message, the relevant characters appear in
inverse on the command line as you type them. While underscore
almost never fails, bold and inverse might need some extra attention
with some systems and clients. Inverse might require you to press AV
twice before the character appears, both at the beginning and at the
end of the text, to highlight it. Bold sometimes requires a new key bind-
ing if AB is bound to a different function.

/bind AB self_insert

The SELFJNSERT function inserts the actual control character in the
text with the key press, rather than performing a function assigned to it.
Add that line to your .ircrc file. You'll rarely need it for the other high-
lights. Remember to close the highlight by also adding the appropriate
control character at the end. You can combine any of these highlights by
enclosing the text to highlight between more than one pair of control
characters (making sure the pairs close in the reverse order of their
opening). Some types of highlights or combinations might fail to appear
on some terminals.

As of version 4.4H, ircll supports mIRC-style color. You can turn its display
on or off with SET COLOR ON/OFF—the compile default is off. To use color,
follow the guide in the next section, replacing the *K key with AC (you will need to
bind it to SELFJNSERT as with AB above).

8.7.2 Using Highlights and Color with mIRC

The mIRC client recognizes color, bold, inverse, and underline, providing
you're using version 4.7 or later. On older versions, the corresponding
control codes appear as blocks instead. For bold, inverse, and underline,
mIRC follows the same conventions as the ircll client, although the actu-
al keys you use to produce highlights are different. To send highlighted
text with mIRC, enclose the text within a pair of the following control
characters (the caret (A) means you press the CTRL key together with the
letter):

AB Bold
AR Inverse
AU Underline

You can insert plain text in fully highlighted sentences with AO.
Color is a bit more complicated. You create color codes with the AK

key press, followed by a number indicating the color, and optionally a
comma and another number denoting the background color. You should
leave no spaces between the codes and the text or between CTRL-K and
the codes. After pressing CTRL-K, you see a black block, after which you
enter the numbers.

Here are the color codes you can use:

Code

0
1
2
3
4
5
6
7

Color

White

Black

Dark blue

Dark green

Red

Brown

Purple

Orange

Code

8
9
10
11
12
13
14
15

Color

Yellow

Bright green

Teal

Cyan

Blue

Magenta

Dark gray

Light gray

Examples (I've purposely left spaces between the components to make
them clearer):

A K5
AK15,1
AKO,0

Brown text on the default background

Light grey text on a black background

White on white

dL

Some people use it to exchange pseudo-invisible messages. Anyone not
displaying color can still see the message.

You can use color in almost any text, including channel names,
channel topics, your real name, quit messages, and private messages.
You can't use it in your nickname. You can technically use color in your
user name, but this is highly irregular and considered very lame—most
servers deny you access if you have control codes in your user name.

8.8 Smile!

Smileys are all those funny character strings such as :-) that sometimes
follow messages. They are meant to convey a facial expression. Many are
widely used and universally understood, while only some users or chan-
nels recognize others. Still, you can usually guess their meaning by look-
ing at them. With a bit of imagination you can also create your own.
Here are the most common smileys. If you can't immediately see the
analogy to a facial expression, hold the page sideways and look again.

:) or :•) The classic "smiley"—a smiling face. The original smiley had the

nose, but lazy typists never use it

:(or :•(The frown

;) or;-) A wink and a smile

8) or 8-) Smiley wearing glasses or bug-eyed smiley. More common than

you'd expect

:-o or :-0 Surprise or shock

=:o One of the funniest. Really surprised, shocked, or unbelieving

(: Left-handed smiley. Not very common but confusing

>:(Frown or angry face. No, it's not called a "frowney"

>;} Sly wink. Up to mischief, probably

;o) Another smile, believed to have originated in Holland

};) Truly evil

:-l Stern or neutral

8.9 Actions

Actions are easy to use and add much in terms of expressing oneself.
Excessive use of actions, however, looks amateurish, and you should use
them only when appropriate. You perform an action via the ME com-
mand, which is a client function almost universal to all clients.

/me <third-person description of your action>

For example:

/me hides behind the couch.

Technically, the ME command is a form of CTCP. This is important to
know for scripting (Chapter 11 will clarify this). You can also send an
action as a private message with the DESCRIBE command or by
performing the action with ME in a query window. Actions don't work
within a DCC chat. An additional mIRC command lets you send the
same action to all channels you're on:

/ame will be back soon.

8.10 Common Abbreviation

You'll often see some messages that look like secret codes people are
exchanging to hide things from you. These are actually acronyms or
abbreviations for commonly used messages, and each has a definite
meaning. Some people also prefer to use these in lieu of bad language.
Let's have a look at the most widely used of these messages:

asl or d/s/l

afaik
bbidf/bbiam/bbiow
bbl
bbs
iirc
im(h)o
I8r
lol
re

ro(t)fl
ro(t)flmao
r u m or f

This is a request for your age, sex, and location.

You don't have to reply.

As far as I know

Be back in a few/flash/minute/white

Be back later

Be back soon

If I remember correctly

In my (humble) opinion

Later

Laugh(ing) out loud

Hello again or re-hi. Indicates recognition after

a short absence. Mostly used when rejoining a

channel.

Rolling on (the) floor laughing

Rolling on (the) floor laughing my a** off

Are you male or female. A silly but common way of

asking a question that's rarely appreciated. People

who keep asking everyone this question are called

"morfers" because they have a fixation with "m or f.

wb
wtf

Read the f***ing manual. The "m" is sometimes

replaced with d (docs), s (source code), or p (page).

Welcome back

What/where/who/why the f***

8.11 Autogreets

After you've received an autogreet, usually in the form of a notice, after
joining a channel, you might want to use one yourself. This would
require a bit of scripting (with ON JOIN) and we'll have a look at it in
Chapter 11. Autogreets, while increasingly common, aren't really liked
because once the first impression wears off, they look fake and insincere.
Using autogreets can also generate a lot of unnecessary traffic following
netjoins, apart from the more obvious annoyance of greeting the same
people again and again. A genuine, typed greeting is much more welcome.

8.12 Keeping Track of Events by Logging

Many clients allow you to keep a log of events and messages by writing
them to a file as they appear, from which you can retrieve and read
them later. Logging is a client function.

8.12.1 Logging wiffi ircll
IrcII has two variables for logging that will tell it when to log and which
file to log to. Set the LOGFTLE variable to the file name you're using,
and set LOG on to start logging and off to stop. If you're using multiple
windows, you can log them separately with WINDOW LOG, and the
client appends the name of the channel or query to the file name for
identification.

/set logfile ire.log

/set log on

Or change to the appropriate window and type:

/window log on

If you use /set log instead of /window log while using multiple windows,
everything from all windows ends up in the same file. If a logfile already
exists when you start logging, the new messages are appended to it.

8.12.2 Logging with mIRC
To do this, simply click the box in the top left corner of the window con-
taining the contents you want to log, then click Logging. A checkmark
appears next to Logging. Do exactly the same thing to cease logging.

Alternatively, you can use the LOG command

/log on

/log off

from within the window you want to log. Under the File menu, select
Options • IRC • Logging to configure the way it logs items, and specify
the directory where the logfiles are kept.

8.13 Communication Problems

You might sometimes encounter strange problems when trying to com-
municate with a user or channel. While bad network connections or
channel settings often cause these, some are also client-side problems.

8.13.1 Can't Send to Channel
Either you're trying to send to a channel that doesn't permit messages
from outside while you're not on it, or you're trying to send to a moder-
ated channel without having a voice (see 7.6). If you're getting this mes-
sage even though your text is appearing normally on the channel, the
cause could be desync (see 10.9). Note that your client makes the mes-
sage appear after you've sent it—the client doesn't receive the message
from the server. This means you'll see the message in the channel's win-
dow even if the server rejects it. To be sure a message has been received
by the other user (s), you'll have to wait for a response from one of the
other users on the channel.

8.13.2 Text Is Scrolling on a Single Line
This problem is unique to Unix and ircll clients. Try changing your ter-
minal settings—vtlOO is the terminal emulation you should be using.
Having it set to ANSI often causes this particular problem. After chang-
ing the terminal emulation, log out and log in again.

If that fails to correct the problem, try this:

/set scroll off

/set scroll lines 1

/set scroll on

If you're really unlucky, you have a "dumb" terminal and will have to
make do with having the new text overwrite the old once the screen is
full. These terminals are increasingly rare, though.

8.13.3 I Can't See My Nickname before My Messages
This is entirely client dependent, and easy to fix. Some clients do show
your nickname by default, while others do not.

For mIRC, follow these steps:

• Go to File • Options • IRC.

• Check Prefix own messages.
For ircll, add the following line to your .ircrc:

• ON sendjnsg "*" echo <$N> $1-

This concerns only public messages—you don't need to change
anything for other kinds of messages.

FINDING PEOPLE ON IRC

People come and go on IRC at a rate
that would put Grand Central Station

to shame, and more often than not
they leave no forwarding address. You'll

sometimes want to find another user—someone
who disappeared in the middle of a conversation,
someone you met with whom you forgot to
exchange email addresses, someone to help
you out with a problem, or you might simply
want to know whether a friend of yours is
online. On other occasions, you may want to see
the occupants of a channel without having to
join it. In this chapter we'll look at the tools
available for locating someone on IRC. Several
of these commands are also useful for channels.

Be forewarned that IRC servers respect their users' privacy, and if
people don't want to be found, they can't be. They can sit on a server
outside all channels and not exist as far as nearly everyone else is con-
cerned—with the exception of IRC operators.

9.1 WHOIS

If you already know a user's nickname, you can use the WHOIS com-
mand to see the information the server has about that nickname.
WHOIS works whether a user is invisible or not. It also shows you any
public channels this user is on, except secret channels. You can also use
WHOIS to check a user's idle time by requesting the whois information
from that user's server.

/whois server nickname

You can substitute the nickname for the server, as with other commands
(mainly those covered in Chapter 12):

/whois nickname nickname

Many people have found it convenient to write an alias for this "double
whois," and it's also present in most reasonable scripts (often with the
alias "WII"). This form of WHOIS requests the whois information from
the user's server (or any other server, but servers other than the one that
user is on will normally show no more than yours does). You can also
use it as a diagnostic tool for detecting desync by comparing a user's
whois information as different servers see it. Don't worry about the ref-
erence to scripts and desync right now, though—-just remember it when
we get to the relevant sections.

If you have a rough guess of the nickname you're looking for,
WHOIS supports wildcards on most servers. Wildcards (to introduce
something you'll encounter a lot further down) are special characters
that substitute for others, as follows:

A question mark (?) stands for any single character except no character.

An asterisk (*) stands for any number of any characters, including none.

9.2 WHOWAS

WHOWAS helps you when the user you're looking for is no longer
online or has changed his nickname while out of your sight. You can use

WHOWAS to find out the last instance the server saw a nickname, and
quite often also the last few times. Unfortunately, WHOWAS information
doesn't last long. Exactly how long the server stores information about
the past use of nicknames depends on its setup and the nickname turn-
over (meaning the total instances of nicknames used and retired again).
A large network during high-traffic hours may store WHOWAS informa-
tion for no more than half a minute. On networks with little traffic, it
may last more than a day.

WHOWAS works only with nicknames. There is no way of using this
command to detect the last time a user from a particular address was on.
Actually, you'd use WHOWAS to obtain the last address from which a
nickname was seen. It returns any away message the user had at the time
of quitting or changing nicknames, but none of the channels he was using.

9.3 WHO

In many cases you won't know what nickname the user you wish to locate
is using. This is where the WHO command is useful. You must have some
other information about this user in order to use WHO. Let's say you
remember that the user hangs out on some channel that has the word
ball somewhere in its name. Note that WHO never returns information
about invisible users (those who have user mode +i set [6.4.1]). So if
your friend is invisible, WHO is of no use to you.

More and more users on the large networks are now invisible, either because they
set themselves as +i or because the server to which they 're connected sets all users as
+i by default. The percentage of invisible users on the major networks ranges from
about 50 percent on DALnet to over 85 percent on EFnet. Much of this desire for
privacy is due to the immense number of pornography-advertising spam hots mes-
saging all visible users and forcing them to use +i to avoid those messages.

/who *ball*

This will return a number of irrelevant things, since WHO will show you
any visible user with the string ball in the user name, host name, nickname,
server name, or real name. If you aren't careful to use a string that
matches a large server as well, you'll get a lot more than you bargained
for. Try to be as specific as possible. Wildcards in a channel name will not
work—you must use the full name of the channel, including the prefix
(pound sign, plus sign, or ampersand).

If a channel is secret, WHO will tell you nothing about its users, and
the command fails to return any information at all, whether your friend
is visible or not. You'll be a lot better off using a part of the user's address,
as much as you remember, but allowing for dynamic addressing.

For example, if you recall the user's host mask as nick@dialupll.
nyc.whatever.net or you get that address using WHOWAS (see below),
the dialupll part is obviously dynamic and therefore should be wild-
carded since your user may have dialed in again and been assigned a
different address. So you can use the rest, which consists of a geographi-
cal identifier and the domain name. Not all providers use such
identifiers—you might have to use just the domain name.

/who *.nyc.whatever.net

If there are any users matching that mask and not invisible, you will receive
their WHO information. This is the most common way of using WHO.

WHO scans the channel name, nickname, real name, user name,
host name, and server name for any string you specify. It's important to
remember that it treats the user name and host name as separate parts,
and your client adds the at (@) character you see between them, so you
shouldn't use that character in a WHO query.

If you're lucky and have a client that supports flags for WHO, you
can select which parts of the WHO output to search for the string. It's
very useful to limit the list, especially if the string you're searching for is
likely to return many irrelevant entries. Here are the flags ircll uses
(which other clients supporting flags should also use):

Flag Type of Result

-name

-nick

-oper
-chops

-host

-server

User name

Nickname

IRC operators only

Channel operators only

Host name

Server name only

For example, to find your friend whose host mask is nick@dialupll.nyc.
whatever.net with the user name flag, you would type:

/who -name *nick*

and the results will be only those with the string nick in their user names.

As of this writing, the mIRC client does not support WHO flags, so the above is

irrelevant for that client. The same applies to many other clients.

9.4 NOTIFY and ISON

Many clients allow you to maintain a list of nicknames of which you wish
to be notified if they join or leave IRC. How you set up such a notify list
varies from client to client, but the way it works is identical. If there is a
notify list, your client periodically sends ISON commands to the server,
asking it whether the nicknames on the client's notify list are present.
The server replies with the nicknames present. Your client compares the
reply to its internal list of nicknames present (as the last ISON saw
them) and notifies you of changes to the list, telling you which nick-
names it has detected that were previously absent and which ones are no
longer there.

NOTIFY works on nicknames only. You can't use it for addresses or
host masks (this used to be possible with NOTE, a practically obsolete
command very few servers now support). Since anyone could use the
nickname you have on your list, you should check the host mask of the
nickname, either with WHOIS or by scripting a line that checks it with
USERHOST.

You can also use ISON independently of NOTIFY:

/ison nickl nick2 nicks ...

The reply might look somewhat like this:

*** Currently online: nickl nicks

The server's reply mentions only the nicknames that are present—
it will not tell you whether this or that other nickname is signed on.
That's the task of your client's notify system.

Note that NOTIFY is a client function, while ISON is a server com-
mand. Some clients (notably ircll, which added an ISON command only
in recent versions) don't support ISON as a user command, so you'll
have to send it as a raw server command, using the RAW or QUOTE
command.

9.5 NAMES

NAMES is actually of little use in rinding users, but you can use it for a
rough check of a channel's users. Again, as with WHO, unless you're on
the channel yourself, invisible users and users on secret channels will
not appear.

WARNING Do not use the NAMES command with no parameter—it will return all visible
users on the network and place an unnecessary load on your connection, possibly
also resulting in the server's disconnecting you. You may safely use it on networks
with a small number of users. However, if you try it on a major network you'll
recoil in shock and stare at the scrolling screen in honor. This is not a newbie
error. Everyone does it by mistake every once in a while, including yours truly.
And, yes, I hate it when that happens!

If it happens to you, type /flush to chary our buffer. You may, although it's rare,
lose a message someone just sent you if you do this. Generally speaking, it's worth
it. But if a conversation you were having suddenly ends, it might be because that
person is waiting for you to answer a lost message. Usually just saying, "Did you
say something to me? I missed it, " will put you back in the messager's good graces.

9.6 Finding the Operators of a Channel

You'll sometimes want to find a channel's operators in order to receive
the channel's key or ask to be unbanned or invited. For this, you can use
both the WHO and NAMES commands, again with the limitations of
secret channels and invisible users. If your client supports a flag allowing
you to list only channel operators, use it.

If a channel is closed with a password (key) or requires an invitation
(invite-only), chances are its occupants do not wish to be disturbed.
Consequentially, the channel will most likely also be secret, and all
attempts to see its users from outside will fail. It's really best to take the
hint and go to another channel.

9.7 Network Services

If the user you're looking for has a registered nickname on a network
that provides a nickname service (usually called NickServ), you can try
requesting information about that nickname from the service. More
often than not, it will say when it last saw the owner of the nickname
using it and at what address. A common syntax for querying a service
about a nickname would be:

/msg <service> info <nickname>

but this may vary from service to service. Send the service a help message
if you're in doubt. If the same network also has a memo or note server,

usually under the predictable name of MemoServ or NoteServ, you
could also use this to leave a note for that person.

Here's a sample output of an information query on DALnet:

NickServ- *** LART is Web Net IRC
NickServ- (Currently on IRC) For extra info /whois LART
NickServ- Last seen address: apatrix@ircd.webbernet.net
NickServ- Last seen time: Thu 01/07/99 06:58:50 GMT
NickServ- Time registered: Wed 04/08/98 15:49:44 GMT
NickServ- Time now: Thu 01/07/99 06:59:06 GMT
NickServ- This user will not receive memos
NickServ- *** End of Info ***

This information says that the nickname LART is currently in use and
gives the address of the person using it. The second line would be miss-
ing, were he not on DALnet at the time. Depending on the user's
preferences, there may be additional lines containing information about
those preferences. Note that unlike the vast majority of users, this unso-
ciable individual will not accept memos, so you couldn't use DALnet's
MemoServ to send him a note.

9.8 Finger

The finger command is strictly for users on machines with a finger dae-
mon—basically meaning multiuser Unix machines. It is not an IRC
command, but a separate protocol. Some clients are capable of sending
a real finger query (as opposed to CTCPfinger, which, being CTCP,
queries an IRC client—more about CTCP in Chapter 13) and displaying
the reply. This is another confusing ambiguity of command names, but
we must remember that commands such as finger, ping, who, and whois
actually predate IRC and gave their names to those IRC commands with
similar functions.

If you know the other person's user name on the system, finger the
whole address, as in george@my.provider.com. This does not necessarily
match the user's email address, since the email address often contains
only the domain, while finger must target the user's host.

You must direct finger at a specific machine. If you don't remember
the user name, try requesting a list of all users logged into the machine.

Do this by fingering @host.name—for example, finger @my.provider.
com. Many systems demand that you give a user name in a finger query,
and refuse to give you this information. Most ISPs refuse to respond to
finger queries altogether.

If you do get a reply, the amount of information returned varies
depending on the finger daemon's setup, but often says when the user

last logged into the machine or whether he is currently on. Even if the
user is logged into the machine, it doesn't necessarily mean he is using
IRC at the moment. He could be anywhere or nowhere on the Internet.
Consider sending a talk request or an email.

9.9 Finding Someone's Location

Finding out where a user is located is often as simple as using the Unix
command whois. Whois is the nominal ancestor of the IRC command
with the same name, and is a separate protocol requiring a client in
order to query a whois server about a domain or IP address. The relevant
technical document is RFC 954, for those who care about Internet eso-
terica. In many cases you'll be able to deduce a person's location from
the host mask if this includes a geographic identifier or has a character-
istic country code.

Often, though, especially with North American sites, this is incon-
clusive, and you'll want additional information. Use a regular finger
client or a special whois client (available from good software sites) to
ask a whois server where the user's domain is registered. More often
than not, the user's whereabouts are in the same city or close to the
place where the domain is registered. You can also use whois to check
where an IP address is registered.

The three main whois servers contain the data for the three
primary zones:

whois.ripe.net (Europe, Middle East)
whois.arin.netandwhois.internic.net (America)
whois.apnic.net (Asia, Pacific)

They also have a Web interface if you lack a client to perform the query.
Whois doesn't really fall within the scope of this book, though, so that's
the last we'll be hearing of it for now.

Naturally, nothing is simpler than asking the other person. Most
people will tell you where they are with no fuss whatsoever.

9.10 How Not to Be Found

That's all fine and dandy, and someone who doesn't want to be found
can't be found, right? All right, pal, now tell me how to do it! I don't
want to be bugged, get it?

Well, since I've given away all the secrets of digging up people, I
guess it's only fair that I tell you how to hide out on IRC.

First of all, you should know that you are visible under all circum-
stances to anyone with whom you share a channel. There is no way
around that. You're also visible to all operators of the server you're
using—on some networks, operators of other servers can also see you
regardless of your status. There is no avoiding this either. You can hide
from everyone else. Note that it's considered highly unethical for server
operators to divulge information to a regular user if that user would be
unable to obtain it on his own. So don't worry—you can rely on their
discretion.

If you're on no channel at all, simply setting yourself as +i does the
trick. If you've locked yourself into a secret channel, chances are you're
pretty safe from detection there as well. It's a bit more tricky if you're
sitting in a large public channel. Anyone may join it and find you there,
including people who suspect you might be there. The same goes for
any channel you're known to frequent. If you really want to keep nosy
parkers from finding you on such a channel, you'll have no choice but
to ban them. Naturally, this would require channel operator status.
Chapter 10 has more on that. If you're really paranoid about being
found, you may end up having to leave the channel.

CREATING AND MANAGING
A CHANNEL

So you've been in and out of chan-
nels, meeting folks, chatting, and

getting the hang of IRC. Now you'd
like to start a channel of your own for

your friends to join, and you need to know
how to create and manage it. Or maybe you're
regular enough on your usual channels for the
ops to consider you a suitable candidate to
become one of the channel's regular ops—
now you need to know how to use your newly
gained powers to run the channel. Well, this is
where the really technical part of IRC begins.
Everything up to now will look like child's play.

10.1 Creating a New Channel

Any user can create a channel using the JOIN command (see 7.3). Let's
say you want to create a test channel called #MyTestChannel:

/join #MyTestChannel

Boy, that was simple. If you join a channel and the channel does not cur-
rently exist, the system creates this channel with you as its only user and
operator. Although you're alone, you're in charge of everything. Talk
about being your own boss!

Once you've created a channel, it's identified by its name and noth-
ing else. If you want your channel to have a different name from the
one you initially used to create it, you'll have to repeat the procedure
and create a channel with the new name. If there are other people on
the channel who want to move over with you, they have to join the
new channel.

Trying to create a channel can return a few errors—remember
channel delay (see 7.3.7) and getting the channel name wrong (7.3.1).

Say you try to create a channel by joining it, and instead of becoming
its operator, you lose your op status immediately after joining and a
topic for the channel gets set automatically, despite the fact that you are
the only user on the channel. If this happens, you are on a network that
has a channel service, with which it's possible to register and own a
channel name, and the channel you tried to create is registered to some-
one else. In this case, you have no choice but to choose a different name
for your channel.

You may join an empty channel and simply not get operator status,
even if you're the first user to join and there is no channel service on
the network. For this there can be two possible explanations, depending
on the type of server:

On a network using IRCnet server code, it means the server has
restricted your connection (with umode r [see 6.4.6]). Change to a
server that won't restrict you and try again. On most EFnet servers you
cannot obtain channel op status while the server is split from the rest of
the network.

10.2 Channel Operator Status

As we saw when we were looking at the definition of channel operator
(see 7.5), they have certain powers other users of a channel don't have.
Now that you're a channel op, you can use two new commands:

INVITE
KICK

Two more now give you more options:

MODE
TOPIC

In the following sections we'll look at the KICK, INVITE, and MODE
commands separately and explain their uses. Nothing changes with the
TOPIC command save that you can restrict its use to channel operators.

10.3 Channel Modes

This is the most complex part of channel management and something a
good channel op knows by heart. If you've only just become the op on a
channel, you should read this part carefully and create a test channel to

! practice on. Often it helps to ask a friend to join the channel, too, and
, : be your guinea pig while you experiment with modes and other channel

op commands.
Let's take a look at the possible modes a channel may have.

Depending on the type of server, there may be a few additional ones
particular to that type and of varying usefulness. We'll concentrate on
the modes available on all kinds of servers—those mentioned in "RFC
1459," the document describing the IRC protocol.

Newly created channels have no modes set and always need you to
add the required modes after creation. You can set some channel ser-
vices to create the modes automatically if someone joins a registered
channel while it's empty, or to reset them periodically. Most clients dis-
play the current modes of a channel in the status bar or in the channel
window's caption.

You set or unset channel modes by prefixing their characteristic
letter with a plus (+) or minus (-) sign, respectively. If you provide no
prefix, the server assumes you mean plus. The characteristic letters of
the modes are case sensitive—they must be lowercase. This is because
the servers are allowing for future extensions to the protocol, which
might assign a different meaning to capitals and lowercase. A limited
number of servers recently introduced capital mode letters, but until
this becomes a standard, you'll almost always be using lowercase.

The general syntax of the MODE command is the following:

/mode tfchannel <[+|-]letter> [parameter]

If your client supports the asterisk (*) as a substitute for the channel's
name, you can also use this with MODE.

Nickname changes do not affect modes. You can change your nick
as often as you like, and both your user modes and any channel modes
applying to you remain in effect.

A channel's modes are lost when the last person in a channel leaves
it and it's empty. If you registered the channel on a network that supports
registration, you often can have the channel service store a set of modes
and automatically set them for you when someone joins the empty chan-
nel. Section 10.10 describes the most common forms of channel service,
but first you need to know how to set up and run a channel.

10.3.1 Mode b (Ban)
Mode b sets a ban forbidding any user to join the channel whose mask
matches the string you added as a parameter if added and lifts the ban
on that mask if removed. Bans are an important part of channel man-
agement and require accurate use to spare your channel unnecessary
trouble from unwanted users who won't take the hint that they're not
welcome. For this reason we'll take a separate, closer look at bans and
their correct use later (see 10.5.1).

Mode b with no parameters is the only mode a nonoperator or even
a user who isn't on the channel can use (although some less conventional
modern kinds of server no longer permit this). This special case of the
MODE command takes the plus prefix or no prefix and no parameters
and allows a user to view the channel's ban list. It's of no importance
whether the channel is secret or not.

DALnet and IRCnet servers also silence a banned user, so that user can send
nothing to the channel. You can use the ban to silence a single user without
having to resort to moderation (see 7.6).

10.3.2 Modes i (Invite-Only) and I (Invitation)
Mode i is invite-only mode. If a channel is i, only users invited by a chan-
nel op may join. This is an example of a mode with both a capital and a
lowercase significance.

/mode ftsomewhere +i

In order to join a channel, a user must now obtain an invitation from
one of the channel ops. IRCnet servers also allow you to use I to permit
some users to join without an invitation. Mode I takes a user mask as its
parameter, in the same way mode b does.

10.3.3 Mode k (Key)

EXCEPTION

As we've already seen, the "key" of a channel is a password, without
which no one is allowed to join. To set a password, you add the k mode
(+k) with the password as its only parameter. If you wish to remove this
mode, you must use the exact password in the same way with the -k
mode change.

/mode ttsomewhere +k onlythebrave

On EFnet (newer servers), the key is not a required parameter for mode -k.

10.3.4 Mode I (Limit)
This limits the possible number of users on the channel to the number
given as a parameter to the 1 mode change. The number isn't necessary
to remove the 1 mode.

rXCEPTION

/mode ttsomewhere +1 30

Anyone trying to join after the limit has been filled will be told the channel
is full and stopped from joining.

On IRCnet servers, you can use model to let someone join regardless of the limit.

On Undernet servers, a user invited with the INVITE command conjoin regard-

less of the presence of a limit.

10.3.5 Mode m (Moderated)
You can set a channel to allow only its ops and certain other users (those
a channel operator gives a voice) to send to it, while the rest can only
listen. Mode +m adds this setting and -m removes it, allowing everyone
to send.

/mode tfsomewhere +m

10.3.6 Mode n (Noexternal)
Mode n is one of the two modes practically no channel lacks. It disallows
messages to the channel from any user who hasn't actually 'JOINed" it.

10.3.7 Mode o (Operator)

Probably the most widely used mode is o. This assigns or removes ops
from a user. The parameter to this mode, whether set or unset (op or
deop), is always the user's nickname.

/mode ttsomewhere +o MyFriend

10.3.8 Mode p (Private)

Mode p is rarely used but still possible on all server versions. It does not
permit a channel's name to show on the channel list, but returns other
information a user may request. The wide use of mode s, with which it's
mutually exclusive, has made it almost obsolete.

/mode #somewhere +p

EXCEPTION On EFnet (newer versions), mode +p makes the channel not receive
KNOCK notices.

10.3.9 Mode s (Secret)

Mode s is a common setting that makes a channel return no information
about its users and not appear on the channel list. A secret channel does
not appear in its users' WHOIS info either. As mentioned under mode
p, modes p and s are mutually exclusive—you can have either but not
both. If you try to add one while the other is present, the server auto-
matically removes the existing one before setting the new one.

/mode ftsomewhere +s

But if mode p is on, when you set mode s you see this change:

*** Mode change "+s-p" on channel #somewhere by drYadA

EXCEPTION In accordance with the new function of mode p on EFnet, modes p and s may no
longer be mutually exclusive there.

10.3.10 Mode t (Topicsetbyops)

Set mode t to prevent users who aren't channel ops from changing the
channel's topic. This, along with mode n, is the most common mode.
On a channel that is -t, any user may use the TOPIC command to
change its topic.

/mode #somechannel +t

10.3.7 7 Mode v (Voice)

Mode v, as we saw in 7.6, is unnecessary without mode +m. It takes the
nickname of the user being given or taken away the voice as a parameter.

/mode ftsomechannel +v Voiceless

Hmm . . . now Voiceless will have to change his nick.

10.3.12 Viewing a Channel's Mode

Another special form of the MODE command is used to see what modes
a channel has.

/mode #irchelp

The reply will look like this:

*** Mode for channel #irchelp is "+tnl"

This is the best way to find out if a secret channel exists without having
to join it. It will not return any parameters affecting the modes (for
example, how high the limit on a +1 channel is).

On EFnet, MODE #channel now also shows the limit set with +1.EXCEPTION

10.3.13 Mode e (Exception)

Mode e's function is identical to b, but it has the opposite effect. Mode b
forbids a mask from joining, and mode e permits it to join despite a ban.
A nick! user @ host mask is the only parameter it takes. This mode is cur-
rently available only on IRCnet and EFnet servers.

10.3.14 Multiple Mode Changes

You can set more than one mode with a single MODE command. For
this purpose, we'll separate modes into two categories according to their
descriptions above: modes that take a parameter (b, k, 1, o, v, e, and I)
and modes that do not require one (i, m, n, p, s, and t).

You can combine any number of nonparameter modes in a single
mode change. Depending on the server's version, the maximum number
of parameter modes you can set simultaneously is three or four, sometimes
even more. Although the protocol specifies three as the number, many
servers have raised this to four or even more. If you send more than the
maximum, the server ignores every mode change beyond the last permit-
ted number and only accepts the first three or four. You may combine

modes that require a parameter and those that don't, as long as the
number of parameter-taking modes doesn't exceed the limit.

The modes can be any combination and order, but multiple mode
changes need a slightly different syntax and are subject to a few rules:

• You need the plus or minus prefix only once if the changes applied
are all one or the other. Example: +snt

• Multiple mode changes of the same kind are possible for modes b,
o, and v, regardless of prefix. Example: +000 or +00-0

• Mode v cannot be combined with mode o in most cases.

• You must give parameters in the exactly same order as the modes
requiring them. Example: +oob nickl nick2 lamer!*@*

• For mixed plus and minus mode changes, a prefix is required
before the letter, unless the letter preceding it has the same prefix
already applied. Example: -s+nt

• Modes s and p are mutually exclusive. See exception above.

• If the modes in a multiple change conflict, only the last of the con-
flicting modes applies. Example: +0-0 nick nick

• Some server versions do not permit redundant mode changes (set-
ting a mode that is already active for the channel).

• Mode characters can also be separated by <space>.

10.4 Creating a Private Channel

To create a really private channel, you use channel mode s and either k
or i along with it. Whether you use any of the other modes is of no
importance and a matter of personal preference. You should set mode s
first as soon as possible after joining in order to make the channel secret
and make it disappear from your WHOIS reply and the channel list.

Whether you use i or k depends on how you want people to join the
channel—you can give them the key and let them join whenever they
like or require them to get an invitation from you first. If you want people
to find you so they can ask for an invitation or key, you should either use
a nickname they know you by or set umode -i so they can find you with
WHO (see 9.3).

A channel you make private in this way is as secure as a private mes-
sage; no one outside it knows even its name. If someone who shouldn't
have finds your channel, consider the following possibilities:

• He or she did a WHOIS on you between your creating the channel
and setting it+s.

• Someone who knows of the channel told that person.

• Your name for the channel was predictable (that is, your usual nick).

• He or she wanted to use the channel independent of you and didn't
know you were there.

! This is why you also set it -i-i or +k (or +ik if you like to complicate things).
You can also use +1 to strictly limit the number of users your channel
may have. Actually, though, more than one of k, i, and 1 is overkill and
essentially redundant.

10.4.1 Inviting
If you're an operator of your channel, you can use the INVITE command

; to ask a user to join it. If your channel is set +i, you must use it before
they can join. INVITE has the (often confusing) peculiarity that, unlike
all other channel commands, it gives the user's nickname as the first
parameter, not the channel's name.

/invite Outside ftlnside

User Outside now sees an invitation and, if the channel is +i, also has
permission to join. Note that an invitation is only good for as long as

-• •" ' the user invited is connected to the server. If he or she disconnects for
; • any reason, the invitation must be repeated.

10.5 Kicks and Bans

If you've tried asking someone nicely to stop annoying or offending the
channel and have gotten no results, you'll be forced to use the KICK
command to remove the user from the channel by force.

/kick ttsomewhere Loser please stop being annoying

The user with the nickname Loser is now history. If that person was also
a channel op, he or she has lost op status. There is no rule forbidding an

op to kick another op out. As a matter of fact, when feeling particularly
playful, channel ops have been known to have "kick wars," kicking other
ops with a cute message, getting kicked, rejoining, and regaining ops,
and doing it all over again. Be careful not to create hard feelings, though.
In the above example, the reason given for the kick is "please stop being
annoying." If you supply no reason, the server uses your nickname as the
kick message.

The user loses ops and voices whether he or she leaves a channel
normally or gets kicked. Like all other channel commands, you can
substitute an asterisk for the current channel if your client supports it.

Even using the asterisk, you'll often find that you need to remove
a user from the channel fast. You should write an alias to make the kick
command shorter—more on aliases in section 11 below.

If the user who was kicked won't take the hint that he or she isn't
welcome and returns to bother the channel again, you'll need a ban—
channel mode b.

You have to follow the ban with a kick since MODE and KICK are
separate commands and you can't send them to the server with a single
action. Nor will setting a matching ban automatically remove a user from
the channel. So you'll set the appropriate ban and then kick the offender.

Remember: Ban first, kick second. If you kick before setting the
ban, nothing prevents the user from rejoining the channel until you set
the ban, and he or she can easily be back by the time you've placed the
ban—then you'll have to repeat the kick.

10.5.7 Correct Use of Host Masks in Bans

Bans are tricky in that the ban mask must be precise, or else it will be
ineffective. Also, now that dynamic addressing and clients that permit
arbitrary user names are so common, more persistent losers can avoid
certain bans and need a new ban setting. It does happen that someone
is so bent on annoying you that he or she drops the server connection,
changes user name, and reconnects or even hangs up and dials in again
to get a new IP address. It may sound crazy, but these cases of serious
social inadequacy are common.

With more experience, you'll be able to make an educated guess
regarding which parts of a user's mask are variable. Some look like Unix
hosts, whose users are generally easy to get rid of with a single ban, and
others are obviously dial-ups, which are a nuisance to ban effectively
without banning too large a group of users. Strings such as "ppp," "dial,
"max," and a few numbers in the first one or two parts of the host name
are typical of dial-ups and need more care.

What the server checks before matching is the ban against the user s
full mask—in the format of nick!usemame@host.name (see 6.3.2).
The most limited ban would be one containing the offender's precise

nickname, username, and host name. Of course, since users can change
nicknames with a single command, and user names, and often parts of
the host name as well, are mutable, you'll need wildcards in the right
spots. Too few let the culprit in, while too many risk banning a larger
number of users than is necessary, maybe even some of the channel's
regular users.

Two wildcards are possible in a ban: the asterisk (*) and the question
mark (?). If you don't remember their meaning, here's a reminder:

• The asterisk stands for any number of any characters, including
none at all.

• The question mark stands for any single character, but not for no
character at all.

You can place wildcards anywhere—they don't have to be at the begin-
ning, end, or middle.

• The asterisk wildcard is good for very variable parts of a mask, such
as the nickname.

• The question mark is useful for fine-tuning a ban to avoid locking
the wrong people out.

Let's say the user appearing as Loser, with the address Ihateyou@dialup-7.
chi.loathsome.net, is being a nuisance. The exact ban for Loser would
look like this:

/mode * +b Loser!Ihateyou@dialup-7.chi.loathsome.net

Well, since he could change his nick to something else and rejoin because
the mask will no longer match the ban with the changed nick, we should
ban him regardless of the nick he's using. What was the wildcard for any
number of characters? Right, the asterisk. So let's replace the nickname
in the ban mask with an asterisk.

/mode * +b *!Ihateyou@dialup-7.chi.loathsome.net

Looks much nicer and is definitely more effective. But this one has
made up his mind to cause you as much inconvenience as possible.
So he disconnects from the server, changes his user name, and returns.
Hmm. I guess we can't take the user name for granted either. Fine,
Loser, suit yourself.

/mode * +b *!*@dialup-7.chi.loathsome.net

Try beating this, jerk! Well, sorry to disappoint you, but you can't be
smug yet—he's still got another chance. He actually goes to the trouble
of disconnecting from his ISP and dialing in again, hoping the system
will assign him a different address. And he succeeds: He's now
Loser!YouSuck@dialup-ll.chi.loathsome.net and marches into your
channel as if he were invited. Sigh. Okay, the "dialup-" bit is characteris-
tic. The number changes. The "chi" part is probably a geographical
identifier for Chicago—even he won't go as far as dialing long distance
to annoy us (at least we hope he won't). So I think we're safe with this one:

/mode * +b *!*@dialup-*.chi.loathsome.net

Gee, had I known it would take so long, I'd have banned that one from
the beginning.

It basically comes down to experience. Identify the variable parts of
a user's mask and guess how far this user intends to go. An experienced
channel operator would have used the last ban or even something slightly
wider (like dropping the "dialup-" part, too). If the channel has no regu-
lar users from loathsome.net or has had trouble with them before, you
could be lazy (and very effective) by banning the whole site:

/mode * -i-b *!*@*.loathsome.net

While in this example the user was unable to change the geographical identifier
without dialing long distance, this is not set in stone. IBM.net is a notorious
example of how some providers assign addresses unrelated to a person's physical
location. I can only presume it routes a user to any available node if the local one
is full, even one in a different state. While its users may find this convenient, that
method can cause a major headache in dealing with abusers on IRC. AOL
(aol.com) is even worse because addresses are taken from an immense pool with
no form of identifier.

10.5.2 Ban Problems
Problems with ineffective bans aren't just embarrassing to an op who's
frantically trying to get rid of an abuser, but also endanger a channel
under attack, since often much depends on being able to get the attack-
ers off the channel fast. You may see two scenarios: The server appears
to have accepted your ban, but they keep coming back despite it; or the
server doesn't seem to be accepting your ban. For each of these condi-
tions, there are two possible reasons.

