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Foreword

How does a tuner achieve such a precise tuning of a piano or an organ using no-
thing but his ears? Why does the clarinette, though equal in length to the C flute, play
one octave lower? What difference is there between the Pythagorean scale and the
tempered scale? How can a series of notes seem to rise indefinitely even though it
always repeats the same notes? What are the possibilities offered by digital sound?
What are its limitations? How can a compression technology such as MP3 achieve a
tenfold reduction of a sound file’s size without significantly altering it? What is the
very simple principle underlying audio synthesis in Yamaha’s famous keyboard, the
DX7? These are a few examples of the questions we will try to answer.

The goal of this book is to use these questions to give the reader an overview of
the nature of musical sound, from its production by traditional musical instruments
to sounds obtained by audio synthesis, without trying to be exhaustive however: this
book is not meant as a catalogue, but instead, I hope, as a first step that will enable
the reader to move on to more specific areas in this field. Musical sound is addressed
from a scientific standpoint, and the succession of causes that lead to a specific type of
sound are, as much as possible, described in a simplified but precise manner. The fact,
for example, that a particular sound is composed of harmonics (strings, pipes, etc.) or
of partials (bells, timpani, etc.) finds its causes in the physical laws that govern the
behavior of materials, laws that induce mathematical equations, the nature of which
leads to a certain characteristic of the produced sound.

This book is intended for any reader interested in sound and music, and with a basic
scientific background: students, teachers, researchers, people who work in a scienti-
fic or technical field. It describes and relies on concepts of acoustics, mathematics,
psychoacoustics, computer science and signal processing, but only to the extent that
this is useful in describing the subject. In order to broaden its reach, it was written
in such a way that the reader may understand sound phenomena with simple analyti-
cal tools and the smallest possible amount of required knowledge. Those who teach
this material will find diverse and motivating study problems, and students will find
ideas for different kinds of ‘ projects ’ they may encounter in their undergraduate and
graduate studies. In the end, my greatest wish would be to succeed in sharing with
the reader the pleasure I find in understanding the basic mechanisms underlying the
manifestation and the perception of the sound and music phenomenon.

13
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After an introduction to acoustics, a bit of music theory, and a study of sounds and
their representation in chapter 1, we will discuss vibrational modes and the timbre of
a few typical instruments in chapter 2, and in chapter 3, we will relate this with the
question of scales and tuning systems. After wandering off into psychoacoustics in
chapter 4, and using the opportunity to discover a beautiful acoustic illusion, we will
discuss several aspects of digital sound in chapters 5 and 6: sampling, compression
technology based on the properties of hearing (such as the widely known MP3 format),
sound effects (vibrato, reverberation, the Leslie effect) and synthesized sounds, such
as for example those produced using the Chowning technique, made popular by DX7
synthesizers.

For further development, each chapter ends with the following:
- study problems, to explore certain themes, or to study them further in depth. For

the reader’s information, the difficulty and the amount of work required are indicated
with stars: (*) means easy, (**) is average and (***) is difficult;

- practical applications meant to be carried out on a computer, where the reader
will create different kinds of sounds and play them on a crude synthesizer, experimen-
ting on the phenomena described in the book, as well as put his or her hearing to the
test, and practice his or her scales! Practical instructions relevant to these applications
are given at the end of the first chapter.

Website. A website is available to illustrate the book. It contains many examples
of sounds, as well as the programs used to generate them. It also contains the programs
and sound files necessary to perform the practical applications, along with the answers.
The address of the website is:

www-gmm.insa-toulouse.fr/~guillaum/AM/

Throughout the book, it will be referred to simply as the AM website.

Reading advice. The chapters were written in a particular, logical order, and the
concept and methods developped in a given chapter are assumed to be understood in
the chapters that follow. For example, the approach used to go from the wave equation
to the Helmholtz equation, which is detailed in chapter 1, will not be explained again
when studying the vibrations of sonorous bodies in chapter 2. However, you can also
browse through it in any other order, referring if necessary to the previous chapters,
and using the cross-references and the index to easily find where a given concept
was discussed. Finally, because some phenomena are easier heard than explained,
listening to the website’s audio examples should shed light on any areas that may still
be unclear !

Philippe GUILLAUME



Chapter 1

Sounds

Sound and air are closely related: it is common knowledge that the Moonians
(the inhabitants of the Moon) have no ears! This means we will begin our study of
sound with the physics of its travelling medium: air. Sounds that propagate through
our atmosphere consist of a variation of the air’s pressure p(x, y, z, t) according to
position in space and to the time t. It is these variations in pressure that our ears
can perceive. In this chapter, we will first study how these sounds propagate as waves.
We will then describe a few different types of sounds and various ways of representing
them. Finally, we will explain the concept of filtering, which allows certain frequencies
to be singled-out.

1.1. Sound propagation

The propagation of a sound wave can occur in any direction, and depends on the
obstacles in its path. We will essentially be focusing on plane waves, that is to say
waves that only depend on one direction of space. We will assume that this direction
is the x-axis, and therefore that the pressure p(x, y, z, t) is independent of y and z.
Hence it can simply be denoted by p(x, t). This type of function represents a plane
wave propagating through space, but also a sound wave inside a tube (see Figure 1.1),
such as for example the one propagating through an organ pipe.

Figure 1.1. Pressure waves in a tube open at its right end,
with pressure imposed at the other end

15
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1.1.1. A look at the physical models

The propagation of sound through air is governed by the wave equation (see page
18), an equation we will come across several times since it also determines the mo-
vement of sound waves in the vibrating parts (strings, membranes, tubes...) of many
instruments. In the following paragraphs, we will see that, in the case of air, this equa-
tion is inferred from three fundamental equations of continuum mechanics.

Along with the pressure p(x, t), we rely on two other variables to describe the
state of air: its density ρ(x, t), and the average speed v(x, t) of the air molecules
set in motion by the sound wave, which is not to be confused with the norm of the
individual speed of each molecule due to thermal agitation, the magnitude of which
is close to that of the speed of sound, denoted by c. In the case of the plane wave
that we are studying, the air moves in a direction parallel to the Ox-axis, and both the
speed v, and the pressure are independent of y and z. In the absence of an atmospheric
constraint, v varies around the average value 0, and p and ρ vary around their average
values p0 and ρ0 (see section 1.1.2), that is to say, their values in the equilibrium state:
silence.

1.1.1.1. Mass conservation

Figure 1.2. Mass balance in the air section:
there is no disappearance or creation of air!

In a fixed section of space, bounded by a cylinder with its axis parallel to the Ox
axis and the two surfaces Sa and Sb, with respective x-coordinates a and b and areas
S (see Figure 1.2), the variation of the air mass m(t) is due to the amount of air going
through the two surfaces. Nothing goes through the other interfaces, because the speed
is parallel to the Ox axis. The air mass located inside the section is

m(t) = S

∫ b

a

ρ(x, t) dx,

and the variation of the air mass per unit of time is the derivative of m(t), denoted
by m′(t). The incoming flux through Sa, that is to say, the amount of air entering the
section per unit of time, is equal to Sρ(a, t)v(a, t). As for the incoming flux through
Sb, it is equal to −Sρ(b, t)v(b, t), the change of sign being due to the fact that we are
calculating the balance of what is entering the section (and not of what is going from
left to right). The total flux is therefore

Φ(t) = S[ρ(a, t)v(a, t)− ρ(b, t)v(b, t)].

The fact that the total flux Φ(t) is the derivative of the mass m(t),

Φ(t) = m′(t),
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can be expressed, if ∂t denotes the partial derivative with respect to t, by

S[ρ(a, t)v(a, t)− ρ(b, t)v(b, t)] = S

∫ b

a

∂tρ(x, t) dx.

If we divide by b− a and if b− a tends to 0 (calculation of the derivative with respect
to the first argument), then after dividing both sides of the equation by x (who was on
parole, confined between a and b):

−∂x(ρ(x, t)v(x, t)) = ∂tρ(x, t). (1.1)

The linear acoustics hypothesis consists of assuming that the variations with respect
to the equilibrium state are small, hence the use of the parameter ε, assumed to be ‘
small ’:

v(x, t) = εv1(x, t), ρ(x, t) = ρ0 + ερ1(x, t).

If we substitute these two expressions in (1.1), and if we neglect ε2, we get the conser-
vation of mass equation, also called continuity equation:

∂tρ1(x, t) + ρ0∂xv1(x, t) = 0. (1.2)

1.1.1.2. The Euler equation

Figure 1.3. The air section shown above is migrating. Its acceleration results
from the pressure forces applied to the two surfaces Sa(t) and Sb(t)

We are now going to observe an amount of air as it moves: the section of air
contained between the surfaces Sa(t) and Sb(t), with x-coordinates a = a(t) and
b = b(t), respectively (see Figure 1.3), which follow the average movement of the air
molecules; their derivatives are therefore such that

a′(t) = v(a, t) and b′(t) = v(b, t).

The outside force applied through the surface Sa(t) to the air section is equal to
S p(a, t), and the one applied through the surface Sb(t) is equal to −S p(b, t). For
the other interfaces, the forces cancel each other out since p is independent of y and
z. We now write Newton’s second law of motion F = d(mv)/dt:

S[p(a, t)− p(b, t)] =
d

dt

(
S

∫ b(t)

a(t)

ρ(x, t) v(x, t) dx

)

= S
(
ρ(b, t) v(b, t) b′(t)− ρ(a, t) v(a, t) a′(t) +

∫ b(t)

a(t)

∂t(ρ(x, t) v(x, t)) dx
)

= S

(
ρ(b, t)v2(b, t)− ρ(a, t)v2(a, t) +

∫ b(t)

a(t)

∂t(ρ(x, t)v(x, t)) dx

)
.
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If we divide by b− a and by S, and if b− a tends to 0, this leads us to:

−∂xp(x, t) = ∂x(ρ(x, t)v2(x, t)) + ∂t(ρ(x, t)v(x, t)).

If we still assume that variations with respect to the equilibrium state are small, with

p(x, t) = p0 + εp1(x, t),

we get, by neglecting the ε2 terms and those of higher order, the Euler equation:

−∂xp1(x, t) = ρ0∂tv1(x, t). (1.3)

1.1.1.3. The state equation

By assuming that there are no heat transfers from one air section to the other or
with the outside, or in other words that compression and expansion are adiabatic (a hy-
pothesis confirmed by experiment if these effects are fast enough), the state equation
expresses the fact that pressure variations are proportional to variations in density:

p1(x, t) = c2ρ1(x, t). (1.4)

This equation also means that air has an elastic behavior: it acts like a spring. A
constant c has appeared, we will see later that it represents the speed of sound. If
we substitute this equation in (1.2), we find another expression for the state equation:

∂tp1(x, t) + c2ρ0∂xv1(x, t) = 0. (1.5)

1.1.2. The wave equation

We now have at our disposal all the tools necessary to describe the movement of
sound waves through air. If we differentiate the state equation (1.5) with respect to
time and the Euler equation (1.3) with respect to x, we get

∂t2p1(x, t) = −c2ρ0∂txv1(x, t),

∂x2p1(x, t) = −ρ0∂txv1(x, t).

The expression ∂t2 indicates two differentiations with respect to time, ∂tx indicates
one differentiation with respect to time and another with respect to x, and so on. All
we have to do now is compare these two equations to obtain the wave equation:

∂t2p1(x, t) = c2∂x2p1(x, t). (1.6)

A mathematical analysis of this equation shows that the general solution is of the
form

p1(x, t) = g(x− ct) + h(x+ ct).
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Figure 1.4. Three ‘ stills ’ of a travelling
plane wave along an axis

The function g(x − ct) maintains a constant value in the case of a point in motion,
the trajectory of which is such that x − ct = constant (such a trajectory is called
a characteristic trajectory); thus g(x − ct) represents a travelling wave propagating
along the x-axis at the speed of sound c from left to right (Figure 1.4 shows the usual
orientation for the axis). Likewise, the function h(x+ct) is constant at the points with
x-coordinates such that x+ct = constant, and in that case represents a travelling wave
propagating at the speed c from right to left. For air at a temperature T expressed in
Kelvin (with 32 oF = 0 oC = 273 K), the approximate values for the speed of sound,
the density and the atmospheric pressure (in pascals and in bars) are

c = 20
√
T , ρ0 =

353
T
, p0 = 1.013 105 Pa = 1.013 bar at 0 oC,

c = 330 m/s at 0 oC, c = 340 m/s at 16 oC.

For example, the functions

u+(x, t) = sin(kx− 2πft),

u−(x, t) = sin(kx+ 2πft),

with k = 2πf/c, are solutions to the wave equation. They are periodic with respect to
variables of time and space. The space period

λ =
2π
k

=
c

f

is called the wavelength. It is one of the most elementary forms of musical sound,
with a pitch, or a frequency f, measured in hertz (1 Hz = 1 s−1), a unit named after
physicist H. R. Hertz, and with a timbre (the sound’s ‘ color ’) similar to that of a
recorder (a type of flute).

Figure 1.5. Three ‘ stills ’ of a standing plane wave

These two functions u+ and u− propagate in opposite directions. Adding the two
leads to an interesting wave, also a solution to the wave equation:

p1(x, t) = sin(kx− 2πft) + sin(kx+ 2πft)

= 2 sin(kx) cos(2πft).
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As you can see, for all points x = nπ/k, n ∈ Z (the set of integers), for which
sin(kx) = 0, the pressure p = p0 + εp1 is constant and equal to p0: these points
are called vibration nodes, whereas for points x = (n + 1/2)π/k, n ∈ Z, the pres-
sure p(x, t) = p0 ± 2ε cos(2πft) undergoes its maximum amplitude variations: these
points are called antinodes. Such waves are referred to as standing waves (see Figure
1.5).

1.1.3. The Helmholtz equation

In physics, a wave containing only one frequency, i.e. of the form

p1(x, t) = ϕ(x) exp(2iπft)

where ϕ can also be a complex function1 and where f ∈ R (set of real numbers), is
said to be harmonic. The real and imaginary parts of such a wave are also harmonic.
Functions of the form

p1(x, t) = ϕ(x)ψ(t) (1.7)

are said to be separated variable functions. Additionally, if ϕ is real, the wave is
referred to as a standing wave: except for a real multiplicative factor ϕ(x), all points
simultaneously undergo the same variation in pressure ψ(t).

If we substitue Equation (1.7) in (1.6), we get, after dividing by ϕ(x)ψ(t),

ψ′′(t)
ψ(t)

= c2
ϕ′′(x)
ϕ(x)

.

This expression cannot vary, since the term on the left depends only on time, and the
one on the right depends only on x. Hence it is a constant, which will be denoted by
−(2πf)2, where f is an arbitrary real number2. Thus, on the one hand, we get

ψ′′(t) + (2πf)2ψ(t) = 0,

the general solution of which is

ψ(t) = A exp(2iπft) +B exp(−2iπft).

1. The use of complex numbers and functions makes the notations simpler . The physical signal
associated with a complex function can be obtained simply by calculating the real part of that
function. The sign of f indicates whether p1(x, t) travels clockwise or counterclockwise along
the unit circle’s circumference. When switching over to real numbers, because cos(−x) =
cos(x) and sin(−x) = − sin(x), the frequency can always be assumed to be≥ 0, by changing
the sign of the sine term if necessary.
2. Choosing a negative constant allows us to pick only the physical solutions we are interested
in: functions that are sinusoidal when plotted versus time, i.e. the harmonic ones. Others exist,
but we will not be using them.
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If B = 0 or A = 0, the wave is harmonic with frequency ±f. On the other hand, if
we define k = 2πf/c, called the wavenumber, we obtain the homogeneous Helmholtz
equation:

ϕ′′(x) + k2ϕ(x) = 0, (1.8)

the general solution of which is

ϕ(x) = α exp(ikx) + β exp(−ikx).

Figure 1.6. A harmonic plane wave. It propagates along the Ox-axis
(2D section) without any damping

Thus, the harmonic pressure waves with frequency f are of the form

p1(x, t) = [α exp(ikx) + β exp(−ikx)] exp(2iπft),

where the constants α, β ∈ C (set of complex numbers) are determined by the condi-
tions imposed at the interfaces with objects. As for standing harmonic waves with
frequency f, they are of the form

p1(x, t) = α sin(k(x− x0)) exp(2iπft),

where x0 is one of the vibration nodes.

If we follow the same process (i.e. start with three fundamental equations), we
come to the conclusion that, in the general case, when the waves are not necessarily
plane waves, the pressure is a solution to the three dimensional wave equation

∂t2p1(x, y, z, t) = c2∆p1(x, y, z, t) (1.9)

where ∆ = ∂x2 + ∂y2 + ∂z2 is called the Laplacian, and the Helmholtz equation
becomes

∆ϕ(x, y, z) + k2ϕ(x, y, z) = 0.

For example, spherical harmonic waves, produced by a punctual source assumed to
be placed at the origin, are of the type (with r =

√
x2 + y2 + z2):

p1(x, y, z, t) = α
exp(ikr − 2iπft)

r
.

These waves are called spherical because, for a set value of t, given a sphere with its
center at the origin, the pressure is the same at every point on the sphere. Note that
these are not standing waves.
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Figure 1.7. A spherical harmonic wave (2D section).
It decreases as 1/r

1.1.4. Sound intensity

Earlier in this chapter, we denoted the pressure (in the case of a plane wave) by
p(x, t) = p0 + εp1(x, t) where p0 is the pressure in the equilibrium state, or average
pressure. The difference p(x, t)− p0 is called the acoustic pressure pa:

pa(x, t) = p(x, t)− p0.

In order to set air in motion, a certain amount of energy had to be provided. The
propagation of the air deformation corresponds to the propagation of the initial energy.
The term sound intensity (or acoustic intensity) refers to the average pressure – time-
average. It is measured in watts/m2, depends on the point where it is measured, x, and
is obtained from the formula

I(x) =
1
T

∫ T

0

pa(x, t)v(x, t) dt

where the time scale T depends on the context. This integral can be equal to zero if for
example pa and v are in quadrature (a difference in phase equal to π/2). In the case
of a travelling plane wave pa(x, t) = g(x − ct), the calculations based on the Euler
equation (1.3) and the state equation (1.5) lead to v(x, t) = pa(x, t)/cρ0, hence

I(x) =
1

Tcρ0

∫ T

0

p2
a(x, t)dt. (1.10)

In the case of a harmonic wave, for example pa(x, t) = pα sin(kx − 2πft), we get,
for T = 1/f,

I(x) =
p2

α

2cρ0
' p2

eff

415
,

with peff = pα/
√

2, a formula often used when calculating the intensity. In the case
of a spherical wave pa(x, y, z, t) = pα sin(kr − 2πft)/r, the calculation for a high
enough value of r leads to

I(x, y, z) ' p2
α

2cρ0
× 1
r2
.

Therefore the intensity of a sound originating from a punctual source (in the absence
of damping) is inversely proportional to the square of the distance from that source.

The hearing threshold is approximately

I0 = 10−12 W/m2,
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the normal level for a conversation is 1.2 10−5 W/m2 and the pain threshold is about
1 W/m2. We will see in Chapter 4 that these threshold values depend on certain pa-
rameters, particularly frequency. Notice the impressive value for the ear’s dynamic
range, 1012! Rather than W/m2, the preferred unit is the bel (named after Alexander
Graham Bell, a professor at a school for the hearing impaired, and the inventor of
the telephone) or the decibel, a dimensionless unit that measures the tenth of the base
10 logarithm of a ratio to a given threshold, the hearing threshold for example. If the
sound intensity is denoted by LI , then this can be expressed as:

LI = 10 log
|I|
I0

dB.

As a consequence, the hearing threshold is set at 0 dB, the pain threshold is 120 dB,
and for a conversation, it is equal to 70 dB. Note that at some rock concerts, the
intensity sometimes exceeds 140 dB!

Small question: what happens to a symphonic orchestra when the number of vio-
lins is multiplied by 10?

Answer (see section 1.6.3): a 10 dB increase in the sound level. In other words,
going from 1 to 10 violins leads to the same volume increase as when going from 10 to
100 violins! This is an example of Fechner’s law, named after the German physiologist
Gustav Fechner: a sensation varies proportionally to the logarithm of the stimulus (see
[LEI 80], but also [ZWI 81] for a more moderate point of view, discussed in Chapter
4).

1.2. Music theory interlude

Before we go any further, it may be necessary to brush up on a few elementary
concepts of music theory and the relevant vocabulary. A musical note is characterized
by three main parameters: its pitch, its duration and its intensity. Here we will be focu-
sing on the pitch. The pitch is directly related to the note’s frequency3: low frequencies
correspond to low-pitched sounds, and high frequencies to high-pitched sounds. The
reference frequency for a musician is the A at 440 Hz, the note made by a tuning fork,
and also the note used for most dial tones.

1.2.1. Intervals, octave

In music theory, the distance between two different notes is called an interval.
When our ears estimate the interval between two notes, what affects their perception

3. As we will see in the next section, the pitch is the fundamental frequency of a note.
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is the ratio of their frequencies, and not the difference in frequencies. This is another
example of Fechner’s law, previously mentioned in regards to intensity: our sensation
of pitch varies proportionally to the logarithm of the frequency (this law does not
apply to extremely high-pitched and low-pitched sounds, as we will see in Chapter 4).
For example, the two musical intervals [110 Hz, 220 Hz] and [220 Hz, 440 Hz] are
perceived as equal because the frequency ratios are equal: 220/110 = 440/220 = 2,
whereas in the mathematical sense, the second interval is twice as long as the first:
440−220 = 2× (220−110). The interval between two notes, in the case where their
frequency ratio is equal to two, is called an octave.

1.2.2. Scientific pitch notation

The sounds produced by two notes one octave apart from each other are very si-
milar (we will see why in section 2.1.2), to the point that they are referred to as the
same note. The frequency 880 Hz, for example, one octave above the A of a tuning
fork, will also produce an A, but at a higher pitch. In order to tell them apart, we will
use the scientific pitch notation: the 440 Hz A will be denoted by A4, the next one at
880 Hz will be denoted by A5, followed by A6 at 1, 760 Hz. Likewise, in the other
direction we have A3 at 220 Hz, then A2 at 110 Hz, and so on. The same goes for
other notes, number 4 being used for the notes found between the C at 261.6 Hz and
the B at 493.9 Hz, all of which are located near the middle of a piano keyboard.

1.2.3. Dividing the octave into twelve semitones

Other intervals are determined by the choice of a tuning system, which precisely
sets the frequency ratios of the notes to one another, and will be studied in detail
in Chapter 3. Here, we will be considering the case of equal temperament. For this
tuning system, the octave is divided into twelve equal intervals called semitones, with
frequency ratios of 21/12 ' 1.0595. If we start at a note with frequency f , and go up a
semitone twelve times, we get, one after the other, the notes with frequencies 21/12f,
then 21/12× 21/12f = 22/12f, then 23/12f,..., 211/12f, and finally 212/12f = 2f,
bringing us, as expected, to the octave above by equal intervals.

These thirteen notes comprise what is called the chromatic scale, invented by the
Chinese over 4,000 years ago! Starting with C, these notes are C, C], D, D], E, F, F],
G, G], A, A], B, C, the ] sign indicating that the note has been raised by a semitone;
the resulting note is said to be altered. If we use the [ to lower the note by a semitone,
this series of notes can also be written C, D[, D, E[, E, F, G[, G, A[, A, B[, B, C. The
notes C] and D[ are said to be enharmonics and are equal in equal temperament. The
same goes for the other enharmonic notes, D] and E[, F] and G[, etc. Note however
that musicians who have the possibility of determining themselves the pitch of a note,
such as violonists, often play the C] slightly above the D[. The combined interval
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of two semitones is, of course, called a tone, and there are six tones in an octave.
The corresponding notes comprise the whole tone scale, abundantly used by Claude
Debussy.

1.2.4. Diatonic scales

The usual scales are neither the chromatic scale nor the whole tone scale, but ins-
tead the diatonic scales, based on both types of intervals: the tone and the semi-tone,
and comprising eight notes, the last of which is one octave higher than the first. These
scales are the result of placing two tetrachords (four consecutive notes) one after the
other, where each tetrachord must include two tones, hence the name diatonic. Where
the semitone is placed inside each tetrachord then determines the different possible
modes or scales. The notes of a scale are called the degrees of the scale. The first (and
the eighth, since it is the ‘ same ’ note) is called the tonic, the fifth is the dominant and
the seventh is the leading tone, the degree that ‘ leads ’to the tonic in tonal harmony.

There are several types of diatonic scales, two of which have played a central role
in all of classical music: the major scale and the minor scale. The essential differences
between these two scales are their third and sixth degrees, called tonal notes for this
reason. Bright, upbeat or joyful themes (marches, festive themes, dances) are often
written in the major scale, whereas mournful, sad or gloomy themes (requiems, noc-
turnes, funeral marches) are usually written in the minor scale. The other scales are
called modal scales, and were widely used all through the Middle Ages, particularly
in ecclesiastical music.

1.2.4.1. Major scale

A diatonic major scale is comprised of the following intervals: tone, tone, semi-
tone, tone, tone, tone, semitone. Starting with C for example, we get the sequence of
notes C, D, E, F, G, A, B, represented on the staff as follows:

Figure 1.8. C major scale, beginning with C4
and ending with B4

We owe this notation process to Guy d’Arezzo (early 11th century). The scale’s
different degrees are placed, in turn, on and between the staff’s lines. The intervals
C–D, C–E, C–F, ... , C–B are called the second, major third, fourth, fifth, major sixth
and major seventh, respectively. These names refer of course to the intervals between
the notes and not to the notes themselves. Hence the intervals F–A, E–N also form
a major third, comprising two tones, and the intervals D–A, E–B and F–C form a
fifth, comprised of three and a half tones and corresponding to the frequency ratio
27/12 ' 1.5.
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1.2.4.2. Minor scales

There are two types of minor diatonic scales, depending on whether the melody
ascends or descends:

- the ascending melodic minor scale, comprising the intervals tone, semitone, tone,
tone, tone, tone, semitone. Starting with C, we get the, sequence of notes C, D, E[, F,
G, A, B, C,

Figure 1.9. Ascending melodic C minor scale

- the descending melodic minor scale, comprising the intervals tone, semitone,
tone, tone, semitone, tone, tone. If we choose C as the tonic, we get the notes C, D,
E[, F, G, A[, B[, C. If we choose A as the tonic, this leads to the notes A, B, C, D,
E, F, G, A, a scale without any alterations. This last scale is called the relative minor
scale of the C major scale.

Figure 1.10. Descending melodic C minor scale

The somewhat different harmonic minor scale is used, hence the name, to compose
the chords (the harmony) meant as the accompaniment to a melody composed in a
minor scale. It is comprised of the intervals tone, semi-tone, tone, tone, semi-tone,
one tone and a half, semitone. Starting with C, we get the sequence of notes C, D, E[,
F, G, A[, B, C.

Figure 1.11. Harmonic C minor scale

The intervals C–E[, C–A[ and C–B[ are called the third minor, sixth minor and
seventh minor, respectively, and represent intervals of one tone and a half, four tones
and five tones.

1.3. Different types of sounds

A listener located at a given point in space can perceive the variation in pressure at
that point. This variation is a function of time, and will be denoted by s(t) = pa(x, t).
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Figure 1.12. A sinusoidal sound, considered a ‘ pure sound ’

It is the sound signal. The sinusoidal signals discussed earlier can be expressed diffe-
rently depending on the context:

s(t) = α cos(ωt+ θ)

= α cos(2πft+ θ)

= αRe(exp(iθ) exp(2iπft))

= a cos(2πft) + b sin(2πft)

= c1 exp(2iπft) + c2 exp(−2iπft)

where Re(z) refers to the real part of z, and:
- ω ≥ 0 is the pulsation in radians/s;
- f = ω/2π ≥ 0 is the frequency4 expressed in hertz (Hz); it indicates the number

of vibrations per seconds;
- α ≥ 0 is the amplitude;
- θ is the phase at t = 0, measured in radians with θ ∈ [0, 2π[ ;
- a = α cos θ (choose t = 0), b = α cos(θ + π/2) (choose 2πft = π/2) ;
- c1 = (a− ib)/2, c2 = (a+ ib)/2 = c1 (use exp(ix) = cosx+ i sinx).

This sinusoidal sound is one of the simplest possible sounds, it is said to be a pure
sound. For a plane wave of the form pa(x, t) = α cos(kx + 2πft), it is the sound
produced at all points x such that kx = θ + 2nπ, n ∈ Z.

One of the important properties of the wave equation is that it is linear and homo-
geneous. As a result, if p1(x, t) = α1 cos(k1x+ 2πf1t) and p2(x, t) = α2 cos(k2x+
2πf2t) are solutions to this equation (which is the case for k1 = 2πf1/c and k2 =
2πf2/c), then p1(x, t) + p2(x, t) will also be a solution to the wave equation. At a
given point x, the perceived sound will then be of the form s(t) = α1 cos(2πf1t +
θ1) + α2 cos(2πf2t + θ2). This more complex sound is the result of superposing the
two frequencies f1 and f2. Taking this process further shows that an acoustic wave

4. In the case of a real function, the frequency is always assumed to be positive or equal to zero.
For complex functions, because cos(2πft) = [exp(2πift) + exp(−2πift)]/2, we also have
to consider negative frequencies (in this case −f ).
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can, at a certain point in space, produce a sound signal of the form

s(t) = α1 cos(2πf1t+ θ1) + α2 cos(2πf2t+ θ2) + . . .

=
∑
n≥1

αn cos(2πfnt+ θn). (1.11)

If the sum is comprised of an infinite number of terms, it can only be evaluated if the
αn and the fn meet certain conditions. The spectrum of such a sound, that is to say,
the set of frequencies fn contained in this sum, is said to be a discrete spectrum.

A young person is usually considered to be able to perceive frequencies from 20 Hz
to 20 kHz, and sounds become inaudible outside this interval (infrasounds or ultra-
sounds).

1.3.1. Periodic sounds

Let us again consider sounds of the form (1.11). An interesting case occurs when
all of the frequencies are integer multiples of a given frequency f > 0: fn = nf. In
such a case, the sound signal

s(t) =
∑
n≥1

αn cos(2πnft+ θn)

is periodic with period T = 1/f , that is to say that s(t+ T ) = s(t) for any t. This is
because

cos(2πnf(t+ T ) + θn) = cos(2πnft+ 2nπ + θn) = cos(2πnft+ θn).

There are, of course, no truly periodic sounds, if only because no sounds could have
begun before the Big Bang!

Figure 1.13. Periodic sound (approximation of the sound of a trumpet)

In music, the frequency f (and likewise the component cos(2πft + θ)) is called
the fundamental – hence it determines the pitch of the corresponding note – and the
frequency fn = nf is called the n-th harmonic (not to be confused with a harmonic
wave). Therefore, the first harmonic is also the fundamental. If for example f is the
frequency of C4 (261.6 Hz), then f2 is one octave above (C5), f3 is one fifth higher
(G5), f5 is slightly below the major third (E6), etc. (see also Figure 3.1).

f = 261.6 Hz 2f 3f 4f 5f 6f 7f 8f 9f
C4 C5 G5 C6 E6 G6 B[6 C7 D7 (1.12)
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A sound comprised of a high number of harmonics is perceived as ‘ rich ’ (such as
for the harpsichord or the violin), whereas a sound comprised of only few harmonics
will be perceived as ‘ poor ’ (such as for the recorder).

Figure 1.14 shows the signal obtained by adding all of the terms (sin 2πnt)/n,
n = 1, 2, 3, 4. You can listen to these sounds on the AM website. We are getting closer
and closer to a triangular signal, the simplest model for the sound of a violin.

Figure 1.14. From top to bottom, the fundamental and the successive additions
of the 2nd, 3rd and 4th harmonics (simplified model for the sound of a violin)

Figure 1.15. From top to bottom, the fundamental and the successive additions
of the 3rd, 5th, and 7th harmonics (simplified model for the sound of a clarinet)

Figure 1.15 (see also the AM website) was obtained in the same way, with the odd
harmonics n = 1, 3, 5, 7. The result is closer to a rectangular signal, the simplest
model for the sound of a clarinet.

Usually, sustained sound instruments, such as the violin or the organ, produce
periodic sounds, at least over a significant period of time. We will now describe the
mathematical tool that can allow us to analyze such sounds.

1.3.1.1. Fourier series

Mathematician Joseph Fourier (1768-1830) was the first to analyze periodic sounds
and to decompose them into the trigonometric series that bear his name: the Fourier
series. He developed this theory while was working on heat propagation in solids.

If s(t) is a T -periodic function (i.e. with period T ), integrable5 over the interval
[0, T ], the Fourier coefficients cn, with n an integer, are defined by

cn =
1
T

∫ T

0

s(t) exp(−2iπnt/T ) dt. (1.13)

This constitutes the Fourier analysis. It can be shown that, if certain additional condi-
tions are met, the series below, called the Fourier series, leads back to the values of
s(t):

+∞∑
n=−∞

cn exp(2iπnt/T ) = s(t).

5. A function s is said to be integrable over the interval [a, b] if
R b

a
|s(t)| dt < ∞.
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This constitutes the Fourier synthesis: the sound s(t) is made up of the sum of its
harmonics cn exp(2iπnt/T ) with frequency n/T. This sum can also be expressed
with sines and cosines:

s(t) =
a0

2
+

+∞∑
n=1

an cos(2πnt/T ) + bn sin(2πnt/T )

with an = cn + c−n and bn = i(cn − c−n).

When s2(t) is integrable over the interval [0, T ], the sound’s intensity (1.10) over
a period is related to the Fourier coefficients by way of Parseval’s theorem:

1
T

∫ T

0

|s(t)|2 dt =
+∞∑

n=−∞
|cn|2.

1.3.2. Sounds with partials

Other instruments, such as bells, most percussion instruments, as well as the piano,
to a small extent, produce sounds of the form (1.11), but that are not periodic. In terms
of frequency, this means that there is no frequency f such that all frequencies fn

are integer multiples of f . The Fourier series analysis can then no longer directly be
applied.

