

eZ Publish 4: Enterprise Web
Sites Step-by-Step

Master eZ Publish's flexible web development for
the enterprise

Francesco Fullone
Francesco Trucchia

 BIRMINGHAM - MUMBAI

eZ Publish 4: Enterprise Web Sites Step-by-Step

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2009

Production Reference: 1151009

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-904811-64-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Francesco Fullone

Francesco Trucchia

Reviewer
Maxime Thomas

Acquisition Editor
James Lumsden

Development Editor
Amey Kanse

Technical Editor
Bhupali Khule

Copy Editor
Sneha Kulkarni

Indexer
Monica Ajmera

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Rajashree Hamine

Proofreader
Dirk Manuel

Graphics
Nilesh R Mohite

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

About the Authors

Francesco Fullone is a geek who, in his spare time, acts as the founder and the
CEO of Ideato, a Web 2.0 company based in Italy. He is a senior consultant, skilled in
Agile methods and any kind of PHP development.

Francesco is also the president of the Italian PHP User Group (GrUSP) and an
evangelist on open source software and PHP technologies. You can meet him in
Italy at one of the tech conferences, where he usually participates as a speaker or
a staff member.

Francesco would like to thank the Ideato family for the help
given during the testing of the book's code, the Packt staff for their
patience towards a new author and Diana, who supported him
in this "adventure".

Francesco Trucchia, after taking a degree in computer science, worked
for some years as a web engineer on small, medium, and large projects for some
Italian companies.

He is now the co-founder and the CTO of Ideato, a PHP Italian company that is
expert in web software development, systems integration, and Agile methods.

Francesco likes to develop with Agile methods. He has introduced these practices
in Ideato for their software's lifecycle process, and has received a lot of positive
feedback for it.

Francesco would like to thank his company, Ideato, that gave
him the opportunity to write this book, all the Pack editorial staff,
particularly Rajashree, Bhupali, Amey, and Sneha for their great
patience, assistance, and professionalism, the eZ System company
for the great work that they are doing to make eZ Publish the best
Open Source CMS, his family and his fiancée Chiara who supported
and encouraged him every day on writing this book.

About the Reviewer

Maxime Thomas has a degree in computer science from ESIAL University in
Nancy, France. He worked for two years as a developer in a French company
specializing in IT services, which has given him his web culture and has contributed
to his knowledge of the basic rules of design for websites. For two years now, he's
been responsible of the open source CMS offers at a major IT service company, mainly
working with offers for the media sector. He has been certified in eZ Publish since
2007 and shares his ideas on his blog, which is available at http://www.wascou.org/
wascou/Blogs/Maxime-THOMAS.

I would like to thank the people with whom I can share information
about eZ Publish: Xavier, Damien, and Benoit. I also would like
to thank Vincent, who has changed my opinion on open source
software, and eZ Publish in particular. Finally, I would like to thank
Ana for her every day support.

Table of Contents
Preface	 1
Chapter 1: Installing eZ Publish	 9

What is eZ Publish?	 9
What is a CMF? 	 10

eZ Publish packages 	 10
eZ Webin—the out of the box CMS	 11
eZ Flow—web publishing for news and media portals	 11

Installation 	 12
Hosting requirements 	 12

Software required	 12
Hardware required	 13
PHP configuration	 13
Shared versus dedicated hosting 	 14

eZ components	 15
Setting up 	 16

Unpacking the installation	 16
Initializing the database	 16
Apache virtual host settings	 17
Image settings	 20
Cron jobs	 20
Configuration files	 21

The setup wizard	 22
Welcome to eZ Publish	 23

System check	 23
Email settings	 25
Choose a database	 26
Database initialization	 27
Language support	 28
Site packages	 29
Site access configuration	 32
Site details	 33
Site security	 34

Table of Contents

[ii]

Site registration	 35
Finished	 36

Summary	 36
Chapter 2: Creating Our Siteaccesses	 37

What is the siteaccess system?	 37
Siteaccess folder structure	 39
Enterprise siteaccess schema	 41
Creating siteaccesses for dev and staging	 41
Creating symbolic links	 42
Configuring the database parameters	 43

Creating multilingual siteaccesses 	 44
Copying the configuration file	 44

Editing ini files for locale components	 44
Selecting a siteaccess using host or URI-based matching 	 46

URI 	 46
Setting the default siteaccess 	 46

Host 	 47
Summary	 47

Chapter 3: Defining and Creating Content Classes	 49
Managing the content	 49

Separation of content and design	 50
Content structure in eZ Publish	 50
Object-oriented content	 50

eZ Publish content classes	 52
Class attributes	 52
Content class management	 54

Content class structure	 56
Packt Media Site's content class	 58

Creating the profile content class	 59
Extending the Article class	 63
The other content classes	 65

Summary	 65
Chapter 4: Creating Content Structure	 67

Understanding the backend	 68
Content structure	 69

The secondary menu	 70
The content area	 71

The content tree	 75
The "Issue archive" section	 75

Editing an object	 76
Adding more folders	 82

The staff section	 83

Table of Contents

[iii]

Creating an article	 85
Publish and Unpublish date	 86
Enabling comments	 86

The feedback form	 87
Other sections	 88

Summary	 88
Chapter 5: Creating an Extension	 89

What is an extension?	 89
Extension type	 90
The directory structure of an extension	 90

Build the extension	 91
Settings extension	 92
Design an extension	 92
Template operator extension	 94
Translations extension	 94

Activating an extension	 96
Manual activation	 96
Backend activation	 97
Design activation	 98

Extension portability	 98
Content class package	 99
Extension packages	 103

Business with extensions	 105
Summary	 105

Chapter 6: Creating a Design	 107
eZ Publish templating	 107

Templating	 107
The templating markup	 108

Control structure operators	 108
Fetch functions 	 109
Generic template functions and operators	 110

Creating a new design	 113
The homepage	 114
Issue page	 115
The issue archive	 116
The staff profile page	 116

eZ Webin	 117
Overriding the standard page layout	 118

Section for our project	 118
Creating a new section	 118
Setting up the section permission access 	 120

Table of Contents

[iv]

Customizing the page layout	 123
CSS editing	 124
Creating a new style package	 124

Summary	 128
Chapter 7: Template Content Class	 129

Introduction to the content template	 129
The override system	 130

Creating a template override	 130
Creating a template override from a graphic interface	 131
Creating a template override manually	 134

Profile class	 135
Folder class for the issue year archive	 136
Folder class for issue	 136
Folder class for the issue archive section	 138
Article class	 138
Frontpage embed object	 139

Creating our custom template file	 140
Customizing our class templates	 140

Staff profile template	 140
Line template	 140
Full template	 143
Embed template	 146

Issue template	 146
Line template	 146
Full template	 148
Thumb template	 151
Embed template	 152

Issue archive template	 152
Full template	 153
Embed template	 155

Issue year template	 155
Full template	 156

Issue article template	 157
Line template	 157
Full template	 159
Embed template	 165

Summary	 166
Chapter 8: Adding Community Forums	 167

The magazine's forum	 168
Adding the Forum	 168

Creating a sticky post	 170
Forum access control list	 170
Creating the Private forums section	 171

Table of Contents

[v]

Creating the magazine's blog	 173
Adding the blog	 174

Set up the feeds	 175
Creating the blog feed	 176
Creating the forum feed	 180

Summary	 181
Chapter 9: Internationalization and Localization	 183

A multilingual site	 183
Internationalization	 184
Localization	 184
Locale identifiers	 184

Creating a new locale file	 184
Multi-language site management	 186

Class attribute translations	 187
Class default language	 190

Content translation	 190
URL translation	 191

Multilingual extensions	 192
The extension folder structure	 193
The extension siteaccess	 193
The template strings	 194

Summary	 194
Chapter 10: Creating Roles and Privileges	 195

Policies, roles, and groups	 195
Policies	 196
Roles	 196

Applying a role	 196
User groups	 197

eZ Publish user management	 197
User accounts	 198
Creating a new user	 199

Extending eZ Publish user classes	 202
Managing a user	 202

Disabling a user	 202
Deleting a user	 203

The eZ Webin predefined groups	 204
Some steps into the workflows	 204

The default workflow events	 205
Approve	 205
Wait until date	 205
Multiplexer	 205

Table of Contents

[vi]

Simple Shipping	 205
Payment Gateway	 206

Creating a notification workflow	 206
Summary	 211

Chapter 11: Cache Configuration	 213
Caching system	 213

Template cache	 214
eZ Webin cache block	 215

Compiling a template 	 216
Template optimization	 216

View cache	 216
Enabling/Disabling the cache by context	 217
Clearing the view cache	 218
Smart cache	 220

Default caching settings	 223
Advanced eZ Publish caching system	 224

Advanced settings	 224
Override cache 	 224
Pre-generation cache	 224
Translation cache	 225
Role cache	 225
Static cache	 225
Opcode cache	 226
Proxy and HTTP Accelerator	 227

Customize cache settings to speed up the performance	 228
What not to do in a template	 229
Summary	 230

Chapter 12: Deployment	 231
Environments	 231

Development environment	 232
Staging environment	 232
Production environment	 232

Preparing the production server	 233
Deploying an eZ Publish site	 233

eZ Deploy	 234
Creating the automatic tests	 234

Installing the Selenium IDE	 236
Recording a session	 236
Customizing tests	 238

Configuring the staging and production siteaccesses	 240
Deploying the database	 241

Deploying the code	 241
Configuring the extension	 241

Table of Contents

[vii]

Excluding files from deploy 	 242
Starting the synchronization	 243

Checking the validity	 243
Quality assurance	 245
Deploying to the production server	 245

Summary	 245
Appendix A: APC Installation and Optimization	 247

APC tuning for eZ Publish	 247
Opcode Cache	 247
How does it work?	 248

Installing APC 	 248
Installing from sources	 249
PECL installation	 249

APC configuration	 249
APC GUI	 251
Performance	 252

Appendix B: Advance Debugging	 253
Code debugger	 253

Debug template operators	 254
Templating debug	 255

Appendix C: eZ Publish's Best Extensions	 259
eZ Xajax	 259
Star Rating	 259
eZ Publish OE	 260
eZ JSCore	 260
Google Sitemaps	 260
eZ Deploy 	 261
Data Import	 261

Index	 263

Preface
Welcome to our book on building websites with eZ Publish. Before starting to learn
how to use it to create a site, let's take a short moment to better understand the
overall context of content management on the internet.

In recent years, we have seen the evolution of the Content Management Systems,
or CMSes. This kind of software from a simple set of tools for managing text and
pages of a website, has had to adapt and evolve to become more flexible. Nowadays,
CMSes need to be extensible, and use plugins or vertical modules to cater for
different needs.

The concept of a web page has moved from being a mere graphical representation of
information to a point where we can decouple the content from the presentation. In
turn, we can also decouple content from its publication media. Today, a single item
of content can be represented in boundless ways (for example, through the use of
Cascading Style Sheets, or CSS), and can be made accessible from almost any device,
through such things as RSS, Microformat, and so on.

Disciplines such as IA (Information Architecture) have made great strides in
determining how content should be managed. New information structures have been
developed across the years, from the simple and limited hierarchy of categories, to
multi-structured and more complex data organizations now used in any context.

In short, the Internet has become a 360-degree communication platform, which
increasingly uses various media in a single context. But the internet is also all about
content, which can be represented in a lot of different ways.

This is a big problem for developers who have to create and manage sites. These new
concepts have introduced new challenges for the management of websites.

In fact, the rigidity of managing information, as characterized by the old CMS
generation, has led many developers to seek new solutions—solutions that are
customizable according to the needs of the moment.

Preface

[2]

eZ Publish
eZ Publish was born for new media and enterprise content publishing. This product
can be used by all levels of developer to build corporate websites, intranets, web
shops, and media portals. eZ Publish is 100% open-source, available either as a
free download or as an enterprise solution (as eZ Publish Premium with support,
guarantees, and maintenance for companies that need advanced help).

In the first year of its life, eZ Publish moved from a Content Management System
approach to a Content Management Framework approach. A Content Management
Framework, or CMF, can be defined as an application programming interface for
creating a customized Content Management System.

In this book, we will be building an enterprise website with eZ Publish. eZ Publish is
well-suited to a project like this due to its structured content model and versioning
capabilities, as well as pre-built functionality that ensures rapid and professional
deployment with minimal fuss.

eZ Publish has some key features:

•	 It comes with a number of ready-to-use website packages.
•	 It has lots of predefined, solid, and useful functionality.
•	 It is flexible. Any behavior or components can be extended or overwritten.

Introducing the project
This book will focus on the delivery of a standards-based enterprise website for
a magazine adopting eZ Publish for the first time. The book will feature a single
magazine project from installation through to completion and deployment of the
eZ Publish website.

The project in detail
This book is divided into three main areas: set-up, creating content, and managing
it. We won't follow a linear approach but instead will try to see what we need in any
given area to accomplish our tasks and then, chapter by chapter, we will drill down
into concepts when needed.

•	 Set-up: We perform a complete eZ Publish installation on a LAMP platform,
where we will see how to configure the environment, and how to install the
standard layout that we will customize in the other chapters.

Preface

[3]

•	 Creating the content types and structures: We will define the content and the
structures that we will use for our magazine site. We will also create custom
content for managing some deeper information.

•	 Managing content: eZ Publish allows us to do a lot of things with content
and layout. In this area we will customize one of the standard and flexible
eZ Publish templates that comes bundled with the Content Management
Framework, in order to fulfill our needs. We will also set up some useful
services, such as internationalization, site subscription, and a forum for
creating interaction with the users. And, obviously, we will also create our
site pages.

What this book covers
Chapter 1, Installing eZ Publish: This chapter will look at the processes involved in
installing eZ Publish for the magazine project, including hosting requirements.
The choices that need to be made during installation will also be covered.

Chapter 2, Creating Our Site Accesses: What are siteaccesses? When we work on a
customer site it is useful to have different environments available to show your
customer what we are doing. In this chapter, we'll create some simple site access
rules to manage these areas. We will also take a deeper look at what site accesses are,
and how they work.

Chapter 3, Defining and Creating Content Classes: This chapter will introduce us to
the standard content classes of eZ Publish. We will also learn to create the required
classes, for the additional structured content, as defined by the project.

Chapter 4, Creating Content Structure: This chapter will look at creating the default
content structure for the magazine, as well as adding some initial content, so that
we can see the structure and layout of various default content classes. We'll also
introduce the eZ Publish backend and its functionality.

Chapter 5 Creating an Extension: We will create an extension to hold all of our
customizations for this project, which is much better than working in the standard
folders and will help us in any future system upgrade.

Chapter 6 Template Design: In this chapter, we will see how to apply a template to a
single content or to a node folder. We will also take a look at the template overrides,
and creating a design extension.

Chapter 7 Template Content Classes: Custom templates for content approval and
checkout processes are important concepts in many eZ Publish undertakings, and
will be featured in this chapter. We will also create a custom template for both a
standard class and a custom class.

Preface

[4]

Chapter 8 Adding Community Forums: In this chapter we'll take a look at the built-in
forums available through the ezwebin packages. We will implement these content
classes and templates, and then work on them further, adding functionality that was
not previously included in eZ Publish 4.0, but which will be useful to the magazine.

Chapter 9 Internationalization and localization: This chapter provides a brief overview
of the internationalization capabilities of eZ Publish. We will implement some
additional language translations for our customers who may be visiting and looking
to enroll at the magazine.

Chapter 10 Creating Roles and Privileges: After all of this defining and creating, we
need to actually get useful content into the system. There are a number of approaches
to do so, and this chapter will cover the main ones in detail, with a short discussion
on other methods.

Chapter 11 Cache configuration: The cache system is one of the most important
subsystems of eZ Publish. In this chapter, we will explain how to use it and how to
customize it for our needs.

Chapter 12 Deployment: The deployment chapter investigates the processes associated
with deploying our development site to production.

Appendix A, APC Tuning for eZ Publish: eZ Publish, to publish the web pages, has to
elaborate a lot of data. This work, in some cases, can be a CPU-eater and may slow
down the response of the server. For this reason, we will learn how to install and use
an opcode cache system, such as APC.

Appendix B, Advance Debugging: During the development of the eZ Publish site, it
is very important to receive immediate feedback about what we are doing. We will
learn how to enable and use the code debugger and the template debugger that are
included in the CMF.

Appendix C, eZ Publish Extensions: We will introduce some of the best extensions
developed by the eZ Publish community.

What you need for this book
Unless otherwise stated, the environment used in the examples, and referred to
throughout the book, is a LAMP platform with PHP 5.2.x, MySQL 5.x and eZ Publish
4.0.1. We'll use the shipped eZ webin template that eZ System offers bundled with
the CMF.

Preface

[5]

Who this book is for
If you need to work on a site with a complex publishing workflow, or have to
manage an enterprise level site and want to use eZ Publish from scratch and without
requiring hardcore programming skills, this is the book you need.

You will learn how to install, manage and customize the eZ Publish platform.
This book is for you if you are not a PHP-guru, and you don't want to study the
eZ Publish core functionality.

In general, however, you'll get more out of the book if you know a little PHP,
understand some concepts of Object Oriented Programming, and have a general
familiarity with CMS concepts.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code will be set as follows:

<? /* #?ini charset="utf-8"?

[ExtensionSettings]
DesignExtensions[]=packtmedia

*/ ?>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items will be shown in bold:

<?php /* #?ini charset="utf-8"?
...
[RegionalSettings]
TranslationExtensions[]=packtmedia
...
*/ ?>

Any command-line input or output is written as follows:

cd /var/www/packtmediaproject

cd extension/

mkdir packtmedia

Preface

[6]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in our text like this:
"Click on the Setup tab on top menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[7]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/1640_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Installing eZ Publish
Enterprise content management (ECM) is a set of technologies used
to capture, store, preserve and deliver content and documents related
to organizational processes.

This definition is taken from http://en.wikipedia.org/wiki/
Enterprise_content_management.

In this chapter, we will introduce the eZ Publish software. We will then prepare the
development server by downloading the software and creating a database, and we
will follow the installation wizard to have eZ Publish running on our server.

What is eZ Publish?
eZ Publish is an Enterprise Content Management System. It helps to build corporate
websites, intranets, web shops, and media portals. Moreover, eZ Publish is 100%
open source, available either as a free download or as an enterprise solution—eZ
Publish Premium—with support, guarantees, and maintenance.

This software is designed to be used by small, medium, and large companies.
It provides a lot of advanced features that can be used, by default, to create
professional and secure solutions.

The software allows websites to be fully extended and modified, and unlike other
CMSes, it's a truly scalable system.

Installing eZ Publish

[10]

eZ Publish supports, out of the box, the following features:

•	 The management of users' roles
•	 The ability to assign roles and policies to different content categories or types
•	 Definition of workflow tasks for collaborative creation, often coupled

with integrated event messaging
•	 The ability to track and manage multiple versions of a single instance

of content
•	 The ability to import content from other sources (that is, an

OpenOffice document)

eZ Publish is more than a simple CMS; it is a Content Management Framework
(CMF). This means that it is much more flexible, extendable, and reusable.

What is a CMF?
A content management framework is an Application Programming Interface (API) for
creating a customized content management system.

The eZ Publish kernel is crafted on top of eZ CMF, a content management
framework fully developed by eZ System. This framework makes the eZ Publish
functionality stable, secure, and well engineered. And thanks to the CMF, it is
possible to extend and personalize the CMS features to provide specific tasks or
create mashups and integrations with other open source products, such as CRMs,
financial software, or e-commerce platforms.

The most recent releases of eZ Publish also use eZ Components, a set of independent
components that will eventually replace all of the core functionality of eZ CMF. With
eZ Publish 4.0, it is possible to develop extensions using these components that give
a powerful API for each use.

eZ Publish packages
As we have said in the preface, it is very important to understand that eZ Publish
offers (as downloaded) three main features:

•	 It comes with a number of ready-to-use website packages
•	 It has lots of hardcoded, solid, and useful functionality
•	 It is flexible—behavior and components can be extended or overwritten

Chapter 1

[11]

Website packages are designed by the eZ System to use the main engine to help users
deploy different sites with different scopes: a community site, a static one, or an
intranet application. The three main packages are Plain Site, eZ Webin, and eZ Flow.

Whereas the first one is only a skeleton, on top of which a developer can craft his
or her own application, the other two allow developers to use a lot of functionality
without touching an IDE.

eZ Webin—the out of the box CMS
eZ Webin is a package that contains all of the functionality required to build a
complete Web 2.0 site. It is fully documented by eZ System, and this documentation
can be found at http://ez.no/doc/extensions/website_interface. eZ Webin is
very useful for creating a site from scratch.

To build our site, we will use this package in the next chapters, customizing the site
wherever needed.

eZ Webin includes:

•	 Tag clouds
•	 Blogs
•	 Forums
•	 Events management
•	 Calendars

eZ Flow—web publishing for news and
media portals
Vibrant sites are all about content flow—getting the most engaging and timely
content streams onto the site's critical portal pages. Built on top of eZ Publish as a
result of collaboration and experience with media customers, the eZ Flow extension
(http://ez.no/doc/extensions/ez_flow) enables editors to build complex
page layouts and pre-plan the publication schedule to ensure a constant flow of rich
content. In short, eZ Flow brings modern portal management possibilities to
eZ Publish.

eZ Flow is a web package that provides the following added functionalities:

•	 Layouts based on zones and blocks
•	 Custom layouts
•	 The ability to fetch content from different sources

Installing eZ Publish

[12]

•	 The ability to search, order, hide, and push content
•	 Scheduling of content flow
•	 Multiple block-specific templates
•	 Previews of portal pages
•	 An intuitive Flash player
•	 Embedded video advertisement
•	 Live video streaming and recording
•	 Ranking and related media
•	 Native integrations with ad servers
•	 Connectors for web analytics

Installation
Before we start using the CMS/F, we have to check if our system is ready for it.
As our first task, we will have to see if the hosting requirements are fulfilled.
Then we will configure the PHP interpreter according to eZ Publish's needs.

Hosting requirements
One of the most important things to understand is that hosting plays
a very important role in managing eZ Publish. The minimum requirements for
installing eZ Publish, in terms of both software and hardware, are discussed in the
subsequent sections.

Software required
•	 Apache server 1.3 or 2 if 2.x is installed, then the prefork package is used.
•	 MySql Server 4.1 or higher
•	 PHP 5.1—but PHP 5.2 is recommended, compiled as a module for Apache

and not installed as a CGI (eZ Publish does not work well with PHP
installed as a CGI)

•	 Support for the GD graphics libraries, if ImageMagick is not available
•	 Support for Apache mod_rewrite, if you want to use the friendly URL
•	 FTP access, but SFTP/SSH access is recommended
•	 The eZ Components library

Chapter 1

[13]

Hardware required
The installation requires about 50 MB on your hard disk, but as always, the more
space you reserve for the system the better. For a good system experience, we
suggest some minimum values: at least 1GHz CPU and 512 MB of dedicated RAM.

PHP configuration
As with any other software application developed in PHP, eZ Publish also needs
some configuration to better work with the interpreter. The most important is the
one related to memory usage and timezone settings. Moreover, the same settings
should be applied to both the command-line site and to the Apache (or IIS) module.

PHP memory limit issue
eZ Publish needs at least 64 MB (but 128 is preferred) in order to complete the Setup
Wizard. If you are using PHP 5.2.0 or an earlier version, you'll have to increase the
default memory_limit setting, which is located in the php.ini configuration file
(don't forget to restart Apache after editing php.ini). Normal operation requires
about 16 MB. However, it is highly recommended that you keep the 64 MB setting as
eZ Publish consumes a lot more memory as soon as you re-index the search, execute
upgrade scripts, and so on.

If you are using PHP 5.2.1 or later, there is no need to change the default
memory_limit setting (it is set to 128 MB by default).

PHP timezone
You need to set the date.timezone value in the php.ini configuration file. If this
setting is not specified, you will most likely receive error messages like "It is not safe to
rely on the system's timezone settings" when running eZ Publish on PHP 5. The following
example shows what the corresponding line in php.ini looks like:

date.timezone = <timezone>

Refer to the PHP documentation for the list of supported timezones. As before, don't
forget to restart Apache after editing php.ini.

Installing eZ Publish

[14]

Shared versus dedicated hosting
One of the main questions to consider before using eZ Publish is whether to use
shared or dedicated hosting. There is no simple answer because the choice depends
on the type of site that you develop. You have to take note that the variables that
affect the performance of the CMS are:

•	 Number of page views per unit of time
•	 Number of concurrent visits
•	 Complexity of the template
•	 Freshness of content
•	 Number of nodes

If the site that you want to develop is a showcase site for a company, with few pages
and few visitors, then the minimum requirements we saw in the previous paragraph
will be sufficient.

If you want to develop a great site for a media agency, such as the project we'll
develop in the next chapters, a site with high freshness of content, with a respectable
number of visitors per day (over 5,000 unique visitors), where we will add advanced
features and the ability of users to add content, then the minimum requirements will
increase to:

•	 Dedicated Hosting
•	 1 GB RAM
•	 Linux OS
•	 At least 1GB of free disk space
•	 Cronjobs management
•	 SSH access
•	 The eZ components library

For medium-sized projects, you can also use a Virtual Private Server (VPS), but if
the site receives a lot of visits and the CMS makes extensive use of a caching system,
then the performance could be diminished because of slow I/O. As a rule of thumb,
when possible, try to avoid using virtual disks if you plan to have a popular site.

Chapter 1

[15]

eZ components
eZ Publish is an object-oriented application where each class definition is stored in a
separate PHP source file. When eZ Publish is installed, all of the class definitions of
the eZ Publish kernel will have their paths listed in the autoload/ezp_kernel.php
file. In addition, the autoload/ezp_extension.php file will contain an array of paths
for class definitions that are a part of the extensions that come with eZ Publish. These
arrays will most likely need to be updated at some stage (for example, when you
install new extensions or configure existing ones by using the Setup | Extensions part
of the administration interface). Doing this requires eZ components version 2007.1.1
(or higher). In particular, you need to install the File and Base components (ezcBase
and ezcFile). Otherwise, eZ Publish will not be able to update autoload arrays.

eZ components is an enterprise-ready, general purpose PHP components library,
used for PHP application development. eZ components can be downloaded from
http://ezcomponents.org/download. In the future, eZ components will be
bundled with eZ Publish. Refer to http://ezcomponents.org/docs/install for
information about how to install eZ components.

Starting from version 2008.1, the eZ components library requires PHP version 5.2.1
or higher.

There are three ways to make eZ components available for your
PHP environment:

•	 Use the PEAR Installer for convenient installation via the command line
•	 Download eZ components, packaged in an archive
•	 Get the latest source from SVN

Installing eZ components by way of the PEAR Installer is highly recommended,
as it is the most convenient and safest way. You can find all required documentation
on how to do this at http://www.ezcomponents.org/docs/install.

If you are in a shared hosting environment, and it is impossible for you to
install eZ components as PEAR, there is a trick to installing it.
First of all, you will have to download the latest version of the
components from http://www.ezcomponents.org/download. Then
you have to extract the archive to the eZ Publish root, and rename the
folder ezc. Now, in the same directory, you have to create a file named
config.php, and enter the following code in it:

<?php
set_include_path("./ezc:" . ini_get("include_path")
);
?>

Installing eZ Publish

[16]

Setting up
After setting up the system, we need to perform a series of other tasks,
before installing eZ Publish, such as creating a database or configuring the
Apache environment.

All examples are written to be performed from a shell, under the
Linux operating system. If you do not have a shell, you can still
perform all of these tasks through the tools provided by your host.

Unpacking the installation
First of all, download the latest version of eZ Publish from http://www.ez.no/
download (at the time of writing this book, the latest version is 4.0.1). Unzip the file
that you downloaded, to your web root, and rename the folder with the name of
the project.

For example:

cd /var/www
wget http://ez.no/content/download/242355/1643191/version/1/file/
ezpublish-4.0.1-gpl.tar.gz
tar -xvfz ezpublish-4.0.1-gpl.tar.gz
mv ezpublish-4.0.1 packtmediaproject
cd packtmediaproject

From now on, every time we refer to the eZ Publish root,
we are talking about this directory (the directory to which we
unzipped the CMS).

Initializing the database
Once you have unpacked the source code of eZ Publish, you must create a new
database. It is important that the charset (character set) of the new database is
UTF-8 as this has been a mandatory requirement for a correct installation since
version 4.0.

Chapter 1

[17]

eZ Publish can use both MySQL and PostgreSQL. In this book, all of
the examples refer to the former, but you are free to use the latter.

To create a new database, open a shell and use the following code, which shows how
to set the character set:

mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.0.67 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE packtmediaproject CHARACTER SET = 'utf8';

Now create a separate user called packuser who owns all rights to manage the
database, and who can access the database only from localhost. You'll use this user in
the eZ Publish configuration files.

mysql> GRANT ALL ON packtmediaproject.* TO 'packtuser'@'localhost'
 IDENTIFIED BY 'packtpwd';
Query OK, 1 row affected (0.00 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 1 row affected (0.00 sec)

Apache virtual host settings
A virtual host setup is needed by eZ Publish only when configured to use the host
access method, which is the suggested method.

When using virtual hosts, it is possible to have several sites running on the
same server. The sites are usually differentiated by the name under which they
are accessed. Apache will look for a specified set of domains and use different
configuration settings based on the domain that is accessed.

Virtual hosts are usually defined at the end of the httpd.conf file, which is the main
configuration file for Apache, and is placed on Debian-based distribution in /etc/
apache2/conf. Adding a virtual host for eZ Publish can be done by copying
the following lines and replacing the text encapsulated by the square brackets with
real values.

Installing eZ Publish

[18]

Please refer to the following code for a real-life example of using virtual hosts.

NameVirtualHost [IP_ADDRESS]

<VirtualHost [IP_ADDRESS]:[PORT]>
 <Directory [PATH_TO_EZPUBLISH]>
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 <IfModule mod_php5.c>
 php_admin_flag safe_mode Off
 php_admin_value register_globals 0
 php_value magic_quotes_gpc 0
 php_value magic_quotes_runtime 0
 php_value allow_call_time_pass_reference 0
 </IfModule>

 DirectoryIndex index.php

 <IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteRule content/treemenu/? /index_treemenu.php [L]
 Rewriterule ^/var/storage/.* - [L]
 Rewriterule ^/var/[^/]+/storage/.* - [L]
 RewriteRule ^/var/cache/texttoimage/.* - [L]
 RewriteRule ^/var/[^/]+/cache/texttoimage/.* - [L]
 Rewriterule ^/design/[^/]+/(stylesheets|images|javascript)/.* -
 [L]
 Rewriterule ^/share/icons/.* - [L]
 Rewriterule ^/extension/[^/]+/design/[^/]+/(stylesheets|images|
	 javascripts?)/.* - [L]
 Rewriterule ^/packages/styles/.+/
	 (stylesheets|images|javascript)/[^/]+/.* - [L]
 RewriteRule ^/packages/styles/.+/thumbnail/.* - [L]
 RewriteRule ^/favicon\.ico - [L]
 RewriteRule ^/robots\.txt - [L]
 # Uncomment the following lines when using popup style debug.
 # RewriteRule ^/var/cache/debug\.html.* - [L]
 # RewriteRule ^/var/[^/]+/cache/debug\.html.* - [L]
 RewriteRule .* /index.php
 </IfModule>

 DocumentRoot [PATH_TO_EZPUBLISH]
 ServerName [SERVER_NAME]
 ServerAlias [SERVER_ALIAS]

</VirtualHost>

Chapter 1

[19]

The following table explains the variables as referred to in the code above:

Variable Description Project value

[IP_ADDRESS] The IP address of the virtual host. Apache allows the
use of a wildcards here ("*").

localhost

[PORT] The port on which the web server listens for incoming
requests. This is an optional setting. The default port
is 80. The combination of an IP address and a port is
often referred to as a socket. Apache allows the use of
a wildcards here ("*").

 *

[PATH_TO_
EZPUBLISH]

Path to the directory that contains eZ Publish. This
must be the full path.

/var/www/
packtmediaproject

[SERVER_
NAME]

The host or the IP address that Apache should look
for. If a match is found, the virtual host settings will be
used.

packtmediaproject

[SERVER_
ALIAS]

Additional hosts/IP addresses that Apache should
look for. If a match is found, the virtual host settings
will be used.

Please note that the mod_rewrite module must be enabled in
httpd.conf in order to use the Rewrite Rules.

The NameVirtualHost setting might already exist in the default configuration.
Defining a new one will result in a conflict. If Apache reports errors such as
"NameVirtualHost [IP_ADDRESS] has no VirtualHosts" or "Mixing * ports and
non-* ports with a NameVirtualHost address is not supported", try skipping the
NameVirtualHost line. For more information about the NameVirtualHost directive,
see: http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost.

If the ServerName is not a registered domain, you will need to add the record to the
file /etc/hosts, so that the system DNS can resolve it.