If you're seeing the mode change for the ban, but it doesn't seem to
be working, first check the ban mask. If it isn't accurate, remove the ban
and place the correct one. This can happen if you use an alias to ban or

kick and ban, which adds an asterisk before the user name to allow for
an ident-related character such as a tilde (~) leading the user name,
whether such a character is present or not.

This is a questionable feature in some scripts If the user name is
longer than nine characters, the additional asterisk definitely brings it
over the limit of ten characters, the maximum for the user name field in
a ban. For example, putting an asterisk before the username "mumbo-
jumbo" would make the ban you send contain an eleven-character user
name, causing the server to drop any characters beyond the tenth. So
the user name the server would ban would be "*mumbojumb"—which
does not match. If you're positive about the ban's accuracy, the problem
is likely to be a channel desync (see 10.9), which is more serious and
really tough to deal with.

If you're sending the ban and the server isn't reacting, the problem
is with the bans currently in place for the channel. Some servers allow
you to have no more than 20 bans for a channel (this can become more
under strange network conditions, so don't be surprised if you do see
over 20). Check the number of bans on the list and remove as many as
needed to bring them under the limit of 20. Make sure you remove the
less important ones first. On IRCnet the total is 30 for e, b, and I modes
combined. EFnet allows you 25 bans.

The other cause can be that one of the existing bans is too similar
to the one you're trying to set. This is a problem with the server code—
a bug nobody has worked on eliminating. Annoyingly, this happens if
you're trying to extend a ban by placing a broader one than is already in
place for the site—necessary if an abuser starts appearing from different
machines of the same provider after you've already banned him or her
from one, and you have to ban the whole domain. In this case, first
remove the previous ban and then set the new one.

Another annoying thing can happen while you're trying to remove
a ban. You remove it, and shortly afterward the server resets the ban.
This can happen a few times in a row and results from bad network con-
ditions. Lagged servers that eventually split off from the rest fail to see
your mode change and continue to see the ban as present. When they
rejoin in the syncing process, which we'll have a closer look at in the
next section, the ban is restored to the channel on your server, too.

10.6 Server-Generated Mode Changes

You'll often see a server apparently giving people ops. This follows a
netjoin and is part of the process called syncing. Nethacks are attempts
to exploit this and obtain channel ops against the will of the current ops.
No, the server hasn't gone crazy and is not giving out ops to whoever asks

for them. Those who do get server ops have (normally) already gotten
ops from another legit source before the split happened.

Following a netsplit and subsequent rejoin, your server sees all users
who were on the other side of the split and hence not visible from your
server as signing on again and joining the channel. While they never did
sign off (from their point of view you and everyone else who was still visi-
ble to you signed off) and their server views them as opped, yours doesn't
see that and considers them newly joined nonops. The same applies for
you as seen from their server. So the servers try to fix such a discrepancy
by negotiating the modes of a channel if they aren't the same on both
sides. They "sync" the channel so that its modes are the same on all
servers of the net. This is basically done cumulatively—each of the nego-
tiating servers accepts what the other tells it is a mode for the channel if
it's missing (remember that ops and voices are channel modes), so that
both servers end up with the same set of modes for the channel by adding
whatever the other tells them to.

If you recall the channel's modes and ops before a brief netsplit and
compare them to those after the rejoin, you'll often find them to be
identical. The sync also includes mode changes the operators of either
side performed while the netsplit was in progress, and forwards these to
the other side. For example, if you set a ban during the split, the sync
sends the ban to the rejoining servers.

Nethacks are attempts to obtain ops on a channel by creating the
channel on a server that is split off and has no users. Since none of the
channel's users are on that server, two things happen: The channel's
users will not see the split, since splits make their presence known only
when it affects one or more users of the channel, and the fact that, since
the server views the channel as empty, it will also give ops to a user who
creates it. The intruder then gets ops for all servers when the channel
syncs after the netjoin, and hopes to catch the regular ops unaware and
deop them—which brings us to . . .

10.7 Channel Security

This is a very important part of running a channel, especially on networks
with no channel service. Here are descriptions of how to keep a channel
as trouble-free as possible.

10.7.1 Nethacks
Nethacks are only a tiny part of a phenomenon practitioners have devel-
oped into a science—and the best of them have advanced it to a fine
art. This is the science of harassment, and in this case it involves seizing

control of a channel by obtaining op privileges against the will of the
current ops.

Channel services that enable users to register and effectively own
channels have put an end to this practice on many networks, since the
owner or another authorized user can quickly regain ops using the service.

While channel ownership services are in high demand, and most
small networks have one, two of the major networks and a few of the
minor ones don't run such a service. They stick to the tradition demand-
ing that the current operators be considered the only authority over a
channel. Although there have been great improvements recently in the
mechanisms preventing nethacks, "hacking" ops is not impossible, and
some people still consider it a form of sport. I put "hacking" in quotes,
since it has nothing to do with real hacking.

"Hacking" ops on IRC is at best a juvenile and antisocial occupation,
and definitely shouldn't be associated with what serious hacking experts
are capable of. While not necessarily legal or condoned, the work of
hackers has been the major contributor to modern computer security by
detecting and pointing out security holes in every conceivable system, and
even those who don't approve of it respect it. "Hacking" ops is unimagi-
native and destructive. The two major nets lacking a channel service
(EFnet and IRCnet) use different methods of preventing nethacks, and
we'll have a look at these mechanisms now.

Some types of server also unset modes upon a netjoin (deop some-
one, for example). This feature is part of the system known as TimeStamp
(TS), and is not part of the basic server code but of its patches, which
servers on EFnet are required to use and which most other networks
have implemented as well. Channels and nicknames get assigned time
stamps when they're created (hence the name), which the servers com-
pare against each other while syncing. If one part of the channel has a
different time stamp from the other (which is bound to happen when a
channel is newly created on one side of the split), the one with the older
stamp is considered the "real" channel, and its modes are authoritative.
New channel modes brought from the "new" channel are reversed.
Users on the older side will see no changes, apart from the join of the
clients on the rejoined part of the net. Many EFnet servers will not grant
ops on a newly created channel while the server is split.

The other method is nick delay/channel delay (ND/CD), which
we've already encountered in 6.2.7 and 7.3.7—it is used on IRCnet and
is partially implemented on EFnet. This system tries to prevent the con-
ditions that would permit nethacks and collisions by making the nick or
channel unavailable for a while following irregular signoffs and netsplits,
rather than allowing the nethack attempt but reversing it when the servers
rejoin, as TS does. Both methods have their advantages and problems,
but in practice EFnet's TS system, implemented on every server of the
network, is significantly more effective in preventing intentional nick

collisions and channel takeovers. It also has the side effect of making it
well-nigh impossible to restore ops on an opless channel.

While there are nethack prevention systems even on networks with
no channel service, nothing is totally foolproof. Unusual network condi-
tions can permit takeovers or collisions, and it's up to the channel's
operators to secure their channel against attack.

Before approaching management of channel security, you should
make sure you have a secure and attack-resistant client. With regular
nethacks less easy, abusers tend to direct their attacks at the operators'
clients more than ever. You may be an expert channel op, but if your
client is susceptible to attack, you won't be around to defend your channel.

Another important point is having a secure machine. With more
and more flood-proof clients, abusers now resort to attacking the ops'
networked machines instead (see 17.7), and you should give much
attention to securing your machine against such attacks. It goes without
saying that a channel where an op is infected with some sort of Trojan
(see 2.2.1) allowing anyone to take over his client is lost if anyone cares
to make use of the Trojan to control an op client.

10.7.2 Flooders and Cloners

Probably the most common method of harassment and takeovers since
the early days is flooding, particularly clone floods. The number of widely
available scripts with such "features" is large and rising as the authors of
popular clients (primarily mIRC, the most widely used client) enhance
them with advanced scripting features permitting creation of such. With
this turn of events, even the humble Windows dial-up turns into a con-
siderable tool for abusers.

Floods are mostly used to try and force the channel ops' clients to
disconnect and ideally do the same to all other clients on the channel.
This makes it possible for the attacker to gain channel ops by re-creating
the channel once everyone has been flooded off and the channel is
empty. A flood-proof client is the best protection.

Flood nets are a greater menace since they're coordinated attacks
by more than one user. Often the attackers use egg-drop bots with special
add-ons. These are generally more powerful since they can be networked,
thus achieving better synchronization, and also tend to have more com-
puting power and bandwidth behind them.

To combat floods successfully, you should be able to identify the type
of flood and react to it fast. A -i-m mode change for the channel is often
very effective since it stops the attacking clients from sending their flood
to the channel. An additional mode change to +i also prevents more of
them from joining. These simple mode changes are much faster than
looking up the attacker's mask and banning, especially if more than one
host is involved. Then you can kick the attacking clients while the +i mode

prevents them from rejoining. You may set the ban at leisure once
they're gone, and remove the +im mode so the channel can resume its
normal operation and the friendly clients disconnected by the flood can
rejoin. A hot key to set mode +im in an emergency isn't
a bad idea.

If you have a bot on the channel, you should set it to detect and
react to floods and also to multiple joins from the same address, if it sup-
ports such functions. Bots are generally designed to be flood-resistant,
but could often do with some tweaking in that direction through the
configuration. Chapter 17 covers the different types of floods and ways
of dealing with them.

A good preventive measure against clone floods is using mode 1 as
a standard setting on the channel. Make the limit high enough to allow
for plenty of users, but low enough to prevent massive numbers of
clients from joining. If your limit is reasonable, you can easily have as
many users on the channel as you like and still reduce the potential
damage from clone attacks. This method has served me well, and I
strongly recommend it.

Since we mentioned clones, we should also look at the meaning of
the term. Recent advances in biotechnology and their media coverage
have made this a very trendy word, but people were cloning on IRC long
before the guys in the white coats cloned a sheep. Clones on IRC are
multiple connections from the same user or machine. Depending on
the servers' tolerance for multiple connections, a user may be able to
connect 5, 10, or a few dozen clients. It's not impossible, since many
clients allow "raw" server connections, used for cloning.

Because of the time and accuracy required, users rely on scripts to
connect the clones swiftly to the server. An increasingly common form of
clone is the distributed clone. This clone tries to mask itself from the
servers' operators by spreading all over the network, connecting only one
or two clones to each server on its list, and it is indeed harder to detect.

Clone floods, as the term implies, are instances in which the
attacker uses clones to flood—which is just about the only thing they're
good for. The reason these sad individuals use clones to flood is because
10 clients can send data to a server 10 times faster than a single client. It
wouldn't be hard to use a single client to send data at the same rate, but
one client would never survive it because of the servers' limits on
the rate at which a client may send data to them. So if a single client
sent at the rate of nine lines in a given period, the server would boot
it for flooding if the server's limit were a rate of 8 lines for a single
client. But 10 separate server connections (clones) could each send
eight lines, since the server views them as separate clients and permits
each individual the maximum limit. So a set of 10 clones could send
as many as 80 lines at a time without risking disconnection, whereas
a single client would be allowed only 8.

70.7.3 Colliders

Attempts to get rid of the ops by causing nick collisions are more difficult
to deal with. These attacks can be so swift that everyone is out within
minutes and the channel becomes vulnerable to a takeover. On smaller
channels it can take no more than seconds for a skilled collider to get
rid of everyone.

Your first reaction upon seeing suspicious collisions (see 6.6.1) on
a channel is to set the channel +s, yourself +i, and change nicknames,
thus eliminating the possibility of being hit by an attacker who isn't on
the channel. Take a WHO list and check it for users who have been a
problem in the past or whose presence is suspicious. If invisible users on
a +s channel still collide, there is definitely a spy on the channel inform-
ing the collider of the channel users' nicknames. Kick and ban any
suspicious users—you can apologize later if you're wrong about them.
Kick every user you don't know personally and won't vouch for if you
have to.

Collision attacks are speedy and you must act fast. In this case it's
better to be safe than sorry (you can be apologetic later). Change your
nickname frequently for as long as you're not sure the spy is off the
channel. The surest way to find the collider's identity is by identifying
the part of the network or server the collisions are coming from and
connecting a client to it. If there is a very lagged server in that group,
the collider may be using it. Once you're there, use WHOWAS and
WHOIS on a few of the collided nicknames. More often than not, you'll
find they've come from the same host apart from the addresses of your
channel's regular users, and you'll very likely see a client with that host
mask lurking on the channel.

Once you've gotten rid of the collider, send your evidence to the
server the collider was using, if you were able to identify the address.
Collisions make a server look bad on the network, and admins will gen-
erally react to complaints.

10.7.4 Secure Auto-Ops
Neither of the aforementioned are the greatest risk to a channel's secu-
rity, though. Careless opping causes most takeovers. Sometimes it's
someone faking an address belonging to a regular—not impossible, but
rare compared to cases of genuinely sloppy opping and criminally mis-
configured auto-op lists.

Many channels use auto-op lists so the regulars can get ops without
having to ask for them. Most scripts also contain such features. They are
anything but foolproof and should be left to the more experienced users
to set up. Still, even with a decent level of security and all the precautions,
secure auto-ops are a myth. Use a password system instead.

For identifying the regular ops, you can divide users' host masks
into two categories—those that are easily copied and those that are
harder to fake. The more secure addresses are those with a steady host
name and idented user name—meaning, basically, shell accounts. These
can be on an auto-op list with the lowest risk of an imposter's assuming
the address, unless the account itself is hacked. Ident is important in this
case, since it's much harder to fake an idented address (normal "IP
spoofs" can't ident themselves). Spoofs are not common nowadays, but I
will not swear that you'll never run into one.

Dial-ups are a different kettle offish as far as auto-ops are concerned,
and can be anything from fairly secure to begging for trouble. You should
take much care to use the fewest possible wildcards in the host mask on
the auto-op list; use the same methods as for bans. Some ISPs may give
their users a static host name like myhost.demon.co.uk, which is as
secure as a shell account as far as the address is concerned and may be
so even with a variable user name. Again, ident is important—unidented
address should not be auto-opped. Dial-up users should always have
ident enabled before you give them ops, for more security against fake
addresses.

In adding users to a bot's auto-op list, follow the above rules and do
not rely on the bot's add user functions, since these generate insecure
entries on the list by allowing unidented users and wildcarding that's too
large a part of the host name. This is especially risky with users from very
large ISPs. One typical example of such a high-risk ops list included host
names like *.netcom.com, *.aol.com, *.att.net, *.ibm.net, and other
comparably large sites. Since those sites have immense numbers of dial-
up users matching those masks and each of them can assume any user
name, such a list would effectively have half the Internet on auto-op for
anyone who cared to use the user name on the list. The above are real
examples taken from an actual ops list and not uncommon. Don't be
lazy about it—manually enter the address to add.

If you want to be even more security conscious, put only the bare
minimum necessary for running the channel on the auto-op list, like
the bots and the most secure addresses, and make the rest use a password
to get ops. All good bots support passworded ops, and some of the bet-
ter channel management scripts do, too. Passworded ops offer the
highest possible level of security without going to great troubles and
being too paranoid.

Another point I can't repeat often enough: Do not ever op someone
by nick alone. Nicks are the easiest thing in the world to fake. If you're
not positive of the user's identity from the conversation on the channel,
check the host mask first. Even if you are, it's a good habit to always do a
WHOIS before opping someone. All too often someone wanting to take
over plants a hot on the channel with the nick of a regular who isn't on
at the time, then waits for a sucker to give it ops—after which the hot

deops everyone while its owner rubs his hands in glee. Giving out ops
based on the nick alone amounts to almost criminal negligence.

One more word regarding protection—various scripts include a fea-
ture describing itself as "nethack protection." This considers any user
joining the channel and getting ops from the server as an attempt to
hack ops, and deops that user. Nethack protection is not for the clue-
less. Turn it off unless you're capable of making it recognize all regulars
and not deop them. Few things are as embarrassing as rejoining a chan-
nel after a split and deopping everyone. Two or more bad net-hack prots
on the channel can cause serious instances of desync (see 10.8).

Now that we've gone to so much pain to make sure our auto-ops are
safe, let's throw it all out the window in the light of address spoofing.
Not everyone can do it, but someone who can is capable of assuming
any host name he or she wishes to and be idented. The servers can pre-
vent this, but there is no guarantee that all servers on a network will be
secure. If you suspect someone of being an address spoofer, use /stats L
nickname (note the capital L). This returns an IP address. Use your
lookup command (nslookup or /das) to resolve that IP address. If it
doesn't match the user's address, congratulations—you have gotten
yourself a spoofer. The IRCops of the servers the spoofer is on will prob-
ably be interested.

So the bottom line remains: Don't auto-op at all if you can avoid it.
Write a script that exchanges passwords before opping.

10.7.5 If a Takeover Does Happen
So they finally managed it—you're now locked out of your channel after
your attackers got ops, deopped everyone, and kicked the lot of you out.
Of course, you're trying to think of ways to get the channel back.

The traditional way of dealing with the problem is simply to let the
culprits have it, create a new channel, and invite everyone to it. Of course,
this isn't that effective for larger channels whose name is a point of ref-
erence. It helps if the regulars have an agreed place to fall back to, but
newer users and people who might be interested in the channel would
have a hard time finding it. Letting them have it for a while is not the
fastest way of getting a channel back, but it's probably the most effec-
tive—they'll eventually get bored and leave it.

One thing that will not work is using the same methods they used.
Since they managed to take over, you can bet they're familiar with any-
thing you might try and will be prepared for it. What's more, they may
have escaped detection by the operators when using questionable means
that are against the servers' rules, but you might not be that lucky when
you try to strike back. An operator will not accept a channel takeover as
an excuse for a counterattack—if the server's policy defines the methods
you use as abusive, you're asking for a K: line as much as the takeover

people did, and may well end up with a lost channel and a few K: lines.
IRC operators almost universally hate being dragged into channel dis-
putes. If they gained ops by means such as clone floods or collisions and
you have a log of their actions, you could try mailing the server's admin
address asking for redress. Of course, if the takeover happened because
of an op's carelessness or stupidity, the regulars will have to pick the
mess up themselves.

Much depends on the reason for the takeover—whether it was a
disagreement between the regulars resulting in one party throwing the
other out (known as an op war), an attack from someone who holds a
grudge against the channel, a takeover from someone who just found
your channel attractive (which amounts to no reason at all), or a battle
in an everlasting fight over the channel. As motives vary, so does the
duration of the takeover and the willingness or reluctance of those hold-

;; ing it to give it back.
Op wars are generally resolved fairly soon—within no more than a

day—and everyone returns to the channel, gets ops again, and lives
together happily until the next op war.

Someone who takes over the channel just for the sport will generally
lose interest soon after having spoiled someone's fun on IRC—they
often stay on the channel only as long as they can negotiate with its reg-
ulars from a position of power or get a good fight. These are the social

i dropouts trying to blow their chance of using IRC creatively. Shamelessly
playing up to their egos by conceding victory and acknowledging superi-
ority sometimes works miracles. The workings of the human mind are
mysterious, and you might be able to use them to your advantage. Some
of them will actually listen to reason and just need a break to become
part of a group—nobody really enjoys being a loser.

If someone took the channel as an act of revenge against its users
for some real or imagined offense, they usually won't be that easy to get
rid of. Your best chance of getting it back as soon as possible is to ignore
them. The less annoyance you show, the less effective their actions will
seem to them.

If the channel is the object of a fight between rival groups, none of
which is willing to concede, you'll probably never find a solution. Wars
of this kind have been known to go on for years, even with control over
the channel changing hands at regular intervals.

Takeovers rarely have an easy solution, but force is not the way to
deal with one. Don't panic—stop to consider the best way to get it back.

10.7.6 Be Careful Who You Op
As one old-timer used to say, "A channel that ops together stays together."
This romantic notion has its share of truth, but, while the world could
be a big happy place full of honest ops, we must also bear in mind that

trust does have its limits and the world has more crooks than saints. The
truth in this statement lies in the fact that you should cast aside personal
disagreements or keep them private in favor of keeping the channel going.

Whether you created the channel and others joined afterward, or
you became part of the op team on an established, popular channel,
people are relying on you—not only to handle possible emergencies,
but also not to put the channel at risk by opping the wrong people.
Some people shouldn't be trusted with ops, and letting one of these
people have them can jeopardize the normal operation of the channel.

Again, as we said in section 10.7.4, never op someone who looks like
a regular if you're not sure it's really that individual. As convincing as
they may be, always check their WHOIS before giving out ops and make
sure it does match their known host mask, especially with unidented
clients, since lack of ident is almost universal to spoofed (faked)
addresses. If you're still not sure it's the right person, it does no harm to
leave them opless unless you urgently need another op on the channel.
If you have a bot from which regular users can get ops on request, let
them use it.

Mistrust op beggars. Whether they try to convince you by smooth
talking, demanding, or pathetic whining, consider it a principle not to
give them ops. The channel will decide if it wants them to be ops. On
practically all channels, op beggars get a warning and are kicked off the
channel if they insist. Less patient ops kick them off right away.

Don't op people just because they're friendly. Even if their inten-
tions are the best, some people don't learn how to run a channel. More
than one channel has suffered from regular and very friendly users who
are incompetent channel ops.

10.7.7 Suspect until Proven Guilty

In your career as a channel op, you'll also encounter suspicious clients on
the channel. As a channel op, it's within your rights to remove them from
the channel even if you're not 100 percent certain they're misbehaving.

For example, some of your users, especially less experienced ones,
may start quitting with "excess floods." Set the channel +s—if the
flooder is outside the channel he or she will no longer be able to see its
clients with WHO. If it continues, scan the channel for suspicious
clients—nonregulars who aren't talking at all, known troublemakers, and
so forth.

Less directly annoying but more insidious are takeover bots that
lurk on the channel waiting for a chance to gain ops. Ban these upon
detection. Be especially wary of any botlike clients sitting quietly on the
channel pretending to be part of the decoration.

You will also have to look out for people infected with Trojans (see
2.2.1). While they generally don't constitute a direct threat to the channel,

outsiders may use them to gain information about the channel without
ever joining it. Many Trojans also autosend themselves to everyone who
joins or parts a channel, thus spreading the disease. Send these people
to some good Web page with a "cure" and don't be too scrupulous
about kicking them out. They present a health hazard.

Another category of suspect clients whom I consider guilty by default
is not as easy to spy. They take advantage of misconfigured proxy servers
to hide their real identity. You commonly see them from machines with
"proxy," "gateway," "gw," or "gate" in the host name, though many aren't
that obvious. These clients are almost always unidented, apart from some
that appear with a "root" user name; a very few have a different, idented
user name. They're up to no good.

T 0.8 Channels with No Operators

Whether through accident, carelessness, or malicious activity, it some-
times happens that a channel finds itself with no ops. If you don't have
a channel service on the network that you can use to give someone ops,
you'll have to resort to one of two methods to regain ops.

The first method—and the more effective one, if applied correctly—
is to clear the channel by having everyone leave it so that it can be
restarted, with the first user becoming its op. This is best done when
there are few users on the channel and all are regulars. The more users
there are on the channel, the harder it is to get them out. Often there
are highly frustrating scenes with everyone trying to get ops first and try-
ing to rejoin the channel before it's been emptied. You end up a
nervous wreck because you're doing exactly the same as everyone else
and achieving precisely the same result—zip. Stay outside for a while
and let someone else get the ops.

This method fails if there is a bot on the channel and it's not config-
ured to regain ops on a channel if left alone and opless, plus there is no
user present with the level of access to make the bot leave the channel.
This is one more instance of a misconfigured or inferior bot making a
nuisance of itself; an unauthorized bot runs a serious health hazard when
the users finally have to ask the server's operators to kill it off so they can
regain ops. They usually get a gratuitous K: line for the bot thrown in with
the deal.

The second way is less conventional and requires a combination of
expertise and luck—not necessarily in proportion. Find a split server
and re-create the channel on it to get ops. If there were no ops on the
channel before the split, the server's protective mechanisms will not be
activated (since there are no legit channel ops to be protected), so you
can do it. However, on EFnet you can reckon with the majority of servers
not allowing you do this at all.

Remember that using link-looker scripts to find a split server can get
you into trouble with the server's operators. While some channels survive
for a fair amount of time with no ops, the inability of its users to remove
abusers means they cannot resist attacks. In the meantime, the attackers
may also be trying to get ops using the method described above.

10.9 Desync

Desync is a condition of varying severity in which different servers of a
network view the channel as having different users and/or modes. Mild
forms of desync may just involve a missing ban or two, while serious
cases can make a real mess of the channel. Many different modes on the
servers can get involved, and one part of the network might even have
no ops, while the rest sees the channel as it should be.

The problem more often than not stems from nethack attempts and
op wars, with some mode changes made before a server is ready to accept
them. Dumb scripts that clueless channel ops use, containing something
called "net-hack protection," can create the same kind of mess and are
in fact the most common reason for it. If there is also a lot of lag, it could
become bad enough to render the channel useless. In some cases, bad
network conditions with much lag and many splits can be the sole cause
of a desync, with mode changes sometimes not propagating across the
whole network. In that case, channels can be missing a few modes.

You can fix milder conditions where there are still ops on all parts
of the network by checking the modes carefully. You ideally make
changes from a client that all parts of the net see as an op. If there are
only users with ops on different parts of the net, they should op each
other first. If a globally recognized op doesn't make the mode changes,
the desync will propagate to include modes set by the user, whose op
status is also subject to the desync—meaning that half the net will not
recognize the user as an op and will ignore the mode changes. The opti-
mal way of getting rid of a desync like this is for the user with ops on all
servers to clear all modes and reset those needed.

Now the question arises: How do you know you're desynced?
You should suspect desync if some of the users are receiving error

messages they shouldn't. If someone's told 'You are not a channel oper-
ator" when trying to perform an op function, and that user is certainly
an op, you're desynced. The same holds true when someone is told
"Unable to send to channel" while you can see him or her and the chan-
nel is not moderated. This second message doesn't necessarily indicate a
mode desync. It could also mean that the user isn't on the channel at
all, according to some server, and should leave and rejoin so that all
servers see the JOIN and consider the user on the channel.

You won't notice bans that aren't working until you come under
attack and someone keeps getting past it. There's no easy answer to this
one—try to find one of the attacker's server operators to get him killed
before he does too much damage.

The messages indicating there's desync somewhere often have the
name of the first server the discrepancy appears on. This server is the
"desync point." That and all servers beyond it from your point of view
don't see the same modes for the channel as you do. If you can't imme-
diately see the desync point in one of these messages, look for a server
on which one of the channel's users has detected desync and where you
know there is desync relative to yours. Use the TRACE command (see
15.7) to see which servers are between you and the desynced server. If
the desync is about a user present on the channel or about an op, use
the WHOIS command to compare what each server sees (see 9.1):

/whois <server> <nickname>

If you see yourself as an op, use your own nickname and check whether
all servers think you're an op. Do this for each server in the chain. The
first server to return something different from your own is the desync
point. From the other side of that server, the server you see as preceding
it in the server chain is the desync point, since if queried it would return
something different from what those servers can see. Even more compli-
cated but rare cases are three-way desyncs—three different sets of modes
or users on three different parts of the net. The same methods of correct-
ing desync apply to these as well, but take more time to implement and
check. It's just as well this kind of desync is rare.

Now let's have a look at the more serious cases in which a part of
the network sees no ops at all. If it follows a takeover attempt, there may
even be modes like +imk that make the channel useless or unreachable
on that part of the net. Desyncs like this can be fixed only if the desynced
part gets an op for the channel. Getting ops from your side is impossible,
since according to the desynced server no mode change from that side
would be valid.

In many cases, a netsplit in the right place, followed by the rejoin
and sync, will eventually correct this. This sounds slightly paradoxical—
one fault fixing another—but if the split affects a server on which there
is an opped client, after rejoining this client will be assigned ops through-
out the network during the syncing process, and therefore appears as an
op on the desynced servers, too. Then the restoration can begin from that
client. Wow, two wrongs can make a right after all.

Say you can see the channel's modes according to the desynced part
of the net by doing a /mode #channel from one of the desynced servers,
and there are modes that aren't present on your server but need remov-
ing. A client that is opped on both sides (presuming that whoever got

the ops also passed them on to the rest of the regular ops) has to set
the offending modes and then unset them. On servers that don't allow
redundant mode changes and reopping users, the client with the ops
(and no other) must deop and then reop everyone.

Desync can also result from a semisuccessful takeover attempt. In
this case the network divides into two parts, each having its own set of
modes and users but different ops. Users on either side see the effects
of the desyncs. This situation can also result from misconfigured net-hack
protection, in which case the resolution is to have each side manually do
what the server would have done if the stupid scripts hadn't kicked in,
and set the missing modes on each side. If the two sides are not friendly
to each other, though, this situation will result in a networkwide guerrilla
war, with each side trying to propagate its own modes across the net and
gain more ground with each netsplit while preventing the other side
from doing the same. If the network is stable, with little lag and few splits,
this could result in a stalemate that lasts for days.

As you see, there's often no easy solution for desync, and chance
can play a large part in finally getting rid of it. The best solution is pre-
vention. Don't let it happen if you can help it.

10.10 Channel Services and Registration

Channel services have become very fashionable ever since the concept
of formal ownership of channels independent of the owner's presence
was introduced. Today, channel services have become the norm, and are
present on two of the major networks and most of the smaller ones in
their bid to attract users by also catering to their proprietary whims.
While considered an integral part of IRC life on these networks, they
remain controversial on the rest. This indirect form of channel manage-
ment (indirect because it allows you to make settings without actually
being on the channel) is becoming increasingly popular as a way of
maintaining a channel without the help of bots. It's also easy to use com-
pared to the hard-core channel management we went into in the rest of
this section. But what is considered its main feature—allowing channel
ownership—is also its main drawback.

The channel is under the total control of an individual, who can
easily overthrow any pretense of democracy and collective management.
Networks that will register a channel to a number of users, as Undernet
does, are a bit more open, but the oligarchy that method creates is sub-
ject to the afflictions particular to that political system.

Each network tends to have its own version of channel service,
matching the network's ircd and containing the features that particular
network wishes to offer its users in terms of indirect channel manage-
ment. Appendix A lists the availability of such services on each network-

10.10.1 Undernet's X and W and Similar Services
This is the older kind of channel service—very hyped-up bots that enjoy
special privileges with the servers. You don't normally do channel regis-
tration directly with the service, but rather with an email or Web
application for use of its services. Undernet's channel service bots, nick-
named X and W, are available to a channel with a group of users sharing
its administration. Find information on how to register and how to use
these bots at the Undernet Channel Service website (http://www.
cservice.undernet.org). For small networks using a similar form of services,
you should check their websites or ask for an administrative or help
channel on the network itself. I do not wish to rehash what the fine
online documents at the Undernet site explain much better, nor do I
have anything to add.

I O.I 0.2 DALnet ChanServ
DALnet is the only one of the major networks that offers easy and
unconditional channel registration. ChanServ is the twin of NickServ
and depends on it for information, as do other services.

In order to register a channel with ChanServ, you must have
(and be using) a nickname registered with NickServ (see 6.3.3); if
you do not have one, now is the time to register. Channel registration
depends on the nickname—if the nickname expires or is dropped, all
channels registered to it are also lost.

Many small networks use the same system. Most of them use their
own custom service software, while others use EsperNet services—a rare
public release of such a package, originally developed for the small
EsperNet network. The basic principle behind all of them is the same,
but in terms of features and usage they are as divergent as the server
code, and there is no standard command set. You can, however, expect
the basic commands to work in more or less the same way.

DALnet servers have an additional command set in which the name
of the service is the name of the command. This is helpful in preventing
messages meant for a service from getting sent to impostors by mistake.
So instead of

/msg ChanServ <ChanServ comtnand>

it would be

/chanserv <ChanServ command>

and the server would take care of delivering the message to ChanServ.
The same concept applies to other services. You can expect this to work
on all networks running the DALnet ircd. Others may have it as well.

For a list of ChanServ commands on the network you're using, send
the service a HELP command, such as

/chanserv help

or

/msg chanserv help

The output will look a bit like this:

-> *chanserv* help
-ChanServ- ***** ChanServ Help *****
-ChanServ- ChanServ gives normal users the ability to keep hold of
a
-ChanServ- channel, without the need for a bot. Unlike other IRC
networks,
-ChanServ- channel takeovers are virtually impossible, when they
are registered.
-ChanServ- Registration is a quick and painless process. Once
registered,
-ChanServ- the founder can maintain complete and total control of
the
-ChanServ- channel. ChanServ will stop monitoring a channel if no
Op enters
-ChanServ- the channel for 20 days or the founder's nick expires.
-ChanServ- For more information on a command /msg ChanServ help
<command>
-ChanServ- Core Commands:
-ChanServ- REGISTER-Register a channel
-ChanServ- SET-Change various channel configuration settings
-ChanServ- SOP-Maintain SuperOp channel operator list
-ChanServ- AOP-Maintain AutoOp channel operator list
-ChanServ- AKICK-Maintain the channel AutoKick banned user list
-ChanServ- DROP-Drop a registered channel
-ChanServ-
-ChanServ- Other Commands:

-ChanServ- IDENTIFY ACCESS OP DEOP

-ChanServ- INFO INVITE MKICK MDEOP

-ChanServ- UNBAN COUNT WHY

-ChanServ- ***** End of HELP *****

This text is taken from DALnet's ChanServ. Here are the things you
should pay attention to: As you see in the notice, there is an expiration
date. Unused channels—meaning ChanServ sees no op join them for 20

days—get automatically dropped. It may be more or less on other net-
works. Channels also expire if the nickname under which they were
registered expires or is dropped. Use HELP REGISTER to see what you
need to tell it in order to register a channel, and make sure you follow
the instructions to the letter. You must be on the channel and an opera-
tor in order to register. You'll often be asked to identify yourself to
NickServ before being able to register a channel.

Write down your password and put it in a safe place. If you give your
password to anyone, nobody will be able to help you if the person who
has it decides to snatch control of the channel from you. If you forget it,
you can bug a special class of IRC operators, the CSops, but they'll
expect you to have a fair guess of what the password was and would
really prefer it if you didn't require their services at all.

There are three levels of access: founder, SOP, and AOP. The
founder is the person who owns the nick under which the channel was
registered. SOPs rank beneath the founder, but above AOPs. The
founder determines how much access to the channel's settings each
class gets. By sending ChanServ the HELP SET command, it will show
you how to set access levels as well as a menu of channel settings such as
a default topic or a URL displayed to people joining the channel.
Explore the help menus and find out all you need to know.

Because ChanServ is generally an integral part of the network, oper-
ating under the umbrella of a dedicated server, it's also subject to the
same outages and failures as any server. Do not take its presence for
granted. Learn how to operate a channel manually in an emergency, as
this chapter described.

Our next step will be into the realm of pure technicality. The next
chapter contains the joys and frustrations of scripting—programming a
client. Find out how to become more efficient as a user and operator by
enhancing your client with scripts. As I said, this is technical and not for
the faint-hearted, but I'll do my best to make it as painless as can be.
Basic scripting is really pretty simple and straightforward, but if you
really don't care to get that technical yet and don't feel the need for
client add-ons, skip ahead to Chapter 12 and keep your sanity.

ENHANCING A CLIENT
WITH SCRIPTS

You have no doubt noticed the many
references to scripting in earlier sec-

tions and are curious about all the
things they are supposed to do. Scripting

is a form of programming, instructing a client
to monitor events and perform some action if
they meet certain conditions, or to execute a
series of commands. Not all clients support
scripting, and those that do each use different
scripting languages and different capabilities.

11.1 What Scripts Are

A script is a file loaded into the client, containing settings and com-
mands meant to modify a client's behavior with some degree of
automation, or that enable the user to perform commands or sequences
of commands with more speed and precision than manual execution

would make possible. IRC scripts are used to detect events and react to
them automatically, execute conditional commands, shorten processes
which would be long and tedious for the user, format the client's output
to suit the user's tastes, and do a variety of other things. For those clients
that support scripts, there are numerous script paks, which are combina-
tions of smaller and larger scripts and settings for the client. Their
quality varies from good to garbage — sometimes even a security hazard
if loaded. Scripts don't do anything a user couldn't do manually, but
they add speed to a procedure, react faster to events than a live user pos-
sibly could, and simply make tasks easier.

11.2 Why Use a Script?

This is a good question. People often use scripts of questionable func-
tionality and securityjust because they've been given the impression that
they "need" a script of some sort, without even knowing what they want
to be done with one. The truth is that these scripts might look impres-
sive, but do little more than set configuration options a user could easily
set without scripting.

Some suggestions to keep in mind: First of all, don't use a script
unless you need one and know what you want it for. Check to see
whether your client can be configured to do what you want without
scripting. Modern clients like mIRC, Pirch, or BitchX are capable of
doing many things for which older clients needed a script. In fact, they'll
perform better than a client-plus-script combination since the execution
of functions that have been coded into the client will be faster.

11.3 Selecting a Script

The standard answer to the question "Which script should I use?" is
"Write your own!" But it's a fact that most people, especially those who
aren't the most avid IRC fans, have neither the time nor the knowledge
to sit down and script. While scripting can be learned (basic scripting is
simple), lack of time is a common reason people fall back on ready-
made scripts.

Every client with a scripting language will have a number of scripts in
circulation. Their quality varies from excellent and highly functional to
messy and dangerous. Unfortunately, the latter group is the larger one,
so much care should be taken when selecting a script. Naturally, scripts
have command sets of their own, which can vary wildly. Apart from a few
common commands most script authors seem to find practical, the rest
of the bunch can make learning a script as time-consuming as learning to

use a client. Widely available scripts often have items in common, mainly
because they borrow parts of the code from older scripts.

Most items describing themselves as scripts are really script paks,
collections of small scripts molded into a single entity and distributed
as such.

11.4 Obtaining a Script

Another good reason for writing your own script or learning enough
scripting is that you'll then be able to read a script and understand what
it does. There are dozens of potential download sites for any given
script, none of them though can guarantee that the script is in its origi-
nal, undoctored form. Many scripts have Web pages of their own, from
which you can download them. I do not recommend running any form
of script, however small, that you can't at least look at to spot suspicious
code. On the contrary, I strongly advise against running such scripts.

11.5 ircll Scripts

ircll was the first common scripting client. Its powerful scripting lan-
guage has been one of its main attractions since it first appeared. Over
time, users have developed many script paks, more good ones than bad.

'••"• Most of them date back to 1993 to 1995, and very few are currently
maintained. Their longevity, like that of the client itself, is unsurpassed,
and some are used even today.

Archives of ircll scripts have become rare with time, and none of
the classic old collections work nowadays, due to lack of interest,
neglect, or people putting their storage space to better use. You could
have a peek at ftp.asu.net for a motley collection of old scripts. I've
found most of these to be of little use; a few are useful, but all of these
are severely outdated (since I maintain it, I can let you in on the secret
that no part of the archive has been added or removed since 1996).
However, this may be the only archive with a chance of being updated
some time in the future. If you want some good ideas for specific scripts,
check out http://www.irchelp.org/ircii/.

11.5.1 Phoenix, TextBox, and Atlantis

Phoenix is one of the best known and widely used ircll scripts. Unfor-
tunately, its availability is much higher than its quality and there are
numerous "doctored" versions of it around, which make it risky. Its code is
generally cumbersome and slow, loaded with totally unnecessary features.

To quote M.D. Yesowitch in the EBOAIIFAQ, "The author is a nice
enough guy, but he can't code."

TextBox is another common script. Easier to use than Phoenix and
less messy, TextBox shares its love for useless "smart" features. Again,
most of it is a waste of memory; it could easily be reduced to a fraction
of its size and retain its functionality.

Atlantis, while having no advantage over the previously mentioned
scripts, is also one of the most dangerous scripts in this family, in the
sense that there are many copies in circulation to which various mali-
cious additions have been made. Beware.

As you may have guessed, I recommend none of the above. And
there are many script paks like those above that offer a fair amount of
convenience, little quality, and not enough security.

11.5.2 PurePak
One of the more feature-packed and powerful scripts, PurePak is a better
choice than most. It should be used only by more advanced users wanting
a script with good configurability and numerous features other scripts miss.
Configuring it isn't easy, and beginners should avoid attempts to do so—
it could present them with more problems than benefits.

