SYN'&RESS®

Bluetooth

APPLICATION DEVELOPER’S GUIDE:

The Short Range Interconnect Solution

Everything You Need to Write Bluetooth Applications for All
Popular Operating Systems

« Complete Code-by-Examples Written by Leading Bluetooth Developers
- Complete Coverage of Keeping Your Bluetooth Applications Secure

- Hundreds of Developing & Deploying and Debugging Sidebars, Security
Alerts, and Bluetooth FAQs

David Kammer
Gordon McNutt
Brian Senese

Jennifer Bray Technical Editor

solutionsasyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

» One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» “Ask the Author” customer query forms that enable you to post
guestions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWwwWw.syngress.com/solutions

SYNGRESS®

http://www.syngress.com/solutions

SYN'ERESS®

1 YEAR UPGRADE } AR

BUYER PROTECTION PLAN “}

=
T
l.Il'ﬂl.l.D! -~

Bluetooth

APPLICATION DEVELOPER’'S GUIDE:

The Short Range Interconnect Solution

David Kammer
Gordon McNutt
Brian Senese

Jennifer Bray Technical Editor

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work™) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” and “Ask the Author
UPDATE®),” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,” “Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL NUMBER

001 D8LDE945T5
002 AKLRTGY7M4
003 2XWA4L3N54N

004 SGBBT639UN
005 8LUSCA2H7H
006 7KG4RN5TM4
007 BW2QV7R46T
008 JPF5R565MR
009 83N5M77UBS
010 GT6YH2XZ52

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Bluetooth Application Developer’s Guide: The Short Range Interconnect Solution

Copyright © 2002 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-42-3

Technical Editor: Jennifer Bray Cover Designer: Michael Kavish
Co-Publisher: Richard Kristof Page Layout and Art by: Reuben Kantor
Acquisitions Editor: Catherine B. Nolan Copy Editor: Michael McGee
Developmental Editor: Kate Glennon Indexer: Robert Saigh

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Annabel Dent of Harcourt Australia for all her help.

David Buckland, Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Jackie Gross, Gayle Vocey, Alexia Penny, Anik Robitaille, Craig Siddall, Darlene
Morrow, lolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, and the rest of the great folks at Jaguar Book Group
for their help with distribution of Syngress books in Canada.

Contributors

David Kammer has been involved with the handheld industry since
1997. David is currently the Technical Lead for Bluetooth technologies at
Palm Inc., and is one of the authors of the original Bluetooth specifica-
tion. Before working on Bluetooth, David worked on IR technology, and
on the Palm VII. In addition to his work at Palm, he also consults for sev-
eral companies, including In2M and Microsoft, in the field of wireless
communications and PalmOS programming. David has spoken at a
number of events, including The Bluetooth Developers Conference, The
Bluetooth World Congress, and PalmSource, and has been interviewed
about Bluetooth for the New York Times. David holds a B.A. from
Oberlin College in Computer Science, and currently lives in Seattle.
David would like to thank his folks for the education, Meredith Krieble
and Sebastian for a nice space to work in, the excellent folks of the Palm
Bluetooth Team, and Vanessa Pepoy for her understanding and patience.

Tracy Hopkins is an Applications Engineering Manager at Cambridge
Silicon Radio (CSR). She and her group ofter consultancy application
services on all aspects of integrating Bluetooth into customer’s products
from initial conception through to production. She has a 2:1 BSc degree
with honors in Electronic Engineering and after completing a 6-year
apprenticeship with Phillips Telecommunications has worked in numerous
engineering disciplines designing hardware for Satellite communications,
production engineering at Studio Audio and Video (SADIiE) and managed
the international post-production technical support for broadcast giant
Snell and Wilcox. She has written and presented many technical papers
for both the communications and broadcast TV industries including the
SMPTE technical conference and designs all of CSR’s technical training
seminars.

Brian P. Senese has directly participated in the development of state of
the art wireless communications networks and associated components for

vii

viii

Contributors

15 years. He has worked for Nortel, Uniden, ADC Telecommunica-
tions, and other aggressive technology companies and has held posi-
tions from designer to senior engineering manager. Currently, as an
Applications Engineer for Extended Systems Inc., he gives seminars, is
a regular speaker at conferences, and has published several articles on
Bluetooth technology and its practical application in realizing prod-
ucts. He has spoken extensively on a wide variety of technical topics,
is internationally published, and has another book entitled Successful
High Tech Product Introduction. He holds an M.E.Sc. and B.E.Sc. in
Electrical Engineering from the University of Western Ontario,
London, Ontario, Canada.

Radina (Jiny) Bradshaw graduated with a first in Computer
Science from Kings College, Cambridge University. She received her
Ph.D. in the Laboratory for Communications Engineering, also in
Cambridge, with Professor Andy Hopper, investigating power efticient
routing in radio peer networks. She is currently a Software Engineer
at Cambridge Silicon Radio (CSR).

David McCall graduated from Edinburgh University with an MEng
in Electronics. He worked for Visteon, designing circuitry for car
stereos, before joining Cambridge Silicon Radio (CSR) in July of
2000. As a Senior Applications Engineer he is responsible for helping
CSR’s customers with all aspects of their Bluetooth product design
RE hardware and software, from concept through production.

Wajih A. Elsallal received his B.S. degree in Electrical Engineering
from the King Fahd University of Petroleum and Minerals in 1998
and continued his education at Georgia Institute of Technology where
he received the M.S. degree in Electrical and Computer Engineering
in early 2000. Currently, he is pursuing a Ph.D. in Electrical and
Computer Engineering from Georgia Institute of Technology with a
minor in Public Policy. His fields of expertise include development of
antenna and phased array antenna design, electromagnetic computa-
tional methods, Bluetooth wireless LAN for handheld devices, Inter-
Satellite-Link networking, microstrip and packaging technologies and

www.syngress.com

Contributors ix

sidelobe cancellor algorithms for radar applications. He has held
internships at Lucent Technology and 3Com Palm Computings, Inc.
and is currently a co-op staff member at the Antennas and Passives
Section within the Advanced Technology Center of Rockwell Collins,
Inc., a graduate teaching assistant at Georgia Tech, and a research assis-
tant for Georgia Tech Research Institute (GTRI/SEAL).

Patrick Connolly was educated at Trinity College, Dublin, where he
received a Bachelors and Masters degree in Computer Science. He has
been involved with the design and development of leading edge sys-
tems for over fifteen years, using such technologies as DCE, CORBA,
and J2EE. Patrick is the Chief Architect at Rococo Software, where
he plays a leading technical role in setting and driving product direc-
tion. His chapter in this book was co-authored by Patrick and two of
his Rococo colleagues: Karl McCabe, Rococo’s CTO, and Sean
O’Sullivan, Rococo’s CEO.

Gordon McNutt is a Kernel Developer for RidgeRun, Inc, respon-
sible for porting Linux to embedded devices containing multiple pro-
cessors. After receiving his B.S. in Computer Science from Boise State
University in 1999, he spent one year at Hewlett Packard developing
[/0 firmware to support USB, IR, and 1284.4 for LaserJet printers.

Bill Munday is one of the founders of blueAid, which started as an
organization to help those companies who could not afford the high
consultancy rates for Bluetooth technology. He graduated from
UMIST (Manchester, UK) in 1991 with a double degree of
BSc(Hons) and MEng in Microelectronics Systems Engineering. He
was sponsored by NORTEL and joined them upon graduation as a
Systems Designer. He worked on first and second generation SDH
and SONET transmission systems, then pioneered new time-to-
market concepts while working on an innovative next-generation
Voice over ATM distributed switching product. In 1997 he moved to
Tality (nee Cadence, Symbionics) to start a career in wireless commu-
nications. His first project was implementing the HiperLAN 2 stan-
dard before moving on to Bluetooth. He was the first person in the

www.syngress.com

Contributors

United Kingdom to have access to Bluetooth technology as he man-
aged and created the Ericsson Bluetooth Development Kit. He
quickly became an expert and continued to work on dozens of proto-
type Bluetooth products including Tality’s own Bluetooth IP. He pre-
sented and attended all the Bluetooth seminars and Unplugtfest
sessions around the world. In 2001 he moved on to start blueAid and
working on 3G mobile phones for a start-up company 3GLabs.

Robin Heydon is a Section Owner of HCI as a member of the
Bluetooth Special Interest Group (SIG). He obtained his degree in
Computer Science and worked for nine years in the computer
gaming industry on multiplayer flight simulator games. Robert began
working with Bluetooth technology in February 2000, specifically
working on the baseband, inquiry, snift, and hold development, and
writing the USB device driver. Robin lives in Cambridge, UK.

www.syngress.com

Technical Editor and Contributor

Jennifer Bray is a consultant at Cambridge Silicon Radio (CSR), the
single-chip Bluetooth company. She is currently working in the group
developing software for their BlueCore family of integrated circuits (ICs).
Jennifer currently holds the positions of Associate Councillor and Errata
Program Manager on the Bluetooth Architectural Review Board
(BARB). She has a bachelor’s degree in Physics with Microcomputer
Electronics, a master’s degree in Satellite Communications Engineering,
and a doctorate in the field of wireless communications. More recently,
she gained a distinction in the Open University’s Management of
Technology course. Her decade of experience in communications product
development includes working on Nortel and 3Com’s first ATM systems,
as well as wireless ATM, the first secure Ethernet repeater, ADSL to ATM
gateways, FDDI, CDMA, CDMA, and Bluetooth. In addition to her com-
munications development experience, she has worked on cutting-edge
control and monitoring systems for Formula One and Indy cars, and
acted as an ISO 9001 and CMM auditor advising blue-chip companies
on how to improve their development and support processes. Jennifer has
written and delivered technology training courses (naturally including
Bluetooth), and is a frequent speaker at conferences. She co-authored
with Charles Sturman Bluetooth: Connect without Cables.

Xi

Foreword

Every so often, a new technology comes along that, by its very nature, will change
the world. The automobile, the television, and the Internet are obvious examples of
technologies whose impact upon the entire population has been so far-reaching that
it 1s truly beyond measure. Bluetooth is not one of these technologies. Despite the
massive amount of media hype that has surrounded it, the effect of Bluetooth on the
average person will be more like the invention of the automatic transmission than the
invention of the car itself: it will make things easier for the user, but not fundamen-
tally change the nature of the way we live and work. Simply put, for the average
person, Bluetooth will probably merit a “Cool!” or a “What will they think of next?”
response, but probably won't leave them stunned or slack-jawed. This is not to say
that Bluetooth will be unimportant. I've invested several years working on Bluetooth,
and I think it will be a valuable technology that millions of people will use, but I also
think it’s important to be realistic about it.

There 1s, however, a small group of people for whom I think Bluetooth could
fundamentally change the way things are perceived, and if you are reading this intro-
duction, in all probability you are one of those people—a software developer.
Traditionally, software developers have tended to look at the communication between
two devices in terms of big and small, primary or secondary (terminal and mainframe,
client and server, apparatus and accessory). While these terms are certainly still relevant
in some situations, Bluetooth definitely presents us with scenarios in which the lines
become blurry. If two people exchange business cards between PDAs, which one is
the client and which one is the server? Traditionally, both a cell phone and a printer
might be considered accessories, but when you use Bluetooth to print an SMS message
from your phone, which one is the accessory? We may still use the terms client and
server to refer to certain aspects of an interaction (like who initiates the connection),
but it is easy to see that many of the other ideas and assumptions associated with these
terms are no longer relevant.

XXVi Foreword

In the world of the Internet, the term peer-fo-peer has come to describe applica-
tions that are decentralized—a relationship between equals. I believe this is a good
way to think of the relationship between devices using Bluetooth. In the Bluetooth
peer-to-peer paradigm, devices are more or less equal, dealing with data in ways that
are appropriate to their nature; sending vCard data to a phone or PDA might cause
the device to store the information in its address book, while sending the same
vCard to a printer may cause the printer to render the data and then print it.
Certainly, not all categories of Bluetooth applications will fall under the peer-to-peer
paradigm. There are many good applications out there that will retain a server-client
approach, but I think the realm of peer-to-peer applications that Bluetooth opens to
developers will prove to be exciting and extensive.

At this point, you are hopefully saying to yourself “Great, so let’s get down to the
nitty-gritty; how does it work and how do I get started?”” This book will take you
through the most important aspects of Bluetooth technology, and offer guidance on
writing Bluetooth applications for some of today’s most popular operating systems.
Bluetooth is still a very young technology, but the authors of these chapters are among
those who have helped to see it through its infancy, and the experience they have
gained should prove valuable to everyone interested in creating Bluetooth applications.

Who Should Read This Book

In general, this book is aimed at software application developers who are interested in
creating Bluetooth-aware applications. Its principle goal is to provide information
and examples that are pertinent to application developers. This does not mean, how-
ever, that only application developers will find benefit in reading this book. As
someone who worked at integrating a Bluetooth protocol stack into an OS, I know
that I would have found many of the insights in this book valuable. It is important
that an OS developer understand what the world looks like from an application
developer’s point of view, and the insights that other OS developers have gained
should certainly prove useful. In addition to developers, anyone who is evaluating a
Bluetooth application for review, corporate use, or bundling may find the informa-
tion in this book valuable in making an informed evaluation. For example, I know
that if [were evaluating an application for enterprise use, I would want to have a
good understanding of how security is handled in Bluetooth, so I could decide
whether a given application met my company’s security requirements.

www.syngress.com

Foreword XXVii

What This Book Will Teach You

Simply put, this book will teach you what Bluetooth technology is all about, and
how to write Bluetooth applications for several popular operating systems. This is a
technical book, and it assumes that the reader has a solid background in application
development and has a reasonable understanding of the issues involved in creating
communications applications. The book is roughly divided into three sections:
Bluetooth technology in general, Bluetooth applications on various operating sys-
tems, and a Bluetooth usage case study. The flow of the book is designed to intro-
duce things to you in the most helpful order—first, supplementing your general
knowledge with information about ideas and situations unique to Bluetooth, then
showing you how these situations are handled in various operating systems, and
tinally by stimulating your imagination from looking at several real-world scenarios
in which Bluetooth might be used.

It is probably worth noting a few things that this book does not cover. It is not
designed to serve as a detailed investigation of the low-level particulars of the
Bluetooth specification. The specification itself is publicly available, and there already
exist books that do a good job providing a detailed, blow-by-blow, examination of
the specification specifics. Although this is probably already clear, you should be
aware that this is not a general applications programming book. If you don’t already
know how to write applications for Windows, this book is not going to teach you.

Further Information

By the time you finish this book, you should have all the information you need to
get started writing your Bluetooth application. In fact, I wouldn’t be surprised if

98 percent of all developers discover that this book will be the only Bluetooth refer-
ence they ever need. Of course, no author can anticipate every situation, so for the
other 2 percent of you out there, here are some other Bluetooth references that I
think are worthwhile:

= www.bluetooth.com Home of the Bluetooth specification. In general,
I think most people will find reading the specification itself is not terribly
helpful. In a good OS implementation, most of the protocols and procedures
defined in the specification should be nicely abstracted. Still, sometimes you
have to go straight to the source.

www.syngress.com

xxviii Foreword

= Bluetooth: Connect Without Cables (by Jennifer Bray and Charles E
Sturman, published by Prentice Hall, 2000). If you choose to look at the
Bluetooth Specification, I think you will find that this book is an excellent
companion. It goes into detailed explanation, and does a good job
explaining many of the oddities, ambiguities, and occasional paradoxes of the
Bluetooth specification.

» www.syngress.com The Syngress Publishing Web site. Bluetooth tech-
nology will unquestionably evolve over time. As it does, Syngress will help
you keep up by releasing updates and new publications.

I hope you enjoy the book, and have a great time creating new and exciting
applications.

—David Kammer

www.syngress.com

Connecting Devices

M

The page scanning
device’s Bluetooth Device
Address can be obtained
in several ways:

= From an inquiry
response via FHS

= From user input

= By preprogramming
at manufacture

Contents

o
-«
.

.

Foreword XXV

Chapter 1 .

Introducing Bluetooth Applications 1 j
Introduction

Why Throw Away Wires?
Adding Usability to Products
: owmg for Interference

Product Performance 18
ating Connection Times 19
 Discovering Devices 20
-~ Connecting Devices 21
~ Quantifying Connection Times 22
- Performing Service Discovery 24
Quality of Service in Connections 25
Wbaco Rate 25
] 27
elivering Voice Communications 28
Xii

Xiv Contents

Investigating Interference
Interfering with Other Technologies
Coexisting Piconets
Using Power Control
Aircraft Safety
Assessing Required Features
Enabling Security
Using Low Power Modes
Hold Mode
Snift Mode
Park Mode
Unparking
‘Which Devices Need Low Power Modes?
Providing Channel Quality Driven Data Rate
Deciding How to Implement
Choosing a System Software Architecture
Constraining Implementation Options
with Profiles
Choosing a Hardware Implementation Option
Design Bluetooth Directly Onto the PCB
Design Verification
Manufacturing
Using a Prequalified Complete Bluetooth
Module
Firmware Versions
Dependant for Functionality
Considering Battery Limitations
Adding Batteries
Using Power Saving Modes to Extend
Battery Life
Assessing Battery Life
Summary
Solutions Fast Track
Frequently Asked Questions

29
31
32
34
35
36
36
37
37
38
38
39

40
40
40

51
53
53
55
56

57
58
64
65
67

Relationship between SP
Mode and Mandatory
Page Scan Period

M
Scan

Period

Mode Tmandatory_pscan
PO >20 seconds

P1 >40 seconds

P2 >60 seconds

Contents
Chapter 2

Exploring the Foundations of Bluetooth 69
Introduction 70
Reviewing the Protocol Stack 70
L2CAP 71
RFCOMM 72
OBEX 73
PPP 73
TCS Binary 73
SDP 74
Management Entities 74
HCI 74
Lower Layers 74
Why Unconnected Devices Need to Talk 75
Discovering Neighboring Devices 77
Inquiring and Inquiry Scanning 77
Timing 80
When to Stop 81
Connecting to a Device 82
Paging and Page Scanning 82
Timing 86
Who Calls Who? 88
Finding Information on Services a Device Offers 88
Connecting to and Using Bluetooth Services 91
Summary 98
Solutions Fast Track 99

Frequently Asked Questions 101

XV

Xvi Contents

Chapter 3
Power Management
Introduction
Using Power Management: When and
Why Is It Necessary?
Investigating Bluetooth Power Modes
Active Mode
Hold Mode
Snift Mode
Park Mode
Evaluating Consumption Levels
Summary
Solutions Fast Track
Frequently Asked Questions

Using Power
Management: When and

Why Is It Necessary? Chapter 4
< —__ <= Security Management
Introduction

m» Consider whether

your application is
suitable for power-
managed operation.
Consider the
constraints imposed
by the application
(e.g., maximum
response times,
characteristics of the
data traffic, and so
on).

Deciding When to Secure
Outfitting Your Security Toolbox
Authentication
Pairing
Link Keys
Bonding
Application Involvement
Authorization: How and Why?
Using the Trust Attribute
Enabling Encryption
Point-to-Point Encryption
Broadcasting
Application Involvement
Understanding Security Architecture
The Role of the Security Manager
Mode 1 Role
Mode 2 Role
Mode 3 Role
Mode Unknown

103
104

104
106
106
107
110
113
117
120
121
122

125
126
126
127
128
129
130
130
132
132
133
133
134
134
135
135
135
138
138
141
142

Contents xvii

The Role of Security Databases 143
Service Database Content 143
Service Database Operations 144
Role of Device Databases 146
Device Database Content 146
Device Database Operations 147
Managing the Device Database
tor Your Applications 147
Working with Protocols and Security Interfaces 148
Mode 2 Operation 148
Mode 3 Operation 150
Application—API Structure 150
Exploring Other Routes to Extra Security 153
Invisibility 154
Application Level Security 154
Security Modes Implementing Security Profiles 155
- = SDP 155
There are three different Cordless Telephony and Intercom 156
modes associated with .
Bluetooth security: Serial Port Profile 156
= Mode 1 has no Headset Profile 157
security, obviously Dial-Up Network and FAX 157
making it the least LAN Access 158
| e OBEX
security when a Case Study 161
higherllaygr protocol Summary 162
:2::;:;3? s Solutions Fast Track 162
= Mode 3 invokes Frequently Asked Questions 164
security when a
connection is Chapter 5
requested; this is the Service Discovery 167
most secure mode. Introduction 168
Introduction to Service Discovery 169
Service Discovery Protocols 170
Bluetooth SDP 171
Architecture of Bluetooth Service Discovery 172
The Structure of Service Records 172

The Service Discovery Protocol 175

xviii

Contents

Developing an Abstract C API for SDP
Discovering Services
Short-Circuiting the Service Discovery
Process
Creating and Advertising a Service
Discovering Specific Services
Using Service Attributes
Browsing for Services
Service Discovery Application Profile
Service Discovery Non-Application
Profiles
Java, C, and SDP
Other Service Discovery Protocols

Salutation
Service Location Protocol
Answers to Your ..
Frequently Asked Jlm.
Questions Universal Plug and Play (UPnP)
a5 T = The Future of SDP
Q: How are services Summary

A:

i ? .
repres.ented in SDP? Solutions Fast Track
A service on a

Bluetooth device is Frequently Asked Questions

described in an SDP
service record, which Chapter 6

is stored in the Linux Bluetooth Development
device's “Service

; . Introduction
Discovery Database. . .
A service record Assessing Linux Bluetooth Protocol Stacks
consists of service Comparing BlueDrekar with OpenBT

attributes, each of

which describes by Features

some information Kernel Versions
about the available Hardware Platforms
service. Bluetooth Protocols
SDP Support
API

License Terms
Other Considerations
Fair Warning
Understanding the Linux Bluetooth Driver

176
180

181
181
186
187
189
192

193
195
196
197
198
200
202
203
204
205
209

211
212
212

213
214
214
214
214
215
215
216
217
217

Security Alert

M
Never remove the
Bluetooth driver while the
sdp_server daemon is
using /proc/sdp_srv. If you
do so in the current
release version of the
stack (0.0.2 at the time of
this writing), you will get
a kernel panic when you
stop the daemon. Future
versions of the stack will
probably not allow you to
remove the driver while
the sdp_server daemon is
using it.

Contents

Learning about the Kernel Driver
Investigating the Kernel Module
What Exactly Is a TTY?

So What’s an Idisc?
Building Driver Stacks in the
Linux Kernel
Understanding the Bluetooth Driver
Interface
Investigating the Bluetooth Device Files
Using the REFECOMM TTY Drivers
Using the Control Driver
Using Open Source Development Applications

Investigating the OpenBT Applications

Understanding the btd and btduser
Applications

Understanding the sdp_Server
Application

Understanding the BluetoothPN
Application

Establishing a PPP Connection Using

the btd Application

Writing Your Own Minimal Application

Connecting to a Bluetooth Device

Initializing the Bluetooth Stack
Preparing the Serial Driver
Stacking the Drivers
Starting Communication between

the PC and the Card
Switching to a Higher Baud Rate

Finding Neighboring Devices

Letting Other Bluetooth Devices
Discover Us
Sending an HCI Inquiry

Using Service Discovery
Connecting to a Remote SDP Server
Sending an SDP Request

Xix

218
218
219
219

220

221
221
222
226
226
226

227

227

228

228
231
233
234
234
235

236
237
238

239
239
241
241
242

XX

Contents

Processing an SDP Response
Adding a Service to the Local Database
Querying the Local Database
Connecting to a Bluetooth Service
Using a Data Device
Creating a Connection
Accepting a Connection
Transferring Data
Disconnecting
Controlling a Bluetooth Device
Distinguishing between Control and
Data Applications
Using ioctls to Control the Device
Covering Basic Scenarios
Example: Startup
Example: Link Loss
Example: User-Initiated and Automated
Shutdown
Example: Idle Operation
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 7
Embedding Bluetooth Applications
Introduction
Understanding Embedded Systems
Understanding Tasks, Timers, and Schedulers
Understanding Messaging and Queues
Using Interrupts
Getting Started
Installing the Tool Set
Building a Sample Application
Running an Application under the Debugger
Using Plug-Ins
Debugging under BlueLab
Running an Application on BlueCore

244
246
247
247
247
248
249
249
250
251

252
252
255
255
255

257
257
259
260
262

265
266
267
267
268
268
271
273
273
274
276
280
280

Contents xxi

Debugging Using VM Spy 283
Using VM Packets 284
Packing Format in Messages 287
Using the BlueLab Libraries 288
Basic Libraries 290
CSR Library 291
Application Libraries 291
Using Tasks and Messages 293
The Casira _ Tasks and Message Queues 293
Development Kit Creating and Destroying Messages 294
/\/ .
= = Using the MAKE_MSG Macro 295
The Casira development Connection Manager 296
kit provides a variety of R g .
useful interfaces: Inltlathng al’ld Openll’lg the
= SPl interface Connection Manager 297
Connects to a PC Inquiry 302
parallel port, and Pairing 304
allows you to .
reconfigure the Connecting 306
Casira using the Sending Data 311
PSTool utility. Using Other Messages and Events 312
= Serial interface . .
Connects to a PC Deploying Applications 313
serial port. Summary 314
" tJSB F’)’(‘:’E‘S;O”r‘fds Solutions Fast Track 314
oa port, .
and supports the Frequently Asked Questions 316
Bluetooth
Specification’s USB Ch_apter 8
protocol (H2). Using the Palm OS for Bluetooth
jack which connects .
to the headsets Introduction 318
supplied with the What You Need to Get Started 318
Casira. Understanding Palm OS Profiles 320

LEDs These can be

used to monitor Choosing Services through the Service

applications running Discovery Protocol 322

on the BlueCore Updating Palm OS Applications Using the

;T(')pl Bluetooth Virtual Serial Driver 324
ines Parallel

Input-Output lines; Creating a VDRV Client-Only Application 329

useful for Creating a VDRV Server-Only

connecting custom
hardware.

Application 332

xxii Contents

Warning
M

Applications and the VDRV
use the Bluetooth Library
in different modes.
Because of this difference,
the VDRV will not be able
to open while the
application is holding the
Bluetooth stack open.

Using Bluetooth Technology with Exchange
Manager
Creating Bluetooth-Aware Palm OS Applications
Using Basic ACL Links
Creating L2CAP and RFCOMM
Connections
Using the Service Discovery Protocol
Advertising a Basic Service Record for
an RFCOMM or L2CAP Listener
Socket
Retrieving Connection Information
about L2CAP and RFCOMM
Listeners on a Remote Device
Using Bluetooth Security on Palm OS
Writing Persistent Bluetooth Services for
Palm OS
The Future of Palm OS Bluetooth Support
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9
Designing an Audio Application
Introduction
Choosing a Codec
Pulse Code Modulation
Continuous Variable Slope Delta Modulation
Configuring Voice Links
Choosing an HV Packet Type
Sending Data and Voice Simultaneously
Using ACL Links for High-Quality Audio
Choosing an Audio Interface
Selecting an Audio Profile
Applications Not Covered by Profiles
New Audio Profiles
Writing Audio Applications
Discovering Devices

335
337
339

346
359

360

361
364

364
369
370
372
376

379

380
381
383
385
389
390
391
393
395
396
401
402
402
403

Contents xxiii

Using Service Discovery 405
Connecting to a Service 407
Using Power Saving with Audio
Connections 409
Differentiating Your Audio Application 410
Physical Design 410
Designing the User Interface 410
Enabling Upgrades 411
Improving the Audio Path 412
Summary 413
Choosing a Codec Solutions Fast Track 413
Frequently Asked Questions 417
- =
The Bluetooth Chapter 10
specification supports Personal Information Base Case Study 419
three different audio
coding schemes on the air Introduction 420
interface: Why Choose Bluetooth Technology? 422
= Continuous Variable Requirements for PIB Devices 422
i/llzzill:’?il;?\ (CVSD) Implementing Optional Extra Features 425
= Log Pulse Code Choosing a Wireless Technology for the
Modulation (PCM) PIB Device 427
coding using A-law Considering the Cost of the PIB 428

compression

= Log PCM with p-law Exploring the Safety and Security Concerns

compression of a Personal Information Base 429
Enabling Data Duplication 429
Ensuring Data Integrity 430
Providing Security 431
Meeting Medical Requirements 432

Using Bluetooth Protocols to Implement a PIB 432
Understanding the Bluetooth

Specification Hierarchy 433
Initializing the PIB 437
Understanding User Interactions 437
Sending and Receiving Information 438
Selecting a Device 448

Using the Service Discovery
Application Profile 449

XXiv

Contents

Using the Serial Port Profile
Using the Generic Object Exchange
Profile
Using the Object Push Profile
Using the File Transfer Profile
Considering the User’s View
Identifying the System’s Users
Identitying System Use Cases
Identifying Barriers to Adoption
Managing Personal Information Base
Performance
Summary
Solutions Fast Track
Frequently Asked Questions

Appendix:
Bluetooth Application Developer’s
Guide Fast Track

Glossary

Index

449

450
450
450
454
454
455
455

456
458
459
460

463
483
492

Chapter 1

Introducing
Bluetooth

Applications

Solutions in this chapter:

Why Throw Away Wires? i 'i

Considering Product Design

= Investigating Product Performance

Assessing Required Features

Deciding How to Implement

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 ¢ Introducing Bluetooth Applications

Introduction

As human beings, we accept without question that we have the ability to com-
municate, that if we speak or write according to a pre-defined set of linguistic
rules that we will succeed in conveying information to one another. The tools of
human communication, producing sounds that are perceived as speech or creating
words on a page, once learnt are used without thought. The limitation on these
physical processes that we take for granted is the actual translation of thoughts
into effective and meaningful statements. When it comes to electronic communi-
cation, however, there is very little that can be assumed or taken for granted.
Communication between electronic devices can only be achieved when they also
abide by a set of predetermined rules and standards—the Open Systems
Interconnect (OSI) model for communications systems protocol stacks being the
primary example, and the basis from which many others have evolved.

These standards need to be applied to every aspect of the communication
process, from the manipulation of data at the highest level to the utilization of
physical transmission media at the lowest. Electronic communication has evolved
significantly over the last decade from the earliest packet switched data networks
(PSDNs) and the Xerox, Ethernet, and IBM Token Ring local area network
(LAN) technologies, to the now common-place mobile telephony and dedicated
high-speed data communication. (How would we survive without e-mail and
the WWW?)

New technologies are now emerging that allow wireless communication. The
IEEE 802.11b or Wi-Fi standard is becoming accepted as the choice for the net-
working community as it supports features that enable it to perform handovers
between access points, and it can eftectively become a transparent wireless net-
work, expanding the static wired network. IEEE 802.11b has a data throughput
of up to 11 Mbps, which gives it viability against wired networks. This is evolving
turther with the advent of IEEE 802.11a and its competitor HyperLAN2 with
even greater data rates. This technology is expensive and therefore not compatible
with price-conscious consumer products, but we have now been provided with
the means to create wireless, low-power, cost-eftective, unconscious and ad-hoc
connectivity between our devices. Its name: Bluetooth. If we believe all of the
hype surrounding Bluetooth technology, we can expect our fridge to use our
mobile phone to order groceries over the Internet, and, of course, end up
ordering an extremely expensive new car instead of a steak! Yes, we have all seen
the jokes, but in reality we can utilize this technology now to develop products
that will allow us to throw away all the wires—and communicate without cables.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Excellent, we all think, and our imagination races into the realms of Science
Fiction, removing the wires from everything! Musing on using our mobile phone
to communicate and control everything the same way we use the TV remote to
operate our entertainment systems.

This is a book for engineers in the real world, so let’s take a long hard look
at what Bluetooth technology really does ofter. For some applications, Bluetooth
technology delivers the dream of convenient wireless connectivity. For other
applications, however, it just isn’t the right answer. You do not want to spend a
lot of time and effort learning about Bluetooth technology only to realize it isn’t
for you, so we are going to start out by analyzing what the features of a really
good Bluetooth product are. If your application does not fit into the Bluetooth
scheme of things, you can put the book down after this chapter and go and look
elsewhere.

If you make it past this chapter, you can be confident Bluetooth technology is
right for you. There will still be quite a few make or break pitfalls before you
have a killer application, but they are minor issues compared to choosing the
wrong technology.

What you need to know before reading this chapter:

» There are no pre-requisites for this chapter, though a broad familiarity
with communications products will be useful.

Why Throw Away Wires?

Wired or wireless? Let’s examine just why we’d want to connect without wires,
and what it might offer us in tangible terms; we can use the paradigm of our
own personal area network (PAN). We have a PC with its ubiquitous mouse and
keyboard, a laptop, a personal digital assistant (PDA), a mobile phone with a
“hands free” kit and a printer. How do we currently communicate between these
devices? The answer is: with a rather unwieldy network of cables, hubs, and con-
nectors—plugging, unplugging, and synchronizing often with the compulsory
intervention of the overworked and often less-than-friendly IT department!

In the wired solution scenario that we are all accustomed to, all of the mobile
devices are used in the singular—the interaction between them is always user-
initiated. We generally keep our contacts’ addresses in our PCs or laptops, while
their phone numbers also need to be entered into our mobile phone’s directory.
We are effectively forced to become database managers simply in order to main-
tain an up-to-date record of our contact’s details. We connect to our company

www.syngress.com

Chapter 1 ¢ Introducing Bluetooth Applications

LAN via user-initiated password entry and connect to a printer only if we have
already installed the driver or have administrator rights on our PC’s—nothing is
unconscious.

Figure 1.1 illustrates the alternative scenario—to Bluetooth-enable all of these
devices. The simple act of utilizing Bluetooth technology as cable replacement
removes the problem of the actual physical connections and the unconscious and
ad-hoc connection capability of the technology can allow communication
between the devices with no user intervention at all (OK, after some software
configuration and initial device setup!).

Figure 1.1 A Bluetooth PAN (Doesn't Include Power Cables to PC
and Printer)

Headset
—
~ ==

-y
w

x—

- Laptop

—

This fully wireless scenario can be achieved because of the master/slave nature
of the Bluetooth technology. All devices are peers, identified by their own unique
48-bit address, and can be assigned as a master either by function or user interven-
tion. A master can connect to up to seven slaves at the same time, forming a
piconet—this “point-to-multipoint” feature is what sets Bluetooth apart from other
wireless technologies. Figure 1.2 illustrates several connection scenarios.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Figure 1.2 Bluetooth Technology Connection Scenarios

// \
7/ \
/ \
\
// \ t
! > \
! Q master |

PERSONAL: link to one preset POINT TO POINT: link to any one POINT TO MULTIPOINT: link to up
device device (ad-hoc) to seven devices (Piconet)

In the ultimate scenario, a member of one piconet can also belong to another
piconet. Figure 1.3 illustrates the scatternet, wherein a slave in one piconet is also
the master of a second piconet—thus extending the networking between devices

A device in my PAN can communicate with one in yours!

Figure 1.3 A Bluetooth Scatternet

\
slave or \\ '
moster g slave
g 7/

Let us put this into context by interpreting exactly what “unconscious and
ad-hoc connections” can mean to us in real life, and how the fundamental com-

ponents of the Bluetooth PAN in Figure 1.1 can be integrated into a wireless
infrastructure to enhance our lives and even reduce the need to queue!

www.syngress.com

Chapter 1 ¢ Introducing Bluetooth Applications

Adding Usability to Products

Mr. .M. Wireless is embarking on a business trip. At the airport, as he gets
within range of the airline’s counter, his reservation is confirmed and a message
is sent to his mobile phone detailing flight confirmation, personal boarding ref-
erence, seat information and departure gate number, which he listens to via a
headset being that his phone is actually in his briefcase. While in the departure
lounge, he connects to the Internet and accesses his e-mail via his mobile
phone or the wireless LAN Access Point fitted in the lounge. He boards his
flight and during the journey composes e-mails which will be sent as he enters
the range of a LAN in the arrivals lounge or again via his mobile phone. He
walks to the rental car company’s counter to pick up his keys—as with the air-
line, all booking, payment, and car location details would have been transmitted
between his PDA/mobile telephone and the rental company’s computer. He
starts to drive the rental car and his PDA downloads his hotel information into
the car’s on-board systems, which allows the navigation system to smoothly
direct him to its location. On arrival, his room booking reservation is already
confirmed. At his meeting, the normal 15-minute exchange of business cards is
removed as all of the personal information is exchanged automatically via his
PDA. He then uses his PDA to run his presentation from his laptop, which all
attendees at the meeting are viewing simultaneously on their own laptops. Back
in his hotel room after the meeting, his PDA synchronizes with both his laptop
and mobile phone—now the telephone details of all the new contacts he met
are stored in his mobile phone directory and the address and e-mail informa-
tion in his laptop. Later, while relaxing, he listens to MP3 files stored on his
laptop with the same headset that he answers his phone with. He also uses his
digital camera to send “an instant postcard” via his mobile phone and the
Internet to his wife’s PC at home (obviously, it won’t be a picture from the
Karaoke evening arranged by his clients!)

If we extract some conclusions from this slightly excessive example, we find
that wireless connectivity ofters us immense freedom and convenience. It allows
us to perform tedious tasks with a minimum of intervention, allows some of our
devices to have dual functionality, and makes the vast array of cables we inevitably
always leave in the office redundant. Bluetooth technology “will” change the
assumptions we all have about our electronic devices. With the cables gone, the
idea of having a particular gadget for a specific job will no longer be relevant.
With many of the devices already available to consumers, this scenario grows
closer to reality every day.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

As for networking our homes, there are two ideologies. The first predicts a
“master device” that will control everything from the video recorder to the secu-
rity system, and which will replace the PC as the technological hub of the home.
The other suggests the PC will remain at the centre of a networked home. Figure
1.4 illustrates how the PAN can be extended in our homes and combined with
our wired infrastructure to provide a home area network (HAN) that utilizes
wireless technologies for audiovisual (AV) control and distribution. The British
mobile telephone company Orange is currently promoting a wireless house that
will demonstrate various technologies in a “real-world” environment. More infor-
mation can be found on the Orange Web site at www.orange.co.uk.

Figure 1.4 A Wireless HAN for AV Control and Distribution

Allowing for Interference

Wireless means a radio link—and radio links are subject to interference.
Interference can impact both the quality of an audio (Synchronous Connection
Oriented [SCO]) connection or the throughput of a data (Asynchronous
Connectionless [ACL]) connection. High levels of interference can interrupt
communications for long enough to cause the protocol stack to timeout and
abandon the link altogether. Although this is addressed in the Bluetooth

www.syngress.com

Chapter 1 ¢ Introducing Bluetooth Applications

Specification with a frequency-hopping scheme which does provide robustness, it
is still a serious consideration for some applications.

Bluetooth technology should not be used for safety-critical applications
where data absolutely must get through, because there 1s always a possibility of a
burst of interference stopping the link. Interference can come from a variety of
sources: microwave ovens, thunderstorms, other communications systems (such as
IEEE 802.11b), even other Bluetooth devices in the area (although these will not
have a great effect as they are designed to cope with interference from one
another in normal use).

It is possible to overcome the problem of link failure. For example, if you are
relying on a Bluetooth link to monitor your baby and you know the environ-
ment is such that the link will only fail approximately once a week, then you
might be happy to have the receiver alert you when the link fails. Once a week
you may be out of touch, but an alert will let you know that the link has failed,
so you have the option of returning within earshot of the infant. Since the
Bluetooth links only operate up to around 100 meters, it shouldn’t take you too
long to get there!

There are other safety-critical applications where an unreliable link may be
acceptable. An example is a system developed for Nokian tires, which allows tire
pressure to be automatically monitored and sent to the car dashboard display. A
wireless link will be subject to frequent failures in the harsh automotive environ-
ment, but the link can be re-established. Even if it only works a tenth of the time,
it 1s still checking tire pressures far more often than will the average motorist!
Here again, the system could be set to alert the driver if the tire pressures have not
been reported recently. This way the driver knows that a manual check is needed.

So far, we have looked at eftects of the Bluetooth link receiving interference,
but, of course, it can also interfere with other devices. Bluetooth devices are obvi-
ously completely unsuitable for use in an environment where the Bluetooth link
would interfere with sensitive control equipment—an aircraft being the primary
example. Interference issues are explained in more depth later in this chapter.

Considering Connection Times

With a radio link, although the connections can be unconscious, connection
times can be lengthy as transmitters and receivers all need to synchronize before
communication can commence. These limitations could have serious conse-
quences if the wireless link was of a critical nature—for example, a “panic
button,” a life-dependant medical monitor, or an engine management system.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

There are two delays in setting up a Bluetooth link. First, it takes time to dis-
cover devices in the neighborhood. In device discovery, a device sends out
inquiry packets, and receives responses from devices in the area, then reports these
to the user. It can take ten seconds to find all the devices in an area, and even
then you will only find those devices which are willing to report their presence.
Some devices may not be set to scan for inquiries, in which case you will never
find them!

A second delay occurs when you set up the connection itself. Again, this can
take up to ten seconds. This lengthy connection time means that Bluetooth
devices are unsuitable for systems where a fast response is needed, such as auto-
matic toll collection on busy roads.

Coping with Limited Bandwidth

Wireless can also mean “slower.” An Internet connection via a Bluetooth LAN 1is
limited to the maximum data rate (723.2 Kbps) over the air interface. After
allowing for management traftic and the capacity taken up by headers for the var-
1ous protocol layers, even less is available to applications at the top of the stack.
This will not compete with a high-speed wired link. Thus, for sending or down-
loading vast amounts of data, a Bluetooth wireless connection would not be the
optimum method.

This also impacts on audio quality: Bluetooth technology simply does not
have the bandwidth for raw CD quality sound (1411.2 Kbps). However, if a suit-
able compression technique is employed (using MP3 to compress an audio stream
down to 128 Kbps, for example), it is feasible to use an ACL link for high-quality
audio. The quality of a Bluetooth SCO link is certainly not high quality—it is
approximately equivalent to a GSM telephone audio link (64 Kbps).

Compression can be useful for data devices. If large amounts of data are to be
sent, using a compressed format will obviously speed up transfer time.

Considering Power and Range

Power is a critical consideration for wireless devices. If a product is to be made
wireless, unleashed from its wired connection, where will its power come from?
Often the communication cable also acts as a power cable. With the cable gone,
the subject of batteries is brought into focus, and the inevitable questions arise
concerning battery life, standby time, and physical dimensions.

Some devices, such as headsets, have no need for power when they are con-
nected with wires. Audio signals come down a wire and drive speakers directly; a

www.syngress.com

10

Chapter 1 ¢ Introducing Bluetooth Applications

very simple system with no need of extra power connections. When the wires are
replaced with a Bluetooth link, suddenly we need power to drive the link, power
to drive the microprocessor that runs the Bluetooth protocol stack, and power to
amplify the audio signal to a level the user can hear. With small mobile devices
you obviously do not want to install huge batteries, so keeping the power con-
sumption low is an important consideration.

Deciding on Acceptable Range

The Bluetooth specification defines three power classes for radio transmitters
with an output power of 1 mW, 2.5 mW and 100 mW.The output power defines
the range that the device is able to cover and thus the functionality of your
product must be considered when deciding which power class to use. The user
would not want to have to get up from his desk to connect to the LAN and
therefore requires a higher power radio. Conversely, a cellular phone headset is
likely to be kept close to the phone, making a lower range acceptable, which
allows smaller batteries and a more compact design. Table 1.1 details the respec-
tive maximum output power versus range.

Table 1.1 Bluetooth Radio Power Classes

Power Class Max Output Power Range

Class 1 100 mW 100 meters+
Class 2 2.5 mW 10 meters
Class 3 1T mW 1 meter

It is important to realize that the range figures are for typical use. In the
middle of the Cambridgeshire fens, where the land is flat and there is not much
interference, a Class 1 device has been successfully tested at over a mile. But in a
crowded office with many metal desks and a lot of people, the Bluetooth signal
will be blocked and absorbed, so propagation conditions are far worse and ranges
will be reduced.

Recognizing Candidate Bluetooth Products

Taking into account the preceding sections, we can see that for a product to be a
candidate for Bluetooth technology, it needs to adhere to the six loosely defined
conditions that follow:

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

» Adds usability (that is, convenience and ease-of-use—the Bluetooth
Dream!)

» Interference or latency will not affect its primary function
= s tolerant to the connection time overhead

» Can afford the limited Bluetooth bandwidth

= Battery life or power supply requirements are compatible

» The range is adequate

The remainder of this chapter will explore these issues in depth to attempt
to provide an insight into what actually “does” make a good candidate for the
Bluetooth technology. It will also present a case for the various implementa-
tion techniques available to the developer with their inherent advantages and
limitations.

Considering Product Design

Your product may look like a candidate Bluetooth product, but there are practical
considerations to take into account. It costs money to add a Bluetooth link, and
for some products, that cost may be more than the customer is willing to pay.

You must look long and hard at the design of your product, how Bluetooth
technology will aftect the design, and whether in the final analysis that cost will
be worth it. This section covers some of the issues you will have to take into
account when moving from a wired product to a wireless one.

Are You Adding End User Value?

Having your product’s packaging be anointed with the Bluetooth logo to
announce you are part of the new technology revolution may persuade the
consumer to purchase your product over a competitor’s wired product. Your
product may even command a premium price that will pay back your devel-
opment efforts. But will the customer be satisfied when he gets it home? Will
it give him the added value he has paid his extra dollars for? Will the “out-
of-the-box” experience fulfill his notion of the promised ad-hoc wireless
connectivity?

With mobile products that are not constrained by mains power cables, the
added value of being wireless is easy for us to see. Who rushed out to try IrDA in
their PDAs? Horrendous file transfer times and the “line-of-sight” constraint

www.syngress.com

1

12

Chapter 1 ¢ Introducing Bluetooth Applications

notwithstanding, the added value from simply being wireless convinced con-
sumers to try it and wuse it! However, for products that are inherently static, the
added value may just be initial “desire” and not really a viable investment in both
resources and dollars.

Consider the static devices in our wired PAN (Figure 1.1)—for example, the
ubiquitous mouse and keyboard. Both are dependant for their power supply
requirements upon their host PC, so if made wireless, the subject of batteries
becomes crucial. This added value of wireless connectivity can only be enjoyed if
the user does not have to change or re-charge the batteries every week! Our
static devices—desktop PCs with the obligatory mains power cable—would be
perhaps better served by a wired Ethernet link rather than a Bluetooth LAN
point (both cables embedded under the floor in your office as standard). Electric
lights are another facet to consider—just think of the reduced installation costs in
an oftice building of no wiring loom. Here, however, we do require power. So 1s
wireless really adding value? It could be valuable if added as a control extra. The
user could then connect via a handheld device or static panel to whichever light
they wished to control. At the other end of the scale, the end user value of a
Bluetooth PCMCIA card is easily visible, and will provide complete wireless
connectivity.

Ensure that your product will really give the user added value by being wire-
less, not just offer a gimmick. If the consumer has to connect a power cable, then
consider what other functionality can be offered. The desktop PC, although best
served by a wired Ethernet connection, will still need to connect to our laptop
and PDA, and thus requires both wired and wireless connectivity.

An intriguing application would be a wireless pen—consider its use for signa-
ture authentication provided by the credit company, bank, or reception desk, a
super method to try and eliminate fraud. If a wireless implementation could be
designed for the stringent size constraint, how would we stop users from walking
oft with it? Why are the ordinary pens always attached to the counters? Would
being wireless really add value to this application?

Investigating Convenience

Added user value is a “big plus” for the consumer but wireless communications
may not necessarily make the product more convenient to use. We assume that

consumers are all comfortable with gadgets and electronic devices, but can your
friends all program their VCRs yet?

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Let’s examine the traditional headset and mobile phone and decide if
Bluetooth technology makes this more convenient for the user. With current
hands-free technology, you have to decide in advance if you require the hands-
free option. This involves fitting your car with a hands-free kit—a microphone or
headset plugged in, with the wire trailing from it to your phone which is either
in your pocket, clipped to your jacket/belt, in a cradle on your dashboard, or like
most of us, fallen down between the seat and the handbrake!

When you receive a call, you answer by pressing a button on the cable;
volume control is available via a button on the cable. The limitation is that you
always have to have your telephone with you; it can only be as far away as the
cable is long. Thus, it is always a conscious decision to use the headset, and to
decide to plug it in! With a Bluetooth headset and phone, the phone can be
inside your briefcase, in the boot of the car, in your jacket on the hook in the
office, in fact, absolutely anywhere—as long as it’s within the range of the
headset. In much the same way as the conventional technology, you press a
button on the headset to receive a call or to adjust the volume. The connection
between the two devices is extremely diftferent, however, and although virtually
invisible to the user, it will incur a connection time overhead. First, the headset
must “pair” with the Audio Gateway (AG), the Bluetooth part of the phone. This
allows Bluetooth addresses to be swapped, and link keys to be established. The
headset will then be able to make a connection to the AG or the AG will be able
to connect to the headset—the exact operation is a software application issue. If
the headset connects to the phone, then the phone needs to know why, either to
set up voice dialing, action voice dialing, or some other function. If the phone
connects to the headset, it patches a SCO link across and the headset can be used
to take the incoming call.

The connection time could be a problem if you must connect every time a
call comes in. After ten seconds of trying to make a connection, the caller has
probably decided you are not going to answer and given up! A low power park
mode allows headset and phone to stay constantly connected without draining
their batteries; this overcomes the slow connection problem. So you must
beware—if connection time is an issue for your product, make absolutely sure
your system supports park mode—although it’s becoming increasingly common,
it’s still possible to buy devices that do not support it.

My conclusion would be that Bluetooth technology would make answering
my phone far more convenient, although extremely expensive at the moment! I
do not have to worry where my phone is, per-equip my car, or have to endure a

www.syngress.com

13

14

Chapter 1 ¢ Introducing Bluetooth Applications

cable running from my ear. If the complex connection issues are invisible to me
and I look as cool as Lara Croft (she wore the original Ericsson Bluetooth
headset in the Tomb Raider movie), who really cares! However if it turns into a
software setup nightmare and I have to read through vast user guides, I would not
be so sure.

The medical sector offers many opportunities for Bluetooth technology to
add convenience. In hospitals, patient medical data could be stored on PDA
type devices that would update a central database when brought within range
of an access point (small scale trials for this application in the neurology depart-
ment at the University Hospital in Mainz, Germany, have already begun).
Wireless foot controls for medical equipment, respiratory monitors that transmit
data to a PDA rather than a body-worn data collection system, ambulatory
monitoring equipment for easier patient access in emergency situations... the
list goes on. The questions of interference and security will need to be
addressed in some of these applications, but if they are not “life-dependant”
these issues could be overcome.

Regarding the LAN access points, we need to consider the issue of range. If
the consumer has to get up and walk to be within range, there is no added con-
venience—in fact, it would become very inconvenient. A Class 1 Bluetooth
device has a range of approximately 100 meters. In reality, this could be much
turther, which would be viable in an office, home, or a hotel/airport lounge sce-
nario, thus making possible the unconscious convenience of the airport check-in
and car rental confirmation detailed at the beginning of this chapter.

With our own personal “toys” the added convenience is unequivocal. Our
laptops will be able to play multiuser Quake with our colleagues in the airport or
the office! Our PDAs and phones will synchronise with our laptops—gone are
the days of database management. Our presentations can be shown at meetings
directly on the laptops of the attendees without the need for a projector or any
worries about forgetting your laptop’s I/O expander.

Against this optimistic picture there are a few inconveniences envisaged that
will affect the consumer. I wouldn’t be happy if my new wireless product spends
longer attached to a battery charger than it can be used without one, if the poor
placement of an antenna within a handheld product means I had be a contor-
tionist to be able to hold it and have it function, or if calls get dropped while
waiting for my headset to connect to my phone. But the BIG one is inevitably the
man-machine interface (MMI)—it must be simple to use, it must be simple to set
up, it simply must be simple: “connect to Adam’s PDA, Petra’s phone, or the

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

fridge?” Using the word “convenience” in the product marketing blurb is a hollow
promise if the consumers requires a software degree to get their new PDA to con-
nect to their laptop! If people still can’t program their home AV equipment, how
will they know what a windows “system tray” is, where to put a .dll file, or where
to find the setup section in their mutlilayered phone menu system?

It 1s your challenge as an applications writer to make sure that the MMI is
usable. Succeed and your products could be extremely popular—tail, and your
products will likewise fail in the marketplace.

Enhancing Functionality

Convenience is one attribute that Bluetooth technology can bring to our prod-
ucts, but how else can it benefit us? It can also add enhanced functionality—
features that would not be an implementation consideration in a wired product.
Central heating control? A programmable thermostat and a Bluetooth radio inte-
grated into the common light switch, this integration would allow the mains
wiring to the light switch to power the controller. When the room is at the tem-
perature programmed by the user, it connects wirelessly to the boiler in the
utility room and can turn the entire system oft. Alternatively, if each individual
radiator is equipped with Bluetooth technology, the controller can connect to
each individual radiator and shut the solenoid valve, turning only that specific
radiator off! In this application, we can see the enhanced functionality; no addi-
tional wiring is required to achieve single room climate control and the humble
light switch becomes multifunctional. The Set Top Box that sits anonymously in
our TV stand and has been delivering cable channels and e-mail to the TV screen
could be made capable of connecting to our laptops, offering us another option
to the modem in our homes.

As mentioned earlier, the people who make Nokian tires are adding
Bluetooth links to pressure monitors built into car wheel rims. This is a good
application since the data could not easily be transferred by other methods: wire
and optical wouldn’t work, other radio technologies are too expensive, and being
able to remotely read tire pressure is a real gain in functionality.

Bluetooth technology in our digital cameras and mobile phones will provide
us with the ability to send the “instant postcard” shown in Figure 1.5.This could
become almost as popular as Short Message Service (SMS) text messages. We take
a picture with our camera, which instantly transmits the photo to our mobile
phone that has a connection to the Internet via the Global System for Mobile

www.syngress.com

15

16

Chapter 1 ¢ Introducing Bluetooth Applications
Communication (GSM) network. From there, the picture is sent over the
Internet to our friend’s PC. It’s a simple process which adds a new dimension to

both products.

Figure 1.5 The “Instant Postcard”

[0=

What if our gas and electricity meters could be read by the utility’s serviceman
simply by walking into the foyer of an apartment block and connecting to each
apartment’s meters individually to determine utility consumption? Not having to
knock on each door would improve the efticiency of the job function but would
inevitably mean that fewer personnel were required. With an application of this
type, the cost implication and durability of Bluetooth technology comes to the
tore. The ubiquitous gas and electricity meters have to last a long time, far longer
than our favourite mobile phone or PDA which we change according to personal
taste or consumer trends. The cost of replacing the meter infrastructure in our
homes far exceeds the overhead of including Bluetooth technology, something
which makes utility companies adverse to new technologies. Experiments have
been conducted, but so far there has been no serious uptake.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

With our children’s toys, the possibilities become endless. Big soft toys are
able to communicate with PC games allowing for communication and interac-
tion external to the PC. Multiplayer handsets for our Playstations become pos-
sible without a mass huddle around the console and the constraint of the cable
length. Action figures and robotic toys could be remotely controlled from a PC,
or could transmit pictures from a camera accessory to the PC.

Far more serious is the added functionality that can be provided for the dis-
abled consumer, a headset could provide a life enhancing benefit to the physi-
cally compromised user—voice control for their heating, lights, AV, and security
systems—allowing control from anywhere in their home. Wireless Internet
access can also be of benefit. For instance, the National Star College in
Cheltenham, UK has just installed a Red-M Bluetooth network to allow their
disabled students to wirelessly access online resources and submit their course-
work directly from their laptops. Discrete intelligent proximity sensors commu-
nicating with a headset could help the visually compromised, or a vibrating
dongle could indicate to a deaf consumer that the doorbell is ringing or could
be programmed to vibrate on other sound recognitions. All of these applica-
tions simply extend the functionality of conventional products by being
Bluetooth-enabled.

Do You Have Time?

Okay, so we’'ve decided we want to be wireless. We “must have” Bluetooth tech-
nology in our next product. The consumer market is not quite sure why they
want it yet, but they do, so the first and most difficult hurdle is over with. But
what do we need to do? And how long will it take? Both of these are serious
questions. After all, implementing any new technology often incurs risks that may
outweigh the advantages of the technology itself.

First of all, the Bluetooth Specification by the Special Interest Group (SIG) 1is
an extremely comprehensive document, which needs to be digested before any
form of implementation can begin. Both the hardware and software implementa-
tion are required in order to adhere to this specification and be able to utilize the
intellectual property (IP) contained within it. It is essential to stick with the spec-
ification to be able to interoperate with any other Bluetooth device irrespective
of manufacturer or solution provider; interoperability is the “key” to consumer
uptake of Bluetooth technology and the realization of the Bluetooth Dream.
Going up the Bluetooth learning curve can take significant time. Courses are

www.syngress.com

17

18

Chapter 1 ¢ Introducing Bluetooth Applications

available which make it easier, but you must still allow significant learning time in
your development cycle.

If you are late in the product implementation cycle, you may not have time
to build in Bluetooth technology. Or you may not have enough market infor-
mation to reassure yourself that it will add sufficient value to justify the cost of
shipping Bluetooth components in every product. Many early adopters initially
added Bluetooth technology to existing products as “add-ons,” either as dongles
or accessories to battery packs—mobile telephones being the principal
example.

Using an “add-on” strategy allows you to decouple the Bluetooth develop-
ment from your main product development. This means that you do not risk the
Bluetooth development holding up your product launches. Since consumers can
buy mobile phones, laptop computers and access points with Bluetooth tech-
nology fully integrated, this shows that the risks can be conquered successtully.
Devices which implement Bluetooth technology as an “add-on” are likely to be
less attractive to consumers when competing with built-in devices. So, when
considering whether to build in or add on, you must survey the competition and
decide whether your launch date means an “add-on” will not be as lucrative.

There is more to consider than the time to develop and manufacture your
product. For any Bluetooth design to be able to display the Bluetooth logo, the
design has to undergo a stringent qualification procedure and pass a vast array of
tests on every aspect of the system from the radio, baseband, and software stack
through to the supported profiles. This is achieved at a Bluetooth Qualification Test
Facility (BQTEF). Such test facilities can now be found globally, though they are
becoming exceptionally busy and require booking many weeks in advance. In addi-
tion to the Bluetooth Qualification Program, product developers and manufacturers
are required to meet all relevant national regulatory and radio emissions standards
and requirements. This involves going through national type approval processes
which vary from country to country. Qualification and type approval can signifi-
cantly delay product launches, so they MUST be allowed for in your schedule.

Investigating Product Performance

In some of the applications previously mentioned, we can see that the many ben-
efits of Bluetooth technology may outweigh the limitations, nevertheless we have
only examined the subjective questions of added value and enhanced function-
ality. Now it’s time to consider in depth some of the technical limitations that

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

may actually influence our choice of adding Bluetooth technology to our prod-
ucts, despite the much desired benefits.

In this section, we shall look at connection times, quality of service in con-
nections, voice communications, and the various sources of interference.

Evaluating Connection Times

As we have mentioned, Bluetooth devices can’t connect instantly. It can take up
to ten seconds to establish a Bluetooth link (although this is not a typical figure;
tests with BlueCore chips show that 2.5 seconds is far more common). The con-
nection time overhead is a limitation that could have serious consequences if you
require an instant connection—a “panic button” would not be a viable applica-
tion for Bluetooth technology. We will examine why and how this overhead can
be reduced with a “known device” connection.

Wired networks are for the most part static. Components of the network are
connected together with cables, and once connected, normally remain in the
same position. A printer that was available on the network yesterday is expected
to still be available tomorrow. However, you do have the initial overhead of con-
figuring your PC to use it, the procedure being:

= Physically connect cables to new device.
» Type in address name on system that needs to use the new device.

= Install drivers and configure software on system which needs to use
new device.

Bluetooth piconets are highly dynamic—they change rapidly, with devices
appearing and disappearing. The members of a piconet may change, or the whole
piconet may be dissolved in a moment. In such a dynamic network, it is not
viable to spend significant time acquiring information about devices and config-
uring software to use them: this process must be automatic. The Bluetooth core
specification provides this automatic discovery and configuration. For a Bluetooth
device, the steps to using a new device are:

» Perform device discovery to find devices in the area.

» Perform service discovery to get information on how to connect to ser-
vices on each device discovered.

= Choose a service to use, and use information obtained during service
discovery to connect to it.

www.syngress.com

19

20

Chapter 1 ¢ Introducing Bluetooth Applications

Potentially, the user could simply select the option to print, and the processes
of device discovery, service discovery, and connection could happen automatically
without further intervention from the user. The application software should pre-
sent this to us transparently, but it is still a worthwhile exercise to understand the
complete procedures; they are covered in the following sections.

Discovering Devices

Before any two devices can go through device discovery, they must be in inquiry
and inquiry scan modes. The inquiring device must be trying to discover neigh-

bouring devices, and the inquiry scanning device must be willing to be discov-
ered (see Figure 1.6).

Figure 1.6 Bluetooth Device Discovery

| amin
inquiy scan mode

I see a phone

and a PDA J

‘ Inquiry >
~lam ind
inquiy mode < Inquiry response |

[m]

———— g
— nquiry
< Inquiry response ‘

@

lamin
inquiy scan mode

The inquiring device transmits a series of inquiry packets. These short packets
are sent out rapidly in a sequence of difterent frequencies. The inquiring device
changes frequencies 3200 times a second (twice the rate for a device in a normal
connection). This fast frequency hopping allows the inquirer to cover a range of
frequencies as rapidly as possible. These packets do not identify the inquiring
device in any way; they are ID packets containing an inquiry access code which
inquiry scanning devices will recognize.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

The inquiry scanning device changes frequencies very slowly: just once every
1.28 seconds. Because the scanner changes very slowly while the inquirer changes
rapidly, they will ultimately meet on the same frequency.

Scanning devices cannot stay on a fixed frequency, because any frequency
chosen might be subject to interference, but hopping very slowly is the next
best strategy for seeking the inquiring device. It responds to inquiries by
sending a Frequency Hop Synchronisation (FHS) packet, which tells the
inquiring device all the relevant information needed to be able to establish a

connection.

NoTE

To guarantee that the inquiring device can locate all the devices in
inquiry scan mode that are within range, the Bluetooth Specification
defines an inquiry time of 10.24 seconds.

When a device that is scanning for inquiries receives an inquiry, it waits for a
short random period, then if it receives a second inquiry, it transmits a response
back. It does not transmit this response immediately, because this may lead to all
devices in a single area responding to the first inquiry sent out, causing an unde-
sirable high-power coordinated pulse of radiation in the ISM band. The random
delay prevents this coordinated eftect.

Connecting Devices

Before two devices can establish a connection, they must be in page and page scan
mode; the paging device initiates the connection, while the page scanning device
responds. In order to be able to page, the paging device must know the ID of the
page scanning device; it can calculate the ID from the page scanning device’s 48-
bit Bluetooth device address. The page scanning device’s Bluetooth device address
can be obtained in several ways:

» From an inquiry response via FHS
= From user input

» By preprogramming at manufacture

21

www.syngress.com

22

Chapter 1 ¢ Introducing Bluetooth Applications

NoTE

Each Bluetooth device has its own unique 48 bit IEEE MAC Bluetooth
address (BD_ADDR), which identifies it to other devices; if the device is a
master, the connection timing and the hopping sequence are also
derived from this address. Addresses are obtainable from the SIG in
blocks and need to be programmed into every Bluetooth product at
manufacture—all silicon is shipped with the same default address that
must be changed. A “friendly name” may also be programmed into your
product either by the user or at manufacture to enable the MMI to con-
nect to “CSR development module,” “Daisy’s phone,” “Lara’s headset,”
or "Amy’s little black book,” concealing the actual address. The address is
concealed from the user because it is a string of numbers (typically
expressed in hexadecimal) which is not a very user-friendly format. An
example of a Bluetooth device address is 0x0002 5bff 1234.

By programming the device information that would normally be received in
the FHS packet directly into the device, the inquiry and inquiry scanning can be
avoided—devices move directly to paging, thus saving the 10.24 seconds required
for inquiry. As previously noted, this could either be performed at manufacture,
or carried out by the users. If we are manufacturing a mobile phone and a
headset to be packaged together, the “out-of-the-box” experience will be one of
disappointment if they do not communicate—they could be programmed such
that they are both aware of each others’ BD_ADDR. This way they become
“known devices” to each other and can avoid the inquiry stage—what’s called a
preset link. We are also able to create a list of “known devices”—perhaps all the
devices in our PAN.

Quantifying Connection Times

Now, we are aware of why connection times can be so long, but how long is
long? What does this mean in minutes and seconds? The actual time is variable,
depending upon the application software you are using, so you should look at
what the Baseband Specifications specify. These, however, can be very confusing in
giving definite minimum/maximum times used in inquiry and paging operations
between devices, with the result that there may be a lot of speculation as to what
these times actually are. Detailed in Table 1.2 are what the theory states should be

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

the time taken to complete a typical successful Inquiry and Page operation, (that
is, the typical time taken to set up an active Bluetooth link). To enable us to
understand the basis of these figures, we will also briefly look at their origin.

Table 1.2 Connection Times to Set Up an Active Bluetooth Link

Operation Minimum Average Maximum
Time (sec) Time (sec) Time (sec)

Inquiry 0.00125 3-5 10.24 - 30.72

Paging 0.0025 1.28 2.56

Total 0.00375 4.28 -6.28 12.8 - 33.28

Inquiry Times An inquiry train must be repeated at least 256 times
(2.56s duration), before the other train is used. Typically, in an error-free
environment, three train switches must take place. This means that 10.24s
could elapse unless the inquirer collects enough responses and deter-
mines to abort the procedure. However, during a 1.28s window, a slave
on average responds four times, but on difterent frequencies and at dif-
ferent times.

Minimum Inquiry Time A minimum time for an inquiry operation
is two slots (1.25ms). The master transmits an inquiry message at the f(k)
frequency in the first instant, and the slave scans the inquiry at the f(k)
frequency at the same time. So, the slave receives the inquiry message in
the first slot. The slave could respond with a FHS packet to the master’s
inquiry message in the next slot. So, in total two slots are needed. This 1s
highly unlikely as the slave will not respond after receiving the first
inquiry message but rather, wait a random number of slots. This random
value varies between 0 and 1023.

Average Inquiry Time As stated previously, 10.24s could elapse
unless the inquirer receives enough responses and decides to abort the
procedure. This value can vary considerably, depending on alignment of
the device clocks and their respective states. This, however, is not suffi-
cient to guarantee all the devices within range will be “found”!

Maximum Inquiry Time 10.24s is what the user would typically
expect for a maximum inquiry time—the amount of time specified until

www.syngress.com

23

24 Chapter 1 ¢ Introducing Bluetooth Applications

the inquiry is halted. 30.72 seconds has been suggested as a maximum
time, although specifications state this can be up to a minute.

Paging Times Assuming you are employing the mandatory paging
scheme (using page mode R1, where each train is repeated 128 times,
before switching to the next one), then the average time for connection
should be 1.28s. The maximum time for connection is 2.56s. During
this, the A+ B train will have been repeated 128 times each, and a
response returned.

Minimum Page Time This is similar to the Minimum Inquiry Time.
When the master transmits a page message at the f(k) frequency in the
first instant, the slave scans the inquiry at the (k) frequency at the same
time. Thus, the slave receives the page message in the first slot. The slave
responds with an ID packet for the master’s page message in the next
slot. Then in the third slot, the master transmits a FHS packet to the
slave. Finally, in the next slot, the slave answers. Thus four slots (2.5ms)
are needed for the minimum page duration.

Performing Service Discovery

When a Bluetooth-enabled device first enters an area there may be numerous
other devices offering services it wishes to use. How does it tell which of these
devices supports which service—in other words, which device will allow it to
send an e-mail, print a fax, or exchange a business card? The Service Discovery
Protocol (SDP) allows a device to retrieve information on services offered by a
neighbouring device. (A service is any feature that another device can use.) A
basic data connection must be set up before Service Discovery can be used.
Then a special higher layer connection for use by Service Discovery is set up.
Once the connection to service discovery is established, requests for informa-
tion can be transmitted, and responses received back containing information on
services. This information i1s known as the service’s attributes. If a device is
finding out information about many other devices in an area, then it makes
sense to disconnect after finding information on any particular device. This
relieves system resources (memory, processor power), which can be more effec-
tively used establishing new connections to other devices to determine what
they have to offer. Because SDP uses ACL, connection devices must use inquiry
and paging before they can exchange SDP information. As a result, SDP can be
slow. SDP 1s mandatory for all the profiles released with version 1.1 of the
Bluetooth specification.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Quality of Service in Connections

In Bluetooth technology, the ACL link supports data traffic. The ACL link is based
on a polling mechanism between master and up to seven active slaves in a piconet.
It can provide both symmetric and asymmetric bandwidth, which is determined
by the ACL packet type and the frequency with which the device is polled.

The ACL payload is protected by a CRC check, which may be used in a
retransmission scheme. The delay involved with retransmissions on the ACL link
1s small, as an acknowledgement can be received within 1.25ms. Further, the
number of unsuccessful retransmissions can be limited by a Flush Timeout set-
ting, which flushes the transmission buffer after a specified period of unsuccessful
retransmissions. This opens the possibility to perform retransmissions for delay-
sensitive applications such as interactive real-time and streaming (IP-based)
audio/video applications. In most implementations currently available, the ACL
link only provides a best-eftort type of service (i.e., there are no Quality of
Service (QoS) guarantees associated with the transfer of packets). It especially
does not provide any guarantees of bandwidth and delay.

The Bluetooth specification does provide mechanisms to balance traffic
between slaves in a piconet, allowing a so-called “guaranteed” Quality of Service.
However, because the quality of the underlying radio link can never be guaran-
teed, in practice all that Bluetooth technology can do is to make an attempt to
support the QoS it has guaranteed.

The unpredictability of radio interference means that if a guaranteed band-
width is absolutely necessary for your product, then a wired link is really your
best choice.

However, it 1s worth considering whether guaranteed bandwidth is really
necessary. By compressing data and buffering it on reception, it is possible to
overcome glitches in transmission. This can make a radio link appear far more
reliable at the application level than it really is down at the baseband level!

Data Rate

If a Bluetooth device transmitted constantly on only one frequency, the max-
imum raw data rate would be 1 Mbps. However, this is not the data rate we will
obtain over the air interface. Bandwidth is required for a 72-bit access code to
identify the piconet, and a 54-bit packet header to identify the slave—total slot
time: 405ps. The radio requires a guard band of 220us between packets to allow it
to retune and stabilize on the next hopping frequency. This guard band consumes
the rest of the slot.

www.syngress.com

25

26

Chapter 1 ¢ Introducing Bluetooth Applications

Within a one slot packet these requirements leave only one-third of the
bandwidth for the payload data—and this can only be transmitted every other
slot, or every 1250us. One way to mitigate this limitation is to transmit for a
longer period of time: 3 or 5 slots. All of the extra bandwidth is used for payload
data with a consequent improvement in efficiency (illustrated in Figure 1.7).
While transmitting over more than one slot, the devices remain at the same fre-
quency, moving to the next frequency in the hopping sequence at the end of the
packet. Thus, in a five slot packet, the master will transmit on f(k), and after the
five slots will transmit on f(k+5). (A 16-bit CRC is also included in every ACL
packet, but this is not illustrated in Figure 1.7.)

Figure 1.7 The Payload in Bluetooth Packets

1ot [[T 1/3 Dato
st [[T 7/9 Dato

St [[U 13/15 Data
N

Access Header Payload Guard

Bluetooth ACL packets can either be of Data Medium (DM) or Data High
(DH) type. The DH packets achieve a higher data rate by using less error correc-
tion in the packet. A DH5 packet which utilizes five slots can carry the max-
imum amount of data: 339 bytes, or 2712 bits. So, if we take account of the
packet overheads already discussed, 2858 bits are transmitted over the air interface
for every 2712 bits of data payload. This gives us the maximum baseband data
rate in a single direction of 723.2 Kbps — the single slot packets in this asym-
metric link would carry 57.6 Kbps. If we chose to send five slot packets in both
directions, the data rate would be reduced to 433.9 Kbps!

The choice of symmetric or asymmetric links allows our user scenarios to
take account of the improvement in data rate in one direction of the asymmetric
link (for example, our PDA browsing the Web via a server will require more
bandwidth while downloading pages than it will require for us to specify the
next link to browse.) Table 1.3 illustrates the maximum data rates with all of the
packet types in both symmetric and asymmetric links.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Table 1.3 Bluetooth ACL Packet Maximum Data Rates

ACL Payload User Symmetric Asymmetric
Packet Header Payload Max Data Max Data
Type (Bytes) (Bytes) FEC CRC Rate (Kbps) Rate (Kbps)

Forward Reverse

DM!1 1 0-17 2/3 Yes 1088 108.8 108.8
DH1 1 0-27 0 Yes 172.8 172.8 172.8
DM3 2 0-120 2/3 Yes 258.1 387.2 54.4
DH3 2 0-180 0 Yes 390.4 5856 86.4
DM5 2 0-224 23 Yes 286.7 477.8 36.3
DH5 2 0-338 0 Yes 4339 7232 576
Latency

Bluetooth technology achieves reliability by retransmitting packets. Each packet
carries a header with an acknowledgement bit in it. When a device sends a
packet, it uses the acknowledgement bit to signal whether the last packet it
received was good or corrupted. When a device receives a packet with the
acknowledgement bit set to indicate that its last packet was corrupted in trans-
mission, it simply retransmits the corrupted packet. This retransmission carries on
until it receives an acknowledgement that the packet got through correctly.

This can add delays (latency), and sometimes these delays can be variable (a
bursty link). This may cause problems for applications needing a constant feed of
data (e.g., compressed video). The effects of bursty links can be smoothed out by
writing data into buffers as it is received, and reading it out a short time after-
wards. As the on air link speeds up and slows down, the amount of data in the
bufters gets greater or less, but as long as data is read out at the same average rate
as it arrives, buffers can be used to smooth out a bursty link.

Some applications do not care if data comes in bursts, but they do need low
latency (fresh) data. An example might be a monitoring application. If data has to
be retransmitted, the monitor might freeze momentarily, but it is more important
to get the most recent data than to have a smooth flow of packets. In this case,
flushing can be used: at the transmitting end, data from the monitor could back
up in the device’s bufters. A flush command tells a Bluetooth device to dump all
stale data and start transmitting fresh data. It is possible to set up automatic
flushing to avoid stale data accumulating.

www.syngress.com

27

28

Chapter 1 ¢ Introducing Bluetooth Applications

Delivering Voice Communications

The voice quality on a Bluetooth SCO link is roughly what you’d get from a cell
phone—in other words, it’s not hi-f1 quality.

The audio data is carried on SCO channels, and to establish a SCO channel,
you must first set up an ACL (data) channel. This is because the ACL channel is
used by the Link Manager to send control messages to set up and manage the
SCO channel.

SCO channels use prereserved slots; reservation of slots ensures the integrity
of the SCO packet. There are three different types of SCO packets, each of
which requires a difterent pattern of reserved slots.

» An HV3 packet carries 30 bytes of encoded speech with no error cor-
rection. A SCO link using HV3 packets reserves every third pair of time
slots available to a device.

» An HV2 packet carries 20 bytes of encoded speech plus 2/3 Forward
Error Correction (for every 2 bits of data, 1 bit of error correction is
added to give a total of 3 bits). A SCO link using HV2 packets reserves
every second pair of time slots available to a device.

» An HV1 packet carries just 10 bytes of encoded speech protected with
1/3 Forward Error correction (for every bit of data, 2 bits of error cor-
rection is added to give a total of 3 bits). A SCO link using HV1 packets
reserves every pair of time slots available to a device.

Because the SCO links reserve slot pairs for voice packets, they prevent the
use of 3 or 5 slot packets for data transmission. The multislot packets can support
higher data rates than single slot packets, this combines with the slots used by the
voice link to reduce the maximum data throughput it SCO and ACL transmis-
sion occur concurrently.

The Bluetooth specification supports several coding schemes: Log PCM A-law;
Log PCM p-Law, and CVSD. Log PCM coding with either A-law or p-law com-
pression was adopted by the Bluetooth specification because it is popular in cellular
phone systems. Continuous Variable Slope Delta (CVSD) modulation is supported
in the Bluetooth specification because it can offer better voice quality in noisy
environments. The Bluetooth audio quality is approximately the same as a GSM
mobile phone—this translates to audio transmitted at a fixed data rate of 64 Kbps.

A master is capable of supporting up to three duplex audio channels simulta-
neously. These channels could be either to the same slave or to difterent slaves.
Because voice transmissions are inherently time-dependant, SCO packets are

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

never retransmitted, so any packets that are not received correctly are lost. In
noisy environments, the errors introduced by lack of retransmission capabilities
can have a serious impact on the quality or intelligibility of the received audio.

Bluetooth technology does not have the bandwidth for raw CD quality
sound: 1411.2 Kbps. However, if a suitable compression technique is employed
(for example, MP3 compressing an audio stream to 128 Kbps), it is feasible to use
an ACL link for high-quality audio. An audio-visual workgroup is currently
working within the Bluetooth SIG to provide a profile which will improve the
maximum audio quality that can be delivered across Bluetooth links. As com-
pressed audio incurs a delay in transmission, the existing SCO scheme will be
retained for applications (such as cell phone headsets) where the bandwidth of
the audio signal is already low.