Open the file /etc/hosts and insert the following code at the end of file:

127.0.0.1 packtmediaproject

Installing eZ Publish

[20]

Image settings
In order to scale, convert, or modify images, eZ Publish needs to make use of an
image conversion system. Either of the following software packages (both are free)
can be used:

•	 GD2 (comes with PHP)
•	 ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD2 and usually produces better results
(better scaling, and much more). The setup wizard will automatically detect the
pre-installed image conversion system(s).

The installation and setup of required software solutions (outlined above) is far
beyond the scope of this document. Please refer to the eZ Publish homepage and the
relevant documentation for the different software solutions.

Cron jobs
Some features of eZ Publish depend on the maintenance script that takes
care of various tasks behind the scenes. This script is located in the root of the
eZ Publish directory and should be executed at regular intervals. The script is
called runcronjobs.php. Among other things, it processes workflows, checks and
validates URLs, sends out notification emails, and so on. Although eZ Publish works
without a periodic execution of runcronjobs.php, it is still recommended that
you have it running in the background. Some features, for example the notification
system, will not work if the script is not running.

The most common practice is to instruct the operating system to automatically
run the script every 30-60 minutes. However, some tasks should be executed
more frequently than others, and thus it is a good idea to divide the cronjobs into
groups/sets, and run them separately.

In the coming chapters, we'll set up some cronjobs: clear draft, start workflow event,
and notification.

Chapter 1

[21]

Configuration files
The default configuration files end with a .ini extension and are located in the
settings directory. Each file controls the behavior of a specific part of the system.
The main and the most important configuration file is called site.ini. Among other
things, this file tells eZ Publish which database, design, and so on, should be used.
The default configuration files contain all of the possible directives (with default
settings), along with brief explanations. These files should only be used for reference,
and should never be modified.

An eZ Publish configuration file is divided into blocks. Each block contains a
collection of settings. For example:

...
This line contains a comment.
[DatabaseSettings]
Server=localhost
User=allman
Password=qwerty
Socket=disabled
SQLOutput=enabled

This line contains another comment.
[ExtensionSettings]
ActiveExtensions[]=ezdhtml
ActiveExtensions[]=ezpaypal
...

The example above shows two blocks: DatabaseSettings and ExtensionSettings.
Each block has several sub-settings, which control the behavior of the system. A
setting can usually be set to enabled/disabled, a string of text, or an array of strings.
If the name of the setting ends with a pair of square brackets, it means that the
setting accepts an array of values. In the example above, the ActiveExtensions
setting tells eZ Publish to use two different extensions: ezdhtml and ezpaypal. Lines
starting with a hash mark (#) are treated as comments.

Installing eZ Publish

[22]

As pointed out earlier, the default configuration files should never be modified
because they will most likely be overwritten by a new set of files during an upgrade.
Because of this, custom configuration settings must be placed elsewhere. Global
configuration overrides can be placed in the /settings/override directory. The
settings of the configuration files located in this directory will override the default
settings. The name of the configuration files in the override directory must end with
extension .ini.append.php or .php.

If an override configuration file exists with both extensions, eZ Publish will process
the one with the .ini.append.php extension. The .php extension is more secure,
because will be processed by the web server as a PHP script. If someone attempts
to read it directly using browser software, the server will not display the contents
because the configuration settings are commented out. This method will prevent the
disclosure of secure information such as the database username and password.

In order for this to work, the contents of the configuration file must be encapsulated
by a pair of PHP comment markers: /* and */. The following example shows how
an override (for example test.ini.append.php) should be set up:

<?php /*
#?ini charset="utf-8"?
These are my example settings
[ExampleSettings]
ExampleSettingOne=enabled
ExampleSettingTwo=disabled
...

*/ ?>

The charset directive reveals the character set that was used to construct the .ini
file (usually UTF-8).

The setup wizard
We have now prepared the system and downloaded the required software but we
have not yet used the software. We have to do the last step in order to start creating
our magazine site.

Let's open a browser and enter the URL http://packtmediaproject. The setup
wizard, provided by eZ Publish will start to configure our new site. Following the
setup wizard is quite easy and we'll take a look at all of the pages that we have to
visit before using the CMS.

Chapter 1

[23]

Welcome to eZ Publish
The first page we will see is the welcome page for eZ Publish. Here we can see
the welcome message for the installation, and we can click on Next to proceed to
the actual installation.

System check
If you forget some aspect of configuration or your system needs some more
fixes, the system check page lists all the detected issues. Follow the instructions,
one-by-one, to fix the problems. Every time you click on the Next button, the wizard
will run the System Check again, and if no more issues are found you can continue.
Sometimes it is necessary to ignore a configuration; in this case you need
to select the Ignore this test checkbox as seen in the next screenshot:

Installing eZ Publish

[24]

The Finetune button is used for tuning the whole system to work best with
the CMS. This procedure is optional and it should only be used if you have a
highly-customized PHP configuration.

Chapter 1

[25]

Email settings
After the system has been configured, we need to set up our outgoing email settings.
We assume you shall want to use the sendmail SMTP server, which is usually
installed on all main Linux distributions.

If your server is configured to not use sendmail (or some compatible MTAs such
as Postfix or Qmail) you'll have to use SMTP configuration. In this case, you have
to specify the SMTP server name (or its IP address) and the user and password
(if needed) to send outgoing emails.

Installing eZ Publish

[26]

Choose a database
After we finish configuring all of the email stuff, we have to move on to the
database side.

In this step we can choose our database engine. eZ Publish supports MySQL,
MySQLi and PostgreSQL. In the list are present only the engines configured with our
PHP installation.

If you have configured only MySQL as the PHP database, this page will not
be shown.

If the PHP is configured to use mysqli extensions, then the setup wizard
will suggest that you use this. This choice is recommended, as it guarantees
good performance.

Chapter 1

[27]

Database initialization
After we have chosen our DBMS, we need to provide the necessary information for
the system to connect to the database.

To set up our site we have to use localhost as the server name, packname
as username, and packtpwd (or an alternative password, if you prefer) for
the password.

When the Next button is clicked, the wizard will try to connect to the database.
If it fails, then the database initialization page will be shown again.

Installing eZ Publish

[28]

Language support
The language support page allows you to choose the primary language for the
eZ Publish installation.

We can also choose other additional languages (in our example we have chosen
Italian, French, and English) that will be used to translate content.

The system allows us to reconfigure and add languages at any time, so if you add
more languages you can change these settings after the complete installation. It
is very important to note that choosing a primary language will also set up the
localization of the CMF. So, for example, the type of default date format will change
from US format to an Italian one.

Chapter 1

[29]

Site packages
As we said before, eZ Publish has some site packages bundled by default. In this
section of the wizard, we can select the main package that we will use to develop
our site.

Installing eZ Publish

[30]

All of the packages can be installed and used together, but we don't suggest that
you do this. Instead, focus on a single package, and if really necessary extend this
through the use of components and extensions.

For our Magazine site we will use the eZ Webin extension, which is bundled in the
Website Interface packages.

It is important to allow the server to download content from the Internet.
This will be necessary should you want to download all of the packages
needed by the eZ Webin extension. If your server is behind a firewall
then you will have to create a file called site.ini.append.php in the
setting/override directory, and add the following lines to it:

[ProxySettings]

ProxyServer=proxy.domain.com:8080

User=proxyUser

Password=proxyPassword

Replace proxy.domain.com:8080 with the actual proxy address,
and restart the Setup Wizard.

Chapter 1

[31]

When we select a non-English default language, it is possible that the site package
that we install will have no support. In this case, the setup wizard allows three kinds
of actions:

1.	 Map the package language to one of our choices, so that the missing text
will be replaced with the default one.

2.	 Create a new language.
3.	 Don't create the content for the language.

In our case, we decide to map all of the existing English (UK) content to English
(American). Then (if needed) we can update this, according to our needs, later on.

Installing eZ Publish

[32]

Site access configuration
In this step, we can select the access method we want to use in eZ Publish. This is a
very important step and the usage of the CMS strictly inherits from this choice.

The system allows three possible choices:

•	 URL (recommended): This is the default, and recommended, value. It doesn't
require any particular configuration. It simply uses an HTTP request to the
main index.php file to facilitate site access.

•	 Port: The Port configuration is used to map a site to a particular port on our
server, for example http://packmediaproject:81/. To use this parameter,
it is necessary to change the Apache configuration and handle all of the
possible conflicts with proxies and the firewall.

Chapter 1

[33]

•	 Hostname: This last option is used, for example, to map the site to a unique
hostname (for example, a subdomain on the backend). As with the Port
option, it a web server and a DNS configuration is necessary.

Site details
On this page, the wizard will show all of the set-up information. Moreover it shows
the databases installed on our system.

Now, we have to select the packmediaproject database, which we have previously
created. Do this by selecting it from the drop-down box and clicking on the
Refresh button.

Installing eZ Publish

[34]

If the database is not empty, the wizard will ask what you want to do:

•	 Keep the existing data and add the new tables
•	 Choose another database
•	 Remove the existing data
•	 Leave the data as it is (do not add the new tables)

Site security
This is the last actual configuration step. Here, we will add base security to our
system to prevent it from being used by unknown users.

To do this, we only need to fill the form with the data that will be used by the
administrator. It's very important to specify a real email address so that it is possible
to change the password if forgotten.

Chapter 1

[35]

Site registration
Site registration is an optional step that allows eZ System to know if sites using
eZ Publish are online or not.

All of the sent data will be confidential, and used by eZ System's staff to check
the different types of platforms used for eZ Publish. Feel free to send or not send
the notification.

Installing eZ Publish

[36]

Finished
Now our site is online and we can start working on it.

Don't forget to bookmark both the User site and the Admin site links.

Summary
Now we know what eZ Publish is, and what we mean by the CMF initialism. We
have learned about the components that eZ Publish uses to operate, and how to
install and configure them.

In this chapter, we have also seen how to install the whole eZ Publish CMS through
the Setup Wizard tool, and how to choose the best site package to fulfill our needs. In
the next chapter, we will work on the eZ Publish site access, to have a multilingual,
enabled site.

Creating Our Siteaccesses
An eZ publish installation can host multiple sites using something called
the siteaccess system
—eZ.no site

In this chapter we will look at:

•	 eZ Publish siteaccesses
•	 How to create custom siteaccesses
•	 How a custom site access will help us in development stage

Also, we will look at how to enable additional languages on our site.

What is the siteaccess system?
To override eZ Publish's default configuration, we need to create a collection of
configuration settings called siteaccess. The role of a siteaccess is to indicate to eZ
which database, design, and var directory should be used for a particular context.

With siteaccess it is possible to use the same content and different designs (for
example, when creating a mobile version of our site) or do the opposite (for example,
managing a multilingual site where the template doesn't change but the content does).

It's also possible to create an administration siteaccess, where we can manage any
kind of content, such as users, media files and, of course, the articles, or a frontend
siteaccess that is the website, where we can only view the public published content.

A typical eZ publish site consists of two siteaccesses: a public interface for visitors
and a restricted interface for editors. In this case, both siteaccesses use the same
content, but different designs. Whereas the administration siteaccess would most
likely use the built-in administration design, the public siteaccess would probably
use a custom design.

Creating Our Siteaccesses

[38]

The following illustration, taken from the official eZ Publish documentation,
shows this scenario:

ACCESS RULES

Match criteria Siteaccess

www.example.com

admin.example.com

public

admin

SITEACCESSES

public

Database: example
Design: public
Var: example

[...]

admin

Database: example
Design: admin
Var: example

[...]

example exampleadminPublic

DATABASE DESIGNS VAR DIRECTORY

RESOURCES

Usually, in big projects it is also useful to have two additional siteaccesses: a staging
siteaccess and a developing siteaccess. The first is used in a staging environment to
make frequent deployments of modifications that can be tested by the customer (in
this case, the siteaccess uses a different database but the same design as for the public
and admin siteaccesses). The second one, instead, is used by developers on their local
machine (this siteaccess uses a local database, but once again uses the same design as
for the public and admin siteaccesses).

A single eZ publish installation can host a virtually unlimited number of sites by
simply adding new siteaccesses, designs, and databases.

Chapter 2

[39]

Siteaccess folder structure
The configuration settings for siteaccesses are located inside a dedicated subfolder
within the /settings/siteaccess folder. The name of the subfolder is the actual
name of the siteaccess.

It is very important to remember that a siteaccess name can only contain letters,
numbers, and underscores.

The following illustration shows a setup with two siteaccesses: admin and public.

When a siteaccess is in use, eZ publish reads the configuration file in the
following sequence:

•	 Default configuration settings: /settings/*.ini
•	 Siteaccess settings: /settings/siteaccess/[name_of_siteaccess]/*

.ini.append.php

•	 Global overrides: /settings/override/*.ini.append.php

eZ Publish will first read the default configuration settings. Then, it will determine
which siteaccess to use based on the rules that are defined in the global override for
site.ini /settings/override/site.ini.append.php. When it knows which
siteaccess has to be used, it will go into the correct siteaccess folder and read the
configuration files that belong to that siteaccess. The settings of the siteaccess will
override the default configuration settings.

For example, if a siteaccess uses a database called packtmediaproject_test,
the system will find this and automatically use the specified database when an
incoming request is processed.

Finally, eZ Publish reads the configuration files in the global override directory.
The settings in the global override directory will override all other settings. So, if a
database called packtmediaproject is specified in the global override directory for
site.ini, then eZ publish will attempt to use that database regardless of what is
specified in the siteaccess settings.

Creating Our Siteaccesses

[40]

If a setting is not overridden either by the siteaccess, or from within a global
override, then the default setting will be used. The default settings are set by the .ini
files located in the /settings directory. The following figure illustrates how the
system reads the configuration files, using the site.ini file as an example:

DEFAULT

SITEACCESS OVERRIDE

GLOBAL OVERRIDE

Final site.ini settings

/settings/site.ini

/settings/siteaccess/example/site.ini.append.php

/settings/override/site.ini.append.php

Creating a siteaccess for dev, staging, and production
environments
Once we have finished installing eZ Publish, we'll find a folder called setting/
siteaccess, with the default siteaccess automatically configured.

In our case we'll find these folders:

•	 admin: This folder usually isn't used as siteaccess, but it contains a standard
configuration file that can be used to set up the administration panel

•	 setup: This folder contains all of the configuration files that are used during
the installation process

•	 ezwebin_site: This is where the main design is imported directly from
the eZ.no site for the package eZ Webin

•	 ita, eng, fre: Last but not least, the ita, eng, and fre folders have
the configuration files used by the site to enable internationalization
and localization

The ezwebin_site_admin is created by the webmin site package, and contains all of
the configuration files for the administration panel.

Chapter 2

[41]

Enterprise siteaccess schema
In an enterprise development process, it is very important to have four
more siteaccesses:

•	 dev

•	 dev_panel

•	 staging

•	 staging_panel

The siteaccesses dev and dev_panel will be used as a development playground
installation, which can be used by the development team members, with their own
configuration parameters, such as database connection, path, and debug file. This
will help them to test different configuration parameters or extensions without
impacting the production site.

The siteaccesses staging and staging_panel will be used as a staging arena that
can be used by a customer to evaluate new functionality before it is released to
production. Usually, the staging installation is installed on a clone of the production
server, to make sure that everything works in the same way. In our case, and for
this book, we will work on the same server to better understand how to create the
different siteaccesses.

All siteacccesses will have some configuration files in common, and sometimes
these have to assign the same value to the parameters specified inside them. For
example, if you need to create a new language siteacccess, you'll need to copy the
same module configuration files to be sure that they will work in the same way for
all of the languages. In this case, it will be useful to create a symbolic link from one
siteaccess to another. If you don't know what a Linux symbolic link is, you can think
of it as a virtual pointer to a real file, like a Windows XP shortcut.

Creating siteaccesses for dev and staging
In our case, in the dev and staging siteaccesses, we will create the following
symbolic links from the eng folder siteaccess:

•	 browse.ini.append.php

•	 contentstructuremenu.ini.append.php

•	 design.ini.append.php

•	 image.ini.append.php

•	 menu.ini.append.php

•	 odf.ini.append.php

•	 template.ini.append.php

•	 toolbar.ini.append.php

Creating Our Siteaccesses

[42]

Open a shell, and in the eZ Publish installation folder, use the ln (link) command to
create the new symbolic links from the existing siteaccess configuration file:

cd setting/siteaccess

ln -s eng/browse.ini.append.php dev/browser.ini.append.php

ln -s eng/contentstructuremenu.ini.append.php dev/contentstructuremenu.
ini.append.php

…

ln -s eng/toolbar.ini.append.php dev/toolbar.ini.append.php

It is very important to execute the ln command for all of the files listed above,
to ensure that the siteaccess will not inherit the settings from the default
configuration files.

Creating symbolic links
Next, we have to create more symbolic links for the configuration files in
the staging_panel and dev_panel folder. So we'll create them from the
ezwebin_site_admin files.

This is the file list:

•	 contentstructuremenu.ini.append.php

•	 icon.ini.append.php

•	 odf.ini.append.php

•	 override.ini.append.php

•	 toolbar.ini.append.php

•	 viewcache.ini.append.php

Use the same command as before, this time specifying the starting folder
(ezwebin_site_admin):

ln -s ezwebin_site_admin/browse.ini.append.php dev_panel/browser.ini.
append.php

We need to repeat this command for each file listed before.

Next, we will have to copy the following files from the eng folder to dev and
staging. We have to copy these files because we will change them according to our
needs in the next chapter.

•	 content.ini.append.php

•	 override.ini.append.php

•	 site.ini.append.php

Chapter 2

[43]

We also need to copy the following files from the ezwebin_site_admin folder to dev_
panel and staging_panel:

•	 content.ini.append.php

•	 site.ini.append.php

Configuring the database parameters
The last step is to configure the parameters related to the database connection for the
staging and development installations, modifying all of the files named site.ini.
append.php found inside the different siteaccess folders.

Open a shell and go to the eZ Publish installation folder. Then go into the
settings/siteaccess folder and for each siteaccess that you have created, you
need to edit the file site.ini.append.php, adding the following code, if it is not
already present, at the top of the file:

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
Port=
User=root
Password=
Database=packtmediaproject
Charset=
Socket=disabled
SQLOutput=disabled

As we create the siteaccesses, we have to add them to the site.ini.append.php file
in the settings/override folder . Copy the following code into the file:

[SiteSettings]
..
SiteList[]=dev
SiteList[]=dev_panel
SiteList[]=staging
SiteList[]=staging_panel
..

[SiteAccessSettings]
..
AvailableSiteAccessList[]=dev
AvailableSiteAccessList[]=dev_panel
AvailableSiteAccessList[]=staging
AvailableSiteAccessList[]=staging_panel
..

Creating Our Siteaccesses

[44]

RelatedSiteAccessList[]=dev
RelatedSiteAccessList[]=dev_panel
RelatedSiteAccessList[]=staging
RelatedSiteAccessList[]=staging_panel

Creating multilingual siteaccesses
As we saw, eZ Publish created a siteaccess for every language that we enabled in the
first chapter. If we'd like to add more languages for our site, we need to create a new
siteaccess folder and configure the language settings inside it.

Let's create, for example, a German siteaccess. This task can be summarized in the
following three steps:

1.	 Create a new folder called de, inside settings/siteaccess/.
2.	 Copy the files or create the appropriate symbolic links as per the eng

siteaccess, inside the de folder.
3.	 Configure the siteaccess .ini configuration files for the language.

Copying the configuration file
We need to create all of the .ini files from the main language siteaccess in the new
language folder (de). To do this, we need to create a symbolic link for all the files,
except the site.ini.append.php, that are to be copied into the new folder.

Editing ini files for locale components
Configure all of the site.ini.append.php files for all of the languages siteaccesses,
to enable the new German language.

To do this we will edit the files, adding the highlighted code:

vi settings/siteaccess/eng/site.ini.append.php

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
ShowUntranslatedObjects=enabled
SiteLanguageList[]=eng-GB
SiteLanguageList[]=ita-IT
SiteLanguageList[]=fre-FR
SiteLanguageList[]=de-DE
TextTranslation=disabled

Chapter 2

[45]

Do the same for the site.ini.append.php files in the fre folder and the ita folder.

After that, we need to copy the eng/site.ini.append.php to our new folder, de,
and edit it as follows:

[RegionalSettings]
Locale=de-DE
ContentObjectLocale=de-DE
ShowUntranslatedObjects=enabled
SiteLanguageList[]=de-DE
SiteLanguageList[]=eng-GB
SiteLanguageList[]=ita-IT
SiteLanguageList[]=fre-FR
TextTranslation=enabled

The directive SiteLanguageList tells us the order in which the system will show the
content for our objects. If the content isn't translated into German, eZ will show the
English version; if the English version is unavailable than it will show the Italian one,
and so on.

The last step is to add the new languages inside the settings/override/site.ini.
append.php, as we did for the dev and staging siteaccesses:

[SiteSettings]
..
SiteList[]=fre
SiteList[]=ita
SiteList[]=eng
SiteList[]=de

[SiteAccessSettings]
..
AvailableSiteAccessList[]=fre
AvailableSiteAccessList[]=eng
AvailableSiteAccessList[]=ita
AvailableSiteAccessList[]=de
..
RelatedSiteAccessList[]=fre
RelatedSiteAccessList[]=eng
RelatedSiteAccessList[]=ita
RelatedSiteAccessList[]=de

Creating Our Siteaccesses

[46]

Selecting a siteaccess using host or
URI-based matching
As we saw in the first chapter, eZ publish can work using host or URI-based access.

Using the wizard, we selected the URI access method. This can be changed, if
necessary, in the global override for the site.ini configuration file: /settings/
override/site.ini.append.php. The behavior of the siteaccess system is
controlled by the MatchOrder setting within the [SiteAccessSettings] block.

URI
This is the default setting for the MatchOrder directive, and is set by the setup
wizard. When this access method is used, the name of the siteaccess that we want to
use has to be the first parameter that appears after the index.php part of the
requested URL.

For example, the following URL will tell eZ publish to use the panel siteaccess:
http://packmediaproject/index.php/panel. If we want to use the ita siteaccess,
then the URL that we have to call will be http://packmediaproject/index.php/
ita. If nothing is used in the last part of the URL, then the default siteaccess will
be used.

Setting the default siteaccess
The default siteaccess is defined by the DefaultAccess setting within the
[SiteSettings] section. To change it, we have to open the /settings/override/
site.ini.append.php file and make the changes highlighted here:

[SiteSettings]
DefaultAccess=ita
[SiteAccessSettings]
MatchOrder=uri

The URI access method is very useful for the development/preview stage where
changing the DNS server isn't very easy.

Chapter 2

[47]

Host
The host access method makes it possible to map different host/domain
combinations to different siteaccesses. This access method requires the configuration
of the server and DNS (not eZ Publish). The DNS server must be configured to
resolve the desired host/domain combinations to the IP address of the web server,
and then the web server must be configured to trigger a virtual host configuration
(unless eZ Publish is located in the main document root). Once these settings are
configured properly, eZ Publish can be set up to use different siteaccesses based on
the host/domain combinations of the incoming requests.

The following example shows how to set up /settings/override/site.ini.
append.php in order to make eZ Publish use the host access method. In addition,
it reveals the basic usage of the host matching mechanism.

[SiteAccessSettings]
MatchOrder=host
HostMatchType=map
HostMatchMapItems[]=www.packmediaproject.com;eng
HostMatchMapItems[]=it.packmediaproject.com;ita

The example above tells eZ publish to use the eng siteaccess, if the requested
URL starts with www.packmediaproject.com. If the requested URL starts with
it.packmediaproject.com, the Italian version of the site will be used.

In the same way, we can configure HostMatchMapItems to use the admin panel
and other languages. Using the host configuration is useful if we don't want to
make the backend subdomain public, but want to make it internal to our network,
or to support those sites that want to differentiate the languages instances with a
dedicated subdomain.

Summary
In this chapter we learned what a siteaccess is, and how to configure and personalize
it. We also learned how to add more languages to our sites, and how to change the
access method from URL to Host mode.

In the next chapter, we will meet the eZ Publish content classes, and will define the
main content classes for our project.

Defining and Creating
Content Classes

To make a table we need some wood
to make some wood we need a tree
to make a tree we need a seed ...
"Ci vuole un fiore", a children's song by Gianni Rodari

In this chapter, we will look at what the content class is for eZ Publish, and how to
create and manage it. We will define all of the content classes needed by our site to
create articles and staff profile pages.

Before opening a browser and starting to create new content classes, we have to take
a few minutes to learn what a content class is, how eZ Publish manages the content,
and how this content will help us in our work. We also need to decide what we will
want to publish on the site by defining all of the appropriate content classes.

Managing the content
One of the main scopes of a CMS is to manage any kind of content and data structure
with as little effort for the users as possible. So it is very important to handle the
content with enough flexibility to allow choosing what to show and what not to
show in any possible context.

Defining and Creating Content Classes

[50]

For example, a good CMS should allow us to store a lot of information on an article,
useful for internal use, and choose not to show on the site frontend, because it is not
necessary for readers. Or, instead, a CMS, gives us the ability to update our articles
by adding information and rewriting them easily.

So, we not only need a complete decoupling of the content from the design, but also
the ability to manage the content in different possible ways.

Separation of content and design
If the content can be defined as the action to store data in some way, the purpose
of the design is to display that data. One of the key features of eZ Publish is the
complete separation of content and design. This gives the ability to create different
kinds of content structure and reuse them for different purposes, permitting
developers and designers to work separately, publish content in different formats,
and rewrite a complete interface without any development issue.

Content structure in eZ Publish
Unlike other CMS platforms, eZ Publish doesn't assign a fixed content type based on
a strict definition.

However, it uses the content class paradigm. Any kind of content is a content
class that is built on top of a content attribute. A user can, at any time, merge in
different attributes to create a new content class, or edit an existing one. Moreover, a
developer can also create a new content attribute to extend the system without any
virtual limits.

Object-oriented content
As we say, all of the content classes are defined by one or more attributes, and each
of these attributes are defined by an input field. So, we can say that eZ Publish uses
an object-oriented approach to describe the content, where the main object inherits
the attributes' characteristics and exposes them to the user as input forms.

Moreover, we have to understand that when we talk about content classes, we are
not talking about its data. The content classes are only the definitions of the content
object structure. Content objects, however, are instances of content classes in which
we can store our data.

For example, we can use the following image from the eZ Publish documentation,
where we have the Article content class that is used to generate three different
Article objects:

Chapter 3

[51]

ARTICLE CLASS

Name Datatype

Title

Intro

Body

Text line

Text line

XML field

ATTRIBUTES

ARTICLE OBJECT ARTICLE OBJECT ARTICLE OBJECT

Title: Title: Title:

Intro: Intro: Intro:

Body: Body: Body:

Penguin

The penguin is
called "Sigge"

He is an angry
old penguin

Scooter

Sigge rides a
yellow scooter

He wants a
parking spot
for his scooter

Megaphone

Sigge has a
megaphone

"So watch out!",
he shouts.

As we can see in the next image from the official eZ System documentation, a
content object should have one or more versions. Now, this version should be both a
translation and a revision of the object itself, and should be able to be placed as a node
inside the content tree of eZ Publish.

OBJECTS NODES

Object ID: 30
Name: Content

Type: Folder

Object ID: 31
Name: News
Type: Folder

Object ID: 32
Name: Company

Type: Folder

Object ID: 33
Name: About
Type: Article

Object ID: 34
Name: Contact

Type: Article

Node iD: 2
Parent node: 1
Object ID: 30

Node iD: 45
Parent node: 2
Object ID: 31

Node iD: 46
Parent node: 2
Object ID: 32

C
O

N
TEN

T N
O

D
E TR

EE

Node iD: 47
Parent node: 46

Object ID: 33

Node iD: 48
Parent node: 46

Object ID: 34

Defining and Creating Content Classes

[52]

eZ Publish content classes
Every type of content in eZ Publish has its own content class, but we have to
clearly understand that a content class doesn't store any type of data; it represents a
definition of a data structure.

For example, if our site shows some stories on the home page, these stories should
be defined by an Article content class that is built on one or more attributes, such as
Title, Body, and Publication date.

These attributes are called Class Attributes. As we can see in the following image from
the eZ Publish documentation, these attributes are represented by a specific datatype
(which is the smallest entity of storage) and describe how a specific content has to be
retrieved, validated, and saved:

ARTICLE CLASS

Name Datatype

Title

Intro

Body

Text line

Text line

XML field

ATTRIBUTES

Class attributes
The class attributes are defined by four elements:

•	 The name
•	 The generic control
•	 The internal identifier
•	 The datatype-specific controls

The name is the friend name used to store the class attribute and it will be used, for
example, in the administration panel as a label for the input form. The name can
contain letters, digits, special characters (also whitespaces), and can be up to 255
characters long. If it is left empty, eZ will assign a unique value. A valid name value
could be: The lastname of the author:

Chapter 3

[53]

Whereas the name is designed for users, the internal identifier is needed by the
system to simply identify an attribute during the programming task. In this case,
the string must be no more than 50 characters long and should not contain any
special characters. Also, the space character is banned and underscores must be used
instead. A valid internal identifier value could be: author_lastname.

Any datatype has four generic controls available by default. They are
Required, Searchable, Translatable, and Information Collector. As the first three
are self-explanatory, we have to spend some words only for the last control.

The Information Collector control enables eZ Publish to store input directly from
the site's frontend. When a class attribute has this flag enabled, it will always act
as an input form and will store all of the data inserted into it. We should take as an
example a comment form where a user should leave his name, email, and (of course)
a text comment. These three inputs are generated by three class attributes with the
information collector control flagged as true.

Whereas the generic controls are assigned to all kinds of class attributes, the specific
controls are defined in the datatype structure. For example, if we use the class
attribute built on the Date datatype, then we will be provided with the Default value
control. But if we choose the Image datatype (a datatype specialized in managing
image files) instead, an additional specific control, Max file size value, will be added.

Datatypes
eZ Publish, by default, exposes a lot of different types of datatypes.
A datatype is the smallest entity of storage, and can be mixed to create
complex content classes. A custom datatype must be created directly in
PHP. It can't be generated by the web interface. To see which datatypes
are enabled in the 4.0.x release of eZ Publish, we suggest reading the
reference book published on the ez.no site at http://ez.no/doc/
ez_publish/technical_manual/4_0/reference/datatypes.

Defining and Creating Content Classes

[54]

Content class management
Now let's understand how eZ Publish gives us the ability to manage the content
classes from the administration panel. Open a browser and go to the domain URL we
configured in the installation chapter, specifying the administration panel path we
chose in Chapter 2. If you previously didn't change anything, you should open the
administration panel directly from http://packtmediaproject/ezwebin_site_
admin url. Here, you can log in using "admin" as username and the password that
you chose in the setup wizard.

Now, click on the Setup label in the main navigation bar and then select Classes in
the left sidebar.

You will see the main classes page where all of the default eZ Publish content classes
created for the eZ Webin package are defined. The central column of the page is
divided into two main rows. The first row defines the default Class groups (where
the default classes are stored) and the second row shows you the latest changes made
by a user.

If we click on the group labeled Content, we will see all of the default classes that we
should use to create our site.

Chapter 3

[55]

Default content classes reference
When we install eZ Publish with the eZ Webin package, we also install
a lot of preconfigured content classes that can be used "out of the box"
(for example: article, blog post, forum, comment, and so on.). Moreover,
all of the site packages, plugins, or extensions should add more content
classes to fulfill their tasks. You will see the main content class defined
in the eZ.no reference site at http://ez.no/doc/ez_publish/
technical_manual/4_0/reference/content_classes.

Now click on the Edit link for the Article class to take a look at the classes attributes
and structure.

Defining and Creating Content Classes

[56]

Content class structure
As we saw in the previous sections, eZ Publish installs some default content classes
that are used to create a site from scratch. For example, the Article class contains
all of the structures needed to store and publish news articles as a title, body, and
so forth.

The structure of a class is divided into class properties and class attributes.
The Article class properties are:

Name Identifier Container Object name
pattern

URL alias
name pattern

Default
sorting of
children

Default
object
availability

Article article yes <short_
title|title>

<short_
title>

Path
String /
Ascending

No

Just as we did for the class attributes, let's describe the meaning of these properties.

Chapter 3

[57]

Name
The Name property is used to store a friendly name that describes the defined class.
As for the class attribute's name definition, it can have up to 255 characters and can
contain letters, digits, and special characters. If nothing is defined, then eZ Publish
will create a unique name.

Identifier
The identifier of a content class works exactly like the attributes. It can accept only
digits, letters, and underscores and cannot be longer than 50 characters.

Object name pattern
This property is used to automatically name all instances of a class. For example, if
we create an article titled packmediasite is the best book, the system will translate it into
a valid object name. All of the text inside the angular brackets has to be an attribute
identifier, whereas the text outside it will be added as-is.

URL alias name pattern
This property works exactly like the Object name pattern, and is used to define the
URL aliasing for an object. If left blank, the object name will be used instead.