Figure 1.16. An example of a non-periodic sound (timpani)

The frequencies found in the sound are also called partials. An example of the
sound of a bell, found in [PIE 99], is comprised of the frequencies6 0.5fp, fp, 1.2fp,
1.5fp, 2fp, 2.5fp and 3fp. The second partial is called the principal, and determines
the pitch of the note. Bellfounders can tune the first 5 partials of a bell’s sound by
changing its thickness, and arrange them so that the third partial is a minor third (the
ratio is 23/12 ' 1.189 in equal temperament, see Chapter 3) above the principal,
which gives them their characteristic sound. The following ratios are a fifth, an octave,
a major third, etc. The previous example actually does not include enough partials to

6. Strictly speaking, this sound is also periodic, with period 10/fp, since the 7 frequencies
are integer multiples of fp/10. But with such a consideration, the first 4 harmonics are equal
to zero. Furthermore, if higher partials are added, the value fp/10 will no longer be suitable.
Finally, these frequencies are only approximations, it may very well be that the exact values
have no common divisor.
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produce a realistic sound. The analysis of a large bell, for fp = 233 Hz (B[3), yielded
the following frequencies and their respective intensities:

f = [0.5, 1, 1.188, 1.530, 2.000, 2.470, 2.607, 2.650, 2.991, 3.367, 4.137, 4.487,

4.829, 5.385, 5.863, 6.709, 8.077, 8.547, 9.017, 9.530, 11.026, 12.393]× fp,

I = [350, 950, 500, 150, 700, 100, 250, 370, 1, 000, 180, 300, 100,

150, 300, 100, 100, 50, 20, 10, 35, 5, 15].

Combined with the adequate envelope (see section 2.5.2), this information allows a
better sound reconstruction, as you can tell from the examples on the AM website.

1.3.3. Continuous spectrum sounds

Singing is still quite close to a periodic sound, but with more complex sounds such
as spoken voice, not only are we much further off from periodic sounds, we are not
even dealing with a sum of punctual frequencies anymore, as we did in (1.11). It is in
fact the opposite, a continuous set of frequencies. Instead of being written as a sum
of exp(2iπfnt) terms with frequency fn, such sounds s(t) can be represented using
integrals of similar terms, constituting the Fourier synthesis:

s(t) =
∫ +∞

−∞
ŝ(f) exp(2iπft) df, (1.14)

where the function ŝ(f), called the Fourier transform of s, is given by the analysis
formula

ŝ(f) =
∫ +∞

−∞
s(t) exp(−2iπft) dt. (1.15)

The modulus |ŝ(f)| gives the amplitude of the frequency component exp(2iπft), and
the argument of ŝ(f) gives the phase at the origin of that component7. The spectrum
of such a sound, as opposed to the discrete spectrum in (1.11), is called a continuous
spectrum. In particular, this representation applies to any function s(t) integrable over
R such that ŝ(f) is also integrable over R.

What does the Fourier transform have to do with the Fourier series expansion
discussed in the previous section? The answer is very simple in the following case:
let s(t) be a sound, equal to zero outside an interval [0, T ], and consider its T -periodic
extension s̃(t) defined by s̃(t + kT ) = s(t) for any t belonging to [0, T ] and any
integer k. Then, if the Fourier coefficients of s̃(t), are denoted by cn, we have

cn =
1
T
ŝ
( n
T

)
.

7. Any complex number z can be expressed as z = ρ exp(iθ) where ρ ≥ 0 is called the modulus
of z and θ ∈ R is called the argument of z.
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This result can be inferred simply by applying the two corresponding Definitions
(1.13) and (1.15). In other words, the Fourier coefficients of s̃(t) are exactly the values,
divided by T , of the Fourier transform of s(t) calculated at the discrete frequencies
n/T. The higher the value of T, the closer together these frequencies will be. This
means that these Fourier coefficients provide valuable information about the Fourier
transform itself, that is to say, the frequency content of the sound s(t) (we will discuss
this further in section 1.4.1). In the case where s(t) has non-zero values outside the
interval [0, T ], the cn can be used as an approximation of the Fourier transform of
s(t). The error then increases as the values outside [0, T ] move farther away from 0.

However, this representation, solely based on frequency is not wholly satisfactory
(no more in fact than (1.11)), because the function ŝ(f) does not provide any direct
information about the sound signal’s time behavior. It would be better to use a repre-
sentation that involves both time and frequency, such as the one used by musicians
when they transcribe a musical piece to a score. For example, Figures 1.17 and 1.18
show an analysis of Maria Callas singing in Norma by Bellini. We will explain in the
following section how such a representation is achieved, where high intensities are dis-
played in darker tones (red in the color plates) and weak intensities with lighter tones
(green, respectively). Notice the famous vibrato that earned her so many admirers, and
how remarkably regular it is!

Figure 1.17. The beginning of Norma by Maria Callas. The first note is an A4 (441 Hz). The
first two harmonics appear very clearly. Then there is a ‘ gap ’ between 1, 000 and 2, 500 Hz,
and the frequency energy reappears between 2, 500 and 4, 000 Hz, where the voice is particu-
larly effective at being heard over the orchestra. Notice of course the vibrato, but also the ‘ s ’
at t = 6 s (see also color plates)

Figure 1.18. Farther down, the famous rise
‘ B C D E F G A, A B[, A, G, F, G... ’ (see also color plates)

Finally, humans are not the only ones able to sing, here is, for those nature lovers
out there, the song of a goldfinch, a bird that can be found in the French countryside,
in both time and time-frequency representations in Figure 1.19...

Figure 1.19. Our thistle-eating friend treating us to a small bucolic touch. A scene that could
be described as... pastoral! Pressure according to time (top); intensity in the time-frequency
representation (bottom) (see also color plates)

or, for those who prefer altitude, the song of a mountain whistler shown in Figure
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1.20. Notice, incidentally, the way the time signal is ‘ enveloped ’, we will mention
this again when we discuss instruments in section 2.5.2.

Figure 1.20. The mountain whistler: less picturesque, maybe, but much more melodious. Pres-
sure according to time (top) ; intensity in the time-frequency representation (middle) ; transcrip-
tion à la O. Messiaen (bottom): do you agree with the pitches of the notes? (see the AM website
for audio, and Chapter 4 about the sensation of pitch; see also color plates)

1.3.4. Noise

The nature segment is now over, we go back to ‘ civilization ’. What surrounds us
on a permanent basis? Noise! Noise is usually associated with sounds that lack any
structure and are unpredictable. For example, a sound signal s where at any time t, the
value of s(t) is random and does not depend on values at other moments, is a noise
that sounds like a continuous hiss, or static on a radio not tuned to any station. The
‘ color ’ of a noise depends on the way the values of s(t) were randomly chosen.

Figure 1.21. What was that noise?

White noise (by analogy with white light) is a sound that contains all audible fre-
quencies with the same intensity. For example, the sound

s(t) =
N∑

n=1

cos(2πfnt+ θn)

will produce perfectly suitable white noise for a high enough value of N (several hun-
dreds), if the frequencies fn are chosen randomly with a uniform probability8 from
the interval [20Hz, 20 kHz], and if the phases are picked in the same way from the
interval [0, 2π]. In the case of pink noise, log fn is chosen instead randomly and with
uniform probability from the interval [log 20, log 20 000], so as to have the same po-
wer (the intensity) inside every octave.

White noise is used for example by sound engineers before a concert to detect
the concert hall’s resonant frequencies: these frequencies will be emphasized in the

8. All of the interval’s frequencies have the same probability (or the same probability density).
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room’s response to white noise. This means that, during a concert, these frequencies
will be amplified compared to others. If loudspeakers are used during the concert,
the sound engineer can then compensate this unwanted effect with the help of the
equalizer on his mixing console, simply by attenuating the resonant frequencies with
the appropriate filters (see section 1.5).

Finally, all sorts of noises can be obtained by filtering white noise with a band-
pass filter (a type of filter that only passes frequencies within a certain interval). These
noises can then be used for sound effects such as for example imitating the blowing
sound produced by a wind instrument.

1.4. Representation of sound

When studying different types of sounds over the last section, we were faced with
the problem of sound representation: with respect to time or frequency. Both have their
pros and cons, but if we go by musical intuition, we sense the need for a representa-
tion that involves both time and frequency: this is what is called the time-frequency
representation. Theory in this field is rich and complex. We will restrict ourselves to
a simplifed version, introduced with the help of a musical example. We will also see
how it can be useful to speech analysis.

Suppose that the sequence of notes A, C, E, with respective frequencies 440,
523.25 and 660 Hz are played on a flute for a duration of two beats each. A musi-
cian would write:

Figure 1.22. Musical representation of the A - C - E sequence

We will assume that each note contains only the first four harmonics, with ampli-
tudes 64, 16, 4 and 1, respectively, and lasts one second. Let us calculate the Fourier

Figure 1.23. Spectrogram of A-C-E in the case of
four harmonics per note

coefficients of each note (there are four non-zero coefficients for each note), and draw
the graph of the corresponding frequencies according to time, using a line with varying
intensity or color depending on the amplitude. The result is a sonogram, or spectro-
gram, shown in Figure 1.23, first introduced in 1946 by R. Potter of Bell laboratories.

In this graph, the y-axis shows frequency and the x-axis shows time. The analogy
with the score in Figure (1.22) is obvious, but the spectrogram carries the additional
information of the analyzed sound’s harmonics composition. A spectrogram like this
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one is usually not calculated using intervals of one second, as these would be much too
long for sounds varying more rapidly than the one in this example. We will describe
later the exact procedure used.

1.4.1. Time or frequency analysis, discrete Fourier transform

In phonetics, sounds fall into two categories: those that involve the vocal chords
– vowels and sonorant consonants such as ‘ l ’ and ‘ m ’ – and those where vocal
chords do not vibrate – obstruent consonants such as ‘ sh ’ and ‘ s ’. Vocal chords
produce a more or less periodic sound, unlike sounds that are hissed or whistled. The
three Figures 1.24, 1.25 and 1.27 show three types of speech analysis for the recorded
words ‘ le chapeau ’(the hat, pronounced luh-shah-poe). Unlike the first two, the third
shows a clear distinction between the vowels and the obstruent consonants.

Figure 1.24. Time representation of ‘ le chapeau ’,
mixed with a faint background noise

Figure 1.25. Frequency representation of ‘ le chapeau ’. Vowels are
responsible for the peaks found at multiples of 110 Hz

The first figure simply shows the time signal. The second shows the frequency
analysis of the same signal. In order to do this, the recorded sound s(t) is considered
to be one period, in this case with a duration of T = 1.7 s, of a periodic signal (an
imaginary signal outside the interval [0, T ], see also section 1.3.3), and then its Fourier
coefficients cn are calculated:

s(t) =
+∞∑

n=−∞
cn exp(2iπnt/T ) for 0 ≤ t ≤ T.

But the coefficients cn were not calculated exactly from Formula (1.13): first because
it would not be possible to achieve such a calculation, and second because not all the
values of s are known, only N values s(tk) (called samples, see Chapter 5) taken at
tk = kT/N . We actually performed an approximate integration (using rectangles to
approximate the integrand) that provides the approximation

cn ' c̃n =
1
N

N−1∑
k=0

s(tk) exp(−2iπnk/N). (1.16)
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This is what is called the length N discrete Fourier transform9 (DFT). Just as with
the Fourier series, an inverse transformation leads from the coefficients c̃n back to the
values s(tk):

s(tk) =
N−1∑
n=0

c̃n exp(2iπnk/N). (1.17)

The lowest frequency10 in this case is f1 = 1/1.7 Hz. The c̃n are shown in Figure
1.25 not according to n (an integer without any physical meaning) but according to the
associated frequency fn = n/T = n/1.7 Hz. As you can see, certain frequencies are
more intense than others, particularly near the frequencies 110 Hz, 220 Hz, 330 Hz,
440 Hz, 570 Hz, 700 Hz which approximately correspond to the harmonics of the
fundamental note 110 Hz (A2) produced by the vocal chords. The drawback of this
representation (Figure 1.25) is that it does not give any information regarding the
sound signal’s time evolution, whereas the drawback in Figure 1.24 was the lack of
information on the frequencies contained in the sound. Hence the need for another
kind of analysis: the time-frequency analysis provided by the spectrogram.

1.4.2. Time-frequency analysis, the spectrogram

The idea when performing the time-frequency analysis of a sound signal is as
follows. We start by dividing the signal in M small segments sm(t) such that

sm(t) =
{
s(t) if t ∈ Im = [mT/M, (m+ 1)T/M [,
0 otherwise.

Another way to express this is to set sm(t) = w(Mt/T −m) s(t) with

w(t) =
{

1 if t ∈ [0, 1[,
0 otherwise,

meaning that each segment sm(t) is obtained by multiplying s(t) by the rectangular
sliding window w(Mt/T −m) . Figure 1.26 shows a signal s(t) and the third segment
s2(t) for T = 3 and M = 10. Notice by the way how the frequency increases with
time in signal s, like at the beginning of a siren.

Then, using the same idea as with the A-C-E sequence, a DFT of the signal sm(t)
is performed on each interval Im, m = 0, 1,..., M − 1, and for each coefficient c̃mn

9. A process exists to rapidly calculate all of the coefficients ecn in 1.5N log2(N) operations. It
was invented by Cooley and Tukey in 1965.
10. This frequency has no physical meaning, and only expresses the fact that the sound lasts 1.7
s.
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Figure 1.26. Sound signal to be analyzed (top); rectangular sliding window
(middle); multiplication of the signal by this window (bottom)

(the index m indicating that we are dealing with the interval Im) associated with the
frequency fn = nM/T , a line is drawn on the spectrogram connecting the points
with coordinates (mT/M, fn) and ((m + 1)T/M), fn), with an intensity or color
that varies with |c̃mn |.

Typically, the length of each DFT is 256 or 512. In practice, instead of using dis-
joint intervals (since these can render ‘ invisible ’ what happens at the junctions, a gap
for example), the intervals are chosen so that they overlap, and instead of a rectangular
window, other windows are used with a less abrupt break, such as the ones shown in
Figure 5.10.

Figure 1.27. Time-frequency representation of ‘ le chapeau ’. The vowels are fairly ‘ musical ’,
the consonant ‘ ch ’ is rather ‘ noisy ’! (see also color plates)

If we apply this process to our example, we get Figure 1.27 (with length 512 DFTs
and 22,050 samples per second). Notice in particular how a consonant such as ‘ ch ’
contains many more high frequencies than a vowel. We also find for the sounds ‘ e ’,
‘ a ’ and ‘ o ’ the harmonics produced by the vocal chords, that had been observed in
Figure 1.25. All the same, the sound signal’s evolution with time is still shown, we
have information about both time and frequency.

However, notice that the image lacks sharpness. This is not due to any technical
problem related to the image processing, but to a genuine impossibility of having a
signal concentrated both in time and frequency, for two reasons.

The first is qualitative. For any given function s(t), it is impossible for both s(t)
and ŝ(f) to be both equal to 0 outside a finite interval (except if s = 0). In particular,
if a sound has a finite duration, then it necessarily contains arbritrarily high frequen-
cies: for any chosen threshold fS , this sound contains frequency components with
frequencies higher than fS!

The second, quantitative reason is known in quantum mechanics as Heisenberg’s
uncertainty principle, which states that it is impossible to measure with an arbitrary
precision both the position and the speed of a particle. This principle is actually a
mathematical result, according to which, for a function s(t) such that∫

|s(t)|2 dt = 1,
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the standard deviation11 σ associated with the probability density |s(t)|2, and the
standard deviation σ̂ associated with the probability density |ŝ(t)|2 are such that

σ σ̂ ≥ 1
4π
. (1.18)

What does this actually mean for the sounds of these two properties? Imagine
that the graph in our spectrogram only showed a small black or colored rectangle
depending on what graphics were chosen, with the size ε1× ε2 corresponding to such
a signal s(t). This would mean that the sound’s duration in time is ε1, and that the
frequencies are concentrated in an interval with length ε2, which already contradicts
the first property. But even if that were possible, we would necessarily have σ ≤ ε1/2
as well as σ̂ ≤ ε2/2. Using (1.18), we would get ε1ε2 ≥ 1/π, the lower bound of the
time-frequency ‘ surface ’imposed on any sound!

Figure 1.28. ‘ Le chapeau ’ on the left, high time resolution (128-sample window, with in
this case 22, 050 samples per second); on the right, high frequency resolution (1, 024-sample
window); see also color plates

As a result, the uncertainty principle has repercussions on the time-frequency ana-
lysis itself: the choice has to be made between high resolution for time, which leads
to a loss of accuracy on frequencies, and a high resolution for frequency, which leads
to a loss of accuracy on the sound’s time evolution.

This is illustrated by Figure 1.28 which shows two spectrograms of our ‘ chapeau ’,
performed, in the first case, with a short time window (256 samples, or 12 ms), and in
the second case with a longer time window (1,024 samples). The first time-frequency
analysis is slightly better at showing the sequence of time events, whereas the second
one shows more clearly the harmonics or partials produced by the vocal chords (the
horizontal lines) and that were not visible in the first figure.

Figure 1.29. Time-frequency representation of the vowels. Naturally, the sound ‘ o ’leads to a
circle, as any self-respecting ‘ o ’ should! (see also color plates)

Let us finish with a last example of a spectrogram: the analysis of 5 vowels (Figure
1.29). These sounds are fairly concentrated in the low frequencies. Also, each vowel
produces darker areas, hence more intense, corresponding to the resonant frequencies

11. The mean associated with a density probability g is m =
R

xg(x) dx, and the standard
deviation σ is equal to

`R
(x−m)2g(x) dx

´1/2
.
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of the vocal tract. Because these frequencies depend on the form (or shape) of the
latter, they are called formants.

If you look closely, these formants can also be seen in Figure 1.17, where you can
notice that during the first six seconds, the upper harmonics do not follow the melodic
line at all (A G A C B[ A G G) of the first two, but instead seem to just ‘ hover in
place ’. This is due to the fact that the high-pitched harmonics of the same level (at
the beginning 1, 2, 6, 7, 8, 9) are not the ones that are intense in each of these notes,
instead it is those found in the 2, 500 to 4, 000 Hz range. The sound is shaped by
the vocal tract, which reinforces certain frequencies, and attenuates others, hence the
name formants.

1.5. Filtering

Filtering a sound is equivalent for example to the process you perform when you
turn the bass and treble dials on you stereo, resulting in a modification of the sound’s
low-pitched to high-pitched ratio. The following is a brief mathematical description.

1.5.1. Discrete spectrum

To begin, let us consider again a pure sound, consisting of only one harmonic with
frequency f , written in complex form as:

s(t) = α exp(2iπft).

Two basic operations can be performed on this sound. These are:
- amplification by a factor a > 0:

v1(t) = as(t) ;

- phase shifting by an angle θ ∈ [0, 2π[:

v2(t) = α exp(2iπft− iθ).

This phase shifting can also be interpreted as a delay of τ = θ/2πf , since 2πft−θ =
2πf(t− θ/2πf), and therefore

v2(t) = s(t− τ).

If both operations are performed, we get the sound

v(t) = aα exp(2iπf(t− τ)) = a exp(−2iπfτ)s(t),
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and the initial sound has been multiplied by the complex number

H = a exp(−2iπfτ),

v(t) = Hs(t).

Combining these two operations is at the core of filtering: amplification and/or phase
shifting. Filtering is of course linear, and unaffected by time shifting, or in other words,
filtering then shifting by a time interval t0 yields the same result as a shift by the same
time interval followed by the filtering:

s(t) 7−→ u1(t) = Hs(t) 7→ u2(t) = u1(t− t0)
s(t) 7−→ v1(t) = s(t− t0) 7→ v2(t) = Hv1(t).

(1.19)

As expected, we have u2(t) = v2(t) = Hs(t− t0).

1.5.1.1. Transfer function

Consider now a more complex sound,

s(t) =
∑

n

cn exp(2iπfnt),

and let us apply to each term with frequency fn the previous operation of a multi-
plication by a complex number dependent on the frequency, denoted by H(fn). The
resulting modified sound is

v(t) =
∑

n

H(fn)cn exp(2iπfnt). (1.20)

Again, this operation is linear and unaffected by time shifting, and the system that
changes s into v is called a filter12. The function H(f) (considered here only for the
frequencies fn, but it can just as well be defined for any frequency f ) is called the
filter’s transfer function.

What is the point of filtering? Essentially to analyse a sound signal or to modify
its frequency component. If for example a sound is considered to be too ‘ bright ’, it
should be filtered with a filter whose |H(fn)| are low (or even equal to zero) for the
high frequencies, and close to 1 for the low frequencies. Such a filter is called a low-
pass filter. You can also do the opposite: attenuate the low-frequencies; this is done
with a high-pass filter. Finally, it is also possible to select the intermediate frequencies
and to attenuate all the others, using what is called a band-pass filter. We will discuss
this further later on.

12. It can actually be demonstrated that any operation that is linear and unaffected by time
shifting can be written in that form.
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For example, the roughly triangular signal from Figure 1.14 (bottom plot), com-
prised of the first four harmonics and with fundamental 1 Hz, was filtered using three
filters, the transfer functions of which are shown in the left column of Figure 1.30:
a low-pass, a band-pass and a high-pass. The column on the right shows the output
signals. For the first two, these filterings resulted in singling out the components with
frequency 1 Hz and 2 Hz respectively. The third filter isolated the sum of the two
components with frequencies 3 Hz and 4 Hz.

Figure 1.31 shows the same process repeated on the roughly rectangular signal
from Figure 1.15, again with the fundamental 1 Hz. Can you interpret it?

1.5.1.2. Impulse response

Furthermore, it can be shown that if certain conditions are met (for example H(f)
and Ĥ(f) must be integrable), H(f) is the Fourier transform of a function h(t):

H(f) = ĥ(f). (1.21)

This function h(t) is called the filter’s impulse response: this is the filter’s output signal
when the input is the Dirac impulse in 0, discussed in greater detail in section 5.1. This
impulse, denoted by δ(t), is an infinitely brief signal (but it is not an actual function!),
with all its energy focused in 0, and such that∫ +∞

−∞
ϕ(t)δ(t) dt = ϕ(0) (1.22)

for any continuous function ϕ, that is to say, a function without any ‘ gaps ’.

The function v resulting from the filtering given by Formula (1.20) can then be
expressed as the convolution product of h and s:

v(t) = (h ∗ s)(t) =
∫ +∞

−∞
h(t− u)s(u) du. (1.23)

This product obeys the following important property, called commutativity:

h ∗ s = s ∗ h.

1.5.2. Continuous spectrum

Let us now go over the filtering of sounds with continuous spectra, which, if you
remember, means sounds of the form

s(t) =
∫ +∞

−∞
ŝ(f) exp(2iπft) df
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where ŝ is the Fourier transform of s (see Equation (1.15)).

Just as with the examples studied previously, filtering a sound signal s(t) using a
filter with the transfer function H(f) will yield the signal v(t), the Fourier transform
of which will be H(f)ŝ(f):

v̂(f) = H(f)ŝ(f). (1.24)

Thus the value of the transfer function H(f) can be seen as the amplification fac-
tor/phase shift of the signal s(t) at the frequency f .

The function H(f) is the Fourier transform of a function h(t), still called the
impulse response, and again we have the convolution product

v = h ∗ s. (1.25)

Notice that for a harmonic input signal s(t) = exp(2iπft), we get the following
output signal

v(t) = (h ∗ s)(t) = H(f) exp(2iπft),

and find the same expression as in section 1.5.1: the continuous spectrum and the
discrete spectrum obey the same formal system.

The underlying mathematical theory was developed in the 19th and early 20th cen-
turies, particularly by Laurent Schwartz (1915-2002), who ‘ invented ’ distributions, a
generalization of the concept of functions (see for example [GAS 90]).

Application: the sound received by a listener in a concert hall can be seen as the
result of the sound coming from the orchestra, filtered by the filter made up of the
room itself. A rough idea of its impulse response can be gathered from clapping one’s
hands or emitting a very brief sound. What do you think the listener will perceive if
the room’s transfer function ressembles the graph shown in Figure 1.32?

1.5.3. Ideal low-pass, band-pass and all-pass filters

This chapter ends with the description of the models for three fundamental filters,
which we will be using several times.
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The ideal low-pass filter13 with cut-off frequency B > 0 (see Figure 1.33) is given
by its transfer function14:

H(f) =
{

1 if |f | < B
0 otherwise. (1.26)

Hence this filter passes the frequencies |f | < B without affecting them and blocks the
frequencies |f | > B (nothing can be said of the limit case |f | = B).

If we remember that H(f) = ĥ(f), the impulse response h can be obtained by
using (1.14):

h(t) =
∫ B

−B

1 exp(2iπft) df =
sin(2πBt)

πt
.

Hence, we have
h(t) = 2B sinc(2Bt),

where the sine cardinal function (‘ cardinal ’ because it is equal to zero for all integers
6= 0) is given by

sinc(t) =
sin(πt)
πt

.

The ideal band-pass filter with cut-off frequencies f0 − B > 0 and f0 + B (see
Figure 1.34) is given by its transfer function:

H(f) =
{

1 if |f ± f0| < B
0 otherwise. (1.27)

Hence this filter leaves unaffected the intermediate frequencies f such that |f ± f0| <
B, and blocks all other frequencies.

The calculation of its impulse response yields

h(t) = 4B sinc(2Bt) cos(2πf0t).

Notice that this is a frequency cos(2πf0t) (called a carrier wave in radio communi-
cations) with its amplitude modulated by the impulse response of the ideal low-pass
filter.

13. It is called ‘ ideal ’ because it cannot be achieved physically. It can merely be approximated
as precisely as desired by an electronics system, but only by allowing a certain delay for the
output.
14. The value of H at both ends B and−B has no importance in theory, since the integral does
not ‘ see ’ isolated punctual values, except if there are Dirac masses at those points, but that is
another story...
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Finally, the all-pass filter, with its strange name, passes everything! The modulus
of its transfer function is 1, hence it is of the form

H(f) = exp(−iθ(f)), θ(f) ∈ R.

A pure sound exp(2iπft) passing through this filter is transformed into exp(2iπft−
iθ(f)) : it therefore sees its phase shift by an angle θ(f), dependent on the frequency,
but no amplitude modification. This kind of filter is used to simulate echos (see Chap-
ter 6).
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1.6. Study problems

1.6.1. Normal reflection on a wall (*)

In the half-space x ≥ 0,with coordinates x, y, z, an incident plane wave pi(x, t) =
sin(kx + 2πft) is reflected by a wall. This wall, with equation x = 0, is assumed to
be perfectly rigid. Therefore the speed of air is zero in x = 0. The incident plane
wave and the reflected plane wave pr(x, t) = β sin(kx − 2πft) produce an acoustic
pressure

pa(x, t) = pi(x, t) + pr(x, t).

1) Using the Euler equation, show that ∂xpa(0, t) = 0 for any t.

2) Calculate the value of β and show that pa(x, t) = 2 cos(kx) sin(2πft). What is
the nature of this plane wave?

1.6.2. Comb filtering using a microphone located near a wall (**)

While recording a pure sound with frequency f , generating a harmonic acoustic
wave, a microphone is placed close enough to a wall that the produced wave can be
considered a plane wave in that spot. Hence the conditions of Study problem 1.6.1 are
satisfied.

1) What will the sound intensity be at a given point over a period T = 1/f?

2) Let us assume that the microphone, placed at a distance d from the wall, reacts
only to variations in pressure. For what frequency values would the signal’s amplitude
α(f) detected by the microphone reach its maximum? Its minimum? What effect does
the distance d have on these values? Make a plot of 10 log(α2(t)).

3) Same question assuming that the microphone only reacts to variations in speed
(read [JOU 00] to learn more about microphones).

1.6.3. Summing intensities (***)

A listener is located far enough from the orchestra that the 10 violins can be consi-
dered to produce, each on their own level, a traveling plane pressure wave

pi(x, t) = ui(x− ct), i = 1, 2 . . . , 10.

1) Use the Euler equation and the state equation to show that the corresponding air
speed is vi(x, t) = pi(x, t)/cρ0.
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The listener is located at a fixed point x. Each violin plays the same note, with
fundamental f, with the same strength, so that

pi(x, t) = s(t− ϕi),

where the ϕi reflect the possible phase differences between the sounds at point x, and
where the function s is T -periodic with T = 1/f .

2) First, calculate according to s the sound intensity I1 produced at this point by a
single violin over a period T .

3) By what factor would we have to multiply the amplitude of this violin in order
to get an intensity increase of 10 dB? 20 dB? (Answer: by

√
10 ' 3.16; by 10).

4) All 10 violins are now playing together. At point x, the total acoustic pressure
and the associated speed are therefore

pa(x, t) =
10∑

i=1

pi(x, t), v(x, t) =
10∑

i=1

vi(x, t).

Show that the total intensity I10 at point x is

I10 =
1

cρ0T

∫ T

0

(
10∑

i=1

s(t− ϕi)

)2

dt.

With the help of the Cauchy-Schwarz inequality∫ T

0

g(t)h(t)dt ≤

(∫ T

0

g2(t)dt

)1/2(∫ T

0

h2(t)dt

)1/2

,

use this result to show that 0 ≤ I10 ≤ 100I1, and that the associated decibel levels are
such that LI10 ≤ LI1 + 20 dB.

5) In what situation do we have LI10 = LI1 + 10 dB as mentioned in this chapter?

1.6.4. Intensity of a Standing Wave (**)

Consider a standing pressure wave, of the form

pa(x, t) = a sin(k(x− x0)) cos(2πf(t− t0)).

Using the Euler equation to determine the speed v, show that the intensity over a
period T = 1/f is equal to zero. Interpretation: a standing wave carries no energy (it
only fluctuates without traveling).
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1.6.5. Sound of a siren (*)

The siren was invented by the French engineer Cagniard de La Tour (1777-1859).
For a sound of the form s(t) = sin(2πF (t)), the function f(t) = F ′(t) is called
the instantaneous frequency. Determine the expression s(t) of a siren whose instan-
taneous frequency is a sinusoidal variation, except for a constant, between the two
frequencies f0 − β and f0 + β.

1.7. Practical computer applications

This first series of practical applications deals with synthesizing, listening to, and
analyzing sounds using the MATLAB software. The necessary programs and sound files
can be found on the AM website, in the TP folder. You will also find certain answers in
the TP/CORRIGES folder. The address of the AM website is:

www-gmm.insa-toulouse.fr/~guillaum/AM/

It is recommended that you copy the entire content of the TP folder to your working
folder, meaning the folder you will be using as the default directory during a MATLAB
session. This will allow you to edit and modify them as you please.

Typographic convention: mathematical objects are written in italic (for example
the sound s(t)). MATLAB objects are written in typewriter style (for example the
third element s(3)).

1.7.1. First sound, vectors

On a computer, a sound is represented by its values sn = s(tn), called samples,
with tn = nτ and τ = 1/Fe. Thus two consecutive instants tn and tn+1 are separated
by a time interval τ called the sampling period, and the number of samples per second,
equal to Fe, is called the sampling frequency (these concepts are discussed in detail in
Chapter 5).

In MATLAB, the values sn can be arranged in a vector s, and the element number
n can be accessed by typing s(n). An example of the creation of a vector and of the
access to one of its elements: after starting MATLAB, write the following lines (the �
sign is the ‘ prompt ’ that shows up in MATLAB), hitting the ‘ enter ’ key at the end of
each line:
� s = [1,-0.5,2,3];

� s

� s(3)
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Notice that the result of the operation is not displayed or is displayed depending on
whether the line ends with a semi-colon (line 1) or not (lines 2 and 3).

A vector x = [a, a+h, a+2h,..., a+nh] with its elements at equal distances from
each other can easily be created: simply execute the command x = a:h:(a+n*h);

after assigning values to the variables a, h and n.

First sound (pure sound): interpret and execute the following command lines:
� Fe = 22050;

� f = 440;

� T = 1;

� dt = 1/Fe;

� t = 0:dt:T;

� s = sin(2*pi*f*t);

� sound(s,Fe);

An essential tool: the online help. For a brief description of a MATLAB function,
simply execute the help command followed by the function’s name, for example help
sin or help sound. And if you need help with the help, type help help! One of
the common features of most MATLAB functions is to return a vector if the argument
itself is a vector. For example, the vector s above is comprised of the values s(tn) =
sin(2πftn) in the interval [0, T ] that was specified.

1.7.2. Modifying the parameters: the command file

If we wish to modify the frequency for example, it would be tedious to write eve-
rything over again. Instead, we should use a file containing all the commands. Open a
file, name it test1.m, and write the previous list of commands in this file (without the
�!). To execute all of the commands contained in this file, simply type the command
test1 at the MATLAB prompt, after saving the file of course.

Now modify the values of Fe, T and f to your liking in the test1.m file, and
interpret what you hear when you run the file.

1.7.3. Creating more complex sounds: using functions

We now want to create a more complex sound that contains several frequencies.
You may keep writing in the previous command file, but it is more convenient to use
a function if we wish to perform different tests.
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Unlike the command file, functions return the results of calculations that require
one or several arguments. These functions are also written in a file with the .m exten-
sion, but the first line, called the header, must be written with the following structure

function [y1, y2, ..., yp] = funct(x1, x2, ..., xq)

where funct.m is the file’s name.

Open and read the synthad.m file that you should have copied from the AMwebsite
to your current directory. The lines starting with % are comments (this means that they
are not read by the MATLAB interpreter).

Execute for example the following commands (the other arguments keep their pre-
vious values):
� a = 1; p = 0;

� s = synthad(a,f,p,T,Fe);

� sound(s,Fe);

This function allows us to generate more complex sounds: if we give synthad the
vectors a = [α1, α2,..., αm], f = [f1, f2,..., fm], p = [θ1, θ2,..., θm] and the numbers
T, Fe as its arguments, the function will return in the vector s the samples s(tn) of
the sound

s(t) =
m∑

n=1

αn sin(2πfnt+ θn), 0 ≤ t ≤ T.

A few technical points before we go any further:

Vector operations. Transposing a line vector into a column vector, or vice versa,
is done by adding a right quote: x'. Adding or substracting vectors of the same size
is done using the + and − operators. A bit more odd: the sum a+x of a number a and
a vector x adds a to each component of x. Multiplying and dividing a vector x by a
number a is done by writing a*x and x/a. MATLAB offers convenient tools to perform
operations on vectors without resorting to the use of loops, the .* and ./ operators,
which work term by term. To raise all of the terms of a vector x to the power m, type
x.^m. As an illustration, type in the following commands:
� x = [1,2,3]; y = [2,2,3];
� x

� x'

� x+y

� x'+y

� x+0.1

� 3*x

� x/2

� x.*y

� x./y
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� x.^2

� x.^y

The line x'+y caused an error! Two vectors can only be added if they are of the
same type: line or column. Now it is your turn to change the values of the ampli-
tudes and the frequencies given to the synthad function, and to compare the resulting
sounds. In the harmonic case, you can, in particular, play around with the decrease
speed of the coefficients αn, or with the presence or absence of even harmonics. In the
case of partials, try using the values given for a bell in section 1.3.