Investigating Interference

The Bluetooth system operates in the 2.4GHz band. This band is known as the
Industrial Scientific and Medical (ISM) band. In the majority of countries around
the world, this band is available from 2.40-2.4835GHz and thus allows the
Bluetooth system to be global. It is available for free unlicensed use in most of
the world, although some countries have restrictions on which parts of the band
may be used. However this freedom has a price—many other technologies also
reside in the band:

= 802.11b

= Home RF

» Some Digital Enhanced Cordless Communications (DECT) variants

» Some handheld short-range two-way radio sets (walkie-talkies)

These are all intentional emitters—one way or another their function is to
generate microwave radiation in the ISM band. In addition to the intentional
emitters, Bluetooth technology is subject to interference from a variety of sources
which emit accidentally:

= Microwave ovens

= High-power sodium lights

» Thunderstorms

» Opverhead cables

» Communications channels in other bands—e.g., GSM, CDMA

» Spark generators such as poorly suppressed engines

www.syngress.com

29

30

Chapter 1 ¢ Introducing Bluetooth Applications

There are also problems from signal fading due to distance or blockers such as
walls, furniture, and human bodies. The more water content in the object, the
more significant the effect of blocking. Old brick walls will have a higher water
concentration than modern ones due to the nature of their constitution. This
tends to cause fading in European houses where brick is a common construction
material. In the USA, where timber frames are more popular, signals are much
less affected by internal walls.

As with any radio technology, Bluetooth technology is prone to interference
from its co-residents in the ISM band and will produce interference to them.To
achieve a degree of robustness to interference, the Bluetooth system utilizes a
frequency-hopping scheme: Frequency Hopping Spread Spectrum (FHSS).
Constantly hopping around the different radio channels ensures that packets
aftected by interference can be retransmitted on a difterent frequency, which will
hopefully be interference free. Bluetooth radios hop in pseudo random sequences
around all the available channels. During a connection, they hop every 625
microseconds. When establishing a connection, they can hop every 312.5
microseconds.

The screenshot in Figure 1.8 is taken from a Sony/Tektronix WCA380 spec-
trum analyser and illustrates 30MHz of spectrum in the centre of the ISM band.
The upper section shows a snapshot of output power against frequency at a single
instant in time. The lower section shows time against frequency with the power
level displayed by way of shading.

Figure 1.8 Bluetooth Packets in a Noisy Environment

ERICAE® ET

= T RNIL]

M1k

Flcrmt e
Fumnadi

B

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

The screenshot clearly illustrates the spectral characteristics of microwave
ovens with a strong but narrow spike of power, on the lower section of the
screenshot. This wanders around the center of the ISM band as the oven operates,
showing on the analyser screen as a curving red line. Our Bluetooth FHSS
system can be seen to be hopping with 1MHz channel spacing with a strong
central peak. The IEEE 802.11b or Wi-Fi DSSS system can be seen to have lower
output power, indicated by the broad seep of power in the center, but the signal
can spread across about 16MHz. (This 1s why co-located Wi-Fi networks cannot
use adjacent channels.)

A Bluetooth FHSS system operating near an interfering signal can cope if a
packet is hit by interference. The aftected device simply retransmits the packet
contents in the next slot when it has moved to a different frequency which is no
longer affected by interference. This will impact on the throughput of an ACL
link—the more interference, the more retransmissions. With a SCO link, it’s a dif-
ferent matter. SCO data is not reliable, due to its inherent nature of being in real
time, and retransmission is not tangible, so audio clarity becomes significantly
worse with any interference. This can be overcome by sending SCO data via an
ACL link.

Transfer of ACL information will still be reliable in a noisy environment. No
information is lost as each dropped packet is retransmitted. The impact manifests
itself in the data rate: the more noisy the environment, the more retransmissions
will be required.

Figure 1.9 illustrates the effect of Bluetooth technology throughput in the
presence of Wi-Fi interference. We can see that our Bluetooth device’s
throughput is degraded when a Wi-Fi device is very near. However, when the
Wi-Fi device is relocated ten meters away, the throughput significantly improves.
It is actually approximately 90 percent of the baseline throughput independent of
range, thus illustrating that when Bluetooth and Wi-Fi devices are at a reasonable
distance, the degradation in performance is tolerable.

Interfering with Other Technologies

Figure 1.10 illustrates the degradation our Bluetooth devices can have on Wi-Fi
when they are extremely close to a Wi-Fi station. The impact on performance
due to interference is significant. However, when our Bluetooth devices are relo-
cated as little as ten meters away, the throughput is only minimally reduced com-
pared to the baseline.

The last two figures indicate that the two wireless technologies can easily
coexist as long as we are sensible in our expectations and attempt to combine

www.syngress.com

31

32

Chapter 1 ¢ Introducing Bluetooth Applications

Figure 1.9 The Effect of Bluetooth Throughput with Wi-Fi Interference
(Courtesy of Texas Instruments)

06
ﬁ_ﬂm
0.5 _h_
Wvith Wi-Fi at 10m
- 04
a
4
£
a 0.3 \
=
o
3
g
¥ -
F 02
0.1
With Wi-Fi
1] T - - .
0 25 80 ™ 100

Distance (i)

the technologies in our PAN and HAN paradigms intelligently. One way is to
not have a Wi-Fi access point, providing us with the high data rate required for
video streaming too close to the desk where our PDA and laptop “do their

|

thing”!

Coexisting Piconets

A consideration not yet discussed is Bluetooth devices interfering with Bluetooth
devices. How many devices do we need to reduce the data throughput to a trickle?

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Figure 1.10 The Effect of Wi-Fi Throughput with Bluetooth Interference
(Courtesy of Texas Instruments)

7
] :
——————
5
2 With Bauetooth at 10m
|
Z 4
E
o
%
E i
=
|_
With Bluesoath
I:l 1 1 i] I] 1

0 25 50 ™ 100 135 130 115 200 25 &0
Distance (fi.)

Consider the scenario of having Bluetooth devices in every room, With
PANSs for each member of the household. The majority of teenagers today have
a PC and a mobile phone at the very least. Combine this with the toys of our
younger children (and ourselves!) and any “household” Bluetooth devices;
access points, control units, security systems, and so on. This adds up to tens of
devices operating in the same area. Admittedly, they will not all be operational
at the same time, so significant degradation is not likely to occur, But if our
product requires dependable data delivery, the retransmission overhead that

www.syngress.com

33

34

Chapter 1 ¢ Introducing Bluetooth Applications
interference can cause might make Bluetooth technology unviable. Figure 1.11

illustrates how the probability of a packet collision increases with the number
of operating piconets.

Figure 1.11 The Effect of Interfering Bluetooth Devices on Each Other

N
RIS

Probability of no collision in a slot pair

0.2
~—~—]
\
\'\

1 1 n 3l 4 51 61 Ul 81 9

Number of coexisting piconets

Using Power Control

We must also consider the respective power class of our Bluetooth devices. To
enable all classes of device to communicate in a piconet without damage to the
RF front ends of the lower power devices, a method of controlling the output
power of Class 1 (100mW) devices is required.

Transmit power control is mandatory for Bluetooth devices using power
levels at or above 4 dBm. Below this level (i.e., all Class 2 and 3 modules), it is
optional. To implement a power control link, the remote device must also imple-
ment a Receive Signal Strength Indicator (RSSI). A transceiver that wishes to
take part in a power-controlled link must be able to measure its own receiver
signal strength and determine if the transmitter on the other side of the link
should increase or decrease its output power level.

To set up a power controlled link, the transmit side must support Transmit
Power Control and the receive side must support RSSI. Support is indicated in

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

the Locally Supported Features (Bluetooth Spec 1.1 Part C (LMP) Section 3.11).
The RSSI need only be able to compare the incoming signal strength to two
levels: the Upper and Lower Limits of the Golden Receiver Range. The Lower
Limit is between -56 dBm and is 6 dB above the receive sensitivity (0.1 percent
BER level) for the particular implementation. The Upper Limit is 20 dB +/- 6
dB above this. The RSSI level is monitored by the receive side’s Link Controller.
When it strays outside the Golden Receiver range, the Link Manager is notified.
A message is sent to the transmit side, requesting an increase or decrease in
transmit power to bring the RSSI back in line. If the transmitter is a master, it
must maintain separate transmit powers for each slave.

Host Controller Interface (HCI) commands exist to find out the current
transmit power and RSSI level, but they are for information only. Layers above
the Link Manager are not directly involved in power control. The implication of
this 1s that it is perfectly possible to sit a Class 1 module transmitting at +20 dBm
right next to another module which does not support RSSI and not limit the
first’s transmit power. If the second module’s maximum receivable level is the
Bluetooth spec of -20 dBm, there is every chance its RF front end will be over-
loaded. RSSI, although not mandatory, is highly recommended, as is a large
power control range implemented on all modules, not just Class 1.

Figure 1.12 illustrates interfering Bluetooth piconets, but the principle holds
true for coexisting networks of different technologies. Devices that are close to
one another turn their power down and do not interfere with devices at a dis-
tance. Devices transmitting a long distance have to turn their power up to reach
one another, which generates more interference and affects more devices. The
hypothesis for us is ultimately to persuade our consumers to site devices intelli-
gently. The home user is typically unaware of the implications of radio interfer-
ence and will not position their devices for best performance!

Aircraft Safety

The Federal Aviation Authority (FAA) does not permit “intentional emitters” to
be active on planes in flight. Bluetooth technology is an intentional emitter and
as such 1is not legally usable on flights covered by FAA regulations. This means
that any systems such as Bluetooth radio tags, which automatically identify bag-
gage for airline baggage handling systems, need to be deactivated in-flight. The
inconvenience of deactivating devices may mean that passive radio tags would
better suit some applications. Certainly, in-flight deactivation issues must be con-
sidered by anybody whose products may be used in an aircraft in flight.

www.syngress.com

35

36 Chapter 1 ¢ Introducing Bluetooth Applications

Figure 1.12 Interfering Piconets

N
N

] Class 3 Slave \
1
1 X
1
1

\
5

o
o

X3\

\ Class 2 Master /

Class 2 Master \ \

\
(Class 3 Slave R \(luss 2Slare Closs 3 Slave s 2

O

Class 3 Slave S ’

Assessing Required Features

The Bluetooth specification has many optional features, and even if features are
mandatory to support, they do not have to be enabled. This section briefly

examines a few features of the Bluetooth specification that may affect your
product.

Enabling Security

To prevent unwanted devices connecting to our personal devices, or to prevent
our personal data from being “snatched” from the air, Bluetooth technology pro-
vides security in the form of a process called pairing. It utilizes the SAFER +

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

encryption engine, using up to 128-bit keys. How this provides us with the means
to “pair” with another selected device and create a secure link is interesting.

It 1s possible to “authenticate” a device—this allows a pair of devices to verify
that they share a secret key. This secret key is derived from a Bluetooth pass key
or Personal Identification Number (PIN).The PIN is either entered by the user
or, for devices with no MMI (such as a headset), it will be programmed in at
manufacture. After the devices have authenticated, they are able to create shared
link keys which are used to encrypt traffic on a link. This combination of authen-
tication and link key creation is called pairing.

Pairing devices allows communication secure from eavesdropping, but
enabling security can make it much more difficult to connect with other people’s
devices, thus security features can seriously compromise usability. For devices
where disabling security may be appropriate, the user interface should allow secu-
rity to be turned on and oft simply.

Using Low Power Modes

The Bluetooth specification provides low power modes, hold, sniff, and park.
Devices in low power modes can still be connected to another device, remaining
synchronized to that specific hopping sequence and timing, even though they do
not have to be active. Thus, when they wish to communicate, they do not have to
perform the inquiry, page, SDP procedure again—they are effectively just “reacti-
vated.”

Hold Mode

The ACL link of a connection between two Bluetooth devices can be placed in
hold mode for a specified hold time. During this time no ACL packets will be
transmitted from the master.

Hold mode is typically entered when there is no need to send data for a rela-
tively long time—for example, if the master is establishing a link with a new
device. During hold mode, the Bluetooth transceiver can be turned off in order
to save power.

What a device actually does during the hold time is not controlled by the
hold message, but it is up to each device to decide. The master can force hold
mode if there has previously been a request for hold mode that has been
accepted. The device in hold mode always retains its active member address
(AM_ADDR). After the hold period has expired, the slave resynchronizes to the

master and the active connection resumes.

www.syngress.com

37

38

Chapter 1 ¢ Introducing Bluetooth Applications

This allows for our laptop to place our PDA that it is connected to in hold
mode while it establishes a connection to a LAN access point, thus minimizing
PDA power consumption when not in use.

Snift Mode

In sniff mode, the slave remains synchronized to the master, but the duty cycle of
the slave’s listen activity can be reduced, thus placing the constraint upon the
master to only transmit in certain slots. To enter sniff mode, master and slave
devices negotiate a snift interval and a sniff offset, which specifies the timing of
the sniff slots and the occurrence of the first sniff slot. After this negotiation, the
sniff slots follow periodically according to the prenegotiated sniff interval. In
order to avoid problems with a clock wrap-around during the initialization, one
out of two options is chosen for the calculation of the first snift slot. A timing
control flag in the message from the master indicates this. In sniff mode, the slave
retains its AM_ADDR. This mode is extremely useful if we have our PDA
waiting to receive e-mail from our phone. Normally, there will not be any traftic,
but the PDA needs to be ready quickly when there is.

Park Mode

If a slave does not need to participate in the channel (that is, it is no longer
actively transmitting or receiving data, but needs to remain in the piconet and
thus remain synchronized to the master), it must monitor the master’s transmis-
sions periodically so that it can keep synchronized. Park mode allows this by
having the master guarantee to periodically transmit in a beacon slot. Because the
parked slave can predict when a beacon transmission will happen, it can sleep
until the master’s beacon is due.

In park mode, the device relinquishes its AM_ADDR. Instead, when a slave is
placed in park mode it is assigned a unique park-mode-address (PM_ADDR),
which can be used by the master to unpark slaves.

Parked slaves must still resynchronize to the channel by waking up at the
beacon instants separated by the beacon interval. A beacon offset and a flag are
sent in the park message to indicate the instant when the beacon will first
happen. A beacon interval is also sent in the park message. Beacons happen peri-
odically separated by the beacon interval.

Park mode conserves the most power and would be appropriate for a device
in our PAN that we would only want to randomly access—for example, the

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

printer, which we could un-park when we required its services but not go
through the lengthy inquiry procedure each time.

The headset profile allows park mode to be used with headsets, this is so that
when an incoming call is received, a cellular phone can rapidly unpark the
headset instead of having to wait for a lengthy connection procedure to finish.

Unparking

Via the beacon instant, the master can activate the parked slave, change the park
mode parameters, transmit broadcast information, or allow the parked slave’s
request access to the channel. All messages sent from the master to the parked
slaves are broadcasted, and to increase reliability for broadcast, the packets are
made as short as possible.

Following the beacon slots, there are a number of access windows defined,
through which parked slaves can request to be unparked. The access window that
they request to be unparked in is determined by the PM_ADDR assigned to
them by the master when they are parked. This allows the parked population to
share the access windows, thus reducing the probability of a collision if two slaves
require unparking at the same time. Slaves have to be unparked periodically by
the master in order to ensure that they are present and that any virtual connec-
tions can be maintained.

Which Devices Need Low Power Modes?

In practice, most devices will need to support low power modes. Consider the
case of a desktop PC. It is connected to mains power, so it has no need to save
power. However, it could communicate with a battery-powered Bluetooth
mouse, which will want to use sniff mode to extend its battery life. If the PC
does not support sniff mode, the mouse cannot use it, and so its battery life can
be seriously compromised by lack of features in the PC.

Similarly the PC may connect with a PDA which wants to synchronize and
would like to be put in hold mode if the PC needs to interrupt the synchro-
nizing process to go and service another device.

Park mode might be needed if the PC is connected to a cellular phone so
that the PC’s microphone and speakers can be used as a hands-free set for the
phone.

Do not just consider the requirements of your product—think about the
impact your product’s capabilities could have on other devices used with it.

www.syngress.com

39

40

Chapter 1 ¢ Introducing Bluetooth Applications

Providing Channel Quality Driven Data Rate

The Bluetooth specification provides a variety of packet types—single and mul-
tiple slot packets, each coming in medium- and high-rate types.

Multislot packets pack more data into longer packets, and provide higher
throughput in noise-free environments, but their throughput is worse than single
slot packets in noisy environments because they take longer to retransmit.

Medium rate packets have more error protection. This makes them tolerant to
noise, but the space taken up by error protection means they cram less data into
each packet. High-rate packets get better throughput in error-free environments,
while medium-rate packets get better throughput in noisy environments.

Channel quality driven data rate (CQDDR) allows the lower layers of the
Bluetooth protocol stack to measure the quality of the Bluetooth channel, and
choose the packets most appropriate to the noise levels. Not all chips/chip sets
implement CQDDR, so if you expect maximum throughput in noisy conditions
to be an important factor for your product, you should ensure that you choose a
chip/chip set which implements this feature.

Deciding How to Implement

Once you have made the decision to implement, what are the available options
for Bluetooth technology enabling your products?

There are many options to consider in both hardware and software. Even
once you have chosen a chip set and protocol stack, there are different ways that
these can be added into your product. In this section, we shall begin by looking
at software system architecture, then we’ll consider some of the hardware options.

Choosing a System Software Architecture

The choice of system architecture will obviously be determined by footprint,
cost, and time-to-market, but the end functionality will have the biggest influ-
ence. We will briefly examine the Bluetooth protocol stack as it can have an
influence on our product’s system architecture.

We will examine the stack in its simplest form—the upper stack and the
lower stack. The lower stack controls all of the physical functionality, the radio,
the baseband, and the Link Manager (LM) and Link Controller (LC) layers.

The upper stack deals with the channel multiplexing, with the logical link
control and adaptation protocol (L2ZCAP). Serial port emulation and the interface
with the application software happens in the RFCOMM layer. A Service

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Discovery Protocol (SDP) layer is also essential for all Bluetooth devices, as it
allows them to find out about one another’s capabilities—an essential facility
when you are forming ad-hoc connections with devices you may never have seen
before.

There are three implementation models for the stack, dependant upon the
functionality or resources the respective product has: hosted, embedded, and fully
embedded (see Figure 1.13).

Figure 1.13 Software Stack Implementations

4 — N 4)
Application Application
P | Recomm \ g 2) h
L2CAP e ~N Application
_host \ J Connection Manager Connection Manager
SDp I RFCOMM SDP RFCOMM
4 N
Host Controller Inferface L2CAP L2CAP
Link Manager Link Manager Link Manager
Link Controller Link Controller Link Controller
Radio Radio Radio
_chip/chip set J __chip/chip set J ___thip/chip set /)
Hosted Embedded Fully Embedded
Lower stack on chip Full stack on chip Stack and application on chip
Upper stack on chip Application on host

In the hosted model, the lower stack layers reside on the Bluetooth (BT)
device, while the upper stack resides on a host (this may be a PC or a micro-con-
troller if the product is mobile or standalone). They communicate via the Host
Controller Interface, which sits between the lower layers and upper layers of the
protocol stack forming a bridge between them. The two most common physical
transports are UART (H4) and USB (H2). The UART protocol was designed for
communication between chips on the same board and does not cope well with
errors that occur in cables, so there are also proprietary transports which add
extra facilities to the simple UART protocol. One example is CSR’s BlueCore
Serial Protocol (BCSP) which achieves a more reliable form of UART transport
with retransmission and error checking. The hosted model is optimum for appli-

www.syngress.com

a1

42

Chapter 1 ¢ Introducing Bluetooth Applications

cations where powerful host processors are already available and there is plenty of
memory. Examples of hosted devices include USB dongles, PCMCIA cards, com-
pact flash cards,V90 modems, Internet gateways, and PC motherboards.

In the embedded model, the complete stack resides on a BT device, but a
separate user application is running on a host. This model is ideal for 2 and 3G
mobile phones, ticket or vending machines, or PC peripherals that have limited
processing power and available memory.

In the fully embedded model, the complete stack and the user application are
all on the Bluetooth device. There is limited memory resource on the BT device so
any application will need to be relatively simple. The best example of a fully
embedded device is a headset. It has no need for complex processing, so the whole
Bluetooth stack can run on the single microprocessor within the BT chip/chip set.

The lower stack up to the HCI is always provided with the Bluetooth
chip/chip set as it is unique to that silicon implementation. With the embedded
model, the upper layers are also provided by the chip/chip set vendor—either
free of charge if it is their own stack or there may be a license fee per device if
they are using another vendor’s upper layers. The fully embedded model requires
a silicon solution that allows the application code to be written and downloaded
to it without compromising the integrity of the Bluetooth stack which should
have already undergone the stringent qualification procedure. Any changes to the
stack requires it to be requalified!

The upper stack layers, above HCI, can be licensed from numerous vendors.
Due to the inherent interoperability requirement of any qualified Bluetooth
component, the choice is open. All of the available stack offerings “will” be com-
patible with the chosen silicon’s lower layers. You can, of course, write your own
upper layers, but it will be a vast software undertaking—illustrated by the cost of
licensing one. Protocol stacks can be expensive, but an expensive stack might just
offer you extra features which help to sell your product. Because of this, examine
all the available options closely.

NoTE

As the Specification stabilizes, there will be chips entering the market
dedicated to a specific purpose only—the headset profile being the pri-
mary example. The chips will have all the relevant stack layers and the
profile implementation in masked ROM, reducing the cost significantly.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Constraining Implementation Options with Profiles

The Bluetooth profiles deliberately restrict implementation choices. If you are
implementing functionality, which is covered by a profile, then you must imple-
ment that profile. This is intended to make it easier for devices to interoperate: if
everybody implemented their own proprietary methods of communicating, then
nobody’s devices would ever work together.

You may find that you do not want to follow the profiles, many of them are
compromises intended to provide functionality that will address a variety of
potential use cases. This means that they may not be optimum for what your
application and your product wants to do. This need not be a problem: once you
have implemented the relevant Bluetooth profile, you are free to also implement
your own proprietary solution.

You may find that having to implement profiles makes Bluetooth technology
too burdensome, and this might start to make alternative technologies such as
infra-red look attractive. However, you should consider that by implementing a
profile, you have vastly increased the number of devices which will interoperate
with your product.

Choosing a Hardware Implementation Option

Choosing a software architecture may limit the choice of hardware. Some
chips/chip sets can not support the complete protocol stack, so if you do not
have a hosted system, you will have ruled out these options. Still, there is likely to
be a range of chips/chip sets open to you, each with its own inherent compro-
mises, in time-to-market, cost, and R&D resource.

There are numerous solutions currently available from multiple vendors.
Chip sets come as separate radio and baseband devices in a variety of tech-
nologies: silicon-germanium, silicon-on-insulator, and CMOS, or as single-
chip CMOS device integrating the radio with the baseband. Chip set prices
range from $8 to $29, although this will no doubt decrease with large vol-
umes. This option is designed-in directly onto the product’s printed circuit
board (PCB).

The alternative to buying a chip set is to get a “module.” These are
PCBs complete with RF deign and antenna, and will be pre-tested and
pre-qualified.

www.syngress.com

43

44

Chapter 1 ¢ Introducing Bluetooth Applications

Tip

All qualified Bluetooth components and products are listed on the “qual-
ified products” section at www.Bluetooth.com (the official SIG Web site).
Here you will find the manufacturers of chips/chip sets, modules, devel-
opment kits, and software components. Data sheets or specifications can
then be attained from the respective manufacturer’'s own Web site, as
well as information on how to purchase.

The single chip/chip set approach requires an RF design resource to provide
the matching networks, filters, amplifiers, and antennas to the transmitter and
receiver paths and will require expensive synthesis and test equipment along with
a lengthy qualification process. It will, however, incur a significantly lower finan-
cial cost per unit along with a reduced PCB real estate overhead. Many chip/chip
set manufacturers will supply you with reference designs. If you exactly follow
their instructions, you can get away without designing your own system. You
must be very careful if you are following a reference design; apparently insignifi-
cant changes can alter the radio performance. For instance, changing the manu-
facturer of a capacitor can change its characteristics even though it might be
listed as the same value and type.

The module approach is far simpler since the primary RF hardware concern
is soldering the module onto your motherboard. Keep in mind that it’s larger to
integrate onto your motherboard and financially more expensive. Figure 1.14
provides examples of some of the available options and their dimensions. The
multiple chip approach separates baseband and radio into two packages, whereas
single chip combines both. The single chip approach can also be divided into
single chip plus flash (allowing larger flash memory), or single chip with inte-
grated flash (for minimum size).

Whichever stack configuration you choose, you will still have to somehow
add the hardware. There are two primary options for adding the Bluetooth hard-
ware to a product: designing Bluetooth technology directly onto the PCB, or
using a pre-qualified complete Bluetooth module. In the following sections, we
will briefly question how each method will impact on time-to-market and what
the more common risks of implementation are likely to be.

This is by no means a definitive summary. Every individual application will
have its own unique implementation issues. You can, of course, employ a third
party design house to do it for you and let their designers go through the learning

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

process! The most expensive, yes, but if you have no R&D resource yourself, this
may be your only route to joining in the Bluetooth Dream, and it is certainly
easier than trying to recruit and manage a complete development team if you
don’t have one already. There are many design houses that now specialize in
Bluetooth design, thus you would get the additional benefit of their experience.

Figure 1.14 Examples of Bluetooth Hardware Solutions

<> B

o Single chi Single chip and
Multipl chip geap integrated flash
me= [l
8x8mm
23 x 15 mm area = 0.64 cm?
33x7 mm area = 3.4 am’
area = 5.6 cm?

Design Bluetooth Directly Onto the PCB

Designing Bluetooth technology directly onto the PCB is the optimum method
if PCB real estate or end unit costs are our primary design constraints. Choose
the silicon wisely. Devices are available that have a comprehensive level of inte-
gration and do not require difficult-to-source/expensive external components—
SAW filters being the obvious example. If we are using a “hosted” stack
configuration, we need to ensure that the HCI transport is available and fully
functional. As the Bluetooth system has many optional features, we also need to
check that our chosen silicon vendors lower stack implementation provides the
Bluetooth functionality that we require. PCB real estate needs to be available and
thus will affect our choice of solution. A PCMCIA card or PC motherboard, for
instance, 1s a predefined size, irrespective of component population. As a result,
the smallest solution is not a primary objective; however for a headset, a compact
flash card or a mobile phone size would be a significant determining factor.
PCB structure is an issue if we use this method. Due to the inherent nature
of RF striplines and microstrip, a multilayer PCB is needed to give the required

www.syngress.com

45

46

Chapter 1 ¢ Introducing Bluetooth Applications

power planes, ground planes, and associated dielectrics, and to separate the digital
signals to avoid noise pickup in the RF and crystal sections. The PCB is a high
proportion of the manufacture cost, if the product typically uses a two layer PCB.
This additional cost overhead can impact significantly on the total unit budget.
For large PCBs, the cost of a multilayer board may swing the balance in favor of
a separate Bluetooth module, allowing the multilayer section to be kept as small
as possible. Figure 1.15 is an example of the PCB structure required for a Class1
Bluetooth design.

Figure 1.15 PCB Construction Example for a Class 1 Bluetooth Module

450 mm

o =

300 mm H
Resin coated copper (RCC) — \ 363 mm
FR4 369 mm
2x1080 prepeg layers - | _I]‘(;El:mjn . 0.8mm
1x7628 prepeg layer —]

copper foil 100 mm

The fastest time-to-market approach if we use this method is for us to use
one of the chosen silicon vendor’s reference designs. These are normally free-of-
charge on purchase of a Development Kit, and will have been proven and quali-
fied. Most vendors provide a schematic and a set of Gerber files that can be
imported into our own computer aided design (CAD) packages ensuring exact
translation of the crucial PCB tracking layout. Some of us may know better,
however, or have our own ideas (for instance, if a lumped balun is recommended
in the reference design but you wish to use a printed one as a cost-saving exer-
cise). Experience has illustrated that this can work but may incur repeatability
problems with secondary PCB batches. You may wish to use a difterent power
amplifier (PA) for a Class 1 design to the one recommended. Again, cost or a
tavorite supplier may be an influencing factor. Check with the silicon vendor.
They would have evaluated several prior to selecting the one in the reference
design. Most chip/chip set vendors work closely with the other Bluetooth
component manufactures to provide us with a wide choice of options not all at a
cost premium! To get Bluetooth technology into as many consumer products as

www.syngress.com

Introducing Bluetooth Applications ¢ Chapter 1

possible, the ultimate aim is to get the Bill Of Material (BOM) cost on a down-
ward spiral to the now infamous $5 target, which was set during the press hype
of the initial technology rollout. This sum represents the cost to replace the
average data cable! Figure 1.16 illustrates this method, showing the Bluetooth
device and the flash memory (the two chips towards the bottom of the card).

Figure 1.16 Bluetooth Technology Designed Onto the PCB of a
Compact Flash Card

The most common risks associated with this approach can be very simple but
add serious time delays to project schedules. A simple component change to
improve a matching network between the Bluetooth device’s transmitter output
and a PA, for example, can incur problems with your manufacturer’s component
stock and tooling, and cause havoc with any quality assurance (QA) procedures
that have been developed concurrently with the design to meet a project produc-
tion deadline. Examples of the two problems that could have a significant impact
on time-to-market are detailed next (design verification and manufacturing).
However, test equipment incompatibility, qualification testing, and ultimately, pro-
duction test development will also have their own impact.

www.syngress.com

47

48

Chapter 1 ¢ Introducing Bluetooth Applications

Debugging...

Programming and Upgrading Firmware

How we get the firmware into our chip/chip sets could become a design
nightmare considering that the Bluetooth specification is still under-
going revision, and the silicon vendors are still developing their lower
stack firmware either for the purpose of adding new functionality or
remedying interoperability “bugs.” We must have a means to upgrade
the firmware in our development labs, our manufacturing sites, or in the
“field,” if we have put our products onto the market.

All of the silicon available today uses flash technology as the storage
media. This enables programmability for upgrades. The ideal scenario
would be to program the flash initially via a programming/debug inter-
face. This would require the respective interface pins from the chip to be
brought out to pads on the PCB. In a development environment, we
could then attach a cable; while in a production environment, we could
use a “bed-of-nails” approach.

But what about the “field” products? Do they join the ever
increasing pile of technical obsolescence, or do we recall them? Do we
really want to put ten thousand or more products straight off the pro-
duction line back through the same production line for reprogramming?
The solution is to follow the example of those clever USB chaps: Device
Firmware Upgrade (DFU). A DFU facility allows us to upgrade our prod-
ucts over the standard UART or USB interfaces via software, and requires
no soldering of cables or secondary production runs. A “bootloader” is
programmed into the chip when it is initially programmed via the
methods previously mentioned. The bootloader can be used with
upgrade software shipped with our products to provide the “in-the-field”
upgrade facility to our customers.

As lower stacks mature and the specification stabilizes, this will not
be such a pertinent issue. Nevertheless, before selecting a silicon solu-
tion check the programming and upgrade facilities that it offers you,
and when designing your systems, consider how you might take care of
upgrades both on the production line and in the field.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

Design Verification

Design verification can be a problem: despite the most precise synthesis, the pro-
totype may not always exhibit the same RF characteristics in reality. This can
involve lengthy diagnosis, component changes, or a board respin if layout issues
are suspected to be the cause of the problem.

This can be overcome by the development of several prototypes concurrently,
as well as adhering to the selected silicon vendors’ design guidelines. If advice
states that the device is sensitive to noise, you will know not to run digital lines
from the flash next to the Bluetooth device or under the system crystal, and to
take de-coupling very seriously! Figure 1.17 illustrates the problems caused if a
design routes the address and data bus (or another digital line that changes
rapidly) near the crystal or its traces. Any digital signal has fast edges which can
easily couple several millivolts into a small signal output from a crystal; this is not
helped by the lack of drive you receive from a crystal. As the crystal output passes
through the Phase locked loop (PLL) comparator, a slice level is used to deter-
mine if the crystal output has changed from a zero to a one, or vice-versa. If
there are glitches on the crystal output from digital coupling that are greater than
the hysteresis of the comparator, it can result in the square wave output having
glitches or excessive jitter. Glitches can confuse the divider and phase comparator
and result in excessive frequency deviation at the output, which will cause varia-
tions in the RF output.

Figure 1.17 The Effect of Routing Digital Signals Near a System Crystal

) Glitching on 4

Cystal Output aystal output

Digital Signal Slice Level

Glitches and Jitter on
N Oscillator Qutput

/

Faster rise fime = Less jitter

www.syngress.com

49

50

Chapter 1 ¢ Introducing Bluetooth Applications

Figure 1.18 illustrates the noise incurred on the output spectrum due to
insufficient filtering of the power supply to the BT device, the top trace. This will
have a detrimental effect on system performance and will impact negatively on
some of the qualification tests for frequency drift and drift rate.

Figure 1.18 The Effect of Poor Filtering on the Bluetooth Output Spectrum

= Agient 15:56:54 11 Apr 2001 i Trace

Tracé
2 3

Clear Hrite

n 18 MHz

481 pts)

Manufacturing

As previously indicated, the manufacture of Bluetooth PCBs themselves can be
problematic. Repeatability of performance with printed RF components and the
expense of the multilayer PCB, as well as other problems can be incurred with
component placement. As this method of design is optimum for size, the physical
dimensions we are working with can be extremely small. This means we have to
be precise not only in our layout for noise, feedback, and coupling issues, but also
with pad size and component placement.

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

The Bluetooth chips/chip sets available are mainly packaged as ball grid
arrays (BGAs), and the associated passive components have to be the surface
mount 0402 type to adhere to the size constraint. There are many factors to take
into account when using components on this scale: unless the solder resist finish
is of the photo image type with a maximum thickness of 0.025mm, the 0402
resistors and capacitors could be lifted away from the pads on the PCB. A max-
imum solder resist window around the component pad should be in the region
of 0.05mm with an alignment tolerance of 0.05mm to ensure that any tracks or
vias between the pads of the BGA are not exposed, reducing the risk of short cir-
cuits. Figure 1.19 illustrates some of the problems expected if we get this wrong!

Figure 1.19 PCB Solder Mask Considerations

Aligned oversized
solder mask window

Vi
Q Via exposed
BGA pad

@ <——— BGApad covered

E

Badly aligned solder mask - at
maximum folerance

Very badly aligned solder mask
- not within tolerance

Using a Prequalified Complete
Bluetooth Module

Using a prequalified complete Bluetooth module is optimum if time-to-market is
our primary design constraint. We have the PCB real estate available and can
transfer the additional cost per unit to our end users while remaining competitive.

51

www.syngress.com

52

Chapter 1 ¢ Introducing Bluetooth Applications

Modules are available from numerous sources with a choice of Bluetooth sil-
icon. They are available in class 1 or class 2 and can take several forms. Modules
are currently being developed that integrate the entire external RF and system
components (flash, crystal, filters, and amplifiers) into a single device—predicted
sizes being as small as 5mm by 5mm! These modules are all pretested and pre-
qualified, thus simplifying both the production test and qualification required for
our end product. Examples of two modules currently available are illustrated in
Figures 1.20 and 1.21.

Figure 1.20 An Example of a Class 1 Bluetooth Module (Courtesy of
ALPS, Japan)

The PCB issues examined in the previous method are irrelevant when using a
module since we just solder the module onto our own PCB. There are no new
Bluetooth technology-induced RF layout considerations or BGA placement issues.
Of course, we must ensure that the antenna is placed in a position where propaga-
tion 1s not adversely affected by surrounding components, and this will require some
RF expertise. But antenna siting is really the only RF issue we have to think about.

This method, however, would not suit size-conscious products. The added
module will currently increase the overall height of the PCB, which isn’t appro-
priate if your product has to fit in a PC slot where dimensions are predefined and
resolute. There are limitations to this method other than cost, size, and supply,
although how seriously they affect us will be subjective and dependent upon our
own requirements.

www.syngress.com

Introducing Bluetooth Applications ¢ Chapter 1

Figure 1.21 An Example of a Class 2 Bluetooth Module (Courtesy of
Mitsumi, Japan)

Firmware Versions

The module will be supplied with a version firmware deemed appropriate at
manufacture. However, the respective silicon on the module may have undergone
many revisions since the module was produced. We are dependant on the module
manufacturer to provide us with access to this new firmware and provide us with
the means to upgrade it.

Dependant for Functionality

The module we have chosen will be static. It will only provide us with the
ability to configure our product designs according to its specification. If we
require, for instance, to change the PCM interface to utilize a more price-
conscious or better performing codec, we will require access to the Bluetooth
chip/chip set that the module is based upon to reconfigure it. If this could
affect your product, then ensure that this reconfigure option is available from
the module you choose.

www.syngress.com

53

54 Chapter 1 ¢ Introducing Bluetooth Applications

Developing & Deploying...

Obtaining Bluetooth Technology Qualification

In order to obtain qualification of a component or product, the manu-
facturer may use a test house for two services:

The test house is contracted to make tests to a Bluetooth test
specification, and to produce a test report containing the
results of the tests.

An employee of the test house who is appointed by the
Bluetooth SIG as a Bluetooth Qualification Body (BQB)
reviews evidence submitted by the manufacturer in a
Compliance Folder (CF), and if satisfactory, the BQB submits
the product or component to the Bluetooth Qualification
Administrator (BQA) for listing on the Bluetooth Qualified
Products List (BQPL).

A Bluetooth component is an implementation that contains some
Bluetooth functionality, and which can be included into another compo-
nent or product. It can be prequalified so that components or products
containing the component do not have to be tested for the prequalified
functionality. A Bluetooth product or end product is a device to be sold
to the end user, and it can be made up of prequalified components to
reduce the testing required by the product manufacturer.

The list that follows gives more details on the tests necessary for
qualification:

RF Tests are required to be made once for each new PCB
design. If the same pretested module is reused in other end
equipment, no tests need to be repeated.

USB, UART, or BCSP variants should not need to be retested
for RF as the HCI does not affect radio performance. PCB vari-
ants where all RF layout and components are identical should
not need to be tested, subject to agreement with the BQB.

= The Bluetooth Qualification Body (BQB) may require one or

more BB timing tests to be repeated for each new PCB
design. This may not be necessary if the crystal is the same as
used by the qualified component. If extra testing is required,
one timing test needs to be tested at extreme conditions.

Continued

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

(Currently these tests can be performed by manufacturers
using standard test equipment. In the future, there are plans
to move this testing into test facilities.)

= Both Module manufacturers and end product users can use a
software component that is prequalified at baseband (BB)
and LM.

= |f the new design includes the upper layer stack components
HCI, L2CAP, RFCOMM, Service Discovery Protocol (SDP), or
Bluetooth Profiles, these must also be qualified.

= Software components affecting profiles must be qualified. This
could be done by developing and qualifying your own profile
software components, or by buying in prequalified profile soft-
ware components and integrating them into the end product.

Considering Battery Limitations

Current handheld PCs offer considerably longer battery life than notebooks
because they do not have hard drives, CD-ROMs, or floppy drives. This makes it
possible for users to work for hours, and in some case weeks, without having to
worry about losing power. Most Palm-size PCs use AAA batteries that last for 20
hours to several weeks, while handheld-size PC batteries last from 8 to 15 hours
on a single battery charge. Mobile phone battery technologies offer 130 hours
standby and 5 hours talk time as standard. Key consideration when adding
Bluetooth technology to any product is the additional power consumption
inevitably reducing the overall battery life of the product. This is a serious consid-
eration in products that are normally static, where battery life has not been an
issue before and size constraint is predefined.

Due to the expected size constraint within a typical headset mould, a battery
with a high charge density/gram would be the most eftective solution to employ.
A typical application example would be to have a headset capable of 2 hours talk
time combined with 100 hours of standby time before recharging. Assuming that
the headset has been paired, the RFCOMM connection has been established and
the most optimum power configuration is used (see the following section), we
can calculate the following:

Codec power consumption = 3 milliAmperes (mA)
SCO connection power = (28mA + 3mA) x 2 [2 hour talk time] = 62mAH
Standby power = (0.6mA) x 100 [100 hours standby] = 60mAH

www.syngress.com

55

56

Chapter 1 ¢ Introducing Bluetooth Applications

Therefore we would select a battery capable of delivering 122mA hours of
energy.

Table 1.4 illustrates some of the currently available rechargeable battery tech-
nologies indicating the respective weight energy density.

Table 1.4 Battery Technologies

Battery Operating Weight Energy Number of
Technology Voltage Density (WH/KG) Cells Required
Ni-Cd 1.2V 40 - 60 3

Ni-MH 1.2V 60 - 80 3

Li-ion Circular 3.6V 90 - 100 1

Li-ion Prismatic 3.6V 100-110 1

Li-ion Polymer 3.7V 130 - 150 1

Adding Batteries

We are all aware that although the lack of cables makes our lives convenient, the
simple act of recharging batteries is tiresome. How many of us have picked up our
cell phones to make a call and found it needs recharging? This even with the vast
battery life and battery status indicators in current phone battery technology! The
ultimate aim with any wireless product is to ensure the time differential between
charging sessions will not affect the user’s experience in other words, to make sure
their products are not connected to the mains longer than they are wireless!

Long battery life means designs with low power as the primary objective.
With any low power application, choice of design configuration is crucial in
achieving the power consumption targets that you require for optimum use.
Initially, there are the hardware configurations relating to choice of processor,
design topology, asynchronous (event-driven) over synchronous (polling) designs.
Then there is hardware power management and efticient power supply designs.
Software considerations include speed gearing, idle, and sleep operations.

Fundamentally determined by the application is the system’s design topology.
This is the most eftective utilization of the hardware and software parameters to
achieve a design specifically targeted towards low power operation. Parameters we
should consider include:

= Selection of duty cycles for active and passive periods
» Choice of power saving features versus system performance

» Vendor-specific deep sleep modes

www.syngress.com

Introducing Bluetooth Applications * Chapter 1 57

Most of the silicon chip/chip sets or modules available offer a wide selection
of options to provide for applications where power efficiency may be an absolute
necessity, including on chip battery monitors. Check with the manufacturer’s data
sheets or specifications for information.

Using Power Saving Modes to Extend Battery Life

To appreciate how power saving modes can eftect current consumption, we will
again take the example of a headset and the audio gateway (AG) of a mobile phone.

The first step in establishing a functional system when both devices are virgin
1s pairing, where both the headset and audio gateway become aware of each other’s
BT addresses and generate the associated link keys. Generally authentication will
be requested through the use of a PIN code which will be built into the headset
at time of manufacture. Once paired, there is no need for the audio gateway to do
inquiry and SDP searches for subsequent connections to the headset. During the
pairing process, the headset must be in page scan mode so as to be able to connect
to the audio gateway enquiry. A page scan interval of 800ms with a 12ms window
is appropriate here since the connection is not time critical (the typical current
figure in this state is 2.5mA). Once the pairing has been completed, the headset
must decide to go into page scan again or to go idle.

Once the headset and audio gateway have paired, an RFCOMM link will
need to be established before any communication can take place. This is usually
initiated by a user action at both the headset and audio gateway. The headset will
go to page scan mode where an interval of 800mS is sufficient, and the audio
gateway will try to connect to the headset. Once a connection is established, the
audio gateway will have control over the headset’s power-saving features.
Generally, a 40mS sniff mode interval can be set for a period of time in which
some action may take place. This will allow acceptable delays for “Ring” com-
mands or “Talk” button pushes while significantly reducing the power consump-
tion figures of the headset (typically 5.5mA). Once it has been deemed that there
is no further activity required, then the audio gateway can choose to disconnect
altogether, or put the link into park mode.

NoTE

This example is based on CSR’s BlueCore2 single chip CMOS device with a
recommended operating voltage of 1.8V and optimum device configura-
tion for low power in a Class 2 design. (A class 1 design requires a PA and
therefore the power consumption of the PA would need to be considered.)

www.syngress.com

58

Chapter 1 ¢ Introducing Bluetooth Applications

A beacon interval of about 1 second is appropriate for a parked headset link.
This significantly reduces the headset power consumption (typically 1mA) while
still allowing a rapid response to an incoming call even when the device is
unparked. A rapid response is also possible if the headset initiates a button push:
the button push triggers an unpark request on the next beacon, then the headset
is unparked by the audio gateway and a SCO connection is established.

The audio gateway will ultimately decide the quality of the audio link and
the power consumption of the headset during a SCO link. CVSD is the more
appropriate method of encoding for use with speech and is mandatory with the
headset profile. There is an option as to what type of packets should be used.
HV1 will allow a clearer connection at the expense of increased power consump-
tion. HV3, however, can reduce the power consumption by a third and take
advantage of sniff mode. There will be some degradation in the quality of the
audio link but the degree of degradation may not be sufticient to warrant the use
of HV1. A good design can still give a very clear HV3 packet signal and decent
voice intelligibility. For headset applications where voice bandwidth is already
limited, HV3 would be the recommended packaging method. Once the call has
been terminated, the audio gateway can decide whether to park the link once
again or disconnect the RFCOMM connection. Usually, the link is put back into
park mode. Table 1.5 summarizes the preceding scenario.

Table 1.5 Typical Power Consumption Figures

Mode Remarks Current
ACL Connection Master [115k2 UART] no power saving 15mA
ACL Connection Sniff mode, 40ms sniff interval [38k4 UART] 4mA
ACL Connection Sniff mode 1.28s interval [38k4 UART] 0.5mA
Link Parked 1.28s interval [38k4 UART] 0.6mA
SCO Connection HV1 packet, CVSD encoded, no sniff interval 53mA
SCO Connection HV3 packet, CVSD encoded, 40ms sniff interval 28mA
Deep Sleep CSR proprietary power saving mode 50uA

Figure 1.22 illustrates the scenario just described indicating the complete pro-
cedure with current consumption per action.

Assessing Battery Life

As we are now acutely aware, a Bluetooth device consumes current, and thus can
have an influence on the battery life of any Bluetooth-enabled product. For

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

products with powerful batteries inherent to their normal use, a laptop being the
primary example, it will not be a significant issue. For smaller products like
mobile phones and PDAs, it could impact on the overall time available for use.
We have examined the power consumption on the headset and AG scenario,
which is restricted in its functionality, but a multifunctional product like a PDA
will have many varying needs for power, dependant upon what activity it is
involved in—exchanging a business card, waiting for an e-mail, or Web browsing
will all involve different connection models. We will now consider this in a “real-
life” situation. To try to get an objective view of the effect on battery life of the
Bluetooth functionality in a PDA, it is necessary for us to make some assump-
tions. These assumptions are variables but will give us a viable model to consider.

Figure 1.22 The Headset and AG Scenario with Current Consumption

Audio
Gateway Headset
Setup RECOMM link
Park = 1s inferval o ave = 0.6mi
\/\ \/\
\/\ \/\
Incoming Call Unpark
»>- lave=15mA
0K
Sniff int. = 40mS
lave = 4mA
AT = Ring | Ring Tone _
P AT = (KPD Interrupt Talk Button
- Generated |
Open SCO = HV3 Audio Opened
lave = 28mA
p Audio Opened _ ‘L//
AT = CKPD Interrupt Talk Button
- Generated -t
Close SCO Audio Closed
» lave =4mA
P Audio Closed _ oK
h w Adtivity Wait Period
(5s)
Park = s interval o Jave = 0.6mA

www.syngress.com

59

60 Chapter 1 ¢ Introducing Bluetooth Applications

Let us assume that when the PDA is on (with the Bluetooth unit fully pow-
ered and operational for eight hours per day), the number of times it is used are

limited to:

Four Web browsing sessions

The exchange of nine business cards

Two 30-minute presentations using the PDA as a radio mouse
Receiving an e-mail every hour

Using power-saving modes built into the Bluetooth system

For the purpose of modeling power consumption, we need to define a
number of states that the Bluetooth device could be in, and for each state, note

the power consumption:

State 1: Inactive The device is powered, with clocks running and
ready to receive commands over HCI. It has no active connections.
Consumption average = 50pA

State 2a: Discoverable and Connectable The device is performing
Inquiry Scan and R1 Page Scan every 1.28 seconds. The PDA software
will probably require human input to put it into this mode. A timeout
will return it to the inactive state after some time if no connection is
made, perhaps after 1 minute. Consumption average = 1.3mA

State 2b: Connectable but not Discoverable The parameters are
the same as state 2a, except that only Page Scan is enabled. Consumption
average = 0.6mA

State 3: Paging The master of the piconet has to page a known slave
in order to establish the baseband connection. The time this takes
depends on the duty cycle of the slave device. We will assume that the
slave is using the parameters described in State 2b, in which case, the
mean time to connect is 1.5 seconds. Consumption = 41mA

State 4: Connection establishment and parameter negotiation
Once a baseband connection is established, the slave and the master
transmit or receive in nearly all slots. There may be power control, authen-
tication, SDP database searches and other management traffic before the
link is fully established. This takes on the order of 250 milliseconds (ms),
determined by the reaction times of the host. Consumption = 47mA

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

= State 5a: Connected, low latency The device is a slave in a piconet
(in sniff mode). The latency before data flows can be up to 40 ms, but
the mean is 20. The latency is programmable. Consumption = 4mA for a
40ms snift interval.

= State 5b: Connected, high latency The device is a slave in a
piconet, in snift or park mode. The latency before data flows can be up
to 1.28 seconds, but the mean 1s 0.64 seconds. The latency is pro-
grammable between zero and 42 seconds.1 second is a usual compro-
mise. Consumption = 0.5mA for 1.28 second snift or beacon interval.

= State 6: Data transfer in progress We assume a UART connection.
The consumption depends on packet rate and whether the unit is a
master or a slave. However, with appropriate choices of sniff parameters,

the slave and master will have similar consumption. Consumption =
15mA for an ACI link with a baud rate of 115k2.

With these states defined, we can now examine use of the PDA in specific
activities to determine what the power consumption is expected to be:

Web browsing The user initiates connection to an access point, and
the PDA enters State 3 and then State 4. Once connected to the access
point, an IP connection is made to the Internet. The slave listens in
every slot by default but transmits infrequently. It may request snift
mode; a mean latency of 20ms is appropriate and will dramatically
reduce consumption during the time, assume 10 seconds, during which
the URL is being searched for. This is State 5a. While data is transferred,
assume a mean transfer rate of 24 Kbps, limited by the Internet (the
slower this is, the longer it will take, and hence the more pessimistic the
result). Assume 90k of bytes transfer, comprising 2 or 3 GIF or JPEG
files and one HTML page. Thus, it is in State 6 for 3.84 seconds.
Following the data transfer, the device returns to State 5a for a time
(e.g., 10 seconds), and then to State 5b if no more traffic is seen. After a
further timeout period (for example, 120 seconds), it disconnects and
returns to State 1.

Business card or file exchanges with another PDA The users put
one PDA into discoverable mode, State 2a, and the other initiates a con-
nection, entering State 3 and leading to State 4. For this analysis, we will
consider the slave only. After connection establishment, the data transfers

www.syngress.com

62

Chapter 1 ¢ Introducing Bluetooth Applications

at the ACL data rate allowed by the UART, the filing systems and the
upper layer stacks on the two PDAs. Assume a low speed UART, 38k4
and a small file; 1000 bytes is typical for a business card or diary syn-
chronization. The device is thus in State 6 for approximately 0.3 seconds.
Following the data transfer, the connection is broken and the device
goes to State 2b for 60 seconds. After 60 seconds, it returns to State 1.
Clearly, these timeouts are under the control of the application pro-
grammer.

Use as a “cordless mouse” (to control a PowerPoint presenta-
tion, for instance) The user initiates connection to the PC, and the
device enters State 3 and then State 4. Typically, the PC will request a
role switch, become master and put the device into State 5a. This lasts
the length of the session; there is no timeout. Let us assume a 30-minute
presentation, after which the user ends the session and the device returns
to State 1.

“Unconscious” synchronization The purpose of this use case is to
ensure that the diary or e-mail inbox is always up to date. The PDA runs
a daemon. Every so often (5 minutes) it tries to connect to the access
point(s) it is paired with, by entering States 3 and then 4. An alternative
scenario is for the PDA to do an Inquiry to look for public access points
instead, or in addition to the ones it is already paired with. The slight
extra traftic required for this is ignored here. Once connected, an IP
connection to the appropriate server is made. The slave listens in every
slot by default, but transmits infrequently. It may request sniff mode: a
mean latency of 20ms is appropriate and will reduce consumption
during the time the database is being searched, so the master should put
the PDA into State 5a. Let us assume the connection is up for 2 seconds
while the server responds, and the data to be transferred, when there is
some, 1s 30K. Further assume that there is new data only once per hour.
Thus, when there is new data, the PDA 1s in State 6 for about 3 seconds,
assuming a UART speed of 115k2 baud. After the data, if any, is trans-
terred, the application disconnects and the unit returns to State 1 until
the next time it is scheduled by the daemon.

Table 1.6 illustrates the actual power consumption for each of the specific
activities previously listed. The model assumes a Class 2 device is used based on
CSR’s BlueCore2. We must note that there are many variables in each case, and

www.syngress.com

Introducing Bluetooth Applications * Chapter 1

this is only recommended as a model to provide us with some guidance to enable

us to determine the effect of Bluetooth technology within a multifunctional
device such as a PDA. It is apparent from this table that the proportion of the

time that data is being transmitted or received is low, and that the average current

consumption is dominated by the time spent in power saving modes.

Table 1.6 PDA Power Consumption for Specific Activities

Use Case Web Object Mouse or Unconscious
Browsing Exchange Keyboard Synchronization

Number of sessions

per day 4 9 2 96

Number of pages

or files downloaded 3 1 - 8

Time in State 1 27785.92 28210.05 25196 28392

Time in State 2a 0 45 0 0

Time in State 2b 0 540 0 0

Time in State 3 7 0 3.5 168

Time in State 4 1 2.25 0.5 24

Time in State 5a 120 0 3600 192

Time in State 5b 840 0 0 0

Time in State 6 46.08 2.70 0 24

Consumption in

mAH per day 65 0.3 4.2 2.7

The application program, which is above the Bluetooth specified profiles,

determines the efficiency of the use of power saving modes and will be a very

important differentiator between manufacturers or software providers. This clearly

illustrates the importance of the application programmer being aware of hardware

performance issues.

www.syngress.com

63

64

Chapter 1 ¢ Introducing Bluetooth Applications

Summary

We began this chapter by examining the factors that may influence whether a
product is a suitable candidate for becoming Bluetooth-enabled. The answer is
that a device is suitable if data rates of a few hundred kilobits per second are ade-
quate, if it can tolerate short outages in the communications link, if instant con-
nections are not needed, if it can cope with the power consumption of the
Bluetooth system, if a range of 100m or less is adequate, and if Bluetooth tech-
nology will add end-user value by increasing usability or functionality.

It 1s all very well to talk of “adding end-user value” but sometimes it is not
obvious how that can be achieved, so it is important to consider how Bluetooth
technology can add value to various products. The primary value add is through
enabling unconscious connectivity, through the ability to seamlessly connect
devices without lengthy software installation and configuration.

A product that misses its market is no good to anyone; time factors must also
be examined when implementing a Bluetooth device. There is a significant
learning curve, and development takes time. Finally, qualification and type
approval are necessary before a product can go to market. These factors may
mean that adding Bluetooth wireless technology may not be compatible with
your product’s development cycle.

Before deciding to add Bluetooth capability to your product, you must be
aware of the performance limitations of wireless links. It can take ten seconds to
find a Bluetooth device and the same again to connect with it. Once connected,
data rates in the hundreds of kilobits are to be expected, but these may be
reduced drastically by interference. Latency (delay) on the link is likely to be sig-
nificantly higher than for wired links.

Before choosing hardware, it is wise to assess the features which Bluetooth
technology offers, decide whether you need them in your product, and whether
they should be enabled by default. Security features can make it difficult to estab-
lish links, but offer privacy when enabled. Low power may not be needed by
your product, but you will still need it if you are likely to connect with devices
which require low power modes.

Once the decision to implement is taken and you are broadly familiar with
the criteria for choosing between Bluetooth solutions, there are many options for
hardware and software. The protocol stack on a chip can stop at a host controller
interface allowing the higher layers of the Bluetooth protocol stack to run on a
separate host processor. Alternatively, the whole stack can be embedded on a

WWW.syngress.com

Introducing Bluetooth Applications * Chapter 1 65

Bluetooth chip/chip set. In the latter case, the application could be run on the
Bluetooth chip, or on a host device.

When looking at hardware implementation, there are many more options to

consider. Either a single chip or a chipset incorporating multiple chips can be
chosen. Factors which can influence chip/chip set choice include available space,

power consumption, and, of course, price.

Once the silicon 1s chosen, you must decide upon a design strategy: whether

to design your own PCB, or use a prequalified module. A module is undoubtedly 'I

the faster and easier option, but your own PCB can give you more flexibility in

component placement, and for very high-volume products will be cheaper in the

long term.

Finally, you may have to consider batter technology. Obviously, not an issue : 1
for anything connected to the mains, but many Bluetooth devices will be hand- '
held and will require batteries. Bluetooth subsystems will drain the battery when

active, but the good news is that most of the time they are not active, and there

are many long life battery technologies available which are adequate for the
power requirements of the Bluetooth subsystem.

Many of the issues in this chapter may seem to be the province of the hard-

ware designer, and you might wonder why they are included in a book on appli-

cations. We have seen, however, that hardware choices influence the available

teatures used by software, so it makes sense for our introductory chapter to take a

holistic view of Bluetooth products.

Solutions Fast Track
Why Throw Away Wires?

M You know Bluetooth technology is a good idea if your product satisfies
the following six criteria:

1
2
3
4.
5
6

Adds usability, convenience, or ease-of-use—the Bluetooth Dream!
Interference or latency will not affect its primary function.

Is tolerant to the connection time overhead.

Can afford the limited Bluetooth bandwidth.

Battery life or power supply requirements are compatible.

The range is adequate.

WWW.syngress.com

66 Chapter 1 ¢ Introducing Bluetooth Applications

Considering Product Design

M Think about the following items:
= Are you adding end-user value by using Bluetooth technology?

= Does your product’s development cycle allow you to add Bluetooth
technology to it?

& Investigating Product Performance

M To know whether Bluetooth technology is right for your product, you
must consider:

= Connection times—it can take up to ten seconds to find a device
and ten more seconds to connect

= The quality of service—throughput and latency; this will be lower
than wired links

= Interference can badly slow down your links, or even cause them to fail

Assessing Required Features

M Question whether or not you need to support all the following features:
= Security—you must support it, but will you enable it by default?

= Low power modes—if your product doesn’t need them, will it con-
nect with one that does?

= Channel Quality Driven Data Rate—is maximum throughout in
noisy conditions important?

L i Deciding How to Implement

M Should your stack be hosted, embedded with application on host, or
tully embedded?

M Should you design your own PCB (cheap in volume), or buy in a
F module (faster and easier)?

M Battery—if your product is not mains-powered, consider the impact of
time spent in different modes on the battery life. Constantly running in
scan modes might give you fast connection time, but it will also rapidly

drain your batteries. Setting short windows of activity can give almost
equivalent performance, and greatly extend your battery life.

WWW.syngress.com

Introducing Bluetooth Applications * Chapter 1

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Should I embed the whole stack, or use the host controller interface?

A: This depends on whether you have a host processor with spare resources
available. If you have an application which runs on a host device, such as a
PC with a powerful processor and lots of memory, then you should run the
upper protocol stack on the host and connect to the Bluetooth subsystem
using the Host Controller Interface. If you have an application like a headset
where your existing device has no processor at all, then you should run the
whole Bluetooth solution lower stack, upper stack, and application on one
processor to save power, cost, and space. If you have a host with limited
resources, such as a mobile phone, you may do best taking an intermediate
approach and running the whole stack on the Bluetooth processor instead of
running the application on your host processor.

Q: Which hardware solution is for me? A complete prequalified module or a
chip?

A: This is dependant upon what your primary design constraint is—cost, time-
to-market or PCB real estate—and the recourses you have available. The
chip/chip set designed onto your product motherboard will ultimately be the
most cost eftective option per unit and afford you.the smallest footprint but
you will require RF design skills and equipment and can encounter signifi-
cant problems with PCB layout, affecting the performance of your design.
This approach also requires that you undergo all of the stringent qualification
tests—the chip/chip set you use will ultimately be prequalified, but you will
need to perform all the RF tests on your hardware. The module approach
offers a faster time-to-market, but the cost overhead per unit will be increased
and you will be limited to functionality.

If you need to get to market in a hurry, then a module is probably the
way to go. If you have time, development resources with knowledge of radio
hardware, and you are anticipating very high volumes for your product, then a
chip may be the best option.

67

www.syngress.com =

68 Chapter 1 ¢ Introducing Bluetooth Applications

Q: Generally, what is the range of battery life?

A: This depends upon the product functionality. Power consumption is much
higher when either transmitting or receiving, so the longer you expect your
product to be in these states the shorter the battery life. Clever power man-
agement design, battery monitoring and use of the Bluetooth power saving
modes will all contribute to reducing power consumption.

WWW.syngress.com

Chapter 2

Exploring the

Foundations of
Bluetooth

Solutions in this chapter:

= Reviewing the Protocol Stack adat
= Why Unconnected Devices Need to Talk .. *
= Discovering Neighboring Devices

= Connecting to a Device

» Finding Information on Services
a Device Offers

= Connecting to and Using Bluetooth Services

M Summary
M Solutions Fast Track

M Frequently Asked Questions

69

70

Chapter 2 * Exploring the Foundations of Bluetooth

Introduction

Bluetooth wireless technology differs from wired connections in many ways.
Some differences are obvious immediately: when you are not tied to a device by
a cable, you have to find it and check if it is the device you think it is before you
connect to it. Other differences are more subtle: you may have to cope with
interference, or with the link degrading and dying as devices move out of range.

If you're used to developing applications for static wired environments, all of
this may sound daunting, but don’t worry—there are simple well-defined proce-
dures for coping with the complexity of Bluetooth connections. This chapter will
take you through those procedures step by step, along the way explaining the pit-
falls and how to avoid them.

We will start with a review of the protocol stack, and then look at some of
the basic requirements of wireless communications the stack cannot hide: finding
nearby devices, connecting to them, discovering what services they can provide,
and then using those services.

You need to know the basic structure of the Bluetooth protocol stack before
reading this chapter.

Reviewing the Protocol Stack

The wide range of possible Bluetooth applications means that there are many
Bluetooth software layers. The lower layers (Radio Baseband, Link Controller, and
Link Manager) are very similar to the over-air transmissions. They can provide
voice connections and a single data pipe between two Bluetooth devices. To ease
integration of Bluetooth into existing applications, the specification provides
middle layers that attempt to hide some of the complexities of wireless commu-
nications. In combination, these layers, when transmitting, can take many familiar
data formats and protocols, package them, multiplex them together, and pass
them on in a manner that matches the lower layers’ capabilities. Matching layers
at the receiving end de-multiplex and un-package the data.

At the bottom of the stack are some layers that are fundamental to Bluetooth
wireless technology: Radio Baseband, Link Manager, Logical Link Control and
Adaptation Protocol (L2ZCAP), and Service Discovery Protocol (SDP). Above
these layers, different applications require different selections from the higher
layers. Each profile calls up the higher layers it requires. If you implement more
than one profile in your application, you may be able to reuse the common
layers. Not all stack vendors support all layers so, if you are buying in a stack,

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2
make sure that it supports the layers required for your application’s profiles.

Figure 2.1 shows the layers defined by the Bluetooth specification (shown
unshaded) and some other common layers (shown shaded).

Figure 2.1 Bluetooth Protocol Stack

Application

Connection Security
Manager Manager

RFCOMM

Device Manager

Audio

L2cap

Hdl = Ha

Baseband:
Link Manager,
Link Controller

and Radio

L2CAP

Logical Link Control and Adaptation Protocol multiplexes upper layer data onto
the single Asynchronous ConnectionLess (ACL) connection between two
devices and, in the case of a master device, directs data to the appropriate slave.
It also segments and reassembles the data into chunks that fit into the maximum
HCI payload (the HCI is the Host Controller Interface, which connects higher
layers on a host to lower layers on a Bluetooth device). Locally, each L2CAP
logical channel has a unique Channel Identifier (CID), although this does not
necessarily match the CID used by the remote device to identify the other end
of the same channel. CIDs 0x0000 to 0x003F are reserved with 0x0000 being

www.syngress.com

71

72

Chapter 2 * Exploring the Foundations of Bluetooth

unused; 0x0001 carrying signaling information; and 0x0002 identifying received
broadcast data.

Debugging...

Reliability of L2CAP

Because of the nature of wireless communications, the links provided by
the baseband are not reliable. Errors are caused by radio interference or
fading of signals. There is a chance that two or more errors in a packet
will combine to give a packet that contains errors but still has a correct
checksum. The Bluetooth Special Interest Group (SIG) is considering
implementing error correction at L2ZCAP, which would make such errors
less likely to affect applications.

The stack layers that sit above L2ZCAP can be identified by a Protocol
Service Multiplexor (PSM) value. Remote devices request a connection to a
particular PSM, and L2CAP allocates a CID. There may be several open channels
carrying the same PSM data. Each Bluetooth defined layer above L2CAP has its
own PSM:

= SDP - 0x0001
= RFCOMM - 0x0003
= Telephony Control Protocol Specification Binary (TCS-BIN) — 0x0005
= TCS-BIN-CORDLESS — 0x0007
L2CAP only deals with data traffic, not voice, and all channels, apart from

broadcasts (transmissions from a master to more than one slave simultaneously),
are considered reliable.

RFCOMM

RFCOMM (a name coming from an Radio Frequency [RF]-oriented emulation
of the serial COM ports on a PC) emulates full 9-pin RS232 serial communica-
tion over an L2CAP channel. It is based on the TS 07.10 standard for a software

emulation of the RS232 hardware interface. TS 07.10 includes the ability to mul-
tiplex several emulated serial ports onto a single data connection using a difterent

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

Data Link Connection Identifier (DLCI) for each port. However, each TS 07.10
session can only connect over a single LZCAP channel and thus only communi-
cate with one device. A master device must have separate RFCOMM sessions
running for each slave requiring a serial port connection.

Version 1.1 of the Bluetooth specification has added to the capabilities of the
standard TS07.10 specification by providing flow control capabilities. This caters
for mobile devices with limited data processing and storage capabilities allowing
them to limit the incoming flow of data.

OBEX

The Object Exchange standard (OBEX) was developed by the Infrared Data
Association (IrDA) to facilitate operations common to IR -enabled devices like
personal digital assistants (PDAs) and laptops. Rather than develop a new stan-
dard, the Bluetooth SIG took OBEX largely as is, detailed a few specifics
regarding Bluetooth implementation (e.g., making some optional features manda-
tory), and used it in the File Transfer, Synchronisation, and Object Push profiles.
OBEX allows users to put and get data objects, create and delete folders and
objects, and specify the working directory at the remote end of the link. IrDA has
also provided formats for data objects, while the Bluetooth specification has
adopted the vCard format for business card exchange and the vCal format for
exchanging calendars.

PPP

The Point-to-Point Protocol (PPP) is the existing method used when transfer-
ring Transmission Control Protocol/Internet Protocol (TCP/IP) data over
modem connections. The Bluetooth specification reuses this protocol in the
local area network (LAN) Access Profile to route network data over an
RFCOMM port. Work is already underway on a TCP/IP layer that will sit
directly above L2CAP, bypassing and removing the overhead of PPP and
RFCOMM. This work is hinted at in some areas of the specification, but in v1.1
PPP, is all that’s available.

TCS Binary

Telephony Control Protocol Specification Binary (TCS Binary, also called TCS-
BIN), is based on the International Telecommunication Union-Telecommunication
Standardization Sector (ITU-T) Q.931 standard for telephony call control. It
includes a range of signaling commands from group management to incoming

www.syngress.com

73

74

Chapter 2 * Exploring the Foundations of Bluetooth

call notification, as well as audio connection establishment and termination. It is
used in both the Cordless Telephony and Intercom profiles.

SDP

The Service Discovery Protocol differs from all other layers above L2ZCAP in that
it is Bluetooth-centered. It is not designed to interface to an existing higher layer
protocol, but instead addresses a specific requirement of Bluetooth operation:
finding out what services are available on a connected device. The SDP layer acts
like a service database. The local application is responsible for registering available
services on the database and keeping records up to date. Remote devices may
then query the database to find out what services are available and how to con-
nect to them. The details of service discovery can be complex and are discussed
further in Chapter 5, but each profile describes exactly what information should
be registered with SDP based on the application implementation.

Management Entities

Device, Security, and Connection Managers are not protocol layers so much as
function blocks. The Device Manager handles the lower level operation of the
Bluetooth device. The Connection Manager is responsible for coordinating the
requirements of different applications using Bluetooth channels and sometimes
automating common procedures. The Security Manager checks that users of the
Bluetooth services have sufticient security privileges.

HCI

The Host Controller Interface is not a software layer, but a transport and com-
munications protocol that aids interoperability between difterent manufacturers’
solutions. It is not mandatory to use the HCI interfaces defined in the specifica-
tion (Universal Serial Bus [USB]; RS232; or a simple Universal Asynchronous
Receive Transmit [UART]), or indeed any HCI transport at all, if there are better
solutions for your application.

Lower Layers

The lower layers (Radio Baseband, Link Controller, and Link Manager) format
the over-air transmissions, handle error detection and re-transmission, and manage
the links between devices.

Table 2.1 illustrates which profiles use which layers.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

Table 2.1 Stack Layer Requirements by Profile

Lower
Profile Layers L2CAP SDP RFCOMM PPP OBEX TCS-Bin
Service Discovery
Application X X X
Cordless
Telephony X X X X
Intercom X X X X
Serial Port X X X X
Headset X X X X
Dial-up
Networking X X X
FAX X X X X
LAN Access X X X X
Generic Object
Exchange X X X X
Object Push X X X X
File Transfer X X X X
Synchronization X X X X

Why Unconnected Devices Need to Talk

As mentioned in the Introduction, not all the details of operating a radio com-
munication link can be hidden from the application by intervening software
layers. Some of the basics of wireless communications will be exposed and it is
essential to handle these functions correctly if operation is to be as seamless as
Bluetooth proponents envisage. With wired connections, the user might check
that two devices have the same type of physical interface port, that the ports sup-
port the same communications protocol, and that both devices run applications
that can use this protocol to talk to each other. If all these checks are passed, the
user might then plug a cable into the two ports and expect some useful commu-
nication. With Bluetooth devices, the user may not initially know that there are
other Bluetooth devices nearby, so a method is required to find them. Then there
is the Bluetooth equivalent of plugging in a cable: forming a connection. The
checks on communications protocols and applications compatibility are actually
done once a basic Bluetooth link is established. They are called service discovery.

www.syngress.com

75

76

Chapter 2 * Exploring the Foundations of Bluetooth

This is not a book about the details of Bluetooth radio operation, but a little
knowledge about a few fundamental principles of the radio and baseband will
greatly help you understand what application level decisions are key, why they are
key, and how making the wrong decisions could lead to some very undesirable
behavior.

First, it is important to understand that Bluetooth radios use a frequency-
hopping scheme. When connected, the precise frequency for each hop is selected
by a pseudorandom algorithm that depends on the master device’s clock and
Bluetooth address. Slaves in a piconet synchronize on the master’s hopping pat-
tern. However, when unconnected, there is no master to synchronize to.
Bluetooth devices need a way to exchange a limited amount of data, allowing
them to find and connect to each other before synchronizing on a common
clock and Bluetooth address.

The procedure used to find devices is called inquiry, and the procedure used
to connect to devices is called paging. In both cases, one device transmits and
receives on special sequences of frequencies that are known to all devices. The
other device needs to be listening for the transmissions—if a transmission is
received correctly, it sends out a reply. Since it knows the sequences used for
inquiry and paging, it can work out the correct frequency on which to send the
reply. The key points are:

1. The application must place a device in a listening mode if it is to be
found or connected to. The listening mode that allows a device to be
found is called discoverable mode or inquiry scanning. The listening mode
that allows a device to be connected is called connectable mode or page
scanning. The terms discoverable and connectable are used at the user inter-
face, and the terms inquiry scanning and page scanning are used within the
software layers.

2. Whether finding or connecting, for communication to take place, one
device must transmit on the frequency that the other is receiving on.
This is done by the transmitter changing frequency quickly (1600 times
a second) while the receiver changes frequency slowly (every 1.28 sec-
onds). Their frequency hopping is not synchronized, so the procedure
must last long enough for the two devices to collide on a frequency that
1sn’t subject to interference. This also introduces a random element to
the procedure: how long they take before transmitting/receiving on the
same frequency.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

3. A Bluetooth device will not reliably find or connect to other devices at
the same time as transferring voice. Voice links take priority over every-
thing, while inquiry and page operations take precedence over other data
transfers. It is allowed to inquire and page in the gaps between voice trans-
missions, but because the voice transmission takes priority, often responses
will be lost due to a voice transmission, so finding and connecting devices
can be slow and unreliable when voice links are in use.You must be aware
of these limitations when deciding how your application will behave.

In the following sections, we will discuss the inquiry and page procedures in
more detail.

Discovering Neighboring Devices

All Bluetooth devices must be discovered before a connection to them can be
initiated. You may not need to carry out a device discovery every time you wish
to connect to a device. Instead, you might be able to reuse information gathered
from a previous device discovery. There must always be an initial device discovery
before the connection, however.

There are two reasons to carry out device discovery. Either you do not know
what devices are within range and wish to find out, or you know a device is
within range and want to know its details so you can connect to it. In both cases,
the procedure is the same and is called an inquiry.

Inquiring and Inquiry Scanning
To discover other nearby devices, a Bluetooth device conducts an inguiry. The
basic command is HCI_Inquiry and has three parameters:

» Lower Address Part (LAP)

» Inquiry_Length The inquiry will time-out after this period. Note
that this parameter is in 1.28s units.

= Number_Of Responses If the number of responses given here is
reached, then the inquiry will end before the Inquiry_Length period has
elapsed.

The LAP determines the Inquiry Access Code (IAC) used in the transmitted
ID message which listening devices respond to.

www.syngress.com

77

78 Chapter 2 * Exploring the Foundations of Bluetooth

Debugging...

Messaging across HCI

Some host stacks do not handle multiple simultaneous transactions
across HCI. These protocol stacks will wait for one command to com-
plete before sending the next. If you have one of these stacks, then the
inquiry cancel command will not work: this is because the inquiry com-
mand will be allowed to run until the inquiry complete event returns
from the lower layers. Only after the inquiry complete has been returned
will the next command (inquiry cancel) be sent. This means that the
inquiry cancel is sent after the inquiry has already completed, so the
lower layers respond with an error message as they cannot cancel an
inquiry which is not in progress.

This is a rare problem as few commercial stacks now available
cannot handle multiple simultaneous HCl transactions. But if you find
your HCl misbehaving, it is worth investigating whether your stack is one
that queues up messages for simultaneous HCl transactions rather than
sending them to the lower layers.

There is also the option for the application to use HCI_Periodic_Inquiry_Mode
and configure the Bluetooth lower layers to conduct periodic inquiry procedures
automatically. There are corresponding commands, HCI_Inquiry_Cancel and
HCI_Exit_Periodic_Inquiry_Mode, which cancel the inquiry commands.

The listening mode for inquiry 1s called Inquiry Scan. Only devices in Inquiry
Scan will respond to inquiries and then only to inquiries which contain the correct
IAC.This has consequences for your application—you can hide from other devices
by not enabling Inquiry Scan; a device which does this is in non-discoverable
mode. Conversely, you are not guaranteed to find all Bluetooth devices in an
area because devices which are not inquiry scanning are effectively invisible.

Placing a device in Inquiry Scan mode involves setting up the right param-
eters, then enabling the mode. HCI_Write_Inquiry_Scan_Activity is used to set up
the scan duration and the interval between scans.

HCI Write JAC _LAP is used to define the IAC that the device will be lis-
tening for. There are currently only two valid IACs. The General IAC (GIAC),
0x9e8b33, is used by most devices, most of the time. It is the default, the common
meeting place for all devices, and must be supported. Some devices may also sup-

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

port the Limited IAC (LIAC), 0x9e8b00, which can be used if you only wish to
be discovered for a limited amount of time and in response to a specific event.
Instructions and guidelines on their use are provided in the Bluetooth profiles.

The GIAC 1s most commonly used. All devices that scan will listen for this
code.The Limited Inquiry Access Code (LIAC) could be used in crowded envi-
ronments where many devices are answering inquiries and it can be difficult to
select the desired device. The owners of a pair of devices can agree to temporarily
put them into Limited Inquiry mode. They will then use the LIAC as well as the
GIAC for a short period before automatically reverting back to using only the
GIAC.The Generic Access Profile (GAP) mandates that any device listening for
the LIAC must also scan for the GIAC. If the Bluetooth hardware supports it,
both IACs can be listened for at the same time, in parallel. However, many hard-
ware implementations can only listen for one IAC at a time, so the scanning must
be done in series. In this case, it is the application’s responsibility to manage the
time-slicing between IACs so that GAP requirements are met.

The Limited Inquiry Access facility has not proved popular so far since it
requires user intervention at both ends of the link and tends to be seen as an
unnecessary complication for the user.

HCI_Write_Scan_Enable is used to both enable and disable the Inquiry Scan
mode.

If a device in Inquiry Scan responds to an inquiry this is reported, at the
Inquiring device, by an HCI_Inquiry_Result event. It is not reported at the
Inquiry Scanning device. In fact, the application is unaware that a response has
been generated. The HCI_Inquiry_Result event is variable in length, depending on
the number of responses, and has seven parameters:

» Num_Responses The number of responses being reported in this
message.

= BD_ADDR The Bluetooth Device Address for each device
responding.

» Page_Scan_Repetition_Mode For each device responding.
= Page_Scan_Period_Mode For each device responding.
= Page_Scan_Mode For each device responding.

= Class_Of Device (CoD) CoD is a brief description of the type of
device responding. Details are in Section 1.2 of the Bluetooth Assigned
Numbers document. Again, there is one CoD for each responding device.

www.syngress.com

79

80 Chapter 2 * Exploring the Foundations of Bluetooth

» Clock_Offset Since the hop frequency of the responding device is
determined by its address and clock, information on the clock offset can
be used to predict what frequency it will be listening on and reduce the
time to connect to it. Again, one response for each device.

The Page_Scan parameters all refer to the frequency, intervals and exact
method by which the scanning device allows other devices to connect to it. See
the following section for more details.