11.5.3 LiCe
One of the very popular scripts, LiCe is set to surpass Phoenix as the
most widely used ircll script. LiCe offers few new features but is much
more user-friendly than others and has gained in popularity, even
among IRC operators. Use it with care (as you should all scripts), since
some of its features can create unintentional havoc if used by lazy peo-
ple who don't bother to configure it correctly. Despite its popularity and
many features, I cannot wholeheartedly recommend it.

11.5.4 JoloPak
Now here's a script everyone should start out with. Joseph Lo has cre-
ated a modern, friendly script pak designed to be changed by its user.
No obscure code and traps, just clean, annotated scripting meant to
provide an example for you to follow when building your own custom
script. Get it at http://www.irchelp.org/ircii/. Five stars.

11.5.5 Generic Scripts
Before you go out looking for scripts, here's a selection of scripts that
are packaged with the ircll client and should be located in the
/usr/local/share/irc/scripts directory (/usr/local/Iib/irc/script for

older versions), to which they are copied during the installation process.
Some of them are outdated and useful only with older versions of the
client, while others are toylike and do strange or amusing things to your
client. A few of these scripts are extremely useful and are often included
in the other scripts or paks mentioned above. In fact, with a few aliases
and some generic scripts, you can easily build a smart and simple pak for
your personal use.

Here are the generic scripts you are most likely to want:

cursor Allows you to navigate the command line and

command history with the arrow keys.

netsplit Consolidates multiple signoffs and joins due to net-

splits and netjoins into single notices and records

the nicknames who left in a split.

tabkey Allows you to use the TAB key to recall

the nicknames of previous message or

DCC partners.

basical Contains a basic set of aliases, shortcuts and

tweaks, which you can modify to your liking. Not

brilliant but very handy and a good starting point.

The first three (and perhaps one or two others), plus a set of uncompli-
cated aliases and event monitors that are trivial to code, can be combined
into a surprisingly good tool of your own. Try it.

11.6 mIRC Scripts

There are many, many archives of mIRC scripts out there. You will find
some of them listed on http://www.mirc.co.uk, although I recommend
none of them. Unfortunately, there is not much in the way of distin-
guishing between quality scripts and junk. Do check these archives out,
but pay attention to their general attitude towards scripts altogether.

The one archive I can recommend is the one at
http://mirc.stealth.net/addons/, which serves useful scripts created
mainly by the operators of EFnet's #mirc channel and some add-ons and
popups that you might find attractive—including smart ASCII art pop-
ups that will probably get you kicked out of any channel where you're
not a regular, but which you'll nevertheless be tempted to deploy.

11.6.1 I/On, QPro, vyxx, and a Few Others

These are the minority in the mIRC script world, because they are writ-
ten by people who take IRC seriously. These scripts and the few like
them are the stars of mIRC scripts. They're made with more useability
and less warfare in mind, and can actually improve and enhance your
mIRC client's functions without turning it into an abuse tool. If you
believe you must have a script and aren't inclined to put one together
yourself, I'd say this is is the way to go. Their characteristics vary, but
what they have in common is solid, functional code and a high level of
protection from attacks on your client.

11.7 Write Your Own!

This is always the best option. Scripting for any IRC client is enough to
fill any book, and I don't have quite that much space at my disposal
here. I also firmly believe that the mIRC and ircll help files are very well
written, and people should be encouraged to read them. What I will
provide you with here is descriptions of the concepts and tools you'll be
using. One more thing you can do is examine an existing script and
apply what you found here and in help files to it. In fact, many people
start scripting by hacking existing scripts to their liking.

If you use mIRC, the primary section for storing scripts is the remote.
This is the basic tool for adding functionality to your client. Combined
with popups that you can also write yourself (or the lack thereof), you
can make it behave like anything from an ircll-like efficiency tool to the
ultimate in bee's-knees GUI toys. Startup scripts go in the script.ini file
which acts more or less like the .ircrc file does for ircll.

77.7.1 Aliases

An easy way to group together sequences of commands to be executed
with a single command. An alias can act as a reference for another alias
and even act as a variable. So, if you wanted to check the server's version
and date, you would write an alias containing the VERSION and TIME
commands after each other, separated by a special command delimiter
(usually a semicolon) to show that one command ends and another
begins. Here's what this would look like in ircll:

ALIAS VT version;time

Case is unimportant. The same alias would look like this in mIRC:

ALIAS:VT:/vers ion;/t ime

Notice that mIRC separates the fields with a colon while ircll doesn't
really care about spacing. Also note that mIRC requires the forward
slash (/) command character even in an alias, whereas ircll does not.
These are examples of the difference between different clients' scripting
languages. There is no such thing as "IRC scripting" — only scripting in
a particular language, that is usually unique to the client. (In both exam-
ples above, you'll notice a semicolon is used to separate commands that '
are to be run in sequence.)

Another common use of aliases is to shorten existing commands.
Let's take the MSG command as an example. You may think it's already
short enough, but lazy people such as yours truly like a command they
use so often to be as short as possible. Well, it can't get much shorter
than M so you could alias M to MSG so that if you type /M, the MSG
command will be executed. If I had a penny for every keystroke I've
saved typing /M instead of /MSG, my bank account would look a lot
healthier than it does now. Any command or command sequence you
perform more than once a week could probably benefit from being
made into an alias.

11.7.2 Events

You can make your client listen for events with the ON command. The
type of events is pretty much the same from client to client. Examples of
events are: JOIN for someone joining a channel; PUBLIC for a message
sent to a channel; SERVER_NOTICE for notices received from a server;
and many more. Upon noticing the event the ON is meant to intercept,
it will perform a command or series of commands in a way similar to an
alias. In fact, the command could be an alias instead of a regular com-
mand. ON events will often have modifiers to control whether the client
will react to the event, perform what it would normally do and execute a
command, whether it will suppress its normal action and perform only
the command hooked to the ON, or whether it will perform both and
notify the user of its actions. The last form is used for debugging pur-
poses and not used under real operating conditions.

ON is used not only to detect events and react to them, it can also
be used to influence the client's display of an event. With an ON JOIN,
you could format channel joins the way you like to have them displayed.
The same goes for any other event. (Hint: Check out the ECHO com-
mand for displaying your own text.)

ON is the quintessence of automation. Without an event monitor
like it, there could be no automated responses, and therefore scripts
and bots would be largely nonexistent. The ON command set is rather
extensive and complex in any modern client so your client's help files
(/help ON) are definitely the best source of further information.

11.7.3 Conditions

Within both ONs and aliases, you can make your client perform an
action only if certain conditions are met. This is illustrated in the way
channel control scripts work: Client X joins the channel and is caught
by the event monitor ON (the ON JOIN in this case). This checks
whether a particular condition is true or false (predictably, the com-
mand is IF); for example, is this user's nickname a four-letter word? If
yes, then kick him out. If the condition is not met, exit after performing
the check. The same ON JOIN could be used to perform multiple
checks on a joining user before exiting or there could be several differ-
ent ON JOINs checking the same event.

11.7.4 User-Defined Variables

Conditions and aliases often rely upon variables. If you also had a vari-
able called KICK_FOUR_LETTERyou could have the ON example in
the previous section check that. The same variable could be used not
only for checking the nicknames of people joining the channel, but also
for the messages sent to the channel. If its value is true, every four-letter
offender would get kicked. If you felt like engaging in a cussing contest
with someone, you could set it to a value meaning false so that the
offender would never be kicked. Variables, as the term suggests, are flex-
ible and their value can be changed on the fly. Variable structures can
become very complex and combine with aliases and conditions to create
something that looks like it makes very little sense to the average user.

While all clients come with their own set of built-in variables, such
as $N (ircll) or $me (mIRC) meaning the client's nickname, users can
define variables of their own by assigning them a name and value. These
variables can then be used just like regular ones. Of course no client
comes with a variable called KICK_FOUR_LETTER, so you'd have to
add that one to the client.

11.7.5 Server Numerics

Clients can be made to react to numeric replies from the server. As
defined in the protocol, there is a fixed set of numerics that are sepa-
rated into error messages, replies, and other odd stuff. Typically, an
error will sent as a numeric in the 400-499 range, a reply in the 300-399
range, etc. Minor variations in the syntax of the same numeric may be
encountered from ircd to ircd, but most of them are trivial. Each type of
ircd also uses an additional set of numerics for the output of commands
or errors particular to that ircd. Therefore, some servers might use the
same non-standard numeric for something totally different. A complete
list of server numerics can be found in Appendix E.

HOW REAL SCRIPTERS DO IT

Here's what Queux, author of the QPro script for mIRC, has to say about writing

scripts. Most of the guidelines apply to scripting for any client:

What should a scripter consider then when writing a script for mIRC? My

personal opinions are as follows:

1. First of all—whatever you do—try it out before you "release" it. I have

seen loads of scripts that have bugs so obvious that they shouldn't have

been released in the first place.

2. Remove personal settings, files, and other personal informatation before

releasing it.

3. Do not include mIRC itself when releasing your script.

4. Try to make it look attractive. A script which has "non-understandable"

menus (as an example) will not attract anyone — least of all me. :)

5. Do not use more menus than needed. It's just a mess trying to find the

right menu if one must click both here and there first.

6. Re-use parts of your script if possible. Minimize the code — it will execute

much quicker when needed.

7. Give the user options of what he/she can use, to choose from. (Example:

Do not "hardcode" color settings, in case you hardcode black as default

foreground color and the user uses black as a background.)

8. Do not include images that are too big.

. . . and so on. One can go on forever. Use your imagination, and read the

included help file.

Here are some examples of what numerics are used for and what
they can mean. These numerics are the ones you're most likely to use in
a script.

Numeric Command Meaning

001 None Welcome message

002 None Server name and version

Numeric

003

004

005
221

302

352

353
372

375

376
377

391

421

422

Command

None

None

MAP

MODE

USERHOST

WHO

NAMES

MOID

MOID

MOID

MOID

TIME

Any

MOID

Meaning

Channel and user modes supported

Time the current version of the server has

been running

Server map

Your user modes

Client's userhost, oper, and away info

WHO information for a single client

NAMES list

MOID line

Beginning of MOID

End of MOID

Identical to 372, different numeric to

work around clients that ignore 372

Date/time

Command the server doesn't recognize

Server has no MOID

No source of information is as good as the client's own help files. IrcII,
mIRC, and many others have large sections dedicated to scripting and
there are many Web sites that also offer help on the subject.

11.7.6 Practical Scripting Tips

Here are some dos and don'ts, some shoulds and should nots for practi-
cal scripting. (Again, my friend Queux was instrumental in helping me
put this list together.)

Example 1 (mIRC): Streamlining code

la. Bad code:

if ($nick isop $chan) { set %x = i }
if ($nick lisop $chan) { set %x = 0 }
if (%x == l) { halt }
if (%x == 0) { <do whatever> }

Ib. Smarter code:

if ($nick isop $chan) { halt }
else { <do whatever) }

Ib is faster because it's based on a true/false outcome instead of first
setting a variable, then evaluating it and thereafter executing the action.

Ib is not necessarily faster but it is "smarter" and more practical and
handy, la in this example is rather clumsy.

Example 2 (mIRC): Avoiding unnessecary repetition

2a. Bad code:

.unset %tmpshare | .unset %tmpfile | .unset %tmpdir | .unset %tmpwho

2b. Smarter code:

.unset %tmp*

2a unsets a bunch of variables one at a time while 2b unsets ALL by run-
ning the unset command once only and using a wildcard in the variable
name. 2b should therefore execute slightly faster and be more practical
and functional because it unsets ALL %tmp* variables with one sweep —
including those beginning with %tmp that you might have forgotten to
remove earlier.

Example 3 (mIRC): Improving an existing command
to reduce the need for repeating it

3a. One of the predefined aliases which comes with mIRC is:

/ping /ctcp $$l ping

Using that command you can, in an editbox, type /ping <nick> and it
will ping that single nick. But what do you do if you want to ping several
nicks at once?

3b. A means of overcoming the one nick limitation can be:

/ping {
%tmptwh = $1- | %tmptot = $calc($pos(%tmptwh , $chr(32) , 0) +• l)

:loop
if (%tmptot > 1) {
%tmptwx = $gettok(%tmptwh,l,32) | ctcp %tmptwx ping %tmptwh =
$deltok(%tmptwh,l,32)
%tmptot = $calc($pos(%tmptwh , $chr(32) , 0) + l) | goto loop
}
else { ctcp %tmptwh ping } | .unset %tmp*

With the above lines you can now ping as many as you like simply by
typing...

/ping <nicki> <nick2> <nick3>...

3b simply overcomes the 3a limitation of being able to /ping only one
nick at the time and should therefore be more functional because it
does what is stated above — it lets you /ping several nicks at once. Other
than saving you the effort of pinging each nick individually, it has no
practial function. Note how it applies the rules of example 2 and removes
all the temporary variables (%tmp*) it used before exiting. Remember
that this particular one may be uneffective on servers of the hybrid-6
series (mainly some EFnet servers) due to changes in the server code.

Example 4 (mIRC): Don't assume everyone's client or
machine work like yours, and presume you don't have
their undivided attention

4a. Bad code:

splay c:\mirc\sounds\shutdown.wav

What if the user doesn't have his/her mIRC installed in c:\mirc? What if
another wave is being played while executing this line? In either of those
cases you will get an error.

4b. Smarter code:

if ($inwave == $false) { .splay $mircdir $+ sounds\shutdown.wav }

4a tries to play shutdown.wav from within a predefined path. 4a code
has two basic flaws — it does not check to see if there's another *.wav file
current being played and it assumes that the wave file shutdown.wav
resides in c:\mirc\sounds\. Not everyone installs mIRC in it's predefined
path (which is c:\mirc) and so for those who haven't done so the com-
mand in 4a will fail, either due to the fact that another wave file is being
played at the time or due to the fact that it cannot find the wave file.

4b is much more intelligent and first checks to see if a wave file is cur-
rently being played. If not it tries to play shutdown.wav from the sounds\
subdirectory of where the running mIRC actually is installed. The
real/true path is found using a built-in function—$mircdir—which
returns the path to the currently running mIRC program. This also cov-
ers the possibility of the user having multiple copies of mIRC on the
machine.

Example 5 (ircll): Using a script to work around
differences between servers

Problem: There are several scripts that send out notices to the operators
of a channel, thus excluding mere mortals from the conversation. The
mIRC equivalent of this command would be ONOTICE. Some servers
support this form of messaging directly, while others need a script that
will compile a list of the nicknames to be noticed and send the notice.
With the advent of hybrid-6 servers on EFnet, this became tricky because
they no longer support sending notices to nickname lists, whereas
DALnet server supported both so it hadn't been an issue. Therefore:

5a. No longer adequate code:

alias wall {

Script compiles nicknames into a comma separated list stored in a vari-
able named tmp.wall.str

"notice $mid(l 500 $tmp.wall.str) [ops:$C] $0- -

5b. Code that checks the server's version and uses the appropriate form
of notice:

on A002 "*" Aassign s_version $7

Extracts the server version from the server's greeting (eighth word in
server numeric 002) and stores it in a variable called s_version

assign nowall 2.8/hybrid-6* dal4.6*

Uses fixed list of server types where the regular /wall command should
not be used

alias wall {
if (rmatch($S_VERSION $NOWALL))

Matches the s_version variable against the nowall variable and, if they
match, sends a notice to @#channel. If not, it reverts to the old method
and compiles a list of nicknames.

Thus the command is made to check what type of server it's con-
nected to and act accordingly. If the server's behavior changes again, it
may have to be rewritten. These are just the significant lines taken out of
context; the remainder of the code is rather long and not important.

IRC OPERATORS

Now that you're familiar with channel
ops and the way channels are run,

let's have a look at a mysterious and
even more powerful figure in the IRC

world: the (gasp) IRC operator, known also as
IRCop, oper, or server op.

You've never seen one, only heard the rumors about their godlike
powers. Who are they? Where do they hang out? Do they even exist, or
are they just a legend, IRC lore from the times when the Net was young?

12.1 Who They Are

Although often rated as very elusive creatures with magical properties,
IRC operators do exist and really aren't that magical although some
appear to be under the impression that they are. On the larger networks,
the ratio of opers to users is rarely more than 1 in 200. This figure is
larger than the actual number of opers present at any given time. Quite
a few are idle clients left online 24 hours a day regardless of the operator's
actual presence, and some are the servers' own robots, which monitor

the server, gathering statistics or sending the human opers notices about
server events.

IRC operators are nothing more than regular users who happen to
have special privileges on one of the network's servers. They are distin-
guished by the asterisk (*) mark in WHO output if they've set oper status
on, and a WHOIS on them returns a line saying this user is an IRC oper-
ator or something similar. Often the MOTD will identify the opers for
that server.

Note that a few vain users like to impersonate an IRCop by placing
the phrase "is an IRC operator" in the realname field. IRCop status
appears on a separate line in the WHOIS—not where the realname field
should be. Even smarter ones set themselves as AWAY and construct the
away message to wrap at the right point to make the message appear at
the beginning of the next line. No go—the real IRCop line appears
above the away notice if there is one. It also looks silly on clients that
don't wrap the line at the desired point. If you're trying to look like a
vain wannabe, this is a prime way of achieving it.

There are two kinds of IRCops—local and global. Local operators
(locops) only have operator privileges on their own server, while global
opers may use certain commands for remote servers as well. This is
because locops don't appear as operators outside their own server—the
server doesn't relay the fact that the user is an oper to the rest of the
net, so none of the other servers consider the client an oper and there-
fore they will not accept privileged commands from that client. You will
only see local operators if you are on the same server they are. Before
someone asks—no, a female oper is not an operette.

12.2 What They Do

IRCops monitor the servers and network and intervene if necessary to
correct a network fault, remove an abuser, or modify some of the server's
settings if the situation requires it. Most of the time, though, they lounge
around like any other user—after all, no one is more of a user than the
person who runs the server. This section is dedicated to the understand-
ing of the way the servers are run and the people who make IRC work
from behind the scenes.

IRCop powers vary depending on the policies regarding oper pow-
ers and conduct of the network and server for which they are operators,
and are far from having unlimited powers. They are often subject to a
strict set of rules concerning the use of oper status. Opers enforce the
server's policies stated in the MOTD and ensure that those violating
them are warned or removed from the server. This does not mean they
are or act like IRC "cops," a term often and wrongly applied. Law
enforcement is not an oper's task. Taking care of the server is.

An oper may, in addition to the tasks mentioned above, have con-
trol over services on those networks that offer them, or deal with user
queries regarding just about everything under the sun—often irrelevant
to "opering." Frequently, though, they just hang around in more or less
idle chat, often with other operators.

Opering is a generic term for everything an IRC operator does that's
related to his/her capacity as an IRC operator. It's a useful bit of insider
jargon which I'll use as a regular verb (with opered as a matching adjec-
tive) for lack of a better term. When you set your operator status on, you
oper yourself and you have entered the state of being opered; when you're
lurking on a server watching the bots go by, you're opered; when you kill
off the evil bots, you're also opering; when you connect split servers,
you're still opering. If you ask some opers, to oper is a state of existence,
not an activity at all and certainly not a mere verb. They would do well
as Zen masters.

On large networks with no channel service, there's a common mis-
conception that operators substitute for the lack thereof by performing
channel management tasks as a part of their duties. This is just about
the wildest myth on IRC. What an oper is not allowed to do is use opera-
tor privileges for channel management (that is, /kill a channel op he
doesn't approve of). If the network wishes to implement advanced chan-
nel management or ownership, it installs a channel service.

Consequentially, if an oper says he or she can't help you with a
channel-related problem, believe it. Oper status does not imply superior
channel op powers. Even if an oper does have powers over channels, it's
via legitimate and strictly regulated use of a channel service or a special
command set, and not via standard IRC operator commands. Where this
option is provided, a hierarchy permits only a certain class of opers to
perform such tasks.

Oper status, while giving a user extended powers, has its limits. In fact,
as a result of having those powers, opers are subject to more restrictions
than a channel op or another user, while they're also charged with the
responsibility of keeping the server and network in working condition.
It's a highly overrated position and the subject of numerous speculations
and myths.

That's how things really are.

12.3 How Did They Become IRC Operators?

"So . . . how did they gain these magical powers?" You're not fooling me!
I know you still think opers are something very special and grand. Now
wipe that guilty look off your face and admit you want to be an IRCop, too.

Here's how it happens.

The first operator of a server will be its administrator—the person
who holds the account under which the IRC daemon is running. This
person, within the limits of the network's general policy and any rules
the owner of the ircd machine may have set, is the only one who may
appoint or remove operators. The server admin is also the source of any
authoritative answers regarding the server and is also the official contact
person for anything concerning his or her server.

Most active opers tend to be hard-core IRC addicts with years of
experience. Others represent the server machine's owners—either
employees of the company that owns the machine or members of the
faculty for a server that an educational institution owns. Some will be
operators or admins of other servers on the same network. Depending
on how selective the server's admin is, there may also be a 'Vanity oper"—
someone who doesn't need to be an operator, does no real oper work,
but fancies strutting around with a decorative asterisk and somehow got
an admin to bestow oper status. You should take some issues into consid-
eration before taking up duty as an oper.

Operating a server is not easy and it's often a rather thankless job.
Users who don't like your style will flood, flame, insult, and accuse you
of all sorts of crimes (usually meaning you caught them up to some sort
of mischief and /killed them). You should also keep logs of your actions
to compare them against the server's logs in case you do get a mean
accusation trying to discredit you. Opering is sometimes exciting but also
stressful. Remember, once you accept the job, you may never get rid of
it, although you may wish you'd never have taken i t . . . but of course you'll
become as addicted to opering as you are to the rest of IRC.

First, asking for oper status out of the blue is definitely not the way
to get it. Asking what you need to become an oper evokes the response
that you don't qualify since you lack the knowledge. Anyone wishing to
become an oper is expected to have been around the virtual block and
know about the inner workings of IRC.

It's all a matter of chance, actually. In the course of your IRC life,
you'll probably meet an admin or two at some point or even be in regu-
lar contact with one when you share a common channel. If you happen
to bump into an admin who needs an oper and is of the opinion that
you'd be suitable, that person might ask you to do it. This means the
admin considers you an experienced user with a sound knowledge of
the network and its workings, and expects that you'll stick to the rules
use your oper privileges correctly, not embarrass your admin with senseless
or abusive kills or busybody routing interventions, and of course keep a
discreet eye on the server and its users while you're around.

2O4 Chapter 12

12.4 Finding IRC Operators

Before looking for an IRC operator, make sure you have a valid reason
for contacting one. Most IRC operators also use IRC like everyone else,
and don't want interruptions from users wanting things for which they
aren't responsible. Many have even stopped responding to users' mes-
sages altogether and use elaborate scripting to filter them out. Although
this is rather sad, they often have a point: Ignorant users may bother
them about areas that aren't their concern. For example, asking an
operator to restore a channel on a network like EFnet or IRCnet, which
don't permit operator intervention in channel affairs, does little more
than annoy the operator (who has probably already heard this request
from others 20 times in the last hour).

In many cases, you shouldn't contact just any operator, but only the
one who handles the server your question or complaint relates to—this
can be a bit tricky with servers in masked domains, since all appear under
the mask of a single server. For example, there are three IRCnet servers
in Australia, but as far as the rest of the network is concerned, they are
all under the mask of *.au. From any other server on that network, all
you'll see is *.au. If you check the server *.au, it always shows whichever
one of the three is directly connected to the rest of the network, and its
operators may well be unable to help you with something regarding one
of the other two.

There are several ways of finding an IRC operator:

/STATS o <server>

This shows possible nicknames and host masks of the server's operators.
Then you can use whois to check whether they are on. If you have a
complaint about a client on a particular server, substitute the client's
nickname for the name of the server, as we showed before. This spares
you the trouble of having to do a whois on the offending client first, and
also queries the client's server, even if it's behind a mask.

Client Command

irell: /WHO -oper <server>

mIRC: /WHO <server> o

If your client supports the -oper flag with who, you can use this to see a
server's present operators. Of course, invisible opers won't appear, since
this is the limitation of the who command. WHO -oper 0 (or WHO 0 o for
mIRC) will search channel 0—everywhere—for operators of all servers.

MIRC USERS

/who 0 o is a server-side command and not all types of servers support it.
Unfortunately, mIRC's mho command is poor in features, and one of the other
options is often preferable.

Probably the most effective way of finding a server's operators is the
trace command. Among other data, it shows all opered clients on the
server, whether they're invisible or not. Look for the lines beginning
with Oper in the trace output. If none appears, the server has no active
operator online at the moment.

/TRACE <server>

A less conventional but often effective way of finding an IRC operator
is by joining one of the network's operator or administrative channels
if you know any, and publicly asking if any operators of the server in
question are present.

Briefly stating the nature of your question or problem might get a
faster response. If you get no reply immediately, it doesn't mean you've
been acknowledged and ignored—one of the other operators present
might be looking for the one you need, or perhaps the operator you
wanted saw your message and went to look into the problem before
responding. The name of some networks' operator channels are included
in the network information under Appendix A.

EFnet users have a fast and effective way of looking up a server's
operators, a feature added to the servers recently:

/STATS p [server]

This lists all operator clients and their idle times, saving you the trouble
of sifting through trace output and performing a whois on each one of
them. If you specify no server, you'll query your current server. This is
another command in which you can substitute a nickname of someone
using the server for the actual server name. The server's MOTD may
contain a list of operators.

k

CTCP

Now we'll be getting a bit more tech-
nical. You don't absolutely need to

know all the techie stuff in this chapter,
but you'll be lost without knowledge of

the basic CTCP command set. If there's some-
thing you don't understand ("What the heck's
a PRIVMSG?"), don't freak out over it. This
chapter will find explain everything.

13.1 CTCP Explained

CTCP stands for Client To Client Protocol and describes a set of com-
mands a client responds to automatically. The basic command set is part
of the client, and every advanced client permits user-defined CTCP com-
mands and often has additional commands particular to that client. To
the server, CTCP is no different from MSG, since technically the two are
the same type of message, for which the server command is PRIVMSG.

Let's expand on PRIVMSG. This part is not required learning. If
you're intimidated by jargon, feel free to move on to the next section.
We saw earlier (see section 2.5) the difference between the commands
you send your client and those the client sends the server. The server's
limited command set isn't enough to provide for all the users' wishes
and needs—indeed, it doesn't have to. Therefore, several commands
you use will actually translate into the same server command.

Only the client distinguishes between a normal MSG and a CTCP
message, so it's the message contents that allow the client to recognize it
as a CTCP command. The defining characteristic is a CTRL-A (symbol-
ized by AA) character at the beginning and end of the message.

When receiving a message that begins and ends with AA, a client
sees that message as CTCP and acts accordingly. This is not part of the
IRC protocol, but a convention client authors added later. When they
introduced automation (because they thought it would be cool, not
because there was a dire need for it), they had to use some convention,
since the only option for sending messages from one client to another
on the server level was the PRTVMSG command, and there were no
plans to expand the server's command set just to accommodate that.
Besides, supporting CTCP on the server level would be a contradiction
in terms. Therefore they settled for a signal inside the message itself,
which another client would interpret as a command.

13.1.1 Sending CTCP Requests

The normal way of sending a CTCP query is with the CTCP command:

/ctcp <target> <command> [parameters]

For example:

/ctcp Doe ping

Many clients and scripts support simpler forms of these commands, such
as /version and /ping for /ctcp version and /ctcp ping, respectively.
Some, such as mIRC, allow you to use the CTCP command set from
within a pop-up menu when you right-click a nickname.

Since the server doesn't see this type of message as different from a
normal message, the sender can direct it at the same targets as those,
including multiple targets. In order to elicit a response from the target
client, the CTCP command must match one the receiver supports and
include parameters it may require for a response. If the command fai s

to do this, the client receiving the faulty CTCP either returns an error
response (CTCP ERRMSG) or ignores it completely.

7 3.7.2 Replying to CTCP Requests

To put it simply, you do not reply. You either make your client ignore all
or certain kinds of CTCP requests, or you let it reply automatically.
There's no reason to respond manually to CTCP—the whole point of it
is to provide an automated process of exchanging information.

13.2 CTCP Commands

The set of CTCP commands a client recognizes varies widely from client
to client, but almost every client supports the basic ones. For explana-
tory purposes, the client sending the initial CTCP request is the "sender,"
and the one to which it's sent, and which reacts to it, is the "receiver."
This is the basic scheme as it would appear on an mIRC client in the
status window:

You send: /ctcp Doe version

Joe sees: [George VERSION]

That's all Joe sees. His client replies automatically, unseen to him.

You see: [VERSION reply from Doe: mIRC32 v5.51 K.Mardam-Bey]

When a CTCP reply gets sent, the roles actually reverse, but to simplify
;. matters we'll continue to call the client that started the CTCP sequence

the sender. Let's have a look at the principal CTCP commands.
i In this example, both sides are using mIRC and the messages

appear in their status window. The way CTCP messages display varies
wildly from client to client. mIRC (and I consider this a disadvantage) by
default does not tell you if the CTCP is directed at you personally or at a
group of users, as is the case when someone CTCPs a channel or an
operator CTCPs an entire server's users. If you want to see the target of
the CTCP displayed, you have to script it yourself.

irdl users must have a client variable set in order to see the CTCP message they 're
receiving. If you know you 're being sent a CTCP, you 're sure you 're not ignoring
the sender (or all CTCPs), and you still can't see them, you need to issue the fol-
lowing command:

/set verbose_ctcp on

I suggest adding this to your .ircrc file if you didn't setup the client yourself or
follow the advice in Chapter 4. Having verbose_ctep set off does not affect your
ability to return CTCP replies.

13.2.1 PING

The most widely used CTCP command is PING. The sending client gen-
erates a time stamp and the receiver bounces it back to the sending
client (without adding a time stamp), which compares the reply to the
current time. The sender then calculates the difference between the
time stamp and the time it received a reply; the result is the round-trip
time of the message. CTCP PING is the user's main diagnostic tool for
detecting lag.

All clients will (or should) return the PENG unmodified. If the
response time is a ridiculous number like 920693456 or -14328, the
sender or the receiver has a bug in handling CTCP PING, or the
receiver is running a buggy script that causes it to return a new time
stamp or none at all instead of bouncing back the time stamp it
received.

You'll sometimes see people asking you to Ping them. They want
you to send them a CTCP PING and tell them the result so they can see
if they're lagged. Why they would ask someone else to Ping them when
it's much easier to send a PING themselves is a mystery, but probably
stems from the misconception that people don't like to be Pinged. They
may want times from more than one person, which they can easily
achieve by Pinging a channel instead of a single user. This provides a
wider sample of replies and more-accurate individual results.

Your options are to ignore them, humor them, or enlighten them.
Obviously, when someone asks you to Ping him or her, it involves the
exchange of four messages: one asking you to Ping, your Ping, their receipt
of the reply to your Ping, and your message telling them the result.

If while using an ircll client you observe that all Ping replies, even the noticeably
delayed ones, return a time ofO, add the following line to your .ircrc (the problem
in this case is that the client isn 't sending out a time stamp):

ALIAS PING //ctcp $0- ping $time()

This alias also allows you to use /ping instead of/ctcp nickname ping. $time()
is a function which expands to the current time.

13.2.2 VERSION
VERSION is another widely used CTCP command. It sends a VERSION
request; the response should be the type of client the other user is run-
ning. If the other user has some kind of script loaded, VERSION may
return only the name of the script, from which with a little experience
you can deduce the type of client. CTCP VERSION takes no parameters.

Nothing on IRC is faked as much as CTCP VERSION replies. While
many users regard CTCP VERSION as suspicious ("What business of
yours is my client's version?") and some constantly IGNORE it, others
simple fake the reply with a bit of scripting. Bots sitting on servers that
don't welcome them are especially likely to return a fake reply in their
attempt to escape detection by a server's operators. On most clients, you
can do this with ON RAW_IRC, ON RAW, or the equivalent. ON CTCP,
which many clients support, may not succeed with clients like ircll,
which will not allow ON CTCP to suppress the default CTCP reply.

Servers generally expect all clients to respond to a CTCP request
from an operator, so faking it or ignoring CTCP altogether is not neces-
sarily a good idea.

mIRC users should not try to script out the client's version reply. You can ignore it
or respond, but do not fake it.

13.2.3 FINGER

The FINGER command isn't used too often these days since many peo-
ple regard it as snooping, especially if a total stranger uses it. While
many choose to configure their client not to respond to it at all, others
who haven't done so still may react nastily to receiving an unsolicited
CTCP FINGER. The response would normally include one or more of
the following data: the user's name, email address, and idle time. Why
people who don't wish to be fingered allow this command is not clear—
probably for the same reason some people leave their curtains open and
then complain about lack of privacy.

13.2.4 TIME
The queried client replies to this command with the current date and
time of the machine on which it is running. The accuracy of the reply
depends, of course, on whether the machine queried has the correct
time and time zone set.

13.2.5 ACTION
CTCP ACTION is what the ME command really sends (section 8.9). This
is why actions don't get treated as public messages even if they're sent to
a channel. Clients tend to treat CTCP ACTION as a separate type of
event rather than an ordinary CTCP or public or private message.
Technically, they're just another PRIVMSG and just another CTCP. This
is something you should bear in mind when scripting, especially if
you're handling raw IRC. Most client scripting languages distinguish

between an action and other CTCPs, but you can work around this dis-
tinction with raw IRC.

13.2.6 ECHO

An almost obsolete CTCP command, this simply bounces back the con-
tents of the message. Some clients, including mIRC, no longer support
it since it's of little practical use and CTCP flood attacks often utilized it
You can safely ignore it.

13.2.7 CLIENTINFO

A useful command, CTCP CLIENTINFO returns a list of CTCP com-
mands to which the client will respond. You can add the name of such
commands as a parameter in order to obtain more instructions on using
that command. This command can retrieve information about using a
client's automated features; most "live" users (as opposed to bots) don't
really appreciate it.

A typical CLIENTINFO reply might look like this:

*** CTCP CLIENTINFO reply -from JackSprat: SED UTC ACTION DCC CDCC

BDCC XDCC VERSION CLIENTINFO USERINFO ERRMSG FINGER TIME PING ECHO.

INVITE WHOAMI OP OPS UNBAN XLINK XMIT UPTIME :Use CLIENTINFO

<COMMAND> to get more specific information

This is characteristic of a BitchX client; both ircll and mIRC will return
more limited command sets since neither one employs as much built-in
automation as BitchX. The number and type of commands may vary
greatly from client to client.

13.2.8 USERINFO

This command retrieves some personal information a user wishes known.
Exactly what kind and how much information is entirely up to the user.
Most clients, including mIRC and ircll, return no information by default,
and most users don't care to add any. It is one more CTCP command
that has largely fallen into disuse.

If you wish to allow people to see something when they ask for infor-
mation with this command, ircll-based clients let you set the text you 11
return by simply setting the USERJNFORMATION client variable. With
mIRC it isn't so simple—you'll have to write an ON CTCP line in your
remote if you want to return anything but a blank message. Also, the
default pop-ups don't include it, so you cannot use it by right-clicking a
nickname unless you edit the pop-ups file and add it yourself.

L

13.2.9 Common Client-Specific CTCP Commands

SOUND is used by mIRC and other clients that support sound. The para-
meter is the file name of the sound the receiver is to play. This requires
that the receiver have the sound file on the machine and accessible to
mIRC.

Scripts that react to certain events while a user is not present some-
times include PAGE, which "pages" the person by beeping, flashing the
screen, or playing a sound file.

13.3 PRIVMSG and NOTICE

It's time for a quick rehash of a concept from Chapter 11. An important
convention of the IRC protocol is that a client shall not respond to a
PRIVMSG with another PRIVMSG. This is necessary in order to avoid
infinite PRIVMSG loops, which could occur if two clients were automati-
cally responding to each other's PRTVMSGs. This little example demo-
nstrates how two clients programmed to reply automatically to a PRIVMSG
(in this case it's a public message, and it could also be a MSG or CTCP)
with another PRTVMSG can go into an infinite loop:

StupidBot (bot@really.dumb.com) has joined channel #DumbBots
<LameBot> Hi there, StupidBot!
<StupidBot> Hello, LameBot!

(They automatically greet each other. This is only the beginning. What
if they're not programmed to stop responding automatically to each
others' greetings?)

<LameBot> Hi there, StupidBot!
<StupidBot> Hello, LameBot!
<LameBot> Hi there, StupidBot!

. . . Need I continue?
NOTICE, on the other hand, may not get an automatic reply at all,

so it is practical and important that a client respond to PRIVMSG only
with NOTICE. Since CTCP is a form of PRIVMSG, the same rule applies
here: A CTCP request is a PRIVMSG, while a response to a CTCP is
a NOTICE.

As with the PRTVMSG, characteristically AA characters enclose the
message contents of the NOTICE sent in response to a CTCP query.
What we have now is the following:

You: PRIVMSG Doe : 0COMMAND parametersH

and the reply:

Doe: NOTICE George : 0COMMAND response0

These are the raw commands the respective clients send to the server.
If you're not feeling very technical right now, skip this message anatomy
lesson and pretend you didn't see it. You won't die from lack of knowledge

Certain inferior clients and/or scripts do not add the trailing AA
character at the end of the CTCP message. Clients that allow for such
"broken" formats may recognize this, but it looks bad on clients that
require the correct syntax to recognize a message as a CTCP. These
clients display a CTCP lacking the trailing AA character as a regular mes-
sage (public or private, depending on the target) starting with AA. Really
broken clients not only read such a malformed message as a CTCP, but
may also respond to it.

13.4 Customizing CTCP Replies

Some clients allow you to define a custom reply to certain CTCP com-
mands like FINGER or VERSION from the client's setup. For example,
mIRC lets you change the finger reply with no trouble under FUe •
Options • IRC • Messages and requires no scripting whatsoever. Others
require scripting in order to circumvent the client's default CTCP
replies, while more basic ones don't support any of this. If your client
lets you set the CTCP replies from a setup menu, disregard the instruc-
tions below. When customizing your CTCP replies through a script with
raw IRC—if you care to, that is—remember the following rules:

• CTCP replies must begin and end with AA characters. You must
place the leading AA before the CTCP command and the final AA
following the last parameter. The sender regards any part of the
message not enclosed in AA, as a regular NOTICE.

• A CTCP reply must be a NOTICE and not a MSG or PRIVMSG. If
it's a PRIVMSG, the receiver reads it as a CTCP request instead of a
reply, and you may end up with a loop if the receiver has an equally
protocol-breaking setup.

• The first word of the reply message should be the CTCP command word.

• If you don't suppress the default CTCP reply, your client will send
your custom reply in addition to the standard reply rather than
replace it.

L

• mIRC does not allow circumvention of the CTCP VERSION reply.
The only way to do this is to use modified versions (hacks) of the
client, but these involve unauthorized modifications to the software
and I do not recommend using them.

• CTCP PING should draw its parameter—the time stamp—from the
sender's CTCP request and return it unmodified.

And now, ladies and gentlemen, let us proceed to the next chapter,
which concerns DCC, a slightly more technical but equally useful tool
for the IRC user. (If I'm sounding like a London tour guide, just tell me
and I'll stop.)

DCC

DCC stands for Direct Client
Connection. This feature is present in

most modern clients and allows clients
to communicate directly with each other

outside the IRC network. What this means is
that you can arrange a connection between
your machine and someone else's with your
IRC client, a connection that will function
independently of the IRC servers and network.
The answers to "I'm so lagged I want to die, but
I just want to talk to my mom" and "Why post
my picture on the Web?" are in this chapter—
no more scrambling for a new server when
yours kicks the virtual bucket, no more messing
with email attachments to send a friend on IRC
your picture.

Because DCC is initiated through a form of CTCP, DCC requires
that both clients be on IRC and visible to each other (on the same net-
work) in order for the initial request, which one of the clients sends, to
reach the second client. After the second client has received the DCC
request, regardless of whether or not the DCC connection is established
it's of no importance whether the clients can see each other—in fact, if
both got disconnected from the IRC network, the DCC request would
remain valid.The way DCC is initiated and an established DCC connec-
tion is used depends entirely on the clients involved. All clients handle
the basic types of DCC in a similar manner, although some newer clients
have built-in extensions that others may not handle.