1.7.3.1. Noise and siren interlude

Based on synthad.m, create a function called noise.m with the header
function s = noise(T,Fe)

that creates a noise either by using the models described in this chapter or simply by
using the MATLAB function randn (think of help). Create a function called siren.m

as well, with the header
function s = siren(f,f1,beta,T,Fe)

that returns the samples of the sound

s(t) = sin(2πft+ β sin(2πf1t)/f1).

1.7.4. Analysis

You are now going to analyze a sound of your choice, after creating it or copying
it from the AM website (those are the files with the .wav extension). In order to read
the file flute.wav for example, execute the command
[s,Fe] = wavread('flute.wav');
The variable s then contains the sampled sound and the sampling frequency Fe. To
listen to this sound, use the sound command. Note that the vector s comes out as a
column vector.

Below is an example of a sound consisting of three consecutive notes, each of
which comprises four harmonics (we will no longer show the prompt �):
a = [1 000,100,10,1];

f = [440,880,1320,1760];

p = [0,0,0,0]+pi/2;

T = 1; Fe = 11025;

s1 = synthad(a,f,p,T,Fe);

s2 = synthad(a,1.5*f,p,T,Fe);

s3 = synthad(a,2*f,p,T,Fe);

s = [s1,s2,s3];

soundsc(s,Fe);
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The second line from the bottom yields a vector s, resulting from writing the three
vectors s1,s2,s3 one after the other. In this case, we used the soundsc function
rather than sound which only performs properly for values taken from the interval
[−1, 1]. The soundsc function (sc for ’scale’) automatically multiplies and shifts the
sound samples so as to have the minimum equal to−1 and the maximum equal to 1. It
has a drawback however: it does not necessarily render a sound starting or ending near
0, which can cause a ‘ click ’ at the start or at the end of the sound. This inconvenience
can be avoided by writing s = s/max(abs(s)); sound(s,Fe);

1.7.4.1. Time analysis

Time analysis is the time representation of the signal, performed with the plot(x)
command. You can zoom in by clicking on the⊕ icon and choosing the area to enlarge
with the left mouse button, or zoom out with the right mouse button.

1.7.4.2. Frequency analysis

To perform the frequency analysis of a sound s(t) with a duration T, on the fre-
quency range [0, Fmax] where the condition Fmax < Fe/2 is imposed (the explana-
tion will come in Chapter 5), run the following command lines. In this case, we chose
Fmax = 4, 000:
z = fft(s);

T = (length(s)-1)/Fe;

fr = 0:1/T:4 000;

nf = length(fr);

plot(fr,abs(z(1:nf)));

If for example you chose for s a periodic sound with the harmonics 440 Hz, 880 Hz
and 1,320 Hz, you should see three peaks appear for the x-coordinates 440, 880 and
1,320, with heights proportional to the weights (the αn) of each of these harmonics.

1.7.4.3. Time-frequency analysis

The time-frequency analysis is performed using the MATLAB function specgram:
specgram(s,512,Fe);

The number 512 indicates the width of the analysis window (see section 1.4.2), and the
calculation speed of the FFT is optimum if that number is a power of 2. Try different
values and interpret the resulting spectrograms.

1.7.5. Filtering

We are going to filter the sound steinwayE.wav that you copied from the AM web-
site. Open it in MATLAB by executing the command
[s,Fe] = wavread('steinwayE.wav');
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We will admit that the following lines perform a low-pass filtering with cut-off fre-
quency W = Wn ∗ Fe/2 where Wn ∈]0, 1[:
b1 = fir1(100,Wn);

s1 = filter(b1,1,s);

Change the value of Wn so as to haveW vary between 100 Hz and 1, 000 Hz and listen
to the result.

Likewise, we will admit that the following lines perform a high-pass filtering with
the same cut-off frequency W = Wn ∗ Fe/2:
b2 = fir1(100,Wn,'high');

s2 = filter(b2,1,s);

Again, change the value of W in the previous interval and listen to the result.

Finally, perform a band-pass filtering of your choice by consulting the online help
for the function fir1.



Figure 1.30. Different filters applied to a ‘ triangular ’signal

Figure 1.31. Different filters applied to a ‘ rectangular ’signal.
What happened?

Figure 1.32. Transfer function of an imaginary concert hall

Figure 1.33. Transfer function (top) and impulse response (bottom) of the
ideal low-pass filter with cut-off frequency B = 1.

Figure 1.34. Transfer function (top) and impulse response (bottom) of the
ideal band-pass filter with cut-off frequencies 1 and 3
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Chapter 2

Music Instruments

After studying the nature of musical sounds and their propagation, we are now
going to focus on the sources of these sounds: music instruments. Composers, musi-
cians and scientists have always been interested in understanding the production mode
of musical sounds. Jean-Philippe Rameau used to say for example that ‘ the mere reso-
nance of the sonorous body accounts for all of music theory and practice ’ [RAM 37].
Numerous mathematicians and physicists have brought their contributions [FIC 96].
However, we are far from having complete models at our disposal to describe music
instruments exactly. The way they function can be extremely complex, and require
the use of very sophisticated theories. Turbulence theory is needed, for example, to
describe the oscillations of the flow of air produced at the mouthpiece of a flute or an
organ pipe [INS95, FLE 98].

Simply put, a music instrument is made of two essential parts: the vibrator (the
source of the vibrations) and the resonator. A string by itself hardly produces any
sound. It needs to be combined with a resonator to more efficiently transform the vi-
bration’s mechanical energy into acoustic energy. This may have been discovered in
prehistoric times when people used their mouths to pull the string on a bow: 10, 000
to 15, 000 year old cave art found in the Trois-Frères cave, in Ariège, France, shows
a sorcerer holding the upper part of a bow between his teeth, the lower part in his
left hand, and playing the string with his right hand. In most string instruments, the
resonator is a sheet of spruce wood called the sounding board, connected to the string
by a piece of wood (beech or maple) called the bridge. In wind instruments, the vibra-
tor can be a reed (clarinet, saxophone, oboe, etc.), the musician’s lips (horn, trumpet,
trombone, etc.), a flow of air (flute, organ, etc.), and the resonator is the column of air
surrounded by the instrument, sometimes the pipe itself, depending on the material it
is made of.
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The objective of this chapter is to study simple vibration models of sonorous bo-
dies, the basic mechanisms of all music instruments. These vibrations can be divided
into two categories: free vibrations and driven vibrations. Percussion instruments, the
harpsichord, the piano, the guitar, but also the violin when playing pizzicato, belong
to the first category. The vibrations are said to be free because after a brief action
(percussion, plucking), the body is no longer subjected to an outside constraint, and
continues to vibrate on its own. Wind instruments (woodwind, brass, organ) and bo-
wed instruments (violin, cello, double bass) belong to the second category. The sound
is sustained by the musician blowing into the mouthpiece for wind instruments, or
by the bow in the case of string instruments. We will study free vibrations of strings,
bars and membranes, then driven oscillations in a tube. Air coupling will be studied
in the particular case of an infinite board, and is the subject of Study problem 2.6.7.
Finally, we will see how the different mechanisms described induce the instrument’s
characteristic property: its timbre.

2.1. Strings

2.1.1. Free vibrations of a string

Let us examine a string with length L and mass per unit length µ bound at both
ends and subjected to a tension T 1. We will ignore the interaction with the bridge
and the important resulting attenuation; these will be the subject of Study problem
2.6.5. We will also ignore other sources of attenuation, for which you may refer to
[VAL 93]. There are three possible types of vibrations: transverse, longitudinal and
torsional vibrations. We will only be studying the first kind, and we will asume that
the vibration occurs in an xOy plane. In this plane, the string’s ends are located at
points (0, 0) and (0, L), and the string’s position at a time t is given by the equation
y = u(x, t). The boundary conditions (at the ends of the string, where it is bound)
impose that u(0, t) = u(L, t) = 0 for any t.

Figure 2.1. A portion of a string subjected to tension

In order to obtain the equation that governs the string’s movement, we have to
consider, for a given time t, the forces applied to a small portion of the string located
between the x-coordinates x and x+dx (see Figure 2.1). The angle between the string

1. If we denote the surface area and the elongation of the string by S and ∆L, we have T =
SE∆L/L where E is the elastic modulus, also called the Young modulus, of the material used
for the string (roughly 21011 Pa for steel, with 1 Pa = 1 Nm−2.)
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and the Ox axis is denoted by θ(x, t). At point x+ dx, the vertical component of the
force due to tension is

F (x+ dx, t) = T sin θ(x+ dx, t) ' T tan θ(x+ dx, t) = T∂xu(x+ dx, t),

where the approximation is valid if θ(x, t) is close to 0. At point x, we have, likewise,

F (x, t) ' −T∂xu(x, t).

Newton’s second law of motion F = mγ yields the vertical acceleration

T∂xu(x+ dx, t)− T∂xu(x, t) ' µdx∂t2u(x, t).

If we divide by dx and if dx tends to 0 (calculation of the derivative with respect to
the first argument), we again obtain the wave equation (1.6)

c2∂x2u(x, t) = ∂t2u(x, t),

where
c =

√
T/µ (2.1)

is now (see analysis conducted in section 1.1.2) the propagation speed of a transverse
traveling wave propagating along the string (not to be confused with the speed of a
point on the string). As we did in Chapter 1, we can start by searching for the harmonic
solutions

u(x, t) = ϕ(x) exp(2iπft)

where ϕ(x) is a solution to the Helmholtz equation (with k = 2πf/c)

ϕ′′(x) + k2ϕ(x) = 0. (2.2)

The solutions to this equation are of the form

ϕ(x) = α exp(ikx) + β exp(−ikx).

Taking into account the boundary conditions ϕ(0) = ϕ(L) = 0, referred to as the
Dirichlet conditions, yields the following linear system with unknowns α and β:{

α+ β = 0,
α exp(ikL) + β exp(−ikL) = 0,

which can only have a non-zero solution if the determinant exp(−ikL)−exp(ikL) =
−2i sin(kL) is equal to zero, that is to say, if2

k = kn =
nπ

L
, n ∈ Z, n 6= 0,

f = fn =
nc

2L
. (2.3)

2. The case where n = 0 is discarded since it leads to a zero solution u = 0. Note that negative
frequencies turn up as positive frequencies when we switch back to real numbers.
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If such is the case, we then have α = −β and ϕ(x) is proportional to sin(knx).
Knowing that exp(ikx)− exp(−ikx) = 2i sin(kx), we get a set of stationary waves

u(x, t) = a sin(knx) exp(2iπfnt).

The first frequency is the fundamental f1, and the other frequencies fn are in-
teger multiples of f1: hence they are harmonics. Theses frequencies are called the
string’s natural frequencies and the corresponding harmonic waves are called the na-
tural modes.

The first three natural modes are shown in Figure 2.2. In particular, Equation (2.3)
tells us that the frequency is inversely proportional to the length of the string, which
had already been discovered by Pythagoras (500 BC), who, based on this observation,
built the diatonic scale from a cycle of fifths (see Chapter 3).

Figure 2.2. The string’s first three natural modes: C, C, G

We can then show that any solution to the wave equation for the string bound at
both ends can be obtained from a sum of natural modes (see also 2.6.1 for another
resolution technique).

Thus, the general form describing the string’s position, a form we owe to Bernoulli
(1753, [ESC 01]), is as follows:

u(x, t) =
+∞∑

n=−∞
cn sin(knx) exp(2iπfnt). (2.4)

Because the frequencies are integer multiples of f1, it follows that the produced sound
is periodic, with period 1/f1. Reality is actually a bit different from this simplified
model, as we will see at the end of this chapter when we discuss timbre.

Finally, the coefficients cn are determined by considering the initial conditions:
the position u0(x) and the speed v0(x) of the string at the time t = 0. Because the
string is bound at both ends, we have u0(0) = u0(L) = 0. If we extend u0(x) and
v0(x) periodically over the interval [−L, 0], we get two 2L-periodic functions. These
functions can be decomposed in a unique way as series of sines that coincide with
u0(x) and v0(x) in the interval [0, L] :

u0(x) =
∑
n≥1

un sin(nπx/L), (2.5)

v0(x) =
∑
n≥1

vn sin(nπx/L). (2.6)
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The term by term comparison of these two equations with (2.4) and its derivative with
respect to t (the speed), knowing that kn = nπ/L = 2πfn/c and sin(2πk−nx) =
− sin(2πknx), leads for each n ≥ 1 to the system

cn − c−n = un,

cniπcn/L+ cniπc−n/L = vn,

with the determinant 2cniπ/L 6= 0, which completely defines the values of c−n and
cn.

2.1.2. Beats, chords and consonance

We will now describe the use of beats to tune an instrument, in this case a piano.
This process can of course be applied to other instruments, such as the harpsichord,
the harmonium, the accordion and the organ, but also to musicians themselves inside
a musical ensemble. For now we will ignore inharmonicity, but it will be described in
section 2.5.1.1 and taken into account in section 3.3.

A piano is built with three strings for each note, tuned in unison, that is at the same
frequency (the lower notes only have one or two strings). According to (2.1) and (2.3),
a string’s fundamental is given by Taylor’s law:

f1 =
1

2L

√
T

µ
.

Because the length L and the mass per unit length µ are determined by the manufactu-
rer, tuning is achieved by modifying the tension T . Note that the total tension on all of
the strings of a contemporary concert piano exceeds twenty tons. The tension for each
string is adjusted by turning pins to achieve the desired effect. A tuning fork serves as
a reference for tuning (A4, which can vary from 440 Hz to 444 Hz, see section 3.4),
and from there the tuner makes comparisons by listening for beats, an effect we will
now analyze.

We will start by considering two strings slightly out of unison, yielding two fun-
damentals s1(t) and s2(t) with close frequencies f1 < f2.

Figure 2.3. Two close frequencies (top) and their superposition (the sum of the
signals, bottom) producing a beat

The graph on top of Figure 2.3 shows the two fundamentals when

s1(t) = sin(20× 2πt), s2(t) = sin(22× 2πt),
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where the frequencies were chosen for purposes of clarity in the plot. The bottom
graph shows their sum s1 + s2. When the two sines are in phase, they strengthen
each other (t = 0, t = 0.5 and t = 1). When they are out of phase, at times t =
0.25 and t = 0.75, they cancel each other out. This leads to a beat: the sound is
amplified and attenuated periodically, with the frequency f2 − f1 (in this case 2 Hz).
This phenomenon can also be inferred from

sin(2πf1t) + sin(2πf2t) = 2 sin(2π
f1 + f2

2
t) cos(2π

f1 − f2
2

t).

The resulting sound has the intermediate frequency (f1 + f2)/2, amplitude modula-
ted by cos(2πt(f1 − f2)/2). The maximum amplitude is reached at times such that
cos(2πt(f1 − f2)/2) = ±1, hence the beat frequency is equal to 2|f1 − f2|/2 =
f2 − f1.

Both strings can be adjusted to the same frequency simply by eliminating this beat
(see also section 2.6.5). The tuner or the musician does not measure the frequency of
an individual string, instead he measures the frequency (also called the speed) of the
beat produced by two different strings. This technique is used because a difference of
half a hertz for two strings played consecutively is completely undetectable by even
the sharpest sense of hearing, whereas a beat of half a hertz for strings played simul-
taneously is perfectly detectable by anybody with a bit of practice. The same process
can be used to tune intervals other than unison, the difference being that, instead of
beats between fundamentals, the tuner has to listen for beats between harmonics of
different levels depending on the note tuned. Let us examine the three cases illustrated
by Figure 2.4.

Figure 2.4. Coincidence of harmonics for the octave and the fifth, slight shift for the equal-
tempered major third F-A at harmonics 5 and 4 respectively (the corresponding harmonics’
numbers for F3 are shown on the frequency axis)

- Tuning the octave. Let us assume that F3 at 174.6 Hz (in equal temperament)
is tuned. The F4 should be tuned at 2 × 174.6 = 349.2 Hz. If we assume that it is
tuned slightly too high, for example at 351.2 Hz, then the second harmonic of F3, the
frequency of which is 349.2 Hz, will produce a beat of 351.2 − 349.2 = 2 Hz with
the fundamental of F4. Tuning will then be achieved by progressively lowering the
frequency of F4 until the beat disappears.

- Tuning the fifth. We will now consider C4, theoretically with a fundamental of
3× 174.6/2 Hz. Its second harmonic has the frequency 3× 174.6 Hz, and so does the
third harmonic of F3. The fifth can therefore be tuned by listening to the beat between
these two harmonics, until it has almost disappeared.

- Tuning the major third. In this case, instead of tuning by suppressing a beat, the
speed is adjusted. F3 produces a fifth harmonic with frequency 5×174.6 Hz = 873 Hz,
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whereas C3 produces a fourth harmonic with frequency 4× 220 Hz = 880 Hz. Hence
these two harmonics combined lead to a beat of 7 Hz, detectable with a little effort.
The speed of this beat depends of course on the pitch of the third. For example, it
will be twice as fast one octave higher. Note that if we reduce the major third (in
this case with F3 with frequency 880 Hz/5 = 176 Hz), we get a third with no beat,
found for example in Zarlino’s untempered scale [COR 82, JUN 79]. We will discuss
temperament further in Chapter 3.

If we define, as Helmholtz did in the 19th century [FIC 96, HEL 68], the degree
of consonance as a description of the extent to which the harmonics of two notes
played simultaneously coincide, or instead produce a beat, then the octave is the most
consonant interval, followed directly by the fifth, hence the importance of the latter in
scale design, which we will study in Chapter 3.

2.2. Bars

Let us set aside strings and now consider the case of a rod or of a bar, with a
circular or rectangular section. This is the vibration source for many instruments, such
as the accordion, the xylophone (Greek for ‘ sound of wood ’), the vibraphone (a
xylophone with metal bars (!), with the addition of tubes that work as resonators and
a rotating valve device to modify the amplitude periodically), the celesta (rods struck
by a hammer), the Fender Rhodes piano (likewise), music boxes, etc., and in wind
instruments, the reed itself!

As was the case with strings, there are several possible types of vibrations, and we
will focus on transverse waves in an xOy plane, where the central axis of the bar has
its ends at points (0, 0) and (0, L). The position of the axis at a time t is given by the
equation y = u(x, t). The mechanics model is more complex than with strings, and
we will admit that the movement of the bar is governed by the equation

∂t2u(x, t) = −g2c2L∂x4u(x, t),

where g is the gyration radius which depends on the shape of the bar’s section3, cL =√
E/ρ is the propagation speed of the longitudinal waves through the bar, E is the

elastic modulus of the material and ρ its density. The harmonic solutions are still of
the form

u(x, t) = ϕ(x) exp(2iπft),

but ϕ(x) is now a solution to a fourth-order differential equation:

ϕ(4)(x) = K4ϕ(x), K > 0, K4 =
(

2πf
gcL

)2

. (2.7)

3. g = e
√

12 for a bar with thickness e, g = r/2 for a cylinder with radius r.
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The general solution to this homogeneous equation can be written as

ϕ(x) = α exp(Kx) + β exp(−Kx) + γ exp(iKx) + δ exp(−iKx), (2.8)

where the constants are determined from the boundary conditions. We will examine
two common types of boundary conditions in music instruments.

2.2.1. Bar fixed at both ends

The typical example of the bar fixed at both ends is provided by the xylophone.
We will assume a simplified model where the bar is fixed exactly at its ends (which
is not quite realistic, but let’s move on), and where the function ϕ(x), as well as the
second derivatives in the absence of flexion (see Figure 2.5), are equal to 0 in 0 and L.
This leads, at point x = 0, to: {

α+ β + γ + δ = 0,
α+ β − γ − δ = 0,

hence α = −β and γ = −δ, and therefore4

ϕ(x)/2 = α sh(Kx) + iγ sin(Kx).

At point x = L, the two other boundary conditions lead to{
α sh(KL) + iγ sin(KL) = 0,
α sh(KL)− iγ sin(KL) = 0. (2.9)

Figure 2.5. Fixed bar. At both ends, the position is constant, the slope varies
with time and the curvature is equal to 0

System (2.9) with unknownsα and γ has non-zero solutions if and only if sin(KL) =
0, that is to say, if K = nπ/L, with n ≥ 1, since K > 0. In these cases, we have
α = 0 and, because of (2.7), the harmonic solutions, or natural modes, are of the form

u(x, t) = a sin(Knx) exp(±2iπfnt) (2.10)

with Kn = nπ/L, and with the natural frequency fn = gcLK
2
n /2π, or

fn = n2 gcLπ

2L2
. (2.11)

4. As a reminder, exp(ix)+ exp(−ix) = 2 cos(x) and exp(ix)− exp(−ix) = 2i sin(x), and
exp(x) + exp(−x) = 2 ch (x) and exp(x)− exp(−x) = 2 sh (x).
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Notice that, just as for the string, the natural modes are standing waves and share
the same form. On the other hand, the natural frequencies fn now follow a quadratic
progression

1, 4, 9, 16, . . . , n2, . . .

as opposed to the arithmetic progression of the string’s natural frequencies. A similar
comment regarding length: the natural frequencies have become inversely proportio-
nal to the square of the length. And the last difference: Mode (2.10) can be seen as
the superposition of two traveling waves a[exp(i(2πfnt + Knx)) − exp(i(2πfnt −
Knx))]/2i = u(x, t) propagating at a speed of 2πfn/Kn =

√
2πgcLfn, now de-

pendent on the frequency. This is called dispersion, because a traveling wave focused
in space will ‘ spread out ’, since the high-frequency components travel faster than the
low-frequency components.

If we superpose the real parts of the natural modes, in the end we obtain the phy-
sical solutions, which can be expressed as

u(x, t) =
∑
n≥1

αn sin(nπx/L) cos(2πfnt+ θn).

Because all of the frequencies are integer multiples of the first frequency, the resul-
ting sound is periodic with period 1/f1, and lacks certain harmonics (the octave, the
fifth above it...), thus contributing to the xylophone’s peculiar sonority. The system is
solved completely with the help of the initial conditions, just as it was done for the
string.

2.2.2. Bar embedded at one end

The typical example of a bar embedded at one end and vibrating freely at the other
is provided by the music box. In x = 0, where the bar is attached, the function ϕ(x)
(2.8), as well as its derivative, are equal to 0 in 0. At point L, where the bar is not
restrained, we will admit that the second and third derivatives are equal to 0. In this
case, it is more convenient to express ϕ(x) in the following equivalent form (but with
different constants):

ϕ(x) = α ch(Kx) + β sh(Kx) + γ cos(Kx) + δ sin(Kx).

The two conditions at point x = 0 lead to{
α+ γ = 0,
β + δ = 0,

hence
ϕ(x) = α[ch(Kx)− cos(Kx)] + β[sh(Kx)− sin(Kx)].
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The two conditions at point x = L can be expressed as{
α[ch(KL) + cos(KL)] + β[sh(KL) + sin(KL)] = 0,
α[sh(KL)− sin(KL)] + β[ch(KL) + cos(KL)] = 0.

This system has non-zero solutions if and only if its determinant is equal to 0:

[ch(KL) + cos(KL)]2 − sh2(KL) + sin2(KL) = 0,

which yields after a simplification

1
ch(KL)

+ cos(KL) = 0.

Let λn be the positive solutions, arranged in increasing order, to the transcendental
equation

1
ch(λn)

+ cos(λn) = 0. (2.12)

Hence the solutions to (2.7) are obtained for Kn = λn/L and fn = gcLK
2
n/2π, or

fn = λ2
n

gcL
2πL2

, (2.13)

and again, as you can see, the natural modes are standing waves. The first four are
shown in Figure 2.6.

Figure 2.6. First four natural modes (amplified) of an embedded bar

Unlike what we saw in the previous example (fixed bar), the natural frequencies
fn are no longer integer multiples of the first frequency f1, or of any other frequency
f for that matter. Therefore the frequencies fn are not harmonics anymore, they are
partials. Solving (2.12) numerically shows that the values fn are proportional to the
sequence

1, 6.27, 17.55, 34.39, . . .

Notice that the progression is faster (at the beginning) than for the fixed bar. However,
we can infer from (2.12) that, asymptotically, we have λn ' (n− 1/2)π, where for n
high enough

fn ' (n− 1/2)2
gcLπ

2L2
,

a quadratic progression similar to the progression found for the fixed bar (2.11).

As for the physical solution, it is still obtained from summing the harmonic solu-
tions, but usually, this no longer produces a periodic signal. The resulting sound can
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be considered less ‘ melodious ’. However, we must take into account the resonator or
the ear, which can eliminate high partials, as is the case for example with music boxes.

Bars are usually tuned by removing material to modify their thickness, for example
near the attached end to reduce the frequency or at the other end to increase it.

2.3. Membranes

Aside from bars, the percussion category also includes instruments comprising an
elastic membrane attached to a circular frame: timpani, drums, congas, etc. Let us
consider such a membrane with radius R, arranged horizontally, and the height of
which is a function u(x, y, t) such that u(x, y, t) = 0 if r =

√
x2 + y2 = R (i.e., on

the frame).

Figure 2.7. Eighth natural mode of a timpani

We will assume that the tension T is the same over the entire membrane, and the
mass per unit area is denoted by µ. If we follow the same process as with the string,
we find that u is a solution to the wave equation (with in this case ∆ = ∂x2 + ∂y2):

µ∂t2u(x, y, t) = T∆u(x, y, t). (2.14)

When substituted in Equation (2.14) with k = 2πf/c and c =
√
T/µ, the harmonic

solutions, the form of which is u(x, y, t) = ϕ(x, y) exp(2iπft), lead to the Helmholtz
equation:

∆ϕ(x, y) + k2ϕ(x, y) = 0.

Because the membrane’s edge is circular, it is convenient for purposes of analysis
to switch to polar coordinates (r, θ). We are going to search for solutions that can be
written in the separated form ϕ(x, y) = γ(r)σ(θ), using the formula for the Laplacian
in polar coordinates ∆ = ∂r2 + ∂r/r + ∂θ2/r2. After dividing by γ(r)σ(θ)/r2, the
calculation yields

r2
γ′′(r)
γ(r)

+ r
γ′(r)
γ(r)

+ k2r2 = −σ
′′(θ)
σ(θ)

.

This expression must be a constant, we will denote it bym2. On the one hand, we now
have σ′′(θ) = −m2σ(θ), with the general solution

σ(θ) = α exp(imθ) + β exp(−imθ).

Furthermore, because the function σ is 2π-periodic, m must be an integer. On the
other hand, we have

r2γ′′(r) + rγ′(r) + (k2r2 −m2)γ(r) = 0,
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which is the Bessel equation. Its solutions, when bounded in zero, are the Bessel func-
tions of the first kind of order m, denoted by Jm:

γ(r) = αJm(|k|r).

We still have to take into account the boundary conditions (on the frame) γ(R) = 0.
This means that we must have Jm(|k|R) = 0, therefore, |k|R is a zero of Jm. The
zeros of Jm are denoted by zmn:

Jm(zmn) = 0.

Table 2.1 gives the first approximate values of zmn.

m\n 0 1 2 3 4 5
0 2.40 5.52 8.65 11.79 14.93
1 0 3.83 7.02 10.17 13.32 16.47
2 0 5.14 8.42 11.62 14.80 17.96
3 0 6.38 9.76 13.02 16.22 19.41
4 0 7.59 11.06 14.37 17.62 20.83
5 0 8.77 12.34 15.70 18.98 22.22

Table 2.1. First zeros of the functions Jm.

Hence the harmonic solutions, or natural modes, are of the form

u(x, y, t) = Jm(zmnr/R) [α exp(imθ) + β exp(−imθ)] exp(±2iπfmnt)

with the natural frequencies

fmn =
zmnc

2πR
. (2.15)

These frequencies are partials. Again, the general solutions to the wave equation are
obtained by superposing the natural modes.

Unlike the waves we found for strings or bars, these don’t have to be standing
waves. For m ≥ 1, we can have rotating waves, clockwise for example such as with

u(x, y, t) = αJm(zmnr/R) exp(2iπfmnt− imθ),

where the angular speed of rotation, in this case, is 2πfmn/m: the value of u is
constant at any point moving along a circle centered in (0, 0) and with equation
θ − 2πfmnt/m = constant.

Figure 2.8. Computed contour lines
of the first eight natural modes
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As for the standing natural modes, they are of the form

u(x, y, t) = αJm(zmnr/R) sin(m(θ − θ0)) exp(±2iπfmnt).

Figure 2.8 shows the contour lines of the first eight modes. The values zmn were
computed from the eigenvalues of the finite element matrix [LAS 94] associated with
the problem, and are close to the values shown in Table 2.1.

2.4. Tubes

Let us now forget about percussions and go back to wind instruments, as we exa-
mine their resonator: the column of air contained in the tube. Unlike other instruments
we have studied so far, the sound is sustained, either directly by the musician blowing
into the mouthpiece (woodwind, brass), or by a mechanical blower (organ). We are
going to study the case of a cylindrical tube with length L (see Figure 2.9), assuming
as a hypothesis that a plane wave is traveling through the tube5 along the tube’s axis
Ox. Hence the acoustic pressure pa inside the tube depends only on x and t, and it
is simply denoted by p(x, t). The (average) speed of the air particles inside the tube
is still denoted by v(x, t). In the simplified model we are describing, the acoustic ex-
citation produced by the mouthpiece is set, and we study the tube’s reaction to this
excitation. We can then divide the excitations or ‘ controls ’ of the acoustic phenome-
non into two categories.

- Pressure control: in this case, the source of the air vibrations consists of a pres-
sure pE(t) imposed at the tube’s entrance (on the left): p(0, t) = pE(t) for any t. This
model is an approximation of a flute or of a ‘ flue pipe ’ on an organ (which works the
same way as a flute). We will see that resonance occurs at the natural frequencies of
the tube, assumed to be open at both ends.

- Speed control: in this case, the speed of the air is imposed at the tube’s entrance:
v(0, t) = vE(t) for any t. This model approximately describes reed instruments, such
as the clarinet, or a ‘ reed pipe ’ on an organ. Resonance then occurs at the natural
frequencies of the tube, which is considered open at one end and closed at the other.

As we will see later on, the type of excitation or control we deal with has a major
influence on timbre in the case of a cylindrical tube: the presence or the absence of odd
harmonics, but also the pitch of the fundamental. Note that this difference decreases,

5. This hypothesis is valid if we assume that the tube’s walls are absolutely rigid and sealed.
In that case, the speed perpendicular to the wall is equal to zero at the wall, and we infer from
the Euler equation that the pressure’s normal derivative is equal to zero at the wall: ∇p.n = 0,
where n is a unit vector perpendicular (‘ normal ’) to the wall. This ensures that, for a given t,
the pressure is constant at any point of a right section of the tube, and therefore is a plane wave
(however other kinds exist).
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even disappears, in the case of a conical tube (oboe, bassoon, saxophone) as Study
problems 2.6.10 and 2.6.11 show. Here, the word control (pressure control or speed
control) refers to the condition imposed at the tube’s entrance, not to the one imposed
by the musician, who affects not the tube itself but what makes it vibrate: the reed, a
flow of air, the lips. In the case of a reed, for example, the musician controls mostly
the pressure on the outside part of the reed, and hence, the air flow crossing the mou-
thpiece – this results for example from the Bernoulli equation v =

√
2(p0 − p)/ρ,

– or in other words the air speed at the tube’s entrance. Furthermore, there are other
types of controls that are dual (see section 2.6.9). For these, the condition is imposed
on αp(0, t) + β v(0, t), and the two previous kinds are only particular cases.

Figure 2.9. Cylindrical tube with the boundary conditions

At any rate, these are two simplified models, and reality is more complicated. Par-
ticularly, tubes do not have to be cylindrical or conical: they can have flared openings
at the end such as the bell on brass instruments; the interaction between the source and
the tube can be non-linear, making them more difficult to study, which is why tubes
are still the subject of extensive research. Furthermore, we assume that the tube has
no other openings than the ones at both ends, which is far from being true: many wind
instruments have holes punched on the side to change notes! And to consider that the
presence of a hole has roughly the same effect as if the tube had been cut in the same
place is a rather crude approximation.

2.4.1. Pressure control

The source of the vibration here will be the pressure at the tube’s entrance pE(t).
Also, it is a reasonable approximation to assume that the acoustic pressure at the tube’s
exit is zero (the tube is open to the surrounding air). This is not exactly true, and wind
instrument manufacturers take this into account by shortening the length of the tube
accordingly (by about 0.6 r if r is the radius of the tube) compared to the length in
the simplified model. Based on the study of the wave equation conducted in Chapter
1, we get the following system of linear equations: ∂t2p(x, t)− c2∂x2p(x, t) = 0, inside the tube,

p(0, t) = pE(t), at the entrance,
p(L, t) = 0, at the exit.

(2.16)

The source or the excitation pE(t) is assumed to be periodic, with fundamental f. It
can therefore be expanded in a Fourier series

pE(t) =
+∞∑

n=−∞
cn exp(2iπnft), (2.17)
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making it possible to study the produced sound.

2.4.1.1. Response to a harmonic excitation

Because System (2.16) is linear, the tube’s response will be the sum of the res-
ponses to each of the excitations cn exp(2iπnft). We will focus on the case where
the excitation is harmonic, hence

pE(t) = exp(2iπft), (2.18)

where f can take any value (the coefficient n is omitted). The pressure is then also
harmonic, hence of the form

p(x, t) = ϕ(x) exp(2iπft).

This expression, substituted in (2.16), shows that ϕ(x) is again a solution to the Helm-
holtz equation (where k = 2πf/c), with this time non-homogeneous boundary condi-
tions:  ϕ′′(x) + k2ϕ(x) = 0, inside the tube,

ϕ(0) = 1, at the entrance,
ϕ(L) = 0, at the exit.

(2.19)

The general solution to the first equation is ϕ(x) = α exp(ikx) + β exp(−ikx), and
the boundary conditions impose{

α+ β = 1,
α exp(ikL) + β exp(−ikL) = 0.

This linear system with unknowns α and β has a unique solution if and only if the
determinant is different from zero, hence if

sin(kL) 6= 0. (2.20)

If this is the case, we get

α = i exp(−ikL)/(2 sin(kL)), β = −i exp(ikL)/(2 sin(kL)),

and we have

ϕ(x) =
i exp(−ik(L− x))− i exp(ik(L− x))

2 sin(kL)
=

sin(k(L− x))
sin(kL)

.