Since both Inquiring and Inquiry Scanning devices randomly hop frequency,
they may end up on the same frequency more than once during an inquiry pro-
cedure and several responses may be generated. Whether each response is
reported by an HCI_Inquiry_Result event is dependent on the lower layer imple-
mentation and how many previous responses the lower layers can keep track of.
The application must therefore be able to identify duplicate responses and filter
them out.

When an inquiry is complete, because either the specified number of
responses or duration has been reached, an HCI_Inquiry_Complete event is gener-
ated. It contains only a status parameter.

You can carry out inquiries or inquiry scans as an unconnected device, a
master, or a slave. However, a slave’s responsibility to regularly listen for master
transmissions means it will not be able to devote as much of it’s time to the pro-
cedure, which may need to continue for longer to compensate. It is also possible
to define intervals and windows to allow both operations to run over the same
period. See the next section on timing for more detail.

Timing

Since one device needs to be in Inquiry and the other in Inquiry Scan for a suc-
cessful discovery, it 1s important for applications to give a high chance of finding
devices in a short time. The Generic Access Profile offers guidelines on how to
accomplish this. Devices that are generally discoverable (using the GIAC) repeat-
edly conduct a short inquiry scan over a long period of time while Inquiring
devices conduct a long inquiry either once, upon user prompting, or periodically,

but with a large interval in-between inquiries.
The actual numbers from the GAP are as follows:

» While discoverable, enter Inquiry Scan for at least 10.625 milliseconds
every 2.65 seconds. Remain discoverable for at least 30.72 seconds.

= When inquiring, enter Inquiry mode for at least 10.24 seconds.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

= For devices using the LIAC, it is not recommended to stay in Inquiry
Scan mode for more than 1 minute.

If there are any voice links present, the data transfer required for them will
take priority over both Inquiry and Inquiry Scan operations. You need to con-
sider this when setting up the operations.

» If one HV3 Synchronous Connection Oriented (SCO) link is present,
then the inquiry scan period should be extended to 22.5 milliseconds.

» [If two HV3 SCO links are present (or one HV2 link), the inquiry scan
period should be extended to 33.75 milliseconds.

These rules do not altogether compensate for the eftect of SCO links, so you
should still consider inquiry and paging procedures to be slower and less reliable
if SCO links are in use.

It is often a good idea, if possible, to scale back voice connections to HV3
before entering Inquiry Scan. But note that with three HV3 links present, no
inquiry scanning can take place at all: the device is non-discoverable (the same is
applied to two HV2 links or one HV1 link; each of these configurations uses up
all possible slots and leaves no space for inquiring or scanning).

The inquiry period must be increased to compensate for the presence of
SCO connections, or being a slave, in the same way as the inquiry scan period.
The Link Controller also makes appropriate changes to the sequence of inquiry
transmission frequencies. Again, the presence of three SCO connections would
prevent any other operations, including inquiry.

The Bluetooth profiles define which devices within a usage scenario should
be discoverable and which should do the discovering.

When to Stop

In an ideal world, once you took the decision to be discoverable, other devices
would be able to find you immediately, all the time. In the real world of
Bluetooth devices, there are prices to be paid for that level of visibility: power
consumption and bandwidth.

Power consumption explains why the default inquiry scan duty cycle is 0.4
percent. For some battery-powered devices, even this may be too high, so drop-
ping into a non-discoverable state may be necessary to save power. Equally, if you
are designing a mains-powered device, it may be desirable to increase the duty
cycle and thus reduce the time it takes for other devices to find you.

www.syngress.com

81

82

Chapter 2 * Exploring the Foundations of Bluetooth

Although transfer of voice (SCO) data takes precedence over Inquiry Scan
operations, other (ACL) data transfer does not. In other words, Inquiry Scan uses
up bandwidth. If you have chosen a high Inquiry Scan duty cycle, you may need
to reduce it, or even disable Inquiry Scan, to achieve a high data rate.

In all applications, there should be an option for the user to manually switch
from a discoverable to a non-discoverable mode. The GAP also includes guide-
lines on how these modes should be described in the User Interface.

Inquiry operations are less problematic. Although the same principles apply as
for Inquiry Scan (SCO data has higher priority, ACL data does not), the inquiry
operation is normally a one off, and generally triggered by the user. If carrying
out an inquiry is going to disrupt a critical data transfer, it might be a good idea
to warn the user before proceeding. Automatic periodic scanning should be sen-
sitive to bandwidth use if unexpected drops in transfer rates are to be avoided.
Note that if the lower layers are set to periodically inquire, they will schedule
inquiries with no allowances for data transfers: intelligent inquiry scheduling is
only possible at the application level. The user should also be given the option of
disabling periodic inquiry if the feature is offered.

One other consideration for inquiring devices is their effect on other ISM
band users. Every inquiry transmission potentially interferes with another piconet,
or even with other wireless technologies using the same frequencies as Bluetooth.
So, by specitying short inquiry periods the GAP helps Bluetooth devices to be
good neighbors, causing the minimum possible interference to nearby devices.

Connecting to a Device

Once a device has been discovered via inquiry, the information gathered can be
used to form a Bluetooth connection between devices. At the Bluetooth Radio
level, a connection means that the devices in a piconet are all frequency-hopping
together, synchronized to the master device’s Bluetooth address and clock.
Further up the protocol stack, it means that an ACL link has been established that
data can pass over. This allows the use of L2ZCAP and all the other layers that sit
above it, including the service discovery layer. The protocol for forming the link
is called paging.

Paging and Page Scanning

To create a connection between Bluetooth devices one device pages another
device, which must be in Page Scan to respond. The terms “create connection”

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

and “page” are often used interchangeably although the latter is more specific
since connections can also be created between upper stack layers. A successful
page results in an ACL connection between the paging device, which, by default,
becomes the master, and the paged device, the slave.

To allow an incoming connection, a device must be placed in Page Scan
mode. This is similar to Inquiry Scan in that the mode must be configured, using
the HCI_Write_Page_Scan_Activity, HCI_Write_Page_Scan_Mode, and
HCI_Write_Page_Scan_Period_Mode, and then activated using the same
HCI_Write_Scan_Enable command that controls the Inquiry Scan operation.
Provided both modes have been configured with timing that allows it (see the fol-
lowing), a device can be in both Inquiry and Page Scan modes at the same time.

HCI_Write_Page_Scan_Activity sets the page scan period and the interval
between scans, and hence the duty cycle. HCI_Write_Page_Scan_Mode determines if
the device scans using the mandatory paging scheme or an optional one. Only one
optional scheme is currently defined, although there is a provision for three. It is
defined in Appendix VII of the Core Specification and trades an increased level of
complexity and a higher duty cycle at the paging device for a lower duty cycle at
the Page Scanning device. Few, if any, hardware vendors currently support the
optional paging scheme, so a method must exist for hardware that doesn’t support
it to connect to hardware that does. For this reason, devices in both Page and
Inquiry Scan that receive an incoming inquiry must then use the mandatory paging
scheme for T seconds following. HCI_Write_Page_Scan_Period_Mode sets
the number of seconds according to the Page Scan mode (see Table 2.2).

mandatory_pscan

Table 2.2 Relationship between SP Mode and Mandatory Page Scan Period

Scan Period Mode T nandatory pscan
PO >20 seconds
P1 >40 seconds
P2 >60 seconds

To initiate a page, an application issues an HCI_Create_Connection command
that contains the following parameters:

= BD_ADDR The Bluetooth device address of the device you wish to
page.

» Packet_Type The types of ACL packet the local device will support
on this link (i.e. DH/M 1/3/5).

www.syngress.com

83

84 Chapter 2 * Exploring the Foundations of Bluetooth

= Page_Scan_Repetition_Mode How often the target device enters
Page Scan mode.

= Page_Scan_Mode Whether to use the mandatory Page Scan mode,
or an optional mode.

= Clock_Offset The estimated difference between the local device’s
clock and the target device’s clock.

= Allow_Role_Switch Determines whether the local device will accept
a request from the target device to swap master/slave roles.

Apart from Packet_Type, the first five parameters are provided as part of an
inquiry response. The BD_ADDR is required to identify the target device. The
two Page_Scan parameters determine the exact baseband operation during the
page. Knowing the Clock_Offset of a device is not essential to making a connec-
tion—it can still be made if this value is completely wrong—but the better the
estimate, the shorter the connection time. The paging device uses the
BD_ADDR and Clock_Offset parameters to calculate the frequency the target
device will be page scanning on and starts its paging transmission there. If initially
unsuccessful, the paging device then tries other, progressively less-likely frequen-
cies until eventually all possibilities have been covered.

When the target device receives an incoming page, it does not necessarily
accept it immediately. The HCI_Set_Event_Filter command can be used to switch
between three possible behaviors:

» Send an HCI_Connection_Request event to the host and wait for an
HCI _Accept_Connection_Request or an HCI_Reject_Connection_Request
command.

» Accept the Page automatically.

» Accept the Page automatically only if the paging device accepts
master/slave role switch.

The last is important for profiles such as LAN access where an access point is
discoverable and connectable while being a master of a piconet. A new device,
when it connects, becomes, by definition, the master. The new device must allow
the role switch so that the access point can become a master again and continue
to maintain communications with the existing slaves.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2 85

Developing & Deploying...

Masters, Slaves, Role Switches, and Scatternets

To upper stack layers, the only difference between a master and a slave
is that a master can talk to several slaves in a piconet, while a slave can
only talk to the master of the piconet.

For some devices, this relationship is important. Take, for example,
a PC with a Bluetooth mouse and keyboard already operating. The PC
may also wish to allow a PDA to connect and synchronize. Since the PDA
initiates the connection, it becomes the master of the new piconet, but
the PC will only have allowed this connection if, as part of the connec-
tion request, the PDA stated it allows master/slave role switches. As soon
as the connection is established at baseband level, the PC requests a
switch. If the PDA does not grant it, the PC drops the connection.

Interestingly, for the time between the connection completing and
the role switch taking place, the PC is still master of its old piconet even
though it's a slave of the PDA's piconet. When a single device is a master
of one piconet, and slave of another simultaneously, this is, by defini-
tion, a scatternet.

Several manufacturers now support the limited form of scatternet
required for a master/slave role switch while master of an existing
piconet, but maintaining the scatternet for any length of time is still
problematic. The Bluetooth specification gives no way for a slave to
demand hold, sniff, or park modes from a master; they must always be
requested. The master is entitled to refuse such requests, so it is impos-
sible to guarantee that a slave in one piconet will be granted the time
required to participate in another piconet as a master or a slave. Even if
devices choose to simply switch between piconets as they see fit,
ignoring the normal request procedures, there are still problems with
how to time these switches in order to maintain multiple connections.

The master of each piconet must periodically poll all its slaves in
order to give them an opportunity to transmit (since slaves only transmit
data in response to a master transmission). How to cope with the vari-
ability of the interval between poll transmissions from a master is par-
ticularly awkward. It is possible to devise solutions to these problems,
but there are a number of possible solutions and no guarantee that two
implementers will choose the same one. A single chip set vendor may be
able to demonstrate scatternet operation provided they produce all

Continued

www.syngress.com

86 Chapter 2 * Exploring the Foundations of Bluetooth

devices in the scatternet, but this provision goes against the funda-
mental Bluetooth concept of interoperability. Work is progressing in the
Bluetooth SIG to devise a standard solution to these problems.

There is an even greater problem with SCO connections in a scat-
ternet, however. The reserved slots for SCO connection in two scatternet-
connected piconets are running on different clocks. They will eventually
drift, relative to each other, so that the reserved slots coincide, making it
impossible for a single device to be part of both piconets. There is no way
to renegotiate the SCO timing once the link has been set up.

Fortunately, the problems with ACL scatternets may be resolved
soon, but those of SCO scatternets will likely be around for a very long
time. For the moment though, no profiles use, let alone require, scat-
ternet operation.

If the page is successful, an HCI_Connection_Complete event is generated at both
ends of the new link with a “Success” status and other parameters describing the
connection. This includes the Connection Handle that, for a master with multiple
slaves, 1s used to route data. A page can fail because it times out or is actively
rejected in which case the paging device generates an HCI_Connection_Complete
event with the appropriate “Failure” status parameter.

Timing

Many of the same principles that apply to inquiry also apply to paging. Where
restrictions on inquiry timing are contained in the GAP, the core specification
defines restrictions on page scanning. The restrictions on the length of each indi-
vidual page scan, called the scan window, vary according to the number of SCO

links present. SCO traffic has a higher priority than page operations, so the scan
window must be extended to compensate for the lost bandwidth:

» Ifno SCO links are present, the scan window must be at least 11.25
milliseconds (ms).

= Ifan HV3 link is present, the scan window should be at least 22.4 ms.

» If two HV3 links (or an HV2 link) are present, the scan window should
be at least 33.75 ms.

Restrictions are also placed on the period between page scans, called the scan
interval. The maximum interval between the start of successive scans is 2.56 sec-
onds. If page scanning is continuous (i.e., the scan window is the same length as

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

the scan interval), this is classed as Repetition Mode RO. If page scanning is not
continuous, but the interval is less than 1.28 seconds, this is classed as Repetition
Mode R1. Intervals between 1.28 seconds and the 2.56 second maximum are
classed as Repetition Mode R2. A paging device alters the way it pages
depending on the repetition mode of the target device, which is why this infor-
mation is returned as part of an inquiry response and is a parameter of the

HCI _Create_Connection command.

There is little point in a device being discoverable via Inquiry Scan but not
connectable. Although it is theoretically possible to place a device in Inquiry
Scan, but not Page Scan, this mode of operation is not currently used by any pro-
file. Most devices will be in Inquiry Scan and Page Scan at the same time. To do
this, the two scan intervals should be set equal, with the scan periods each occu-
pying a maximum of half the scan interval. Like Inquiry Scan, shorter scan inter-
vals can be used to reduce power consumption.

If an inquiry has previously been performed, then there is no need to repeat
the process every time a link between two devices 1s re-established. In fact,
placing a device in Inquiry Scan unnecessarily wastes power and allows any other
device within range to find it, generating unwanted inquiry responses. The
Inquiring device may also attempt to connect—if only to check the device’s
friendly name—wasting even more power. It is therefore common for devices to
be in Page Scan only. This is especially true of devices, like headsets, that are
bonded: linked securely to another device. One device of the bonded pair might
go into Page Scan when powered on, and the other would page it. The informa-
tion for the Page operation would come from a single inquiry when the devices
first bonded.

As mentioned previously, how long is spent paging before a connection is
established largely depends on how accurately the paging device knows the paged
device’s Clock_Offset. If it is exact, then connecting can take as little as 4ms.
However, when not in a link, devices’ offsets drift. The longer it has been since
the last connection between two devices, the less accurate the offset information.
It will take longer to connect next time. If one device has been powered oft and
on between connections, the offset information is useless: no better than a
random guess. However, as long as the Bluetooth Address is correct, a connection
will still be formed eventually. The theoretical worst-case duration for a page is
just over five seconds. Interference or the presence of SCO links may extend this
time. The timeout period is set by the HCI_Write_Page_Timeout command. The
default 1s 5.12 seconds.

www.syngress.com

87

88

Chapter 2 * Exploring the Foundations of Bluetooth

Who Calls Who?

Many Bluetooth profiles don’t care which device is the master of a link and
which is a slave. For a Point-to-Point Profile, the distinction 1s meaningless at the
higher layers. However, the distinction should be considered, especially for bat-
tery-powered devices, as it can have a huge effect on a device’s power consump-
tion, for two reasons.

Take, for example, a PDA that wishes to periodically and unconsciously syn-
chronize with a PC. Firstly, if by default, the PC initiates connections, then the
PDA must be connectable at all times. Even with an average Page Scan current
draw of 0.5 mA, it 1s still going to use 12 mA-hours of power per day just main-
taining the Page Scan mode. It may be more efticient to have the PDA wake
periodically and attempt to page the PC.

Secondly, although a slave can request power saving modes such as sniff and
park, a master is under no obligation to grant them. If they are not granted, then
a slave must listen for a master’s transmissions in every possible transmit slot,
draining power each time. As a master, a device only needs to transmit enough to
maintain a link and there is a better chance that power saving modes can be
negotiated and used.

Finding Information on
Services a Device Offers

There are many different potential types of Bluetooth device, each with dif-
ferent possible combinations of supported profiles, some of which have not
even been thought of yet. All these devices can connect and talk to each other,
but they may not support compatible profiles. For example, a headset has little
use for Internet access. When initial contact is made, the devices need to ask
each other a question. The exact question depends on circumstances. It is a
choice between either “Do you provide service X?” or “What services do you
provide?”

The first question is appropriate when the device asking the question is only
interested in a specific service. Our headset will only be interested in finding
devices that can act as an audio gateway. It has no interest in LAN Access Points,
so it will ask, “Do you provide an Audio Gateway service?” The second question
would be asked, for example, by a PC that wishes to know what devices are in
the neighborhood and what services they all provide.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

The mechanism to ask and answer these questions is provided by the
Service Discovery Protocol, a protocol for accessing a database of the services
a device offers. The database also contains the information required to answer
the subsequent question, “How do I use service X?” Since the application sup-
plies the services, it is also responsible for maintaining accurate SDP records of
them. Remote devices connect to the SDP server as clients and query these
records.

A service discovery record contains a number of attributes drawn from 28
possible types. They describe six broad types of information:

» The services on offer (e.g., Generic Audio, Headset Audio Gateway,
Handsfree Audio Gateway); their names, availability, and descriptions.

» The protocols used to access the services (e.g., L2ZCAP and RFCOMM).
» How to connect to these protocols (e.g., the REFECOMM port).

» The supported profiles (e.g., Headset, Handsfree).

» How the service browsing tree is constructed.

» The behavior of the database (e.g., when the service record is likely to
change).

Attributes are identified by their own Universally Unique Identifiers
(UUIDs). The ideas and mathematics of UUIDs are not unique to Bluetooth.
They are designed so that users can generate their own UUIDs with such a low
chance of two independently generated IDs being the same that this, in itself, is
sufficient to ensure they are not repeated. No central register of new UUIDs
needs to be kept. UUID:s in the range 0 to 232 are reserved for SIG-defined
attributes, but others can be created by product manufacturers. New manufac-
turer-created attributes will only be recognized by other products that already
know how the related services and protocols work and will not, therefore, expe-
rience the high level of interoperability that SIG-defined services enjoy. New ser-
vices must be different from SIG-defined services, or extensions to them.You are
not allowed to create a service that is similar to a headset, but that isn’t interoper-
able with the Headset profile.

The construction of the service discovery record can be complicated, but it is
essential if devices are going to interoperate correctly. Fortunately, a majority of
attributes that an application should store in the database are exactly specified in
each profile.

www.syngress.com

89

20 Chapter 2 * Exploring the Foundations of Bluetooth

Every service record browsing tree must have a root named
PublicBrowseR oot. PublicBrowseR oot is required as all service browsing trees
contain this entry as their root. The presence of PublicBrowseR oot means that all
client devices have a known location where they can begin browsing.

Apart from the requirement for a known root, the construction of the ser-
vice record browsing tree is not defined by the profiles, but by the manufacturer.
You should simply try to make the browsing tree logical. For example, a Global
System for Mobile Communication (GSM) phone might offer the following
services:

» Headset Audio Gateway
» Handsfree Audio Gateway
» Cordless Telephony

= Intercom

With the addition of the Generic Audio service group, Generic Telephony
service group, and the PublicBrowseR oot entry, the service record browsing tree
shown in Figure 2.2 can be constructed.

Figure 2.2 A Service Record Browsing Tree

PublicBrowseRoot

Generic Audio Generic
: Telephony
service group .
service group
Headset Handsfree Cordless Infercom
Audio Gateway Audio Gateway Telephony cenvice
service service service

To browse a remote device’s service discovery database, a local device must
page and set up an ACL connection with it. This means that a device must be in
Page Scan mode and accepting connections before information on the services it
offers can be gathered. Once an ACL connection is formed, the local device must

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

then open an L2CAP channel and use the reserved PSM (0x0001) to request a
connection to the SDP layer. This PSM never changes, and SDP is always present,
so you always know where to look for information on a device’s services. The
L2CAP connection can only be used for service discovery. If you wish to use
other services, another L2ZCAP connection is required. This is important for
maintaining security while still allowing service discovery to take place.

The process of service discovery is covered in detail in Chapter 5.

Connecting to and Using
Bluetooth Services

Several stages must be completed before you can use a Bluetooth service.

Find the device — Inquire.
Connect to the device — Page.

Discover what services the device supports — SDP.

sl s

Decide what service to connect to and find out how to connect to it —
SDP.

5. Connect to the service.

Stages 3 thru 5 all involve connecting to more than one upper layer.
Connections to these upper layers must each be opened separately and in order.
The following figures illustrate this process for an Audio Gateway connecting to
and setting up an audio link to a Headset. This is a conceptual summary, not a
detailed systematic guide. The exact steps an Audio Gateway application will need
to go through will depend on how much of the detail is abstracted by a
Connection Manager. The following sections give one example sequence.

Stage 1: Finding the device by Inquiring. (See Figure 2.3.) These diagrams
are simplified, and omit details of configuration. So, for instance it’s assumed that
somehow the Audio Gateway has configured inquiry parameters, and that the
Headset has been placed in Inquiry Scan mode.

1. The Audio Gateway application sends an inquiry request to the lower
layers.
The lower layers send inquiry packets to the neighborhood.

All Inquiry Scanning devices in the neighborhood, including the
headset, reply with inquiry responses.

4. The lower layers send the responses to the Audio Gateway application.

www.syngress.com

91

92 Chapter 2 * Exploring the Foundations of Bluetooth

Figure 2.3 Simplified Inquiry Procedure

AG Application Headset Application
RF OPM D - RFCOMM SDP o
D 5
L2CAP L2CAP

@)
Baseband j‘ E Baseband
©)

Inquiry

1. Application starts inquiry

2. Baseband inquiry

3. Baseband inquiry response
(Headset in Inquiry Scan)

4. Inquiry result reported

Note that the Headset application is not involved at all: once it has config-
ured the lower layers to Inquiry Scan, it is completely unaware of any inquiry
responses they generate.

Stage 2: Connecting to the device by paging. (See Figure 2.4.) Again, these
diagrams are simplified, and omit details of the configuration. So, for instance, it is
assumed that somehow the Audio Gateway has configured Page parameters, and
that the Headset has been set into Page Scan mode.

1. The Audio Gateway application sends a page request to the lower
layers

2. The lower layers of the Audio Gateway page the Headset, using its
Bluetooth device address to generate ID packets, which only it will be
listening for. Other page scanning devices in the neighborhood will not
detect the paging or respond to it. At this stage, a series of low-level
packets are exchanged. The details are not important except to note that
the Headset is passed information on the Audio Gateway device,
including its Bluetooth device address and Class of Device.

3. The lower layers on the Headset send a message to the Headset applica-
tion notifying it of the connection request. This notification will include
the Audio Gateway’s Bluetooth device address and Class of Device,
which were gathered during paging.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2 93

Figure 2.4 Simplified Page Procedure

AG Application Headset Application
RF O%M 9D - RFCOMM S+ o
w | I
L2CAP L2CAP

@)
ﬁ
Baseband j Baseband
O]

Page
1. Application requests connection
2. Baseband page
3. Incoming connection request
(Headset not set up to auto-accept connections)
4. Accept connection
5. Baseband page response - connection accepted
6. Connection complete (ACL link in place)

4. The Headset application replies to the lower layers accepting the
connection.

5. The lower layers on the headset send the response to the lower layers on
the Audio Gateway.

6. The lower layers on the Audio Gateway forward the message, accepting

the connection to the Audio Gateway application. The Audio Gateway
application now knows it has an ACL (data) connection ready for use.

Stage 3: Discovering what service a device supports through SDP. (See
Figure 2.5.) The first thing to do when connecting to SDP is establish an L2ZCAP
connection using the PSM which identifies the SDP layer.

1. The Audio Gateway application sends a request to its local L2ZCAP layer
asking for an L2ZCAP connection to the PSM for SDP on the Headset.

2. The request is relayed to the L2CAP layer on the Headset, which asks
the Headset application if it is willing to accept the request.

3. The Headset application responds that it will accept a connection to the
SDP layer.

4. The response is relayed to the L2ZCAP layer on the Audio Gateway,
which informs the Audio Gateway application that an L2CAP connec-
tion to the SDP layer on the headset is available for use.

www.syngress.com

924 Chapter 2 * Exploring the Foundations of Bluetooth

Figure 2.5 Simplified L2CAP Connection to SDP Procedure

AG Application Headset Application
vy i
E E
L2CAP L2CAP

ACL
Baseband <,:> Baseband

Initialize L2CAP to SDP

1. AG requests connection to SDP (PSM 0x0001)
2. L2CAP connection request indication at Headset
3. Headset accepts connection

4. L2CAP (ID for SDP connection is reported at AG

Stage 4: Decide what service to connect to and find out how to connect to
it. (See Figure 2.6.) The Audio Gateway application can now send SDP requests
and will receive SDP responses from the SDP server on the Headset. Notice that
once the Headset application has registered a service record with the SDP layer, it
does not need to be involved in SDP transactions—the SDP layer can respond to
requests autonomously.

Figure 2.6 Simplified SDP Search Procedure

AG Application Headset Application
{}
g
RFCOMM SDP - RFCOMM SDP o
43 513
L2CAP L2CAP
N N
AL
g g
Baseband <);> Baseband
SDP Search

AG application uses SDP to discover services

offered by Headset application. Headset application
should already have placed a correct service record
in the database. Information returned indudes PSM
for RFCOMM and DLCI for RFCOMM channel.

Once information is gathered, SDP connection can
be closed.

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

The Audio Gateway will send requests to retrieve the service record for the
Headset Service. This checks that the service is really supported, and provides
information on how to connect with it.

Stage 5: Connect to the service. (See Figure 2.7.) This stage begins in the
same way as connecting to the SDP layer by creating an L2CAP connection. The
procedures are exactly the same as those for creating an L2ZCAP connection to
SDP, except that the PSM used this time is the PSM for RFECOMM.

Figure 2.7 Simplified L2CAP Connection to RFCOMM Procedure

AG Application Headset Application
ey e
E E
L2CAP L2CAP

ACL

Baseband <\:“> Baseband

Initialize L2CAP to RFCOMM
1. AG requests connection to RFCOMM
(PSM 0x0003)
2. L2CAP connection request indication at Headset
3. Headset accepts connection
4. L2CAP ID for RFCOMM connection is reported af AG

Once the L2CAP connection to RFCOMM is established, it can be used to
carry messages between the Audio Gateway application and the Headset applica-
tion. As we noted in “Reviewing the Protocol Stack,” RFCOMM can carry
many emulated serial links simultaneously, therefore the Audio Gateway must
identify the correct link to use to communicate with the Headset service. This is
done by using the DLCI for the Headset service, which was passed to the Audio
Gateway in the Headset’s service record. See Figure 2.8.

Once the Audio Gateway and Headset are communicating across
RFCOMM, the Audio Gateway can send control messages using AT commands
(the same command set that is commonly used to control modems). See Figure
2.9.To notify the Headset application that there is a call waiting, and to ask the
headset application to alert the user with a ring tone, the Audio Gateway applica-
tion sends an AT+RING command over the RFCOMM link. If the headset user

www.syngress.com

95

96

Chapter 2 * Exploring the Foundations of Bluetooth

presses a button to accept the call, the Headset sends this button press in a keypad
command: AT+KPD.

Figure 2.8 Simplified L2CAP Connection to RFCOMM Procedure

G Application

K

RFCOMM SOP

{%ZCAPﬁ}

Audio

Headset Application
ﬁk%c}omm 0P

%MP{}

Audio

Busehuni}

Al

(=

Busebunﬁ}

control

| information.

RFCOMM Connection fo Headset Service

AG uses RFCOMM channel with CID from SDP
query fo connect to Headset service and exchange

Figure 2.9 Simplified Headset Service Connection Procedure

AG Application

1

FCOMM SDP

b

Audio

ﬁeudset Application
RFCOMM | <pp

{%ZCAP{}

Audio

ACL
k—
Baseband Baseband
S0
Set Up Audio Connection

Control messages are exchanged over RFCOMM
channel to open an audio connection.

Once the user has accepted the call, a voice (SCO) link must be set up (see
Figure 2.10). Although this link is controlled using the RFCOMM link, it is
established separately, usually by a separate audio control layer. Once the SCO
link 1s established, it is still controlled by the RFCOMM link. For instance,
some headsets support remote volume control using AT commands, and the

www.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

SCO link can be destroyed by sending a hang-up command AT+HUP on the

RFCOMM link.

The exact procedure for using the service 1s defined in the appropriate

Bluetooth profile. As we have seen, the level of detail in a profile goes to the
exact AT command to be sent over an RFCOMM channel when a particular

button is pressed. It is this level of detail that allows such a high level of inter-

operability. Some procedures, such as those for a Headset, are relatively simple,

while others are a lot more complex; the Printer Profile is a good example.

Figure 2.10 Simplified SCO Connection Procedure

AG Application

Headset Application

RFCOMM SDP - RFCOMM SDP
_<§
L2CAP IE L2CAP
ACL
Baseband Baseband

<,i'j> Audio

(0

Audio Connection In Place

Although RFCOMM and L2CAP layers are still
active, they do not carry any audio data. (In

Headset

and AG devices, o reduce latency, audio is often
routed over a PCM connection directly to and from
the baseband rather than over the HCl transport.)

www.syngress.com

97

98

Chapter 2 * Exploring the Foundations of Bluetooth

Summary

The Bluetooth stack does a good job of hiding the complexities of a wireless
interface, but some peculiarities are still apparent. Before connections can be
made between devices, they must find each other. One device discovers another
by sending out inquiry transmissions, while the other listens for these inquiries
and replies to them. A device must be in Inquiry Scan mode to be discoverable.
The specification details timing restrictions on Inquiry and Inquiry Scan
designed to ensure that devices have the best chance possible of discovering
each other, while still allowing a low duty cycle and hence, minimal power
consumption. Increasing the duty cycle reduces latency, but increases power
consumption.

Once two devices have found each other, they use a paging procedure to
connect. This is similar to inquiry in that one device transmits while the other
listens and then responds. Only devices that are in Page Scan mode can be con-
nected to, but devices in Page Scan may reject an incoming connection request if
they choose. The Bluetooth specification places limits on Page Scan to allow a
good chance of connection while keeping power consumption low.

Devices are usually in Page Scan only (connectable but not discoverable), or
Page and Inquiry Scan (connectable and discoverable).

While a Bluetooth service is being used, the complexities of the air interface
are hidden by abstracting the interface across a number of software layers. The
HCI transport provides a standardized interface to the Bluetooth integrated cir-
cuit (IC). Audio is routed directly over the HCI interface. Data traftic from sev-
eral upper layers is multiplexed through the Logical Link Control and Adaptation
Protocol (L2ZCAP), which identifies upper layer types by their Protocol Service
Multiplexor (PSM) values. The actual L2ZCAP channels each have unique
Channel Identifiers (CIDs). The Bluetooth specification describes several different
types of layers above L2CAP, including RFCOMM for serial port emulation, and
TSC-BIN for telephony profiles.

Different Bluetooth devices support different profiles and ofter difterent ser-
vices. Each Bluetooth application must maintain an accurate record of the ser-
vices it offers in a service discovery database. Remote devices can then connect
to this database and use the Service Discovery Protocol (SDP) to query it. The
SDP layer can always be found in the same place, above L2CAP. Service discovery
can be complex, but the Bluetooth profiles detail most of the attributes that
should be stored in a service record.

WWW.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

Once a remote device has connected to a local device and found a service in

the service database that it wants to connect to, attributes in the service record

provide the information on the upper layers required to use the service and how

to connect to them. Connections to each protocol layer must be made in turn

from lowest to highest.

Solutions Fast Track
Reviewing the Protocol Stack

4}

The protocol stack hides the complexity of the wireless interface and
presents, at its highest level, a software interface that resembles that of a
wired connection.

Not all the differences between a wired and a wireless interface can be
hidden. In particular, the steps required to find and connect to other
devices are peculiar to wireless.

Bluetooth devices can contain various combinations of upper stack
layers to support various profiles. The Bluetooth specification details a
service discovery layer so that devices can find out what services are
available and how to connect to them.

Why Unconnected Devices Need to Talk

4}

With Bluetooth devices, the user may not initially know that there are
other Bluetooth devices nearby, so a method is required to find them.
The Bluetooth equivalent of plugging in a cable is the forming of a
connection. The checks on communications protocols and applications
compatibility are actually done once a basic Bluetooth link is established,
and are called service discovery.

The procedure used to find devices is called inquiry, and the procedure
used to connect to devices is called paging. In both cases, one device
transmits and receives on special sequences of frequencies that are
known to all devices. The other device needs to be listening for the
transmissions—if a transmission is received correctly, it sends out a reply.
Since it knows the sequences used for inquiry and paging, it can work
out the correct frequency on which to send the reply.

29

P

100 Chapter 2 * Exploring the Foundations of Bluetooth

Discovering Neighboring Devices

M Only devices in Inquiry Scan can be discovered.
M An inquiry is normally a periodic or user-initiated event.
M An inquiry response contains all the information required to connect to

a device by paging.

.* Connecting to a Device

M Only devices in Page Scan can accept connections, although they may
choose to reject incoming connection requests.

M If a page and connection request is successful, then the paging device
becomes the master of the piconet and the paged device becomes the
slave. An Asynchronous ConnectionLess (ACL) connection now exists
between the two.

M A master can have connections to several slaves, but a slave can only have

a connection to a master. For the upper stack layers, this is the only dif-
ference between the two.

Finding Information on Services a Device Offers

M The application is responsible for maintaining accurate records of the
services it offers in a service database.

M An ACL and a Logical Link Control and Adaptation Protocol (L2ZCAP)
connection must exist to a remote device before it can browse the ser-
vice database using the Service Discovery Protocol (SDP).

M The service database contains all the information required for a remote
J device to identify and connect to local Bluetooth services.

Connecting to and Using Bluetooth Services

M A remote device must conduct an SDP query before connecting to a
F local Bluetooth service, and must support a complementary profile.

M Connecting to a service involves first opening L2CAP, then higher layer
connections in turn, using the information from the SDP query.

M The procedure for using a service is detailed in the appropriate
Bluetooth profile.

WWW.syngress.com

Exploring the Foundations of Bluetooth ¢ Chapter 2

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I don’t like the way the Radio Baseband/Link Controller/Link Manager
works. Can I change 1t?

A: No. Interoperability is a fundamental concept of the Bluetooth specification.
If you change the way the lower layers function, they will no longer interop-
erate with other Bluetooth devices. In addition, several core technologies of
the Bluetooth specification use Intellectual Property (IP) licensed from
Ericsson, or the Bluetooth SIG (depending on which version of the adopter’s
agreement you signed). The Bluetooth Adopters Agreement gives this license
free of charge, provided your products meet the Bluetooth specification. If
you change the operation, you would be breaking the specification, the free
license would not apply, and you would be using IP without permission.
Litigation may follow:

Q: I don’t like the way the upper layers work. Can I change them?

A: Yes, up to a point.You can create your own upperdayers and profiles, pro-
vided the Generic Access Profile (GAP) 1s still met. The GAP mandates cer-
tain minimum functionality, including support for service discovery. This
allows other Bluetooth devices to connect'and find out what services are
offered, even if the devices do not know how'to use them: the responses are
coherent and sensible. Support for SDP implies the presence of a specifica-
tion compliant L2CAP layer. New profiles must be different from or exten-
sions to current ones. You are not allowed to create something that is similar
to the Headset profile, but will not interoperate with Bluetooth Headset
Audio Gateways. However, any stack layer or profile functionality can only
be used by an application that knows how it operates. Everyone can read
how the Bluetooth specification defined layers and profiles work, so they
experience a high degree of interoperability. Manufacturer defined layers and
profiles will have a much lower visibility and a correspondingly lower level
of interoperability.

101

www.syngress.com =

102

Chapter 2 * Exploring the Foundations of Bluetooth

Q: What is the difference between an L2CAP PSM value and an L2CAP CID?
A: Protocol Service Multiplexor (PSM) values identify the protocol used to

communicate over an L2CAP channel. In effect, this defines the higher layer
that uses the channel. Multiple instances of the same higher layer may use dif-
terent L2ZCAP channels, but they will all be identified by the same PSM
value. Each separate channel is uniquely identified by its Channel ID (CID).
A higher layer may request an L2ZCAP connection to a remote RFCOMM
entity by specifying a PSM value of 0x0003.The local and remote L2CAP
layers then assign CIDs to this link. The CIDs are used to actually identify
traffic sent between RFCOMM layers.

: What is the lowest power that a Bluetooth device can draw?

: This question is only slightly less open-ended than “How long is a piece of

string?” The absolute lowest power consumption will be when a device is not
doing anything and can drop into a deep sleep mode. Many devices can do
this when not part of an active connection; some can also do this in intervals
between activity in low-power snift, park, and hold modes. If low power
modes are not used, then slaves can often draw more current than masters,
since slaves have to listen in every possible slot for a master’s transmission,
while masters only have to transmit when they need to. Although page scan-
ning draws a lot less continuous current than paging, if paging is only to be
an infrequent activity, the paging device may end up drawing less average
current than a device in constant Page Scan mode. In summary, current con-
sumption depends on the mode of device operation, which is determined by
the application design. Power consumption implications should therefore be
considered carefully when the application is designed. If an application is to
be a good neighbor, it should also permit as much flexibility for devices that
connect to it as possible (e.g., accept low power mode requests). The actual
power consumption during each mode of operation will depend on the
Bluetooth hardware implementation.

» www.syngress.com

Chapter 3

Power

Management

Solutions in this chapter:
= Using Power Management: When and
Why Is It Necessary?
= Investigating Bluetooth Power Modes

. "Evaluating Consumption Levels

M Summary
M Solutions Fast Track

M Frequently Asked Questions

103

104

Chapter 3 * Power Management

Introduction

Bluetooth technology finally makes the mobile application a reality. Not only can
users be mobile whilst connected but radio networks can also be used in places
where fixed infrastructure is too expensive, dangerous, or difticult to deploy. This,
however, leaves you with the difficulty that all these devices must be powered
using batteries, which have to be frequently recharged or replaced. If the
Bluetooth device uses too much power, this can become a real problem.

As an applications designer, you may think there is nothing you can do about
the problem—after all, you have no control over the amount of power your hard-
ware consumes. The good news for Bluetooth applications is that designers do
have the ability to do something about improving the power efficiency of their
application. The Bluetooth specification ofters a range of power-saving features,
tailored to suit the needs of different applications, which can give your applica-
tions a real edge.

The drawback (and there always is one) is that if you use these features badly,
you will slow down the response time of your application, making it infuriating
to use. This chapter will tell you how to get the best of both worlds: save power
while still producing usable applications.

Using Power Management:
When and Why Is It Necessary?

Before going further, its worth spending a little time defining what a power man-
aged application actually is and exploring some of the reasons why such applica-
tions are necessary. A power-managed application is one that allows the device it
is running on to go into sleep mode for significant portions of its duty cycle.
Sleep mode need not involve powering down the whole device; in fact, this is
highly unlikely, as certain functional blocks will always need to be powered.
However, when a device is in sleep mode it should be consuming significantly
less power than when it is fully “awake,” otherwise power management will be a
waste of time.

A turther characteristic of application level power management is that it
should not adversely aftect the performance of the application. In fact, the user
should not be aware that your application is using power management and that
the Bluetooth device is not constantly powered on. Powering down a device at
the wrong time can not only result in almost no energy being saved, but it can

www.syngress.com

Power Management ¢ Chapter 3 105

also make an application virtually unusable by making it slow to respond. Let’s
consider the example of a wireless headset and a mobile phone. If the headset 1s
powered down at the wrong time, the phone will not be able to notify it of an
incoming call. Even though the headset may be saving significant amounts of
power, as far as the user is concerned, it is unusable, because it cannot receive calls
in a timely manner.

So, it power management has the potential to make your application unusable
or infuriatingly slow, why bother with it? Used in the correct way, the Bluetooth
power management modes have the potential to extend the battery life of your
device significantly, yet be completely transparent to the user. In general, users do
not like having to lug about heavy batteries or recharge their devices frequently.
A typical mobile phone has a small battery and yet can last several days without
recharging. If adding Bluetooth functionality to such a phone reduces its average
battery life significantly, it 1s unlikely to be popular with the user. Power manage-
ment at both the hardware and software levels of Bluetooth technology is there-
fore necessary in order to make these networks viable. A further benefit of
application power management is that the energy savings are independent of the
underlying technology. This means that if through power management you
double the battery life of your device, this will hold true even if the power con-
sumption of the underlying hardware was significantly improved.

A relatively minor, but nevertheless important, point to consider is who owns
the devices that are being power managed. Often greater power savings can be
achieved by one device at the expense of the energy resources of another. An
obvious example would be where a device is powered down for the majority of
its duty cycle while another device bufters packets destined for it and therefore
must be constantly powered on. Periodically, the first device wakes up to pick up
these packets, acts on them if necessary and then powers down again. Thus, the
first device can achieve very high power savings at the expense of the buftering
device. If the same user owns both devices (and especially if one of those devices
can be mains powered, e.g., a PC) then this is a very good approach to achieving
high power savings. However, if the devices belong to diftferent users then there is
an obvious conflict of interests as both users might be keen to prolong the bat-
tery life of their particular device rather than altruistically providing a service for
others. In this case, a scheme where both devices achieve some, but not maximal,
power savings may be a better compromise rather than having no power saving at
all. The anticipated uses of a power-managed application can therefore be impor-
tant in choosing the power management approach taken.

www.syngress.com

106

Chapter 3 * Power Management

Having discussed how useful power-managed applications can be, it is worth
looking at what types of applications are suitable for these techniques and which
ones will have their performance adversely affected by power management. The
first thing to remember is that in order to save power, the device must be put
into sleep mode. Applications that require large amounts of data to be sent or
received, or that need very fast response times, are not suitable for power man-
agement. On the other hand, applications requiring small amounts of data to be
transmitted or where data transfers are infrequent are very well-suited to being
powered down for the majority of the time they are inactive. Similarly, applica-
tions where a delay in the response time can be tolerated should also consider
power management.

Before choosing a given Bluetooth power management mode to use with
your application you should consider the maximum amount of time the device
can be powered down without adversely aftecting the performance of your appli-
cation. In general, when using power management, an application designer trades
off an increase in latency and a decrease in data throughput for an increase in the
battery life of the device running the application. The following sections will dis-
cuss the Bluetooth power management modes and the use of each mode in the
context of difterent types of applications.

Investigating Bluetooth Power Modes

For most applications, if a connection exists between two or more Bluetooth-
enabled devices, one of the Bluetooth low power modes can be used to extend
the battery life of either some or all of these devices. In fact, power-managed
devices can be in one of four states, listed in order of decreasing power consump-
tion: active, hold, snift, and park mode. Each of these low power modes will be
described, along with a discussion of what type of applications will and will not
be suitable for it.

Active Mode

In active mode, the device actively participates on the radio channel. The master
schedules data transmissions as necessary and the slaves must listen to all active
master-slave slots for packets that may be destined for them. This mode is a
useful benchmark for comparison with the performance of the low power
modes since it not only consumes the most power but also has the highest

www.syngress.com

Power Management ¢ Chapter 3

achievable data throughput due to the devices being able to use all available
slots. The power consumption of Bluetooth devices is highly dependent on the
manufacturer of the device and the application that it is running. Furthermore,
as the technology matures, the power consumption of Bluetooth-enabled devices
will improve further and hence it is best to compare low power modes relative
to the active mode.

We will briefly discuss the type of applications best suited to active mode,
which are unlikely to benefit or be able to utilize any of the other low power
modes. An application that has very high data rate requirements is unlikely to
power save as it will need to have its radio transceiver powered on for the majority
of its duty cycle. Similarly, applications that require very low latencies are also
unlikely to be able to use the low power modes since they will power down for
such short periods that the overhead in powering down the device will be greater
than the energy saving made (or powering down for longer periods will mean the
application is no longer able to conform to its latency requirements).

Hold Mode

This is the simplest of the Bluetooth low power modes. The master and slave
negotiate the duration that the slave device will be in hold mode for. Once a
connection is in hold mode, it does not support data packets on that connection
and can either power save or participate in another piconet. It is important to
note that the hold period is negotiated each time hold mode is entered. Figure
3.1 shows what the interaction between two devices using hold mode might
look like. A further important aspect of hold mode is that once it has been
entered, it cannot be cancelled and the hold period must expire before commu-
nications can be resumed.

Figure 3.1 Hold Mode Interaction

A

Adtive mode

Hold mode]

Power consumption

\ 4

Time

107

www.syngress.com

108 Chapter 3 * Power Management

Given these constraints, what type of application would benefit from using
hold mode? If your application can determine or control the time of its next data
transmission, then it can most probably use hold mode for power management.
One example of an application that has some degree of control over when its
next data transmission should take place is a wireless e-mail delivery system.
E-mail is not a synchronous communications medium and messages can take
anything from a few seconds to several hours to be delivered to their destination.
More importantly, users do not perceive e-mail delivery to be instantaneous and
hence would tolerate a small additional delay in favor of extending the battery
life of their device. The following sidebar, “Power Management Using Hold
Mode,” discusses in more detail how hold mode can be used by such an applica-
tion, along with power saving techniques available.

Developing & Deploying...

Power Management Using Hold Mode

Given that e-mail is not an instantaneous communications medium and
the delivery delays involved can be relatively large, any wireless e-mail
delivery system has a lot of flexibility in the way it checks for new mes-
sages and sends off ones that have just been written. In fact, if correctly
implemented, the delivery delay should not be perceptible to the user.
Let's assume we have a Bluetooth-enabled organizer that periodi-
cally communicates with an access point and retrieves newly arrived e-
mails as well as sending off ones that have just been written. A simple
way of implementing such a service will be to set up an RFCOMM con-
nection between the two devices and have the checking device periodi-
cally search for new e-mails. Placing such a link in hold mode is unlikely
to have a significant impact on the delivery time of e-mail and can result
in power savings at both ends of the link. Furthermore, as each hold
interval is negotiated independently of the previous ones, this gives us
the opportunity to write an application that dynamically adapts to its
usage. For example, successive hold intervals can be increased by a cer-
tain factor (up to a particular ceiling, of course) if there are no e-mails
retrieved or sent during the previous “active” period. In the same way,
successive hold intervals can be decreased if the frequency of e-mail
arrivals increases. This approach allows the application to better adapt
to the way it is being used and achieve higher power savings when the

Continued

www.syngress.com

Power Management ¢ Chapter 3

load on the radio is light whilst still being responsive at higher usage
rates. However, designers of such applications should be careful not to
make such transitions too rapid as this may result in a yo-yo effect with
the application swinging from one extreme to the other.

A further power saving technique at the application level, not
directly connected with the use of Bluetooth low power modes, may be
to compress data before transmitting it. If a high enough compression
ratio can be achieved, the time that the transceiver has to be powered on
can be reduced enough to justify the extra work. However, this should
also be used with caution. A small device with relatively little computa-
tion power will use up energy in compressing (or decompressing) a file
and this may offset the savings made in transmitting a smaller file. Such
power-saving techniques are highly dependent, not only on the type of
data being sent, but also on the underlying hardware.

A very different candidate for hold mode is one which relies on the use of
a SCO link and does not need to send data packets. Furthermore, if the appli-
cation can tolerate a poorer audio quality it can use fewer slots and hence
power down for longer periods of time. For example, a baby monitor needs to
have an active SCO link but does not need the ACL link. Also, given that par-
ents are mainly interested in detecting whether the baby is crying or not, this
application could probably get away with a slightly poorer quality of audio. By
placing the ACL link in hold mode for relatively long periods of time and
reducing the quality of the SCO link, the application can achieve greater power
savings.

Having discussed application types able to benefit from using hold mode, we
will briefly consider applications that should not use this mode, being it’s likely to
have a negative impact on performance. Hold mode is not suitable for applications
whose traffic pattern is unpredictable and which cannot tolerate unbounded com-
munication latencies. An obvious example is a device that allows a user to browse
the Web over a wireless link. Even though access to the World Wide Web is noto-
rious for being slow, if this latency is further increased by using hold mode, the
application becomes too frustrating to use. At this point, it’s worth remembering
that once entered, hold mode cannot be exited until the negotiated hold interval
has expired. Furthermore, the traftic pattern of such an application is impossible to
predict due to the nature of Web browsing. The user may make a number of page
requests in quick succession whilst browsing for a particular page. However, once
the page has been found, they may spend considerably longer looking at the page
and not need the use of the wireless link for some time.

109

www.syngress.com

110

Chapter 3 * Power Management

A very difterent application type whose performance will be negatively
impacted is a network of sensors which need timely delivery of their data—for
instance, intruder detection. Once a sensor has been triggered, fast delivery of this
information to the control center is imperative. A sensor with a long battery life
that spends much of its day powered down may just give an intruder time
enough to avoid being caught.

Sniff Mode

This low power mode achieves power savings by reducing the number of slots in
which a master can start a data transmission and correspondingly reducing the slots
in which the slaves must listen. The time interval, T ;¢; between the slots when a
master can start transmitting is negotiated between the master and slave when sniff
mode is entered. When the slave listens on the channel it does so for N aecempt
slots and can then power down until the end of the current sniff interval. The time
of reception of the last data packet destined for the slave is important, as the slave
must listen for at least N_ g ineour after the last packet is received.

Figure 3.2(A) shows the lower bound of the number of slots that the slave
sniff acempe- 1 118 happens if the last
packet for the slave is received when there are more than N

must listen. In this case it just listens for N
sniff timeout slots
remaining in the sniff attempt. The slave just listens for the remainder of the sniff
attempt interval and can then power down.

Conversely, Figure 3.2(B) shows a slave listening for an extended period. In
this case the slave listens N then receives a packet and listens for a fur-

ther N

sniff attempt?

niff timeout SlOts. This shows how the slave must listen for a further N ¢

slots if the last packet is received when there are less than N slots

timeout sniff timeout
left in its sniff attempt interval. If the slave continued receiving packets it would

continue listening for N slots after the last packet is received, so if the

sniff timeout
master kept on transmitting the slave would remain continuously active.

snift attempt slots thru (Nsniff attempt +
) slots, and even go all the way to continuously active, all without rene-

The slave can vary its activity from just N
N, sniff timeout
gotiating any parameters. You can therefore see that by choosing suitable values for
the snift interval and the number of slots that the slave listens for, power savings can
be achieved without adversely affecting the performance of the application.

This section will consider what types of applications are suitable for use with
snift mode and which are not. Snift mode is more flexible than hold mode since
either the master or the slave can request for snift mode to be exited. However,
there is a trade off in the overhead associated with exiting sniftf mode and it is
more advantageous to choose the sniftf mode parameters so as to minimize the

www.syngress.com

Power Management ¢ Chapter 3

likelihood of exit. Since sniff mode requires the slave device to periodically wake-
up and listen to the radio channel, it is particularly well-suited to applications
where devices regularly transmit (or receive) data. An example of such an applica-
tion 1is discussed in the case study that follows. Sniff mode can also be used when
there is an active SCO link. Once again, by accepting a slight degradation in the
audio quality, power savings can be achieved since SCO links using HV2 or HV3
packets can be placed into snift mode (note that SCO links using HV1 packets
can also be placed into snift, but in this case it will not have much effect since the
device is transmitting in every slot).

Figure 3.2 Sniff Mode Interaction

A

=
L2 .
S Adive mode
£
Z Sniff Sniff
= ni ni
A § Attempt Attempt
£ Sniff mode
° .
m »
) Sniff interval g Time
5 A
S Adive mode
£
2
B £ siff | st Snff
- Attempt | Timeout Attempt
S Sniff mode
(-]
e >
Sniff interval Time

Another set of applications that could use sniff mode are ones where the
devices can aggregate data and maybe even do a limited amount of processing
before communicating with the master. Thus, not only the frequency of commu-
nication can be reduced, but also the actual amount of data transmitted. Once
again, sensor networks are an obvious area of application. For example, a traftic
monitoring system would be wasting resources transmitting every second the
number of cars that have passed through a given point. Since the information is
not time-critical, the update frequency can be decreased (i.e., the car count is
aggregated at the sensor without affecting the performance of the system).
However, this need not be limited to sensor applications—for example, the e-mail
delivery system described in the previous example could be implemented using
snift mode instead of hold mode.

111

www.syngress.com

112

Chapter 3 * Power Management

Application types not particularly well-suited to using sniff mode are ones

frequently requiring relatively large data transfers. In this case, the time necessary
to transmit the data is important, because if it takes too much time, your applica-
tion will not be able to power down for very long, if at all. The application itself
will not see a degradation in performance, but it will not achieve any power sav-
ings either.

Developing & Deploying...

Power-Managed Sensor Networks

One application that Bluetooth seems particularly well-suited for is
sensor networks. As the technology matures, single chip Bluetooth solu-
tions will not only become smaller but also much cheaper, making it fea-
sible to embed them into even the cheapest devices. The number of
possible sensor applications is virtually infinite. For this example, we
shall consider what a patient monitoring system in a hospital might do
and how it can benefit from using sniff mode to prolong the battery life
of its sensors. Currently, remote monitoring of patients is limited mostly
to intensive care wards and usually only one or two of the patient’s vital
life signs are monitored. The main reason behind this is that once this
information has been collected, it is difficult to disseminate it so that
both doctors and nurses have easy access to it. By using wireless sensors,
the collected information can be periodically transmitted to a wireless
access point and from there stored centrally so it can be accessed from
anywhere in the hospital, or even from outside it (e.g., a consultant log-
ging in from home to check up on a patient).

One such system might involve a set of sensors such as heart rate,
blood pressure, temperature, and respiration monitors that frequently
transmit their readings to a central access point in the ward. This infor-
mation could then be displayed at the nurses’ station so that patients
are monitored continuously. In addition, doctors would be able to
access the same information from anywhere in the hospital or even
from home using their own Bluetooth-enabled organizer and hence be
able to react quickly to changes in the patient’s condition. To save
power, the sensors use sniff mode and during the listen slots are
addressed by the access point and transmit their readings. The sensor
can then power down for the remainder of the sniff interval. This solu-

Continued

www.syngress.com

Power Management ¢ Chapter 3

tion has great power-saving potential, but there is one obvious flaw in
its design. If a patient suddenly takes a downturn, the sensors might
not transmit this information for a relatively long time. This obviously
makes the system unusable. However, sniff mode has an important
feature in that either the master or the slave can request to exit sniff
mode. This would allow a sensor to immediately transmit its readings
and the alarm can be raised. Of course, for such safety-critical appli-
cations, it is also crucial to include a back-up emergency alert system
that does not rely on radio. Adding a small piezo-electric beeper to
each sensor will not significantly increase its size, cost, or power con-
sumption. This can then be used in conjunction with the unsniff mode
or as an emergency back-up if the sensor is unable to communicate
with the master.

Park Mode

Park mode is the Bluetooth low power mode that allows the greatest power sav-
ings. However, while parked, a device cannot send or receive user data and
cannot have an established SCO link. In this mode, the slave does not participate
in the piconet, but nevertheless remains synchronized to the channel. This mode
has the further advantage of allowing the master to support more than seven
slaves by parking some whilst activating others. A parked slave periodically wakes
up in order to resynchronize to the channel and listen for broadcast messages. In
order to allow this, the master supports a complicated beacon structure that it
communicates to the slave at the time it parks it. However, the beacon structure
may change and the master then uses broadcast messages to communicate these
changes to the parked slaves.

The structure of the beacon channel is covered in detail in other sources; it is
sufficient to say here that every beacon interval number of time slots, the master
transmits a train of beacons that the slave tries to listen for in order to resynchro-
nize to the channel.

As an application designer, you have to choose the correct beacon interval to
save the maximum power whilst maintaining acceptable response times. Response
times are governed by how long it takes a slave to request unpark, or how long it
takes a Master to unpark a slave, both of which are affected by the park beacon
interval.

One factor to consider when choosing the park beacon interval is the
clock drift in the devices between successive beacons. If a parked slave loses

113

www.syngress.com

114

Chapter 3 * Power Management

synchronization, it will stop responding to the master, and may lose the connec-
tion altogether. The master will then have to restore the connection by paging it
and then parking it again. This 1s obviously wasteful. Therefore, devices parked
for the majority of their duty cycle should have the park beacon intervals set
well within the maximum threshold so that if the slave device misses a beacon it
can re-synchronize on the next one. So far, park mode sounds very similar to
sniff mode. The main difference, however, is that in order to send data packets to
a slave, that slave must firstly be unparked (also as mentioned earlier, a slave
cannot have an established SCO link when parked). The next section will con-
sider the types of applications suitable for use with park mode.

An application that has been described as being unsuitable for hold mode is
one where a Bluetooth-enabled laptop is used for wireless Web browsing.
However, the pattern of usage for such an application does make it particularly
suitable for park mode. It consists of “bursts” of activity while the user is
searching for a particular page, followed by a relatively long period of inactivity
while they are reading that page. The slave device can therefore be parked for
the majority of the time, while the radio link is not being used. However, when
the user needs to send data (assuming the beacon interval is kept relatively
short) the slave can be unparked quickly and the request dispatched. Thus, the
application can save power whilst keeping response times high. Another advan-
tage of having a short beacon interval is that the slave device has a greater
chance of remaining synchronized with the master. As the case study that fol-
lows shows, the Headset profile recommends the use of park mode while the
headset and Audio Gateway are not actively communicating. This is another
good example of an application suited to park mode, since activity is concen-
trated in bursts, but the response times are bounded by a maximum tolerable
latency.

A network of sensors (as discussed previously) 1s a good example of an appli-
cation where park mode is not particularly suitable as a low power mode. This is
mainly because in order for the sensors to send their data, they would have to be
unparked, allowed to transmit, and then parked again. For very short beacon
intervals, this is particularly wasteful due to the overhead of the park/unpark pro-
cedure. Furthermore, sniff mode perfectly fits the pattern of the application
without imposing this extra overhead. This point illustrates quite nicely the con-
clusion that there is no preferred low power mode. Each of the Bluetooth low
power modes is suited to a different class of applications and must be used
accordingly in order to achieve optimal performance (in terms of both power
consumption and usability).

www.syngress.com

Power Management ¢ Chapter 3 115

Developing & Deploying...

Power Management for the Headset Profile

The Headset profile as defined in the Bluetooth specification (part K-6) is
designed to provide two-way audio communications between a headset
and an “Audio Gateway,” allowing the user greater freedom of move-
ment while maintaining call privacy. The profile envisages the user
wearing a Bluetooth-enabled wireless headset and communicating with,
for example, a mobile phone or laptop computer (the Audio Gateway).

This application is a very good example of what could be termed an
asymmetrically power-managed application. In this case, the headset
has extremely limited energy resources (a coin cell or smaller battery)
whose lifetime must be maximized. The Audio Gateway, on the other
hand, has considerably greater resources since it is running on a device
with a larger battery. The overhead associated with power management
should therefore be placed on the Audio Gateway end of the link. By this
we mean that not only should the Audio Gateway be responsible for
power management on the link but also, if possible, it should use more
of its energy resources so that the headset can save more power.
Furthermore, as security is an important factor in this application, it is
likely that the same user will own both devices and hence it is particu-
larly suitable for asymmetric power management.

A headset must provide pairing functionality, allowing it to set up a
link key with the Audio Gateway for security purposes. This is not a state
that is likely to be entered frequently since once it is paired, the headset
will remain so until it is paired again. The headset must also provide
audio transfer functionality being that is what it is designed to do. Each
of these states should be considered with respect to power management.

Whilst pairing, the headset should be in discoverable mode (i.e., it
should respond to inquiries and also allow the Audio Gateway to con-
nect to it). In this state, power savings can be achieved by reducing the
time the headset spends with its radio transceiver powered on. This can
be achieved by setting the page scan and inquiry scan intervals so that
the radio is powered on for a relatively small fraction of the time. The
downside to this is that the Audio Gateway might take slightly longer to
find the headset and pair with it, but this delay is not likely to be signif-
icant. Furthermore, given that pairing is performed relatively infre-
quently, this is not a significant overhead.

Continued

www.syngress.com

116 Chapter 3 * Power Management

Once the devices have paired and are ready to connect to each
other there are two power-saving strategies to be adopted. The first is
saving energy while the devices are attempting to establish an RFCOMM
connection, and the second is once the RFCOMM connection has been
established—an RFCOMM connection must be established in order for
“AT" commands to be exchanged so that the audio link (through the use
of a SCO connection) can be set up. This is achieved by placing one
device into connectable mode (i.e., into page scan mode and letting the
other initiate the creation of the connection. According to the Headset
profile, either the headset or the Audio Gateway can initiate the con-
nection attempt. If the headset is in slave mode (waiting for the Audio
Gateway to connect to it), then it can employ the same technique used
in pairing. It can save power by reducing the time it spends scanning
(i.e., with its radio transceiver powered on).

Once an RFCOMM connection has been established, it can be
placed in park mode until a SCO connection is needed. This avoids the
overhead of establishing an RFCOMM connection (and tearing it down)
every time a call is placed to or from the headset. Once a connection has
been parked, either end is allowed to unpark it. This is to allow an
incoming call to be placed through to the headset so the user can uti-
lize voice dialing and dial out. Once the audio call has been completed,
the SCO is disconnected and the RFCOMM connection is placed in park
mode once more. It is important to note that neither the RFCOMM nor
the L2CAP channels are released during park mode, so the connection
can be brought up very quickly when required. However, while the con-
nection is parked, data cannot be transmitted or received. Figure 3.3
shows how an example headset application can use both sniff and park
to reduce its power consumption. An RFCOMM connection and an
ongoing voice call (SCO connection) are assumed to exist between the
two devices. The first diagram shows that as soon as the voice call is dis-
connected the RFCOMM link is placed in park mode. Note that either the
headset or the Audio Gateway may initiate park. If at some later time
either end wishes to transmit data, the connection must first be
unparked. Once again, either device may initiate the unpark. At this
point zero or more data packets may be sent and a SCO connection may
be initiated. The link cannot be parked until the SCO (if created) has
been released and there is no data pending transmission. The second
diagram in Figure 3.3 shows how sniff mode can also be used by the
headset. If, for example, either device expects to have data to transmit
shortly after the voice call is disconnected and does not want to incur
the overhead associated with entering park mode, it can place the link

Continued

www.syngress.com

Power Management ¢ Chapter 3

into sniff mode. In this state, the headset can transmit its button press
without exiting sniff. Furthermore, a SCO connection can be set up while
still in sniff mode allowing the devices to conserve energy even while
there is an ongoing voice call. Figure 3.3 shows that an application is not
restricted to using just one of the Bluetooth low power modes, and by
using more than one mode it can adapt better to its usage.

Figure 3.3 Headset Use of Park and Sniff Modes

| | | |
A 1 4 A

Ongoing voice call R P Ongoing voice call R
BPU"M > Button Press R
. Release SCO ress
< < Release SCO
. PARK p SNIFE
Button B
Press | UNPARK S P"""" . Button Press .
i ress g e
Button P, >
CIOLHES > < Create SCO
< (reate SCO (using HV3 packets)
P Active voice link < Adtive voice link
LJ L L (but ACL still in sniff mode) LJ

Evaluating Consumption Levels

As discussed earlier, the Bluetooth low power modes have different characteristics
and are suited to different classes of applications. Each low power mode also has a
different cost in terms of energy consumption. The power consumption of a
device 1s influenced by the hardware used, the low power parameters negotiated,
and the type of application it is running. This section will aim to give a very gen-
eral indication of the relative power consumption characteristics of the Bluetooth
low power modes. Absolute values for the average current consumption in each
mode are meaningless since it is highly dependent on the underlying hardware.
This section will therefore concentrate on the relative power consumption of
some of the Bluetooth low power modes.

Figure 3.4 shows a comparison of the average current consumption of a
device using different Bluetooth low power modes. Transmission of ACL data has
the greatest power cost and will be used as a benchmark against which to compare

117

www.syngress.com

118 Chapter 3 * Power Management

Figure 3.4 Relative Current Consumption for Different Bluetooth

Low Power Modes

e

[

ACL data Sniff Sniff Park Park
40ms 1.28s 1.28s 2.56s

Ing/page
Scan
i-0x800
w-0x12

Ing/page
Scan
i-0x1000
w-0x12

Page
Scan
i-0x800
w-0x12

Inquiry
Scan
i-0x800
w-0x12

www.syngress.com

Power Management ¢ Chapter 3

the other modes. As can be seen, a device in sniff mode consumes more current
than a parked device. It is also important to note that the interval used while in
snift or park mode also aftects its power consumption. The shorter the sniff
interval or park beacon used, the more current the device will consume as it has
to “wake up” more frequently in order to service that interval. Of course, the trade
off is that the shorter the interval, the lower the communication latency. As you
can see, there is always a trade off that has to be made between power consump-
tion and latency.

A device must be in inquiry scan mode in order to be discoverable. Similarly,
in order to be connectable, the device must be in page scan mode. Of course,
both modes can also be enabled simultaneously. As can be seen from Figure 3.4,
inquiry and page scan have a current consumption cost associated with them, and
as such, should be used only when necessary. For example, if we only need the
device to be connectable, then enabling inquiry scan will almost double the cur-
rent consumption of the device but will not give it the functionality actually
needed. Furthermore, as can be seen, the scan interval (denoted by i in the graph)
and window (denoted by w in the graph) also have an effect on power consump-
tion, so they should be chosen with care.

Although the graph in Figure 3.4 gives only a very approximate idea of the
relative energy consumption costs of the different Bluetooth low power modes, it
1s easy to see that significant advantages can be gained by having an application
use one or more of these modes.

119

www.syngress.com

120

Chapter 3 * Power Management

Summary

This chapter has described the properties of power-managed applications and
provided a discussion of why applications for Bluetooth-enabled devices can
benefit from the use of power management. It has also detailed the different
Bluetooth low power modes, illustrating the use of each one with example
applications.

Power-managed applications allow the device to power down for a large part
of its duty cycle thus saving energy and prolonging its battery life. However, the
drawback is that the response time of the application is increased and, if not used
correctly, power management can make applications infuriatingly unresponsive.
This also means that the application allowing the underlying hardware to power
down should be completely transparent to the end user. Bluetooth provides a
number of low power modes and each one is suited to a different type of appli-
cation. Before deciding on the power management mode to use, the maximum
allowed latency and expected radio traffic pattern of the application must be con-
sidered. Applications with a very low latency or requirements to transmit very
frequently might even make it inefficient to use a low power mode due to the
overhead incurred in entering and exiting it.

Bluetooth provides three low power modes for application designers to use,
hold, snift, and park. Each mode has difterent characteristics and is suitable for a
different class of application. Hold mode is suitable for applications that can pre-
dict or control the time of their next data transmission. As each hold interval is
negotiated independently of subsequent ones, this mode is suitable for adaptive
power management where the application monitors the usage of the link and
increases or decreases its sleep time accordingly. Hold mode cannot be exited and
therefore should not be used for applications with hard latency requirements.

Snift mode allows a Bluetooth-enabled device to save power by reducing the
number of slots that the master can transmit in, thereby reducing the slots the
slave must listen to. This mode is more flexible than hold mode as it can be
exited at any time. The slave listens periodically for a number of slots and this
makes snift mode particularly suitable for use in applications where data regularly
requires transmission. Applications that are not suitable for sniff mode are ones
that frequently require large data transfers that force the device to remain awake
beyond its snift interval. This does not have a detrimental effect on the applica-
tion’s performance, but it does not allow the device to achieve its full power
saving potential either.

WWW.syngress.com

Power Management ¢ Chapter 3

Park mode is the mode that allows greatest power savings to be made. This
mode is best suited for applications where the radio traftic pattern is unpre-
dictable and the connection establishment latency is bounded by some upper
limit. The Headset profile (from the Bluetooth specification) is a good example
of such an application. The RFCOMM link must be unparked as soon as pos-
sible, once a call needs to be put through from the Audio Gateway to the
headset.

The Bluetooth low power modes are different in the power management
support they provide and there is therefore no single mode that is best to use.
The low power mode used is determined by a wide range of factors dependent
on the type of application and its requirements. When considering which
Bluetooth low power mode an application should use, the main factors to con-
sider are:

» Whether the application is suitable for power management
» What is the maximum latency the application can tolerate

» What is the expected radio traftic pattern (random, periodic, bursty, and
SO on)

Solutions Fast Track

Using Power Management: When and
Why Is It Necessary?

M Consider whether your application is suitable for power-managed
operation.

M Consider the constraints imposed by the application (e.g., maximum
response times, characteristics of the data traffic, and so on).

Investigating Bluetooth Power Modes

M Hold mode One-oft event, allowing a device to be placed into hold
mode for a negotiated period of time. Hold interval must be negotiated
each time this mode is entered.

M Sniff mode Slave periodically listens to the master and can power
save for the remainder of the time. Important to note that data can be

WWW.syngress.com

122

Chapter 3 * Power Management

transferred while devices are in this mode and a SCO link may be
active. Snift intervals are negotiated once, before sniff is entered, and
remain valid until sniff mode is exited.

M Park mode Parked slave periodically synchronizes with the master
and for the remainder of the time can power save. Data packets cannot
be sent on a parked connection and the devices must be unparked
before a SCO connection can be established. Furthermore, there cannot
be an active SCO when its associated ACL is parked.

Evaluating Consumption Levels

M All other things being equal, the power consumption of a Bluetooth low
power mode depends on the parameters negotiated before that mode is
entered.

M Page and inquiry scan also have a power consumption cost, so these
should be entered only when necessary.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why don’t low power modes work with different version Bluetooth devices?

A: Between version 1:0brand*1.1, improvements were made to the link manage-
ment protocol messages, which put a device in hold, park, or snift mode.
These improvements made entering the low power modes much more reli-
able. However, because the protocol messages have changed, devices which
have the old version of-the protocol cannot work with the new version.

Q: Which versions of the Bluetooth specification are compatible for low power
modes?

A: The changes in the link management protocel messages were first introduced
as errata to the 1.0b specification. Changes, which were required to interop-
erate with version 1.1 of the specification, were labeled “critical errata.” So:

WWW.syngress.com

Power Management ¢ Chapter 3 123

= “1.0b plus critical errata” should be compatible with 1.1.
= 1.0b is not compatible with 1.1 or “1.0b plus critical errata.”

= Any version should be compatible with the same version, but there have
been interoperability problems with older versions, caused by ambiguity
in the specification.

Q: What is the best power saving mode to use? -

A: There is no “best” mode, it depends upon the requirements of your applica-
tion. Look at the case studies in this chapter and consider the requirements
of your particular application to decide which power saving mode is best
for you.

www.syngress.com

Chapter 4

Security

Management

Solutions in this chapter:

| B
i

Deciding When to Secure

Outfitting Your Security Toolbox

‘Understanding Security Architecture

Working with Protocols and
Security Interfaces

Exploring Other Routes to Extra Security

M Summary

M Solutions Fast Track

M Frequently Asked Questions

125

126

Chapter 4 * Security Management

Introduction

As with engineers and administrators whose wired networks provide access to the
general public, a very large dose of well-founded paranoia exists in those who
want to protect their data as they flow between Bluetooth nodes. There is cause
for greater concern when wireless connections are used in establishing peer-to-
peer connections, because such communication is easily intercepted. This senti-
ment has been captured in a statement recently made in the July issue of the
technical journal RFDesign, “... any high-school freshman with a scanner and
some basic software knowledge can crack a Bluetooth network.”

Without considering the implementation of security measures in your
product, as outlined in the Bluetooth specification, such beliefs may, in fact, prove
very accurate. Presented within this section are very powerful tools that, when
properly implemented, can thwart the efforts of those making an attempt to
extract information flowing in a completely unprotected public network.

What you need to know before reading this chapter:

» Bluetooth protocol stack component function

» Generic access protocol procedures

» Peer-to-peer protocol connection establishment mechanics
» Host Controller and Host function

» Embedded systems programming

» Familiarity with Bluetooth profiles

Deciding When to Secure

Bluetooth technology is designed to support wireless connectivity inheriting with
it a number of unique characteristics associated with this method of invisible
communication. For instance, anyone toting a Bluetooth-enabled device could
potentially connect to your Bluetooth device, gaining access to data without your
knowledge or permission. This should be cause for alarm for two reasons. First,
allowing anyone to establish a connection is problematic when your application is
to support one specific connection, as is the case in the Headset profile. Secondly,
free public access to your data or service can present a problem. Accessing net-
work data and implanting a virus through a local area network (LAN) Access
Point (LAP) or having unrestricted access to the telephone network via a wireless

www.syngress.com

Security Management * Chapter 4

telephony gateway are only two examples of applications where the use of secu-
rity makes sense.

Additionally, once a service is being provided, protecting data being sent
wirelessly 1s necessary for preventing eavesdroppers from intercepting and then
interpreting the information.

When to implement security is a related yet different issue. Pragmatically, you
will fashion your own security measures around the needs of the application
being developed; hints will be provided in this chapter to assist in this endeavour.
Reliance upon the Bluetooth specification is obvious for guidance in this matter,
but ultimately the decision is yours as a systems designer or application developer.

By offering your end customer the option of enabling or disabling security,
you provide them with the option of making your product simpler and easier to
use, thereby improving the end users’ out-of-the-box experience.

NoTE

Older versions of the protocol stack (pre V1.0B release) have security fea-
tures incompatible with V1.0B and later releases as a result of changes
made to the protocol. To interoperate with earlier versions of the pro-
tocol, it is necessary that your device offer the end user the ability to dis-
able all security features.

Outfitting Your Security Toolbox

There are three components that serve as the security “troitka” in any network:
authentication, authorization, and encryption. Each has a specific function in the
scheme of security and can be either enabled or disabled—it all depends on what
makes sense for your application.

Authentication is used to verify a device making sure that it is who it says it
is. If another Bluetooth device is trying to gain access to your device, either
through establishing a radio link or by making a request to use a particular ser-
vice, you first ask, essentially, “Who goes there?” then “What’s the secret pass-
word?” In the world of Bluetooth security, you will already have the address of
the remote Bluetooth device (from performing the connect procedures), and will
use a derivative of a unique secret “link key” stored in your device as the very
specific password. If the remote device provides you with the correct password, it
is considered authenticated and is free to proceed in accessing all services offered

127

www.syngress.com

128

Chapter 4 * Security Management

by your device. This process is far more complicated in terms of mechanical
operation—something that will be examined in greater detail in the next section.

Authorization has a different function in the security toolbox. It determines if
the remote device is to be granted access to specific services offered by your
device. Three services, as an example, are supported on your device. They could
consist of service discovery, fax, and dial-up modem capability, and have an
authorization procedure associated with each. If they do have a requisite proce-
dure, any time a remote device attempts to access a service, authorization is to be
triggered. With a remote device requesting access to a service, you would be pre-
sented with the name of the remote device, the service it wants to access, and be
asked whether you will permit access to this service. Granting permission to a
remote device is based upon who it is and the service being requested.

Because authorization depends upon knowing who is asking for access to a
service, authentication must be completed successfully prior to entering the
authorization procedures.

Encryption protects data by encoding it prior to transmission over the air-
waves. The encryption key used is derived from the unique link key associated
with the authentication process. To encrypt data, authentication must be triggered
and have passed.

A more thorough explanation of each of these security elements is provided
in the next sections. Basically, their underlying operation is revealed with an
emphasis on the role that the application has in participating in the process.

Authentication

Authentication is the cornerstone of the security paradigm upon which both
authorization and encryption depend. Without its successful completion, neither
authorization nor encryption will be attempted. The term authentication is
somewhat misleading as it refers to only a very specific procedure of verifying a
remote device. In the grander scheme of things, other procedures are actually
invoked in support of the security measure titled authentication.

Pairing for instance 1s a procedure invoked when a link key has not been cre-
ated for the unique connection between devices. (A link key is a secret number
associated with a link between two devices.) The pairing procedure requires that
an identical personal identification number (PIN) be made available to devices
attempting to authenticate for the first time. The PIN is either stored in memory,
entered through a man-machine interface (MMI), or changed back to a default
value (a byte which is set to the value zero).

www.syngress.com

Security Management * Chapter 4 129

Authentication is a very specific procedure used in creating a correct response
to a challenge; don’t worry, this will be explained shortly. Suftice to say that it fol-
lows the pairing procedures in the scheme of things if a link key does not exist.

Bonding refers to the entire process of link-creating, pairing, authentication,
link key creation, and semi-permanent storage. Once devices are bonded, pairing
does not have to be done again and authentication can proceed without the need
for PIN entry. If a device is requested to bond with another device that it already
possesses a link key for, this link key is erased. Pairing is then initiated, estab-
lishing another link key.

Pairing

Take a look at what happens when successfully traversing the authentication
barrier (see Figure 4.1). Let’s assume two devices are new to one another, never
having gone through authentication before. In this case, the pairing procedure is
required for the purposes of creating a temporary link key (Kinit) used by the
next process: authentication. In addition to this, Kinit is used in encoding the
semi-permanent link key (Ka or Kb) prior to transmitting to the other side for
storage and future reference. Here is what happens.

Figure 4.1 The Bonding Process Including Pairing and Authentication

‘ Verifier (Device A) ‘ l ‘ Claimant (Device B) ‘

Connection request
fo a service

Random o
number

Exchange Li

Buipuog

.............. Random -

: / number
_V O+ Response

[Aothentication | Ka

Host Host
Controller Controller

Host

Host

www.syngress.com

130

Chapter 4 * Security Management

There are two roles: the Claimant, which claims to be a particular device, and
the Verifier, which checks to make sure the Claimant really is who it claims. The
Claimant makes a connection request to the Verifier; this can be a request made at
the Link Manager level or at upper protocol layers. The trigger point invoking
authentication is determined by the application when it configures the service
database. Once triggered, however, a PIN is required. The PIN;, along with a
random number generated within the Link Manager and the claimant’s Bluetooth
address (not shown) is used in creating the temporary link key, Kinit. This key i1s
created independently by the Claimant and Verifier. Pairing has now completed.