Container checkbox
If this checkbox is selected, then the attribute will act as a container. This means that
it will be rendered as a form and all of the data inserted by a user will be stored in
the eZ Publish storage area.

Default sorting of children
On setting this property, it is possible to handle the instances of this content class if
they are defined as containers, order of their children (or subitem) list. For example,
if we select an ascending order for the Article class children, and a descending order
for the comment class, then this property gives only a default behavior for the class.
But it can be personalized for all single class instances.

Defining and Creating Content Classes

[58]

Attributes
We saw in the previous pages what a class attribute is and how to manage its
properties. Now let's see the default values for the Article attributes:

Name Identifier Datatype Required Searchable Collector Translatable
Title title Text line Yes Yes No Yes
Short title short_

title
Text line No Yes No Yes

Author author Authors No Yes No Yes
Intro intro XML Block Yes Yes No Yes
Body body XML Block Yes Yes No Yes
Enable
comments

enable_
comments

Checkbox No No No No

Image image Object
relation

No Yes No No

Keywords keywords Keywords No Yes No Yes

The content classes can be modified at any time to better adapt the site's needs. So we
can add, change, or delete attributes, and in this case, all of the data will be removed
automatically by the system.

Please note that removing an attribute from a class with many instances
of a content object can be dangerous. This is because the data structure of
your content objects can become corrupt if the removing action finishes
before it has removed all of the attributes. To prevent this, you should
raise the default 30 second script execution time (max_execution_time)
in the php.ini to a minimum of two or three minutes.

Packt Media Site's content class
We learned what content classes are, and now we have to create our own classes
by customizing the existing ones, or creating new ones from scratch.

But first, we need to understand what we need in our site.

We will describe the Packt Media Site as the site of a youth magazine that decided
to move onto the Web after some years of success in the paper market.

The magazine will publish all of the articles based on a precise editorial program.
Moreover, the readers will have the possibility to comment on them in a
dedicated forum.

Chapter 3

[59]

The last point we have to fulfill is that all of the members of the editorial staff want a
personal profile page where they can show their own articles and some personal data.
With this information, and taking a look at the default content classes that eZ Publish
gives us, the only thing we have to do is creating a personal profile page from scratch.

Creating the profile content class
We have to open the browser again and log in to the administration panel. Here, we
go to the setup page, click on the Classes link in the sidebar, and enter the content
group. On the bottom of the page, we will click on the New class button and start
creating our new class.

The first thing we have to choose are the main properties of the content class. We will
add them as shown here:

Next, we will add some attributes that will be shown on the site.

Defining and Creating Content Classes

[60]

The first attribute we will use is the Authors. To choose it, simply select the select
menu and then click on the Add attribute button. The result will be similar to the
screenshot shown here:

By default, eZ Publish sets a fake name (in this case, new attribute1) as an attribute
name. We should change this to one that is easily recognizable when we work in the
backend. Moreover, we should select the Required checkbox to be sure that a profile
will always be assigned to an existing user.

Chapter 3

[61]

Now, we will add a new XML block attribute that will enable a WYSIWYG text area
editor that we will use to insert the author description. As before, we will change the
default values to something more expressive, like the ones shown here:

To complete our work, we need to define some more attributes such as the firstname
and lastname of the editor, as well as their birth date, email, and photo.

Defining and Creating Content Classes

[62]

The date attribute can only store dates from 01/01/1970 to the
year 2032. So, if you need to manage an older date for the birthday
attribute, you need to use the Birthday Datatype extension
(http://projects.ez.no/birthday). We will see how
to install and manage extensions in the upcoming chapters.

The last step will be to add a User account attribute. Set this to "not required"
(deselect the Required checkbox), to assign an eZ Publish user to that profile,
if present.

Chapter 3

[63]

When we click on the OK button to confirm all of the changes that we applied to the
Profile form, we are redirected to the Profile [Class] summary page, where we can
see what we have done.

If you miss some steps, you can click on the Edit button and modify the created
class again.

Extending the Article class
Sometimes, the articles of the magazine are written by two or more editors and we
want to list all of them on the article's page. Moreover, we also want to show all of
the articles written by an author.

Again, click on the Classes link in the sidebar. Now go to the Content folder,
click on the Article class, and then click on the Edit button.

Defining and Creating Content Classes

[64]

Next, add a new attribute called Object relations, which will enable multiple
relations with other predefined objects.

In our case, for the sake of simplicity, we will choose List with checkboxes as the
select method. This will display a list of all the authors, preceded by a checkbox to
relate one by one to the article, and we will allow only the Profile class.

Now we can save the Article class and go on to create our content classes.

Chapter 3

[65]

The other content classes
We will now create more content classes to manage the forum and the feedback form.

But luckily, eZ Publish is very helpful and exposes some ready-to-use classes that we
can use without a need to modify them in any way. These classes are the forum, the
forum reply, and the feedback form classes.

Summary
In this chapter, we learned what content classes are, how to manage them,
and also how eZ Publish manages the different types of content. We also started our
magazine site project by creating the Profile and customizing the Article
content classes.

In the next chapter we will use this work to create a content structure for the site.

Creating Content Structure
The Guide is definitive. Reality is frequently inaccurate.
—The Hitchhiker's Guide to the Galaxy, Douglas Adams

In Chapter 1, we installed eZ Publish; in Chapter 2, we configured the site access;
and in the Chapter 3, we created the content class we have to use. Now it's time to
use all of the work we did to create the new enterprise-level site for our Packt Media
magazine. But before that, to better understand what we will do next, we'll introduce
the eZ Publish backend and its publishing-related functionality.

In this chapter, we will:

•	 Learn how to use the eZ Publish backend
•	 Look at creating the default content structure for the magazine
•	 Add some initial content, so that we can use the content classes that we

created in the last chapter

To begin with, let's open a browser and go to the administration panel of eZ Publish,
at http://packtmediaproject/index.php/ezwebin_site_admin.

Creating Content Structure

[68]

Understanding the backend
In Chapter 3, we focused on the Setup tab, and created new content classes and
class attributes. Now we'll take a step back and get introduced to the backend of
eZ Publish, to understand how the Content structure and Media library tabs work.

As we can see, the backend of eZ Publish is divided into four main areas:

•	 The navigation bar (on the top of the screen)
•	 The secondary menu (on the left-hand side of the screen)
•	 The content area
•	 The right-hand menu

Inside the navigation bar, we will find the main menu and a breadcrumb path.

What is a breadcrumb path?
Breadcrumbs or a breadcrumb path is a navigation aid used in user
interfaces. It provides users with a way to keep track of their location
within programs or documents. The term comes from the trail of
breadcrumbs left by Hansel and Gretel in the popular fairytale.

Chapter 4

[69]

The navigation menu contains the links to all of the main sections of the CMS, and
also includes a classic breadcrumb path that helps us to understand where we are
and how we get back to where we were.

The secondary menu and the content area will change, contextually, based on
the CMS section we are in. The right-hand menu will only contain user- and
debug-related information.

In this chapter, we won't see a description of all of the CMS section tabs in depth.
We will focus only on the first two tabs. When you start using eZ Publish, you'll
understand the similarities in the other sections.

Content structure
The Content structure section represents the site content tree that is usually seen
on the frontend of the site. In the secondary menu of this section, we can see a
dynamically-generated tree structure containing the content nodes, and the details of
the selected node, in the content area.

The Media library acts the same as the Content structure, but is basically a
repository of all of the media content that we have uploaded into the CMS. Every
time we upload something, eZ Publish will understand the type of media (audio/
video, image, or other type) and will place it in the correct folder of the Media
library section.

Creating Content Structure

[70]

The secondary menu
The secondary menu is often called the left-hand menu. It contains the content tree of
our site, and provides us with a shortcut to create and manage this tree.

The secondary menu acts as a file browser, just as it does in some operating systems.
In the content tree, you can easily see what is a folder object (that is, content
containers) and what is a content object, just as you can do in Windows Explorer or
Gnome Nautilus.

As with a file browser, the content tree has a context menu that is triggered when
you left-click on a content icon (folder or any kind of content class). The contextual
pop-up menu that appears allows you to perform many of the normal operations
that can be performed via the standard interface. Moreover, it also provides access to
other functionality, via the Advanced voice of the pop-up menu that will be enabled
in particular context, such as clicking on a folder or a particular type of data.

This pop-up menu is present every time a node tree is displayed in the
CMS, independent of the area. You will learn more about this when we introduce
the Sub items box.

Chapter 4

[71]

If you cannot display the expanded content tree, you need to configure the
AJAX behavior inside the settings/contentstructuremenu.ini
file. To do this, we will override the file and copy it into the settings/
override directory. Then, we will open the file in a text editor, and set the
dynamic option under the [TreeMenu] section to enabled as follows:

cd /var/www/packtmediaproject/settings
cp contentstructuremenu.ini override/
contentstructuremenu.ini.append.php

vi override/contentstructuremenu.ini.append.php

[TreeMenu]
If set to enabled,the admin tree menu is fetched
and built dynamically on the fly.
Requires a web browser with AJAX support.
Dynamic=enabled
...

The content area
The content area is a container that is used to show the details of the active node.
This information is placed in different boxes, which are either shown or hidden by
the editor.

Creating Content Structure

[72]

We see five tabs across the top, which, when enabled or disabled, will add information
to or remove information from the content area. The tabs are:

•	 Preview
•	 Details
•	 Translations
•	 Locations
•	 Relations

Moreover, there is one more box (Sub items, under the box containing the object
preview) that is always visible. This is related to the subitems of the object and object
contextual menu. Each tab is explained in the subsections below.

Preview
This first tab is usually enabled, by default, by the CMS. It shows the content that we
created, without any layout or style information. Inside this tab, the latest updated
information is displayed.

Details
This tab shows information about the node history. This includes details about who
created the node when, to which section it belongs, the node or object ID, and all of
the counters related to the versions and translations.

Translations
This tab shows what translations are available for the current node, and which
translation is the default one. We can also edit or directly create a translation from
this tab. We will learn how to translate our sites in Chapter 9, when we introduce the
internationalization capabilities of eZ Publish. For the moment, we should bear in
mind that eZ Publish allows us to translate all of its object, nodes, and templates into
different languages.

Chapter 4

[73]

Locations
A node object of eZ Publish can be placed in several different locations. Thanks to
the information tab, we can see where the current node is located and we can choose
the default location. We can also set the visibility flag for single locations by enabling
or disabling the content in the frontend.

Relations
This tab shows all of the relations that this object has with other objects. This tab is
very useful when we have to manage content nodes that are generated by merging
different objects. For example, an article that incorporates images or videos from the
Media Library.

Moreover, this tab will also show the Reverse related objects that will help us to
determine if the selected object is used elsewhere.

Creating Content Structure

[74]

Sub items
Under the tabs box, there is a box called Sub items. This box lists all of the objects
that belong to the displayed object:

Inside this area, it is also possible to set the priority of the items. This determines the
publishing order. You can also edit or create elements directly, by using the pop-up
context menu, which is accessed by a click of the left button of the mouse on the
node icons.

In this box, it is also possible to change the view mode by switching from the default
list mode to a thumbnail mode (in which images will be displayed as thumbnails).
Alternatively, you can change to a detailed view, where more information (and
actions) for all of the items is displayed.

Under the Sub item box, there is a small select form that permits us to create new
objects inside the current node.

Object contextual menu
As with the secondary menu, if we click on the icon of the selected object, a new
pop-up menu will appear. This menu is strictly related to the active object, and will
expose a lot of functionality, which we will use in the coming chapters.

Chapter 4

[75]

The menu gives us shortcuts to:

•	 See the content class of the object
•	 Edit the class for the enabled languages
•	 Delete the cache of the object, or of the related subtree
•	 Override the template, class, or node
•	 Manage the version and the URL aliases

We will go deep into the overriding and caching functionality in the coming chapters.

The content tree
As we learned in the secondary menu, which is located on the left-hand side of
the Content Structure section, we can easily create a content tree by using
a folder/object paradigm.

Now let's work on the content tree of our site.

The "Issue archive" section
We decided that we need a container for all of the past and, of course, future issues
of our magazine. This container will include folders for each year (2007, 2008, 2009...),
which will in turn contain subfolders based on months, into which our articles will
be placed.

This simple structure will allow us to easily group the articles by issue, and use the
inner functionality of the eZ Publish templating system.

Creating Content Structure

[76]

To create the Issue archive section, we need to left-click on the site's root folder in the
secondary menu, to display the context menu. We will select the Create here | Folder
option from the context menu.

The CMS will ask us which language we want to use. Select the default language you
chose in the installation chapter, and then click on the OK button to go to the Edit
New Folder page.

Editing an object
When we access a content object, the main interface of eZ Publish will change
slightly. Although the whole interface will appear as shown the following
screenshot, we will slice it, and discuss it piece by piece:

Chapter 4

[77]

Here, we can see on the left-hand area of the screen, all of the information relating to
the content object that we are creating (or editing).

Creating Content Structure

[78]

The Object information, especially the object ID, will be used to extract the data
that we need in the design step. This also gives us a shortcut button to the version
management page, where we can administer all of the versions of the object that we
are editing.

One of the most powerful functions of the eZ Publish is the version management
of objects.

For any object, we can create both drafts and versions. The drafts are essentially not
published, but are for internal use; the versions are the published revisions
of a document.

If we click on the Manage versions button, eZ Publish will display a new page that
contains the history of the selected object. Here, we can edit or delete old versions,
create new translations by copying the existing content from one version to another,
and compare two different versions to see the differences between them.

This version management workflow allows the editors to coordinate the update
activities better.

For example, by using the compare action, two or more editors can create different
drafts for the same object version, and then merge the edited content in a new version.

Chapter 4

[79]

Let's come back to the discussion of editing an object. In the same column, we can
see the Current draft box, which contains information about the draft that we are
working on:

The View button will allow us to see a preview of what we are doing inside the
design template. Moreover, if we click on this button, a new section called View
control will be displayed. This section will give us the ability to see an object in a
different siteaccess context, updating the preview accordingly. It will provide a
possible switchback from the preview mode, by using the Edit button at the bottom
of the page.

The Translate from box allows us to create new translation, based on one of the
existing ones, if there are any.

The Section box (shown below) is used to move content from one section of the CMS
to another.

The section is usually taken from the parent node, and if we change it—for
example—from Standard to Media, the object will be moved from the Content
structure section to the Media library section.

At the center of the page, we can see the main editing area. This area will contain the
datatypes that belong to the object that we are creating (or editing).

Creating Content Structure

[80]

We'll now take a look at the Folder content class editing area, as this is a good
example for the other content classes.

Every time that we create a new content object, some information will be required for
some purpose. For example, for the Folder content class, the Name field is a required
field. This name will work as a readable reference inside the system. But if the Short
name is not specified, the system will use the Name to create the object URI.

In the Folder content class, we can specify values for the following fields:

•	 Short Description
•	 Description
•	 Show children
•	 Tags

Short Description and Description
These two object attributes are both XML Block datatypes. This kind of attribute
integrates a WYSIWYG textarea and is usually used to manage pre-formatted content
by using HTML markup.

As we can see in the following screenshot, the XML Block editor is characterized by
a button bar that contains all of available tags, along with options to add or link an
object, such as an image or another content node, inside the text.

The editor is usually limited to only certain HTML tags, but can be extended by
creating new custom tags. Moreover, the CMS WYSIWYG editor's philosophy is to
give the authors less control on how the content should appear, in order to provide
true separation between the design and the content itself. It will allow the addition of
CSS classes, but will never allow a style that is not defined by the web designer.

Chapter 4

[81]

If we click on the object button, a pop-up window will appear. This will give us two
choices: upload a new object, or use an existing one.

For the selected object, we can choose the attributes that we want to use, such as the
size (if it is an image), the CSS style class or ID to use, and the type of view we want
to apply. We can choose any content object or image, and eZ Publish will create a
link or an img tag for us.

Linking objects is fundamental inside the logic of eZ Publish, because this allows
the CMS to track changes to objects and to automatically update all of the content,
if someone changes its position or URI.

To see the generated XML, the editor can be disabled at any time by clicking on the
Disable editor button.

Embedding HTML inside the WYSIWYG XML Editor
There are some websites that allow us to include their widgets in our website.
For example, YouTube.com allows the embedding of a video player in our site by
copying some code, and SladeShare.com allows the embedding of a slides player
in the same way. In eZ Publish, it's impossible to paste custom HTML codes in the
XML Block attribute, but if you use the Insert literal text button, you can do it. All of
the code added with this button will not be interpreted or checked by the eZ Publish
editor, and by default, it will be rendered inside a pre tag. To override this default
behavior, we have to add a new HTML class for the literal box. Then, we have to
change the related configuration file and create a new template for the XML editor in
our siteaccess.

To do this, open the settings/override/content.ini.append.php file with a text
editor, and then add the following lines to the bottom of the file:

cd /var/www/packtmediaproject
vi settings/override/content.ini.append.php
...

Creating Content Structure

[82]

[literal]
AvailableClasses[]=html
...

Now, the html class will appear as a choice in the literal properties, in the pop-up
dialog box.

To append the code to the frontend, without using the pre tag, we need to create a
custom template for the literal datatype in our design extension. We will learn how
to do this in Chapter 6, when we talk about the template overrides.

Tags
The Tags input is a keyword datatype, which allows us to assign some comma-
separated keywords or tags to an object.

These keywords will be used to add meta information to the frontend page, and
allow us to develop some other useful features, such as related articles.

Show children
This checkbox is present in some of the default content classes that act as containers,
and is used as a trigger to show (or not) the children of the object node on the
frontend of the site.

These objects will not be really hidden or made unavailable from the front page,
but their link will simply disappear from inside the template of the container.

Adding more folders
After we create the first Issue archive folder, start over and create all of the other
children folder objects.

We want to obtain a structure like the one shown in the following screenshot:

Chapter 4

[83]

In this way, we will use the month folders to store all the related articles.

To easily create the past year's folder, we can use the Copy subtree
option from the context pop-up menu, by clicking on the 2008 folder
icon. This action will create a complete node and subtree clone inside
the node we decided to use. Now, we only need to rename the new
2008 generated note with the 2007 label.

The staff section
Now it's time to use the Profile content class that we created in Chapter 3.

As the first step, we will create a folder called The staff, which will contain all of the
profiles of our young and cool editors. Next, we will create our first editor profile
inside the folder that we just created.

We saw in the previous paragraphs how to create new objects from the secondary
menu that is located in the left-hand column of the admin interface. This time, we'll
use an alternative way to create our new profile objects: from the Sub items section.

After we select and click on The staff node in the left-hand menu, we will see a
couple of select boxes and a Create here button, at the bottom of the content area.

In the select box, choose the Profile option, and then click on the Create here button.

Creating Content Structure

[84]

As before, the system inquires in which language we want to create the content
object. Choose the default one, and continue.

Chapter 4

[85]

The Profile edit page will contain all of the information that we previously added:

•	 A profile description
•	 First name and last name
•	 The editor's email address and birthday
•	 A photo upload form
•	 A CMS user associated to the profile (if needed)

Specify all of the necessary data, and then publish the content. Then return to the
Issue archive | 2008 | January folder, where we will create our first article.

Creating an article
Wondering why we did not create an article content class before? The reason is in the
latter part of Chapter 3. We have to add a new object relation attribute to the default
article content class definition. In this way, we can relate the Profile content class
to our article class. This attribute will be set as required. This means that without a
published Profile object, we cannot create an article.

As we did earlier, in the select form at the bottom of the content area, choose the
Article portion and then click on the Create button.

If the first form input of the article-editing page is very similar to those we saw in the
folder, the latest attributes will introduce some new eZ Publish features. The most
important ones are the time scheduling options for publishing, and the comments
checkbox.

Creating Content Structure

[86]

Publish and Unpublish date
These two forms will allow the eZ Publish frontend to understand if the content has
to be published and/or unpublished on a certain date. All of the logic behind the
time scheduling publication is handled by the design and is enabled, by default, in
the package site that we downloaded during the installation of eZ Publish.

Thanks to these features, we can prepare a lot of articles in advance and then publish
one of them each day, to give the readers a feeling of a truly up-to-date magazine.

This capability will also be very useful to show or hide an article teaser in the home
page, or want to cycle through several content objects in a box.

Enabling comments
eZ Publish comes with a lot of preconfigured features. One such feature is the ability
to enable comments to be entered for an article. This is done by selecting a checkbox
in the backend, as shown here:

Every time that we select the Enable comments checkbox in the frontend, a
Comment button appears under the article. When the user comments on the article,
the related comment will be added as a sub-item object of the article itself.

To enable a comment by default in our Article content class,
 we have to update the content class in the Setup / Classes section,
as we saw in Chapter 2.

If a comment system is very useful for creating a good community, we will not stop
here, and in the next chapters we will enable a forum system.

Chapter 4

[87]

The feedback form
Last but not least, the final page that we have to create is the Feedback form. We
will create this page directly in the root of the site by selecting the Feedback Form
content class.

In this case, the editing form will introduce the information collector datatype that
we introduced in Chapter 3.

Creating Content Structure

[88]

An information collector datatype will store all of the input data directly inside
the CMS, but in a different manner than the comment system. The saved data
will be placed in the Collected information section. To access this section, you need
to go to Setup | Collected information.

Other sections
Now we have to create more pages or sections for our site, such as the forum,
some static pages such as the about page, the copyright notice or legal notices,
and a site map.

For the forum, we will dedicate a whole chapter. All of the other pages can be
created by adding an Article object inside the root of the content tree—or inside any
other node, if you think that would be better.

We have to remember that we can create these pages at any time, in accordance with
the changing requirements of the site.

Summary
In this chapter, we learned the basics of the backend of eZ Publish, and how to create
and manage different types of content. We also learned how to use the context menu
of the content tree.

We saw how the interface will change with the context, and understood how the
content classes that we created interacted inside the system.

In the next chapter, we will create a new eZ Publish extension, in order to export our
work outside of a single installation.

Creating an Extension
Don't repeat yourself
Pragmatic Programming

In this chapter, we will see how we can leverage the extensibility of the eZ Publish
CMS to create an extension that can make our project reusable and easily portable to
other installations of eZ Publish.

We will now learn how to create an extension for our project in which we'll put
our new features, such as design, operators, translations, custom class definition
packages, and everything else that we will build in the next chapters.

What is an extension?
In eZ Publish, an extension is like a plugin through which you can add new
functionality to the CMS without changing the standard software kernel. The eZ
Publish extension system is very powerful, as it allows the CMS to be extended in
different ways, such as adding new features, or changing the standard behavior of
the system's basic functionality.

With this system, you can keep the CMS constantly upgraded to the latest version
without the fear of losing your code. In fact, in most cases, the extension will
continue to run and in the worst case, you should also upgrade the extension to
make it compatible with the new version.

Creating an Extension

[90]

Extension type
It's possible to create different kind of extensions, such as:

•	 Operator: This extends the standard template operators. (We will talk about
them in detail in the next chapter.) For example, we can make new operator
that can work with a string, or that can connect to external web services to
perform some routine such as downloading content from an RSS feed.

•	 Design: This extends the standard design to customize content template
with HTML and CSS, and make it easily reusable.

•	 Translation: It extends the standard XML translation files to add
custom translations.

•	 Workflow event: This extends the standard workflow event, by adding a
new one.

•	 Module: This extends the standard kernel modules by adding new custom
modules with your own actions and views. In the custom module, it is always
possible to use the powerful eZ Publish API to manage document objects and
a document object tree. For example, we can make a statistic module, or a
module that integrates with legacy external software with eZ Publish.

•	 Fetch function: This extends the standard fetch function by adding new
functionality to implement custom queries in additional database tables.

•	 Datatype: This extends the standard datatypes with new datatypes to make
the custom class more expressive.

•	 Login handler: This extends the standard authentication behaviors, by
providing the ability to authenticate with external systems or legacy systems.

•	 Bin: This extends the standard shell scripts with new custom scripts.
•	 Cronjob: This extends the standard cronjob scripts with new scripts.

In version 4.0 (of the CMS) onwards, you can also add PHP code
(such as classes and interfaces) inside the extension without having
to include it in the script, as this will be included automatically by
the autoloading system.

The directory structure of an extension
The extension folder needs to use a standard structure to be integrated in the CMS.

In the following table, we can see the complete structure that accommodates all types
of extensions:

Chapter 5

[91]

Extension subdirectories Description
actions/ New actions for forms
autoloads/ Definitions of new template operators or

template functions
bin/ Custom shell scripts
classes/ Custom PHP classes for modules, template

operators, template functions, and cronjobs
cronjobs/ Custom cronjobs scripts
datatypes/ Definitions for new datatypes
design/ Files related to the design
eventtypes/ Custom workflow events
modules/ One or more modules with views, template,

and fetch functions.
packages/ Custom class packages
settings/ Configuration files
translations/ Translation files

The directory structure shown above is a complete structure, but the structure that
we will use will depend on the type of extension that we need, so some directories
will not be necessary. For example, a Template Operator extension only requires the
directories autoloads/ and settings/ in a module extension. A module extension,
instead, only requires the directories modules/ and settings/, and maybe the
design/ directory.

For our project, we'll make an extension for extending the standard design, standard
operators, standard translation files, and standard classes.

Build the extension
Now, we can create our extension called packtmedia. First, we will open our favorite
file manager and then inside the eZ Publish installation folder, we will open the
extension folder. In this folder, create an empty folder named packtmedia.

cd /var/www/packtmediaproject

cd extension/

mkdir packtmedia

We'll use this extension to create a new design, some template operators, and our
custom translations. We can now prepare the directory structure that will serve us in
storing our code.

Creating an Extension

[92]

Settings extension
First, we have to create the settings folder that serves to override the standard
configuration files (those named *. ini.append) and, in particular, the site.ini.
append.php and template.ini.append.php files that help to enable our design,
operators, and translations.

We can create this folder by executing the following commands from the installation
folder of eZ Publish:

cd /var/www/packtmediaproject/extension/packtmedia

mkdir settings

cd settings

touch site.ini.append.php

touch template.ini.append.php

touch design.ini.append.php

Design an extension
To create a design extension, we need to create a folder named design in our
extension folder, after which we will create another folder, with a custom name,
inside this. This last folder will be the container for our files. We will call this folder
magazine, and inside it we will create the following folders:

•	 images: This will contain all of the layout image files (*.jpg, *.gif, *.png,
and so on)

•	 stylesheets: This will contain all of the stylesheet files (*.css)
•	 javascript: It will contain all of the JavaScript files (*.js)
•	 templates: This will contain all of the custom templates that will override

the standard design (*.tpl)
•	 override: This will contain all of the override class templates (*.tpl)

To create these folders, we have to execute the following commands from the root
folder of the eZ Publish installation:

cd /var/www/packtmediaproject/extension

cd packtmedia

mkdir design

cd design

mkdir magazine

cd magazine

Chapter 5

[93]

mkdir images stylesheets javascript templates override

cd override

mkdir templates

cd /var/www/packtmediaproject/extension/packtmedia

In the end, the extension folder's structure should be created in this way:

packtmediaproject/extension/packtmedia/design/

						 magazine/

							 images/

							 javascript/

							 override/

								 templates/

							 stylesheets/

							 templates/

Next, we need to add the following code to the design.ini.append.php file,
which is inside the settings folder of our packtmedia extension, so that the
system automatically loads our design:

<? /* #?ini charset="utf-8"?

[ExtensionSettings]
DesignExtensions[]=packtmedia

*/ ?>

It is possible to create a custom design without an extension by just
copying the packtmediaproject/extension/packtmedia/
design/magazine folder into the packtmediaproject/design
folder. Subsequently, it will just upload the new layout in the site.ini.
append.php file of our siteaccess. The extension design is well suited
to easily reusing a design in other sites, or for re-selling the layout. Not
creating the extension means using an ad hoc layout for a single project,
which is unlikely to be reused.

Creating an Extension

[94]

Template operator extension
To create a new extension for new template operators, we need to create the
autoloads and the classes folders. In these folders, we will place the PHP classes
that will be used by our scripts.

As before, to apply these changes, we will execute the following code from the root
installation of eZ Publish:

cd /var/www/packtmediaproject/extension/packtmedia

mkdir autoloads

mkdir classes

Next, let's create the eztemplateautoload.php file which will be used to
automatically load the template operators in the autoloads folder, executing the
following commands:

cd autoloads

touch eztemplateautoload.php

Next, we have to write the following code inside the eztemplateautoload.php file:

<?php
$eZTemplateOperatorArray = array();
?>

Next, we need to add the following code to the site.ini.append.php file,
which is inside the settings folder of our packtmedia extension, so that system
automatically loads our template operators:

<?php /* #?ini charset="utf-8"?
...
[TemplateSettings]
ExtensionAutoloadPath[]=packtmedia
...
*/ ?>

We will see how to create the PHP code for a new template operator in the
next chapter.

Translations extension
The next extension that we will set up will be the translation extension. This will help
us manage new languages in our layout. First, we need to create the translations
folder. Inside this folder, we can create a folder for each language that we want to
translate. In our case, it will be the fre-FR, ita-IT, and de-DE folders because we
want to translate it to Italian, German, and French.

Chapter 5

[95]

Open a shell and then execute the following commands:

cd /var/www/packtmediaproject/extension/packtmedia

mkdir translations

cd translations

mkdir ita-IT

mkdir fre-FR

mkdir de-DE

For simplicity, from now on, we will see only one of the installed
languages; you can create (or edit) the others in the same way.

Next, inside the ita-IT folder, we have to create the translations.ts file executing
the following commands:

cd ita-IT

touch translation.ts

In addition to this, we have to add the following code to the newly translation.ts
file created before, using our preferred IDE:

<!DOCTYPE TS><TS>
<context>
 <name></name>
 <message>
 <source></source>
 <translation></translation>
 </message>
</context>
</TS>

This XML snippet is a standard placeholder for the translations that we'll see and
use in the next chapters. As seen for the previous extensions, we need to add the
following code to the site.ini.append.php file, inside the settings folder of the
packtmedia extension, to make sure that the translations file is automatically loaded:

Open the file from an IDE, and then add the new TranslationExtensions value
after the RegionalSettings settings, as shown:

<?php /* #?ini charset="utf-8"?
...
[RegionalSettings]
TranslationExtensions[]=packtmedia
...
*/ ?>

Creating an Extension

[96]

Activating an extension
Once we have created our extension, including the folders and the files necessary to
make it work, we should activate it. Obviously, our extension is currently empty and
so it does not add anything to the standard eZ Publish design. But in the next few
chapters, we will complete that development with all the necessary code.

There are two ways to enable an extension. The first is to manually edit the
configuration files of eZ Publish, and the second is to access the backend and enable
it through a visual interface.

The first way is convenient if you want to activate the extension only for certain
siteaccesses, and not in a global manner. But with the second way, you can activate
the extension only for the whole installation. This means that we'll activate the
extension for all of our siteaccesses.

Manual activation
To manually activate the extension for all siteaccesses, we need to change the global
file site.ini.append.php, by executing the following commands from the shell:

cd /var/www/packtmediaproject/settings/override/

vi site.ini.append.php

Next, add the following code:

<?php /* #?ini charset="utf-8"?
...
[ExtensionSettings]
ActiveExtensions[]
...

ActiveExtensions[]=packtmedia
...
*/ ?>

Here, the ActiveExtensions parameter tells the system to enable our new
extension, globally.

Or, if you want to activate the extension only for some siteaccesses, we have to
modify the site.ini.append.php file inside every siteaccess that we want to
activate it for.

Chapter 5

[97]

To do this, we need to execute the following lines from the appropriate
extension folder:

cd /var/www/packtmediaproject/settings/siteaccess/ezwebin_site

vi site.ini.append.php

Next, we have to add the following code:

<?php /* #?ini charset="utf-8"?
...
[ExtensionSettings]
ActiveAccessExtensions[]=packtmedia
...
*/ ?>

In this case, the ActiveAccessExtensions parameter will enable the extension only
for the specified siteaccess.

Every time you add PHP classes that must be loaded automatically by the system
autoload, you should run the script from the shell:

cd /var/www/packtmediaproject

php bin/php/ezpgenerateautoloads.php -e

This script will add our classes to the autoloads array.

Backend activation
Another way of enabling an extension globally is by doing so from the backend.

Creating an Extension

[98]

The following steps should be carried out to enable the extension through the
graphical interface. Go to the backend of our website at http://packtmediaproject/
index.php/ezwebin_site_admin, and:

1.	 Click on the Setup tab on the top menu.
2.	 Click on the Extensions link on left menu.
3.	 Select the packtmedia checkbox.
4.	 Click on the Apply changes button.

Now the extension is active.