14.1 DCC Chat

Chat is probably the most widely used type of DCC. A DCC chat connec-
tion works similarly to a regular "talk" client, the difference being that it
does not necessitate opening a separate screen, program, or terminal;
you use it from within the IRC client program. DCC chat allows a one-
on-one connection with a higher level of security than communications
over the IRC server network. Independent chat rooms (as opposed to
channels) running on special clients or egg-drop bots also use DCC
chat. These rooms are useful for bypassing server lag or communicating
with people on different networks through a network of such clients.

14.1.1 Initiating a DCC Chat

All clients capable of handling DCC, graphical or not, should support
the following syntax:

/dec chat <nickname>

In addition, graphical clients may also have two more means of request-
ing DCC CHAT. The first is a DCC menu from which the user can select
the type of DCC and the destination. The second is selecting a
nickname from the channel's nickname list (that is, right-clicking on it
in mIRC) and choosing DCC from a pop-up menu.

14.1.2 Accepting or Denying a DCC CHAT Request

When you're the recipient of a DCC CHAT request, either you receive
a notice in your main window (text clients) or a small window pops up
asking you whether to accept. It's really up to you, but many people
consider DCC CHAT to be a more intimate form of communication.
I think it's a bit like kissing a stranger. When accepting an unsolicited

DCC CHAT request, you're allowing someone you don't know to connect
to your machine. That is (as I've said more than once), not a good idea.

On ircll and related clients, use the following commands:

/dec chat nickname

to accept, and

/dec close chat nickname

to reject.
Ircll keeps the pending request forever unless you use DCC CLOSE.

Fancier clients such as BitchX and mIRC automatically time it out after
a while.

74.1.3 Communicating over a DCC CHAT Connection

This is another form of communication that depends on the client
you're using. Graphical clients open a new window for each DCC ses-
sion, while text-based clients set them apart by giving DCC messages a
different appearance.

Using a graphical client like mIRC, all you do is type your messages
in the DCC window, just as you'd do with a regular message (query) ses-
sion. Under ircll and similar clients, send your messages to the DCC
connection by prefixing the nickname with an equal (=) sign, like this:

/msg =Doe We are now in DCC.

If you also have the tabkey script loaded, you can use it with DCC as well.
BitchX automatically adds a =nickname entry to your tabkey holder so that
pressing TAB after establishing the connection brings up the =nickname
without your having to receive a message first.

14.2 File Transfers via DCC

The other main use of DCC is for file transfers. With DCC, you can swap
files with other users without ever having to go through the pain of
installing FTP servers or other file transfer utilities. The only difference
you might encounter is transfer speed, since you are often transferring
files to or from a machine that offers a slow connection compared to
major software download sites. There's no knowing until you try,
though. So if you want to send someone a mug shot—sorry, picture of
yourself, or trade sound files, this is the most convenient way of doing it.

14.2.1 Offering a File via DCC

Regardless of the kind of client you have, the following syntax should
work:

/dec send <nickname> <filename>

If the file is in a directory other than your current one, you of course
have to specify the path to the file. With mIRC, you can also offer multi-
ple files at the same time by adding more file names to the command
line.

14.2.2 Receiving an Offered File

With graphical clients like mIRC, this is generally as simple as clicking
on Accept when you see the window offering you a file. Yes, it is possible
to accept files automatically, but with all the viruses and Trojans around,
you do not want to do this. In fact, I strongly advise you—in your best
interest—to resist the temptation of convenience. I know I'm repeating
myself, but this is important.

If the same user offers you more than one file, you have to accept
each offered file separately.

On ircll and similar clients, use the following command to accept a
DCC SEND:

/dec get nickname [filename]

The file name is not necessary if there is only one offer,

14.2.3 Resuming Interrupted Transfers

What happens when you're transferring a huge file and for some reason
you lose the connection? This annoyed IRC users for a long time until
someone came up with a solution: DCC RESUME. It attempts to pick up
where the lost transfer left off, so if you have 509,433 bytes of a file from
a previous transfer, it starts transferring from 509,434 instead of making
you start anew.

Not many clients support this command, but two of the more popu-
lar ones, mIRC and BitchX, include the option. I still think FTP is a
more stable means of transferring large files, but not everyone can put
files on an FTP server and not everyone wants to run an FTP server on
their machine, so DCC is a convenient way of swapping files, especially
small ones.

In mIRC, you see a menu when an incoming file matches a file narn
you already have. This menu asks you whether to overwrite the old file,
resume a previous transfer, or rename the incoming file and keep both-

DCC RESUME on mIRC and other clients following its lead breaks the protocol
and entails the risk of entering an infinite loop like the one we saw in 13.3.

14.2.4 File Servers and XDCC

All major clients can accept and send out files automatically upon
request. The first to offer this was ircll, which had a variety of scripts for
the purpose. The name of the most popular script was XDCC, a term
that stuck. Later on, mIRC came up with its fserve and BitchX invented
CDCC, both of which do essentially the same task but are integrated into
the client, unlike XDCC, which is just a script.

You must set up file servers very carefully to prevent users from
accessing files they shouldn't. By running a file server, you are giving
other people access to files on your machine.

There are numerous XDCC scripts around for ircll and EPIC, and
it's not possible to evaluate them all. They range from very basic to mod-
erately complex and should provide instructions inside the file. It's a
good idea to check the script for back doors, too, if you decide to use
one of them.

mIRC has a basic setup that you can combine with scripting to fine-
tune its performance and access. Remember that all files you transfer
come out of your pocket in terms of bandwidth, so running an fserve on
a dial-up isn't always a good idea.

I suggest you create a directory in your mIRC directory and copy
the files to which you wish others to have access into that directory.
Then, under File • Options • DCC • Fserve, enter the full path of that
directory in the appropriate field. The defaults of ten simultaneous
transfers and five per user in that menu is probably excessive—adjust
them to something more conservative, as you don't want every bit of
bandwidth sucked up serving files. Of course, if you have bandwidth to
spare, there's no problem with leaving the defaults. You also have the
option of sending a message to people when they connect to your
fserve. To do this, write a text file and enter its name in the second field
of the fserve setup menu.

The full help menu for fserve is under Help • Contents • Other Fea-
tures • File Server; all options are listed there. You can set all the
parameters of an fserve session from the command line you use to serve
a user. Be sure not to serve from directories you do not want others to
access—for example, serving C: is not a smart thing to do, since it would
let them access any files they liked on your entire C: drive. The same
help item contains the commands to use when accessing another user's
mIRC file server.

Note that there is no standard way of requesting file server access
from other people; it depends entirely on how the other person has

configured the client. MIRC clients with that form of automation often
respond to !<their nicknamo, while XDCC and CDCC on Unix clients
are more likely to respond to /ctcp <nickname> XDCC (or CDCC) LIST
Once you're inside the file server, the standard set of commands
described in the help file does the trick if it's an mlRC file server. If it's a
file server on a Unix client (including egg-drop bots), you can expect it
to have a help menu or show you instructions when you connect.

14.3 m IRC and the Science of DCC

Getting DCC to work right is one of the most common problems mlRC
users experience. What works on one machine and one connection fails
on another. Fear not, there's a solution to (almost) everything. The
mlRC team has evolved DCC into a science.

14.3.1 Can DCC GET but Not SEND or CHAT?

This is close to the top of the all-time frequently asked questions list. Say
that you can get files perfectly well and accept chat sessions someone
else initiates, when you try to send a file or start a chat session yourself,
all you get is an eerie silence followed by a timeout. Rest assured, you're
not alone in this predicament. Barring the possibility that the problem
lies with the receiver, you need to tweak your setup. If you're behind a
firewall, take a look at section 14.4 first—that could be your problem.

What to do? Follow these five simple steps:

1. Disconnect from the server.

2. Go to File • Options • Connect • Local Info.

3. Clear the "Local host" and "IP address" fields.

4. Check "On connect, always get local host" and "Lookup
method: Server." In special cases, you might have to choose to
"always get" the IP address and not the local host.

5. Reconnect to the server and try again.

If you're using a proxy or bouncer, this technique will not work, because
the server sees the address of the machine you're connecting through
and not the machine you're on. If the client is unable to get its local
address, you have to enter it manually and keep Normal checked.

14.3.2 What's This DCC Server Thing?

The DCC server can make your mIRC client act like a genuine server for
DCC connections. Other clients can connect to your machine if they
have your IP address, rather than having to look for you on IRC first or
connect to another network in order to initiate a DCC session. You'll
find it under DCC • Options • Server. It listens on port 59 by default,
which is not a problem unless you have a firewall blocking access to that
port. In that case, check with your firewall administrator to see what
other ports you can use.

You can make the server listen for any or all of the following three
types: CHAT, SEND, and fserve. By default, the DCC server doesn't
bother to resolve the address of an incoming connection, but that isn't a
big deal. The question remains of how secure this service is, not so
much because of the file transfers but because of potential DoS attacks
on any open port. Some suspicions surrounded the DCC server's secu-
rity regarding versions prior to 5.51, so I recommend you take care in
earlier versions. I never received official word of a problem, but there
was enough smoke so fire seemed a distinct possibility. To view the full
list of DCC Server commands, click on the Help button while in the
DCC or DCC Server menu—it's a bit hard to find the list from the help
menu.

14.3.3 Sound-Related DCC

A lot of people play sounds on IRC. Well, they don't play the sounds,
they just tell other people's clients to play them—and that's the snag in
the whole sound affair. In order to play a sound, the recipient of the
request needs to have the sound file on his machine. Of course, with
hundreds and hundreds of different WAV and MID files floating
around, the chances that two users have the same set of audio files are
remote. Because there are so many, no single person has the disk space
to store all the sounds encountered on IRC.

To address this problem, the procedure of asking the person who
sent the sound request for the audio file is automatic. In addition to
that, mIRC also allows you to send out a sound file automatically if
asked, acting as a limited form of file server, as well as automatically
request an audio file you don't have. The command for initiating this is
!<nickname>. I recommend you keep the option of sending the request
in the form of a private message instead of sending requests to a chan-
nel. Both these options are under File • Options • Sound • Requests.
Before you throw something at me, I'll stop reminding you of the risks
of accepting files from strangers.

14.3.4 More DCC Options and the Big Secret

Under DCC's Options menu, you'll find a set of check boxes defining
what happens after a DCC transfer is completed. They don't need much
explaining, but it's probably best if you close the windows after comple-
tion. Whether you want a beep each time a DCC session ends is entirely
up to you.

You will also see a section for timeouts. These regulate how much
time your client allows to pass before voiding a DCC CHAT or SEND
request and closing the corresponding port. If the recipient of the
request doesn't accept your offer within the specified time, it simply gets
cancelled. The DCC get timeout is not as important; it basically just
clears the request from the list if you let it time out. To allow for lag that
would delay your DCC request on its way to the receiver, don't make the
figures too low. A minimum of 120 seconds is reasonable. It also should
not be too high, so as to avoid leaving too many pending offers with
open ports.

The Big Secret? What secret? Ah, yes, the one I promised in the
title. It's not so much a secret as a feature the client's help files don't
document. PDCC (pump DCC) actually constitutes a slap in the face of
everything sacred in TCP/IP networking. What it does is defy conven-
tions and rules and simply pump data packets down the line as fast as it
can, in the hope that they'll all arrive. TCP requires acknowledgement
of receipt for the previous data packet before sending the next, but
PDCC makes it shovel data down the line almost as fast as your connec-
tion can take it. If the packets don't all make it to the destination, you
end up with a corrupt file. It's actually surprisingly reliable considering
how technically unsound the idea is, so I don't rule it out as an option to
speed up your DCC sends. The magic command is:

/pdcc <some arbitrary large number>

The number is of little importance—most people simply enter a string
of five or six nines. Good luck with it.

14.4 DCC from Behind a Firewall or Proxy

A firewall was originally a machine designed to protect other machines
from unauthorized access, and this is the strict meaning of the term.
Nowadays, they also protect the systems behind them from other kinds
of attack. There are also programs that run on the protected machine
itself, inspect incoming traffic before letting it pass, and filter it to rejec
potentially harmful data. These software firewalls are generally over-
rated—their inherent weakness is that they allow data to reach the

machine in the first place. They're about as good as a bulletproof vest
compared to the concrete barrier of a firewall machine.

Most firewalls work on a basis of "forbid all, allow specific"—that is,
they reject everything not expressly allowed to pass according to its con-
figuration. Typical firewall setups permit any connection from inside the
firewall to an outside host, but allow only certain outside hosts (or all) to
connect to a strictly defined set of ports serving a particular purpose.

The problem with DCC is that it is a protocol that uses arbitrary or
semirandom ports for its connections. So if your client tells the recipient
of your DCC request to connect to port 5532 and expects a connection
on that port, this means nothing to the firewall. It sees an attempt to
connect to port 5532, thinks "What the heck is that?" and tosses it out.

More than that, if the firewall is on a machine other than the
client's, all connections you make appear to originate from that
machine and not your own. This makes DCC very tricky. If you have
such a setup, there's a good chance you will not be able to initiate DCC
connections.

If you're not running the firewall yourself, you don't stand much of
a chance of getting DCC to work. For a software firewall such as Conseal
on Windows, you may be able to make it work by limiting the number of
ports mIRC uses for DCC (use DCC • Options and change the range to
a number much more limited than the default, such as 5000 to 5005)
and letting traffic to those ports pass. With any other setup, read your
firewall's documentation carefully and see whether you can make it
work. If not, you have to live without the ability to initiate DCC SEND
and CHAT connections. If the firewall is a separate machine and you can
run your client on the firewall machine itself, do so.

Well, some of the worst technical stuff is over. Our next step brings
us to a command set you'll find useful in seeing what's happening on
the server and network around you.

i

SERVER AND NETWORK
COMMANDS

These commands are (or should be)
common to all servers and supported

by all clients. Regular users employ
them to obtain information about the net-

work and its servers, and operators use them as
diagnostic and maintenance tools as well.

15.1 LUSERS

The command LUSERS returns the information sent to each user right
after connecting and being accepted by the server, and reports the net-
work status as seen from your current server. This includes the follow-
ing:

• The number of clients currently connected to all servers of the net-
work (possibly separated into visible and invisible clients) and the
number of servers connected. If they are separated into visible and
invisible clients, the total number of users is the sum of both.

• The number of IRC operators online (if any).

• The number of unknown connections (section 6.7) on the server,
if any.

• The number of clients and servers directly connected to your server.

Additionally, and depending on the server's setup and version, LUSERS
may also return:

• The current number of local clients and the maximum number of
simultaneous connections since the server last started.

• The current total of global clients and the maximum number of
clients seen on the network since the server last started.

You can also request LUSERS for a remote server or a group of servers.
The output depends on what your server sees regarding that server,
because your server handles the request locally rather than forwarding it
to the remote server for processing. However, some servers, including
EFnet servers, require LUSERS to request information from the server
concerned by duplicating the server's mask in the command line (for
example, /lusers irc.ais.net irc.ais.net).

Unknown connections, in case you've forgotten, are clients that
have connected to the server but have not completed the registration
process for acceptance as users.

Here's how to request LUSERS information from a remote server:

/lusers <server.mask>

Example:

/lusers *.gr

Not all the information it returns concerns that server (some lines con-
tain local stats). The lines you're interested in are the following:

*** There are 11 users and 157 invisible on 2 servers
*** 4 IRC operators online

You can ignore the rest, since only these two lines are relevant to
the server mask for which you requested information; the rest concern
the local server. Regarding server masks, if the mask you ask for inform3'
tion from or about is ambiguous, the first server in the list will be
queried. The order in which the servers connected to the network, as

seen from your part of it, determines the position of the server. For
example, if the server irc.ais.net splits off the network and then recon-
nects, it ends up much higher on the list. This is because the order is
from the most recently connected to the oldest, with your server the
point of reference at the base of the "tree" structure the servers form.
More recently, some smaller networks have reversed this and placed the
point of reference at the top of the list. Please, please don't ask me what
possessed them to do it.

15.2 LINKS

This command returns information about the way the network's servers
link to each other. On some networks, LINKS requests are visible to the
operators, and repeated LINKS may be against the server's policy. This
is because abusers used to check for split servers in order to take over
channels or collide them.

EFnet servers in particular are particularly paranoid about "link
lookers," which, in my opinion doesn't really make sense, since the mod-
ern server versions used there are largely secure against abuse that
exploits netsplits. The only objection that can be raised against link
lookers in this case is that needless repeated LINKS commands waste
server resources. Just use the command carefully—there's no point in
getting banned for behaving like a bot on servers that don't welcome
them. Once you join the ranks of IRC addicts, you'll have a hard time
convincing yourself, let alone others, that you're not a bot! You may use
the command in three ways:

1. To obtain a list of all servers currently linked as seen from your local
server. If a remote server is behind a domain mask, you will not see
what's behind that mask.

/links

2. To see a group of servers or a single server with a specific mask as
seen from your server.

/links *.ca

3. To see behind a domain mask by querying a remote server.

/links *.fi *.hut.fi

This last command asks the server with the mask *.fi to return all its
links matching the mask *.hut.fi, which would otherwise be invisible
from outside the *.fi domain.

15.3 ADMIN

The ADMIN command may include some arbitrary text, anything the
administrator wishes, but should return the owner and/or location of
the server machine, a contact email address, and the name of the
administrator (s).

/admin [server.name]

If you don't specify any server, ADMIN returns the admin information
for your current server.

15.4 STATS

This is much more than a single command, since you use it to query a
server about a variety of statistics, denoted by a letter. Some of these sta-
tistics are privileged to operators and other users may not view them.
Which are privileged depends on the server version. It could be one or
two, or practically all, depending on how paranoid the server adminis-
tration and the author of the IRC daemon are. We will not go into
obscure types of stats particular to one or two ircds, but will concentrate
on those that are (or should be) present in all, and are sometimes (but
not always) available to users.

/stats <letter> [server]

If you leave out the server, the command returns stats for your current
server. Possible letters are c, h, i, k, 1, m, o, t, u, y, and z. In some cases,
capital and lowercase letters return different kinds of stats. Some types
of server also return stats on additional letters or even different informa-
tion for the same letter.

15.4.1 STATS C

STATS C returns the list of lines beginning with C: or N:. These define
the servers to which the server connects automatically or following a
CONNECT command from an oper and information on the port to
which it connects. The N: lines you'll see with this command show whic
servers are permitted to connect and if and how the server will mask u

connected to them. Both C: and N: lines are displayed with STATS
there is no special command to view only N: lines—depending on the
type of server. IRCnet servers also have lowercase c: lines that indicate
the use of data compression for links to the corresponding server.

15.4.2 STATS H

STATS H shows the position other servers connecting may have on the
network, as seen from the server. H: lines are for servers permitted to
hub (to link other servers behind them) and also show which servers
may link behind the one listed. L: lines are for leaf servers, but also indi-
cate the possibility that they may connect a limited part of the network
behind them. In practice, only true leaf servers, which have no right to
link other servers, generally use L: lines. H: lines define any kind of hub-
bing permitted.

15.4.3 STATS I

STATS I is the list of all host masks from which the server accepts client
connections. They can also include a password (invisible, of course) for
privileged users from a site that is otherwise not welcome, direct certain
hosts towards particular ports, and determine the connection class of
the client (in combination with Y: lines).

15.4.4 STATS K

STATS K is the notorious blacklist listing all unwelcome host masks. In
some cases, an admin may just remove the I: line for the host, but in
most cases that would affect many more users than setting a K: line for
the specific site or domain. It's also popular with lazy admins who can't
be bothered with adding more I: lines to replace the rotten one.

Because some servers, particularly on EFnet, have huge K: line lists,
to preserve resources the server may not return a K: line list at all. It's
not uncommon for a server to have several thousand K: lines, and dis-
playing them to everyone who asks could put a serious strain on the
server and network.

15.4.5 STATS L

STATS L displays information about the server's client and server con-
nections. The interesting parts are the first and last figures, which show
the sendq and time connected, respectively. L stats are an exception to the
STATS command's rule of syntax regarding local server stats—to see the
stats for both client and server connections, you have to use an asterisk (*).

Also, servers distinguish between the lowercase and uppercase let-
ter. If you use a capital L, the IP addresses of the connections appear
instead of the host name. This is useful for tracing spoofers.

Frequent misuse of STATS L has caused a number of servers to
restrict use of the command to IRC operators.

15.4.6 STATS M

STATS M shows the usage of commands as seen by the server.
PRIVMSG and JOIN usually top the list. This concerns only commands
the server recognizes and does not include unknown commands for
which it has returned an error message. STATS M also returns the num-
ber of times each command has been used.

15.4.7 STATS O

STATS O returns the list of the server's operators, including the nick-
name and the hosts from which they may obtain operator status when
connected. A line beginning with an o: (lowercase) denotes a local oper-
ator, while global operators' lines begin with O:.

15.4.8 STATS T, Z, and D

These three STATS commands return a variety of network and server-
related technical data for diagnostic purposes. These are of no interest
to the average user.

15.4.9 STATS U

STATS U returns the server's uptime—that is, the time in days, hours,
minutes, and seconds since the server program last started. Some servers
also append the maximum connection count.

15.4.10 STATS Y

STATS Y brings up the list of connection classes for both clients and
servers. These may be of interest—let's have a closer look:

10 120 50 200000

Field 0: The letter Y (really!)

Field 1: The identifier (the number of the class). The Y: line gov-
erns the connection rules of any I:, C:, or N: line with this class.

Field 2: The rate at which the server sends PINGs to check the con-
nection (in seconds).

Field 3: For server connections, the frequency with which the server
attempts to autoconnect to the server (s) matching this class, if an
autoconnect has been set in the C: lines. 0 means it will not auto-
connect. For clients, defines the number of clients that may connect
from a single address. 0 means no limit. EFnet and IRCnet ircd sup-
port this.

Field 4: Maximum number of connections for the entire class.

Field 5: Maximum sendq for connections of this class. If it is exceed-
ed, the connection closes—in this example, if the server has more
than 200KB of data waiting to be sent to the client. The number is
generally much higher for server connections and is regulated as
necessary, depending on the network's total traffic and the hub-leaf
relationship to a server, if the Y: line corresponds to a server class.

On IRCnet servers, you see two more fields at the end of the line. They
refine the access limits of the Y: line and look something like this:

3.1 7.3

The 3.1 defines the local limits. The 3 means no more than three clients
from the same IP address may use the server, while the 1 places a limit
of one client per user@host. The 7.3 part defines global limits in a simi-
lar way. The server rejects a client if there are already seven users from
its host on any servers of the network, and does the same for any
user@host that already has three instances anywhere on the network.

This is a highly efficient and very flexible method of abuse preven-
tion through the server's configuration. In my opinion, it's one of the
highlights of the 2.9 and 2.10 (IRCnet) servers by Christophe Kalt, and I
hope other types of server will also implement it in the future.

In all cases except the class number field (1), a field containing a
zero means "no limit" if the field represents a limit (such as maximum
connections) or "never" if the field is a timer (like the connect
frequency).

If your Unix client displays the Y: line with fields separated by colons—-for example,
Y:0:120:0:200:100000—^you may be missing part of the output. To fix this, typ'e
/on 218 - before sending the STATS Y command.

15.5 INFO

The INFO command is a bit like a credits list in a film, showing the his-
tory of and contributors to the ircd the server is running. Some clients
have another use for the INFO command; in this case you may have to
send this as a raw command to receive the INFO output. Much of it
looks like a pantheon of all the major and minor deities responsible for
what IRC has become today. The list gives credit where credit is
due—these people, although quite a few of them are no longer around,
deserve it.

/info [server]

If the command doesn't specify a server, INFO queries the current
server.

15.6 TIME

TIME returns either the current date or the time for the server machine
queried—again, if no server name follows the command, TIME asks the
current server. Note that the output is always in the server's local time.
The client command DATE also sends a TIME request to the server,
since DATE is not a valid server command. Remember—this is the local
time of the server and will not match your client's if you're in another
time zone. It's very handy for finding out what time it is in another part
of the world (providing you know where the server is located).

15.7 TRACE

TRACE shows the route between you and the destination of the trace.
Used on a server, it shows the route to the destination, plus the links an
operator clients connected to it. With a nickname as the parameter, it
traces the entire route to that client, but won't show anything else abou
the user's server. TRACE with no parameters shows the links and opers
of the current server.

/trace [server|nickname]

15.8 VERSION

This command requests the server's version, including information
about its configuration. It indicates the compile options, which the serv-
er's admin set when compiling it, with a string of uppercase and lower-
case letters. Each of these stands for a selected option; the absence of a
letter means the corresponding feature has not been activated. The
same applies to additional strings a server may return that concern
patches the server is running. Used without parameters in ircll-based
clients, this command also returns the client's version unless it's sent as
a raw server command only.

/version [server]

VERSION is another command that allows the nickname of a user on
that server to substitute for the server's name. It is not related to CTCP
version—using it on a client queries its server and not the client itself.

VERSION can find out which type of ircd the network or server
you're on is using, in case you're on a network not covered in this book.
Some small networks have changed the version string beyond recogni-
tion, but others give you a fair idea of what they're running. Most types
of servers are based on the old 2.8.21 version used on EFnet, and some
have kept that version number. Common types are as follows:

2.8/hybrid*

2.8.21+CSr*

2.9.*

2.10.'

2.9.'+Cr*or2.10+Cr*

2.9.VSc'or2.10.*/Sc*

u2.9.*

u2.10.*

da!4.4.*

2.8.21+dal*

da!4.6.*

2.8.21+th*

2.8.21+digi*

bahamut*

2.8.21 with modifications by the hybrid team, led

by Diane Bruce

2.8.21 with modifications by Chris Behrens

IRCnet ircd, older versions

IRCnet ircd, current series

IRCnet ircd with modifications by Magnus

Tjernstrom

IRCnet ircd with modifications by John Hajek-

Doggett

Undernet ircd, older versions

Undernet ircd, current series

DALnet ircd, older series

DALnet ircd, even older series

DALnet ircd, newer series

2.8.21 (old) with modifications by Taner Halicioglu

2.8.21 (old) with modifications by Shrihori Pandit

New hybrid-based ircd for for DALnet currently

under development

Throughout the book, the versions referred to are the most recent at
the time of writing, which are:

EFnet 2.8.21/hybrid-5.3 and 6 beta

IRCnet 2.10.2

Undernet u2.10.06

DALnet 4.6.7.DreamForge

15.9 Other Server Commands

Some commands are of little practical use, were recently added to the
ircd at a later stage, or have been ignored by client authors. There is no
client-side support of these commands, so a user has to send them raw
to the server, with QUOTE or RAW.

Many are specific to certain types of ircd or patches run by individ-
ual admins. Others are for operator or server-server use. The most
common ones are:

KLINE Used by operators to set K: lines without editing the config file if the

server supports it. Related commands are TKLINE (temporary or

timed K: line) and UNKLINE (remove K: line), which not all servers

support.

HTM Concerns high-traffic mode, the rate of data transfer at which a serv-

er ceases responding to some user commands in order to handle net-

work traffic more efficiently. This is the cause of the "Server load too

high" notice you may receive when trying certain server commands

such as LIST, LUSERS, or TRACE. Not all server types use HTM.

DUNE This exists only on EFnet servers and bans an IP address or group of

IP addresses regardless of whether they resolve to host names and to

what names they resolve. Used mainly for banning contiguous

address groups that resolve to host names in several different

domains.

GLINE Sets a global K: line on networks that support it.

HELP Shows the list of commands the server recognizes. Any other com-

mands sent to it result in transmission of an error message to a client.

DALnet-based servers go into much more detail and actually provide a

form of help with this command. It is a server command, and you must

send it raw, since almost all clients have HELP as a client command.

MAP Undernet and DALnet-based servers support this command, which

returns an ASCII map of the network's current layout, with your server

as the starting point. For networks that do not support a MAP com-

mand, it's possible to generate such a command using a script such

as the imap one included in the ircll package.

ODDS AND ENDS

There is so much to say about IRC
and everything related to it. Many

interesting topics don't warrant a chap-
ter of their own, but don't really fit under

any other topic. This chapter is the little box of
odds and ends—worthy stuff that didn't fit any-
where else in the book. Enjoy.

16.1 IRC over the Web—Java Clients

To be honest, I don't like Java. I'm talking about the programming lan-
guage Sun Microsystems developed and trademarked, not about coffee
or Indonesian geography. I think Java is too buggy, bulky, and insecure,
and it is as excruciatingly slow as software can be, unless you're a power
user and use the latest and greatest hardware. However, Java does get
the job done when it works and is platform independent.

Where does Java fit in with IRC? Its main use so far has been pro-
grams that run by downloading a Web page. These applets, as they are

ml

called, can also let someone access IRC through a Web page. You simply
go to that page and wait while the Java applet downloads and opens. It
then presents you with a screen of options, including your nickname
and the channel you want to join. Then it connects you to an IRC server.

Java is not the fastest way of getting on IRC, nor the simplest. It is,
however, quite acceptable for people who don't want to run an IRC
client while they're already browsing or don't care to figure out how a
client works. You need a recent version of Netscape or Microsoft Inter-
net Explorer for Java support, and you must enable Java in the program
preferences.

The features Java clients offer range from poor to fair. You gener-
ally have very little control over the client's options and cannot join
multiple channels or DCC. Because it's hard to get Java right on the pro-
gramming level, Java clients are also prone to crashes (and they
invariably insist on referring to channels as "rooms," but we've already
been there). Of all the home-brewed and commercial Java clients I've
seen out there, only Qing Gong's IBM IRC Client for Java has impressed
me as fully functional, offering a wide range of features as well as inte-
grating well with the browser. It even has a help menu some regular
clients would envy.

All in all, IRC over the Web with Java applets is not yet what it could
be, nor does it have everything you want in a client. What it is good for is
inclusion in a Web page destined for an audience unfamiliar with IRC.
By means of this page, people can connect to IRC for specific events, if
you're willing to accept some extra load on your Web server. In this
case, I highly recommend the IBM client. You'll find some addresses of
Web pages through which you can get on IRC in Appendix D.

16.2 Writing a Client

Although there are a multitude of IRC clients for every platform out
there, some people are bound to want to create a new one, either
because they feel existing clients don't quite satisfy their needs or as a
programming exercise in a familiar environment. Apart from the obvi-
ous requirements of some expertise in the platform and knowledge of
the language they'll be using, everyone intending to write an IRC client
must know the following:

• Read the protocol carefully. Always have the RFC 1459 (see 16.7) by
your side.

• Start by making your client follow RFC standards before allowing
extensions.

• Familiarize yourself with ircd extensions various networks—at least
the major ones—implement.

• Be prepared to see ircd breaking the protocol and adapt.

• Pay extra attention to making sure the client does not present a
security risk to the machine it's running on.

• Try to adopt the conventions and standards existing clients have set.

And now a message from our sponsors. Okay, I'm kidding, but here's a
suggestion: I like free stuff—doesn't everyone?—and I also like free soft-
ware. Give your client away—we already have enough shareware,
payware, and bugware out there. In fact, we have so much that none of
the authors make a fraction of the money worth their trouble. Next, if
you really want to create a great client, especially on non-Unix
platforms, it would be a good idea to consider making it open source.
Open source (there's a lot about it at www.opensource.org) means the
source code is available to the public and open to peer review. Everyone
can see your code, and anyone who cares can make comments or sug-
gestions for improvement. Why non-Unix platforms? That's where the
lack is greatest—Unix (and Linux) geeks write open source code all the
time. There's a ton of non-Unix software, but very little of it is open
source. Consider this option.

End of message. Here's a chance to give something back to your
online community. Many years ago, when the Internet was young, peo-
ple worked on networking and programmed for the thrill and not for
profit. That's what made it possible, and that's why it doesn't cost you a
fortune. Real end of message. Thanks for your attention.

/me gets off the soap box.

16.3 IRC via Telnet

A lot has been said about the disadvantages of telnet IRC, but it's still
the only means of connecting for some users. People in remote areas
with no network connection other than a library or a local BBS with no
IRC client on the system are good examples. While sysadmins sometimes
question the usefulness of an IRC client or even are unaware of its exis-
tence, the presence of a telnet client is generally considered necessary,
and it can work for IRC, too. Others forbid the presence of an IRC
client on the system, viewing it as a waste of resources. Nobody objects to
telnet, so if this is the case, you can telnet to a machine with a client.

The number of telnettable IRC clients has declined over the past
few years, but there are still some around. These are usually customized
Unix clients, accessible to the public via telnet. There are currently
three networks with sites providing a telnet client. You access telnetting
to the correct address and port. After this, you're prompted to select a
set of options, then you connect to the IRC network the telnet site is
serving. The drawback of these clients is that the configuration is preset
and the user can't customize the settings. It's more advisable to find a
shell account to which you can telnet, and use a regular client from there

A number of sites offer cheap accounts with no dial-up access. How-
ever, if that's not possible either, telnet IRC is an option. It's probably
the least desirable way to connect to IRC, but it's useable. Networks with
working telnettable IRC clients are the Undernet, DALnet, and Super-
Chat. Check Appendix D for the addresses.

16.4 IRC for the Sight-Impaired

So far, the number of sight-impaired IRC users is very low. IRC clients in
general are unfriendly toward screen readers, and the contents of IRC
itself are often tough to read with the large number of special charac-
ters, smileys, and so forth used, and with typing mistakes so common.
Still, as long as there is available software, it can be done. Yes, IRC is an
almost entirely visual environment, but this can be overcome.

Configuring a client for use with screen readers requires a level of
expertise the average user or beginner doesn't possess, and it is even
harder for someone who doesn't have visual contact with the computer
since it involves code—probably the one thing screen readers hate most.
Still, it's not impossible. While they're few in number, blind IRC users
use special scripts to modify the display and make it more friendly to
screen readers. For such scripting, ircll is probably the best client to use
since it allows a high level of display customization. MIRC can hook up
with a screen reader, but it's definitely not as easy as loading a script into
an ircll client.

16.5 Jupitered Servers

This is a peculiar term, since it was really derived from someone's nick-
name. The matching noun and verb is "jupe" or "Jupiter," the former
being the most widely used, and the practice is generally referred to as
"juping." Jupes are away of making sure an unwanted server doesn t
link to the network and are normally used only when a compromised
(hacked) server presents a threat to the network. Less commonly, they
are used to practice strong-arm IRC "politics" by effectively forbidding

server to link, even though it is not a security problem.
Although removing the server's C: and N: lines (see 18.4) on all

servers is a more effective way of removing a server from the net, you
can use a jupe as an emergency measure if the admins who have to
change their servers' configuration aren't all reachable.

You implement ajupe by linking a fake server and giving it the server
mask of the unwanted server. This is quite possible since the server mask
doesn't have to match the host name (the C: lines of the server to which
it connects define a network server's mask). As long as this fake server is
connected, the network rejects the real (but unwelcome) server's
attempts to link, since as far as the network is concerned a link with the
server's mask already exists.

You can easily identify such a server on the LINKS list, since its real
address in the server logo is localhost, 127.0.0.1, or a host name identi-
cal to the server to which it connects, and the logo itself usually indicates
it's ajupe.

Jupiter was an old-time IRC operator who holds the rare distinction
of having his nickname immortalized in IRC terminology. Back in 1990,
when IRC was young and server security wasn't what it is today, one of
his pastimes involved taking advantage of the lack of security to imper-
sonate servers and other users. Of course, if he connected pretending to
be a server, the real server could not connect—it wasjuped! While this
didn't always make him popular, he did show why additional security
was a good thing to have. He no longer hangs out on IRC, but his nick-
name lives on.

16.6 Online Help Services

Apart from your client's built-in help, which for many clients is extensive
and should cover most of your needs, in the best tradition of the Net, a
number of older, experienced users devote some of their time to help-
ing out newcomers. None of them receive a cent for their efforts or the
considerable time they dedicate.

You should respect these people and treat them with the courtesy
they deserve. Unfortunately, too many new users don't accept this or
demand the services they'd get from paid support staff, turning online
support into a thankless occupation and reducing the number of those
willing to do it.

An old and renowned online help service is the EFnet #irchelp
channel, run by a group of about 30 dedicated individuals with years of
IRC experience (their combined IRC experience is well over a
century—wow!). Its sister channel, #irchelp on IRCnet, is a bit smaller
but follows the same tradition. I'm proud to be a member of those two
teams; without them, this book would never have existed. Almost every

large network has an #irchelp channel, and it's generally a good place to
turn to when you're thoroughly stuck.

These helpers are increasingly under pressure as more and more
overdemanding new users expect to be spoon-fed the answers to ques-
tions that are no more than a click away. But they'll willingly help out
with general IRC questions and problems. They do, and rightly so,
expect people to have a go at finding the answers themselves, so repeti-
tive questions a user could answer with no more than a little common
sense may well evoke a snappy response. They are also the people
behind the largest website dedicated to providing information and help
regarding IRC. Jim Benson initially hosted and put together this site,
now maintained by Joseph Lo (and a cast of thousands) at Duke Univer-
sity. This is the most comprehensive website about IRC and is well worth
a visit.

Channels named #irchelp are present on all large networks, though
they're not necessarily run with the same efficiency or ability to handle
all sorts of IRC-related questions. Almost all networks, small or large,
have a channel that also provides help to newcomers, often a multipur-
pose administrative and help channel. In many cases, the server's
Message of the Day (MOTD) hints where to look if you need a helping
hand on IRC. Many networks also have an #mIRC channel, which will
help out with the most popular client on IRC, mIRC.

When consulting a help channel, you'll sometimes run into ill-
meaning users who try to give you misleading answers that affect your
client or machine. Use your common sense in evaluating an answer. For
example, a Windows user who believes that pressing ALT-F4 will do some-
thing smart deserves to have his client shut down. It's one of the
essential Windows basics that this key press combination closes the active
application, and anyone using such a machine should know at least that
much before connecting to a network. If in doubt, check whether the
person answering is an operator of the channel.

This doesn't mean someone who is not an operator can't give a
valid answer—in fact, many help channels rely on experienced users
who help out without taking part in running the channel. If someone is
deliberately giving out bad answers, the channel's operators usually
remove that user from the channel and warn you against following the
bad advice before giving you the correct answer.

Channel or nickname services are generally set up to provide help
themselves, and you shouldn't need to ask anyone about using them.
Usually, simply sending the message "help" to the service brings up a
menu of topics. If the service's help menu doesn't cover your problem,
check with one of the help channels. Some networks even have a special
channel for dealing with problem reports and queries about the services.

Online help services were very popular in the early days, but gradu-
ally faded out on all major networks. They mostly referred to the ircll

help files and sent them to any user requesting them. There's been a
revival of interest in such services, and a number of smaller networks are
now running a service, usually known by the nickname HelpServ, that
responds to messages asking it for help on various topics. Some
networks also run a service called ircllhelp, providing help for ircll in
particular.

Hopefully, readers of this book will rarely feel the need to refer to
any of the above services since it covers all topics in greater detail than
any online document or service. If you do need help, though, and can't
find the answers anywhere in these pages, you know where to go. Who
knows—you might find me lurking on one of those help channels.

16.6.1 Getting Help with Windows Clients

First, and before you do anything else in terms of seeking help from oth-
ers, type /HELP to bring up the client's own help facilities. If you're
using mIRC, your client includes what is probably the most authoritative
and comprehensive documentation any client has. In fact, there are so
many resources just a click away that some help channels won't help a
person who is unwilling to press Fl or type /HELP and browse a bit.

New mIRC users have an excellent source of information at their
fingertips with /LRCINTRO, and can call the mIRC FAQ up from within
the client. The mIRC FAQ covers 90 percent of the answers to a user's
questions; the client package doesn't include the FAQ, but you can
download it separately from the mIRC download sites. With the client's
built-in help, you should rarely need to ask someone about using mIRC.
If the combination of the mIRC help files and this book doesn't offer
what you need, even the best help services and channels may not be able
to help.

If you still want to ask someone, a number of channels that exist on
almost all networks can provide good help with the client. Try any chan-
nel named #mirc, #mirchelp, #new2mirc, or a help channel you read
about in the MOTD. On smaller networks with only one help channel,
you'll usually find experienced mIRC users.