As mentioned, the PIN is furnished either by an MMI, from memory, or pro-
vided as a default value by a zero length number. Without an MMI or a stored
PIN value, the application should at least try the default PIN value to generate
Kinit prior to attempting authentication.

Devices with user interfaces such as phones or laptops will be able to change
their PIN numbers. These devices are said to have “variable PINs.” Devices such
as headsets have no means of entering a PIN, so they have a number programmed
in when they are manufactured. This is called a “fixed PIN.” Obviously, when
connecting a phone to a headset the phone that has the variable PIN must
change it’s value to match the fixed PIN on the headset.

Link Keys

Authentication is managed by the Link Manager using a link key. If a previously
stored link key (called a semi-permanent key) exists, it is used to complete
authentication. In continuing with the case where a semi-permanent link key
does not exist, the next stage is bonding, which creates a semi-permanent key.

Bonding

Kinit is used to encode the unit key (Ka), which is then sent across the airwaves
to the other Bluetooth unit for storage. At this point, devices can both exchange
unit keys and create a combination key (Kab) which is calculated from both unit
keys, or they can agree to just use one device’s unit key. A combination key is
more secure, but some devices cannot create such a key, so they must use their
own unit key as the semi-permanent link key.

This semi-permanent link key is created for future use. With this key now
safely stored in memory, the pairing process is eliminated. Now, every time
authentication is requested between these two devices, authentication can pro-
ceed using the stored link key.

www.syngress.com

Security Management * Chapter 4

Bonding really refers to the entire process of pairing, authenticating, link key
creation, and storage. As shown in this example, Ka became the link key. Kb
could have become the link key as well; this is dependant upon the Link
Manager and is transparent to the application as far as selection is concerned.

In summary, these are the keys:

» Kinit is calculated from the PIN key and is kept temporarily; it 1s used
to encode unit keys so they can’t be read by eavesdroppers.

» The unit key, Ka (or Kb) is derived only once by the Host Controller
and stored permanently; this key can be changed but usually isn’t. This
key can be used as a link key as well (as shown in Figure 4.1). It not
only is designated as a link key by the Verifier but is passed to the
Claimant and stored as the link key.

= A combination key (Kab) can be created from two unit keys then
used as the link key providing even greater security supporting
authentication.

The creation of combination keys requires that both Bluetooth devices per-
manently store this unique key placing a greater burden on Host memory
resources required especially when multiple device keys are to be stored. Instead
of storing just one key (Ka) as the secret link key to be used for multiple devices,
a separate combo key, if used, must be stored for each unique device.

Once the two devices have agreed on a semi-permanent link key, the
Verifier begins authentication by issuing a challenge. The challenge is a random
number which the verifier sends to the Claimant. A numerical response is cal-
culated by the Claimant (using the link key) and is sent back to the Verifier.
The verifier does the same calculations, and compares its results with the
claimant’s response. If these numbers match, authentication is deemed suc-
cessful, and the devices are bonded. If the numbers don’t match, it will be
because one side was using the incorrect PIN key. If this is the case, authentica-
tion fails and the devices are not bonded.

At the risk of getting ahead of ourselves, we will briefly mention one last key,
Kmaster. This key is temporary, is generated by the master device, and is used to
derive an encryption key used in encoding broadcast messages sent to other
Bluetooth devices. Each slave also has a copy of the Kmaster, using it to create
their own encryption keys, which enables them to decode broadcast messages.
Many profiles do not use broadcasts, so some manufacturers have chosen not to
implement broadcast encryption.

131

www.syngress.com

132

Chapter 4 * Security Management

Debugging...

Security Timeouts: How Long Will the Stack Wait?

During the pairing procedure, there is opportunity for the user to take
their time in entering a PIN number. This time period cannot be indefi-
nite as stack timers begin to expire; a connection cannot be established
half-way and remain in this state permanently. Interoperability issues
have been identified with regard to this situation. Several solutions exist
to alleviate the problem. Stack timers can be set not to expire while a
PIN is entered. When asking for a PIN at the application level, the
amount of time the user has in entering a valid number can also be lim-
ited to prevent timer expiry. This situation also presents itself for the
authorization procedures since user interaction is required.

Application Involvement

With respect to the procedures necessary in supporting authentication, you can
see that there is not that much involvement by the application layer outside of
providing a PIN to the Link Manager—this is partially true. Generally speaking,
as an applications designer, your responsibility will be to configure your device to
instigate security measures as you see fit. Handling PIN entry is an additional
interface you will be responsible for (we’ll discuss application interfaces later in
the chapter).

Also, there are variations on the type of link key that can be created, stored,
and used: a unit link key, a combination link key, a master link key, and so on.
Each key type has a specific use.

Authorization: How and Why?

Authorization requires that authentication complete successtully. It is then trig-
gered when the remote Bluetooth device makes an attempt to connect to a ser-
vice. More accurately, this security procedure is invoked when a peer-to-peer
protocol connection is requested at the Logical Link and Control Adaptation
Protocol (L2CAP) or Radio Frequency Communications port (RFCOMM)
layers. We will get to that later, however, when we discuss how to configure
security.

www.syngress.com

Security Management * Chapter 4

Authorization requires that the remote device be identified and that the ser-
vice being requested be reported to the service provider; this generally happens
through an MMI. With this information in hand, the user can choose to permit
access to the service requested, granting temporary Tiust.

Using the Trust Attribute

Trust is an attribute that links authorization permission to a particular service and
a device address. When the device is marked as Trusted, the authorization process
completes successfully without user interaction. Trust is granted both temporarily,
as a result of successful authorization, or permanently. Permanent Trust can be
conferred upon any device at any time but is usually done during the initial
authorization via the MMI. For Bluetooth devices that do not have a user inter-
face, the Trusted attribute can be granted during an Inquiry session. By simply
being within the serving area, remote Bluetooth devices can be labeled as
Trusted, tagging their unique Bluetooth address with the Trusted attribute and
storing this information in the device database for future reference. Switch into
this mode of operation only when you are confident that safe devices are nearby.

A common consideration for devices marked as Trusted is to allow this privi-
lege to expire some time in the future. Expiry of this privilege means that the
stored information in the device database remains intact with the exception that
the once trusted device is now tagged as Untrusted. Permanently marking a
device as Trusted 1s not a recommended policy as it circumvents the Bluetooth
security measures as they relate to authorization. Untrusted devices require that
the user intervene on the next attempt to authorize.

Remote Bluetooth devices can also be classified as Unknown. If the device
has never been seen before and has no record of existence in the device database,
it is referred to as being unknown. If the service being requested by such a device
is protected by authorization, then the MMI is used to grant permission.
Alternately, a record containing this device’s address, the service that it is
accessing, along with the Trusted attribute are stored in the device database auto-
matically upon being discovered, bypassing the need for using an MMI.

Enabling Encryption

The last component of security to be described is that of encryption. You really
cannot prevent the interception of data that is transmitted wirelessly. What you
can do, however, 1s transform the data into something that cannot be (easily)
understood. Encryption is the process through which transmitted data is

133

www.syngress.com

134

Chapter 4 * Security Management

encoded, only to be decoded on the receiving side. When activated, encryption
relies upon a special encryption key generated from the stored link key. The
encryption key is then used to encode data sent over the airwaves. On the
receiving end, the same encryption key (generated from the same link key) is
used to decode the data.

Point-to-Point Encryption

Encryption, if used, must be enabled on both sides of the radio link.You cannot
use encryption in a unidirectional data transfer. Up until this point, the connec-
tion being discussed has been point-to-point (one Bluetooth unit communicating
with another unit exclusively). In the case where one unit is broadcasting data to
multiple units, there exists a need to distribute an identical encryption key to all
other slave units listening in on the broadcast. This scenario is very specific to the
master—a slave relationship where the master initiates the point-to-multipoint
encryption.

Broadcasting

A new encryption key, briefly mentioned earlier, 1s based upon Kimnaster, which is
generated using two random numbers. Without going into detail, Kmaster is sent
to all slave units that have a need to participate in receiving a broadcast transmis-
sion. Once Kmaster 1s sent to all units, the master device instructs each slave to
now use this key in generating a new encryption key, this being now the
common denominator allowing all units to decode data originating from the
master device. This encryption key is used only while broadcast messages are
being sent. Once this activity is no longer required, all units revert to their orig-
inal link keys under the command of the master. Using point to multipoint
encryption is usually temporary and is less secure than point-to-point encryption
since it relies upon the lowest common denominator security, that being a
common encryption key as shared by a number of difterent units. For instance, if
one unit in a piconet supports 32-bit keys, and all others support 128-bit keys
when using broadcast encryption, all units will have to use a 32-bit key.

Under all circumstances, as just described, the application software remains
virtually isolated from this process; it does not have to manipulate the link keys
used in point-to-point or point-to-multipoint communication. Nor does it con-
cern itself with the operations taking place at the physical layer to manage the
use of different link keys. The Link Manager handles the determination of the
link key and subsequent use of the encryption keys.

www.syngress.com

Security Management * Chapter 4

Application Involvement

This brings us to an interesting point in the discussion regarding security. What
exactly is the application software responsible for? Thus far, we have examined
the basic mechanism used in protecting both a Bluetooth device, or its services
from unauthorized access by an unknown and possibly hostile device.
Authentication, authorization, and encryption can be considered building blocks
on which security rests. Controlling these security instruments, or more accu-
rately, configuring security, is the responsibility of the application developer.
Point-to-multipoint communications can be supported where an encryption
key 1s shared among many different devices—in other words, it is derived from
the Kmaster link key. In any event, encryption can be specified for use by the
Security Manager and required that authentication be completed successtully.

Understanding Security Architecture

We will now turn our attention toward how security measures are used in the
context of a commercial Bluetooth implementation. Figure 4.2 portrays a com-
mercial embedded solution for a Bluetooth device. A Host Controller provides
services associated with radio control and is responsible for containing the
authentication and encryption engines. When commanded to do so, these engines
are fired up and complete the procedures necessary in completing their task: Link
key management, random number generation, challenge response routines, and
encryption key generation and management. Note that the Unit key (Ka) is per-
manently stored in the Host Controller, with temporary storage being provided
for different types of link keys as required.

The Role of the Security Manager

The Host, on the other hand, is responsible for at least setting up the environ-
ment required to start security and in some instances, initiates security itself. A
Security Manager module is tasked with many diverse responsibilities, which
include providing an application interface to:

= Configure security

= Request PIN entry

» Query the user for an authorization response

= Respond to the Link Manager with PIN information or a link key sup-
porting authentication

135

www.syngress.com

136 Chapter 4 * Security Management

Figure 4.2 A Commercial Bluetooth Implementation Showing Interfaces to
the Security Manager

Authorization
Setup response Modify

Database PIN 4 Database

D
Device
dBase

eniry

Security
Manager

Host Controller

IS
Service
LacaP
[Ha
[Ha |

Link Manager

Non-volatile store
Unit Key

Temporary store
Linkkey 7 Avuthenticate - yes / no

Master key Encrypt ---==--- yes / no

Host

Authentication engine

Baseband

Encryption engine

Internal to the Security Manager is a service database, a repository that is
configured by the user via application software. As will be explained later, this
database is used to implement Mode 2 security and is referenced by the
Security Manager to determine which security measures to invoke and when

www.syngress.com

Security Management * Chapter 4

to invoke them. In addition to this, there is a device database which stores link

key information, and also keeps tabs on which devices are Trusted and which

are not.

Supporting the Security Manager in its responsibilities are three entities:

Two

The service database, which holds the security configuration information
as provided by the application software.

The device database, that persistently stores information regarding past ses-
sions with other Bluetooth nodes, allowing quick connections to be
established without having to traverse the security barrier again.

Application software that provides a user interface (UI) for the purposes
of entering a PIN or confirming an authorization request and setting up
a Trusted relationship. Alternately, in embedded systems where a UI is
not to be found, the application will respond to requests in a manner
that makes most sense without user intervention.

issues loosely related to the Security Manager are:

Setting up authentication and/or encryption at the Link Manager level;
this is done by the application, either indirectly through the Security
Manager, or directly by configuring the Host Controller via the Host
Controller Interface (HCI) layer.

The device database, which can be modified by the application code; the
time limit associated with a Trusted relationship between two Bluetooth
units may expire thereby changing this parameter to Untrusted. The link
key can also be erased to force authentication once again.

Before we go any further, we must first understand where triggers can be set

to start security procedures. This all begins with defining the three different

modes associated with Bluetooth security.

Mode 1 has no security, obviously making it the least secure mode.

Mode 2 invokes security when a higher layer protocol or service is
accessed.

Mode 3 invokes security when a connection is requested; this is the
most secure mode.

Typically, security is associated not so much with protecting a Bluetooth

device as it 1s with preventing access to services supported by the device itself.

www.syngress.com

137

138

Chapter 4 * Security Management

For instance, would it matter that much if another person were to simply
establish a radio connection to your device, not invoking peer-to-peer pro-
tocol connections at the upper layers of protocol? Or would you be more
concerned about the fact that another device could covertly extract files from
your device, without your knowledge? More insidious would be the notion
that the intruder could plant a virus on your device without your knowledge,
then sadistically watch as you frantically tried to prevent your device from self-
destructing. The most important line of defense is in protecting services. A
close second would be to protect your radio hardware from being tied up by
an unwanted intruder, keeping the Host Controller free and available for
communication.

Mode 1 Role

Mode 1 security 1s the simplest of all. It specifies that there are no Bluetooth
security procedures at all. Any connection initiated by another device is granted
as far as the Bluetooth protocol stack is concerned. Be very careful here as this
does not mean that there is no security at all. There is plenty of opportunity at
the application layer to implement some level of security, such as the use of a user
ID and password in granting access to a network. This can even be done at the
object exchange (OBEX) transport layer, which supports the use of authorization
independent of the Bluetooth protocol stack. These additional elements of secu-
rity will be discussed later.

Mode 2 Role

The most common (and useful) form of security is Mode 2 security and is
used primarily to protect services being oftered by a Bluetooth unit. It is
invoked only when a request is made for a specific service, or more accurately,
when a connection request is made to establish a connection to a specific layer
of protocol.

With reference to Figure 4.3, you will see that the Security Manager is cog-
nizant of the goings on in both the L2ZCAP and RFCOMM layers. When an
attempt is made to establish a peer-to-peer connection at either of these layers,
the Security Manager is made aware of this and acts as an arbiter. It does not
matter if the connection is being initiated by your application, or requested by a
remote device, the Security Manager has intimate knowledge of what is hap-
pening and responds appropriately. It can decide on the course of action, basing

www.syngress.com

Security Management * Chapter 4

its decision on configuration data placed in the service database. The options
available to the Security Manager are as follows:

» Do nothing and allow the peer-to-peer connection to establish itself.
» Initiate authentication procedures.
» Initiate authorization procedures.

» Start encryption once a communications link is established.

Figure 4.3 Trigger Points Are Located within RFCOMM and L2CAP to Invoke
Mode 2 Security

Security -
Manoger _,W‘ Applicafion
OBEX
Security Channel #1 Channel #2 Channel #1
Database
TCS - TCS -
- RFCOMM BIN Cordless SOP
Device >
Database 0x0003 | 0x0005 || 0x0007 | 0x0001
> PSM values
L2CAP
“b Ha
v

With security being triggered at the L2ZCAP layer, there is the potential for
blocking access to services above this layer. Service Discovery Protocol (SDP),
Telephony Control Specification (TCS), RFCOMM, and OBEX functions (and
all application profiles relying on these underlying building blocks) can be selec-
tively protected. When an L2CAP connection is established, a value called a pro-
tocol service multiplexor (PSM) must be specified, identifying which of the
modules above this layer is to be accessed. Table 4.1 lists the PSM values along

www.syngress.com

139

140

Chapter 4 * Security Management

with their corresponding upper layer connection module to give you a view of
services that can be protected if security is linked to L2ZCAP.

Table 4.1 Associated Protocol Service Multiplexor Specifying the Service It
Represents

Service Module Protocol Service Multiplexor
SDP 0x0001
TCS-BIn 0x0005
TCS-Cordless 0x0007
RFCOMM 0x0003

Usually, when using the L2CAP layer as the security trigger, your intention is
to protect either the cordless telephony/intercom profile (TCS) or SDP.
Protecting SDP may not be in your best interest as this implies you are not
inclined to provide services to other devices that do not know what it is you do.
Don’t forget that once a remote device passes authentication, and if the link key
1s stored (bonding completes), authentication will successfully pass in future ses-
sions without user intervention. Perhaps a difterent strategy would suffice in pro-
tecting your device from others that do not know what you do—like
configuring your device to be non-discoverable.

In a manner similar to L2ZCAP, the Security Manager has access to the internal
workings of RFCOMM as well and can trigger security based upon connection
requests being made at this level. Associating security with the RFCOMM pro-
tocol layer protects applications requiring the serial port profile and profiles built
upon this foundation such as fax, modem, LAN access, and OBEX.

As was the case with L2CAP, the Security Manager can be selective in
determining which applications to protect as well. Peer-to-peer connection
establishment at the RFCOMM layer requires that a specific channel (out of a
possible 60 channel values) be specified for the connection to complete suc-
cessfully. This channel number is always associated with a particular service or
profile being offered by the Bluetooth server unit. This channel number is
made available to client devices through SDP. Therefore, to protect a specific
service relying upon serial profile support, you would set up the Security
Manager to trigger when a connection attempt is made using RFCOMM and
a service-specific channel ID.

www.syngress.com

Security Management * Chapter 4

There are a few interesting things you should be made aware of. First, server
applications (such as a LAN Access Point) relying on RFCOMM must register
their use of the RFCOMM interface by entering information into the SDP ser-
vice database; specifically, this equates to a channel number associated with the
RFCOMM module along with the service supported, such as LAN access.
Devices interested in using this service must query the service database using the
SDP facility, extract this information, then make a request to connect to the spec-
iftied RFCOMM channel number. The Security Manager detecting this request
will make a determination if security is required based upon configuration infor-
mation contained within its own internal service database. It will then take action
and invoke security measures as required.

The Security Manager, in accordance with the Bluetooth specification, can
also initiate security measures if a particular type of connection (RFCOMM or
L2CAP) i1s initiated by your own application. For instance, assuming for a
moment that as a client application, I want to establish a connection to a server
offering “FAX” capability (RFCOMM channel #7 as revealed by an earlier SDP
session). After establishing a radio connection at the Link Manager level, a con-
nection request would be made to the server unit at the L2CAP layer. Next,
before attempting to connect at the RFCOMM layer, authentication would be
invoked by my side. My device would be the Verifier. If successful, a connect
request to RFCOMM would then proceed. Note that authentication is sup-
ported on outgoing (as well as incoming) connection requests. Authorization and
encryption are only triggered on incoming connection requests.

Mode 3 Role

Mode 3 security is the most stringent form supported. When Mode 3 is speci-
fied, any radio connection request being made, whether incoming or outgoing,
triggers authentication. Optionally, if authentication completes successfully,
encryption can be applied to the data link if specified. Authorization is not sup-
ported in Mode 3.

Successtul completion of authentication results in the establishment of a radio
link. For Mode 3 security, the Security Manager remains relatively detached, yet
still supports the need for PIN information when required, or link key informa-
tion, if it exists in the device database. With reference to Figure 4.2, the Host
Controller (or more specifically, the Link Manager) has an authentication flag
associated with it (Authenticate—yes/no). The application code sets this flag, and
if set, authentication is initiated automatically by the Link Manager, allowing the

141

www.syngress.com

142

Chapter 4 * Security Management

radio frequency (RF) connection to complete once authentication passes. Passing
authentication requires the following underlying operations to be managed by
the Security Manager running on the Host:

» Getting a PIN if required during the pairing process.
» Providing a link key if one exists as generated from a previous session.

» Storing a link key if one is created by the Link Manager for future
reference.

The Link Manager is capable of being configured, initiating authentication
procedures independent of the application software. Under this scenario, any
attempt to connect at the Link Manager level triggers authentication. As you can
see, there is provision to store link key information in the Host Controller as
well. The Unit key (Ka or Kb) is usually calculated only one time and stored
away in non-volatile store (NVS) for future reference. If you recall, this unit key
can be used as a link key only after pairing has been completed. Alternately, the
unit key of the other device (Kb) or a combination key (Kab) can also be used as
the link key, requiring that it be stored in the Host Controller for use in deriving
the encryption key. The link key is also sent via the HCI to the Host for perma-
nent storage as well in the device database. There is also temporary storage avail-
able for a master key (Kmaster), which is generated by the Host Controller and
used for point-to-multipoint data transfers requiring encryption. The master key
1s not placed in NVS at the Host Controller level, and as a result is lost once the
connection between Bluetooth devices is relinquished.

Mode Unknown

There is one more issue that needs to be addressed and that is the way in which
connectionless packets are managed. L2ZCAP supports connectionless data trans-
fers. Bluetooth supports the notion of datagram transmission—in other words, the
ability of one device to send another device a data packet without expecting any
type of acknowledgment that the data packet was ever received.

An example illustrating the use of a datagram is in the wireless telephony
profile. Multiple terminal units attach themselves to a wireless telephony gateway.
Each terminal unit eventually takes on the role of a slave device. With the arrival
of an incoming call from the public service telephone network (PSTN), the
gateway responds by broadcasting a datagram containing the phone number of
the unit being called. All terminal units examine this datagram, and if it contains
their phone number, they can then respond by setting up a connection-oriented

www.syngress.com

Security Management * Chapter 4

link. The Security Manager has the ability to block datagrams at the L2ZCAP layer
if it 1s configured to do so by the application.

So far, the building blocks of security have been presented: authentication,
authorization, and encryption. Where and how security is managed has also been
covered, yet absent from this picture is how the Security Manager is configured
and how it knows what it’s supposed to do. This is the next topic of discussion.

The Role of Security Databases

Security management, although automatically administered, depends upon how it
is configured, which is the responsibility of the application. There are three ways
in which the application participates in setting up the security system. They are:

» Configuring the Host Controller to enforce Mode 3 security.

» Configuring the Security Manager to respond appropriately when
L2CAP and RFCOMM layers are attempting to establish a peer-to-peer
connection; this is related to Mode 2 security.

» Using the application to command the Host Controller to begin
authentication and/or encryption.

In this section, we will examine, from the perspective of the application, how
to configure security as it relates to Mode 2.

Service Database Content

Mode 2 security configuration data is stored in a service database under the
direction of the application software and through an interface that is supported
by the Security Manager. This database 1s managed exclusively by the Security
Manager. The application must access the Security Manager in order to create
database records which define the trigger points for security, and identify the
components to use in implementing security.

Figure 4.4 illustrates the record content required when characterising Mode 2
security.

First, the trigger point for initiating any security procedure is specified not by
specifically referring to a service that requires protection, but rather by the pro-
tocol “pipe” leading to this service. Triggering security when a client attempts to
attach itself to a Cordless Telephony gateway would have a service definition of:

Protocol level = L2CAP
PSM = 0x0007

143

www.syngress.com

144 Chapter 4 * Security Management

Figure 4.4 The Service Database Determines When to Invoke Security

Service Security

L2CAP Authentication
PSM = 0x0005 inbound connetion

outhound connection
Authorization

inbound connection only....

Encryption.........ccceeveeveeeenee.
Accept Datagrams.d..............

RFCOMM Authentication
Channel #7 inbound connection

outbound connection
Avuthorization
inbound connection only....
Encryption...............cccrseenn.
Accept Datagrams................

Ooom 0n (AEp 0m

Another example would be a modem server using channel 2 (supported by
the RFCOMM module). This would have its service defined as:

Protocol level = RFCOMM
Channel ID = 2
Associated with the service descriptor are security attributes that are exercised

prior to allowing the establishment of the peer-to-peer protocol connection. The
attributes to be defined are as follows:

» Authentication to be applied (for an outgoing connection) — yes or no

= Authentication to be applied (for an incoming connection) — yes or no

» Authorization to be applied (incoming connection only) — yes or no

= Encryption to be applied (in response to an incoming connection) — yes
or no

» Connectionless datagrams to be accepted — yes or no

Service Database Operations

The service database is used only when a protocol event occurs. The Security
Manager is activated if a connection is required at the L2ZCAP or RFCOMM

www.syngress.com

Security Management * Chapter 4

layers; it looks up the corresponding reference in the database. If one exists, it
takes action as dictated. The order in which security measures are invoked is:

1. Authentication
2. Authorization

3. Encryption

Attributes in the service database can be modified at any time and must
reflect the services offered by the device; in essence, if the SDP database
changes in terms of RFCOMM ports being used in supporting services, the
same changes have to be taken into account if security is to be applied to the
same services. Updates must be reflected in the service database if security is to
be effective.

Developing & Deploying...

Mode 1 Security: Configuring for No Security

The absence of a record in the service database for services offered by
the device will result in no security measures being executed at least as
related to Mode 2. Of course, Mode 3 is different as it is configured by
writing to the Host Controller via the HCl; some implementations offer
an application programming interface (API) structure associated with
the Security Manager that provide commands necessary in configuring
the Host Controller.

Authorization is the process whereby permission is granted to the device
requesting access to services offered. When the Security Manager determines that
authorization is to be invoked, it simply asks the server application the following
questions:

= Do you want the device requesting service (as identified by remote user-
name or remote device address) to have access to the particular service
being requested (for example, the Fax service)?

= [s this device to be Trusted for future sessions?

In answering yes to both questions, the protocol connections required are
completed and the applications’ service is offered to the client. The device

145

www.syngress.com

146

Chapter 4 * Security Management

database is modified to reflect that the remote device or client (as enumerated by
its address) is Trusted.

In the future, if authorization is invoked, the device database is consulted. If
the Trusted parameter is set for the device requesting access to the service, autho-
rization is deemed to have passed without need for user intervention.

Role of Device Databases

Initiating Mode 2 or Mode 3 security is determined by the application during
setup of the service database, or when configuring the Host Controller indirectly
through the Security Manager respectively. We now turn our attention to the
support activities and structures that need to be managed once the security pro-
cess 1s underway. As has been mentioned earlier, there must be a mechanism in
place by which historical data is kept for future reference. For example, upon the
successful completion of authentication, a link key is created that is unique to the
two devices participating in the process. This key must be persistently stored
along with the address of the authenticated device for future reference. As equally
important as the attribute of Trust, this tag is assigned specifically to devices that
have passed the authorization process. It, too, must be stored for future reference.
Both entities are placed in the device database, an area that provides persistent
storage of information.

Device Database Content

Figure 4.5 illustrates the device database and the content of a record. When
authentication is requested, the device database is first accessed to determine
whether a link key exists for the device being authenticated. If such a key is avail-
able, it 1s used in calculating the correct response to the challenge issued. If this
key 1is absent, or if it is incorrect, the pairing procedure must begin and a PIN
needs to be entered. A new link key will be generated then possibly stored in the
device database for future reference. Storage of the key for future use is an option
that is managed by the application.

Authorization is very similar in terms of operation. If during the authoriza-
tion procedure the application determines that the device is to be Trusted (either
in response to User input or it is automatically granted without the need for UI),
this attribute is stored in the device database as well. Future sessions between the
same devices will make reference to this stored parameter, determine that the
attribute is Trusted, and bypass the authentication procedure as a result.

www.syngress.com

Security Management * Chapter 4

Figure 4.5 The Device Database Persistently Stores Data Resulting
from Successful Completion of Security Procedures

Device Database

| Attributes
Link key =

Trusted
(permanent)

Device Database Operations

This database 1s accessed by both application and Security Manager. The applica-
tion can access records for the purposes of changing parameters if required. An
example would be in moditying the Trusted attribute to Untrusted upon expiry
of a predetermined time period. The Security Manager accesses the device
database in response to actions that are dictated by the service database.
Extracting a link key in response to authentication activity (as requested by the
Host controller), examining the Trust relationship (in response to having to
authorize a connection) are two such examples whereby the Security Manager
uses information stored in this structure.

Managing the Device Database for Your Applications

Data storage in the device database is persistent to prevent the loss of data as a
result of turning the power oft. With this in mind, you must be aware of the need
to develop your own drivers to manage the device database. Because embedded
systems are developed to run on different hardware platforms and to use difterent
operating systems, they require the applications developer to take on the added
responsibility of porting the Bluetooth protocol stack to the particular Host
target environment. Obviously, you will need to do the work necessary in getting
the stack to work with your operating system as well as in developing both trans-
port and hardware drivers required for communicating with the Host Controller.
In addition to this porting activity, you must develop drivers that will be used in
accessing and managing the device database. Because this database is to be kept in
non-volatile store, the hardware implementation could be just about anything

147

www.syngress.com

148

Chapter 4 * Security Management

from a disk drive to FLASH memory, requiring either a serial interface or parallel
interface. Because this is implementation-specific, you will have to assume
responsibility for completing this custom work.

Such work i1s highly dependant upon the protocol stack you are using.
Hopetully, your stack vendor has provided an interface that you can write to which
supports this activity. The stack can then call the drivers that you have developed in
managing the device database. It is desirable to access the device database via an
application programming interface (API), provided by the stack itself.

Working with Protocols and
Security Interfaces

With all components of security now defined, we are now able to look at the
mechanics of how security functions are carried out in an embedded device.
Secondly, we will be able to look at how your application is to interface to the
Security Manager for the purposes of setting up a proper security regime. Lastly,
managing the device database is briefly discussed to complete the discussion of
how your application is to treat the issue of security with the intention of jump-
starting your design work in meeting time-to-market pressures.

Mode 2 Operation

Figure 4.6 is an illustration of the messaging that takes place when the full com-
plement of Mode 2 security is assigned to a particular service, such as access to
the TCS binary group of functions in a wireless telephony profile. In this
example, L2ZCAP is identified as the service-related protocol with the designated
PSM of 0x0005; this is the security trigger that invokes the Security Manager.
Here is what happens when authentication, authorization, and encryption are
required.

Authenticate 1 Commands the Host Controller to authenticate the
other device.

Authenticate 2 Host Controller responds, asking for a link key (if one
exists).

Authenticate 3 The device database is checked by the Security
Manager or a link key associated with the address of the device being
authenticated (assume no key exists yet).

www.syngress.com

Security Management * Chapter 4 149

Figure 4.6 Operation of Mode 2 Security in Completing the Authentication
Procedure as Dictated by the Security Manager

User Inferface
Authorize connection? y or n Enter PIN Device
Permanently Trust device? y or n Save Link Key? y orn database
. — > |t

RFCOMM Securify Service

Manager database

P [g
AN
| Ha |
Link Manager v
authenticate BlI;Jei?oth
evice

Baseband controller and radio hardware — Request L2CAP

connection

Authenticate 4 The Host responds with “no key.”

Authenticate 5 The Host Controller makes a request for a PIN and
the Security Manager asks the application for a PIN (either through a
UI or from memory).

Authenticate 6 The PIN is returned to the Host Controller and an
initial, temporary link key is created (Kinit).

Authenticate 7 A permanent link key (Kab, Ka, or Kb) is created and
shared between devices.

Authenticate 8 Authentication proceeds using this permanent link
key and passes.

Authenticate 9 The permanent link key is sent to the Host for
storage in the device database for future reference.

Authorization 1 The Security Manager examines the device database
to see if the device is Trusted (assume it isn’t yet).

www.syngress.com

150

Chapter 4 * Security Management

Authorization 2 The Security Manager presents the name of the
device attempting to make a connection, and the service it wants to
access to the application software. The application must respond back to
the Security Manager if this connection is to 1) be authorized, and 2) if
this device is to be Trusted.

Authorization 3 The Trust attribute is entered into the device
database by the Security Manager and the peer-to-peer protocol con-
nection is permitted to proceed in establishing itself.

Encryption 1 The Security Manager then commands the Host
Controller to invoke encryption, which it does.

During the execution of security measures, there are only two points where
the application software 1s invoked. PIN entry and response to the authorization
request are the two elements requiring handlers.

Mode 3 Operation

Mode 3 security is similar in that authentication is initiated by the Host
Controller without involvement from the Security Manager; steps Authenticate 2
through 7 are then used in completing the procedure. If encryption is also
enabled on the Host Controller, it will automatically be enforced without
Security Manager intervention.

Application—API Structure

Application development will now be addressed in terms of implementing secu-
rity. As was explained throughout the text, there are three application interface
points that you will have to concern yourself with after you determine the level
of security that you will implement for your device. They are:

» Setting up security (service database for Mode 2 or Host Controller
configuration for Mode 3).

» Responding to requests for PIN, specifying permanent storage of the
link key, approving authorization requests and allocating semi-permanent
Trust (all MMI related).

» Moditying the device database to reflect a change in Trust upon the
expiration of a timer or removing link key information if required to
do so.

www.syngress.com

NoTE

Security Management * Chapter 4

The “Bluetooth Security Architecture” white paper currently available
through the Bluetooth Web site (www.bluetooth.com) is an excellent ref-
erence in how to deal with Bluetooth security.

With an understanding of security as it has been addressed, it is now time to

examine the software routines required in supporting security and how the

defined interfaces are to be used, as they pertain to developing your application.

We will look first at configuring a system requiring Mode 2 security, the

interface routines that are necessary and what you can expect from a commercial

Bluetooth protocol stack in terms of implementing your particular solution.

Being able to configure the service database with both service information

and the levels of security to be applied when this service is being instantiated is

supported by the following routine abstractions supported by the Security
Manager API:

SEC_registerApplication (Name, Security Level, PSM, Protocol 1D,
Channel ID); this interface configures the service database to trigger

security measures when connections are being set up at a particular PSM
at the L2CAP layer.

SEC_registerMultiplexingProtocol (Protocol ID, Lower Protocol, Lower
Channel, Security Level); this interface configures the service database to
trigger when a link is being requested at a particular channel number on
an RFCOMM connection.

In either instance, the parameter governing security being passed into the

routine 1s “security level” and it defines which security elements are to be associ-

ated with the specified service.

Authentication incoming connect request
Authentication outgoing connect request
Authorization incoming connect request
Authorization outgoing connect request

Encryption incoming connect request

151

www.syngress.com

152

Chapter 4 * Security Management

» Encryption outgoing connect request

» Connectionless packets (datagrams) allowed

Commercial implementations may differ somewhat from this description, yet
they should provide the same level of functionality in the configuration of secu-
rity Mode 2. Mode 3 is slightly different, as it is setup by sending commands
directly to the Host Controller via the Host Controller Interface. Command
abstractions recommended in the security white paper are:

» HCI_Worite_Encryption_Mode
= HCI_Write_Authentication_Enable

Again, when you are using a commercially available stack, the command
structure made available to the application layer may be slightly difterent; all you
really need is to have the capability to configure the Host Controller to imple-
ment authentication and or encryption. Such calls could be made through an API
specific to the Security Manager which in turn communicates with the Host
Controller. Unlike Mode 2, security measures will be applied to both incoming
and outgoing connection requests. You do not have a choice.

Mode 1 is the simplest in terms of setting up security; specify nothing. For those
that want to play it safe, simply ensure that the security service database contains no
record for the service being protected and Mode 2 will not be used. Also, remember
to configure the Host controller to disable authentication and encryption.

In support of the completing authentication or authorization, the application
code has to be notified of when a PIN is to be entered or if authorization is to be
granted. This 1s wholly dependant upon the protocol stack, as its architecture will
determine how this is to be managed. Two potential ways of handling the required
activity are to use a messaging structure and inform another task that information
is required, or to make use of callback functions. In the case of either method, the
application has to respond and does so by using the following abstractions:

» SEC_PinRequest (Bluetooth address, Name, PIN); this interface returns
the PIN, gathered from a User Interface or from memory, to the
Security Manager which then passes the PIN to the Host Controller
such that it can continue the pairing process.

» SEC_AuthorizationRequest (Service name, Device name, Trusted rela-
tionship); this interface presents to the user both the name of the service
being requested and the name of the device making this request. In
return, the application returns the Trust value that gets written into the

www.syngress.com

Security Management * Chapter 4

device database. If Trust = TRUE, future sessions will proceed without
the need to authorize. If Trust = FALSE, authorization will be manda-
tory once again. In addition to this parameter, there must also be a way
for the application to inform the Security Manager that Trust is granted
temporarily, at least for this session. Your protocol stack will have its own
way of handling this since it is not addressed in the Bluetooth security
white paper.

In the case of responding to a request for authorization, the Security Manager
should automatically handle the setup and configuration of the device database to
reflect the status of a device. Remember that Trust is a parameter which can be
changed from TRUE to FALSE with the passage of time. The application is
responsible for keeping track of this and must have a way of modifying the device
database to make such changes.

To complete the discussion on the programming interfaces, there is opportu-
nity for the application itself to initiate either authentication or encryption.
Supporting this are the following interfaces:

» HCI_Authentication_Request; this interface commands the Host
Controller to begin authentication on a specific connection. Remember
that if the device is a master, it is capable of supporting up to seven
unique data connections to slave units. The Security Manager is used to
either respond with a link key to the Host Controller, or to inform the
application that a PIN is required and handle the entry
(SEC_PINR equest) as described previously.

» HCI_Set_Connection_Encryption; this interface instructs the Host
Controller to encrypt a data channel associated with a specific connec-
tion that has already been established. Earlier, it was stated that once a
device is authorized for one service, it is authorized for all services. If
you have a need to re-authorize a device for a service, this is the way
you do it. By directly requesting authorization upon the initialization of
the service, you are able to protect access to the service by outside users.

Exploring Other Routes to Extra Security

You should now feel very comfortable regarding the Bluetooth security troika
and how to apply it in your device. This may not be enough, however. There are
a few other tricks you can consider when actually deploying your device to your

153

www.syngress.com

154

Chapter 4 * Security Management

customer base, as well as a few tricks your customers may have up their sleeves in
enhancing system security. Is this being paranoid? You decide.

Invisibility

The ultimate in security is to make your device non-connectable. This is only for
the truly paranoid who will go to any measure to protect their services, their
data, and their device from hostile as well as legitimate users. Unfortunately, this is
not very practical when used as a security measure, even though it is very desir-
able should the device ever be taken out of service for any reason. (Perhaps the
LAN to which a LAN Access Point is connected.)

Less onerous, and quite clever, is to make your device non-discoverable yet
connectable. By doing this, your device cannot be “seen” by other devices while
they are scanning the vicinity using the Inquiry procedures. By not responding to
an Inquiry message, your device will not reveal its presence, nor will it divulge its
address, thereby becoming a silent device. Without an address, all other devices
will be unable to establish a connection, consequently enhancing security. Users
that have been told about the presence of this device can be provided with its
address. They can then manually enter this unique address into their Bluetooth
device and proceed to connect to the device at will.

An added benefit of configuring your device as either non-connectable or
non-discoverable is in saving power consumed by the Host Controller, thereby
prolonging battery life (if the device is battery powered).

Application Level Security

Applications themselves often use their own forms of security giving them
greater control over the selection of legitimate users. LAN access, for example,
relies upon a Point to Point Protocol (PPP) layer which, among other responsi-
bilities, usually asks the client for its user ID and a pre-determined password.
When PPP security is in use, network access is granted only after this informa-
tion is provided and verified by the network, although using the security features
at this level is optional. The network manager can dynamically modify network
access parameters, providing access to users that are new to the corporation, or
restricting access to others that may have left. With reference to the LAN Access
profile, there are several different types of PPP that can be supported, each having
a similar way of implementing security.

Additionally, network access may have user ID and password requirements
that are under complete control of the IT department.

www.syngress.com

Security Management * Chapter 4

OBEX, although included as part of the Bluetooth protocol stack, can pro-
vide a layer of security that acts in a manner similar to that of authorization.
When security is used at this level, a connection between OBEX transport layers
invokes user interaction generally through a User interface. If the connection is
approved, the OBEX transport layer completes the peer to peer connection and
application profiles can then be used.

Using application specific security may be preferred since complete control is
maintained by the IT department and is not dependant upon Bluetooth security
alone.

Implementing Security Profiles

To assist your efforts in developing a strategy for implementing security, a sum-
mary of all profiles defined in Bluetooth specification V1.0B and their associated
Bluetooth security levels are presented. In addition to this information, which is
used to provide guidance as well as to ensure interoperability between different
products in the marketplace, difterent strategies will be presented to provide fur-
ther assistance toward applying sufficient security to your application.

SDP

We will start by looking at support functions first, that being SDP. Do you
really need to protect this feature? The profile specification indicates that
authentication and encryption can assume a default value of ‘not active’, yet
authentication and encryption are to be supported. If another device, during
the establishment of a connection to SDP, enforces authentication and encryp-
tion, then you must reply in kind supporting such requests. It should be
obvious that level 2 security is used in this instance as this is the only mode
supporting service protection.

Why would you want to protect SDP and would this be a prudent move?
Remember, once authenticated, a remote device can then access all services
during the same session since the link key is established between devices and is
stored temporarily in the Host Controller. (It can also be stored permanently on
the Host.) In denying access to information in this fashion may imply that you
really don’t want people knowing what you do or how to connect to your
device. It 1s better to use a different security measure — perhaps setting your
device as non-discoverable to prevent strangers from ‘seeing’ you. It is probably
best to ofter unprotected access to SDP providing important connection infor-
mation, then protecting the actual application that your server provides.

155

www.syngress.com

156

Chapter 4 * Security Management

Cordless Telephony and Intercom

Above the L2ZCAP protocol layer resides the TCS module supporting cordless
telephony and intercom profiles. It is mandatory to use security modes 2 or 3;
you get to select. Authentication and encryption are to be used and the bonding
process is to be initiated by the terminal unit.

In a public environment, a gateway may be provided for users to access the
PSTN. Mode 3 may be appropriate, quickly keeping radio connections from
being established for unauthorized users. In doing so, you would prevent the loss
of an otherwise useful and limited resource: the radio link. Only users that could
enter the correct PIN would be able to establish a link with the gateway. Another
approach would be to enhance this security by making the gateway non-discov-
erable; further preventing the occupation of a radio link by casual Bluetooth
users. Others that are aware of the gateways presence could connect without
having to go through the discovery process.

Mode 2 security is best used in a controlled environment such as an oftice
where users are known. Also, with a fixed number of users known, gateway access
may not be a concern. Under this situation, terminal units are able to collect
information about the gateway via SDP and choose to continue in establishing a
connection. Bandwidth considerations are not that important when compared to
the convenience for potential users. Also, being deployed in a friendlier environ-
ment, the level of security used can be relaxed to Mode 2.

Placing the device in the non-discoverable mode also limits access to the
gateway to those already cognizant of its presence (these are typically regulars that
work within the same office space). For larger numbers of users, the address of
the gateway could be provided to a fixed number of users. In such a controlled
environment, bandwidth considerations (the number of users that can be sup-
ported by the gateway) can be managed effectively.

The intercom profile is simpler and does not require security (it is really just
an option). Given that a 10-meter distance is not far, one could yell loud enough
to overcome the security barrie—unfortunately, your communication would be

heard by all!

Serial Port Profile

Security recommendations for this profile are not specific since the applications
making use of a simple serial connection are very diverse. As such, I will leave it
up to you to decide on what security to use. Suffice to say that you should have a

www.syngress.com

Security Management * Chapter 4

very good idea of what to do after examining security associated with the other
profiles that rely upon the serial port profile.

The approach to use is dependant upon the reason for security. If a point-to-
point connection (exclusivity) is required, authentication is suggested.

Headset Profile

This is a great example of where a communications link is restricted for use by
only a very specific device. A cell phone and headset go through a bonding pro-
cess—the exchange and storage of a link key. How this is managed is generally up
to the vendors of such devices. To date, headset terminals have all been embedded
devices incapable of supporting manual PIN entry. Two approaches can be used
to accomplish bonding. One approach has the gateway discovering all headset
devices in the vicinity and paging at random one of the devices in its headset list
of devices. If this is the gateway to which the user wishes to bond with the
gateway (cell phone), they acknowledge this connection (by perhaps pushing a
button on the headset). The gateway now knows that this device is the correct
one. It then begins the pairing process with this unit—using the default PIN.
Both devices must use the default PIN (one byte set to the value zero) for this to
work. Once authentication passes, a link key is passed between devices (normally
from the headset terminal to the cell phone) for storage. With the link key and
the address of the headset terminal unit established, authentication can now com-
plete without delay between these bonded devices. Note that authorization is not
used in this profile.

A second more convenient approach can be used. A PIN can be pro-
grammed into the terminal headset at the factory (and printed on literature
accompanying the headset unit). If the cell phone allows it, the user enters this
PIN number into the phone. Now bonding proceeds, using this PIN number
instead of the default PIN.

Exclusivity in terms of a connection is maintained. Disabling the discover-
ability of the headset terminal may not be possible given the limited MMI sup-
ported, but it is another possibility in supporting an exclusive connection meant
to be shared by only two units.

Dial-Up Network and FAX

Access to a service—whether data or the public telephone network (long dis-
tance)—must be protected. According to the Bluetooth profile specification,

157

www.syngress.com

158

Chapter 4 * Security Management

security Modes 2 or 3 are to be implemented for this profile. Also, the client, or
terminal unit, is to initiate the bonding process meaning that it initiates authenti-
cation, forcing the erasure of its internal link key if one exists. The question now
1s to 1dentify what security should be used and if it makes sense on the client or
the server side of the link.

Clients normally access the dial-up network or FAX server, using SDP to first
get a description of the service as well as information required to establish a con-
nection via the RFCOMM interface. Mode 3 security would force any device,
either on an inbound connection or outbound connection, to pass through
authentication before it was provided with information regarding services oftered;
this is quite inconvenient. Mode 2 security configured to trigger on an outbound
connection attempt at the L2ZCAP of RFCOMM protocol layers again would
protect very little.

Addressing the server (gateway) side, it makes a great deal of sense to trigger
security at the RFCOMM protocol layer on incoming connections, allowing
client devices access to service discovery information. From this, they can pro-
ceed to access FAX or dial-up services. Only then will authentication and pos-
sibly authorization be invoked. Typically, either the default PIN (zero length PIN)
or one that has been configured into the server will be used.

Bonding is a mandatory procedure initiated by the client (terminal) side of
the connection. In essence, the client will initiate this procedure.

LAN Access

Protection of data is the most important consideration when implementing secu-
rity in a LAN Access Point (LAP).Visibility to potential users can be restricted, as
this is an option that is available for use by the security model you use.
Restricting access to the LAP is another use of configuring the device as non-
discoverable; the notion of exclusivity takes shape when the LAP is perhaps oper-
ating to near full capacity. Being non-connectable is a mode that can be
configured if the back-end server is down, blocking access to the LAN as a result
of equipment malfunction.

Authentication and encryption are to be used in support of connections
made to the LAP. Implementing security Mode 3 will force the potential user
to authenticate prior to accessing service discovery resulting in tying up an
active connection to the LAP. Tying Mode 2 security to RFCOMM allows the
potential user to access SDP and determine if an LAP is what they are looking
for. Accessing the LAP service will then result in both authentication and

www.syngress.com

Security Management * Chapter 4

encryption to be used in support of the connection. Implied is the need for
pairing to take place, as well as bonding; both procedures are to be supported
by the LAP.

Client management is not directly addressed by the specification. Security is
not critical on the client since information from this device is not made acces-
sible to the LAP unless the user desires to make this data available through their
own action.

OBEX

Data transfers and synchronization can be initiated on either the client side or the
server side, under the control of the upper layers of the application. Limited dis-
coverable is the preferred mode regarding security on the server side of the con-
nection. Only selected devices are to have direct access to information as
provided on the server; non-discoverable is supported to allow the server to com-
pletely eliminate others from seeing their device. In configuring the device in this
manner, they become completely covert relying on other means to disseminate
information. Perhaps this is initially done during conversation, or information is
placed into the device manually in order to provide required address information
necessary for completing a connection.

Normally, devices providing OBEX services have a user interface of some
sort. Computers, cell phones, and PDAs are only a few devices that fall into this
category.

Authentication and encryption is supported by both client and server;
whether it is used is up to the designer. Where it is used, Mode 2 or 3 is also a
design choice. Guidelines that can be applied are dependant on the application
supported by the OBEX transport layer.

Object push applications, such as the exchange of business cards over PDAs,
could be conducted between users in an area permeated by Bluetooth devices.
Use of authentication (and encryption for data that is sensitive) will provide the
exclusivity between PDAs required to prevent others from gaining access to the
OBEX layer and file information that this layer can provide.

File transfer is similar to object push, and can be treated in much the same way.

Synchronization is slightly difterent in that this application can be set up to
work transparently; the users have no knowledge of the data being synched
between a computer and a PDA. In this instance, mutual authentication could be
used to protect both devices from establishing connections to a wrong device.
Authentication and encryption could be triggered in Mode 2 or 3.

159

www.syngress.com

160 Chapter 4 * Security Management

Table 4.2 provides a summary of security attributes for profiles outlined in
the Bluetooth specification V1.0B. A mandatory classification indicates that the
device must support the corresponding operation, not necessarily use it. For
instance, with reference to the LAN Access profile, it is mandatory that the LAN
Access Point be pairable. This means that if another device were to begin
bonding procedures requiring the invocation of pairing, your device would
respond by executing pairing procedures; it does not mean you are required to
initiate pairing procedures yourself in support of security. It would be a very
good idea, however, to consider using the mandatory features in your security
model.

An optional classification indicates that your device can support the security
feature, but also has the option of not supporting the feature.

Table 4.2 Summary of Security Attributes Associated with Each Profile

Dial-Up
Security Cordless Networking LAN
Attribute SDP Telephony Intercom Headset and FAX Access OBEX
Non- Gateway: Mandatory HS: Gateway: LAP: Server:
discoverable mandatory mandatory mandatory optional mandatory
Limited Gateway: Optional HS: Gateway: Server:
Discoverable optional optional optional 1st choice
General Gateway: Mandatory HS: Gateway: LAP: Server:
Discoverable mandatory mandatory mandatory mandatory 2nd choice
Non- LAP: Server:
connectable optional optional
Pairable Terminal: Mandatory HS: Terminal: LAP: Server:
optional if bonding optional optional mandatory mandatory
Gateway: used, AG: Gateway:
mandatory otherwise optional mandatory
optional
Non-pairable Terminal: Optional HS: Terminal: LAP: Server:
mandatory optional mandatory optional mandatory
Gateway: AG: Gateway:
mandatory optional mandatory
Bonding Terminal: Optional HS: Terminal: Optional
initiates accepts initiates
Gateway: AG: Gateway:
accepts initiates accepts
Authentication Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory
Encryption Optional Optional Optional Mandatory
Security Mode 1
Security Mode 2 Mandatory Mandatory Mandatory
Security Mode 3 (20r3) (20r3) (20r3)

www.syngress.com

Security Management * Chapter 4

Case Study

One of the most popular profiles being pursued by many companies is the
Headset profile. The audio gateway resides on a cellular phone and the actual
headset rests in the human ear. Incoming calls can be answered by the headset,
either automatically or by using manual intervention. How does the cell phone
know that it is actually communicating with the correct headset? Security proce-
dures are used in ensuring this connection using the following strategy.

The process of bonding the cell phone and the headset is required in estab-
lishing and storing a common link key for the purposes of future authentication.
If the headset is within range of the cell phone and an incoming call, the cell
phone immediately establishes a radio connection with the headset. Relying on
Mode 2 security, the cell phone initiates authentication procedures which, in
using the stored link key, pass. The headset application then responds and is ready
to accept an audio connection to support the call.

Setting this situation up is of great interest. For instance, bonding requires that a
PIN be entered during the pairing procedures. This PIN can be managed in two
ways. For headset devices that are manufactured to use the default PIN, the
bonding procedures would proceed as follows. The cell phone would issue an
inquiry, collect addresses of all Bluetooth devices within range, perform service dis-
covery to isolate all headset applications and then attempt to access each headset.
This requires that pairing takes place; the default PIN is then used. Authentication
is then completed successtully since the cell phone also uses the default PIN. The
headset is then paged and if it responds (because the user pushes a button to indi-
cate it 1s willing to accept the connection), the cell phone knows that this is the
headset to be bonded with the cell phone. If for instance there were several head-
sets in range and the incorrect headset was accessed, the user should not respond.
The cell phone will then know that this is not the device to bond to and will con-
nect to the next headset device in the list of headsets discovered.

Alternatively, the user can be presented with a list of possible headsets and
choose which one to connect with, thereby avoiding a query for every headset in
range.

Headsets that have a PIN programmed in them (identifying this PIN on the
packaging) are bonded differently. If the cell phone permits it, this PIN number is
entered into the phone. Pairing continues using this PIN, authentication com-
pletes, and bonding is established.

In either case, now that bonding has completed, the headset is now accessible
for use by the cell phone.

161

www.syngress.com

162

Chapter 4 * Security Management

Summary

Bluetooth security is used to protect services offered by devices as well as enforce
exclusivity, permitting only very specific devices to connect. In accomplishing
this end, the security troika was introduced consisting of authentication, autho-
rization, and encryption. Specific use of these fundamental building blocks was
then discussed in context of three different security modes; Mode 1 was the eas-
iest to understand as it refers to no security, Mode 2 enforces the security troika
at the L2ZCAP and RFCOMM protocol layers, while Mode 3 enforces authenti-
cation and encryption at the Link Manager level.

With this basic architecture defined, a commercial implementation of how
security was to be configured by using components such as the Security
Manager, service database, and device database was shown. Dataflows, although
transparent to the application, were discussed to complete the picture. Application
interfaces were then introduced to assist the developer in understanding how to
implement the security levels required for their particular application. For those
developers requiring assistance on this front, a table summarizing Bluetooth pro-
files and the security measures to be used was provided.

Finally, additional security measures that form part of a larger security strategy
were addressed, including the configuration of the Host Controller to remain
non-discoverable or non-connectable. Additionally, authorization at the PPP level,
as well as that supported by OBEX, were also briefly mentioned.

Practical examples of implementing security features capped oft the discus-
sion, introducing real-world solutions to the reader, hopefully providing them
with a greater sense that developing applications relying on Bluetooth security is
not as complicated as it appeared prior to reading this chapter.

Solutions Fast Track
Deciding When to Secure

M Secure for protection of data from eavesdroppers.

M Create exclusive links between devices.

Outfitting Your Security Toolbox

M Authentication verifies that the other Bluetooth device is the device you
believe it is, using a link key as the secret password.

WWW.syngress.com

Security Management * Chapter 4 163

M Authorization grants permission to a device making a request to use a
particular service.

M Encryption encodes data being passed between two devices; it requires
successful authentication.

Understanding Security Architecture

M The Security Manager, which resides in the protocol stack, manages ‘
Mode 2 security transparently to the application. '

M The Host Controller manages Mode 3 security if configured to do so by

the application software.
M The Security database is configured by the application and specifies .r|rlr 1
when to trigger Mode 2 security procedures as well as which security

measures are to be taken.

M The device database offers persistent storage for parameters created
during the successful completion of security and makes these available
for future sessions to reduce security procedures required.

Working with Protocols and Security Interfaces

M Mode 2 security is invoked when a client application attempts to estab-
lish a connection with the server application and can use authentication,
authorization, and/or encryption.

M Mode 3 security is triggered by the Host Controller when either an
incoming or outgoing request for a radio connection is made.
Authentication and/or encryption can be specified.

M Application Programming Interfaces support the configuration of the
type of security to use and offer a way to insert user input (PIN entry)
when required.

Exploring Other Routes to Extra Security

M Security measures are to be supported in many profiles, such that if
another device wants to invoke a component of the security troika, it
will be met with an appropriate response.

M In many instances, implementing security is not made mandatory
since this is left up to the discretion of the system designer. What is

164

Chapter 4 * Security Management

made mandatory in many instances is supporting security as men-
tioned previously.

M Non-discoverable mode as configured into the Host Controller can pre-
vent device detection during the Inquiry process.

M Non-accessibility can prevent any device from establishing a radio con-
nection, thereby preventing access.

M Applications often have associated with them User IDs and passwords as
further measures toward protecting information resident on a server.
Authorization, the act of granting permission to a service, is another
application-based security measure used by the OBEX transport layer.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What happens if authentication fails? What could be the cause of such a

failure?

A: When authentication fails, the connection is rejected. If the connection is

repeatedly attempted, perhaps because a hacker is trying to penetrate the
security shield, the authentication procedures will respond by delaying a
response at ever-greater-time intervals, allowing authentication to be
attempted repeatedly whilst still hopefully discouraging hackers.

: Can I prevent the storage or even removal of a'link key as stored in the

device database, ensuring that each encounter with another Bluetooth device
will result in the need to re-enter a PIN?

: The link key is stored in the device database which should be made acces-

sible to the application; this is dependant upon-the implementation of the
particular stack you are using.You have direct accessito records in the
device database, allowing your application to find a record, modity it, then
return it to the database for reference by the Security Manager.

WWW.syngress.com

Security Management * Chapter 4 165

Modification of the Tiust parameter as well as complete eradication of the
stored link key is supported.

Q: If I am developing an embedded device without a User interface, how can I
use authentication or authorization when I cannot enter a PIN or respond to
granting either temporary or permanent Trust?

A: PIN information can be stored in memory and accessed by the application
when a request for this data is made. If you use this strategy, you must reveal
the stored PIN to the user allowing them to enter this same PIN information
into another device to successfully complete the pairing procedure.
Authorization can be managed transparent to the user as well. By earmarking
every device as Trusted that comes into range of a Bluetooth unit (as deter-
mined by the Inquiry procedures), authorization will be successful. Another
method that can be used is in parsing out the name of the remote device, and
if this 1s recognized by comparing strings, authorization will successfully com-
plete; note that this requires the entry of valid device names implying that
there is some user interface available. Keep in mind, this method is open to
spoofing, as eavesdroppers can read the name, too.

Q: Do I have to use Bluetooth security even when I can rely upon legacy secu-
rity already built into the profile?

A: The simple answer is yes. Support for security, as determined by the specifica-
tion, is mandatory in many instances, yet its use is optional. Your device may
not instigate security procedures, yet another device may (and could) request
you participate in traversing the security boundary. The ability to participate
in this exercise means you will ultimately have to implement security just in
case another device wants to use it.

Q: Do I have to implement the device database in non-volatile store? What
about the service database configuration? Do I have to be concerned about
its contents being erased after powering down the device?

A: Using NVS is convenient as it allows the retention of device information
(link key and Trust) even when the device is powered down. Volatile
storage can also be used, but requires that the user enter data back into this

database for future reference. The service database is generally managed in
RAM,; its contents are determined by application code as it initializes data

166 Chapter 4 * Security Management

structures (like the service database associated with SDP) prior to offering
services.

Q: Who determines which key (Kinit, Kmaster, Kab, Ka) to use and when to
use 1t?

A: The Link Manager makes this decision, generating keys and storing them
when required. The Link Manager only communicates with the Security
Manager to get PINs and store link keys as necessary. The application has
minimal involvement with link key management.

WWW.syngress.com

Chapter 5

Service

Discovery

Solutions in this chapter:

= Introduction to Service Discovery

= Architecture of Bluetooth Service
Discovery

= Discovering Services

= Service Discovery Application Profile
= Java, C, and SDP

= Other Service Discovery Protocols

= The Future of SDP

M Summary
M Solutions Fast Track

M Frequently Asked Questions
167

168

Chapter 5 ¢ Service Discovery

Introduction

Computing is part of almost everyone’s daily routine. From communicating via
e-mail and mobile phone to shopping online, computing has found its way into
mainstream living. As more people use mobile phones, personal digital assistants
(PDAs) and laptop computers to perform daily tasks, it becomes critical that
people be able to find services in their local area in a standard way that makes
them easy to connect to and use.

The evolution of networking parallels the evolution of computing. As com-
puters evolved from special-purpose, high-cost devices to general-purpose, low-
cost devices, so too have networks evolved from single-function and
limited-access (university and military networks), to open, multifunction plat-
forms built around core standards (Transmission Control Protocol/Internet
Protocol [TCP/IP], Hypertext Transfer Protocol [HTTP], HyperText Markup
Language [HTML]). But the very success of such open and truly global net-
works can create its own problems. A key problem is one that every Internet
user has experienced: the “finding stuff”” problem. We know the information or
service we need is out there, but we don’t know how to find it. Most of our first
online experiences were slightly overwhelming as we grappled with quantities of
information presented to us. Hence, the rise of search engine technology (such
as Google) and specialized portals that categorize information for us (such as
Yahoo!). The more information there is out there, the more help we need
finding it.

As computers became smaller and more powerful, a new category called infor-
mation appliance emerged; it includes PDAs, ultra-light laptops, high-end phones,
and Web tablets. These devices are typically used in many different scenarios—at
home, at the office, and on-the-move. New types of connectivity available on
these appliances is creating a new kind of networking: spontaneous and instant
(ad-hoc) networks of consumer devices that join and leave a network at will.
Much of the power in this new wave of appliances lies in their potential to con-
nect to other devices, similar to or different from themselves. The purpose of
connecting is not just to form a network, but to do something, like send a file,
print a file, access a Web page or perform a transaction.

As these networked appliances become more popular, a problem emerges: to
benefit from this kind of connectivity, the appliances need to work together.
The appliances and services must be able to discover each other, negotiate what
they need to do and proceed with business—with no intervention from the
user. In corporate networks, the problem of finding services is often handled by

www.syngress.com

Service Discovery * Chapter 5

a directory service. A directory-centric approach relies on the availability of a
centralized or federated directory of available services. A given member of the
network (a client) finds a service by asking the directory to look it up. The
client sends an input query (name, address, or other wide-ranging criteria) to
the directory, which then responds by sending a list of matching services back
to the client.

For this system to work, the directory must be configured with information
about available services that are updated either by an administrator, or by new
services registering directly with the directory as they become available. This
approach is common in traditional wired (or enterprise) networks. For example,
the Domain Name Service (DNS), Lightweight Directory Access Protocol
(LDAP) and the Common Object Request Broker Architecture (CORBA)
Naming Service all provide directory services where a client queries the direc-
tory using some criteria. These systems work well for relatively stable environ-
ments—where the available services change relatively infrequently compared to
the overall set of services. However, these systems are not ideal for ad-hoc net-
works, where no centralized services (such as directory services) may be present,
where the resources of the appliances are themselves limited, and where the net-
work itself is unreliable. This problem led to the development of less directory-
centric approaches to the “finding stuft” problem, and, in particular, to the use of
service discovery protocols and frameworks, which allow participants in a net-
work to co-operate in advertising and using services with minimal external
infrastructure.

Before reading this chapter, you should have a basic understanding of the
layers of a Bluetooth stack, in particular Logical Link Control and Adaptation
Protocol (L2ZCAP) and the Radio Frequency Communication (RFCOMM) pro-
tocol. You will also need a good understanding of the C programming language,
along with some knowledge of Java.

Introduction to Service Discovery

The term service discovery 1s used to describe the way a networked device (or
client) discovers available services on the network. The emphasis is on being able
to discover at runtime what services exist, and how to talk to those services.
Service discovery makes it possible to have zero configuration networks—where
the user doesn’t have to manually configure the network. Instead, the network
configures itself as it discovers new available services. The ability to self-configure
is critical to ad-hoc networks because:

169

www.syngress.com

170 Chapter 5 ¢ Service Discovery

» There is no other infrastructure available, such as a directory service.
» The network is unreliable, so connections will appear/disappear.

» Nodes themselves—such as the supplier of a service—will move in and
out of the network.

Discovery protocols specify the “rules of engagement” between those seeking
a service (clients) and the service provider (servers). Discovery protocols aim to
minimize the configuration required in the system and to maximize the system’s
flexibility. Key features of a discovery protocol are:

“Spontaneous” discovery and configuration of network services
» Low (preferably zero) administrative requirements

» Automatic adaptation to the changing nature of the network: addition or
removal of nodes, or services

» Interoperability across platforms

Service Discovery Protocols

There are several discovery protocols available, each with difterent characteristics
and a difterent focus (see Table 5.1 for a summary of service discovery protocols).
We will examine these protocols in more detail at the end of this chapter.

Table 5.1 Summary of Service Discovery Protocols

Protocol Originator Comment

Salutation Salutation Originally designed for printers,
Consortium faxes, copiers

Service Location Sun, IETF Generic service discovery protocol

Protocol (SLP) RFC 2608 intended for corporate networks

Jini Sun/JavaSoft Extends the Java platform and lan-

guage to allow dynamic, self-con-
figuring networking

UPnP and Simple Microsoft, IETF Extends Microsoft Plug and Play to

Service Discovery Draft a wider, networked world
Protocol (SSDP)

Service Discovery Bluetooth SIG Designed for Bluetooth ad-hoc
Protocol (SDP) networks

www.syngress.com

Service Discovery * Chapter 5 171

Bluetooth SDP

It should be no surprise to discover that service discovery is fundamental to the
architecture of the Bluetooth standard. Given that Bluetooth is explicitly designed
to facilitate ad-hoc networking between a wide variety of devices, it places a
strong emphasis on how those devices discover and use services in the network.
The standard does not assume that any form of centralized or federated directory
service exists, and so is one of the few discovery protocols that is truly peer-to-
peer in nature (see Figure 5.1 for a comparison of service discovery protocols).

Figure 5.1 Comparison of Service Discovery Protocols

Profocol Salutation
Independent

UPnP

ol (TeP/P) : Bluetooth SDP
rofocol o . (Bluetooth)
Dependent SLP Jini .

(TCP/IP) (TCP/IP)

Centralized, Distributed,
Directory-based Peer-fo-peer

The standard defines a Service Discovery Protocol (SDP) that enables a client
to directly query a device it detects on the network about the services oftered
by that device. We have characterized Bluetooth Service Discovery as being
protocol-dependent, in that it mandates the use of the underlying Bluetooth
communication protocol as the basis for service discovery. However, it’s important
to note the following:

» Bluetooth SDP could indeed be implemented using other underlying
transport mechanisms.
» Higher-level protocols (such as TCP/IP) may be run over Bluetooth.
The latter attribute allows Bluetooth clients to use other forms of service dis-

covery (for example, Jini) once they have bootstrapped themselves with initial
services in the Bluetooth network. It also means that Bluetooth SDP may be

www.syngress.com

172

Chapter 5 ¢ Service Discovery

integrated with a number of the other service discovery protocols. We will discuss
some examples of this at the end of the chapter.

Architecture of Bluetooth
Service Discovery

To understand the architecture of service discovery in Bluetooth, three key ele-
ments need to be considered: Service Discovery data structures, the Service
Discovery Protocol, and the Service Discovery Application Profile (SDAP). The
SDP, a part of the Bluetooth specification, describes both the data structures that
represent information about services and the protocol used to communicate
between SDP components. SDAP stipulates how SDP can, and should, be used
by Bluetooth applications. Next, we’ll discuss the high-level architecture of each
of these elements.

The Structure of Service Records

A Bluetooth application user will need to access an entity on a remote device
that will do something for the user. The remote entity is called a service. A service
might provide information, carry out an action, or access a resource. In order for
a user to find information about what services are provided by a device, the
device must have an SDP server. The SDP server contains enough information
about each supported service to allow it to be accessed by the user (or client).
For a particular service (and there may be many services on one device) a service
record contains a description of that service. The description takes the form of a
sequence of service attributes, each one describing a piece of information about the
service. Within the SDP server, each service record is uniquely identified by a ser-
vice record handle (a 32-bit number). This handle is unique only within the scope
of the SDP server.

A service class defines the set of service attributes that a particular service record
may have. In other words, a service record is a particular instance of a class of ser-
vices. For example, a service record whose service class is PrinterClass is a collection
of attributes that describe a specific printer service. In fact, a service record may be
an instance of multiple different service classes, each with their own set of service
attributes. This is useful for building hierarchies of service types. A service class B
can be said to be a subclass of service class A if it contains all of the service
attributes of A and also adds its own attributes. You can tell what service classes a
particular service record instance belongs to by looking at a particular attribute of

www.syngress.com

Service Discovery * Chapter 5

the record, namely the ServiceClassIDList attribute. The Bluetooth specification
defines 15 service attributes that are common to all service records. They’re not
mandatory, but when used they have to conform to the definition in the Bluetooth
specification. These are the Universal Attribute Definitions, and they include
attributes likeService ClassIDList, ServiceRecordHandle, and ProtocolDescriptorList (a list
of protocol stacks that may be used to access the service).

A service attribute is a name-value pair that includes an attribute ID and an
attribute value. The attribute ID uniquely identifies the attribute within the scope
of the service record. The attribute ID also identifies the type of the associated
attribute value (for example, whether the attribute value is a text string, an
unsigned integer, a Boolean, and so on). Since an attribute ID is unique only
within the scope of a service record, the same ID can be used in different service
records to represent different attributes of different types.

An attribute value can contain data of arbitrary complexity, rather than just
simple types. This 1s accomplished using data elements. A data element is made up
of a header and a data field. The header field includes a size descriptor and a type
descriptor. The size descriptor identifies the size (in bytes) of the data in the data
element. The type descriptor identifies the type of data stored in the data ele-
ment, such as:

= Nil, the null type

» Unsigned integer

» Signed twos-complement integer

» Universally Unique Identifier (UUID)
» Text string

= Boolean

» Data element sequence

» Data element alternative (a sequence of data elements from which one
element is selected)

» Uniform Resource Locator (URL)

One of the valid types for a service attribute ID is a UUID, as defined by the
International Organization for Standardization (ISO) [in ISO/IEC 11578:1996
“Information technology - Open Systems Interconnection - Remote Procedure
Call (RPC)”]. These 128-bit numbers are guaranteed to be unique across all
space and time (actually, unique until A.D. 3400, based on the UUID algorithm).

173

www.syngress.com

174

Chapter 5 ¢ Service Discovery

One of the key uses of UUIDs is as a type for the members of the
ServiceClassIDList. That 1s, each service class 1s uniquely identified by a UUID. A
set of pre-defined service classes is provided in the Bluetooth Assigned Numbers
specification. Another use of UUID is as a unique identifier for a particular ser-
vice instance. This identifier is the ServiceID service attribute. Later, you’ll see that
UUIDs play a key role in searching a service discovery server.

The basic structure of the datatypes used by Bluetooth Service Discovery is
summarized in the sample SDP server shown in Figure 5.2. For simplicity’s sake,
the service class identifiers are shown as text strings rather than UUIDs.

Figure 5.2 The Data Structures of a Sample SDP Server

Service Discovery Server

Service Record 165

Service Record 166
Service A"I’ibUfE
Atiribute ID Atiribute Value
OBEXFileTransfer,
ServiceClassIDList GenericFileTransfer @

Service Atribute Service Record 167

Attribute ID Attribute Value

ServicelD ‘ ’ 0x3004 ‘

A client wanting to access the service records of a service discovery server can
do so in one of two ways: they can search for a particular service record or they
can browse the available service records. The search capability of the Service
Discovery Protocol is simple but eftective. It allows a client to specify a list of
UUIDs and then retrieve a list of service record handles for service records,
whose attributes contain all of the UUID:s specified by the client. Later in this
chapter, you’ll see how this mechanism is used in practice.

To support the browsing of service records, Bluetooth Service Discovery uses
special service attributes and service classes that allow for the construction of a
browseable hierarchy. A service class called BrowseGroupDescriptor is defined. A ser-
vice record that is an instance of this class is analogous to a directory in a file

www.syngress.com

Service Discovery * Chapter 5

hierarchy—it’s a place in a hierarchy where related services can be stored, or
where child Browse GroupDescriptor records can be stored. The BrowseGroupList
attribute of a service record specifies the list of BrowseGroupDescriptors that a ser-
vice record instance is a member of (it may be in more than one). The members
of this list attribute are the UUIDs of the BrowseGroupDescriptor records. So, a
client can browse the Service Discovery Server by specifying the UUID of the
Browse Group of interest as a search pattern to the server. This search will match
all service records that have specified this Browse GroupDescriptor UUID in their
Browse GroupList attribute.

Before looking at the Service Discovery Protocol, it’s worth considering the
semantics of a service attribute value. Although the Bluetooth specification says
that an attribute ID describes both the type and the semantics of an attribute
value, this is somewhat sketchy. The semantics of an attribute value are not, in fact,
codified within a service attribute. Instead, the meaning of a particular attribute
value is understood by the client application once it knows what service class the
attribute’s service record belongs to. For example, a client accessing a service
record of service class 0x1113 (the last 16 bits of the UUID for the Wireless
Application Protocol [WAP] service class) must know;, at application development
time, that the service attribute with attribute ID 0x0306 is the attribute that iden-
tifies the Internet Protocol (IP) network address of a WAP Server. This informa-
tion 1s not made available to it at runtime for presentation to the end user, for
example. If youre familiar with richer software abstractions for discovering net-
work services, this example illustrates the opportunities for an abstract layer of
primitives to hide some of the programming detail from an application developer.

The Service Discovery Protocol

So, how exactly do clients discover services in their local areas? Services are dis-
covered using the Service Discovery Protocol, a simple protocol that communi-
cates between SDP clients and servers. It can be implemented over any reliable
packet-based transport layer, though it’s typically implemented over the Logical
Link Control and Adaptation Protocol. The Service Discovery Protocol includes
a set of Protocol Data Units (PDUs) that contain the basic requests and responses
needed to implement the functionality of Bluetooth Service Discovery. The
actual PDU format and protocol are not directly relevant to an application pro-
grammer who will work exclusively through the API of a Bluetooth stack. But
it’s worth summarizing the protocol here since the stack API is usually derived
from the structure of underlying PDUs.

175

www.syngress.com

176

Chapter 5 ¢ Service Discovery

An SDP PDU contains a PDU ID, a transaction ID, and a parameter length
in its header. Its body contains some number of additional parameters—what
these parameters are depends on which type of transaction the PDU contains.
The PDU ID identifies the type of transaction. The following are transaction
types supported by the protocol:

= SDP_ErrorResponse

= SDP_ServiceSearch

s SDP_ServiceAttribute

s SDP_ServiceSearchAttribute

With the exception of SDP_ErrorResponse, the transaction types are
Request/Response pairs. For an SDP implementation to match an incoming
Response with a previously issued Request, a number is assigned to the Request
that is unique among currently outstanding Requests. This is the Transaction ID.
The SDP_ErrorResponse PDU is generated if a Request PDU is improperly for-
matted, or if some other error has prevented the generation of an appropriate
Response PDU. The parameters of this PDU will give you some information
about the nature of the error. The ServiceSearch transaction, embodied in a
Request/Response pair, searches for services containing service records that
match a submitted search pattern. The search pattern (of UUIDs) is passed as a
Request PDU parameter; the service record handles of the matching service
records are then passed in a Response PDU parameter. The ServiceAttribute
transaction retrieves particular service attributes from a specified service record.
The parameters of the Request PDU specify the service record handle of the
target record, as well as the list of attribute IDs to be retrieved. A list of attribute
values is passed in a parameter in the Response PDU. The capabilities of the two
preceding transactions are combined in the ServiceSearchAttribute transaction.
This transaction retrieves attributes matching the specified Attribute list from the
service records matching a specified search pattern.

Developing An Abstract C API for SDP

The Service Discovery Protocol of the Bluetooth specification identifies the pro-
tocol data units exchanged between protocol peer entities. Ultimately, it’s not the
role of the specification to provide an API. So, we start here by providing an API
in C that covers the low-level functionality of the protocol. Coding examples in

the rest of the text reference this API.

www.syngress.com

Service Discovery * Chapter 5

The API uses an “object-oriented” flavor with liberal use of opaque types. All
memory management is performed by the API implementation.

First, we look at the API needed from the server point of view—in other
words, an API allowing for the creation and advertising of service records.

/1 The basic types are opaque
typedef inplenentationHandl e SDP_SERVI CE_RECORD t;

/'l service record
typedef inpl enentati onHandl e SDP_DATA ELEMENT t;

/| Data el ement
typedef short SDP_ATTRI BUTE_ID t;

/] attribute
typedef unsigned short SDP_DE TYPE t;

/] Data el ement type bitmask
typedef unsigned short SDP_DE Sl ZE t;

/] Data el ement size bitmask
//Used to create a service record
status_t sdp_create_service_record(SDP_SERVI CE_ RECORD t *srh);
//Used to free a previously created service record
status_t sdp_free_service_record(SDP_SERVICE_ RECORD t srh) ;
//Create a basic data element fromits given type and val ue
/1 Type is constructed by ORing a type and size bitnask
/lsize is ignored for String, URL and sequence types.
/[l For String, URL types, the given value nmust be a char*,
/1from which the size is calcul at ed.
/1 For a sequence type the size is calculated directly fromthe
/11ist of elenents added into the sequence.
/I For integer types greater than 32 bit, and for 128 bit UU D
/ltypes, the value is given as a byte array.
status_t sdp_create_data_el enent (SDP_DE _TYPE t type,

voi d *val ue,
SDP_DATA ELEMENT t *elen);

/I These are the bitmask values for the type and size,
//derived directly from the specification

/[SPEC] part E, section 3

177

www.syngress.com

178

Chapter 5 ¢ Service Discovery

#define SDP_DE TYPE NI L 0x00 /* Nil, the null type */
#define SDP_DE_TYPE_UI NT 0x08 /* Unsigned Integer */
#define SDP_DE_TYPE_STC 0x10 /* Signed, twos-conplenent

i nt eger */
#define SDP_DE_TYPE_UU D 0x18 /* UUD, a universally

uni que identifier */
#define SDP_DE TYPE STR 0x20 /* Text string */
#define SDP_DE_TYPE_BOCL 0x28 /* Bool ean */
#define SDP_DE_TYPE_DES 0x30 /* Data Element Sequence */
#define SDP_DE TYPE DEA 0x38 /[/* Data Elenent Alternative */
#define SDP_DE_TYPE_URL 0x40 /* URL, a uniformresource

| ocat or */
#define SDP_DE_SI ZE 8 0x0 /* 8 bit integer value */
#define SDP_DE_SI ZE_16 Ox1 /* 16 bit integer value */
#define SDP_DE Sl ZE 32 0x2 /* 32 bit integer value */
#define SDP_DE_SI ZE 64 0x3 /* 64 bit integer value */
#define SDP_DE_SI ZE_128 O0x4 /* 128 bit integer value */

//Used to create a data el enent sequence or data el enent

//alternative

status_t sdp_create_data_el enent _sequence(

SDP_DATA ELEMENT t *head):

//Used to add a data elenment to a previously constructed data

/ /el ement sequence or alternative

status_t sdp_add_el enent (SDP_DATA ELEMENT t head,

SDP_DATA_ELEMENT t elen;

//Used to free a previously created data el ement

status_t sdp_free_data_el enent (SDP_DATA ELEMENT t elem ;

//'Used to add an attribute to a previously constructed service

/lrecord

status_t sdp_add_attri bute(SDP_SERVI CE_ RECORD t srh,
SDP_ATTRIBUTE ID t attrid,
SDP_DATA ELEMENT_ t attribute);

www.syngress.com

Service Discovery * Chapter 5

/1 Used to advertise a previously constructed service record
status_t sdp_register_service(SDP_SERVI CE_ RECORD t srh);

/1 Used to stop advertising a previously advertised service
/lrecord

status_t sdp_unregister_service(SDP_SERVI CE_ RECORD t srh);

Next, we present the API from the client’s point of view—in other words, an
API for the retrieval of service records and their attributes in order to use the
information.