The pressure inside in the tube subjected to the harmonic excitation (2.18) is therefore

p(x, t) =
sin(k(L− x))

sin(kL)
exp(2iπft). (2.21)

Notice that we get a standing wave, just as with strings and bars.
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2.4.1.2. The resonance effect

What happens for the ‘ forbidden ’ values where sin(kL) = 0? In order to answer
this question, we must examine more closely what happens at the tube’s exit in x = L,
where the sound is produced before radiating out into the open. Because the pressure
at that point is constant and equal to zero, we have to consider its speed. Based on the
state equation (1.5), we know that

c2ρ0∂xv(x, t) = −∂tp(x, t) = −2iπf
sin(k(L− x))

sin(kL)
exp(2iπft).

If we integrate this equation with respect to x, we get

v(x, t) =
cos(k(L− x))
icρ0 sin(kL)

exp(2iπft) + g(t). (2.22)

The Euler equation (1.3) is used to determine the value of this integration constant
(with respect to x), and we then infer that g′(t) = 0. Thus the speed is determined,
except for a constant, which we will assume equal to zero, hence g = 0.

The point of all this is that when we switch over to the physical domain (i.e. when
we only keep the real parts), for each entrance pressure with frequency f

pE(t) = cos(2πft)

there is a corresponding air speed at the tube’s exit

v(L, t) =
1

cρ0 sin(kL)
sin(2πft),

which increases as sin(kL) gets closer to 0, and is theoretically infinite if sin(kL) = 0,
that is, if k = nπ/L. This effect is called resonance. A completely similar analysis
can be done for other sustained sound instruments, such as a bowed string. In reality,
damping occurs because of energy dissipation in the form of heat or radiation, and
at the resonant frequency, the exit speed is not actually infinite, merely very large
compared to other speeds.

The resonant frequencies associated with these values of k, given by Bernoulli’s
law

fn =
nc

2L
, n ≥ 1, (2.23)

will therefore produce a powerful sound, and will be favored at the expense of others
(see Figure 2.10): these are the frequencies that come out when the musician blows
into his instrument. Because their progression is proportional to the sequence of in-
tegers 1, 2, 3,..., we again have harmonics. In fact, the formula is the same as (2.3)
which gave us the frequencies for the string (but the c is not the same). Notice that in
order for an organ pipe to play the low-pitched C at 32.7 Hz as its fundamental, its
length must be L = 340/(2× 32.7) = 5.2 m= 17.1 ft!
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Figure 2.10. Absolute exit speed for a tube with length 77 cm according to frequency, taking
damping into account. The tube resonates at the frequencies where peaks occur

2.4.1.3. Natural modes

If we focus on the limit case where sin(kL) = 0, that is, when kL = nπ, by
multiplying Equations (2.21) and (2.22) by sin(kL), we get the resulting functions

p(x, t) = ± sin(nπx/L) exp(2iπft),

v(x, t) = ∓cos(nπx/L)
icρ0

exp(2iπft).

These functions are still solutions to the wave equation, but with the addition of the
boundary conditions (2.16). Particularly, the pressure is equal to zero at the tube’s en-
trance, whereas at that point, the speed reaches its maximum amplitude. Thus, because
the pressure is equal to zero at both ends, the natural modes are those of a tube open at
both ends. These modes occur for frequencies that cause singularities in the pressure
control, the natural frequencies (2.23) associated with these natural modes.

2.4.1.4. The resulting sound

If we again consider the periodic excitation (2.17) with fundamental f, a powerful
sound will only be produced if f (or an integer multiple of f ) coincides with one of the
tube’s natural frequencies (2.23). If for example f = f1, for the listener, the resulting
sound will be of the form

s(t) =
∑
n≥1

αn cos(2nπf1t+ θn),

where the amplitudes αn of the harmonics are proportional to both the coefficients
cn in (2.17) and to the height of the resonance peaks (see Figure 2.10). This is the
instrument’s low register. But if f = f2 = 2f1, all of the sound’s harmonics will be
multiplied by two, and the instrument will go one octave higher: this is called octaving.
It happens in particular when blowing harder in a flute.

2.4.2. Speed control

In reed instruments, as we mentioned at the beginning of this section, the vibrations
of the column of air are mostly controlled by the speed of the air at the tube’s entrance.
The reed acts as a valve, alternately open or partially closed as the air flows through
it, depending on how strongly the reed is fastened to the mouthpiece. Note that when
the musician creates a strong pressure, the air opening will tend to close, the opposite
of what occurs with the lips of trumpet player.
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Figure 2.11. Pressure nodes and antinodes for the first three possible modes, according to the
control and to the nature of the exit, open or closed. The numbers indicate the order of the
harmonics. Pipes that are twice as short produce the same fundamental, but show no even
harmonics

2.4.2.1. Response to a harmonic excitation

Like pressure, speed obeys to the Helmholtz equation. In the harmonic case, for the
entrance speed vE(t) = exp(2iπft), the speed’s expression is v(x, t) = ϕ(x) exp(2iπft)
with  ϕ′′(x) + k2ϕ(x) = 0, inside the tube,

ϕ(0) = 1, at the entrance,
ϕ′(L) = 0, at the exit.

(2.24)

The condition at the tube’s exit ϕ′(L) = 0, referred to as the Neumann condition, is
due to the state equation (1.5) and to the condition p(L, t) = 0, which lead to

c2ρ0∂xv(L, t) = −∂tp(L, t) = 0,

c2ρ0ϕ
′(L) exp(2iπft) = 0.

The general solution to the first equation in (2.24) isϕ(x) = α exp(ikx)+β exp(−ikx),
and the boundary conditions now impose{

α+ β = 1,
αik exp(ikL)− βik exp(−ikL) = 0.

This linear system (compare with (2.20)) has a unique solution if and only if cos(kL) 6=
0. If this is the case, the calculation yields α = exp(−ikL)/(2 cos(kL)) and we get

ϕ(x) =
cos(k(L− x))

cos(kL)
.

Hence the speed inside the tube is

v(x, t) =
cos(k(L− x))

cos(kL)
exp(2iπft), (2.25)

and the entrance speed v(0, t) = cos(2πft) corresponds to the exit speed

v(L, t) =
1

cos(kL)
cos(2πft).

2.4.2.2. Resonance and natural modes

Notice that the critical values have also changed! The amplified frequencies are no
longer the ones for which sin(kL) = 0 (in the case of pressure control), but instead
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those for which cos(2πfL/c) = cos(kL) = 0, meaning that the natural frequencies
are

fn =
(n− 1/2)c

2L
, n ≥ 1.

We then have two interesting observations to make.
- The fundamental’s value is now

f1 =
c

4L
,

half of what we observed with pressure control. In this operating mode, the instrument
plays one octave below – very useful when size is an issue! The same effect actually
occurs with a pressure controlled tube, closed at the other end (see section 2.6.8). In
organs, such pipes are called bourdons (see Figure 2.11).

- The sequence of natural frequencies is given by fn = (2n− 1)f1: their progres-
sion is now proportional to odd integers – this is the price to pay for cutting down on
length:

1, 3, 5, . . . , 2n− 1, . . .

even harmonics are gone! This absence is actually one of the elements that allow a
listener to recognize a reed instrument such as the clarinet, since it is the reason for its
‘ nasal ’sound. This also explains why the clarinet plays low-pitched sounds ‘ in fifths
’ when the musician blows harder, he causes the instrument to switch directly from
the low register (the chalumeau register) to the register one fifth and one octave above
(the bugle register), instead of octaving, that is playing one octave higher the way the
flute does, as we saw before.

If we examine the limit case where cos(kL) = 0, hence when kL = (n+ 1/2)π,
by multiplying (2.25) by cos(kL), we obtain a new function

v(x, t) = ± sin(kx) exp(2iπft),

which is still a solution to the wave equation, but with a speed equal to 0 at the entrance
x = 0. As for the pressure, it reaches its maximum at the entrance and is always equal
to 0 at the exit. Therefore what we have here is the natural mode of a tube open at one
end and closed at the other.

2.4.2.3. Comments on phases

If we superpose the different harmonic modes, we get the resulting sound

s(t) =
∑
n≥1

αn cos((2n− 1)πf1t+ θn),

a periodic sound with pitch f1. Remember that such a sum can be expressed indiffe-
rently either with sines or cosines so long as the phases θn are included.
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Figure 2.12. Despite appearances, these two signals are made up of exactly the same frequen-
cies! What makes them different is the phases of the harmonics

Phases can have major effects on the sound’s shape. Figure 2.12 shows both sounds

s1(t) =
10∑

n=1

1
2n− 1

sin((2n− 1)πt),

s2(t) =
10∑

n=1

1
2n− 1

cos((2n− 1)πt).

Graphically, the difference seems important, and yet those are exactly the same fre-
quencies. However, listening to these two signals only shows a small difference: it
seems the ear is not very sensitive to the phases of frequencies when they are clearly
separated from one another. In the case of the clarinet, both of these forms can be
observed (among other intermediate ones), depending on the pitch and intensity of the
note played [FLE 98].

2.4.3. Tuning

For string instruments, tuning is done (in addition to the bill when the tuner is
done) by adjusting the tube’s length near the mouthpiece. For organs, this can be done
in several different ways: either by cutting notches in the tube, by moving a sliding
ring along the end of the tube (Figure 2.13), also by adjusting the flared-out shape
of the end of the tube, or additionally by adjusting the vibrating length of the reed
for reed pipes. Since an organ can comprise several thousand pipes (the organ at the
Sydney opera has 10, 500), this requires a considerable amount of work!

Figure 2.13. Tuning by adjusting the length

2.5. Timbre of instruments

Defining the timbre of an instrument is no simple task. The literature on the subject
is as abundant as it is diverse, with such important works in the 20th century as the
Traité des objets musicaux [SCH 66] by P. Schaeffer (A treatise on musical objects).
In this chapter, we will simply write down and describe two characteristics that allow
(sometimes not completely) to tell different instruments apart:
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- the nature of the sound’s spectrum, which depends on the one hand on the vibra-
tor (string, reed, bar, membrane), and on the other on the resonator (sounding board,
pipe) which will amplify and ‘ give color ’ to the sound produced;

- the sound’s envelope, which defines the way a given musical sound is born, lives
and dies.

Many other elements have to be considered, such as the vibrato, the intensity of
the air flow for wind instruments or the initial impact for percussion instruments, the
reverberation of the other strings in a piano, or also the phase shift (Doppler effect,
Leslie effect) used for example by jazz musicians by moving around or spinning their
instruments. Viola players also share this strange custom, sometimes making their
audience seasick! We will discuss some of these aspects in Chapter 6.

2.5.1. Nature of the spectrum

Music instruments produce sounds that basically have a discrete spectrum. Hence
these sounds can be expressed as

s(t) =
∑
n≥1

αn cos(2πfnt+ θn),

an approximation valid at least over a relatively short interval of time. As a result,
describing them amounts to saying what frequencies fn can be found in that represen-
tation, and what phases θn and amplitudes αn are associated with these frequencies.
These three sets of data already provide a wide variety of timbres.

2.5.1.1. Harmonics or partials, the piano’s inharmonicity

One of the major characteristics a musician’s ear can perfectly determine is whe-
ther a sound is composed of harmonics (remember that each fn is then an integer
multiple of f1 and the sound is periodic) or partials (any other case). This is one of
the differences between sustained sound instruments such as bowed strings or wind
instruments, and percussion instruments, such as drums or bars. Even among percus-
sion instruments, a musician can easily distinguish the piano’s almost periodic sound
from the much less periodic sound of a bell, even though these two instruments have
similar envelopes, characterized by an impact followed by a sharp decrease.

However, some small size pianos (small upright pianos, baby grands), with shorter
strings compensated by a larger diameter 6, produce a slightly acid sound that actually

6. Taylor’s law f =
p

T/µ/(2L) tells us that the frequency does not change if the value L
√

µ
remains constant, where µ is the mass per unit length, which is proportional to the square of the
diameter. For example, if the length is divided by 2 and the diameter is multiplied by 2 without
the tension being modified, the same note is produced. The problem is that the string’s stiffness
is increased.
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sounds something like a bell. This is due precisely to the fact that the frequencies pro-
duced by such a string deviate substantially from the arithmetic progression fn = nf1
valid for any ideal string, without any stiffness, theoretically ‘ bendable ’ at will. The
equation governing the movement of a real string is actually a combination of the
wave equation for the ideal string and of the equation for the rod fixed at both ends
(see section 2.6.6 for a complete study). As a result, the behavior of a real string is a
combination of the ideal string and of the rod, for which we saw that the natural fre-
quencies follow an n2 progression. The result is a progressive shift of the harmonics
– which actually become partials – toward the high frequencies: this is called inhar-
monicity, and it increases as the string stiffens, that is to say when the string starts
behaving like a rod.

A logarithmic unit is used to measure this inharmonicity, the cent or hundredth of
a semitone. A tempered semitone means a frequency ratio equal to 21/12 ' 1.05946,
and the cent, as a result, means a frequency ratio equal to 21/1 200 ' 1.0005778.
Saying that two frequencies f1 < f2 are 1 cent apart means that

log2 f2 = log2(f1 × 21/1 200) = log2 f1 +
1

1 200
= log2 f1 + 1 cent,

where log2 is the base 2 logarithm (log2 2n = n), convenient to use since a one octave
interval happens to be a ratio of 2. Piano manufacturers have known for long that
for a note with theoretical fundamental f, the shift, in cents, of a partial from the
corresponding harmonic is roughly proportional to the square of the harmonic’s order:

log2 fn ' log2(nf) +
ζ(f)n2

1 200
.

The value of ζ(f) depends on the note and the instrument. [JUN 79] gives the formula

ζ(f) ' d2

L4f2
3.3 109

where d is the diameter of the string, L its length and f its frequency, thus confirming
the study suggested in section 2.6.6. For example, an intermediate frequency on a 107
cm tall piano (42 in) leads to a value of ζ(f) ' 0.3. Hence the tenth partial ends up
30 cents above the corresponding harmonic, or a third of a tone! For a grand piano with
a string diameter divided by

√
2 but twice as long (and twice the tension to maintain

the same frequency), this value is divided by 2 × 24 = 32, and the shift will only be
one cent. Any pianist will tell the difference, even if he doesn’t know what causes it.

2.5.1.2. Richness in higher harmonics

Another of the timbre’s characteristics is the harmonics (or partials) distribution:
a sound rich in higher harmonics will be described as ‘ bright ’, even ‘ metallic ’,
whereas a sound poor in higher harmonics will be qualified as ‘ dull ’, ‘ warm ’, even
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‘ dark ’. The first category includes for example the violin, the harpsichord, pianos
with very hard hammers. The second includes flutes, some types of organs, pianos
with soft felt hammers. Figures 2.14 and 2.15 show the sounds produced by a a C flute
and by a harpsichord, respectively [COL98]. The difference in depth for the higher
harmonics is striking.

But coming up with categories for instruments is questionable, since even a gi-
ven instrument, depending on how it is played, particularly the intensity, will change
the number of higher harmonics produced: in just about every instrument, the relative
intensity of the higher harmonics (the ratio |cn/c1|) increases when a note is played
more intensely (see Figure 6.1), which modifies the timbre, a typical non-linear beha-
vior of the instrument.

Figure 2.14. Harmonics of a C flute (G]-4)
à quatre petites clés (see also color plates)

One way of anlayzing a sound’s harmonics distribution is to observe how fast the
Fourier coefficients (the amplitudes of the harmonics) decrease. A mathematical result
states that if a periodic function’s derivatives up to the order m are square integrable,
then its Fourier coefficients cn are such that

∞∑
n=−∞

|nmcn|2 <∞, (2.26)

and in particular, they decrease faster than 1/nm: because the general term of the
series tends to 0, we have

|cn| =
ε(n)
nm

where lim
n→∞

ε(n) = 0.

Now let us consider again the example of a struck or plucked string vibrating freely
(see (2.4), (2.5), (2.6), as well as section 2.6.2), and notice that the Fourier coefficients
are determined by the initial conditions. If the initial conditions are ‘ poorly suited
for differentiation ’ – a string plucked with the jack’s quill in a harpsichord, with a
fingernail or a pick on a guitar – then the Fourier coefficients will show a relatively
slow decrease, hence a sound rich in higher harmonics, and vice versa.

Figure 2.15. Harpsichord note (A3) plucked at a tenth of its length, which attenuates the har-
monics with ranks that are multiples of 10 (see also color plates)

Likewise, with a violin, the bow imposes a jagged motion to the string, referred to
as a triangular signal, illustrated in Figure 2.16 (see also section 2.6.3). Every period,
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the string is first dragged along with the bow until the string’s tension overcomes the
frictional forces, causing the string to abruptly return to its previous position. Such
a signal corresponds to the case m = 1 in (2.26), its coefficients are proportional to
1/n2, and the limit case of an infinite ‘ return ’ slope (discontinuous signal) would
lead to coefficients proportional to 1/n. The decrease is relatively fast, hence, again,
a sound rich in higher harmonics.

Figure 2.16. What a saw...

2.5.1.3. Different harmonics distributions

As we have seen already, another unmistakable characteristic of a periodic sound
is the virtual absence of even harmonics. This is the case in particular with the clarinet
and the bourdon on the organ. Likewise, a large number of differente timbres can be
obtained by favoring a certain category of harmonics over another. This technique is
used extensively by organ manufacturers.

When synthesizing principals7[UNI80], the manufacturers combine several pipes
to play the same note, for example C2, corresponding to the harmonics progression:
C2 (principal), C3 (prestant), G3 (fifth), C4 (doublette), E4 (third), G4 (fifth), C5
(sifflet)... Notice the absence of the seventh harmonic, deemed unaesthetic. By adding
higher octaves, thirds, and fifths, we get fuller sounds, and organ stops with colorful
names: furnitures, cymbals, mixtures, plein-jeux (full-chorus). Note that when some
tried to design a keyboard based on this concept, they were faced with the problem
that beyond a certain pitch, it became impossible to shorten the pipes! Consequently,
organ technicians resorted to reprise, which consists of shifting down the added notes
by one octave, and even of superposing low and high pitched notes! In fact, we will
see in Chapter 4 that this technique is the key ingredient to the ‘ perpetually rising
’ Shepard tone (a sound with a pitch that seems to rise indefinitely, even though it
repeats exactly the same notes). Flute synthesis, which involves larger pipes, with
softer sounds, works the same way, except that the synthesis is limited to the first six
harmonics, and must contain the fifth (these organ stops are called third and cornet).
Finally, reed synthesis only involves octaves.

2.5.1.4. The purpose of the resonator

Every music instrument uses a resonator to efficiently radiate the energy produced
by the musician; even an instrument as basic as the Jew’s Harp uses the mouth as a

7. Principals are a type of organ stops called flue-stops, of medium ‘ size ’ (diameter to length
ratio) compared to large-sized stops (flutes and bourdons), which have a rather soft sound, and
small-sized stops (gambas and salcionals) designed with the intent of imitating strings.
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resonator. For string instruments, the resonator is a sounding board made of spruce
wood, that receives the string’s mechanical energy through the bridge (Figure 2.17).
In wind instruments, the resonator is the tube itself. In percussion instruments, it is
usually a shell.

The resonator’s response, to a first approximation, happens to always be linear:
for example the violin’s response to two strings played simultaneously is equal to the
sum of the responses to the strings played separately. It also turns out that it remains
constant with time (see (1.19)): simply put, listening tomorrow to what you played
today is the same as waiting a day to listen to what you will play tomorrow. This
may seem trivial (or even stupid), and yet, these two hypotheses allow us to state that
the resonator is a filter (see section 1.5); it amplifies certain frequencies, attenuates
others, but never modifies the frequency of a given harmonic. For example, the plot
in Figure 2.10 is none other than the transfer function of a wind instrument. The job
of an instrument manufacturer can be summed up mainly as ‘ adjusting ’ the transfer
function to suit the musician’s preference. It can sometimes be modified by the musi-
cian himself, such as by covering the bell on a trumpet with his or her hand, or with a
mute.

Figure 2.17. The inseparable string and resonator

Hence, as we saw in the example from Figure 2.10, the amplified frequencies are
the resonator’s natural frequencies. This can sometimes result in unwanted effects,
such as what occurs on an instrument with a natural mode that stands out too much.
For example, the violin’s first resonance, a cavity resonance, is located near the C],
and is followed juste above it by a ‘ gap ’ in the response [FLE 98], near the D. Thus,
if the frequency of the C] is denoted by f1, the frequency of the D by f2, and the
resonator’s transfer function by H(f), we have |H(f2)| � |H(f1)|. If we assume
that the signal e(t) provided by the bridge is sinusoidal with frequency f , then the
sound produced by the violin will become H(f)e(t) (see section 1.5). If the two notes
are played consecutively, the C] will sound louder than the D, forcing the violinist to
compensate this difference in intensity with his bow, and he will find the instrument
uneven. While we are on the subject of the violin’s natural modes, Savart observed
around 1830, based on measures using the Chladni method8, that the bottom of a
good violin and its sounding board have their first natural frequencies one semitone
apart, thus preventing one of these frequencies from being stressed too strongly (these

8. Which consists of sprinkling small pellets on a horizontal board, and to observe how the
pellets arrange themselves when the board is excited by a mechanic vibration with a given
frequency f . At the board’s natural frequencies, the pellets naturally arrange themselves along
the node lines of the associated natural mode.
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measures were made on Stradivarius and Guarnerius violins that were taken apart!
[INS95]).

In addition to its role as an amplifier, the resonator always has a direct effect on the
spectral distribution of the signal it receives, and therefore plays a fundamental role in
the production of the insrument’s timbre.

2.5.2. Envelope of the sound

Another fundamental characteristic of a sound is its envelope, which is basically its
time ‘ packaging ’, a good example of which was the mountain whistler in Figure 1.20.
The envelope defines the way musical sound appears, lives, and disappears. The be-
ginning of the sound, called the attack point, has a wide spectrum of frequencies, and
plays a crucial role in recognizing the instrument. If this part of the note is removed,
many musical sounds become completely impossible to identify, particularly percus-
sion instruments, as P. Schaeffer discovered in 1948. In music synthesis, the attack
point can be obtained to some degree by a very rapid increase in the sound intensity at
the beginning of the enveloppe, but this is not really sufficient for a satisfactory result.

Figure 2.18. Sinusoidal signal sin 60πt
amplitude modulated by the envelope e(t)

In the following example:

s(t) = e(t) sin(60πt), 0 ≤ t ≤ 1, (2.27)

the sinusoidal signal sin(60πt) is amplitude modulated by a function e(t) ≥ 0, the
envelope of s(t), shown in Figure 2.18. The envelope shown is typical of percussion
instruments. It comprises four main periods: a period where the signal rapidly in-
creases, called the attack, which lasts from a few milliseconds up to a few hundredths
of a second, a decrease period followed by another, slower decrease period, and a last
period where the sound dies out. This is only an example of course, and each per-
iod can itself be divided again into several parts. For sustained sound instruments, the
envelope can have a very different shape: the attack point is often slower, and the sub-
sequent intensity can remain constant – even increase – for the major part of the note’s
duration.

2.5.2.1. Calculation of the envelope

One way of calculating the envelope, and particularly when trying to analyze the
sound of an instrument, is based on the amplitude demodulation used in radio commu-
nications. This is achieved by first passing the signal s(t) into a full-wave rectifier (a
diode bridge) delivering a signal r(t) = |s(t)|. The rectified signal is then sent through
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a low-pass filter with impulse response h(t), to ‘ smooth out ’ the rapid variations in
order to keep nothing but the envelope, and we get

e(t) ' a(h ∗ |s|)(t),
where a is a constant that depends on s. In fact, we can prove the following result.

Consider a signal of the form s(t) = e(t)v(t), where e(t) ≥ 0 for any t, and v(t)
is T -periodic with fundamental f1 = 1/T. If we have ê(f) = 0 for any |f | > B with
0 ≤ B < f1/2, and if h(t) is the ideal low-pass filter (1.26) with cut-off frequency
f1/2, then we have

e(t) =
1
c0

(h ∗ |s|)(t), c0 =
1
T

∫ T

0

|v(t)| dt.

Even if the conditions from ê(f) and B are not met, but if the variations of e(t)
are slow enough compared to v(t), which is the case for insrument sounds, then the
difference between e(t) and (h ∗ |s|)(t)/c0 will be small (see Figure 2.19). We will
come across the exact same conditions with the Shannon theorem in Chapter 5.

2.5.2.2. Using several envelopes

For some instruments, using only one envelope can turn out to be insufficient for
an accurate description. It then becomes necessary to resort to a different envelope for
each harmonic, and the sound can then be represented as

s(t) =
∑

n

en(t) sin(2πfnt+ θn).

To analyze each envelope, the technique from the previous section is applied to each
component en(t) sin(2πfnt+θn),which can then be singled-out using the appropriate
pass-band filter. Figure 2.19 shows the three envelopes of the first three harmonics (to
be precise, they are actually partials) of a piano note, calculated using the method from
the previous section, as well as harmonics 1 and 3 singled-out, all of these obtained by
applying pass-band filterings to the note. Notice in particular how the third harmonic
shows a much sharper drop in intensity than the first.

Figure 2.19. Different harmonic envelopes of
C3 (130.8 Hz) on a piano

We end this chapter with two spectrograms illustrating two different behaviors
of harmonic envelopes (Figures 2.20 and 2.21). They show that in the sound of a
trumpet, higher harmonics are delayed compared to the fundamental (a phenomenon
documented by the works of J. C. Risset, see [INS95]), which accounts in part for the
instrument’s acoustic signature, whereas in the sound of a piano, the higher harmonics
die out more quickly than the lower ones.
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Figure 2.20. An excerpt of trumpet player Miles Davis in ‘ The Sorcerer ’. He is playing a held
note (C]5), with harmonics coming in later as they get higher (see also color plates)

Figure 2.21. C4 on a piano. The harmonics all start at the same time (even a little earlier for
the higher ones), but their duration decreases with their pitch. Notice the beats produced by the
three slightly out of tune strings
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2.6. Study problems

2.6.1. Vibrations of a string (general case) (**)

The movement of a string with length L that is free to vibrate can be determined
from the Fourier analysis seen in this chapter. It can also be determined directly using
the following method we owe to d’Alembert (1747, [ESC 01]). We already know that
this movement can be expressed as

u(x, t) = f(x− ct) + g(x+ ct).

1) Show that the condition u(0, t) = 0 for any t implies that g(y) = −f(−y) and
therefore

u(x, t) = f(x− ct)− f(−x− ct).

2) Show that the condition u(L, t) = 0 for any t implies that f is 2L-periodic.

3) f is written as f(x) = p(x) + q(x) where p and q are also 2L-periodic, with p
an even function (p(x) = p(−x)) and q an odd function (q(−x) = −q(x)). Thus we
have

u(x, t) = p(x− ct)− p(x+ ct) + q(x− ct) + q(x+ ct).

The initial conditions are given by

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x).

Show that
q(x) =

1
2
u0(x), p(x) = − 1

2c
V0(x) +A

where V ′0(x) = v0(x) and A is a constant.

4) These equalities are true for any x if we assume that u0 and V0 are extended to
be an odd and an even function respectively, both 2L-periodic. Infer from this result
that

u(x, t) =
1
2

[u0(x+ ct) + u0(x− ct)] +
1
2c

[V0(x+ ct)− V0(x− ct)]

and that this function is T -periodic in time, with T = 2L/c.

2.6.2. Plucked string (*)

For a plucked string, (guitar, harpsichord), the typical initial conditions are a speed
equal to 0, and a piecewise affine position u0(x) that makes a sharp angle where the
string is plucked.
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1) Using Study problem 2.6.1, plot the string’s position u(x, t) for a few consecu-
tive instants, all taken within the same period.

2) Based on the Fourier analysis, what can be said about the n-th harmonic if the
string is plucked at exactly the point with x-coordinate L/n?

2.6.3. Bow drawn across a string (*)

In 1877, while he was studying the movement of a string as a bow was drawn
across it, Helmholtz observed that it underwent a very peculiar deformation, shown
in Figure 2.22. The bow has two functions: on the one hand, it is responsible for the
shape of the wave, and on the other, its permanent action provides the energy that
will be expended by the sounding board. We are going to obtain this movement of
the string by assuming that it vibrates freely and without damping, with the following
conditions at t = 0 for 0 < x < L and any α:

u(x, 0) = 0, ∂tu(x, 0) = α(L− x).

Figure 2.22. Movement of a bowed string (meant to be read clockwise)

Using Study problem 2.6.1, which tells us that u is T -periodic in time wih T =
2L/c, show that over the period −T/2 ≤ t ≤ T/2, we have

u(x, t) =
α

4c
[
(L− |x− ct|)2 − (L− |x+ ct|)2

]
.

COMMENT.– Despite appearances, this function is affine (piecewise) with respect
to x and t, because the second degree terms in x2 and t2 will cancel out. Hence it
accurately describes the movement shown in Figure 2.22.

2.6.4. String reduced to one degree of freedom (**)

The most simple model for a string bound at both ends (see Figure 2.23) consists
of reducing it to a mobile point M with mass m, connected to the fixed points by two
elastic strings with no mass, each exerting on the point M a force Ti, the modulus of
which is the string’s tension T . In an orthonormal coordinate system xOy, the forces
can be expressed as

T1 = −T (cos θ, sin θ), T2 = T (cos θ,− sin θ).

The length of the string is L, and point M with coordinates (L/2, u(t)) is confined to
a vertical line (longitudinal vibrations are discarded).
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Figure 2.23. String reduced to a point M(t) with mass m

1) Using the approximation sin θ ' tan θ, show that the force F applied to point M
is

F = (0,−4uT/L).

2) Using Newton’s second law of motion, F = mγ, show that, in the absence of
external forces, we have

mu′′(t) = −Ku(t)
where K = 4T/L is the stiffness of the vertical spring equivalent to the two elastic
strings.

3) Show that the solutions are sinusoidal vibrations with frequency

f =
1
πL

√
T

µ

where µ = m/L. Notice that this frequency is smaller than the fundamental of the
‘ real ’ string, for which π is replaced with 2. This is due to the fact that, in the
simplified model, the entire mass is located in the middle, which increases the string’s
torque. Lagrange (1759, [ESC 01]) applied this technique to an arbitrary number of
masses, then to an infinite number of masses, regularly arranged along the string.

2.6.5. Coupled string-bridge system and the remanence effect (***)

Each piano note (except for the low-pitched ones) comprises two or three strings
tuned in unison. Typically, the produced sound is composed of two phases: a first
phase of quick damping, followed by a phase of slower damping, called the remanent
sound.

Here is a first possible intuitive explanation: at the beginning, the vibrations per-
pendicular to the sounding board are predominant. They dampen quickly and the pa-
rallel vibrations, which dampen more slowly, take over. Remanent sound can actually
be caused by a slight mistuning of the strings, as Figure 2.24 shows. It was obtained
using a simplified digital model which we will now describe in detail.

Figure 2.24. Sound level of a piano. In this case, the remanent sound is caused
by a slight mistuning of the strings

We now consider the same model as before, but this time with strings attached
to a bridge that can move. Each string is reduced to a point Mi with mass m and
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coordinates (L/2, ui(t)), in an orthonormal coordinate system xOy. The bridge is
also reduced to a point Q with mass mc and coordinates (L, g(t)). We will assume
that it is connected to a fixed point with the same x-coordinate L by means of a shock
absorber with stiffness Kc and resistance R. When an external force b(t) is applied
(exerted by the strings in what follows), the equation governing the movement of the
bridge is therefore

mcg
′′(t) = −Rg′(t)−Kcg(t) + b(t).

Figure 2.25. String reduced to a point M(t) with mass m, connected to the
bridge, itself reduced to a point Q(t) with mass mc

1) We begin by examining the interaction of a single string with the bridge (see Figure
2.25). The forces applied to point M are

T1 = −T (cos(φ+ θ), sin(φ+ θ)), T2 = T (cos(φ− θ),− sin(φ− θ)),

where T is the tension of the string. Using the approximations sin θ ' tan θ, cos θ '
1, . . . , show that the vertical component of the forces applied toM is equal to−2T (2u−
g)/L and use this result to show that

mu′′(t) = −Ku(t) +Kg(t)/2

with K = 4T/L. Likewise, show that the vertical component of the forces applied by
the strings in Q is equal to 2T (u− g)/L and use this result to show that

mcg
′′(t) = −Rg′(t)−Kcg(t)−Kg(t)/2 +Ku(t)/2.

2) Now consider the case of two or three strings ui(t) subjected to a tension Ti, and
let:

Ki =
4Ti

L
, Ks =

2 ou 3∑
i=1

Ki.

Show that the equations of the complete system become{
mu′′i (t) = −Kiu(t) +Kig(t)/2, i = 1, 2, . . .
mcg

′′(t) = −Rg′(t)− (Kc +Ks/2)g(t) +
∑
Kiui(t)/2.

(2.28)

3) For the numerical resolution (in this case we will assume that there are 2 strings)
let

u′i = vi, g′ = h,

X = (u1, u2, g, v1, v2, h).
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Show that the differential system (2.28) can be expressed in matrix form

X ′(t) = AX(t)

with

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−K1/m 0 K1/(2m) 0 0 0
0 −K2/m K2/(2m) 0 0 0

K1/(2mc) K2/(2mc) −(Kc +Ks/2)/mc 0 0 −R/mc

 .

The solution is then
X(t) = exp(tA)X0

where the vectorX0 contains the initial conditionsX(0). Numerical resolution consists
for example of choosing a time increment τ, then of calculating M = exp(τA), and
Xn = X(nτ) is obtained by induction:

Xn+1 = MXn.

The parameters used in Figure 2.24 are the following:

m = 1 g, Ki = (2πfi)2m gs−2 with f1 = 500Hz and f2 = 500.1 Hz,

mc = 300 g, Kc = (2πfc)2mc gs−2 with fc = 50Hz,

R = 10
√
Kcmc gs−1,

X0 = (0 m, 0 m, 0 m, 1 ms−1, .9 ms−1, 0 ms−1).

2.6.6. Calculation of the inharmonicity of a real string (***)

The equation that governs the movement of a real string, with a non-zero diameter
and hence a certain stiffness, is a combination of the equations for an ideal string and
a bar. Its expression is as follows:

∂t2u(x, t)− c2∂x2u(x, t) + κ2∂x4u(x, t) = 0,

where c2 = T/µ, T being the tension of the string, µ its mass per unit length, and
κ2 = r2E/(4ρ), where E is the string’s Young modulus, r its radius and ρ its density.
We will study the harmonic solutions of the form u(x, t) = ϕ(x) exp(2iπft), which
only exist for certain values fn of the frequency we are going to determine. We will
see that certain frequencies are no longer harmonics, as they were for the ideal string,
but partials.
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1) Let λ = κ2/c2, show that ϕ is a solution to the fourth order differential equation

λϕ(4)(x)− ϕ′′(x)− k2ϕ(x) = 0, (2.29)

with k = 2πf/c.