Design activation
At this point, our extension is active, but our siteaccess will still not use our
custom design. To enable the use of custom designs, we have to edit the
site.ini.append.php file of the siteaccess. We want to use the design by
executing the following commands from the shell interface:

cd /var/www/packtmediaproject/settings/siteaccess/ezwebin_site

vi site.ini.append.php

And now we will change the [DesignSettings] directive as follows:

<?php /* #?ini charset="utf-8"?
...
[DesignSettings]
SiteDesign=magazine
AdditionalSiteDesignList[]=ezwebin
AdditionalSiteDesignList[]=base
AdditionalSiteDesignList[]=standard
...
*/ ?>

In this way, our siteaccess will first use the magazine template designs and, if they
are not present, will use the default one.

Extension portability
As from eZ Publish 3.8 version, you can install extensions through the packages. This
system is very useful because you can install your, or third-party extensions in a very
simple way through a convenient graphical interface.

Chapter 5

[99]

From the eZ Publish backend, you can create new packages that can be used in other
installations or can be freely distributed through the eZ.no site.

To deliver our extensions and our custom classes (created in Chapter 2), we need to
create two types of packages. The first one is the content classes package that will
include the definition of our custom classes. The second is an extension package
that will include our entire extensions, including the content class package that we
previously created.

Content class package
First of all, we can make a content class package into which we can save the content
class definition that we customized in the previous chapters.

The content class package is basically an archive containing all of the enhancement
and personalization that we made to the CMF that can be exported to other
eZ Publish installations.

To create a content class package, we have to:

1.	 Go to the backend site http://packtmediaproject/index.php/ezwebin_
site_admin.

2.	 Click on the Setup tab of top menu.
3.	 Click on the Packages link in left menu.
4.	 Click on the Create new package button.

Creating an Extension

[100]

5.	 Select the option button Content class export, and then click on the
Create package button.

6.	 Next, select the content classes Article and Profile, which we built in
Chapter 3, from the class list. To continue, we have to click on the Next button.

Chapter 5

[101]

7.	 Next, we have to complete the form with information regarding the package
that we are building, and then click on the Next button.

8.	 Specify the Package maintainer contents, and then click on the Next button.

Creating an Extension

[102]

9.	 As the last step, we will create a changelog with all the changes that we will
add in this package release. Finally, we will click on the Continue button.

Our MagazineContentClass package is now ready. We can download it by clicking
on the Export to file button and saving the file in an easily-accessible folder.

Chapter 5

[103]

If we want to add this file to our extension to make our content class definition
reusable and easily portable, we have to create a folder named packages in our
extension and then add the downloaded file to this folder.

Open a shell and execute the following commands:

cd /var/www/packtmediaproject/extension/packtmedia

mkdir packages

cp [browser_download_dir]/MagazineContentClass-1.0-1.ezpkg packages/

Now, when we will export our extension, it will include the content class package
that we have created.

The .ezpkg file is a compressed archive.
We can uncompress it and see its contents with the tar command.

The first step to create our package is complete.

Extension packages
In this second step, we have to make our extension a package file.

As we can see, at the moment, the extension file is empty because our extension has
only a folder structure. When we finish our job, we will need to carry out this step
again, in order to have the complete extension.

To create an extension package, we need to follow the same steps that we saw earlier.
The only change needed is when we have to choose the type of package to create,
where we have to select the Extension export option button.

Creating an Extension

[104]

Next, we need to select the packtmedia option button, which is the extension that we
want to export.

All of other steps are the same as for the Content Class package, and in the end, we
can save this file in our computer. This file could be useful for re-using the same
layout and extension in other projects, or to sell or distribute our extension.

Chapter 5

[105]

Business with extensions
Creating extensions for a project, as well as having an easy way to have code
reusability, can also be a way to get more visibility in the eZ Publish community,
or even to earn some money.

The eZ System, indeed, offers two ways to distribute an extension. The first way
is through the website http://projects.ez.no. This site provides a platform for
developers who want to release their extensions with an open source license.
The site integrates:

•	 A news module
•	 A forum module
•	 A repository file system
•	 A versioning file system (SVN)

All of these services are free, but the staff at eZ System reserves the right to remove
an extension if it is not considered suitable, or if it breaks the site guidelines.

Moreover, by distributing an extension with an open license, you can help the
eZ Publish community get bigger, and you can get help in enhancing your own
packages from the community.

The second way is accessible only to the partner companies of eZ System, and
allows them to sell their extensions on the official site at http://ez.no/software/
certified_extensions.

To ensure that an extension is certified, you must gain certification under the
supervision of eZ System staff, and pay an annual fee for each extension that you
want to re-sell. For more details, you can contact the eZ System company's support.

Summary
In this chapter, we learned how to build an extension to create our own custom
layout, create new template operators, and have our translation files. We also learned
how to create a package for a content class and for an extension.

We also saw how to export and import a package so that it can easily be re-used.

In the next chapter, we will see how to create a template design for the site, which
will be added to our package.

Creating a Design
In the previous chapter, we learned how to place our code in a custom extension. In
this chapter, we will learn how to manage our design in the same way. We will see
what an eZ Publish template is and how to apply a template to a single content node
or subtree. We will also take a look at template overrides and create a proper design
extension starting from the eZ Webin package.

eZ Publish templating
In the first part of this chapter, we will introduce the basics of the eZ Publish
templating system, which will help us to better understand the rest of this chapter
and the next.

Templating
eZ Publish has its own templating system based on the decoupling of layout
and content. This will help us to assign a custom layout to any content object in
different sections.

Moreover, just as other templating platforms, such as Smarty (http://www.smarty.
net), eZ Publish has its own markup to help developers with control structure
operations, subtemplating, and on-the-fly content editing. It also exposes a particular
function to fetch and filter content from a database.

The official eZ Publish website has a constant, up-to-date reference with the
entire templating markup. We suggest you to use the following link every
time that you need to know more details about the available arguments:
http://ez.no/doc/ez_publish/technical_manual/4_0/
templates/

Creating a Design

[108]

The templating markup
All of the eZ Publish templating code should be placed between curly brackets ({ }).
When the CMS will parse our template file and find the curly brackets, it will start
executing the related code.

Escaping the curly brackets
If we need to use curly brackets, for example to write a javascript
function inside our template, we need to use the {literal} operator.

{literal}

<script type="text/javascript">

function alertMe() {

 window.alert('Harkonen approaching!');

}

</script>

{/literal}

Control structure operators
We can divide these function into two main families:

•	 Conditional (IF-THEN-ELSE)
•	 Looping (FOR-FOREACH-WHILE)

Whereas the first one should be used to change the template behavior according to
some predefined condition, the other one will help us to seek and manage array and
content structures.

Conditional control
Conditional control is sometimes useful for changing the output when some data
is received by the system. For example, we would need a different CSS class for a
particular value, or to change the <div> class, if the current month is the same as
the one displayed, as shown below:

{def $current_month=currentdate()|datetime(custom, '%F')}
{if $node.name|eq($current_month) }

{else}

{/if}
{undef $current_month}

Chapter 6

[109]

In the first line, we define a $current_month variable that has a value of the name
of the month (for example, October), retrieved by the datetime() operator. Then we
use the IF conditional control to choose the correct class.

In the last line, we delete the variable previously created, by releasing it from
system memory.

Loop control
As stated above, the loop control structure can be used to iterate through an array.
We can, for example, create an unordered list () from an array of items.

{foreach $items as $item}
 {node_view_gui content_node=$item view=line}
{/foreach}

This will be rendered as:

 1st item
 2nd item
 3rd item
 …

As you can see, the FOREACH structure is similar to the PHP structure. In this
example, the most interesting line is the definition of the list object. This we can
literally read as: render the content node (node_view_gui) from a specific node
(content_node=$issue) using the line view template (view=line).

Fetch functions
With the fetch functions, we can retrieve all of the information about a content
object for a module. The fetch functions can also be used to create custom queries
to retrieve only the information we need, and not everything.

eZ Publish exposes many fetch functions, which can be read about on the
documentation site at http://ez.no/doc/ez_publish/technical_manual/4_0/
reference/template_fetch_functions

Creating a Design

[110]

The most important, and most used, fetch functions are those regarding the content,
sections, and user modules. For example, we can fetch the root content object by
using the following code in our template:

{$object = fetch('content', 'object', hash('id', '1'))}

We can then use the $object variable to display the object inside the HTML code.

Generic template functions and operators
The CMS gives us a lot of functions and operators, all of them described in the
reference manual of the eZ System documentation site.

As a thumb rule, we should remember that to execute a particular function, we have
to use the following syntax:

{function_name parameter1=value1 … parameterN=valueN }

All parameters are separated by spaces and can be specified in no
particular order.

If we want to manage the operators, we have to remember that they accept the
parameters passed in a specific order, separated by a comma. Moreover, an operator
should handle a parameter passed to it with a pipe (|).

{$piped_parameter|my_operator(parameter1, …, parameterN) }

Every time we see a pipe after a variable, we have to remember that we are passing a
value to an operator.

We used the datetime() operator in the previous example for the conditional
control functionality.

As a reference to API functions and operators, you can use the official
variable documentation that is constantly updated on the eZ System
site: http://ez.no/doc/ez_publish/technical_manual/
4_0/reference/template_operators

http://ez.no/doc/ez_publish/technical_manual/
4_0/reference/template_functions

Chapter 6

[111]

Layout variables
By default, the page layout template can access some of the variables passed by
the CMS. These variables, named Layout variables, can be used to render system
and user information, or to change the output. These variables are automatically
configured by eZ Publish when it analyzes and executes the code related to a view.

One of the most important variables is $module_result, which contains the results
generated by the module and the view that is being executed.

A module is an HTTP interface that interacts with eZ Publish. A module consists
of a set of views that contain the code to be executed. For example, if we call the
following URL, the system executes the login view code of the user module:
http://www.example.com/index.php/user/login.

As an API reference, you can use the official variable documentation
that is constantly updated on the eZ System site: http://ez.no/
doc/ez_publish/technical_manual/4_0/templates/the_
pagelayout/variables_in_pagelayout

Overriding a template
eZ Publish offers a set of standard templates that are useful, but they cannot cover all
the possible design needs.

To solve this issue, the CMF provides a fallback system that allows us to load
different templates based on specific rules. This system is usually referred to
as overriding, and allows us to change the template for each module's view by
overriding the default template when the user is in a particular context.

Embedding HTML inside the WYSIWYG XML editor, pt.2
As we saw in Chapter 4, we had to override a standard behavior of eZ Publish to
create a generic HTML block inside the WYSIWYG XML editor.

We previously created a content style named html for the online editor, but
we didn't do anything for the frontend to render it correctly. Now, we will finish
that work.

Creating a Design

[112]

First, we have to create a file named literal.tpl and place it in the design folder
of our extension. The following code will do exactly what we need:

mkdir -p /var/www/packtmediaproject/extension/packtmedia/design/
magazine/templates/datatype/view/ezxmltags/

cd /var/www/packtmediaproject/extension/packtmedia/design/magazine/
templates/datatype/view/ezxmltags/

touch literal.tpl

Next, we will open the literal.tpl file in our preferred IDE. Now we will add the
code that will, by default, render everything surrounded by a <pre> tag and the raw
HTML code, if the class is html:

{if ne($classification, 'html')}
 <pre {if ne($classification|trim, '')}
 class="{$classification|wash}"{/if}>{$content|wash(xhtml)}</pre>
{else}
 {$content}
{/if}

This code will check to see if the $classification variable is different from the
"html" string in order to add the <pre> tag and then, again, it will add a class
attribute to the <pre> tag if the $classification variable is not null.

To use it, we only need to reset the cache from the shell prompt by using the
following command:

cd /var/www/packmediaproject/

php bin/php/ezcache.php --clear-all --purge

The ezcache.php file is a PHP shell script that can be used to clear and manage the
eZ Publish cache. This file has many parameters, which can be viewed by using
the --help parameter.

Chapter 6

[113]

Creating a new design
Before starting work on the eZ Webin template code, we need to create a wireframe
in order to decide on the layout structure. We will use this structure to override the
standard layout files.

A wireframe is a basic visual guide that is used in web design to suggest the
structure of a website and the relationships between its pages.

Wireframe editors
There are a lot of commercial and free wireframe editors. To create
our site's wireframes, we will use the Firefox plugin called Pencil
(http://www.evolus.vn/Pencil/).
We have chosen Pencil because it is open source and works on every
platform that runs the Firefox browser.
If you need something more complete, you should take a look at
Balsamiq (http://www.balsamiq.com/) or at OmniGraffle
(http://www.omnigroup.com/applications/OmniGraffle/)
if you have an Apple computer.

Our site will have at least six different page layouts:

•	 The homepage
•	 The issue page, where we will display the cover and the articles list
•	 The issue archive page, by month and by years
•	 The staff profile page, where we will display the latest articles that the editor

has written, along with his profile
•	 The article and the forum pages, with the default layout based on the

eZ Webin design
Now we will illustrate the first four layouts because we will work on them,
overriding their standard eZ Webin layout. In Chapter 8, we will work on the forum
and customize it to fulfill our future needs.

Creating a Design

[114]

The homepage
Starting from the homepage, we can see that the site will have, in the top-left corner,
a logo for the magazine and a place-holder for a banner. Under these, we will have
the main navigation menu and the main content area.

We have chosen a three-column layout in order to easily manage the content that we
want to show.

In the homepage, the first column will show the latest news and the middle column
will show the information and cover of the latest issue.

The last column will have two boxes—one with the most important article from the
latest issue and the other with the forum thread.

Chapter 6

[115]

Issue page
The issue page will show some information of a specific magazine issue.

In this page, the middle box of the homepage will shift towards the left, and in the
right column there will be the highlighted article for the issue. At the bottom of the
page, we will find all of the other articles.

Creating a Design

[116]

The issue archive
We have to remember that our magazine is released monthly, so we need an archive
page where we can collect all of the past issues.

The issue archive page, which can be reached by clicking on the main navigation
menu, will again show some information from the latest issue. (We need to sell
our articles!)

The rightmost column of the template will show all of the covers for the current or
selected year.

At the bottom of the page, we will create a box with links to the past issues grouped
by years and months.

The staff profile page
The staff profile page will display information from a staff profile, such as his avatar,
biography, and the latest articles that he has written.

Chapter 6

[117]

The staff profile page will have three columns. The first column will show
information regarding the editor's profile, the middle column will show all of the
articles the editor has written (paged five by five) and the third will be used for
banners or other images.

eZ Webin
In Chapter 1, we installed the eZ Webin package as a sample frontend for our site.
This package is very flexible and is usually used as a starting point for developing a
new site. By default, it includes:

•	 A flexible layout
•	 Some useful custom content classes (blog, event, forum, article, and so on)
•	 Web 2.0 features, such as a tag cloud and comment functions
•	 Custom template operators

In our project, we will extend and override the eZ Webin template in order to create
the Packtmedia Magazine site and add some features needed for the project. We will
see this step-by-step as we understand better how eZ Publish works.

Creating a Design

[118]

Overriding the standard page layout
The page layout is the main template and defines the style of the entire site. To create
a page layout template, we need to create a file named pagelayout.tpl and place it
inside the templates folder of our design extension.

As we said, we will work with eZ Webin. This extension doesn't use the standard
page layout but overrides the standard page layout with its own custom behavior.
We need to do the same overriding from the eZ Webin pagelayout.tpl.

To override the template, we have to copy it in our design's extension folder placed
in extension/packtmedia/design/magazine/templates/. Now open a shell and
execute this:

cd /var/www/packtmediaproject/extension
cp /ezwebin/design/ezwebin/templates/pagelayout.tpl /packtmedia/
design/magazine/templates/

We will use this new pagelayout.tpl file to implement the wireframe that we
developed in the previous sections.

Section for our project
eZ Publish includes features for creating a particular view in order to add content
objects inside specified sections. For example, if we take a look at our wireframe,
we need to assign a different layout for rendering the Issue archive folder and
its subfolders.

To do this, we have to create a new section in the administration panel and associate
it to the entire Issue archive subtree. After that, we can use the fetch functions to
select the correct view for that section.

Creating a new section
To create a new section, we have to open our browser and from the site's backend,
select the Setup tab from the top menu. We then need to navigate to the Sections
link in the left-hand menu, and then click on the New section button.

Chapter 6

[119]

Next, we will create a new section called Archive and select the default Content
structure value in the select menu.

Creating a Design

[120]

Now, a new Archive link will appear in the Sections list. We have to click on the
+ button to the left of the Archive link, and then select the Issue archive node, by
selecting the relevant checkbox.

After we have saved, click on the Select button. All of the Issue archive subfolders
will be placed inside the Archive section. We have to remember the ID of this
section, which we'll use to create the override rules. In this case, the section ID
number is 6, as seen in the first screenshot in the Creating a new section section.

Setting up the section permission access
By default, eZ Publish creates private sections that only an administrator
can access. To make a section public, we need to give read permission to
anonymous users.

To set up the rules, we have to go back to Setup tab on the top menu, and then click
on the Role and policies link on the left-hand menu.

Chapter 6

[121]

Here, we have to click on the Edit button on the right-hand side of the Anonymous
link, and then click on the New policy button.

Creating a Design

[122]

Next, select the content option in the Module field, and then click on the Grant
access to one function button.

Select the read option in the Function field, and then click on the Grant limited
access button.

Next, select the Archive option for the Section field. Click on the OK button, and
then click on the OK button on the Edit <Anonymous> Role page.

Chapter 6

[123]

Now, the anonymous user can access the Archive section.

In the next paragraph, we will use this section to create custom override rules.

Customizing the page layout
After we copy the pagelayout.tpl template into the new path, we have to
work on it in order to create the three columns inside the content layout of the
eZ Webin template.

To do this, first of all, we have to remove the leftmost sidebar, along with the
secondary navigation menu, inside the Archive section that we have created.

Open the pagelayout.tpl file that you have copied into your favorite IDE, and take
a look at the code.

At line 62 we will find the following code:

{if and(is_set($content_info.class_identifier), ezini(
'MenuSettings', 'HideLeftMenuClasses', 'menu.ini')|contains(
$content_info.class_identifier))}
 {set $pagestyle = 'nosidemenu noextrainfo'}

Here, eZ Webin hides the side menu if the content class belongs to the array returned
by the ezini operator.

We now need to extend the IF sentence and add a control to the section ID, by using
the following code:

{if or(and(is_set($content_info.class_identifier), ezini(
'MenuSettings', 'HideLeftMenuClasses', 'menu.ini')|contains(
$content_info.class_identifier)), $module_result.section_id|eq(6))}
 {set $pagestyle = 'nosidemenu noextrainfo'}

Creating a Design

[124]

As we can see, this code will now check to see if the browsed section has an ID equal
to 6 (that is, the achive section ID that we previously created) and if it has, will hide
the unnecessary sidebar.

CSS editing
Luckily, the entire template code of eZ Webin is strongly semantic and all of the
elements have their own IDs and classes. Thanks to this, we can change a lot of
things by simply working on the CSS.

By default, the CMS uses six CSSes. These are:

•	 core.css: this is the global stylesheet where all of the standard tag styles for
eZ Publish are defined; usually, this file is overridden by all of the others

•	 webstyletoolbar.css: this stylesheet is imported for the frontend web
toolbar that is used for editing the content

•	 pagelayout.css: this is where all of the default styles of the global
pagelayout are defined

•	 content.css: this is where all the default styles of the content classes
are defined

•	 site-colors.css: this file is used to override the pagelayout.css to skin a
site differently

•	 classes-colors.css: this file is used to override the default styles defined
by the content.css file

To edit the CSS, we have to copy the original eZ Webin stylesheet from the /var/
www/packtmediaproject/extension/ezwebin/design/ezwebin/stylesheets
folder to our design directory and then to execute the following commands:

cd /var/www/packtmediaproject/extension/

cp -rf ezwebin/design/ezwebin

/stylesheets/* packtmedia/design/magazine/stylesheets/

Now, every time that we want to change the stylesheet, we have to remember to edit
the CSS files in the design/magazine/stylesheets/ directory of our extension.

Creating a new style package
In eZ Publish, as we did for extension, it's possible to create a portable style package,
so we can share and reuse our custom style in other sites. We can do this by
navigating to the backend admin site and uploading the new stylesheet that we want
to use.

Chapter 6

[125]

First, we have to create our CSS files by using our favorite CSS editor; we have to
remember that they will override the default styles, so we only need to add the lines
that we want to change.

After we create the new stylesheet files, we have to open the browser, click on the
Setup tab, and then click on the Package link in the left-hand sidebar.

The system will ask us where we want to create our new package.

We will select the local repository and click on the Create new package button.
eZ Publish will then ask us which kind of package we want to create. We have to
select the Site style wizard, and then click on the Create new package button.

We can now choose a thumbnail for the style that we are uploading, or continue
without it.

Creating a Design

[126]

After selecting the thumbnail, the wizard will ask us to choose the CSS file that we
previously created. Select it, and then click on the Next button.

With the wizard, we will also upload one or more images, for example a new logo
file, or other images related to the CSS. To not upload files, we simply have to click
on the Next button without selecting a file in the form.

We have to remember that all of the images that we upload will be saved
in a subfolder named images, which will be placed in the same directory
as the stylesheet. This will be useful when we need to set the relative path
of the images used inside the CSS.

Chapter 6

[127]

We can now add the package information, just as we did in Chapter 5, and export it
to our PC (if required).

The new style package will automatically be installed in the eZ Publish package
folder. It will be accessible from the Design tab, via the sidebar's Look and Feel link.

Creating a Design

[128]

If we select the package and clear the cache automatically, it will be applied to
the frontend.

Summary
In this chapter, we learned the basics of the templating system of eZ Publish. We
worked on template's function and operator, and also learned how to extend the
default WYSIWYG editor of eZ Publish.

Moreover, we created the site wireframe and learned how the design overriding
feature works.

We also created a new stylesheet package, and applied it to our extension. In the
next chapter, we will create a custom template for all of the content classes that we
created previously.

Template Content Class
Separating presentation from business logic
—Model View Controller Pattern

In this chapter, we'll see how it's possible to customize our custom class views
through the override system and the template engine.

Introduction to the content template
In the previous chapter, we saw that eZ Publish offers an out of the box template
standard set. With this set of templates, it's possible to render all of the system
module views correctly.

There are two template types. The first is the content template, which is used from
every system module. For example, the view to see the items list of feed module. The
second is the "node system template", which is used by the content module to see
the object content published on the tree. This template is very important because the
"content" module is the main module of the system. This module manages all of the
actions on the object, such as publishing, moving, coping, deleting, and so on. It also
manages the override system, through which it is possible to override the standard
view for each rendered object.

We'll use the "node template" for our custom classes, and we'll also override the
standard template without using custom templates.

The system provides different views for each node. By node, we mean the node of
the content tree to which a content object or an instance of some class is associated.

For example, if we create a page staff below the staff node in our content tree, we can
create different templates for this page (the object assigned to a node), so that it can
be viewed in different ways, depending on where it will be rendered.

Template Content Class

[130]

This feature is possible because we can explicitly tell the system which view is to be
use to render a given content node.

For example, if we go to http://packtmediaproject/eng/content/view/
full/74, we can see the node with ID 74 in its full view. Alternatively, if we go to
http://packtmediaproject/eng/content/view/line/74, we can see the node
with ID 74, but in its line view.

It's also possible to force the rendered content view of a content node through the
{node_view_gui} template function, by passing a "view" parameter with the specific
view string.

For example:

{node_view_gui view=full content_node=74} will render the "full" view of the
node with ID 74.

and

{node_view_gui view=line content_node=74} will render the "line" view of the
node with ID 74.

eZ Publish already covers some types of view, such as full and line for the standard
classes, with some standard templates. But if the view does not meet the standard
requirements, or if we need to create a custom view for our custom classes, we must
create a rule to override these views.

The override system
The override system is able to load different kinds of content node views instead of
the standard view, based on defined rules.

Creating a template override
In our project, we can override the standard views for the following standard and
custom classes:

•	 Class Profile with full, line, and embed views
•	 Class Folder for the "Issue Year" section with a full view
•	 Class Folder for the "Issues" section with thumb, full, line, and embed views
•	 Class Folder for the "Issue Archive" section with full and embed views
•	 Class Article with full, line, and embed views

Chapter 7

[131]

Usually, the full view is used to view a content node with all of its attributes. (We
can think of a full content node view as a static HTML page of that element.) The
line view is used to view the content node in a list, for example, if we want to see
all articles published in a given year. The embed view is used if we want to attach a
content node to another content node description attribute.

To create our override rules, we can use an automatic method through the graphic eZ
Publish interface, or we can add rules manually to the override.ini.append.php
file of each siteaccess where we want to render the custom view instead of the
standard view.

Creating a template override from a graphic
interface
Through the graphical interface of eZ Publish, you can create rules in the
override.ini file. Unfortunately, this interface is very limited and not very usable,
which is why we prefer to create rules and files manually. The limitations of creating
rules through the interface are many. First of all, you cannot specify all of the rules
allowed by the file that is being overridden, and it is also not possible to structure the
override files into a well-ordered folder tree. All files are placed inside the override
templates of our design extension. If we override many files, you will appreciate that
it becomes very difficult to maintain the folder order.

Let's see one example of how you can create an override of the class folder for the
section with ID 6, which corresponds to our Issue archive. In the next section, we'll see
in detail how to manually create all of the template overrides along with their rules.

To create a new override rule, we need to log into the site backend and fill the user
login form with our credentials.

Template Content Class

[132]

Next, we need to select the Design tab on the top menu, and then click on the
Template link in the leftmost menu.

Now we are on the page where we can see a list of all system templates and override
templates. Below this, we can also see a list of the Most common templates.

We want to override the content node view, full, for the Folder class. So, we must
click on /node/view/full.tpl in the Most common templates list.

Chapter 7

[133]

The page that is now loaded, has all the template override rule settings for the
standard template /node/view/full.tpl. To create a new template, we need to
click on the New override button at the bottom of the list.

Template Content Class

[134]

The page that is loaded has a form in which we have to specify the following
information:

•	 Filename (the system suggests specifying an explanatory name)
•	 Class for which we are adding this override
•	 Section for which we are doing this override
•	 Node ID, if the override is only for a specific content node

We also need to choose if we want to create an Empty file, a copy of the original
standard template, a container, or a simple view.

In our situation, we name the file full_folder_issuearchive.tpl. We select the Folder
class and the Archive section, as created in the previous chapter, to manage this rule.
At the end, we choose to create an Empty file, and then click on the OK button. Now
our override rule and file are created.

A new override rule is always put at the end of the rule list. The system loads the
first file where the rules match the context. So for this override, we have to increase
the priority value from 35 to 1. To do this, we have to change the value in the
form field, which is in the column before the edit button, and click on the Update
priorities button.

By clicking on the Edit button, it is possible to modify the template source code. If
we have a template (it could be an idea) with very complex code inside it, it could
be impossible to manage the template with this feature because the textarea does not
support code highlight and indentation. It would be better to use our favorite IDE to
edit it.

As you can see, the automatic override mechanism is not simple to use. We
recommend that you manually create the rules and provide order to the files in your
override folder.

Creating a template override manually
As we want to create custom views only for the frontend siteaccess, we need
to change the override.ini.append.php file within the settings folder for all
of our siteaccesses:

•	 /var/www/packtmediaproject/settings/siteaccess/ezwebin_site/
override.ini.append.php

Chapter 7

[135]

•	 /var/www/packtmediaproject/settings/siteaccess/ita/override.
ini.append.php

•	 /var/www/packtmediaproject/settings/siteaccess/eng/override.
ini.append.php

•	 /var/www/packtmediaproject/settings/siteaccess/fre/override.
ini.append.php

•	 /var/www/packtmediaproject/settings/siteaccess/dev/ override.
ini.append.php

•	 /var/www/packtmediaproject/settings/siteaccess/staging/
override.ini.append.php"

Because the file will always be the same for all four siteaccess, it would be useful to
change only one, for example the siteaccess ezwebin_site file, and then create a
symbolic link to the master file within the other three siteaccess.

cd /var/www/packtmediaproject/settings/siteaccess

rm -r ita/override.ini.append.php eng/override.ini.append.php fre/
override.ini.append.php dev/override.ini.append.php staging/override.ini.
append.php

ln -s ezwebin_site/override.ini.append.php ita/

ln -s ezwebin_site/override.ini.append.php eng/

ln -s ezwebin_site/override.ini.append.php fre/

ln -s ezwebin_site/override.ini.append.php dev/

#ln -s ezwebin_site/override.ini.append.php staging/"

Profile class
We will write the following rule in the file to create the full view for the
Profile class:

[profile_full]
Source=node/view/full.tpl
MatchFile=full/profile.tpl
Subdir=templates
Match[class_identifier]=editor_profile

We will write the following rule in the file under the [profile_full] rule to create
the line view for the Profile class:

[profile_line]
Source=node/view/line.tpl
MatchFile=line/profile.tpl
Subdir=templates
Match[class_identifier]=editor_profile

Template Content Class

[136]

We will write the following rule under the [profile_line] rule in the file to create
the embed view for the Profile class:

[profile_embed]
Source=node/view/embed.tpl
MatchFile=embed/profile.tpl
Subdir=templates
Match[class_identifier]=editor_profile

The section name should be unique within the override.ini.append.php file. The
Source is the position in which the source file that we want to override is placed. The
MatchFile is the location where you will find our custom file, starting from Subdir,
which is the subdirectory override folder from the extension of our design. For
example, to view profile_full, we want to overwrite the standard file node/view/
full.tpl with our file override templates/full/profile.tpl only if the identifier
of the class is equal to profile.

Folder class for the issue year archive
We will write the following rule, under the [profile_embed] rule, in the file to
create the full view for the folder class in the issue year archive:

[folder_issueyear]
Source=node/view/full.tpl
MatchFile=full/folder_issueyear.tpl
Subdir=templates
Match[class_identifier]=folder
Match[section]=6
Match[depth]=3

Folder class for issue
We will write the following rule, under the [folder_issueyear] rule, in the file to
create the full view for the folder class and render our issue page:

[folder_issue_full]
Source=node/view/full.tpl
MatchFile=full/folder_issue.tpl
Subdir=templates
Match[class_identifier]=folder
Match[parent_class]=folder
Match[section]=6
Match[depth]=4

Chapter 7

[137]

We will write the following rule, under the [folder_issue_full] rule, in the file to
create the line view for the folder class and render our issue page:

[folder_issue_line]
Source=node/view/line.tpl
MatchFile=line/folder_issue.tpl
Subdir=templates
Match[class_identifier]=folder
Match[parent_class]=folder
Match[section]=6
Match[depth]=4

We will write the following rule, under the [folder_issue_line] rule, in the file to
create the embed view for the folder class and render our issue page:

[folder_issue_embed]
Source=node/view/embed.tpl
MatchFile=embed/folder_issue.tpl
Subdir=templates
Match[class_identifier]=folder
Match[parent_class]=folder
Match[section]=6
Match[depth]=4

We will write the following rule, under the [folder_issue_embed] rule, in the file
to create the thumb view for the folder class and render our issue page:

[folder_issue_thumb]
Source=node/view/thumb.tpl
MatchFile=thumb/folder_issue.tpl
Subdir=templates
Match[class_identifier]=folder
Match[parent_class]=folder
Match[section]=6
Match[depth]=4

The Match[depth] rule matches the node with a depth equal to 4 in the content
tree nodes.

Template Content Class

[138]

Folder class for the issue archive section
We will write the following rule, under the [folder_issue_thumb] rule, in the file
to create the full view for the folder class in the issue archive section:

[folder_issuearchive_full]
Source=node/view/full.tpl
MatchFile=full/folder_issuearchive.tpl
Subdir=templates
Match[class_identifier]=folder
the Archive id section created in the previuos chapter
Match[section]=6

We will write the following rule, under the [folder_issuearchive_full] rule, in
the file to create the embed view for the folder class in the issue archive section:

[folder_issuearchive_embed]
Source=node/view/embed.tpl
MatchFile=embed/folder_issuearchive.tpl
Subdir=templates
Match[class_identifier]=folder
Match[section]=6

Article class
We will write the following rule, under the [folder_issuearchive_embed] rule,
in the file to create the full view for the article class and render the article items
inside our issue:

[issue_article_full]
Source=node/view/full.tpl
MatchFile=full/issue_article.tpl
Subdir=templates
Match[class_identifier]=article
Match[section]=6

We will write the following rule, under the [issue_article_full] rule, in the file
to create the line view for the article class:

[issue_article_line]
Source=node/view/line.tpl
MatchFile=line/issue_article.tpl
Subdir=templates
Match[class_identifier]=article
Match[section]=6

Chapter 7

[139]

We will write the following rule, under the [issue_article_line] rule, in the file
to create the embed view for the article class:

[issue_article_embed]
Source=node/view/embed.tpl
MatchFile=embed/issue_article.tpl
Subdir=templates
Match[class_identifier]=article
Match[section]=6

Frontpage embed object
For the home page, we'll use the standard class eZ Webin called FrontPage, which
gives us the opportunity to have a layout with three columns. This also satisfies
the needs of our mockup. Within the three columns, we need different types of boxes
to represent:

•	 The left column:
°° The latest news

•	 The central column:
°° The latest issue

•	 The right column:
°° The most important article for the week
°° The latest item from the forum

To create these boxes, we'll use the standard eZ Webin templates to embed objects
using the existing override. This can be activated by selecting the correct class for the
embed object.