/1 The basic types are opaque
typedef inplenentationHandl e SDP_DEVI CE t;
typedef inplenentationHandl e SDP_CONNI D t;
typedef short SDP_COUNT t;
//Used to create an SDP connection to a renote device's SDP
/Iserver.
status_t sdp_open_connecti on(SDP_DEVI CE_t device

SDP_CONNI D t *sdpConnl D);
//Used to close an SDP connection to a renote device's SDP
/Il server.

status_t sdp_cl ose_connecti on(SDP_CONNI D t sdpConnl D);

//Used to retrieve a list of service records that match
//the given list of UU Ds. Adhering strictly to the protocol
/lonly the service record handles are retrieved.
status_t sdp_service_search(SDP_CONNID_t sdpConnld,
SDP_DATA ELEMENT t[] searchPattern,
SDP_COUNT_t sear chPatternCount,
SDP_COUNT_t maxRecor dCount ,
SDP_COUNT_t *nunfound,
SDP_SERVI CE_RECORD t **res);
//Used to retrieve a list of attributes fromthe renote SDS
//for the given service record handle. Note that the renote
/Inature of the api is explicit, reflecting the SDP protocol
status_t sdp_get_attributes(SDP_CONNID_t sdpConnld,
SDP_SERVI CE_RECORD t srh,

179

www.syngress.com

180 Chapter 5 ¢ Service Discovery

SDP_ATTRIBUTE ID t[] attrlds,
SDP_COUNT_t attributeldCount);
//Used to retrieve the attribute value (as a data el ement)
/Il corresponding to the given attribute ID fromthe
/1given service record. |If the attribute value was not
/lpreviously retrieved by the sdp_get_attributes function
//this function will return null.
status_t sdp_get_attribute(SDP_SERVI CE_ RECORD t srh,
SDP_ATTRIBUTE ID t attrid,
SDP_DATA ELEMENT_t *attr Val ue);
/1 Used to parse the attribute values (as data el enents)
/lretrieved fromthe service record by the preceding api.
/1 The type, size, and value are returned. For nobst types (except
//the sequence types), the value can be cast to the appropriate
/1 C type as given by the type paraneter (see the notes for
/1 sdp_crete_data_el ement)
status_t sdp_parse_data_el enent (SDP_DATA ELEMENT t dat aEl enent,
SDP_DE TYPE_ t *type,
SDP DE SIZE t *si ze,
voi d **val ue);
//Used to retrieve successive data el ements from a data el enent
/lsequence. This function will only work on data el ements of
//type sequence.
status_t sdp_get_next _el enent (SDP_DATA ELEMENT_t sequence,
SDP_DATA _ELEMENT_t *next El erment) ;

Discovering Services

We’ve put together a practical guide to help you make sense of using SDP to
advertise and discover services within a network. Following on the previous sec-
tion, we’ll create and advertise a service record on a server device using the API
in the earlier section titled “Developing An Abstract C API for SDP” We’ll then
connect to the SDP server and find a specific service record or browse service
records from a client device. But first, let’s discuss how to use the Class of Device
(CoD) to assist in short-circuiting the service discovery process.

www.syngress.com

Service Discovery * Chapter 5 181

Short-Circuiting the Service Discovery Process

Every Bluetooth device can contain a Service Discovery Server (SDS) that adver-
tises the services available on that particular device, be it a mobile phone, PDA, or
something else. It can do this by making available the service records that
describe those services. A client starts by finding a Bluetooth device. Then they
use the SDS to pinpoint a service or to browse available services. Bluetooth device
discovery can help short circuit this service discovery process. During the device inquiry
process (before any ACL connection is made between devices), the low-level
Frequency Hopping Synchronization (FHS) packet is exchanged between discov-
ering and discovered devices. One of the pieces of information in the FHS
packet is the Class of Device. The CoD is a 24-bit value composed of three parts:
Major Device Class, Minor Device Class and Major Service Class. Checking
these values can be beneficial when determining if a connection should be opened
to the device. For example, if a PDA is looking for a printer, it can tell immediately
from the CoD if a discovered device can print. It doesn’t have to open a connec-
tion to the SDS and check the Service Discovery Database (SDDB) of the discov-
ered device. So, a client will know if a device hosts the required service before a
connection is made. This “short-circuiting” of service discovery is powerful and
increases the speed and efficiency of service discovery. The Bluetooth SIG controls
the values of the three CoD attributes. For further information on the CoD, see
[SPEC], part B, section 4.4.1.4, and [ASSN] section 1.2.

Creating and Advertising a Service

If the CoD indicates that a service or category of service is available, then a con-
nection can be opened to the SDS on the discovered device. This connection can
be used to find an exact match service or to determine the precise mechanism to
interact with a service. In general, the service record should only be advertised
when the service is available, and the service itself should be responsible for this.
(The service is advertised as part of a service bootstrapping process, and con-
versely, advertising the service is stopped as part of service termination.)

To create a service record, individual data elements that correspond to the
attribute values of the service attributes need to be constructed. They are then
added into the service record. The following piece of code in this section creates
a service record for an Example service. The Example service belongs to the
Example service class. This service class has a class description that defines the
contents of the service record that defines the Example service. The service

www.syngress.com

182

Chapter 5 ¢ Service Discovery

description in Table 5.2 lists each of the attributes contained in an Example ser-

vice record, including the name, ID, value type, and meaning.

Table 5.2 Service Attributes Example

Attribute Attribute Attribute Attribute
Name ID Value Semantic
ServiceClassIDList 0x0001 Sequence a&binlist
ProtocolDescriptorList 0x0004 Sequence a &cin list
LanguageBaseAttributeldList ~ 0x0006 Sequence a &din list
ServiceName offset (0x0000) String a&einlist
a) This service attribute has the definition as given by the corresponding

universal attribute definition, available in the SDP protocol specification
[SPEC] part E, section 5.1.

This service attribute provides a list of UUIDs that identify the classes
(or class definitions) of which this service is an instance. In this case, the
class list contains the single ID for the Example class.

This service attribute provides a list of the protocols and protocol
attributes needed for a client to access this service. In this case, the pro-
tocol list contains the single Bluetooth protocol L2CAP, and its attribute is
the Protocol Service Multiplexor (PSM) value for the service (this PSM
value is assigned dynamically at runtime by the L2ZCAP implementation).

This service attribute contains a list of natural languages supported, and
for each language a triple: the ISO language identifier, the encoding
used for attributes in this language, and the base ID to be used for all
attributes that encode natural language strings in this language (see
ServiceName).

This service attribute contains the name of the service in a natural lan-
guage. The offset 1s added to the base language ID as given in the
LanguageBaseAttributeldList to give the ID for the ServiceName attribute
in the given language.

The code samples that follow are pseudo-code samples that use our abstract
C API. Variables are typically declared close to their first use rather than in an ini-
tial declaration block. This is illegal in C (though not in C++), but it improves
readability and is an aid to understanding.

www.syngress.com

Service Discovery * Chapter 5

// Create an elenent for the service class identifier, which is a
/1 UUI D that uniquely identifies the service class description that
// describes the service record contents for this service
char exanpl eServi ceC assUUl D[32] = 0x12672536752ABBC12612AB12BC125A7F;
SDP_DATA _ELEMENT _t exanpl eServi ced assl D,
sdp_create_data_el enent (SDP_DE_TYPE UU D _ SDP_DE SI ZE 128,
exanpl eSer vi ceC assUU D,
&exanpl eServi ced assl D) ;
/Il Create the el ement sequence for the mandatory attribute
/1] ServiceCl assl DLi st, which lists the service class |Ds of
/lall the service classes to which this service bel ongs
SDP_DATA _ELEMENT_t serviceC assl DLi st
sdp_create_dat a_el enent _sequence(&servi ceC assl dLi st);
//Add the one service class IDto this |ist
sdp_add_el ermrent (servi ced assl dLi st, exanpl eServi ceC assl D);
/Il Create the el ement sequence to describe the access paths through
//the protocol stack, and the el enent sequence to describe the access
/I path through L2CAP
SDP_DATA ELEMENT_t protocol List, |2capList;
sdp_create_dat a_el enent _sequence(&pr ot ocol Li st);
sdp_creat e_dat a_el enent _sequence(& 2caplLi st);
/1 This Example service is accessed through the L2CAP transport on a
//dynam cal |y assigned PSM (inmagine this code is being executed as the
/I service is bootstrapping)
/Il Create the individual elements that constitute the access through
//L2CAP, i.e. the UWUD for L2CAP, and the PSM val ue
SDP_DATA _ELEMENT_t | 2capld, psnVal ue;
sdp_create_data_el enent (SDP_DE _TYPE _UUI D _ SDP_DE SI ZE_16,
0x0100, &l 2capld);
sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE_16,
0x1001, &psnval ue);
/1 Add the elenments to the sequence
sdp_add_el ermrent (| 2capLi st, |2capld);
sdp_add_el enment (| 2capLi st, psnVal ue);

183

www.syngress.com

184

Chapter 5 ¢ Service Discovery

/1 Add the L2CAP access to the general service access path |ist

sdp_add_el enent (protocol List, |2capList);

//Create the attribute ID for LanguageBaseAttri butel dLi st
SDP_ATTRIBUTE_ID t | angBaseAttributeld = x0006;
// Create the el ement sequence to describe the nmain human readabl e
/1l anguage base, i.e. English
SDP_DATA _ELEMENT t engl i shLanguageBase;
sdp_create_dat a_el enent _sequence(&ngl i shLanguageBase) ;
/I Create the individual elenments that constitute the nenmbers of the
/1l anguage base el enent sequence, i.e. the ISO | anguage identifier, the
/11SO character encoding of strings in this |anguage, and the base
/lattribute ID that all human readable attribute IDs will be added to,
//to determine the actual attribute ID.
SDP_DATA ELEMENT_t enLangl d, enLangChar Set, enLangBasel D;
//For simplicity "en' and 'fr' are used to represent 'English' and
/1" French', as specified by | SO 639: 1988(E/F), rather than converting to
/la 16 bit integer, as specified in the Bluetooth specification
sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE_16,

"en', &enlLangld);
sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE_16,

UTF- 8, &enLangChar Set);
sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE 16,

0x0100, &enlLangBasel D);
/1 Add the elenments to the sequence
sdp_add_el enent (engl i shLanguageBase, enlLangld);
sdp_add_el enment (engl i shLanguageBase, enLangChar Set);
sdp_add_el erment (engl i shLanguageBase, enlLangBasel D);
/Il Create an el enment sequence for each human readabl e | anguage that will
/1 be supported, e.g. French
SDP_DATA ELEMENT_t frenchLanguageBase;
sdp_create_dat a_el enent _sequence(& r enchLanguageBase) ;
SDP_DATA _ELEMENT_t frlLangld, frLangCharSet, frlLangBasel D
sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE_16,

www.syngress.com

Service Discovery * Chapter 5

"fr', & rLangld);

sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE 16,
UTF- 8, &frlLangChar Set);

sdp_create_data_el enent (SDP_DE_TYPE_UI NT _ SDP_DE SI ZE_16,
0x0200, &frlLangBasel D);

sdp_add_el erment (f renchLanguageBase, frlLangld);

sdp_add_el erment (f renchLanguageBase, frLangChar Set);

sdp_add_el enent (f renchLanguageBase, frLangBasel D);

/l/Finally, create the elenment sequence to hold all the |anguage

/1lists and add themin

SDP_DATA ELEMENT t | anguageli st;

sdp_creat e_dat a_el enent _sequence(& anguageli st);

sdp_add_el erment (| anguageli st, engli shLanguageBase);

sdp_add_el enment (| anguageli st, frenchLanguageBase);

/I Now create the element to define the service nane in both English and

/1 French

SDP_DATA _ELEMENT t enServi ceNaneg;

sdp_create_data_el enent (SDP_DE_TYPE_STR, ' Service Nane',
&enSer vi ceNane) ;

SDP_DATA ELEMENT t fr Servi ceNane;

sdp_create_data_el enent (SDP_DE_TYPE_STR, ' Nom de Servi ce',
&f r Servi ceNane) ;

/ /W can now create the service record and add all the attributes
SDP_SERVI CE_REC t exanpl eServi ceRecor d;
sdp_create_service_record(&xanpl eServi ceRecord);
sdp_add_at tri but e(exanpl eServi ceRecord,

Servi ceC assl DLi st ,

serviced assl dLi st);
sdp_add_at tri but e(exanpl eSer vi ceRecord,

| angBaseAttri buteld,

| anguagelLi st);
sdp_add_at tri but e(exanpl eSer vi ceRecord,

0x0100,

185

www.syngress.com

186

Chapter 5 ¢ Service Discovery

enSer vi ceNane) ;
sdp_add_attri but e(exanpl eServi ceRecord,

0x0200,

frServi ceNane) ;

/I/Finally we can advertise the service

sdp_adverti se_servi ce(exanpl eServi ceRecord);

As you can see, creating and advertising individual service records can be an
involved process. In an upcoming section, we will explore how the API can be
improved with “helper” functions based on the use of the Bluetooth profiles.
Now, we’ll look at the client side of service discovery and the two ways a service
can be discovered: by looking for a specific service or by browsing.

Discovering Specific Services

The Bluetooth Service Discovery Protocol allows for services to be discovered

on the basis of a series of attributes with values of type UUID. In reality, when
talking about discovering specific services, one of the most important attributes
of a service, if not the most important, is the ServiceClassIDList. It provides a list of
the classes to which the service belongs. For example a Headset service as defined
by the Headset profile belongs to ServiceClass Headset and ServiceClass Generic
Audio. The following code is used to search for an instance of the Example ser-
vice, as defined in the previous section.

/ /W assune here that the device is obtained through the device
/1 di scovery procedure, and is not discussed here

SDP_DEVI CE_t devi ce;

/1 The SDP connection to the peer device

SDP_CONNI D_t connecti on;

/1 The search pattern, containing the list of UUDs to be used. Each
/Il service record must contain every UUD given in order to qualify.
/11n this case we will only have one UU D - the UU D of the Exanple
/Il service class.

SDP_DATA ELEMENT t searchPattern[1l] = {exanpl eServiceC assl| D};

// The nunmber of service records found as a result of the search
SDP_COUNT_t numnber Found,;

/1 The service records found

www.syngress.com

Service Discovery * Chapter 5

SDP_SERVI CE_RECORD t[] found;
/1 Open an SDP connection to the device.
sdp_open_connecti on(devi ce, &connection);
/1 Do the search for the specific service, specifying a maxi mum of one
/lresult to be returned. In this instance nunberFound will be one or O.
sdp_servi ce_search(connecti on,

searchPattern, 1, 1,

&numnber Found,

&f ound) ;

If the service class ID used to perform the search represents the most specific
class needed, then any service represented by the returned service records can be
used. Individual attributes which further refine the search may be given, but with
our C API, they must be attributes whose values are of type UUID. To provide a
search facility using non-UUID type attributes would mean writing this code
yourself. This could be done by performing a base search with the UUID types,
and then accessing the appropriate non-UUID attributes and comparing them
with the values given. The next section shows how this could be done, by dis-
cussing how individual service attributes are examined.

Using Service Attributes

Once a client has retrieved service records, the service record’s attributes can be
examined. The client can retrieve the service name attribute for displaying to the
user in the language of the Locale of the user machine. For example, this is how a
user in a French Locale would do it:

/W assune here that the service record has been returned by the
/I previous code. W describe a C function to return the Service nane
/las a char*.
char* get Servi ceName(SDP_CONNI D_t connecti on,
SDP_SERVI CE_RECCORD t serviceRecord) {

// The nane as a char*

char* servi ceNaneStri ng;

[TUility variables for type and size

SDP_DE_TYPE type;

SDP_DE_SI ZE si ze;

/1 Get the value of the LanguageBaseAttributeldList attribute from

187

www.syngress.com

188 Chapter 5 ¢ Service Discovery

/lthe renote device
sdp_get _attri butes(connection,
servi ceRecord,
&l angBaseAttributeld, 1);

//Retrieve the value of the attribute — the sequence of supported
/1l anguages
SDP_DATA _ELEMENT _t | angaugeli st;
sdp_get _atri but e(servi ceRecord,
| angBaseAttri but el d,
&l anguageli st) ;
//1terate through the sequence of |anguages |ooking for French
//as given in the language ID — the first elenent in the |anguage
|l sequence
SDP_DATA_ELEMENT_t | angauge;
unsi gned short | angBaseld = 0;
whil e (sdp_get _next _el enent (| anguagelLi st, &l anguage) == SUCCESS) {
SDP_DATA_ELEMENT_t | angaugel d;
sdp_get _next _el enent (| anguage, & anguagel d);
/Il Parse out the type, size, and value fromthe el enent
//we know the val ue should be an unsigned short
unsi gned short id;
sdp_par se_dat a_el ement (| anguagel d, &type, &size, & d);
/11f this is the French | anguage sequence, then parse out the base
/lattribute ID.
if (id=="fr") {
SDP_DATA_ELEMENT_t | anguageEncodi ng, baseAttributel d;
sdp_get _next _el enent (1 anguage, & anguageEncodi ng);
sdp_get _next _el enent (| anguage, &baseAttributeld);
sdp_parse_dat a_el ement (baseAttri buteld, &type,
&si ze, &l angBasel d);

br eak;

www.syngress.com

Service Discovery * Chapter 5

if (langBaseld !'= 0) {
/1 The attribute ID for the service nane in French is given by the
/'l langBaseld, since the ServiceNane attribute has a 0x0000 offset.
sdp_get _attri butes(connecti on,
servi ceRecord,
& angBasel d, 1);
SDP_DATA ELEMENT t servi ceNane;
sdp_get _attribute(serviceRecord,
| angBasel d,
&servi ceNane) ;
sdp_par se_dat a_el enent (servi ceNane,
& ype, &size,
&servi ceNameSt ri ng) ;
}

return serviceNameStri ng;

Browsing for Services

If the service Class ID for a particular service is unknown, or if a client wants to
browse the services on a device, the service discovery protocol provides a way to
do this. To be “browseable,” a service must be explicitly marked as browseable
with a BrowseGroupList attribute in its service record. If the service record doesn’t
have this attribute, it can’t be browsed. The BrowseGroupList attribute contains the
list of UUIDs that identifies the groups that a service belongs to. A well-known
root browse group UUID (called PublicBrowseRoot) is defined by the SIG (see the
[ASSN] section 4.4). Because the root is a well-known UUID, a client knowing
nothing about services always has a place to start browsing. A group is defined by
a BrowseGroupDescriptor service record. This service record has two attributes of
interest: the GroupID (whose UUID value is contained in a service’s
BrowseGroupList), and the BrowseGroupList attribute, which specifies the list of
browse groups to which this group itself belongs. The BrowseGroupDescriptor ser-
vice class definitions are given in [SPEC], part E, section 5.3, and its service class
ID is defined in the [ASSN], section 4.4.

If you want the Example service to be in a Sample Services group—a group
available from the root browse group—you would define a Browse group with

189

www.syngress.com

190 Chapter 5 ¢ Service Discovery

this name and some GrouplD UUID to tag the group.You'd then insert this tag
into the BrowseGroupList of the Example Service. Of course, the BrowseGroupList
of the Sample Services group must contain the root browse group. The following
code shows how the Sample Service browse group is created and how the
Example service is put into that group.
// Create an elenent for the service class identifier, which in this
/lcase is a well known UUID for the BrowseG oupDescriptor service class
/11D (defined by the SIG as a 16 bit UU D of value 0x1001)
SDP_DATA ELEMENT_t browseG oupDescri pt or Servi ceC assl D,
sdp_create_data_el enent (SDP_DE_TYPE_UUI D _ SDP_DE SI ZE 16,
0x1001,
&br owseG oupDescri pt or Servi ced assl D) ;
/Il Create the elenment sequence for the mandatory attribute
/1 Serviced assl DList, which lists the service class |IDS of
/lall the service classes to which this service bel ongs
SDP_DATA ELEMENT t servi ced assl DLi st ;
sdp_create_dat a_el enent _sequence(&servi ceC assl dLi st);
/1 Add the one service class ID to this I|ist
sdp_add_el ermrent (servi ced assl dLi st ,
br owseG oupDescri pt or Servi ced assl D) ;
//Create an element for the GouplD attribute, which is a
//UUI D that uniquely identifies the group defined by this browse
/1 group.
SDP_DATA _ELEMENT_t sanpl eBr owseG oupl D,
sdp_create_data_el enent (SDP_DE_TYPE UU D _ SDP_DE SI ZE 128,
0x87634324b34232cb434d43a43d3444dd,
&sanpl eBr owseG oupl D) ;
//Create an elenment for the root browse group ID, which is a
/ITwell known UUl D defined by the SIG
SDP_DATA_ELEMENT_t r oot BrowseG oupl D,
sdp_create_data_el enent (SDP_DE_TYPE _UUI D _ SDP_DE SI ZE 16,
0x1002,
&r oot BrowseG oupl D) ;

/Il Create the el enment sequence for the BrowseG ouplList attribute

www.syngress.com

Service Discovery * Chapter 5

/1which lists GouplD of all the groups that this record is

/I browsabl e from

SDP_DATA _ELEMENT_t sanpl eG oupBr owseG oupli st ;

sdp_create_dat a_el enent _sequence(&anpl eG oupBr owseG ouplLi st);

//Add the one UUDto this list — the well-known root browse group
sdp_add_el enment (sanpl eG oupBr owseG oupli st ,

r oot BrowseG oupl D) ;

// Now create the service record and add all the attributes
SDP_SERVI CE_REC t sanpl eG oupServi ceRecor d;
sdp_create_service_record(&sanpl eG oupServi ceRecord);
sdp_add_attri but e(sanpl eG oupSer vi ceRecord,

Servi ceC assl dLi st (0x0001),

serviced assldList);
sdp_add_attri but e(sanpl eG oupSer vi ceRecord,

Groupl D (0x0200),

sanpl eBr owseG oupl D) ;

sdp_add_at tri but e(sanpl eG oupSer vi ceRecord,
Br owseG ouplLi st (0x0500),
sanpl eG oupBr owseG oupli st) ;
/I/Finally we can advertise the service

sdp_adverti se_servi ce(sanpl eG oupServi ceRecord);

The Example Service (as defined in the previous section) needs to have the
following code added in order to be included in the Sample Group. The code
should be added just before the service record is advertised.

/Il Create the el ement sequence for the BrowseG ouplList attribute
//which lists GouplD of all the groups that this record (the

/| Exanpl e Service) is browsable from

SDP_DATA _ELEMENT_t exanpl eSer vi ceBr owseG oupli st ;

sdp_creat e_dat a_el enent _sequence(&xanpl eSer vi ceBr owseG oupLi st);
//Add the one UWUID to this Iist — the UU D of the sanple group

/1 GrouplD attribute

sdp_add_el erment (exanpl eSer vi ceBr owseG oupli st

191

www.syngress.com

192

Chapter 5 ¢ Service Discovery

sanpl eBr owseG oupl D) ;
sdp_add_attri but e(exanpl eServi ceRecord,
Br owseG ouplLi st (0x0005),

exanpl eSer vi ceBr owseG oupli st);

This code makes the Example Service browseable from the Sample Browse
Group.

Clients can now discover the service by browsing on their mobile devices.
The specific client code for doing this is not given as it will follow the template
given already in the earlier section “Discovering Specific Services.”, but it
employs the following algorithm:

A service search is performed using the UUIDS for both the Public Browse
Group (defined by the SIG as a 16-bit UUID of value 0x1002), and the
BrowseGroupDescriptorServiceClassId (defined by the SIG as a 16-bit UUID of
value 0x1001). This specific search should yield only those BrowseGroupDescriptors
service records that are browseable from the public root. In this instance, given
the preceding Example code, this search would yield one record, the SampleGroup
record. From this, we extract the Group ID, and perform another search using this
UUID as the sole UUID in the search pattern. This will yield any service records
that are members of the group—in other words, which have the Group ID in
their BrowseGroupList (in addition to the BrowseGroupDescriptor service record
itself). In this instance, the Example service record will be returned.

Service Discovery Application Profile

Bluetooth profiles define usage scenarios for Bluetooth devices as well as the
functionality that should be available from the underlying protocol stack. The
profiles don’t present individual programming interfaces (which would be
platform-dependent), but instead present a platform-neutral description of func-
tionality to be provided by an application that realizes the profile.

In the previous section, we presented a C-based API for service discovery. If
you are familiar with the SDP protocol, you’ll notice that the API is based on the
description of the protocol PDUs exchanged between the protocol’s client and
server entities. It’s not based on the Service Discovery Application Profile, for rea-
sons that will become clear shortly. The SDAP is a usage scenario describing the
functionality a Service Discovery Application (SrvDscApp) should provide to an
end user on a Local Device (LocDev) so that user can discover services on a

www.syngress.com

Service Discovery * Chapter 5

Remote Device (RemDev). The SDAP doesn’t specify an API that will provide
this functionality, but suggests primitives that can be mapped to an APIL. This dif-
fers from most other profiles that describe functionality without using primitives.
The primitives are:

a) Enumerate Remote Devices This primitive is used for device discovery
and would likely be implemented by the baseband inquiry mechanism.

b) Search Services This primitive is used to search for specific services
based on the class of the service or the class of service and some specific
attributes of the service. It would likely be implemented by the
searchServices functionality (shown in the previous section).

c) Browse Services This primitive is used to browse services according to
the browse groups. It would likely be implemented by functionality (as
shown in the Browsing Services section).

d) Terminate Primitive This primitive is used to terminate a previously
started primitive.

The SrvDscApp 1s only necessary on the LocDev device—the client device.
Though the profile says devices without user interfaces are not candidates for
LocDev, devices can still use the procedures defined by the profile to exercise the
SDP protocol. For instance, where another application profile (such as Serial
Port Profile) is using SDP to recover applicable service records. We look at this
scenario in the next section, “Service Discovery Non-Application Profiles.”
Primitives ¢ and d give the necessary procedures for this usage (which are covered
by the API in the previous section). Adding APIs to cover the first two primitives
creates an interface that achieves the functionality of the SDAP.

Service Discovery Non-Application Profiles

No, it’s not a misprint. The title is deliberately jarring to draw your attention to
the fact that most profiles detailed in the Bluetooth specification have a service
discovery component. This component specifies the structure and content of the
service record that accompanies the service (or application) that realizes the pro-
file. The SDAP (in addition to dealing with application functionality for service
discovery) specifies the procedures that an application realizing a profile must use
to perform service discovery.

If these procedures are upheld, interoperability is ensured. For example, an
application that realizes a profile should be able to advertise its service via the

193

www.syngress.com

194

Chapter 5 ¢ Service Discovery

Service Discovery Server and be found by any client on any device that accesses
the profile’s SDP record—according to the service discovery procedures
described by the SDAP. This example of an individual profile’s service discovery
component (see Table 5.3) describes the Serial Port profile’s service record.

Table 5.3 Serial Port Profile Service Record Example

Attribute Name Definition ID Type Value
ServiceClassldList List of services 0x0001 Sequence N/A
supported
ServiceClass0 Serial Port N/A uuID Assigned
Number
ProtocolDescriptorList List of 0x0004 Sequence N/A
protocols
supported
Protocol0 L2CAP N/A uuibD Assigned
Number
Protocol1 RFCOMM N/A uuID Assigned
Number
ProtocolSpecificlarm0 Server Channel N/A UINT8 2
ServiceName Text name 0x0000 String "Com1 as
example”

The serial port profiles describe a usage scenario where two applications, A and
B, are communicating via a serial cable emulation. Device B, which acts the role of
the server, must register the previous record with the SDDB. As the profile states,
this 1s the most generic type of service, which indicates nothing of the application
functionality. So, additional service class IDs can be inserted into the
ServiceClassIDList. As you saw in the previous section, the amount of code needed
to create and advertise a service record can be extensive. The API offered to the
developer can be improved by providing an API for the serial port profile itself:

status_t sdp_create_serial _port_record(SDP_TYPE_ t UU DType,
voi d *UUl D,
SDP_SERVI CE_RECORD t *srh);

This function performs most of the drudgery of the previous section, and
provides a service record ready to be registered with the SDDB. Of course, any
updates or extra information needed can be added with the usual API.

www.syngress.com

Service Discovery * Chapter 5

Java, C, and SDP

The Bluetooth Service Discovery Protocol doesn’t prescribe an API for program-
mers to use. Although both the SDP transactions and data representation imply
the structure of an API, Bluetooth stack implementations vary widely in the APIs
and programming abstractions they provide. Some stacks represent SDP transac-
tions asynchronously, through a function call for making a request and a separate
callback for replies. Others provide one synchronous function that blocks the
caller while waiting for a reply. Stacks also difter in the level of abstraction of
their function calls. Some stacks provide functions that return, in essence, raw
SDP PDUs that the programmer must then disassemble and interpret—for
example, the abstract C API examined earlier. Others return structured data from
which the relevant data elements are more easily extracted. Some stacks provide
richer abstractions that allow a programmer to carry out simple, routine tasks in
tewer steps (for particular profiles, for example). When choosing a stack, it’s wise
to consider the design and richness of an SDP API to ensure that you can write
readable, maintainable code as efficiently as possible, without giving up access to
all the features and flexibility you need. Is it more important for you to be able to
create, populate, and advertise a service record in one or two function calls, or to
have full control over each PDU element in minute detail?

When considering abstraction levels, programming language is a key choice.
Most stacks expose C APIs, while others provide Java or C++ interfaces. Service
Discovery 1s arguably the Bluetooth component best placed to take advantage of
the richness and usability of the Java programming platform. Java, in particular the
Java 2 Platform Micro Edition (J2ME), 1s rapidly becoming the platform of
choice for developing embedded wireless applications. This is evidenced by its
adoption by industry heavyweights Nokia, Motorola, Siemens, Matsushita, Sharp,
and others. It provides a level of portability, maintainability and ease of program-
ming that languages such as C do not. Of particular relevance here is the poten-
tial for rich SDP abstractions that can largely remove the programmer from the
detail of PDUs and completely remove them from error-prone pointer and
memory manipulation.

As part of Java Community Process (JCP)—the vehicle for standardizing the
Java platform—a set of standard Java APIs for Bluetooth is being developed. The
Java Specification Request (JSR) 82 Expert Group is carrying out this work.
Motorola chairs the group, with contributing experts from a number of compa-
nies, including Rococo Software. At the time of writing, the first full version of
this specification is due for publication at the end of 2001. Implementations of

195

www.syngress.com

196

Chapter 5 ¢ Service Discovery

this standard will allow programmers to implement Bluetooth applications within
the J2ME environment in a standard and portable way.

Historically, Java as a programming language for embedded applications has
suffered most from one criticism—it was too slow and bulky. This was true in its
early versions, primarily since it is an interpreted language and the Virtual
Machines in which applications ran weren’t optimized, but this has changed.
Many developments contributed to Java becoming a key open platform for
embedded application development in general, and wireless development in par-
ticular. Virtual Machines have been optimized for such environments—for
example, the “KVM” in Sun’s J2ME Connected Limited Device Configuration
(CLDC).Virtual Machines have found their way into silicon, with Java bytecodes
being interpreted directly on the chip. The Jazelle product suite from ARM and
the MachStream platform from Parthus are good examples of this. Java has also
been tailored for particular platforms, with precompilers providing the perfor-
mance power required by embedded applications without sacrificing the advan-
tages of the Java platform.

In addition to the abstractions possible for SDP implementations in Java, the
J2ME platform provides a useful Input/Output (I/O) framework that can be
applied to Bluetooth application development. A key element of the J2ME speci-
fication is the Generic Connection Framework (GCF). It’s a mechanism that
allows a programmer to create difterent types of networking connections through
a standard Connector interface. In a Bluetooth extension to the GCE a
Connector could create instances of Bluetooth-specific connection classes, say
RFCOMM Connection or L2CAPConnection. Since this is a standard networking
framework used by all J2ME applications, programmers can quickly produce Java
Bluetooth applications by applying existing techniques and design patterns.

Rococo Software (www.rococosoft.com) provides an implementation of the
standard Java Bluetooth APIs, along with a simulator that allows programmers to
run their applications and test their use cases without the need for underlying
Bluetooth hardware or stacks.

Other Service Discovery Protocols

Let’s elaborate on some other discovery protocols: the Salutation Consortium’s
Salutation service discovery protocol, the Internet Engineering Task Force
(IETF)’s Service Location Protocol (SLP), Microsoft’s Universal Plug and Play
(UPnP), and Sun Microsystems’ Jini.

www.syngress.com

Service Discovery * Chapter 5

Salutation

Formed in 1995 by a group of U.S. and Japanese companies, the Salutation
Consortium defines an architecture for networking devices, applications, and
services. The core focus of the group (and most implementations of the
standard to date) has been to enable seamless access to oftice equipment such
as fax machines, printers, copiers, and so on. However, the standard has
evolved to include phones, PDAs, and general electronic equipment. The
Salutation architecture defines a uniform way of labeling devices with descrip-
tions of their capabilities and with a single, common method of sharing that
information.

The architecture 1s composed of Salutation Managers (SLMs), which coordi-
nate all aspects of registering new services and searching for services on behalf
of clients. It also contains Transport Managers (TMs), which sit between the
SLMs and the rest of the system (see Figure 5.3 for an illustration of the
Salutation architecture). This architecture allows Salutation to be “transport inde-
pendent.” That is, a separate TM may be written for each underlying transport
required, and the SLM, which provides the core functionality of the system,
remains transport neutral. SLMs act as repositories for local service information
as well as brokers who seek services on behalf of clients. SLMs periodically
check available services to update their repositories. Table 5.4 outlines the func-
tions of the Salutation protocol.

Figure 5.3 The Salutation Architecture

Server Client Client Server Client
SLM-API
S ™ Salutation Salutation Manager . SLM
™ | Monoger ™ i ™
Protocol

Xport Transport Transport m

197

www.syngress.com

198 Chapter 5 ¢ Service Discovery

Table 5.4 Salutation Highlights

Function Description

Announcing Through cooperation between Salutation Managers
Presence (SMs). Register with a known, probably local SM.
Discovering Other Send queries to the local SM. SMs coordinate and
Services return results.

Describing Structured description of services as functional
Services units, which in turn contain attribute records.

Self Configuration
Invoking Services

Transports
More Information

Functional units identify the “type” or “features” of
a service. Attributes provide much more detail.
Standard functional unit definitions exist for well-
defined services (print, fax).

Salutation does not address this issue.

Flexible. Provides for vendor-specific protocols,
SLM-managed sessions providing transport inde-
pendence, as well as defined (standard) data and
protocols for selected functional units. The defined
APIs can be implemented on most platforms.

Transport independent architecture
www.salutation.org

Service Location Protocol

Service Location Protocol (SLP) originated from a working group of the Internet

Engineering Task Force (IETF). It’s a language-independent protocol for auto-

matic resource discovery on IP-based networks. SLP is designed to be lightweight

and decentralized with minimal administration requirements. SLP (like some of

the other service discovery protocols) makes use of UDP/IP multicast function-
ality in TCP/IP. This makes it particularly useful for networks where there is

some form of centralized administrative control, such as corporate and campus

networks. The discovery mechanism is based on service attributes, which are used

to characterize a service. The SLP architecture has three main components:

» User Agent (UA) Performs service discovery on a client’s behalf

(which might be a user or an application).

» Service Agent (SA) Advertises the service’s location and characteris-

tics on behalf of services, and registers this information with the

Directory Agent.

www.syngress.com

Service Discovery * Chapter 5

= Directory Agent (DA) Accumulates service information received
from SAs in its repository and responds to service requests from UAs.

User Agents send a Service Request describing the service they seek to one
or more Directory Agents. The Directory Agents respond with Service Replies
describing services that match the query (see Figure 5.4).

Figure 5.4 SLP Service Discovery

Server Agent

User Agent (UA))

Service
Service Register
Service Reply
Request
Service
Acknowledgment

Directory Agent
(DA)

Services are located by their address, the so-called service: URL. The address
format is composed of the prefix service:, the service type, the network address and,
optionally, a path. Service types can be of concrete or abstract type. For example,
they may either name a particular service type (which is usually a particular pro-
tocol), or name a family of service types. For example, in the service: URL:

service:printer:|pr://ww.rococosoft.con|aserprinter

the service type is service:printer:lpr, a service type name with abstract type printer
and concrete type printer:lpr.

SLP doesn’t mandate the presence of a DA. Users Agents will try to locate a
DA when they first start up, but if they don’t find any, they will try to operate
directly with service agents. When a DA starts to operate on the network, it
advertises its presence and all agents that receive the advertisement can start using
the DA. Small networks with few services and users may not require a DA on the
network. The DA is designed to allow the system to scale in larger networks
without imposing undue network traffic. Both Sun Microsystems and Hewlett
Packard, among others, have implemented SLP in their products.

199

www.syngress.com

lpr://www.rococosoft.com/laserprinter

200

Chapter 5 ¢ Service Discovery

Table 5.5 outlines the functions of SLP.

Table 5.5 SLP Highlights

Function Description

Announcing Presence Register with DA.

Discovering Other Query DA. Can also multicast a service request in
Services the absence of a DA.

Describing Services Attribute value pairs.

Self Configuration Does not address this area. An IP device when

plugged onto a network will have to be configured
with an IP address, subnet mask and optionally a
gateway and DNS server.

Invoking Services Does not address this area.
Transports TCP/IP

More Information www.srvloc.org

Jini

Jini 1s a distributed service-oriented architecture developed by Sun Microsystems.
Jini is considered an extension of the Java language and platform. The key con-
cept in Jini is the service, which can be almost anything: a process, a piece of hard-
ware, a communications stream, or a user. Services can be collected together to
achieve a task. A collection of Jini services forms a Jini federation: services coor-
dinate with each other within the federation and can join and leave a federation
dynamically. Services communicate with each other using a service protocol,
which is defined as a set of interfaces in Java. The standard itself provides a base
set of interfaces to facilitate core interaction between services—a given imple-
mentation of the system may extend these as needed.

A key component of Jini is the lookup service. Services are found and resolved
by a lookup service. The lookup service is the central bootstrapping mechanism
for the system and provides the major point of contact between the system and
the system’s users. The lookup service maps interfaces indicating the functionality
provided by a service to sets of objects that implement the service. Additionally,
descriptive entries associated with a service allow more fine-grained selection of
services based on properties people understand. A service is added to a lookup ser-
vice by a pair of protocols called discovery and join—tirst the service locates an
appropriate lookup service (by using the discovery protocol), then it joins it (by
using the join protocol). Having joined, a service is now a member of a federation.

www.syngress.com

Service Discovery * Chapter 5 201

Communication between services occurs using Java Remote Method
Invocation (RMI). RMI is a Java-based extension to traditional remote procedure
call (RPC) mechanisms. One important extension is that it enables actual code,

not just data, to be exchanged between services.
This allows services to provide not only a description of the service they ofter

to the lookup service, but also the actual client-code (called a service object) that
is configured to access the service (see Figure 5.5). Clients can then receive this

service object as part of the lookup, and access the service directly.

Figure 5.5 Using a Service in Jini

A client requests a service by
Java type and, perhaps, other
service attributes. A copy of —
the serice object is moved to Service Object
the client and used by the Service Attributes
client fo talk to the service.

Lookup Service

Service Object

Client
Service Provider

Table 5.6 outlines the functions of Jini.

Table 5.6 Jini Highlights

Function

Description

Announcing
Presence

Discovering Other
Services

Describing Services

Self Configuration

Invoking Services
Transports
More Information

Unicast/Multicast to Jini lookup services and
subsequent registration.

Query lookup service(s) with properties of services

of interest.

Registration information composed of attribute/value
pairs.

Does not directly address this area. An IP device when
plugged onto a network will have to be configured
with an IP address, subnet mask, and optionally a
gateway and DNS server. From then on, the lookup
services can be used.

Download service proxy and use proxy to access service.
TCP/IP and proxies to other transports.

Www.jini.org

www.syngress.com

202

Chapter 5 ¢ Service Discovery

Universal Plug and Play (UPnP)

In January 1999, Microsoft announced its Universal Plug and Play (UPnP) initia-
tive. The UPnP initiative seeks to extend the original Microsoft Plug and Play
peripheral model to a highly-dynamic world of many network devices supplied
by many vendors. UPnP defines a set of lightweight, open, IP-based discovery
protocols that allow appliances (telephones, televisions, printers, game consoles,
and so on) to exchange and replicate relevant data between themselves and the
PCs on the network. UPnP is a “wire-only” protocol—it defines the format and
meaning of what is transmitted between members of the network and says
nothing about how the standard is actually implemented. It requires TCP/IP and
HTTP to be present to operate.

UPnP uses the Simple Service Discovery Protocol (SSDP) to discover ser-
vices on [P-based networks. SSDP can be operated with or without a lookup
or directory service in the network. SSDP operates on the top of the existing
open standard protocols, using the HTTP over both Unicast UDP and
Multicast UDP.

Table 5.7 UPnP Highlights

Function Description

Announcing Presence Use SSDP and Directory service proxies
(optional).

Discovering Other Services Listen to SSDP multicast channel directly or
contact a directory service proxy.

Describing Services XML description of the service is made avail-
able at a specified URL.

Self Configuration DHCP (if available) or AutolP, and
multicast DNS.

Invoking Services UPnP does not address this area.

Transports TCP/IP and proxies to other transports

More Information WWwWw.uphp.org

When a service wants to join the network, it first sends out an advertise (or
announcement) message notifying the world about its presence. In the case of
multicast advertising, the service sends out the advertisement on a reserved
multicast address. If a lookup or directory service is present, it can record the

www.syngress.com

Service Discovery * Chapter 5

advertisement. Meanwhile, other services in the network can directly see these
advertisements as well. The “advertise” message contains a URL that identifies
the advertising service and a URL to a file that provides a description of the
advertising service. Devices can also cancel advertisements in order to leave a
network.

When a service client wants to discover a service, it can either contact the
service directly through the URL provided in the service advertisement, or it can
send out a multicast query request.

Table 5.7 outlines the functions of UPnP.

The Future of SDP

The SDP protocol is a low-level, lightweight, compact, and efficient service dis-
covery protocol. Its inclusion in the Bluetooth protocol stack was considered
critical to Bluetooth technology’s success as its use spread across many types of
devices exporting varied services. But, as you've seen, SDP is one of many proto-
cols that deal with the concept of service discovery. One of the key issues is
interoperability of the various protocols. One of the Bluetooth white papers
[Mill99] deals with the mapping of the SDP protocol to the Salutation service
discovery architecture. In the immediate future of SDP, the Bluetooth SIG is
defining the Extended Service Discovery Protocol. This “new” protocol is
expressed as a profile (dependent on the Generic Access Profile) and allows the
Universal Plug and Play (UPnP) protocol suite to run over a Bluetooth stack.
The suite runs directly over L2ZCAP using a connection management layer (to
provide flow control, and so on), or over IP, either as currently defined by the
LAN Access profile or using the new Personal Area Profile (PAN). As such, the
core SDP protocol remains unchanged, but it is used to discover the UPnP ser-
vice that can then be used. Though not proposed at present, a similar profile
could be developed for the Jini service discovery protocol.

203

www.syngress.com

204

Chapter 5 ¢ Service Discovery

Summary

The problem of how a device locates useful services and applications in a dis-
tributed network is common in many domains. In Bluetooth, it is the Service
Discovery Protocol (SDP) that addresses this problem. Unlike many other
lookup or discovery protocols, SDP is a true peer-to-peer protocol that does not
rely on centralized, third-party infrastructure. The service record is the unit used
to describe a Bluetooth Service. Service records are made up of attributes that
capture information about a service. These attributes may contain data that is
reasonably complex in structure, through the use of data elements, in addition to
simple types.

There are a number of ways to query the services that a particular Bluetooth
device supports. The first approach is to use the Class of Device (CoD) which
may be extracted from the Frequency Hopping Synchronization (FHS) packet.
The CoD contains, among other information, the Major Service Class of the
device. This may be used to decide if a remote device is of interest to the
inquiring device, and helps to short-circuit the service discovery process.
Secondly, a client may search the service discovery server. They may search for
specific attributes—most importantly the ServiceClassIDList attribute. A client may
also search for service records containing attributes with values that match a speci-
fied list of UUIDs. Finally, a client may browse a hierarchy of service records by
searching for a particular BrowseGroupDescriptor (or “directory” in the hierarchy).

Bluetooth SDP does not mandate a particular programming interface or set
of programming abstractions. We presented an abstract C API that exposes the
functionality of SDP to the programmer. We examined how, using this API, we
would create and advertise a service, discover specific services, use service
attributes and browse for services. There are opportunities for richer APIs that
provide “helper” functions based on the use of Bluetooth profiles. Such functions
could take the drudgery out of some of the coding eftort.

The Service Discovery Application Profile (SDAP) is a usage scenario
describing the functionality of a Service Discovery Application. It consists of sug-
gested primitives that may be implemented in terms of the underlying SDP API.
These primitives are used both by local devices discovering services on remote
devices, and also by other Bluetooth profiles that need to advertise their services
via SDP.

Though many Bluetooth stack implementations expose a C language API, Java
1s gaining ground as a platform for developing embedded wireless applications. As

WWW.syngress.com

Service Discovery * Chapter 5 205

part of the Java Community Process, standard Java Bluetooth APIs are being
defined. They will be components of the Java 2 Platform, Micro Edition (J2ME).

Future developments in Bluetooth SDP include the definition by the
Bluetooth SIG of the Extended Service Discovery Protocol. This Profile will pro-
vide a mechanism for integrating the Universal Plug and Play (UPnP) protocols
with Bluetooth SDP.

Solutions Fast Track E 4
Introduction to Service Discovery

M The term service discovery is used to describe the way a networked device ' 1
(or client) discovers available services on the network. Service discovery .
makes zero configuration networks possible—the user doesn’t have to
manually configure the network.

M Key features of a discovery protocol are: spontaneous discovery and
configuration of network services, low (preferably zero) administrative
requirements, automatic adaptation to the changing nature of the
network (addition or removal of nodes or services), and interoperability
across platforms.

M Bluetooth Service Discovery is protocol-dependent; it mandates the use
of the underlying Bluetooth communication protocol as the basis for
service discovery. However, Bluetooth SDP could indeed be
implemented using other underlying transport mechanisms, and higher-
level protocols (such as TCP/IP) may be run over Bluetooth.

Architecture of Bluetooth Service Discovery

M For a particular service (and there may be many services on one device)
a service record contains a description of that service. The description takes
the form of a sequence of service attributes, each one describing a piece of
information about the service.

M Within the SDP server, each service record is uniquely identified by a
service record handle. A service class defines the set of service attributes that a
particular service record may have. In other words, a service record is a

particular instance of a class of services.

WWW.syngress.com

206 Chapter 5 ¢ Service Discovery

M A service attribute is a name-value pair that includes an attribute ID and
an attribute value. The attribute ID uniquely identifies the attribute within
the scope of the service record.

M An attribute value can contain data of arbitrary complexity, rather than
just simple types. This is accomplished using data elements. A data element
is made up of a header and a data field.

M The Service Discovery Protocol includes a set of Protocol Data Units
(PDUs) that contain the basic requests and responses needed to
implement the functionality of Bluetooth Service Discovery. An SDP
PDU contains a PDU ID, a transaction ID, and a parameter length in its
header. Its body contains some number of additional parameters,
depending on which type of transaction the PDU contains.

Discovering Services

. “ M Every Bluetooth device can contain a Service Discovery Server (SDS)
that advertises the services available on that particular device, be it a
mobile phone, PDA, or something else. It can do this by making

= available the service records that describe those services.

M The Bluetooth-defined Class of Device (CoD) value can tell a
discovering device if a connection should be opened to the discovered
device—it doesn’t have to open a connection to the SDS and check the
Service Discovery Database (SDDB) of the discovered device, “short-
circuiting” service discovery.

M The Bluetooth Service Discovery Protocol allows for services to be

UUID. In reality, when talking about discovering specific services, one of

i discovered on the basis of a series of attributes with values of type

the most important attributes of a service, if not the most important, is
the ServiceClassIDList.

’ Service Discovery Application Profile

M The SDAP is a usage scenario describing the functionality a Service
Discovery Application (SrvDscApp) should provide to an end user on a

local device (LocDev) so that user can discover services on a Remote
Device (RemDev). The SDAP doesn’t specify an API that will provide
this functionality, but suggests primitives that can be mapped to an APIL.

WWW.syngress.com

Service Discovery * Chapter 5

M Most profiles detailed in the Bluetooth specification have a service
discovery component that specifies the structure and content of the
service record that accompanies the service (or application) and which
realizes the profile. The SDAP (in addition to dealing with application
functionality for service discovery) specifies the procedures that an
application realizing a profile must use to perform service discovery. If
these procedures are upheld, interoperability is ensured.

Java, C, and SDP

M As part of Java Community Process (JCP), a set of standard Java APIs for
Bluetooth is being developed and is due for publication at the end of
2001. Implementations of this standard will allow programmers to
implement Bluetooth applications within the J2ME environment in a
standard and portable way.

M A key element of the J2ME specification is the Generic Connection
Framework (GCF), a mechanism that allows a programmer to create
different types of networking connections through a standard
Connector interface. This would allow programmers to quickly produce
Java Bluetooth applications by applying existing techniques and design
patterns.

Other Service Discovery Protocols

M The Bluetooth SDP may be integrated with a number of the other

service discovery protocols, including Salutation, UPnP, Service Location
Protocol (SLP), and Jini.

M The Salutation architecture defines a uniform way of labeling devices
(fax machines, printers, copiers, and also phones, PDAs, and general
electronic equipment) with descriptions of their capabilities and with a
single, common method of sharing that information.

M Salutation is “transport independent,” that is, a separate Transport
Manager may be written for each underlying transport required, and the
Salutation Manager, which provides the core functionality of the system,
remains transport neutral.

M SLP is a language-independent protocol for automatic resource discovery
on [P-based networks. Like some of the other service discovery protocols,

WWW.syngress.com

207

208

Chapter 5 ¢ Service Discovery

it makes use of UDP/IP multicast functionality in TCP/IP. This makes it
particularly useful for networks where there is some form of centralized
administrative control, such as corporate and campus networks.

M Jini is a distributed service-oriented architecture, considered an extension

of the Java language and platform. Services communicate with each other
using a service protocol, which is defined as a set of interfaces in Java. The
standard itself provides a base set of interfaces to facilitate core interaction
between services. A key component of Jini is the lookup service.

Communication between services in Jini occurs using Java Remote
Method Invocation (RMI). RMI is a Java-based extension to
traditional remote procedure call (RPC) mechanisms. One important
extension 1s that it enables actual code, not just data, to be exchanged
between services.

Universal Plug and Play (UPnP) defines a set of lightweight, open, IP-
based discovery protocols that allow appliances to exchange and replicate
relevant data between themselves and the PCs on the network. UPnP is
a “wire-only” protocol—it defines the format and meaning of what is
transmitted between members of the network and says nothing about
how the standard is actually implemented. It requires TCP/IP and
HTTP to be present to operate.

UPnP uses the Simple Service Discovery Protocol (SSDP) to discover
services on IP-based networks. SSDP can be operated with or without a
lookup or directory service in the network. SSDP operates on the top of
the existing open standard protocols, using the HTTP over both Unicast
UDP and Multicast UDP.

L ¥ The Future of SDP

M SDP is one of many protocols that deal with the concept of service

discovery. One of the key issues is interoperability of the various
protocols.

In the immediate future of SDP, the Bluetooth SIG is defining the
Extended Service Discovery Protocol. This “new” protocol is expressed
as a profile (dependent on the Generic Access Profile) and allows the
Universal Plug and Play (UPnP) protocol suite to run over a Bluetooth
stack. Though not proposed at present, a similar profile could be
developed for the Jini service discovery protocol.

WWW.syngress.com

Service Discovery * Chapter 5

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is Bluetooth SDP?

A: The Bluetooth Service Discovery Protocol (SDP) is a distributed, peer-to-
peer lookup mechanism for discovering which services are supported by in-
range Bluetooth devices. It is defined in the Bluetooth Specification.

Q: How are services represented in SDP?

A: A service on a Bluetooth device is described in an SDP service record, which
is stored in the device’s “Service Discovery Database.” A service record con-
sists of service attributes, each of which describes some information about the
available service.

Q: How does Class of Deviee«(€oD) relate to SDP?

A: The CoD may be retrieved from a Frequency Hop Synchronization (FHS)
packet. This information - eontains, among other things, the Major Service
Class of the device. This tells the discovering device what “kind” of device it
has discovered (e.g., a printer, an access point, and so on) Using this informa-
tion, the discovering device can rule out certain devices that are not inter-
esting, and only query the Service Discovery Databases of those devices that
are interesting. For many application types, this 1s likely to result in an effi-
ciency gain.

Q: What’s the difference between SDP and SDAP?

A: SDP is a part of the core Bluetooth specification and defines the data repre-
sentation of SDP data structures as well as the set of transactions used to
communicate between SDP clients and servers. The Service Discovery
Application Profile (SDAP) is one of the Bluetooth profiles defined by the
Bluetooth SIG. It describes usage scenarios for a Service Discovery
Application, and suggests primitives for achieving these scenarios that may be
implemented in terms of the underlying SDP API.

209

WWW.syngress.com

Chapter 6

Linux Bluetooth

Development

Solutions in this chapter:

Assessing Linux Bluetooth Protocol Stacks
Understanding the Linux Bluetooth Driver

Using Open Source Development

- Applications

Connecting to a Bluetooth Device

Controlling a Bluetooth Device

M Summary

M Solutions Fast Track

M Frequently Asked Questions

211

212

Chapter 6 * Linux Bluetooth Development

Introduction

Bluetooth technology is an open standard while Linux is open source. There’s
some obvious synergy there: combine low cost devices with free software and
you've got a communications technology anybody can afford.

Linux is proving to be the obvious system of choice for students and aca-
demics trying to get into Bluetooth technology on tight budgets. But don’t
think it’s just for educational use: Linux is being deployed in real commercial
products from local area network (LAN) access points to laptops, and more
besides. To give it a real stamp of credibility, Linux Bluetooth development has
backing from a Bluetooth Special Interest Group (SIG) promoter with IBM’s
BlueDrekar middleware, and, of course, a myriad of smaller companies and
individuals are contributing to the development of open source, too.

This chapter takes a look at what Linux can do for your Bluetooth applications,
and gives you some useful insight from inside the Linux developer’s community.

Assessing Linux Bluetooth Protocol Stacks

Until recently, the Linux kernel did not come with a Bluetooth stack among its
stock drivers. But shortly after this chapter was originally completed, a new
Bluetooth project was released as open source and rapidly accepted into the 2.4.6
kernel. This project is called Bluez (bluez.sourceforge.net), and at the time of this
writing, its recent 1.2 release includes stable Host Controller Interface (HCI) and
Logical Link Control and Adaptation Layer (L2CAP) drivers, as well as user-space
Radio Frequency Communications Port (RFCOMM) and Service Discovery
Protocol (SDP) applications leveraged from the OpenBT project (which we’ll
discuss in short order). Although it has gained acceptance into the mainline Linux
kernel, it may not yet be the driver of choice for developers. As of now, it does
not support as many features as some of the other available stacks. It does not yet
appear to have the developer and user following that OpenBT does, and most
importantly, has not been ported back to earlier kernel versions.

Currently, there are two other major Linux Bluetooth protocol stacks: IBM’s
BlueDrekar and the OpenBT project. Another future contender will be Rappore
Technology’s stack, which is already ported to Windows and BlueCat embedded
Linux.

IBM’s BlueDrekar can be downloaded from their project Web site at
www.alphaWorks.ibm.com/tech/bluedrekar. This is not an open source stack.
What you get for free are the binary modules. If you want the source, you can

www.syngress.com

Linux Bluetooth Development * Chapter 6

get it, but according to their documentation and Web site, you must be a SIG
member and you must sign a limited license with IBM.You will also need a
license to distribute their stack.
SourceForge hosts the OpenBT project.You can find their Web site at
www.sourceforge.net/projects/ OpenBT. Axis Communications (Www.axis.com)

originally developed this stack for their embedded Linux product and most of the

main developers work there. This is a truly open source stack.

If you're an embedded developer using BlueCat Linux on your target, you

can find out more about the status of Rappore’s stack at their Web site: www.rap-

pore.com. (This stack is not open source; we won’t cover the Rappore stack in
detail in this chapter.)

Comparing BlueDrekar with OpenBT by Features

The big factor that distinguishes BlueDrekar from OpenBT is source code avail-

ability. Why would you even consider a closed source solution when an open

source one is available? For an x86 application developer, BlueDrekar ofters more
than the OpenBT stack. For embedded developers who need to cross-compile

and don’t want to license source, OpenBT may be good enough.

Table 6.1 shows a breakdown of the feature differences between the two

stacks, which we’ll discuss in the following sections.

Table 6.1 Feature Comparison between OpenBT and BlueDrekar

Feature OpenBT BlueDrekar
Kernel versions 2.0.x - 2.4.x 2.2.12,2.2.14
Hardware X86, ARM, MIPS, PowerPC X86
platforms
Bluetooth Host Controller Interface (HCI), HCI, L2CAP, SDP,
protocols Logical Link Control and RFCOMM, Synchronous
Adaptation Protocol (L2CAP), Connection Oriented
Service Discovery Protocol (SCO), HCI-UART
(SDP), RFCOMM, HCl-Universal
Asynchronous receiver Trans-
mitter (HCI-UART), HCI-USB
SDP server Server, XML database Server, dynamic
support database
API Standard Unix device driver Custom lib Applications

License terms

AXIS OpenBT Stack license

Programming Interface (API)
AlphaWorks

213

www.syngress.com

214

Chapter 6 * Linux Bluetooth Development

The basic Bluetooth host protocols are supported by both stacks. Beginning
at the HCI, which links a host to a module, both stacks support the UART trans-
port layer needed for basic serial communications. OpenBT goes on to also sup-
port the higher speed Universal Serial Bus (USB). L2ZCAP, RFCOMM, and SDP
are also provided by both protocol stacks.

Kernel Versions

Developers have used the OpenBT source on a wide range of kernel versions,
including uCLinux. Because the source is available, people are free to port it to
whatever kernel version they require.

The BlueDrekar binaries, on the other hand, are compiled only against cer-
tain 2.2.x kernel versions at the time of this writing, so you can’t use them with
older or newer kernels.

Hardware Platforms

Developers around the world have used OpenBT on a variety of processor types.
This author’s company has used it on ARM and MIPS, as well as x86 processors,
and according to the mailing list archives for OpenBT, some people have used it
with PowerPCs as well. Again, because you have the source, if you need to port it
or even just cross-compile it for a non-x86 platform, you can do so.

With BlueDrekar, you only get the x86 binaries. You don’t have the source
unless you apply for a license, so obviously you’re limited to just x86 platforms.

Bluetooth Protocols

Here’s where BlueDrekar starts to catch up. The OpenBT project does not cur-
rently support the Synchronous Connection Oriented (SCO) connections used
for voice, which is a major drawback. It does include support for an HCI-USB
layer, however.

BlueDrekar does have support for SCO already. For BlueDrekar, you can get
the source for their HCI-UART module. This is the one part of their stack,
which is open source. IBM released this source under GPL with the hope that
others could use it as a basis for developing the other HCI link drivers.

SDP Support

The Service Discovery Protocol (SDP) is used by a client device to find out
about the services it can use on a server device. An SDP server maintains a
database of services; this can be preconfigured (static), or can be built up dynami-

www.syngress.com

Linux Bluetooth Development * Chapter 6

cally as services register with the database system. Once a database is in place,
clients send SDP requests to query its contents, and servers reply with SDP
responses giving details of services supported and information needed to connect
to those services.

SDP is another area where BlueDrekar is ahead of OpenBT. The OpenBT
project does provide an SDP server daemon to handle SDP requests from remote
devices. However, it does not yet provide an API for local applications to dynami-
cally register themselves in the SDP database. Another disadvantage is that appli-
cations must frame their own SDP request packets and parse the resulting SDP
responses.

BlueDrekar is much nicer. It also provides a server daemon, but additionally, it
has an API for dynamically registering services in the local database as well as
handling a lot of the details of SDP. Applications still need to know the basic
components of SDP packets, but they don’t have to hand-tool the packets them-
selves like they do with OpenBT.

API

The OpenBT stack provides a set of device files for applications to use. These are
all TTYs (terminals) and follow the standard Linux API for TTY drivers. Stack con-
trol is done via blocking ioctl calls. Since there’s no intervening library layer, all of
the control I/O is synchronous. There is no event notification aspect of the API.

The BlueDrekar stack provides a library layer and a daemon (referred to col-
lectively as middleware). Although data transfers are handled over standard drivers,
control operations are done via library calls. These often employ callback mecha-
nisms for event notification.

License Terms

Licensing is the big issue. The OpenBT project is released under the AXIS
OpenBT Stack license. You can see the text of this license at
http://developer.axis.com/software/bluetooth/OpenBT _license.txt. Basically, it 1s
the GPL with some additional freedoms. If you write applications that use the
stack, they will not fall under the GPL and may remain proprietary. But if you
write applications that are a derived work of the applications in the OpenBT
source tree, then they will fall under the GPL—unless they have nothing to do
with Bluetooth technology. Note that just because the stack is under GPL doesn’t
mean applications that use the stack must be. However, if you modify or add SCO
support to the stack (for example) then these changes would be under GPL.

215

www.syngress.com

http://developer.axis.com/software/bluetooth/OpenBT_license.txt

216

Chapter 6 * Linux Bluetooth Development

BlueDrekar is released under IBM’s AlphaWorks license. You can download
the binaries for free and write applications that use them, but if you want to see
the source or distribute the binaries with a product then, you’ll need extra per-
missions. According to their Web site, you must be a Bluetooth SIG member to
get this additional permission.

Other Considerations

If youre a PC application developer, then you may not have any control over
which Bluetooth stack the user has on his or her PC.The OpenBT and
BlueDrekar APIs are not at all similar, so it would be tough to write an applica-
tion that works on both. It’s likely you’d have to pick one particular stack and
require users to install it.

If youre an embedded developer, then chances are you're probably not only
writing applications, but you're also trying to decide which stack to ship with
your device.You have total control over which stack your application will use,
because you decide which stack the user gets. Note that at the time of this
writing the OpenBT stack produced a somewhat smaller image when compiled
for an x86, but probably not enough to make too much of a difterence. If size is
important, then cross-compile the latest release of OpenBT against your target
platform and check it. To compare it with BlueDrekar you’ll have to ask IBM
about getting this information. The open source nature of OpenBT can be a real
bonus for embedded developers because it’s easy to check things.

Axis Communications originally designed the OpenBT stack to serve as a
LAN Access Profile server on their embedded Linux products. If you need a PPP
server over RFCOMM, then once you get the stack running on your platform,
you're basically done. However, although it functions well in this regard, developers
who want to leverage the stack for other purposes should expect to do some work.

For the rest of this chapter, we’re going to discuss using the OpenBT stack. I
have to pick one, just like you will. 'm not picking OpenBT because it’s a better
implementation than BlueDrekar—to be perfectly frank I don’t think it is (yet).
Instead, I chose it for the following reasons:

» It’s freely available.
» ['m under no restrictions to not discuss any aspect of it.
= | have access to the source, so I understand it much better.

» I've used it in the past on several different platforms, for several different
kernel versions.

www.syngress.com

Linux Bluetooth Development * Chapter 6

» I've contributed to it in the past.

» [think it has the best chance of making it into the standard Linux
kernel tree (eventually).

= If'] can encourage you to use it and contribute, then I benefit from your
use as you can benefit from mine.

Fair Warning

It’s only fair to be perfectly clear on something at this point: the OpenBT stack is
a work in progress, and is not feature-complete as a client stack. Here are the big
issues, in order of severity:

» There is no way to bind RFCOMM server channels for server applica-
tions other than PPP.

» There is no interface for dynamic SDP registration.

= Applications must assemble their own SDP requests and parse the SDP
responses.

» There is no SCO support.
» There are no interfaces for supporting other protocols above L2CAP.

» The stack still has many bugs ranging from annoying behavior to full
system lockups.

Also, as with any implementation, the stack still has some bugs—especially
when supporting client applications. You can get a list of the current known bugs
from the OpenBT Web site on SourceForge.

Nonetheless, OpenBT has one major advantage: the source is open. It goes
without saying that one of the reasons I know about all these problems is because
I can look in the source and see them. I can also look in the source and fix them.

That being said, let’s talk about the basics of how the OpenBT stack works.
From here on, when I use the term Bluetooth driver I'll be referring to the
OpenBT stack. Specifically, I will be referring to version 0.0.2, released in March
of 2001.

Understanding the Linux Bluetooth Driver

The first thing you should do is go to the OpenBT project Web site, download their
latest release, and then follow the instructions for installing and using the driver. Go

217

www.syngress.com

218

Chapter 6 * Linux Bluetooth Development

ahead and play with included applications until you're satistied that you've got things
working on your system. If you don’t have Bluetooth hardware, that’s okay, because
the stack includes several options for simulating hardware connections between two
devices.You don’t even necessarily need more than one PC to try it out.

Note that the OpenBT stack comes with a lot of options about user mode,
kernel mode, and real versus simulated hardware connections. In this chapter, 'm
going to limit the discussion to using the kernel mode driver with real hardware.
In the end, your application will have to work under these conditions anyway.

In this section, we’ll first talk about what the Bluetooth driver is, and tour
some of its visible properties. Then we’ll cover the basics of using the Bluetooth
driver interfaces.

Learning about the Kernel Driver

The actual kernel Bluetooth driver is the bt.o module. This is built in the
linux/drivers/char/bluetooth directory of the OpenBT source tree. This loadable
module implements a TTY (terminal) driver and an Idisc, the line discipline that
affects how the data stream to a terminal is interpreted. I'll explain those terms in
more detail after taking a quick look at what happens when you load the
Bluetooth driver into the kernel.

Investigating the Kernel Module

To load the Bluetooth driver into the kernel, execute the following command in
a terminal window as root:

$ insnod bt.o

Now let’s browse through the proc directory and see what just happened.
Enter this:

$ cat /proc/devices

One of the char driver entries will be listed as bt. This is our driver. On the
same line, you’ll see its major number. This major number uniquely identifies the
Bluetooth driver in the kernel. Later, when we look at the Bluetooth device files,
we’ll see that their major number matches up with this, eftectively binding them
to this driver. This is what tells the Linux kernel which driver to invoke when we
make system calls like open on those device files.

Now enter this:

$ Is /proc/bt_*

www.syngress.com

Linux Bluetooth Development * Chapter 6

And you’ll see the proc files installed by the driver. Enter this to see some
status information on the driver:

$ cat /proc/bt_status

Finally enter this:

$ cat /proc/tty/drivers; cat /proc/tty/ldiscs

The first command lists all the TTY drivers currently registered in the kernel.
Ours is now one of them. The second lists all the Idiscs currently registered in the
kernel. Note bt_Ildisc—that’s ours.

What Exactly Is a TTY?

One way to think of a TTY is as a subclass of a character driver. A TTY imple-
ments the same interface as a character driver and then some. In fact, you might
think of a TTY as a character driver with an attached filter. The filter sits in the
kernel between the TTY and an upper layer. This filter is called an [disc, or “line
discipline.”

So What’s an Ildisc?

A line discipline (Idisc) monitors and even modifies the data stream that passes
between an upper layer and the TTY. It might do things like look for special
control characters in the data stream. It might even reformat the data stream into
protocol packets of some kind or other.

Developing & Deploying...

What Exactly Do You Mean by “Character Driver”?

A character driver is one of the basic driver types supported by the Linux
kernel (some others are block drivers and network drivers). A character
driver represents a connectionless data stream over some type of device.
All character drivers must support the following system calls: open,
close, and write. Most character drivers also support the read, select,
and ioctl system calls. Examples of character drivers you might find on
your system are /dev/audio, /dev/ttySO (the serial TTY), and /dev/mem.

219

www.syngress.com

220

Chapter 6 * Linux Bluetooth Development

One really important feature of the relationship between a TTY and its Idisc is
that you can change the Idisc at runtime. In effect, you can swap filters. In the
next section, I'll show you how this affects the Bluetooth driver.

Building Driver Stacks in the Linux Kernel

Figure 6.1 is a simplified diagram of the default TTY driver configuration after you
load the bt.o module.You see how both the bt and serial TTY drivers use the
N_TTY Idisc as an adapter between themselves and the standard TTY [/O code?
The N_TTY Idisc is suitable for console TTY drivers. It does things like scan for
control characters in the byte stream. But an application can change any TTY
driver’s line discipline by using a special ioctl call. For example, we could have an
application change the serial driver’s line discipline to be bt_Idisc instead of N_TTY.

Figure 6.1 Default TTY Driver Configuration

tty_io

Serial
bt Driver

A

\i
bt_Idisc

Guess what? That’s exactly how we make the Bluetooth driver talk to a
Bluetooth card attached by a serial cable. Figure 6.2 shows a picture of this.
The bt_Idisc in effect will route all data to and from the serial port through the
Bluetooth driver. That’s where all the parsing and packet assembly will take
place.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Figure 6.2 Stacked TTY Driver Configuration

tty_io

Y A

Serial
Driver

]

A

bt_Idisc -

In summary, line disciplines are important because they allow user-space
applications to stack TTY drivers in the kernel. Note that this is exactly how PPP
works over a TTY—and therefore RFCOMM devices must be TTY drivers.

Understanding the Bluetooth Driver Interface

Now that you understand what the Bluetooth driver is, how exactly do applica-
tions use it? They use it by making system calls on the Bluetooth device files.

Investigating the Bluetooth Device Files

You may have noticed during the installation that at one point you had to create
some files in the /dev directory. Take a look at them now by entering:

$ Is - /dev/ttyBT*

These device files are your application’s interface to the Bluetooth driver. Notice
that all the devices have the same major number but different minor numbers (if
you’re not sure how to tell, then check the man page for Is). Having the same major
number means that the same kernel driver implements them all. The different minor
numbers represent different instances of an interface to the kernel driver.

221

www.syngress.com

222

Chapter 6 * Linux Bluetooth Development

There are two types of Bluetooth device files: data device tiles and control device
files. Table 6.2 shows the main differences between them.

Table 6.2 Comparison of the Control and Data Device Files

Feature /dev/ttyBTC /dev/ttyBT[0-6]
Can open before stack is initialized YES NO
Multiple processes can open at the

same time YES NO

Can transfer data over an RFCOMM

connection NO YES

Can execute stack control ioctls YES NO

Using the RFCOMM TTY Drivers

The data device files are named /dev/ttyBTO through /dev/ttyBT6. These are all
instances of RFCOMM TTYs. Once they’re opened and connected, they behave
exactly like serial ports, as we’ll see later. Only one process at a time can open
any individual RFCOMM TTY. All the standard system calls which work over
standard character drivers and all of the ioctls, which work over standard TTY
drivers, also work over the RFCOMM TTY driver.

The minor number for the RFCOMM TTY’s has special significance to the
Bluetooth driver. Each minor number corresponds to a line number used inter-
nally by the driver to index a connection session. Each possible RFCOMM or
SDP connection, which the driver can make with a remote peer, is represented
internally by a session. Since there are seven RFCOMM TTYs, there are seven
session “objects” maintained by the driver.

The only trick to using the REFECOMM TTY device files is in understanding
the concept of an RFCOMM session. Within the driver, each RFCOMM session
has a state machine. The driver indexes sessions internally by a line number.
When opening an RFCOMM device file, the line number comes from the
minor number of the device file. When connecting to a remote service, you
specify the local line number as one of the connection parameters. Figure 6.3
illustrates the state machine for a single session.

In Figure 6.3, you can see the three parameters that specify the state of a ses-
sion are: whether or not the device file is open, whether or not the TTY is hung
up, and whether or not an RFCOMM connection to a remote peer exists. The
important points to take away from this are as follows:

www.syngress.com

Figure 6.3 The RFCOMM Session State Diagram

Linux Bluetooth Development * Chapter 6

connect dose
> >
open open
p p closed
norm norm on
disc con . open
A A
open close disconnect close
Y Y
| connect
>
dose open open
closed
. hung hung
disc 5
disc P con
disconnect

» The driver hangs up the TTY when an existing RFECOMM connection
gets disconnected.

» The only way to return a hung-up TTY to normal is to close and
reopen the device file.

= Data can only be transferred in the open/normal/connected state.

One very interesting consequence is that one process can establish an
RFCOMM connection on a session without opening its device file, and another
process can then open the device file and transfer data across the connection.

Multiplexing over RFCOMM

All of the RFCOMM device files operate independently of one another. Each rep-
resents a different potential RFCOMM channel. That’s all you really need to know
about multiplexing! You don’t have to worry about it much at the application layer.
If you have an application that can handle multiple connections, it should open and
listen on multiple RFCOMM device files. Figure 6.4 illustrates this.

When you open an RFCOMM device file, your process gets exclusive access to
it. True, other processes can establish RFCOMM connections for it, but yours is the
only one that can transfer data through it. None of your data transfers will affect any
other RFCOMM session (other than using up some of the link’s bandwidth).

223

www.syngress.com

224 Chapter 6 * Linux Bluetooth Development

Figure 6.4 Multiple Simultaneous RFCOMM Connections

Device A

Device B

dient
app

/dev/ttyBT0

session 0

server
app

/dev/ttyBT0 /dev/ttyBTI

session 0

session 1

other device
(not shown)

However, there are things your application can do that will affect other pro-
cesses using the Bluetooth driver. Most of the ioctl calls specific to the Bluetooth
driver have global affects. For example, if your application decides that it needs to
shut down or reinitialize the stack, it could interrupt another application’s data

transfer.

The OpenBT stack lacks a central stack manager. In other words, there is no
single process responsible for running the driver in an orderly fashion. The
Bluetooth driver itself does not enforce any policy. For example, it does not

www.syngress.com

Linux Bluetooth Development * Chapter 6

decide when to enable Inquiry Scans, or security procedures. All policy is left to
the applications. And the OpenBT source tree does not come with a central
management application to make sure applications don’t conflict with one
another. If one application wants Inquiry Scan enabled and another wants it dis-
abled, the winner is whoever issued the ioct] call last.

So how can you write applications that cooperate well with others? Short
answer: you can’t. This is a problem for desktop applications. For embedded
developers, odds are you control all the applications that will use Bluetooth and
you can design your own cooperation strategy.

The one device file /dev/ttyBTC is a special device, dedicated to controlling
the kernel driver as a whole. We’ll see later how to use this device to initialize
and shut down the Bluetooth stack. Any number of processes can open
/dev/ttyBTC at the same time.

Note that there are no device files for SDP, L2CAP, or any of the other
Bluetooth protocols implemented by the driver. We’ll see that we can access SDP
and HCI using ioctl calls on any of the devices. And there simply is no interface
to L2ZCAP—it’s completely internal to the driver.

Can you add your own device files to implement other protocol layers above
L2CAP? That’s a pretty frequent question to the bluetooth-dev mailing list. And
the disappointing answer is no, not without modifying the stack itself—but
remember, you do have the source.

Although the Bluetooth driver is “just another TTY driver,” there are some
specific things you need to understand about its interface. You need to be familiar
with some of the more important ioct/ calls used to control Bluetooth-specific
features, and you need to know the diftference between the control device file
and the other device files.

Installing a Line Discipline over an RFECOMM TTY

Because the REFECOMM device files are TTYs, you can set up line disciplines
above the RFCOMM layer. This is exactly the way PPP works. In the same
way that the Bluetooth driver sets up a line discipline above the serial driver,
PPP sets up a line discipline above the Bluetooth driver. The whole key to
using RFECOMM comes from understanding this principle. Any application
that works over a TTY will work over an RFCOMM TTY, once the under-
lying RFCOMM connection has been established. Any process can establish
that connection—it doesn’t have to be the process that will use the TTY to
transfer data.

225

www.syngress.com

226

Chapter 6 * Linux Bluetooth Development

Using the Control Driver

The control device file is /dev/ttyBTC. Unlike the other Bluetooth device files,
this one isn’t used to transfer data between different devices. This one is only used
to control the local Bluetooth driver. Whenever you need to issue a stack control
ioctl, you should do it using this device file. This includes the ioctl calls for initial-
ization, shutdown, security, connection, hardware control, and so on.

The most important role of this device file is to initialize the driver. Until the
driver is initialized, you cannot open any of the other device files.You can only
open the control device file. However, once the stack is initialized, you cannot
only open the other devices’ files, but you can use them to execute all of the
stack control ioctls which can be used on /dev/ttyBTC. In a way, the only pur-
pose of the control device file is to initialize the stack.

Using Open Source
Development Applications

The OpenBT source tree comes with several applications. You can use these
applications to:

» Provide your SDP server.