2) The solutions to this equation are linear combinations of exponentials of the form
exp(Kx). Show that exp(Kx) is a solution if and only if

λK4 −K2 − k2 = 0,

and infer that the general solution to (2.29) is of the form

ϕ(x) = α exp(K1x) + β exp(−K1x) + γ exp(iK2x) + δ exp(−iK2x) (2.30)

with

K2
1 =

1 +
√

1 + 4λk2

2λ
, K2

2 =
−1 +

√
1 + 4λk2

2λ
.

3) The 4 constants in (2.30) have to meet the conditions imposed by the ends of the
string. We will assume that they are as follows:

ϕ(0) = 0, ϕ′′(0) = 0,

ϕ(L) = 0, ϕ′′(L) = 0.

Show that the first two lead to α = −β and γ = −δ. Hence the solution is of the form

ϕ(x)/2 = α sh(K1x) + iγ sin(K2x).

Now show that the last two conditions lead to non-zero solutions if and only if

sinK2L = 0

(to do this, calculate the determinant of the homogeneous system of two equations
with two unknowns α and γ).

4) Hence we have the following condition on K2 = K2(n), the dependence on n
actually affecting k = kn = 2πfn/c:

K2L = nπ.

Let B = λπ2/L2, infer from this condition that

k2
n =

n2π2

L2
(1 +Bn2),

and finally show that the partial fn can be expressed as

fn = nf0
1

√
1 +Bn2

where f0
1 = c/(2L) is the string’s fundamental in the absence of inharmonicity. Notice

that for r = 0 (the ideal string), we have λ = 0 and again find the formula fn = nf1.
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2.6.7. Coincidence frequency of a wave in a board (***)

The resonator of many music instruments is made of a wooden board. This board
(spruce wood for example) is chosen so as to have a high propagation speed for trans-
verse waves. We will see how this is useful to obtaining a satisfactory sound wave
radiation.

To make things simpler, we consider an infinite board, with its median slice lo-
cated, in its resting position, in the horizontal plane xOy, vibrating vertically at the
frequency f , and with its position z = u(x, y, t) on the axis perpendicular to this plane
described by a function of the form

u(x, y, t) = cos(kx) exp(iωt),

with ω = 2πf. The transverse wave equation for a board is written

∂t2u+
h2c2L
12

∆2u = 0, c2L =
E

ρ(1− ν2)

where h is the board’s thickness, E, ρ and ν are, respectively, the Young modulus, the
density and the Poisson coefficient of the material, assumed to be homogeneous and
isotrope, cL is the speed of the longitudinal waves in the board (which we will not be
studying here), and ∆2u = ∆(∆u), which in this case amounts to ∆2u = ∂x4u.

1) By assuming k > 0, show that

k =

√
ω
√

12
hcL

,

and that the standing transverse wave u(x, y, t) is the superposition of two traveling
waves propagating through the board in different directions at the speed (dependent
on the frequency)

c(ω) =
ω

k
=

√
ωhcL√

12
.

2) The board’s vibrations generate an acoustic wave in the air located in the half-space
z ≥ 0. The components of the air’s speed vector are assumed to be 0 except for the z
component denoted by vz(x, y, z, t), which coincides in z = 0 with the speed of the
board:

vz(x, y, 0, t) = iω cos(kx) exp(iωt).

We assume that vz(x, y, z, t) is of the form

vz(x, y, z, t) = iω cos(kx) exp(iωt− iκz). (2.31)
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Knowing that vz is a solution to the wave equation (1.9), show that

κ2 = ω2

(
1
c2
− 1
c(ω)2

)
.

As a first conclusion, if c(ω) < c, then κ is purely imaginary, and the acoustic wave
will decrease exponentially as exp(−αz) with 0 < α = iκ (for physical reasons, the
exponentially increasing solution is discarded). Furthermore, because this is a standing
wave, its intensity over a period T is zero (see section 1.6.4). However, if c(ω) > c,
then κ is real, we have a traveling wave, the behavior with respect to z is sinusoidal
and the sound ‘ carries ’. The frequency f at which we have the equality c(ω) = c is
called the coincidence frequency.

3) We will now assume that c(ω) > c, and focus on the intensity at point x, y, z.
The real speed, still denoted by vz, is (take the real part of (2.31)):

vz(x, y, z, t) = −ω cos(kx) sin(ωt− κz).

Using the state equation ∂tpa = −c2ρ0(∂xvz + ∂yvz + ∂zvz), show that the acoustic
pressure pa is

pa(x, y, z, t) = c2ρ0[k sin(kx) cos(ωt− κz)− κ cos(kx) sin(ωt− κz)].

Use this result to show that the intensity’s value at point x, y, z is

I =
cρ0ω

2 cos2(kx)
2

√
1− c2

c(ω)2
.

Your conclusion?

2.6.8. Resonance of the bourdon (**)

The bourdon on an organ can be considered simply as a tube with pressure control
at its entrance in x = 0, with the particular feature of being closed at the other end in
x = L, meaning that at that point:

v(L, t) = 0 for any t.

1) Using Euler’s equation, show that the pressure p(x, t) inside the tube meets the
boundary condition

∂xp(L, t) = 0.

2) Now go over the study again of the resonance of the pressure controlled tube in
section 2.4.1, this time with ∂t2p(x, t)− c2∂x2p(x, t) = 0, inside the tube,

p(0, t) = pE(t), at the entrance,
∂xp(L, t) = 0, at the exit,
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and show that the natural frequencies are the same as for the open, speed controlled
tube:

fn =
(n− 1/2)c

2L
, n ≥ 1.

2.6.9. Resonance of a cylindrical dual controlled tube (**)

We now study the case of a harmonic standing wave p(x, t) = ϕ(x) exp(2iπft) in
a cylindrical tube with length L, generated by a dual control, that is to say, where the
boundary conditions are expressed with real numbers for the values of a and b (this is
a particular choice, and not the only possible one):{

ap(0, t) + b∂xp(0, t) = exp(2iπft), at the entrance,
p(L, t) = 0, at the exit.

1) Remember that ϕ(x) is of the form

ϕ(x) = α exp(ikx) + β exp(−ikx),

where k = 2πf/c. Show that the boundary conditions above impose{
α(a+ ikb) + β(a− ikb) = 1,
α exp(ikL) + β exp(−ikL) = 0,

and use this result to show that

α =
exp(−ikL)

z exp(−ikL)− z exp(ikL)
, β =

− exp(ikL)
z exp(−ikL)− z exp(ikL)

,

where z = a+ ikb and z = a− ikb is the conjugate of z.

2) By writing z in the form z = r exp(iθ), show that the resonant frequencies, that is,
the values of f such that the numbers α and β are not defined, are

fn =
(nπ + θ)c

2πL
, n ∈ Z.

What previous result do we find again for the particular cases (a, b) = (1, 0) and
(a, b) = (0, 1)?

2.6.10. Resonance of a conical tube (1) (**)

A major difference between the clarinet on one hand, and the saxophone, the oboe
and the bassoon on the other, is that in the first case the drilling is cylindrical, and
in the second it is conical. There lies for the most part the difference in timbre of
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these instruments, which are all, incidentally, reed instruments (simple or double),
and therefore perform to a first approximation with an imposed speed at the tube’s
entrance. Whereas even harmonics are virtually absent from the sound of a clarinet,
we will see that this is far from being the case of the oboe and the saxophone.

Consider a truncated conical tube, the summit of which would be located at the
origin, bounded by the sections r = a and r = b, with 0 < a < b, with tube length
L = b − a (we are using spherical coordinates with r = ‖x‖ =

√
x2

1 + x2
2 + x2

3). In
harmonic conditions, the acoustic pressure inside the tube can be expressed as

p(r, t) =
[
α

exp(ikr)
r

+ β
exp(−ikr)

r

]
exp(2iπft).

1) Let n be the unit vector, pointing out, perpendicular to the surface located at the
tube’s entrance (r = a). Knowing that the mass conservation equation for an acoustic
pressure wave is

−∇xp(r, t) = ρ0∂tv(r, t),

show that the speed control v(r, t).n = exp(2iπft) imposed at the entrance r = a
becomes

∂rp(a, t) = 2iπρ0f exp(2iπft).

2) Assuming that the pressure is equal to 0 at the tube’s exit, show that the boundary
conditions lead to, in r = a and r = b, respectively{

αz exp(ika) + βz exp(−ika) = 2iπa2ρ0f,
α exp(ikb) + β exp(−ikb) = 0,

where z = ika− 1, and infer that

α =
2iπa2ρ0f exp(−ikb)

z exp(−ikL)− z exp(ikL)
, β = −α exp(2ikb).

3) Show that the resonant frequencies, that is, the values of f for which the numbers
α and β are not defined, are solutions to the transcendental equation

tan(2πfL/c) + 2πfa/c = 0,

and use this result to show that the resonant frequencies can be expressed as

fn =
c (− arctan(2πfna/c) + nπ)

2πL
, n ∈ Z.

4) Plot the lines with equations y = tan(2πfL/c) and y = −2πfa/c, which intersect
at points with x-coordinates fn, and based on this result, show that for any a� L and
n not too high we have

fn '
nc

2L
.

Your conclusion?
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2.6.11. Resonance of a conical tube (2) (**)

Go over Study problem 2.6.10, this time assuming pressure control, meaning that
the conditions imposed at both ends are as follows: p(a, t) = exp(2iπft) and p(b, t) =
0. Solution: the resonant frequencies are exactly the numbers

fn =
nc

2L
.

Notice also that the difference in the harmonics distributions caused by the type of
control for a cylindrical tube is clearly attenuated for a conical tube. Conical tubes can
grow larger (some organ stops) or smaller (other organ stops, baroque recorder).

2.7. Practical computer applications

This second set of practical applications focuses on creating a synthetic sound
imitating an acoustic music instrument, as well as on a few experiments on timbre.
The last part can only be done if you have completed Study problem 2.6.5.

2.7.1. Create your synthesizer

We are going to write a MATLAB function for the purpose of creating sounds by ad-
ditive synthesis (the summing of sines, see also Chapter 6) and the use of an envelope
to control the intensity in time. Additive synthesis requires the synthad.m function,
previously used in the practical applications of Chapter 1.

2.7.1.1. Write your instrument function

Create a function with the header

function s = instrument(f1, T, Fe)

Remember that the file’s name is then instrument.m (you can replace the word
instrument with whatever word you like). We first create a sound of the form

s(t) =
np∑

k=1

αk sin(2πf1hkt), 0 ≤ t ≤ T.

Because the instrument we are dealing with is programmed, the number of harmonics
or partials np, their amplitudes αk and their ‘ normalized ’ frequencies hk, are all
defined by you in the function itself: the frequency of partial number k is then f1hk.
In theory (due to the ‘ normalization ’ effect), we have h1 = 1 (h1 = 0.5 for a bell),
and f1h1 = f1 (f1/2 for a bell) is the frequency of the first harmonic or partial. Once
these values are defined, you can use the synthad function inside the instrument

function itself.
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A few suggestions regarding the choice of the harmonics or partials distribution:
the example of the bell in Chapter 1, the two types of bars, the two types of tubes or the
membrane in this chapter. All you have to do now is test your function, for example
by executing the following commands:
Fe = 22050;

s = instrument(220,3,Fe);

sound(s,Fe);

2.7.1.2. Add an envelope

Edit the envelop.m function you copied from the AM website (see instructions
at the end of the first chapter). To understand what this function does, execute the
following commands:
t = [0 .1 .4 1]; a = [0 1 .3 0];

env = envelop(t,a,Fe);

plot(env);

then start over with different values (and different numbers of values) in the vectors t
and a.

To add an envelope to the sound you created with your instrument function, sim-
ply add (at the end of the file) the following command lines after specifying yourself
in the function the numerical values for the vectors t and a, while making sure that
the first element in t is 0 and that the last one is the duration T:
env = envelop(t,a,Fe);

s = env.*s;

Now test your function again.

2.7.1.3. And play your instrument

Edit the play.m file (copied from the AM website) and read it. You are going to
make a few modifications. This program calculates the 13 notes of a chromatic scale,
starting with the low-pitched frequency f0 of your choice. You also have to specify in
this file the instrument (the function’s name) you wish to play. Once this is done, run
the play command and play!

COMMENT.– In the windows system, you will find an application called ‘ Vienna ’
that can be used to create ‘ soundfonts ’ from samples, and then allows you to play
them, either on a virtual keyboard on the screen, or an actual keyboard connected to
the computer by a MIDI cable. Such tools also exist in the linux system, but currently
cause network installation problems.

2.7.2. Modify the timbre of your instrument

Now that your ‘ synthesizer ’ works, you can try playing around with the timbre
of your instrument by changing the weights of the harmonics or partials in your
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instrument.m file, and listen to the resulting effect with the play program. For
example, what would happen if we were to remove the first harmonic? If we modified
the shape of the envelope? Or the relative weights of the harmonics? If we added some
inharmonicity?

2.7.3. Remanent sound

The notations and data are the same as in Study problem 2.6.5. Create a command
file called unison.m, that you will use to program the necessary computations.

The following is a description of the two string model. It relies essentially on pro-
gramming a loop to compute Xn+1 = MXn from Xn = X(nτ) and M = exp(τA).
To do this, the data has to be initialized, particularly X0 and A (you can use the ones
mentioned in Study problem 2.6.5, but it might be more fun to try to find on your own
the parameter values that produce the same remanence effect).

Initialization of X0. We are dealing here with a column vector, the command can
be written for example
X = [0 0 0 1 .9 0]';

(notice the prime used for transposing, in this case from a line to a column).

Initialization of A. Follow this example: to intialize the matrix

A =

 1 2 3
0 1 1
2 2 0

 ,
the command is written
A = [1 2 3; 0 1 1; 2 2 0];

(notice the ; to move to the next line).

M is computed with the command
M = exp(tau*A);

where tau is the time increment chosen for the sound representation.

The sound itself is given by the position of the bridge, the third component of the
vector X. If nt is the number of time increments, then the initialization of the sound
vector and of the computation loop are written:

sound = zeros(1,nt);

sound(1) = X(3);

for n = 2:nt

X = M*X;
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sound(n) = X(3);

end

Finally, to listen to and visually observe the produced sound, the commands are:
soundsc(sound,1/tau);

plot(20*log10(abs(sound)+1e-3));

If everything goes according to plan, you should be able to obtain Figure 2.24.



Chapter 3

Scales and Temperaments

When we studied vibrating bodies in Chapter 2, we observed that they can pro-
duce either harmonics (strings and tubes) or partials (bells, membranes, percussions).
Man may have been more sensitive to the former than the latter, it would seem, when
constructing his musical scales. We can suggest the following explanation: strings
(the hunter’s bow) and tubes (the first known flutes, crafted from bones, date back to
60, 000 BC) produce sounds that last longer than with percussions, and it is easier to
perceive the harmonics of the former, depending on the degree of their consonance
(see section 2.1.2), than the partials of the latter. It is therefore likely that the strong
consonance of the fifth1, which corresponds to a frequency ratio of 3/2, beame predo-
minant very early on in musical history.

We saw earlier that dividing a string into successive portions with lengths L/1,
L/2, L/3, L/4, L/5... produced a sequence of harmonics with frequencies equal to
1, 2, 3, 4, 5... times the fundamental f . The first of these two sequences is said to be
harmonic, the second arithmetic. Note that they would have turned up in the reverse
order if, instead of shortening the length of the string, we had multiplied its length by
1, 2, 3, 4, 5 to obtain frequencies equal to f/1, f/2, f/3, f/4, f/5. The first thirteen
harmonics are roughly equivalent to the notes given in the following table. The upper
line indicates both the ranks of the harmonics and the ratio of their frequency to the
frequency of the fundamental, called the relative frequency.

1 2 3 4 5 6 7 8 9 10 11 12 13
C C G C E G B[- C D+ E- F]- G G]+

1. Resulting from the the fact that the low-pitched note’s third harmonic coincides with the
high-pitched note’s second harmonic.

97
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Give or take a few cents (see section 2.5.1), the resulting notes in musical notation are:

Figure 3.1. Sequence of the first thirteen harmonics of C2

If we make all of these notes fit inside one octave, by dividing the frequencies by
the appropriate power of 2, and arrange them by order of increasing frequency, we
obtain the following frequency ratios:

C D E- F]- G G]+ B[- C
1 9/8 5/4 11/8 3/2 13/8 7/4 2 (3.1)

These notes do not correspond to any classical scale, but you can hear them quite
clearly for example when you blow very gently into a C flute, without making the
tube resonate.

The countless discussions that took place over the centuries mainly dealt with the
first two distinct harmonics of the octave, G and E [BAI 01, FIC 96].

3.1. The Pythagorean scale

Figure 3.2. Pythagoras’s diatonic scale. All the fifths and fourths between consecutive notes ‘
sound right ’, in other words the ratios are equal to 3/2 for the fifths, and to 4/3 for the fourths
(high-pitched/low-pitched frequency ratio)

In the 6th century BC, Pythagoras was said to give great importance to the arith-
metic simplicity of length ratios. Beside the octave ratio 2, the fifth ratio 3/2 is the ‘
simplest ’ of the ratios in Table (3.1) above. Hence Pythagoras emphasized the fifth to
construct the diatonic scale named after him, by repeatedly reproducing this interval.
The result is the well-known cycle of fifths, F, C, G, D, A, E, B, which leads to the
following frequency ratios:

C D E F G A B C
1 9/8 81/64 4/3 3/2 27/16 243/128 2

Arithmetically speaking, this scale is quite ‘ elegant ’, in the sense that it only uses
two types of intervals between consecutive notes: the tone, with a ratio of 9/8, and
the semitone, with a ratio of 256/243. However, aside from the fifth (and the octave
of course), it does not coincide with the harmonics. For example, the third with ratio
81/64 ' 1.266 is higher than the corresponding harmonic in Table 3.1 which is equal
to 5/4 = 1.25. The difference, which is difficult to notice inside a melody, becomes
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noticeable in harmony, that is in a chord, because of the beat effect (see section 2.1.2):
for a C with frequency 262 Hz, the harmonic third C-E will produce no beat, whereas
the Pythagorean third C-E will produce a perfectly noticeable2 beat of |(5 × 1 − 4 ×
81/64)| × 262 Hz ' 16 Hz. Our ears, which are accustomed to equal temperament,
studied later, perceive the Pythagorean third as ‘ bright ’ or ‘ hard ’. The beat of the
tempered third is much slower: roughly 10 Hz.

3.2. The Zarlino scale

In the 4th century BC, Aristoxenus the Musician, a pupil of Aristotle, recommen-
ded in his Elements of Harmony ‘ not to turn one’s back on our sensations ’, and to trust
one’s ears rather than mathematical reasoning. He therefore suggested to construct the
major chord on the basis of harmonics, hence with the frequency ratios 1, 5/4, 3/2.
This chord produces no beat, and sounds very ‘ pure ’. It was deemed more aesthetic
and true to physics by Aristoxenus and his disciples.

Figure 3.3. The three major chords used to build the Zarlino scale. Harmonic
thirds and fifths in each chords. The rest do what they can!

In the 16th century, Zarlino picked up the idea, and started with the three major
chords F-A-C, C-E-G and G-B-D, with the frequency ratios 1, 5/4, 3/2, to build his
diatonic scale, also called the physicist scale. The frequency ratios are as follows:

C D E F G A B C
1 9/8 5/4 4/3 3/2 5/3 15/8 2

In this scale, the three tonic major chords F, C and G are therefore very consonant
and produce no beat. But things get ugly when we switch to another tonality. For
example, the fifth D-A has a frequency ratio equal to 40/27 ' 1.48, below the ‘ right
’ fifth with ratio 1.5. For a D with frequency 294 Hz, the Zarlino fifth D-A produces
a (3 × 1 − 2 × 40/27) × 294 Hz ' 11 Hz beat, which usually sounds dreadful to a
musician’s ears!

Furthermore, there are now three types of intervals between consecutive notes (ins-
tead of two in the Pythagorean scale): the semitone, with the ratio 16/15, and two
types of tones: major tones C-D, F-G and A-B with the ratio 9/8, and the minor tones

2. On the condition of course that the fifth harmonic of the C and the fourth harmonic of the E,
which cause the beat, are included in the notes.



100 Music and Acoustics

B-C and G-A with the ratio 10/9! The discrepancy between these two types corres-
ponds to a frequency ratio equal to (9/8)/(10/9) = 81/80 = 1.0125, an interval
called a syntonic comma and approximately equal to a ninth of a tone.

All this was not exactly satisfactory, particularly in the context of Western music,
which saw the development of polyphony, combined with the desire to be able to
transpose in any tonality.

3.3. The tempered scales

J. S. Bach’s Well-Tempered Clavier was composed at the begininng of the 18th

century. It is a collection of preludes and fugues written in all of the twenty-four
tonalities, major and minor. As the title of this work suggests, playing these preludes
and fugues requires a ‘ well-tempered ’ scale (which does not mean equal-tempered),
and the Zarlino system, with its very shortened fifths, turns out to be rather inadequate.

But we won’t let that stop us. We turn to Pythagoras and proceed with the cycle of
fifths that we started, until we have covered the scale’s twelve semitones. Note by the
way that the notes of the chromatic scale obtained in this manner were already known
to the Chinese (the legend attributes them to minister Lin-Louen, 2, 600 BC), who
used them to transpose the five typical pentatonic scales of Oriental music. Starting
with F, the cycle F, C, G, D, A, E, B, F], C], G], D], A], E], will lead to a frequency
ratio between the first and last note equal to (3/2)12 ' 129.75. Also, it would be
nice if this E] could be equal to the enharmonic F (the closest F), if only to limit the
number of notes on a keyboard. But it just so happens that the enharmonic F of this E]
corresponds to the ratio 27 = 128. There lies the whole problem:

129.75 ' (3/2)12 6= 27 = 128,

making it impossible to have both consonant octaves and consonant fifths. It was li-
kewise useless to check this with calculations, since the equality 312 = 128 × 212 is
simply impossible: the number on the left is odd whereas the one on the right is even.
The gap between the two notes, which corresponds to the ratio (3/2)12/27 ' 1.014,
is called a pythagorean comma.

3.3.1. Equal temperament

A compromise was needed. It was found by Werckmeister around 1695. By setting
the equation 12 fifths = 7 octaves, and by favoring the consonance of the octaves,
he decided to spread the excess comma among the 12 fifths of the cycle by slightly
shortening them. The tempered scales were born, including equal temperament for
which all the fifths are equal and correspond to the ratio

27/12 ' 1.498.
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Again, the Chinese were a few steps ahead, since equal temperament was invented
by prince Chu Tsai-Yu from the Ming dynasty (1368-1643) and officially adopted in
1596, one century before Europe [HON 76].

In equal temperament, the fifth D-A (D at 294 Hz) will produce a beat of

(3× 1− 2× 27/12)× 294 Hz ' 1 Hz, (3.2)

which is much more acceptable than the 11 Hz beat produced by the Zarlino fifth D-A.
As for the tempered semi-tone, its ratio is

21/12 ' 1.0595.

In this scale, all semitones are equal, and there is no difference between the ] and the
[. On a keyboard, the same key is used to play C] and D[.

3.3.2. A historical temperament

In Bach’s time, there were actually many temperaments used that were interme-
diate between Zarlino’s temperament and equal temperament. [JUN 79] contains a
description of several historical temperaments, including the following one suggested
for playing The Well-Tempered Clavier. The fact that the tonalities of this tempe-
rament are close to C major makes them all the more consonant. Starting with C, we
go through a cycle of 4 equal fifths C-G-D-A-E, with a ratio slightly below 3/2, so as
to have a default beat for the fifth C-G and an excess beat for the major third C-E (a
ratio higher than 5/4) both with the same speed: this is the ‘ well-tempered ’ clavier.
Let x be the ratio of these fifths and f the frequency of the C, this leads to the beats

excess beat C-E: b1 = |5− 4x4/4|f = (x4 − 5)f,
default beat C-G: b2 = |3− 2x|f = (3− 2x)f,

and the equal beat speed condition b1 = b2 leads to

x4 + 2x− 8 = 0,

the relevant solution of which is
x ' 1.496.

The fifth B-F] is tuned to the same ratio. All the other fifths are tuned to achieve
consonance, meaning that they are tuned to obtain the ratio 3/2. The octaves are ‘ of
course ’ also tuned to achieve consonance. Quite remarkably, this can be done because
we actually do have

x5 × (3/2)7 = 128.006 . . . ' 128.

Hence this temperament is comprised of major thirds at small, varying distances from
the harmonic third, the closest one being that of the ‘ main ’ tonality C major, and
they increase as their distance to it increases. Thus each tonality has it own sonority,
as opposed to what happens with equal temperament.
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3.3.3. Equal temperament with perfect fifth

Of the fifths and the octaves, Werckmeister chose to make the octaves perfect. But
we can ask ourselves this question: why not instead choose to make the fifths perfect?
This is precisely what was suggested recently by the piano tuner S. Cordier [COR 82]
in what he called equal temperament with perfect fifth. Of course, we then end up with
slightly widened octaves (see also section 4.3), since the octave ratio must be such that
(3/2)12 = x7, hence x ' 2.004. The C4-C5 octave then produces a beat of

|2− 2.004| × 262 ' 1 Hz.

In other words, the 1 Hz beat of the fifth (3.2), associated with a perfect octave, was
passed on to the octave. Widening the octaves corresponds rather well to the practice
common to other musicians such as violinists, as well as to the ‘ distortion ’ in our
perception of pitch, particularly for high-pitched sounds, as we will see in Chapter
4. However, for certain compositions such as for example the sonatas by Beethoven,
where double or even triple octaves are frequent, this can turn out to be unpleasant,
and so a compromise has to be made between perfect octaves and perfect fifths.

3.3.4. The practice of tuners

The theoretical developments we have just discussed, and which are actually mostly
relevant to keyboard instruments (the sound of which is fixed), was based on the hypo-
thesis that strings produce harmonics, which is not exactly true, as we saw in section
2.5.1.1. Reality is in fact more complex, and in practice, tuners give the fifths and the
octaves a slight beat, as little as possible, default beats for fifths and excess beats for
octaves. In other words, they resort to an intermediate temperament between Werck-
meister’s and Cordier’s temperaments, a maximum consonance equal temperament.

3.3.5. The practice of musicians

Regarding the instrumental practice of musicians who adjust the pitch of the note
themselves while they play (violins, wind instruments), equal temperament is far from
being the rule. If the fifths are played perfectly, the musicians can usually tell the
difference between a C] and a D[, with a clear tendency to shorten the semitones of
the leading notes. É. Leipp mentions in his book [LEI 80] that the B, leading note of
the C, is sometimes played less than a quarter tone away from the C, and this does not
bother the listeners!

As for singing, it is sometimes difficult to determine by analysis the exact pitch
of a note. In the excerpt from Norma by Maria Callas shown in Figure 1.18, where
the tuning fork is set at 441 Hz, the Fourier analysis over 1.8 s of A5 (theoretically
882 Hz) at t = 7 s led to Figure 3.4, for which the average pitch seems closer to
900 Hz... But it’s Maria Callas!
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Figure 3.4. Frequency analysis of A5 ‘ interpreted ’ by Maria Callas, clearly showing the gap
between the simple models we are describing and reality and its complexity...

3.4. A brief history of A4

We owe the invention of the tuning fork to the luthier John Shore around 1711,
more accurate than the ‘ tuning flutes ’ used before. The tuning fork’s A4 has often
changed over the centuries, but also from one place to the next, which was not without
causing problems for traveling musicians! According to some, the tuning fork used by
a city depended greatly on its financial state: if funds were low, the ‘ organ ’ budget
was cut back by slightly shortening the pipes, and the tuning fork went up. Other
instruments then had to play along... In 1704, the Paris opera’s tuning fork was set
to 405.3 Hz (below the current A[), but gradually went up to 449 Hz in 1858. At the
same time, it was at 434 Hz in London and 455.5 Hz in Brussels. Hence a decree in
1859 that set it in France to 435 Hz, which was confirmed by the Vienna congress
of 1885. This did not stop it from continuing its senseless progression, and it can be
tracked down again in London in 1953, where an international conference brings it
to 440 Hz. In the meantime, the Académie française had solemnly but unsuccessfully
attempted to bring it back to its former value of 435 Hz. Today, it wanders around
under close watch between 440 and 444 Hz depending on the orchestras! But baroque
music enthusiasts prefer to play it safe with the A 415, which is wiser with ancient
string intsruments...

3.5. Giving names to notes

In the early 11th century, Guy d’Arezzo sought to define a codification system for
intervals. We owe him the names attributed to notes in Latin countries: Ut or do (C), ré
(D), mi (E), fa (F), sol (G), la (A). The si (B) or si[ will only later really appear. He is
also responsible for the staff in musical notation. As a mnemonic device, he suggested
a hymn to Saint John the Baptist attributed to Paul Diacre (around 770), in which the
six first notes of the diatonic scale are found at the beginning of each verse:

UT queant laxis
REsonare fibris
MIra gestorum
FAmuli tuorum
SOLve polluti
LAbii reatum

Sancte Ioannes.
Today, the effectiveness of this mnemonic device is questionable! Letters were once
used for notes, a practice that has lived on in Anglo-Saxon and German countries:
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Latin notation do ré mi fa sol la si[ si do
Anglo-Saxon notation C D E F G A B[ B C
German notation C D E F G A B H C

Table 3.1. Names of the notes in different countries.

3.6. Other examples of scales

The simplification of the Western scale was probably imposed by polyphony. In
other cultures where musical composition is more oriented towards melodic and rhyth-
mic depth, scales are much more complex than ours, and are comprised of vast num-
bers of intervals with varying widths, quarter tones, three-quarter tones... with subtle
differences that are difficult to perceive for our Western ears.

Figure 3.5. Melodic formulas on the maquām Rast. The B[ and the E[ have to
be played one quarter tone below their usual frequency

The concept of scales is in fact too restrictive for Oriental music, and no term
can render the exact meaning of the maquām of Arabic music, which simultaneously
describes the intervals that are used, the movement of the melody (or the ‘ life of its
own ’ [JAR 71]), the starting points, pauses, and final stops, all of this usually arranged
inside a tetrachord (a sequence of four consecutive notes). The table below indicates
the intervals used in the Rast, Hijāz and Saba maquāms, taken from [JAR 71] where
you will find associated melodies, including the one reproduced above.

C D E[+ F G A B[ C
D E[ F] G A B[+ C D
D E[+ F G[ A B[ C D (or E[)

Table 3.2. From top to bottom, interval alterations in the Rast, Hijāz and Saba
maquāms. The [+ notation indicates a note lowered by a quarter tone.

3.7. Study problems

3.7.1. Frequencies of a few scales (***)

Fill in Table 3.3. The lowest F is F3. For all cases, take a C4 at 261.6 Hz as the
reference frequency, and assume that the octaves are tuned without any beats. The
‘ well-tempered ’ scale is the one described in the chapter to play Bach. The one
with inharmonicity will be calculated using the formula from Study problem 2.6.6,
and by considering that B has the same value for every note: B = 0.4/1 200, which
corresponds to the case of a small upright piano.
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Scale: F F] G G] A B[ B C C] D
Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity
Scale: D] E F F] G G] A B[ B C
Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity

Table 3.3. Frequencies for different scales.

3.7.2. Beats of the fifths and the major thirds (*)

Use the results of Study problem 3.7.1 to fill in Tables 3.4 and 3.5.

Scale: F-C F]-C] G-D G]-D] A-E B[-F
Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity
Scale: B-F] C-G C]-G] D-A D]-A] E-B
Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity

Table 3.4. Beats of the fifths for different scales.

3.8. Practical computer applications

3.8.1. Building a few scales

Open the play.m file seen in Chapter 2 and save it under a new name, for example
scales.m. In this new file, modify the vector fr (written as it is, it contains the fre-
quencies of a slighlty stretched tempered chromatic scale) so as to have it contain the
frequencies of either the Zarlino or the Pythagorean scale, and listen to the differences
between these scales and the tempered scale.
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Scale: F-A F]-A] G-B G]-C A-C] B[-D
Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity

Scale: B-D] C-E C]-F D-F] D]-G E-G]

Pythagorean
Zarlino
well-tempered
equal temperament
with inharmonicity

Table 3.5. Beats of the major thirds for different scales.

3.8.2. Listening to beats

We are going to listen to the beats produced between two notes. Open a new file
and program a chord with two notes. This can be done either with the instrument

function you created in the applications from Chapter 2 by writing in your file (after
the necessary initializations):
s = instrument(f1,T,Fe) + instrument(f2,T,Fe);

or by using the synthad function (see applications from Chapter 1) by writing
s = synthad(a,fr1,p,T,Fe) + synthad(a,fr2,p,T,Fe);

In the first case, f1 and f2 are the fundamentals of the chord’s two notes for which we
wish to hear the beats. In the second case, the vectors fr1 and fr2 contain the list of
harmonics, of the form fr1 = (1:n)*f1 where n is the number of harmonics. You
can try different values for the amplitudes contained in the vector a.

Try the following cases:
- f1 and f2 very close to each other;
- f1 and f2 slightly less than one fifth apart. Can you hear the beats? Can you still

hear them if you remove the second and third harmonics?
- f1 and f2 set apart by one major third from the Pythagorean scale, the Zarlino

scale, the tempered scale.

Conduct these tests for different values of pitch. Theoretically, what are the har-
monics involved in the beats? What can you hear when you remove these harmonics?
(This explains why flutists have such a hard time tuning their instruments when using
thirds with very ‘ soft ’flutes). Add the fifth to it to compare the basic major chords.



Chapter 4

Psychoacoustics

Psychoacoustics is the study of the perception of sound. The sound processing
performed by the ear and the brain is extremely complex, and its study [ZWI 81]
is difficult because it involves subjectivity, as shown by the classification ‘ hearing,
listening, understanding, comprehension ’ suggested by P. Schaeffer [SCH 66]. In this
chapter, we will only be focusing on a few aspects of psychoacoustics: intensity and
pitch, which are of direct interest to the musician, and the masking effects, of great
use when designing sound compression techniques, such as the famous MP31 format
described in Chapter 5.