To meet our needs, we must modify the following two files for the extension eZ Webin:

•	 extension/ezwebin/desing/ezwebin/override/templates/embed/
vertically_listed_sub_items.tpl

•	 extension/ezwebin/desing/ezwebin/override/templates/
itemizedsubitems/folder.tpl

We must copy them into our extension in the same location.

Template Content Class

[140]

Creating our custom template file
Finally, we must create our custom files for each rule of the override:

cd /var/www/packtmediaproject/extension/packtmedia/design/magazine/
override/templates

mkdir full line embed thumb itemizedsubitems

touch full/profile.tpl line/profile.tpl embed/profile.tpl

touch full/folder_issuearchive.tpl embed/folder_issuearchive.tpl

touch full/folder_issue.tpl line/folder_issue.tpl embed/folder_issue.
tpl thumb/folder_issue.tpl

touch full/issue_article.tpl line/issue_article.tpl embed/issue_
article.tpl

touch full/feedbackform.tpl

cp ../../../../ezwebin/design/ezwebin/override/templates/embed/
vertically_listed_sub_items.tpl embed/

#cp ../../../../ezwebin/desing/ezwebin/override/templates/
itemizedsubitems/folder.tpl itemizedsubitems

Customizing our class templates
After creating our template files, it is time to edit the HTML and logic, in order to
create our own custom classes (profile) and standard classes (folder, article) views in
the issue section that will have a different appearance to the standard layout.

Now, we will look at the code of most complex classes, according to the override
rules that we previously created.

Staff profile template
For the Staff class, we'll have two main views: the line view and the full view. We
can start from the line view template.

Line template
To modify the template, we must open the extension/packtmedia/design/
magazine/override/templates/line/profile.tpl file, and add the following code:

<div class="content-view-line">
 <div class="class-profile">
 <h2>

 {attribute_view_gui attribute=$node.data_map.firstname}

Chapter 7

[141]

 {attribute_view_gui attribute=$node.data_map.lastname}

 </h2>
 {attribute_view_gui attribute=$node.data_map.photo
 alignment=left
 image_class=small
 css_class=profile
 href=$node.url_alias}
{$node.data_map.profile_description.content.output.output_
text|striptags|shorten(200, '…')}
 </div>
</div>

$node is the variable that eZ Publish will make available within the content template.
It is an ezcontentobjecttreenode object type. This variable contains information
about the object that we are rendering and its associated node (position, depth, URL,
and so on).

The $node.url_alias attribute prints the relative URL of the node. We can obtain
the node's absolute path by appending the ezurl operator.

The $node.name attribute gives the object name and it's a proxy attribute to
$node.object.name. The string rendered is the string defined in the Object name
pattern when we define the class content.

With the attribute_view_gui function, we'll see the subtemplate related to
a specific content object attribute. For example, with {attribute_view_gui
attribute=$node.data_map.firstname}, we can see the subtemplate related
to the firstname content object attribute of the ezstring type that is defined in
the profile class. The $node.data_map attribute is a proxy attribute of the
$node.object.data_map attribute. It is an array containing all attribute values
of an object defined in our custom class.

All template attributes are located in the design/standard/templates/content/
datatype/view/ folder, and can be overridden in our extension by copying the file
to the same location as the original.

For example, if we want to override the ezstring attribute, we must copy the
design/standard/templates/content/datatype/view/ezstring.tpl file to
the extension/packtmedia/design/magazine/templates/content/datatype/
view/ezstring.tpl file, and then clear the cache so that the system loads the
custom file rather than the standard one. Now you can edit the custom file, and each
time that the system loads the template related to the ezstring attribute, it will load
our new file.

Template Content Class

[142]

With the {attribute_view_gui attribute=$node.data_map.lastname} function,
we can render the lastname object attribute defined as ezstring.

{attribute_view_gui attribute=$node.data_map.photo
 alignment=left
 image_class=small
 css_class=profile
 href=$node.url_alias}

With this function, we can render the photo object attribute defined as ezimage.
Because the datatype ezimage is a more complex datatype, we can pass multiple
parameters to the function in order to correctly display the image.

With the alignment parameter, we define the alignment of the image. This
parameter accepts the left, right, and center values.

With the image_class parameter, we pass the alias that defines the size of the image
and filters to be used, if defined. These aliases are defined in the file image.ini.

With the css_class parameter, we pass a class style that comes loaded in the
attribute class of the img tag.

With the href parameter, we can make the image clickable, and the value passed is
the address of the link.

With the {$node.data_map.profile_description.content.output.output_
text|striptags|shorten(200, '…')} code, we'll render the first 200 characters of
the description attribute. The $node.data_map.profile_description.content.
output.output_text attribute contains the output of the ezxmltext attribute
named description. With the striptags operator, we strip all of the HTML tags
from output and with the shorten operator, we take the first 200 characters of the
string.

Whereas the shorten operator is a standard eZ Publish operator, the striptags
operator isn't. In eZ Publish, we can call back the standard PHP function,
which takes only one parameter as input. It is sufficient to create an override
of the template.ini setting file in the settings folder of our extension, call
template.ini.append.php file, and then insert the following code:

<?php /*

[PHP]
PHPOperatorList[striptags]=strip_tags

*/ ?>

The PHPOperatorList array key is the operator name, whereas the value is the name
of the PHP function.

Chapter 7

[143]

The result of this custom view is as follows:

Full template
To modify the template, we must open the extension/packtmedia/design/
magazine/override/templates/full/profile.tpl file and add the following
code to it:

{def $latest_articles=fetch(content, reverse_related_objects,
 hash('object_id', $node.object.id,
 'attribute_identifier', '345',
 'all_relations', true(),
 'sort_by', array('published', false())))}
<div class="content-view-full">
 <div class="profile-full">
 <div class="info">
 <div class="border-box">
 <div class="border-tl">
 <div class="border-tr">
 <div class="border-tc"></div>
 </div>
 </div>
 <div class="border-ml">
 <div class="border-mr">
 <div class="border-mc float-break">
 <h1>{$node.name|wash}</h1>
 {attribute_view_gui attribute=$node.data_map.photo

Template Content Class

[144]

 alignment=left
 image_class=medium
 css_class=profile}
 {attribute_view_gui
 attribute=$node.data_map.profile_description}
 </div>
 </div>
 </div>
 <div class="border-bl">
 <div class="border-br">
 <div class="border-bc"></div>
 </div>
 </div>
 </div>

 </div>
 <div class="articles">
 <div class="border-box">
 <div class="border-tl">
 <div class="border-tr">
 <div class="border-tc"></div>
 </div>
 </div>
 <div class="border-ml">
 <div class="border-mr">
 <div class="border-mc float-break">
 <h1>{'Latest articles'|i18n('design/packtmedia')}</h1>
 {foreach $latest_articles as $article}
 {node_view_gui content_node=$article.main_node view=line}
 {/foreach}
 </div>
 </div>
 </div>
 <div class="border-bl">
 <div class="border-br">
 <div class="border-bc"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

This template is a bit more complex than the previous one. Now we'll look at the
various code parts used.

{def $latest_articles=fetch(content, reverse_related_objects,
 hash('object_id', $node.object.id,
 'attribute_identifier', '345',
 'all_relations', true(),
 'sort_by', array('published', false())))}

Chapter 7

[145]

This code is used to retrieve articles written by the author. The def function defines
a new variable inside the template. The fetch function is a simple way to query the
database. For example, in this case, the fetch function calls the reverse_related_
objects function of the content module. It is used to retrieve all of the elements
related indirectly to a certain node. In our case, the elements are the objects related to
the attribute with an ID of 345. Here, we retrieve all of the articles related indirectly
to the profile content object.

As with the line view, we show the name, photo, and description of the author and,
finally, the code:

<h1>{'Latest articles'|i18n('design/packtmedia')}</h1>
{foreach $latest_articles as $article}
 {node_view_gui content_node=$article.main_node view=line}
{/foreach}

Here, we display the articles related to the author. The i18n operator is used to load
the localized string as is appropriate. We will see this feature in detail in Chapter 9.

In the foreach function, we loop through the $latest_articles array and render
the line view of each node, by calling the node_view_gui function.

The result of this custom view is as follows:

Template Content Class

[146]

Embed template
To modify the template, we need to open the extension/packtmedia/design/
magazine/override/templates/embed/profile.tpl file, and add the following
code to it:

<div class="content-view-full">
 <div class="class-profile">
 {$node.name|wash}
 </div>
</div>

Through this template, we simply display the name of the author.

Issue template
Now, we will look at the views for the folder that represents our "issue".

Line template
To modify the template, we need to open the extension/packtmedia/design/
magazine/override/templates/line/folder_issue.tpl file, and add the
following code to it:

<div class="content-view-line">
 <div class="line-folder-issue">
 <h2>{$node.name}</h2>
 {include uri="design:parts/issue/entrymeta.tpl" node=$node}
 <div class="entrybody">
 {attribute_view_gui attribute=$node.data_map.cover
 alignment=left
 image_class=small
 css_class=profile
 href=$node.url_alias|ezurl(no)}
 {attribute_view_gui
 attribute=$node.data_map.short_description}
 </div>
 {include uri="design:parts/issue/authors.tpl" node=$node}
 </div>
</div>

Chapter 7

[147]

In this template, as with the previous templates, we want to render the object
name through the {$node.name} code, the object link through the {$node.
url_alias|ezurl} attribute, the issue code through the {attribute_view_gui
attribute=$node.data_map.cover...} function, and the description through the
{attribute_view_gui attribute=$node.data_map.short_description} function.

Furthermore, in the template, we also want to see the list of authors who have written
for this issue. For this block, we include a sub-template, as the same code is also used
in other templates. To include it in this template, we must use the {include uri =
"design:parts/issue/authors.tpl" node=$node}. The uri parameter specifies
template to be loaded; all subsequent parameters are variables that are passed to the
template. In this case, the template will load the extension/packtmedia/design/
magazine/templates/parts/issue/authors.tpl template file.

The authors.tpl template should contain the following code:

{def $found=array()}
<h2>{"Authors on this issue"|i18n('design/magazine')}</h2>

{foreach $node.children as $child}
 {if is_set($child.data_map.author_profile)}
 {foreach $child.data_map.author_profile.content.relation_list
 as $related}
 {if $found|contains($related.node_id)|not}
 {set $found=$found|append($related.node_id)}
 {node_view_gui content_node=fetch('content', 'node',
 hash('node_id', $related.node_id))
 view=text_linked}
 {/if}
 {/foreach}
 {/if}
{/foreach}

{undef $found}

The code of this template is rather complex. In eZ Publish, retrieving a certain
datatype (in this case, all of the authors relate to individual items within an issue) is
not easy, and we are forced to create a lot of logic. There are alternatives to create a
less-complex logic, such as creating custom PHP functions and using its template. In
this case, we chose to utilize the logic of the template because the caching mechanism
speeds up the loading of a complex page.

Template Content Class

[148]

The result of this custom view is:

Full template
To modify the template, we need to edit the extension/packtmedia/design/
magazine/override/templates/full/folder_issue.tpl file, and add the
following code to it:

{def $folder = fetch(content, list,
 hash('parent_node_id', $node.node_id,
 'limit', 1,
 'class_filter_type', 'include',
 'class_filter_array', array('folder')))}
<div class="content-view-full">
 <div class="folder-issuearhive-full">
 <div class="info" {if is_set($folder.0)|not}style="width:
 100%"{/if}>
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

Chapter 7

[149]

<h1>{$node.name|wash}</h1>
{include uri="design:parts/issue/entrymeta.tpl" node=$node}
<div class="entrybody">
 {attribute_view_gui attribute=$node.data_map.cover
 alignment=left
 image_class=medium
 css_class=profile}
 {attribute_view_gui attribute=$node.data_map.short_description}
 {attribute_view_gui attribute=$node.data_map.description}
</div>
{include uri="design:parts/issue/authors.tpl" node=$node}
</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
 </div>
</div>
{if is_set($folder.0)}
<div class="articles">
 <div class="border-box">
<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{$folder.0.name}</h1>
{foreach $folder.0.children as $child}
 {node_view_gui content_node=$child.object.main_node
 view=line size="original"}
{/foreach}

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
 </div>
</div>
{/if}
<div class="articles-list">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{"All articles"|i18n('design/magazine')}</h1>
{foreach $node.children as $child}
 {node_view_gui content_node=$child view=line}
{/foreach}

Template Content Class

[150]

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
 </div>
</div>
</div></div>

{undef $folder}

In this template, we have used a lot of functions and operators that we saw
previously. There are only two interesting parts that we'll describe here.

The purpose of this template is to render the issue object with its cover and
description in the leftmost column, the highlighted articles list in the rightmost
column, and a list of all of the articles inside the issue in the bottom box.

The imported articles will be saved inside a folder in the issue object. To get the
articles list, we have to use the following code:

{def $folder = fetch(content, list,
 hash('parent_node_id', $node.node_id,
 'limit', 1,
 'class_filter_type', 'include',
 'class_filter_array', array('folder')))}

The function list of the module content returns an array. Inside it, we can find the
children elements of the node identified by the parent_node_id parameter.

In this case, we will use a parameter of limit with a value equal to 1 because we
want to use only the first element of the returned array—the issue folder.

As with the previous template, we again have to include two more subtemplates:

{include uri="design:parts/issue/entrymeta.tpl" node=$node}
{include uri="design:parts/issue/authors.tpl" node=$node}

The first subtemplate will display some information about the article, such as the
publication date or the number of articles published in the issue.

<div class="entrymeta">{"Published on"|i18n('design/magazine')}
{$node.object.published|l10n('date')} - {$node.children_count}
{"articles"|i18n('design/magazine')}</div>

Chapter 7

[151]

The second subtemplate is the same as we used in the previous template. We will
obtain this result:

Thumb template
This template will be used to show only the name and the cover of the issue object.

To edit this template, we need to open the extension/packtmedia/design/
magazine/override/templates/thumb/folder_issue.tpl file, and add the
following code to it:

<div class="content-view-thumb">
 <h2>{$node.name}</h2>
 {attribute_view_gui attribute=$node.data_map.cover
 image_class=small
 href=$node.url_alias|ezurl(no)}
</div>

Template Content Class

[152]

After we save it, the following page will be rendered:

Embed template
We will use this template to see the name of the issue. To modify it, we need to open
the extension/packtmedia/design/magazine/override/templates/embed/
folder_issue.tpl file, and add the following code to it:

<div class="content-view-full">
 <div class="class-folder">
 {$node.name|wash}
 </div>
</div>

Issue archive template
Next, we will look at all of the views for the folder that represents our "Issue archive".

Chapter 7

[153]

Full template
We need to open the extension/packtmedia/design/magazine/override/
templates/full/folder_issuearchive.tpl file, and add the following code to it:

{def $latest_issue_article = fetch(content, list,
 hash('parent_node_id', $node.node_id,
 'depth', 3,
 'limit', 1,
 'class_filter_type', 'include',
 'class_filter_array', array('article'),
 'sort_by', array('published', false())))
 $latest_year = $node.children.0}

<div class="content-view-full">
 <div class="folder-issuearhive-full">

<div class="info">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{"Latest issue"|i18n('design/magazine')}</h1>
{node_view_gui content_node=$latest_issue_article.0.parent view=line}

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>

 </div>
</div>

<div class="articles">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{"%year% Issues"|i18n('design/magazine', '',
 hash('%year%', $latest_year.name))}</h1>

{foreach $latest_year.children as $index => $child}
 {if $index|mod(3)|eq(0)}<div class="break"></div>{/if}
 {node_view_gui content_node=$child view=thumb}
{/foreach}

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>

Template Content Class

[154]

 </div>
</div>

<div class="articles-list">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h2>{"Archive"|i18n('design/magazine')}</h1>

{foreach $node.children as $year}
 <h2>{$year.name}</h2>
 <p>	
 {foreach $year.children as $issue}
 {node_view_gui content_node=$issue view=text_linked}

 {delimiter}/{/delimiter}
 {/foreach}
 </p>
{/foreach}

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>

</div></div>
</div></div>

In this template, other than the structure that we already learned earlier in this
chapter, we also use the mod operator. This returns the module of the two given
parameters. In our case, it will print a <div class="break"></div> tag every time
$index is a multiple of three. Moreover, we can see a more advanced use of the i18n
operator through the strings parameterization. All of the parameters will be passed
as a third parameter, by using an associative array. We will obtain this layout:

Chapter 7

[155]

Embed template
This template will be used to render the name of the issue archive. We need to edit
the extension/packtmedia/design/magazine/override/templates/embed/
folder_issuearchive.tpl file, and add the following code to it:

<div class="content-view-full">
 <div class="class-folder">
 {$node.name|wash}
 </div>
</div>

Issue year template
Now, we have to create the "issue year" views. This will be a folder that will contain
all of our past issues.

Template Content Class

[156]

Full template
To edit the template, we need to open the extension/packtmedia/design/
magazine/override/templates/full/folder_issueyear.tpl file, and add the
following code to it:

<div class="content-view-full">
 <div class="folder-issuearhive-full">

<div class="info">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{"Latest issue"|i18n('design/magazine')}</h1>
{node_view_gui content_node=$node.children.0 view=line}

</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
 </div>
</div>

<div class="articles">
 <div class="border-box">

<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<h1>{"%year% Issues"|i18n('design/magazine', '', hash('%year%', $node.
name))}</h1>
{foreach $node.children as $index => $child}
 {if $index|mod(3)|eq(0)}<div class="break"></div>{/if}
 {node_view_gui content_node=$child.object.main_node view=thumb}
{/foreach}

</div></div></div>
<div class="border-bl"><div class="border-br">
<div class="border-bc"></div></div></div>

</div></div>
</div></div>

Chapter 7

[157]

In this case, we will not introduce any new functions. However, we will use all the
things that we learned before. The result will be as follows:

Issue article template
Next, we will look at the views for the class object article that represents the articles
published inside an issue.

Line template
We need to modify the extension/packtmedia/design/magazine/override/
templates/line/issue_article.tpl file, and add the following code to it:

<div class="content-view-line">
 <div class="article-line">
 <h2>{$node.name}</h2>

 <div class="entrymeta">

Template Content Class

[158]

 {"Published on"|i18n('design/magazine')}
 {$node.object.published|l10n('date')}
 </div>
 {attribute_view_gui attribute=$node.data_map.intro}
 <div class="entrymeta">
 {"Written by"}
 {attribute_view_gui attribute=$node.data_map.author_profile}
 </div>
 </div>
</div>

Here, we will introduce the l10n operator, which gets an Epoch timestamp as input
and returns a preformatted date that uses the correct internationalization for the
language of the user.

This is what we will see:

Chapter 7

[159]

Full template
For the template that will represent the articles, we will use the standard eZ Webin
template file. We will edit some parts of it to better fit our needs.

We need to change the extension/packtmedia/design/magazine/override/
templates/full/issue_article.tpl file, and add the following code to it:

<div class="border-box" style="float:left; width: 21%;margin-right:
 10px;">
<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<div class="cover">
 {node_view_gui content_node=$node.parent view=thumb}
 <h2>{"Related Articles"|i18n('design/magazine')}</h2>
 <ul style="margin: 0px;">
 {foreach $node.parent.children as $child}
 {node_view_gui content_node=$child view=text_linked}
{/foreach}

</div>
</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
</div>
<div class="border-box" style="float: left; width: 77%;">
<div class="border-tl"><div class="border-tr"><div class="border-tc">
</div></div></div>
<div class="border-ml"><div class="border-mr">
<div class="border-mc float-break">

<div class="content-view-full">
 <div class="class-article">
 <h1>{$node.data_map.title.content|wash()}</h1>
 <div class="entrymeta">
 {"Published on"|i18n('design/magazine')}
 {$node.object.published|l10n('date')}
 {"on"|i18n("design/magazine")} <a href=
 {$node.parent.url_alias|ezurl}>{$node.parent.name}</div>

{if eq(ezini('article', 'ImageInFullView', 'content.ini'),
 'enabled')}
 {if $node.data_map.image.has_content}
 <div class="attribute-image">

Template Content Class

[160]

 {attribute_view_gui attribute=$node.data_map.image
 image_class=medium}
 {if $node.data_map.caption.has_content}
 <div class="caption">
 {attribute_view_gui attribute=$node.data_map.caption}
 </div>
 {/if}	
 </div>
 {/if}
{/if}

{if eq(ezini('article', 'SummaryInFullView', 'content.ini'),
 'enabled')}
 {if $node.data_map.intro.content.is_empty|not}
 <div class="attribute-short">
 {attribute_view_gui attribute=$node.data_map.intro}
 </div>
 {/if}
{/if}
{if $node.data_map.body.content.is_empty|not}
 <div class="attribute-long">
 {attribute_view_gui attribute=$node.data_map.body}
 </div>
{/if}
 <div class="entrymeta">{"Written by"} {attribute_view_gui
 attribute=$node.data_map.author_profile}</div>
{if is_unset($versionview_mode)}
 {if $node.data_map.enable_comments.data_int}
 <h1>{"Comments"|i18n("design/ezwebin/full/article")}</h1>
 <div class="content-view-children">
 {foreach fetch_alias(comments, hash(parent_node_id,
 $node.node_id)) as $comment}
 {node_view_gui view='line' content_node=$comment}
 {/foreach}
 </div>
 {if fetch('content', 'access', hash('access', 'create',
 'contentobject', $node,
 'contentclass_id', 'comment'))}
 <form method="post" action={"content/action"|ezurl}>
 <input type="hidden" name="ClassIdentifier" value="comment" />
 <input type="hidden" name="NodeID"
 value="{$node.object.main_node.node_id}" />
 <input type="hidden" name="ContentLanguageCode"
 value="{ezini('RegionalSettings', 'Locale', 'site.ini')}" />

Chapter 7

[161]

 <input class="button new_comment" type="submit" name="NewButton"
 value="{'New comment'|i18n('design/ezwebin/full/article')}" />
</form>
 {else}
<p>{'%login_link_startLog in%login_link_end or %create_link_
startcreate a user account%create_link_end to comment.'|i18n('design/
ezwebin/full/article', , hash('%login_link_start', concat(''), '%login_link_end', '',
'%create_link_start', concat('<a href="', "/user/register"|ezurl(no),
'">'), '%create_link_end', ''))}</p>
 {/if}
 {/if}
{/if}
{def $tipafriend_access=fetch('user', 'has_access_to',
 hash('module', 'content', 'function', 'tipafriend'))}
{if and(ezmodule('content/tipafriend'), $tipafriend_access)}
 <div class="attribute-tipafriend">
 <p><a href={concat("/content/tipafriend/", $node.node_id
)|ezurl} title="{'Tip a friend'|i18n('design/ezwebin/full/article'
)}">{'Tip a friend'|i18n('design/ezwebin/full/article')}</p>
 </div>
{/if}
</div></div>
</div></div></div>
<div class="border-bl"><div class="border-br"><div class="border-bc">
</div></div></div>
</div>

We have added the leftmost block, which contains the cover issue and the related
articles, by using the following code:

<div class="cover">
 {node_view_gui content_node=$node.parent view=thumb}
 <h2>{"Related Articles"|i18n('design/magazine')}</h2>
 <ul style="margin: 0px;">
 {foreach $node.parent.children as $child}
 {node_view_gui content_node=$child view=text_linked}
{/foreach}

</div>

As the "issue" is the article parent, we used the attribute $node.parent to render
the issue thumb. To print the list of the related articles, we created an unordered list
containing all of the children of the parent node.

Template Content Class

[162]

Additionally, we used the ezini operator to optionally print the data. The ezini
operator reads and executes the directive written inside the .ini setting file.

This operator accepts three parameters:

1.	 The function name.
2.	 The parameter name for that function.
3.	 The name of the .ini file to read.

As an example, in the code, we have:

{if eq(ezini('article', 'SummaryInFullView', 'content.ini'),
 'enabled')}

This will read the SummaryInFullView parameter from the section article of the
content.ini file and all it appends. If the ezini return is enabled, the if statement
will be executed.

The last two code blocks are used to display the comments and the tipafriend
functionality.

The comment block needs some further discussion.

{if is_unset($versionview_mode)}
 {if $node.data_map.enable_comments.data_int}
 <h1>{"Comments"|i18n("design/ezwebin/full/article")}</h1>
 <div class="content-view-children">
 {foreach fetch_alias(comments, hash(parent_node_id,
 $node.node_id)) as $comment}
 {node_view_gui view='line' content_node=$comment}
 {/foreach}
 </div>
 {if fetch('content', 'access', hash('access', 'create',	
 'contentobject', $node,
 'contentclass_id', 'comment'))}
 <form method="post" action={"content/action"|ezurl}>
 <input type="hidden" name="ClassIdentifier" value="comment" />
 <input type="hidden" name="NodeID"
 value="{$node.object.main_node.node_id}" />
 <input type="hidden" name="ContentLanguageCode"
 value="{ezini('RegionalSettings', 'Locale', 'site.ini')}" />
 <input class="button new_comment" type="submit" name="NewButton"
 value="{'New comment'|i18n('design/ezwebin/full/article')}" />
</form>
 {else}

Chapter 7

[163]

<p>{'%login_link_startLog in%login_link_end or %create_link_
startcreate a user account%create_link_end to comment.'|i18n('design/
ezwebin/full/article', , hash('%login_link_start', concat(''), '%login_link_end', '',
'%create_link_start', concat('<a href="', "/user/register"|ezurl(no),
'">'), '%create_link_end', ''))}</p>
 {/if}
{/if}
{/if}

All of this code is used only if the $versionview_mode variable is not set. This is
used only in the preview mode.

If the $versionview_mode variable is not used and the $node.data_map.enable_
comments.data_int attribute is equal to 1, all of the comment children of the article
node can be retrieved through the fetch_alias function:

fetch_alias(comments, hash(parent_node_id, $node.node_id))

This function allows the creation of a fetch function alias in order to permit the use
of same function more than one time within the same template. To create a fetch
function, we have to override the fetchalias.ini file.

As we print the comments list, we want to display a button to add a new comment if
the user has the correct permission.

To do that, we have to add the following code:

{if fetch('content', 'access', hash('access', 'create',
 'contentobject', $node,
 'contentclass_id', 'comment'))}
<form method="post" action={"content/action"|ezurl}>
<input type="hidden" name="ClassIdentifier" value="comment" />
<input type="hidden" name="NodeID"
 value="{$node.object.main_node.node_id}" />
<input type="hidden" name="ContentLanguageCode"
 value="{ezini('RegionalSettings', 'Locale', 'site.ini')}" />
<input class="button new_comment" type="submit" name="NewButton"
 value="{'New comment'|i18n('design/ezwebin/full/article')}" />
</form>

The fetch access function of the content module is the one that checks whether the
user has the appropriate credentials perform a given action. We use it to check
whether the user has permission to create a new object of the comment class inside
the selected node.

Template Content Class

[164]

The following form is used to generate the creation page of a new object in eZ Publish.

If the user doesn't have the required permission, the following code will be rendered
by the system to show the login and sign in links:

{else}
<p>{'%login_link_startLog in%login_link_end or %create_link_
startcreate a user account%create_link_end to comment.'|i18n('design/
ezwebin/full/article', , hash('%login_link_start', concat(''), '%login_link_end', '',
'%create_link_start', concat('<a href="', "/user/register"|ezurl(no),
'">'), '%create_link_end', ''))}</p>
 {/if}

In this code, we use the i18n function, parameterized as we saw before.

The last code block is used by the tipafriend functionality. To use it, we don't need
to do anything because it is embedded inside of eZ Publish by default, and allows
the current page link to be sent to a predefined email address.

The required code is:

{def $tipafriend_access=fetch('user', 'has_access_to',
 hash('module', 'content',
 'function', 'tipafriend'))}

{if and(ezmodule('content/tipafriend'), $tipafriend_access)}
 <div class="attribute-tipafriend">
 <p><a href={concat("/content/tipafriend/", $node.node_id
)|ezurl} title="{'Tip a friend'|i18n('design/ezwebin/full/article'
)}">{'Tip a friend'|i18n('design/ezwebin/full/article')}</p>
 </div>
{/if}

This code introduces the has_access_to fetch function of the user module, which
checks whether the user can use the tipafriend function of the content module.

Chapter 7

[165]

The page will be rendered as shown here:

Embed template
This template will be used to render the issue article title. To use it, we have to edit
the extension/packtmedia/design/magazine/override/templates/embed/
issue_article.tpl file, and add the following code to it:

<div class="content-view-full">
 <div class="class-article">
 {$node.name|wash}
 </div>
</div>

Template Content Class

[166]

Summary
In this chapter, we learned how to create override rules for our classes, in both
automatic mode and manual mode. Moreover, we saw how to create a custom
template based on these override rules. We also saw in detail all of the custom
templates for our project. In the next chapter, we will learn how to use the forum and
blog functionality of the eZ Webin package.

Adding Community Forums
The open society, the unrestricted access to knowledge, the unplanned and
uninhibited association of men for its furtherance—these are what may make a
vast, complex, ever growing, ever changing, ever more specialized and expert
technological world, nevertheless a world of human community.
—J Robert Oppenheimer

In the previous chapter, we created our entire layout structure. Now, we will
use this layout structure, without additional enhancements, to fully host the
magazine's forum.

In this chapter, we will:

•	 Take a look at the built-in forums available through the eZ Webin packages
•	 Use and configure the content classes and functionality to create a

community system for our magazine
•	 Learn how the eZ Webin blog content class works
•	 Create an editor blog

Adding Community Forums

[168]

The magazine's forum
As we learned in the previous chapters, eZ Webin comes bundled with a lot of
useful features and extensions. One of these is the forum data object, which allows us
to create a complete community bulletin board application without writing a single
line of code.

Adding the Forum
To add a forum, we have to log in to the eZ Webin backend from
http://packtmediaproject/index.php/ezwebin_site_admin/. From the
Content structure tab, we have to add a new Forums object by using the drop-down
menu located at the bottom of the page as shown here:

Next, we have to set up the name of the forum and add a simple description, in order
to better describe it:

Chapter 8

[169]

After we save the Forums object, we can start to populate it by using the Forum
objects. The difference between the two dataobjects is that the former acts as a
container or repository for the forum structure, whereas the latter is a container for
the Forum topic dataobject.

As before, we can add a Forum object by using the drop-down menu at the bottom of
the page, as shown here:

We can create a lot of different forums on our site—one for every argument that we
want to talk about.

In the screenshot, we can see some of the topics that we created for the site's forum.
We created a Chitchat forum for non-technical related issues, a Tech and gadgets
forum where users can discuss new technologies, a Programming stuff forum
related to web development, and a Church of Emacs Vs Cult of VI forum for
software comparison discussions.

Adding Community Forums

[170]

Creating a sticky post
It is useful to add a sticky post to give the required importance to a particular
argument, which is also referred to as thread. For example, the forum rules should
always be visible at the top of the selected forum.

To create a sticky post, we have to add a Forum topic to the Forum object, by using
the drop-down bar that we used before, and select the checkbox named Sticky.

Forum access control list
The bulletin board provided by eZ Publish is not as powerful as some renowned
ones, such as vBullettin or phpBB, but it has all of the basic features required
of a multipurpose CMF in order to manage a simple forum. Moreover, the eZ
Publish forum object is released with some default configuration that is useful for
instantiating it and using it immediately. For example, the default access control list
of the forum object is set to allow to an anonymous user to read the forums and all of
the threads, but to only allow registered users to write on it.

If we want to change the permissions for a single Forum channel—for example, by
creating a private forum that only certain users can see—we have to use the Roles
and policies functionality provided by the CMF.

We saw this menu in the previous chapters, when we created a new section for
our site. Now, we will use it to create a private forum only for the users in the
Editor role group.

Chapter 8

[171]

Creating the Private forums section
First of all, we need to create a new Section called Private forums. To do this, we
will open the Setup tab in the backend, and then click on the Sections link in the
leftmost sidebar. As we did before, we will create a new section by clicking on the
New section button.

We will call the new section Private forums. Next, we will select Content structure
from the Navigation part drop-down list.

Next, we will click on the OK button, after which we will be redirected to the
section's list page. Here, we need to click on the plus icon (+), which is displayed on
the rightmost side of the screen, to assign the selected section to a content subtree.

Navigate to the selected forum(s) that you want to assign as private, and select the
appropriate checkbox. Then, to save your selection, click on the Select button.

Now, the forum will be inaccessible to all users except those in the Administration
role group.

Adding Community Forums

[172]

We have to grant users who are editors the ability to see the private forum. After we
open the Roles and policies link in the Setup tab, we have to click on the Editor link.

Here, we will select the Subtree option from the drop-down menu located at the
bottom of the Users and groups using the <Editor> role box, and then click on the
Assign with limitation button.