» Manually establish PPP connections between devices.

» Manually establish RFCOMM connections between devices.

» Browse the SDP database on a target device.

» Provide examples to learn how to write applications for the stack.

» Provide a starting point for your own application.

Depending on what you want to use the Bluetooth stack for, you may not
need to write any code at all. For instance, once you establish a PPP connection
over RFCOMM, all the power of the standard GNU network applications is at
your disposal—the Bluetooth connection is just like any other network connec-

tion. All existing applications that use a socket interface are instantly ported to use
Bluetooth: Web browsers, Web servers, FTP, Telnet, and so on.

Investigating the OpenBT Applications

The OpenBT source tree comes with some applications. Table 6.3 summarizes
their features.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Table 6.3 Summary of Features in OpenBT Applications

Application Features

btd/btduser Initialize the stack
Do HCI Inquiries
Establish RFCOMM connections
Spawn PPP over RFECOMM
Send test data over an RFCOMM link

sdp_server Query an XML database

Receive and parse SDP requests
Compose and send SDP replies

BluetoothPN Browse a remote device’s SDP database

Understanding the btd and btduser Applications

The btd application will probably be the most useful for you. The difference
between btd and btduser is that btd is meant to work with the kernel mode
Bluetooth driver, while btduser works with the user mode Bluetooth driver.
Many people prefer btduser since it is less prone to lock up your system if things
go badly. However, the OpenBT developers do not support it as well as btd.

For btd you have to install the Bluetooth kernel driver (i.e., insmod bt.o). For
btduser, you don’t. Other than that, their usage is basically the same.

The btd application can take a number of different arguments on startup. An
example follows. If you're curious about other arguments besides the one I men-
tion, then look in the sdp.c source file. At the top of the main() routine, you’ll see
the argument parsing. From that, you can figure out what the other arguments to
btd are. The README that comes with OpenBT talks about starting btd, but it
is not always up-to-date. Remember, OpenBT is still early in its development,
and often the source code 1s the best documentation.

Understanding the sdp_Server Application

The sdp_server application provides you with an SDP database server daemon.
Once you’ve installed the Bluetooth driver, you can start this daemon and it will
automatically receive and respond to SDP queries from remote devices.

If you start the daemon with no arguments, it will automatically use
/etc/sdp.xml as the SDP database file and /tmp/sdp_sock as the source of SDP

227

www.syngress.com

228

Chapter 6 * Linux Bluetooth Development

requests. The /tmp/sdp_sock file is a Unix socket created by the btduser appli-
cation. You can specify a different XML file as the first argument to sdp_server
and a difterent source device as the second argument. Note that if you provide
one argument, you must provide the other as well. If you want to use the SDP
server when the Bluetooth driver is in kernel mode, then you should specity
/proc/sdp_srv as the source of SDP requests.

The following is an example of starting the sdp_daemon with command-line
arguments:

$ sdp_daenon /tnp/ ny_sdp_dat abase. xml /proc/sdp_srv &

SECURITY ALERT

Warning! Never remove the Bluetooth driver while the sdp_server daemon
is using /proc/sdp_srv. If you do so in the current release version of the
stack (0.0.2 at the time of this writing), you will get a kernel panic when
you stop the daemon. Future versions of the stack will probably not allow
you to remove the driver while the sdp_server daemon is using it.

Understanding the BluetoothPN Application

This application provides a GUI that displays the SDP database on a remote device.
It provides some examples of how to make SDP requests and process their results.

Establishing a PPP Connection
Using the btd Application

The quickest, most useful way to establish and exploit a Bluetooth connection
from Linux is to use the standard GNU network applications over PPP. And the
easiest way to do that is with the btd application. Let’s look at an example.

It assumes the following setup:

» Two Linux PCs configured to use PPP; one will be the server and one
the client.

» Both PCs are connected to Ericsson Bluetooth Developer kits via
RS232 to /dev/ttySO.

» The OpenBT Bluetooth driver is installed in both PCs kernels.

www.syngress.com

Linux Bluetooth Development * Chapter 6 229

» There us an open terminal window with root permissions on each PC.

» The server should have the “local” and “nodetach” options specified in
its /etc/ppp/options file (see man(8) pppd).

29 ¢¢

» The client should have the “local,” “nodetach,” and “noauth” options
specified in its /etc/ppp/options file.

Here are the steps:

1. On the server:

$ btd —server —physdev=/dev/ttySO —- speed=57600 —-
nmodenr0

2. On the client:

$ btd —client — physdev=/dev/ttyS0 —- speed=57600
—nodem=0

3. On the client, you will now see a menu of options. Select an HCI
Inquiry for one device, with a maximum timeout of about five seconds:
>ing 15

4. If the inquiry succeeds, the program will report the Bluetooth Device
Address (BD ADDR) of the server’s Bluetooth card on the terminal. For
example, it might return 11:22:33:44:55:66 (it’s unlikely, but this is just
an example). Next, create an RFCOMM connection to server channel 2
of that device, using line 0. When the server btd application detects the
connection, it will spawn PPP and pass in /dev/ttyBTO on the com-
mand line as the TTY. The line 0 argument maps to /dev/ttyBTO on the
local device. When the client btd application spawns PPP, it will also pass
/dev/ttyBTO to the local PPP as the TTY. Here’s the command:

> rf_conn 11:22:33:44:55:66 2 0

5. If the command succeeds, then after a few seconds you will see the con-
nected message on the client’s terminal window. On the server, you
should see PPP start up and wait for an incoming PPP connection. At
this point, we’re ready to start PPP on the client. Here’s the command:

> ppp

6. If the PPP connection succeeds, you should see a message like this on
both the client and server side:
local IP address 192.168.1.249
renote | P address 192.168.1.17

www.syngress.com

230

Chapter 6 * Linux Bluetooth Development

7. At this point, you can test the connection. First, on either the client or
server, open a terminal window and use ifconfig to determine the IP
address of the remote PPP connection. It should report the ppp con-
nection similar to this:

> i fconfig
pppO Link encap: Poi nt-to-Point Protocol
inet addr:192.168.1.249 P-t-P:192.168.1.17

8. Now;, open another terminal window on the client and ping the remote IP.
> ping 192.168.1.17

Those ping responses are coming back across the Bluetooth link! Pretty exciting,
eh? Well, the first time anyway. You can also go ahead and try some other net-
work commands like Telnet and FTP. Have some fun.

Debugging...

Watching Driver Debug Messages

If you want to watch exchanges between the stack and the card (a
good idea for debugging problems) then you can turn on some of the
debug messages before you compile the stack. Edit the btdebug.h file
in the OpenBT source tree. My favorite macro to turn on is
BT_DATAFLOW_DEBUG. Change its #define from 0 to 1 and then
recompile and insert the OpenBT module. Then, when you’re running
your application, open another terminal and execute this command to
see the running transactions between the host and the card (on most
systems you must be root to do this):

$ tail —f /var/log/ messages

If you see a lot of messages to the effect of “HCI timeout” in this
debug, then chances are your card is not responding to HCI commands
from the host. You should make sure your serial port is set up right and
you are using the right type of cable (null modem for Ericsson Bluetooth
Developer Kits; other hardware may vary). A good way to double-check
your serial port settings is to do this:

$ cat /proc/tty/driver/serial

www.syngress.com

Linux Bluetooth Development * Chapter 6 231

The btd application provides the quickest way to get started, but it assumes that:

* You know the remote server channel number without doing an SDP
discovery.

* You want to use PPP over RFCOMM, and not some other application.

If you have other requirements, then you’ll need to produce your own appli-
cation. If youre willing to accept a GPL-like license on your application, then
you can use btd.c as a starting point to make a derived work.

Writing Your Own Minimal Application

Admittedly, btd.c has grown to become rather large and complicated. You're
probably wondering, “What’s the bare minimum I need to establish a connec-
tion?” The following source will give you a starting point. This program does
essentially the same thing as btd, and makes the same assumptions. But it boils
down btd.c into the absolute minimum amount of code needed to establish an
RFCOMM connection.

#i ncl ude <l i nux/ bl uet oot h/ bt comon. h>
4
4
4
4
4
4
4
#define SYSCALL(v,x,s) if ((v) = (x)) < 0) { perror(s); exit(errno); }
void tty_init(int fd)

{

ncl ude <l i nux/ bl uetooth/I2cap. h>

ncl ude <linux/ bl uetooth/rfcomm h>

ncl ude <sys/ioctl.h>

ncl ude <sys/tine. h>

nclude <fcntl. h>

ncl ude <term os. h>

ncl ude <errno. h>

int ret;

struct termos t;

SYSCALL(ret, ioctl(fd, TOGETS, &), "TCGETS');
cf makeraw &t) ;

t.c_cflag & ~CBAUD;

t.c_cflag | = B57600 | CS8 | CLOCAL;

0;

0;

t.c_oflag

t.c_|flag

www.syngress.com

232 Chapter 6 * Linux Bluetooth Development

t.c_cflag & ~CRTSCTS;
SYSCALL(ret, ioctl(fd, TCSETS, &), "TCSETS');
}
int main(int argc, char **argv)
{
int phys_fd, bt_cfd, bt_ldisc = N BT, ret, wscan = 0x03;
bt _connection_con = {
{ 0x00, 0xdO, Oxb7, 0x03, 0x48, 0x%9a }, /* BD ADDR */
CREATE_RFCOWM | D(0, 2)
}
SYSCALL(phys_fd, open("/dev/ttyS0", O RDWR 0), "/dev/ttyS0");
tty_init(phys_fd);
SYSCALL(ret, ioctl(phys_fd, TIOCSETD, &bt _|disc), "TIOCSETD");
SYSCALL(bt _cfd, open("/dev/ttyBTC', O RDWR, 0), "/dev/ttyBTC');
SYSCALL(ret, ioctl(bt_cfd, BTIN TSTACK), "BTI NI TSTACK");
SYSCALL(ret, ioctl(bt_cfd, HCl WR TESCANENABLE, &w scan),
" HCl WRI TESCANENABLE") ;
#i fdef CLIENT
SYSCALL(ret, ioctl(bt_cfd, BTCONNECT, &con), "BTCONNECT");
#endi f
for(;;) sleep(l1l0);

I'll explain most of the things this application is doing in the next section,
“Connecting to a Bluetooth Device,” but first I'll show you how to use the
application.

I defined the SYSCALL macro so that I could show a real example of
checking system call returns while conserving space in the text. It does a primi-
tive form of exception handling (if you can call exiting the application exception
handling) that shows the user what the error is.

The tty_init routine is based on the fd_setup routine in btd.c. It sets up the
serial port TTY to work in raw mode, sets the baud rate, hardware flow control,
and so on.

Note that this program has the server device’s BD ADDR hard-coded into
the declaration of the bt_connection struct! Yours will difter, so change this before
trying it. A real-world application wouldn’t do this, of course.

www.syngress.com

Linux Bluetooth Development * Chapter 6

To build the program, put the following Makefile in the same directory:
bt _mod_inc_dir := /home/ gntnutt/ CpenBT/ | i nux/include
OCFLAGS += -g —MD —I $(bt _nod_inc_dir) $(EXTRA FLAGS)
Change the bt_mod_inc_dir variable to match the location where you installed

the OpenBT source tree. Assuming you saved this file as simple.c, to make the
server, type:

$ make sinple

And to make the client, type:
$ make EXTRA_CFLAGS=- DCLI ENT sinpl e

First run the program on the server, and then run it on the client. Next, open
new terminal windows on the server and client. On one, type:

$ cat /dev/ttyBTO

And on the other one, type:
$ echo hello > /dev/ttyBTO

You should see “hello” appear on the opposite side. Any program that works
over a character device or a TTY should work over this connection. Go ahead
and try some others. Try catting a binary file, too, just to see why we need to
make TTYs raw before we can safely transmit binary data.

Connecting to a Bluetooth Device

At this point, you're probably impatient to start writing some code. I know I
would be. In fact, if you’re like me, this is probably the first section you jumped
to. In this section, I'll give you some examples to start with and talk through
some of the issues. I'll show you how to get the stack up and talking to the hard-
ware, how to discover other Bluetooth devices, and how to find and connect to
applications on those devices.

For all of these examples, I used the following setup:

» The OpenBT Bluetooth driver version 0.0.2

» Ericsson Bluetooth development h/w, ROK 101, firmware revision P9A
= RS-232 connection between the host and the Ericsson card

= Red Hat 6.2

» Linux 2.2.18 kernel

233

www.syngress.com

234

Chapter 6 * Linux Bluetooth Development

In the rest of this section, we’ll see how to initialize the stack, look for
remote devices, do SDP queries and initiate and shut down connections. I'll also
show an example of adding a new service to the XML database.

Initializing the Bluetooth Stack

Figure 6.1 illustrated what your system is like after you load the Bluetooth
module and connect the serial cable between the host and the card. At this point,
the Bluetooth driver and the serial port driver are both registered as TTY drivers
in the kernel, but both are idle. Both are using the default N_TTY line discipline
and standard termios settings. The Bluetooth line discipline is registered in the
kernel, but nothing is using it. No data is moving between the host and the card.

The Bluetooth driver must use the serial driver to talk to the card. In order
to do this, we need to “hook up” the Bluetooth driver on top of the serial driver
so that when it sends data, it sends it through the serial driver to the serial port;
and when the serial driver receives data from the serial port, it pushes it up to the
Bluetooth driver.

We also must change the default settings of the serial driver. For one thing,
the default settings are not compatible with binary data. That’s because TTYSs are
commonly used for things which require some control character processing, like
consoles. That won’t work for us because this processing might change, replace, or
insert certain values in the data passing through the TTY. We just want the TTY
to pass the data exactly as we tell it to.

Also, the default baud rate for serial ports is typically 9600. But the Ericsson
Bluetooth Developer’s kit will expect us to talk to it at 57600—at least until we
can tell it to switch to a different baud rate. This default baud rate is vendor-spe-
cific. Unfortunately, it is not part of the HCI UART spec.

Of course, if you’re using USB instead of serial, then you don’t have to worry
about any of this. The USB Bluetooth driver provides a TTY interface, but the

baud rate is meaningless.

Preparing the Serial Driver

The following example shows how to open the serial port and make it a raw
TTY. When it’s raw, that means it won’t mess with our data as it moves between
the Bluetooth driver and the serial port. If you don’t make it raw, it will try to
filter the data stream looking for special characters. If you think this is confusing,
just try using cat on /dev/ttySO0. It works great... for text files. Try it with a
binary and you’ll probably hose your terminal settings. But we can fix this by
using a raw TTY. The following code shows how to do this:

www.syngress.com

Linux Bluetooth Development * Chapter 6

int fd;

struct termios t;

/* open the device for reading and witing */

fd = open("/dev/ttyS0", O RDWR, 0);

/* get a copy of the driver settings */

ioctl(fd, TCGETS, &t);

/* raw node settings */

cf makeraw(&t) ;

/* set the baud rate to 57600 baud, 8 data bits,
1 stop bit */

t.c_cflag & ~CBAUD;

t.c_cflag | = B57600 | CsS8;

t.c_cflag | = CLOCAL;

t.c_oflag = t.c_Iflag = 0;

/* hardware flow control */

t.c_cflag & ~CRTSCTS;

/* put the setting into effect */

ioctl (fd, TCSETS, &t);

Whether or not you need hardware flow control depends on the Bluetooth
hardware you’re using. Some products are okay with it, while some specifically
tell you not to use it. The Ericsson hardware seems to work okay either way.
Note that many embedded devices have custom UART hardware. Sometimes
these don’t support the hardware lines necessary for hardware flow control. If you
have trouble getting the Bluetooth driver to talk to the card, then find out
whether or not this setting is correct for your hardware.

Observant readers will wonder if we need to fix the termios setting for the
Bluetooth driver itself. After all, it’s a TTY driver. Won’t we have the same
problem with binary data? Yes—once we start trying to read or write from it. But
that’s fine at this point. It won'’t affect any of the ioct/ calls we’ll be doing. Later,
when we want to transfer binary data, we’ll address this. If we just set the driver
up for another application like PPP, then that application should be responsible
tfor dealing with this (PPP does).

Stacking the Drivers

Now that the serial driver is ready, we can connect it to the Bluetooth driver.
Remember that the Bluetooth stack registered its own line discipline with the
kernel when we loaded the module. The way we stack the drivers is by telling

235

www.syngress.com

236

Chapter 6 * Linux Bluetooth Development

the serial port to switch from using the N_TTY line discipline to the Bluetooth
line discipline. That way, when the serial driver receives data, it will push it up
into the Bluetooth stack, and when the Bluetooth stack wants to send data, it has
a handle to the serial driver.

/* hookup serial driver and Bluetooth driver */
int bt_ldisc = N_BT;
ioctl(fd, TIOCSETD, &bt_|disc);

The N_BT constant uniquely identifies the Bluetooth line discipline among
all other line disciplines registered in the kernel. This identifier is what tells the
serial TTY to use the Bluetooth stack as its upper layer interface. It’s defined in
btcommon.h—part of the OpenBT source tree.

The TIOCSETD ioctl replaces the serial port’s current line discipline with the
one specified. It also causes the Bluetooth line discipline’s open() routine to be
called, passing in the serial port’s TTY. This gives the Bluetooth stack a handle to
the serial TTY driver so it can use it as the lower layer. At this point, Figure 6.2
shows our driver configuration in the kernel.

Starting Communication between the PC and the Card

Once the drivers are stacked, the host can start talking to the hardware. There are
some specific things the Bluetooth stack needs to find out from the card before it
does anything else. It also needs to do some internal initialization as well.

/* open the bt control channel */
bt _cfd = open("/dev/ttyBTC', O RDWR, 0);
/* initialize the stack */

ioctl (bt_cfd, BTIN TSTACK);

If you’re going to initialize the stack, you have to use the /dev/ttyBTC device
(the control device). The Bluetooth data devices (for example, /dev/ttyBT0) won'’t
work. In fact, you can’t even open these other devices until the stack is initialized.
This, and the fact that multiple processes can open /dev/ttyBTC at the same time,
makes it unique. Note that closing /dev/ttyBTC is safe. The stack will remain ini-
tialized. To shut it down, we’ll use the BTSHUTDOWN ioctl. You'll learn more
on that in the section “Disconnecting” later in the chapter.

The BTINITSTACK ioctl tells the Bluetooth driver to initialize itself and begin
talking to the Bluetooth hardware. It will query the hardware for things like buffer
sizes and numbers, read the local BD_ADDR, and so forth. As an application
writer, you don'’t really need to worry about the details. There is one thing you

www.syngress.com

Linux Bluetooth Development * Chapter 6 237

should know, however: this ioctl call can return before initialization is complete. For
this reason, it’s sometimes a good idea to pause your application before continuing.

Debugging...

Detecting UART Overruns

A common problem people have (especially on embedded devices) is
UART overruns. A UART overrun is what happens when data is coming
in on the serial port too fast for the serial driver to read it. Embedded
devices with slow CPUs, bad IRQ latency, and/or cheap UART hardware
sometimes see this problem.

$ cat /proc/tty/driver/serial

The preceding command will show you if your UART is getting
receive overruns. If an “oe” field appears in the report, then this gives a
count of the number of UART overruns detected by the serial driver. If you
are having problems with data corruption, then definitely check for this.

Switching to a Higher Baud Rate

If we want the Bluetooth driver and the hardware to use a higher baud rate we can
tell it to do so now. At 57600 baud, the bottleneck will be the serial connection
between the host and the card. This doesn’t mean we’ll lose data. We just won’t be
taking full advantage of what the radio can do. If we jack it up to 115200 baud,
then we’re more in line with the maximum radio data rate of 723.2 Kbps, which is
already pretty slow compared to currently extant wired media. Keep in mind that
this only affects the baud rate between the host and the Bluetooth hardware. In
other words, we’re not changing the radio characteristics of the card in any way.

NoTE

Keep in mind that if you change the baud rate from the power on default,
if you ever shut down the stack, you’ll need to physically reset the hard-
ware before starting it up again. Both the stack and the hardware have to
start up at the same baud rate or they won’t talk to each other.

www.syngress.com

238

Chapter 6 * Linux Bluetooth Development

/* tell the card to switch baud rates */
int final _baud_rate = 115200;
if (ioctl(bt_cfd, HCH SETBAUDRATE,
&final _baud_rate) == 0) {
/* switch the serial port baud rate */
struct termios t;
ioctl (fd, TCGETS, &t);
t.c_cflag & ~CBAUD;
t.c_cflag | = B115200;
ioctl (fd, TCSETS, &t);

The HCISETBAUDRATE ioctl will try to send a vendor-specific command to
tell the hardware to change the baud rate. Keep in mind that the command to
switch baud rates is vendor-specific. Some vendors might not provide this feature.
This is an example of why it’s important for your application to check the return
results of system calls. In this case, if the ioct call fails, then presumably the card won'’t
change its baud rate. This could be because it has a fixed baud rate, or because it uses
a different vendor-specific command, either way we’d better just leave the serial port
baud rate alone or the Bluetooth driver will lose communication with the card.

Developing & Deploying...

Avoiding Race Conditions When Changing Baud Rates

Incidentally, there’'s something of a race condition here between when
the card switches baud rates and when the serial port switches baud
rates. What happens if the card sends us data at the higher baud rate
before we manage to change the serial port settings? If this happens, it
is usually not fatal, but it's essential to change the serial port immedi-
ately after changing the card’s baud rate. You should also stop any data
streams before changing baud rates.

Finding Neighboring Devices

Now that the Bluetooth driver is talking to the hardware we can engage in some
Bluetooth traffic. Of course, we’ll need somebody to talk to. In order to find

www.syngress.com

Linux Bluetooth Development * Chapter 6

other Bluetooth devices in range, we’ll do an HCI Inquiry. Also, we probably
want to let other devices find us, too, so we’ll see how to tell the hardware to
respond to other device’s Inquiries.

Letting Other Bluetooth Devices Discover Us

By default, the Ericsson Bluetooth Development Kit hardware doesn’t respond to
other device’s inquiries. This is okay, because we don’t really want other people
trying to connect with us until we’re ready. The following example shows how to
enable both scan and inquiry responses:

/* enabl e page scan & inquiry scan */
#define PAGE_SCAN ENABLE 0x01
#define | NQUI RY_SCAN_ENABLE 0x02
int wscan = (PAGE_SCAN ENABLE |

| NQUI RY_SCAN_ENABLE) ;
ioctl(bt_cfd, HC WRI TESCANENABLE, &wrscan);

The HCIWRITESCANENABLE ioctl takes a bit mask parameter. Only the first
two bits have meaning. Bit O corresponds to Page Scan, and bit 1 corresponds to
Inquiry Scan.You set the bit to enable the corresponding scan type.To find out
more about Page Scan and Inquiry Scan, consult the Bluetooth Core Specification.
For now, just realize that other devices won't see you if you don’t turn on scan enable.

Sending an HCI Inquiry

To find other neighboring devices use the HCIINQUIRY ioctl. This ioctl takes a
parameter of type inquiry_results, which serves both as an in-param and an out-
param. The btcommon.h header defines this structure.

typedef struct inquiry_results {
u32 nbr_of _units;
u32 inq_tine;
u8 bd_addr[0];

The nbr_of units tield specifies the maximum number of responses, which the
hardware should listen for before ending the Inquiry procedure. The valid range
for this value is O through 255. But 0 means an unlimited number of responses!
Not a good idea since you’ve only allocated a finite amount of space in which to
receive responses.

239

www.syngress.com

240

Chapter 6 * Linux Bluetooth Development

The inq_time field specifies the time, in units of 1.28 seconds, which the hard-
ware should allow for the Inquiry to finish. The hardware will terminate the
Inquiry procedure if either it receives the maximum number of responses, or the
said amount of time expires—whichever comes first. The valid range for this
value 1s 0x01-0x30, or 1.28—61.44 seconds.

The bd_addr field marks the start of a block of memory set aside for the
Inquiry responses. By default, there isn’t any space for responses. One way to make
space is to allocate enough memory for the inquiry_results structure, plus some
extra for the responses. It turns out that the driver will only store the BD ADDR
from each response, so you’ll need to set aside 6 bytes per response. One way to
do this is to wrap it with your own structure that has a static buffer, like this:

typedef struct nmy_ing_result {
inquiry_results hdr;
unsi gned char buf [MAX_RESPONSES * 6] ;
} ny_ing_result_t;
/* issue the inquiry and bl ock */
my_ing_result_t ingq;
ing.hdr.ing_tinme = 5;
i ng. hdr.nbr_of _units = MAX_RESPONSES;
ioctl(bt_cfd, HC INQURY, & nq);
/* parse the results */
for (i = 0; i < inqg.hdr.nbr_of_units; i++) {
unsi gned char *bd_addr = ing.buf + i * 6;
printf ("o % %: %: 9%: %\ n", bd_addr[O0],
bd_addr[1], bd_addr[2], bd_addr][3],
bd_addr[4], bd_addr[5]);

The inquiry response actually carries extra information, like the class of
device responding. This information is not passed up the stack at the moment,
but it’s worth being aware that it’s there, as in the future the driver may change to
store more information. If that happens, of course, more memory would have to
be allocated for responses.

The ioctl call will block until either the Inquiry completes, or an error occurs.
Possible errors include timeouts waiting for the hardware to send the expected
HCI commands. If the call is successful, then the ing argument contains informa-
tion from any inquiry responses received. Note that the ioctl returns success even
if no remote devices responded.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Upon successful return, the nbr_of_units field now indicates the actual number
of responses received (this is less than or equal to the number you specified) and
the bd_addr field contains the received BD ADDRSs of remote devices.

Using Service Discovery

Once you've discovered another device, you're ready to find out what services it
offers. Likewise, you may want other devices to discover the services your appli-
cation provides. By now, you probably know that this is where the Service
Discovery Protocol comes into play.

Let me reiterate some of the caveats regarding SDP on OpenBT:

* You cannot dynamically register a new service in the SDP database.

» Your application must know how to assemble SDP requests and parse
SDP responses.

= Services cannot register themselves with the RFCOMM layer.

With these limitations, you may well wonder what’s the point of even dis-
cussing SDP. Well, there are some benefits:

» You can statically add services to the SDP database, and for embedded
developers this may work well enough.

= Your client applications will know how to discover and connect to services
running on a stack, which correctly supports REFECOMM registration.

= OpenBT

In the rest of this section, we’ll talk about how to connect to a remote SDP
server, how to send requests, and how to process responses. This will cover the
client side of things and should be useful even with the current state of the
OpenBT stack. After that, we’ll look at an example regarding how to add a ser-
vice to the SDP database.

Connecting to a Remote SDP Server

Before you can do a query, you need to establish an SDP connection with the
remote device. Anytime we need to establish a connection, we’ll use the
BTCONNECT ioctl call. This call takes a parameter of type bt_connection. The
btcommon.h header defines this structure.

struct bt_connection {
u8 bd[6];

241

www.syngress.com

242

Chapter 6 * Linux Bluetooth Development

u32 id;

The bd field 1s the BD ADDR of the remote device you want to connect to.
For instance, you can use one of the BD ADDRSs discovered in your inquiry.

L2CAP uses a Protocol Service Multiplexor field (PSM) to uniquely identity
an instance of a higher layer protocol using an L2ZCAP connection. For some
protocols, this value is well-known (i.e., in the Core Specification), and for others
you have to discover it. The Bluetooth Core Specification defines the PSM for
SDP to be 1.

The id field is a combination of the PSM for the protocol instance you want
to connect to: the line number and the SDP ID.The high 16 bits of the id field
indicate the PSM. The next 8 bits of the id field specify the line or session
number. Remember the session state machine in Figure 6.2? This value identifies
one of those sessions. It also maps to the minor number of a Bluetooth TTY
(/dev/ttyBTO, and so on). When we specify a line here, we're telling the
Bluetooth driver to use the session associated with one of the Bluetooth TTYs.

The lowest 8 bits represent the SDP connection ID. For the BTCONNECT
call, these are not important. Later, when we look at the BT_SDP_REQUEST
ioctl, we will see how these bits are used.

To make things easier on yourself, you should include the sdp.h header so you
can use the CREATE_SDP_ID macro. This macro automatically fills in the PSM.
The following example shows its usage:

/* set renote BD ADDR fromthe inquiry results */
bt _connection con;

mencpy(con. bd, ing.hdr.bd_addr, 6);

con.id = CREATE_SDP_I D(SDP_LINE, 0);

sdp_con_id = ioctl(bt_fd, BTCONNECT, &con);

The BTCONNECT ioctl blocks until the connection completes or an error
occurs. It returns an SDP connection ID on success. This is a little out of the
ordinary for a system call, which should normally return 0 on success!

Sending an SDP Request

After a successful BTCONNECT call, we can start sending SDP requests to a
remote device. We’ll send SDP requests (and receive responses) by using the
BT_SDP_REQUEST ioctl. This call takes a parameter of type bt_sdp_request. The
header btcommon.h defines this structure.

www.syngress.com

Linux Bluetooth Development * Chapter 6

typedef struct bt_sdp_request {
u32 conl D,
u8 sdpConmand;
u8 pduPayl oad[256] ;
i nt pdulLengt h;
u8 request Response[256];

i nt responselLengt h;

} bt_sdp_request;

Developing & Deploying...

Picking an SDP Line Number

When you specify a line number for an SDP connection, you must specify
the line number of a session that is in the closed/disconnected state.
Unfortunately, there is no way for your application to know a priori
which sessions are in this state. Until the OpenBT developers introduce
a fix for this problem, your application will have to use a trial-and-error
algorithm. If a BTCONNECT ioct/ fails, this means the session state is not
suitable for SDP, and your application can try another one. This problem
is not specific to the Bluetooth stack—it applies to any device file.

The conID field has the same format as the id field of the bt _connect structure.
Again, we’ll use the CREATE_SDP_ID macro, but this time, when we pass in
the SDP index, it will be the value returned by the BTCONNECT ioctl.

The sdpCommand field is the actual SDP command. For example, the
ServiceSearchRequest command is 0x02. See the SDP chapter of the Bluetooth
Core Specification for other commands.

The pduPayload field is a buffer where we have to put the raw SDP protocol,
which comprises our request. The driver will build the SDP packet header for us,
but we have to provide the payload of the request in this bufter. Unfortunately,
nobody has provided a nice library to build these requests for us.Yet.You can
consult the Core Specification or other references to learn more about con-
structing your own payloads. But one thing you need to note: the SDP specifica-
tion defines multibyte fields to be “big endian.” So, when you define these fields
in your payload, you need to put the high bytes first.

The pduLength field indicates the number of bytes in our payload buffer. Note
that we'’re limited to 256 bytes.

243

www.syngress.com

244

Chapter 6 * Linux Bluetooth Development

The requestResponse field is a buffer where we’ll find the response to our
request when the ioctl call returns (assuming we received a response).

The responseLength field tells us how many bytes we received in our response
when the ioctl call returns. If this is zero, then it’s safe to assume we didn’t get the
response.

Let’s look at an example of a service search request for our custom echo service:

bt _sdp_request sdp_req;

int i = 0;

menset (&sdp_req, 0, sizeof(sdp_req));

sdp_req. conl D = CREATE_SDP_I D0, 0);

sdp_req. Conmand = 0x02; /* service search req */
sdp_req. pduPayl oad[i ++] = 0x35; /* des hdr */
sdp_req. pduPayl oad[i ++] = 0x03; /* des sz */
sdp_req. pduPayl oad[i ++] = 0x19; /* wuuid hdr */
sdp_req. pduPayl oad[i ++] = 0x13; /* wuuid[1] */
sdp_req. pduPayl oad[i ++] = 0x02; /* wuuid[0] */
sdp_req. pduPayl oad[i ++] = 0x00; /* count[1] */
sdp_req. pduPayl oad[i ++] = 0x03; /* count[0] */
sdp_req. pduPayl oad[i ++] = 0x00; /* continuation */
sdp_req. pduLength = i;

ioctl(bt_fd, BT_SDP_REQUEST, &sdp_req);

Remember my warning about multibyte fields and endianness? Look at the
Service Class UUID field in our example. We put the high byte before the low
byte in our bufter. Likewise for the MaxServiceRecord Count field. Sometimes
developers are tempted to define structs, which correspond to protocol packets so
that they can fill out the struct and then copy it to the buffer (or cast the bufter
to a struct of that type). Beware of doing this! If your application is running on a
little-endian processor, then this will not work correctly for SDP.You will get the
bytes backwards. The ugly but reliable technique in the previous example will
work correctly regardless of the endianness of your host processor. Another alter-
native is to define or use existing macros that do safe byte-swapping conversions.

Processing an SDP Response

The BT_SDP_REQUEST ioctl call will block while the Bluetooth driver sends
the request and waits for the response. If the ioctl succeeded, then the response
will appear in the bt_sdp_request struct, which you passed in.

www.syngress.com

Linux Bluetooth Development * Chapter 6

The responseLength field tells you how many bytes are in the requestResponse
bufter. If this field is zero, then the Bluetooth driver did not receive any response
before timing out.

The first byte of a well-formed response indicates the SDP status of the
response. Zero means success; non-zero indicates an SDP error. Consult the SDP
spec if you want your application to decode the error type. Remember: the ioct/
call can succeed even when the SDP request fails.

/* any response? */
if (sdp_req.responseLength == 0) {
printf("SDP response |ength zero\n")
exit(0);
}
/* was it an error? */
if (sdp_req.requestResponse[0] == 0x01) {
printf("SDP Error Code 0Ox%\n",
sdp_req. request Response[5] << 8
sdp_req. request Response[6]) ;
exit(0)
}
/* any matching service records? */
if (!sdp_req.requestResponse[8]) {
printf("No renote servicel\n");
exit(0);
}
/* get the first service handle */
server _hdl = sdp_req.request Response[9] << 24 |
sdp_req. request Response[10] << 16
sdp_req. request Response[11] << 8 |
sdp_req. request Response[12] ;

If the number of ServiceR ecords is zero, then the remote device does not
support the service we were looking for. Otherwise, using the service handle, we
can send more SDP requests to fetch back attributes of the matching
ServiceRecords. The ultimate goal is to establish a connection, so we should send
an AttributeR equest for the ProtocolDescriptorList next and parse the
RFCOMM server channel out of the response. The purpose of this chapter is not
to teach you how to parse SDP, so I'll leave that as an exercise for the reader.

245

www.syngress.com

246

Chapter 6 * Linux Bluetooth Development

When your application is finished making requests, it should close the SDP
connection by using the BTDISCONNECT ioctl call. That way, the remote
server can free up any resources it has committed to servicing your connection.
However, the current release of OpenBT appears to have a bug in it such that
BTDISCONNECT does not work for SDP connections.

Adding a Service to the Local Database

The SDP service database is an XML file. Remember that we can use the
sdp_server daemon to handle SDP queries from remote devices to our local
database. To add a service, we edit an XML file and pass it as an argument when
we start the sdp_server daemon.

Example: Adding an Echo Service

Here’s an example of adding an echo service. It uses RFECOMM over L2CAP as
its protocol stack. We place it within the <bluetoothSDP></bluetoothSDP> tags
of the XML file:

<EchoSer ver Servi ceCl asslI D Servi ceRecordHandl e = "0Ox0111ffff">
<Servi ceRecordHandl e Paranmeter0 = "0x0a0111ffff">
</ Servi ceRecor dHand| e>
<ServiceC assl DList NorOFEntities = "1">
<EchoServer Servi ceCd assl| D>
</ EchoSer ver Servi ced assl D>
</ Servi ced assl DLi st >

<Prot ocol DescriptorList NorO'Entities = "2">
<L2CAP type = "DES" Paraneter0 = "0x0003">
</ L2CAP>
<RFCOW type = "DES' Paraneter0 = "0x0802">
</ RFCOMW>

</ Prot ocol Descri pt orLi st >
<BrowseG oupLi st NorOfEntities = "1">
<Publ i cBr owseG oup>
</ Publ i cBr owseG oup>
</ BrowseG ouplLi st >
<Bl uet oot hPr ofil eDescri ptorList NorOfEntities = "1">
<EchoServer Servi ceC asslI D type = "DES" Paranmeter0 = "0x090100">
</ EchoSer ver Servi ceCl ass| D>

www.syngress.com

Linux Bluetooth Development * Chapter 6

</ Bl uet oot hPr ofil eDescri pt or Li st >
<Servi ceName>Echo Server </ Servi ceNanme>
<Servi ceDescri pti on>Echo Server </ Servi ceDescri pti on>
<ServiceAvailability Paraneter0 = "0x0815">
</ ServiceAvail ability>
</ EchoSer ver Servi ced assl D>

In the <ServiceClasses> tag, add this:

EchoSer ver Servi ceC assl D = "0x1302"

I pulled the EchoServerServiceClassID out of thin air (there is no echo server
in the Bluetooth specification), so for all I know it conflicts with an existing class
ID! Just another reason why OpenBT needs an SDP interface before armies of
irresponsible hackers like myself start filling the world with pirate IDs. I did make
sure that the ServiceRecordHandle didn’t conflict with any of the other ones in
the file, however.

The “Bluetooth assigned numbers” part of the Bluetooth specification lists
the numbers that have been allocated. You can use Universally Unique IDs
(UUID:s) to safely allocate your own numbers.

Querying the Local Database

Currently there is no interface to query the local SDP database from within your
application. If you want to do this, then you can look at how the sdp_server code
invokes the XML parser and processes queries from remote devices.

Connecting to a Bluetooth Service

Usually the purpose of making SDP requests is to discover if a remote device
supports a particular service, and if so, what the pertinent connection parameters
are. Once this discovery phase is over, your application needs to connect to the
actual service. Connecting involves two steps: opening a data device and con-
necting its associated line.

Using a Data Device

So far, all of the examples have used /dev/ttyBTC as the device. Once we’re ready
to actually begin transferring data across a session, we’ll need to open one of the
data TTYs. Recall from our session state machine that a session must be in the
opened/normal/connected state to transfer data. If you look back at Figure 6.2,

247

www.syngress.com

248 Chapter 6 * Linux Bluetooth Development

you’ll see that it really doesn’t matter whether we establish the RFCOMM con-
nection first or open the TTY first.

Opening a data device is trivial, but here’s the code in case you have any
doubts about how to do it:

int bt_fd = open("/dev/ttyBT0", O RDWR);

On success, the device is all yours. If the open fails and errno is EBUSY, then
some other process already has it. In this case, you can just keep trying the other
devices (e.g., /dev/ttyBT1) until you find one that’s available. Unfortunately,
there isn’t really a cleaner way to tell if a device is already being used.

If the open fails and errno is EPERM, then the stack is not initialized. In this
case, you can open the control device and use the INITSTACK ioctl call (see ear-
lier) to initialize it and then try again.

Creating a Connection

The SDP transactions give you the parameters you need to know to establish a
connection to a remote service. And, in fact, you’ve already seen the command to
establish a connection: the BTCONNECT ioctl. We used it to establish an SDP
connection. But this time, you’ll be connecting to a different protocol to access
the service—which protocol depends on the particular service and what it’s
ProtocolDescriptorList indicated.

Here’s an example of establishing an RFCOMM connection.

bt _connection con;

int server_channel;

/* do the SDP queries, assign 'server_channel'
a value based on the results */

/* connect via RFCOW */

menctpy(con. bd, ing.hdr.bd_addr, 6);

con.id = CREATE_RFCOMM I D(1ine, server_channel);

sdp_con_id = ioctl(bt_fd, BTCONNECT, &con);

The CREATE_RFCOMM_ID macro is similar to the CREATE_SDP_ID
macro.You can find it in the rfcomm.h header.

The line parameter should match the minor number of the TTY you intend
to use for data transfers.

The server_channel parameter should match the value obtained from the
ProtocolDescriptorList you get during the SDP session. See the SDP chapter of
the Bluetooth Core Specification for an explanation.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Accepting a Connection

Remember the caveat about not being able to register services with RFCOMM?
Well, that makes accepting a connection random luck. It could be done better,
and maybe in the future it will be, so I'll start by explaining how I believe con-
nection acceptance should work. At the moment, the protocol stack has many
compromises, and you’ll have to use it as is, so I'll go on to explain how connec-
tion acceptance works now.

Understanding the Way It Should Work

When you register a service with SDP, and you provide a parameter in the
RFCOMM Protocol Descriptor, that parameter is supposed to identify the server
channel your application will be listening on. The remote client gets this value
and uses it to request a connection to your service. When the RFCOMM driver
sees a connection come in on that channel number, it should make sure that the
correct server application gets it.

Understanding the Way It Does Work
The problem with the OpenBT stack is that there is no way for the REFECOMM

driver to map a server channel to a session on the side receiving the connection
request (everything works fine on the side initiating the connection—it just asso-
ciates the connection with the session indexed by the line number).

Instead, when the REFCOMM driver gets a connection request it looks for
the first available TTY, starting with minor number 0, and associates the connec-
tion with that session.

This is why btd works. It doesn’t really matter which server channel the
client requests as long as it is a legal value (even numbers 2 through 60). The first
connection on the server side will go to the session for ttyBTO—which is what
btd, by default, passes to PPP when it spawns it.

In other words, the only way to make sure the correct server accepts the
connection is to carefully control the order in which connections are made. For
a shipping product with more than one server application, this would be totally
unacceptable. On the other hand, the client side works fine. So, if a product is
shipping with only client applications, then this problem won’t be an issue.

Transferring Data

Since the Bluetooth driver is just another TTY driver, transferring data is as
simple as reading and writing from a file or any other device.You can find any

249

www.syngress.com

250

Chapter 6 * Linux Bluetooth Development

number of books discussing I/O in C for Unix clones, so I'll just provide an
example showing an echo application.

Don't forget that Bluetooth devices are TTY devices and by default they are
not raw. Remember how we had to set up the serial device so that it wouldn’t
interfere with a binary data stream? The same thing applies to the Bluetooth data
devices. If your application is going to use read and write calls on a Bluetooth
device to transfer binary data, then follow the earlier examples used on the serial
device to make it raw.

/* declare a buffer to fetch & hold the data */
char buf[BUF_SZ];
/* while we can read nore data...*/
while ((n = read(data_fd, buf, sizeof(buf))) > 0) {
/* echo the data back out the sane
channel */

wite(data_fd, buf, n);

This loop will read and echo data from our RFCOMM channel as long as it
remains open. The call to read will block until data becomes available, the
channel closes, or an error occurs. If, and only if, some data becomes available,
then read will copy as much as it has or will fit into the bufter and return the
number of bytes it put in the buffer. If the channel closes, read returns 0. If an
error occurs, read returns a negative error number.

The write will queue up the data for transmission. Its semantics are similar to
read. Note that this is not a perfectly reliable echo routine since it just assumes
that all the bytes went out okay, but it shows the basics of I/O.

Disconnecting

Disconnecting always takes two steps: a Bluetooth disconnect and a system call
to close. At most, only one side of the connection needs to execute a discon-
nect, and in cases where two devices go out of range, the Bluetooth stack
cleans up the connection automatically. But your application will always need
to do a close after a disconnection occurs. Refer to Figure 6.3 to see the state
machine.

If your client application succeeds in making a connection, then it’s important
to disconnect before exiting. If you don’t, then the Bluetooth driver won'’t let
anyone else use the line associated with the connection until someone reinitial-

www.syngress.com

Linux Bluetooth Development * Chapter 6

izes the stack with a BTSHUTDOWN or BTINIT ioctl call. Note that the
Bluetooth driver will not automatically disconnect a line if the application closes
the file descriptor or exits. You have to explicitly tell it to disconnect.

You close a connection with the BTDISCONNECT ioctl call. This call takes
a parameter of type bt_connect. It you like, you can use the same one you passed in
to the BTCONNECT ioctl.

ioctl(bt_fd, BTD SCONNECT, &con);

Even after doing a BTDISCONNECT, no other process can use the line
associated with your device file until your application either explicitly calls close
or exits. So, if you disconnect the line but don’t close the file descriptor, other
applications will get EBUSY if they try to open that device file.

An application can always tell when the session disconnects from below. An
RFCOMM link can disconnect if it or any layer below it disconnects, or if the
remote peer goes out of range. In all these cases, the Bluetooth driver will do a
hang-up on the upper TTY. This means that any time your application does a
select, read, or write on the file descriptor, these system calls will return a negative
value. If it is blocked on one of these calls, it will return immediately.

When this happens, your device file descriptor is pretty much out of com-
mission. You won’t be able to do anything else with it until you close and reopen
it. In this case, there’s no need to do a BTDISCONNECT ioctl call. It will just
return an error since the connection doesn’t exist any more.

To summarize, when an application wants to end a session, it should call
BTDISCONNECT followed by close. If an application detects a disconnection
during a session, it should only call close.

Controlling a Bluetooth Device

The following list covers everything a Bluetooth application can do:

» Transferring data
» Establishing connections
= Controlling Bluetooth features
Not all applications will do all three things. For example, PPP transfers data
over an RFCOMM TTY, but it knows nothing about establishing the connec-

tion it uses. In the previous section, we covered the first two items on this list.
In this section, we’ll talk about controlling features of the Bluetooth device

251

www.syngress.com

252

Chapter 6 * Linux Bluetooth Development

itself. We’ll see the differences between applications that use the stack and
applications that control the stack, we’ll learn what things an application can
control, and we’ll cover the basic scenarios that a controlling application must
be able to deal with.

Distinguishing between
Control and Data Applications

PPP uses the Bluetooth stack without knowing it. It requires a TTY interface. It
relies on another application to set up the connection for it. For example, we saw
how to use the btd application to set up the connection and then spawn PPP. Of
the three items on our list, an application can do any combination of one or
more of those things by itself, and cooperate with other applications to provide
any capabilities it doesn’t do.

We already saw that the OpenBT project does not come with a stack man-
ager. The btd application provides some features of a stack manager, but you’ll
probably need to either extend it or write your own application that gives you a
broader set of features.

In this section, let’s talk about designing our own hypothetical stack manager.
On a desktop PC, this application might provide an interface for the user to
monitor and control the Bluetooth device. In an embedded device, this applica-
tion may provide hooks for other applications like power management, or a con-
trol panel driver to aftect the Bluetooth driver.

Using ioctls to Control the Device

The first thing we should consider is what exactly an application can monitor
and control. As with any other device driver, an application uses ioctl calls to per-
form control of the Bluetooth driver. Some ioct! calls are strictly informational
and provide a way to monitor certain parameters of the Bluetooth driver.

Table 6.4 provides a summary of the ioctl calls currently supported by the
OpenBT Bluetooth driver. Although you should always program to an interface
and not an implementation, this advice assumes that the interfaces are stable and
well documented! Currently, the only documentation on these ioctls s the source
code.You can find the implementation for all of these calls in the
linux/drivers/char/bluetooth/bluetooth.c file in the OpenBT source tree. Some
of these are ioctls we've already seen in previous sections. I include them here just
to give you a complete reference.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Table 6.4 Summary of OpenBT joctls

Name

Description

BT_SDP_REQUEST

Sends an SDP request and blocks (with no
timeout) until the response returns.

BTCONNECT

Requests an SDP or RFCOMM connection
with a remote device. Blocks until the
connection operation completes or, in the
case of RFCOMM, a timeout occurs.

BTDISCONNECT

Disconnects an existing RFCOMM connection.
Blocks until the disconnect operation
completes or a timeout occurs.

BTWAITFORCONNECTION

Checks if a connection exists on the specified
line and, if not, blocks until one appears on
that line. Does not return on stack shutdown.

BTWAITNEWCONNECTIONS

Blocks until a new connection appears on
any line. Does not return on stack shutdown.

BTISLOWERCONNECTED

Checks if a connection exists on the specified
line and returns the result in the out-parameter.

BTINITSTACK

Initializes the driver. If the driver is already
initialized, it implicitly performs the
equivalent of BTSHUTDOWN first.

BTSHUTDOWN

Shuts down the driver, disconnecting all
active connections and hanging up their
associated TTYs.

BTREADREMOTEBDADDR

Returns the BD ADDR of the last remote
device to establish a link-level connection in
the out-parameter.

BTISINITIATED

Checks if the driver has been initialized yet
and returns the Boolean result in the out-
parameter.

Continued

253

www.syngress.com

254

Chapter 6 * Linux Bluetooth Development

Table 6.4 (continued)

Name

Description

BTHWVENDOR

Returns a string describing the name of the
hardware, which the stack was compiled to
support. Warning: currently, this does not
limit the size of the string being copied into
the user’s buffer.

HCIINQUIRY
HCILINKKEYREPLY
HCILINKKEYNEGATIVEREPLY
HCIPINCODEREPLY
HCIPINCODENEGATIVEREPLY
HCISWITCHROLE
HCISETLOCALNAME
HCIAUTHENTICATION _
REQUESTED
HCISETCONNECTION_
ENCRYPTION
HCIRESET
HCICREATE_NEW_UNIT_KEY
HCIREADSTOREDLINKKEY
HCIWRITESTOREDLINKKEY
HCIDELETESTOREDLINKKEY
HCIREADSCANENABLE
HCIWRITESCANENABLE
HCIWRITEPAGESCANACTIVITY
HCIWRITECLASSOFDEVICE
HCIREAD_AUTHENTICATION _
ENABLE
HCIWRITE_AUTHENTICATION _
ENABLE

HCIREAD_ENCRYPTION_MODE
HCIWRITE_ENCRYPTION_MODE

HCISET_EVENT_FILTER
HCIREADLOCALBDADDR
HCIENABLEDUT
HCISETBAUDRATE
HCIWRITEBDADDR
HCISENDRAWDATA
BTSETMSSWITCH

These ioctls all provide access to the HCI
Protocol commands. See the HCl chapter of
the Bluetooth Core Specification for a
description of what these commands are
used for.

If a command does not provide any status
information back to the Host, it returns
immediately.

If a command expects a Command Complete
event, it blocks until either the Host
Controller sends this event or a timeout
occurs.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Covering Basic Scenarios

Now that we know what our stack manager can do, what should it do? What fea-
tures should it provide? Let’s consider the bare minimum.You can always add
more to fit your needs. One basic assumption of our design is that the stack man-
ager is responsible for the parameters that affect the entire driver or the hardware.
In other words, a bare-bones stack manager won’t concern itself with establishing
RFCOMM connections or transferring data.

As a bare minimum, the stack manager should initialize and shut down the stack
at the proper times. It should detect link loss and cleanup if necessary. It would also
be helpful if it kept tabs on remote devices coming in and out of the vicinity.

Example: Startup

In previous sections, we’ve seen examples of how to initialize the stack and to set
it up over a lower TTY like the serial driver so that it can talk to hardware. These
steps will always be necessary at some point. For an embedded solution, the
Bluetooth hardware might be on board, interfacing with the CPU via a UART or
some other bus. In these cases, you might have to provide your own TTY driver
over a custom hardware interface. Remember, the Bluetooth driver relies on the
ability to use a line discipline in order to communicate with the hardware driver.
Only TTY driver’s use line disciplines, so the hardware driver must be a TTY.

But when should your stack manager start up the driver? It depends on the
application. You can start it automatically when the application runs, or you can
wait for a command from a User Interface (UI), or a signal from another process,
and so on.

Probably the simplest thing to do on an embedded device is to start the stack
on system bootup.You can do this by having the init process automatically start
your stack manager from /etc/rc.Jocal or whatever startup script you use for your
configuration.

Example: Link Loss

There really isn’t any way for a central stack manager to detect a link loss. When
a link with another device goes down, the Host Controller sends the host a
sequence of disconnection event notices for each handle on the link. The
Bluetooth driver processes these events by disconnecting all sessions on that link.
Any processes using the TTYs for these sessions can detect a hang-up. But a cen-
tral stack manager won'’t necessarily get any kind of notification if it’s not using
one of those TTYs.

255

www.syngress.com

256

Chapter 6 * Linux Bluetooth Development

Is this important? It could be if the stack manager kept local cached data
about link status or peers. In that case, it would be nice to get notification so that
it could clean the caches. But as it is, any active processes using the links for data
will be notified. If a stack manager worked in the mode of establishing connec-
tions and then spawning applications to use them (this is how btd works with
PPP), then it can determine when the process terminates on a hang-up using
normal Linux process handling.

The following example illustrates this model.

for (5;) {
retry:
if (!do_hci_inquiry()) goto retry;
if (!do_sdp_request()) goto retry;
if (!do_connect()) goto retry;
if ((pid = fork()) == 0) {
execVvp(APP, APP, APPARGS);
} else {
wai t (pid);

do_di sconnect ();

The do_hci_inquiry() function and its friends would do what their names imply
(the previous section illustrated code for implementing these kinds of functions).
Once a connection is ready, the stack manager spawns a child process to use the
connected TTY, then it waits for the child to exit. When the child exits, the stack
manager makes sure the session is disconnected and then repeats the process.

If the link goes down at any point prior to the connection being made, one
of the functions will fail and we’ll go back to try again. If the link goes down
after the connection is made, the child process will exit when it detects the
hung-up condition of the TTY (actually, this depends on the behavior of the
child application, but most legacy applications that use TTYs will exit by default
when they can’t use the TTY anymore). The do_disconnect 1s benign if the con-
nection was already severed, but it makes sure the connection is cleaned up in
case the child exited for a reason other than a TTY hang-up.

Note that a stack manager could handle a whole set of child applications like
this, where each application is kept in a structure associating it with the relevant
info needed to do SDP queries for the services it likes.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Example: User-Initiated and Automated Shutdown

If your stack management application has a user interface, then it can give the
user the option of starting up or shutting down the driver. Alternatively, it
might provide a means for other processes (like a power management service)
to initiate a shutdown or startup via an IPC (InterProcess Communication)
mechanism.

This example shows how a stack manager might install a signal handler to
shut down or start up the stack based on requests from other processes.

static int stack_init = 0, bt_cfd;
voi d handl er(int sig)

{
if (stack_init) {
ioctl (bt_cfd, BTSHUTDOW) ;
stack_init = 0;
} else {
ioctl (bt _cfd, BTIN TSTACK);
stack_init = 1;
}
}

int main(int argc, char **argv) {
do_init_stack();
stack_init = 1;
si gnal (SI QUSRL, handl er);
for (;;) do_whatever();

This example assumes that if a user or another process wants to shut down
the stack or bring it back up, then they will send the stack manager a SIGUSR1.
Other forms of IPC might be more pertinent in difterent cases. The BTSHUT-

DOWN and BTINITSTACK ioctls take care of all the gritty details, shutting
down connections, hanging up TTYs, flushing bufters, and so on.

Example: Idle Operation

Stack management applications can keep tabs on what other remote devices are
in the area by doing periodic inquiries and keeping the results cached locally. You
could provide an API for other applications to access this cache so that they don’t

257

www.syngress.com

258

Chapter 6 * Linux Bluetooth Development

have to do their own inquiries. You could even keep a cache of remote SDP
databases for devices in range.

This example shows how a stack manager might maintain a remote BD
ADDR cache.You could extend this example to keep other information about
remote devices in the local cache. It polls a local socket for requests from local
processes to retrieve the cache.You extend this by providing a functional API to
handle IPC with the stack manager daemon.

typedef char BD _ADDR] 6] ;

BD_ADDR cache[MAX_ADDRS] ;

for (5;) {
ioctl (bt _cfd, HC INQU RY, & nq);
nenmcpy(cache, ing.buf, ing.hdr.nbr_of_units);

do_listen_for_cache_requests_w th_timeout();

This is just a simple example. It uses the HCIINQUIRY command (see pre-
vious sections) with one of our wrapper structs for the inquiry results. It also has
a bufter for keeping the results of HCI inquiries. Every so often it executes an
HCI inquiry request to see what remote units are in the vicinity and puts their
BD ADDRs in the cache.

The do_listen_for_cache_requests_with_timeout() could implement any form of
IPC you like to field requests from other processes for the latest inquiry results.
Every once in a while the process stops listening for requests and refreshes the
cache.

The usefulness of something like this depends on how many processes are
potentially doing their own HCI inquiries. But you could extend the idea to
cover more expensive operations like searching remote SDP databases. Also, since
we won’t automatically receive notice when another device modifies its SDP
database, the process could periodically update its cache of another device’s SDP
database.

www.syngress.com

Linux Bluetooth Development * Chapter 6

Summary

The publicly available Bluetooth stacks for Linux are limited in number. As of
this writing, the only two released implementations are IBM’s BlueDrekar and
the OpenBT project. BlueDrekar has some nice features, looks pretty complete,
and 1s freely available for download in binary form for x86 platforms running
2.2.x kernels. OpenBT is an open source project with support for most stack
protocols and features and may work well enough for embedded devices. It has
been ported to a variety of processors and can be cross-compiled, but it is still
early in its development and not a fully-featured implementation. The focus of
the discussion and examples is on OpenBT in this chapter because it is open
source and may someday be a part of the standard Linux distribution as a stable
implementation.

The OpenBT stack provides a loadable kernel module, which implements a
TTY driver. It currently supports six data TTYs for RFCOMM connections and
one control TTY for managing the driver. The driver internally manages
RFCOMM connections with a session state machine. Applications use ioct! calls
to establish the RFCOMM connection. Once an RFCOMM connection exists
on a session, any application can use the TTY for that session, just like any other
TTY device.

The OpenBT source tree comes with some applications that you can use as
examples or starting points for derived works. The entire source is released under
a modified form of the GPL, so if you create derived works that are used to
implement Bluetooth operations, then these derived works will fall under the
same license. The btd application provides a quick way to get network connec-
tions working over a Bluetooth link via PPP over RFCOMM. The sdp_server
daemon will handle SDP requests from other devices.

Connecting to a Bluetooth device takes several steps. If your application
functions as a stack manager, then it must first stack the Bluetooth driver over an
underlying hardware TTY driver like serial or USB. Next, it must use a sequence
of foctl calls to initialize the stack, discover remote devices, and browse remote
SDP databases to find services and connection parameters. Once an application
has identified a remote service to connect to, it uses an foctl call to establish an
RFCOMM connection session. At that point, it or any other application may use
the corresponding data TTY for data transfers. When the REFCOMM session dis-
connects, the driver performs a hang-up on the data TTY, thus signaling the end
of the session.

259

260 Chapter 6 * Linux Bluetooth Development

Applications can do three things with the Bluetooth driver: transfer data,
manage individual connections, and manage the overall driver. Not all applications
need to do all three. Legacy applications (like PPP) that just use a TTY require
another application to set up the connection and perform stack management for
them. Developers may want to provide a stack management process for their

system, which handles scenarios like link loss, system shutdown requests, and
caching remote device data.

Solutions Fast Track
Assessing Linux Bluetooth Protocol Stacks

M The standard kernel source tree only recently accepted the Bluez

Bluetooth stack, but it may not yet possess all the features some
application developers require. It requires Linux 2.4.4 or greater.

IBM’s BlueDrekar is a nice-looking implementation distributed in
binary form for x86 platforms running 2.2.x. Source is not freely
available to the general public.

The OpenBT project is a not-as-nice open source project that works for
most things an embedded developer would want. Source is available and
has been used on x86, ARM9, ARM7, MIPS, and PowerPCs.

Understanding the Linux Bluetooth Driver

A
S
2
’ |
2

The OpenBT stack implements TTY drivers for RECOMM, SDP, and
stack control.

The Bluetooth driver must be stacked over a lower-layer hardware driver
that implements a TTY.

Any legacy application that uses a TTY can use RFCOMM once
another application sets up the underlying RFCOMM connection.

SDP, connection setup, and stack control are accomplished with
ioct] calls.

No interface exists for SCO, or L2ZCAP, although ioctls are available to
support most HCI commands.

WWW.syngress.com

Linux Bluetooth Development * Chapter 6

Using Open Source Development Applications

4]

4]

The OpenBT source tree comes with some applications: btd/btduser,
sdp_server, and BluetoothPN.

The difference between btd and btduser is that btd is meant to work
with the kernel mode Bluetooth driver while btduser works with the
user mode Bluetooth driver. Many people prefer btduser since it is less
prone to lock up your system if things go badly. However, the OpenBT
developers do not support it as well as btd.

The sdp_server application provides you with an SDP database server
daemon. Once you’ve installed the Bluetooth driver, you can start this
daemon and it will automatically receive and respond to SDP queries
from remote devices.

This application provides a GUI that displays the SDP database on a
remote device. It provides some examples of how to make SDP requests
and process their results.

The quickest, most useful way to establish and exploit a Bluetooth
connection from Linux is to use the standard GNU network
applications over PPP. And the easiest way to do that is with the btd
application.

Connecting to a Bluetooth Device

4]

An application manager must set up the driver stack over the hardware
TTY and initialize the Bluetooth driver. This can be any application; the
OpenBT source tree does not provide a general stack manager.

Client applications must obtain the Bluetooth Device address of the
remote device and—for RFCOMM connections—the channel number
of the remote service in order to establish a connection.

Once a connection is established, any application can use the TTY
associated with the connection for data transfer.

The driver indicates a disconnection event with a hang-up of the
associated TTY.

261

"

262

Chapter 6 * Linux Bluetooth Development

Controlling a Bluetooth Device

M Use ioctl calls to control the device and get information about device
status.

M Use /proc/bt_status to get information about device status.

M A stack manager must be able to deal with link loss and system
shutdown requests. It should provide an interface for users as well as
other processes like power management to signal shutdown requests.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:

A:

Is the OpenBT stack really ready for prime time on an embedded Linux
device?

It’s the closest thing to it that has freely available source.You can ask IBM
about licensing and distribution costs for BlueDrekar, but it’s hard to beat the
price/performance ratio of OpenBT. If youre faced with the prospect of
leveraging OpenBT or.developing your own Bluetooth stack... well, you
know your project schedule better than I do!

How can I get the latest source for OpenBT?

Go to the OpenBT Web site (www.sourceforge.net/projects/OpenBT) and
look for the instructions on accessing the CVS repository. This will give you
the very latest, bleeding-edge code. Occasionally new tarballs appear for
download on this site as well. You might also want to subscribe to the mailing
list to keep in touch with progress on this front.

: Can a Java application use the Linux Bluetooth stack?

Any language that provides some kind of access to the standard I/O system
calls (read, write, and ioctl) can use the OpenBT.

WWW.syngress.com

Linux Bluetooth Development ¢ Chapter 6

: When I try to “insmod bt.o” I get an error about missing kernel symbols.
What is this and how do I fix it?

. This happens because the kernel which bt.0o was compiled against does not
match the kernel you are trying to load it into. When you build bt.o, make
sure you provide the INCLUDE_DIR=<path> argument to make, indicating
the path to your target kernel’s include files. Also, if your kernel has symbol
versioning configured, then make sure linux/include/modversions.h is being
included in the build process.

: I just want to use L2ZCAP and HCI, not REFECOMM. Is there an interface I
can use to access these layers?

: Not with OpenBT. However, if you aren’t limited to using a Linux kernel
version earlier than 2.4.4 then Bluez is probably what you want. The Bluez
Bluetooth stack has been distributed with kernel source since kernel version
2.4.6; the latest is available from bluez.sourceforge.net.

263

-

Chapter 7

Embedding
Bluetooth

Applications

Solutions in this chapter:

= Understanding Embedded Systems e
8l
Getting Started ‘!

Running an Application under the
~ Debugger :

Running an Application on BlueCore

Using the BlueLab Libraries

Deploying Applications

M Summary
M Solutions Fast Track

M Frequently Asked Questions

265

266

Chapter 7 * Embedding Bluetooth Applications

Introduction

Bluetooth wireless technology is proving popular for handheld mobile devices
such as mobile phones and headsets, which have very limited space and power.
Using an extra host processor to run applications takes up extra space, uses extra
power, and adds cost, too. For the ultimate in compact design, low cost, and
energy efficiency Bluetooth applications can be run directly on the same pro-
cessor that drives the Bluetooth baseband.

Vendors who supply designs for Bluetooth Application-Specific Integrated
Circuits (ASICs) also provide interfaces which allow custom applications to run
on the same microprocessor which drives the Bluetooth baseband. It is also pos-
sible to run applications on commercially available chips. This chapter looks at
embedded applications using as an example Cambridge Silicon Radio (CSR)’s
BlueLab system for programming embedded applications on BlueCore chips.

Not every application is suitable for embedding on a BlueCore chip. Small
simple applications such as the Headset and Audio Gateway profiles, as well as
things like central heating controllers or TV remote controllers, are suitable for
embedding on a single chip. High-bandwidth or complex applications such as a
local area network (LAN) access point are better suited to implementation using
a separate host processor.

This is because when an application is running on the same chip as a
Bluetooth protocol stack, the application and firmware stack must share the avail-
able RAM on the chip. For a single channel RFCOMM-based application, the
available RAM is several hundred words. The application code and its constant
data must fit into just under 32K words.

Embedded applications running on a BlueCore chip are run under an inter-
preter called the Virtual Machine (VM). Interpreting application opcodes confers
a significant performance penalty which limits suitable applications. For devices
such as headsets, most of the time all that is happening is audio input/output
(I/0). Control operations are comparatively infrequent, and involve simpler oper-
ations than would happen on devices such as LAN access points.

In this chapter, we’ll look at some of the implications of these limitations and
give some examples of how much can still be done in embedded applications. We’ll
take you through how to build applications which can be run on BlueCore, and
explain how to build run and debug both on PCs and on the BlueCore chip itself.

What you need to know before reading this chapter is:

» The C programming language

» The basics of embedded programming: tasks and message queues

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

Understanding Embedded Systems

This section assumes that you’ve done some programming, but you don’t have
embedded experience. If you’ve worked with embedded systems before, you
might want to skip straight to the “Getting Started” section. For the rest of you,
we’ll go over tasks, queues, stacks, interrupts, and the difference between running
code on a PC and code embedded on hardware.

Understanding Tasks, Timers, and Schedulers

In a Bluetooth system, there are many difterent tasks to take care of: Link
Management messages must be processed; incoming data must be dealt with as it
arrives; outgoing data has to be sent to the baseband and radio; if there is a sepa-
rate host communications through the host controller interface this must be
addressed; all this and more must be handled simultaneously. Having a micropro-
cessor for each task would be far too expensive, so the solution is for one micro-
processor to swap between tasks, spending a little time on each in turn. This is
called multi-tasking.

Each task has its own call stack, its own I/O queues, and each task gets a turn
at the processor. There is one task which coordinates the rest. This is usually called a
kernel, but 1s also referred to as a scheduler. Difterent embedded systems handle swap-
ping between tasks in different ways, some assign priorities to tasks, so that a low-
priority task does not stop a high-priority task from running. The BlueCore01
system has a simple round-robin scheduler, which runs each task in turn.

The scheduler stops running a task when the task blocks. A task blocks by
making a system call which waits for an event. This behavior means that the
scheduler is vulnerable to a task putting itself into an infinite loop. Since the task
would never block, no other task would ever get a chance to run.

On the face of it, this means you could disable the whole Bluetooth system if
your application didn’t block often enough. Since there are many time-critical
operations within the Bluetooth stack, you could easily stop the stack from
working properly. To solve this problem BlueCore provides an environment called
the Virtual Machine which protects the stack code from applications which try to
take too much processor time. Instead of your application code being called
directly, the scheduler calls the Virtual Machine. The Virtual Machine then runs a
number of operations through its interpreter, and afterward blocks so the sched-
uler can call another task. It doesn’t matter if your code is in an infinite loop, the
Virtual Machine will still only run a preset number of your application’s instruc-
tions, so your endless loop can’t run endlessly!

267

www.syngress.com

268

Chapter 7 * Embedding Bluetooth Applications

The processor time used by other tasks in the system will vary. For instance,
when the Link Manager task is in the middle of negotiating link configuration, it
will require more processor time than when no Link Management messages are
being received. This means that the time between calls to the Virtual Machine
will vary. The impact on your application is that BlueCore does not provide Real
Time Operating System (RTOS) capabilities because it makes no guarantees
regarding how often it will call your application code.

Understanding Messaging and Queues

The tasks in a system need some way of passing information to one another. One
task may not be ready to receive a message at the same time another task wants
to send it, so some way is needed to store messages for a task until it is ready to
deal with them.

Each task has a queue where messages can wait to be picked up. A queue is a
first-in first-out (FIFO) data structure. That is to say, the first message to be put
into the queue is the first message to come out: messages are received in the same
order that they were sent. Several different tasks can send messages to one task by
putting messages onto that task’s queue.

When a message is created and sent, some memory is temporarily allocated to
store the message. It then waits on the queue until it can be processed by the
receiving task. After processing, the message is destroyed and its memory is
returned to the free pool.

The message queues allow tasks to send one another messages asyn-
chronously: it doesn’t matter if tasks run at different speeds, the queues bufter
messages so that they can still communicate. The exact mechanisms for sending
and receiving messages are explained in more detail in the following section on
the message library: “Using Tasks and Messages.”

Using Interrupts

Embedded systems need to react to the outside world. A typical embedded
system will be connected to some electronic hardware and must react to signals
from it, and send signals to control it. Interrupts provide the means for hardware
to interact with software. An interrupt is a signal which makes the CPU stop
running its current program and jump to a special interrupt routine. The inter-
rupt routine is essentially just another subroutine—you just get to the interrupt
routine because of an interrupt signal, rather than because you were called by
another function.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

Hardware is connected to pins which cause interrupts—commonly called
interrupt lines. BlueCore01 has two interrupt lines available for connecting up to
custom hardware. But keep in mind, the number of interrupt lines available will
vary from system to system.

On BlueCore01 the interrupt routines are already written. If the interrupt
lines change state, the interrupt routine will cause an event to be generated. The
event is VM_EVENT _PIOINT, which stands for Virtual Machine Event Parallel
Input Output Interrupt.

Interrupts usually have to be enabled before they can be used. This stops lines
which are not currently in use, causing undesirable effects. BlueLab works just the
same: by default, no events will happen, if you want your application to respond
to an event, you must enable that event using the following call:

ui nt 16 Event Enabl e(vm event _source source, int enable);

So, to enable the PIO interrupt event you use:

Event Enabl e(VM EVENT_PI O NT, 1);

A common use for an interrupt line is to connect a push button switch so
that software can react to a user pressing a button. One problem, which is not
immediately obvious, is that switches don’t just move straight from one state to
another. As the contacts close, there is usually a “bounce,” which causes the switch
to rapidly open and close several times (see Figure 7.1). Software can run fast
enough for one push on a button to trigger several interrupts.

The solution to the problem is to debounce interrupt lines which are con-
nected to pushbuttons, keyboards, or any other hardware which might oscillate
before settling to a stable value. On many embedded systems, you will have to
write a debounce function which catches the first interrupt from a line, disables
interrupts, and then samples the line state periodically until it is stable. System
code on BlueCore01 includes a debounce engine, and BlueLab provides a func-
tion for you which accesses it. All you need to do is call:

Voi d Debouncesetup(uint16 mask, uintl6 count, uintl6 period);

This sets up the debounce engine so that when the interrupt line specified by
the mask parameter changes, the engine begins reading the pin at the interval
specified by the period parameter (in milliseconds), until it has seen the same value
count times. Once the line is stable, the engine sends the VM_EVENT_PIOINT
event to application code. The application code can then get the stable value of
the interrupt line using the call:

269

www.syngress.com

270 Chapter 7 * Embedding Bluetooth Applications

ui nt 16 DebounceGet (void);

So, for instance, to sample PIO line 5 at 2 millisecond (ms) intervals and wait
until it has been stable four times in a row, you would use:
Voi d Debouncesetup(l << 5, 4, 2);

Setting the sampling period to zero switches off debouncing, so you then get

an event for every single transition of the line. To switch oft debounce on PIO
line 5, you would use:

DebounceSet up(1<<5, 1, 0);

Figure 7.1 Switch Bounce

User presses Switch stops
switch here oscillating here
Switch on
(interrupt line V V
high)
Switch off
(interrupt line low) AAAAAA A A
Keep sampling until
switch is in a stable state

Hardware interrupts aren’t the only type of interrupt. Many systems also
allow software to generate interrupts. This is done when errors happen, such as a
divide by zero operation, or an attempt to access memory that doesn’t exist.
Software interrupts are usually irrecoverable and result in a system reset. To pre-
vent this from happening, the Virtual Machine interpreter checks user application
code on BlueCore for illegal accesses.

www.syngress.com

Embedding Bluetooth Applications ¢« Chapter 7

Getting Started

BlueLab builds code for CSR’s BlueCore chips. So, in addition to BlueLab, you
will need a Casira development system. The development tools run on a Win32
PC—therefore, you will need administrator rights on the PC to install the tools.

The BlueCore module is supplied on a carrier board which slots into a blue
plastic carrier in the center of the Casira (see Figure 7.2). The circuitry on this
board is what would be used in most end-user products. The rest of the Casira
development kit provides extra facilities to allow you to develop and debug appli-
cations, providing a variety of useful interfaces:

= SPI interface Connects to a PC parallel port, and allows you to
reconfigure the Casira using the PSTool utility. Images can also be
downloaded to the Casira using the Serial Peripheral Interface (SPI).

= Serial interface Connects to a PC serial port. BlueLab uses BlueCore
Serial Protocol (BCSP), so you must ensure your Casira is configured to
use BCSP. (Casiras are sold ready to use BCSP)

= USB port Connects to a PC USB port, and supports the Bluetooth
Specification’s USB protocol (H2) when correctly configured.

Figure 7.2 Casira Development Kit

271

www.syngress.com

272

Chapter 7 * Embedding Bluetooth Applications

» Audio I/O An audio jack which connects to the headsets supplied
with the Casira.

» LEDs These can be used to monitor applications running on the
BlueCore chip.

= PIO lines Parallel Input-Output lines; useful for connecting custom
hardware.

Developing & Deploying...

BCSP and H4

The 1.1 Bluetooth Specification provided two serial interfaces: UART (H4)
and RS232 (H3). Casiras can be configured to use the UART (H4) protocol
across its serial port interface, but they are sold configured to use
BlueCore Serial Protocol (BCSP). BCSP provides extra error checking on
the serial interface, so it is more reliable in situations where errors can
happen on the serial interface. BCSP also provides separate channels for
voice, control, and data. This allows data to be flow-controlled while
voice traffic flows remain uninterrupted.

Some stack vendors support BCSP, but not all do. To compensate,
Casiras may be reconfigured to support the 1.1 Specification’s UART
(H4) interface.

The serial port settings are stored in the BlueCore persistent store
(flash). A Persistent Store tool (PSTool) utility is available to change these
settings.

The procedure for changing the serial port settings to BSCP is as fol-
lows:

= Connect the SPI cable between the Casira and a PC parallel port.

= Give the PSTool utility low-level access to the parallel port by
installing a device driver. To do this, run the batch file
BlueLab20\bin\InstParSPI.bat (this requires administrator rights).

» Register the PSTool user interface in the Windows registry by
running BlueLab20\bin\RegPSToolocx.bat.

= Run the PSTool utility, selecting SPI interface.
= Access the developer list of tools by pressing Ctrl+Alt+D.
= Set the key Host Interface to UART link running BCSP.

Continued

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

= Set the key UART Configuration Bitfields to 6.

To set a Casira to use the 1.1 Specifications UART protocol (H4), the
following settings are used:

= Set the key Host Interface to UART link running H4.

= Set the key UART Configuration Bitfields to 168.

Note that to set a PS key, the Set button in the PSTool application
must be pressed. Simply typing in the new value will not work. To be

absolutely sure you have successfully set the new value, you can use the
Read button to read back the current value.

Installing the Tool Set

BlueLab uses Cygwin, a Unix- like environment run under Windows. Cygwin is
installed by running setup.exe from the Cygwin directory on the BlueLab CD.
When prompted, choose to Install from local directory, and press Next
twice. Now choose your installation directory, Unix text file type, and install for
All This installs all the tools which BlueLab needs.

The debugger from BlueLab is written in Java and requires version 1.3 or
later of the Java2 runtime environment. To install the Java2 runtime environment,
run the file setup.exe from the Java directory on the CD and follow the instruc-

tions. Finally, install BlueLab by running BlueLab.exe from the main directory on
the CD.

Building a Sample Application

To test the installation, it is a good idea to compile a sample application. Starting
Cygwin, go to the relevant directory and run make.

$ cd /cygdrivel/c/ Bl ueLab20/ apps/ hell o

$ make

The main compiler xap-local-xap-gcc is derived from the GNU C compiler.
This compiles the C code and produces an object file hello.o. The linker then
works with the assembler xap2asm to analyze the object file, link in libraries and
produce the application files hello.app, hello.dbg, hello.sym, and hello.xap. (See
Figure 7.3.)

273

www.syngress.com

274 Chapter 7 * Embedding Bluetooth Applications

Figure 7.3 The BlueLab Tool Chain

hello.c

hello.dbg hello.sym

hello.app

chip / emulator debugger

hello.xap

All you have done so far is build a “Hello World” program—this is not a
BlueCore image, and you can’t download it to the Casira yet. But you can use it
to play with the debugging tools.

Running an Application
under the Debugger

The debugger allows you to set breakpoints as well as single-step your code, and
has many of the functions you find in a typical modern debugging environment.
Code executes on the PC, but if you need to use functions from the BlueCore
chip, such as the Radio or PIO, these are handled by the attached Casira.

www.syngress.com

Embedding Bluetooth Applications ¢« Chapter 7

Start off appdebug.jar by double-clicking the appdebug.jar icon in the
C:\BlueLab20\bin directory.You should see the debugger window as shown
in Figure 7.4.

Figure 7.4 Debugger Main Window

Film Cmtugper Shp Oresk Helz

i IE' B | 1 B - i] B i it -

Ko projeci

Select File | Open project, and load hello.sym. Once the project has
loaded, you can browse the application downloaded using the Modules and
Symbols tabs. Click a module name to see that module. Right-click a symbol to
see the different places it appears.

Without communications, the debugger will report a problem and will fail
to start. You can modify the comm port settings on the chip using PSTool, and
editing the UART: baud rate. The Host Interface must be BCSP. To adjust the
PC baud rate to match the Casira, select File | Preferences and click the
Comms tab.