4.1. Sound intensity and loudness

The sound intensity LI that we defined in Chapter 1, usually expressed in decibels,
is a physical measurement of acoustic pressure. However, this measurement does not
coincide with our sensation of sound intensity, referred to as loudness, the study of
which was developped by H. Fletcher in the 1930’s [FLE 29]. First of all, we only
hear sounds for a range of frequencies between 20 Hz and 20 kHz. But even inside
this interval, for a given decibel level, loudness varies depending on the frequency. In
particular, hearing shows a sensitivity maximum between 3, 000 and 4, 000 Hz (see
Figure 4.1), allowing for example the piccolo to effortlessly stand out in a tutti orches-
tra. If you go back to Figure 1.17, you will also notice that the soprano’s harmonics are

1. Short for MPEG Layer 3, which stands for moving picture expert group part 3 (audio).
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more intense in that frequency range, so that her voice clearly stands out in the orches-
tral mass. There are two units of loudness to render the subjectivity of our hearing: the
phon and the sone.

4.1.1. The phon

By definition, the intensity in phons of a pure 1, 000 Hz sound, hence of the form
s(t) = a cos(2 000πt+ θ), is equal to its measurement in decibels:

x dB = x phons at 1, 000 Hz. (4.1)

Then, for a pure sound with any frequency f , its intensity in phons is by definition the
intensity in phons of the pure 1, 000 Hz sound that would produce the same loudness.
This new measurement of intensity is denoted by LN . Obviously, the above definition
seems to depend on the listener, it is therefore necessary to conduct experiments on
a large number of subjects, then to average the results, which led to establishing an
international norm that precisely sets the relation between the levels LI in dB and LN

in phons.

Figure 4.1. Fletcher’s equal-loudness contours. The ear’s sensitivity maximum
is located between 3, 000 and 4, 000 Hz

Figure 4.1 shows a few equal-loudness contours, that is, lines along which the
loudness of a pure sound is constant. Based on its definition, an equal-loudness contour

LN = c phons

includes the point with coordinates (1, 000 Hz, c dB). The equal-loudness contour
LN = 60 phons, for example, tells us that the pure sound with frequency 100 Hz
and intensity LI = 70 dB, or the one with frequency 50 Hz and intensity LI =
80 dB, produce the same sensation of sound intensity as a pure sound with frequency
1, 000 Hz and with intensity LI = 60 dB. The lower contour LN = 3 phons marks
the hearing threshold: any pure sound located below that line cannot be heard. Around
2, 000 Hz and 5, 000 Hz, the hearing threshold is 0 dB.

These contours were obtained for pure sounds. Studies and comparisons that led to
similar results were conducted for other types of sounds (see [ZWI 81]): variable-band
noise, periodic sounds, etc.

These studies showed that very low-pitched sounds (or also very high-pitched
sounds) require more energy to be perceived with the same level of loudness. This
explains, for example, why the baroque basso continuo is comprised of at least one
bass such as the cello or the double bass, and one polyphonic instrument such as the
harpsichord, both simultaneously playing the low-pitched part of the music.
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4.1.2. The sone

The phon is related to the decibel by Relation (4.1) and by the Fletcher contours. It
fits the measurement of sound perception well in the sense that two pure sounds with
different frequencies but the same measurement in phons are perceived to be at the
same sound level. However, on its own, it provides no information as to the decibel
level (or phon level) needed for a sound to be perceived as twice as loud as another
sound. Fechner’s law, which was stated in section 1.1.4, does tell us that the perception
of intensity follows a logarithmic law, but in this case, this point of view deserves to be
toned down [ZWI 81]. Many experiments conducted on pure 1, 000 Hz sounds have
shown that, on average, subjects find loudness to be doubled when the sound intensity
is increased by 10 dB2, which corresponds to multiplying the acoustic pressure by√

10 ' 3.16 (see section 1.1.4).

It is precisely this relation that the second unit of loudness conveys: the sone. An
international agreement has set as the reference point the pure 1, 000 Hz sound with
intensity 40 dB and has attributed it with the loudness of 1 sone. The sound level in
sones is denoted by N . Given the experiments mentioned above, the loudness level of
a pure 1, 000 Hz sound is therefore

N = 2(LN−40)/10.

To then find the level in sones of a pure sound with any frequency, we simply have
to refer to Fechner’s equal-loudness contours. Using the same example as above, the
pure sound with frequency 100 Hz and intensity LI = 70 dB or LN = 60 phons
therefore has a loudness level N = 4 sones.

Assuming that the above applies to other sounds, we can make the following com-
ments: in a concert hall, the background noise is close to 40 dB, or roughly 1 sone, and
a tutti orchestra can reach 110 dB. The eight degrees of intensity ppp, pp, p, mp, mf, f,
ff, fff are more or less equivalent to 40, 50, 60, . . . , 110 dB, or 1, 2, 4, . . . , 128 sones.
We saw in sections 1.1.4 and 1.6.3 that multiplying the number of instruments by ten
was equivalent to a 10 dB increase in sound intensity. Hence we have to multiply the
number of instruments by ten (or their amplitudes by

√
103) to multiply the loudness

by two. Rather than a logarithmic law, this is a fractional exponent law:

N ' anα,

where n is the number of instruments, α = log 2 ' 0.301 and a is a constant that
depends on the instrument.

2. To be more precise, this is valid when the weaker sound is above 40 dB. Below 40 dB, the
gap that leads to a twofold sensation steadily grows from 3 to 10 dB.
3. It may seem strange not to have the same multiples for the amplitude and the number of
instruments. This is due to the fact that the phases of the instruments should be randomly shifted
with respect to one another, partly cancelling out their contributions (see Study problem 1.6.3).
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4.2. The ear

To understand how we can tell different frequencies apart, with a resolution of
about five cents (see section 2.5.1.1) between 300 and 3, 000 Hz, a little anatomic
field trip into the ear is in order (Figures 4.2 and 4.3). Its key vibrating element is the
cochlea, a thin tube, roughly 32 mm long, filled with lymph, attached to the side of a
thin strip of bone and partly bounded by two membranes, the basilar membrane and
Reissner’s membrane. This tube is lined on its length with four rows each comprised
of 3, 500 sensors: these are the hair cells, which send electrical impulses to the brain
through the acoustic nerve. Each cell can reach an estimated maximum rate of 1, 000
discharges per second, not enough to account for the discrimination of sounds with
frequencies above 500 Hz (see section 5.1). It is the combined action of the many hair
cells that enable such a discrimination.

By assigning the value 1 to each electrical impulse of a hair cell (0 indicating the
absence of an impulse), and by assuming that the 4 × 3, 500 = 14, 000 cells can
simultaneously provide 1, 000 impulses per second, we end up for the bitrate of one
ear (hence in ‘ mono ’) with the impressive value of 14 Mbit/s! In comparison, the
mono track of an audio CD sampled at 44 kHz using 16 bits (see Chapter 5) has a
bitrate of 0.7 Mbit/s, or twenty times less than the ear’s estimated maximum rate. This
is an indication of the ear’s good performance, but also of the fact that increasing
the audio quality of CD’s by a factor higher than 20 should not lead to a noticeable
improvement.

The cochlea’s section shrinks as it goes from the elliptical window to its extremity,
the helicotrema, whereas the basilar membrane grows wider instead. The complete
mechanism is difficult to analyze from a mechanical point of view, but by direct obser-
vation, V. Békésy noticed around 1960 that the amplitudes of the cochlea’s vibrations
casued by the high frequencies reach their maximum in the part close to the ellipti-
cal window, whereas for low frequencies, the amplitudes reach their maximum at the
extremity [ZWI 81] (see Figure 4.3). Back in the 19th century, the physiologist and
physician H. Helmholtz foresaw this localization of frequencies [HEL 68, FIC 96].
He believed that each hair cell, like a piano string, was associated with a specific fre-
quency.

So what you should remember is that for each sound, a ‘ sound signature ’is pro-
duced on the cochlea, and sent to the brain by the hair cells. All of the ear’s other
elements are there to work as a medium between the outside and the cochlea and
between the cochlea and the brain:

- the outer ear picks up sound waves through the pinna and carries them through
the auditory canal down to the tympanic membrane (the eardrum);
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- the middle ear is comprised of a mechanism meant to decrease the amplitude
of the vibrations while increasing their efficiency (leverage effect), ensuring the air-
liquid transmission of these pressure variations: this is the chain of ossicles, which is
stimulated by the eardrum, and transmits the vibrations to the elliptical window;

- the inner ear, shaped like a snail shell coiled about two and a half times, is a tube
containing the cochlea floating in lymph, which is set into vibration by the elliptical
window;

- the acoustic nerve transmits the information from the hair cells to the brain.

4.3. Frequency and pitch

The sensation of pitch is of course related to the frequency. To a first approxima-
tion, Fechner’s law still applies: pitch varies with the logarithm of the frequency. So
the gap we perceive between a 100 Hz sound and a 200 Hz sound is the same as bet-
ween a 200 Hz sound and a 400 Hz sound: this is the octave interval, equivalent to
a twofold increase in frequency. The interval measured in octaves between two pure
sounds is therefore equal to the difference of the base 2 logarithms of their frequen-
cies. But this no longer applies for high frequencies, and a pure 6, 000 Hz sound seems
much lower than the octave of a pure 3, 000 Hz sound.
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Figure 4.2. Diagram of how the ear works. The essential organ, the cochlea, bathes in an
aqueous solution (a reminiscence of our past as fish?). The ossicles act as a lever to ensure the
air-liquid medium change

Figure 4.3. Cross section of the cochlea and localization of the frequencies
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4.3.1. The mel scale

The mel scale (or Stevens scale) is meant to account for this distortion. By de-
finition, a pure sound of 125 Hz (or 131, or 1, 000,... depending on the source) is
attributed 125 mels (or again, another value, depending on the source), then, through
experiments conducted on a large number of subjects, the mel scale is calibrated so
that a pure sound with 2x mels gives the sensation that it is exactly one octave above
a pure sound with x mels. For example, the sequence of octaves 500, 1, 000, 2, 000
mels is more or less equivalent to the frequencies 500, 1, 010, 2, 050 Hz.

However, the relevance of this scale is questionable for at least two reasons: the
high variability among individuals, and the fact that it only applies to pure sounds,
which are virtually non-existent when it comes to acoustic instruments. Nonetheless,
this is probably the reason behind a common practice among violonists and piano
tuners who tend to widen the upper octaves, and it also provides some theoretical
justification for Cordier’s temperament with perfect fifth [COR 82] (see section 3.3).
Maybe it could also explain Maria Callas’ A5 (Figure 3.4)? And for those who en-
joy music dictation, what notes can you hear in the sound illustration ‘ the mountain
whistler ’ on the AM website, the spectrogram of which is shown in Figure 1.20?

Furthermore, it is worth noting that pitch also varies with intensity: low-pitched
sounds seem lower when their intensity increases, whereas high-pitched sounds seem
higher, with an apparent pitch variation of up to an entire tone when the sound intensity
goes from 40 dB to 100 dB, for frequencies from 150 Hz to 5, 000 Hz. For 2, 000 Hz
sounds, the pitch varation is insignificant.

4.3.2. Composed sounds

4.3.2.1. Pitch of sounds composed of harmonics

For sounds comprising several harmonics, the sensation of pitch is usually provi-
ded by the frequency of the fundamental. Its presence is actually not essential: to be
convinced, simply listen to some music on a small radio set that cannot deliver any
frequency below for example 150 Hz. Even so, a listener can perfectly recognize the
notes that are played, even if the fundamentals of some notes are missing. To identify
a note with fundamental f , the presence of a few harmonics multiples of f is often
sufficient [LEI 80]. Removing the low-pitched harmonics, however, can lead to the
sensation of a slightly higher-pitched sound, whereas removing the high-pitched har-
monics can lead to the sensation of a slightly lower-pitched sound. There lies maybe
the explanation behind the endless conflict between musicians who accuse each other
of playing out of tune, particularly when some are playing backstage, which can filter
out certain harmonics.
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4.3.2.2. Pitch of sounds composed of partials

For sounds composed of partials, the concept of pitch can become rather uncertain,
as is the case for drums. The same sound can be perceived with a different pitch
depending on the individual, because not everbody will necessarily hear the same
partials, or interpret their frequency ratios the same way. This ambiguity also occurs
sometimes with bells. Usually, the second partial, called the principal, gives the bell’s
pitch, and not the first, located one octave below and referred to as the hum. Because
of still the same ambiguity, you may not necessarily all agree on the highest note of
our mountain whistler (see AM website): is it located between D8 and E[8 as the first
partial (about 4, 910 Hz) would suggest? Or between A7 and B7 if we consider the
second partial (about 7, 320 Hz)? And finally, don’t we instead hear an intermediate
note: a C8?

4.3.3. An acoustic illusion

We end this section with a beautiful acoustic illusion on pitch: the perpetually
ascending sound, synthesized on a computer by Shepard [RIS 99], and not without
some resemblance with reprise in organs (see section 2.5.1.3). The idea is to arbitrarily
choose a scale, for example the whole tone scale (with a thought for Claude Debussy),
and to progressively add low harmonics to each note, while at the same time removing
the upper harmonics.

Figure 4.4. Harmonics truncation function

This is done by defining a function H equal to 0 outside the interval [32 Hz,
8, 192 Hz] (the base 2 logarithms of the boundaries are 5 and 13) and with its maxi-
mum around an average frequency, for example the following function (see Figure
4.4):

H(f) =
{

(1 + cos[π(2 log2(f)− 18)/8])2 if 32 ≤ f ≤ 8 192,
0 otherwise.

Consider the frequencies fk = 220× 2k/6, k = 0, 1, 2,..., that make up the ascending
whole tone scale. The perpetually ascending scale is then comprised of the following
periodic sounds (note that, by definition of H, the sums are actually finite):

Nk(t) =
+∞∑

n=−∞
H(2nfk) sin(2π2nfkt).

The gap between any two consecutive harmonics of the noteNk is an octave. Also, the
harmonics of Nk+1 are all located exactly one tone above their equivalent harmonics
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of Nk, since they have the frequency ratio fk+1/fk = 21/6. Therefore, Nk+1 will be
perceived as being one tone higher than Nk. But, by definition,

N6 = N0.

And likewise N6+m = Nm for any m! We therefore have the following paradoxical
situation: even though each note is higher than the previous one, we end up with the
same note six notes later, exactly like in the famous drawing by Escher showing a
closed-loop staircase! The spectrogram of the first eight notes is shown in Figure 4.5.
In 1968, Risset built a ‘ continuous ’perpetually ascending sound, based on the same
idea, in other words a glissando [RIS 99].

Figure 4.5. Endlessly starting over...

4.4. Frequency masking

When out of two sounds produced simultaneously, or almost simultaneously, only
one of them is perceived by the listener, the other one is said to be masked by the
first. Masking effects are extensively studied in [ZWI 81]: time masking, where an
intense sound masks a fainter sound that follows it, or even precedes it, masking of
a pure sound by white noise, masking of different variable bandwidth noises, etc.
The advantage of having a good model for masking effects is that they can be used to
develop sound compression algorithms, based on the simple following principle: there
is no point in keeping what the listener will not perceive! Therefore, we can neglect
all of the masked sounds, and thus gain on the volume of the data representing the
sound. Particularly, this makes it possible to increase the bitrate of cable or satellite
transmissions. Compression techniques are examined in Chapter 5.

Here, we will be studying the simple but interesting case of a pure sound masked
by another pure sound with different frequency and intensity, both sounds being produ-
ced simultaneously. The typical procedure for experimentally measuring the masking
effect is as follows: the intensity of the masking sound is maintained constant, and
starting with a zero intensity for the masked sound, the subject is asked to gradually
turn the dial that controls its intensity until it becomes audible. By conducting a large
number of these experiments, the result is an average that can be used as a model.
The experiment is repeated with different frequencies for the masking sound and the
masked sound to cover the entire range of audible sounds.

Figure 4.6. Frequencies masked by a pure 1, 000 Hz sound at 80 dB
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Figure 4.6 shows the masking threshold, or mask, produced by a masking sound
with frequency 1, 000 Hz and intensity 80 dB. This is the full line. Any sound below
this line is masked, hence inaudible. For certain sounds, those above this line but below
the dashed line, the masked sound cannot be heard, but on the other hand, the listener
can perceive the differential sound produced by the beat (see Figure 2.3) between the
two sounds. For example, if the masked sound has a frequency of 1, 200 Hz and an
intensity of 60 dB, the differential sound that is heard has a frequency of 1 200Hz −
1 000Hz = 200 Hz. The shape of the mask varies both with the pitch and the intensity
of the masking sound. Figure 4.7 shows the masking thresholds for different intensities
LI of the masking sound, still with a frequency of 1, 000 Hz.

Figure 4.7. Masking effect for a 1, 000 Hz masking sound,
with variable intensity LI

The masking threshold lines show a rather clear dissymmetry: an intense low-
pitched sound easily masks a faint high-pitched sound, whereas an intense high-pitched
sound will have more difficulty masking a low-pitched sound. One possible explana-
tion [SOM79] lies in the frequency localization (see Figure 4.3): in order to stimulate
the extremity of the cochlea, low frequencies have to go through the area that receives
high frequencies, and therefore can have an effect on the perception of these high fre-
quencies. On the other hand, high frequencies, located at the beginning of the cochlea,
near the elliptical window, do not affect the extremity of the cochlea where low fre-
quencies are picked up, and it is therefore not surprising that they have no effect on
these low-frequencies. By remembering that women sing roughly one octave above
men, Zwicker sees in this dissymmetry the explanation to the fact that there are less
men than women in choirs. No, it isn’t a socio-cultural phenomenon!

4.5. Study problems

4.5.1. Equal-loudness levels (**)

Fletcher’s equal-loudness contours were obtained by averaging results obtained
for large numbers of people. Design an experimentation protocol and draw the equal-
loudness contours for your own hearing.

4.5.2. Frequency masking (**)

Design an experimentation protocol and draw the equal-loudness contours for your
own hearing, for the following masking frequencies: 200 Hz, 1, 000 Hz and 3, 000 Hz.
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4.5.3. Perpetually ascending sound (**)

Based on the example of Shepard’s ascending scale, build a sound that seems to
glissando up indefinitely, while periodically going through the same values.

4.6. Practical computer applications

4.6.1. Frequency masking

Write a program that overlaps a pure 1, 000 Hz sound (the masking sound) and
a pure sound with frequency 1, 010 Hz (the masked sound), the latter successively
assuming the relative sound levels of −35 dB, −30 dB, −25 dB, −20 dB, −15 dB
with respect to the former. At what level do you begin to perceive the second sound?

Same questions for a masked sound with frequency:
1, 100 Hz and with relative sound levels of −35 dB, −30 dB, −25 dB, −20 dB,
−15 dB,
1, 500 Hz and with relative sound levels of −35 dB, −30 dB, −25 dB, −20 dB,
−15 dB,
2, 500 Hz and with relative sound levels of −55 dB, −50 dB, −45 dB, −40 dB,
−35 dB.

4.6.2. Perpetually ascending scale

Use the formulas from this chapter to program the perpetual whole tone scale. To
do this, create a function with the same format as the instrument function already
created, named for example noteps, and which produces a sound s, the harmonics
distribution of which follows the suggested model. To create a sequence of N + 1
notes set one tone apart, you can write a loop of the form
for k = 0:N

f = f0*tone^k;

s = [s, noteps(f,T,Fe)];
end

where tone is the ratio between two consecutive tones and f0 is the ‘ frequency ’ of
the first note.
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Chapter 5

Digital Sound

Generally speaking, an analog signal is a signal produced by a mechanical or elec-
tronic device. For such a signal, the variable is time, which elapses continuously. Just
a few decades ago, any sound production chain was completely analog. For example,
the sound produced by the musicians, the electrical signal delivered by the micro-
phones, the signal transmitted by radio waves or engraved onto a phonograph record,
the signal received and amplified by your stereo system and finally the sound produced
by the speakers, all these are analog signals.

Figure 5.1. Digital audio chain: the inevitable use of the analog-to-digital
convertor (ADC), and after that of the digital-to-analog convertor (DAC)

With the tremendous advances in computer capabilities, a new link has appeared in
the chain: digital sound. Once the sound is captured by the microphone, it is transfor-
med into a sequence of binary numbers (made of 0’s and 1’s), which are transmitted,
stored or engraved in that form. The device that operates the conversion is called an
analog-to-digital converter (ADC). It actually performs two distinct tasks on the ana-
log signal s(t):

- the sampling, which consists of measuring the values sn = s(nτ) of the analog
signal at regularly spaced intervals of time 0, τ, 2τ, 3τ,... where τ is called the sam-
pling period. The standard sampling frequency Fe = 1/τ for audio CD’s is 44.1 kHz,
or 44, 100 values per second;

- the quantization, which consists of approximating and replacing these real num-
bers sn, which can have an infinite number of decimals that would be impossible to
store, with numbers rn taken from a finite set of L = 2b possible values. Each of these
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numbers rn is then encoded using b bits1 in order to be stored or transmitted. For audio
quality, generally 16-bit encoding is used, which is equivalent to 2 bytes.

The resulting signal is a digital signal. It has no physical reality beyond the num-
bers that comprise it, somewhere in the computing universe, waiting to be processed
by a sound card. It is made up of the sequence of numbers rn, where the variable now
is the integer n: it is a discrete variable. To reconstruct the sound, the digital signal is
converted back to an electrical analog signal by a digital-to-analog converter (DAC),
and proceeds through the rest of the chain’s usual components.

The question that spontaneously comes to mind is this: shouldn’t there be a loss
of information caused by the conversion to a digital signal? We will see that under
certain hypotheses, there is no loss. Unfortunately, these hypotheses are never verified
and never will be: we are faced with a fundamental theoretical obstacle; but we can
be ‘ close ’! Everything lies in that close, an unavoidable imperfection (insert favorite
saying here), but endlessly reduced by technological advances.

When trying to reduce the error caused by the digital process, the price to pay lies
in the large quantity of data obtained for representing the sound: currently, an hour
long stereo recording sampled at 44.1 kHz with 2 byte encoding takes up 3, 600×2×
44, 100 × 2 = 635 MB (megabytes) on an audio CD. We will see that it is possible
to reduce the size of the data using the psychoacoustic properties of hearing, which
can be very useful, particularly for Internet transmissions. Of course, this compres-
sion usually comes with a loss of information, which increases with the extent of the
compression. But the algorithms involved are designed so that the lost data, as much
as possible, is precisely the data that would not have been heard.

We will finish this chapter with a few concepts of digital filtering, and establish
the connection with analog filtering. These concepts will be of use to us in Chapter 6,
particularly in regard to sound effects.

5.1. Sampling

Consider a sound s(t), where the function s is continuous and bounded on R.After
a sampling period τ > 0 has been chosen, the sampled sound consists of a sequence
of values or samples taken at the instants tn = nτ :

sn = s(tn), n = . . . ,−1, 0, 1, 2, . . .

Figure 5.2 shows a sound with a duration of 0.01s, sampled at 2, 000 Hz. Aside from
the quantization (see section 5.1.2), the values sn are those that are stored on an audio
CD.

1. A bit is a binary digit, equal to 0 or 1. A byte is composed of 8 bits.
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Figure 5.2. Initial sound s(t) (top) and sampled sound se(t) (bottom)

A more elaborate description of the sampled sound, abundantly used in signal
theory, consists of representing this sound with an infinite number of Dirac impulses
δnτ (t), each one located at the instant tn = nτ and with a mass equal to the quantity
τsn, where the purpose of the factor τ is simply to bring these terms to scale (see
Equation (5.1)). We have already come across the Dirac impulse at point 0 (see Rela-
tion (1.22)). Generally speaking, the Dirac impulse at point a and with mass µ ∈ C,
denoted by µδa(t), is such that∫ +∞

−∞
ϕ(t)µδa(t) dt = µϕ(a)

for any continuous function ϕ. To get a better idea of what this Dirac impulse repre-
sents, you can consider the sequence of rectangular functions (see Figure 5.3, where
a = 2 and µ = 1) defined for n ≥ 1 by

un(t) =
{
µn if |t− a| < 1/(2n),
0 otherwise.

Figure 5.3. Sequence of functions un(t) the limits of which are the Dirac impulse at point
a = 2 with mass µ = 1, denoted by the vertical line and the small circle with x-coordinate a
and y-coordinate µ

Theses functions are focused more and more at point a, and have the same ‘ mass ’ µ
since ∫ +∞

−∞
un(t) dt = µ.

What we get at the limit is not a function (it is called a distribution), but instead is
precisely the Dirac impulse µδa(t) :

lim
n→∞

∫ +∞

−∞
un(t)ϕ(t) dt = µϕ(a) =

∫ +∞

−∞
ϕ(t)µδa(t) dt.

The sampled sound is then defined by

se(t) = τ
+∞∑

n=−∞
sn δnτ (t) (5.1)

and its graphical representation (except for the factor τ ) is given at the bottom of
Figure 5.2, according to the rule that circles have the mass of the associated Dirac
impulse as their y-coordinate.
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5.1.1. The Nyquist criterion and the Shannon theorem

The fundamental question is to determine under what condition the original sound
can be reconstructed from no more information than its samples. At first, the task
seems impossible: Figure 5.2 clearly shows that the values of s(t) between two samples
can be modified without changing the values of these samples. Therefore, two distinct
sounds with the same samples will lead to the same electrical signal as the DAC’s
output, since the DAC only takes the samples as its input and nothing else. At least
one of the two reconstructed signals will be different from the original signal!

5.1.1.1. Case of a sinusoidal signal

To understand what limitations have to be imposed on the sound s(t) in order to
reconstruct it exactly through the ADC-DAC chain, we will first examine the case of
a sinusoidal signal

s(t) = α cos(2πft+ θ).

Considering the fact that we are dealing with a sinusoidal signal, but with any possible
amplitude, frequency and phase, what is the minimum sampling frequency needed to
reconstruct s(t) from nothing more than its samples? We could for example suggest
taking a sample every time s(t) reaches a maximum, which would lead to one sample
per period, but this would not be enough to tell the difference between an oscillating
signal and a constant signal (see Figure 5.4).

Figure 5.4. Cosine function and constant signal
(equal to 1) that produce the same samples

Then we can suggest taking at least one sample every time s(t) reaches a maximum
or a minimum, which leads to at least two samples per period. And we still have to
avoid ending up with the instants where s(t) = 0, which happens every half-period.
Knowing that the period of the signal s(t) is equal to 1/f, this leads us to considering
the following hypothesis regarding the sampling period:

τ <
1
2f
.

Because the sampling frequency is Fe = 1/τ , this condition is equivalent to

Fe > 2f, (5.2)

which is called the Nyquist criterion or the Shannon condition.

We will now provide a more rigorous justification for this condition. Switching
over to complex numbers makes it much more convenient to make the following ar-
gument. Remember that this means negative frequencies also have to be considered,
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and the above criterion becomes

Fe > 2|f |. (5.3)

So we ask ourselves this question: if two harmonic signals

s1(t) = c1 exp(2iπf1t),

s2(t) = c2 exp(2iπf2t),

produce the same samples, are they equal? First we infer from s1(0) = s2(0) that
c1 = c2, and we define c = c1. If c = 0, then s1(t) = s2(t) = 0 for any t, and the two
signals are equal. Now let us assume c 6= 0. The fact that the two signals are equal at
t = τ leads to

c exp(2iπf1τ) = c exp(2iπf2τ),

hence exp(2iπ(f1 − f2)τ) = 1 and (f1 − f2)τ is an integer, meaning that

f1 − f2 =
k

τ
= kFe, k ∈ Z. (5.4)

But, if we assume that the two frequencies f1 and f2 meet the Nyquist criterion (5.3),
we have

|kFe| = |f1 − f2| ≤ |f1|+ |f2| <
Fe

2
+
Fe

2
= Fe

with k an integer, which imposes k = 0, and therefore f1 = f2. On the other hand,
if the Nyquist criterion is not imposed, k can be chosen different from 0, and in that
case f1 6= f2. Also, by observing the following samples, we notice that

s1(tn) = c exp(2iπf1nτ) = c(exp(2iπf1τ))n

= c(exp(2iπf2τ))n = c exp(2iπf2nτ) = s2(tn),

meaning that we indeed have the same samples for two different signals.

Thus, the Nyquist criterion is necessary and sufficient for two harmonic signals
that produce the same samples to be equal.

5.1.1.2. General case

What we just saw is a particular case of the fundamental result in communication
theory: the Shannon theorem [SHA 49]. Before we state it, we need the following de-
finition: let B be such that B > 0, and let s(t) be a signal that has a Fourier transform
ŝ(f). Remember that we have the following expression (see Formula (1.14)):

s(t) =
∫ +∞

−∞
ŝ(f) exp(2iπft) df,
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meaning that ŝ(f) is the frequency density of f in the signal s(t). A signal s(t) is said
to be a [−B,B] band-limited signal if

ŝ(f) = 0 for any |f | > B,

or, in other words, if the signal contains no frequencies such that |f | > B. For
example, although we have not defined the Fourier transform of s(t) = exp(2iπft),
the frequency of this signal is f , hence it is [−|f |, |f |] band-limited.

Shannon theorem. Let s(t) be a function that has a [−B,B] band-limited Fourier
transform ŝ(f). This function is sampled at the frequency Fe. If Fe meets the Nyquist
criterion

Fe > 2B,

then s(t) is the only [−B,B] band-limited funcion with the values s(nτ), n ∈ Z as its
samples, with τ = 1/Fe. Additionally, if h(t) is the ideal low-pass filter (1.26) with
cut-off frequency Fe/2, then s(t) can be reconstructed from the sampled signal se(t)
given by (5.1) by passing it through the filter:

s(t) = (h ∗ se)(t).

Skeptics could argue that this seems absurd: what happens if the values of s(t)
are modified between the samples without changing the samples? The reconstruction
will not work... What happens is this, something the theorem also states: it is impos-
sible to modify the values s(t) between the samples without modifying them, while
still maintaining the [−B,B] band-limited condition. Any modification will necessa-
rily introduce frequencies higher than B, and the theorem no longer applies. So the
reconstruction will in fact not work, but only because the hypotheses of the theorem
are no longer satisfied.

5.1.1.3. Consequences

What are the implications of this result in a practical case? Our ears cannot per-
ceive frequencies higher than 20 kHz. It is therefore useless during a sound recor-
ding to record sounds with frequencies higher than 20 kHz. This can be achieved
(more or less, see next section) either by a low-pass filtering of the recorded signal, or
simply because the microphone is not sensitive enough to pick up ultrasounds. With
B = 20 kHz, the conditions are thus met for the theorem, which states that if we
sample the signal at a frequency higher than 2B = 40 kHz, then the original signal (or
to be more precise, the signal that was stripped of its frequencies higher than 20 kHz)
can be exactly reconstructed by filtering the sampled signal with the appropriate low-
pass analog filter. This is why the frequency generally used for audio quality is chosen
above 40 kHz.
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5.1.1.4. Theoretical impossibility

This is all very interesting, but there’s a hitch: aside from the zero function, there is
no function equal to zero outside a finite interval with a Fourier transform that is also
equal to zero outside a finite interval (see section 1.4.2). Oh really? So what? Well, in
the Shannon theorem, we assumed that ŝ(f) was equal to zero outside [−B,B]. So
s(t) cannot be equal to zero outside a finite interval. There lies the whole problem: the
theorem only applies to a signal with an infinite ‘ duration ’ which is never the case
in music: any recorded sound has a beginning and an end! And therefore, it inevitably
contains arbitrarily high frequencies... Which brings us to the following question:

5.1.1.5. What happens if the Nyquist criterion is not met?

Let us see that with an example. For audio quality, our sampling frequency will be
Fe = 30 kHz, with period τ = 1/Fe, and we will sample the pure sound

s(t) = 2 cos(2πft) = exp(2iπft) + exp(−2iπft),

with frequency f = 27 kHz, absolutely inaudible.

Figure 5.5. For a given frequency f , and for example Fe = 30 kHz, other frequencies lead to
the same samples. Watch out for those contained in the [−Fe/2, Fe/2] band!

Based on the analysis we did in section 5.1.1 and particularly on (5.4), exp(2iπft)
produces the same samples as exp(2iπf1t) with f1 = f − Fe = −3, 000 Hz, and
exp(−2iπft) produces the same samples as exp(2iπf2t) with f2 = −f +Fe = −f1.
By a simple addition (because sampling is linear), s(t) = exp(2iπft)+exp(−2iπft)
therefore has the same samples as

v(t) = exp(2iπf1t) + exp(2iπf2t)

= exp(−2iπf2t) + exp(2iπf2t)

= 2 cos(2πf2t)

with f2 = 3, 000 Hz. This means that v(nτ) = s(nτ) for any n ∈ Z, in other words

ve(t) = se(t).

Other frequencies, of the form ±(f − kFe), would also lead to the same samples (see
Figure 5.5). Let us then assume for example that B = 14 kHz. Because Fe > 2B and
because the pure sound v(t) is [−B,B] band-limited, the Shannon theorem applies to
v, and therefore, the signal reconstructed by filtering se with an ideal low-pass filter h
with bandwidth [−Fe/2, Fe/2] will be exactly the sound v(t) :

(h ∗ se)(t) = (h ∗ ve)(t) = v(t).
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We have just gone from a pure inaudible 27 kHz sound to a pure 3, 000 Hz sound,
where our hearing is the most sensitive!

This effect is called aliasing. 3 kHz is the symmetric point of 27 kHz with respect
to half the sampling frequency Fe/2 = 15 kHz. It is as if Figure 5.5 had been folded
along the vertical axis with x-coordinate Fe/2. The same folding occurs in fact along
the axis with x-coordinate −Fe/2.

The argument we just made is valid in the general case. What happens in reality
is that recorded sounds are not quite [−20 kHz, 20 kHz] band-limited (because of the
theoretical impossibility mentioned above), but have a low frequency density beyond
20 kHz.

Figure 5.6. Fourier transform bs(f) of a sound with a low frequency density
outside the interval [−20 kHz, 20 kHz]

Figure 5.6 is a typical representation of what the Fourier transform of such a sound
could be: there are a few high frequencies left outside the dashed lines located at both
ends of the [−40 kHz, 40 kHz] band2. Let us assume that this sound is sampled at
a frequency of 40 kHz. An aliasing similar to what was described in the previous
example will then also occur in this case: it will take effect with respect to each of the
vertical axes with x-coordinates −Fe/2 = −20 kHz and Fe/2 = 20 kHz. The two
aliasings are shown in dashed lines on the left graph3, Figure 5.7. The result of the
aliasing will overlap with the initial sound and distort it slightly.