Users of other Windows clients probably won't have such luck. Pirch
users should try #pirch on EFnet. Where to get ViRC help remains a
mystery, and Xircon is more or less unsupported. So with these clients
you'll be largely on your own.

16.6.2 Getting Help with Unix Clients

The ircll client's help files deal with just about every aspect of using the
client, and you should have downloaded and installed them along with
the client itself. Unfortunately, many system administrators neglect to
do this, and may not give their users the means to install the help files

themselves. If you don't have the help files on your system, you could try
to obtain and install them, but this may fail if the client has certain settings
that make user-installed help files useless. If you have a disk and/or file
quota, the limitations the quota imposes may mean you can't install the
help files. Try setting them up in a directory within your home directory,
then setting the help path variable (/set help_path) to the absolute path
of their location. By absolute path, we mean the location of the files in
respect to the root directory, as opposed to a relative path, which is based
on your current or home directory. The help files are widely available
via FTP. Here's an example of the installation process (assuming you
have the set of files named ircii-2.8help.tar.gz).

First, uncompress and untar the help file, as described in section
4.5. You should see a series of path and file names scroll over the screen
as each file is dearchived and put where it belongs. Eventually, you'll
have a new directory named "help" within your home directory. Now
start up your client and /set help_path <full path to directory containing
help files>.

If all goes well, typing /help should now bring up precisely that—
help. On some systems, the client is configured to seek help from one
of the now-obsolete help services. In this case the client returns an error
message saying there is no such nickname. Try /set -help_service, then
/help again. If it returns the message "No valid HELP_SERVICE
or HELP_PATH set," you're out of luck and must rely on remote help
services and channels, unless you can recompile the client and change
the settings that control the means of getting help. In that case, you can
compile a client, which includes the help files anyway. If you use networks
that have an ircllhelp service, use it. On other networks, there is no
equivalent. Help channels such as #irchelp tend to have a number of
expert ircll users who can answer practically any question, and you can
also download IRC-related documents from a variety of places—most of
these are fairly old and therefore geared to ircll users. And of course,
you have this book!

The same procedure works for ircll-based clients such as EPIC and
BitchX. BitchX also includes a file explaining many of its unique com-
mands. You can call this filewith /BHELP if you've properly installed the
client (there should be a ~/.BitchX/BitchX.help file). (The tilde (~) in
Unix represents a user's home directory.)

Ircll users should install one of the ircll 2.9 clients (I recommend
2.9alpha6 or later, not the 2.9_roof client) or the 4.4 release, since 2.9
and later versions include the help files in the distribution.

16.6.3 Getting Help with Mac Clients

With the decline of the Mac as a highly popular platform and the fact
that people more often use it for specific tasks that do not include net-
working on the Internet, Mac-related help of any kind on IRC has
become a rather sad story. While plenty of clients are available for the
Mac, their help facilities are often inferior. This may change, though, in
the wake of the recent success of the iMac and increased popularity of
these clients.

Your best choice for getting help, apart from the files available from
www.irchelp.org (which, by the way, a Mac expert maintains), is one of
the large help channels—you can only hope that someone in there
speaks Mac. Of course, you'll have to put up with the old joke about
using Macs as doorstops before you get any help. But even those who
have never been near a Mac are aware of the problems Mac users face in
getting help, and often try to answer your question unless it's entirely
Mac specific. The channel named #undermac on the Undernet IRC net-
work has the reputation of being friendly and helpful, and is a good
option if you're stuck or can't find any Mac help on the other channels.
The same is true of DALnet's #macintosh channel.

16.6.4 Getting Help for Other Clients

In most cases, you're alone and must rely on intuition, common sense,
and any documentation your client may have. If you do get stuck with
client- or platform-specific problems, your best choice is one of the
channels where users of your type of machine convene—#amiga or
#atari, for example. You may have to try several networks to find such a
channel. People in the mainstream help channels will try to help, but
you'll rarely find someone experienced in using your type of machine. It
can't hurt to try, but don't have high expectations.

16.7 The Protocol

The IRC protocol is based on a document by Darren Reed and Jarkko
Oikarinen, written in 1993. This document, the RFC 1459, is what all
client and server authors should refer to. As far as adhering to it goes,
that's no more than wishful thinking—I'll explain below. RFC stands for
Request for Comments. Many RFCs, like 1459, are authoritative sources
of technical specifications and ensure the necessary level of compatibility
between different programs. If you ignore the RFC, it's quite likely that
server and client programs will not communicate correctly.

While clients must comply with the standards set by server programs,
the same doesn't apply to servers. Modern ire daemons often add exten-
sions to the protocol or modify some of the functions described therein.

Apart from forcing clients to adapt to a wider range of different servers,
this also makes the different kinds of ircd incompatible. Some of the
differences are rather subtle, while others are very noticeable. In the
case of some commercial server software, the term "depraved atrocities"
might be too mild (I sometimes think a herd of elephants trampling
over the server would do less damage).

For example, you can't set up a network so that part of it runs
Undernet server code and the other part runs IRCnet code. Even if the
servers permit this to happen, which they will not (each will refuse it
after detecting the other server's type), it would create problems in
server communication and adversely affect the network. Today's ircd
authors regard the RFC as outdated, and no type of server is absolutely
RFC-compliant anymore. The same applies to client authors, who follow
the ircd coders and often exceed them in ignoring standards, protocols,
and conventions. The widespread disregard of standards has done the
network little good. Of course, replacing the RFC 1459 with a new stan-
dard is hardly possible since the variations added on the different ire
daemons are numerous and often conflicting, and today's ircd coders
are unlikely to get together and agree on common standards.

16.8 Other Types of Real-Time Online Communication

Although IRC is the most popular form of live chat on the Internet,
several others enjoy a fairly large popularity. Some are simpler to use
and may interest people who have trouble grasping IRC in full.

16.8.1 Web Chat
These are based on Web pages, and you need a Web browser to access
them. Point your browser to the URL of such a site, and it calls up a page
where users engage in conversations. Chatters submit messages to the
page and other users can retrieve them. You follow the conversation by
reloading that particular URL, which presents the page with the new mes-
sages. Web chat is slow, cumbersome, and a bandwidth fiend, but it's simple
to use and allows the chatters to embed links and images in the text.

16.8.2 Talk

Use of the classic one-on-one talk has declined with the increase of online
chat environments, where one-on-one conversations are can be held
alongside group discussions. The machine receiving the initial talk reques
must be running a talk daemon, which notifies the user of incoming talk
requests. You'll rarely find this on the average dial-up machine, but it
still shows up on multiuser Unix systems.

76.8.3 WWCN
This new and emerging form of multiuser conferencing looks like a
cross between IRC and Usenet. Codewise, it's still at an early stage and
doesn't yet offer any special clients (it currently has compatibility with
IRC clients), but the concept and protocol are highly promising as a
chat medium of the future. Check out http://www.wwcn.org/ for more
information.

16.8.4 ICQ
ICQ is not as complex as IRC and, in my opinion, lacks the magic that
would make it a full alternative. Nevertheless, it's extremely popular as a
background application that enables people to reach others swiftly using
unique identification numbers (a bit like phone numbers) without hav-
ing to go through the pains of searching on IRC. The software itself is
not great, and is probably the system's greatest drawback—its bugs and
gaping security holes have not inspired confidence. ICQ has fixed these
problems, but it still might take a while for the system to shake off its
reputation as insecure.

16.9 IRC for Other Platforms

So far I have talked about Unix, Windows, and Mac OS, but these are
not the only operating systems under the sun. There are many others,
often as good as any of the above, that have outlived their time as a
mainstream platform, are just in development, have very specific purposes,
or simply never gained wide acceptance. If you use one of these, I hope
you'll find the following bits and pieces of information helpful.

16.9.1 Amiga
If I were to cover a fourth platform in detail, it would probably be the
Amiga. The continuing popularity of the Amiga and its very loyal base of
users and developers keep it alive where others are fading out. Still, it
seems to be slowly waning, and software development isn't as vigorous as
in its heyday in the late 1980s.

Your choices are basically three: AmIRC, ChatBox, and Grapevine.
AmIRC is probably the most popular client for the Amiga. It supports all
the basics, emphasizing well-developed standard features rather than
modern toys, and provides a stable and secure chat environment.
Grapevine, on the other hand, isn't quite as friendly in the installation
department and is no longer maintained. Both support scripting and
allow their user to create add-ons. However, I have to give AmIRC the
thumbs-up, if only because it is still regularly updated. The third client,

ChatBox, is also kept current. It sacrifices appearance for performance
and speed, making it a serious option for people with less powerful
machines (I know how many old, beloved Amigas are still in service).

Ruling out Grapevine (it doesn't even have a Web page to its name
anymore), one of the other two clients should satisfy any Amiga user, as
both are complete, up to date, extendible with add-ons, and fairly user-
friendly—in short, they're typical, good Amiga software.

16.9.2 Atari

Clients for this dying breed of excellent machines are available but limit-
ed. Which one you use depends on the type of network connection you
have. Unless you've installed Linux or MINT, you'll be unable to use a
PPP dial-up account because the Atari lacks a PPP driver. STiK, although
with each release it promises to add PPP support in the next version, so
far offers no such support, and Oasis is an indecipherable puzzle. With
Linux or MiNTnet—both of which have high hardware require-
ments—you will find a very usable IRC client at the same sites where you
download the rest of the related software.

If you have hardware limitations, your options are STiK on a SLIP
connection with IRC.TOS, which is a basic but fully functional client
(provided that you can find an ISP offering SLIP access). For more
power, you could in theory go to the trouble of a hardware upgrade and
install MiNT or Linux—an expensive option, with much cheaper alter-
natives in the PC world. The upgrade may cost more than buying an old
PC capable of handling all sorts of networking, and doesn't really make
sense unless you want to upgrade the machine anyway. The old-
fashioned Unix shell dial-in account with an ircll client on your host is
still probably your best option if you plan to use a simple ST with less
than 2MB of RAM and no HDD. In this case, of course, you'll probably
find yourself running ircll instead of a client on your own machine. In
practice, on this kind of connection, these low-power Ataris achieve a
level of performance superior to most other machines of their generation.

As for the future . . . frankly, I haven't seen an Atari user "in the
wild" in ages. It's not very likely that software development will continue,
so your options are very limited if you stay with this platform.

16.9.3 MS-DOS
With the various forms of Windows taking over the PC world and the
number of clients available for it, few newer PC users even know how to
handle MS-DOS. The number of users running MS-DOS clients is negli-
gible, and the few clients written for MS-DOS were abandoned at some
point in the past. Most people who still use MS-DOS as their primary oper-
ating system prefer a terminal program with a Unix shell account and

ircll. With many ISPs offering only true PPP, the lack of freely available
PPP software for MS-DOS makes the shell account the only real option.

The only MS-DOS client a number of users still employ is the
Worldgroup client for the MajorBBS system. This client is very much
nonstandard and offers an interface similar to a BBS chat or teleconfer-
ence system. As it is commercial and intended for use with MajorBBS,
it's not an option for the average user. It's functionally adequate for
uncomplicated operations, but too simple to support the needs of a reg-
ular IRC user who wishes to enjoy all aspects of IRC. The differences
from most clients in the interface and command set are too numerous.

The mere two or three screens of help available with the HELP
command demonstrate its simplicity. What the help covers is just about
all the client can do. To broaden your IRC horizons, you'll need a differ-
ent client.

16.9.4 VMS
Clients for this platform are few and far between. Even though it has its
fair share of geeks and gurus, only one succeeded in bringing an accept-
able form of IRC client to VMS. This client is basically a port of the ircll
client adapted to VMS reality, and goes by the name of IRCdough—
Dough's IRC client for VMS.

The caveat is that you must somehow manage to install it and make
it work. Another option is sire, providing you have Perl on the machine.
However, you will probably end up running it in "dumb" mode (limited
user interface and display capabilities) because sire's front end, which is
written in C, is unlikely to compile successfully. A few more clients are
available, including one called IRCII, but when it comes to VMS, Dough's
client is the one to use. To be honest, you should try finding another
machine for IRC.

16.9.5 OS/2
Several decent clients are available for OS/2, including a version of
Zircon for machines with tcl/tk installed and a BitchX port. The two
most popular clients are OPENCHAT/2 and GTIRC. OPENCHAT/2 is
a VIO client, while GTIRC makes the best of Presentation Manager and
REXX. Both come with all the bells and whistles, including DCC, color,
and sound support. If you would like a more common client, you can
run rnlRC in a WinOS2/32 session. You have an excellent operating sys-
tem at hand and are blessed with many options. I sound like a fortune
cookie, don't I?

16.9.6 WebTV
I know WebTV is a very easy and nontechnical way of using the Internet
but I cannot seriously recommend it for IRC. WebTV is in no way a com-
puting environment, and it shows. The software it offers in lieu of an
IRC client is a sorry excuse for one. Its functionality is good for very little
other than simple communications. If this is all you want it for, it will do

It joins you to TalkCity by default, which is in itself not bad, but chang-
ing to another server is a hassle. It does not support DCC or multiple
channels, nor is it capable of identing (this can be very inconvenient
when you're trying to use servers that require ident, particularly on EFnet).
For any job more complicated than joining a channel, WebTV simply
doesn't have what it takes. As far as advanced IRCing is concerned,
WebTV is just a little box sitting on top of your TV set.

16.9.7 BeOS
BeOS is a relatively new platform, and not many clients have been writ-
ten for it. The two that do exist are Felix and Baxter. Neither of them is
as fully featured as a Windows or Mac client, but this is sure to change as
they develop.

Felix is a bit older and more solid, with a few interface bugs. What I
consider its main drawback is the total lack of flood protection—it does
not even support ignore functions. Baxter has a cleaner graphical inter-
face and is probably the better option, despite having fewer features.
Honestly, anything is better than a client that offers absolutely no pro-
tection against idiots and flooders. I hope the author of Felix will
endeavor to correct this omission soon, so we can count it among the
living clients.

I think you'll agree this chapter is full of happy, helpful stuff. Sorry
to disappoint you, but the next one isn't. It's about all the nasty things
people do to each other for no good reason. Go figure. Ah well, there s
no point in putting it off. . .

L

^

Wl̂ ^^

ABUSE AND SECURITY ISSUES

Every IRC user is bound to encounter
at least one form of Internet abuse

intended to annoy, disconnect, gain
unauthorized access, or simply destroy.

Here we'll describe the most common forms of
IRC and Net abuse, the methods used, and how
to protect yourself. (This chapter is largely a
follow-up to section 2.1.)

17.1 Flooding

Flooding is probably the first form of abuse you'll encounter, as it is a
favorite of antisocial elements—it requires no imagination and minimal
effort. Flooding serves no purpose other than destroying someone's
enjoyment, and is usuallyjust annoying; flooders are universally
regarded as lamers.

A network desync can complicate flooding and make it a more seri-
ous problem. I'll talk about this in more detail below, but the main

point is that when a channel is desynced (or when a user is desynced
from the channel), the whole channel may not recognize certain prop-
erties of the users on it. Your server may think you're an op on the
channel, while another server channel doesn't even realize you're there.

Generally, however, channel ops can get rid of flooders if they're
attacking a channel. Those who don't have ops will have to rely on their
client's IGNORE function or leave the channel. Let's have a look at the
different types of floods you may encounter on IRC and how to deal
with them.

17.1.1 MSG, NOTICE, and CTCP Floods

These terms describe floods of any type directed at your client or a
channel. Unless the volume of a flood is so great that it fills your sendq
and forces you off—which is very unusual, since it requires resources the
average flooder doesn't have and increases the risk of detection by IRC
operators—the correct use of IGNORE can stop it, with no more than a
slight loss in connection speed.

Floods using MSG and NOTICE are little more than an annoyance.
Channel moderation and the IGNORE command easily stop them.
Since CTCP is equivalent to MSG as far as the server is concerned, set-
ting channel mode m effectively prevents the flood from reaching the
channel. CTCP floods, however, can disconnect you from the server.
Since your client automatically replies to CTCP, a flood may make it
send too many messages back to the attacker—enough, in fact, so that
the server disconnects you for flooding. You can ignore the CTCPs with
/IGNORE [user] ALL or with /IGNORE [user] CTCP.

17.1.2 Nick Floods

This is a very disruptive type of flood; the only solution is to KICK and
BAN the offending clients. You must deal with it immediately since an
excess of nick-flooding clones can cause a sendq overflow and client
slowdown, resulting in long delays until the kicks and bans take effect.
Usually all channel operators must combine their efforts to deal with it
effectively. Channel management tools, such as a good bot or script, are
a very effective means of handling these problems if configured cor-
rectly and programmed to kick and ban nick flooders immediately.

Protective measures include setting a limit on the channel's users
with mode 1, preventing too many clients from joining and creating a
hot key or command scripted for the client to stop the display of nick
changes. The latter will not solve the problem, but will help by reducing
the amount of data displayed and letting you identify flooders more eas-
ily. Nick floods also place more stress on the network itself, since the
nick changes get relayed to every server on the network, and don't just

increase the traffic on the part of the network between the flooder's
server and the targets.

Some networks guard against nick floods by preventing more than a
certain amount of nick changes in a given length of time, often allowing
no more than three changes per minute.

17.1.3 Topic Floods

This is an annoying but easily combated type of flood. You stop it by sim-
ply setting mode t for the channel—another good reason for having that
mode permanently set on a channel. If you're not a channel operator,
you may prefer to leave the channel until it stops. If you do not wish to
set mode t, you can also ban the user from the channel. Be aware,
though, that the user can still message the channel if it isn't mode n.

17.1.4 Public floods

Public floods are often more effective in annoying people than one
might expect. The reason is that the automatic ignore and kick features
some protective scripts or bots use often react to other kinds of floods,
but not to public ones. If you set a form of protection against public
floods, make sure you allow a fair margin for regular channel traffic.
People tend to get annoyed when a touchy flood protection script or bot
kicks them. If the channel lacks any such protection against public
floods and your client won't react to it either, you'll have to IGNORE
public messages manually from the clients responsible for the flood if
you're not an operator. Ops can deal with this effectively by setting the
channel +m.

One of the pitfalls of a protective script or bot set to guard against
public floods is that it tends to check for a certain number of messages
within a timespan. Normally, receiving ten messages from one user
within a ten-second span might indicate a flood; however, when the net-
work is lagging, ten messages, appropriately spaced from the sender,
may hit the receiver like an automated flood.

17.1.5 DCC Floods

These are essentially CTCP/PRIVMSG floods; they pose a potential
threat to clients configured to accept DCC requests automatically. Once
again, DCC auto-accepts beg for trouble. Ignoring CTCP should work
fine for DCC floods as well. Mode m also stops this type of flood.

17.1.6 Mode Loops
Flooders sometimes use these after a takeover to render the channel
useless, though such incidents are rare. Three clients carry out the
most common form of this flood, with two doing +o/-o mode changes
and the third subject to the changes. This is destructive for the net-
work, as nick floods and operators usually respond to complaints and
remove the clients.

Mode loops can also result from misconfigured protection scripts,
in which case one of the operators present should deop all looping
clients with a single mode change. Mode loops are more destructive
under good network conditions, which allow the mode changes to reach
the second looping client sooner, letting it reverse the change faster and
increasing the rate of mode changes.

17.1.7 Leave join Floods
This nasty type of flood disrupts the channel with continuous joins and
parts from one or more clients. Setting the channel +i and/or banning
the offending host(s) is an effective way to deal with it. However, flood-
ers sometimes use it to hit a channel during a desync, since the channel
ops trying to ban the flooders may not be seen as ops on the servers the
flooding clients are using and therefore the flooders will be permitted
to join the channel.

17.2 Hacking

Hacking is possible only if there is a security flaw somewhere. A hacker
doesn't create holes, but just uses them—successful hacking means
you've proved that you are better informed than the person maintaining
the machine you hacked. On IRC, hacking more often targets servers,
since clients are rarely exploitable. Using a current but well-tested ver-
sion of your client is the best way to make sure it's secure—most holes
get discovered fairly soon, so a client that has been around a while
should be pretty clean. You should use pretty modern versions, but
there's no need to be on the bleeding edge of technology all the time,
unless bugs or security problems in older versions make it necessary.

If there is a problem with your client, the access an intruder can
gain varies depending on the machine running the client and the
nature of the hole itself. In the worst case, that would be full control of
the machine and access to other machines.

More common sources of trouble than clients are scripts of ques-
tionable quality and commands that give arbitrary access to your client
after you type some script someone told you would do such-and-such.
Check unfamiliar instructions with a friend, a good help channel, or the

client's documentation. If you still have doubts, don't type it. Whenever
you're using a script, read it carefully for back doors. If your scripting
abilities aren't up to this, you shouldn't be using the script.

17.3 Channel Takeovers

You can mostly avoid these by following the channel security tips in sec-
tion 7.7. If the channel is taken over and you don't have a channel
service for regaining control of the channel, no authority can give it
back to you; section 7.5 has already provided the best advice. While
takeovers are not approved behavior, operators generally won't act
unless they are certain there was a malicious takeover and an acceptable
log exists to substantiate claims. Even then they will deal only with
clients on their own servers.

17.4 Harassment

This means every kind of harassment, including following, stalking, and
threats. It isn't very common, but it's not unknown either. Because many
different types of individuals may engage in it, one has to deal with it on
a case-by-case basis. As with real-life instances of harassment, simply
ignoring it is often very effective and thwarts attempts to inspire fear.
While it's fairly easy to deal with most cases of harassment, the most per-
sistent and aggressive instances are very tough.

IGNORE almost always does a good job of letting the other party
know you're not interested. However, if the perpetrator knows some of
your personal details, serious cases can result in regular real-life stalking.
The problem is that the identity of the stalker may be unknown
(although you can discover it sooner or later).

These more serious cases are usually people who know you person-
ally. Such individuals are also much easier to identify since you can often
find information on them locally. Your ISP can cooperate by monitoring
incoming requests regarding any personal data (finger requests, for
example) to identify their source. In most cases, letting the perpetrator
know he or she has been identified stops the behavior, since they tend

:.>r«" to do it under the shield of anonymity.
For the most serious cases, ask your friends to help out. You'll find

: many sources of advice and support; look these up for others' experi-
ence in dealing with it. I also recommend http://whoa.femail.com/ as a
good source of information for women confronting stalking or harass-
ment problems. You do not have to put up with it. If the stalker is local
and is threatening you, go to the police. Stalking—even through the

Internet—is illegal, and you should make your local law enforcement
agency aware of the situation.

17.5 Spoofing

Spoofing is not uncommon, despite recent additions to the server code
on many networks in an attempt to stop it. It uses essentially simple pro-
grams to fake the originating address of a connection. This is often the
address of a person the spoofer is trying to impersonate. Usually he or she
intends to gain operator privileges on a channel by posing as that person.

The spoof itself is incapable of receiving messages, because the
server sends them to a nonexistent address. The server's ident request
gets no response, and consequently the message remains unidented.
The false address won't reply to CTCP either, and usually times out soon
unless the spoof is set up to send PONGs to the server at regular inter-
vals. While the spoofed client can't see messages, its operator can see
them and can instruct the spoof to send. In this way, the spoofer can
fake an address, gain ops, and instruct the spoof, which now has ops to
op him and deop others.

DNS spoofs are less common, but also much less obvious and more
effective. A DNS spoof requires access to a domain name server. Having
obtained this, a spoofer tries to convince the server that the IP address
he's using corresponds to a different host name. It will resemble in all
aspects a regular client with an identity, which sees and responds to all
messages. The only difference lies in the IP address, which won't be visi-
ble in whois information. Spoofers use this type of spoof for channel
takeovers and also for impersonating opers and evading bans and K:
lines. This is another reason for using ops with passwords on a channel.

You can detect DNS spoofs by looking up the address correspond-
ing to the host name the suspicious client is using, then comparing it to
the IP address visible with the STATS L command (section 15.4.5). If
the two IP addresses don't match, you've just caught a spoofer. The
operators of the spoofer's server of residence usually want to know
about this.

17.6 Password and Credit Card Number Thieves

A nasty class of individuals tries to steal accounts by tricking people into
giving out their password. They identify themselves as some kind of
authority—such as a system administrator, an IRC operator, or tech sup-
port—and ask users for their password under the pretence of network
maintenance or by saying they'll lose their connection if they don't pro-

vide the password. Nobody with such authority will ever ask for your
account password, especially on IRC.

If you've read this and still give someone your password, it's your
own fault. You should report any such messages to the nearest IRC oper-
ator and to the user's ISP. Password stealers as a rule get KILLed upon
detection. ISPs usually react to complaints about their own users stealing
passwords and close the offending accounts.

People trying to get credit card numbers operate in the same man-
ner, sometimes also offering a dubious service such as a pornographic
Web site, to which the user is supposed to have access after giving out a
credit card number. You should report this practice, known as phishing,
to an IRC operator and that person's ISP for immediate action. The
phisher may already be known and can get into serious legal trouble.

17.7 Denial of Service Attacks

Here's the really nasty stuff. You'd think people would leave you in
peace since you're offending no one—but suddenly, out of the blue,
your machine starts dying on you as soon as you are in the vicinity of a
particular person on IRC. And guess what? He's having more fun than
you are. This is a Denial of Service (DoS) attack.

17.7.1 Nukes

Nuke is a generic term for any form of nasty data packet or sequence
intended to exploit a known security hole and force the target to crash,
reboot, disconnect, or otherwise inconvenience its user. Nukes aren't
just not nice, they're illegal.

The existence of exploitable holes has been known for a long time,
but Net abusers have used them widely only since late 1997, when the
"blue screen of death" epidemic started. At that time someone created
and distributed a ready-made program to exploit the problem. Thus it
was no longer in the hands of the experts alone, but also available to
"script kiddies" who were all too pleased to find out how much annoy-

•=• • ance they could cause with a mere mouse-click.
How susceptible you are to nukes depends largely on the type of

machine you're using. Macintosh and Windows 3.1 machines are mostly
•;-• ' immune to nukes. Windows 95 included some sloppy work on the net-

working features, which exposed machines to these attacks, and
Windows NT machines are vulnerable too. You can patch Windows 95
with the Dial-Up Networking upgrades, downloadable from http://www.
microsoft.com. You can protect Windows NT machines with the NT ser-
vice packs, which include fixes for the problem. Check http://mirc.
stealth.net/ for the latest in patches.

Windows 98 corrected the nasty faults that allowed a stroke of the
mouse to kill Windows 95. So far, new attacks that work on 98 machines
are far and few between, and none have posed a major problem for IRC
users. Upgrading from 95 to 98 should put an end to your nuke prob-
lems; the fact that there has been no mass slaughter of Windows 98 users
a year after its release is encouraging.

Unix is not always immune to nukes. Almost all kinds of Unix
machines have seen some form of attack capable of killing them during
the last year or two. If you have a home machine running Linux or
FreeBSD, stay informed by following a good mailing list or regularly
checking a Web site offering news about your operating system. The
good news is that it often takes no more than a day for analysis of the
problem and release of a patch—a response time very few commercial
vendors can match.

Let's have a look at the most common nukes:

Winnuke, aka OOB
Affects: Windows 95, 3.11, NT
Symptoms: Blue screen, machine may freeze, cannot restore
Internet connection without rebooting

Land
Affects: Windows 95, 3.11, NT, Mac OS, Sun OS, some BSD
Symptoms: Freeze, crash

Teardrop
Affects: Windows 95, 3.11, NT, Linux
Symptoms: Spontaneous crash or reboot ;

Click (the original nuke)
Affects: Any network connection
Symptom: Sudden disconnection from server

Bonk, aka tear drop 2, newtear
Affects: Windows 95, NT 4
Symptoms: Blue screen, machine freezes and crashes

Jolt, aka ssping, Ping of Death
Affects: Windows 95, NT, older Macs, FreeBSD, some others
Symptoms: System hangs, needs reboot to recover

All these attacks occurred by mid-1998, and operating systems released
since then should be immune. Some old versions of an operating system
may be immune while newer ones are not, because the vulnerability

might lie in features the old versions lack. Variants of the same release
of an operating system may react differently.

17.7.2 ICMP Flooding and Smurf
ICMP floods are nothing more than a brute-force attempt to kill your
connection by overloading it. Attackers employ the PING command to
send as many data packets as they can to their target. If in addition the
attacker uses a fake source address, he or she has no limit on his capac-
ity to send data because it doesn't bounce back from the target, making
it possible to utilize the maximum available bandwidth in such an attack.
This also depends on the local network configuration—providers with
any sense filter out ICMP packets with fake source addresses and never
let such packets venture outside their own network.

Smurfing has nothing to do with little blue creatures living in toad-
stools in the woods, as in Peyo's famous cartoon series. It is probably the
most destructive form of DoS attack. The attacker fools machines on a
third-party network into thinking a series of ICMP packets originated
from the target of the attack and responding to them. This would be no
worse than any old Ping flood if it didn't take advantage of a network's
broadcast address—all hosts on a network will reply to anything sent to
this address. Unfortunately, many systems administrators have not con-
figured their routers to reject everything sent to the broadcast address
from outside their local network. If this is the case, the following (disas-
trous) sequence establishes itself (the addresses used here are fictitious
and used only as examples):

• Attacker is on 222.99.88.77, target at 123.45.67.89.

• Attacker sends a Ping to 214.33.44.255, the broadcast address for
the 214.33.44 subnet.

• Attacker fakes the source of the Ping to appear as 123.45.67.89.

> • What is sent to the broadcast address, 214.33.44.255, receives replies
from all hosts on its network—the more, the merrier.

^
• All hosts on the 214.33.44 network think they have received a Ping

from 123.45.67.89.

• If there are 50 machines on that subnet, all 50 send a Ping response
to 123.45.67.89.

Therefore, if there are 50 machines on the third-party network that
respond to Pings, what the attacker sends bounces off to the target,

multiplied by a factor of 50. If the attacker is capable of sending out a
stream of Pings at a rate of 50 Kbps, the "amplifier" sends a stream of
2,500 Kbps to the target. You can do the math for larger figures.

The main problem isn't the attacker. The real problem is the
administrator of the 214.33.44 network who allows use of that network
as a smurf amplifier. This example would cost him 2.5 Mbps of his band-
width for the duration of the attack. He might have that much to spare,
but you don't. Smurf attacks will hopefully diminish over time as more
and more network administrators come to their senses and stop letting
attackers use their networks as amplifiers.

Both regular floods and smurf attacks (or fraggle, which uses UDP
instead of ICMP but follows the same principle) are illegal. In the
United States, they are a federal offense with a penalty of up to four
years in jail. Mild cases may result in nothing more than the attacker los-
ing his or her account at the ISP. Smurfers, on the other hand, are likely
to be hunted down on a federal and international level since the impact
of an attack on the target's ability to serve its customers can be significant.

As for protection, there's not much you can do about incoming traf-
fic except to block it at some point upstream. It's largely up to network
administrators to deal with this sort of problem, and you should contact
your ISP for ways of counteracting ICMP floods. In the event of a smurf
attack, you probably don't need to tell the ISP administrators since it's
too obvious to miss.

17.8 Spam and Mass Messaging

While not outright destructive like other forms of abuse, mass messaging
is annoying and unwelcome, apart from generating unnecessary traffic
for the server it's on and the network as a whole. A number of scripts
supporting mass messaging are in circulation, and they usually rely on
one of two methods.

The most widely used script connects a bot-like client, which takes a
WHO listing to see all visible users of the network and then sends a mes-
sage to all of them at as high a rate as it can manage without being
flooded off.

These messages are usually NOTICES and less often MSGs. If you
have usermode -i, which makes you visible on WHO searches, you're
likely to see one fairly soon on a larger network. Report it to the
network's operators—many operators KILL such messages upon detec-
tion. Others couldn't care less. Smart "spambots" are designed to MSG
everyone visible except for the IRC operators to escape detection. IRC
operators, on the other hand, hate being taken for fools and have
devised their own methods of tracking down spammers.

T

A much more annoying type of mass messaging (using NOTICE)
comes from file-server clients advertising pornographic services. Both
opers and users generally hate these, and reporting them to an oper of
the server they're using usually gets them KILLed or K: lined, since most
servers classify them as unauthorized bots as well as spammers. Their
constant WHO scans and repeated messaging generates more traffic
than the average once-only spam script.

The other type of spam uses LIST instead of WHO to obtain the list
of public channels. It then joins a channel, sends its message to the
channel or to each user individually, leaves, and proceeds to the next
one on the list. The type of message spammers are sending—usually an
advertisement for a URL, a channel, or an IRC network—often makes
them identifiable, along with the fact that they'll be on a number of
channels with names in alphabetical sequence. Many of these spam mes-
sages meet an untimely death when they blunder into a public channel
full of IRC operators. Others lurk on large, popular channels and send
their message to every user joining or leaving. It's up to the channel's
operators to get rid of them, although an operator of the server they're
using might have an interest in doing so as well.

17.9 Account Security

There are some basic rules for keeping your account secure from unau-
thorized persons. Although your ISP should have informed you of them,
many providers don't consider it necessary to give their users instruc-
tions on how to keep an account as secure as possible.

Your key to an account is your password. Unless you're sharing an
account with someone else by agreement, you should be the only person
to know this password. In order to make sure only you use your account,
follow this simple set of rules:

• Don't write your password down where others can access it. If you're
afraid of forgetting it, write it on a bit of paper and place it in a sealed
envelope. Under the monitor is not the best place—it's a little too
easy to find there.

• Don't type it in front of others.

• Don't let anyone have it. You can give it to your ISP's support staff if
there's a problem with your account, but only over the phone. If
you do so, change it as soon as possible. As a general rule, though,
tech support won't ask you for it. They should have all the access
they need without asking for a password, including the ability to

reset a password (setting it back to the original one) if they
absolutely have to get in to your account for some reason.

• Change your password at regular intervals. Every two to four weeks
is good.

• Never use easy passwords such as first names or dates. Choose a
password longer than five characters that combines at least three of
these four different types of characters: uppercase letters, lowercase
letters, numbers, and special characters. Even if you're sure there is
no leak on your side, if your ISP suffers a break-in someone may
obtain a file containing your password. While passwords are
encrypted in the file, hackers can extract or crack the password with
the right tools.

Above all, remember that the terrible things discussed in this chapter
may never happen to you. You may never meet an annoying or irritating
character on IRC—then again, maybe you will. Don't be paranoid, but
always be cautious. Didn't your mother ever tell you not to speak to
strangers? There are no stranger people in this world than IRCers.

INSTALLING, RUNNING, AND
OPERATING AN IRC SERVER

A

Ascend to the highest echelons of
IRC geekdom—run your own server!

Whether for business or pleasure, pri-
vate or company use, now you can do it,

too. This chapter concentrates on the technical
aspects of installing and running an IRC dae-
mon and connecting it to a network. I will
assume you're capable of compiling and
installing a software package. I consider it
absolutely necessary to have that much exper-
tise before you even think of running an IRC
server. You don't need to be a Unix guru to set
one up, but ircd does require a bit of knowl-
edge, even if you opt for one of the ircds
capable of running under Windows.

18.1 System Requirements

An ircd doesn't require huge amounts of memory, bandwidth, or CPU
time. In fact, it will run happily even with an 80486/DX33 or equivalent
processor and 8MB of RAM.

Naturally, both memory and processor requirements are higher if
you intend the ircd as part of a network with a significant number of
users. A nonnetworked ircd with only a few users needs even less in terms
of resources.

An ircd destined for a major network should reside on a dedicated
machine with at least a Pentium-100 or equivalent processor and 64MB
of RAM, more if the machine isn't dedicated. These figures will eventu-
ally need revising as the network inevitably grows and requires more
resources, or if you intend the machine to cater to a large number of users.

Bandwidth is just as important as processor power and memory—
that's what can really make or break a networked server. It's not impossi-
ble to run a server on a small network with as little as 28.8-Kbps bandwidth.
If there is little other traffic sharing the connection, the network can be
viable as long as it remains small. For a larger network, you'll need a de-
dicated link of at least 256 Kbps. Major networks require a minimum of
several Tl (1.544 Mbps) links, often more.

18.2 IRC Server Software

Ircd is available for several platforms, but Unix is by far the most preferred
operating system. Some ircds run more comfortably on a particular fla-
vor of Unix, but most have a decent level of portability. You can run ircd
on Windows 95, 98, or NT, but I have reservations regarding the capabil-
ities of the operating system and its susceptibility to DoS attacks. If you
plan to run ircd on Windows, make sure you have patched the machine
against all known attacks, and prepare to encounter more. This applies
to all platforms, of course, but Windows has the worst record in that
department.

It must be said that there is no longer a typical ircd. Most modern
servers are based on the old 'Vanilla" 2.8.21 version with numerous fea-
tures, hacks, and bug fixes added later, which have made them more
and more incompatible. The most popular ircd for new networks is pro-
bably the one used on the Undernet (u2.10.06 is the current version)
and slightly modified versions of it. This is because it supports Services
(NickServ, ChanServ, etc.), which most new networks intend to use, while
offering good performance and relative ease of installation.

More-ambitious new networks take the current DALnet or ircu ver-
sion and customize it to fit their needs. In this way a large variety of ircds
have developed, which often present a degree of incompatibility, so a

level of uniformity on a network is necessary in order to avoid conflicts
between servers. Because of security concerns regarding older ircds, you
should get the latest server version. Many older versions have known
security flaws, only patched later on.

Still, even with server security at a reasonable level, you'll probably
have to make a few more updates for security reasons. It's a good idea to
follow related mailing lists, such as an ircd users list specifically dealing
with the ircd you're using, or bugtraq for information on newly detected
security problems and bugs, and to stay generally informed of develop-
ments concerning the ircd you use.

18.3 IRC Daemons

Since Unix is the standard platform for running ircds, they are compati-
ble with most flavors of Unix, although some work better than others.
Operating systems that are a bit old or nonstandard, such as Ultrix,
SunOS 4, or HP-UX, are more likely to present compiling and installa-
tion problems, since ircd releases are generally geared toward modern,
mainstream systems. Modern operating systems such as SunOS 5.7 or
Linux 2.0 and 2.2 usually give you a clean compile and present few prob-
lems in running. Solaris and FreeBSD are by far the most popular
operating systems on major IRC networks.

In all cases, the INSTALL file and the set of files in the doc/ direc-
tory contain more information about the peculiarities of installing each
ircd, as well as instructions for specific operating systems, if needed.

J8.3.1 Ircd 2.8/hybrid (EFnet)

Versions reviewed: 2.8/hybrid5.3 and hybrid-6 (beta)
Tested on: FreeBSD 3.0, Linux 2.0, SunOS 5.7
Download site: ftp.blackened.com
Hybrid ircd is based on 2.8.21 with an integrated concoction of various
patches and hacks. It evolved out of several different series of patches to
the 2.8.21 ircd used on EFnet. It performs best on Solaris and FreeBSD,
but will run on other systems too.

Compiling it is difficult—you will probably find yourself recompil-
ing a couple of times before getting it right. Hybrid 6 includes a new set
of features such as channel mode e, the KNOCK command, and the
controversial rejection of multiple targets for a series of commands.

Its features include numerous monitoring tools for operators, earn-
ing it the nickname of "fascist ircd" from opponents of the operator
control philosophy. It's designed mainly for powerful machines with
high client loads and performs very well under stress. It supports
TimeStamp (TS3), restricted connections, and a form of channel delay.

It does not have a Services interface and is recommended for servers
that do not intend to offer Services, but that do give operators a high
degree of server control. It interfaces well with special server bots
(TCMs), giving online operators an additional degree of control.

18.3.2 Ircu (Undernet)

Current version: u2.10.06
Tested on: FreeBSD 3.0, SunOS 5.7
Download site: ftp.undernet.org
Ircu is probably the most popular ircd nowadays. It combines stability
with a host of useful features—not necessary, but rather handy—as well
as a Services interface. Installation is fairly easy, with a configuration
menu that is a bit friendlier than the standard practice of editing
Makefile and config.h, and the defaults are sensible. You will have to cre-
ate the ircd directory before starting the configuration.