To run the program under the debugger, click the Start Debugger button.
This opens communications to the Virtual Machine, lets you set break points, and
allows you to run the code. Now, run the code by pressing the Run button. You
should see “Hello World” in the debug output window (see Figure 7.5).

The Hello World program will run, output “Hello world,” and then exit. It’s
not exactly a killer application, but it does verify that you have successfully
installed all the tools, and configured the Casira correctly.

275

www.syngress.com

276 Chapter 7 * Embedding Bluetooth Applications

Figure 7.5 Active Debugger Window

2| 8| f|p|lmE]| &l

Myn

Jo|w|a|o]|s]

| EUppEE
| pririt

| el

| pUECaET
—| O
_| sdwTnod

| EaiEs]
| ¥ O
— | fsuppes

| L

| LiThDH
| umics®

Woxules | Sbois | Conbae

Debugper srarted
Bellé WaEla

¥_sbart
. Exal shocrmalkr
id [
[T §_e=i

_ mam
, i slariap oode oadled ke (017
-]

i Hanedier Bl 5 pancHndier

ENDROD

o _'IJ

Etatys | Prolocn | Wemor | w0 |
Hoepai

Using Plug-ins

The debugger can simulate code running on a BlueCore chip, and by communi-

cating with the Casira can also use the radio and PIO ports on the BlueCore

itself. Embedded applications are likely to run on custom hardware, so it may also

be necessary to simulate extra hardware. For example, if you are creating a

headset, a plug-in to simulate the buttons and lights on your headset will make it

much easier to debug your headset application.

Simulating custom hardware is done by adding plug-ins to the debugger. The

debugger is written in Java, so to create a plug-in, you just derive a new class to

extend the existing Java class JComponent. Custom hardware will be controlled

by the BlueCore chip’s PIO pins, so plug-ins which simulate custom hardware
must implement the PIOPlugin interface.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

BlueLab includes an abstract PIOPanel class, which extends Jcomponent, and
implements the PIOPlugin interface. It also provides useful functions for con-
structing and registering controls.

The following example is based on PIOPanel. The class implements two
functions: tabName, which returns a string giving the name of the panel as it
appears within the debugger, and the constructor function, which creates items
that are displayed within the panel, positions them in the correct place, and
informs the underlying PIOPanel about them. The items added to the panel must
all implement the “Updater” interface:

public interface Updater

{
voi d set Enabl ed(bool ean show);
voi d update(int on, int isout);
void setDriver (Pl QDriver lis);

The updater interface specifies three functions that the control should sup-
port:

» setEnabled is called for each item in the panel whenever the panel
becomes activated or deactivated. It is commonly used for graying out
the controls.

» update is most useful for output items (lights). This interface function is
called for each item in the panel whenever the PIO bits change state.

= PIODriver is used to drive PIO bits. This is needed to accept input
from the user (e.g., a button press). An instance of “PIODriver” is passed

to the item’ “setDriver” function when the item is added to the
PIOPanel.

If the hardware being simulated is just simple buttons or lights, then these can
be added much more easily. The PIOPanel class provides utility functions that
produce labels, buttons, and lights that are integrated into the panel in the correct
way. These functions are:

/1 produces a sinple text label, that is enabled in the correct nanner.

public JLabel nmkelLabel (String |abel);

/] produces a sinple light, that is connected to one bit of the Pl O port

277

www.syngress.com

278

Chapter 7 * Embedding Bluetooth Applications

public OnOf Li ght makeLight(int bit);

/1 produces a sinple push-button, connected to one bit of the PIO port
public JToggl eButton makeToggl eButton(String |abel, int bit);
public JButton makeButton(String label, int bit);

Using these simple primitives, it is now possible to create the Headset plug-in
panel. We begin by adding variables for each element of the panel, and creating
them with calls to the make* functions. Then we use the initialization function
to position the elements on the panel in a pleasing arrangement. This is achieved
through the use of the standard Java Swing functions. A simplified version of the
headset code is shown in the following:

/'l The new class 'Headset' is derived fromthe class 'PlOPanel'’
public class Headset extends Pl OPanel
{

/1 The |abels

private JLabel vol uneLabel = nakeLabel (" Vol une");

private JlLabel powerLabel = makelLabel (" Power");

private JLabel[] labels = { vol uneLabel, powerlLabel };

/1l The Light
private OnO fLi ght powerlLi ght = nmkelLi ght(9);

/1 The Buttons

private JToggl eButton tal kButton = nakeToggl eButton("!!Talk!!", 2);
private JToggl eButton upButton = nakeToggl eButton("Up", 4);
private JToggl eButton downButton = makeToggl eButton("Down", 5);

I/l A function to return the name of the panel
public String tabName()
{ return "Headset"; }

// The constructor - contains initialization code
publi ¢ Headset ()
{

www.syngress.com

Embedding Bluetooth Applications * Chapter 7 279

/'l bracket the initialization function a try/catch bl ock
try

{ ibinit(); }

cat ch(Exception e)

{ e.printStackTrace(); }

private void jblnit() throws Exception
{
/1 We want everything laid out on a grid

set Layout (new Gri dLayout());

/1 Set the alignment of the |abels
for(int i = 0; i < labels.length; ++i)
{ labels[i].setHorizontal Al'i gnment (Swi ngConstants. RIGHT); }

/1 Add the itens to the panel

add(tal kButton, new GridConstraints(O0, 1, 1, 1, 0.0, 0.0,
G idConstrai nts. CENTER, Gi dConstrai nts. HORI ZONTAL,
new | nsets(4, 8, 4, 8), 0, 0));

add(vol uneLabel, new GidConstraints(1, 1, 1, 2, 0.0, 0.0,
GidConstrai nts. WEST, GidConstrai nts. NONE,
new | nsets(4, 8, 4, 4), 0, 0));

add(upButton, new GidConstraints(2, 1, 1, 1, 0.0,0.0,
GidConstrai nts. CENTER, Gi dConstrai nts. HORl ZONTAL,
new Insets(4, 4, 4, 8), 0, 0));

add(downButton, new GidConstraints(2, 2, 1, 1, 0.0, 0.0,
GidConstrai nts. CENTER, Gi dConstrai nts. HORI ZONTAL,
new | nsets(4, 4, 4, 8), 0, 0));

add(power Label, new GridConstraints(3, 1, 1, 1, 0.0, 0.0,
GidConstrai nts. WEST, GidConstraints. BOTH,
new I nsets(4, 8, 4, 4), 0, 0));

add(power Li ght, new GridConstraints(4, 1, 1, 1, 0.0, 0.0,
GidConstrai nts. CENTER, Gi dConstrai nts. NONE,

www.syngress.com

280

Chapter 7 * Embedding Bluetooth Applications

new Insets(4, 4, 4, 8), 0, 0));
/1 Everything should start off disabled

set Enabl ed(f al se);

BlueLab includes example plug-ins for a Headset, Telephone button grid, a
16-bit port expander using the I2C bus, a seven segment display and an output
trace which reflects the state of the PIO pins. Rather than try to write plug-ins
from scratch, you should pick the example closest to your application’s needs and
modify it as necessary.

Debugging under BluelLab

The Memory tab at the bottom of the main debugger window will show all
active memory regions including their start and extent. If any address has a blank
value, it means that address isn’t acceptable. To follow a pointer from the variable
window, just right-click it. This moves the memory window to that location.

If the application crashes, the debugger will stop just after the offending
instruction. The call stack will show in the middle of the Context panel at the
left of the main window. As you double-click the call stack, the source and vari-
able displays are updated to that stack context.

Running an Application on BlueCore

To run a final application on the Casira, you must merge the application with a
full Bluetooth stack. The Casira development kit arrives preloaded with a
firmware image which allows the Casira to run the lower layers of the Bluetooth
stack.

Figure 7.6 shows how an application image differs from the default Casira
image. The application image has extra protocol stack layers: Logical Link Control
and Adaptation Protocol (L2ZCAP), RFCOMM and Service Discovery Protocol
(SDP). These are the protocol stack layers required to support the serial port pro-
file, and are also used to support simple profiles based on the serial port profile
such as the Headset profile. These stack layers are written by Mezoe and are col-
lectively called BlueStack. BlueLab provides a royalty-free version of these stack
layers for use on BlueCore chips. Above the BlueStack layers, a Connection
Manager handles management of RFCOMM connections. The Connection
Manager library is provided with BlueLab to make it easier to manage connec-

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

tions, but it is not compulsory to use it: if it does not meet the needs of your
application, you can write your own Connection Manager.

Figure 7.6 Default Image and Image with Application

(
I Application I
A y
\ 4 A
IConnetIion Manager I I Libraries I
_ 1 Virtual Machine
4)
SDP RFCOMM
L2CAP
) . Mezoe T BlueStack J
Host Controller Interface
(1)
Link Manager Link Manager
Link Controller Link Controller
Radio Radio
\._ (SR BlueCore stack J __ SR Bluecore stack J
Default image Image with full stack and application

At the top of the application stack is the VM. The Virtual Machine allows the
Connection Manager, Libraries, and application software to run in a protected
memory space. Application software is compiled into Virtual Machine opcodes. As
this is run, the Virtual Machine checks each instruction for invalid memory
access. In this way, the Virtual Machine guarantees that your application software
cannot interfere with correct running of the Bluetooth protocol stack.

When you are running applications under the debugger, you must have
RFCOMM present on the Casira to drive the radio. However your application
will actually be running under the debugger on a PC, so you do not want an
image with your application built into it. The answer is to load the Casira with a
“null” image—this is a firmware image that contains the Virtual Machine, but has
no valid application. Note that if you have version 2.1 or later, you can have an
image with an on-chip application installed; the on-chip application will auto-
matically be disabled when the debugger is connected.

281

www.syngress.com

282

Chapter 7 * Embedding Bluetooth Applications

Developing & Deploying...

Virtual Machine Scheduling

The on-chip scheduler only allows a limited number of Virtual Machine
instructions before giving another process some time. This means that
you can not rely on an application running on the Virtual Machine to
react quickly. This can be demonstrated by using VM code to toggle a
PIO line. Consider the following code fragment:

while (1)
{

val "=4;

Pl Gset (QUTPUT BITS, val);

You should not write real code like this, as a continuous while loop
is very bad for power consumption and can stop the chip from going
into sleep states, but it is a useful routine to illustrate the scheduling of
the Virtual Machine.

The while loop should execute, endlessly toggling the PIO line. If the
line was connected to an LED, we would expect to see it shining brightly,
as it flickers faster than the human eye can follow. In fact, if you follow
the PIO line on an oscilloscope, you will see that what happens is the while
loop toggles the PIO line at 3 KHz for 3 ms then remains in the last state
for a while before another 3 ms of switching. (The exact time between
bursts of switching varies depending on the other processes running.)

When writing applications for the Virtual Machine, you must bear
in mind that your code will run fairly slowly since it's being interpreted.
The preceding toggling speed equates to an equivalent clock speed of,
at best, 40 KHz. Of course, the chip’s real clock runs much faster, but
your application effectively sees a slower clock because it is running
through the delays caused by guarding the Bluetooth protocol stack.

You must also allow for the delays caused by other tasks being
scheduled, as shown by the gaps in toggling the PIO line in the previous
example.

Despite all these delays, it is still possible to write many useful appli-
cations, and even implement complete profiles under the Virtual
Machine.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

To program the Casira with a null image, simply go to the null project in the
apps directory and run make bc01.

$ make bcO1
This calls the command line version of the BlueFlash utility and downloads
the image to the Casira for you. (You can also download images to the Casira

across the SPI interface using a GUI version of the BlueFlash utility. Just run up
BCO1flash.exe and follow the instructions.)

Debugging Using VM Spy

Debug output from the application can be viewed using the VM Spy utility. To
begin using VM Spy, complete the following steps:

1. Make sure the debugger isn’t running, and nothing else is using the PC
serial port.

Ensure the Casira serial cable is connected to the PC.
Make sure the Casira is configured to use BCSP.
Run VMSpy.exe.

Select Connect.

A i

Select the COM port and baud rate that match the Casira configuration.

Figure 7.7 shows the VM Spy window (this figure also shows the VM data
window which is explained in the next section, “Using VM Packets”). If the VM
Spy window doesn’t open, check to make sure the serial cable is connected cor-
rectly, that the Casira is configured for BCSP, and that no other applications are
using the COM port.

VM Spy connects to the Casira, and debugging output (from BCSP Channel
11) is displayed in the main window. The window has several buttons which can
be used to control the debugging session:

= Disconnect This button disconnects from the Casira, but leaves the
debugger window open.

» Log This button allows a session to be logged to a file.

= VM Data This button activates a window showing traftic on the VM
data channel (BCSP Channel 13). Of course, this only works if the
application makes use of the VM data channel. The bottom of the VM

283

www.syngress.com

284 Chapter 7 * Embedding Bluetooth Applications

Data window includes an edit box which can be used to send com-
mands to the Casira.

= Quit This button shuts down the debugger.

Figure 7.7 The VM Spy Window

Wil Sy MEE

3 Ty 10 st [COM T pitiinst thalged] e oty f0e buwds FBLN]) B
Cormespied
sprnt cadpal irom the B i skl
s sdwecl

57 O skl

1vvre rutiakred
2 Higles wriied|

£l _|-|
[Bacarvect g | wmows | e |

i Dta r
000 D00 GeEPS DoBCEC, D057 (MEFT OuEL T2 DG DeI0% D008 D |

. | o

] il ek Dl 1000 2

Using VM Packets

Applications running under the Virtual Machine can use BSCP Channel 13 to
communicate with a host. The user application can send and receive packets of
16-bit data. For the final product, you will need to write software on the host to
form the other end of the connection, but while developing embedded applica-
tions, Channel 13 can be a useful debugging tool. Applications which do not use

www.syngress.com

Embedding Bluetooth Applications * Chapter 7
BCSP Virtual Machine packets can still communicate with Virtual Machine

packets. (See Figure 7.8.) On USB and H4 they are sent over the Host
Controller Interface (HCI) using the manufacturer’s extension command.

Figure 7.8 Sending and Receiving Packets across Channel 13

Host
HostSendMessage HostGetMessage
Application
(running under Virtual Machine)

Incoming packets from the host cause a VM_EVENT_HOST event. The
packets can then be retrieved using the HostGetMessage function. If there is no
packet waiting, HostGetMessage returns NULL, otherwise a pointer to a new
block of dynamic memory containing the packet is returned. This memory
must be freed by the application once the application has finished with the
packet.

The HostSendMessage function is used to send a message to the host. The
application uses malloc to allocate a block of memory for the packet, and fills it in
with the packet. Then HostSendMessage 1s passed a pointer to the memory block.
The application can not access the memory block after the call, and should
remove all references to it.

The Virtual Machine packet format is very simple (see Figure 7.9). The packet
begins with a 16-bit word length field, which gives the total length of the packet,
including the header. Note that the length is in 16-bit words, not in bytes.

285

www.syngress.com

286 Chapter 7 * Embedding Bluetooth Applications

Figure 7.9 Format of a Virtual Machine Packet

Length Sub-type Data
16 hits 16 hits (Length - 2) x 16 bits

The second field is a 16-bit sub-type word. The sub-type must be set to a value
between 0 — 127 (0x00 — 0x7f). The sub-type is useful to indicate the type of the
packet to the code at either end.

The rest of the packet can contain any 16-bit data.

The code fragments that follow show how the HostSendMessage and
HostGetMessage can be used.

#i ncl ude <host. h> /* Host SendMessage and Host Get Message */

#include <stdlib.h> /* malloc */

/* Send a snmall packet to the host */
uint16* data = (uintl6 *) malloc(3 * sizeof(uintl6));
if(data != NULL)

{

data[0] = 3; /* length */

data[1] = Ox7e; [* sub-type */

data[2] = 0x1234; /* data */

Host SendMessage(dat a) ;

data = NULL; /* renoving reference to menory bl ock */
}

/* receive a packet from the host */
if((data = Host Get Message()) !'= NULL)
{

/* do something with the data here */

free(data);

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

The VM Data window of VM Spy can be used to send VM packets to test an
application. The edit box at the bottom of the VM Data window is used to send
commands to the Casira on BCSP Channel 13.The line can be used to input
hexadecimal, decimal, or octal numbers. The line can also take character strings
delimited with a quotation mark (").

The first entry on the edit window line is the sub-type number. This is followed
by the contents of the packet. VM Spy will automatically calculate the packet length
and fill in that field for you, so you don’t need to worry about the length field.

Packing Format in Messages

The XAP2 processor on BlueCore works with 16-bit words. This means that
single byte parameters are packed into 16-bit words. There are a few other rules
to bear in mind when interpreting data structures from BlueCore:

= 8-bit values are sent as a 16-bit word, padded by setting the most signifi-
cant byte to 0x00.
= 16-bit words are sent the least significant byte first.

» 24-bit words are sent as a 32-bit long word, padded by setting the most
significant byte to 0x00. The most significant word is sent first.

= 32-bit long words are sent as two 16-bit words with the most significant
word first.

» Pointers are sent as two bytes with their values set to [0x00 0x00].

» Data referenced by a pointer is appended to the primitive. If a primitive
contains more than one pointer, the dereferenced data is appended in
the same order that the pointers appear in the primitive.

= Where a primitive contains a pointer to uint8 data, the dereferenced data
1s appended to the primitive and is sent as consecutive bytes (i.e., no
padding bytes are inserted).

= Arrays are sent as a series of elements with the lowest indexed element
first.
For example, consider the message CM_CONNECT_AS_MASTER_REQ:

CM_CONNECT_AS_MASTER REQ
uint16 length = 0x10
uint16 type = 0x6

287

www.syngress.com

288 Chapter 7 * Embedding Bluetooth Applications

/* Security */
uint16 use.authentication = 1

uint16 use.encryption =1

/* BD address */

uint 24 bd_addr.lap = OxAABBCC
uint8 bd_addr.uap = 0x5B
uint 16 bd_addr.nap = 0x0002

/* Target UU D */
uint1l6 target = 0x1108 /* Headset */

/* Master tinmeout */

uint16 tinmeout = OxDDEE

/* Park parameters */

ui nt 16 park.max_i ntval = 0x800,

uint16 park.mn_intval = 0x800
/* Sniff paraneters */

uint16 sniff.max_intval = 0x800
uintl6 sniff.mn_intval = 0x800

uint1l6 sniff.attenpt = 0x08

uint16 sniff.tinmeout = 0x08

This message would be packed as shown in Figure 7.10.

Using the BluelLab Libraries

BlueLab offers a variety of libraries which provide functions to support basic C
functions, BlueCore hardware, and Bluetooth applications (see Figure 7.11 for a
graphical overview).

When linking, all object files are used, and then missing symbols are imported
from the libraries. Each symbol is taken from the first library (in command-line
order) which provides that routine. This means that the application’s makefile must
list libraries which override a routine before the libraries with default versions.

www.syngress.com

Figure 7.10 Message Packing Format for CM_CONNECT_AS_MASTER REQ

Embedding Bluetooth Applications * Chapter 7

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
0x10 0x00 0x06 0x00 0x01 0x00 0x01 0x00
uintlé uint16 uint16 uint16

length 0x10 type = 0x6 authenticafion = 1 encryption=1

OxAA | 0x00 0x(C | 0xBB 0x5B [0x00 0x02 [0x00
uint32 uint8 uint16

bd_addr.lap = 0xAABBCC bd_addr.uap = 0x58 bd_addr.nap = 0x0002
0x08 [0x1 OXEE_ | 0xDD 0x00 | 0x08 0x00 | 0x08
uintle uint16 uintl6 uint 16

target = 0x1108 timeout = OxDDEE park.max_intval=0x0800 ark.min_intval = 0x800
0x00 | 0x08 0x00 | 0x08 0x08 [0x00 0x08 0x00
uin t16 uint16 uintl6 uint16

sniff.max_intval = 0x800 sniff. max_intval = 0x800 sniff.attempt = 0x08 sniff.timeout = 0x08

Figure 7.11 Library Overview
Framework 12¢
ConnectionManager
Application
= w
Scheduler | =lzlglE|l=|=|E Libraries
— | & | BlueStack 8 &
N R
¥ Ae Library
Standard library, Print, Panic .Bas,{
Libraries

This makes it important that libraries are linked in the correct order. Each
library should be listed before any others which appear after it in the list that

follows.

The scheduler relies on the message and timer libraries. Some applications
require the scheduler, but may not need both of those libraries. In that case, the
libraries can be replaced with their stub versions which take less code and data
space. Obviously, if messages and timers are stubbed out, then messages or timers

can’t be used.

289

www.syngress.com

290 Chapter 7 * Embedding Bluetooth Applications

Developing & Deploying...

Support for ANSI C

The XAP2 processor on BCO1 is a 16-bit architecture with no direct sup-
port for 8-bit values.

As a result, the “char” type is a 16-bit quantity. While this is per-
mitted by the C standard, care must be taken with code which assumes
8-bit characters.

Both “short” and “int” are 16-bit, while “long” is 32-bit. 32-bit
quantities incur a significant performance overhead and should be
avoided wherever possible. 64-bit quantities are not supported (“long
long” is mapped to a 32-bit integer).

As is the case with most embedded systems, floating point values
and floating point arithmetic are not available.

The amount of RAM on BCO1 is limited, and memory must be
shared between the Bluetooth stack and the application. RAM is divided
into “pools” using fixed block sizes which limits the maximum size of a
block that can be allocated. Finally, the memory management mecha-
nism limits the application to holding at most 12 dynamically allocated
blocks of memory. The size constraints also apply to the amount of stack
space available to the application.

Basic Libraries

The basic libraries provide facilities required to run and debug C code:

» Standard library Provides a selection of functions defined by the
ANSI/ISO standard: assert, limits, stdarg, stdio, stdlib, string, memory, printf,
sprintf, vprintf, vsprintf, putchar, malloc, free, calloc, realloc, atoi, strcat, strcpy,
strucpy, stremp, strncmp, strchr, strrchr, memchr, strlen, memset, memcpy, mem-
move, bcopy, bzero, memcmp8, strdup. These are provided in libc.a which is
always linked in.

» Panic Provides small utility routines which panic the application if
conditions aren’t met. Provided in libpanic.a with header file <panic.h>.

= Print A simple header file which enables printing of debug messages
when DEBUG_PRINT_ENABLED is defined.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

CSR Library

The CSR library provides facilities specific to the BlueCore chip and the Virtual
Machine. All of these routines are provided in libcsr.a. You can either include the
corresponding header files (<event.h>, ...) selectively or use <csr.h> which will
include all of them.

= Event Enable and poll for application events.

» Vm Reads the millisecond timer; VVmWait suspends the VM execution
until an event occurs; this library also supports sending and receiving
BlueStack primitives.

= Ps Accesses the on-chip persistent store: PSstore sets a key and
PSretrieve reads a key.

= Pio Provides access to the PIO pins on the BlueCore chip. PIOset sets
a line; PIOget reads it. PIOsetDir and PIOgetDir can be used to change
the line’s direction.

» Audio Allows an application to play audio sequences.

» Codec Adjusts attenuation for the pulse-code modulation (PCM)
compression/decompression (codec).

= Debounce Provides debounced reading of PIO inputs; useful for con-
necting to push buttons or keys.

= Host Supports communications with the host over BCSP Channel 13
using HostGetMessage and HostSendMessage.

= Adc Allows an application to read values from the analog-digital con-
verter (ADC). This is used by the battery library.

The Application Framework, Connection Manager, Scheduler, Timer,
BlueStack, 12C, Message, and SDPparse libraries are interpreted, as are parts of the
Standard Library. The rest of the libraries run in native mode and do not have to
go through the Virtual Machine’s interpreter.

Application Libraries

The application libraries (listed in the following) provide support for applications
running on BlueCore. The source for these libraries is in src/lib. They can be
rebuilt and installed by typing make install in that directory. This allows source
level debugging in library code as well as application code.

291

www.syngress.com

292

Chapter 7 * Embedding Bluetooth Applications

Debugging...

PIO Pins

PSKEY _PIO_PROTECT MASK stops you from setting values for PIO pins
which are masked out, allowing pins used by the Casira to be protected.
You should not tamper with this PS key.

= 0 - Used to control external hardware on Class 1 modules

1 — Used to control external hardware on Class 1 modules
= 2 — External RAM bank switch (optional); USB control

= 3 — Controls the LED on Microsiras

= 4 — USB control/reset

= 5 - USB on some modules (check your data sheet)

= 6 - Some packaging schemes use this for power (check your
data sheet)

= 7 — Some packaging schemes use this for power (check your
data sheet)

Lines 4 and 5 are connected to hardware interrupts, so if you need
interrupts you must use these lines.

Lines 6 and 7 are best for connecting to custom hardware—as long
as they aren’t connected to a power line in the packaging of the
BlueCore chip you plan to use!

Line 5 can be used if you want an interrupt line.

If you're not using USB line 2 is available; on most modules, line 3
is also available.

On some Casiras (revision F), line 4 is connected to a reset line
and can cause resets when held low for longer than the value speci-
fied by PSKEY_HOSTIO_UART_RESET TIMEOUT. As a result, this line is
best avoided.

» Timer Manages queues of functions to call after specified delays,
checks for any that are due to be run, and calculates the shortest period
which can be passed to VimWait before the next check is required. Most
significant applications use the scheduler to manage this. Use timerAdd to
add a new timer.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

= Sequence Built on top of the timer library, it provides routines which
can orchestrate a timed sequence of calls to designated user functions.

= Message Manages queues of messages (in dynamically allocated bufters).

» Scheduler Orchestrates the tasks which form the timer, message, and
event libraries. Calls timer routines and IVmWait; dispatches to appro-
priate handlers when events are triggered.

» BlueStack Header files which define Bluetooth primitives.

» Connection Manager An example connection manager using
RFCOMM.

= SdpParse Utility functions for unpacking an SDP record.

» Framework Library to support the example applications supplied
with BlueLab. For example, the headset framework adapts the framework
library for use with the example headset supplied with BlueLab.

» I2c A sample library which uses the PIO routines to support devices
on the 12C bus.

» Battery Provides periodic battery readings from a test pin.

A series of example applications are supplied with BlueLab. These include adapta-
tions of the application framework which provide complete implementations of
the Headset profile and Audio Gateway profile.

There are also examples of using Libraries, including the I2C Library, host
communications, the Sequence Library, the Timer Library, General Purpose Input
Output (GPIO), and a program to flash LEDs.

Rather than write your own applications from scratch, you should adapt the
examples supplied, which will greatly speed up development time.

Using Tasks and Messages

The message library provides a mechanism for asynchronously posting messages
between tasks. The scheduler library will automatically run tasks which have mes-
sages pending (the scheduler also runs tasks which have events pending). Messages
have a type property and may also contain a user-defined payload.

Tasks and Message Queues

Messages are posted to Message Queues which are owned by Tasks. A Task which
owns a non-empty MessageQueue will be run by the scheduler. In the current

293

www.syngress.com

294

Chapter 7 * Embedding Bluetooth Applications

implementation, the binding between Tasks and MessageQueues is static; a
MessageQueue n 1s owned by Task n.

The DECLARE_TASK macro declares a task, and takes a Task identifier as an
argument, which identifies the task’s MessageQueue. For example:

DECLARE_TASK(4)

{
void * nsg = MessageCet (4, 0)

Note that the task is declared with the same identifier, 4, that is used in the
call to MessageGet. The argument to DECLARE_TASK must be an integer; it
cannot be another macro. There are no restrictions upon which MessageQueues a
task can post to.

Task and MessageQueue identifiers range from O to 15 although 0 and 1 are
reserved (see Table 7.1).

Table 7.1 Reserved Task/Message Identifiers

Task/Message Identifier Task Name

0 Connection Manager
1 Application Framework (e.g., Headset Framework)

Creating and Destroying Messages

Messages are dynamically allocated. All messages have a type property and some
may also contain a payload. Both of these properties are specified when using the
MessageCreate tunction. The code that follows shows how a message can be used
to transfer a block of uint16s to a task:

#define TRANSFER_MSG 100

voi d sendMsg(uintl6 * data, uint16 | ength)

{
uint16 * nsg = (uintl1l6*) MessageCreat e(TRANSFER _MSG, | engt h)
nmencpy(nsg, dat a, | engt h)
MessagePut (6, nsQ)

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

DECLARE_TASK(6)
{
MessageType type ;
void * nsg = MessageCet (6, & ype) ;
if (msg)
{
switch (type)
{
case TRANSFER_MsG :
uintl6 * data = (uintl6 *) data ;

break ;

}
MessageDest roy(nsg)

Any task can use the sendMsg function to send data to the application frame-
work (Task 1). Note that the type of the message does not appear in the message
payload. Instead, it is set after creation using msgSetType and read after retrieval
using Message Get Type.

It 1s important to delete messages using the MessageDestroy function rather than
free. Messages are dynamically allocated which means that they come out of the
very limited dynamic-block budget. This means it is important to ensure that mes-
sages are consumed as soon as possible after being produced. Put another way, mes-
sages are intended to be a signaling mechanism, not a data-buffering mechanism.

Using the MAKE_MSG Macro

Functions that use the message library declare a message with type X and struc-
ture X_T where X identifies the library. For example, messages for the Connection
Manager open are defined as follows:

#define CM_ OPEN 13 /* declare a nessage type for CM OPEN */

typedef struct

{

uint16 bl ah ; /* declare the structure for nessages to CM OPEN */

295

www.syngress.com

296

Chapter 7 * Embedding Bluetooth Applications

} CMOPENT ;

This leads to code that looks like:
voi d doQpen(voi d)
{
CM OPEN_T*nmsg = (CM OPEN_T
*) MessageCr eat e(CM_OPEN, si zeof (CM_OPEN_T)) ;
nsg->blah = ...

}

The MAKE_MSG macro can be used to reduce typing and minimize opportuni-
ties for mistakes. This macro creates a variable named msg of the requested type.
So the preceding code can be replaced with the following call:

voi d doQpen(voi d)

{
MAKE_MSG CM_OPEN) ;
nsg->blah = ...

}

Connection Manager

The Connection Manager handles all the layers of the Bluetooth protocol stack
from REFCOMM downwards. Without a Connection Manager, you would need
to establish ACL links, configure the links for RFCOMM, set up and configure
L2CAP links, and finally set up an RFCOMM link. With a Connection Manager,
you can have all the layers you need set up and configured with a single call.

Most applications which send data will want to use REFECOMM connections,
but for those who need to get in at a lower level, the BlueLab Connection Manager
allows your application to send L2CAP packets as well as RFCOMM packets.
(L2CAP is the lowest level of the Bluetooth Protocol stack that an application will
send data to, since all user data on Bluetooth links has to be sent as L2ZCAP packets.)

Packets are sent on a connection, and every connection has to lead to some
peer device, so, naturally enough, before any packets can be sent, the Connection
Manager must be paired with a peer device.

The section on tasks and message queues mentioned that Task/Message
Identifier O is reserved for the Connection Manager, and Task/Message Identifier 1
is reserved for the Application Framework. The practical eftect of this is that when-
ever your application sends a message to the Connection Manager, it will send it to

www.syngress.com

Embedding Bluetooth Applications * Chapter 7 297

MessageQueue 0, and whenever you get a message back from the Connection
Manager, it will come back on MessageQueue 1.This rule on message queue num-
bers applies whether the message is control information, or data packets.

The Connection Manager’s messages are all declared in cm_rfcomm.h.. The
Connection Manager itself is implemented in the CM_RFCOMM library:
libcm_rfcomm.a.

Developing & Deploying...

Receiving Messages from Multiple Sources

Some tasks will have to receive messages from several sources. One
example is the application framework, which sits between an applica-
tion and the Connection Manager and has to communicate with both.
Message types are just integers, so when the framework gets a mes-
sage of type 5, it could have trouble deciding whether the message is a
“data_indication” from the Connection Manager or a “close_request”
from the application! There are two approaches to solving this problem:

1. Choose message type numbers so there is never any overlap
between message type numbers going to the same task.

2. Ensure that the payloads of messages sent to the framework
always contain a “source” field which is filled in before the
message is sent.

Many embedded messaging systems provide a mandatory “source”
field on all messages. This solves the problem of messages from multiple
sources, but wastes valuable memory from the scare dynamic-block
budget, so BlueLab leaves it up to the application programmer to decide
when these identifiers are appropriate. In many cases, it will be possible
to solve the problem using unique message type numbers, thus mini-
mizing message size and saving memory.

Initializing and Opening the Connection Manager

The libraries which make up BlueStack and implement the Bluetooth protocol
stack are compulsory to have in the system. This is because the basic protocol
stack is essential to implement any Bluetooth product. To make sure that the pro-
tocol stack runs properly it is started up for you automatically.

www.syngress.com

298

Chapter 7 * Embedding Bluetooth Applications

The Connection Manager is not part of the Bluetooth protocol stack. It’s a
separate library which you can choose to use or not. Because the Connection
Manager is not a compulsory part of the system, it isn’t started up automatically.
If you want to use the Connection Manager, then you must initialize and open it
by making a few calls.

First, your application initializes the Connection Manager by sending it a
CM_INIT_REQ message (see Figure 7.12). The Connection Manager will
respond with a CM_INIT_CFM message once it has successfully registered with
BlueStack. These messages just start the Connection Manager running, so neither
message has any parameters.

Figure 7.12 Message Sequence Chart for Initializing and Opening the

Connection Manager

| CHL_INIT_REQ >
< CH_INIT_CFM |
CH_OPEN_REQ > c,“’n'::’;;:’r“
< CM_OPEN_CFM |
| (M_ADD_SM_DEVICE_REQ >

Application

You could create and send the initialization message like this:
MAKE_MBG(CM_ | NI T_REQ) ;
Put Msg(nsgQ) ;

But to make it even easier, the file rfc_init.c is supplied with BlueLab. This

gives you a function Cmlnit, which makes and sends the message. So, if you link
rfc_init into your build, all you need to do is use this call:

crinit();

www.syngress.com

Embedding Bluetooth Applications * Chapter 7 299

Now that the Connection Manager is running, the next stage is to tell the
Connection Manager some information about your application.

BlueCore chips usually arrive with the Class of Device (CoD) set to
Miscellaneous (all zeroes). This 1s probably not going to be appropriate for your
application. For instance, if you are writing a headset application, you want the class
of device to be set to Audio for the Major Device Class, and conforms to the
Headset profile for the Minor Device Class. It is important to get this set cor-
rectly because the Class of Device 1s sent out in inquiry responses, and is then used
by other applications to find devices they can connect with. It is possible to filter
out inquiry responses based on the Class of Device information they contain. So, if
your Class of Device doesn’t accurately reflect your application’s capabilities, then
other applications may not even report your device’s presence to the user.

You also need to let the Connection Manager know what Service Record
you want used to describe the services provided by your application. Once you
have done this, the Connection Manager can take care of handling service dis-
covery queries without needing any more intervention from your application.

Your application passes the Class of Device and Service Record information
to the Connection Manager in a CM_OPEN_REQ call, whereupon the
Connection Manager responds with CM_OPEN_CFM.The CM_OPEN_REQ
is sent as follows:

CM OPEN_REQ(uint8 * serviceRecord,
ui nt 16 si zeServi ceRecord,
ui nt 32 classO Devi ce) ;

The serviceRecord parameter is a pointer to an area of dynamically allocated
memory containing the service record which describes your application’s ser-
vices. The service record must contain a blank entry for the RFCOMM channel
to be used for your application’s service—in other words, a universal unique
identifier (UUID) of 3 followed by an unsigned integer (UINT). The channel
will be filled in by the Connection Manager. The SizeServiceRecord parameter is
the size of the complete service record, and the classOfDevice parameter specifies
the class of device to be used when responding to inquiries.

Having opened up the Connection Manager and told it about your applica-
tion, you could just stop there, but you have the option of going on and using
the Security Manager features, too.You can tell the Security Manager there are
some devices you trust, and the Security Manager will store information about
those devices in its Trusted Devices database. Once a device is registered as

www.syngress.com

300

Chapter 7 * Embedding Bluetooth Applications

Trusted in the Security Manager database, the Security Manager can automati-
cally carry out all authentication procedures and allow a device to connect
without further authorization from your application.

To use the Security Manager, your application sends a CM_ADD_SM_
DEVICE_REQ with details of the device you want to add to the Security
Manager’s trusted devices database.

CM_ADD_SM DEVI CE_REQ (BD_ADDR T addr,
uint8 |ink_key[SIZE_LI NK_KEY],
Bool _t trust)

The addr parameter gives the Bluetooth Device Address of the device being
added to the Security Manager database. The link_key parameter, meanwhile,
gives the link key for that device, and the trust parameter is a Boolean value:
TRUE if the device is trusted, FALSE if it is not. If you don’t have a link key at
this stage, you will have to skip this step for now. Later on you can go through
pairing to get a link key, then call the Security Manager.

In addition to the preceding messages, you will need to start the timer sub-
system and the scheduler. These calls go on either side of the call to initialize the
Connection Manager as follows:

/* Initialize timer subsystem so the application can use tiners */

Timerlnit();

/* Initialise the connection manager */
Cmnit();

/* start Virtual Machine scheduler to call application's tasks */
Sched();

You should not send the CM_OPEN_REQ until the CM_INIT_CFM is
received, so you will need to wait until the message comes in.You need a mes-
sage handler to check the message queue and process the event when it arrives.
The following code fragment illustrates how this can be done.

void * nsg; /* incom ng nmessages require a void nsg pointer */
MessageType type; /* we need to know what type of nessage was sent.
This type may be different in each application,

but the nessages will not be very different from

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

those al ready defined by the Connection Manager.
*/

/* Get the nmessage, if any, from our queue so that we can process it.
Notice that only one nmessage is processed at a tine.

*/

msg = MessageGet (1, &type);

if(msg)
{
switch (type)
{
/* Connection manager library is ready, so send CM OPEN REQ */
case CMIN T_CFM :
MAKE_MBG(CM_OPEN_REQ) ;
nmeg- >servi ceRecord = opCreat eServi ceRecor d(
&nsg- >si zeServi ceRecord) ;
HEADSET_CCOD; /* set your device's class */

neg- >cl assOf Devi ce
MessagePut (0, nsQ) ;

break ;

/* you will need a case statenent for each event you can receive */
case CM XXXXXXX:
sone nessage handling code goes here

br eak;

/* Always a good idea to track unhandled prinitives */
def aul t

PRI NT(("rfc Unrecognised nsg type %\n",type));

br eak;

}
MessageDest r oy(nsg) ;

Now you know how your application can start up the Connection Manager,
tell it about its services, and register devices you trust. This is all very necessary,

301

www.syngress.com

302

Chapter 7 * Embedding Bluetooth Applications

but so far all you’ve done is configure the Connection Manager: not a single
packet has been sent on the radio. The next sections will explain how to use the
Connection Manager to communicate with other devices.

Inquiry

Before you initiate a connection, you might want to look around to find what
other Bluetooth devices are in the neighborhood. At the user interface level this
procedure is called Device Discovery, but in the Core Bluetooth Specification,
you’ll find it referred to as inquiry. Since your application is dealing with a
Bluetooth protocol stack, you use the technical term not the user interface term,
so you call the process inquiry.

An inquiry can be requested with CM_INQUIRY_REQ (see Figure 7.13).
Your application will need to specify the overall length of the inquiry (the timeout)
and the maximum number of unique responses required. The Connection Manager
may perform more than one inquiry for you in the specified timeout. If the max-
imum number of responses is reached, the inquiry is terminated and your applica-
tion is sent an inquiry complete returned with the appropriate status flag.

Figure 7.13 Message Sequence Chart for Conducting an Inquiry

| CM_INQUIRY_REQ >

(delay while device does one or more inquiries)

Application Connection
P CH_INQUIRY_RESULT_IND | | Manager

< (M_INQUIRY_COMPLETE_CFM |

An inquiry gets you back information like a Bluetooth Device Address and
the Class of Device, but if you are displaying information on devices to a user, you
might want to know a bit more about them.You have the option of asking the
Connection Manager to automatically go and get the user-friendly name of each
device that responds to your device. This will take some time, as it involves setting

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

up a connection to each device you haven’t seen before. Setting up connections
will also take up power and shorten your battery life, so you should only ask the
Connection Manager to do this if your application will use the information.

To get BlueCore to perform an inquiry, use the following call:

CM_I NQUI RY_REQ (uint8 max_responses, uintl6 ing_timeout, uint32 class_

of _device, uintl6 renote_name_request_enabl ed);

The max_responses parameter gives the maximum number of unique
inquiry responses that can be received. The inq_timeout parameter is the
timeout (in seconds) for the inquiry process, so this gives the maximum length
of the inquiry. The class_of _device parameter acts as a filter: only inquiry
responses with this Class of Device will be passed up from the Connection
Manager to the application. The remote_name_request_enabled parameter is a flag
indicating whether to perform a remote name request for each inquiry result
not seen before.

The application can wait pending the arrival of a
CM_INQUIRY_RESULT_IND or CM_INQUIRY_COMPLETE_CFM. By
waiting on an event, the application allows the scheduler to allocate all its time to
other tasks until the inquiry indication events occur. The
CM_INQUIRY_RESULT_IND carries the results from the inquiry as follows

CM | NQUI RY_RESULT_IND (HCl _INQ RESULT T ing_result,
uint8 *handl es| HO _LOCAL_NAME_BYTE_PACKET_PTRS]) ;

The handles parameter is an array of handles corresponding to pointers to the
name of the remote device as discovered by the remote name request. The
inq_result parameter is the Inquiry result which is structured as follows:

typedef struct

{
BD ADDR T bd_addr;
page_scan_r ep_node_t page_scan_r ep_node;
uint8_t page_scan_peri od_node;
page_scan_node_t page_scan_node;
uint24_t dev_cl ass;
bt clock offset t clock_offset;

} HC _I NQ RESULT_T;

303

www.syngress.com

304

Chapter 7 * Embedding Bluetooth Applications

These parameters are straight out of the Bluetooth Core Specification for
HCI Inquiry Result Event (see part H:1 of the Specification for more details).

When all of the inquiry results are in, your application will get the
CM_INQUIRY_COMPLETE_CFM as follows:

CM_I NQUI RY_COWPLETE_CFM (i nquiry_status_t status)

The status parameter lets you know why the inquiry completed. It is set to
CmlInguiryComplete if the user specified timeout for the inquiry has expired,
CmInquiryCancelled if the inquiry was terminated before it finished, or
CmlInquiryMaxResponsesReached if the inquiry finished because it had reached the
number of responses you specified.

At this point you may be thinking, “Why would I want an inquiry to finish
before it had collected as many responses as possible?”. There are two reasons,
both to do with the limited resources you have. Firstly, you want to set a timeout
because if you leave the device permanently inquiring, it will use up power and
shorten battery life. Secondly, you may have to limit the number of responses
because you need to store and process responses. Since you don’t have an infinite
amount of memory available there’s a limit to how many responses you can pro-
cess at one time.

Pairing

After the inquiry process, your application will have found some devices it could
connect with, but there’s one more step you should go through before creating a
connection: pairing.

The pairing process creates a link key which can be used to encrypt commu-
nications on the Bluetooth link. The link key can also be used to authorize a
device—that is, to check that the device is really the one you want to connect
with, not just somebody trying to fool you into sending them all your private
data. Figure 7.14 shows the process of creating a link key.

First you need to ask the Connection Manager to pair with a device using
the CM_PAIR_REQ which is structured as follows:

CM PAIR REQ (role_t role,
Del ay tineout,

bool t authentication,
BD_ADDR T bd_addr);

The role parameter is set to CM_MASTER or CM_SLAVE, and identifies
which role the device is taking. The timeout parameter gives the delay before the

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

attempt to pair is abandoned. The authentication parameter is a Boolean flag which
1s TRUE if authentication should be used and FALSE otherwise. The addr param-
eter 1s the Bluetooth Device Address of the remote device to pair with (this only
applies when initiating pairing by attempting to create a connection).

Figure 7.14 Message Sequence Chart for Pairing

| CM_PAIR_REQ >
(M_PIN_CODE_REQ
- Connection
Application Manager
(M_PIN_CODE_RES >
< CM_PAIR_CFM |

The shared link key is created using a PIN code which must be input sepa-
rately at either end of the link. For devices without a user interface, the PIN
code can be preprogrammed. These are called fixed PINs. Devices with fixed
PINs have to be sold with a note to the user of the PIN code so that they can
enter the same PIN in whichever device they want to pair with.

The Connection Manager needs to get the PIN code from your application.
To do this, it will send you a PIN request CM_PIN_CODE_REQ as follows:

CM PI N_CODE_REQ (BD_ADDR T bd_addr);

The PIN code request carries a Bluetooth Device Address which you can use
to look up the PIN code if you have PIN codes for various devices stored. If you
don’t have the PIN code stored, you may need to ask the user for a PIN code.
You can use the Bluetooth Device Address to let the user know which device is
asking for a PIN code. (If you stored the user-friendly name of the device along
with it’s Bluetooth Device Address, you could display the user-friendly name to
the user instead of the Bluetooth Device Address.)

However you get hold of the PIN code, your application should send it to
the Connection Manager in a CM_PIN_CODE_RE response as follows:

305

www.syngress.com

306

Chapter 7 * Embedding Bluetooth Applications

CM_PI N_CODE_RES (BD _ADDR T addr,
ui nt8 pin_length,
uintl6é pin[8]);

The parameters are fairly obvious: addr is the address of the device we are
trying to pair with, pin_length is the length of the PIN key in bytes, and pin is an
array containing the PIN code. One thing which is not immediately obvious is
that you can reject the PIN code response just by setting the pin_length to zero.
This works because the Bluetooth Specification does not allow you to use a zero
length PIN, so this illegal value is taken as an indication that you don’t want to
supply a PIN for this device.

If the pairing is successful, the Connection Manager will store the address and
link key associated with the paired peer device, and issue a confirmation giving
the status of the pairing operation (see Figure 7.14).

CM PAIR CFM pair_status_t status, BD ADDR T addr, uint8 |ink_key
[SI ZE_LI NK_KEY]);

The status parameter is set to CmPairingComplete if successtul or
CmPairing Timeout if unsuccessful. The addr parameter is the Bluetooth Device
Address of the device we have paired with. The link_key parameter is the link key
to use with that device.

The link key will be needed later for authentication and encryption. You
could store the link key in your application, but it is more efficient to use the
CM_ADD_SM_DEVICE_REQ to pass the link key and device details to the
Security Manager.

Now that you’ve learnt all about pairing, it’s time to break the news that it
isn’t actually compulsory! You could skip past pairing and go straight to making
a connection. However, if you don’t create a link key then you wont be able to
use encryption and authentication, so your connection will be unsecure.
Because Bluetooth links can be intercepted, it 1s highly recommended you use
encryption.

Connecting

Finally, your application is at the stage where it can request a data connection.
The messages used to do this are shown in Figure 7.15.
If your application is initiating a connection as a master, then you need to

send a CM_CONNECT_AS_MASTER_REQ message to the Connection
Manager as follows:

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

CM_CONNECT_AS_NMASTER_REQ (cm aut h_config_t use, BD ADDR T addr, uintl16

target, Delay tinmeout, cmpark_config t park, cmsniff_config_t sniff)

Figure 7.15 Message Sequence Chart for Connecting as Master

(M_CONNECT_AS_MASTER_REQ

(M_LINK_KEY_REQ

Connection

Application Manager

(M_LINK_KEY_RES

(M_CONNECT_CFM

The use parameter configures authentication and encryption. The addr param-
eter gives the Bluetooth Device address of the device you want to connect to.
The target parameter provides the UUID of the service your application wants to
use; this information will be used for an SDP search. The timeout parameter gives
a delay to wait before abandoning the connection attempt. The park parameter
configures the park parameters to use on the connection. The sniff parameter con-
tigures the sniff parameters to use on the connection.

CM_CONNECT_AS_SLAVE_REQ is used to configure the BlueCore chip
to accept connections as a slave. This will start page scanning, using parameters
supplied as follows:

CM CONNECT_AS_SLAVE REQ (cm aut h_config t use,
BD_ADDR T bd_addr,
uint16 ps_interval,
ui nt 16 ps_w ndow,

Del ay tinmeout,
cm par k_config_t park,
cmsniff_config_t sniff);

The use parameter configures authentication and encryption. The addr param-
eter 1s the Bluetooth Device Address to connect to. The ps_interval parameter

307

www.syngress.com

308 Chapter 7 * Embedding Bluetooth Applications

specifies the Page Scan interval. The ps_window parameter specifies the Page Scan
window. The timeout parameter gives a delay to wait before abandoning connec-
tion attempt. The park parameter gives the parameters for configuring park mode.
The sniff parameter gives the parameters for configuring sniff mode.

Both CM_CONNECT_AS_MASTER_REQ and CM_CONNECT_
AS_SLAVE_REQ take as parameters structures for configuring authentication,
park, and snift. These structures are as follows:

typedef struct
{

uint16 authentication; /* 1 if connection is authenticated 0 if not
*/

uint1l6 encryption; /*1 to enable encryption, 0 to disable encryp-
tion*/

}cm aut h_config_t;

typedef struct
{
/* paranmeters for park node negotiation */
uintl1l6 nmax_intval; /* maxi mum beacon interval in slots */
uintl6 mn_intval; /* mninmmbeacon interval in slots */
}cm park_config_t park;

typedef struct

{

/* parameters for sniff node negotiation */

uintlé max_intval; /* maximum sniff interval, in slots */
uintlé mn_intval; /* mnimumsniff interval, in slots */
uint16 attenpt; /* sniff attenpt length in slots */
uint16 timeout; /* sniff timeout length in slots */

}

cmsniff_config_t sniff;

The following function illustrates how these parameters are filled in. It sends
a message to the Connection Manager requesting a connection as master, but
similar code would be used to fill in the parameters when connecting as a slave.

static void connect_as_master(uintl16 tinmeout)

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

MAKE_MSG(CM_CONNECT _AS_MASTER REQ)

/* Security */

nsg- >use. aut henti

cation = 0 ;

neg- >use. encryption = 0;

/* BD address */

nsg- >bd_addr. | ap = SLAVE_LAP;
nsg- >bd_addr. uap = SLAVE_UAP;
nsg- >bd_addr. nap = SLAVE_NAP;

/* Target UU D */
nsg->target = 0x1108; /* Headset */

/* Master tinmeout */

nsg->ti neout = tineout

/* Park paranmeters */

nsg- >par k. max_i ntval = 0x800;
nsg- >park. m n_i ntval = 0x800;
/* Sniff paraneters */

nsg- >sni ff. max_i ntval = 0x800;
nsg->sni ff.mn_i ntval = 0x800;

nsg->sni ff.attenpt = 0x08;

nsg->sni ff.tineout = 0x08;

MessagePut (0, nsQ) ;

If the use parameter requested that the connection should use authentica-
tion or encryption, then a link key is needed. If your application has called
CM_ADD_SM_DEVICE_REQ to register the device on the other end of the
link, then the Security Manager already has link keys, and it can handle

www.syngress.com

309

310

Chapter 7 * Embedding Bluetooth Applications

authentication and encryption without further intervention from your
application.

Figure 7.15 shows the case where a link key is needed, but the application has
not called CM_ADD_SM_DEVICE_REQ to pass the link key and device
details to the Security Manager. In this case, the Connection Manager has to
come to your application and ask it for a link key using the
CM_LINK_KEY_REQ message as follows:

CM LI NK_KEY_REQ (BD_ADDR T addr);

The addr parameter is the Bluetooth Device Address of the device we’re
trying to authenticate with. Your application has a link key for this device, so
you should send it to the Connection Manager in a CM_LINK_KEY_RES
message.

CM LI NK_KEY_RES(bool _t accept, BD ADDR T addr, uint8
key_val [SI ZE_LI NK_KEY]) ;

The accept parameter is a Boolean flag which signals whether to accept or
reject the link key request. The addr parameter is the Bluetooth Device Address of
the device we're trying to authenticate with, and the key_val parameter is the link
key for that device.

If you don’t have a link key, you have two options: you can either start
pairing so you generate a link key, or you can set the accept flag to FALSE and
reject the connection attempt.

The CM_CONNECT_CFM message is used to inform the application of
the status of a connection attempt when it has succeeded or failed. It’s structure is
as follows:

CM _CONNECT_CFM (connect _status_t status, BD ADDR T addr)

The status parameter gives the result of the connection attempt. Possible
values include:

CmConnectComplete Success
CmConnectTimeout Timed out
CmConnectCancelled Error during RFECOMM (or SDP) negotiation

CmConnectDisconnect Disconnect after connectComplete

The addr parameter is the Bluetooth Device Address of the device which is
the target of the connection attempt.

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

Once you have set up a basic ACL link, your application could add a SCO
link by using a CM_SCO_CONNECT_REQ. There must be an ACL link pre-
sent and not in park mode for this call to succeed.

CM_SCO _CONNECT_REQ (BD_ADDR T addr, uintl1l6 pkt_type)

The addr parameter gives the Bluetooth Device Address of the device which
the SCO connection will be opened to. The pkt_type parameter gives the type of
SCO packet to use on the connection. The Connection Manager is intended for
simple applications, so it only supports a single SCO link. The BlueCore chip
itself supports up to three SCO links, so there is no hardware limitation on estab-
lishing SCO links. However, the Connection Manager was written this way
because it was thought unlikely that an embedded on-chip application would
need to use more than one bi-directional voice link.

The CM_DISCONNECT_REQ message is used to destroy a link. If a SCO
link is destroyed, the underlying ACL link will still exist.

CM DI SCONNECT_REQ (link _type t link _type, BD ADDR T addr)

The link_type parameter is the type of link being destroyed, RFCOMM or
SCO.The addr parameter gives the Bluetooth Device Address of the device at the
other end of the connection being destroyed.

Sending Data
Once a connection has been established, data may be sent to or received from the
peer. CM_DATA_REQ is used to transmit data; CM_DATA_IND is used to
indicate incoming data. CM_DATA_CFM is used to indicate to the library client
how many more packets can be sent before flow control is asserted.

The data parameter is a pointer to a dynamically allocated data block. The
length parameter, meanwhile, gives the length of the data:

CM DATA REQ (uint8 * data, uintl6 |length);
The addr parameter gives the Bluetooth Device Address of the device which data

is to be transmitted to. The length parameter gives the length of the data block, and
data points to the dynamically allocated data block. This must be freed by the client:

CM DATA I ND{ BD ADDR T addr, uintl16 length, uint8 *data);

The tx_credits_left parameter gives the number of transmit credits that the
application has left under the RFCOMM credit-based flow control scheme:
CM DATA CFM (uint16 tx_credits_left)

311

www.syngress.com

Embedding Bluetooth Applications * Chapter 7

Using Other Messages and Events

The Connection Manager supports three indication messages which are used to
asynchronously indicate when a connection status changes, or when an error occurs.

The Connection Manager uses the CM_CONNECT_STATUS_IND mes-
sage to inform the client of changes in the status of an RFECOMM connection.
This is structured as follows:

CM_CONNECT_STATUS I ND (connect_status_t status, BD ADDR T addr)

The status parameter is set to CmConnectComplete or CmConnectDisconnect.
The addr parameter is the Bluetooth Device Address of the device whose link
status is being reported.

The Connection Manager uses a similar indication to let your application
know about changes in the status of a SCO link.

CM_SCO_STATUS_I ND (connect _status_t status);

The status parameter is just the same as for the
CM_CONNECT_STATUS_IND: it 1s set to CmConnectComplete or
Cm ConnectDisconnect. The Connection Manager uses the

CM_SCO_STATUS_IND message to inform the client of the establishment or

loss of a SCO link. There is no need for the addr parameter, as you can only
establish one SCO link at a time.

CM ERROR IND (cmerror_t error, BD ADDR T addr);

The error parameter identifies the error which occurred while performing an
operation related to the remote device with Bluetooth Device Address addr. An
error indication may be generated if the client application attempts to:

» Issue a connection request while the Connection Manager is not idle.
» Issue a pairing request while the Connection Manager is not idle.

= Send data before a connection is established.

» Issue a cancel request while the Connection Manager is idle.

The Connection Manager also provides a cancel request. This is used to cancel
any pairing or connection activity in progress, so it takes no parameters. There is

no confirmation for this message. However, a pairing or connection confirm with
a status of CM_cancelled may be generated as a result of a cancellation.

CM _CANCEL_REQ() ;

312

www.syngress.com

Embedding Bluetooth Applications * Chapter 7 313

Deploying Applications

The most direct route to deploying an application is to generate a complete
image, including the firmware, and to program it in to your device over SPI. This
is the approach used during development. Alternatively Device Firmware
Upgrade (DFU) tools are available from CSR (see www.csr.com) which allow
you to produce an image of the application and, optionally, any application per-
sistent store data. This image can be loaded using the DFU protocol over USB,
H4, or BCSP.

Why would you want to go to the extra trouble of producing an image suitable
for loading using the device firmware upgrade tools? There are several reasons:

= End users can use the DFU tools to upgrade their devices.

= The DFU protocol works over USB, H4, or BCSP, so your end-user
products do not need the extra circuitry to support the SPI interface.

= The DFU process permits signing and verification of application images.
This means you can stop end users from downloading images other than
the ones you provide. This allows you to control which applications run
on your products, stopping anyone with a copy of BlueLab from hacking
your devices.

Device Firmware Upgrade is not possible with RFCOMM firmware. The
reason for this is that there is not enough code space on a BlueCore chip to sup-
port both RFCOMM and the bootloader used by DFU.

Debugging...

Using Event-Driven Code to Save Power

Applications running under the Virtual Machine should be event-driven.
You should avoid using polling loops. If you must poll for a value then
use a timer event to wake up your application periodically. This is more
efficient than constantly running loops, as it will allow the chip to place
itself in low-power mode whenever possible.

www.syngress.com

314

Chapter 7 * Embedding Bluetooth Applications

Summary

This chapter has shown how to create, debug, and download embedded applica-
tions for the BlueCore single chip Bluetooth device.

The BlueCore Bluetooth stack takes care of managing REFCOMM links. You
just have to write applications to run on top of RFCOMM. Your applications
will run under an interpreter called the Virtual Machine (VM) which will safe-
guard the Bluetooth protocol stack, allowing it to keep its prequalified status.

You can run your BlueLab applications on a PC under a debugger. This
allows you to develop and debug your applications in an environment with all
the usual debugging facilities. When your application runs on the chip,VM Spy
can be used to communicate on BCSP Channel 13—this is the only way of
debugging on the chip.

By using the libraries and sample applications supplied with BlueLab, you can
speed up application development.

Device Firmware Upgrade (DFU) tools are available which allow field
upgrade for applications which do not use RFCOMM. The bootloader required
tor DFU will not yet fit on builds with RFCOMM, so applications using
RFCOMM cannot be upgraded with the DFU tools.

Solutions Fast Track

Understanding Embedded Systems

M Embedded systems commonly have many tasks running simultane-
ously. Since the processor can only run one line of code at a time, a
scheduler swaps between tasks running a few instructions from each
in turn.

M On BlueCore, your application task is called through an interpreter
referred to as the Virtual Machine, which interprets a few of your
instructions each time it is called. This interpreter means that even if you
write code in an endless loop, the other tasks in the system will still get
to run. The Virtual Machine’s interpreter also stops you from accessing
areas of memory which are needed for other tasks.

M Tasks communicate by sending messages to one another, using areas of
memory which are set up as queues. The first message in the queue is
the first out, so these are sometimes called FIFOs (First In First Out).

WWW.syngress.com

4]

Embedding Bluetooth Applications * Chapter 7

Application software can interact with hardware using interrupts. There
are two pins on BlueCore which will generate an interrupt when they
change state. An application can register to be notified when these inter-
rupts happen.

When you close a switch, the contacts usually bounce off one another.
This bouncing causes the switch to oscillate, making and breaking a
connection. This means that if a switch (such as a pushbutton, or keypad)
is connected to an interrupt line, you will get many interrupts as the
switch closes. BlueLab provides debounce routines.

Getting Started

4]

To create embedded applications to run on CSR’s BlueCore chip, you
need BlueLab and a Casira. The Casira must be configured to run BCSP.

Running an Application under the Debugger

A
|

4]

The PC is connected to the Casira with a serial cable and an SPI cable.

The Casira must be loaded with a null image containing an empty ver-
sion of the Virtual Machine.

Applications running under the debugger on the PC can then use facili-
ties on the Casira, so they can access PIO pins and the BlueCore chip’s
radio while still having full PC debugging facilities.

Running an Application on BlueCore

4]

4]

4}

You must make a special firmware build linking your application with a
Virtual Machine build to run your application on the Casira.

Your application should be fully debugged before you build it for
BlueCore, since on-chip debugging facilities are very limited.

You can communicate with the Virtual Machine on BCSP Channel 13
using VM Spy.

Using the BlueLab Libraries

4}

A selection of libraries provide ANSII C support as well as access to the
Bluetooth protocol stack, PIO pins, and various operating system facili-
ties such as scheduling, timers, messaging, and so on.

WWW.syngress.com

315

316

Chapter 7 * Embedding Bluetooth Applications

Deploying Applications

M If you do not have RFECOMM in your build, you can upgrade devices
in the field using the Device Firmware Upgrade (DFU) tools.
Otherwise, you must program the flash using an interface similar to the
SPI interface.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:

A:

Why does the Casira use BCSP instead of the H4 UART interface from the
Bluetooth 1.1 Core Specification?

The H4 UART interface was designed for chips separated by about 3 mm of
copper on a circuit board. When the ends of the serial interface are separated
by a few feet of serial cable, errors can occur. BCSP protects against those
errors. It also provides separate flow control for voice and data, which is not
possible when usinggthe«l+l; H4 UART Specification. Finally, BCSP provides
a debug channel which is essential for developing and debugging embedded
applications on BlueCore-chips.

: Where does the output from printf or putchar go when the application is run-

ning on the chip?

: STDIO is routed over BCSP and appears on the Channel 13 debug datas-

tream. You can view it with the VM Spy utility. If you are running H4, the
BCSP Channel 13 appears as a manufacturer extension.

. If the Virtual Machine slows my application down, why do I have to run

applications under the Virtual Machine?

. Your application could alter the way the Bluetooth protocol stack runs by

taking too many system resources, such as processor time and memory. The
VM checks all memory accesses and jumps, thus safeguarding the memory that
the Bluetooth protocol stack needs. Without the Virtual Machine, the
Bluetooth protocol stack could have its performance compromised, which
would affect its qualified status.

| www.syngress.com

Chapter 8

Using the Palm OS
for Bluetooth

Applications

Solutions in this chapter:

What You Need to Get Started

Understanding Palm OS Profiles

Updating Palm OS Applications Using the
Bluetooth Virtual Serial Driver

- Using Bluetooth Technology with

Exchange Manager

Creating Bluetooth-Aware Palm OS
Applications

Writing Persistent Bluetooth Services for
Palm OS

The Future of Palm OS Bluetooth Support

M Summary

M Solutions Fast Track

M Frequently Asked Questions

317

318

Chapter 8 * Using the Palm OS for Bluetooth Applications

Introduction

Of all the PDAs on the market, it is probably Palm, Incs devices that have made
the most use of short-range communications. Previously, this has been limited to
line of sight beaming via the infrared (IR) interface, but with version 4.0 Palm
OS support was in place for Bluetooth wireless technology and line of sight limi-
tations became a thing of the past. Palm, Inc. has said that it will begin to ship
Bluetooth accessories in the near future (some are already available to devel-
opers), and it plans to integrate Bluetooth technology into its handheld devices
before too long. A number of Palm OS licensees have also expressed interest in
shipping a Bluetooth solution.

However convenient handhelds may be, it’s undeniably awkward trying to
juggle more than one device while youre on the move. Adding Bluetooth wire-
less technology to a Palm device frees users from the necessity of trying to physi-
cally line up two devices while they’re mobile. It also allows up to eight devices
to communicate at once. The Bluetooth system is omni-directional and its radio
waves can pass straight through solid objects.

Bluetooth technology includes traditional Palm OS applications like Internet
usage and “beaming” easier in mobile environments, but it also creates interesting
opportunities for new applications. Object push opens up the possibility of sponta-
neous communication: you only need to walk into range of a server to see its
information pop up on your Palm device’s display. Of course with new commu-
nication channels come new security and user experience concerns. Security and
ease of use are prime concerns of the new Bluetooth support.

This chapter will give you an insight into Palm OS Bluetooth support,
enabling you to port your existing Palm OS applications to use Bluetooth tech-
nology, or explore a whole new vista of applications which were not practical with
previous communication technologies. Examples make it clear exactly how things
are done, so you can start using Palm OS for Bluetooth applications right away.

What You Need to Get Started

Before you start work on your first Palm OS Bluetooth application, there are a
tew tools you will need. Fortunately, if you are currently a Palm OS developer,
you probably have many of these tools already, and those you don’t have are easily
available from the Palm, Inc. Web site at www.palmos.com.

Bluetooth support in the Palm OS is an extension to Palm OS 4.0, and is made
up of several Palm Application files (.prc files) that may be included in a device’s

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

ROM image, or may be installed with the HotSync install tool and run from RAM.
In order to begin using Bluetooth technology, you will need to have a Palm OS
device with at least 4 MB of memory that is running Palm OS version 4.0 or
greater. Alternatively, if you wish to develop using the Palm OS Emulator, often the
easiest and fastest way to create new application, you can obtain a 4.0 ROM image,
and the 4.0 Software Development Kit (SDK), from the Palm Resource Pavilion at
www.palmos.com/alliance/join. The Palm OS Emulator is available for download
from the Development Support area of the Palm, Inc. Web site at www.palmos.com/
dev/tech/emulator. You may also find it useful to download the Palm Reporter
application, which allows you to see real-time traces from your application.

In addition to a Palm 4.0 device, you will need to have the Bluetooth Support
Package installed. The Bluetooth Support Package consists of several .prc files that
work together. For the moment, don’t worry about understanding what each indi-
vidual piece does, simply make sure that you have them all installed. The easiest
way to know if your Palm device has Bluetooth support installed is to go into the
“Preferences” application and check to see if “Bluetooth” appears in the list of
preference screens in the upper-right corner. This indicates that at least part of the
Bluetooth Support Package has been installed. If you find that you have trouble
using Bluetooth technology later on, you may wish to double-check that all the
files in the package are installed by going to the Info screen in the launcher (from
the menu, choose “App” then “Info”) or by simply reinstalling all of the .prc files
in the package. Unless the device you are using has Bluetooth technology built-in,
it is unlikely that the installed ROM image will include Bluetooth support. The
latest version of the Bluetooth support .prc files, along with the Bluetooth header
files and several pieces of example code, can be found in the Bluetooth area of the
Palm Resource Pavilion at www.palmos.com/dev/tech/bluetooth. Developers can
also find information on how to obtain early releases of Palm OS Bluetooth
development hardware at this site.

In addition to the tools listed here, you will also want to have a copy of the
Palm OS 4.0 SDK documentation, also available on the Palm, Inc. Web site. You
may find that it is useful to have the 4.0 documentation on hand as you read
through this chapter, since there may be references to Palm OS functions calls
and data structures with which you are not yet familiar.

Finally, before you get started, you should know that the function definitions
and data structures used in the code examples in this chapter are not final. As this
text is being written, the Palm OS Bluetooth solution is still in the alpha phase,
and while the overall model and methods are not expected to change, some char-
acteristics and arguments of individual API calls, along with some file names, may

319

www.syngress.com

320 Chapter 8 * Using the Palm OS for Bluetooth Applications

vary from what is presented here. The code examples presented here should be
seen as a basis from which to work, but may require slight modification in order
to compile. Refer to the Palm OS documentation and header files for the final
word on the APIL.

Understanding Palm OS Profiles

This section will present an overview of the difterent profiles supported in the
Palm OS Bluetooth Support Package. If you are not familiar with the general con-
cept of profiles, you way wish to go back and review Chapter 2 before continuing.
The Palm OS currently supports five Bluetooth profiles defined in the

Bluetooth 1.1 Specification. As shown in Figure 8.1, these profiles are:

» Generic Access Profile

» Serial Port Profile

» Dial-up Networking Profile

= LAN Access Profile

= Object Push Profile

Figure 8.1 Bluetooth Profiles Supported by the Palm OS

Generic Access Profile ~
Telephony Control Protocol

‘ Cordless Telephony Profile } [Intercom Profile }
)

Generic Object Exchange Profile

[Dial-Up Networking Profile]
File Transfer Profile

Service Discovery
Application Profile

Serial Port Profile

Fax Profile

[Object Push Profile]

Synchronization Profile]

Headset Profile

[LAN Access Profile)
(D)

Supported directly by the Palm 0S D Not supported directly by the Palm 0S

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

All the profiles help to ensure interoperability by providing common rules
that all Bluetooth devices follow. It is vital to follow these rules as they form part
of the Bluetooth qualification process. (Products must pass qualification to obtain
the free license to use Bluetooth technology.)

Of these profiles, the Generic Access Profile (GAP) is unique. Unlike the other
profiles, which describe a method for accomplishing a specific user goal, the GAP
is a general look at the overall process of carrying out a Bluetooth transaction
without regard to the nature of that transaction, and is background for all the
other profiles. As such, there is no one place in the Bluetooth Support Package
that the GAP is exposed, rather the values and language specified by the GAP are
built into the Bluetooth Library and other Bluetooth components. GAP’s main
goal 1s to create a friendly and consistent user experience, a goal that is also con-
sidered critical in the Palm OS. We will see how the Bluetooth Support Package
tries to help application developers maintain easy and consistent experience
across applications

The Bluetooth Support Package includes a new virtual serial driver (a VDRV
for short), similar to the IrComm virtual serial driver you may already be familiar
with, which provides support for the Serial Port Profile. Both Device A and
Device B roles of the profile are supported. Existing OS components that make
use of serial services such as Point-to-Point Protocol (PPP), HotSync, and the
Telephony Manager are ready to take advantage of the Bluetooth VDRY, and
other serial-based applications can easily be updated to make use of the
Bluetooth VDRV. We will explore the use of the Bluetooth VDRV in great depth
later in this chapter.

The Network Library (NetLib) supports the Data Terminal role of both the
Dial-up Networking and LAN Access Profiles. After installing the Bluetooth Support
Package, you’ll notice that the Connection panel in the preferences application
will allow users to choose Bluetooth technology as a transport when configuring
a connection to a local network, phone, modem, or PC. The OS uses these set-
tings to determine which profile to use when NetLib is opened. Since applica-
tions that use NetLib are unconcerned with how it creates its underlying
transport, the use of the Dial-up Networking and LAN Access Profile is trans-
parent to NetLib-based applications. An e-mail application, for example, that was
developed using NetLib running over a normal modem can be used with
Bluetooth technology when the user configures the Network panel to use a
Bluetooth device. Since the application is unaware of the use of the Dial-up
Networking and LAN Access Profiles, we will not spend too much time talking
about them.

321

www.syngress.com

322 Chapter 8 * Using the Palm OS for Bluetooth Applications

Debugging...

Using NetLib with Bluetooth Technology

The Bluetooth protocol stack uses a good bit more heap space than a
simple serial driver does. Because of this additional heap usage, you may
run into problems if your application is already on the edge of causing a
stack overflow, or running out of heap space. Running out of heap space
will most likely cause your application to receive NULL back from a
memory allocation operation. A well-written operation will always test
for failure when allocating memory, and fail gracefully if the needed
memory chunk can’t be allocated. Testing with the Palm OS Emulator is a
good way to watch for stack overflow conditions; the emulator will tell
you when your application is running close to stack boundary conditions.

The Bluetooth Support Package also includes the Bluetooth Exchange
Library. This new Exchange Library implements the Object Push Profile, much in
the same way that the Exchange Manager supports IR-based Object Exchange
Protocol (OBEX) push.You may have noticed that the Exchange Manager in OS
4.0 has been extended to handle multiple transports. Using these new features, it
is easy to update legacy Exchange Manager-based code to take advantage of
Bluetooth technology (in some cases by changing only a single line of code).
New functions allow Bluetooth savvy applications to better handle multiple
recipients, and create a better user experience. We will spend a bit of time going
over some of these new functions and give some suggestions on how to update
your application.

Choosing Services through the Service
Discovery Protocol

You may have noticed that support for the Service Discovery Application Profile, a
major part of many platforms’ user experience, is absent from the Palm OS’ list
of supported profiles. It is important to note that supporting the Service
Discovery Application Profile is very difterent from supporting the Service
Discovery Protocol (SDP), which the Bluetooth specification mandates and for
which Palm OS offers full support. The aim of the Service Discovery Application

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

Profile is to define how information gained through the Service Discovery
Protocol might be presented to the user, and presents two basic usage models:
Service Browsing and Service Searching.

In the Service Browsing model, the user would see a list of available devices
(the result of a inquiry) and be able to open each device and look through the list
of services that that device presents. After browsing, the user would presumably pick
the device and service that they wish to utilize. Palm, Inc. does not endorse this
model because they believe that the application, not the end user, should be
responsible for knowing which service it needs to communicate with, and for
being able to find that service. When I sit down at a PC, for example, and type an
IP address into an application, I don’t get a list of all of the possible services I can
connect to on the remote server as well as a query about which one I wish to con-
nect to. Rather, the application knows that it is a Web browser or a Ping applica-
tion, and it knows how to find and connect to the appropriate service; if the host
does not offer the service, I get an appropriate error message. The same should be
true with Bluetooth technology; applications should be responsible for knowing
which services they want to use and for knowing how to connect to them.

In the Service Searching model, the user (or application) selects which service
they wish to use and then are presented with a list of available devices that present
that service. From a user-experience point of view, this is clearly a better model.
Unfortunately, this model still causes a problem. The most obvious time to do a ser-
vice search is during the discovery process, an operation which most users find
takes too long already. You could conceivably cache the service lists of remote
devices, but this cache would need to be quite large to be useful and it would be
difficult to know when your cache was out-of-date. On a large device that has lots
of CPU time and battery power to waste making regular inquiries in the back-
ground, Service Searching might be a good model, but on a small device it seems
like overkill. Rather, it seems to make more sense to use the Class of Device (CoD)
information returned during inquiry to do the same kind of service-based filtering.
While the information in the CoD is less specific than the information available
through SDP, using CoD is probably sufficient in most cases and can actually
shorten the total discovery time since devices can be eliminated before a name
request is done. As we will see later on, the Palm OS offers a robust model for
CoD-based filtering during discovery. Finally, if a developer decides that he or she
really wants to use the Service Discovery Application Profile, all of the tools neces-
sary to implement the desired parts of the profile are available to the application.

If none of the profiles cover what you are trying to do, don’t despair. The
Palm OS also provides a robust API that allows you direct access to the SDP,

323

www.syngress.com

324

Chapter 8 * Using the Palm OS for Bluetooth Applications

RFCOMM, and Logical Link and Control Adaptation Protocol (L2CAP) layers
of the Bluetooth stack, along with calls to allow you to manage the Bluetooth-
specific concerns like discovery and piconet creation.

Updating Palm OS Applications Using
the Bluetooth Virtual Serial Driver

Using the Bluetooth Virtual Serial Driver allows existing serial-based applications
to quickly be updated to take advantage of Bluetooth technology, and is an easy
way to create new Bluetooth-enabled applications. Virtual serial drivers in the
Palm OS are individual .prc files of type vdrv and are used throughout the new
Serial Manager interface, much the same way as traditional physical serial ports
are used. The Bluetooth VDRV is included with the Palm OS Bluetooth Support
Package. This section will focus on the unique aspects of using the Bluetooth
VDRV, for information on the general use of the new Serial Manager, refer to
the Palm OS documentation directly. Figure 8.2 shows a basic overview of how
Bluetooth technology fits into the Palm OS communications architecture.

The Bluetooth VDRY, in accordance with the Serial Port Profile, runs on top
of the RFCOMM protocol layer. It is worth noting that the VDRV does not
implement RECOMM itself. The RFCOMM protocol layer is implemented in
the Bluetooth Library and can be accessed directly through the Bluetooth Library
API (discussed in depth later in the chapter). The VDRV itself is “glue code” that
allows Bluetooth functionality to be accessed though a more traditional API.
Using the VDRV also gives you an advantage in writing multi-transport applica-
tions. Since there are only a few differences between using the IrComm VDRV
and the Bluetooth VDRV, much of your code will not need to be altered in order
to use both transports.

Gluing new technology underneath an old interface always presents some
challenges and there are a few limitations to using the Bluetooth VDRV that you
should be aware of. In order to achieve certain performance optimizations, the
Bluetooth VDRV opens the Bluetooth Library with a slightly difterent configura-
tion than is normally used when an application opens the Library. As such, the
Bluetooth VDRV and the Bluetooth Library cannot be opened by the application
at the same time. Since NetLib and the Telephony Manager can be configured to
use the Bluetooth VDRY, the Bluetooth Library and the VDRV may not be avail-
able when these other components are in use. Applications are also limited to
using a single instance of the Bluetooth VDRV at any given time.

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

Figure 8.2 How Bluetooth Technology Fits into the Palm OS Communications
Architecture

Web IP Serial Hot- Exchange |
Clipping Apps Apps Sync Apps Direc Blctoath Apps Appliculions
Netlib
Fuchange Existing
Serial Manager Manager Palm 0S
Components
Bt
Bt VDRV ‘ Exchange
Library

<:| Bluetooth
Bluetooth Library & Stack librury API

Service

Discover

Prolocor RFCOMM New Palm 0S
SOP Management
(SDP) Functions Bluetooth
Components
Logical Link Control and Adaptation Protocol (L2CAP)
‘ Host Controller Interface (HCI) ‘)
[Bluetooth Transport] [Bluetooth Transport] [Bluetooth Transport)

One of the challenges of mapping Bluetooth underneath a traditional serial
API 15 that traditional serial ports are single-channel and non-addressed in nature,
while the Bluetooth system is a multiplexing, address-based protocol stack. A tra-
ditional serial port driver can simply initialize its local hardware, start talking and
hope that there is a cable in place and someone listening on the other side, while
Bluetooth technology needs to know which device and which service on that
device it 1s going to talk to; it must also actively create the underlying baseband
connection. Since most Bluetooth radios are not capable of simultaneously lis-
tening for an inbound connection and trying to create an outbound connection,
an instance of the Bluetooth VDRV also needs to know whether it is initiating or
accepting the connection.