Figure 5.7. Left: bs(f) in a full line and the two aliasings in dashed lines. Right: bs(f) in a full
line and, in a dashed-pointed line, the sum of the three spectra, limited to the interval [−20 kHz,
20 kHz]. This is the sound that will come out of the DAC, with the high frequency part slighlty
altered

What will actually be heard after the signal has gone through the DAC is the sum of
the original sound and of the aliasing, shown in a dashed-pointed line in the graph on
the right of Figure 5.7. In the high frequency part of the interval [−20 kHz, 20 kHz],
the resulting sound has slightly more depth because of the contributions above 20 kHz
from the original sound. The lower the values of |ŝ(f)| outside the interval [−20 kHz,

2. But we will neglect the frequencies outside the [−40 kHz, 40 kHz] band, because that would
require theoretical developments beyond the scope of this book.
3. This is actually only valid for the even part of bs(t), that is, its real part, shown on this graph.
For the odd part (the imaginary part), the aliasing comes with a change of sign, the same thing
that would have occurred if what we had analyzed previously was a sine instead of a cosine.
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20 kHz], the more noticeable this distortion becomes. This is why sampling is usually
done after the recorded sound has been filtered with a low-pass filter. That way, there
is no risk of having ultrasounds that went unnoticed become an unwanted hiss, like the
one seen above, which could have a disatrous effect when you listen to your favorite
Mozart andante!

Finally, here is in Figure 5.8 the spectrogram of the ascending sound

s(t) = cos(2π(1 000t+ 2 000t2))

the instantaneous frequency of which progressively increases with time, and is given
by the formula

finst(t) =
d

dt
(1 000t+ 2 000t2) = 1 000 + 4 000t. (5.5)

What we have here is a synthetic sound, and the samples were produced using MAT-
LAB by calculating the values s(tn) with tn = n/Fe and Fe = 10, 000. Can you
explain what happens in particular at the instant t = 1 s?

Figure 5.8. Ascending sound and aliasing effect:
are you going up or down?

5.1.2. Quantization

Faced with the practical impossibility of storing the real numbers sn = s(nτ),
which can have an unlimited number of decimals and can assume an infinity of dis-
tinct values, we have to resort to quantization, which consists of converting (encoding)
each real number as a word with finite length, taken itself from a finite set, and which
represents an approximation of this real number. The quantum in question is the mini-
mum gap needed between two numbers so that they are coded differently. This conver-
sion comes of course with an irreparable loss of information, a second obstacle to the
perfect reconstruction of the original sound. Here, we will be descring the simplest
quantization process: uniform quantization [MOR 95].

Consider N samples sn, n = 0, 1, 2,..., N − 1, that we wish to encode as binary
numbers (the words) using b bits. For example, in the case b = 3, these words are 000,
001, 010, 011, 100, 101, 110 and 111, the base 2 notations for the integers 0, 1, 2,...,
7. In all, there are L = 2b of them. The standard case b = 16 leads to 65, 536 words.
We then choose a value of A such that

−A ≤ sn < A for 0 ≤ n ≤ N − 1.

With the L words at our disposal, uniform quantization consists of:
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- dividing the interval [−A, A[ in L subintervals Ik of equal length h = 2A/L :

Ik = [−A+ (k − 1)h,−A+ kh[, k = 1, 2, . . . , L,

where the choice of the interval, open or closed, on the left or on the right, is rather
arbitrary;

- assigning to each sample sn its binary code bn,which is the coded base 2 number
of the interval where it is located.

Figure 5.9. 3-bit sampling and quantization. There are 8 intervals in this case. The value rn

assigned to a sample is the middle of the interval where it is located, and its binary code is the
number of the interval

For the subsequent reconstruction, each value sn (actually each bn) is also assigned
a number rn, the middle of the interval where it is located. Figure 5.9 (which uses the
same example as Figure 5.2) shows the resulting process for 3-bit encoding. Notice by
the way that the representation of certain samples is not very satisfactory. In the present
case, a non-uniform quantization, with smaller intervals near 0, would probably have
given a better result. Table 5.1 gives the associated values of bn and rn for the seven
first samples sn.

sn 0.000 0.386 0.131 0.255 0.224 0.241 −0.373

rn 0.125 0.375 0.125 0.375 0.125 0.125 −0.375
bn 100 101 100 101 100 100 010

Table 5.1. Quantization results for the samples sn:
digital approximation rn and encoding bn.

5.1.2.1. Error due to quantization

For each b-bit encoded sample, the error or quantization noise εn = sn − rn is
such, by definition, that

|εn| ≤
h

2
=
A

L
=
A

2b
.

The signal-to-noise ratio SNR is the measurement in dB of the ratio between the sound
intensity (see section 1.1.4) of the signal Is and its noise Ib, hence, if we choose for
Is its maximum value Is = A2 and Ib = ε2n:

SNR = 10 log
Is
Ib
≥ 10 log

A2

(A/2b)2
= 20 b log 2 ' 6 b dB.

In particular, adding a bit increases the signal-to-noise ratio by 6 dB. For a quality
referred to as voice grade, a b = 12-bit quantization is used, which leads to an SNR
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of 72 dB. For audio quality with a 16-bit quantization, the SNR increases to 96 dB,
which makes the quantization noise virtually undetectable (see Chapter 4). The same
estimate is obtained (but more rigorously) for the SNR by assuming that the values of
the signal sn have a uniform probability over the interval [−A,A], and that the values
of the error εn have a uniform probability over the interval [−h/2, h/2]. In that case,
the respective average intensities of sn and εn (that is, their quadratic mean) are given
by

Is =
∫ A

−A

x2 dx

2A
=
A2

3
,

Ib =
∫ h/2

−h/2

x2 dx

h
=
h2

12
=

1
12

(
2A
2b

)2

,

and we end up with the same value as before

SNR = 10 log
Is

Ib

= 10 log 22b ' 6 b dB. (5.6)

Of course, this value will not be the same when the distribution is no longer uniform,
precisely the case where it may be appropriate to use a quantization that is also non-
uniform.

5.1.3. Reconstruction of the sound signal

The reconstruction of the sound signal is based on the Shannon theorem, which
states that if its hypotheses are met, we have

s(t) = (h ∗ se)(t)

where h(t) is the ideal low-pass filter (1.26) with cut-off frequency Fe/2 and se(t)
is the sampled signal (5.1). But here, we no longer have the samples sn, only values
approximated by quantization rn. Therefore, the reconstructed signal will be

r(t) = (h ∗ re)(t) ' s(t)

where se(t) has been replaced by its approximation

re(t) = τ
+∞∑

n=−∞
rn δnτ (t). (5.7)

Then comes along a third obstacle to perfect reconstruction: we do not know how to
generate a ‘ train ’ of Dirac impulses δnτ . At this point, we are at the sound card
level (the DAC), the task of which is to produce these impulses and to filter their sum.
All we are able to do is create brief, more or less rectangular impulses, such as the
ones shown in Figure 5.3. This will add a final distortion factor, that can partially be
corrected using the appropriate filter. This makes the design of sound cards something
of an art!



130 Music and Acoustics

5.2. Audio compression

Digital sound compression is based on the idea of keeping only what can be heard,
and therefore, relies on the psychoacoustic properties discussed in Chapter 4. It comes
after the sampling and quantization procedures we have just described. Here, we will
be pointing out the main ideas involved in compression algorithms, the most famous of
which today is the MPEG Layer-3 encoding, otherwise known as MP3. The encoding
comprises two distinct steps:

- a first step, psychoacoustic compression, that entails the loss of some informa-
tion: the information considered useless in regards to the properties of hearing;

- a second step, entropy compression, that performs a lossless compression of the
previous step’s result.

The complete description of these two steps is rather technical (see for example
[MOR 95]), thus we will only outline the main points. Furthermore, the first step, as
it is implemented by MP3, resorts to the use of filter banks, used in signal techniques,
and which are beyond the scope of this book (however, see Study problem 5.4.4).
Therefore, we will only be presenting a modified version, but based on the same idea.

5.2.1. Psychoacoustic compression

In a nutshell, psychoacoustic compression consists of switching over to the fre-
quency domain, in order to perform a quantization of the Fourier components using a
variable number of bits that takes into account the properties of hearing.

Before we go into the details, we can make the following observation, to shed
light on why it is useful to switch over to the frequency domain for musical sounds:
let us assume for example that we have a periodic sound, sampled at a frequency Fe

and 16-bit quantized. Based on (5.6), the SNR is equal to 96 dB. As additional time
compression, we could for example use only 8 bits to encode these samples. The SNR
would then drop to 48 dB, and the quantization noise would become noticeable (see AM
website): what we would hear is the initial sound, but along with a slight hiss (white
noise). On the other hand, if the Fourier coefficients are 8-bit quantized, there will be a
slight modification to the relative weights of the different harmonics, but no additional
frequencies will be added. Therefore, there will be no hiss in the reconstructed sound,
only a modification of the timbre, hardly, if not at all, noticeable at this level of quan-
tization. We can even go down to 4 bits and still the produced distortion would not be
too bad, whereas the noise produced by a 4-bit time quantization would be downright
unbearable!

Now for the details. Our starting point, which will serve as an illustration, is a
sound sampled at the frequency Fe, 16-bit quantized and denoted by re(t). In order to
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process it, we start by cutting it up into small segments each containing 512 samples.
Each segment is obtained by multiplying the signal by a sliding window w, like the
one we used in section 1.4.2, and such that two consecutive segments overlap slightly.
Figure 5.10 shows how the second segment is obtained.

Figure 5.10. At the top, the sampled signal re (shown in a full line for clarity), an excerpt of
our beloved tune Norma. In the middle, three consecutive windows w with a full line for the
one currently being used. At the bottom, the segment with the un = wn × rn+m that are to be
analyzed and compressed, with in this case m = 3× 512/4 = 384, and n = 0, 1, . . . , 511

This segment u currently being analyzed is comprised of 512 16-bit encoded
samples un that we wish to compress. The psychoacoustic properties we are going
to rely on have to do with the frequency components found in the signal, hence the
first operation will consist of calculating its DFT (discrete Fourier transform). The
coefficients of this DFT are the 512 complex coefficients c̃n given by formula (1.16),
which we will denote here by cn to simplify. The corresponding intensity

LI(n) = 20 log |cn|

is shown in a full line in Figure 5.11. As in Figure 1.25, the x-coordinates do not
represent the index n, but instead the associated frequency fn = n/T , where T =
512/Fe is the duration of the segment being analyzed.

Figure 5.11. Spectrum (the DFT) of the 512 samples un and global mask of the spectrum.
This mask takes into account both the masking effect of the frequency components with strong
intensities and the hearing threshold (3 phon equal-loudness)

Figure 5.12. Separating the parts of the spectrum located above (figure on the left) and below
(figure on the right) the mask, with the intent of performing differential compression (variable
number of bits depending on the Fourier coefficient)

In particular, some peaks in frequency show up, indicated by small circles. When
these peaks have an intensity located at least 7 dB above their close neighbors, they
are referred to as tonal components. The other peaks are referred to as non-tonal com-
ponents. With MP3 encoding, a differential process is applied to these two types of
components, but we will not describe it here.

The same figure shows in dashed lines the frequency masks produced by these
peaks, those we had described in section 4.4. In this case, we have 7 peaks and 7
associated masks M (i), i = 1, 2,..., 7. The mask M shown in the figure is the upper
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envelope of these masks and of the hearing threshold S, meaning that its discrete
values Mk are defined by

Mk = max
{
M

(1)
k , M

(2)
k , . . . , M

(7)
k , Sk

}
, k = 0, 1, 2, . . .

Thus, the part of the DFT that is significant to our hearing is the one located above
the mask M, shown on the left of Figure 5.12. Let J be the set of indices of the
corresponding coefficients cn. The part located below the mask, shown on the right of
Figure 5.12, should be inaudible since it is masked (covered) by the first part. The set
of indices of the coefficients cn relevant to this second part is denoted by K.

Psychoacoustic compression then consists of quantizing the DFT’s coefficients,
using less bits to encode the ‘ inaudible ’ coefficients ck, k ∈ K, than to encode the ‘
audible ’ coefficientscj , j ∈ J. Furthermore, because of the formula that gives us the
cn:

cn =
1
N

N−1∑
k=0

rk exp(−2iπnk/N),

we notice that we have a conjugated symmetry, cN−n = cn, and therefore, we simply
have to know half of the coefficients plus one4: c0, c1,..., c256. Thus these first 257
complex coefficients (512 real coefficients because c0 and c256 are real) will be the
ones that are quantized, and stored after the entropy compression described in section
5.2.2.

Figure 5.13. Initial sound (top) and sound after compression-decompression (bottom). During
the psychoacoustic compression, the part of the DFT located above the mask was 8-bit encoded,
whereas the part located below was 2-bit encoded

During the subsequent decompression, usually while the sound is being played, all
of the 512 coefficients cn are recalculated, their inverse DFT (1.17) is performed, and
finally the successive segments are added to one another. This would result in exactly
the samples rn had we not encoded the cn on a limited number of bits. The initial
sound is thus reconstructed with an error that theoretically should only have an effect
on the components that cannot be perceived.

An excerpt of the initial sound and its reconstruction obtained through this process
are shown in Figure 5.13. The initial sound sample was comprised of 512 16-bit enco-
ded values, in all 8,704 bits. Once it has been encoded and compressed using entropy

4. A different version consists of conducting all of the calculations with real numbers and ex-
tending the samples rn using the fact that c is even. This version is called the Discrete Cosine
Transform (DCT), since an even function is expanded as a series of cosines. It is actually the
most frequently used.
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encoding, which will be discussed later on, the signal’s DFT only takes up 2,280 bits,
hence a compression rate of 74 %, with a relative mean square error of 20 %. With
some (a lot) refinements to this process, the MP3 standard achieves a compression rate
of about 90 % while maintaining excellent sound quality.

5.2.2. Entropy compression

Following the psychoacoustic compression, we are left with a sequence of binary
numbers or wordsm1, m2,...mk,..., of variable lengths. These are the DFT’s quantized
coefficients. It often occurs for two consecutive words to be identical (particularly
zeros), thus we begin by replacing each sequence of a word mk repeated p times
with the two words p mk. The result is a second, shorter sequence of binary numbers.
These words, which form a text, are themselves part of a dictionary comprising a finite
number of words di.

We then proceed to a change of dicionary, a bit like translating the text in a new
language, based on the following, obvious and remarkably simple idea: encoding the
most frequent words as short words. This is done by counting the number of occur-
rences in the text for each word di, and, depending on the probability (number of
occurrences/total number) of each of these words, a new dictionary is created based
on this idea. Two examples of such dictionaries are given in Table 5.2.

word1 word2 word3 word4 word5 word6 word7 word8
dictionary1 0 10 110 1110 11110 111110 1111110 11111110
dictionary2 00 01 10 1100 1101 1110 111100 111101

Table 5.2. Two possible encodings of eight words
arranged in decreasing order of occurrence frequency.

Once they are translated, words are written one after the other, without any spaces
in between. Therefore, for the resulting text to be decodable, no word must be the
beginning of another word, as it would make several different interpretations possible.
For example, if the three words A, B and C are encoded as 0, 1 and 10, the text 10 can
be interpreted both as C and as BA. This is referred to as the prefix condition.

Several strategies exist to build this new dictionary, implemented for example in
applications such as winzip, or in unix commands such as gzip or compress. Particu-
larly, one of them is optimal: the Huffman algorithm (see for example [MOR 95]). If
we consider the same example as before, it produces the dictionary in Table 5.3. Of
course, when you send a text that was translated this way, do not forget to send the
dictionary!
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word1 word2 word3 word4 word5 word6 word7 word8
probability 0.25 0.22 0.19 0.11 0.11 0.05 0.05 0.02
Huffman encoding 10 00 110 010 011 1110 11110 11111

Table 5.3. Huffman’s optimal encoding for a given probability.

5.3. Digital filtering and the Z-transform

We end this chapter with a few elements of digital filtering that will be useful to
us in Chapter 6. For analog signals, we saw in section 1.5.2 two fundamental relations
(1.25) and (1.24) on filtering: if a signal x is passed through a filter with impulse
response h (hence a transfer function ĥ), the output signal y is such that

y(t) = (h ∗ x)(t),

ŷ(f) = ĥ(f) x̂(f).

We are now going to see what these relations mean for the samples.

5.3.1. Digital filtering

Let xn, hn and yn be the samples of the analog signals x, h and y = h ∗ x,
respectively. We will assume the following result.

If Shannon’s condition is verified by x or h: at least one of the two is [−B,B]
band-limited with Fe > 2B, then y is [−B,B] band-limited and we have

yn =
+∞∑

k=−∞

hn−kxk. (5.8)

This relation defines what is referred to as the discrete convolution of the signals
(hn)n∈Z and (xn)n∈Z, and we keep the same notation by writing5

y = h ∗ x.

Notice by the way the strong analogy with continuous convolution (1.23) given here
as a reminder:

y(t) = (h ∗ x)(t) =
∫ +∞

−∞
h(t− u)x(u) du.

5. We use the same notation as with the analog signal x and the discrete signal represented by
the sequence of samples xn. This may lead to some confusion, but the context should usually
help determine which is the signal in question.
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The integral has simply been replaced with a sum, and t and u have been replaced
with n and k, respectively.

What is important to note is that any analog filtering, which relies on acoustic or
electronics devices, depending on the case, can be performed in an equivalent way
(more or less) digitally, so long as the Shannon condition is verified (more or less) and
the samples of the filter’s impulse response are available.

When the number of non-zero coefficients hn is finite, the filter has a finite impulse
response, and it is referred to as an FIR filter. Otherwise, it has an infinite impulse
response, and it is referred to as an IIR filter.

5.3.2. The Z-transform

What happens to the sampled signals in the frequency domain? These signals have
a Fourier transform, but its definition requires a mathematical tool beyond the scope
of this book: distribution theory. We will be describing another tool quite similar to
the Fourier transform: the Z-transform. As we are going to see, it can be used very
conveniently to represent operations that have to do with discrete filtering.

5.3.2.1. Definition

Let x = (xn)n∈Z be a discrete signal. The Z-transform of the signal x, denoted by
X , is the function of the complex variable z such that

X(z) =
+∞∑

n=−∞
xnz

−n. (5.9)

This sum is usually not defined for any z, only for a part of the complex plane, with
the following expression, called the region of convergence (or ROC):

C(ρ,R) = {z ∈ C ; ρ < |z| < R} ,

over which the function X is holomorphic (which means differentiable with respect
to z).

In practice, it is always possible to make modifications and end up with the case
where xn = 0 for any n < 0. Such a discrete signal is said to be causal. In that case,
we have R = +∞ and if ρ < ∞, X(z) has a limit in +∞, the number x0, which is
what we will assume. The question that comes to mind is this: given a function u(z)
that verifies these hypotheses, can we associate it with a discrete signal x such that
X(z) = u(z) in the region of convergence C(ρ,∞)?
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To answer this, consider the function v(z) = u(z−1), defined for |z| < 1/ρ.
According to the theory of holomorphic functions, it has a series expansion of the
form

v(z) =
+∞∑
n=0

xnz
n, xn ∈ C.

We then have

u(z) = v(z−1) =
+∞∑
n=0

xnz
−n. (5.10)

Thus we have found a discrete signal x = (xn)n∈N (N being the set of natural num-
bers) such that X(z) = u(z). Additionally, because the series expansion of v is
unique, this signal x is the unique causal signal with u(z) as its Z-transform.

5.3.2.2. Effect of a delay

If a sampled signal x is delayed by m samples, which is equivalent to a time delay
for the analog signal of r = m/Fe s, we get a discrete signal y with the coefficients

yn = xn−m.

The Z-transform of y is written

Y (z) =
+∞∑

n=−∞
ynz

−n =
+∞∑

n=−∞
xn−mz

−n =
+∞∑

n=−∞
xnz

−n−m = z−m
+∞∑

n=−∞
xnz

−n,

which in the end leads to
Y (z) = z−mX(z). (5.11)

Therefore, the m-sample delay simply amounts to multiplying the Z-transform by
z−m.

5.3.2.3. Filtering and Z-transform

To finish this, we will need the two following important results to deal with and
interpret discrete filtering.

Let x and h be two discrete signals, and let y = h ∗ x be the convolution product
defined by (5.8). LetX, H and Y be their respective Z-transforms, defined on regions
of convergence denoted by CX , CH and CY . Then, for any z ∈ CX and CH , we have
z ∈ CY and

Y (z) = H(z)X(z). (5.12)

Again, notice the analogy with the relation ŷ(f) = ĥ(f)x̂(f) which applies to the
associated analog signals.
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Also, given the equivalence with the continuous filtering described in section 5.3.1,
and by assuming the hypothesis that the signal x is sampled at the frequency Fe of an
analog sound that verifies the Shannon condition, it is useful to be able to say which
transfer function is associated with the discrete filtering y = h ∗ x. So as not to
confuse it with the Z-transform of h, this transfer function will be denoted by Ht(f).
This function is then related to the Z-transform of h by the following formula:

Ht(f) = H(exp(2iπf/Fe)). (5.13)

In other words, the transfer function’s values are obtained by taking the values of the
Z-transform of h on the unit circle of the complex plane.

The equivalence with continuous filtering means the following: after reconverting
the digital sound y = h ∗ x back to an analog sound by passing it through the DAC,
still denoted by y, its Fourier transform will be

ŷ(f) = Ht(f)x̂(f),

where x now refers to the analog sound that had produced the samples xn. This makes
it possible to interpret the effect of a digital filtering by considering the values of
Ht(f).

Under the Shannon condition, we have x̂(f) = 0 if |f | ≥ Fe/2. Therefore,
the only values of Ht(f) that concern us are those for which f ∈ [−Fe/2, Fe/2],
or 2f/Fe ∈ [−1, 1]. Additionally, by replacing x with h and by choosing z =
exp(2iπf/Fe) in (5.9), we have

H(exp(2iπf/Fe)) =
+∞∑

n=−∞
hn exp(−2niπf/Fe),

hence we infer, using (5.13), that for a filter with real coefficients hn we have

Ht(−f) = Ht(f),

and therefore, we simply need to know the values of Ht(f) for f ≥ 0. In the end, the
values that are to be considered are the Ht(f) for which

2f
Fe
∈ [0, 1],

which is the way discrete filters are represented in the software MATLAB. The four
basic filter models are shown in Figure 5.14.
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5.4. Study problems

5.4.1. Nyquist criterion (*)

In this chapter, we analyzed what happened when the Nyquist criterion was not
met, taking as our example the sound s(t) = 2 cos(2πft), with f = 27 kHz and
Fe = 30 kHz. Conduct the same analysis for the sound s(t) = sin(2πft).

5.4.2. Aliasing of an ascending sound (*)

Plot according to f the effective frequency of the sound reconstructed after sam-
pling the sound s(t) = cos(2πft) at the frequency Fe = 1, 000 Hz. Based on this
result, interpret Figure 5.8.

5.4.3. Another example of reconstruction (***)

The Shannon theorem states that if the Nyquist criterion is met, then the recons-
truction of the sound s(t) by an ideal low-pass filtering of the sampled sound

se(t) = τ
+∞∑

n=−∞
s(nτ) δnτ

is exact:
s(t) = (h ∗ se) (t).

We are going to replace each Dirac impulse δnτ with the approximation discussed in
section 5.1:

δnτ (t) ' uε(t− nτ)

with

uε(t) =
{

1/ε if |t| < ε/2,
0 otherwise,

where we assume that 0 < ε < τ, τ being the sampling period.

1) By making the variable change t′ = (t − nτ)/ε, check that for any function ϕ
continuous on R, we have

lim
ε→0

∫ +∞

−∞
uε(t− nτ)ϕ(t) dt = ϕ(nτ) =

∫ +∞

−∞
ϕ(t)δnτ (t) dt.

2) The sampled sound se(t) is replaced with

sε(t) = τ
+∞∑

n=−∞
s(t)uε(t− nτ). (5.14)
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Let

vε(t) = τ
+∞∑

n=−∞
uε(t− nτ).

Check that the function vε is τ -periodic.

3) Therefore the function vε can be written in the form

vε(t) =
+∞∑

k=−∞

ck exp(2iπkt/τ)

where the ck are its Fourier coefficients. Show that

ŝε(f) =
+∞∑

k=−∞

ckŝ(f − k/τ)

(we will assume that we can do the switch
∫ ∑

=
∑∫

).

4) The Nyquist criterion being met, we have ŝ(f) = 0 if |f | > B with B < 1/(2τ).
Make a sketch over the interval [−2/τ, 2/τ ] of the plot of the function ŝε according to
ŝ. Check that c0 = 1, and compare ŝ(f) with ĥ(f)ŝε(f), h being the ideal low-pass
filter with cut-off frequency 1/(2τ). Based on this result, find the reconstruction of s
based on sε :

s(t) = (h ∗ sε) (t).

COMMENT.– In reality, s(t) is replaced in (5.14) with s(nτ), which causes a small
error, that decreases with ε.

5.4.4. Elementary filter bank (**)

Given a discrete signal x = (xn)0≤n≤N , consider two discrete filters g and h
defined by their outputs y and z, respectively:

yn =
1
2
(xn + xn−1),

zn =
1
2
(xn − xn−1),

with the convention that xn = 0 if n < 0 or n > N. Thus the result is y = g ∗ x and
z = h ∗ x.

1) Calculate the coefficients gn and hn of these two filters.
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2) Calculate theirZ-transforms, and plot the modulus of their transfer functions |Gt(f)|
and |Ht(f)|. What is the nature of each of these filters: low-pass or high-pass?

3) The outputs y and z are thus the low frequency and high frequency outputs, res-
pectively, of the signal x. Let us assume that we wish to use this data to compress the
signal. We are off on a bad start, to the extent that we have roughly multiplied by two
the volume of this data! Therefore only every other term is kept: let

un = y2n, vn = z2n, 0 ≤ 2n ≤ N + 1,

a process called decimation. These two signals u and v are then compressed using
whatever process, but with no additional loss of information, which will not be dis-
cussed here. During the subsequent decompression phase, the goal is to reconstruct
the signal we started with, x. This is done by refiltering the decompressed signals u
and v with g and h in the following way: by calculating

p = 2g ∗ r,

q = −2h ∗ s,

where r and s are the signals referred to as interpolated signals

r = (u0, 0, u1, 0, u2, 0, . . .),

s = (v0, 0, v1, 0, v2, 0, . . .).

Show that pn+1 + qn+1 = xn for 0 ≤ n ≤ N. Thus, despite appearances, no infor-
mation was lost and x could be reconstructed. This whole sequence of operations:

filtering → decimation → interpolation → filtering → addition

forms what is called a perfect reconstruction filter bank.

5.5. Practical computer applications

5.5.1. Spectrum aliasing

In a command file, program the sampled sound obtained from the sound

s(t) = cos(2π(1 000 t+ 2 000 t2))

using Fe = 11, 025 Hz as the sampling frequency and with a duration of a few seonds.
What would we hear if we listened to the continuous sound (calculate the instanta-
neous frequency)? Listen to the resulting digital sound; what can you notice? Visual
confirmation: use the function specgram to analyze the sound.
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5.5.2. Quantization noise

The effect of the following instruction: x4 = (round(2^3*x+.5)-.5)/2^3; is
to simulate 4-bit quantization of the sound contained in the vector x if this vector
has all of its values lying strictly between −1 and 1. Can you explain why? Write a
program that quantizes the samples of a sound composed of a few harmonics, conse-
cutively using 8, 6 and 4 bits and listen to the quantization noise that appears when the
modified sound is played. Then compare this with what happens when the amplitudes
of each harmonic are quantized.



Figure 5.14. |Ht(f)| plotted for the four most common filters. The phase of Ht(f) may vary
depending on f (not shown). Top left: low-pass filter with cut-off frequency 0.5×Fe/2, and on
the right: high-pass filter with cut-off frequency 0.5 × Fe/2. Bottom left: band-pass filter with
cut-off frequencies 0.3× Fe/2 and 0.7× Fe/2, and on the right: all-pass filter
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Chapter 6

Synthesis and Sound Effects

The first to practice the synthesis of musical sounds may have been Organ ma-
nufacturers, who by combining several pipes attempted to recreate the human voice
(which led to the regal category) or the sounds of orchestra instruments (see sec-
tion 2.5.1.3). For example, in gamba stops, two pipes play together slightly out of
tune in order to produce a beat, simulating the undulation of string instruments: this is
called the voix céleste, a typical organ stop of the romantic narrative. The 20th century
saw the coming of electronic synthesis instruments (organs, various keyboards), com-
bining, among other things, oscillating circuits and filters to produce musical sounds.
Composers such as Pierre Henry took advantage of the new possibilities offered by
these electro-acoustic sounds. Today, a remarkable advantage provided by digital tech-
nology is the possibility to create all kinds of sounds with a computer, from the imita-
tion of acoustic or electronic instruments to the creation of entirely synthetic sounds,
such as the Modalys synthesis system developed by the IRCAM (the French Acoustics
and Music Research and Coordination Institute) [PRO95]. We are going to see a few
simple processes to create such sounds.

Even though it is difficult to precisely define what makes them different from an
actual sound, we can say that sound effects are modifications of pre-existing sounds.
They have probably always been used, and acoustic instruments provide a few examples:
pedals on harpsichords and pianos, different types of mutes for the trumpet, but also
the vibrato produced by the musician himself. With the advent of electronic instru-
ments, rock musicians became avid users of sound effects: the Leslie effect in electro-
nic organs, guitar pedals (wah-wah, compressor, reverb, saturation), etc. Now, digital
technology can reproduce all of these effects and create an infinite number of new
ones [DAF02]. Because we are short on space, we will only be describing a few!
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6.1. Synthesis of musical sounds

Digital synthesis techniques of musical sounds can be divided into two main cate-
gories: those that rely on physical modeling, and those that resort to predefined signal
models.

Synthesis by physical modeling consists of starting with a simplifed physical mo-
del of the instrument we are trying to produce or reproduce, and then to perform digital
computations that lead to the model’s response to a given excitation. A basic example
of this is given in Study problem 2.6.5, which manages in particular to account for the
remanence effect. We will not go into this any further, but it is a field of very active
research [PRO95], and is starting to appear in digital instruments sold to the public.
The essential difficulty of physical modeling is to take into consideration the linear
and non-linear (at the vibrator’s level) effects both in a way simple enough to be able
to conduct the computations in real-time, and subtle enough to obtain a good sounding
result – two essential requirements for musicians.

In synthesis based on predefined signal models, valid both for electronic and di-
gital applications, there are at least four types of techniques, which can actually be
combined:

- subtractive synthesis, where we start with a sound that has a lot of depth, and
the spectrum of which is modeled by filtering it to obtain the desired sound (like the
sculptor who starts with a full block from which he removes material);

- additive synthesis, where we proceed by adding pure sounds with different fre-
quencies, modifying weights and their envelopes (like the sculptor who proceeds by
successive additions of material);

- frequency modulation (FM) synthesis invented by Chowning, inspired from the
radio wave transmission technique;

- synthesis using previously sampled sounds.

The first two techniques can hardly render all of the ‘ life ’ of a sound produced
by an acoustic instrument, that is, its complexity, its unexpected or even random va-
riations, its ‘ flaws ’ and its oddities. Although the last technique is supposed to solve
this problem since it reproduces actual sounds, it does not avoid this criticism either
because it still reproduces them in the same way (when it comes to instruments sold
to the public). The third technique is a bit different, because it has mainly created new
sounds, that have widely been adopted, particularly in rock and jazz.

6.1.1. Subtractive synthesis

Subtractive synthesis requires as a starting point a sound with a lot of depth, but
nonetheless with enough structure that a musical sound can be extracted from it, and
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works by filtering this sound. In this respect, it imitates the resonator of a musical ins-
trument that filters the signal produced by the vibrator, or the vocal tract that filters the
sound produced by the vocal chords, causing formants to appear (Figure 1.29). Take
for example as the starting point a triangular (Figures 1.14 and 2.16) or rectangular
(Figure 1.15) sound. We are going to find the filter with an output that imitates the
sound of bowed strings in the first case, and of reed intstruments in the second. This
technique, however, is quite demanding computation-wise, and seems to have had less
success than the others.

6.1.2. Additive synthesis

Figure 6.1. Crescendo on a flute’s C5, showing the increasing relative weights
of the high harmonics (see also color plates)

Using the same approach as organ manufacturers, researchers like Mathews in his
modular programs Music III, IV and V (around 1960, [MAT 69, PIE 99]), followed
by designers of electronic and then of digital instruments like Moog and Buchla, used
additive synthesis to create synthetic sounds, imitating acoustic instruments or produ-
cing new sounds. These sounds are of the form

s(t) =
∑

n

en(t, I) sin(2πfnt+ θn) + b(t, I), (6.1)

which we have already come across in section 2.5.2: en(t, I) is the envelope of the
n-th harmonic or partial. The parameter I represents the intensity at which the note
will be played, because we cannot just multiply everything by a same quantity to get a
stronger note, since the relative intensities of the harmonics or partials can vary, as well
as the envelope, as you can see from the sonogram of a flute’s C5 played crescendo,
shown in Figure 6.1.

Therefore, the weight and the shape of en(t, I) have to vary according to the in-
tensity I . In (6.1), a noise b(t, I) was added to imitate the hiss of a wind instrument,
the bow stroking a string, the percussion sound at the beginning of piano note, etc.

It thus becomes clear that when imitating an acoustic instrument, the implemen-
tation turns out to be very difficult: the sound we wish to reproduce must first be
precisely analyzed, at different intensities, and a good model must be determined to
modify the envelopes and the noise according to the intensity. This method is also
quite demanding computation-wise.



146 Music and Acoustics

6.1.3. FM synthesis

The FM synthesis technique was designed by Chowning in 1973. First, remember
that there are three types of modulation used for radio wave communications: ampli-
tude modulation (AM), phase modulation (PM) and frequency modulation (FM). In
all three cases, we deal with two signals:

- a carrier wave, which is a sinusoidal signal with a high frequency (around 1 MHz
for AM, 100 MHz for FM) used as the ‘ transport vehicle ’, of the form v(t) =
sin(2πf0t) (except for a phase shift);

- a modulating wave m(t), which is the information transported by the carrier,
usually a [−B,B] band-limited wave with B < f0.