The system will ask us which section we want to enable for this role group. We will
choose the Private forums section that we created previously.

Chapter 8

[173]

Next, we need to confirm the users (or the user groups) to be assigned to the section.
We will again choose the Editors. Save your work by clicking on the Select button.
Now, all of the users that we created in this group should be able to see and use the
private forums.

Creating the magazine's blog
As for the forum, we need some service for our site to give it a Web 2.0 dimension.
The real killer application is the blog. Here, the editors should be able to freely
write about their views and company news, and provide a human face to a
company-related site.

Installing a blog application is very easy, and the eZ Webin package comes in handy
again for doing this. This package gives us features such as the tagging and comment
systems, and the post calendar widget.

Adding Community Forums

[174]

Adding the blog
The blog engine relies on two content classes: blog and blog post. The first one acts
as a container for the post, whereas the second is used to write new posts.

To add a blog to our site, we have to go to the backend and add a blog object as a
child of the home page.

Next, we have to specify the name of the blog—in our case Editor's nest—and then
provide a description of the blog:

After we add this class, the blog will appear on the relative path in the public
siteaccess with the default templating of the eZ Webin package. We can see this in
the next screenshot.

Changing the blog layout
We can change the layout of the blog (for example, to remove the
calendar) at any moment. We simply have to overwrite the eZ Webin blog
template located in the packtmediaproject/extension/ezwebin/
design/ezwebin/templates/parts/blog folder with the one that
we will create in our extension, as we did in the Chapter 7, for the default
eZ Webin template.

Chapter 8

[175]

Set up the feeds
A feed (or news feed) is a data format used for providing users with
frequently-updated content, such as news for a site, or posts for a blog. A feed
can be provided in different formats, such as RSS or ATOM, and can be subscribed
by a user with a feed reader application.

Adding feeds to a site is very important because it provides users with the latest
content without them having to visit the site.

By default, eZ Publish doesn't provide a self-generated feed. However, it does
provide an option for the site administrator to enable one from the administration
interface.

Moreover, any node of the content tree can be used to generate a feed, through
a very flexible system that can handle any kind of content class.

We will add a feed to the forums and the blog, choosing the best class attributes
for both.

Adding Community Forums

[176]

Creating the blog feed
Log in to the backend. From the Setup tab, we will click on the RSS link in the
left-hand sidebar.

Next, click on the New Export button and complete the form with the necessary data
for our new feed, which is a Name, a Description, and a Site URL.

Chapter 8

[177]

In this form, eZ Publish will require some information regarding the feed itself, as
we can see in the following screenshots:

The feed information includes the following:

•	 Name: The name of the feed that we will publish.
•	 Description: The text used to describe the feed.
•	 Site URL: This is used to produce URLs in the export, comprised of the Site

URL (http://www.packtmediamagazine.com/index.php) and the path to
the object (/articles/my_article). Leave this field empty if you want the
system to automatically detect the URL of your site from the URL that you
access the feed with.

•	 Image: This image will be attached to the feed, as a favicon.
•	 RSS version: This is the version of the RSS format that is used by eZ Publish

in order to publish the feed.

Adding Community Forums

[178]

•	 Number of objects: This value represents the number of objects that we
want to add to the feed.

•	 Active: This checkbox will be used to enable or disable the feed.
•	 Main node only: If checked, only the main node will be selected otherwise

the children node will be added to the feed.
•	 Access URL: This represents the feed URL. By default, eZ Publish uses

the reserved prefix path /rss/feed/. We have to create a valid Access URL
as blog.

After we define the feed's information, we have to configure the sources from where
we want to retrieve the objects to be taken for the feed. We can do this by completing
the Source 1 subform as shown:

To configure the feed source, we have to define:

•	 Source path: This is the path of the navigation tree of the site from which we
want to gather the data.

•	 Subnodes: If enabled, the subnodes of the main node will also be used.
•	 Class: We can filter the object class that we want to add to the feed. In our

case, we will choose the Blog post class.
•	 Title: We can choose which attribute of the Blog post class we want to use as

the title of the single feed.
•	 Description: In this field, we can choose which attribute will be used as a

description for the feed. In our case, it will be the Body attribute of the Blog
Post class.

•	 Remove/Add Source buttons: These buttons will add or remove the settings
that we have configured.

Chapter 8

[179]

When we configure the Source path, by clicking on the Browse button, eZ Publish
will ask us to choose the node that we want to use to create the feed.

As shown in the previous screenshot, we will select the blog node as the primary
source. This will ask the system to check for content only in that node, and to not use
the whole site.

Next, we will choose which classes we want to include in the feed, and which class
attributes should be used for the feed title and content.

For the blog, we will use the Blog post class. After we click on the Set button to
refresh the class attributes, we will select the Title and Body attributes for the feed
Title and Description respectively.

Next, click on the OK button to save your settings and check for the feed.

You can see if the feed is enabled by taking a look at the navigation toolbar in any
modern browser. For example, in any 3.x version of Firefox, the feed icon will appear
on the left-hand side of the domain name. This is seen in the following screenshot:

Adding Community Forums

[180]

Creating the forum feed
We have an additional requirement for the forum. We want to include all of the new
discussions in a single feed, which will create a kind of aggregate feed.

As before, click on the New export button from the RSS setup page, and complete
the form by specifying the required feed information, such as the feed Name,
Description, and Site URL as shown in the following screenshot:

Chapter 8

[181]

The main difference between this and the previous example is in the Source 1
subform, where we will select the /Homepage/Forum as the Source path, and select
the Subnodes checkbox. This is shown in the following screenshot:

This setting will cause a full parse of the selected node to be made, in order to check
if any subnodes with the specified content class exist, and will then add any such
subnodes to the feed.

Multi-source feed
eZ Publish allows us to create a multi-source feed. For example, if we
create some blogs on different document tree nodes, we can include all
of them in our feed by using the Add source button in the RSS edit page.
In fact, clicking on that button will create a new sub-section called (in our
case) Source 2, where we can configure a new Source Path that will be
merged with the one that we configured before.

Summary
In this chapter, we discovered the social features provided by the eZ Webin package,
and enabled these for our magazine site. Also, we learned how to create a feed for
both a single type of content and for aggregated content. In the next chapter, we will
see how internationalization and localization work in the CMF.

Internationalization and
Localization

oct 31 = dec 25
A mathematical joke

In this chapter, we will provide a brief overview of:

•	 The internationalization capabilities of eZ Publish, and will implement some
additional language translations for our customers who may be visiting and
looking to enroll themselves in the magazine

•	 How to use the eZ Publish backend to translate articles and content classes,
and then publish them

A multilingual site
Internationalization and localization are two big issues for people who need
to develop a multilingual site. Other than the simple text translation, a developer
needs to know how the local standard formats—such as dates, numbers,
or amounts—change from country to country. Internationalization and localization
take care of these problems.

Internationalization and Localization

[184]

Internationalization
Internationalization, often referred to as i18n (the number represents the count of the
letters in the word), is the practice of creating software so that it isn't hard-wired to
one language, locale, or culture.

For example, the workflow of a contact form will work in the same way even if the
page contains English or Italian text.

Fortunately, eZ Publish allows the implementation of internationalization for any
single object that it can manage. This will help us in translating language templates,
content objects, attributes, and much more.

Localization
The localization process (L10n) helps site administrators to assign the correct values
according to the country language displayed. This means that you not only show the
translated text, but also dates in the appropriate format based on the languages used.
For example, in the English interface, a date is based on the month/day/year format,
whereas in the Italian interface, a date is represented in the day/month/year format.

To manage the country-specific settings, eZ Publish uses the locale identifier.

Locale identifiers
A locale identifier consists of a language code of three letters (ita), followed by two
uppercase letters (IT) for the country code. This identifier is based on the ISO 639
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=22109http://it.wikipedia.org/wiki/ISO_639) and ISO 3166-1
(http://it.wikipedia.org/wiki/ISO_3166-1) standards.

eZ Publish uses the default locale, the United Kingdom English language (eng-GB),
and has a lot of pre-defined locale settings in the .ini file located in the
share/locale directory of the installation root.

Creating a new locale file
eZ Publish has a lot of default locale settings. However, a specific behavior
or language may not be provided. To create a new locale, we should copy one
of the standard files provided in the share/locale folder and overwrite it with
the necessary content. We can also send our job to the contributions page
(http://ez.no/developer/contribs/internationalization) at the ez.no site.
From the same site, we can also download a lot of updated locale files.

Chapter 9

[185]

As an example, if we need to create a Klingonian locale file based on English
language, we have to open a shell to create the new file in this way:

cp share/locale/eng-GB.ini share/locale/kln-KL.ini

Next, we will edit the new kln-KL.ini file by adding the country's locale settings.

After we create the locale file, we also have to create a translation file for the
eZ Publish main interface. We can find translation files in the share/translations
directory, placed in the root of the system.

As we can see, this folder contains a set of subfolders named with the locale identifier
(such as, ita-IT). These subfolders contain a translation.ts XML file that can be
used to translate the localization strings from the default eZ Publish English to the
locale language.

eZ Publish has, by default, an untranslated folder that can be used as a template for
creating a new, clean translation file. To create our translation file for the new locale,
we have to execute the following command from the eZ Publish installation path:

cp -Rf share/translations/untraslated/ share/translations/kln-KL

Now, we can easily translate the file's entries by using software such as QtLinguist
(http://www.qtsoftware.com/products/developer-tools).

You can find more information on this software application in
the QTLinguist manual on the QT technical documentation site:
http://doc.trolltech.com/4.5/linguist-manual.html.

Anatomy of the translations.ts file
The translations.ts file is an XML file that contains information on how to
translate a particular string.

The structure of the file is based on a context tag, which contains a unique
identifier called name, a message tag with the original text source, and the relative
translation file. As an example, the following is an extract from the eZ Webin
translation.ts file:

<context>
 <name>design/ezwebin/article/article_index</name>
 <message>
 <source>Article index</source>
 <translation>Indice articolo</translation>
 </message>
</context>

Internationalization and Localization

[186]

Note that the translations.ts file should be encoded
with UTF8 so that it can be opened with QtLinguist.

Multi-language site management
In Chapter 1, during the installation, we enabled the support for multi-language
in eZ Publish. Then in Chapter 2, we created site accesses for those languages,
by adding failover capabilities to the CMF if content is not translated in the main
language. The next step is to manage the language from the eZ Webin backend.

Log in to the backend from http://packtmediaproject/index.php/dev_panel/
and then, in the Setup tab, click on the Languages link in the leftmost menu.

Here, we can see all of the enabled languages and the related translated objects. If we
click on a language, eZ Publish will show all the locale info settings for
that language.

From this page, we can also add to or remove new languages from the CMF easily,
as we did from the shell.

We can remove a language only if it does not contain any content
objects.

Chapter 9

[187]

Class attribute translations
As noted earlier, eZ Publish allows translating any single object or attribute. This is
very useful for displaying the attribute labels in the correct language in the backend
or the frontend of the CMF.

To translate a class object, we need to go in the Setup tab and then click on the
Classes links located in the leftmost menu.

Here, we can see a list of all of the content classes that have been created in the CMF.
To translate them, we have to select them one by one, and then add the translation.
As an example, we will translate the Article class.

Internationalization and Localization

[188]

After we click on the name of the class, we will be redirected to the class
summary page.

Here we can see all of the information related to the class and, moreover, we can edit
it by adding new attributes or managing the languages. From the drop-down box,
select the Another language link, and then click on the Edit button.

The system will ask us which language we want to enable for the class. We can select
one of the installed languages, and also on which translated language we want to
base the new translation. This should be very useful for languages such as eng-GB
or eng-US, where only small cosmetic changes need to be made.

Chapter 9

[189]

After we select the new language, we need to click on the Edit button, and can then
start translating all of the contents of the page.

The edit form that opens is the same as the one that we saw in Chapter 3 when we
created the content object for the articles. In this case, we don't need to add anything
new except for the translated strings. For example, we start by translating the Article
object into Italian, giving its Italian name Articolo, and the translation for the title
value (Titolo).

Apart from the strings, we can also change the default behavior of
the content attributes, adding—for example—a default value for the
publication date (instead of an empty value), or removing a searchable flag.

After we have translated everything, and saved our work by clicking the OK button,
we will be redirected to the class summary page for the newly inserted language.

Internationalization and Localization

[190]

Class default language
If our editors are from Italy, we can choose to use Italian as the default language for
the entire content class.

To do this, in the Classes link of the Setup tab, locate the class that you wish to edit
and click on the name of the class. Then, enable the translations window, select the
desired language using the option buttons, and save your changes by using the Set
main button. This is shown in the following screenshot:

Content translation
As for the content classes, we can translate any content object created in the CMF.
To do this, we need to open the Content structure tab, and choose the object that
needs to be translated.

We can now select which language we want to add to the document, and start working
on it. After we publish our work by using the Send for publishing button, the new
translation will be available on the site frontend, under the selected language.

Chapter 9

[191]

URL translation
When we translate a content object, its main URL will change accordingly. But
we should only need to create aliases for a single language. For example, we
should create an alias for the contact page in the staff section of the site only for
the Italian version.

As the first step, we need to open the Content structure tab. Next, from the
Sub items box of the home page, we need to click on the icon for the Contact Us
content object.

Internationalization and Localization

[192]

The context menu will appear. Here, we have to select the Advanced | Manage URL
aliases link.

We can add a new URL alias by entering the new URL manually and selecting the
relative language.

When we create a complex URL alias based on the pre-existing
URL path, we have to remember that the existing objects or functionality
with the same name will take precedence over the alias name.

Multilingual extensions
We saw how to create a new locale file and how to compile a translations file. Now
we will see how to upgrade our extension to i18n.

Chapter 9

[193]

The extension folder structure
To enable multilingual support in our extension, we have to create a new folder
structure for the translation files. We have to open a shell, go to the extension folder,
and then create a directory named translations.

cd /var/www/packtmediaproject/extension/packtmedia

mkdir translations

mkdir translations/ita-IT

mkdir translations/fra-FR

mkdir translations/de-DE

For all of the folders, we have to create the translation.ts file named according to
the string that we will use in the templates.

The extension siteaccess
As for the main siteaccess that we configured in Chapter 2, we have to notify
the system to also enable the internationalization system for our extension.
To do this, we need to open the site.ini.append.php file located in the extension
settings/ directory.

cd /var/www/packtmediaproject/extension/packtmedia

cd settings

vi site.ini.append.php

Now, add the following lines to the bottom of the site.ini.append.php file:

[RegionalSettings]
TranslationExtensions[]=packtmedia

As we can see in the above code, the TranslatedExtensions array parameter
is used to enable the internationalization system for the named extensions,
in this case packtmedia.

After we configure the RegionalSettings section, we have to clear the eZ Publish
cache to let the system know that the extension will use the internationalization
features of the CMF, and to let the system know that it will have to search for the
required translation files.

Internationalization and Localization

[194]

The template strings
One of the first things to do is to replace all of the hardcoded text that we placed in
the templates files using the i18n and l10n operators.

These operators are quite easy to use; we saw them in Chapter 7 when we
customized the override template for the profile pages.

{'Original string'|i18n('design/packmedia/content/newstring')}

The i18n operator allows us to change the string placed before the pipe with the one
identified by the unique name that we pass as the first parameter.

{$node.object.published|l10n('date')}

Here, the l10n operator will help us to format miscellaneous numeric values
according to the current locale settings as dates, times, currencies, numbers.

Summary
In this chapter, we learned how to manage internationalization and localization for
both content and classes. We looked at how to create custom translation files for our
extension, and we used the eZ Webin backend to publish the translated object. In the
next chapter, we will talk about roles and privileges by going into what we learned
in the previous chapters, in greater detail.

Creating Roles and Privileges
Do it! Do it!
Starsky & Hutch movie

After all of this defining and creating, we need to put some order in the house. In this
chapter, we will create privileges and roles for the users that allow them to do only
the required tasks. We will learn about the ACL system, how the permission system
of eZ Publish works, and will create the groups and the roles needed by the site.
Then, we will look at the workflow system and create a notification workflow for
the site's blog.

Policies, roles, and groups
When we work in a big company, everyone has his or her own role, tasks, and
permissions. For example, an advertising guy will never touch a server, and a web
designer will not write a contract. eZ Publish is like a big company, where the
administrator can do everything, or can delegate specific tasks to users or group
of users. This behavior is called ACL (Access Control List) and is based on roles,
policies, and groups.

Moreover, as in any big company, eZ Publish needs to verify that its employee is
who he claims to be, and needs to allow him to read the content that he can access.

Creating Roles and Privileges

[196]

Luckily, eZ Pubish has these features natively integrated into its core, as user
account management.

contains

Roles

Assigned to

Assigned to
single user

User group

Policy

Policies
A policy is an atomic right that allows a user to use a given functionality of a
module, for example, to create a new blog post in the blog. A policy is based on
three parts: a module name, the name of one of the functions of the module, and a
permission on that function. If we think about the previous example (creating a new
blog post in the blog), the policies allow a user to access the create function of content
modules of the Blog post class object.

We have to remember that we can create a policy to use all of the functions of a
particular module and that not all of the functions need to be limited. Moreover, the
limitations may change from module to module.

Roles
When we put a bunch of policies together, we create a role. We can assign a role to
either a single user or to a group of users. A role can also be limited to a particular
section or navigation sub-tree. Using the policies example again, we can assign
the policy to create a blog post to a role, and then assign this role to two groups.
However, whereas the first group will create a blog post everywhere, the other
group will be limited to a particular section of the site.

Applying a role
We can use three main strategies to apply a role to a group (or a user)—all of them
with their pros and cons.

Chapter 10

[197]

The first strategy is to create many atomic roles, all of them with specific policies.
This solution allows us to create and manage small roles. But we have to add, for
example, both the Anonymous and Editor roles to the Editor groups to allow them
to read public content.

The second solution use with a different approach. The roles will have all of the
policies required to fulfill a particular task. For example, the Editor role will also
include all of the policies of the Anonymous role. In this case, if we change the
policies of the Anonymous role, not all of the groups that have Editor role will be
involved.

The third solution is to create groups with a very small subset of roles, and then add
all of them directly to the users. This solution is optimal for managing specific users,
but it is not recommended for a site that has a lot of users and groups.

Obviously, we can also merge and combine the three approaches, but we suggest to
always keep it as simple as possible.

User groups
As the name suggests, a User group is a collection of users. eZ Publish represents
user groups as specific nodes that contain user accounts. A user group can also
contain another user group.

When we talk about users, we have to remember that they are also eZ Publish
content objects that contain particular information regarding the user itself, which
is provided by the User account datatype.

As with the Folder content classes, which can contain other Folder objects
or other kind of content objects, both User Groups and Users are managed
by eZ Publish as content classes. This means that we can change and
extend them at any time, in order to fulfill our needs.

eZ Publish user management
We saw how eZ Publish roles and policies work in Chapter 6, when we created a new
section, and then in Chapter 8, when we added specific policies to a forum channel.

But we never talked about how the CMF manages users.

Creating Roles and Privileges

[198]

User accounts
Every time that we have to deal with a user, we will find the relative content object
inside the User accounts tab.

On the left-hand sidebar of this section of eZ Publish, we can see the user groups that
have been created. Also, we can see in the main content area all of the information
for the area.

If we click on a user group on the left, the central area will be expanded to show an
Assigned roles box.

Chapter 10

[199]

This contains all of the roles applied to the group, and specifies if there are any
section or subtree limitations.

Within this box, we can find the Available policies box, as shown here:

This box is a drill-down of the first one, and all of the relative policies of the applied
roles are shown in it.

The last box, called Sub items, is the container of all of the users that belong to
the group.

As for the other content object, a user can be disabled by adding an 'invisible' tag,
and edited, directly from here.

Creating a new user
eZ Webin allows us to create users in two ways: via the predefined registration form
in the frontend, or from the administration backend.

Creating Roles and Privileges

[200]

The following screenshot shows how the registration form on the frontpage of the
site appears, using the predefined eZ Webin template with our CSS:

When the users register themselves via the frontend, they will be saved as
Anonymous Users and the default roles will be applied.

Otherwise, in order to create a new user from the backend, we have to log in from the
backend interface located at http://packtmediaproject/index.php/dev_panel.
Now, from the User accounts tab, we have to open the group into which we want to
place the new user.

Chapter 10

[201]

Here, we can use the drop-down menu at the bottom of the content area to create a
new User or a User group content object.

The following screenshot shows the backend interface used to create a new user:

When we create a new user via the backend, we have to provide the same data as
we do when creating a user via the frontend. The only difference is that, in this case,
we can create the user in the exact group that we want.

It's very important to remember that eZ Publish checks for a unique
username and email address. So two different users cannot have this
information duplicated.

Creating Roles and Privileges

[202]

Extending eZ Publish user classes
When we created the new user, we noticed that we can create only Users or User
groups; but we defined our profile content class to manage the editors in Chapter 3.
To add this content class to the User accounts content area, we will need to update it.

Open the Setup tab, and then click on the Classes link in the sidebar. Then, click on
the Content class inside the Class group box, and select the Profile content class, in
order to see its information. At the bottom of the page, we can see the Member of
class groups box, as seen in the following screenshot:

In this box, select Users from the drop-down menu, and then click on the Add to
class group button. From now on, we'll be able to create new profile editors inside
the Editors user group.

Managing a user
Sometimes we may need to delete a user, for example, an employee who leaves our
company, or an external user who wants to delete his own profile.

In this case, we can proceed in two ways. We can either delete the user permanently,
or disable the user by maintaining the author's attributes on the content that he or
she created.

Disabling a user
To disable a user, we have to open the User accounts tab in the backend, and then
browse in the categories for the user that we want to disable.

Chapter 10

[203]

Open the user page, and in the Preview page, click on the Configure user account
settings link. The following window will be displayed:

Deselect the Enable user account checkbox, and save your changes by clicking on the
OK button.

Deleting a user
To delete a user, we have to select the user from the User group page, and select the
relevant checkbox.

Creating Roles and Privileges

[204]

Next, when we will click on the Remove selected button, the system will ask us how
to proceed.

Click on the OK button and the user has now been deleted.

The eZ Webin predefined groups
As we saw when we created the new interface and content classes, the eZ Webin
packages come with a handful of preconfigured features.

In this case, the package automatically creates five different groups, along with the
relevant roles and privileges.

We can see these groups in the following table:

Administrator users The users who belong to this group are superusers, having
access to all of the functionality of eZ Publish.

Editors These users can manage the content of the CMF.
Partners These are member users with the privileges necessary to use

a reserved area of the frontend.
Members These are anonymous users who have registered themselves.

These members can manage their personal profile page.
Anonymous users Visitors who are not logged in. They can read everything that

is marked as public.

For all of the users, irrespective of whether they are logged in or not,
eZ Publish will create and manage a session cookie that allows the
developers to create complex interaction features in their products.

Some steps into the workflows
A workflow is a sequence of predefined operations assigned to the system, to a user,
or to a user group, that have to be executed in a predefined order.

Chapter 10

[205]

This functionality can be used—for example—to create an approval procedure
for articles, or to notify a user when a particular event happens.

eZ Publish allows the creation of workflows, and assigns them to triggers in order
to easily manage tasks and, moreover, to provide us with an API for creating custom
workflows for our extensions.

The default workflow events
eZ Publish exposes five default workflow events:

•	 Approve
•	 Wait until date
•	 Multiplexer
•	 Simple Shipping
•	 Payment Gateway

All of these can be used together in a cascade to create complex behavior, or can be
used one-by-one to provide simple event management.

Approve
The Approve event will block a particular section from being published. In this
event, you can choose if a user (or group) can be excluded, and who will approve
new content.

Wait until date
This event filter requires a date attribute to be present in the chosen object class.
This event will override the default publishing date specified by a user with the one
defined in the workflow.

Multiplexer
This filter is very useful for combining different workflows together. It can be used to
filter sections, classes, or users that other workflows run against.

Simple Shipping
This is used to add, for example, a new value for shipping costs in the e-commerce
site. This cost will be added to the total cost of goods that the user has purchased.

Creating Roles and Privileges

[206]

Payment Gateway
This filter is used to manage the logic behind a payment gateway. To work, it should
be used in conjunction a third-party payment gateway extension.

Creating a notification workflow
We will now create a workflow that will allow a specific editor (the editor chief
who inherits from the Administrator group roles) to approve new content that is
published in the blog by others editors.

Notification workflow
If you want to create a workflow notification system, the
easiest way is to download and install the eZ Information
extensions from the eZ System Projects site.
You can find more information here:
http://projects.ez.no/ezinformation

As the first step, we have to open the Setup tab and go to the Workflow link at the
bottom of the left-hand sidebar.

By default, eZ Publish creates an empty Standard workflow. We will open it and
create a new workflow by using the New workflow button.

Chapter 10

[207]

Next, we will compile the new workflow and name it as Approve blog. We will add
an Event / Multiplexer choice from the select form by using the Add event button,
as shown in the following screenshot:

Creating Roles and Privileges

[208]

Now, we have to filter the objects/sections where we want to enable our new
workflow. To do this, we have to complete the multiselect input fields, using the
default value for all of the fields, except for Classes, in order to run the workflow,
where we select both the Blog and Blog post values.

We will also select Administrator users in the Users without workflow IDs
multiselect field, to make sure that the administrator's posts will not need to
be approved.

After that, we have to create a new workflow based on an approve event filter. As
before, create a new workflow inside the Standard workflow group by clicking
on the New workflow button. Next, we will create a new event workflow, named
approving system, by selecting Event / Approve.

Chapter 10

[209]

Because the blog doesn't belong to any particular section, we will choose the All
sections value for the Affected sections form. We will not pay attention to the
languages because we want to moderate all of them, but we will choose Publishing
new object in the Affected versions area.

Creating Roles and Privileges

[210]

We have to enable the users or groups that need to approve the new content. We will
choose the Administrator users group and also select this group in the following
Excluded user groups area.

Next, we will save our new workflow by clicking on the OK button.

Next we have to re-edit the Approve blog workflow and select the approving
system workflow as the Workflow to run. This will ensure that every time the
Approve blog starts, the approve event will be executed for the correct object classes.

Chapter 10

[211]

The next step is to assign our new multiplexer workflow to a particular event. To do
this, we will use the Triggers function which is located in the menu of the Setup tab
of the administration area.

For the content module of the publish before function, we can now choose the
workflow we just created (Approve blog). Next, we will click on the Apply changes
button to enable it.

The workflow is enabled and every time that the editor tries to publish a new blog
post, the new Approve blog workflow will be triggered and the user will see a
message that alerts him or her that their new post is pending for approval. The
administrator can then approve the new content from the My account tab from the
My pending items link.

The workflow engine works only in the background, and you can run it
by adding the /var/www/packtmediaproject/ezpublish.cron file
to your system crontab.

Summary
In this chapter, we learned how to manage eZ Publish users, groups, and
permissions. We also reviewed what we did in the previous chapters and saw how
the workflow system works. In the next chapter, we will see how the caching system
works and how we can configure it.

Cache Configuration
Power is nothing without control
—Pirelli ads.

As we've seen so far, eZ Publish is a much advanced and powerful CMS and it
needs to be well configured to work at its best. Like many other enterprise software
applications, this CMF possesses an advanced caching system that is complex to set
up and configure, but very powerful in the end. Configuring the caching system will
help eZ Publish to perform better and reveal its strength.

In this chapter, we will see in detail, how such systems work, and will look at how to
shape our site in order to make it the "Ferrari" of websites.

Caching system
Whenever we make a web request to a CMS that does not have a serious
caching system, the web server is put under a severe test, as it has to perform
the following things:

•	 Read the settings
•	 Query the database to retrieve the data requested
•	 Load the template
•	 Replace parsed variables with the required data
•	 Send everything to the client

The process, depending on the page complexity, could be very simple, or very heavy
to perform.

A famous site with many concurrent requests, maybe even a powerful machine filled
with RAM and CPUs will not be able to support so much work and cause the web
server to hang.

Cache Configuration

[214]

The caching system is born to help the server to deploy applications more effectively.

You can find some documentation on caching on Wikipedia at
http://en.wikipedia.org/wiki/Cache.

Usually the bottleneck is caused by the query and template complexity. eZ Publish
provides a system for caching at several levels:

•	 Template cache
•	 Template compile
•	 View cache

We will learn about each of these in detail in the coming sections.

Template cache
The template caching system provides the ability to cache static blocks of content and
layout by using the {cache-block} template operator:

{cache-block [keys=keys]
 [expiry=expiry]
 [ignore_content_expiry]
 [subtree_expiry=subtree_expiry]}
...
{/cache-block}

This solution makes it possible to reduce the processing time of the main template
(pagelayout.tpl), which often contains a lot of dynamic elements. It can be used
to instruct the system to store and reuse cached blocks of template code based on
different conditions.

•	 Cache keys: The keys parameter can be used to define the uniqueness of a
cache block.

•	 Time-based expiration: The expiry parameter makes it possible to manually
specify how long a cache block can live (as a number of seconds).

•	 Content expiration: By default, all the cache blocks expire when an object is
published. If the ignore_content_expiry parameter is used, the cache block
will not expire when an object is published.

•	 Subtree expiration: The subtree_expiry parameter can be used to bind the
expiration of a cache block to a certain part of the content node tree.

Chapter 11

[215]

eZ Webin cache block
eZ Webin provides a layout that is already set up with the correct cache-block.
There are two large blocks, one for the header and another for the footer.

As we can see in this image, as recommended, there is a nested block inside the
header that contains the logo, the menu, and a breadcrumb navigation menu.

Breadcrumbs—or a breadcrumb trail—is a navigation aid used
in user interfaces. It gives users a way to keep track of their location
within programs or documents. The term comes from the trail of
breadcrumbs left by Hansel and Gretel in the popular fairytale.
For more information, go to http://en.wikipedia.org/wiki/
Breadcrumb_(navigation).

It's important to not put the $module_result.content variable in the cache block
because it contains the main content of our pages. This is because the content of the
actions of the modules are cached through other mechanisms.

To enable or disable the template cache system, you need to edit the TemplateCache
setting of TemplateSettings section in the global or siteaccess site.ini.append.
php file. If we enable the setting on the global setting file, it will be enabled for all our
siteaccess. But if we enable it only in the siteaccess file, it will be enabled only for the
related siteaccess.

[TemplateSettings]
...
TemplateCache=enabled
...

This code will enable the template cache. As a result, all of the cache block will be
saved in var/[siteaccess]/cache/template-block.

Cache Configuration

[216]

Compiling a template
The eZ Publish template language, as with any meta language, needs to be parsed
and interpreted by the CMS engine for any requests.

After activating the template compile functionality, all eZ Publish templates are
processed and converted into real PHP language. In this way, the template can be
directly interpreted without being parsed first.

To enable or disable this feature, we need to edit the TemplateCompile settings in
the TemplateSettings section of the global siteaccess site.ini.append.php file,
as shown below:

[TemplateSettings]
...
TemplateCompile=enabled
...

All compiled templates are saved in the var/[siteaccess]/cache/template/
compiled folder.

Template optimization
If the TemplateCompile configuration is enabled, we can also enable the
TemplateOptimization configuration. With this setting, eZ Publish will attempt to
optimize the PHP code created, wherever possible.

Finally, there is another feature that greatly enhances the performance of CMS. This
feature must be set via the TemplateCompress setting in the TemplateSettings
section, as we can see in the following code:

[TemplateSettings]
...
TemplateCompress=enabled
...

Through this approach, it is possible to compress the PHP code into a binary code
that interprets PHP much more rapidly.

View cache
The most important level of caching after the cache and compiled templates for
layout is the view cache engine. This caching system is used to cache the output of
the content module that is stored in the $module_result.content variable.

Chapter 11

[217]

As mentioned above, this variable should never be placed inside the cache block, as
it uses a different engine to cache the content.

To enable or disable this feature, we need to edit the ViewCaching setting in the
ContentSettings section of the global or siteaccess site.ini.append.php file.

[ContentSettings]
...
ViewCaching=enabled
...

If we disable this setting, eZ Publish will never cache the content module output
anymore.

This caching system works only for the "view" and "pdf" actions of the content module.

All cached content files are saved in the var/[siteaccess]/cache/content folder,
and more than one file is created based on different parameters such as:

•	 User preferences
•	 User session
•	 View mode
•	 Language
•	 View parameters
•	 Layout

The CachedViewModes setting located in the ContentSettings section of the
site.ini configuration file (or an override), controls view modes for which the
caching will be enabled. The default value of this setting specifies that the view cache
should be stored for the full and sitemap view modes, and the pdf view:

[ContentSettings]
…
CachedViewModes=full;sitemap;pdf
…

Enabling/Disabling the cache by context
If you need to disable view caching for a specific page, add the following line to the
beginning of the template that is used:

{set-block scope=root variable=cache_ttl}0{/set-block}

Cache Configuration

[218]

This will set the cache_ttl global variable to zero (0) for the current template. The
cache_ttl variable contains the TTL (Time to Live) value in seconds. The value 0
means that the result should not be changed. The value -1 means that the view cache
should never expire.