Since a traditional serial API does not present a mechanism for passing all of
this extra information, Palm OS 4.0 has added a new call, SrmExtOpen() (found

www.syngress.com

325

326

Chapter 8 * Using the Palm OS for Bluetooth Applications

in SerialMgr.h), to the New Serial Manager API. The SrmExtOpen() call allows
an application to pass down additional configuration data, along with a driver-
specific configuration structure. SrmExtOpen() must be used to initialize the
Bluetooth VRDV—passing the Bluetooth VDRV into the older SrmOpen() call
will simply cause the call to fail.

The top level configuration structure that is passed into the SrmExtOpen() tunc-
tion for the Bluetooth VDRV is defined in the SerialMgr.h file as the following:
typedef struct SrnOpenConfigType {

Ul nt 32 baud; // Baud rate that the connection is to
/1l be opened at. The Bluetooth VDRV
/lignores this val ue.

U nt32 function; /1 Designates the function of the
/1 connecti on.
/1 Non-QOS conponents should set this value
/1 to zero.

MenPtr drvr Dat aP; /1 For the Bluetooth VDRV, a pointer to an
/1 instance of RfVdOpenParans.

untl6 drvrDataSize; // For the Bluetooth VDRV,
/1 sizeof (Rf VdOpenPar ans) .

U nt 32 sysReservedl; // System Reserved.

U nt 32 sysReserved2; // System Reserved.

} SrmOpenConfigType;

When using the Bluetooth VDRY, the drvrDataP element should be filled in
with a pointer to an instance of the Rf1dOpenParams structure. This is a
Bluetooth VDRV-specific structure, and applications should be sure that they are
dealing with the Bluetooth VDRV before passing the pointer. The
RfVdOpenParams structure, along with several supporting structures, is defined in
RfCommVdrv.h. Later, we’ll see examples of how these structures are used. First,
let’s take a look at the structures themselves.

typedef struct {

Rf VdRol e role; // client or server?
Bool ean authenticate; // force link authentication
Bool ean encrypt; // force link encryption

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

uni on {
Rf VdOpenPar ansd i ent client; // client paranmeters
Rf VdOpenPar ansSer ver server; // server paraneters
Py

} RfvdOpenPar ans;
typedef enum {

rfvdd i ent, // RFCOW cl i ent
rf VdSer ver /| RFCOWM server
} RfVdRol e;

As mentioned earlier, most Bluetooth radios are not capable of receiving
inbound connections while trying to create outbound connections. For this
reason, it is necessary for an application to indicate whether it wishes to initiate
or accept the Asynchronous Connectionless Link (ACL) and RFCOMM con-
nections. Palm OS refers to these roles as the client role and the server role, respec-
tively. The application indicates its preference by setting the corresponding value
for the role element in the RfVVdOpenParams structure and filling the appropriate
role-specific parameter structure inside the union. The authenticate and encrypt
values are used to specify the security requirements for the link; if these require-
ments cannot be met, the link will be dropped.

typedef struct {
Bt Li bSdpUUI DType uuid; // UUD of the service to be advertised
Char * nane; // optional readable nane of the service
} RfvdOpenPar ansSer ver;

When the VDRV is opened in the server configuration, it will register for an
RFCOMM channel and advertise that channel via SDP. This creates a simple ser-
vice record utilizing the Unique Universal Identifier (UUID) and name string
defined in the RfVdOpenParamsServer. If the application wants to create a more
robust service record, it should use REFECOMM and SDP directly through the
Bluetooth Library (BtLib) API.

UUIDs are used to uniquely identify an application, or more specifically, the
protocol the application expects to communicate with. If the application is
willing to handle the possibility that it may get a connection to an incompatible
application, and the application will only be used between two Palm OS devices,
the uuid can be set to 0. This will cause the VDRV to use a predefined UUID
unique to the Palm OS. If the server chooses to set the uuid to 0, the client
should do so as well.

327

www.syngress.com

328

Chapter 8 * Using the Palm OS for Bluetooth Applications

Since all actions involved in a server open are local, the open call should only
fail if there is a resource conflict.

typedef struct {

Bt Li bDevi ceAddr essType renot eDevAddr; // the device to connect to

Rf Vdd i ent Met hod met hod; // how to determ ne renote

/1 RFCOW channel
uni on {
Bt Li bRf CormBer ver | dType channelld; // method ==
/1 rfVvdUseChannel I d
Rf VdUui dLi st uuidList; // nettod ==
/1 rfVdUseUui dLi st

by
} RfVdOpenParamsd i ent;
typedef enum {

r f VdUseChannel 1 d, /1 use an RFCOW channel id

rf VdUseUui dLi st /1 use SDP to find a channel based upon a

/'l service UUID.

} Rfvdd i ent Met hod;
typedef struct {

U nt8 | en; /1 length of table == nunmber of UUl Ds

Bt Li bSdpUUI DType* tab; // table of UU Ds
} RfVdUui dLi st;

To open the VDRV in the client configuration, a more complex structure
must be passed in to SrmExtOpen(). The remoteDevAddr parameter indicates the
48-bit Bluetooth device address of the remote device the VDRV should connect
to. The application might determine what address to use by making a call to
BtLibDiscoverSingle() in the BtLib API (discussed later), or by taking an address
from a Connection Manager Profile that uses Bluetooth technology. If
remoteDevAddr 1s set to 0, the VDRV will perform a device discovery and ask the
user to specify a remote device during the open. After creating an ACL connec-
tion to the remote device, the VDRV attempts to establish an RFCOMM con-
nection. The application must indicate which RFCOMM channel the VDRV
should use. The channel is determined by using SDP to look up the Channel ID
of the remote service. While the application is welcome to use the SDP function

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

calls in the BtLib API to obtain the Channel ID (and the 1f1’dUseChannelld
method to pass in), the VDRV presents an easier method. By using the
1fVdUseUuidList method, the application can simply pass in the UUID of the ser-
vice it wishes to utilize. Passing in more than one UUID will cause the VDRV to
run through the list until it finds a service it can use. The VDRV will look for a
service record with the given service UUID, and if a record is found, it will then
search for the RFCOMM Channel in the record’s protocol descriptor list (if
multiple protocol descriptor lists are contained in the record, the VDRV will use
the first RFCOMM channel it comes across). Setting the method to
1fVdUseUuidList and setting len to 0 will cause the VDRV to look for the prede-
fined Palm OS UUID (discussed earlier).

Since a client-open may block for several seconds while the ACL connection
is brought up, the VDRV may display some UI to allow the user to see the con-
nection progress.

Creating a VDRV Client-Only Application

Let’s move on to looking at a real VDRV client-only application. Such an appli-
cation might be useful when you know that the Palm device will always be
playing a client-based role, and therefore never need to accept a connection. Let’s
imagine that we are creating an application for controlling home appliances, using
the (entirely imaginary) Bluetooth Based Blender Remote Control Profile
(B3R CP for short). Since, as we all know, B3R CP is based on the serial port pro-
file, it is appropriate to use the VDRV. Furthermore, since we know that the Palm
device will always initiate the connection to the blender (after all, appliances
don’t generally initiate contact with the remote control), the Blender-control
application 1s a good example of a client-only application. For the purpose of this
example, we will assume that the B3BRCP is a well-known protocol, and that a
UUID of 07004F16-3776-11D5-83CE-0030657C543C has been established as a
service ID for B3R CP services. For your own applications, you will need to use
established UUID:s for the profile you are using, or create a new UUID yourself
using one of the many UUID (sometimes called GUID) generation tools that are
commonly available on the Web.

Let’s look at the code fragment that performs the VDRV open call.

#i ncl ude <Pal nS. h>

#i ncl ude <BtLib. h>

#i ncl ude <BtLi bTypes. h>
#i ncl ude < Rf CormVdrv. h>

329

www.syngress.com

330

Chapter 8 * Using the Palm OS for Bluetooth Applications

The structure BtLibSdpUUIDType consists of a size indicator and an array of
bytes that form the UUID itself. The size of all UUIDs not declared directly in
the Bluetooth specification is btLibUuidSize128.

#define uuui dB3RCP \
{ bt Li bUui dSi ze128, {0x07, 0x00, Ox4f , 0x16, 0x37, 0x76, Ox11, Oxd5, \
0x83, Oxce, 0x00, 0x30, 0x65, 0x7c, 0x54, 0x3c}}
Ul nt 16 gPortl d;
Err OpenPortAsCient(void)

{
Err err;
SrnOpenConfigType config;
Rf VdQpenPar ans rf par ans;

Bt Li bSdpUUI DType renoteServi cel D = uuui dB3RCP;

/1 To be on the safe side, set all of the parameter structures to O
/'l before starting:

Mentet (&config, sizeof (config), 0);

Mentet (& f parans, sizeof (rfparans), 0);

config. function = O; /'l non-CS conponents mnust use zero

config. drvrDataP = (MenPtr) & fparans; // driver specific parans
config. drvr Dat aSi ze = si zeof (Rf VdOpenPar ans) ;

/1 Al other elements of the SrnmOpenConfigType structure are ignored
/1 by the Bluetooth VDRV, so skip to filling in VDRV specific info:
rfparans.role = rfvddient; // we are the client side

/1 We don't care about security but the appliance nmay insist on it:
Rf par ams. encrypt = fal se;

Rf parans. autheniticate = fal se;

/1 Use the discovery function in the Bluetooth Library to get the
/'l renmpte device address:

err = Get AddressFronlser(& fparans.u.client.renoteDevAddr);

if (err) return err;

/] Connect to the B3RCP server on the renote for this device.

/1 Instruct the VDRV to find this device by looking for its Service
/1 UUl D:

www.syngress.com

Err

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

rfparans.u.client.method = rfVdUseUui dLi st ;
rfparans.u.client.u.uuidList.tab = & enoteServicel D,
rfparans.u.client.u.uuidList.tab = 1; // no fallback services
err = SrnExt Open(

sysFileCVirtRfComm // specify the use of the Bluetooth VDRV

&config, /1 port configuration parans

si zeof (config) , /1 size of port config parans
&gPortld /! put the port id in a global
)

return err;

Get Addr essFronlser (Bt Li bDevi ceAddr essType* addr P)

Err error;
U nt16 btLi bRef Num = O;
Bt Li bCl assOf Devi ceType fil ter;
/1 Find the Bt Library:
i f(SysLibFind(btLi bNane, &btLi bRef Num))
{
/1 Load the Library if it can't be found:
error = SysLiblLoad(sysFileTLibrary , sysFileCBtLib, &btLibRefNum;
if(error) return error;
}
/1 Open the Library:
error = BtLibOpen(btLibRefNum;
if(error) return error;
/1l Cass of Device (CoD) is a value that devices return during the
/1 discovery process. A CoD value can be passed to the discovery
/1 functions as filter, to keep devices in the wong category from
/1 showing up. By setting the filter type to the values used by the
/1 iBlend, the user will be restricted to a nore appropriate subset
/1 of discoverable devices.
filter = btLi bCOD ServiceAny | btLi bCOD_Mj or _Uncl assi fied ;

331

www.syngress.com

332 Chapter 8 * Using the Palm OS for Bluetooth Applications

/1 BtLibDi scoverSingl eDevice() is defined in BtLib.h, and will be

/1 discussed in detail later in the chapter. Basically the call

/1 perforns a discovery and asks the wuser to select a device from
/1l the resulting list:

error = BtLibDi scoverSingl eDevi ce(btLi bRef Num NULL, &filter, 1,

addr P,
fal se, false);

/1 You nust always close the Library before returning, or the VDRV
/1 will not be able to open
Bt Li bl ose(btLi bRef Num);

return error;

\WARNING

Applications and the VDRV use the Bluetooth Library in different modes.
Because of this difference, the VDRV will not be able to open while the
application is holding the Bluetooth stack open.

The main application block can now be coded to make a call to
OpenPortAsClient(). If the call returns without error, the port is open and can be
used as any normal serial port might be used. Closing the port will cause the
RFCOMM and ACL connections to be dropped. In general, protocols that run
over standard serial ports are responsible for defining their own stay-alive and
timeout conditions. In general, this is true for Bluetooth VDRV ports as well,
though if the ACL link is lost before SrmClose() is called, the SrmSend() call will
return serErrLineErr.

Now, let’s look at the problem from the other side.

Creating a VDRV Server-Only Application

As an employee of Frappé.com, you have been made the lead software engi-
neer on the iBlend, the world’s first Palm-device powered blender. Since the
iBlend i1s a state-of-the-art home appliance, its feature set will clearly need to

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

include support for B3R CP, allowing the user to make a margarita without

the inconvenience of having to walk across the room. The iBlend will need to

open the virtual serial port in the server role, which will require a slightly dif-

terent open call.

Err

{

OpenPort AsServer(void)
Err err;
SrmpenConfigType config;

Rf VdOpenPar ans rf parans;

Bt Li bSdpUUI DType | ocal Servi cel D = uuui dB3RCP;

/'l Define a name for the service. This is optional but nay be useful
/1 for devices that support service browsing.

Char * servi ceNane = "Bl ender Control";

/1 To be on the safe side, set all of the paraneter structures to O
/1 before starting.

MenSet (&config, si zeof (config), 0);

Mentet (& f parans, sizeof (rfparans), 0);

config. function = 0; /1 non-QOS conponents nust use zero

config. drvrDataP = (MenPtr) & fparans; // driver specific parans
config. drvr Dat aSi ze = si zeof (Rf VdOpenPar ans) ;

/1 Al other elenents of the SrmOpenConfigType structure are ignored
/1 by the Bluetooth VDRV, so skip to filling in VDRV specific info.

rfparans.role = rfVdServer; /'l we are the server side

/1 Insist on authentication, so that the mean nei ghbor next door can
/1 not control your blender:
Rf par anms. encrypt = fal se;

Rf par ans. aut heni ticate = true;

/1 Specify that the port should advertise itself in SDP with the
/1 B3RCP UU D. Also provide a user friendly name for the service:
rfparans. u.server.uuid = & enoteServicel D,

rfparans. u. server.name = servi ceNane;

err = SrnExt Open(

333

www.syngress.com

334 Chapter 8 * Using the Palm OS for Bluetooth Applications

sysFileCVirtRf Comm // specify the use of the Bluetooth VDRV

&config, /1 port configuration parans
si zeof (config), /1 size of port config paramns
&gPortld /! put the port id in a gl obal

)

return err,

The OpenPortAsServer() call will take care of setting up the server serial port
for the main application on your iBlend. Note that setting up the port as a server
does not cause the driver to go out and create an ACL or RFCOMM connec-
tion, it merely sets the port up as a listener. Like a normal serial port, the VDRV
will not alert the application when an incoming connection is established, the
application will simply begin to receive data from the port. Like any protocol that
runs over a serial port, BARCP must handle session establishment and termina-
tion. The port will also accept the first inbound connection it receives, as long as
that connection meets the security requirements set in the Rf17dOpenParams
structure. If the protocol or application above the serial port requires additional
security, it’s up to that layer to implement it.

Now we have seen an example of both a client-only and a server-only use of
the VDRV. At this point, you may be saying to yourself, “That’s all great and
everything, but I'm writing a Palm-to-Palm application. I need to be able to be
both client and server!” Fortunately, this is easy. The simplest way to handle this
case 1s to open the serial port as a server when your application is opened. When
the user does something that requires a connection (i.e., pushes a start button,
starts to generate input, and so on), close the serial port and reopen it as a client.
You will have to somehow convey to your users that only one person should
start the connection, but this is a commonplace enough idea that most users
should get it without too much hassle.

Once the port has been opened, it behaves like any other Palm OS serial
port. This means that you can use the same code and Serial Manager calls that
you use with your existing serial application. By adding a few simple routines to
open the port, you can make your legacy application Bluetooth-aware.

You should now know everything you need to know to create your first
Palm OS Bluetooth application. Alternatively, you may have found that the
VDRV doesn’t suit your Bluetooth technology needs—it is, after all, only an
emulation layer. The rest of the chapter will cover the use of the Exchange
Manager and the Bluetooth API.

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

Using Bluetooth Technology with
Exchange Manager

If you’re interested in using Bluetooth technology to transfer records, or if
having a constant data flow is not important to your application (as in a turn-
based game), the Bluetooth Exchange Library might be the perfect tool for you
to use. The Exchange Library allows applications to send data blocks without
having to worry too much about the underlying transport. Unlike sockets and
virtual serial drivers, the Exchange Manager is a concept unique to Palm OS.
Gavin Peacock, the engineer at Palm, Inc. who came up with the Exchange
Manager, explains that the need for the Exchange Manager comes from the lack
of a file system in the OS (OS 4 does support a file system for use with expan-
sion cards, but the user is unaware of it). In other OSs, if the user wants to send
a file over a given transport, they save the file somewhere and then go to the
application responsible for that transport (i.e., the e-mail application, the IR
exchange application, and so forth) and specify the file they want to send. In
Palm OS, the Exchange Manager creates a singular API that brings all of the
available transports to each application, avoiding the need to deal with file sys-
tems and transport-specific applications. The Palm OS SDK documents go into
the use of the Exchange Manager in great detail; we’ll concentrate here on new
issues that are of particular relevance to using the Bluetooth Exchange Library.

The Bluetooth Exchange Library is so easy to use, your application might
already be set up to use it. The Exchange Manager in Palm OS 4.0 introduced a
new URL send scheme, known as the exgSendScheme. Rather than referring to a
specific transport, the send scheme instructs the Exchange Manager to allow the
user to pick which of the installed transports they wish to utilize. The Bluetooth
Exchange Library registers itself for the exgSendScheme, so if you’ve already
updated your application to take advantage of the exgSendScheme, it should work
with Bluetooth technology as soon as you have installed the Bluetooth .prc files.
If you haven’t yet updated your application to use send, the Address Book code in
the SDK contains a good example of how exgSendScheme is used. If you know
that your application only wants to use Bluetooth technology, you can indicate
this by using the btExgScheme (“_btObex”) instead of the exgSendScheme. The
result will be the same as using the exgSendScheme, except that the user won’t be
offered a choice of transports.

Once the Bluetooth system has been chosen as the transport, the Exchange
Library will automatically perform a discovery in order to determine the

335

www.syngress.com

336

Chapter 8 * Using the Palm OS for Bluetooth Applications

address of the remote device it should connect to. If you already know the
Bluetooth device address you wish to connect to, you can indicate this in the
URL by sticking the address in the URL you pass in with the exchange socket
as follows:

Char *url Base = "_bt Cbex://12.34.56. 78. 9A. BC/ fil enane. ext"

In reality, you would probably build this URL string dynamically, instead of
hard coding it. The first section of the URL defines the scheme, as discussed ear-
lier. The second section of the URL is a character representation of the
Bluetooth device address of the target device. If you have the device address
stored in a BtLibDeviceAddress Type structure, you can easily convert the address to
a string by calling BtLibAddrBtdToA() (this function can be called without first
opening the Bluetooth Library). This kind of usage might be useful in situations
where the application keeps some kind of “buddy list” of devices, making a dis-
covery unnecessary. In addition to a single device address, the second section of
the URL can also use the meta-addresses “_single” and “_multi”, which indicate
that the Exchange Library should perform a discovery and prompt the user to
select one or multiple devices, respectively. For multiple recipients, the URL
addressing convention is to separate the recipient’s Bluetooth device addresses
with a comma, as follows:

Char *url Base = "_btCbex://11.22. 33.44.55. 66, 77. 88. 99. AA
. BB. CC/ fil enane. ext"

The last section of the URL is the name and extension you wish the file to
have when it is sent to the remote device.

In some applications, such as a chess game, you may wish to have a discovery
occur on the first move, but then always use the same device address for each
move afterwards. This can be accomplished using a new ExgMgr call control call
named exgLibCtlGetURL. The Bluetooth Exchange Lib is the first to implement
this control, but it is expected that other Exchange Libraries that use addresses
(such as SMS) will be updated to use it soon. The purpose of the
exgLibCtlGetURL control is to allow the application to retrieve an exchange
sockets URL after the Exchange Library has filled it out. The call can be made
any time after a successtul ExgPut(), ExgConnect() or ExgAccept() call, and before
ExgDisconnect() is called.

When invoking the exgLibCtlGetURL control, the valueP parameter passed
to ExgControl() should be a pointer to a ExgCtlGerURLType structure, which is
defined as:

www.syngress.com

btObex://12.34.56.78.9A.BC/filename.ext
btObex://11.22.33.44.55.66,77.88.99.AA

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 337

typedef struct _ ExgCtl Ger URLType {
ExgSocket Type *socketP;
Char *URLP;
U nt16 URLSI ze;

} ExgCtl Ger URLType;

Obviously, socketP is a pointer to the ExgSocket you are trying to get the URL
for, URLP is a pointer to the character buffer where the URL will be stored, and
URLsize is the size of the buffer. If the call is successful, the URL buffer will be
filled in, and so will the length of the URL (including the mandatory NULL ter-
minator). If the application wants to dynamically allocate the URL butfter space, it
can first make the call with the URLP set to NULL and the URLSize parameter
set to 0. In this case, the call will simply return the URL size so that the applica-
tion can allocate an appropriately-sized buffer to retrieve the URL with. Once
the application has retrieved the URL, it can utilize the same URL with future
ExgSockets to indicate that it wants to use the same exchange scheme and remote
device. The Tic-Tac-Toe application in the Palm OS Bluetooth developer kit
provides an excellent example of an application that makes use of the Bluetooth
Exchange Libraries’ URL scheme to create a two-player game.

On the receiving side, the application is generally unaware of which exchange
transport is being used.

In certain scenarios, such as the chess game just described, the receiving app
may wish to grab the sender’s address from the URL for use in subsequent moves.

Creating Bluetooth-Aware
Palm OS Applications

The VDRV and Exchange Manager simplify using Bluetooth technology by
encapsulating it inside familiar and easy-to-use interfaces, but the simplification
also hides functionality and increases overhead. If the Exchange Manager or the
VDRV suit your needs, then you should certainly use them, but if your applica-
tion requires direct access to Bluetooth protocol layers or management functions,
then you will need to make use of the Bluetooth Library (BtLib) API. This sec-
tion will cover the use of the Library and provide some examples of good coding
practices.

The Bluetooth Library API is fairly large, consisting of over sixty calls, and
can generally be divided into six sections:

www.syngress.com

338 Chapter 8 * Using the Palm OS for Bluetooth Applications

1. Common Library calls Calls common to all libraries: Open, Close,
Sleep, and Wake.

2. Management calls Used for Discovery, managing ACL links, and
global Bluetooth settings.

3. Socket calls Used to manage RFCOMM, L2CAP, and SDP

communications.

4. SDP calls Used to create and advertise service records to remote
devices and to discover services available on remote devices.

5. Service calls Allows application developers to create persistent
Bluetooth services (daemons).

6. Security calls Used for managing the Trusted (Bonded) Device
database.

This section focuses on the Management and Socket sections of the API, with
a brief discussion of how to advertise your application using SDP.You should find
that the Bluetooth API ofters extensive access to Bluetooth functionality while
managing to keep things relatively simple. Using the Bluetooth Library directly
requires a better understanding of Bluetooth technology than using the VDRV or
the Exchange Library, but the Library handles most of the minutiae of the
Bluetooth protocols.

Like many communications interfaces, the Bluetooth API is made up of both
synchronous and asynchronous calls. The synchronous calls block while they do their
work and return a result when they are complete. These calls are used when the
operations involved are purely local, not involving the radio or remote Bluetooth
devices, and thus can be assured to complete in a reasonable time frame.
Asynchronous calls are used whenever the operation involves talking to an
external entity such as the radio or a remote Bluetooth device. This is done
because most Palm OS developers work in a single thread, and thus should not be
blocked for a long period of time while waiting for a call to return. Asynchronous
calls return almost immediately and then report their results through a callback
that the application must register to receive. The header files identify the asyn-
chronous calls by noting that they return a “Pending” result and by listing the
events that you can expect the call to generate. You may notice that a few of the
asynchronous calls, such as BtLibStartInquiry(), generate multiple events.

There are two types of events: management events, which contain the results of
management API activities, and socket events, which contain information about
activity on a particular L2ZCAP, RFCOMM, or SDP socket. Management events

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

are sent to a management callback, which the application should register after
opening the Library. Socket events are passed to the callback that is passed in
when the socket is created. While these data structures are termed
“ManagementEvents” and “SocketEvents,” they should not be confused with the
general Palm OS events type used in the application event loop; the Bluetooth
Library events are separate and unrelated to Palm OS events or notifications.

NoTE

It is worth noting that there are a few things that a Palm OS application
cannot do even when using the Bluetooth Library directly. The Library
does not currently allow applications to put the Palm device or the
remote device into park, hold, or sniff modes. While an application can
request that a given link be authenticated or encrypted, for security rea-
sons the application is not allowed to specify the authentication passkey
or insist that a device be added to a list of trusted (or bonded) devices.

Using Basic ACL Links

Before you can use the Bluetooth Library, you must find the Library and open it.
Opening the Library will cause the OS to initialize the Bluetooth stack and
radio. Stack initialization is an asynchronous function, so immediately after
opening the stack, you should register a management callback. When the initial-
ization is complete (this requires about 50ms for most radios), the callback will
receive a btLibManagementEventRadioState event, whose status field will indicate
whether the initialization was successful. Most of the calls to the Bluetooth
Library require that the radio be initialized, and making these calls before the
btLibManagement EventRadioState event is received will result in an error. The
Bluetooth stack supports re-entry from the callback, so any additional configura-
tion you wish to do can be done from the callback when the radio state event is
received. Here is a quick example of how to open and close the Library:

static U nt16 gBtLi bRef Num = O;
/'l AppStart should be called during application initialization:
static Err AppStart(void)

{

Err error = 0;

339

www.syngress.com

340 Chapter 8 * Using the Palm OS for Bluetooth Applications

}

/1 Find the Library, and save its reference number in a gl obal:
error = SysLi bFind(btLi bNane, &gBtLi bRef Nun);
if(error)
{
/1 Normally, if a Library can't be found, then the application
/'l should sinply load it. The Bluetooth Library, however, is pre-
/1 | oaded by the Bluetooth Extension at boot tinme. Failing to find
/1l the Library indicates there is a problem and the application
/'l should warn the user. Here we will display an alert dialog
/1l that has been defined in the application's resource file:
FrmAl ert (Bt Li bNot FoundAl ert);
return error;
}
/1 Open the Library:
error = BtLi bOpen(btLibRef Num ;
/1 1f the open returned an error, warn the user:
if(error)
{
FrmAl ert (Bt Li bOpenFai | edAl ert);
return error;
}
else // ... otherw se register a managenment call back
{
Bt Li bRegi st er Managenent Not i ficati on(gBt Li bRef Num
MyBt Li bManagenent Cal | backProc, 0);
}

return errNone;

AppStop should be called just before the application exists:
static Err AppStop(void)

{

/1 Always unregister the managenent notificati ons before closing.

/'l This prevents your callback functions from accidentally being

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

/1 called after your app quits if the library is somehow kept open
/1 (perhaps by another application) after your application exists:
Bt Li bUnRegi st er Managenent Not i ficat i on(gBt Li bRef Num

MyBt Li bManagenent Cal | backProc) ;

/1 Close the Bluetooth Library:
Bt Li bCl ose(gBt Li bRef Nun ;
return errNone;
}
voi d MyBt Li bManagenent Cal | backPr oc(Bt Li bManagenent Event Type *nEvent P,
Ui nt 32 ref Con)

{
swi t ch(nEvent P- >event)
{
case btLi bManagenent Event Radi oSt at e:
if (nEventP->status == btLibErrRadiolnitialized)
{
/1 Do any additional initialization here.
}
el se
{
/1 Warn the user that the initialization failed:
FrmAl ert (Bt Li bRadi ol nitFail edAl ert);
}
br eak;
/1 Handl e other events here.
}
}

If your application is going to receive inbound connections, you should check
to make sure that the radio’s accessibility mode has been set to allow connection
and (if desired) discovery. The current accessibility mode can be obtained by
calling BtLibGeneral Preference Get() and passing the btLibPref Unconnected Accessible
value for the preference type.The accessible state of the device is determined by

341

www.syngress.com

342

Chapter 8 * Using the Palm OS for Bluetooth Applications

the user’s settings in the Bluetooth Preferences Panel, and the application should
never override this state without first asking the user’s permission. If the applica-
tion does get the user’s permission to change the state, it can do so by making a
call to BtLibSetGeneralPreference(). Calling BtLibSet General Preference() does not
change the user-defined preferences, but rather only temporarily overrides them;
nonetheless, the application should record the original radio settings, and restore
them before exiting. If the user has set Bluetooth technology to be OFF in the
Preferences panel, the Library itself will prompt the user before allowing an appli-
cation to change settings that affect the radio. The application should never
attempt to override the OFF setting.

If you plan to have your application create outbound Bluetooth connections, you
will probably want to perform a device discovery in order to allow the user to
select the remote device(s) with which she wished to create a connection. The
Bluetooth Library offers two similar calls that handle the entire discovery experi-
ence, including inquiry, name retrieval, and user selection. BtLibDiscoverSingleDevice()
and BtLibDiscoverMultipleDevices() difter only in that the number of the devices the
UI will allow the user to select, and the fact that BtLibDiscoverSingleDevice() returns
the selected device directly while BtLibDiscoverMultipleDevices() returns the number
of devices selected, which can then be retrieved by passing an appropriately sized
array to BtLibGetSelectedDevices().

The discovery calls are designed to create a standardized user experience
while still oftfering enough flexibility to be useful to a wide range of applications.
Some of these things are quite simple, like letting the application specify the
instruction text on the user selection screen. A chess game might pass, for
example, the string Choose an opponent while a printing application might want to
ask the user to “Select a printer.” One of the most useful features of the discovery
calls is the ability to filter out any devices that do not belong to one of the classes
specified by the application. Using this feature, a Palm-to-Palm game could pre-
vent non-PDA devices from showing up in the list of discovered devices, thus
limiting the users’ choices to the appropriate class of device. If an application
passes in multiple CoD descriptions, the application will show devices that fit any
of the indicated classes. The following is an example of a discovery call that will
display all smart phones and all classes of computers:

Err DoDi scovery(BtLibDevi ceAddressType* resultP)

{
Bt Li bl assO Devi ceType al | owedDevi ceC asses[2] ;

/1 Each COD contains one or nore service classes, along with a Mjor

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

/1 and M nor Device C ass:
al | owedDevi ceC asses[0] = btLi bCOD _Servi ceAny | btLi bCOD_Mj or _Phone
| btLi bCOD_M nor_Phone_Smart;
al | onedDevi ceC asses[1] = btLi bCOD_ServiceAny |
bt Li bCOD_Maj or _Conput er |
bt Li bCOD_M nor _Conp_Any;

/1 Do the discovery. Use the default instruction, and stick the

/1 result in the location that was passed in:
return BtLibD scover Si ngl eDevi ce(
gBtLi bRef Num // the Library reference nunber

NULL, /1 use the default instruction text
al | onedDevi ceCl asses, /1 the filter list

2, /1 the filter list length
resul t P, /1 store the selection here

false,// don't use addresses instead of nanes

fal se); /1 don't skip the inquiry

You may have noticed that the discovery call contains two arguments that
haven’t yet been mentioned, the last two arguments: addressAsName and showLastList.
The addressAsName argument instructs the Library to skip name retrieval and instead
display the numeric Bluetooth device addresses of each of the devices. This is mainly
useful as a debug tool, since in general we try to shield the user from long dealing
with long numeric addresses. The showLastList argument causes the Library to skip
the inquiry phase and instead show the same list as the last discovery. These two dis-
covery calls should be flexible enough to handle most applications’ needs; if for some
reason, however, an application requires something outside of the discovery calls sup-
ported activities, the application can implement it’s own discovery procedure using
the BtLibStartInquiry() and BtLibGetRemoteDeviceName() calls detailed in the BtLib.h
file. Once the application has set the appropriate accessibility mode and gained the
address of a remote device (or devices) it wishes to connect to, it can begin the pro-
cess of establishing ACL connections.

Bluetooth piconets have a star formation; one master connected to up to
seven active slaves. The Bluetooth specification talks about overlapping networks
of two or more piconets called scatternets (see Figure 8.3). These, however, are not
well-defined and none of the Bluetooth radios currently available are capable of
creating or managing scatternet formations.

343

www.syngress.com

344

Chapter 8 * Using the Palm OS for Bluetooth Applications

Figure 8.3 Piconets and Scatternets

Piconet

Scatternets

In single connection applications, where applications participate only in
one-to-one connections or as a slave in one-to-many connections, ACL estab-
lishment is very simple. To receive an inbound ACL connection, the application
should simply wait for the Management Callback to receive a
btLibManagementEvent ACLConnectInbound event. This event will contain the
address of the remote device, if the application wishes to reject the connection,
it can call BtLibLinkDisconnect() in the callback.To create an outbound link, the
application should call BtLibLinkConnect() with the address of the device it

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

wishes to connect to, and wait for a btLibManagementEventACLConnect Complete
to indicate whether the connection attempt was successtul. By default, the ini-
tiator of a link is the master and the recipient of the link is the slave. When
there 1s only one ACL connection, the role of the local device is unimportant,
and the Palm OS will allow the master/slave switch to be performed. The OS
will also change the accessibility mode to disable page scanning and inquiry
scanning while a connection is in place, which will prevent unwanted connec-
tion attempts and increase the bandwidth available to the application.

If the application wishes to allow multiple connections, it should use the
piconet calls found in BtLib.h:

» Err BtLibPiconetCreate(UlInt16 btLibRefNum, Boolean unlockInbound,
Boolean discoverable)

» Err BtLibPiconetDestroy(UInt16 brLibRefNum)

» Err BtLibPiconetUnlockInbound(Ulnt16 btLibRefNum, Boolean
discoverable)

» FErr BtLibPiconetLockInbound(Ulnt16 btLibRefNum)

The applications must first call BtLibPiconetCreate(). This call indicates to the
Library that you want to create a multiple device piconet, and changes some of
the policies that the OS uses. In order to have multiple ACL connections, a
device must be the master of its piconet. Calling BtLibPiconetCreate() changes the
OS policies to disable the master/slave switch on outbound connections (so that
it remains master) and forces the master/slave switch on inbound connections (so
that it becomes the master). If the device is already a slave in an ACL connection
when BtLibPiconetCreate() is called, the call will return a pending response, and
attempt to become the master of the link. The Bluetooth Lib will then generate a
btLibManagementEventPiconetComplete event to inform the application whether or
not the piconet creation was successful. If the device is a master in an ACL con-
nection, or there are no ACL connections in place to begin with,
BtLibPiconetCreate() will return a success response and no event will be generated.

Once a successful BtLibPiconetCreate() call has been made, up to seven simulta-
neous ACL connections can be established. Depending upon the usage model for
your application, you may wish to have the piconet master actively create out-
bound connections, wait for inbound connections from remote devices, or both.

Outbound connections can be created at any time, simply by having the
application call BtLibLinkConnect() with the address of each remote device with

345

www.syngress.com

346

Chapter 8 * Using the Palm OS for Bluetooth Applications

which it wishes to form a connection. Each call to BrLibLinkConnect() will gen-
erate a btLibManagementEventACLConnectComplete event with the result of the
connection attempt in the status field. Similarly, calling BtLibLinkDisconnect() will
cause the radio to disconnect an ACL link. Whenever a link is dropped, perhaps
as the result of having called BtLibLinkDisconnect() or as the result of an action on
the remote device or from range or interference problems, a

btLibManagement EventACLDisconnect event will be generated. The status field of
the event will give the reason for the disconnection.

In order to allow inbound connections, the piconet must be unlocked for
inbound connections. Locking and unlocking the piconet aftects the accessibility
state of the radio. Unlocking the piconet causes the radio to periodically scan for
inbound connections (a state called Page Scan mode in the Bluetooth core speci-
fication, or “connectable” in the Generic Access profile). When unlocking a
piconet, the application can also specify that the radio should scan for and
respond to discovery requests (called Inquiry Scan mode in the Bluetooth core
specification or “discoverable” in the Generic Access Profile). Locking the
piconets will make the device non-connectable and non-discoverable. If the
piconet is full (i.e., if seven ACL connections are in place), the OS will also make
the radio non-connectable and non-discoverable, even if the piconet is unlocked,
until one of the ACL connections is dropped. After BtLibPiconetCreate() is called,
the lock/unlock state of the piconet overrides the user’s accessibility preferences
or the accessibility mode set with BtLibSetGeneral Preference(). When the applica-
tion calls BtLibPiconetDestroy(), the OS will return, sever all ACL connections and
set the accessibility mode back to its original state. While the application is free to
leave the piconet unlocked all of the time, you should be aware that since the
radio will periodically have to spend time performing page and inquiry scans, the
throughput on the ACL links of an unlocked piconet will be lower than the
throughput of the links on a locked piconet. Bandwidth-conscious applications
should leave the piconet locked most of the time.

Creating L2CAP and RFCOMM Connections

The L2CAP and RFCOMM protocol layers are exposed in the Bluetooth API
through a sockets-based interface. The SDP interface uses the sockets-based API
as well, but that will be discussed further in the following section. The application
creates a socket by calling BtLibSocketCreate(), which allocates a socket structure
and associates it with a protocol. BtLibSocketCreate() also takes a callback function
pointer as an argument; this callback is associated with the socket and will receive
all of the events for that socket. After a socket is created, it needs to be assigned a

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 347

role. The application can make the socket into a listener for inbound connections
by calling BtLibSocketListen(), or create an outbound connection by calling
BtLibSocketConnect(). When an inbound connection occurs, a listener socket will
spawn a new socket for that connection. It’s worth noting that the ability to
create and receive RFCOMM and L2CAP connections is entirely independent
of the device’s role in a piconet; a device that receives an inbound ACL connec-
tion may create an outbound L2CAP connection. It’s really up to the profile or
the application you are working with. In this section, we’ll look at how to create
and use sockets for L2ZCAP and RFCOMM communication.

Developing & Deploying...

RFCOMM versus L2CAP

Before we get too far into the Palm OS specific handling of L2CAP and
RFCOMM, let's take moment to examine the two layers themselves. As
you will have noticed by now, the RFCOMM is built on top of the L2CAP
layer. In general, when we see protocols layered on top of each other, we
assume that the upper layer protocol somehow extends the functionality
of the protocol layer below it. For example, most of us are familiar with
the fact that the IP layer of the TCP/IP stack is responsible for routing and
delivering packets through a network, and that the TCP layer builds on
top of IP to offer reliability and in-order delivery. This is not really the case
for RFCOMM and L2CAP, however. RFCOMM and L2CAP are both what
the OSI model describe as Data-Link layer protocols; which is to say that
both are concerned with reliably delivering packets of data between two
linked devices: in our case, a master and a slave. Neither L2CAP nor
RFCOMM offer any kind of networking or routing functions. They are
only capable of delivering data to devices with which there is a direct ACL
link. Given these similarities, many people have wondered why both pro-
tocols exist in the Bluetooth stack. This is a very good question, without
a very good answer. The short answer is that RFCOMM is a legacy of the
original goal of Bluetooth technology: to create a wireless replacement
for serial cables. If you look in the RFCOMM specification, you will see
that the protocol deals heavily with physical line simulation, giving upper
layers the ability to set and poll individual line states, just as they would
with a physical serial port. In reality, however, very little use is made of

Continued

www.syngress.com

348 Chapter 8 ¢ Using the Palm OS for Bluetooth Applications

these serial port emulation features of the protocol, and in general, it is
treated as a simple packet-based data-link layer. While most of the pro-
files in the 1.1 specification make use of the RFCOMM layer, over time |
think we will see most new usage models run directly over L2CAP.

There are, however, a few differences between L2CAP and RFCOMM
that may influence which one you decide to use. Since RFCOMM runs on
top of L2CAP, RFCOMM has a slightly higher header overhead than
L2CAP does (about 5 extra bytes), which decreases RFCOMM's total data
throughput and MTU size. A more important difference is that RFCOMM
provides flow control, while L2ZCAP does not. This means that an L2CAP
channel is capable of pushing data at you as fast as the remote device
can send it, and there is no way for the application to flow the L2CAP
channel off. This is not really a problem; it simply means that applica-
tions or protocols that run on top of LZCAP must be able to handle the
flow control themselves, while applications that run on top of RFCOMM
can make use of its built-in flow control. Another important difference
between RFCOMM and L2CAP is the way that inbound connections to
listeners are handled. We will talk in more detail about the differences
between L2CAP and RFCOMM listener sockets in a moment, but the
main divergence to note is that an RFCOMM listener is only capable of
supporting one connection at a time, while a L2CAP listener can receive
an unlimited number of connections. For applications that only make
use of single ACL links, the difference is probably not important, but for
an application that wants to be a server in a seven-slave piconet, having
to only register and advertise one socket can be a big convenience.

Of course, if your application involves functionality covered by a
Bluetooth profile you will not have to make a choice of which layer to
use as the profiles provide guidance on how to use the Bluetooth pro-
tocol stack.

To create a listener socket, first allocate a socket with your desired protocol by
calling BtLibSocketCreate(), then register the socket as a listener by calling
BtLibSocketListen(). Since listener sockets do not need to specify a remote device,
they can be created any time after opening the Library, whether or not there are
any ACL links in place. The listenInfo argument to BtLibSocketListen() is a pointer
to a structure of type BtLibSocketListenInfo Type, which contains protocol-specific
listening information.

typedef struct BtLi bSocketListenlnfoType {

uni on {

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 349

struct {
/'l The PSM (Protocol Service Miltiplexor) identifies the
/] destination of an L2CAP channel. Predefined PSM val ues are
/1 permtted; however, they nust be odd, within the range of
/1 0x1001 to OxFFFF, and have the 9th bit (0x0100) set to zero.
/1 Passing in BT_L2CAP_RANDOM PSM wi Il autonatically create a
/1 usable PSM for the channel. In this case the actual PSM val ue
[Iwill be filled in by the call.
Bt Li bL2CapPsnilype | ocal Psm
U nt16 | ocal M u;
uint16 m nRenoteM u;
} L2Cap;
struct {
/'l Service |Ds are assigned by the RFCOW protocol |ayer. The
/'l servicelD assigned an RFCOW | i stener socket is returned
/1 in the servicelD field of the listen info:
Bt Li bRf CormSer ver | dType servi cel D

/| BT_RF_M N_FRAMES| ZE <= maxFraneSi ze <= BT_RF_MAX_FRAMESI ZE
/] Use BT_RF_DEFAULT_FRAMESI ZE if you don't care
Ul nt 16 maxFr aneSi ze;
/1 Setting advance credit to a value other then 0 causes the
/'l socket (upon a successful connection) to automatically
/1 advance the renote device the set anount of credit.
/1 Additional credit can be advanced once a connection is in
/1 place with the BtLi bSocket AdvanceCredit call.
U nt8 advancedCredit;
} Rf Conm
} data;
} BtLi bSocketLi stenl nfoType;

The BtLibSocketListenInfoType structure 1s interpreted based upon the protocol
assigned to the socket that is becoming a listener. As you can see, slightly difterent
information is used to register an RFCOMM listener than to register an L2CAP

www.syngress.com

350

Chapter 8 * Using the Palm OS for Bluetooth Applications

listener. L2ZCAP identifies available listeners by a Protocol Service Multiplexor
(PSM), which can be thought of as being similar to an IP port. PSM values up to
0x1000 are reserved for use by the Bluetooth SIG.Values above 0x1000 can be
used by applications, as long as the ninth bit (0x0100) is set to zero (the ninth bit
is an escape bit to indicate a PSM longer than 16 bits, which the Palm OS does
not currently support). While you are welcome to define your own PSM, the fact
that there is no central registry for PSM values means that you cannot be assured
you will be able to avoid conflicts with other applications on the device. A better
idea 1s to pass in BT_L2CAP_RANDOM_PSM, which will cause the OS to
assign an available PSM value to the listener. You can let remote applications
know which PSM to connect to by advertising the PSM value with SDP, dis-
cussed in the next section.

The localMtu and minRemoteMtu values are used by L2ZCAP to negotiate the
maximum packet size from the connection. Both localMtu and minRemoteMtu
must be between BT_L2CAP_MAX_MTU and BT _L2CAP_MIN_MTU and
minRemoteMtu must be less than or equal to localMtu.

The RFCOMM protocol uses a simple enumeration called a Server ID to
distinguish its listeners. Unlike the L2ZCAP PSM value, an RFCOMM listener
socket’s Server ID cannot be chosen by an application. Rather, Server IDs are
sequentially assigned by the OS. Like L2CAP listener socket’s PSM values, after
an application has created an RFCOMM listener socket, it should advertise the
listener socket’s Server ID using SDP. The RFCOMM listen parameters also
include a maxFrameSize that defines the maximum frame size allowed for the
channel, and should be between BT_RF_MIN_FRAMESIZE and
BT_RF_MAX_FRAMESIZE. The REFCOMM listen parameters also contain an
advanceCredit field that allows an application to specify a default amount of credit
a remote device should be advanced upon connection (more on RECOMM
credit-based flow control in a moment).

Once a listener socket has been created, it will wait for connection attempts
until the socket is closed with the BtLibSocketClose() call or until the Library is
closed (as a precaution, applications should always close all sockets before they
close the Library, since another application may hold the Library open even after
you close it). When an L2ZCAP or RFCOMM connection attempt is made, the
appropriate listener socket’s callback will be sent a btLibSocketEventConnectRequest
event. The socket must call BtLibSocketRespondToConnection() during the callback
to accept or reject the inbound connection. After responding, the listener socket
will receive a btLibSocketEventConnectedInbound event; the status field indicates
whether or not the connection was successfully negotiated. If the connection was

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 351

successful, the listener socket will spawn a new connection socket, which will be
identified in the btLibSocketEventConnectedInbound event structure. The new con-
nection socket will share a callback with its parent listener socket (you can identify
which socket an event is for by looking at the socket field of the event structure).

To create an outbound connection, the application should first allocate a
socket by calling BtLibSocketCreate(), and then create a connection with that socket
by calling BtLibSocketConnect(). Like BtLibSocketListen(), BtLibSocketConnect() takes a
pointer to a structure that indicates protocol-specific parameters.

typedef struct BtLi bSocket Connect!| nfoType {
Bt Li bDevi ceAddr essTypePtr renoteDevi ceP;
uni on {
struct {
Bt Li bL2CapPsnilype renpt ePsm
Ui nt16 m nRenoteM u;
U nt16 | ocal M u;
} L2Cap;
struct {
Bt Li bRf CommSer ver | dType renot eSer vi ce;

Ul nt 16 maxFr aneSi ze;
U nt8 advancedCredit;
} RfComm
} data;

} BtLi bSocket Connect | nf oType;

As you can see, most of the information contained in the
BtLibSocketConnectInfo Type is analogous to information in the
BtLibSocketListenInfo Type, and like the BtLibSocketListenInfoType is interpreted
based upon the protocol of the socket passed to the BrLibSocketConnect() call.
The minRemoteMtu, localMtu, and maxFrameSize fields are used by the lower
layers to negotiate the maximum packet size for the connection, and the
advanced Credit is used by RFCOMM to automatically advance flow control
credits upon connection. The remotePsm and remoteService, for L2ZCAP and
RFCOMM sockets respectively, are used to determine which listener socket to
connect to on the remote device. If the desired service on the remote device has
a statically assigned LZCAP PSM value (not recommended, see earlier), the PSM

www.syngress.com

352

Chapter 8 * Using the Palm OS for Bluetooth Applications

value can be defined directly in the application. In most cases, you will want to
use SDP to find the PSM or Server ID for the remote service. After
BtLibSocketConnect() has been called, the socket callback will receive a
btLibSocketEventConnected Outbound event, with a status field that indicates
whether or not the connection was successful.

Once a connection socket, inbound or outbound, has successfully been estab-
lished, data can begin to flow. The application can send data by calling
BtLibSocketSend(), and will receive data through btLibSocketEventData events sent to
the sockets callback. BtLibSocketSend() will cause a btLibSocketEventSend Complete
event to be generated when the data has been successfully transmitted. In order to
minimize memory consumption and processing time, the Bluetooth Library does
not buffer outbound or inbound data. This means that applications are responsible
for handling their own buffering. When an application calls BtLibSocketSend(), it
should consider the memory block indicated by the data pointer to be owned by
the Bluetooth Library until the application receives a btLibSocketEventSend Complete
event. Changing or freeing the memory block during this time can corrupt the
data being sent, or even crash the device. Since the Library does not bufter data,
only one call to BtLibSocketSend() can be pending at any given time; additional
calls will result in a “busy” error. Since the Library does not buffer inbound data,
the application must handle the data indicated in a btLibSocketEventData immedi-
ately, either by processing the data immediately or by copying and storing it for
future processing. Once the btLibSocketEventData callback has returned, the event
data pointer is no longer valid.

In the case of RFCOMM connection sockets, in order to receive data, the
application must first advance credits by calling BtLibSocketAdvanceCredit(). Each
RFCOMM flow control credit represents one packet on that channel.
Advancing 10 credits indicates to the remote device that your application is
ready to receive up to ten packets. Credit advances are cumulative, so making
three calls to BtLibSocketAdvanceCredit() with a value of 5 credits would extend a
total of 15 credits to the remote device. The credit count for a socket is decre-
mented each time that the socket receives a packet. When the credit count
reaches zero, the remote device is blocked from sending data on the channel.
You should look at the total available buffer space your application has available
and divide by the channel’s maximum receivable packet size (that is, the
Maximum Receivable Unit [MRU]) for the socket (found by calling
BtLibSocket GetInfo()), and rounding down to find the number of credits your
application should initially advance. When your application has processed data
from its bufter, it can advance credits corresponding to the size of the processed

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

data divided by the channel MRU. A maximum of 256 total credits can be
advanced at any given time.

Handling your own buftering is not as much work as it might seem. In most
cases, a few simple queue structures will suffice. The following is an example
buffering code from a shared white board application. In this case, the application
keeps only one queue for buftering outbound data; inbound data does not need
to be buftered since it is handled immediately by drawing to the screen. Since
space is limited, instead of giving the source code for an entire Palm application,
this section will focus on a few important functions that can be used in a
Bluetooth-aware application. For example, instead of putting in an entire OS
event loop, the example only shows a pen event handler, which is called from the
main event loop. For the purpose of this example, we will assume the existence
of some standard queue functions that allow us to create and manage a normal
first-in-first-out queue. We will also assume that the application has already man-
aged to open the Library and create an L2CAP connection.

struct _DrawbDat aType {

Untl6é fromX;

Untl6é fromy;

untlé to X

untl6é to Y;

} DrawbDat aType;

/'l dobals

U nt 32 btLi bRef Num

#define TX_QUEUE_MAX_SI ZE 50

QueueType txQueue;

Bt Li bSocket Ref connecti onSocket ;

#define | NVALI D_PEN_COORD OxFFFF

U nt16 | astLocal Pen_X = | NVALI D_PEN_COCRD,

U ntl6 | astLocal Pen_Y = | NVALI D_PEN_COORD,

/'l TxQueuelnit is called from AppStart

Err TxQueuelnit(void)

{
/1l Initialize the TX queue, using the defined queue size and the size
[/ of our data elenents:
return Queuel nit(txQueue, TX QUEUE MAX S| ZE, si zeof (DrawDat aType));

353

www.syngress.com

354

Chapter 8 * Using the Palm OS for Bluetooth Applications

}
/1 TxQueuelnit is called from AppStop
Err TxQueueDelnit(void)

{
return QueueDelnit(txQueue);
}
Bool ean Connecti onUp(voi d)
{
Bt Li bL2CapChannel | DType channel ;
if (btLi bErrNoError == BtLibSocket Getl nfo(btLi bRef Num
connecti onSocket, btLi bSocketlnfo_L2CapChannel ,
&channel , sizeof (channel)))
return true;
el se
return fal se;
}
Bool ean SendPendi ng(voi d)
{
Bool ean sendi ng = fal se;
Bt Li bSocket Get I nf o(bt Li bRef Num connecti onSocket ,
bt Li bSocket | nf o_SendPendi ng, &sendi ng,
si zeof (sending));
return sending;
}

/1 Handl ePenEvent is called by the formevent handler for pen down,

/1 nove, and pen up events:
Bool ean Handl ePenEvent (Event Ptr event P)
{
Err error;
switch (event P->eType)
{
case penDownEvent:
i f (ConnectionUp())

www.syngress.com

pen

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 355

{

| ast Local Pen_X = event P->screenX;
| ast Local Pen_Y = event P->screeny;,

}

br eak;

case penUpEvent:
| ast Local Pen_X I NVALI D_PEN_COORD;
| ast Local Pen_Y = | NVALI D_PEN_COORD;

br eak;

case penhMveEvent:
{
Dr awDat aType penDat a;
/1 If the last pen value is valid, than a connection is in

/1 place. Otherw se ignore the event:

i f(lastLocal Pen == | NVALI D_PEN_COORD)
br eak;

penDat a. from X = | ast Local Pen_X;

penData.fromY = | astLocal Pen_Y;

penData.to_X = event P->screenX;

penData.to_Y = event P->screeny,

/1 Draw the local pen stroke on our screen:

DrawDat a (&penDat a) ;

/1 Enqueue the draw data in the TxBuffer:

error = QueueEnqueue(txQueue, &penData);

if(error)
{
/'l The Tx queue has overflowed. Handling this is application
/1 dependant, so we'll just display an error and break:
FrmAl ert (TxQueueOQver flowAl ert);

br eak;

}

/1 Attenpt to send now. If there is already a send pending, the

www.syngress.com

356 Chapter 8 * Using the Palm OS for Bluetooth Applications

// call will return an error, but we don't care because the send
/1 conmplete callback will see that there is pending data in the
/I queue:

Att enpt Send() ;

br eak;

}

/1 Always return false when handling pen events so that the CS gets a
/1 chance to handle them too:

return fal se;

}
voi d Dr awbDat a(Dr awDat aType dat aP)
{
W nDr awLi ne(dataP->from X, dataP->fromyY, dataP->to_X, dataP->to_VY);
}
Err AttenptSend(void)
{
Err error;
U nt 32 nunToSend = Get NunifoSend() ;
U nt 8 *dat aP;
Ul nt 32 dat aSi ze;
i f(nunToSend == 0) return errNone;
dataP = (U nt8*) QueueHeadPtr (txQueue);
dat aSi ze = nunToSend * QueueEl enent Si ze(t xQueue) ;
return BtLi bSocket Send(btLi bRef Num connectionSocket, dataP,
dat aSi ze) ;
}
U nt 32 Get NunifoSend(void)
{

U nt 32 nunPossi bl e, channel MaxTxsi ze;
Err error;

/1 find the maxi num si ze packet the socket can send

www.syngress.com

}
11

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

error = BtLibSocket Getlnfo(btLi bRef Num connectionSocket,

bt Li bSocket | nf o_MaxTxSi ze, & channel MaxTxsi ze,

si zeof (channel MaxTxsi ze));

/!l Make sure we didn't get an error:
if (error)
{
ErrAlert(error);
return O;
}
/1 Find the maxi mum nunber of data structures that can be sent in one
/1 packet:
nunPossi bl e = channel MaxTxsi ze / si zeof (DrawbDat aType) ;
/1 1f nunmPossible == 0, then the m nRenbteMu used in establishing
/1 the connection was too small. You should check the value here and
/1 deliver sone kind of appropriate error message.
/1 The nunber of queue itens the application should try to send
/1 assunme QueueSi ze() returns the in use size, not the max size:

return mn(nunPossible, QueueSize(txQueue));

This is the call back associated with the connection socket:

voi d ConnSocket Cal | back(Bt Li bSocket Event Type *sEventP, U nt32 ref Con)

{

U nt 32 nunDat aEl enents, i ;
Dr awDat aType *rxDr awDat a;

swi t ch(sEvent P- >event)

{
case bt Li bSocket Event SendConpl et e:

/1l Check the status of the event

if(sEventP->status != errNone)
{
Err Al ert (sEvent P- >st at us) ;
return;
}

/1 W can dequeue the sent data:

357

www.syngress.com

358 Chapter 8 * Using the Palm OS for Bluetooth Applications

nunDat aEl enents = sEvent P- >event Dat a. dat a. dat aLen /
QueueEl enent Si ze(t xQueue)) ;
QueueDequeue(txQueue, nunDat aEl ements);
/1 Send enqueued data if there is any:
Attenpt Send() ;
br eak;
case bt Li bSocket Event Dat a:

/] W received data to draw. Check the status of the event:

if(sBEventP->status != errNone)
{
Err Al ert (sEvent P- >st at us) ;
return;
}

nunDat aEl enents = sEvent P- >event Dat a. dat a. dat aLen /

QueueEl erment Si ze(t xQueue)) ;

/1l Draw the received data:
rxDrawDat a = (DrawDat aType*) sEvent P- >event Dat a. dat a. dat a;
for(i=0; i<nunDataEl ements; i++)

{

Drawbat a(& xDrawbatali]);

}

br eak;

/1 Handl e other socket events here.

}

return;

Pushing the buffering back to the application ensures that memory usage is as
efficient as possible for any given application, without adding too much burden
to the application developer.

The application should close the socket by calling BtLibSocketClose() when it
1s ready to close the socket connection, or when it receives a
btLibSocketEventDisconnected event (at this point the connection is already lost, so

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 359

the close call simply frees the socket). If the ACL connection is lost, a
btLibSocketEventDisconnected event will automatically be generated. Applications
should be sure to close all sockets before closing the Bluetooth Library.

Using the Service Discovery Protocol

In the previous section, we discussed the need to use Service Discovery Protocol
to find an application’s PSM or Service ID, rather than relying on hard-coded
values. The Bluetooth Library offers an extensive set of APIs for working with
SDP. In this section, we will concentrate on the calls needed to advertise a basic
service record for an L2CAP or RFCOMM listener socket and to retrieve con-
nection information about L2CAP and RFCOMM listeners on a remote device.

Developing & Deploying...

About UUIDs

UUIDs are 128-bit values that are guaranteed to be unique across time
and space without the need for a central registry. In the Service
Discovery Protocol, UUIDs are used to represent services, types, or
attributes. Bluetooth Profiles specify UUID values to identify the services
that they describe; new Bluetooth applications will need to specify their
own service UUID. A number of UUID (also called GUID) generators are
available on the Web. One point of confusion that sometimes occurs
with UUIDs involves the Bluetooth specification’s reference to 16-bit and
32-bit UUID values. All UUIDs are in fact 128-bit values, but the
Bluetooth specification has reserved a range of UUID values. Since all
values in this range have the same base address, the specification uses
16-bit and 32-bit values as a shorthand method to represent 128-bit
values within the reserved range. The Bluetooth Library allows applica-
tions to specify 16- and 32-bit UUID values and handles the conversion
and comparison between the different representations. It's worth
noting that only the Bluetooth specification is allowed to specify 16- and
32-bit UUID values—all other applications must use 128-bit UUID values.

As we noted earlier in the chapter, the Palm OS does not support a service-
browsing usage model; applications are expected to know what kind of service
they want to communicate with. Services in Bluetooth technology are identified
by one or more UUID values. When a service advertises more than one service

www.syngress.com

360

Chapter 8 * Using the Palm OS for Bluetooth Applications

class UUID, the various UUIDs are assumed to have a hierarchical nature. If you
are writing an application that will only talk to other instances of itself (a game,
for example), a single service UUID for the application is probably sufficient.

Advertising a Basic Service Record for an
RFCOMM or L2CAP Listener Socket

Let’s begin by looking at what we need to do in order to create and advertise a
basic service record for an RFCOMM or L2CAP listener socket. We’ll assume
that the application has already opened the Bluetooth Library and created a lis-
tener socket (the socket’s protocol is unimportant). A new application needs to
declare a new service UUID, so we’ll use a UUID generation tool to generate
one, in this case 7FD82E36-47E8-11D5-83CE-0030657C543C.

#define myServi ceUU D \

{ bt Li bUui dSi ze128, { 0Ox7F, 0XD8, 0x2E, 0x36, 0x47, OXE8, 0x11, 0XD5, 0x83, OxCE, \
0x00, 0x30, 0x65, 0x7C, 0x54, 0x3C}}

/1 dobals

Ul nt 32 bt Li bRef Num

Bt Li bSocket Ref |i st ener Socket ;

Bt Li bSdpUUI DType mnyServi ceUUl DLi st = nyServi ceUU D

U nt8 myServiceUU DLi stLen = 1,

Char *myServi ceName = "MyService";

Bt Li bSdpRecor dHandl e mySer vi ceRecor dH;

/1 AdvertiseSocket is called after the application has successfully
created a

/'l listener socket.

Err AdvertiseSocket(void)

{
/1 Error checking for this code is fairly straight forward, and the
// error codes are well docunented in BtLib.h, so we'll |eave the
/1 error checking out for the sake of space.
/1 First we need to allocate a service record to advertise:
Bt Li bSdpSer vi ceRecor dCreat e(bt Li bRef Num nyServi ceRecordH);

/1 Now we will use a very useful call to fill in the inportant
/1 information for our service record:
Bt Li bSdpSer vi ceRecor dSet Att ri but esFor Socket (bt Li bRef Num

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

| i stener Socket, &myServiceUU DLi st,
mySer vi ceUUl DLi st Len,

nyServi ceName, StrLen(nyServi ceNane), nyServiceRecordH);

/1 If we wanted to add any additional info to our service record, we
/1 would do so here by using BtLi bSdpServi ceRecordSet Attribute().

/1 Now all that's left to do is to advertise the record:

Bt Li bSdpSer vi ceRecor dSt art Adverti si ng(bt Li bRef Num nyServi ceRecordH);

return errNone;

That’s all there 1s to it! The BtLibSdpServiceRecordSetAttributesForSocket()
really does all the work for us, filling in the record with Service UUID, pro-
tocol listener information, and service name. There are, of course, a lot of
other attributes that can be contained in a service record (see the
BtLibSdp AttributeID Type), and we can add attributes to the record before
advertising it by calling BtLibSdpServiceRecordSetAttribute(). Before closing the
Bluetooth Library, the application should stop advertising the SDP record by
calling BtLibSdpServiceRecordStop Advertising() and then free the service record
by calling BtLibSdpServiceRecord Destroy().

Retrieving Connection Information about L2ZCAP
and RFCOMM Listeners on a Remote Device

Now let’s look at the other side of the picture: retrieving L2ZCAP or RFCOMM
connection information from a remote device. In order to get SDP information
from a remote device, we need to have established an ACL link to that device.
Retrieving SDP information is an asynchronous operation, so we need to pro-
vide the Bluetooth Library with a callback with which it can return the SDP
query results. The Bluetooth Library uses an SDP socket to specify the callback
that should be used to return information. Although the same API calls are used
to create SDP sockets as to create L2ZCAP and RFCOMM sockets, SDP sockets
have very little in common with L2ZCAP or RFCOMM sockets; they can not be
set up as listeners, or used to create connections. SDP sockets are really just a
convenient way for the Bluetooth Library to manage information about SDP
calls. A single SDP socket can handle one pending SDP request at a time, if your
application does not need to have multiple simultaneous SDP queries pending,

361

www.syngress.com

362 Chapter 8 * Using the Palm OS for Bluetooth Applications

you can use a single SDP socket for all your SDP queries. The SDP socket should
be closed before closing the Bluetooth Library.

Let’s look at an example function that gets the L2CAP PSM for a service adver-
tised with the same UUID that we used in the preceding example (in this case, we
are assuming that the listener socket being advertised was an L2CAP socket).

#define nyServi ceUUI D \

{ bt Li bUui dSi ze128, { 0x7F, 0XD8, Ox2E, 0x36, 0x47, OXE8, 0x11, OXD5, 0x83, OxCE, \
0x00, 0x30, 0x65, 0x7C, 0x54, 0x3C}}

#define | NVALI D_SOCKET_REF OxFFFF

/1 dobals

Ul nt 32 bt Li bRef Num

Bt Li bSocket Ref sdpSocket = | NVALI D_SOCKET_REF;

Bt Li bDevi ceAddr essType renot eDevi ce;

Bt Li bSdpUUI DType nyServi ceUUl DLi st = nyServi ceUU D

U nt8 nyServi ceUU DLi stLen = 1;

Bt Li bL2CapPsnType renot ePSM

/] GetRenotePSMis called after an ACL connection to a renote device has
/1 been established in order to retrieve PSM for the service we wish to
/1 connect to. That PSM can then be used in the connection

/1 structure passed in to BtLibSocketConnect().

Err Get Renot ePSM voi d)

{

Err error,

/1 First create an SDP socket if we haven't already created one.
/1 This socket should be closed before closing the Bluetooth Library
i f (sdpSocket == | NVALI D_SOCKET REF)

{

error = BtLibSocketCreate(btLibRef Num &sdpSocket,

SdpSocket Cal | back, NULL, btLi bSdpProtocol);

if (error) return error;

}
/1 Now request the PSMinfo. The call should return "pending".
error = BtLibSdpGet PsnByUUl D(bt Li bRef Num sdpSocket, &r enoteDevi ce,

&y Ser vi ceUU DLi st
nmySer vi ceUUl DLi st Len);

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8 363

return error;

}
voi d SdpSocket Cal | back(Bt Li bSocket Event Type *sEvent, U nt32 ref Con)

{

swi tch(sEvent->event)
{
case btLi bSocket Event SdpGet Ser ver Channel ByUUl D:
if(sEvent->status != btLibErrNoError)
{
/1 SDP was unable to find a service record for the UU D
/1 list you specified. This is nost |ikely because your
/1 application is not running on the renpte device. Warn
/1 the user that they need to have the application running
/1 on both devices.
FrmAl ert (Renot eAppNot FoundAl ert) ;
return;
}
/1 SDP found a service record with the UU D list you
/1 specified. Copy the PSMvalue into a global so it
/1 can be used to set up the connection

renot ePSM = sEvent - >event Dat a. sdpByUU D. par am psm

/! You may wish to call the code that creates the L2CAP Socket
/] connection here, or wait for sone user action.

br eak;

/! Handl e other socket events here if needed ...

}

As you can see, retrieving remote RFCOMM and L2CAP listener informa-
tion 1is pretty straightforward. If BtLibSdp GetPsmByUUID() or
BtLibSdp GetServerChannel ByUUID() are called with multiple items in the UUID
list, the call will search for a service record that contains all of the service UUIDs
in the list, although it will not insist that they appear in the same order in the

www.syngress.com

364

Chapter 8 * Using the Palm OS for Bluetooth Applications

record as they do in the list. If multiple records with the required UUIDs are
found, the call will return the first one that it comes across.

These two cases should handle most applications’ SDP requirements.
However, if your application needs to make more extensive use of SDP, the
Bluetooth Library contains calls that allow you to make more specific searches,
retrieve and set any attribute value defined in the Bluetooth Specification, and,
for the very gung-ho, deal with SDP records as raw data.

Using Bluetooth Security on Palm OS

Palm OS provides full support for Bluetooth authentication and encryption. What
level of Bluetooth security is required for a link is up to each individual application,
which corresponds to Bluetooth Security Level 2. Applications can cause link authen-
tication or encryption to occur by calling BtLibLinkSetState() with
btLibLinkPref_Authenticated or btLibLinkPref_Encrypted, which will generate a
btLibManagementEvent AuthenticationComplete or btLibManagementEventEncryptionChange
event, respectively. It is up to an application to decide what to do if an authentication
or encryption request fails. The OS will handle any pairing producers (such as asking
the user for a passkey) that are necessary for authentication to occur.

It is worth noting that Bluetooth security is link level security and does not
take the place of application level security (except perhaps on single application
devices, which Palm OS devices are not). Bluetooth authentication simply ensures
that the user is connected to the device they think they are connected to—it
does not ensure that the remote device is authorized to use your service.
Bluetooth encryption ensures that the data can not be sniffed over the air. It uses
128-bit encryption keys, but if this is not sufficient for your application, you are
free to add an extra layer of security to your application, as some writers of finan-
cial software have indicated they are likely to do.

Writing Persistent Bluetooth
Services for Palm OS

In general, a service, or server daemon, is a program that has a persistent presence
on a device, performing its function as needed, often in the background. Unlike a
client application, which normally begins operation directly in response to a user
action, services generally initiate action in response to a non-user event: in our
case, a communication event. In a resource-rich environment, such as a PC,
services often run continuously in their own process. While this approach has

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

advantages, particularly in terms of response performance, it means that the
resources needed by these services are always in use. Having just a few services on
a Palm device can quickly eat away at the device’s limited resources.

Developing & Deploying...

Services and Bluetooth-Aware Applications

As with the Palm OS IR stack, the Bluetooth stack is not available for ser-
vices while it is in use by an application. Although Bluetooth technology
is @ multiplexing protocol, our services will follow the same model as IR.
Service notifications are simply not generated when the Bluetooth
Library has been opened by an application. If an application opens the
stack while a service is in use, the OS will generate an “all shutdown”
message for the services. The decision not to allow services and applica-
tions to use the stack at the same time was made because, despite
Bluetooth’s multiplexing capability, there are complications that arise
with remote device management when more then one application tries
to use Bluetooth technology at the same time.

In order to avoid the problems associated with having truly persistent ser-
vices, Palm, Inc. has had to rethink the services model in the Palm OS, allowing
services to run on a more as-needed basis. Palm, Inc. took such an approach
when implementing the OBEX service in the IR implementation. While the
client side of OBEX starts up in response to a user action (the “beam” com-
mand), the service side of OBEX 1is brought up by the OS when an inbound IR
connection is detected.

Using this mechanism, the IR implementation is able to avoid the overhead of
the OBEX service and IR stack when they are not in use. This model has been
highly successful, despite the tight timing requirements for responding to an IR
connection request. The only hitch in IR service implementation is that, since the
inbound connection triggers the OBEX service directly, third parties have been
unable to develop new IR-based services. Since Palm, Inc. forged the way in the
IR world, and thus set the usage direction, this has not been a major hindrance.
However, given the diversity of usage expected for Bluetooth technology, support
for multiple services has become an important part of providing a robust Bluetooth
solution. The Bluetooth Services API attempts to take this logic a step farther and
allow third parties to create Bluetooth applications with a persistent presence.

365

www.syngress.com

366

Chapter 8 * Using the Palm OS for Bluetooth Applications

In order to efficiently support multiple persistent services at the same time,
certain restrictions must be made. The principle restriction will be that only one
service may be in-session at a time. In other words, although multiple services
can be registered, once a given service begins a session, the other services become
unavailable until it completes its session. When used in conjunction with some
reasonable coding guidelines for the services, this restriction should allow the
availability of multiple services without a significant impact on memory usage.
The restriction has the added benefit of avoiding potential problems in which
two services simultaneously attempt to display UI.

Creating a service is actually pretty straightforward. Essentially, services are
simply pieces of code that register for and respond to Bluetooth service notification.
Bluetooth service notifications are normal Service Manager notifications of type
BtLibServiceNotify Type (btsv). The easiest way to create a service is by packaging
the service in a normal application. When the application is launched in the
“normal” manner (i.e., with sysAppLaunchCmdNormalLaunch), the application can
display controls that allow the user to enable and disable the service, which can
correspond to registering and unregistering for the Bluetooth service notifica-
tion. It is best to register for the notification to be delivered be a launch com-
mand, rather than by a callback, since this avoids the need for locking the code
resource (remember, the service notifications may be delivered while your appli-
cation is not running).

The details pointer of a Bluetooth service notification is a pointer to a
BtLibServiceNofity Detail Type structure, which is defined as:

typedef enum {
bt Li bNot i f yServi ceSt art up,
bt Li bNoti fyServi ceAl | Shutdown, // see err for reason
bt Li bnot i f ySer vi ceNot | nSessi onShut down

} BtLibServiceNotifyEvent Type;

typedef struct _BtLibServiceNofityDetail Type {
Bt Li bServi ceNoti f yEvent Type event ;
Err err;

} Bt Li bServi ceNofit yDet ai | Type;

The event element of the BtLibServiceNofityDetail Type contains the event
information that will allow your service to start up and shut down correctly. The
state diagram in Figure 8.4 shows the basic flow for a service.

www.syngress.com

Figure 8.4 Service States

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

Waiting for Start-Up
Notification

l btLibNotifyServiceStartup

Initialization
- Allocate mnimal globals.
- Call BiLibOpenByService().
- Register for management callback.
- Create listener sockes and register

with SDP.

btLibNotifyServiceAllShutdown Shutdown

- Unregister and free SDP records.

or
btLibNotifyServiceNotInSessionShutdown
- Close all sockets.

[Waiting for Connection

J

RFCOMM

L2CAP
Connection Event

- Unregister callbacks.
/ - Call BiLibCloseByService().
- Free resources.

Session Start-up
- Note that we are in session.
- Call BtLibServicelndicateSessionStart().
- Allocate full globals (only after calling
session start).
- Display any desired UI.
- Accept connection.

btLibNotifyServiceNotInSessionShutdown

btLibNotifyServiceAllShutdown

or

End of Session
- Tear down any UI.

RFCOMM / L2CAP
DisconnectEvent

User Session
Termination

In general, a service sits in an uninitialized state, waiting for a
btLibNotifyServiceStartup notification. This notification is generated when the
OS detects an inbound ACL link, and the Bluetooth Library is currently not in
use by an application. The btLibNotifyServiceStartup notification is basically an

instruction to that service to initialize itself. Initialization should include allo-

cating essential globals, opening the Bluetooth Library with the
BtLibServiceOpen() call, registering for an L2ZCAP or REFECOMM listener socket,

www.syngress.com

367

368

Chapter 8 * Using the Palm OS for Bluetooth Applications

and advertising that socket via SDP. Since services are running in the context of
another application, it is important to make sure that the owner ID of the ser-
vices’ globals is set to O (the system ID) using MemPtrSetOwner(). If the owner
ID is not set, the memory will have the current application as its owner, and
will be cleaned by the system if the current foreground application exits. It is
also important that the service performs all its initialization during the notifica-
tion callback or sub-launch, since the OS will allow the ACL connection to
proceed once the notification is complete. During the startup phase, all of the
registered services will be launched, which can place a strain on the system
resources. In order to avoid overwhelming the system stack, services should ini-
tially allocate only the globals necessary to create and register a listener socket;
additional memory can be allocated later when the service is actually in session.
This helps avoid creating a big bump in memory usage during service initial-
ization. During initialization, services should avoid displaying any UI, since
multiple services may be running. Once the service is initialized and listening,
several things can happen.

The service may receive a btLibNotifyService AllShutdown notification, which
means that the service has timed out (the OS only allows the remote device to
hang around for a limited amount of time without connecting to a service), the
ACL link has been dropped (probably because the remote device didn’t find the
service it wanted in the SDP database), the device power has been cycled, or the
toreground application has opened the Bluetooth Library (applications take
precedence over services). The reason for the notification is not really important,
but you can check the err parameter of the notification details if you really want
to know. Whatever the reason, however, the service’s response to the
btLibNotifyServiceAlIShutdown notification should be the same; the service should
remove all of its advertised records, close its sockets, call BtLibServiceClose(), and
free its allocated memory.

Alternatively, the service might receive a connection request on one of its lis-
tener’s sockets. If this happens, the service is considered “in session” and should call
BtLibServiceInSession(). Calling BtLibServiceInSession() causes the
btLibNotifyServiceNotInSessionShutdown notification to be sent out. This notification
instructs the services that did not call BtLibServiceInSession() to shut down, just as if
they had received a btLibNotifyService AllShutdown notification. It’s important to
note that all services will receive the btLibNotifyServiceNotInSessionShutdown notifi-
cation, so before calling BtLibServiceInSession() a service should set a value to
remind itself that it is in session and should not respond to the
btLibnotifyServiceNotInSessionShutdown notification. Once a service is in session, it

www.syngress.com

Using the Palm OS for Bluetooth Applications ¢ Chapter 8

can go ahead and allocate additional memory and display UI, if necessary. When a
service’s session 1s complete, it should clean up and call BtLibServiceClose().

Developing & Deploying...

Creating New Services

While it is tempting to create a new service to solve a problem, in gen-
eral you should avoid creating a new service unless it is absolutely nec-
essary. When possible, it is always better to use an existing service. This
approach decreases complexity and resource usage and probably makes
your code a good bit simpler. For example, an instant-messaging type
application is more easily created by registering with the Exchange
Manager than by creating a new service. If you want to be able to invite
people nearby to join your game, this is probably also more easily done
with an Exchange Manager interaction than by creating a whole new
service. New services should be restricted to applications that are not
easily handled by existing services, like creating a Bluetooth keyboard
driver or other applications where using OBEX is simply not possible.

The Future of Palm OS Bluetooth Support

Bluetooth is, of course, a very young technology, and will certainly see a fair
amount of evolution over the next few years. Similarly, Palm OS’ Bluetooth sup-
port will likely continue to evolve alongside the technology. In the near future,
Bluetooth devices will address the issues of Layer 3 (Network level) support in
the Bluetooth communication protocol stack. New specifications will define a
network layer for communications between all the members of a piconet (not
just master to slave), as well as inter-piconet communication issues. Roaming and
scatternets will also be addressed. The eventual goal is the creation of true ad-hoc
networks, self-configuring network groupings that grow and change as the user’s
environment changes. For Bluetooth technology to succeed in the long run, it
will also need to address issues like discovery time (currently far too slow) and
maximum throughput (to align with 3G technologies).

As much as possible, these changes will be integrated seamlessly into the Palm
OS Bluetooth Library. New editions of the library will expand the Palm OS’s
Bluetooth capabilities, without compromising existing applications.

369

www.syngress.com

370

Chapter 8 * Using the Palm OS for Bluetooth Applications

Summary

With version 4.0, Palm OS support has been put in place for Bluetooth wireless
technology and line of sight limitations have become a thing of the past. Adding
Bluetooth wireless technology to a Palm device frees users from the necessity of
trying to physically line up two