The documentation in the server package is good and kept current.
An informative Web site at http://coder-com.undernet.org/ supports it.
Ircu has a history of pioneering changes that later made it to other ircds.
While not all these changes have caught on, ircu is probably the most
progressive ircd in the field of testing new concepts and features.
Admittedly, I'm not an avid Undernet user, but I do have to hand it to
ircu's creators for making a well documented, stable ircd, with just about
every feature you would want or need as a server admin.

18.3.3 Ircd 2.9 and 2.10 (IRCnet)

Current version: 2.10.3
Tested on: ESDI 3.0 and 3.1, Linux 2.0, FreeBSD 2.2.8, 3.0, and 3.2
Download site: ftp.irc.org
2.9 was originally intended to be the successor to 2.8.21 for EFnet, but
became a centerpiece in the row that eventually led to the network split-
ting into two parts, one of which became IRCnet, in July 1996. It
emphasizes speed and resource efficiency at the expense of user friend-
liness and features. Critics regard its code as primitive, but it's perfectly
functional and compiles with very little trouble. I've been referring to it
as the IRCnet ircd throughout the book, but more precisely, it's the ircd
that Christophe Kalt mainly developed, with IRCnet in mind but not
expressly for IRCnet.

There are several patches to improve its online management and
options, but your basic 2.9 or 2.10 version is poor in that department. It
supports neither TimeStamp nor channel and nickname services, but
includes a unique service interface designed to interact with a special
type of locally-run service. This type of service does not appear as a
client and can't interfere with remote users or channels in the way the

typical channel or nickname service does. Another unique feature is the
iauth authentication program, which runs as a slave and takes some of
the dirty work away from the ircd. One of its advantages is that it can
scan connecting clients and reject those using open SOCKS servers.

This ircd is ideal for networks and servers with limited resources,
since it's very economical compared to other ircds. If your bandwidth is
more precious than your CPU cycles, it's capable of compressing server-
to-server traffic, reducing the volume of connect bursts by approximately
60 percent. Its portability is probably the best of any ircd, and it will hap-
pily run on almost any platform, including Linux and FreeBSD. At least
version 2.9.5 will also compile on Windows NT using Cygwin. I can't tell
you what its performance will be under NT, but this ircd is worth a try.

78.3.4 da/4.6 (DALnet)
Version reviewed: da!4.6.7.DreamForge
Tested on: FreeBSD 2.2 and 3.0, Linux 2.0
Download site: ftp.dal.net
I can't say I'm too happy with this ircd or I would recommend it without
reservation. The fact is, it could do with a bit of a rewrite. Though it
doesn't have many bugs, I find its configurability somewhat below par
and its resource consumption horrendous compared to others. Its porta-
bility does not match that of hybrid or IRCnet ircd. FreeBSD is the
recommended operating system, but it will survive Linux and most
mainstream operating systems if you don't make too many demands on
it. It's the opposite of IRCnet ircd, placing features above performance.

This doesn't mean it's altogether useless. It's actually a usable ircd,
quite capable of satisfying the needs of a small-to-medium network while
having an excellent Services interface. It also has a superior O: line
setup, through which you can regulate some operator powers without
having to recompile. Support for open SOCKS server scanning is
optional. Its inadequacies are more obvious on DALnet itself, which has
really outgrown the ircd. Otherwise it's a perfectly good option. It
should also compile on Windows 32, but I have not tested it myself.

As of the writing of this book, bahamut, the hybrid-based replace-
ment for DreamForge, is still being tested. I do not consider it to be a
choice yet; its performance on DALnet is good, but a number of devel-
opment issues and bugs remain unresolved.

18.3*5 Conference Room

Current version: 1.7.6
Tested on: Linux 2.0 (third-party tests)
Download site: http://www.webmaster.com/
Webmaster's creation has developed into a very respectable piece of
software, good enough to stand up and face any more established ircd.
Despite my Unix bias when it comes to ircd, I must say this program
makes ircd worth running on Windows. Versions of it will run on
Windows 32 and various flavors of Unix. You get all the bells and whis-
tles, including integrated channel and nickname services and easy-to-use
administration tools, as well as support and a Java client designed to
allow people to connect to the server through a Web page.

Its drawback is the price—hefty even if you do not compare it to the
zero cost of regular Unix ircds. The $99 for the Windows Personal
Edition is acceptable if you want to run a small stand-alone server, but
the rest of the price list scares me. The $295 price tag for the Unix
Personal Edition, which accommodates no more than 100 clients and
isn't networkable, is somewhat steep, and the extra $500 you would have
to pay for a networkable version approaches the surreal, even if you do
get online and phone support. Running ircd isn't rocket science—sup-
port isn't worth such a price difference. Personally, I'd rather put a bit
more work into running my server than shell out all that cash when I
can get something just as good for free.

78.3.6 Other ircds and Platforms

There are a host of different ircds out there, most of which hack those
used on the major networks and run only on Unix. Commercial chat
servers from Quarterdeck and Microsoft are adequate. The problem
with both of these is that their command sets deviate unacceptably from
RFC standards. For Windows, there is also the shareware wircsrv, but
unfortunately it is no longer maintained and supported. It does have the
advantage of having a 16-bit version, but I'm a bit doubtful of the perfor-
mance you can get from Windows 3.1x A couple more programs
describe themselves as ircds, but aren't very convincing. There is no
good, free ircd for Windows, but a project tentatively named fired
intends to cover this gap in the future.

The only platforms apart from Unix and Windows for which a work-
ing ircd exists are AmigaOS, VMS, and OS/2.1 have been unable to
locate a copy of the VMS ircd, so I can't really voice an opinion. Both
the AmigaOS and OS/2 IRC servers are functional 2.8.21-based ircds,
though they aren't developed as intensively as the rest.

78.3.7 Adding Services

Both ircu and DALnet ircd are designed to interface with user services
such as ChanServ and NickServ. These services are very popular with
users, and most new networks want to have some form of them available.
The Espernet services package (Andrew Church on the EsperNet IRC
network developed this—hence the name) is one of the very few public
releases of such a package—most networks that have developed such a
package independently keep it to themselves.

Espernet services interface well with both ircu 2.9 and da!4.4, with a
few reservations regarding da!4.6 and ircu 2.10. They're available only
for Unix (the author makes it clear that porting services to Windows
ranks very low on his priority list), and run on the same machine as a
server. They are available from ftp.esper.net.

18.4 The ircd.conf File

Apart from the compile options that control its settings, the server also
requires a configuration file named ircd.conf. This includes important
options and settings, some of which the server absolutely must have to run.

This file comprises single lines, each beginning with a letter charac-
teristic of the option it represents and followed by a colon-separated list of
parameters. I recommend reading the example.conf file contained in the
ircd package (normally in the doc/ directory) for more detailed informa-
tion on setting up the ircd.conf with the peculiarities of the particular ircd
it belongs to. The different conf lines must stick to a particular order to
some extent. The example.conf file will show you which order to use. You
can use an edited example.conf and keep the comments if you feel more
comfortable having the instructions within the ircd.conf. If you do this, do
not forget to comment out all example lines.

18.4.1 A: lines (All ircds)

There is a single A: line in the ircd.conf, which contains the server's
administrative info. It's separated into three parts by colons, correspond-
ing to the three lines (numerics 257 to 259) that, along with the header
(numeric 256) make up the reply to an ADMIN query. An incorrect A:
line prevents the server from functioning. Depending on the ircd, you
may need a fourth, blank field—check the example.conf for the ircd
you have.

78.4.2 M: lines (All ircds)
Your M: line defines the name of your server, a description (the info
line you see in LINKS and WHOIS output), a virtual host if you use one

for the server, and a port number your server listens on. Ircu 2.10.06
makes the M: line port the only one to which other servers can connect
Older versions and all other ircds let servers connect to ports with just a
P: line. Your M: line must be correct for server connections to work. Ircu
also uses a fifth field with a unique server id, probably paving the way
into the future since server ids are likely to take over from server names
as a means of identification.

18.4.3 I: lines (All ircds)
I: lines are necessary for a server to accept client connections. They
allow you to specify who may use the server and, in conjunction with the
Y: lines, under what conditions and with what limitations they may do so.

They can also direct clients to certain ports or limit them to using
the server only at certain times of the day. Ircu 2.10.06 I: lines can also
limit the maximum number of clients (globally) from a single address, a
function that is part of the Y: line setup in other ircds.

I: lines work on a drop-through, right-to-left, and bottom-to-top
basis. This means when a client connects, the server matches its address
against all I: lines one at a time, starting with the right-hand field of the
bottom I: line in the conf, and stops when it finds a matching one. If the
server finds no I: line match, it rejects the client. It's important to
remember to use the correct order in your I: lines. You'll usually want to
place the most limited ones at the bottom, where they get read first, and
the broader ones at the top. For example, if you had an I: line for
@.netcom.com and a more generic one for *@*.com, placing the lat-
ter in a position where it would get read before the *@*.netcom.com
one (below it) would defeat its purpose, since a connecting netcom.com
client would find a match in the *@*.com I: line and never get checked
against the other line. The correct sequence, in which I: lines become
progressively broader, would look like this:

I:x::*@*.com::l
I: x:: *@>*. netcom. com:: 3
I:x::paul@wor-ma*.ix.netcom.com::5

On IRCnet ircd, lowercase i: lines can be used to restrict the clients •
matching that i: line. The restrictions are that the client can't use chan-
nel operator commands or change its nickname. This is how to impose
user mode r upon a client.

You can place IP addresses in the second field, which I have marked
with an X. This is not a significant character—it simply matches no
address. You could use any other item that will not match an address, or
just leave it blank. The address can either stand alone or have a match-
ing host name in the right-hand field. You can also password an I: line

by placing a password in the third field. The fifth field, usually blank,
can assign this I: line a particular port.

18.4.4 Y: lines (All ircds)

These are necessary and there must be at least one, but having more can
prove very useful for separating the clients and servers, which may con-
nect to you (as defined in I:, C:, and N: lines) into groups. Hardly any
server lacks a set of Y: lines regulating client and server connections.

Any server that allows more than local client access or is networked
should sort the connections with Y: lines. Use separate Y: lines for client
and server connections. Take care when setting up your Y: lines—they
must fit in harmoniously with I:, C:, and N: lines.

18.4.5 O: lines (All ircds)

O: lines are not absolutely necessary, but are convenient for running the
server from a client connection and for performing global operations
on a network. First we must distinguish between the two different types
of O: lines—the capital O: and the lowercase o:. Capital O: lines are
used for operators with networkwide powers, offering the ability to use
CONNECT, SQUIT, or KILL for any of the network's servers and to
send global messages and/or wallops. A lowercase o: line limits the oper-
ator's powers to the local server (the client's oper status isn't broadcast
to other servers). Naturally, the difference between the two is semantic
on nonnetworked servers, although some compile options can define or
restrict an o: line's powers on the local server, too.

You can encrypt O: line passwords with the mkpasswd utility you'll
find in the ircd package. In order to use password encryption, you must
compile the ircd with #define CRYPT_OPER_PASS. If you have enabled
this option, you will not be able to use cleartext oper passwords at all.

18.4.6 C: and N: lines (All ircds)

Required in order for a server to link to others, these are therefore
essential to a networked server. C: lines specify to which servers your
server will connect, either automatically or when ordered by an opera-
tor. N: lines specify from which servers yours will accept connections.
Both also determine certain other features of the server link, such as
masking. C: and N: lines go together—one without the other results in
nothing, apart from a few error messages. You must use C/N lines in
conjunction with special Y: lines in order to prevent errors generated by
attempts at incorrect routing or suboptimal routing.

IRCnet ircd allows compression of server-server traffic. You need to
have zlib installed on the machine for this to work. In this case, the C:

line has to become a lowercase c: line. You can encrypt C/N passwords
just like O: line passwords.

18.4.7 H: and L: lines (All ircds)

Technically not necessary, in practice these maintain order on a net-
work by denning which servers can act as hubs and which can't, thus
making sure servers that don't qualify for hubbing a part of the network
don't do so. A server must have an H: or L: line on the servers to which
it connects in order for those servers to permit it to introduce more
servers to the network. These lines also limit the quantity or kind of
server your server may introduce. You may need to compile your server
as a hub if you wish to link to more than one server at the same time,
and other compile options may also be of importance, depending on
the ircd.

18.4.8 K: lines (All ircds)

K: lines are technically not necessary, but most server administrators
would find it hard to run a good server without them. Their usefulness
also depends on the server's I: and Y: lines—if those are well written, the
need for K: lines decreases drastically.

K: lines follow the same rules as channel bans, the only major differ-
ence being that K: lines use user@host syntax rather than
nick!user@host. You want them to be neither too broad nor too limited.

Weed out your K: lines regularly and delete redundant or stale
ones. Too many K: lines take their toll on the server's performance.

18.4.9 P: lines (All ircds)

The P: lines determine which ports are open for connections. Each
open port requires one P: line. You can add more P: lines while the
server is running, but removing them will not close the port as long as
there is still an active connection using it. P: lines can also associate a
port with a host or domain allowed to use it.

18.4.10 R: lines (All ircds)

These are rarely used in practice. They allow the server to use an exter-
nal program before accepting a connection. The only implementation
of R: lines I'm aware of is on the Norwegian IRCnet servers, which use
them to verify the user name by querying a special service local ISPs ru
before letting a client connect. Otherwise they are deprecated and on
their way to extinction.

L

18.4.11 D: lines (EFnet) and Z: lines (DALnet)
These perform more or less the same function but have a different
name, depending on the ircd. On hybrid, the D: line blocks connections
from an IP address or address block, whether this resolves to a host
name or not. These lines are often used when K: lines fail because peo-
ple evade them by using virtual hosts. Although this form of D: line is
only used on hybrid, you can achieve the same result using different
means on other ircds: On 2.9/2.10 (IRCnet), K: lines perform this func-
tion as well as their normal function if an IP address instead of a host is
K-lined. On Undernet there are lowercase k: lines for the same purpose,
and on DALnet the Z: line is the equivalent. Confused? Me, too.

18.4.12 V: lines (IRCnet)
Only hubs use V: lines, to control the features their downlinks have acti-
vated. For example, a hub requiring that its downlinks not be compiled
as hubs would use a V: line to prevent it by checking the version of the
connecting server and rejecting it if it doesn't fulfill that condition.

78.4.13 Q: lines (EFnet, Undernet, IRCnet)
These are largely a leftover from the times when the only large IRC net-
work was much less organized. Q: lines could prevent a server from
connecting. Q actually stands for "quarantine." Q: lines require coordina-
tion among the network's servers; otherwise there's a risk of the network
breaking up because a server's Q: line isn't present on other servers.

18.4.14 Q: lines (DALnet) and U: lines (Undernet)
The modern use of Q: lines, implemented in DALnet ircd, is quite dif-
ferent. DALnet ircd's Q: lines prevent the use of certain nicknames by
non-operator clients. This is useful for preventing users from assuming
nicknames they could employ to impersonate an IRC operator, admin
or Service, and is necessary during service downtimes, when wise guys
are likely to try to gain other users' passwords by assuming the nickname
of a service.

U: lines, implemented in ircu 2.10.06, perform the same function,
though with a different syntax. DALnet Q: lines act on a local server
level and do not restrict use of the Q: lines nicknames by IRC operators,
while ircu U: lines also bind the presence of the nicknames to a server
and do not allow their use.

18.4.15 E: lines and F: lines (EFnet)

These are used to bypass other restrictions in the conf. If a connecting
client matches a K: line, an E: line entry causes the ircd to ignore the
K: line and let the client connect anyway. F: lines do the same, but also
bypass class limits so that an F-lined client can always connect even if it;
K-lined and its connection class is full. You can also add this feature to
IRCnet servers using the Sc patch series.

f 8.4.16 T: lines (Undernet)

This is a really cute feature—though not indispensable, it's nifty and
useful. With a set of T: lines, you can send a different MOTD to differ-
ent connecting clients, depending on their host mask.

18.4.17 D: lines (IRCnet and Undernet)

Servers that autoconnect where they are least welcome make nobody
happy. Because the C/N/H/L/Yline combinations do have their limita-
tions (you would think five different config lines could do the job, but
they don't), these ircds support D: lines as a means of telling a server
under what conditions not to initiate a link it otherwise would initiate.
This is very useful for avoiding routing chaos.

18.5 The MOTD

The MOTD is not mandatory, but is generally helpful for the server's
users and the rest of the network. The contents of the MOTD are more
or less arbitrary and normally state the purpose of the server, its policies,
the names of the admins or operators, and anything else the server's
administrator wishes the users to know. The MOTD is stored in a plain
text file named ircd.mold in the ircd directory and is sent to each con-
necting client and any others that ask to see it with the MOTD command.

Lack of an MOTD file results in the sending of an error message
(numeric 422) to the client. You can live without an MOTD, but servers
with no MOTD look tacky and poorly run. You can send different
MOTDs to different users only in ircu; see below under T: lines.

The contents of the MOTD are up to you, but here are some guide-
lines for putting together a good MOTD:

• Clearly state the server's rules.

• Huge ASCII server logos are cute. They're also annoying to the us
and a waste of resources.

k..

• The longer the MOTD, the less it gets read.

• Include the name of a channel where users can find help.

• I suggest a security advisory regarding Trojans.

• Include a disclaimer saving you are not responsible for content
passed through the server.

18.6 IRC Operator Commands

Now that you've made yourself a server and given yourself that O: line,
you need to know how to use it.

There are a number of commands only IRC operators can use. They
are more or less the same for every kind of server. In this section, I'll
look at the basic operating and maintenance commands. I won't go into
the realm of commands available to opers on networks that allow them
extended powers over channels—-if you ever become an operator on
one of those networks, more experienced opers will give you extra train-
ing. Some commands are also available to users, but give an operator
more information. These are the main operator commands. For more
commands, see 15.9.

All servers allow an administrator to configure the server to limit global or local

operators' use of certain commands. The administrator can also forbid some com-
mands altogether and force operators to do the tasks associated with them directly

from the server account itself.

18.6.1 OPER

OPER is the most basic operator command, used to obtain operator sta-
tus. The user OPERing himself or herself must use this command in
combination with a nickname and password while connected from an
authorized host listed in the server's O: lines.

/oper <nickname> <password>

The server checks your host against those listed with <nickname> (this
will usually be your regular nick). If they match, it checks the password
you give against the one stored in the server's configuration file.

Although you must send the nickname that's in the O: line as a
parameter to the OPER command, you don't have to be using the same
nickname at the time. On ircll-based clients, you can also enter the

nickname alone, and the client prompts you for the password. As far as
the server is concerned, this is no different from the full command, but
it offers additional safety, since it prevents your sending the password to
someone else (for example, a channel) by mistake. If your client doesn't
do this by default, I suggest you write a small script to do so.

If the server accepts the command and identifies you as an opera-
tor, you see a message like this:

*** Mode change "+o" for user LeetOper by LeetOper
*** You are now an IRC operator

Oper status, as the message evidences, is really just a user mode available
only to privileged users. If you have only locop status, some ircds set
mode O instead of o. This is of course a contradiction—setting mode O
for the "little o:" and o for the "big O:"—but this occurs because global
operator status occupied mode o long before someone added a new
mode specifically for locops.

Many server versions and patches change the text to something less
bland, starting with the old classic, which read, "You are now an IRC jan-
itor. Here's your broom" (which became fashionable again a while ago).
My personal favorite was the one on a NewNet server saying, 'You are
now mentally twelve years old (IRC operator)."

Some fancier clients have a message of their own by default and
ignore the server's message. BitchX is a notable example (the notice it
shows isn't exactly a model of political correctness—I'll leave it to you to
find out what it says.)

For security reasons, you should not keep your password in a script. This is so
that even if the security of your account or the machine it's on is compromised, the
intruder can't retrieve the oper password because you haven't stored it in any file.
The weak point of the whole system is that the password is sent to the server as
plain text, so it's not immune to discovery. Hopefully some smart ircd coder will
devise a system to use encryption on sensitive client-server transactions like this.

18.6.2 KILL
KILL is a powerful and controversial command. The ability to use this
command is often seen as an IRC operator's real power, although this
notion doesn't last long—KILL's ineffectiveness will change anyone s
mind sooner rather than later. Using KILL, an operator can force the
user's server to close the client connection, therefore effectively remov-
ing that user from the network.

Much debate has gone into the ethics of KILL and its appropriate
use, but this discussion has never reached a conclusion. In practice, it

depends on the rules of the network and individual servers regarding
oper behavior, and in some cases on the personal ethics of an individual
IRC operator. With the advent of autoreconnecting clients and abuse
tools, it's far from effective as a disciplinary measure for abusers and
many operators resort to using K: lines instead.

KILLs for users on a different server from the one on which you're
an operator (remote kills) get broadcast over the network and appear to
everyone monitoring KILLs. KILLs that take place on your own server
appear only to other operators of the server and to any users sharing a
channel with the KILLed client.

/kill <nickname> <reason>

You must provide a reason in order for KILL to work. It can be any arbi-
trary text, but server or network policies generally require a valid reason.
Many administrators also require their opers to keep records of the
actions in a log file for comparison with the server's logs in case the
oper's actions come into question. If possible, an oper should also try to
record the event for which he or she used the KILL.

KILL, like KICK, also KILLs a client even if it changes nicknames.
KILL added this feature fairly early, when abusers discovered they could
escape getting KILLed or KICKed by changing nicknames before the
operator had time to type their nick; it's known as "KILL chase."

This practice would also enable elimination of nick-flooding clients.
In former times, this had a funny (and really frustrating) side effect
known as the "KILL chase bug," which all server versions should have
ironed out by now. Its result used to be that the operator killing a nick-
changing client on a remote server would also get booted off the server.
I can just see older IRC operators reliving their pain as they read this.
Fortunately, newer server versions have fixed this bug.

78.6.3 CONNECT

CONNECT is an important network maintenance command that orders
a server to attempt to connect to another server, provided that the other
one isn't currently linked to it and that both servers have a valid entry
for each other in the C: and N: lines of their configuration files.

The command can go two ways, depending on whether the opera-
tor is instructing his or her own server or a remote server to initiate a
connection. In order to make the local server connect to another one,
use the following:

/connect <other.server> <port>

To connect two remote servers, one of them must be visible from the
operator's server and one not linked at the time you issue the
CONNECT command. For example, if server A is visible to you, while
server B is missing, issue the following command:

/connect <server.B> <port> <server.A>

You must always specify a port number. CONNECT fails if you don't use one
Notice that the server to connect always goes first, followed by the port number on
which server A is instructed to make the connection. Always put the server you
can't see first.

Use CONNECT with caution under bad network conditions, since lag
can cause network errors and new splits. It is wiser to let the servers'
autoconnect feature restore the link unless you know exactly what
you're doing. In many cases, it is also better to let a server that's having
problems chill out for a while before reconnecting it.

18.6.4 SQUIT
SQUIT (Server QUIT) is another network maintenance command to
use with extreme caution, since inappropriate use can throw a network
into chaos, particularly if the situation is already fragile due to high
server loads or a number of unstable links. It instructs the uplink of the
server you're SQUITting (as seen from the side of the server where the
SQUIT originates) to drop the link, thus disconnecting that server and
anything linked behind it.

If you SQUIT your own uplink, your server disconnects from the
network. If you have other servers behind you, they follow. SQUIT is
basically a way to create a net split artificially. You should only use it on a
link that is really not working or is heavily lagged, with no recovery in
sight. Even then, use it carefully, preferably consulting operators on
other parts of the network on how to restore the imminent split. The
golden rules of SQUIT are:

1. Never SQUIT a working link. Simply SQUITting and reconnecting
when the links are fast and stable just because the routing isn't op
mal is questionable and often asks for trouble.

2. Never SQUIT without an alternative. When you close a link with
SQUIT, you should also have an idea of what to do to reconnect the
part you SQUITted, unless you really want the server off the netwo

At this point, I'd like to give Vegard Engen special thanks for tirelessly
drilling these rules into the minds of newer operators like myself in his
capacity as Norwegian IRCnet coordinator and wise old man of IRC.
(Never mind the fact that he's actually younger than I am!)

SQUIT is indicated in the case of a visibly compromised (hacked)
server. In this case, if its true operators are not present or can't deal with
the problem, the intruder may also be able to reconnect the server and
use it for destructive purposes, in which case you or someone with access
to a hub server may be forced to Jupiter it.

78.6.5 DIE

As the term indicates, DIE is a very powerful command. Never use it
lightly. What it does, very simply, is shut down the server. Many server
administrators have the command disabled and will allow server shut-
down only from the machine itself.

Use DIE to shut down a server only if:

• The server or the machine it's on has been compromised (hacked)
and is in danger of disrupting the network. Unless you can pinpoint
the problem and eliminate it immediately, this might not prevent
the intruder from restarting it.

• Its network connection is currently nonfunctional and your server
could become a source of abuse (collisions, takeovers, and so
forth). In this case you may wish to prevent it from becoming a lia-
bility to the network and restart it once its link is restored. A
(preferred) alternative is leaving the server up and commenting out
(temporarily suspending) the part of the configuration that makes
it autoconnect.

Don't use this command except in a dire emergency or a controlled
maintenance situation, when it's preferable to shut down the server
from the machine. If you really don't want the server to come to life
again for a while, you should also disable its watchdog script, or it will
restart in a short while. If you don't have the access to do that, DIE
might not be a good idea. On DALnet, an operator may have to use a
special password along with the command, as specified in the X: line.

18.6.6 RESTART

RESTART forces the server to die and restarts the ircd process immedi-
ately. Use it only in a real emergency situation, where all other attempts to
correct a failing server's behavior have lead to nothing. It's useful in cases
where the stress of serving a large number of users for too long has finally

taken its toll on the machine (consuming excessive resources and slow-
ing it down), or the ircd itself has presented a bug for which there is no
immediate workaround. In the latter case, restarting the server might fix
it temporarily, but a bug is a bug and will probably come back. It's better
to let the admin restart the server from the machine itself, but RESTART
is acceptable if the server seems to be about to kick the bucket anyway.
Rather than letting it proceed toward an inevitable crash, a controlled
RESTART is an option if you expect it to do away with the problem. Like
DIE, RESTART may require a password on some servers.

78.6.7 STATS

Certain server stats called up with the STATS command may be avail-
able only to operators. Which of these stats are privileged depends on
compile time options. On some servers all main stats are visible to users,
while on others most are visible to opers only.

The type of stats an oper can access is even more varied than the
regular set users can see. Consult the ircd's documentation or play
around a bit to find out which STATS command shows what.

78.6.8 TRACE

The TRACE command shows an operator all the server's connections,
including invisible users. Some server versions permit this for remote
operators too, thus making all users on all servers visible to a global
operator. Other servers disable this to give a user more privacy by
removing this possibility from the remote opers' powers. Regular users
can employ this command as well, but its use is often restricted.

16.6.9 REHASH

A server maintenance command, REHASH forces the server to reread
its configuration file. It also prompts the server to establish links with
servers to which it's configured to autoconnect if these aren't linked at
the time. Watching the server closely when REHASHing may help detect
faults in the configuration. If you're running DALnet ircd, a periodic
REHASH is a good idea. This ircd's performance tends to drop a bit
while it's running, and the occasional REHASH gives it a new lease on
life or at least acts like an electronic cattle prod and subdues it tem-
porarily.

REHASH usually follows a change in the configuration, although
it's equally possible to do this from the machine itself after editing the
configuration file. To do this, send the ircd a SIGHUP, assuming the
ircd directory is your current working directory:

$ kill -HUP 'cat ircd.picT

You can also look for the process id with the ps command and
kill -HUP <pid>.

On some servers REHASH can also undo temporary changes to the
configuration, which someone might have added with special
commands particular to that type of server—for example, temporary K:
lines. Some commands are intended to allow such configuration
changes from an online oper without making the oper do them inter-
nally from the machine.

A REHASH is the first step in the four-step problem-solving
sequence—the four R's: REHASH, restart, recompile, and if all else fails,
reboot. Sometimes you'll do all the above, but not always in that order.
The fifth R is only for extreme cases—take the machine apart, poke at
the components, and reassemble it (a six-pack is optional—this is thirsty
work). Welcome to the reality of systems administration.

78.6.70 DEOP
This command, quite simply, removes oper status. Since it's a user
mode, you see the corresponding mode change:

/deop
*** Mode change "-o" for user hotshot by hotshot

Setting user mode -o has the same effect.

BitchX uses DEOP as a channel operator command. With this client, and with
scripts that take over DEOP, you have to override the client's nonstandard use of
this command. BitchX has replaced it with DEOPER. In other cases you can per-
form the -o umode change, /quote deop or //deop, depending on the client.

18.7 Monitoring a Server

This is easier said than done. Not only does the type and amount of
information available vary wildly from ircd to ircd, but the way it is pre-
sented and accessed changes too. Let's start with the logs. Most ircds
write to several files in the ircd directory. Exactly which files these are
depends on the ircd, but rejects.log, users.log, and opers.log are the
most common ones. Some ircds let you change the file names during
the configuration. The first file contains information about every single
rejected client connection; the second logs the successful connections,
quits, and duration of each connection; and the third contains informa-

tion about oper activity. If you have a really small server, none of these is
of much importance, since you can easily keep track of events from an
opered client. However, on a larger server you need to consult these if
you are tracking a particular event. I don't expect you to see anything
like the 200MB weekly rejects files I've run across, but that shows just
how big these files can get on a large client server.

With an opered client, the way you can monitor your server
depends entirely on the ircd. Hybridand ircu offer more in terms of
monitoring capabilities, while DALnet ircd isn't quite as helpful. You
can see information on these three ircds by setting certain user modes,
mainly umode s. Additional umodes can increase the amount and type
of messages. You can view some without umode s using an extra set of
umodes, each of which shows only certain types of server notices.

IRCnet ircd, in this aspect, is a different animal altogether. A set of
local channels has abolished and replaced umode s; we'll refer to these
as &CHANNELS (to distinguish them from regular local &channels).
Depending on the type of server notices you wish to monitor, you'll join
one of these &CHANNELS rather than setting a umode. For example,
you can see servers connecting and disconnecting from the network in
&SERVERS, while operator and server kills get sent to &KILLS.
&CHANNELS have modes q and a set. This makes them "quiet" (only
the server can send messages to them) and anonymous (nobody can see
other users on the channel).

This concerns notices about the server's operation. If you for some
reason would like to monitor your users' actions, such as connections,
nick changes, LINKS requests, and so forth, there's a different way to do
it for each ircd. Hybrid has the advantage in this case—it's capable of
displaying much more information about user actions than other ircds.
DALnet lets you watch user connects and disconnects with umode c and
clients flooding off with umode f, but that's about it. You can monitor a
few more events through an oper service such as OperServ. IRCnet ircd
supports absolutely no monitoring of user connections or actions—if
you want such features, the Sc or PI patch series will provide some. Ircu
offers regular monitoring functions you would expect it to have, and you
can also configure it to allow operators to peek inside secret channels.

18.8 The Price of Power

Being an IRC operator, inevitably places you in a position of power and
responsibility. How you conduct yourself in your capacity as an IRC
operator reflects not only on yourself, but on your server and the net-
work as a whole. Nothing can give a server or network a bad name as fast
as an irresponsible, power-tripping oper. Others will forgive incompe-
tence—they'll laugh at you a few times for your blunders, but eventually

forget them (that doesn't include K: lining *@* by mistake—that will
follow you around forever, as some friends of mine can testify). Misusing
your O: line for personal power trips brands you as a lamer for longer
than you care to know, even if your admin doesn't fire you. Bear with
me—I don't often get the opportunity to preach.

I8.fi. 7 Channels
Depending on the network, you may have more or fewer powers over
channels. Use them wisely. You're a server operator. Your job is to run
the server and keep the network in one piece. Your job is not to run
other people's channels for them, especially when they don't want you
to. Your O: line doesn't give you the right to ignore the rules of some-
one else's channel, nor does it entitle you to special treatment.

So when do you have some authority over channels? This depends
on the network's policy, but if the network has a channel service,
chances are IRC operators run it. Users will often come to you with
problems regarding the channel service. These problems can range
from very simple—they've lost a password and have a fair guess what it
was—to complex ownership disputes that drag on for months.

DALnet is the only major network where a special class of IRC oper-
ators, the CSops, can directly exercise their judgment and provide
immediate solutions to most problems. It would be best if users never
needed a CSop, but sometimes they do. Many small networks have mod-
eled their policy on DALnet's, so it's likely you'll be doing these tasks if
you take an oper position on one of those networks.

78.8.2 IRC Cops
IRCops are not IRC cops. I've said this before, haven't I? Nevertheless,
you will confront many cases in which others expect you to enforce
rules. The policy of some networks would actually make you an IRC cop
in everything but title. Even on the major networks, I've sometimes ques-
tioned myself when telling a user there's no such thing as an IRC cop.
Let's put it this way: Cops are law enforcement officers. IRC operators
enforce a set of rules that often do not have an equivalent in legislation.
While IRC users may break both rules and laws, the IRC operator's task
is to take care of violations of the server's rules and leave crime to law
enforcement. IRCops are IRCops, cops are cops. Let it remain this way.

The amount and sort of abuse you'll encounter varies from network
to network. On all major networks, you can expect the "crime rate" to be
somewhat higher than that of the ten largest cities in the United States
put together. You'll find yourself thinking, 'Just how dumb does this
person think I am?" or "This person needs a life" at least five times a day.
Brain damaged users will provide you with endless hours of fun and

T
entertainment... not. Your problems can range from a single person
flooding someone, to an organized gang trying to take down your server
and everything within a 100-mile radius. You simply have to deal with
each instance on a case-by-case basis.

Your work gets much easier if the ircd provides preventive
measures. Hybrid ranks high in this regard, with IRCnet ircd a close sec-
ond and DALnet way at the bottom of the list. IRCnet and EFnet ircd, as
well as ircu to some extent, have added compile and configuration
options that allow an operator to detect abuse more easily and prevent
some forms altogether. DALnet ircd, on the other hand, is very poor in
such features and too dependent on services. DALnet users, however,
have more options for protecting themselves.

18.8.3 .. . And Justice for All

You have been appointed judge, jury, and executioner. Any violation of
the server's rules mean that you must decide whether sanctions are
appropriate and implement them, usually on the spot. Often you have
little or no evidence to rely upon.

You don't get many options. For fairly mild violations, you can let it
pass, warn the user, kill the problem client(s), or impose a temporary
server ban (K: line) on the offender. In more serious cases or with
repeat offenders, you may have to resort to permanent K: lines, global
K: lines (G: lines or akills), or even sanctioning an entire provider.

Users will sometimes approach you, asking you to address a prob-
lem that does not concern you in your capacity as a server operator but
rather as a higher authority. Some people just want advice on what to do
about their problem; others want you to mediate a dispute, more often
than not asking you to judge in their favor. The never-ending stream of
supplicants holds a high risk of instilling delusions of grandeur, but
that's a risk you'll have to live with—it comes with the job.

I cannot tell you what to do in each case. You have to evaluate the
evidence and dispense judgments on a case-by-case basis. It's your
choice whether to run your server like a Nazi prison camp commander,
a benevolent dictator, the village cop, a janitor, or a good manager.

18.8.4 Bots

If your server allows bots, you can skip this section. All you have to do is
weed out the abusive ones when users complain about them. But if
you're on a server where bots are forbidden, prepare yourself for lots
and lots of hot-hunting fun.

The first question you have to answer is what constitutes a bot. Is a

client a bot because of its level of automation? Is it a bot only if the

program itself is a bot program? What about borderline cases where a
regular client program like BitchX acts more or less as a bot?

There are no easy answers. The definition of a bot is entirely up to
you. If you want to use the broadest definition, you could include mIRC
file servers, detached clients, and any very idle client. You run the server,
so it's your call.

As for the second great question, how to detect bots, that's another
story. Bot scripters and coders always come up with new methods of
making the bot look like an innocent client, and it's often very hard to
detect whether a client is a bot. Needless to say, the bots that do the best
job of hiding themselves usually have something to hide.

I'm not familiar with all the advanced tips and tricks of the bot-
hunting trade becausel don't have time to spend my life chasing bots. I
employ my own method, which involves the "hunch technique." If it
looks like a bot and quacks like a bot (well, you know what I mean),
chances are it's a bot. If it doesn't complain when you kill it, so much
the better. This method has served me well, but also requires some expe-
rience. Use it carelessly and you'll have unjustly K: lined users baying for
your blood. You may be better off with traditional methods, which
include collecting evidence. I don't guarantee that my unorthodox
method will work for anyone else. Your more experienced colleagues
will gladly provide you with the tools you need to keep your bot popula-
tion in check—or at least in constant fear.

18.9 Networking

Running a server is much more interesting if you can also connect it to a
network. If you have the equipment and bandwidth to join an existing
network, give it a try—many of the smaller networks readily accept seri-
ous link requests without much fuss. They usually have an application
form on the network's main Web site, asking for information about the
candidate's equipment and the prospective admin's experience. If not,
the network's main operator channel can often help out.

It's much harder to get a major network to accept a link request.
They consider applications based on a server's hardware, often requir-
ing a dedicated machine, sufficient bandwidth (usually multiple Tl lines
are the absolute minimum), the local user base of the server's site
(meaning that the site has enough users to justify having its own server),
and the admin's and operators' experience.

On networks with a form of central administration, a committee
reviews applications and votes on them. On networks with no central
governing body, you submit applications to administrators of the hub
server you're asking for a link.

Submit linking requests to the appropriate email address and
clearly state the reasons you have for linking a server, why you wish to
link to that particular network, and a description of the resources you
can dedicate. An informal discussion with the right people before sub-
mitting your request can help, and you should familiarize yourself with
the ircd version current on that network by installing it and giving it a
test run.

Once you have permission to link, arrange the appropriate C:, N:,
and H: lines with your new uplink. Turn autoconnect off while you test
the link, in case you don't get it right the first time—it's not very conve-
nient to have a broken server autoconnect while you're trying to fix it.
Rely on your uplink admin's experience with the ircd you're running
and you'll be all right. All it takes is a bit of patience.

IRC ROBOTS

Automation was introduced to IRC
clients fairly early. The addition and

development of scripting features made
it possible to configure a client to do a

large number of things unsupervised, following
its owner's instructions. While the powerful
scripting language of the ircll client made it
capable of complex automation, more speed
and less consumption of machine resources
were both still desirable. So developers created
special programs with a minimal user interface,
capable of running in the background with
coded rather than scripted automation features.
Robot programs — already known to be fast
and efficient in other fields of Internet program-
ming— proved to be the same on IRC.

19.1 Description of a Bot

A robot—or bot, in common shorthand—is a special form of client It
runs separately in the background and it has a different user interface
than other clients. You control a bot through its configuration and by
sending commands to it from a regular IRC client. While normal clients
send data to the display for the user to see, a bot either writes its output
to a file or forwards it to a client on IRC, if so instructed. The user can't
employ a bot program as a regular client, but a client with extensive
scripting can emulate a bot. A genuine bot is a stand-alone program spe-
cially written to provide a high level of automation for tedious and
repetitive tasks or for actions requiring speedy performance.

19.2 Uses for Bots

Bots can do practically anything that requires automation. Their most
common uses are as channel management tools (see section 7.5.1).
Their fast and precise reactions make them much more efficient than
human users sending commands manually. Good channel bots can
maintain a secure and stable channel by monitoring channel events and
reacting to them after consulting an internal list of host masks and oper-
ations to accept from each.

Entertainment bots are also popular—users can configure them to
respond to messages with a funny message of their own, to send more or
less random responses, to welcome users to a channel, and so forth. A
common type of entertainment bot is the "bartender" bot, which
responds to requests for drinks and even lets you buy other people
drinks (after which it asks you to pay the tab). You'll see these bots more
often on networks with channel services, where they don't have to per-
form channel management functions as well, although many common
bots do have such additional features. On networks with no channel ser-
vice, the bartender is often also the bouncer—the same bot is both the
entertainer and the guardian of the channel.

IRC operators use other specialized robots (TCMs) to monitor
server events and, when they detect specific events they've been config-
ured to observe, inform the human operators. Less friendly bots of this
kind are also configured to use KILL if they notice a certain type of
abuse — in my opinion a questionable practice, because a KILL should
result from human judgment, not an automated procedure.