{set-block scope=root variable=cache_ttl}-1{/set-block}

Often, there is some relationship between the various caching siteaccesses.
For example, if we delete the content cache of the administration panel, it's most
likely that we would also want to delete the cache content of the frontend site.

To do this, we need to use the RelatedSiteAccessList setting in the
SiteAccessSettings section of the site.ini global file (or override) setting, which
controls what other siteaccesses must remove the cache content when emptying the
cache. If this setting is not set, the system will use the AvailableSiteAccessList.

For example, we have the following RelatedSiteAccessList in our project
directives:

[SiteAccessSettings]
...
RelatedSiteAccessList[]=ezwebin_site
RelatedSiteAccessList[]=eng
RelatedSiteAccessList[]=fre
RelatedSiteAccessList[]=ita
RelatedSiteAccessList[]=ezwebin_site_admin
...

Clearing the view cache
Every time you publish a new object or modify an existing one, the system
automatically deletes the cache of some of the objects related to the published
object including:

•	 All of the nodes associated with the published object
•	 All of the parents of the published object
•	 All of the nodes that contain the same keywords, if the "keywords" datatype

is used on the published object
•	 All of the related nodes of the published object
•	 All of the related nodes of the published object with an "embed" tag

Chapter 11

[219]

You can set the default behavior of deleting the caching system through the
ClearRelationTypes setting on the ViewCacheSettings section of the
viewcache.ini.append.php global (or override) file.

You can manually clear the cache of a node or a subtree either from the control panel,
or via a shell script.

From the administration panel, navigate to the node for which you want to delete
the cache, and then click on the icon near the name.

A pop-up window with a context menu will appear. Click on the Delete view cache
link if you want to delete the cache for this node, or click on the Delete view cache
from here link if you want to delete the cache for all of the subtree.

With the exception of the control panel, you can also delete the cache via the
shell script.

For example, if you made changes to the template of the node with ID 81, which
is equivalent to the Issue-archive/2009/January object, and the view cache is
enabled, you will not be able to see the new changes until you clear the cache.
To do this:

1.	 Navigate to the directory of your eZ Publish installation
2.	 Run the command

./bin/php/ezcontentcache.php –clear-node=81

or

./bin/php/ezcontentcache.php –clear-node=/Issue-archive/
2009/January

Cache Configuration

[220]

If you want to remove multiple nodes, they must be separated by commas,
for example:

./bin/php/ezcontentcache.php –clear-node=81,82,83

To delete everything under the tree run the command:

./bin/php/ezcontentcache.php –clear-subtree=81

or

./bin/php/ezcontentcache.php –clear-subtree=/Issue-archive/2009/January

Smart cache
The smart cache system is a system developed to delete the cache between related
objects. Using this system, you can define deleting rules in order to extend the
default deleting system.

When we install a "white label" version of eZ Publish, this directive is turned off.
But in our case, if we install a package as eZ Webinar, it is already enabled and
configured for the custom package classes.

To enable or disable this configuration, you need to use the SmartCacheClear
setting in the ViewCacheSettings section of the global (or override)
viewcache.ini.append.php file. You can find this file in the settings/override/
or settings/siteaccess/<your_siteaccess> directory.

[ViewCacheSettings]
...
SmartCacheClear=enabled
...

Once enabled, you can configure the custom .ini sections with
custom-caching directives.

Let's take an example. In our project, when we publish a new issue, we want the
issue archive page automatically to be updated to show the latest issue inserted
and updated in the issue archive box, and its thumbnail in the right-hand sidebar.

Chapter 11

[221]

As there is no direct relationship between the issue archive that belongs to the
folder class and the new issue that belongs to the same class, it would not be
possible to empty the issue's cache archive when we create or edit a new issue. This
happens because the issue is not the issue's parent, a related object, or a class that
shares the same keywords with the published issue.

Instead, through the mechanism of smart cache, we can set a custom section in our
viewcache.ini global file in the settings/override/ directory, as follows:

[folder]
DependentClassIdentifier[]
DependentClassIdentifier[]=folder
MaxParents=2
ClearCacheMethod[]
ClearCacheMethod[]=object

In this way, when we empty the cache of a folder object, the system will also empty
the cache of all of the folders that are its parents (to a maximum of two levels) or
children. This will raise the content object tree, starting from the path_string level
node attribute.

For our project, all of the eZ Webin settings we talked about so far are sufficient to
meet our requirements for cache cancellation.

The following table depicts all of the rules that we can set in the custom smart
cache section.

Name Type Description
DependentClassIdentifier An array of class

identifiers (not ID
numbers)

Specifies which content classes will
be considered as "dependent classes".
If a node encapsulating an object
of such a class is listed in
path_string, svcs will add it to
the list of additional nodes. The view
cache for additional nodes will be
cleared using the method(s) specified
in the next setting.

Cache Configuration

[222]

Name Type Description
ClearCacheMethod An array of strings Defines which method(s) to use when

clearing the view cache for additional
nodes. This setting is an array of
strings, where only six predefined
values can be used. These are:
Object: Clears the view cache for all of
the locations (nodes) of the object.
Parent: Clears the view cache for the
parent node(s) of the object.
Relating: Clears the view cache for
related and reverse-related objects
that have relations of the "common"
type, and reverse-related objects
that have relations of the "XML
embedded" type (according to the
"ClearRelationTypes" configuration
setting).
Keyword: Clears the view cache
for the objects that have the same
keyword as this object.
Siblings: Clears the view cache for
all of the siblings of this node/object.
All: Clear the view cache for all of the
listed methods above.

ObjectFilter An array of object
ID numbers

If specified, the view caches will
only be cleared for those additional
nodes that encapsulate the objects
with these identifiers. If not specified,
all of the additional nodes will have
their view cache cleared.

MaxParents Integer Sets how many parents in
path_string will be checked.
If not specified, svcs will scan all of
the parents listed in path_string.

AdditionalObjectIDs An array of object
ID numbers

Makes it possible to clear the
caches for a set of arbitrary objects,
regardless of whether their locations
are listed in the node's
path_string attribute or not.

Chapter 11

[223]

Default caching settings
In the default configuration, all of the major levels of caching are enabled. If you
install a "white label" eZ Publish, the only level not enabled by default is the Smart
Cache, which needs to be configured manually, as seen in the previous section.

When we develop our project, it is very inconvenient to have the ContentCache
setting enabled. This is because it means that we have to delete it every time we want
to see the changes that we applied to a template.

To solve this problem, you can enable the DevelopmentMode setting in the
TemplateSettings section of the global (or override) site.ini file that performs
many more checks on the cancellation time of a template. But that directive is
effective only on the content's cache, and not on the layout cache block.

If you want to disable the cache in an absolute way, you must add the following
configuration settings to the global (or siteaccess) site.ini.append.php file:

[ContentSettings]
ViewCaching=disabled

[TemplateSettings]
NodeTreeCaching=disabled
TemplateCache=disabled
TemplateCompile=disabled
TemplateCompression=disabled
TemplateOptimization=disabled

In the following table, you will find the meaning of all of these settings:

Name Value Description
ViewCaching enabled / disabled Enable or disable the content object

cache for the view action of the
content module.

NodeTreeCaching enabled / disabled Enable or disable the caching of
the nodetree.

TemplateCache enabled / disabled Enable or disable the possibility
to cache all of the code's parts
that use the {cache-block}
template function.

TemplateCompile enabled / disabled Enable or disable the compiling of
the template's codes in the PHP code.

TemplateCompression enabled / disabled Enable or disable the compression
of the compiled template's code.

TemplateOptimization enabled / disabled Enable or disable the optimization
of the compiled template's code.

Cache Configuration

[224]

Advanced eZ Publish caching system
Sometimes the standard caching levels are not sufficient to satisfy the requests to
the site.

If this happens, first of all we should try to fine-tune all of the single views of our
application, and then use other caching tools.

Advanced settings
The CMS supports other caching directives to store other system components
in faster memory. By enabling these advanced settings, we can speed up the
performance of eZ Publish CMS, because these settings can optimize its behavior
in complex tasks, such as choosing the template to load based on overriding rules,
generating the caching for content objects, reading the translation files or the user
roles, and so on.

Override cache
Override cache is the setting that enables or disables the override templates
rules caching.

To enable it, set the Cache settings in the OverrideSettings section of the global
(or override) site.ini file to enable.

[OverrideSettings]
...
Cache=disabled
...

Pre-generation cache
Pre-generation cache is the setting that enables or disables the possibility to cache
content when the object is published, and not at the first object request.

To enable it, set the PreViewCache setting of the ContentSettings section in the
global (or override) site.ini file to enable.

[ContentSettings]
...
PreViewCache=enabled
...

Chapter 11

[225]

Translation cache
Translation cache is the setting to enable or disable the translation file caching.

To enable it, set the TranslationCache setting of the RegionalSettings section of
the global (or override) site.ini file to enable.

[RegionalSettings]
...
TranslationCache=enabled
...

Role cache
Role cache is the setting that enables or disables the users' roles caching.

To enable or disable it, set EnableCaching of the RoleSettings section of the global
(or override) site.ini file to true.

[RoleSettings]
...
EnableCaching=true
...

Static cache
If we realize that there are many sections in our site (nodes or trees) with a very low
upgrade frequency, and that they do not have dynamic parts, in accordance with the
user preferences, we can generate static cache for them through eZ Publish.

Through this feature, the static HTML files are physically generated on the file
system and then they will be served using the Apache rewrite rules, rather than
requesting something from the CMS caching system.

To enable the static cache feature, it needs to be set in the StaticCache settings in
the ContentSettings section of the global site.ini file.

[ContentSettings]
...
StaticCache=enabled
...

Cache Configuration

[226]

Now, we need to add new rewrite rules to the .htaccess file or the virtual host
apache configuration:

RewriteEngine On

RewriteCond /var/www/packtmediamagazine/static/index.html -f
RewriteRule ^$ /static/index.html [L]
RewriteCond %{REQUEST_METHOD} !^POST$
RewriteCond /var/www/packtmediamagazine/static$1/index.html -f
RewriteRule ^(.*)$ /static$1/index.html [L]
RewriteRule !\.(gif|css|jpg|png|jar|ico|js)$ /index.php

These rules will tell Apache to forward all of the requested objects to a static
generated file, except for the images.

Subsequently, we set some settings in the global staticcache.ini.append.php file.

[CacheSettings]
HostName=packtmediamagazine
StaticStorageDir=static
MaxCacheDepth=4
A list of url's to cache
CachedURLArray[]=/*

Here, HostName is the domain name of our website, StaticStorage is the name of
the directory where static files are generated, MaxCacheDepth shows how deep you
must create static files in the tree, and CachedURLArray is an array rule of the path
that we have cached.

Finally, to generate static files, go to a shell of our installation of eZ Publish and run
the following command:

php bin/php/makestaticcache.php -s [siteaccess_name]

Here, [siteaccess_name] is the siteaccess name involved in this operation.

Opcode cache
When we use complex software, such as eZ Publish, for an enterprise website, where
performances must be the best, it's very important to install software to optimize our
PHP code.

Chapter 11

[227]

There are several optimization code applications in the market and they are all
open source. Some examples are:

•	 APC (http://pecl.php.net/package/APC)
•	 Zend Server (http://www.zend.com/products/server)
•	 eAccelerator (http://eaccelerator.net)
•	 XCache (http://xcache.lighttpd.net/)

Several benchmarks show the APC opcode accelerator as being the best solution for
use with the CMF. It is available as a module for PHP and is easily configurable.

In the next chapter, we will see how to install this module in major Linux
distributions.

You can check if you have an optimizer pre-installed in your system from the control
panel of eZ Publish. To do this:

1.	 Log in to the site backend.
2.	 Click on the Setup link in the top menu.
3.	 Click on the System information link in the left-hand menu.
4.	 In the PHP Accelerator section, we can see which opcode is installed.

Proxy and HTTP Accelerator
You can also use reverse proxy systems for cache requests to eZ Publish. As with
the opcode, there are various proxy software applications that can meet your needs.
The most famous are:

•	 Squid (http://www.squid-cache.org)
•	 Varnish (http://varnish.projects.linpro.no)

Cache Configuration

[228]

Both of these are very powerful, but are also complicated to configure. To use them,
we suggest contacting (or having in your team) an experienced system administrator
who understands this software.

To manage the Varnish proxy, you should take a look at the open source eZ Publish
extension at http://projects.ez.no/all2evcc.

To find some useful system information and gain control over granular caches,
we suggest visiting the extension, http://projects.ez.no/ggsysinfo.

Customize cache settings to speed up
the performance
In this section, we will summarize the configuration settings for caching of a quick
site using eZ Publish.

In the global (or siteaccess) site.ini file, we need to have the following settings
enabled:

[RegionalSettings]
...
TranslationCache=enabled
...

[ContentSettings]
...
ViewCaching=enabled
PreViewCache=enabled
...
[TemplateSettings]
...
NodeTreeCaching=enabled
TemplateCache=enabled
TemplateCompile=enabled
TemplateCompression=enabled
TemplateOptimization=enabled
...
[OverrideSettings]
...
Cache=enabled
...
[RoleSettings]
...
EnableCaching=true
UserPolicyCache=enabled
...

Chapter 11

[229]

Next, in the global viewcache.ini (or override) file, we need to have the
following settings:

[ViewCacheSettings]
ClearRelationTypes[]=common
ClearRelationTypes[]=reverse_common
ClearRelationTypes[]=reverse_embedded
ClearRelationTypes[]=reverse_attribute
SmartCacheClear=enabled

Moreover, as we said, the installation of an opcode accelerator like APC is also
strongly recommended.

What not to do in a template
The Achilles' heel of eZ Publish is the template system subframework that cannot,
and should not, be overrated, and that is used as a true programming language.

For this reason, we should not have templates with very complex logic.
The templates should only render HTML data, and not involve any kind of
business logic.

If the predefined objects of eZ Publish that we can use in our templates are not
sufficient to publish the data that we want to represent, we should move the business
logic either inside an operator or function, or create a new module.

A classic error that many developers make is to perform many queries in a single
template file. It is not recommended to have more than two queries within the same
template. If we need more than two queries we have to use a template operator or a
custom fetch function, which are much faster to execute.

For example, if we have to print the children of a node, we should use the $node.
children attribute, rather than making a new query that returns childrens.

The following code should not be used:

{$childrens=fetch(content, list, hash(parent_node_id, $node.node_id))}
{foreach $childrens as $children}
 {node_view_gui view=line content_node=$children}
{/foreach}

This must be replaced with the following:

{foreach $node.children as $children}
 {node_view_gui view=line content_node=$children}
{/foreach}

Cache Configuration

[230]

In this way, we optimize the template performance because we don't use the fetch
function in the template, but the children attribute of the node, which decreases the
query's number.

Another trick is to limit and page the template queries, to reduce the database load:

{fetch('content', 'list', hash('parent_node_id', 2,
 'limit', 15, 'offset', 10))}

The content list fetch function takes two parameters: limit and offset. The limit
parameter sets the item number to be listed, whereas the offset parameter sets the
first element from where the query starts.

In conclusion, wrong templates are those where:

•	 Business logic is created through the template language instead of through
PHP code

•	 There are more than two template queries
•	 There are template queries that can be replaced by ready-made attributes

of the node object
•	 Template queries are not limited and not paginated

Summary
In this chapter, we saw how to use the eZ Publish system cache. We saw the three
caching levels, including advanced features, such as smart cache clear.

Correctly configuring the caching system in an enterprise-class CMS is complex,
and very important because, in order to support many web requests, there isn't any
other way than have a good caching system.

In the next chapter, we will see how to deploy our site to a production server
and how to manage it remotely.

Deployment
Who sings on Friday, will weep on Sunday.
—A proverb

It's time to deploy our site! In the previous chapter, we finished working on the
site and now, in this chapter, we will understand the differences between the
development, staging, and production environments. We will then deploy our
development environment to a production server, by using the eZ Deploy extension.
We will also use the Selenium IDE to create a functional test for quality assurance.

Environments
When we work on an enterprise application, it is always useful to work in three
separate environments:

•	 Development environment
•	 Staging environment
•	 Production environment

Basically, an environment is a server configured for specific purposes (for example,
to allow users to use a site or develop a new one).

You can also add more environments, such as Integration platform environment,
where different teams would test if their code works fine together; usually, only
these three are really needed.

Deployment

[232]

Development environment
This first environment is the one in which we will work. Usually, this environment
has installed libraries useful for a development task, such as XDebug PHP module,
but is totally useless, or even problematic, in a production server. For example, an
enabled XDebug PHP module will slow down our production server, while adding
overhead to every PHP execution. If you don't have a development server, this
environment should be the computer where you create your whole application.

Staging environment
This environment is used to test the site, or the latest features, on a server that is
basically a clone of the production one. The staging server is normally used to run all
of the quality assurance and performance tests. For this reason, it's very important
that both the staging and the production environments use the same libraries,
and have the same configuration. This will ensure that when we deploy to the
production server, everything will go according to our plans. Sometimes, to reduce
the deployment costs for small sites, the staging server is the same as the production
server. But in this case, performance tests have to be done on the development server
to avoid slowing down the site.

Production environment
The last environment is the production environment. In this environment,
users will find the site reachable and usable. For this reason, it is very important
that it has to be secured and that all of the development stuff, and any unused
libraries have been removed.

Moreover, a single server is not always sufficient to host a popular site. Sometimes
it is necessary to separate and clone the database and the HTTP servers on different
machines, as shown in the following figure:

www Load
Balancer Database

Cluster

HTTP 1

HTTP 2

HTTP 3

user

user 2

Chapter 12

[233]

The production environment should be completely different from the staging or the
development one. Basically, it should be a single machine or a virtual machine. As
we can see in the previous figure, the production environment uses a load balancer
to distribute the work across different HTTP servers and a single (or clustered)
database server.

Preparing the production server
As we don't need to install eZ Publish again as we did in the first two chapters, we
will now concentrate on the PHP configuration of our machine. As we said before,
a production server should have only the libraries strictly necessary. We have to
remove, or disable, the unused libraries from either the package manager of our
distribution (yum for Red Hat based distributions or apt-get for Debian based
distributions), or from the PHP.ini file.

As we saw in Chapter 1, our eZ Publish site requires only the default PHP libraries,
plus the php5-GD and ImageMagik applications and libraries. Moreover, as we
saw in the last chapter, to reach the best performance from the PHP interpreter,
an opcode cache system such as APC should be installed. As we will see next,
we will also need a Secure Shell Daemon (SSHD) and a rsync client, to enable the
deploy process.

As this book does not cover the specific system administration tasks, we again
suggest that you work with a Linux system administrator to optimize the
production server.

Deploying an eZ Publish site
Software deployment involves all of the activities that make a software system
available for use on a particular environment.

There are different ways to deploy software, such as using an FTP client or using
SSH and rsync.

With eZ Publish, the suggested activities to deploy a website are:

1.	 Download eZ Deploy extension from http://projects.ez.no/ezsync.
2.	 Create a quality assurance test with automatic (SeleniumIDE + PHPUnit),

or manual processes for all of the functionality that we developed.
3.	 Configure the staging siteaccess with the correct settings.
4.	 Deploy the database in the staging environment.

Deployment

[234]

5.	 Deploy the code in the staging environment.
6.	 Check the validity of the staging server.
7.	 Run quality assurance tests in the staging environment.
8.	 Repeat steps 3, 4, 5, 6, 7 on the production server.

Each of the above steps are covered in the following sections.

eZ Deploy
We have to download and install the extension called eZ Deploy. We will use this
extension to synchronize the different environments with the latest code that we
created. To download the extension, we have to check out the code from the public
repository, by using a subversion client.

Usually, Subversion is installed by default in all of the modern
Linux distributions, but you can also download it from
http://subversion.tigris.org/.

cd /var/www/packtmediaproject/

svn export http://svn.projects.ez.no/ezsync/trunk extension/ezsync

Here, we have to enable the extension from the global site.ini file located in the
settings folder:

vi settings/override/site.ini.append.php

Add the following lines:

[ExtensionSettings]
ActiveExtensions[]=packtmedia
...
ActiveExtensions[]=ezsync

Note that eZ Deploy should work in order to install it in the production and staging
environment of both the SSH and rsync servers. Later in this chapter, we will see
how to configure the extension in order to make it work.

Creating the automatic tests
This step isn't mandatory. However, to be certain that the site will run without
any glitches on the staging server, we should perform some assurance tests by using
software such as Selenium IDE, and then run them automatically by using Selenium
RC and PHPUnit.

Chapter 12

[235]

One of the best software applications for fulfilling this task is Selenium
(http://seleniumhq.org). This is a quality assurance suite based on a remote
control written in Java, and on an IDE that can manage different browsers on
different machines.

As we can see here, the IDE is a Firefox plugin that allows us to record a navigation
session and export it in different formats so that it is reproduced automatically by a
test framework such as PHPUnit (http://www.phpunit.de).

The PHPUnit will then use the Selenium RC (Selenium Remote Control) to run the
tests and create a complete report about them.

In the official PHPUnit documentation, you can read how to integrate and use it with
Selenium, at http://www.phpunit.de/manual/3.4/en/selenium.html.

Deployment

[236]

Installing the Selenium IDE
The Selenium IDE (Integrated Development Environment) is a tool that you can use
to develop your Selenium test cases. It's a Firefox plugin and is generally the most
efficient way to develop test cases.

It also allows us to save all of our tests in a useful test suite, or to export it in
the PHPUnit test format.

To install it, we have to download it, using the Firefox browser, from
http://seleniumhq.org/download/.

Now, as we can see in this screenshot, Firefox will ask us to install the new
component and then restart it in order to use the new extension.

Recording a session
We can now use the Selenium IDE to record our first test session. We will see how
to create a simple test, but you can play with the IDE to make the best use of all of
its features.

Chapter 12

[237]

Open your browser , and navigate to the site URL (in our case,
http://packtmediaproject). In the Tools menu of Firefox, select the
Selenium IDE option, as shown here:

The IDE will then open, and we can start recording our session by clicking on the
record button (in red) located on the rightmost side of the IDE window, as seen here:

Now every time we use the browser Selenium, we will record our actions to create a
test. For example, we will test the Forum to see if it works correctly.

Deployment

[238]

Click on the Forum link in the navigation menu of the site, and take a look at the IDE
to see what it has registered:

As you can see in the previous screenshot, Selenium recorded an open action for the
index and a click on the link. The clickAndWait command means that the IDE will
wait for a complete render of the page from the browser before testing its content.

Customizing tests
Browsing a site with Selenium should be sufficient in most cases, but sometimes
you also need to check for the page contents. Starting from the previous test,
we will extend it to check to see if the page contains the forum we created.

Chapter 12

[239]

Now, stop the recording and choose the assertText command in the Command
select box of the IDE. This will be used to confirm the existence of a string in the
XPath position. Now, in the Target input area, we have to specify the XPath path
where we want to check the text filled, in the Value field.

XPath is used to navigate through elements and attributes in an XML
document. XPath is a major element in the W3Cs XSLT standard,
and XQuery and XPointer are both built on XPath expressions.
You can learn how to use XPath from the W3School tutorials site at
http://www.w3schools.com/XPath/.

As you can see in our example screenshot, we have to check that the forum name is
Tech and gadgets.

Deployment

[240]

Save your test from the File menu and play it using the Play current test case button,
to check if everything is fine, as shown in the following screenshot:

We suggest that you create as many tests like this as possible to cover all of the pages
of the site, which would assure good quality assurance coverage.

To create useful tests, read the Selenium IDE documentation and tutorial at
http://seleniumhq.org/docs/03_selenium_ide.html#building-test-cases.

Configuring the staging and production
siteaccesses
As we saw in Chapter 2, when we created the siteaccess, we had to create different
siteaccesses for different environments. So far, we used only the development
siteaccess. But now we have to configure the staging and production siteaccesses.

To do that, we have to be sure that all of the cache settings we discussed in
the previous chapter are enabled, and that the databases and other settings
(site URL, regional settings, and so on) are configured accordingly, for the staging
or production servers.

We can check everything from the site.ini.append.php file which can be found
in the settings/siteaccess/staging and settings/siteaccess/staging_panel
directories of the eZ Publish installation.

Moreover, in the same site.ini.append.php file, we have to disable debugging in
both environments by changing the Debug value from enabled to disabled.

[DebugSettings]
Debug=disabled

Chapter 12

[241]

Deploying the database
After we create the test and check the siteaccesses configuration, we can start with
the real deploy process.

First, we have to copy the development database to the staging server. To do this,
we have to create a dump file of the development database and then restore it onto
the staging server.

If you didn't change the username and the password of the MySQL user, you make
this copy by using the following commands:

cd ~

mysqldump packtmediaproject -upacktuser -ppacktpwd > packtmediadump.sql

After we copy the generated packmediadump.sql to the new server, we have to
execute the following shell command to restore the dump:

mysqlimport packtmediaproject -upacktuser -ppacktpwd /path/to/
packtmediadump.sql

If you change the name of the database, the username, or the password of the
database user in the previous step, then you need to use the correct ones.

Deploying the code
To copy the development files to the staging server, we will use the eZ Deploy
extension. This extension was specifically created for this kind of tasks, and uses
the rSync protocol to send and synchronize the code from one server to another.
The extension will send the files incrementally, so that only the changed files will be
sent from one deployment to another.

Configuring the extension
We have to configure the extension so that it works with the servers where we want
to deploy the files. To do this, we have to edit the sync.ini.append.php file located
in the settings directory of the extension.

cd /var/www/packtmediaproject/extension/ezsync

vi settings/sync.ini.append.php

Deployment

[242]

Let's suppose that we have the staging server in a subdomain of the
packtmediamagazine.com domain, and then add the following lines:

[DefaultSyncSettings]
Host=
Dir=
User=
Port=22
Parameters=
FileRsyncEclude=extension/ezsync/settings/rsync_exclude.txt

[StagingSyncSettings]
Dir=/var/www/staging
Host=staging.packtmediamagazine.com
User=packtmedia

[ProductionSyncSettings]
Dir=/var/www/production
Host=www.packtmediamagazine.com
User=packtmedia

As you can see, the StagingSyncSettings section is used to configure the staging
server, whereas the ProductionSyncSettings section is used for the production
server. If you want to create other environments, you should easily create new
deployment configurations by adding new sections.

The Dir parameter specifies the remote directory where rSync will place the files, the
Host is the remote server to contact, and the User is the SSH user that will have write
permission on the Dir directory.

Excluding files from deploy
We should also exclude files from the synchronization directories, or files that are
used only in the development process, or that are generated by the CMF cache
system. To do so, we have to edit the file named rsync_exclude.txt, which can
be found inside the extension settings directory.

cd /var/www/packtmediaproject/extension/ezsync

vi settings/rsync_exclude.txt

Chapter 12

[243]

We need to add the names of the files and directory that we want to exclude,
by editing the rsync_exclude.txt file and adding the following lines:

.svn
var/*
update
doc

This will ensure that, on the staging or production server, we will not copy the
subversion directories, the local cache, the update script, and all the documentation
we created for internal development that is not suitable for publishing on the Web.

Starting the synchronization
After configuring the extension, we have to move back to the root of the eZ Publish
installation and execute the sync script in the dry-run mode:

cd /var/www/packtmediaproject/

php extension/ezsync/bin/php/sync.php --env=staging

The dry-run mode will not send anything, but it will show us which files will be sent
during the real deployment. To execute this, we have to add the --go parameter to
the shell script:

php extension/ezsync/bin/php/sync.php --env=staging --go

Now the site has been deployed to the staging server.

Checking the validity
After we have deployed the code, we need to check if we have configured the server
and the CMF correctly. Luckily, eZ Publish will help us to do this, through its Check
Validity functionality. To enable this feature (which will again run the configuration
wizard that we saw in Chapter 1), we have to set the CheckValidity parameter to
true in the SiteAccessSettings section of the main site.ini file:

cd /var/www/packtmediaproject/

vi settings/site.ini

Now, in the file add the following code:

[SiteAccessSettings]
...
CheckValidity=true
...

Deployment

[244]

Now, we can check to see if the staging installation is working correctly, by browsing
the site itself and taking a look at the configuration wizard, which we used to
configure eZ Publish in Chapter 1. To do that, we have to open the browser on the
staging server URL and follow the configuration wizard instructions as shown here:

As we can see in the screenshot, if something goes wrong, the wizard will help us to
fix the problem, step-by-step. After we have checked that everything works fine, we
need to change the CheckValidity parameter back to false, and reload the site.

Chapter 12

[245]

Quality assurance
Now, we can run all of the acceptance tests that we created previously, to confirm
that all of the functionality works fine. To automatically run the test, we should
install the Selenium Remote Control on the staging server, instead of using the IDE.

The Selenium RC guide can be found on the Selenium project site
at http://seleniumhq.org/projects/remote-control/.

Deploying to the production server
After we check that everything works smoothly on the staging server, we can deploy
the site to production. To synchronize to the production server, we will execute the
following script:

php extension/ezsync/bin/php/sync.php –env=production –-go

After the synchronization, as we saw previously, check the validity, run the
acceptance tests and that's all. Now it's time to publicize the site to our customers!

Summary
In this chapter, we saw what environments are, and the best practices for creating
them. We also learned how to deploy a site to different environments, which
software is the best for performing quality assurance, and how to create some
functional tests by using Selenium IDE software. We also learned how to use the
eZ Deploy extension to fulfill this task. In the next chapter, we will look at some
useful tips for using eZ Publish.

APC Installation and
Optimization

During the creation of a site, we discussed a lot of things not directly related to it,
but very useful in our job. In this chapter, we will see how to apply some of these
concepts and understand how the others work. We will also look at some of the best
extensions developed by the eZ Publish community.

APC tuning for eZ Publish
We have discussed APC, both in the cache chapter and in the previous. Now, we will
understand better what it is and how it works.

Opcode Cache
To publish the web pages, eZ Publish has to elaborate on a lot of data. In some cases,
this work could turn out to be a CPU-eater and thus slow down the response of the
server. For this reason, it is useful to install and use an opcode cache system such as
APC. This kind of system will save the PHP intermediate code that is generated by
the PHP interpreter in memory, and re-use it when called by the interpreter.

APC Installation and Optimization

[248]

How does it work?
As we can see in the following schema, the page requests are first analyzed, to see
if they are declared as either cacheable or not. If they are cacheable, the system will
check to see if there is suitable content in the cache, or if it has to create (and save)
a new one.

Page
Request

no Potentially
Cacheable
Content?

yes

yes

no Generate
Dynamic
Content

Return
content

Return
content

Generate
Dynamic
Content

Cache
Hit?

Put Cache
Content

Fetch Cache
Content

Installing APC
To install APC, we have to be sure that our Linux server has the necessary packages
to compile it.

These packages are related to the building system (GCC, Make, Glibc, and so on),
that is, the development headers for Apache and PHP.

If our distribution is a derivation of GNU Linux Debian (like Ubuntu), we can install
it using apt-get, by using the root account or a user in the sudoers group.

sudo apt-get install build-essential

sudo apt-get install php5-dev apache2-dev

Appendix A

[249]

Otherwise, if we have a Red Hat based distribution (such as Fedora or CentOS), we
have the building packages installed by default. We only need to install the PHP and
Apache development packages, by using a root account.

yum install php-devel httpd-devel

Installing from sources
After we are sure that we have all of the required packages, we can execute the
following commands from a shell, in order to download and compile APC from the
source code:

cd /usr/local/src

wget http://pecl.php.net/get/APC

tar -xzf APC-x.x.x.tgz

cd APC-x.x.x

phpize

./configure –enable-apc-mmap

make

sudo make install

PECL installation
Another way of installing APC is by using PECL. This is a module repository for
PHP, with a lot of different modules. Moreover, when installed, PHP has a PECL
shell command available by default, which can be used to install or remove modules.

As for the source code, we have to ensure that we have the PHP development
packages before installing APC.

The installation should be done by a root user from the command line, by executing
the following code:

pecl install apc

APC configuration
APC has a lot of features, all of them well explained in the online manual
(http://php.net/manual/book.apc.php). We will now configure our installation
to work with eZ Publish.

APC Installation and Optimization

[250]

To do this, we have to create a file called apc.ini, and place it in the correct path in
the base of the Linux flavor we are using:

•	 On GNU Linux Debian, we will create the file in /etc/php5/conf.d/apc.
ini

•	 On Red Hat based distributions, we have to create the file in /etc/php.d/
apc.ini

Now, in the file we have to enter the following lines:
Load APC extension

extension=apc.so

apc.enabled = 1

apc.shm_size=64

apc.filters=cache

apc.file_update_protection = "0"

apc.include_once_override = "1"

Whereas the first two lines simply enable the module, the others are required to
optimize APC for our purposes.