Figure 6.2. From top to bottom: the modulating wave m(t), the carrier v(t) and the three types
of modulation AM, PM and FM. For the PM and FM modulations, the signals m(t) and M(t)
have been multiplied by 20 and 200, respectively, to make the variations of the signals visible

The three modulations shown in Figure 6.2 correspond to the following signals:

AM: s(t) = m(t) sin(2πf0t), m(t) ≥ 0,

PM: s(t) = sin(2πf0t+m(t)), −π ≤ m(t) < π,

FM: s(t) = sin(2πf0t+ 2πM(t)), M ′(t) = m(t).

In PM and FM modulation, it is important in the subsequent demodulation (when
the sound is played) for m(t) to be [−B,B] band-limited with 0 < B � f0: the
frequencies present in the modulating wave have to be considerably lower than the
carrier’s frequency.

Chowning’s idea in 1973 best illustrates how a simple idea can revolutionize a
particular field. His idea for synthesizing sounds was simply to use frequency modu-
lation with a modulating wave with a frequency greater than or equal to the carrier’s
frequency! In other words, the sounds he created were of the form

s(t) = sin(2πf0t+ β sin(2πf1t)/f1)

with f1 ≥ f0. Here, the instantaneous frequency (see (5.5)) is given by

finst(t) = f0 + β cos(2πf1t)

and m(t) = β cos(2πf1t). The modulating wave’s frequency is f1, and β is the fre-
quency excursion: the instantaneous frequency varies inside the interval [f0−β, f0 +
β]. The result is a whole range of timbres (see AM website), that depend only on the
parameters β and f1. Figure 6.3 shows the many kinds of sounds that can be obtained,
simply by modifying f1.
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Figure 6.3. A few examples of sounds produced with Chowning’s technique. They are of the
form sin(2πf0t + β sin(2πf1t)/f1), with f0 = 10, β = 20, and from top to bottom: f1 =
10, 15, 20, 25, 30, 35

As for the parameter β, it makes it possible to modify the specter according to the
intensity: for β = 0, we have a pure sound, that gains high harmonics as β increases
(see Figure 6.4), as with most musical instruments. Thus, when digital keyboards be-
came capable of reacting to the key’s attack, or velocity, the timbre could be modified
by increasing β at the same time as the velocity.

Figure 6.4. Modification of the sound’s harmonic depth according to β, again with f0 = 10.
Left: f1 = 10, right: f1 = 20, and from top to bottom: β = 0, 10, 20, 30, 40. Line 3 is found
in lines 1 and 3 of the previous figure

Additionally, this FM technique offered an easy implementation, by simply recor-
ding the carrier’s sample onto a register (a memory), and then playing these samples
at a variable speed. Thus was born the famous set of Yamaha DX synthesizers, inclu-
ding the very popular DX7. Later on, Chowning used the same technique to imitate
the formants of the voice in singing, again choosing f0 as an integer mutliple of f1,
for example f0 = 17f1 or f0 = 25f1, or also by interweaving FM modulations on
several levels.

6.1.4. Synthesis based on the use of sampled sounds

Synthesis based on the use of previously sampled sounds is currently the most
common technique for the imitation of acoustic (or electronic) instruments. Rather
than implementing one of the syntheses we mentioned, the result of which usually is
not satisfactory to musicians, pre-recorded sounds of instruments are used, and simply
have to be played at the right time.

This technique requires large storage capacities. The first instruments used the
same sample for several notes (one octave for example), but the sample changes were
noticeable: this is because a G on a given instrument is different from a C with all
the frequencies simply multiplied by 1.5, i.e. played 1.5 times faster. The relative
weights of the harmonics also change: usually the relative weights of high harmonics
decrease when the fundamental’s frequency increases. With the increase in memory
storage capacities, things changed to one, then several samples per note, to render the
variation of a same note according to its intensity. The current trend is to conduct,
based on a physical model and a set of samples for each note, a processing of these
samples to build the sound according to parameters such as intensity, duration, etc.
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6.2. Time effects: echo and reverberation

These effects apply directly to the time signal. Here, we will be considering a
discrete causal signal x, of finite length N + 1, originating from the sampling of a
sound with frequency Fe. Therefore, we have xn = 0 for n < 0 or n > N, and two
consecutive samples are separated by the time interval τ = 1/Fe.

6.2.1. Simple echo

Simple echo is the easiest effect to program. It consists of adding to the initial
sound the same sound, with a delay r and attenuated by a factor 0 < g < 1 called the
gain. We will assume that r is an integer multiple of τ : r = mτ. Hence the resulting
signal y is such that

yn = xn + gxn−m. (6.2)

This is the echo that would be produced by the reflection of the sound on a perfectly
reflecting wall located at a distance d = cr/2, with g ' 1/(2d), if we assume that the
source and the listener are placed at the same point.

COMMENT.– Using the Formula (5.11) for the delay, Relation (6.2) between x and y
becomes, by Z-transform,

Y (z) = (1 + gz−m)X(z).

By considering the polynomial b(z) = 1 + gzm, we thus have

Y (z) = b(z−1)X(z),

which means, because of (5.12), that y is the result of filtering x with the filter with
the following Z-transform

H(z) = b(z−1), (6.3)

and, because of (5.10) with v = b, the samples of this filter are h0 = 1, hm = g, the
other hk being equal to zero. This is an FIR filter.

6.2.2. Multiple echo

Let us now examine the case of two walls facing each other, and generating a
sequence of diminishing echos: this is multiple echo. We will assume for example that
the listener and the source are located close to one of the walls. After a first reflection
on the opposite wall, the sound will return, then go back again to reflect a second
time, then a third, and so on. Let y be the resulting sound. To account for the fact that
the signal originating from the last reflection is no longer gxn−m but instead gyn−m,
Relation (6.2) becomes:

yn = xn + gyn−m. (6.4)
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This is a recurrence relation that can be solved by hand, which leads to

yn = xn + gxn−m + g2xn−2m + . . .+ gkxn−km + . . . (6.5)

This relation shows that the successive reflections are increasingly damped (since 0 <
g < 1), but it is useless computation-wise, because the number of necessary operations
increases with n (roughly 3n/m operations to calculate yn), whereas in (6.4), the
computation of yn requires at the most an addition and a multiplication.

COMMENT.– If we take the Z-transform of (6.4), which is also written yn−gyn−m =
xn, we now find

(1− gz−m)Y (z) = X(z).

By considering the polynomial a(z) = 1− gzm, we thus have a(z−1)Y (z) = X(z),
which means, because of (5.12), that y is the result of filtering x with the filter with
the following function as its Z-transform

H(z) =
1

a(z−1)
. (6.6)

By applying (5.10) with

v(z) =
1

a(z)
=

1
1− gzm

=
+∞∑
n=0

gnzmn,

we infer that the samples of the filter h are hmn = gn, n ≥ 0, the other hk being
equal to zero, where the k are non-multiples of m. This is an IIR filter. If we use (5.8)
to compute h ∗ x with its coefficients, the result is the same as the one found by hand
(6.5).

6.2.3. Reverberation

In a room with several walls, we will hear several reflections at different times,
eventually all merging together to produce reverberation. In electronic music, arti-
ficial reverberation is obtained by passing the signal (converted temporarily into a
mechanical signal) through several springs of different lengths: these are ‘ echo cham-
bers ’ (first built by Hammond), found in most guitar amplificators. Designing a model
for digital reverberation that does not require too much computation and, at the same
time, is realistic, is something of an art, and the subject of many publications (see
[DAF02] and its bibliography). We will briefly describe two methods:

- the first is based on the room’s impulse response, which must therefore be
known, and requires a large number of operations;

- the second superposes simple and multiple echos combined with all-pass filters.
It requires less computation, but the results may not be as realistic.
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6.2.3.1. Using the impulse response

We have already mentioned in section 1.5.2 that the sound y perceived by the
listener is of the form

y = h ∗ x,

where x was the sound produced by the orchestra and h is the room’s impulse res-
ponse. This was relevant to analog signals. It remains true for the associated sampled
signals (see section 5.3.1), still denoted by x, h and y. Therefore, if the samples of
the room’s impulse response are available (they can be obtained by recording a brief
sound close to the Dirac impulse), it is possible to obtain the discrete sound y by
performing the convolution product of the sampled signals x and h.

If the room’s response is not available, another option consists of imitating it using
a random number generator [DAF02]. The impulse response h below is obtained by
filtering a noise w that decreases exponentially. In this case, b is a low-pass filter, the
an are random numbers and d is a characteristic dimension of the room for which we
wish to simulate reverberation:

h = b ∗ w,

wn = an exp(−nτ/d).

In both cases, computing the convolution h∗x requires a large number of additions
and multiplications, making this method difficult to apply in real-time.

6.2.3.2. Using echos and all-pass filters

This technique consists of combining the two kinds of echos discussed previously.
Figure 6.5 shows an example of a structure for simulating reverberation. In what fol-
lows, in order not to burden our notations, we will not write the indices of the para-
meters g, µ,..., associated with the different elements of R and E, but understand that
they can vary from one element to another.

Figure 6.5. Moorer’s reverb, comprised of lines with a delay R, multiple
echos E and an all-pass filter P. The ⊕ represent additions

The elements denoted by R are simply delays, their purpose being to simulate the
first reflections. They each produce a signal of the form

un = gxn−m

where m = rFe, r being the delay that can vary for example from 20 to 100 ms for
the set of elements R. The factor g is the gain of the simple echo, which can be set as
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g = µ/(cr), where 0 < µ ≤ 1 represents the room’s absorption, and cr is the distance
covered by the sound to come back to its starting point after it has been reflected.

Elements denoted by E are multiple echos combined with low-pass filters. When
such an element E receives a signal u, it produces a signal

w = µh ∗ v

where µ is still an absorption parameter, h is a low-pass filter (otherwise we would get
a ‘ metallic ’sound) and v verifies a version of (6.4):

vn = un−m + gvn−m.

Each gain g associated with an element E is chosen in the form g = 10−3r/TR ,
where r = mτ is the associated delay, chosen between 50 and 80 ms, and TR is the
reverberation duration, which by convention is the time it takes for a brief reverberated
sound to decrease in intensity by 60 dB.

Finally, the last element, denoted by P , is an all-pass filter (see section 1.5.3).
When it receives a signal w, it produces a signal y that obeys the recurrence equation

yn = gyn−m + wn−m − gwn. (6.7)

The parameters of this filter suggested by Moorer [DAF02] are g = 0.7 and m =
6Fe10−3 (still assumed to be an integer). This filter ‘ blurs everything together ’ by
modifying the phases of each frequency differently, reproducing the effect a room has
on sounds.

COMMENT.– Using the Z-transform of (6.7), we get, in this case

Y (z) =
−g + z−m

1− gz−m
W (z),

and the Z-transform of the associated filter is

H(z) =
−g + z−m

1− gz−m
.

Based on (5.13) this filter’s transfer function is

Ht(f) =
−g + exp(−2miπf/Fe)
1− g exp(−2miπf/Fe)

which, because g is a real number, is such that |Ht(f)| = 1. Hence this filter is an
all-pass filter: it does not modify the intensity of pure sounds, only their phases.
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6.3. Effects based on spectrum modification

Other effects are based on a direct modification of the sound’s spectrum, instead
of time modifications, by modifying either the relative weights of the harmonics or
partials, like the ‘ wah-wah ’ effect, or the frequencies themselves like the vibrato or
the Leslie effect.

6.3.1. The ‘ Wah-wah ’ effect

The wah-wah effect brings to mind the formants of the vowels ‘ o ’ and ‘ ah ’,
hence the name of course. It consists of adding to the initial sound the sound obtained
by passing this initial sound through a band-pass filter with a bandwidth that varies
with time: low for the ‘ o ’ sound and higher for the ‘ ah ’ sound (see Figure 1.29).
Here is a digital description.

6.3.1.1. An example of a band-pass filter

A digital band-pass filter that requires few computations can be obtained using the
recurrence formula

yn = (1 + c)(xn − xn−2)/2− d(1− c)yn−1 + cyn−2, (6.8)

the Z-transform of which is given by

H(z) =
(1 + c)(1− z−2)/2

1 + d(1− c)z−1 − cz−2
. (6.9)

Remember (see (5.13)) that the filter’s transfer function is then

Ht(f) = H(exp(2iπf/Fe)).

By choosing the parameters of this filter as follows:

c =
tan(πfb/Fe)− 1
tan(πfb/Fe) + 1

,

d = − cos(2πfm/Fe),

we get a band-pass filter with a bandwidth fb centered on fm, hence with a cut-off
frequency [fm − fb/2, fm + fb/2]. For a non-ideal filter, a cut-off frequency fc is
equivalent by convention to an intensity divided by two (hence −3 dB) compared to
the maximum in the bandwidth (normalized to 1), and therefore equivalent to

|Ht(fc)| = 1/
√

2,

the intensity being proportional to the square of the amplitude, as we saw in Chapter 1.
Inside the bandwidth, we have |Ht(f)| ≥ 1/

√
2, whereas outside, |Ht(f)| ≤ 1/

√
2.

Figure 6.6 shows three examples of band-pass filters built based on Relation (6.8).
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Figure 6.6. Three band-pass filters corresponding to 2fm/Fe = 0.2, 0.4, 0.6, and fb =
fm/10. The cut-off frequencies of the first filter are 0.19Fe/2 and 0.21Fe/2

The wah-wah effect then consists of applying such a band-pass filter to the sound
by modifying with time the center frequency fm. The bandwidth can be maintained
the same or not depending on your taste. Since fm and fb are constantly changing, the
same goes for the coefficients c and d of Recurrence relation (6.8) which becomes

yn = (1 + cn)(xn − xn−2)/2− dn(1− cn)yn−1 + cnyn−2,

with

cn =
tan(πfb(n)/Fe)− 1
tan(πfb(n)/Fe) + 1

, dn = − cos(2πfm(n)/Fe).

In the examples of Figures 6.7 and 6.8, we chose fm(n) and fb(n) as follows:

fm(n) = 2 000 + 1 000 sin(2πn/Fe),

fb(n) = fm(n)/10.

Notice that the wah-wah effect does not modify the sound’s pitch (this is clearly
visible in Figure 6.8). It only changes the relative weights of the different frequency
components, like the formants of the human voice. Another version of the wah-wah
effect consists of setting up variable band-pass filters (or possibly band-stop filters) in
parallel, each one affecting a different part of the spectrum.

Figure 6.7. Wah-wah effect (right) on white noise (left). The band-pass filter’s center frequency
fm varies between 1, 000 and 3, 000 Hz, with a bandwidth fm/10 (see also color plates)

Figure 6.8. Wah-wah effect (right) on a periodic sound (left). Same
parameters as before (see also color plates)

6.3.2. AM or FM type sound effects

These effects are based on a periodic variation of the amplitude:

s(t) = (1 + η sin(2πf1t)) sin(2πft), (6.10)

or of the frequency:

s(t) = sin(2πft+ β sin(2πf1t)/f1). (6.11)
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The AM effect creates a beat with frequency f1, something we have already encounte-
red several times. The FM effect produces a vibrato with frequency f1 and a frequency
excursion β (see section 6.1.3). In the Leslie effect, the two are combined with a stereo
effect.

6.3.2.1. Vibrato

The voice and many instruments produce a vibrato, the frequency of which varies
between roughly 4 and 12 Hz. It is easy to produce such a vibrato with additive syn-
thesis: we simply have to write each harmonic in the same way as in (6.11). Figure 6.9
represents the following sound, with fundamental 440 Hz, and a vibrato of 5 Hz:

s(t) = e(t)
9∑

n=1

αn sin(880nπt+ 7
√
n sin(10πt)).

The other parameters are αn = 1000, 300, 0.01, 0.01, 0.01, 3, 0.5, 1, 4 and β =
7
√
n. A single, trapezoid-shaped envelope e(t) was used.

Figure 6.9. Vibrato of a sound comprised of 9 harmonics. Does this remind
you of anything? (see also color plates)

Aside from additive synthesis, such an effect, which modifies the sound’s fre-
quency, can be obtained by playing the data, or its digital equivalent, at a variable
speed. But it cannot be achieved using filters, because the time invariance condition is
not satisfied.

6.3.2.2. Leslie effect

The Leslie effect was invented by Donald Leslie in the 1940’s. It was integrated
into Hammond, Baldwin or Wurlizer electronic organs, but was also applied to voices,
for example in Blue Jay Way by the Beatles. It is achieved by two rotating loudspea-
kers facing opposite directions, producing a Doppler effect (see section 6.4.1) coupled
with a variation of intensity.

Figure 6.10. Leslie effect produced by two rotating speakers. It became
popular with the use of electric organs

This effect, which is inevitably stereo, consists of sinusoidal variations of the am-
plitude and the frequency, with the left and right channels in opposite phases, the
variations of the amplitude and the frequency being in quadrature, as indicated in Fi-
gure 6.11 for an entire rotation of the device. The rotation speed is roughly 3 to 6
rounds/s.
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Figure 6.11. Leslie effect: amplitude (top) and frequency (bottom) variations
of each channel, over a complete rotation of the loudspeakers

Such an effect can be implemented by additive synthesis of the left and right chan-
nels sg(t) and sd(t). This is done by writing each harmonic in amplitude or frequency
modulated form:

sg(t) =
∑
n≥1

en(t)(1− η sin(2πfLt)) sin(nf(2πt− µ sin(2πfLt)/fL)),

sd(t) =
∑
n≥1

en(t)(1 + η sin(2πfLt)) sin(nf(2πt+ µ sin(2πfLt)/fL)),

where f is the frequency of the fundamental, en(t) is the envelope of each harmo-
nic, and for example η = 0.3, µ = 0.01 and fL = 4. Note that the instantaneous
frequencies are (by overlooking the effect produced by the amplitude variation)

finst(g,n) = nf(1− µ cos(2πfLt)),

finst(d,n) = nf(1 + µ cos(2πfLt)).

The spectrograms of each channel are shown in Figure 6.12. For clarity, the values of
µ and η have been exaggerated (η = 1 and µ = 0.1).
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Figure 6.12. Spectrograms of the Leslie effect (we overdid it a little...) see also
color plates

6.4. Study problems

6.4.1. The Doppler effect (**)

A harmonic punctual sound source with frequency f, located at the origin, gene-
rates a pressure wave of the form

p(x, y, z, t) =
exp(ikr − 2iπft)

r

with r =
√
x2 + y2 + z2. In both of the following cases, calculate and plot the ins-

tantaneous frequency perceived by a listener:
- in uniform rectilinear motion (therefore its position is of the formM(t) = M0 +

tV, V = (V1, V2, V3) being the speed vector and M0 its position at instant t = 0) ;
- moving along a circle at a constant angular speed.

In the first case, proceed by establishing the limits of the instantaneous frequencies
for t → ±∞, and study also the particular case where the vectors M0 and V are
parallel.

6.4.2. FM and Chowning (***)

Let s be the following frequency-modulated sound

s(t) = sin(2πft+ β sin(2πgt)/g).

We are going to conduct the frequency analysis of this sound, and determine the in-
teresting cases where it is periodic. We will be using the two following trigonometry
formulas:

sin(a+ b) = sin a cos b+ sin b cos a,

2 sin a cos b = sin(a+ b) + sin(a− b)

1) Let µ = β/g. Check that

s(t) = sin(2πft) cos(µ sin(2πgt)) + cos(2πft) sin(µ sin(2πgt)).

Notice that

exp(iµ sin(2πgt)) = cos(µ sin(2πgt)) + i sin(µ sin(2πgt)).
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The Bessel function of the first kind (seen before when we discussed membranes) can
be expressed as

Jn(µ) =
1
2π

∫ 2π

0

exp(i(µ sinx− nx)) dx. (6.12)

Show that the Fourier series expansion of exp(iµ sin(2πgt)) is as follows:

exp(iµ sin(2πgt)) =
+∞∑

n=−∞
cn exp(2iπngt)

with
cn = Jn(µ).

2) Check that the values Jn(µ) are real numbers, then, by making the variable change
y = π − x in (6.12), check that Jn(µ) = (−1)nJ−n(µ). Use this result to show that

cos(µ sin(2πgt)) = c0 + 2
∑
n≥1

c2n cos(4πngt),

sin(µ sin(2πgt)) = 2
∑
n≥0

c2n+1 sin(2π(2n+ 1)gt),

and, finally, show that

s(t) = J0(µ) sin(2πft)+
∑
n≥1

Jn(µ) [sin(2π(f + ng)t) + (−1)n sin(2π(f − ng)t)] .

3) We will ignore the fact that some of the values Jn(µ) may be equal to zero. What
can you say about s(t) – is this sound periodic? If it is, what is its fundamental? What
are the harmonics present? – in the following cases:

- g = f ;
- g = f/q with q > 0 an integer ;
- g = pf/q with p > 0, q > 0 two integers with no common divisors (answer: the

fundamental is f/q).

6.5. Practical computer applications

6.5.1. Sound synthesis

Record and analyze (time, frequency and time-frequency) a note from an instru-
ment of your choice. Using this analysis, create a function based on the same idea as
the instrument function written for the applications in Chapter 2 and that imitates
as best as possible the sound that you recorded.
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6.5.2. Chowning synthesis

Still based on the same idea as the instrument function, create a function called
chowning with the header

function s = chowning(f0, T, Fe)

that delivers a sound of the form

s(t) = sin(2πf0t+ β sin(2πf1t)/f1).

The values of f1 and β will be specified inside the function itself. This way, we keep
the general format of the instrument functions, which allows us to play chowning

using the play function without having to modify it. Try different values.

To create a stereo sound, you can create a left channel sl and a right channel sr
based on the previous model, then combine them in a single matrix that can be read
by the sound function. The commands are as follows:
computation of sl
f0 = f0+0.8;

computation of sr
s = [sl;sr]';

Note the slight change in frequnecy before going on to computing sr, so as to produce
a phase effect. Explanation of the last line: sl and sr are two line vectors (that is how
they should have been programmed), and the ; that separates them indicates that they
are arranged one below the other in a matrix with two lines and as many columns as the
number of elements of sl. This implies that sl and sr must have the same number
of elements. Finally, the ‘ prime ’ transposes this matrix so that it may be recognized
by the sound function in the case of stereo sounds.

6.5.3. Reverberation

Moorer’s reverb is programmed in the reverb.m file found on the AM website.
Copy it to your working directory, read it and make the connection with the des-
cription made in this chapter. This will allow you to make modifications to the dif-
ferent parameters (delay, reverberation time, etc.). Use this function inside one of your
instrument functions to modify its sonority.

6.5.4. Vibrato

Use the formula written in this chapter to add vibrato to your instrument. The
most convenient way to do this is to modify the synthad.m function: save it under a
different name, synthadv.m for example, and make the modifications inside this new
file. To add realism, you can start the vibrato half a second after the beginning of the
sound.
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6.5.5. The Leslie effect

Open a new file based on the same idea as instrument.m, called leslie.m,
and inside which you will program the sound of an organ (remember that the typical
organ note is composed of several pipes, the fundamentals of which follow a harmonic
progression, typically 1, 2, 3, 4, 5). Inside this function, invoke a new function to create
synthadl.m (based on the synthad.m model), that will provide as its output a stereo
sound (see the section on the Chowning synthesis for the format of such a sound), and
inside which each ‘ harmonic ’ will be programmed based on the model described in
this chapter. The envelope will be programmed inside the synthadl.m function itself.
Then run the play program to play your new instrument.
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voix céleste, 143
Académie française, 103
A (note), 103
accordion, 61
acoustic illusion, 114
acoustic nerve, 111
ADC, 119
adiabatic, 18
air, 15

average speed, 16
density, 16, 18, 19
elastic behavior, 18

aliasing, 126
AM, 14, 29, 146
amplification, 39
amplitude, 27
amplitude demodulation, 80
antinodes, 20
argument, 31
Aristotle, 99
Aristoxenus, 99
attack point, 80
audio

CD, 119
quality, 110, 120, 129

audio CD, 120
audio quality, 124
Békésy, 110
Bach, 100
Baldwin, 154
bar, 61

embedded, 63

fixed, 62
bar (unit of pressure), 19
basso continuo, 108
bassoon, 68, 91
beat, 59, 99, 101, 116
Beatles, 154
Beethoven, 102
bell, 31, 75
Bell, Alexander Graham, 23
Bernoulli, 58
binary number, 119, 127
bit, 120
bourdon (on an organ), 73
bow, 84
bridge, 55, 79, 85
Buchla, 145
byte, 120
C: set of complex numbers, 21
Callas, 32, 102, 113
carrier wave, 146
celesta, 61
cello, 108
cent, 76
ch: hyperbolic cosine, 63
characteristic trajectory, 19
Chladni, 79
choirs, 116
Chowning, 146
clarinet, 29, 67, 73, 91
cochlea, 110, 116
comma

pythagorean, 100
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syntonic, 100
component

non-tonal, 131
tonal, 131

compress, 133
compression, 107, 115, 120

entropy, 130
psychoacoustic, 130

concert hall, 33, 109
condition

boundary, 56, 62, 66, 69
Dirichlet boundary, 57
Neumann boundary, 72
prefix, 133

conservation of mass, 17
consonance, 61, 102
consonant, 35, 99
continuity equation, 17
converter

analog-to-digital, 119
digital-to-analog, 120

convolution
continuous, 41
discrete, 134

Cooley, 36
Cordier, 102, 113
cornet, 78
cos: cosine, 19
cymbals, 78
d’Arezzo, 25, 103
DAC, 120, 137
damping, 70, 85
Debussy, 114
decibel, 23, 108
decimation, 140
decodable, 133
decompression, 132
degree (in a scale), 25
degrees of intensity, 109
delay, 39, 136, 148
density, 16, 61
Diacre, 103
dictionary, 133
digital keyboard, 147
Dirac

impulse, 41, 121, 150
impulses, 129

mass, 121
dispersion, 63
dissipation, 70
distribution, 42, 121
dominant, 25
Doppler, 154
double bass, 108
doublette, 78
drum, 65
ear, 110
echo

chambers, 149
multiple, 148
simple, 148

effect
Doppler, 154
Leslie, 154
sound, 143
wah-wah, 153

eigenvalue, 67
elastic modulus, 56, 61
encoding, 120, 127, 133
enharmonic, 24, 100
envelope, 80
equal temperament, 24
equal-loudness, 108
equalizer, 34
equation

Bernoulli, 68
Bessel, 66
Helmholtz, 21, 57, 65, 69, 72
homogeneous, 21
wave, 18

Escher, 115
Euler equation, 18
Fender, 61
fifth, 25, 78, 97–99, 101
filter, 40, 79

all-pass, 44, 137
band-pass, 40, 137, 152
band-stop, 153
bank, 130, 139
finite impulse response, 135
high-pass, 40, 137
ideal band-pass, 43
ideal low-pass, 43, 124
infinite impulse response, 135
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low-pass, 40, 137
filtering, 42, 113

continuous, 137
digital, 134
discrete, 137

finite elements, 67
FIR, 135
Fletcher, 107, 108
flute, 67, 77

tuning, 103
flux, 16
FM, 146
formants, 39, 145, 147, 152
Fourier

analysis, 29, 31
coefficients, 29, 77
discrete transform, 36, 131
series, 29, 68
synthesis, 30, 31
transform, 31, 123

fourth, 25
frequency, 19, 27, 107, 110

center, 153
coincidence, 90
cut-off, 43, 124, 137, 152
excursion, 146, 154
instantaneous, 47, 127, 146
natural, 58
relative, 97
resonant, 34, 70

fugue, 100
function

Bessel, 66, 157
continuous, 41
separated variable, 20
transfer, 40, 137, 152

fundamental, 28, 58, 113
furnitures, 78
gain, 148
gamba stop, 143
Guarnerius, 80
guitar, 83
gyration radius, 61
gzip, 133
hair cells, 110
Hammond, 149, 154
harmonic, 28, 67, 75, 76, 97

harmony, 99
harpsichord, 77, 83, 108
hearing, 107, 120
Heisenberg (uncertainty principle), 37
helicotrema, 110
Helmholtz, 61, 84, 110
Henry, 143
hertz, 19, 27
holomorphic, 135
Huffman algorithm, 133
hum, 114
IIR, 135
impulse response, 41, 150
infrasounds, 28
inharmonicity, 76, 87
Internet transmission, 120
interpolation, 140
interval, 23
IRCAM, 143
Jew’s Harp, 78
Laplacian, 21, 65
law

Bernoulli, 70
Fechner’s, 23, 24, 109, 111
Taylor, 59

leading tone, 25
Leipp, 102
Leslie, 154
Lin-Louen, 100
linear acoustics, 17
log: base 10 logarithm, 23
log2: base 2 logarithm, 76
loss of information, 120
loudness, 107
loudspeaker, 154
major chord, 99
manufacturer

organ, 78, 143
piano, 76

maquam, 104
mask, 116, 131
masking, 107, 115
mass per unit length, 87
Mathews, 145
matlab, 47, 137
mel, 113
melody, 98, 104
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membrane, 65
basilar, 110
Reissner’s, 110

Messiaen, 33
mixtures, 78
Modalys, 143
modulation

amplitude, 146
frequency, 146
phase, 146

modulus, 31
Moog, 145
Moorer, 151

reverb, 150
MP3, 107, 130, 131
music

Arabic, 104
baroque (A4), 103
Oriental, 104

music box, 61, 63, 65
Music V, 145
mute, 79, 143
N: set of natural numbers, 136
narrative, 143
natural mode, 58, 79
Newton’s second law, 17, 57, 85
node, 20
noise, 33, 108

pink, 33
quantization, 128, 130
white, 33, 115

note
altered, 24
tonal, 25

Nyquist criterion, 122
oboe, 68, 91
octave, 24, 101, 111, 114
octaving, 71, 73
orchestra

A4, 103
backstage, 113
tutti, 107, 109

organ, 67, 77
ossicles, 111
Paris opera, 103
Parseval’s theorem, 30
partial, 30, 64, 75

pascal, 19
pedals, 143
period, 28
phase, 27
phase shifting, 39
phon, 108
piano, 59, 75, 77, 81
piccolo, 107
pitch, 23
play in fifths, 73
plein-jeux, 78
PM, 146
Poisson coefficient, 89
polar coordinates, 65
polyphony, 100, 104
Potter, 34
prelude, 100
pressure, 15

acoustic, 22, 107
atmospheric, 19

prestant, 78
principal, 30, 78, 114
probability, 133

uniform, 33, 129
psychoacoustics, 107, 120
pulsation, 27
Pythagoras, 58
quantization, 119, 130

non-uniform, 129
uniform, 127

R: set of real numbers, 20
recurrence relation, 149
reed, 55, 67, 71
regal, 143
region of convergence, 135
register

bugle, 73
chalumeau, 73
low, 71, 73

reprise, 78, 114
resonance, 70
resonator, 55, 78
reverberation, 149

duration, 151
Risset, 81, 115
ROC, 135
Saint John the Baptist, 103
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sample, 120
sampling, 119

frequency, 119
period, 119

Savart, 79
saxophone, 68, 91
scale

chromatic, 24
diatonic, 25
major, 25
minor, 25
modal, 25
perpetually ascending, 114
physicist, 99
Pythagorean, 98
tempered, 100
whole tone, 25, 114
Zarlino, 99

Schaeffer, 74, 80, 107
Schwartz, 42
second, 25
semitone, 24, 98, 101
sequence

arithmetic, 97
harmonic, 97

seventh
major, 25
minor, 26

sh: hyperbolic sine, 63
Shannon

condition, 122, 134, 137
theorem, 81, 124

Shepard, 114
Shore, 103
sifflet, 78
signal

analog, 119
band-limited, 124
causal, 135
digital, 120
reconstruction, 124, 129
rectangular, 29
sound, 27
triangular, 29, 77

signal-to-noise ratio, 128
sin: sine, 19
sine cardinal, 43

singing, 31
sixth

major, 25
minor, 26

SNR: signal-to-noise ratio, 128
sone, 109
sonogram, 34
sound, 15

analog, 137
continuous spectrum, 31
differential, 116
digital, 119, 137
high-pitched, 23
intensity, 22, 107
low-pitched, 23
masked, 115
masking, 115
periodic, 28
pitch, 111, 153
pure, 27, 108, 115
recording, 124
reflection, 45, 148
remanent, 80, 85, 95
sampled, 120
speed, 16, 18, 19
sustained, 70
with partials, 30

sound card, 129
sounding board, 55, 79
spectrogram, 34, 37
spectrum, 28

continuous, 31
discrete, 28, 75

speed
of a beat, 60
of air, 16
of sound, 19
propagation, 19, 57, 61, 63

staff, 25
standard deviation, 38
state equation, 18
Stevens, 113
Stradivarius, 80
string, 83, 85, 87

bowed, 84
plucked, 83

synthesis
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additive, 144, 145
by physical modeling, 144
flute, 78
FM, 144, 146
of musical sounds, 143
of principals, 78
reed, 78
sample based, 144, 147
signal modeling based, 144
subtractive, 144

tan: tangent, 57
temperament, 61

equal, 100
maximum consonance, 102
well-tempered clavier, 101
with perfect fifth, 102

tetrachord, 25, 104
TFD, 36
third, 78, 98

major, 25, 101
minor, 26, 30

threshold
hearing, 22, 108
masking, 116
pain, 23

timbre, 19, 74, 80
time-frequency

analysis, 36
representation, 34

timpani, 65
tonality, 100, 101
tone, 25, 98, 113
tonic, 25
trumpet, 79, 81
tube, 79

conical, 68, 91
cylindrical, 67, 91
flue pipe, 67
reed pipe, 67

Tukey, 36
tuning, 59, 65, 74, 113
tuning fork, 23, 103
tuning system, 24

equal temperament, 24
tympanic membrane, 110
ultrasounds, 28, 124, 127
variable

continuous, 119

discrete, 120
velocity, 147
vibraphone, 61
vibration

driven, 56
free, 56
sustained, 29, 67

vibrato, 32, 154
vibrator, 55
violin, 29, 77, 79
vocal chords, 35, 36, 145
voice, 31, 143, 147, 154
voice grade, 128
vowel, 35
wave

carrier, 43
equation, 18, 57, 65
harmonic, 20
longitudinal, 56, 61
modulating, 43, 146
periodic, 19
plane, 15
radio, 119
rotating, 66
sound, 15
spherical harmonic, 21
standing, 20, 46
torsional, 56
transverse, 56, 61
travelling, 19

wavelength, 19
wavenumber, 21
Well-Tempered Clavier, 100
Werckmeister, 100
window

elliptical, 111, 116
sliding, 36, 131

winzip, 133
word, 127
Wurlizer, 154
xylophone, 61, 62
Yamaha (DX7), 147
Young modulus, 56, 89
Z-transform, 135
Z: set of integers, 20
Zarlino, 61
Zwicker, 116
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