Services are essentially a type of bot with a special role on a netwo
maintaining a channel or nickname ownership database, and perform
ing management commands for those databases. Some are true
high-power bots, while others form a much more complicated system,
and the network maintains them as an integral part of it.

Since bots offer higher speed and efficiency than regular clients, it's
no wonder they're popular with abusers, too. The use of single bots for
channel takeovers and floods is not unknown, and abusers use nastier
types to generate nickname collisions intentionally. It's also possible to
network some modern bot types and use them for coordinated attacks.
The power of these "floodnets" lies in the fact that a large number of
clients can attack simultaneously, the attacker can use other peoples'
bots on the same network to attack, and these bots are generally on bet-
ter network connections than regular users' clients.

19.3 Types of Bots

As with any program, there are different kinds of bots for each type of
machine or operating system. Most bots, however, run on Unix systems
with permanent network connections and more bandwidth than the
average user's machine.

Nowadays the most widely used type of bot is Robey Pointer's
eggdrop, available for almost all types of Unix machines and 32-bit
Windows systems. This is also the only decent bot for Windows. Provided
that your Windows machine can stay connected to the network and sur-
vive a DoS attack, it will suffice, though a regular client enhanced with
scripts could probably do the job just as well on a Windows machine.
Macintosh users aren't quite as lucky—apart from the ShadowBot, the
automated cousin of ShadowIRC, there is nothing they can use. Given
that the Mac OS, although a good operating system, is not really
designed to achieve the sensational uptimes a bot needs in order to be
reliable, it's probably best that you consider a Unix solution anyway.

As Unix is the predominant operating system for bots, it has a wide
variety of robot programs at its disposal. They range from simplistic,
often insecure ones like the vladbot or the johbot, to complex tools like
the eggdrop.

Running a Unix bot such as the eggdrop requires that you have
access to a Unix machine on which to install it. Not just any old Unix
machine will do. You want a stable machine with an equally stable net-
work connection, and you need permission to run a bot on it. Don't
take this for granted. If we're talking about an eggdrop, it's one of the
worst resource hogs around, and often makes the machine a target for
cracking and DoS attacks. Not many sysadmins appreciate seeing such a
program on their machine, and many who do tolerate it won't hesitate
to kill it off if it becomes a nuisance or an inconvenience—or even if
they just need some extra memory on the system.

19.4 Eggdrop

Although this bot is an efficient channel management tool with many
factors in its favor, it's extremely unpopular with the servers. Abusers
also favor some of its advanced features and can turn into a powerful
means of abuse, and many operators on the major networks have a
standing "shoot on sight" order for eggdrop bots.

The eggdrop supports tcl scripting—one of its main attractions. This
is a powerful platform-independent scripting language, often used in
conjunction with programs written in various programming languages
and in CGI applications on the Web. In fact, the eggdrop will not install
without tcl. If you don't have it on the system, you should get it from
http://www.scriptics.com and install it before you read further.

19.4.1 Obtaining and Installing the Eggdrop
Eggdrop source code is available at many large FTP sites such as
sunsite.unc.edu and its mirrors worldwide. I recommend checking
ftp.sodre.net in the /pub/eggdrop directory for a list of mirrors, as well
as for the latest version of the eggdrop—1.3.28 at the time of writing.

Before I say anything about installation, here's my disclaimer: You
must be able to find your way under Unix—if not to install an eggdrop,
to run it efficiently. Eggdrops are not for newbies. If you're not comfort-
able using Unix or IRC, I strongly advise against it. You must have some
basic skills and be familiar with simple security precautions, or you and
your channel may regret ever having said "eggdrop."

First of all, untar and unzip the source package. If you need instruc-
tions on how to do this, read the previous paragraph again and
reconsider. But because I'm a nice guy and not just a know-it-all, I'll tell
you that the way to do it is the same as with regular Unix clients (or
practically any Unix software package), and most of the instructions in
Chapter 4 apply here. The eggdrop author, Robey Pointer, makes it
pretty clear in the README and INSTALL files, which are the first
things you should address, that this is not for newbies. If you thought my
advice about knowing your stuff before running an eggdrop was exces-
sive, wait until you see his! These two files also contain very valuable
instructions and can troubleshoot many problems you may encounter
while trying to install the bot. Do not skip them or something very nasty
will happen to you. If you'd like to know what that is, read the files. :-)

Untar and gunzip the bot package, type ./configure and make,
maybe edit the config.h first... you know the drill. The eggdrop will
compile on almost any form of Unix without problems. Even if there are
problems, the INSTALL file usually has a solution.

19.4.2 Running the Eggdrop

A hot, though it's the most automated creature on IRC, does not run
itself. It will not guess what it's supposed to do, nor will it rise from the
ashes when it dies, unless you have told it to. The eggdrop is no excep-
tion. It may act smart but it's not intelligent. It's not even artificially
intelligent. In fact, it's downright dumb, like every other bot.

Configuring the eggdrop isn't the easiest thing in the world.
Remember one ground rule: When in doubt, it's best to err on the side
of caution. Security is the weakest point of the eggdrop, not because the
code itself is insecure, but because it's easy to make that one little mis-
take that will cost you your channel. I was really planning on going into
the subject in detail—but honestly, the great help files in the doc and
help directories of the eggdrop distribution would make anything I have
to say redundant. The eggdrop's documentation is an example I wish
more software authors would follow, even though it would put me out of
business as a writer.

Here's another word of caution that applies to other bots. Many
servers do not welcome bots. They're providing a free service, and you
have probably used it before, so in a way you owe them one. Please
respect their wishes and put your eggdrop only on servers that don't
mind bots. That's the nice way of saying it. The other way I could put it
is: "No bots. Put your bot on my server and you will die a slow, painful
death." Well, I myself am not quite that extreme, but some of my
colleagues in the IRC operator business strike terror into the artificial
heart of every robot within a five-mile radius and aren't as nice about
dealing with unwanted bot runners as I am. I'm not very nice about it,
by the way.

One last recommendation: Be very, very careful whose bots you net-
work with, if you do network your eggdrop. Give them the minimal
privileges needed and trust no one. The more a botnet grows, the more

. • ' f likely it is that the proverbial bad potato will sneak onto it. Experiment
with the bot's networking features by hooking up with a friend before
joining any large botnet—don't take it for granted that all bots there
will be friendly or that their owners will appreciate your presence.
Remember this and you'll thank me.

19.5 ComBot

The ComBot, which Chris Behrens authored, is the second most popu-
lar bot after the eggdrop. It lacks some of the eggdrop's advanced
multiuser and user list functions and is slightly less secure, but compen-
sates with speed, user friendliness, and efficiency at handling multiple
channels. The latter characteristic also makes it more economical with
network resources, since it happily handles more than one channel

without problems—so it can make better use of the connection slot it
occupies on the server. Unlike the eggdrop, it cannot network with
other bots. That could make it inconvenient if you want to run a chan-
nel's bots as a group, but does mean others consider a ComBot less of a
threat, since most serious abuse comes from networked eggdrops.

ComBot is what's known as a C-bot (like the eggdrop), in that it's
written in the C programming language. Although it is possible to run a
ComBot without any knowledge of C, I highly recommend a fairly good
mastery of it, since you may have to tweak some code.

After you've unzipped and untarred the ComBot file, you should set
it up so that you, the bot owner, have access to it in IRC. Do so prior to
compiling, since the bot will use the current user list (Combot.lists)
upon execution. If you're not in the list to begin with, you won't have
access to the bot to make changes. Open the Combot.lists file in a text
editor such as pico or vi and add your address to the user list.

Follow the suggestions in section 10.7.4, when entering addresses in
the bot's list. If you have a dynamic IP, you need to use an asterisk (*) in
place of the part of your address that changes, but try to use as much of
your host mask as possible without wild cards. I also strongly
recommend a password, but since passwords are encrypted in the file
and therefore unreadable, set your own after the bot is running on IRC.
You will likely find a lot of other users listed in the Combot.lists file. You
should delete these so unknown users won't have access to the bot.

I also recommend printing out the file Bot.Help and reading it
carefully. If you're going to run a bot, you should know exactly how, and
the help file is the place to start. Take your time—read all the bot's files
carefully and thoroughly. No bot can protect a channel if the owner
doesn't know how it works. When you're confident that you are ready
and have edited the files to suit your needs, you can compile and run
the bot. This is an extremely simple process: Enter the bot's main direc-
tory and type make at the shell prompt.

Once you've successfully compiled it, you have an executable
ComBot file. Simply type ./ComBot at the shell prompt to start the bot
process on IRC. With luck, the bot will be on IRC, in the specified chan-
nel, when you get there yourself. Good configuration and a careful
setup should make reliance on luck unnecessary, though.This more or
less concludes the technical part of the book. In the next chapter (and
the last of the book), some very useful information combined with some
opinionated ramblings will, I hope, leave you with few unanswered ques-
tions on the subject of IRC.

THE SOAPBOX AND MORE

Partly because IRC is part of the
Internet, partly because it's an inter-

national real-time communication sys-
tem of potentially vast proportions, when

you are on IRC, a variety of issues confront you
regarding morals, the law, security, and many
other small or large points. The rest of this
book has addressed most of them in detail, but
some I've touched on only briefly.

I'll try to shed some light on some of the more interesting or con-
troversial issues I haven't previously covered. I base everything here on
personal observations, and I don't claim that the rest of the IRC commu-
nity shares my opinions, but I do believe many may agree with my
views—even the more radical ones.

20.1 The Users of IRC

The social background of the people on IRC is very mixed, and varies
depending on their location and the technological level of each area. In
relatively affluent societies where modern computing technology has
reached people's homes, as is the case in North America, northern and
western Europe, Japan, and Australia, people of lower education or
income have access to the Internet. In low-tech or poorer regions such
as eastern Europe or Latin America, generally only students and people
at higher income levels have access. This does have some impact on the
IRC population, but there is no typical IRC user. Although some ages,
nationalities, or professional groups may be more common, people
from every walk of life all over the world use IRC.

Two kinds of people who find IRC particularly appealing and repre-
sent a fair proportion in the population are people with a multicultural
or multinational background and expatriates. With IRC everywhere, it's
an ideal and cheap way to stay in contact with all aspects of your national
background, get news from home, talk in a native language, learn more
about a neglected part of your heritage, and renew your ties to a place
or culture. Often these people, upon returning to a less developed
homeland or area, bring the Internet and IRC with them. Racism and
bigotry are not common in the open world of IRC, though disputes do
sometimes spill over from real-life politics. In general, though, people of
the most varied national backgrounds coexist and communicate in a way
that should provide a lesson for the powers that be.

I don't pretend to be a sociologist, but I do find the sociology of
IRC interesting. IRC, in my opinion, should be regarded as a real soci-
ety. The stereotyped long-haired hacker who lives on beer and pizza and
spends most of his waking hours in front of a computer is not the exclu-
sive inhabitant of this domain. All kinds of people are on IRC. As the
diversity of its population increases, the face of this society changes. I
could go on in my amateur way, but others more qualified have analyzed
the sociological aspects of IRC. One of these efforts is Elizabeth Reid's
impressive "Electropolis: Communication and Community on Internet
Relay Chat" thesis. Although written in 1991, it remains strikingly accu-
rate—I highly recommend it. You can find it at http://people.we.
mediaone.net/elizrs/work.html.

20.2 Privacy and Anonymity

One point that has occupied the thoughts of many users in the past, and
will continue to do so, is the question of how private those "private" mes-
sages really are, and how real their anonymity is.

Messages on IRC are just about as private and secure as anything
else on the Internet—that is, essentially insecure. A message can be
intercepted and read at any point of its route. Before we get all paranoid
about it, instances of such listening in are rare, and the weak points are
the users' own machines and their connection to their ISP rather than
the server network.

Rules regarding the privacy of users' messages on IRC are strict, and
any responsible person acts upon reports of their violation. The most
characteristic case is that of a server admin who got caught listening in
on users' messages a few years ago—this person lost his admin status and
will probably never be an operator again. While it's technically possible
to rig a server to eavesdrop on private messages, the network acts fast
and decisively upon any evidence of such events. The end user's machine
often proves to be the least secure of all machines involved, since the
level of security on IRC server machines is generally very high.

If you want to have a higher degree of security for personal real-time
communication, DCC is a fair choice since it bypasses the server network.
Still, I may not be wrong in presuming that private conversation on IRC
is more secure than the telephone system. Using encryption is the best
option, but it is not widely available for IRC clients, and the related soft-
ware is subject to import, export, and use limitations in many countries.

Anonymity is even more of an illusion when it comes to dealing with
abuse. Your ISP's records show the times you were on and possibly where
you connected to. Under certain circumstances, the law may require its
cooperation in identifying you. If you're accused of illegal or abusive
activities, various agencies can consult these records, so you are almost
always traceable.

For more information about online privacy issues, I recommend the
Electronic Privacy Information Center's Web site at http://www.epic.org/.

20.3 Censorship

It's hard to be objective on a subject where you have a fixed stance that's
not open for discussion, so I won't pretend to be objective. I base parts
of this section on my personal, subjective views, and I do not expect you
to share them, though I would be pleased if you did. Humor me.

The United States is the country with the most influence on the
Internet, so attempts to pass controversial Internet legislation in the
United States are bound to receive a lot of attention. The downfall of
the Communications Decency Act was a relief—but, however brief, its
ephemeral success generated much discussion and alarm and some of
its provisions actually remain in effect. Its successor, the Child Online
Protection Act, will probably share its fate when it reaches the U.S.
Supreme Court. Don't let the sugar-coated name mislead you—it's about

restricting access to content on the Internet. Still, I'm not taking any
bets about its success or failure.

As far as I'm concerned, claims of protecting the public from evil
influences are a shaky pretense. Nobody is forced to use the Internet.
Nobody on the Internet has "evil" forced upon him or her just because
he or she is there (except maybe junk email). If you let your kids get
porn off the Internet, blame your parenting and not the Internet. In
short, if you don't like it, don't use it. And if you heard all this from
someone else, believe nothing. You can form your own opinion by using
the Internet yourself.

IRC is slightly different from the Internet at large because it's not
commercial and it has varying levels of authorities capable of censorship
within strict limits. First there are the channel operators—the first form
of authority you'll meet on IRC. Channel ops have absolute control over
a channel and may exercise censorship over its contents at their discre-
tion. Anyone who disagrees with the policy a channel op sets and
enforces is free to leave the channel; in some cases, the channel opera-
tor may require him or her to leave the channel (by means of kicks and
bans).

You can always create your own channel restricted to those who
agree with you. As in real human society, you could do this quite easily
when the world was less crowded—although those who chose to create
such a society usually ended up in an inhospitable environment that no
one else wanted. On IRC there is no such thing as a desert, and you can-
not be sent to Siberia. If you don't like the IRC world as it is, you're free
to create your own lush, green paradise, which will be as good as you
make it.

IRC networks and servers offer their services free of charge. There-
fore, they may allow or forbid whatever they please, permit anyone they
like to use it, and close it down whenever they fancy. If they wish to censor
the contents of a channel, its name, or its topic as part of their policy,
they may do so. After all, those networks that do reserve the right of cen-
sorship make it clear in their Message of the Day. You aren't paying for
their service: it's their right to tell you what you can use it for. Again,
you're free to leave if you don't like it.

On the major networks, no form of censorship exists. Whether users
and operators agree or disagree with a point of view, a philosophy, a life-
style, or whatever else is immaterial. Freedom of speech is paramount.
People might disagree with what you say, but they can't keep you from
opening your own forum of advocacy, and they will get into trouble for
trying to. This policy goes for everyone.

20.4 IRC Addiction

On a more objective and scientific note, online addiction (OLA), also
known as Internet addiction disorder (IAD), has already become a subject
of psychiatric study, otherwise there wouldn't already be several TLAs
(Three-Letter Acronyms) for it. Along with the growing number of people
using the Internet, the number of those who are more or less hooked is
also rising. People have become so entangled in the Web that they rarely
return to the outside world and they spend endless hours browsing.
Although "Web-oholism" is the most well-known form of addiction, getting
hooked on chat lines (be it an ISP's internal system, such as an AOL chat
room, or an open forum like IRC) can have an equally destructive effect
on a person's social, personal, family, and financial life. It's no less severe
than other known kinds of addiction—drugs, alcohol, gambling, and so
forth. People have neglected their jobs, their families, and their friends
in order to spend as much time as possible—sometimes every waking
hour—on IRC.

Apart from the many humorous quips that start, 'You have been on
IRC too long i f . . . ," when you find yourself spending a lot of time on
IRC, you should check for the following symptoms:

• "Another five minutes" become hours.

• You're late to work because of your morning IRC session.

• You log on in the morning under the pretence of checking your
email and end up on IRC.

• When returning home, you turn on the computer before anything
else and log in.

• You lose track of time on IRC.

• You speak more with people online than you do with people living
in the same house.

• You start IRCing well beyond your usual bedtime hours.

• Family and friends complain about feeling neglected because of
"the damn computer."

• You reject evenings out and social gatherings in favor of IRC.

• You get nervous and snappy if you're unable to get online.

• You tie up the phone line although you're expecting an impor-
tant call.

• You pay for your Internet access even if you can't afford it.

• You reschedule your day, giving priority to events on IRC.

• Your grades have dropped as a result of too much time online.

• You keep putting things off if they require leaving the computer.

If you're observing one or more of these symptoms, you're likely suffer-
ing from some stage of OLA. While you find IRC increasingly enjoyable,
the rest of your life goes downhill, until the consequences of neglecting
everyday things outweigh the benefits you're gaining from IRC. You feel
awful, but now you start using IRC as a means of escape. If you reach this
stage, it's serious and you should let someone drag you, if you can't drag
yourself, to a professional who's familiar with addictions.

To a large extent, it's a matter of self-discipline. Addictions often
indicate dissatisfaction with other aspects of life; you can deal with them
by working on the bad parts before the addiction takes over altogether.
So the widely used remark "Get a life!" does hold some truth, however
offensive you may find it. If your addiction is at an advanced stage,
though, or the situation is beyond your control, you usually have just
two choices: Seek professional help or stay off the Internet altogether,
canceling your account if necessary. Maybe even take both these steps.

As with any kind of addiction, you should never take it lightly or
shrug it off as a nonexistent problem. If it's having a negative or destruc-
tive effect on other parts of your life, you have to deal with it. Although
you're likely to encounter many other individuals with a similar problem
on IRC, it's a subject rarely discussed online. There is, however, a Usenet
group named alt.irc.recovery; it has little traffic but might be of help. Your
ISP may also be willing to cooperate by restricting your access to certain
hours of the day or taking away IRC. If you don't cheat by buying another
account or borrowing time from friends, that can certainly help.

Of course, I'm not a doctor, so you might like to seek a more quali-
fied opinion. I recommend the site of Dr. Kimberly S. Young, one of the
pioneers in the study of online addiction, at http://netaddiction.com/
as very informative and helpful. I'm not convinced that online therapy is

the way to go, but it's there if you want it.

20.5 Pornography on IRC

One of the more controversial issues regarding the Internet and its lack
of policing is the distribution of pornographic material. In addition to
subscriber services and nonnetworked BBSs that sell porn of all kinds,
there is a tremendous amount of it freely available to anyone who cares
to look for it. It's not quite as widespread on IRC as on the Web or
Usenet, but IRC does have its share of people engaging in the trade of
pornographic material.

On IRC, opinions are divided between those who tolerate porn and
those in favor of censoring it. Outside those networks that have a stand-
ing policy forbidding porn, moves to forbid it on other networks have
failed due to the widely shared opinion that freedom of expression must
be protected on IRC and absolutely no form of censorship should exist.
From a legal point of view, the interesting and complex question of
applying local laws to a global network or parts of it hinders the enforce-
ment of relevant laws on IRC. Can a person in Russia or Denmark be
held liable for supplying porn to a person (perhaps a minor) in the
United States? Questions such as this one await answers. While some
countries may outlaw pornography or require it to be "on the top shelf
(out of public sight), the legislation of others may permit its free distrib-
ution to anyone of legal age. This age is another variable factor.

One aspect, though, deserves closer attention and can have many
legal implications. Child pornography, known as "kiddie porn" on IRC,
is illegal in just about every country on Earth and generally available
only on specialized channels, since the mainstream pornography chan-
nels refuse to be associated with it and forbid it. The system tolerates the
presence of such pornography because of the rules defining the network
and its servers as an unmoderated medium and forbidding any kind of
censorship. But child porn remains illegal and those engaging in this
trade are subject to investigation by domestic or international agencies,
including the FBI and Interpol.

Many people encountering child pornography on IRC find its tolerance
puzzling. Channels with names like #! !9yroldsex or #!! ipreteenpix are in
public view—why is nothing done about them?

Server operators and administrators are not law enforcement officers.
The fact that a channel has a suspicious name is not proof, and no oper-
ator is willing to risk criminal liability by downloading pictures just to see
whether they are what the channel name implies. Of course, they lack
the means and the authority to apprehend people who actually are trad-
ing in child pornography. The final reason is that blundering crusaders
are just what real law enforcement agencies need least. Scaring the sus-
pects off can easily blow an ongoing online police operation. In some
cases, the law has used IRC evidence to convict child pornographers not
only of distributing child pornography, but also of rape, incest, and a host

of related crimes. You may not see the law enforcement officials, but
they are aware of the Internet.

Still, if you want to take action, you can inform your local authorities.
Many countries now have special computer squads capable of dealing
with crime involving computers. Site administrators are generally very
cooperative since their reputation may be at stake, even if they cannot
be held liable for their users' actions. (The issue is currently under
review by German and English courts, at least; in some cases, Internet
service providers were held liable for their users' actions.) If you think
you should strike a blow, contact the police or whatever agency is respon-
sible for child abuse in your country. In the United States, you can call
the National Center for Missing and Exploited Children at 800-843-5678
or check http://www.fbi.gov/ for a list of field offices. You can find more
information at the Customs Service's Web site (http://www.customs.
ustreas.gov/enforce/childprn.htm). In Canada, the RCMP advise that
you contact the local RCMP detachment or the police, as well as the
ISP concerned.

20.6 IRC and Software Piracy

Another case of illegal activity on IRC is the trade of pirated software.
"Warez" channels, numerous on IRC, are as hard to keep in check as
pornography channels.

Warez traders are a rather motley bunch, with a form of caste system
depending on the hacking or cracking skills of individual traders and
the quantity and quality of the items they trade. They may be anything
from experienced software pirates to amateurs who just don't believe in
paying for software. The best of the bunch make a point of staying
inconspicuous, and conduct their business mostly in private. The less
likeable wannabe or "warez pup" waves a banner far and wide and
engages in dubious activities, usually involving an attempt to display
machismo by harassing someone or attacking servers.

While pirating software obviously violates international copyright law,
in most cases local law enforcement lacks the knowledge or means to
identify and apprehend the traders. If the computer systems involved are
in different countries or an individual uses machines outside his country
of residence, the problem is even more complex. However, even the most
elaborate cover-up is sometimes not sufficient, and in many places legis-
lation against software piracy has become stricter and enforcement
better as a result of more pressure from the software industry. Warez
traders are not immune to the legal consequences of their actions, even
though they may be smart enough to evade authorities for a long time.

Penalties for possession of pirated software range from fines and
confiscation of computing equipment to prison terms. Legally, the
buyer is as liable as the seller.

20.7 Kids on IRC

With the Internet in schools and homes, many more children have
access to IRC than in the past. Although I've seen plenty of youngsters
on IRC behaving more maturely than the adults, a degree of care is in
order. IRC is basically an adult environment and not necessarily suitable
for kids. Altogether, it's a touchy subject, since every opinion voiced
clashes with someone's pedagogical ideas.

To some extent a child's behavior depends on how he or she got
onto IRC—if the parents forbid it, they can expect kids to sneak online
and get up to mischief. We've all been kids—we know how it happens.
Once you forbid it—and I challenge you to find a reason a child will
accept for not being allowed on the Internet—its attraction becomes
even greater. In any case, the younger generation tends to have a strong
interest in networked computers and devices with many buttons.
Besides, you can expect children to outsmart you when you try to keep
them out—today's kids tend to know 10 times more about computers
than their parents. If you really want them off, physically lock the
computer.

Treating the matter more openly gives you a better chance of keep-
ing your children out of trouble. You should take the time to check
things out yourself and choose the places you think are suitable. Super-
vised sessions are not a bad idea, either—they can be educational and
entertaining for both parties.

However, don't use the Internet like television. If you don't have
enough time to spend with your kids or want to "keep them quiet," send-
ing them off to the computer is effective but far from safe. Of course,
seeing what gets labeled as "children's programs" on TV, I'm not sure
the Internet isn't preferable. If you don't let your child use the Internet
or IRC based on the reports that it's full of "unsuitable material," you
have other options.

First of all, "unsuitable material" may be widely available, but it
doesn't magically appear on your hard disk—you have to look for it and
download it. A growing number of programs can screen inbound traffic,
with a varying degree of efficiency. The problem is that too rigorous
screening often blocks perfectly harmless or useful material (one
instance reported in Utah blocked access to the Quakers' website—I'd
be curious to see what was deemed "unsuitable"), while too lax rules
allow much of the forbidden stuff to get through. The conventions these
programs use for filtering incoming material are often so ridiculous that

whole normal words and phrases get swallowed by mistake. The bottom
line here is: If you can't trust your kids to follow a reasonable set of
rules, don't let them online.

One more point to consider is that children should not use a net-
worked computer in unsupervised groups, since peer pressure can
strongly affect their behavior. They're much more likely to get up to
mischief if they're feeding each other ideas or challenging each other
to do the forbidden.

Children are as much at risk as adults regarding online addiction.
If your son or daughter starts displaying signs of such addiction, you
should act fast and decisively by curbing the amount of time spent on
the Internet. Granted, there'll be a fight, but you must stop this trend
before it becomes serious. Teenagers with feelings of personal inad-
equacy, a limited social life, or problems at school are at higher risk.
They can gain much in terms of sociability and self-esteem by joining
the IRC community—I'd even recommend it for this reason—but caution
is necessary.

I would also advise great care regarding the "kid" or "teen" channels
on the major networks. Although they're popular and give kids a chance
to meet people their age from all over the world, these channels are often
worse than real life. They can be highly antagonistic and lead to regular
dogfights involving the use of every modern network abuse tool—not a
very suitable environment for learning to get along with people.

Another potential hazard is that pedophiles frequent and infiltrate
some of these channels. This doesn't mean any such channel is a war-
zone or a nest of pedophilic excess. There are a number of quite good
teen channels, especially on the smaller networks, which have all the
advantages of IRC without the drawbacks. Along with those networks
that have a standing policy forbidding inappropriate channels or con-
tents, Kidlink IRC, KidsWorld, and the ScoutNet network are good
places for your kids to meet people their own age under the discreet
supervision of knowledgeable adults.

IRC is basically an adult world, but that doesn't mean you should
keep kids off it at all costs. Everyone can benefit from meeting people
and cultural exchange, and it's a good way to introduce a young person
to the world of online communication. Of course, within a week they 11
probably know more than you ever will, but that's the way it goes.

20.8 In Conclusion

Despite all its problems, I love IRC. I have gained much from being on
it. Although it has its downsides, overall I've found it a positive and en-
riching experience.

The friends I've gained all over the world; the endless hours of seri-
ous discussion and chat; a better understanding of other people, places,
and cultures; not to mention my marriage to a fellow IRC addict—all
these have left their mark on me. I must admit I've been hooked on IRC
since I first stumbled across it, and I have spent some time as an IRC
junkie and antisocial troglodyte (just what I was warning you about ear-
lier in this chapter). That has come and gone now, and I can look back
and laugh even at the bad times. Yeah, I did go and get a life in the end,
but IRC remains part of mine, and it can be part of yours, too.

My final recommended reading item is Ove Ruben Olsen's "The Tao
of Internet Relay Chat," which you'll find at http://apatrix.asu.net/irc/
docs/tao. To quote from it, "If the Tao is great, then the IRC is running
ceaselessly." Let it be so. IRC is good. I hope this book has helped make
it good for you, too.

See you online!

NETWORK AND SERVER LISTS

A.1 Table of Networks

The following table lists all the principal networks and the more inter-
esting smaller ones. The letters in the Type column are as follows:
G=General chat, R=Regional, S=Special interest, K=Kids. F stands for
Family networks, for lack of a better description; these are general chat
networks that pay extra attention to providing an environment suitable
for the whole family.

The number of servers that a network has is far from steady, so
many of these numbers listed are the approximate number of a
network's servers.

Distribution is the geographical distribution of a network's servers
and users—basically, which part of the world you're more likely to find
people from on that network.

The Port column indicates on which port you can expect the servers
for this network to listen. The three columns before the last indicate the
availability of special services with a + (available) or - (not available).

The CS column lists Channel Services for the registration and main-
tenance of channels, NS denotes Nickname Services for registering
nicknames, and MS signifies Memo or Note Services with which to send
other users notes while they are away. These services do not necessarily

follow the Chan/Nick/MemoServ naming convention; you should
check on a specific network to see whether this is the case.

The final column lists one or more channels on the network where
you can find online help. Some are not dedicated help channels but
places where you can generally find someone to lend a hand or point
you in the right direction. Many more IRC networks and information
about them can be found at http://www.irchelp.org/networks/nets/.

Name

EFnet

IRCnet

DALnet

Undernet

TalkCity

MSN

Galaxy Net

WebNet

ChatNet

BRASnet

Oz.Org

ChatNet

AustNet

QuakeNET

PTnet

RedeBrasil

IRC-Hispano

StarChat

TrlrcNet

GRnet

ZAnet

Open Projects

SuperChat

KidsWorld

Type

G

G

G

G

G

G

G

G

G
R

R

G

G

S

R

R

R

F

R

R

R

NetS

F

K

Servers

50

140

35

45

15

5

35

20

20

70

5

15

20

10
2

20

20

15

5

20

11

30

6

6

Distribution

Worldwide

Worldwide

Worldwide

Worldwide

N.America

N.America

Worldwide

Worldwide

Worldwide

Brazil

Australia

N.America

Worldwide

Europe

Portugal

Brazil

Spain

Worldwide

Turkey

Greece

S.Africa

Worldwide

N.America

U.K., U.S.

Port

6667

6667

7000

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

6667

CS NS MS Users

- - 35000-60000

+ 25000-55000

+ + + 25000-50000

+ - - 25000-45000

+ + - 5000-25000

5000-20000*

+ + + 3000-8000

+ + + 3000-6000

+ + - 1500-2500

+ + + 1000-9000

+ - - 1000-3500

+ - 1000-2500

+ + + 800-3000

700-1500

+ + + 500-5000

+ + + 500-2500

+ - - 500-4000

+ + + 400-1200

+ + + 300-1200

+ + + 250-1000

+ + + 200-1000

+ + + 200-400

+ + - 100-500

+ - - 50-200

Help channels

#irchelp,#mirchelp,
#help

#irchelp,#mirc

#dalnethelp,#irchdp
#help

#new2falkcity,

#tchelp

#helpdesk

#ircsolutions,

#irchelp

#webnet-help

#irchelp, #beginner

#ajuda

#help

#help

#help,#mirc

-
#beginner

#beginner

#ayuda_irc

#help
#help,#beginner

#help

#beginner

-
#superchat

#adminland

' Inconsistent count displayed

A.2 Servers and More Networks

And now for a bit more detail: In order to get onto any network, you
need a server name. Programs like mIRC and ircle are very helpful in
providing decent server lists for your immediate needs, but what hap-
pens if you want to meet someone on an obscure server not to be found
on any list? What if your client doesn't come with a list?

Networks are listed below in alphabetical order. Server names in
bold type denotes a round robin address—that is, it cycles through a pool
of server addresses in order to distribute the users evenly among servers.
Some of them only point to one server now, but may add more servers
to the pool later. A port number is listed only if the network does not use
6667 as its default port number.

Servers come and go all the time, some even change networks—
, there's no guarantee that these addresses will be valid tomorrow, but

I've listed the more stable ones. Those listings in bold type are "Recom-
mended"— these are small networks that I recommend if you're confused
by all this variety and want something to start out with. (The matching
deposits in my Swiss bank account are purely coincidental.)

Fairly up-to-date server lists can be found on the Web at http://www.
irchelp.org/networks/servers/ and http://chatcircuit.com/webzine/
techarea/servers/saintcc.htm. As time passes, networks may disappear,
more will come into existence, and some servers will change. These two
Web pages will serve you well if the data on this list no longer work.

Name Comments Servers

AfterNet

AlternativeNet

AmigaNet

AMnet

Ancients

AustNet

BDSMnet

BeyondlRC

BraslRC

BRASnet

Castlenet

ChatNet

ChatPR

DALnet

DifferentNet

Dominion

Amiga computers

BDSM

Brazilian

Brazilian

Puerto Rican

Sci-fi

irc.afternet.org
irc.alternativenet.org
irc.amiganet.org
irc.amnet.org
irc.ancients.net
us.austnet.org (US), au.austnet.org (Australia)
sg.austnet.org (Singapore), nz.austnet.org (New Zealand)
irc.bondage.com, irc.handcuff.com

irc.beyondirc.net
irc.brasirc.com.br

irc.brasnet.org
irc.castlenet.org
irc.chatnet.org
irc.chatpr.org
irc.dal.net, irc.eu.dal.net (Europe)
irc.different.net
irc.scifi.net

Name Comments Servers

DudiNet

duh-net

EdNet

EFnet

EICN

EqNet

Espernet

FDFnet

FEFnet

FireStar

Galaxy Net

Dutch

Equestrian

Popular with Asian users

GammaNet

GRnet

Gumtree

HanlRC

IceNet

IIGS

IRCity

IRC-Hispano

IRCnet

-

Greek

Australian

Hangul Korean

-

Genealogy

Italian

Spanish
-

JellyBelly Net

KidLink IRC

KidsWorld

KnightNet

KreyNet

LagNet

LinPeople

Millenia

MSN

MTV

Mystical Net

Netlink-IRC

NewNet

NightStar

Open Projects Net

Othernet

Oz.Org

PhishyNet

PTnet

Registration required

Port 5555

South African

Linux support

Microsoft Chat

Yack Live

Recommended

Open source forum

Australian

Recommended

Portuguese

irc.dudi.org
irc.duh-net.org
ire.underworld.net
irc.ais.net (Illinois), irc.idle.net (California), irc.c-com.net (Texas),

irc.psinet.com (Virginia), efnet.sto.telia.se (Sweden), ire.magic.ca

(Manitoba), efnet.demon.co.uk (UK), efnet.telstra.net.au (Australia)

irc.earthint.net
irc.quintex.com

irc.esper.net
irc.fdf.net
irc.fef.net
irc.firestar.org
irc.galaxynet.org, sg.galaxynet.org (Singapore),
au.galaxynet.org (Australia)
irc.gamma.net
nana.irc.gr, thales.irc.gr

irc.gumtree.org
irc.hanirc.org, gauss.tower.wayne.edu

irc.icenet.org
irc.iigs.org

irc.ircity.org

irc.arrakis.es

irc.webbernet.net (Michigan), irc.stealth.net (New York),

us.ircnet.org (US), chat.bt.net (UK), irc.funet.fi (Finland),

au.ircnet.org (Australia)
irc.iellybelly.net

see http://www.kidlink.org/

us.kidsworld.org (US), notts.uk.eu.kidsworld.org (UK)

irc.knightnet.net
irc.track.nl, ircd.vip.fi

ire.lagnet.org.za
see Open Projects Net

irc.millenia.org
irc.msn.com

irc.mtv.com

irc.mystical.net
irc.netlink-irc.org

irc.newnet.net, eu.newnet.net (Europe)
irc.nightstar.net
irc.openprojects.net
irc.othernet.org
mpx.oz.org, wollongong.oz.org

irc.phishy.net
irc.rccn.net, irc.telepac.pt

1

Name

QuakeNET
RedeBrasil

RinduNET

RusNet

SandNet.net

SandNet.org

ScoutLink

Shadowfire

SorceryNet

StarChat

StarLink

StarLink-IRC

Stomped.com

Stonernet

SuperChat

Support-Group

SurNet

TalkCity

TrlrcNet

Undernet

UniBG

UnionLatina

Valhall.net

WarpedNet

WebNet

Wolfnet-IRC

WorldlRC

XNet

XWorld

ZAnet

ZUH.net

ZW-IRC

Comments

Quake (the game)

Brazilian

Malaysian

Russian/Ukrainian

Scouting

:

Port 9000

Recommended

-

-

Games, Quake

"Legalize it"

-

Health/personal

Argentinian

WebTV default

Turkish

-

Bulgarian

Spanish/Latin American

-

-

'

-

-

-

South African

Recommended

Zimbabwean

Servers

irc.quakenet.eu.org

redebrasil.ebt.elogica.com.br, irc.redebrasil.rec.br

irc.rindu.net, irc.my-linux.org

rusnet.portal.ru (Russia), irc.lucky.net (Ukraine), irc.crocodile.org (US)

irc.sandnet.net

irc.sandnet.org

utah.us.scoutlink.org (US), zeist.nl.scoutlink.org (Netherlands)

irc.shadowfire.org

irc.sorcery.net

irc.starchat.net, polaris.starchat.net

irc.starlink.org

irc.starlink-irc.org

irc.stomped.com

stonernet.org

irc.superchat.org

discussionssupport-group.com

irc.sur.net

chat.talkcity.com

irc.raks.net.tr

us.undernet.org (US), eu.undernet.org (Europe)

irc.gocis.bg, irc.acad.bg

irc.lander.es (Spain), ire. terranet.com. ar (Argentina)

irc.valhall.net, irc.c64.org

irc.warped.net

irc.webchat.org

irc.wolfnet-irc.org

irc.worldirc.org

us.xnet.org (US), ca.xnet.org (Canada), au.xnet.org

(Europe), au.xnet.org (Australia)

irc.xworld.org

gaspode. zanet.org. za, irc.ru.ac.za

irc.zuh.net

ire. samara. co. zw

TERMINOLOGY

Special thanks to Josh Rollyson for helping compile this shortjargonbuster.

/help The first thing you should try. :)

31337 See elite.

42 The Answer to the Ultimate Question about Life, the Universe, and
Everything (seeHHGTTG).

action A line of text formatted in a specific manner through the use of
the ME command (for example, Nickname is a pink bunny as
opposed to <Nickname> is a pink bunny).

ADSL Asynchronous digital subscriber line. A high-speed Internet con-
nection currently available in limited areas only. Performance
ranges from ISDN to better than Tl speeds.

ANSI American National Standards Institute. Among other things, it sets
a standard for terminal color codes and keyboard remapping codes.
Some clients, notably BitchX and Epic, support ANSI color codes.

ASCII American Standard Code for Information Interchange. This is
the standard character set almost all computer systems rely on.

Back Orifice Remote administration tool for Windows machines,
released by the Cult of the Dead Cow hacker group. Originally used
as a Trojan horse, it has now been released as Back Orifice 2000
(BO2K) and is actually a sophisticated administration tool compara-
ble to similar programs released by Microsoft and other vendors.
Use of it as a Trojan horse, however, continues to be widespread.

ban To set the +b channel mode, preventing a user from joining a channel.

BO See Back Orifice.

BOFH Bastard Operator from Hell. Main character in Simon Travaglia's
online cult series of the same name. Often describes system admin-
istrators and IRC operators with a not-so-amiable attitude toward
users. (You must prove yourself worthy, so I'm not telling you where
to find it. Search the Net, Luke!)

hot Short for robot. An automated client designed for unattended opera-
tion. Not permitted on many IRC servers, particularly larger networks.

channel A group chat on IRC.

channel operator A user in control of a channel. Indicated in most
clients by @ beside their nicks.

CHAP Challenge Handshake Authentication Protocol. A protocol simi-
lar in purpose to PAP.

chat room Unit of an online chat service; equivalent to a channel on IRC.

click A denial of service that can cause "Connection Reset by Peer"
messages.

client An end-user application in a client-server network computing
model. The client implements some processing functions and acts
as the interface between the user and the server. mIRC is an exam-
ple of an IRC client.

cracker A hacker without ethical standards. A cracker's goal is usually to
damage or steal data.