We will now describe this code, line by line:

•	 apc.shm_size: This defines the size of each shared-memory segment, in MB.
•	 apc.filters: This specifies a list of comma-separated values of regular

POSIX expressions. If any pattern matches a source filename, that file will
not be cached. In our case, we are configuring APC to not cache the
eZ Publish cache.

•	 apc.file_update_protection: The file_update_protection parameter
is used to lock the file for a certain time slot. By default, this time slot is
two seconds, but we can also deactivate it (with the 0 value) if we are
sure that our file will be accessed (or modified) with atomic instructions
(as rsync does).

•	 apc.include_once_override: This value allows us to enable the optimizer
for the PHP require_once() and include_once() functions, in order to
avoid the expensive system call used.

Appendix A

[251]

APC GUI
If we install APC with PECL, we will find a file named apc.php in the /usr/share/
php folder. This file can be used to analyze the APC works. To use it, we have to
copy the file in the HTTP server directory (such as /var/www/) and then browse it
using our preferred browser.

The result will be as shown here:

Other than the cache, with this script we can also check the memory usage to better
configure the shm_size parameter for the server that we are using.

APC Installation and Optimization

[252]

Performance
As a simple example, we will run the site with and without APC, on our
development laptop, using ApacheBench Version 2.3 (http://httpd.apache.org/
docs/2.2/programs/ab.html). Here are the results:

Without APC With APC
Concurrency Level: 5
Time taken for tests: 15.880
seconds
Complete requests: 100
Failed requests: 43
 (Connect: 0, Receive: 0,
Length: 43, Exceptions: 0)
Write errors: 0
Total transferred: 3436775
bytes
HTML transferred: 3379675
bytes
Requests per second: 6.30 [#/
sec] (mean)
Time per request: 794.005
[ms] (mean)
Time per request: 158.801
[ms] (mean, across all
concurrent requests)
Transfer rate: 211.35
[Kbytes/sec] received

Concurrency Level: 5
Time taken for tests: 8.112
seconds
Complete requests: 100
Failed requests: 40
 (Connect: 0, Receive: 0,
Length: 40, Exceptions: 0)
Write errors: 0
Total transferred: 3436371
bytes
HTML transferred: 3379271
bytes
Requests per second: 12.33
[#/sec] (mean)
Time per request: 405.600
[ms] (mean)
Time per request: 81.120
[ms] (mean, across all
concurrent requests)
Transfer rate: 413.69
[Kbytes/sec] received

By enabling APC, we can see that the execution time for running the tests is half,
and that the requests for the second are twice that of the previous one.

Advance Debugging
During the development of an eZ Publish site, it is very important to have immediate
feedback about what we are doing. The CMF gives us a couple of debuggers to help
us in our task. These are the code debugger and the template debugger.

Code debugger
eZ Publish includes a wrapper for all of the errors returned by PHP, which will
display the errors at the bottom of our page, or in a new page if we prefer. When we
release a site, it's very important that all of the errors are fixed, in order to avoid bad
surprises or a slowdown of the application.

To use the debugging capabilities of the system, we have to edit the site.ini file
of the global siteaccess, and enable the DebugOutput parameter.

[DebugSettings]
DebugOutput=enabled

After we enable this setting and empty the cache, we will see the debugger, as shown
in the following screenshot:

Advance Debugging

[254]

On this page, we can see some utils that are used to clear the cache and enable
different kinds of debug, such as the loading the .ini files, the execution of the
queries, or the template rendering time.

Moreover, this parameter will enable some special operators for the template that will
allow us to print the HTML output of the page, and the values of the variables used.

Debug template operators
The most important operators for debugging are debug-log, debug-timing-point,
and debug-accumulator. These operators allow us to see particular information
about how much time our code needs to run, and the values of the instantiated
variables. We will look at the operators one by one.

Debug-log
This operator will perform a PHP var_dump of objects, arrays, and strings. This
means that you'll be able to see what a particular object contains in the current page.

{debug-log var=$object msg='object contents'}
{debug-log msg='hello world'}
{debug-log var=array(1,2,3)}

Debug-timing-point
This particular operator will give us the ability to analyze the time needed to execute
a certain block of code.

{debug-timing-point id=""}
{$item} - {$item2}
{/debug-timing-point}

As we can see in the above screenshot, you can truncate your code with some
checkpoints to see which parts of your templates are the most time-consuming.

Appendix B

[255]

Debug-accumulator
The debug-accumulator template function executes the body and generates
the statistics. The number of calls, total time, and average time will be shown in
the debugger.

{debug-accumulator}
{section var=error loop=$errors}{$error}{/section}
{/debug-accumulator}

This operator is quite useful when we want to have a complete view of how complex
the pages are and the resources that they need, such as MySQL query timing.

Templating debug
Using the debugger of the templating system, we should be able to know:

•	 The list of the templates and sub-templates loaded into the displayed page
•	 The number of these templates

Advance Debugging

[256]

•	 The total number of loaded templates, if some templates are loaded more
than once

To enable this debugger, as shown in the previous screenshot, we have to
enable the debugOutput option, as seen before. Next, we have to enable the
ShowUsedTemplates setting of the TemplateSettings, in the same site.ini file.

[TemplateSettings]
...
ShowUsedTemplates=enabled
...

Moreover, by enabling this kind of debug, we'll be able to edit the templates by
clicking on the relative edit button. You can see this in the following screenshot:

Appendix B

[257]

Now, we can enable the verbose debugger output, by using the Debug parameter,
and then render the inline of the name of the loaded template in the HTML page, by
using the ShowXHTMLCode parameter.

[TemplateSettings]
...
Debug=enabled
ShowXHTMLCode=enabled
...

When ShowXHTMLCode is enabled, eZ publish will display a comment in the
rendered output of the browser each time a new template is loaded, as shown in the
previous screenshot.

eZ Publish's Best Extensions
Many open-source CMSes, including eZ Publish, have a vibrant and active
community that develops a lot of new extensions, site styles, and hacks. Some of
them are really useful, whereas others are less useful. But in any case, you should
visit the contrib repository (http://ez.no/developer/contribs) before starting to
develop any functionality.

We will now describe the open source extensions taken from the eZ System
project site (http://projects.ez.no) which we have used for developing some
of our sites.

eZ Xajax
The eZ Xajax extension integrates the xajax PHP class library into eZ Publish. This
extension is used to add Ajax functionality to the CMF, which is used by some other
community extensions.

You can download eZ Xajax from: http://projects.ez.no/ezxajax.

Star Rating
Star Rating is an extension that allows the addition of a rating system to your
eZ Publish content objects via a datatype. This extension uses Ajax calls through the
xajax extension to save the vote without reloading the page, and checks the user's
session to ensure that he or she doesn't vote more than once.

To use this extension, we only need to add the Star Rating attribute to the content
class that we want to be rated, and update its view template.

eZ Publish's Best Extensions

[260]

This extension will be soon replaced by the eZ Star Rating
(http://projects.ez.no/ezstarrating) that will use
the new functionality of the forthcoming eZ Publish 4.2.

You can download Star Rating from http://ez.no/developer/contribs/
applications/star_rating.

eZ Publish OE
eZ Publish Online Editor 5.0 is a replacement for Online Editor 4.x. It uses the
tinyMCE editor, which means that it works on IE7 Vista, supports full-screen editing,
provides resizable edit area, and a lot more, out of the box.

eZ Publish OE is very powerful and can be a valid substitute for the official
WYSIWYG editor. It is included by default in the newer eZ Publish 4.1.x branch.

You can download eZ Publish OE from http://projects.ez.no/ezoe.

eZ JSCore
This is an Ajax extension, like eZ Xajax, and is useful for easier client/server
integration. It makes use of YUI 3.0 and jQuery (not enabled by default).

You can download eZ JSCore from http://projects.ez.no/ezjscore.

Google Sitemaps
This extension creates an XML sitemap of an eZ Publish installation for the Google
webmaster tools (https://www.google.com/webmasters/tools/) and other
services, by using a cronjob.

You can download Google Sitemaps from http://projects.ez.no/
all2egooglesitemaps.

Appendix C

[261]

eZ Deploy
We saw this extension in the Deployment chapter. eZ Deploy is an automatic deploy
system based on the rsync shell script. It allows deploying an eZ application from
the development environment to the production through the rsync system. As a
limitation, this extension works only with complete privileges on the eZ Publish
installation directory and needs a working rsync server on the production server.

You can download from http://projects.ez.no/ezsync.

Data Import
This is one of the most powerful extensions used. If you plan to migrate your site
from a different CMS to eZ Publish, data import can be the solution for all of your
questions. The purpose of the Data Import extension is to import data from a given
data source (such as the xml/csv documents) into the eZ Publish content tree using
an object-oriented approach. Developers need to implement a SourceHandler that
understands the given datasource that is completely independent from the import
operators. The import operators contain the logic of how to create/update the
content nodes in eZ Publish.

You can download from http://ez.no/developer/contribs/import_export/
data_import.

Index
Symbols
$node 141
$node.data_map attribute 141
$node.data_map.profile_description.content.

output.output_text attribute 142
$node.name attribute 141
$node.object.data_map attribute 141
$node.url_alias attribute 141
$versionview_mode variable 163
{attribute_view_gui attribute=$node.data_

map. short_description} function 147
{literal} operator 108

A
Access Control List. See ACL
ACL 195
actions/, extension directory structure 91
AdditionalObjectIDs, smart cache 222
alignment 142
APC

configuration 249, 250
GUI 251
installing 248, 249
installing, from sources 249
installing, PECL used 249
opcode cache 247
performance 252
working 248

APC, configuration
apc.file_update_protection 250
apc.filters 250
apc.include_once_override 250
apc.shm_size 250

approve event, workflow event 205
article attributes, content class

author 58
body 58
enable comments 58
image 58
intro 58
keywords 58
short title 58
title 58

Article class
extending 63, 64

article content class 50
article objects, generating 50, 51

article, content tree
comments, enabling 86
creating 85
publish and unpublish date 86

attributes, content class 58
attribute_view_gui function 141
authors.tpl template 147
autoloads/, extension directory structure 91
automatic tests, eZ Publish site

creating 234, 235
Selenium IDE, installing 236
session, recording 236, 238
tests, customizing 238, 239

B
backend

about 68
areas 68, 69
content area 68
navigation bar (on the top of the screen) 68

[264]

right menu 68
secondary menu (on the left of the screen)

68
backend activation, extension 97
backend, content structure 69
Balsamiq 113
bin, extension 90
bin/, extension directory structure 91
blog feed

creating 176-179
breadcrumb path 68
Breadcrumbs 215
Breadcrumb trail. See Breadcrumbs
bulletin board 170

C
CachedViewModes setting 217
caching system

about 213, 214
advanced settings 224
default settings 223
settings, customizing 228, 229
template cache 214
template, compiling 216
template, optimization 216
view cache 216

caching system, advanced settings
about 224
opcode cache 226, 227
override cache 224
pre-generation cache 224
proxy and HTTP accelerator 227
role cache 225
static cache 225, 226
translation cache 225

caching system, default settings
about 223
NodeTreeCaching 223
TemplateCompile 223
TemplateCompression 223
TemplateOptimization 223
ViewCaching 223

children, content class
sorting, by default 57

class attributes
about 52

elements 52
translating 187-189

class attributes, elements
datatype-specific controls 52
generic control 52, 53
internal identifier 52
name 52, 53

classes/, extension directory structure 91
class templates

issue archive template 152
issue article template 157
issue template 146
issue year template 155
staff profile template 140

ClearCacheMethod, smart cache 222
ClearRelationTypes setting 219
CMF 10
code debugger

about 253
debug template, operators 254

conditional control, control structure opera-
tor

about 108, 109
IF-THEN-ELSE 108, 109

container checkbox, content class 57
content

and design, separating 50
comanaging 49, 50
object-oriented content 50, 51
structure, in eZ Publish 50
translating 190

content area, content structure
about 71, 72
details 72
locations 73
object contextual menu 74
preview 72
relations 73
sub items 74
translations 72

content class package
about 99
creating, steps 99-103

Content Management Framework. See CMF
content object 50
ContentSettings

CachedViewModes setting 217

[265]

content structure, backend
about 69
content area 71, 72
secondary menu 70

content template 129
content tree 75, 76

about 75
article, creating 85
feedback form 87
other sections 88
staff section 83, 85

control structure operator, templating
markup

conditional control 108, 109
loop control 109

Cronjob, extension 90
cronjobs/, extension directory structure 91
CSS

classes-colors.css 124
content.css 124
core.css 124
editing 124
pagelayout.css 124
site-colors.css 124
webstyletoolbar.css 124

custom template file, override system
creating 140

D
database, eZ Publish site

code, deploying 241
deploying 241
extension, configuring 241, 242
files, excluding from deploy 242
synchronization, starting 243

Data Import extension 261
datatype, extension 90
datatypes 53
datatypes/, extension directory structure 91
datetime() operator 109
debug-accumulator operator 255
debug-log operator 254
debug template, operators

debug-accumulator 255
debug-log 254
debug-timing-point 254

debug-timing-point operator 254
DependentClassIdentifier, smart cache 221
design activation, extension 98
design, creating

about 113
homepage 114
issue archive page 116
issue page 115
staff profile page 116, 117

design extension
about 90
creating, steps 92, 93

design/, extension directory structure 91
dev

site accesses, creating for 41
developing siteaccess 38
development environment 232

E
ECM 9
Enterprise content management. See ECM
Enterprise Content Management System 9
enterprise siteaccess schema, siteaccess

system
dev 41
dev_panel 41
staging 41
staging_panel 41

environment
about 231
development environment 232
eproduction environment 232, 233
staging environment 232

eventtypes/, extension directory structure 91
expiry parameter 214
extension

about 89
building 91
directory structure 90
distributing, ways 105
folder structure 193
packtmedia extension, building 91
siteaccess 193
types 90

extension, activating
about 96

[266]

backend activation 97, 98
design activation 98
manually 96, 97

extension, building
designing 92, 93
settings 92
template operator extension 94
translation extension 94, 95

extension, directory structure
actions/ 91
autoloads/ 91
bin/ 91
classes/ 91
cronjobs/ 91
datatypes/ 91
design/ 91
eventtypes/ 91
modules/ 91
packages/ 91
settings/ 91
translations/ 91

extension package
creating 103, 104

extension, portability
about 99
content class package 99
content class package, creating 99-103
packages, creating 103, 104

extension, types
bin 90
Cronjob 90
datatype 90
design 90
fetch function 90
module 90
operator 90
translation 90
workflow event 90

eZ CMF 10
eZ components

about 10, 15
CMF 10
installing 15
making available 15

eZ Deploy 261
eZ Deploy, eZ Publish site 234
eZ Flow 11, 12

eZ JSCore extension 260
eZ Publish

about 9, 10
Apache virtual host, settings 17, 18, 36
backend 68, 69
configuration files 21, 22
content class 52
content structure 50
Cron jobs 20
database, initializing 16, 17
datatypes 53
default configuration settings 39
extension 89
features 10
hosting 12
image host, settings 20
installation 12
installation, unpacking 16
internationalization 184
[IP_ADDRESS], variable 19
locale file, creating 184, 185
locale identifier 184
localization 184
multi-language sites management 186
NameVirtualHost setting 19
[PATH_TO_EZPUBLISH], variable 19
[PORT], variable 19
[SERVER_ALIAS], variable 19
[SERVER_NAME], variable 19
setting up 16
setup wizard 22
siteaccess system 37, 38
templating 107
translations.ts file 185, 186

eZ Publish content class
about 52
class attributes 52, 53
management 54, 55
references 55
structure 56

eZ Publish content class, structure
attributes 58
children sorting, by default 57
identifier property 57
name property 57
object name pattern 57
URL alias name pattern 57

[267]

eZ Publish, extensions
about 259
Data Import extension 261
eZ Deploy extension 261
eZ JSCore 260
eZ Publish OE extension 260
eZ Xajax 259
Google Sitemaps extension 260
Star Rating 259, 260

eZ Publish, installation
eZ components 15
hardware, requisites 13
hosting, requisites 12
PHP configuration 13
shared versus dedicated host 14
software, requisites 12

eZ Publish OE extension 260
eZ Publish Online Editor. See eZ Publish

OE extension
eZ Publish, packages

about 10
eZ Flow 11, 12
eZ Webin 11
Plain Site 11

eZ Publish site, deploying
about 233, 234
automatic tests, creating 234, 235
database, deploying 241
eZ Deploy 234
production server, deploying on 245
production siteaccesses, configuring 240
quality assurance 245
staging siteaccesses, configuring 240
validity, checking 243, 244

ezstring attribute 141
ezwebin

about 117
forum, adding 168, 169
new section, creating 118-120
page layout, customizing 123, 124
predefined groups 204
project, section for 118
section permission access, setting up 120-

123
standard page layout, overriding 118

eZ Webin 11
ezwebin cache block, template cache 215

ezwebin, predefined groups
administrator users 204
anonymous users 204
editors 204
members 204
partners 204

eZ Xajax extension 259

F
feed

adding, to site 175
blog feed, creating 176-178
feed source, configuring 178
forum feed, creating 180, 181
multisource feed 181
setting up 175

feedback form, content tree 87, 88
fetch_alias function 163
fetch function, extension 90
fetch functions, templating markup 109
file_update_protection parameter 250
folders, issue archive section

adding 82, 83
forum access control list 170
forum, adding

forum access control list 170
Private forums section, creating 171-173
steps 168, 169
sticky post, creating 170

forum feed
creating 180, 181

G
GD2 20
generic control, class attribute

about 53
information collector 53
required 53
searchable 53
translatable 53

Google Sitemaps extension 260

H
has_access_to fetch function 164
host

[268]

used, for siteaccess selecting 47
hosting, eZ Publish

PHP configuration 13
requisites 12
software, requisites 12

I
i18n. See internationalization
i18n operator 194
identifier, content class 57
ignore_content_expiry parameter 214
image_class parameter 142
ImageMagick 20
information collector 53
installing, APC

from sources 249
PECL used 249
steps 248, 249

Integration platform environment 231
Internationalization 184
issue archive section, content tree

object, editing 76-80
issue archive template, class templates

embed template 155
full template 153, 154

issue article template, class templates
$versionview_mode variable 163
embed template 165
ezini operator 162
fetch_alias function 163
full template 159-165
has_access_to fetch function 164
line template 157
SummaryInFullView parameter 162
tipafriend function 164

issue template, class templates
about 146
{attribute_view_gui attribute=$node.data_

map. short_description} function 147
authors.tpl template 147
embed template 152
full template 148, 149, 150
line template 146
parent_node_id parameter 150
thumb template 151
uri parameter 147

issue year template, class templates
full template 156, 157

K
keys parameter 214
Klingonian locale file 185

L
l10n operator 194
L10n. See localization
lastname object attribute 142
left menu 70
locale identifier

about 184
new locale file, creating 184, 185
translations.ts file 185, 186

localization 184
login handler, extension 90
loop control, control structure operator

about 109
FOR-FOREACH-WHILE 109

M
magazine’s blog

blog, adding to site 174
creating 173

magazine’s forum
forum, adding 168, 169

manual activation, extension 96
MaxParents, smart cache 222
module, extension 90
modules/, extension directory structure 91
multi-language sites, management

about 186
class attributes, translating 187-189
class default language 190
content, translating 190
URL, translating 191, 192

multilingual extensions
extension folder, structure 192, 193
siteaccess 193
template strings 194

multilingual siteaccesses
configuration file, copying 44
creating 44

[269]

ini files, editing for locale components 44,
45

multiplexer event, workflow event 205
multisource feed 181

N
name, class attribute 52, 53
name property, content class 57
news feed. See feed
node 51
node system template 129
NodeTreeCaching setting 223
notification workflow

creating 206-211

O
ObjectFilter, smart cache 222
object, issue archive section

editing 76-80
HTML embedding, inside WYSIWYG XML

editor 81
short description 80, 81
show children checkbox 82
tags input 82

object name pattern, content class 57
object-oriented content 50, 51
OmniGraffle 113
opcode cache 226, 227
operator, extension 90
operators, templating markup 110
override cache 224
override system

about 130
custom template file, creating 140
template override. creating 130, 131
template override. creating from graphic

interfaces 131-134
template override, creating manually 134

P
packages/, extension directory structure 91
Packt Media Sites, content class

attributes 58
profile content class, creating 59-61

page layout
about 113
homepage 114
issue archive page 116
issue page 115
staff profile page 116, 117

page layout, ezwebin
CSS, editing 124
customizing 123, 124
new style package, creating 124-128

parent_node_id parameter 150
payment event, workflow event 206
PECL

used, for installing APC 249
Pencil 113
PHP configuration, eZ Publish installation

PHP memory limit issue 13
PHP timezone 13

PHPOperatorList array key 142
PHPUnit 235
Plain Site 11
policies 196
pre-generation cache 224
Private forums section

creating 171-173
production environment

about 232, 233
preparing 233

production siteaccesses
configuring 240

profile content class, Packt Media Site
Article class, extending 63, 64
creating 59, 60, 61, 62, 63
other content classes 65

Q
QT technical documentation site

URL 185

R
RelatedSiteAccessList setting 218
role cache 225
roles

about 196
applying 196

[270]

S
Selenium 235
Selenium IDE

about 236
installing 236
session, recording 236, 237, 238

Selenium Integrated Development Environ-
ment. See Selenium IDE

settings/, extension directory structure 91
setup wizard, eZ Publish

about 23
database, initialization 27
database, selecting 26
email, settings 25
finishing 36
language support 28
site access, configuration 32, 33
site, details 33, 34
site, packages 29, 30, 31
site, registration 35
site, security 34
system check 23, 24

shared
versus dedicated hosting 14

shorten operator 142
simple shipping event, workflow event 205
siteaccesses, selecting

default siteaccess, setting 46
host-based matching used 47
URI-based matching used 46

siteaccess folder structure
about 39
admin folder 40
default configuration settings 39, 40
ezwebin_site folder 40
global overrides 39
ita. eng. fre folder 40
setup folder 40
siteaccess, creating for dev 40
siteaccess settings 39, 40

SiteAccessSettings
RelatedSiteAccessList setting 218

siteaccess system
about 37, 38
creating, for dev 40, 41
creating, for staging 42

database parameters, configuring 43, 44
developing siteaccess 38
enterprise site access schema 41
eZ Publish documentation, scenario 38
public interface 37
restricted interface 37
siteaccess folder structure 39, 40
staging siteaccess 38
symbolic links, creating 42, 43

smart cache
about 220
AdditionalObjectIDs 222
ClearCacheMethod 222
DependentClassIdentifier 221
disabling 220
enabling 220
MaxParents 222
ObjectFilter 222

SmartCacheClear setting 220
Smarty

URL 107
staff profile template, class templates

$node 141
$node.data_map attribute 141
$node.data_map.profile_description.con-

tent.output.output_text attribute 142
$node.name attribute 141
$node.object.data_map attribute 141
$node.url_alias attribute 141
about 140
alignment 142
attribute_view_gui function 141
css_class parameter 142
embed remplate 146
ezstring attribute 141
full template 143, 144, 145
image_class parameter 142
lastname object attribute 142
line template 140
PHPOperatorList array key 142
shorten operator 142

staff section, content tree
about 83
Create here button 83
Profile edit page 85
Profile voice 83
The staff node 83

[271]

staging
site accesses, creating for 41

staging environment 232
staging siteaccess 38
staging siteaccesses

configuring 240
standard page layout, ezwebin

new section, creating 118-120
overriding 118
project, section for 118
section permission access, setting up 120-

123
Star Rating extension 259, 260
static cache 225, 226
subtree_expiry parameter 214
SummaryInFullView parameter 162

T
template

tips 229, 230
template cache, caching system

ezwebin cache block 215
template cache. caching system

about 214
cache keys 214
content expiration 214
expiry parameter 214
ignore_content_expiry parameter 214
keys parameter 214
subtree expiration 214
subtree_expiry parameter 214
time-based expiration 214

TemplateCache setting 215, 223
template, caching system

compiling 216
optimization 216

template compile, caching system
about 216
TemplateOptimization configuration 216

TemplateCompile configuration 216
TemplateCompile setting 223
TemplateCompile settings 216
TemplateCompression setting 223
template debugger

about 255
enabling 256

ShowXHTMLCode, enabling 257
verbose debug output enabling, Debug

parameter used 257
template functions, templating markup

$classification variable 112
about 110
HTML, embedding inside WYSIWYG XML

Editor pt.2 111, 112
layout variables 111
template, overriding 111

template operator extension 94
Template Operator extension 91
TemplateOptimization configuration 216
TemplateOptimization setting 223
template override

creating 130, 131
creating, from graphic interfaces 131-134
creating, manually 134

template override, manual creation
article class 138
folder class, for issue 136, 137
folder class, for issue archive section 138
folder class, for issue year archive 136
frontpage embed object 139
profile class 135, 136

TemplateSettings
TemplateCache setting 215
TemplateCompile settings 216

template, types
content template 129
node system template 129

templating, eZ Publish
about 107
markup 108

templating markup, eZ Publish
about 108
control structure operator 108
fetch functions 109
operators 110
template functions 110

thread 170
tipafriend function 164
translation cache 225
translation extension 90, 94, 95
translations/, extension directory structure

91
translations.ts file 185, 186

[272]

U
URI

used, for siteaccess selecting 46
uri parameter 147
URL

translating 191, 192
URL alias name pattern, content class 57
user

accounts 198, 199
classes, extending 202
creating 199-201
deleting 203, 204
disabling 202, 203
managing 202

user group 197
user management

about 202
eZ Publish user classes, extending 202
new user, creating 199, 201
user accounts 198, 199
user, deleting 203, 204
user, disabling 202, 203

V
view cache, caching system

about 216, 217
cache by context, disabling 217
cache by context. enabling 217
CachedViewModes setting 217
clearing 218, 219
disabling 217
enabling 217
smart cache 220-222

ViewCacheSettings
ClearRelationTypes setting 219
SmartCacheClear setting 220

ViewCaching setting 223
Virtual Private Server. See VPS
VPS 14

W
wait until date event, workflow event 205
wireframe editors 113
workflow

about 204

default workflow events 205
notification workflow, creating 206-211

workflow event, extension 90
workflow events (default)

approve event 205
multiplexer event 205
payment gateway event 206
simple shipping event 205
wait until date event 205

X
XPath 239

Managing eZ Publish Web Content
Management Projects
ISBN: 978-1-847191-72-4 Paperback: 320 pages

Strategies, best practices, and techniques for
implementing eZ publish open-source CMS projects
to delight your clients

1.	 Tips and expert advice for the whole eZ publish
web CMS project lifecycle

2.	 Learn about the requirements and success
factors of an eZ project

3.	 Implement eZ publish projects successfully,
efficiently, and effectively

Building Websites with e107
ISBN: 978-1-904811-31-2 Paperback: 260 pages

A step by step tutorial to getting your e107 website
up and running fast

1.	 Get your e107 website up fast

2.	 Simple and practical guide to mastering e107

3.	 Customize and extend your e107 site with new
templates and the CMS plug-in

Please check www.PacktPub.com for information on our titles

	Packt - eZ Publish 4 Enterprise Web Sites Step by Step (October 2009) (ATTiCA)
	Table of Contents
	Preface
	Chapter 1: Installing eZ Publish
	What is eZ Publish?
	What is a CMF?

	eZ Publish packages
	eZ Webin—the out of the box CMS
	eZ Flow—web publishing for news and
media portals

	Installation
	Hosting requirements
	Software required
	Hardware required
	PHP configuration
	Shared versus dedicated hosting

	eZ components
	Setting up
	Unpacking the installation
	Initializing the database
	Apache virtual host settings
	Image settings
	Cron jobs
	Configuration files

	The setup wizard
	Welcome to eZ Publish
	System check
	Email settings
	Choose a database
	Database initialization
	Language support
	Site packages
	Site access configuration
	Site details
	Site security
	Site registration
	Finished

	Summary

	Chapter 2: Creating our Site Accesses
	What is the siteaccess system?
	Siteaccess folder structure
	Enterprise siteaccess schema
	Creating siteaccesses for dev and staging
	Creating symbolic links
	Configuring the database parameters

	Creating multilingual siteaccesses
	Copying the configuration file
	Editing ini files for locale components

	Selecting a siteaccess using host or
URI-based matching
	URI
	Setting the default siteaccess

	Host

	Summary

	Chapter 3: Defining and Creating Content Classes
	Managing the content
	Separation of content and design
	Content structure in eZ Publish
	Object-oriented content

	eZ Publish content classes
	Class attributes
	Content class management
	Content class structure

	Packt Media Site's content class
	Creating the profile content class
	Extending the Article class
	The other content class

	Summary

	Chapter 4: Creating Content Structure
	Understanding the backend
	Content structure
	The secondary menu
	The content area

	The content tree
	The "Issue archive" section
	Editing an object
	Adding more folders

	The staff section
	Creating an article
	Publish and Unpublish date
	Enabling comments

	The feedback form
	Other sections

	Summary

	Chapter 5: Creating an Extension
	What is an extension?
	Extension type
	The directory structure of an extension

	Build the extension
	Settings extension
	Design an extension
	Template operator extension
	Translations extension

	Activating an extension
	Manual activation
	Backend activation
	Design activation

	Extension portability
	Content class package
	Extension packages

	Business with extensions
	Summary

	Chapter 6: Creating a Design
	eZ Publish templating
	Templating
	The templating markup
	Control structure operators
	Fetch functions
	Generic template functions and operators

	Creating a new design
	The homepage
	Issue page
	The issue archive
	The staff profile page

	eZ Webin
	Overriding the standard page layout
	Section for our project
	Creating a new section
	Setting up the section permission access

	Customizing the page layout
	CSS editing
	Creating a new style package

	Summary

	Chapter 7: Template Content Class
	Introduction to the content template
	The override system
	Creating a template override
	Creating a template override from graphic interface
	Creating a template override manually
	Profile class
	Folder class for the issue year archive
	Folder class for issue
	Folder class for issue archive section
	Article class
	Frontpage embed object

	Creating our custom template file

	Customize our class templates
	Staff profile template
	Line template
	Full template
	Embed template

	Issue template
	Line template
	Full template
	Thumb template
	Embed template

	Issue archive template
	Full template
	Embed template

	Issue year template
	Full template

	Issue article template
	Line template
	Full template
	Embed template

	Summary

	Chapter 8: Adding Community Forums
	The magazine's forum
	Adding the Forum
	Creating a sticky post
	Forum access control list
	Creating the Private forums section

	Creating the magazine's blog
	Adding the blog

	Set up the feeds
	Creating the blog feed
	Creating the forum feed

	Summary

	Chapter 9: Internationalization and Localization
	A multilingual site
	Internationalization
	Localization
	Locale identifiers
	Creating a new locale file

	Multi-language sites management
	Class attributes translations
	Class default language

	Content translation
	URL translation

	Multilingual extensions
	The extension folder structure
	The extension siteaccess
	The template strings

	Summary

	Chapter 10: Creating Roles and Privileges
	Policies, roles, and groups
	Policies
	Roles
	Applying a role

	User groups

	eZ Publish user management
	User accounts
	Creating a new user
	Extending eZ Publish user classes

	Managing a user
	Disabling a user
	Deleting a user

	The eZ Webin predefined groups

	Some steps into the workflows
	The default workflow events
	Approve
	Wait until date
	Multiplexer
	Simple Shipping
	Payment Gateway

	Creating a notification workflow

	Summary

	Chapter 11: Cache Configuration
	Caching system
	Template cache
	eZ Webin cache block

	Compiling a template
	Template optimization

	View cache
	Enabling/Disabling the cache by context
	Clearing the view cache
	Smart cache

	Default caching settings
	Advanced eZ Publish caching system
	Advanced settings
	Override cache
	Pre-generation cache
	Translation cache
	Role cache
	Static cache
	Opcode cache
	Proxy and HTTP Accelerator

	Customize cache settings to speed up the performances
	What not to do in a template
	Summary

	Chapter 12: Deployment
	Environments
	Development environment
	Staging environment
	Production environment
	Prepare the production server

	Deploying an eZ Publish site
	eZ Deploy
	Creating the automatic tests
	Installing the Selenium IDE
	Recording a session
	Customizing tests

	Configuring the staging and production siteaccesses
	Deploying the database
	Deploying the code
	Configuring the extension
	Excluding files from deploy
	Starting the synchronization

	Checking the validity
	Quality assurance
	Deploying to the production server

	Summary

	Appendix A: APC Installation and Optimization
	APC tuning for eZ Publish
	Opcode Cache
	How does it work?
	Installing APC
	Installing from sources
	PECL installation

	APC configuration
	APC GUI
	Performance

	Appendix B: Advance Debugging
	Code debugger
	Debug template operators
	Templating debug

	Appendix C: eZ Publish's Best Extensions
	eZ Xajax
	Star Rating
	eZ Publish OE
	eZ JSCore
	Google Sitemaps
	eZ Deploy
	Data Import

	Index