CTCP Client-to-Client Protocol. A protocol for simple automatic inter-
actions between clients on IRC. One example of a CTCP command
is PING, which measures the delay it takes for a message to get from
one client to another and back.

DCC Direct Client Connection. A protocol for direct communications
between two clients, used for reduced-lag semisecure chats and for
file transfer. A CTCP handshake initiates DCC, after which the con-
nection continues independent of the server.

Deep Thought A massive supercomputer built to find the answer to the
Ultimate Question (see 42, HHGTTG).

Denial of Service (DoS) An attack on an Internet host with the inten-
tion of disabling it or reducing its availability. Highly illegal.

dmsetup.exe Widespread Trojan horse that targets Windows and
mIRC users.

DNS Domain Name Service. Essential for the translation of IP addresses
into host names and vice versa.

eggdrop Most common type of IRC robot.

elite Superior in capability or knowledge. The more substitutions of
numbers and symbols for letters an individual uses (for example,
31337), the less aptly this describes him or her. Other permutations
are "leet, ereet," and their derivatives.

emoticon Sequence of ASCII characters depicting a facial expression—
for example, a smiley: 8-)

endless loop Infinite repetition of a sequence that restarts itself once
finished. See infinite loop.

exploit Means of taking advantage of a known security hole; hack.

flood 1) To send large amounts of data to a user or channel. 2) To send
large amounts of data directly to a host on the Internet.

FTP File Transfer Protocol. Designed solely for transferring files over
the Internet.

GUI Graphical user interface, in which the user interacts with the com-
puter using visual representations of files, programs, and components.

hacker Often incorrectly used interchangeably with cracker, this term
actually means someone with a thorough knowledge of computers and
a strong desire for exploration, particularly in the area of security

haxOr Wannabe cracker. Also known as script kiddies, these are users who
think they know how to hack but rely entirely on prewritten "tOOlz"
from security and hacker sites, because they lack the computing
skills required to create them.

HHGTTG The Hitchhiker's Guide to the Galaxy by Douglas Adams. A cult
book among the first generations of Internet users. Required reading.

HNG Horny Net-Geek. This species has infested IRC for many years.
Also called rumorfs or morfers because they start conversations with
"r u m or f (m/f)," meaning "Are you male or female?"

HTML Hypertext Markup Language, used mainly in Web pages to
define characteristics such as display and layout.

HTTP Hypertext Transfer Protocol. The protocol behind WWW sites.

ICMP Internet Control Message Protocol. Protocol for diagnostics and
error reporting. Used by utilities such as Ping and traceroute.

infinite loop Infinite repetition of a sequence that restarts itself once
finished. See endless loop.

IRC Internet Relay Chat. A protocol for two-way, real-time, text-based
communications, defined by RFC 1459. 5«eRFC.

ircname See realname.

IRC operator Person who helps run a server. Please don't bug these
people about every little problem; they are overworked as it is.

ISDN Integrated Services Digital Network. Supports higher bandwidth
connections than normal phone lines, widespread availability.

kick To remove a user forcibly from a channel.

luser Word play on user and loser; originated at MIT. Slang term that
system administrators and IRC operators use, especially those who
fall in the BOFH category.

MOID Message of the Day. Message sent to users after they log in to a
machine. Also common on IRC servers.

MP3 A format for highly compressed digital audio files of near-CD
quality, short for Motion Picture Experts Group (MPEG) Audio
Layer 3. Many MP3 files in circulation are illegal copies of copy-
righted material.

Netbus Remote administration tool for Windows machines, mostly dis-
tributed as a Trojan horse.

newbie New user who hasn't yet learned the ropes. Hopefully if you've
read this far you no longer fall into this category.

nick Nickname. A handle you use on IRC.

nuke Slang term for a type of DoS attack that targets a host's vulnerabil-
ity to cause a lockup or reboot.

PAP Password Authentication Protocol. A protocol often used on top of
PPP to encrypt your ISP passwords before sending them.

POP Post Office Protocol. Irrelevant to IRC; this concerns email.

PPP Point-to-Point Protocol. Primary protocol used for connecting a
dial-up user to the Internet. PPP allows a serial link to behave like a
network interface.

realname Part of an IRC user's visible personal information. Most client
applications display it after the address.

RFC Request for Comments, the standards of the Internet. The RFC for
IRC is 1459.

robot Seebot.

room Incorrect term for channel. See chat room.

root Superuser account on a Unix machine.

RTFM Short for Read the Fine (or any other F word) Manual.

sendq Amount of data stored, awaiting transmission.

server The workhorse in a client-server environment. In IRC the server
has to process enormous amounts of information and route it to the
correct client.

shell 1) A text-based interface for an operating system. 2) An account
on a Unix machine.

SLIP Another protocol used for dial-up links, but seldom seen now.

smurf A DoS characterized by massive amounts of ICMP data. This
attack involves manipulating another site into acting as an amplifier
for the attack. Probably the most disruptive form of DoS, on occa-
sion it brings down entire IRC servers. Because of its disruptive
nature, it is the easiest to trace back successfully to its origin.

SSH Secure shell. Similar to telnet, except that SSH offers strong
encryption for the connection.

Tl and T3 Also called DS1 and DS3. High-speed Internet lines used
mainly by businesses. Bandwidth is approximately 1.5 Mbps for Tl
and 45 Mbps for T3.

take over To gain control over a channel through unethical or
illegal means.

TCM Texas.net Connection Monitor. A type of robot used mainly on
EFnet servers, designed to help IRC operators monitor them.

TCP/DP Transmission Control Protocol/Internet Protocol. Two proto-
cols at the heart of the Internet and IRC. TCP provides reliable
connections (that is, it recovers lost data and puts packets in the
right order), and IP gets packets to their destinations as efficiently
as possible.

telnet A protocol (and applications) for connecting to a remote system
over a terminal-type interface.

TLA Three-Letter Acronym. You've seen many in this book.

Trojan Short for Trojan horse. A malicious program disguised as a
desirable one.

troll One who trolls. See trolling.

trolling 1) Asking questions to which you already know the answers. 2)
Looking for trouble. The term finds its roots in the mischievous
behavior of the trolls in Scandinavian folklore, who are said to taunt
people for their own amusement.

virus A Trojan horse program that spreads by attaching its code to
other files.

warez Pirated software.

WinNuke One of the early widespread DoS attacks. Specifically targets
Windows 95 systems.

COUNTRIES ON IRC AND
DOMAIN DECODER

This is a list of the countries and territories from which users appear on
IRC. A small number of countries with very few users may be missing
due to lack of reliable reports. The list refers to most by their common
English names.

Before the name, I've added the ISO 3166 domain code, which is
also the code for a top-level domain. You can find a full list of codes at
ftp://ftp.ripe.net/iso3166-countrycodes. Countries are sorted by
domain code rather than name since you're more likely to be searching
for what country a code corresponds to. Some sites in these countries
may appear on IRC under a different code—usually .net or .com.

Europe

AD Andorra

AL Albania

AM Armenia

AT Austria

BA Bosnia and Herzegovina

BE Belgium

BG Bulgaria

BY Belarus

CH Switzerland

CY Cyprus

CZ Czech Republic

DE Germany

DK Denmark

EE Estonia

ES SpainFI Finland

FO Faroe Islands

FR France

GE Georgia

GR Greece

HR Croatia

HU Hungary

IE Ireland

IS Iceland

IT Italy

LT Lithuania

LU Luxembourg

LV Latvia

MC Monaco

MD Moldova

MK Macedonia, Former Yugoslav Republic of

MT Malta

NL Netherlands

NO Norway

PL Poland

PT Portugal

RO Romania

RU Russian Federation

SE Sweden

SI Slovenia

SK Slovakia

SM San Marino

TR Turkey

UA Ukraine

UK United Kingdom

YU Yugoslavia (Serbia and Montenegro)

Some organizations in Russia still use the SU (Soviet Union) domain.

Asia

AE United Arab Emirates

BH Bahrain

BN

CN

HK

ID

IL

IN

IR

JO

JP
KR

KW

KZ

LB

LK

MN
MO-
MY
NP
OM
PH

PK

QA

SG

TH

TW

UZ

Brunei Darussalam

China, People's Republic of

Hong Kong

Indonesia

Israel

India

Islamic Republic of Iran

Jordan

Japan

South Korea

Kuwait

Kazakhstan

Lebanon

Sri Lanka

Mongolia

Macao

Malaysia

Nepal

Oman

Philippines

Pakistan

Qatar

Singapore

Thailand

Taiwan, Republic of China

Uzbekistan

North

AG

AR

BB

BM

BO

BR

BS

CA

CL

CO

CR
DM

DO
EC
GT

and South America (including the Caribbean)

Antigua

Argentina

Barbados

Bermuda

Bolivia

Brazil

Bahamas

Canada

Chile

Colombia

Costa Rica

Dominica

Dominican Republic

Ecuador

Guatemala

T
HN Honduras

JM Jamaica

MQ Martinique

MX Mexico

Ml Nicaragua

PA Panama

PE Peru

PY Paraguay

SR Suriname

TC Turks and Caicos Islands

TT Trinidad and Tobago

US United States of America

UY Uruguay

VE Venezuela

Most sites in the United States and many in Canada use .com, .net, .edu,
and .org instead of their national domain code. The KY domain (Cay-
man Islands, unlisted) is remotely administered and users who appear
with that domain code probably are not located there.

Oceania and the Pacific

AU Australia

GM Guam

NC New Caledonia

NZ New Zealand

PG Papua New GuineaAfrica (including outlying islands)

CD Congo, Democratic Republic of (ex-Zaire)

Cl Ivory Coast •

CV Cape Verde

EG Egypt

KE Kenya

MA Morocco

MU Mauritius

NA Namibia

RE Reunion

SN Senegal

TN Tunisia

UG Uganda

ZA South Africa

ZW Zimbabwe

Pseudo GTLDs

The following countries and territories sell space in their top-level domain
to users all over the world, thus acting as generic top-level domains
(GTLDs), like .com and .net. This is a source of revenue for small island
nations and other less affluent countries. I cannot truthfully say I have
seen a user actually located in one of these places. The low registration
fees in some of them have attracted many individuals who register a
domain for the sake of having one, then appear on IRC with a domain
such as outca.st orji.ms (we call that a vanity domain). Some, because of
their particular code, also appeal to companies (for example, TM).

It's possible to have a second-level domain registered in another 50
or so countries that also have a population on the Net and are listed
above, even if you do not live there. More uninhabited or sparsely popu-
lated islands will probably acquire a virtual population over the next few
years. Here's the list of the more common ones (you may never have
heard of them).

AC Ascension Island Mid Atlantic

AS American Samoa South Pacific

CC Cocos Islands Indian Ocean

CX Christmas Island Indian Ocean

GS Georgia and South Sandwich Islands South Atlantic

MS Montserrat Caribbean

NU Niue South Pacific

SH Saint Helena Mid Atlantic

ST Sao Tome and Principe Islands Equatorial Africa

TC Turks and Caicos Islands Caribbean

TF French Southern Territories Southern oceans

TJ Tajikistan Central Asia

TM Turkmenistan Central Asia

TO Tonga South Pacific

VG British Virgin Islands Caribbean

USEFUL ADDRESSES

If you're using a browser to access sites other than Web sites, remember to add the
correct URL scheme, such as ftp:// or news:. Web sites should, of course, begin
with hup://.

D.I WebSites

dir.yahoo.com/Computers_and_Internet/Internet/Chats_and_Forums/
• ; IRC/Channels/ Another good place for channel listings, even if

the URL is uncomfortably long.

ftpsearch.lycos.com The best place to search for specific files by name.

mirc.stealth.net Useful mIRC stuff, good tips on dealing with DoS attacks.

www.bitchx.org Home of the BitchX client.

www.chatcircuit.com Nice site. Newsletters, server listings, lots of help.
Maintained by the Chatcircuit IRC server team.

www.dal.net Official DALnet home page. Everything you need to know
about using DALnet.

www.eff.org Electronic Frontier Foundation. Important information
about online privacy, freedom of expression, Internet-related legis-
lation, and many more matters of concern to Internet users.

www.irchelp.org Probably the best there is. Wide range of documenta-
tion and resources, centered mainly on EFnet and IRCnet. Top
source of information about Unix and Mac clients.

www.ircle.com Ircle (Mac client) home page.

www.joecartoon.com Totally unrelated to IRC, I just think it's cool. :)

www.liszt.com/chat/ Great repository of current channel listings for
many networks.

www.mirc.co.uk The official mIRC home page. Contains links to just
about everything you could ever want to know about mIRC. The
"links" sections also offers the most complete list of resources in lan-
guages other than English.

www.mirchelp.org Clean, simple mIRC site by the operators of Efnet's
#mirchelp channel.

www.mircx.com Many, many mIRC scripts. Personally, I don't like the
way they serve practically any abusive trash you ask them to, but I
must give it points for completeness.

www.netway.com/~marci/songs/ Songs about IRC. Just when you
thought you were a geek.

www.newircusers.com A very comprehensive and helpful site. Some
off-topic stuff.

www.pirchat.com Home of the Pirch client for Windows.

www.snafu.de/~kl/epic/index.html Epic's home page.

www.snafu.de/~kl/IRCES/ Announces chat events on various networks.

www.stevegrossman.com/jargpge.htm Chatters'jargon dictionary.
This includes jargon from many other forms of online chat; some-
times it stretches the definition a bit.

www.thelist.com Listing of Internet service providers by region.

www.tucows.com Huge software archive for Windows, Mac, and Linux
systems. Mirrors all over the world.

www.undernet.org Very complete and well organized. Good for more
than just the Undernet.

www.userfriendly.org Geek humor taken one step further.

www.webmaster.com Home of the number one commercial IRC server
software, Conference Room.

D.2 FTP Sites

cs-ftp.bu.edu

fQ>.asu.net

ftp.funet.fi

ftp.ripe.net/rfc

ftp.undernet.org

ircii .warped, com

metalab.unc.edu

Lots of old stuff—this is where to get IRC clients
for antique machines.

Maybe the most complete IRC client and server
archive; good variety of new Unix client binaries.

Finnish University Network public FTP, one of
the best-established archives on the Internet.

RFC repository for the technically minded. RFCs
1459, 1413, 954, and 931 may be of interest. RFC
2324 covering HTCPCP specifications is required
reading.

Comprehensive but largely outdated; wide selec-
tion of older ircii binaries for odd platforms.

Warped Communications FTP archive; main
ircii download site.

Huge software archive, has just about everything
under the sun.

D.3 Telnet Services

These services are not as popular as they used to be and may be discon-
tinued in the future.

Host

telnet.dal.net

telnet.superchat.org

telnet.wildstar.net

Port

23

23

6677

Log-in

dalnet

no log-in

no log-in

Password

no password

no password

no password

Description

DALnet telnet

IRC client

SuperChat telnet

IRC client

Wildstar's telnet

IRC client for the

Undernet

D.4 Newsgroups

alt.irc

alt.irc.mirc

alt.irc.questions

alt.irc.recovery

alt.irc.scripts

Lots of general IRC discussions, announcements,
and flame wars.

Questions and scripts for mIRC.

Good place to get solutions for unusual problems.

IRC addicts of the world, unite!

General scripting issues.

SERVER NUMERICS

This section is meant to help client coders and scripters find their way
through the maze of numeric insanity. It covers the numerics currently
used in all four principal ircds and a couple used in common patches. I
do not know why there are several different meanings to a numeric, why
the same reply has more than one numeric in some cases, or why the
same reply sometimes has a different name but an identical numeric. I'll
attribute it to communications breakdown among ircd coders—but per-
haps it's a conspiracy. The truth is out there. . . .

I have not marked RFC numerics as such, whether they are redun-
dant, deprecated, or used. The fact that a numeric is listed here does
not mean it's actually in use. Some are only present in the numerics
headers and have no practical application in the current ircd. The list
would be twice as long if I included all the strange numerics employed
in patches and hacks to these ircds—consult the numerics header of the
ircd in question to get the full list.

E=EFnet hybrid-6

NRCnet2.10.2pl
U=Undernetu2.10.05

D=DALnet 4.6.7.DreamForge

Numeric E 1

001 / .

002 / .

003 / .

004 / .

005

005

005

006

007

008

009

010

200 / ,

201 / ,

202 / ,

203 / ,

204 / ,

205 / ,

206 / ,

207 / ,

208 / .

209 / ,

210

211 / ,

212 / ,

213 / .

214 / ,

215 / ,

216 / ,

217 / ,

217

218 / „

219 / ,

221 / „

222 /

222

223 /

224 /

225 /

231

232

233 v
234 / v

235 / v

U D Description

f / / RPL_WELCOME

f / / RPL_YOURHOST

f / / RPL_CREATED

f / / RPL_MYINFO

f RPL_BOUNCE

/ RPl_MAP

/ RPL_PROTOCTL

/ RPL_MAPMORE

/ RPL_MAPEND - -. -

/ RPL_SNOMASK

/ RPL_STATMEMTOT

/ RPL_STATMEM "

f / / RPL_TRACELINK

f / / RPLJRACECONNECTING

f / / RPLJRACEHANDSHAKE

f / / RPLJRACEUNKNOWN

f / / RPLJRACEOPERATOR

f / / RPLJRACEUSER

f / / RPLJRACESERVER . :

f / / RPLJRACESERVICE

f / / RPLJRACENEWTYPE

f / / RPLJRACECLASS

f RPLJRACERECONNECT

f / / RPL_STATSLINKINFO

f / / RPL_STATSCOMAAANDS

f / / RPL_STATSCLINE

f / / RPL_STATSNLINE

f / / RPL_STATSILINE

f / / RPL_STATSKLINE

' / RPL_STATSQLINE

/ RPL_STATSPLINE

f / / RPL_STATSYLINE

' / / RPL_ENDOFSTATS

f / / RPLJJMODEIS

RPL_STATSBLINE

/ RPL_SQLINE_NICK

RPL_STATSELINE

RPL_STATSFLINE

RPL_STATSDLINE

f / / RPL_SERVICEINFO

/• / / RPLJNDOFSERVICES

f S / RPL_SERVICE

<• / / RPL_SERVLIST

< / / RPL_SERVLISTEND

Numeric E 1 U D

239 /

240 /

241 / / / /

242 / / / /

243 / / / /

244 / / / /

245 / / /

246 /

246 /

247 /

247 ' /

247 /

248 /

248 / /

249 / / / /

250 /

250 / / /

251 / / / /

252 / / / /

253 / / / /

254 / / / /

255 / / / /

256 / / / /

257 / / / /

258 / / / /

259 / / / /

261 / / / /

262 / /

262 /

263 /

263 /

265 / /

266 / /

271 / /

272 / /

275 / /

280 . /

281 /

290 /

291 /

292 /

293 /

294 /

295 /

Description

RPL_STATSIAUTH

RPL_STATSVLINE

RPL_STATSLLINE

RPL.STATSUPTIME

RPL_STATSOLINE

RPL.STATSHLINE

RPL_STATSSLINE

RPLSTATSPING

RPL_STATSTLINE

RPL_STATSBLINE

RPL_STATSGLINE

RPL_STATSXLINE

RPL_STATSDEFINE

RPL_STATSULINE ,

RPL_STATSDEBUG

RPL_STATSDLINE

RPL_STATSCONN

RPLJUSERCLIENT .

RPLJUSEROP

RPLJUSERUNKNOWN

RPLJUSERCHANNELS

RPLJUSERME

RPL_ADMINME

RPL_ADMINLOC1

RPL_ADMINLOC2 . . / . . '

RPL_ADMINEMAIL

RPLJRACELOG

RPLJRACEEND

RPLJRACEPING

RPLJRYAGAIN

RPL_LOAD2HI

RPLJ.OCALUSERS • .

RPL_GLOBALUSERS ;

RPL_SILELIST

RPLJNDOFSILELIST

RPL_STATSDLINE

RPL_GLIST

RPL_ENDOFGLIST

RPL_HELPHDR

RPLHELPOP

RPL_HELPTLR

RPL_HELPHLP

RPL_HELPFWD

RPL_HELPIGN

Numeric E I U D Description

300

301

302

303

304

305

306

307

307

310

311

312

313

314

315

316

317

318

319

321

322

323

324

325

329

331

332

333

334

334

341

342

346

347

348

349

351

352

353

354

361

362

363
364

/ / / / RPL_NONE
/ / / / RPL.AWAY
/ / / / RPLJJSERHOST
/ / / / RPLJSON
/ / / / RPLJEXT
/ / / / RPL_UNAWAY
/ / ^ / RPL_NOWAWAY

/ RPLUSERIP ,
/ RPL_WHOISREGNICK
/ RPL_WHOISHELPOP

/ / / / RPL_WHOISUSER
/ / / / RPL_WHOISSERVER
/ / / / RPL_WHOISOPERATOR
/ / / / RPL_WHOWASUSER
/ / / / RPLJNDOFWHO
/ / / RPL_WHOISCHANOP
/ / / / RPL_WHOISIDLE
/ / / / RPLJNDOFWHOIS
/ / / / RPL.WHOISCHANNELS
/ / / / RPLJISTSTART
/ / ^ / RPLJJST
/ / / / RPLJJSTEND
/ / / / RPL_CHANNELMODEIS

/ RPLUNIQOPIS
/ / / RPL_CREATIONTIME
/ / / / RPLNOTOPIC
/ / / / RPLJOPIC V,
/ / / RPLJOPICWHOTIME

/ RPLJISTUSAGE
/ RPL_LISTSYNTAX

/ / / / RPLJNVITING
/ / / RPL_SUMMONING

/ RPLJNVITELIST
/ RPL_ENDOFINVITELIST
/ . RPL_EXCEPTLIST
/ RPL_ENDOFEXCEPTLIST

f / / / RPL_VERSION
/ / / / RPL_WHOREPLY
/ / / / RPL_NAMREPLY

^ RPL_WHOSPCRPL
f / / / RPL_KILLDONE
/ / ^ / RPL_CLOSING
/ / ^ / RPL_CLOSEEND
/ / ^ / RPLJINKS

A

Numeric E I U D Description

365 / / / / RPLJNDOFLINKS

366 / / / / RPLJNDOFNAMES

367 / / / / RPL_BANLIST

368 / / / / RPLJNDOFBANLIST

369 / / / / RPLJNDOFWHOWAS

371 / / / / RPLJNFO

372 / / / / RPL_MOTD

373 / / / / RPLJNFOSTART

374 / / / / RPLJNDOFINFO

375 / / / / RPL_MOTDSTART

376 / / / / RPLJNDOFMOTD

381 / / / / RPL_YOUREOPER

382 / / / / RPL_REHASHING
383 / / RPL_YOURESERVICE

384 / / / / RPL_MYPORTIS

385 / / / / RPL_NOTOPERANYMORE

391 / / / / RPLJIME
392 / / / RPUJSERSSTART

393 / / / RPLJJSERS
394 / / / RPLJNDOFUSERS

395 / / / RPL_NOUSERS
401 / / / / ERR_NOSUCHNICK

402 / / / / ERR_NOSUCHSERVER

403 / / / / ERR_NOSUCHCHANNEL

404 / / / / ERR_CANNOTSENDTOCHAN

405 / / / / ERRJOOMANYCHANNELS
406 / / / / ERR_WASNOSUCHN1CK

407 / / / / ERRJOOMANYTARGETS
408 / / ERR_NOSUCHSERVICE

409 / / / / ERR_NOORIGIN
411 / / / / ERR_NORECIPIENT

412 / / / / ERR_NOTEXnOSEND

413 / / / / ERR_NOTOPLEVEL
414 / / / / ERR_WILDTOPLEVEL

415 / ERR_BADMASK

416 / ERRJOOMANYMATCHES
416 / ERR_QUERYTOOLONG

421 / / / / ERR_UNKNOWNCOMMAND
422 / / / / ERR_NOMOTD

423 / / / / ERR_NOADMININFO
424 / / / ERR_FILEERROR
431 / / / / ERR_NONICKNAMEGIVEN
432 / / / / ERRJRRONEUSNICKNAME
433 / / / / ERR NICKNAMEINUSE

T
Numeric

434
435
436
437
437
438
438
439
440
441
442
443
444
445
446
451
455
461
462
463
464
465
466
467
468
468
471
472
473
474
475
476
477
477
478
481
482
483
484
484
484
485
489
491

I U D

s

Description

ERR_SERVICENAMEINUSE

ERR_SERVICECONFUSED

ERR_NICKCOLLISION

ERR_UNAVAILRESOURCE

ERR_BANNICKCHANGE

ERR_NICKTOOFAST

ERR_NCHANGETOOFAST

ERRJARGETTOOFAST

ERR_SERVICESDOWN

ERRJJSERNOTINCHANNEL

ERR_NOTONCHANNEL

ERRJJSERONCHANNEL

ERR_NOLOGIN

ERR_SUMMONDISABLED

ERRJJSERSDISABLED

ERR_NOTREGISTERED

ERR_HOSTILENAME

ERR_NEEDMOREPARAMS

ERR_ALREADYREGISTRED

ERR_NOPERMFORHOST

ERR_PASSWDMISMATCH

ERR_YOUREBANNEDCREEP

ERR_YOUWILLBEBANNED

ERR_KEYSET

ERRJNVALIDUSERNAME

ERR_ONLYSERVERSCANCHANGE

ERR_CHANNELISFULL

ERR_UNKNOWNMODE

ERR_INVITEONLYCHAN

ERR_BANNEDFROMCHAN

ERR_BADCHANNELKEY

ERR_BADCHANMASK

ERR_NOCHANMODES

ERR_NEEDREGGEDNICK

ERR_BANLISTFULL

ERR_NOPRIVILEGES

ERR_CHANOPRIVSNEEDED

ERR_CANTKILLSERVER

ERR_DESYNC

ERRJSCHANSERVICE

ERR_RESTRICTED

ERR_UNIQOPPRIVSNEEDED

ERR_VOICENEEDED

ERR NOOPERHOST

Numeric E I U D Description

492 / / ERRJMOSERVICEHOST

501 / / / / ERR_UMODEUNKNOWNFLAG

502 / / / / ERRJJSERSDONTMATCH

503 / ERR_GHOSTEDCLIENT

504 / ERR_LAST_ERR_MSG

511 / / ERR_SILELISTFULL

512 / ERR_NOSUCHGLINE

512 / ERRJOOMANYWATCH

513 / ERR_BADPING

513 / ERR_NEEDPONG

521 / ERRJ.ISTSYNTAX

600 / RPL_LOGON

601 / RPLJ.OGOFF

602 / RPL_WATCHOFF

603 / RPL_WATCHSTAT

604 / RPL_NOWON

605 / RPL_NOWOFF

606 / RPL_WATCHLIST

607 / RPL ENDOFWATCHLIST

SAMPLE SERVER CONFIGURATIONS

Lines beginning with the pound sign (#) are comments and not config
lines, just as in a real configuration file. Some of the data is of course fic-
titious, but it is all adapted from real, working configs. I suggest you start
by reading the first example, for hybrid servers, regardless of which con-
figuration you'll be using, as it contains information that applies to any
setting. If there is a difference, the relevant section will mention it. To
get the best idea of how server configurations work, I recommend read-
ing all of them.

F.I Basic Configuration (hybrid 5.3 Server)

This is a fictitious server, but the config layout follows a real networked
server I used to run.

The server needs a name. This should match a valid host name.
Leave the second field blank. The third field is arbitrary and can contain
anything you like. The fourth field is the default port.

M:ire.cia.gov::The secret server:6667

Administrative info is required. There are three fields, the last one being
the admin's email. This information is sent out in response to the
ADMIN command.

A:Company server:Langley, Virginia:Bill Clinton
<bill@whitehouse.gov>

Y: lines are good for you. In this example, the first one is a general Y:
line for a maximum of 20 class 1 users, with no (0) limit on connections
per host or user@host. In theory, a single user could fill all the connec-
tions. You set a user's class from the I: line. Users have a maximum
sendq of about 100KB, and the server will ping them every 90 seconds.
90 seconds is the lowest value I'd ever use —120 to 240 is more
common, and as much as 300 on a large server.

The second value is for server connections. The maximum of 10
connections is definitely exaggerated unless you have a major hub. The
server will attempt to autoconnect to servers in class 2 every five minutes,
provided that the C: line has enabled autoconnect. If more than roughly
4MB of data queues for a class 2 server, your server will drop the link.

Y:l:90:0:20:lOOOOO
Y: 2:90:300:10:4000000

This is just about as lazy as you can be. Permit connections from anyone,
anywhere, and assign them to class 1, as laid out in the Y: lines. It's gen-
erally a good idea to give your IRC operators separate I: and Y: lines so
that they can connect regardless. Actually, hybrid allows for this with F:
lines. The only thing that keeps masses of clones from connecting is the
fact that the Y: line limits the total connections to 20.

!:*::*::!

The server's operators — it's not required, but it's convenient for moni-
toring the server while you're online. Each line is composed of three
parts: First, the mask a user is allowed to oper from; second, the pass-
word that must be sent along with the OPER command; third, the
operator's usual nickname, which you must send regardless of whether
you're using that nickname at the moment.

You may encrypt the password, providing you have enabled crypted
password support while compiling.

Encrypt your passwords with the mkpasswd utility in ircd/tools. In
this example, this is not the case, and the passwords are in plain text—
one very good reason to make sure no one but the ircd user can read
ircd.conf. Notice that Jason's small o: makes him a local operator, so he
does not enjoy global privileges.

0: bill@>*. whitehouse. gov: secret: Bill:
0:joe@*.cia.gov:spieslikeus:Doe:
o:jason@*.cia.gov:bbbxxx:Dason:

C: and N: lines are necessary for networking. They're a bit similar to I:
lines in design. Here we have a single server connection with the same
server name as the machine's host name. That is, the server at irc.sen-
ate.gov (first field) will be announced to the network as irc.senate.gov
(third field). The first field must be a valid host name or IP address. The
second field is the password—like the O: lines, you can encrypt it or
not, depending on the compile-time options. This is not a very good
example—it's considered best to use different passwords for the C: and
N: lines in the interest of security. The fourth field of the C: line says
whether it will autoconnect. Here, your irc.cia.gov server will autocon-
nect to port 6667 on irc.senate.gov at the interval specified in the class 2
(see the last field) Y: line, if it sees it's not linked.

Finally, the fourth field of the N: line says whether your server will
mask to something on the remote server. For example, if you wanted it
to appear as *.cia.gov on irc.senate.gov (and any servers that may be
behind that one), you would put a "1" in this field, masking one field of
the host name. For this to work, irc.senate.gov must have *.cia.gov
instead of irc.cia.gov in both the C: and N: lines.

C:ire.senate.gov:Iink2me:ire.senate.gov:6667:2
N:ire.senate.gov:Iink2me:ire.senate.gov:0:2

K: lines keep unwanted users from connecting. Since this server has an
"open" I: line, a K: line will probably prove to be necessary.

Example 1: Ban user Slobodan from connecting to the machine
named president.gov.yu. The reason displayed to the user will be Go
away.

K:president.gov.yu:Go away:Slobodan:

Example 2: Ban all connections from the *.kp top-level domain regard-
less of user name with the reason No nukes. (This couldn't be more
fictitious, because North Korea (*.kp) is not on the Internet.)

K:*.kp:No nukes:*:

Example 3: Ban user saddam connecting from anywhere in the *.iq top-
level domain. (This is as fictitious as the previous example for the same
reason.)

K:*.iq:Not welcome:saddam:

Example 4: Ban anyone from the *.ru top-level domain whose machine
does not verify their user ID through ident. This is what the tilde (~)
stands for.

K:*.ru:Identification required for everyone from Russia:"*:

Allow everyone from *.spb.ru to join regardless.

E:* . spb . ru : :* :

F.2 Advanced Configuration (Bahamut Server)

Here is the genuine config file from WebNet Worldwide's DALnet
server (webbernet.mi.us.dal.net), abridged and edited for obvious
security reasons. The server . . .

M:webbernet.mi.us.dal.net:*:Web Net Worldwide:7000

. . . and the admin.

A:Asu Pala <pt(5>dal.net>:Web Net Worldwide:Taylor, MI +1 888 WEB-
NETT:

Here are our user and server classes. Class 0 is a generic class for con-
nections matching no other Y:.

Y:0:120:600:1:5000000

The main user Y: line can handle up to 4000 users.

Y:1:300:0:4000:300000

Server links. I think the connection frequency of 90 seconds for class 13
is a bit on the high side because of the large number of users this server
generally has.

Y:l3:90:90:l:6000000
Y:14=450:180:0:3500000

Y: lines to match a set of I: lines (shown below) for specific users
and operators.

Y:100:300:0:100:300000
Y:666:300:0:10:500000
Y:906:300:0:10:500000
Y:907:300:0:10:500000
Y:908:300:0:10:500000
Y:909:300:0:10:500000
Y:910:300:0:10:500000
Y:911:300:0:10:500000
Y:912:300:0:10:500000
Y:913:300:0:10:500000
Y:914:300:0:10:500000
Y:915:300:0:10:500000

These are the ports on which the server will listen. This server listens on
the common 6660 to 6680 range, plus 7000, which is the DALnet default
port, and 7325, which DALnet uses for server-to-server connections.

p.*
p.*
p.*
P:*
p.*

P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*
P:*

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*:6660

*:666l

*:6662

*:6663

*:6664

*:6665
*:6666

*:6667
*:6668

*:6669
*:6670

*:6671
*:6672

*:6673

*:6674

*:6675
*:6676

*:6677
*:6678

*:6679
*:6680

*:7325

This is the I: line under which all mortal users fall. Because of the
way DALnet works, there is little call for separating them into classes, so
we dump them all under a single I:. This does not do much in terms of
preventing misuse of the server through its configuration, but it saves a
lot of cycles.

All these are I: lines for individual users, mainly the server's operators,
and for the server's local users. NOMATCH and x mean nothing by
themselves, they simply invalidate the field they're in because they're
impossible to match to a host name or IP address.

1:24. 0.243. 128: :NOMATCH::l
I : x : : *@* . webbernet . net : : 100
I : x : : primetime@* . webbernet . net : : 666
I : x : : pt@* . webbernet . net : : 666
I : x : : kelaynak@* .webbernet . net : 906 : 906
I:x: :mhz@irc. webbernet. net:907:907
I : x : : girard@* . pr inceton . edu : 907 : 907
I : x : : dredster@* . noc . ionet . net : 908 : 908
I : x : : dredstergdredster . ionet . net : 908 : 908
I : x : : d j@newton . pconline . com : 909 : 909
I:x: :thetaz@*. pconline.com: 909: 909
I:x: :thetaz@*. webbernet. net:909:909
I:x: :thetaz@thetaz.org:909:909
I:x: :dakal@*lowdown.cotn:910:910
I:x: :apatrix@*. wnm.net: 911: 911
I : x : : rmullen@*thorn . net : 913 : 913
I : x : : marci(5>shell2 . mdc . net : 914 : 914

IRC operators. All operators have separate I: and O: lines for every
address they oper from. I've snipped a few to save space. The strange
strings near the end of the line define the privileges of the individual
operator and are unique to DALnet ircd.

0: primetimeg* .webbernet . net : <pass> : pt : rRDhlCckKbBNnAaufoO: 666
0 : pt@* . webbernet . net : <pass> : pt : rRDhlCckKbBNnAaufoO : 666
0:kelaynak@*. webbernet. net :<pass>:kelaynak:arRDhlkKbBufoO:906

0: marshal®*, popsite. net :<pass>:PrincessDI:Oa: 912
0 : marsha@youngs . ringgold .ga . us : <pass> : PrincessDI :0a : 912

0 : marsha@2l6. 1. 116 . * : <pass> : PrincessDI :0a : 912

0: mhz@irc .webbernet . net : <pass> :mhz : rRDhlkKbBuf oOa : 907
0 : girard@* . princeton . edu : <pass> : mhz : rRDhlkKbBuf oOa : 907
0 : dredstergmud . shadowwind . org : <pass> : Micheal : Oa : 908

T

0:dredster@dredster.ionet.net:<pass>:Micheal:Oa:908

0:dredster@*.noc.ionet.net:<pass>:Micheal:Oa:908

0:dakal@*lowdown.com:<pass>:dakal:OaRD:910

0: *adam(5)209.82.128.*: <pass>: kaleido:OaDR: 910

0:*nobody@209.82.128.*:<pass>:kaleido:OaDR:910
0:thetaz@>twilight. zone, webbernet. net :<pass>:TheTaz:rRDhlCckKbBNnAa

ufoO:909

0:thetaz@thetaz.org:<pass>:TheTaz:rRDhlCckKbBNnAaufoO:909
0:apatrix@*.webbernet.net:<pass>:Apatrix:*:911
0:apatrix@bofh.wnm.net:<pass>:Apatrix:*:911
0: rmullen@i* .thorn. net: <pass>: hershey: *: 913
0:*@shell2.mdc.net:<pass>:Doogie:OaRD:914

The X: line in DALnet ircd contains two passwords, which must be used
with the RESTART and DIE commands, respectively.

X:<pass>:<pass>

Special U: lines regulate the presence of services and where the server
will accept them from.

Urstats.dal.net:*:*
U:services.dal.net:*:*
U:services2.dal.net:*:*

The C: and N: lines follow the same principle as in every other ircd. The
hubs' IP addresses are not publicized on DALnet as a matter of policy,
so I've stripped them here as well. Being a leaf, this server will have no
more than a single server link at any time, so they are all in class 13. A
hub server would have more different classes.

C:<address>:<pass>:enigma.mi.us.dal.net:7325:13
N:<address>:<pass>:enigma.mi.us.dal.net::13
N:<address>:<pass>:toronto.on.ca.dal.net::13
C:<address>:<pass>:toronto.on.ca.dal.net::13
N:<address>:<pass>:quantum-r.ny.us.dal.net::13
C:<address>:<pass>:quantum-r.ny.us.dal.net::13
N:<address>:<pass>:indy.in.us.dal.net::13
C:<address>:<pass>:indy.in.us.dal.net::13
N:<address>:<pass>:chrome.mo.us.dal.net::13
C:<address>:<pass>:chrome.mo.us.dal.net::13

H: lines are also the same as they would be everywhere else. This server
is a leaf, so it has no L: lines.

H:*
H:*
H:*
H:*
H:*
H:*

*:quantum-r.ny.us.dal.net
*:trapdoor.ca.us.dal.net
*:toronto.on.ca.dal.net
*:chrome.mo.us.dal.net
*:indy.in.us.dal.net
*:enigma.mi.us.dal.net

DALnet akills are not written to the config, nor are K: lines placed with
the KLINE command. Thus the only way to implement "hard" perma-
nent K: lines is by writing them into the conf. Here's a good reason for
adding comments to your K: lines: I think I set that second one, but I
don't remember what for. I will now go and remove it because I can't
recall its purpose.

K:*.home.com:Use gate.dal.net:~*:
K:62.157.150.46:Go away:*:

Broken thing is the actual comment in the config file. To expand on my
previous note about adding comments to your K: lines, make sure they
also make sense. :) Oh, yeah . . . and date them. The same goes for Z:
lines — this particular comment refers to the below Z: line entry. I have
to shamefully admit that this is one I added myself.

broken thing
Z:210.162.87.244:

Q: lines are nicknames that no user may employ under any circumstances.
Only services use them, and the ones with wild cards are meant to prevent
impostors from using nicks similar to a service nickname.

0::Reserved:ChanServ
0::Reserved:NickServ
0::Reserved:OperServ
0::Reserved:HelpServ
0::Reserved:*c*h*n*s*r*v*
0::Reserved:*m*e*m*o*s*rv*
0::Reserved:*n*i*k*s*rv*
0::For IRCops:IRCop
0::For IRCops:DALnet

The comment above the line is another genuine config comment. It's
dated and says who set it, though not why. Still, I feel confident about

my colleague's judgment—this line sure looks better than the ones I
put in myself. Z: lines do the same as EFnet's D: lines and IRCnet's K;
lines: They drop connections from the IP address or block regardless of
whether and what it resolves to.

#Micheal!dredster@fnord.noc.ionet.net I ' d : 38.l93.l.98:No reason
(1999/06/11 00.03)
Z:38.193.1.98:No reason (1999/06/11 00.03):

